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Preface

Renewable energy and energy efficient technologies have been attracting much  

attention in recent years due to the soaring energy crisis and environmental prob-

lems associated with the depletion of natural resources. Electricity generation 

from burning of fossil fuels is a major source of greenhouse gas (GHG) emissions 

leading to global warming. Renewable energy resources such as solar, wind,  

biomass, hydrogen, geothermal, ocean and hydropower not only help conserve 

fossil resources for future generations, but are also considered clean sources of  

energy that are constantly replenished. The growth of renewable energy sources 

and their integration into the grid necessitate proper characterization of these sys-

tems and components for optimal performance under economic, environmental, 

and operational constraints. 

However, the highly variable and site-specific nature of renewable energy 

sources has also increased the level of uncertainty in the operation of power sys-

tems and the unpredictability of load situations. Soft computing (SC) techniques 

offer an effective solution for studying and modeling the stochastic behavior of 

renewable energy generation, operation of grid-connected renewable energy sys-

tems, and sustainable decision-making among alternatives. The tolerance of SC 

techniques to imprecision, uncertainty, partial truth and approximation make them 

useful alternatives to conventional techniques. 

This carefully edited book covers the application of SC in diverse area of re-

newable energy studies. Application areas include characterization of photovoltaic 

(PV) systems and grid-connected PV plants, study of operational characteristics of 

various renewable sources in multi-criteria decision-making, study of thermal en-

ergy systems and absorption cooling systems, probabilistic load flow problems, 

diagnosis and prediction of desert dust transport episodes for improved operation 

of renewable energy systems utilizing solar radiation, short-term wind forecasting 

based on time series analysis, and renewable energy hydrogen hybrid systems. A 

brief description of each chapter follows. 

The chapter entitled “Soft Computing Applications in Thermal Energy Sys-

tems” presents a comprehensive review of applications of NNs, genetic algorithms 

(GAs), fuzzy logic (FL), and cluster analysis (CA) in thermal energy systems. The 

usefulness of such SC applications is demonstrated for modeling, prediction, and 

control of a range of energy systems which may be difficult or even impossible to 

do by conventional techniques. 

The chapter entitled “Use of Soft Computing Techniques in Renewable Energy 

Hydrogen Hybrid Systems” reviews the application of soft computing techniques 

to renewable energy hybrid systems that consists of different technologies (photo-

voltaic and wind, electrolyzers, fuel cells, hydrogen storage, piping, thermal and 
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electrical/electronic control systems) capable as a whole of converting solar en-

ergy, storing it as chemical energy (in the form of hydrogen) and turning it back 

into electrical and thermal energy. Single or mixed implementation of a range of 

SC applications, including FL decision-making methodologies, NNs, GAs, and 

particle swarm optimization (PSO), are discussed. 

The chapter entitled “Soft Computing in Absorption Cooling Systems” presents 

a wide overview of SC techniques in system modeling, control, optimization and 

determination of working fluids properties of absorption cooling systems which 

uses thermal energy to operate its compressor in place of a conventional system’s 

compressor, which uses electricity. 

The chapter entitled “A Comprehensive Overview of Short Term Wind Fore-

casting Models based on Time Series Analysis” presents several different ap-

proaches to short term wind forecasting and re-examines them with an eye towards 

setting automated procedures to clarify “grey” areas in their application. In addi-

tion, some recent applications of localized linear models and clustering algorithms 

coupled with linear and nonlinear models and the development of a customized re-

gime model which captures the impact of changing synoptic weather characteristics 

are presented. 

The chapter entitled “Load Flow with Uncertain Loading and Generation in Fu-

ture Smart Grids” covers a variety of approaches to solve stochastic load flow 

problems, ranging from currently deployed state-of-the-art procedures to the new-

est advances in probabilistic load flow calculation and determination. The robust-

ness and real-time issues of the proposed algorithms to deal with highly dynamic 

Smart Grid scenarios resulting from power feed-in from renewable sources are 

discussed. 

The chapter entitled “Evaluation of Green and Renewable Energy System Alter-

natives Using a Multiple Attribute Utility Model: The Case of Turkey” discusses 

the use of multi-attribute utility theory (MUAT) to determine the most appropriate 

renewable energy alternative among solar, wind, hydropower, biomass, and geo-

thermal. Based on utilities of criteria, the proposed MUAT methodology deter-

mines the most appropriate renewable energy alternative for Turkey. 

The chapter entitled “A Novel Fuzzy-based Methodology for Biogas Fuelled 

Hybrid Energy Systems Decision Making” discusses the use of fuzzy multi-rules 

and fuzzy multi-sets to evaluate the main operational characteristics of five types 

of renewable sources fuelled by biogas. Using several criteria, including, costs, ef-

ficiency, cogeneration, life-cycle, technical maturity, power application range, and 

environmental impacts, the chapter illustrates the use of fuzzy-based methodology 

for biogas fuelled hybrid energy systems sustainable decision making. 

The chapter entitled “Two New Applications of Artificial Neural Networks: Es-

timation of Instantaneous Performance Ratio and of the Energy Produced by PV 

Generators” discusses the application of NNs for estimating the instantaneous per-

formance ratio, a fundamental parameter in the characterization of PV systems; 

and compare the results of conventional as well as NN-based methods for estimat-

ing the annual energy produced by a PV generator with different setting and types 

of modules. 
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The chapter entitled “Optimization of Fuzzy Logic Controller Design for 

Maximum Power Point Tracking in Photovoltaic Systems” presents the design and 

optimization of a FL controller (FLC) with a minimum rule base for maximum 

power point tracking in PV systems. The use of GAs is proposed for automated 

design and optimization of the FLC.  

The chapter entitled “Application of Artificial Neural Networks for the Predic-

tion of a 20-kWp Grid-connected Photovoltaic Plant Power Output” describes a 

simplified NN configuration used for estimating the power produced by a 20-kWp 

grid-connected PV (GCPV) plants. The development of four multilayer-

perceptron (MLP) NN models using a database of experimentally measured cli-

mate (irradiance and air temperature) and electrical data (power delivered to the 

grid) for nine months are discussed. 

The chapter entitled “Artificial Neural Networks for the Diagnosis and Predic-

tion of Desert Dust Transport Episodes” discusses the practical applications of 

NNs in the study of atmospheric pollution by particulate matter due to desert dust 

transport episodes which profoundly affect the use of renewable energy systems 

utilizing solar radiation. 

Researchers, educators, practitioners and students interested in the study of re-

newable energy systems will find this book very useful. This book will also serve 

as an excellent state-of-the-art reference material for graduate and postgraduate 

students with an interest in soft computing in green and renewable energy systems. 

Kasthurirangan (Rangan) Gopalakrishnan 

Siddhartha Kumar Khaitan 

Soteris Kalogirou 
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Leocadio Hontoria



X Contents

Optimization of Fuzzy Logic Controller Design for

Maximum Power Point Tracking in Photovoltaic Systems . . . . 233

Lawrence K. Letting, Josiah L. Munda, Yskandar Hamam

Application of Artificial Neural Networks for the Prediction

of a 20-kWp Grid-Connected Photovoltaic Plant Power

Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Adel Mellit, Alessandro Massi Pavan, Soteris A. Kalogirou

Artificial Neural Networks for the Diagnosis and Prediction

of Desert Dust Transport Episodes . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Silas Michaelides, Filippos Tymvios, Dimitris Paronis,

Adrianos Retalis

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305



About the Editors 

Kasthurirangan Gopalakrishnan, Ph.D. 

Prof. Kasthurirangan Gopalakrishnan is a Research Assistant Professor in the De-

partment of Civil, Construction and Environmental Engineering at Iowa State 

University. He received his Ph.D. in Civil Engineering from the University of Illi-

nois at Urbana-Champaign in 2004. His research interests include sustainable in-

frastructure, green engineering technology, bio-inspired computing, and smart 

pavements. Dr. Gopalakrishnan is the author of a recent e-book, Sustainable 

Highways, Pavements and Materials: An Introduction and is also the lead editor 

of Springer’s Intelligent and Soft Computing in Infrastructure Systems Engineer-

ing: Recent Advances, Sustainable and Resilient Critical Infrastructure Systems: 

Simulation, Modeling, and Intelligent Engineering, and Nanotechnology in Civil 

Infrastructure: A Paradigm Shift.

Siddhartha Khaitan, Ph.D. 

Dr. Siddhartha Kumar Khaitan is a Research Associate in the Department of Elec-

trical and Computer Engineering at Iowa State University. He received his Ph.D. 

in Electrical Engineering at Iowa State University in 2008. He was awarded the 

ISU Research Excellence Award for significant contribution to the power systems 

community through his Ph.D. research. His research interests include power sys-

tem dynamic simulation, cascading, green and renewable energy systems, soft 

computing and optimization, linear algebra, energy storage and parallel comput-

ing. Dr. Khaitan is also the lead editor of a forthcoming book on high-performance 

computing in energy systems to be published by Springer. 

Soteris Kalogirou, Ph.D. 

Dr. Soteris Kalogirou is a Lecturer in the Department of Mechanical Engineering 

and Materials Sciences and Engineering at the Cyprus University of Technology. 

He received his Ph.D. in Mechanical Engineering from the University of Glamor-

gan in 1995. For more than 25 years, he has been actively involved in research in 

the area of solar energy. His publication record includes 26 books and book con-

tributions and more than 200 peer-reviewed papers. He is the Executive Editor of 

Energy, Associate Editor of Renewable Energy and an editorial board member of 

12 other journals. He is the editor of the book Artificial Intelligence in Energy and 

Renewable Energy Systems, published by Nova Science Inc. and author of the 

book Solar Energy Engineering: Processes and Systems, published by Academic 

Press of Elsevier. 



List of Contributors 

Almonacid, Florencia 
Research Group “IDEA”,  

Department of Electronics  

Engineering, Polytechnics  

School of Jaén, University of Jaén, 

Jaén, Spain 

Barin, Alexandre 
Federal University of Santa 

Maria/CEEMA, Brazil 

Canha, Luciane N. 
Federal University of Santa 

Maria/CEEMA, Brazil 

Hamam, Yskandar 
Tshwane University of Technology, 

Pretoria, South Africa; ESIEE-Paris, 

Paris-Est University, LISV, UVSQ, 

France 

Hontoria, Leocadio 
Research Group “IDEA”,  

Department of Electronics  

Engineering, Polytechnics  

School of Jaén, University of Jaén, 

Jaén, Spain 

Kahraman, Cengiz 
Department of Industrial  

Engineering, Istanbul Technical  

University, Maçka, Istanbul,  

Turkey 

Kalogirou, Soteris A. 
Department of Mechanical  

Engineering and Materials Science 

and Engineering, Cyprus University 

of Technology, Limassol, Cyprus 

Kaya, hsan 
Department of Industrial  

Engineering, Yıldız Technical  

University, Yıldız, Istanbul, Turkey 

Krause, Olav 
School of Information Technology 

and Electrical Engineering,  

The University of Queensland,  

Brisbane, Queensland, Australia 

Lehnhoff, Sebastian 
Department of Computing Science, 

Carl von Ossietzky University, 

Oldenburg, Germany 

Letting, Lawrence K. 
Tshwane University of Technology, 

Pretoria, South Africa 

Magnago, Karine M. 
Federal University of Santa 

Maria/CEEMA, Brazil 

Matos, Manuel A. 
Institute for Systems and Computer 

Engineering of Porto, Portugal 

Mellit, Adel 
Department of Electronics,  

Faculty of Sciences and  

Technology, Jijel University,  

Ouled-aissa, Jijel, Algeria 

Michaelides, Silas 
Meteorological Service, Nicosia,  

Cyprus 



XIV List of Contributors 

Munda, Josiah L. 
Tshwane University of Technology, 

Pretoria, South Africa 

Pacheco-Vega, Arturo 
Department of Mechanical  

Engineering, California State  

University, Los Angeles, CA, USA 

Paronis, Dimitris 
Institute for Space Applications & 

Remote Sensing, National  

Observatory of Athens, Greece 

Pavan, Alessandro Massi 
Department of Materials and Natural  

Resources, University of Trieste Via 

A. Valerio, Trieste, Italy 

Pedrazzi, Simone 
University of Modena e Reggio 

Emilia, Via Vignolese, Modena,  

Italy 

Pérez-Higueras 
Pedro. Research Group “IDEA”,  

Department of Electronics  

Engineering, Polytechnics  

School of Jaén, University of Jaén, 

Jaén, Spain 

Retalis, Adrianos 
Institute for Environmental  

Research & Sustainable  

Development, National Observatory 

of Athens, Greece 

Rus, Catalina 
Research Group “IDEA”,  

Department of Electronics  

Engineering, Polytechnics  

School of Jaén, University of Jaén, 

Jaén, Spain 

encan, Arzu ahin 
Department of Mechanical  

Education, Technical Education 

Faculty, Süleyman Demirel  

University, Isparta, Turkey 

Sfetsos, Athanasios 
Environmental Research  

Laboratory, Institute of Nuclear  

Technology and Radiation  

Protection, National Centre for  

Scientific Research Demokritos,  

Ag. Paraskevi, Greece 

Tartarini, Paolo 
University of Modena e Reggio  

Emilia, Via Vignolese, Modena,  

Italy 

Tymvios, Filippos 
Meteorological Service,  

Nicosia, Cyprus 

Wottrich, Breno 
Federal University of Santa 

Maria/CEEMA, Brazil 

Zini, Gabriele 
University of Modena e Reggio  

Emilia, Via Vignolese, Modena,  

Italy 



K. Gopalakrishnan et al. (Eds.): Soft Comput. in Green & Renew. Ener. Sys., STUDFUZZ 269, pp. 1–35. 

springerlink.com                                                                © Springer-Verlag Berlin Heidelberg 2011 

Soft Computing Applications in Thermal  

Energy Systems 

Arturo Pacheco-Vega
 

California State University, Los Angeles 

Los Angeles, CA 90032, USA 

apacheco@calstatela.edu 

Abstract. Soft computing methodologies, of which artificial neural networks 

(ANNs), genetic algorithms (GAs), fuzzy logic (FL), and cluster analysis (CA) are 

elements, have gained much attention in recent years as practical tools to analyze 

complex problems in real-world applications. This chapter presents a review of SC 

applications in energy systems that belong to the field of thermal engineering. 

Special attention is devoted to the analysis, design and control of heat exchangers. 

For each methodology considered, the principles of operation are briefly described 

and discussed. Various applications to other energy systems are also mentioned.  

1   Introduction 

Energy systems are engineered systems that deal with the conversion of energy 

from one form (e.g. chemical, nuclear, mechanical and electromagnetic), to anoth-

er (e.g. thermal or electrical, etc). The use of these systems is essential to a wide 

variety of applications where the purpose of the system is to achieve specific con-

ditions in energy conversion, for human comfort, to fulfill energy demand, to 

avoid damage of sensitive equipment, or to preserve the quality of valuable prod-

ucts. Examples of energy systems include fuel and photovoltaic cells, wind tur-

bines and heat exchangers, among others. For these systems it may be desirable to 

predict the performance under specific conditions of operation, or even to control 

it to achieve a specific objective. This task is frequently difficult due to the com-

plexity of either the occurring physical phenomena, like turbulent fluid flow, or 

the geometry of the system which make the resulting mathematical model imposs-

ible to solve in real time.  

Soft computing (SC) comprises a specific set of techniques within the frame-

work of artificial intelligence (AI) that have received much attention as feasible 

methods for dealing with practical problems. Soft computing includes neural net-

works (ANNs), genetic algorithms (GAs), fuzzy logic (FL) and cluster analysis 



2 A. Pacheco-Vega

 

(CA). Their ability to handle imprecise information has been a key factor for their 

increasing demand. These technologies have been successfully applied to a variety 

of disciplines like biology, marketing, medicine, manufacturing, science and engi-

neering, where the central point in all of them has been the difficulty of modeling 

the system from first principles or finding accurate solutions in real time.  

This chapter is written to provide an overview of the application range of soft 

computing technologies in the area of thermal engineering and energy systems. 

Much of the content is based on applications by the author to thermal systems, 

particularly heat exchangers, using a subset of SC, i.e., artificial neural networks, 

genetic algorithms and programming, fuzzy logic and cluster analysis. In the sec-

tions below, each technique will be first described in outline, and later applied to 

illustrate its usefulness in addressing the complexity of the thermal system for 

modeling, prediction or control. At the end of each section, a set of interesting  

applications to other energy systems are also included. 

The reader unfamiliar with these methodologies is referred to the monographs 

by Sen and Yang [1] and Sen and Goodwine [2] which present an account of 

ANNs, GAs and Fuzzy Logic, and to Jain et al. [3] for the topic of cluster analysis, 

all of which are fundamentally tutorial in nature. Excellent books on the different 

areas of SC are also available. Schalkoff [4] and Haykin [5] cover artificial neural 

networks; Goldberg [6] and Koza [7] present, respectively, an exposition on ge-

netic algorithms and genetic programming; Chen and Pham [8] provide a broad 

account of fuzzy logic; Everitt et al. [9] cover the topic of cluster analysis; Jang et 

al. [10] introduce the neuro-fuzzy hybrid technique. The texts by Tettamanzi [11], 

and Karray and De Silva [12] provide a good introduction to the broad field of soft 

computing. 

2   Artificial Neural Networks 

The artificial neural network (ANN) is perhaps the most celebrated technique 

comprising SC methodologies. It is rooted in the biological network of the brain in 

an attempt to mimic its operation, and has been successfully applied to a variety of 

disciplines, such as: philosophy, psychology, economics, science and engineering, 

among others, where the common factor is complexity. Information about the sub-

ject is available in introductory texts, among which those of Schalkoff [4] and 

Haykin [5] cover its history, its mathematical background and implementation 

procedures. A brief description of the technique is given next. 

2.1   Description 

Several types of ANNs exist in the literature, but the feedforward fully-connected 

multilayer architecture is by far the most popular in engineering applications  
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[1, 13]. A fully-connected ANN consists of a large number of interconnected 

processing elements, also known as neurons or nodes, that are organized in layers. 

The structure of a feedforward ANN is comprised of an input layer, one or several 

hidden layers and an output layer. In this type of architecture, all the nodes of each 

layer are usually connected to all the nodes of the adjacent layer by means of  

synaptic weights. The typical structure of a feedforward ANN is illustrated in 

Figs. 1(b) and 2(b).  

The configurations shown have one input layer, two hidden layers and one out-

put layer. During the feedforward stage, a set of input data is supplied to the input 

nodes and the information is transferred forward through the network to the nodes 

in the output layer. The nodes perform nonlinear input-output transformations by 

means of an activation function. Though the sigmoidal function is very common, 

several other activation functions have also been studied [4, 5]. The training 

process is carried out by comparing the output of the network to the given data. 

The weights and biases are changed in order to minimize the error between the 

output values and the data using the well-known backpropagation algorithm [14]. 

Feedforward followed by backpropagation of all the data comprises a training 

cycle.  

The configuration of the ANN is set by selecting the number of hidden layers 

and the number of nodes in each hidden layer, since the number of nodes in the 

input and output layers are determined from physical variables. All variables are 

usually normalized in the [0.15, 0.85] range. A clear account on the implementa-

tion issues of the methodology is provided in the monograph by Sen and Yang [1]. 

The following section illustrates the usefulness of ANNs to model the behavior of 

complex thermal systems. 

2.2   Application to Compact Heat Exchangers 

The specific problem to be addressed by the method is the steady state perfor-

mance of heat exchangers, which are essential components of energy systems. 

This is an example of a system that is complex both from the perspective of the 

physics involved and its geometry. Factors like turbulence, property dependence 

on temperatures, change of phase, and the number of parameters, make the system 

difficult to compute. The analysis then relies on compression of experimental in-

formation in terms of dimensionless power-law correlations of the two transfer 

coefficients, from which the heat rate is determined. Though useful in practice, 

correlations have their own problems and many times do not effectively compute 

the desired output. It will be shown that an ANN can be used to make accurate es-

timations of the system performance. 
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(a)  Fin-tube compact heat exchanger. (b)  Configuration of a 5-5-3-1 ANN. 
 

Fig. 1 Schematic of a heat exchanger and its ANN representation. 

The first example deals with the multirow multicolumn plate-fin type heat 

exchanger shown in Fig. 1(a). Using chilled water flowing inside the tubes, and 

warm air as the external fluid, the system was extensively studied by experi-

mental measurements and correlations of the Colburn j-factors by McQuiston 

[15, 16, 17]. The data collected included the inlet water temperature ௪ܶ௜௡, the 

chilled-water mass flow rate in the form of Reynolds numbers ܴ݁஽ , the dry-

bulb and wet-bulb inlet air temperatures ௔ܶ,ௗ௕௜௡  and ௔ܶ,௪௕௜௡ , the fin spacing ߜ, and 

the heat rate ሶܳ , for operating conditions in which condensation on the fins 

could occur. The reported data sets conform to three surface conditions: dry, 

dropwise condensation, and film condensation. The heat rate is a function ሶܳ ൌ ሺ ௪ܶ௜௡ , ܴ݁஽, ௔ܶ,ௗ௕௜௡ , ௔ܶ,௪௕௜௡ ,  .ሻߜ

After several trials, the ANN chosen for the analysis was the fully-connected 5-

5-3-3 configuration shown in Fig. 1(b), consisting of five inputs, i.e., the set of in-

dependent variables ሼ ௪ܶ௜௡ , ܴ݁஽ , ௔ܶ,ௗ௕௜௡ , ௔ܶ,௪௕௜௡ ,  ሽ, and three outputs, the sensible andߜ

total j-factors ௦݆ and ݆௧, and the heat transfer rate ሶܳ , all independent of each other. 

Three neural networks were first individually trained with data corresponding to 

each of the surface conditions. Later an additional ANN was trained with the 

combined data sets to assess its robustness in handling the different physics in-

volved. Details of this analysis, including a study of the data-separation issue for 

training and testing, and the development of global-based correlating equations, 

can be found in Pacheco-Vega et al. [18]. 

Root-mean square (rms) values of the percentage deviations between the ANN re-

sults and the experimental data are given in Table 1. Also included are the predictions 

by correlations developed from the same data [17, 19]. The table shows that for all 
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(a) Fin-tube compact evaporator. (b) Configuration of an 11-11-7-1 ANN. 

Fig. 2 Schematic of an evaporator and its ANN representation. 

Table 1 Percentage errors in ௦݆, ݆௧ and ሶܳ  predictions by correlations and ANNs. 

Surface Prediction method ௦݆ ݆௧ ሶܳ  
 McQuiston [17] 14.57 14.57 6.07 

Dry surface Gray and Webb [19] 11.62 11.62 4.95 

 ANN 1.002 1.002 0.928 

Dropwise condensation McQuiston [17] 8.50 7.55 8.10 

 ANN 3.32 3.87 1.446 

Film condensation McQuiston [17] 9.01 14.98 10.25 

 ANN 2.58 3.15 1.960 

Combined ANN 4.58 5.05 2.69 

three surfaces, the ANN predictions are much better than any of the correlations. Es-
timations of the heat rate are especially good, indicating that the ANN was able to 
correctly recognize the input-output relationship of ሶܳ  with the other physical va-
riables. It should be noted that since the physical phenomena associated with conden-
sation are more complex, the ANN predictions for wet surfaces have larger errors 
than those for dry cases. However, even in the case of the ANN trained with the 
complete set of data, the error in the heat rate estimations is very small. 

The capability of the ANN to model complex phenomena is now illustrated by 

its application to a fin-tube evaporator, this time when only very few data sets are 

available, a common situation in industry. The heat exchanger geometry is illu-

strated in Fig. 2(a). A total of 38 experimental measurements were performed, and 

the data collected, under limited number of operating conditions and large range 

of geometrical parameters. The fluids used correspond to refrigerant R-22 flowing 

inside the tubes and air flowing through the fin passages. Much of the information 

in this section is in Pacheco-Vega et al. [20].  
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The complete set of experimental runs were taken to train a fully-connected 11-

11-7-1 ANN shown in Fig. 2(b), where seven of the 11 input parameters corres-

pond to the geometrical quantities ሼܮ, ,ߜ ௔ݔ , ௕ݔ , ௥ܰ௢௪ , ௖ܰ௢௟ , ௖ܰ௜௥ሽ, scaled by tube 

diameter ܦ, four comprise the set of operating variables ሼ ሶ݉ ௔, ௔ܶ,ௗ௕௜௡ , ௔௜௡ݓ , ௥ܶ௜௡ሽ, and 

the total heat rate ܳ௧ሶ  is the output node. For prediction purposes, the resulting 

function ሶܳ௧ ൌ ሶܳ௧ሺ ሶ݉ ௔, ௔ܶ,ௗ௕௜௡ , ௔௜௡ݓ , ௥ܶ௜௡ , ܮ ൗܦ , ߜ ൗܦ , ௥ܰ௢௪ , ௖ܰ௢௟ , ௖ܰ௜௥ , ௔ݔ ൗܦ , ௕ݔ ൗܦ ሻ 

is a manifold in a twelve-dimensional parameter space. The training process for 

the ANN was achieved with 400,000 cycles. The prediction of ܳ௧ሶ  is plotted 

against the available experimental data in Fig. 3(a). The ANN results are almost 

perfect, with rms errors of ±1.5% that are within the experimental uncertainties. 
Though the ANN results are remarkable, it should be noted that, due to the high 

dimensionality of the parameter space and the limited number of experiments used 
for building the ANN model, the reliability of its predictive (generalization)  
capability is arguable. In fact, it is known that errors in ANN estimations would 
increase as the number of training data sets decreases, and that ANNs would  
perform poorly if applied beyond the domain of the data available to support the 
predictions. This problem is fundamental if a neural network is to be used as a  
reliable tool for analysis and design of energy systems. 

This problem was addressed by an ANN-based error-estimate procedure devel-

oped based on a variant of cross-validation [21]. The methodology (see details in 

[20]) computes the relative importance of each data point in the limited data set, 

and hence the validity of the ANN predictions. The results are shown in Fig. 3(b) 

as a bar plot of the hyper-surface ܵ௖௩ versus each data-set ordered according to its 

Euclidean distance ܴ in 11-dimensional space from the centroid of all the data. It 

is observed that the error values are in the [0, 60%] range. Small errors evidence 

the existence of enough data supporting the ANN predictions, whereas large errors 

indicate both the need for additional experiments, and where these should be done, 

to improve the reliability of the ANN prediction capability. The methodology ac-

tually provides an upper bound of the expected error. 

 

(a) 
 

(b) 

Fig. 3 (a) ANN estimation of ܳ௧ሶ under limited data. (b)Bar diagram of error estimation. 
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2.3   Other Applications in Energy Systems 

The application of neural networks for the prediction and/or control of different 

types of energy systems is vast, as seen by the substantial number of literature re-

views that have appeared in recent years. The monographs by Sen and Yang [1] 

and Yang [22], cover applications on a broad range of thermal engineering sys-

tems, whereas more system-specific reviews include those of Kalogirou [23, 24] 

on the ANN modeling of combustion, photovoltaic and green energy systems, and 

Sen and Yang [25] for applications to multiphase systems. More recently, the use 

of ANNs has expanded to correlate in-tube heat transfer data in the transition  

region [26], predict the performance of cooling towers [27], evaluate alternative 

fuels in engines [28], estimate thermohydraulic behavior of nuclear system com-

ponents [29], and to develop models for thermodynamic properties of new refrige-

rants [30], among several energy-related applications. 

3   Evolutionary Algorithms 

Evolutionary algorithms (EAs), of which the genetic algorithm (GA) and pro-

gramming (GP) are typical examples, are adaptive stochastic computational  

techniques inspired in the Darwinian evolutionary principle of natural selection 

wherein the fittest members of a species survive and are favored to produce 

offspring. EAs are commonly used for the purpose of optimization, a process fun-

damental to the design of engineering systems. The GA encodes a set of candidate 

solutions as binary strings to search for the best; i.e., the global optimum, to a spe-

cific problem. GP, on the other hand, is a symbolic extension that works with a set 

of possible functions to find the best fit to a given set of data. These methodolo-

gies have been used in a variety of applications, including finance, electronic  

design, signal processing and system identification. GAs are discussed in detail by 

Holland [31], Goldberg [6] and Michalewicz [32], whereas the book of Koza [7] 

and the monograph by Sette and Boullart [33] are excellent sources for GP. 

3.1   Description 

Though many variants of the GA technique exist, the brief outline provided here is 

based on the binary representation. In GAs, the members of a species are regarded 

as candidate solutions to an optimization problem. The vocabulary used within the 

technique is borrowed from that of natural genetics. A solution is encoded as bi-

nary strings, the collection of possible solutions is a population, the objective 

function is called fitness, and a generation is an iteration of the algorithm. The 

idea behind GAs is that after creating an initial population of possible solutions, 

the fittest members are favored to combine amongst themselves to form the next 

generation of solutions which, in average, give better results. The evolution is 

achieved by the so-called crossover, where parts of binary strings are switched  

between parents, and mutation which works by randomly changing a digit from a 

selected string. 
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The procedure to find the global optimum of a function ݂ሺݔሻ  in a domain ܽ ൑ ݔ ൑ ܾ, shown schematically in Fig. 4, is summarized as follows. 

• An initial population of ܯ  members ݔଵ, ڮ , ெݔ א ሾܽ, ܾሿ  is randomly  

generated. 

• For each member, the value of the fitness, i.e., the objective function ݂ሺݔሻ 

is computed. 

• The parents are selected based on their fitness values. 

• Crossover is applied to the parents based on a preselected probability ݌௖. 

• Mutation is performed on a bit by bit basis with a preselected probability ݌௠. 

Once crossover and mutation have been applied to the complete population, a 

new solution set that keeps the fittest member of the previous generation is 

created, and the process is continued until some criterion based on convergence or 

maximum number of generations ܩ௠௔௫, is achieved. The index ݆, in the figure, re-

fers to a member in the population of size ܯ (an even number), and ܩ indicates 

the current iteration. 

 

Fig. 4 Flow chart of GA and GP. 
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Compared to the GA, in GP functions take the place of numbers in an attempt 

to find the best solution to a particular problem by genetically recombining a pop-

ulation of individuals that portray candidate solutions. This is achieved by using 

tree-structured representations of functions; an example of the function ͷݔ cos ሺͷݔ ൅ ͳሻ is shown in Fig. 5(a). Branch nodes may be operators with one or 

two arguments (such as sin, cos, exp, log, +, -, *, /, ^), or may be Boolean (such as 

AND, OR, NOT) or conditional (IF-THEN-ELSE, etc.) operators. Leaf or termin-

al nodes ݔ௝ ൌ ͳ, ڮ , ௩ܰ, on the other hand, are the variables in a particular prob-

lem, or constants to be determined. It is to be noted that, the representation of 

functional forms conserving a correct syntax depends on the programming lan-

guage being used for its coding. As an example, Fig. 5(b) shows the function ͷݔ cos ሺͷݔ ൅ ͳሻ coded as an array for a MATLAB-based GP program. Details are 

in Cai et al. [34]. 

 

(a) 

 

(b) 

Fig. 5 Representation of ͷݔ cos ሺͷݔ ൅ ͳሻ as (a) parse tree, and (b) array. 

The procedure to search for the best solution in the functional space using GP is 

essentially the same outlined above for the GA. The main difference is that in ad-

dition to the numerical parameters, in GP each population consists of a set of func-

tional forms. 

3.2   Application to Compact Heat Exchangers 

The heat exchanger problem considered before is used again here as a platform to 

illustrate the application of evolutionary algorithms. In the traditional approach, 

correlation equations built from experimental measurements in terms of dimen-

sionless groups like the Nusselt ܰݑ, Reynolds ܴ݁ and Prandtl ܲݎ numbers (some-

times also geometrical parameters are included), are the typical models used to  

estimate the system performance. From an assumed functional form, the objective 

is to find the parameters in the correlation that best fits the data performing regres-

sion analysis. 

From the experimental measurements reported by McQuiston [16], only  

the dry-surface data are considered for this analysis; the procedures for the other 
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surface conditions are in [18]. The correlation proposed by McQuiston [17] for the 

Colburn j-factor is ௦݆ ൌ ݊ଵ ൅ ݊ଶܴ݁ି௡యܣ௥ି௡ర ,                                      (1) 

where ܣ௥ is a geometrical parameter representing an area ratio, ܴ݁ the Reynolds 

number and ሺ݊ଵ, ݊ଶ, ݊ଷ, ݊ସሻ ൌ ሺͲ.ͲͲͳͶ, Ͳ.ʹ͸ͳͺ,Ͳ.Ͷ,Ͳ.ͳͷሻ  are the values of the 

constants. A slightly different correlation was reported by Gray and Webb [19] us-

ing data from [16] and other sources. Additional information is in Pacheco-Vega 

et al. [18, 35]. 

To find the correlation constants from an assumed form, an optimization tech-

nique attempts to minimize the objective function, defined as the variance of the 

error between predictions ௦݆,௜௣
, and measurements ݆௦,௜௘ , which is given as 

௝ܵೞ ൌ ଵே ∑ ሺ݆௦,௜௘ െ ௦݆,௜௣ ሻଶேଵ ,                                           (2) 

where ௝ܵ,௦ is a manifold in a five-dimensional parameter space holding multiple 

local minima, two of which are shown in Fig. 6. This multiplicity of solutions, ei-

ther arising from the assumed mathematical form of the correlation or from the 

experimental procedure to decouple the transfer coefficients, is a main reason for 

their lack of accuracy in predictions. 

With a population of ܯ ൌ ͶͲ, ݌௖ ൌ ͳ and ݌௠ ൌ Ͳ.͵, a GA code [36] was used 

to find the set of constants in the domain ሺെͲ.͸,Ͳ.͸ሻ for all the unknowns. The 

values found are: ሺ݊ଵ, ݊ଶ, ݊ଷ, ݊ସሻ ൌ ሺെͲ.Ͳʹͳͺ, Ͳ.Ͳ͸Ͳ͸, Ͳ.Ͳ͹͹ͺ, Ͳ.Ͳͳͺ͹ሻ , which 

conform to the global minimum in ௝ܵ,௦, labeled A in the figure. The corresponding 

results are shown qualitatively in Fig. 7, and quantitatively in Table 2. As ex-

pected, it is clearly seen that the global-regression-based correlation provides 

smaller rms percentage errors than the correlations developed by McQuiston [17] 

and Gray and Webb [19]. 

 

 

Fig. 6 Section of ௝ܵ,௦ሺ݊ଵ, ݊ଶ, ݊ଷ, ݊ସሻ; A is 

the global minimum; B is a local minimum.

Fig. 7 Predicted ௦݆  for a heat exchanger; ∆
McQuiston [17]; ○ Gray and Webb [19]; + 

ANN. 
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Table 2 RMS errors in ௦݆ from correlations. 

Prediction method Error (%) 

McQuiston [17] 14.57 

Gray and Webb [19] 11.62 

Pacheco-Vega et al. [18] 6.21 

Cai et al. Eq. (3) [34] 6.18 

The natural extension of the correlation procedure illustrated above is to find 

the functional form that provides the best fit to the data. It will now be shown that 

GP is suitable for the purpose of symbolic regression from experimental data. As 

before, the objective function (fitness) is defined by Eq. (2), where ௦݆,௜௣
 are now the 

predicted values from each of the ܯ correlations in the population. The method 

seeks a correlation function and the corresponding constants that minimize ௝ܵೞ . 

The chosen parameters are: ܯ ൌ ͳͲͲ ௠௔௫ܩ , ൌ ͺͲͲ ௖݌ , ൌ Ͳ.ͺ ௠݌ , ൌ Ͳ.ʹ . The 

terminal sets include the variables ݔଵ ൌ ܴ݁, and ݔଶ ൌ  ௥. Additional details are inܣ

Cai et al. [34]. The correlation resulting from the symbolic regression procedure is 

given as ௦݆ ൌ ଶଶ଴ହ.ଷଶଵ.ଷଽൈଵ଴ఱାଶସ.ଵ଺ோ௘ା஺ೝோ௘ .                                       (3) 

As observed, its mathematical form is different from that of Eq. (1), but pro-

vides better predictions, as shown in Table 2. It can actually be noticed that though 

the global-regression-based correlation discussed before is the best possible that 

can be obtained from the assumed functional form, Eq. (3) is seen to give a 

slightly smaller rms error, and hence, the best overall. 

3.3   Other Applications in Energy Systems 

Applications of evolutionary algorithms to different types of energy systems have 

increased substantially in the last fifteen years. GAs have been used for the pur-

pose of optimization in many different areas, among them, thermal engineering. 

The monographs by Sen and Yang [1] and Sen and Goodwine [2] review applica-

tions in a diversity of energy systems, whereas the review by Gosselin et al. [37] 

covers the utilization of GAs in the areas of inverse heat transfer, design and  

modeling of thermal systems. Some recent applications, in which the process of 

optimization is carried out, include power-generation [38], HVAC systems in 

buildings [39, 40], desalination system design [41], control-based efficiency-

enhancement of energy systems [42], heat exchanger networks [43], optimum  

performance solar heaters [44] and the design of photovoltaic systems [45]. Appli-

cations of genetic programming to energy systems are scarce. The development of 

semi-empirical models for chemical-process systems [46], critical heat flux in  

 



12 A. Pacheco-Vega

 

round pipes [47], heat exchangers [34], helically-finned tubes [48], fuel cells [49] 

and energy forecasting [50] are among the very few investigations. 

4   Fuzzy Logic 

Fuzzy logic (FL) is a methodology rooted upon the theory of fuzzy sets [51], that 

allows the description of complex systems and their performance by means lin-

guistic variables and inference rules. Developed by Lofti Zadeh in the early 1960s 

as a way to model the uncertainty of natural language [52, 53], the technique has 

been successfully applied to several areas of science and technology [54, 55], par-

ticularly to system control [2]. The main advantage offered by FL is its ability to 

handle imprecise or noisy data in order to find definitive solutions of a particular 

problem. This is done by formulating mappings between given system inputs and 

its output from which decisions about the system behavior can be inferred. The 

mathematical foundations of fuzzy sets and fuzzy logic can be found in several in-

troductory texts, including those of Mordeson and Nair [56], Klir and Yuan [57], 

and Chen and Pham [8]. A brief description of the technique towards the devel-

opment of a controller is provided next within the context of thermal control. 

Much of the information reported here is in Pacheco-Vega et al. [58]. 

4.1   Description 

The FL methodology involves three mechanisms: (1) fuzzification in which the  

input variables, defined as linguistic, are maped into fuzzy sets according to a  

specific degree or membership, (2) inference where the fuzzy sets are processed 

according to a library of expert-based if-then rules, and (3) defuzzification in 

which the fuzzy outputs are mapped back to their crisp values. For the specific 

problem of thermal control in heat exchangers, a fuzzy-based controller aims to 

regulate the outlet temperature of one of the fluids, e.g., that of the cold water ௖ܶ௢௨௧, as a function of the mass flow rate of only one fluid, e.g., the cold fluid ሶ݉ ௖. 

This constitutes a single-input single-output (SISO) system, where ሶ݉ ௖ is the ma-

nipulated (control) variable and ௖ܶ௢௨௧  the controlled (output) one. The linguistic 

variables describing the system are the temperature difference between the set-

point ௦ܶ௘௧ and ௖ܶ௢௨௧, i.e., ܧ∆் ൌ ௦ܶ௘௧ െ ௖ܶ௢௨௧, and the percentage of opening in the 

control valve ∆்ܸ , which modifies ሶ݉ ௖ . For both ܧ∆்  and ∆்ܸ , five membership 

functions, shown in Figures 8(a) and 8(b), were selected. The fuzzy sets were de-

fined as ߤா∆೅ ൌ ሺߤே௅ , ,ேௌߤ ,௓ߤ ,௉ௌߤ ௉௅ሻߤ  and ߤ௏∆೅ ൌ ሺߤ௏௅ , ௅ߤ , ,ெߤ ுߤ , ௏ுሻߤ . The 

corresponding ranges were chosen as: ሾെͳ, ͳሿ °C for ܧ∆் , and ሾͲ, ͵.ͷሿ Volts for ∆்ܸ. The temperature-control decision table, constructed from expert-based if-then 

rules, and the common Mamdani inference system [59], is illustrated in Table 3. 

The “response line” that defines ∆்ܸ as a function of ܧ∆், shown in Fig. 9, is cal-

culated using the well-known center-of-gravity technique, though other defuzzifi-

cation models exist in the literature [8, 57]. 



Soft Computing Applications in Thermal Energy Systems 13

 

 

(a) 

 

(b) 

Fig. 8 Fuzzy sets for controller. (a) Temperature error; (b) Voltage in control valve. 

The control actions of the fuzzy controller are outlined below. 

1. The input variables for the controller, i.e., ܧ∆்  (and ݀ܧ∆் ⁄ݐ݀  for the ex-

tended-input controller –not included in this chapter), are first measured by the 

appropriate sensor (i.e., a thermocouple), and then fuzzified by computing their 

degree of membership in each fuzzy set. 

2. The if-then rules in the rule base are evaluated in parallel. The output from 

each corresponds to the associated fuzzy set of ∆்ܸ  (Mamdani inference engine 

[59]). Each of the output fuzzy sets is “cut-off” according to the associated mem-

bership obtained from logical operations of the states and “added” to conform the 

aggregated output fuzzy-set for ∆்ܸ. 

3. The crisp value of ∆்ܸ (defuzzification) is computed. Here, the crisp output 

value is the centroid of the aggregated fuzzy-output-set.  

The structure of the fuzzy controller, and the closed-loop SISO system for the 

control of ௖ܶ௢௨௧ using ሶ݉ ௖, are respectively shown in Figs. 10(a) and 10(b). 

Table 3 Decision table. 

்∆ܧ  ∆்ܸ
Negative large (NL) Very low (VL) 

Negative Small (NS) Low (L) 

Zero (Z) Medium (M) 

Positive small (P ) High (H) 

Positive large (PL) Very high (VH) 
 

 

Fig. 9 Response line in control valve. 
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Fig. 10 Close-loop fuzzy control. (a) Fuzzy controller; (b) Closed-loop configuration. 

4.2   Application to Temperature Control of a Heat Exchanger 

To illustrate the robustness of the fuzzy controller, the tests were done in an con-

centric-tubes heat exchanger experimental facility [60], a schematic of which is 

shown in Fig. 11. Hot water flows inside the inner-tube and cold water at room 

temperature flows in the annulus. Measurements of hot and cold water mass flow 

rates ሶ݉ ௛ and ሶ݉ ௖, inlet and outlet hot temperatures ௛ܶ௜௡ and ௛ܶ௢௨௧, and inlet and out-

let cold temperatures ௖ܶ௜௡ and ௖ܶ௢௨௧, were taken and recorded. Measurements and 

control actions between system and controller were interfaced via LabVIEW to a 

personal computer (PC). 

 
Fig. 11  Schematic of experimental facility. 
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In the first test, the system was initially subjected to a sudden change in the set-

point, from ௖ܶ௢௨௧ ൌ ʹͻ°C to ͵ʹ°C, and later to a gradual increase in the inlet hot-

water-circuit temperature, from ௛ܶ௢௨௧ ൌ Ͷͳ°C to Ͷͻ°C. The results, illustrated in 

Figs. 12(a) and 12(b), show that the controller is able to maintain ௖ܶ௢௨௧  within Ͳ.ʹ°C of the setpoint, with some oscillations arising from the controller response 

to fluctuations in ௛ܶ௜௡. It can be also seen that even when ௛ܶ௜௡ is substantially in-

creased, the fuzzy controller never loses control of the system. The offset between 

the controller and the setpoint is somehow expected since only information about 

the error in temperature is provided to it. Further tests (not shown here) have dem-

onstrated that, as more information about the system is given to the controller, its 

ability to achieve the control objective improves. 

 

(a) Time history of ௖ܶ௢௨௧.  

(b) Time history of ௛ܶ௜௡. 

Fig. 12 Cold-water temperature control with fuzzy controller. 

 

(a) Time history of ௖ܶ௢௨௧. (b) Dynamics in control valve. 

Fig. 13 Fuzzy vs. PID control. − Fuzzy controller; െ · െ PID controller. 
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In the second test, the fuzzy controller was compared to a standard PID control-

ler, for which the tuning of the parameters was done using relationships from 

Shinskey [61]. The objective was to maintain ௖ܶ௢௨௧ at ͵ʹ°C in response to pertur-

bations in ௛ܶ௜௡. The results are shown in Figs. 13(a) and 13(b). It is observed that 

both controllers are able to bring the system to the control point, and though the 

PID controller seems more accurate, it shows some oscillations, with a magnitude േͲ.ͳ°C, around the control point.  

These oscillations in temperature arise from the dynamics in the control valve, 

as the PID controller continuously opens and closes the valve to keep ௖ܶ௢௨௧ at the 

target value. On the other hand, once the set point has been achieved, the fuzzy 

controller makes very small adjustments in the amount of voltage supplied to the 

valve. A main advantage offered by fuzzy logic to the control of energy systems is 

that it provides convenient links between feedback control and human intuition 

regarding how a system could be controlled. 

4.3   Other Applications in Energy Systems 

Fuzzy logic has been successfully applied to a number energy systems, especially 

to perform feedback control [62, 63, 64]. However, other applications include the 

forecast of energy consumption [65], the simulation of thermal processes in micro-

manufacture [66], energy management in fuel cells [67], supervision and planning 

in environmental and energy-renewable systems [68, 69], as examples of some of 

the more recent investigations. 

5   Cluster Analysis 

Cluster analysis (CA) is also known as clustering or numerical taxonomy. It is a 

SC methodology that classifies data into groups (or clusters), such that elements 

drawn from the same group are as similar to each other as possible, while those 

assigned to different groups are dissimilar. In contrast to the ANN supervised 

classification by learning processes, CA is often described as unsupervised pattern 

classification as the clusters are obtained solely from the data, under the hypothe-

sis that such data contain enough information inherent to the phenomenon of in-

terest, so that the parameters that characterize it can be established. 

The application of CA has increased substantially in recent years in a variety of 

disciplines like biology, marketing, medicine, manufacturing, image processing, 

and astronomy, among others, where the common thread is some kind of classifi-

cation or feature extraction from experimental data. Clustering methodologies are 

discussed in detail in the texts by Everitt et al. [9], and Abonyi and Feil [70]. 

Though several techniques in CA have been developed, and excellent reviews are 

available [3], this section concentrates on the application of two of the most prom-

ising in science and engineering; i.e., fuzzy C-means and Gaussian-mixtures. 
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5.1   Description of Fuzzy C-Means 

The fuzzy C-means (FCM) algorithm is by far the most widely used clustering al-

gorithm in practice [71, 72]. Based on the theory of fuzzy-sets [51], this technique 

was introduced by Dunn [73] to address the inability of the well-known K-means 

method [74] to accurately classify data with some type of overlap. The technique 

assigns to each data point a degree of membership to the different clusters, rather 

than assigning the point to a sole group whose centroid is the nearest. Detailed 

discussion of the FCM is given in the monograms by Hoppner et al. [75] and Bez-

dek et al. [76]. A brief description of the scheme is provided next.  

Starting with a set of ܰ  measurements, e.g. X ൌ ሼxଵ, xଶ, ڮ , xேሽ ؿ Թ௤ , the  

FCM algorithm assigns the data into a number of predetermined ܭ groups, i.e., C ൌ ሼcଵ, cଶ, ڮ , c௄ሽ ؿ Թ௤  through values of membership functions ݑ௜௝  ሺ݅ ൌͳ, ʹ, ڮ , ,ܭ ݆ ൌ ͳ, ʹ, ڮ , ܰሻ, which provide the degree to which the data point x௝ be-

longs to the fuzzy cluster ݅. The data classification into the chosen ܭ groups is 

achieved by minimizing the fuzzy objective function  ܬ௠ሺU,Cሻ ൌ ∑ ∑ ൫ݑ௜௝൯௠ฮx௝ െ c௜ฮଶே௝ୀଵ௄௜ୀଵ ,                                 (4) 

that provides a weighted measure of the similarity between the data and the clus-

ters. At the beginning of each run, the values of ݑ௜௝ are randomly assigned, and the 

cluster centroids computed from c௜ ൌ ∑ ൫௨೔ೕ൯೘ xೕೕಿసభ∑ ൫௨೔ೕ൯೘ೕಿసభ  ,      ݅ ൌ ͳ, ʹ, ڮ ,  (5)                                .ܭ

The values ݑ௜௝ are then updated with 

௜௝ݑ ൌ ൞൥∑ ൬ฮxೕିc೔ฮฮxೕିcೖฮ൰ మሺ೘షభሻ௄௞ୀଵ ൩ିଵ ;     x௝ ് c௜ ,ͳ;                                               x௝ ൌ c௜  ,                        (6) 

within the constraints ݑ௜௝ א ሾͲ, ͳሿ and ∑ ௜௝௄௜ୀଵݑ ൌ ͳ. The updated values of ݑ௜௝are 

used in to compute ܬ௠. The process to calculate the centroids, update the partition 

matrix, and evaluate the objective function, is repeated until some criterion based 

on convergence or a maximum number of iterations is achieved. It should be noted 

that the fuzzy partition exponent ݉ appearing in Eqs. (4)–(6), may have values in ͳ ൏ ݉ ൏ ∞. The larger the value of ݉, the less crisp the data partition into the 

specified groups [77]; a value ݉ ൌ ͳ corresponds to a fully-crisp partition. This is 

a validity problem under active research [78]. 

5.2   Description of Gaussian-Mixture Models 

Gaussian mixtures are frequently used to classify data into groups when the rela-

tionships among the data points are unknown. A main advantage offered by the 
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method is the possibility of finding the number of groups as part of the solu-

tion. A clustering technique based on Gaussian mixtures assumes that the data 

can be grouped into a number of ܭ  clusters, each described by a Gaussian 

probability density distribution. Once the number of groups is known, the geo-

metrical features (structures) of the groups and corresponding data classifica-

tion are determined on the basis of a maximum likelihood criterion. Excellent 

descriptions of the technique, along with its mathematical background, are pro-

vided in several monographs [9, 79, 80, 81, 82]. The following is a brief ac-

count of the method. 

Given a set of ܰ experimental data, X ൌ ሼxଵ, xଶ, ڮ , xேሽ ؿ Թ௤ , the probability 

distribution of each measurement x௝ may be described by a linear combination of ܭ mixture components as ݌൫x௝หΘ൯ ൌ ∑ ൫x௝ห߱௞݌ , ௞൯௄௞ୀଵߠ ݆          , ሺ߱௞ሻ݌ ൌ ͳ, ڮ , ܰ                     (7) 

where ݌ሺ߱௞ሻ  is the probability that group ߱௞  occurs in the sample data, and ݌൫x௝ห߱௞ ,  ௞൯ is the conditional probability of x௝ belonging to cluster ߱௞, modeledߠ

by cluster-specific multivariate Gaussian distribution ݌൫x௝ห߱௞ , ௞൯ߠ ൌ ଵሺଶగሻ೜ మ⁄ ԡஊೖԡభ మ⁄ exp ቂെ ଵଶ ൫x௝ െ ௞൯்Σ௞ିߤ ଵ൫x௝ െ  ௞൯ቃ.               (8)ߤ

The parameters ߠ௞ ൌ ሼߤ௞, Σ௞ሽ, i.e., the mean vector ߤ௞ and the covariance matrix Σ௞ , characterize the shape of each component density, and Θ ൌ ሼሺ݌ሺ߱௞ሻ, ௞ሻߠ ݇׷ ൌ ͳ, ڮ ,  .ሽ denotes the set of parameters of the mixture modelܭ

The unknowns in Eqs. (7) and (8) are the number of clusters ܭ, the parameters 

of the Gaussian distributions ߠ௞ and the mixing proportions ݌ሺ߱௞ሻ, all of which 

can be computed from the data. A number of methods have been proposed to es-

timate the model parameters , for a prescribed ܭ, and the set of ܰ observations, 

using the well-known maximum likelihood (ML) estimation approach along with 

the expectation-maximization (EM) iterative algorithm [83].  

The result is a maximum likelihood estimate of , given as  Θ෡ ൌ ൛൫̂݌ሺ߱௞ሻ, ,௞ߤ̂ Σ෠௞൯ ׷ ݇ ൌ ͳ, ڮ , ൟܭ ൌargmax஀ ∑ log ቀ∑ ൫x௝ห߱௞݌ , ௞൯௄௞ୀଵߠ ሺ߱௞ሻቁ ே௝ୀଵ݌ ,                              (9) 

where now it is possible to assign the datum x௝ to the group ߱௞ according to its 

maximum posterior probability, i.e., the probability that data point x௝ belongs to 

the group ߱௞. The criterion is ̂݌ሺ߱௞ሻ݌൫x௝ห߱௞ , ෠௞൯ߠ ൐ ൫x௝ห߱௟݌ሺ߱௟ሻ̂݌ , ݇  ෠௟൯,     for allߠ ് ݈;      ݈ ൌ ͳ, ڮ ,  (10)        .ܭ

The number of clusters ܭ, necessary for the classification, can be estimated based 

on the minimum description length (MDL) criterion [84] (although several other 
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criteria are available in the literature [85]). The MDL is a penalized function of the 

negative logarithm of the maximum likelihood, i.e.,  ܮܦܯሺܭ, ሻߠ ൌ െ ∑ log ቀ∑ ൫x௝ห߱௞݌ , ௞൯௄௞ୀଵߠ ሺ߱௞ሻቁ ே௝ୀଵ݌ ൅ ଵଶ  ሻ       (11)ݍlogሺܰ ݍܭ

that provides a trade-off between the data representation and the model complexi-

ty. Minimization of Eq. (11) with respect to ܭ gives the number of clusters that 

provide a good description of the data provided by the simplest Gaussian-mixtures 

model. Additional details about the algorithm are in [86], and the references therein. 

The next subsections show the application of CA in two different energy systems. 

5.3   Application to Data Classification of Thermodynamic 

Properties 

The application of the FCM technique is illustrated by its use to classify thermo-

dynamic properties of fluids. This process is necessary to develop models for de-

sign and selection of engineering systems. For the analysis, a total of ௌܰ ൌ ͳͷͲ 

data sets corresponding to pressure ݌, volume ݒ, and temperature ܶ of water were 

taken from the literature [87], and equally divided among the liquid (L), liquid-

vapor (LV) and superheated vapor states (SV), as shown in Fig. 14. Additional in-

formation is in Avila and Pacheco-Vega [88]. 

 

Fig. 14 Thermodynamic-property p-v-T data. 

To apply the FCM technique in a classification problem, the number of clusters 

has to be assigned a priori. In this case, from the physics of the phenomenon the 

number of selected groups was ܭ ൌ ͵. It is also convenient to normalize the va-

riables to avoid grouping errors due to differences in units and scales, since the  

FCM technique computes the similarity/dissimilarity within the data based on 
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Euclidean distances. Though several schemes exist in the literature [89], and have 

been successfully applied in different settings, for purposes of this study the va-

riables were normalized by the values of the thermodynamic quantities at the criti-

cal point. This allows larger generality, since data of different fluids are placed 

under the same baseline by the principle of corresponding states. The scaling is 

given mathematically as ݌௜௥ ൌ ௣೔௣೎ೝ ; ௜௥ݒ      ൌ ௩೔௩೎ೝ ;       ௜ܶ௥ ൌ ்೔೎்ೝ ,                                   (12) 

where ݅ ൌ ͳ, ڮ , ௌܰ, “cr” refers to the values at the critical point, “r” are the re-

duced thermodynamic quantities. It may also be noted that success of the normali-

zation in the classification process largely depends on the natural structure of the 

data. In some situations, normalizing the variables is sufficient, e.g. [90, 91],  

whereas for others it may be necessary to apply some type of transformation; this 

application corresponds to the latter case. For this data the function that provides 

the sharper separation among the different data structures is the logarithmic trans-

formation.  

After taking logarithms to the scaled data, with ௌܰ ൌ ͳͷͲ and ܭ ൌ ͵, the re-

sults obtained are shown qualitatively in Figs. 15(a)–15(d), and quantitatively in 

Table 4. From the figures and the table it is clear that the FCM algorithm was 

able to achieve a correct classification with only one datum being misplaced 

from the liquid-vapor state into the subcooled liquid region, and two data points 

from the superheated and into the liquid-vapor state. The table indicates that 

100% of the liquid-state data are grouped into the appropriate Cluster I, whereas 

98% of the liquid-vapor data are placed in Cluster II and 96% of the superheated 

vapor data in Cluster III; i.e., ܯூ ൌ ͷͳ, ܯூூ ൌ ͷͳ and ܯூூூ ൌ Ͷͺ. 

Table 4 Fraction of thermodynamic data classified in different groups. 

Condition \ Group I II III 

Subcooled liquid 50 0 0 

Liquid-vapor 1 49 0 

Superheated vapor 0 2 48 

The results of this example confirm the usefulness of the FCM clustering tech-

nique to identify and classify the characteristic information of a system directly 

from the experimental data, particularly for cases where the complexity of the 

phenomenon/system is substantial. In this regard, it is important to note that fac-

tors like the normalization and transformation influence the quality of the pattern 

identification and must be considered to ensure a correct classification. 
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(a) logଵ଴݌௥ െ logଵ଴ݒ௥ െ logଵ଴ܶ௥ data. (b) logଵ଴ܶ௥ െ logଵ଴݌௥-plane. 

(c) logଵ଴ݒ௥ െ logଵ଴݌௥-plane. (d) logଵ଴ܶ௥ െ logଵ଴ݒ௥-plane. 

Fig. 15 Classification of thermodynamic data. (∆) Cluster I; (•) Cluster II; (▫) Cluster III. 

5.4   Application to Classification of Performance Data in Heat 

Exchangers 

A second illustration of the cluster analysis is the use of Gaussian mixture mod-

els to extract the regimes of operation from condensing heat exchanger  

data. This is the same thermal system previously analyzed in Sections 2.2 and 

3.2 with ANNs and evolutionary algorithms. The information reported here has 

its basis on the published database [16], which was separated into dry-surface 

conditions, dropwise condensation and film condensation using visualization 

techniques.  

The complexity of the classification process can be shown by looking at the 

function describing the system performance; i.e., ሶܳ ൌ ሺ ௪ܶ௜௡ , ܴ݁஽, ௔ܶ,ௗ௕௜௡ , ௔ܶ,௪௕௜௡ ,  ,ሻߜ

which resembles a smooth manifold in a six-dimensional parameter space. Sec-

tions of this manifold are presented in matrix form in Fig. 16, where the top row 

shows the relationship between the Reynolds number ܴ݁஽ versus ௔ܶ,ௗ௕௜௡ , ௔ܶ,௪௕௜௡ , ௪ܶ௜௡,  

 



22 A. Pacheco-Vega

and ሶܳ ,ߜ  . The bottom row pictures ሶܳ  versus the other five variables involved. As 

can be seen, the figure does not present a definitive number of groups in which  

the data can be classified. For some planes there are two well-formed groups whe-

reas for others five regions can be identified. Details are in Pacheco-Vega and 

Avila [92]. 

 

Fig. 16 Representation of heat exchanger data through planes. 

The total ܰ ൌ ͵ʹ͹ experimental runs were used in conjunction with the Gaus-

sian-mixtures agglomerative clustering technique described before [86], to first 

determine the regimes of operation and then to classify the data. The convergence 

of the algorithm is shown in Fig. 17, where it is observed that MDL criterion 

achieves its minimum value at the correct number of clusters, ܭ ൌ ͵, in accor-

dance to the known physical phenomena. The classification results are presented 

in Figs. 18(a) and 18(b), on the plane ܴ݁஽ vs. ௪ܶ௜௡ . Also included are those ob-

tained visually by McQuiston [16]. A quantitative comparison of these results is 

shown in Table 5. As observed, the two methods agree completely in the dry-

surface data, which were all assigned to group I. 
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Fig. 17 MDL-criterion vs. Number of groups ܭ. 

However, the agreement in the allocation of the data corresponding to humid 

conditions into groups II and III is less crisp. Each of these groups contain data, in 

different proportions, that were visually classified as either drop or film condensa-

tion. The apparent discrepancy raises the question as to which classification is the 

correct one. This issue was addressed by conducting an independent data-

classification via ANNs, details of which are reported in [92]. Results from the 

ANN-based discrimination methodology, not included in this chapter due to space 

limitations, agree very well with those of the Gaussian-mixtures clustering; being 

the best case 100% and the worst 85%. 

Table 5 Classification of heat exchanger data. 

Condition \ Group I II III 

Dry surface 100% 0 0 

Drop condensation 0 35.89% 64.11% 

Flim condensation 0 25.21% 74.79% 

This section has shown the usefulness of cluster analysis for data classification 

of complex physical phenomena occurring in thermal systems. 
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(a) (◊) Group I, (▫) Group II, (•) Group III. (b) (▫) Dry surface, (Δ) Drop condensation, 

(*) Film condensation. 

Fig. 18 Heat exchanger data classification. (a) Algorithmic; (b) Visual [16]. 

5.5   Other Applications in Energy Systems 

Although cluster-analysis techniques have been successfully applied to many 

fields, their applications to energy systems are scarce. Examples in thermal and 

fluids engineering include the classification of thermodynamic [88] and heat ex-

changer data [18, 92], turbulent flows [93] and local-wind patterns for renewable 

energy systems [94], environmental data for energy planning [95], energy-

performance- [96] and geophysical-data [97], are among the few investigations. 

6   Neuro-Fuzzy Hybrid Technique 

A main advantage provided by soft computing stems from the fact that its consti-

tuent methodologies are for the most part complementary and synergistic rather 

than competitive, and can be combined to improve even more the quality of their 

individual results. There is a number of examples in several fields, including envi-

ronmental engineering, medicine, planning, management and manufacturing, 

among others, where two or more SC techniques have been combined. A particu-

lar case is the adaptive-network-based fuzzy inference system (ANFIS), where 

neural networks and fuzzy logic are combined to take advantage of their individu-

al features in modeling complex systems. ANFIS is discussed in detail by Jang 

[98], who developed the technique. A brief description, and subsequent applica-

tion to dynamic modeling, is provided next. 

6.1   Description of ANFIS 

The adaptive-network-based fuzzy inference system (ANFIS), proposed by Jang 

[98], is a hybrid model where the nodes in the different layers of a feed-forward  
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network handle fuzzy parameters. This is equivalent to a fuzzy inference system 

with distributed parameters. At the core, the technique splits the representation of 

prior knowledge into subsets in order to reduce the search space, and uses the 

backpropagation algorithm to adjust the fuzzy parameters. The resulting system is 

an adaptive neural network functionally equivalent to a first-order Takagi-Sugeno 

[99] inference system, where the input-output relationship is linear. A typical 

schematic of an ANFIS architecture, in the context of a heat exchanger, for three 

inputs ( ௩ܰ ൌ ͵) x ൌ ሾݔଵ, ,ଶݔ ଵݔ .ଷሿ (e.gݔ ൌ ሶ݉ ௖, ଶݔ ൌ ௛ܶ௜௡ , and ݔଷ ൌ  is shown in ,(ݐ

Fig. 19, where each layer performs a particular task in the fuzzy inference system. 

The output may be, for instance, ݕ ൌ ௖ܶ௢௨௧ . 

 

Fig. 19 Typical structure of the ANFIS scheme. 

In reference to Fig. 19, an outline of the procedure [98] is: 

1. In layer 1 the numerical inputs ݔ௞, are fuzzified by computing their membership 

in each fuzzy set ܣ௝௞. The output of node ݆, of each variable in the first layer, is 

௞ሻݔ஺ೕೖሺߤ ൌ ቈͳ ൅ ൬௫ೖି௖ೕ௔ೕ ൰ଶ௕ೕ቉ିଵ
,                                     (13) 
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where ߤ஺ೕೖሺݔ௞ሻ  is a bell-shaped membership function parameterized by ௝ܽ  , ௝ܾ , and ௝ܿ, which adjust its geometrical structure, and are determined directly 

from the experimental data. 

2. Layer 2 provides a weighted output (firing strength of a specific rule). The out-

put of each node is given as the product  

௝߱ ൌ ∏ ஺ೕೖ௄௞ୀଵߤ ሺݔ௞ሻ.                                             (14) 

3. Layer 3 computes the normalized firing strength of a particular rule as ഥ߱௝ ൌ ఠೕ∑ ఠೝ಻ೝసభ   .                                                      (15) 

4. The adaptive nodes in layer 4 calculate the weighted rule outputs based on the 

consequent parameters as  ഥ߱௝ · ௝ݕ ൌ ഥ߱௝ · ൫݌௝଴ ൅ ௝ଵ݌ · ଵݔ ൅ ڮ ൅ ௝௞݌ · ௞ݔ ൅ ௝௄݌ ·  ௄൯,              (16)ݔ

where ഥ߱௝ is a normalized firing strength from Layer 3, and ݌௝௞ is the consequent 

parameter set of each node. 

5. In layer 5, the local output functions are aggregated to form the total averaged-

output for the ANFIS system ([100]), as ݕ ൌ ∑ ൫ఠഥ ೕ·௬ೕ൯಻ೕసభ∑ ఠഥ ೝ಻ೝసభ  .                                                      (17) 

Note that for all the variables in a problem, ANFIS optimizes both the number of 

membership functions and the corresponding rules using a subtractive clustering 

algorithm [101]. 

6.2   Dynamic Model of a Heat Exchanger 

The application of this hybrid technique is illustrated by its use for system identi-

fication and dynamic modeling of the heat exchanger described in Section 4.2. De-

tails are in Ruiz-Mercado et al. [102]. The objective is to find expressions for the 

two outlet fluid temperatures as functions of their inlet temperatures, mass flow 

rates and time, i.e., ሼ ௖ܶ௢௨௧ , ௛ܶ௢௨௧ሽ ൌ ሼ ଵ݂, ଶ݂ሽ൫ ሶ݉ ௛, ሶ݉ ௖, ௛ܶ௜௡ , ௖ܶ௜௡ ,  ൯,                             (18)ݐ

where ൫ ሶ݉ ௛, ሶ݉ ௖ , ௛ܶ௜௡ , ௖ܶ௜௡ ,  ൯ are the hot- and cold-fluid mass flow rates, inlet andݐ

outlet temperatures, and time. For all the quantities, the experimental measure-

ments were collected in the test facility described in Section 4.2, under the follow-

ing operating conditions: constant values of ሶ݉ ௛ ൌ Ͳ.ʹͷ kg/s, a set of four step-

values for ሶ݉ ௖ ൌ ሼͲ.Ͳͷ, Ͳ.ͳ, Ͳ.ͳͷ, Ͳ.ʹͳͷ, Ͳ.ʹͻሽ kg/s, a nearly constant ௖ܶ௜௡ ൌ ʹͺ°C, 

and a linear variation of ௛ܶ௜௡ from ͹ͷ°C to ͸ͷ°C, all in the range ݐ א ሾͳͷ,ͷͲሿ min. 
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In building the model 70% of the data were initially used for training purposes, 

whereas the other 30% were taken aside for testing. The final model, however,  

was built with 100% of the data available, allowing the best possible model over 

the widest parameter range [18, 20]. The identification results for ௖ܶ௢௨௧, are illu-

strated in Figs. 20 and 21, where the fuzzy sets and their membership functions for ݐ, ሶ݉ ௛, ሶ݉ ௖ , ௛ܶ௜௡, and ௖ܶ௜௡  are: ߤ௧ ൌ ሼߤ௏௅ , ௅ߤ , ,ெߤ ுߤ , ௏ுሽߤ ௠ሶߤ , ೓ ൌ ሼߤ௅ , ுሽߤ ௠ሶߤ , ೎ ൌሼߤ௏௅ , ௅ߤ , ,ெߤ ுߤ , ௏ுሽߤ ߤ , ೓்೔೙ ൌ ሼߤ௏௅ , ௅ߤ , ,ெߤ ுߤ , ௏ுሽߤ  and ߤ ೎்೔೙ ൌ ሼߤ௏௅ , ௅ߤ , ,ெߤ ுߤ  ௏ுሽ.The linguistic labels in the fuzzy sets are: VL for “very low,” L for “low,” Mߤ ,

for “mean,” H for “high,” and VH for “very high.”  

 

Fig. 20 Fuzzy sets for ݐ, ሶ݉ ௛, and ሶ݉ ௖. 

 

Fig. 21 Fuzzy sets for ௛ܶ௜௡, and ௖ܶ௜௡. 
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With these fuzzy sets, five rules were built by the algorithm. The antecedents of 

these rules are provided in Table 6,  

Table 6 Antecedents of fuzzy rules for ௖ܶ௢௨௧ ൌ ଵ݂൫ ሶ݉ ௛, ሶ݉ ௖ , ௛ܶ௜௡, ௖ܶ௜௡, ሶ݉ ݐ .൯ݐ ௛ ሶ݉ ௖ ௛ܶ௜௡ ௖ܶ௜௡ ௖ܶ௢௨௧ 

VH H VH VL L ݕଵ
M H M M M ݕଶ
H L H L VL ݕଷ
L H L H H ݕସ 

VL H VL VH VH  ହݕ

whereas the explicit representation of the consequents conforming the output for ௖ܶ௢௨௧, are given as ݕଵ ൌ ௖ܶ,ଵ௢௨௧ ൌ െͲ.Ͳͷݐ െ ͳ.ͺ ሶ݉ ௛ െ ͳͷ.͹ ሶ݉ ௖ ൅ Ͳ.Ͳͷ ௛ܶ௜௡ ൅ Ͳ.͵ͷ ௖ܶ௜௡ ൅ ʹͻ.͹͸, ݕଶ ൌ ௖ܶ,ଶ௢௨௧ ൌ െͲ.Ͳ͵ݐ െ ͵ͳ.͵ ሶ݉ ௛ െ ʹͻ.͵ ሶ݉ ௖ െ Ͳ.Ͳ͹ ௛ܶ௜௡ െ Ͳ.͸ ௖ܶ௜௡ ൅ ͹Ͷ.ͳͶ, ݕଷ ൌ ௖ܶ,ଷ௢௨௧ ൌ െͲ.ͲͲ͵ݐ െ ͵.ͺ ሶ݉ ௛ െ ʹ͵.ͺ ሶ݉ ௖ ൅ Ͳ.ͳ͸ ௛ܶ௜௡ ൅ Ͳ.ͷͺ ௖ܶ௜௡ ൅ ͳ͸.ʹ,   (19) ݕସ ൌ ௖ܶ,ସ௢௨௧ ൌ െͲ.ͲͲʹݐ െ ͳ.ʹ ሶ݉ ௛ െ ͳ͸.͸ ሶ݉ ௖ െ Ͳ.Ͳ͵ ௛ܶ௜௡ ൅ Ͳ.ͷͺ ௖ܶ௜௡ ൅ ͵ʹ.ͷͷ, ݕହ ൌ ௖ܶ,ହ௢௨௧ ൌ Ͳ.ͳͻݐ െ ͺ͹.͸ ሶ݉ ௛ െ ͹ͳ.ʹ ሶ݉ ௖ ൅ Ͳ.͵͸ ௛ܶ௜௡ ൅ ͹.͵ʹ ௖ܶ௜௡ െ ͳ͸͹.Ͳʹ, 

From these local values, the final expression for the outlet temperature of the 

cold water (not provided here since it is extremely lengthy) was obtained. The 

procedure to build the TS fuzzy model for ௛ܶ௢௨௧, is similar to the one illustrated 

here.  

The accuracy of the model to predict both the cold- and hot-water outlet tem-

peratures was assessed based on the input conditions shown in Figs. 22(a) and 

22(b). For the test, ሶ݉ ௛ ൌ Ͳ.ʹͷ kg/s and ௖ܶ௜௡ ൌ ʹͺ°C whereas ௛ܶ௜௡  changed from ͹ʹ°C to ͸ͺ°C in a linear fashion. The mass flow rate followed a step function 

from ሶ݉ ௖ ൌ Ͳ.ͳͷ kg/s to Ͳ.ʹʹ kg/s. 

  

(a) (b) 

Fig. 22 Time history of input variables (a) ሶ݉ ௖ and (b) ௛ܶ௜௡. 
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(a) (b) 

Fig. 23 Prediction of (a) ௖ܶ௢௨௧ and (b) ௛ܶ௢௨௧. ( ) Measurements; (െ · െ) TS fuzzy model. 

The results from the model and the experimental measurements are shown for 

both ௖ܶ௢௨௧ and ௛ܶ௢௨௧, respectively, in Figs. 23(a) and 23(b). In both cases the model 

is seen to accurately estimate the dynamic behavior of the system. In the case of ௖ܶ௢௨௧ it can be seen that, as ሶ݉ ௖ suddenly increases, the response from both the heat 

exchanger and the fuzzy model is a decrease in ௖ܶ௢௨௧. A similar trend is obtained 

for the case of ௛ܶ௢௨௧, indicating that the ANFIS-based model perfectly resembles 

the characteristics of the physical system. 

6.3   Other Applications in Energy Systems 

Many other applications of hybrid methodologies, particularly the neuro-fuzzy 

system, to energy systems include forecasting natural gas [103] or building energy 

consumption [104], the modeling of photovoltaic power systems [105], control of 

humidity and temperature in air conditioning systems [106], performance predic-

tion of fuel cells [107], or the analysis of component degradation in nuclear power 

plants [108]. 

7   Concluding Remarks 

This chapter has reviewed several soft computing (SC) techniques used for com-

plex systems. Due to limitations of space, the methodologies have been described 

here only in outline. The purpose has been to show their usefulness in a range of 

energy-systems-related applications, for which modeling, prediction and control 

by other means may be difficult or even impossible to do. It appears that soft 

computing may be an attractive choice to solve problems in instances where the 

complexity of the system is the limiting factor, as often happens in real-world  

applications. 
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Abstract. Soft computing techniques are important tools that significantly im-

prove the performance of energy systems. This chapter reviews their many con-

tributions to renewable energy hydrogen hybrid systems, namely those systems 

that consist of different technologies (photovoltaic and wind, electrolyzers, fuel 

cells, hydrogen storage, piping, thermal and electrical/electronic control sys-

tems) capable as a whole of converting solar energy, storing it as chemical en-

ergy (in the form of hydrogen) and turning it back into electrical and thermal 

energy. 

Fuzzy logic decision-making methodologies can be applied to select amongst 

renewable energy alternative or to vary a dump load for regulating wind turbine 

speed or find the maximum power point available from arrays of photovoltaic 

modules. Dynamic fuzzy logic controllers can furthermore be utilized to coordi-

nate the flow of hydrogen to fuel cells or employed for frequency control in mi-

cro-grid power systems. 

Neural networks are implemented to model, design and control renewable 

energy systems and to estimate climatic data such as solar irradiance and wind 

speeds. They have been demonstrated to predict with good accuracy system 

power usage and status at any point of time. Neural controls can also help in 

the minimization of energy production costs by optimal scheduling of power 

units. 

Genetic or evolutionary algorithms are able to provide approximate solutions to 

several complex tasks with high number of variables and non-linearities, like op-

timal operational strategy of a grid-parallel fuel cell power plant, optimization of 

control strategies for stand-alone renewable systems and sizing of photovoltaic 

systems. 
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Particle swarm optimization techniques are applied to find optimal sizing of 

system components in an effort to minimize costs or coping with system failures 

to improve service quality. 

These techniques can also be implemented together to exploit their potential 

synergies while, at the same time, coping with their possible limitations. 

This chapter covers soft computing methods applied to renewable energy  

hybrid hydrogen systems by providing a description of their single or mixed  

implementation and relevance, together with a discussion of advantages and/or 

disadvantages in their applications. 

1   Introduction 

A renewable energy hydrogen hybrid system (REHHS) is a collection of systems 

of different technologies (energy conversion, electrolyzers, fuel cells, hydrogen 

storage, piping, thermal and electrical/electronic systems) capable, as a whole, of 

converting energy from a renewable energy source into electrical energy, storing it 

as chemical energy (in the form of hydrogen) and turning it back into electrical 

and/or thermal energy when needed [Romm 2004]. 

The importance of renewable energy systems is manifold and due to growing 

costs of fossil fuels and their environmental impact, together with the need to ex-

ploit renewable energy sources and securing energetic independence for every na-

tion [Penner 2006]. 

The main drawback is the unevenness and dependability of many forms of re-

newable energies which can, in principle, hamper their widespread adoption. 

Notwithstanding, hydrogen energy storage can provide a solution to the prob-

lem. Hydrogen can indeed represent a potential viable energy vector for stationary 

and non-stationary applications, posing a viable alternative to the dominance of oil 

and other carbon-based energy vectors. 

Many publications address research in this area; see for instance Hammache 

and Bilgen [1987], Hollenberg et al [1995], Ulleberg and Morner [1997], Kolhe et 

al [2003], Maclay et al [2007]. A review of solar and wind hydrogen system mod-

els can be found in Deshmukh and Boehm [2008]. 

2   Modelling 

2.1   General System Description 

A general form of a REHHS is outlined in Fig. 1. 
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Fig. 1 System schematic (adapted from Zini and Tartarini [2010]). 

The energy from a renewable energy source (REN) is converted to electricity by 
means of different conversion mechanisms that are characteristic of the energy form 
itself. For instance, if solar photons are to be directly converted into electricity, 
photovoltaic cells are used for the task. If mechanical energy from wind is the cho-
sen form of energy, aerodynamical blades (rotors) are employed to convert the wind 
stream into mechanical energy (kinetic energy in the turbine rotation) and finally by 
asynchronous generators into electrical energy. Solar thermal energy is converted by 
Rankine cycles into electricity. Other renewable energy sources can also be success-
fully used (i.e. energy from waves, tides, water, biomasses, biofuels, …). 

In any case, the electrical energy originated from the renewable energy source is 
managed by means of electrical conditioning, protection and control circuits of well 
consolidated technology: the output from the conversion system is connected to a 
DC bus-bar, the power electrical distribution which acts as the backbone of the hy-
brid system. The electrolyzer receives current from the bus-bar and produces hydro-
gen and oxygen that are compressed and stored. When the control logic switches on 
the fuel cell depending upon load requests, electrical energy is converted from stored 
gases and enters the bus-bar. Energy is then supplied to the load by a DC/AC in-
verter connected to the bus-bar. Finally, a battery keeps the bus-bar always charged 
within a controlled power range to guarantee smooth functioning and adequate qual-
ity of service of the overall hybrid system. 

In the next paragraph, a description of the main sub-system modelling will be 
highlighted in order to facilitate the understanding of the issues related to the control 
of these highly integrated energy systems. 
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2.2   Renewable Energy Modelling 

2.2.1   Solar Photovoltaic 

The photovoltaic system modules capture portions of the solar radiation reaching the 
earth’s surface: the direct (Gb) and the diffuse (Gd) [Liu and Jordan 1963, Garg 
1982, Duffie and Beckman 2006]. The total solar radiation is indeed expressed by: 

( ) rdbddbbT RGGRGRGG +++=                       (1) 

where Rb is the tilt factor for direct radiation, Rd for diffuse radiation and Rr for re-
flected radiation. They are given by the following equations: 
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where β is the tilt angle of the photovoltaic modules, φ is the location latitude, 
ω =  (12-t) π/12 is the hour angle in radians as a function of time t (in hours), ρ is 
the ground reflectivity (albedo), and δ is the declination angle expressed by: 
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with n the Julian day of the year. 
Gb and Gd represent respectively the direct and the diffuse solar radiation on a 

flat surface at an hour angle ω and are expressed as a function of the daily average 
total direct solar radiation energy for a horizontal surface (Hb0) and the daily aver-
age value of the diffuse solar radiation energy (Hd0), all expressed in Wh/m2: 
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where ωs = cos
-1(-tanφ tanδ) is the sunrise hour angle. 

The site data (β, φ, ω, δ, Hb0, Hd0) that are needed to compute GT are available 
in specific databases. 

The photovoltaic sub-system converts solar radiation energy into electrical en-
ergy; to reach a satisfactory trade-off between model complexity and precision, its 
behavior is profiled with the single-diode model [Duffie and Beckman 2006].  
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From Kirchhoff’s laws, the I-V relationship of the equivalent circuit can be written 
as: 
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where IL is the photo current generated when the diode is radiated by solar energy, 
I0 is the diode reverse saturation current, Rs is the series resistance, Rsh is the shunt 
resistance. The term a is set equal to (NKT/q) where K is the Boltzmann constant, 
T the temperature, q the electron charge constant and N is a parameter that de-
pends on diode technology. 

A set of several different parameters has been measured at standard conditions 
(irradiation at 1000 W/m2, temperature at 25°C, air mass at 1.5) for a number of 
commercially available photovoltaic modules. These parameters are used to solve 
the model equations and ensure a very good realism in photovoltaic system simu-
lation since the input data directly derive from the assessment of real-world 
photovoltaic components.  

A maximum power point tracker (MPPT) embedded in the system, constantly 
attempts at finding the tension and current values (Vmp – Imp) that maximize power 
conversion constantly while coping with variable irradiation and meteo conditions. 

The photovoltaic equation system is: 
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which gives the operating maximum power output values of tension and current 
used as input to the downstream sub-system. 

By taking into proper account the MPPT efficiency Șmppt and the boost-converter 
efficiency Șbc, the current to the bus-bar is given by: 

busmpmpbcmpptbuspv VIVI /)( ηη=→                      (8) 

2.2.2   Wind Energy Modelling 

A wind speed profile in an average site can be modelled after the Weibull probabil-
ity density function [Zini and Tartarini 2010]: 
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with form factor k ranging between 1.5 and 2.5 and a scale factor c between 5 and 
10 m/s. The form factor defines the shape of the function while the scale factor ac-
counts for the wind speed distribution. 
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The power contained in a wind stream of speed v passing through a surface A is: 

3
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D
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==                        (10) 

where D is the rotor diameter and ρ is the air density, function of temperature, hu-
midity and air pressure. 

Many losses occur along the path of the conversion of the kinetic energy in the 
wind stream to the electrical energy supplied to the load. 

To start with aerodynamic losses that reduce the portion of kinetic energy trans-

ferred to the rotor: Pwind must hence be multiplied by a power coefficient cp, usually 

ranging between 0.4 and 0.5 and function of the tip speed and wind speed ratio, 

where tip speed is the ratio between the rotational speed of the tip of the blade and 

the actual velocity of the wind. cp must be carefully set up in the design phase since 

optimal functioning occurs when rotor speed is controlled to maintain cp at design 

values with respect to wind speed. 

The kinetic energy from the rotation of the turbine is then transferred to a mast, 

which is connected by means of mechanical gears (introducing a conversion effi-

ciency ηmech) to an electric asynchronous generator which converts kinetic energy 

into AC electrical energy (with efficiency ηasyn). Since DC current is needed to sup-

ply the load, a further conversion step that converts AC to DC is needed, with a re-

duction of efficiency due to a coefficient ηAC-DC. 
Paero power provided by the aero-generator to the system is hence given by: 

windDCACasynmechpaero PcP )( −= ηηη                     (11) 

Since wind turbines can undergo damages if they are allowed to rotate over certain 

wind speeds, accurate control logics must make sure that the rotor is limited to 

speeds under a pre-determined cut-out speed. Additionally, to avoid rotation at inef-

fective low wind velocities, rotation must be prevented when wind speeds occur be-

low a cut-in speed. Between the cut-in and the cut-out speeds, a maximum power 

tracking control logic is in place to ensure maximum power conversion by regulat-

ing the rotation speed in order to maintain a constant cp. 

This range of limitation of useful speeds further reduces the converted power 

available to satisfy load demands and overall system efficiency. 

2.2.3   Other Renewable Energy Models 

Different other renewable energy sources can be employed. A description of all 

diverse sources is out of the scope of this chapter, but as far as they can be con-

verted to electrical energy, the outlined hybrid system maintains its engineering 

structure and design. 

Of course, depending on any particular source and load characteristics, final 

system results and behaviour will be significantly different. 
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2.3   Hydrogen Loop 

2.3.1   Electrolyzer 

The electrolyzer is the sub-system capable of converting electrical energy  
into chemical energy by separating water into its basic components, oxygen and  
hydrogen. 

The electrolyzer receives Pel from the bus-bar through a buck converter with 
conversion efficiency Șbc: 

bcbcelelel PIVP η==                             (12) 

where Vel and Iel are the electrolyzer voltage and current. Voltage can be written as: 
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where Tel is the electrolyte temperature; Vel,0, C1,el, C2,el, Iel,0, Rel are constants that are 
determined empirically and account for polarization effects and electrolyzer tech-
nology. Tel can be calculated from [Ulleberg 2003]: 

coollossstoregen QQQQ &&&& ++=                          (14) 

where genQ&  is the internal heat generation, storeQ&  is the thermal energy storage, 

lossQ&  is the heat loss to the surrounding ambient, and coolQ&  is the heat transferred 

to the auxiliary cooling system. Tel is obtained by substitution in (13). 
Equations (12) and (13) yield the electrolyzer operating point Iel-Vel, hence the 

hydrogen production flow rate becomes: 
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where ȘF,el is the Faraday’s efficiency of the electrolyzer, Ncells is the number of the 

cells in series, z is the number of moles of electrons for moles of water (z=2) and F  
is the Faraday’s constant. 

2.3.2   Hydrogen Storage 

Many technologies provide hydrogen storage capabilities, like compression, lique-
faction or adsorption in materials like carbon nano-structures or hydrides. 

In case a polytropic compression is considered, its power is given by [Deshmukh 
and Boehm 2008]: 
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where gasn&  is gas flow, Școmp is the compressor efficiency, m is the polytropic coef-

ficient, R is the universal gas constant, Tin,c is the inlet gas compressor temperature, 
pin,c and pout,c are the inlet and outlet compressor pressure and gases are considered 
ideal. 

From the definition of polytropic compression and from the equation of state of 
ideal gases: 
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where Tin,s is the storage tank inlet gas pressure. From the ideal gas equation of state 
and by integration of hydrogen/oxygen flows: 
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where nini is the number of moles in the initial conditions; sinn ,& and soutn ,& are inlet 

and outlet gas flows in the tank, Ts is the temperature of the storage tank and V is the 
storage tank volume. By balancing the thermal flows in the compressor: 
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where Cin is the thermal capacity of inlet gas, Ta is the ambient temperature, Rt ther-
mal resistance of the tank. 

Integrating Eq. 19: 

( ) ( )∫ ⎥⎦
⎤⎢⎣

⎡ −
+

−
+=

t

t

sa

s

ssinin
inis d

TT

C

TTC
TT

0

, τ
τ

                  (20) 

where Tini is the temperature of the tank in the initial condition, Cin is the heat capac-
ity of gas, Cs is the heat capacity of the tank, and τt = Rt Ct is the thermal time con-
stant of the tank. 

The pressure ps in the storage tank can finally be obtained by solving the system 
of equations (17), (18) and (20). 

2.3.3   Fuel Cell 

The fuel cell converts the chemical energy stored in hydrogen into electrical energy, 
reversing the conversion operated by the electrolyzer at the beginning of the hydro-
gen loop. 

The boost-converter connects the electrical energy from the fuel cell to the bus-
bar with an efficiency Șbo: 

fcfcfcbobo IVPP ==η                         (21) 
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where Pfc, Vfc, and Ifc are fuel cell output power, voltage and current. Voltage is 
given by: 
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where Vfc,0, C1,fc , C2,fc (V), Ifc,0 and Rfc are constants determined experimentally and 
accounting for the fuel cell technology adopted and Tfc is the fuel cell operating 
temperature [Ulleberg 1998]. 

From (21) and (22) derive Ifc which substituted in: 
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yields the hydrogen rate of fuel cell consumption 
2Hn& , where ȘF,fc is the fuel cell 

Faraday’s efficiency, Nfc is the number of stack cells, z is the number of moles of 
electrons for moles of water (z=2), and F is the Faraday’s constant. 

2.4   Battery 

Batteries can be employed to smooth out the potential discontinuities between on/off 
cycles of the different sub-systems but are not meant to provide principal energy 
storage, which is performed by the hydrogen storage unit. 

Knowing the current, the voltage is given by: 

)()()1()( 0, tQKtIRUttU RiBiBB +++= α                   (24) 

where α is the self-discharge rate, UB,0 is the open circuit voltage at time 0, Ri is the 
internal resistance, Ki is the polarization coefficient, and QR is the rate of accumu-
lated charge. 

The total energy stored in the batteries E(t) is given by: 
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where Ein is the initial charge of the batteries. 
The state of charge of the batteries (SOC) is defined using the following equation: 
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tE
SOC =                               (26) 

where Emax is the total battery capacity. This is expressed as a percentage and gives 
the portion of storage available for use. 

2.5   Example of Deterministic Control Logic 

A control logic is needed to coordinate the interactions between the various compo-
nents of the overall system. A deterministic control flow can be based on the bus-bar 
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equation that balances the electrical currents entering (positive sign) or exiting the 
bus-bar (negative sign) [Pedrazzi et al 2010]: 

0_ =±−+−− ↔→→→→→ busbatloadbusbusfccompbuselbusbusenren IIIIII      (27) 

If the renewable energy conversion system does not convert enough power to 

supply the load ( loadbusbusenren II →→ <_ ), the fuel cell is switched on by providing a 

positive busfcI ↔ . In case the battery SOC reaches a minimum (usual values are 

around 20-25%). If the energy available from the renewable source is higher than 

the energy needed by the load ( loadbusbusenren II →→ >_ ), the fuel cell is disconnected 

and batteries charged (with a negative busbatI ↔ , from bus-bar to battery). When the 

batteries reach a maximum SOC (i.e. 85%), they are switched-off and the electro-
lyzer and the compressor are activated to yield and store new hydrogen. 

Soft computing techniques can be considered to provide more apt and optimized 
algorithms to improve overall system efficiency. The next chapters will describe 
several contributions to the subject as per available scientific literature. 

3   Fuzzy Logic 

Fuzzy Logic (FL) is a soft computing technique based on approximate reasoning 
typical of human cognition. FL models are empirically-based, relying on experience 
rather than technical understanding of the system. The knowledge is interpreted  
as a collection of elastic or, equivalently, fuzzy constraint on a collection of vari-
ables [Robert 1995, Machado and Rocha 1992] allowing partial set membership 
rather than complete membership or non membership [Zadeh 1965, 1972, 1973]. 

FL incorporates simple “IF X AND Y THEN Z” rules useful to solve control 
problem rather than attempting to rigorously model a system from a mathematical 
point of view. 

FL requires some numerical parameters in order to operate such as what is con-
sidered significant error and significant rate-of-change-of-error, but exact values 
of these numbers are usually not critical. Originally, FL was conceived as a better 
method for sorting and handling data, but has proven to be an excellent choice for 
many control system applications since it is particularly apt at mimicking human 
control logic. By using descriptive language to deal with input data more like a 
human operator, FL techniques are very robust and forgiving of operator and data 
input, and often work out of the box with little or no tuning at all [Yager 1987]. 

Fuzzy systems are also suitable for uncertain or approximate reasoning, espe-
cially for the system with a mathematical model that is difficult to derive. FL  
allows decision making with estimated values under incomplete or uncertain in-
formation [Mellit and Kalogirou 2008]. These techniques have been successfully 
applied in a number of applications like, computer vision, decision making and 
system design including some soft computing techniques training schemes, to 
program controllers for cement kilns, braking systems, elevators, washing ma-
chines, hot water heaters, air conditioners, video cameras, rice cookers and photo-
copiers [Lakhmi and Martin 1998]. 
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FL can be successfully employed to control, design and simulate renewable  
energy hydrogen hybrid system in order to choose the best renewable source  
alternatives, to design and/or control sub-systems parameters and overall system 
coordination. 

3.1   Control of FL in REHHS 

Bilodeau and Agbossou [2006] used a dynamic fuzzy logic controller (FLC) to 
control a virtual stand-alone renewable energy system with hydrogen storage very 
similar to the one depicted in Fig. 1. 

The use of fuzzy logic is appropriate since it caters for the use of multiple input 
variables without increasing design complexity, since the desired behaviour can 
easily be described in words and the entire range of inputs can be defined by using 
a minimum set of rules. Also, there is no need for historical data, this being an im-
portant advantage over other types of soft computing techniques such as neural 
networks and genetic algorithms. 

The goals of the controller are the reduction of energy transfer from the short-
term storage to the long-term storage and vice-versa, and prevention of excessive 
use of batteries. 

The controller has two input variables: the net power flow dP between the 
power provided by the sources and the power consumed by the load, and the bat-
tery state of charge (SOC). 

The FLC output variable is the power set point P; the boost converter and the 
fuel cell are switched on when the output is positive and, conversely, the buck 
converter and the electrolyzer are turned on when the output is negative. 

The following FLC rules are chosen to define the system behaviour: 

• IF dP < 0 THEN P > 0 

• IF dP = 0 THEN P = 0 

• IF dP > 0 AND SOC > 0.55 THEN P < 0 

• IF SOC < 0.5 THEN P > 0 

• IF SOC > 0,55 THEN P < 0 

The implication operator is MIN and the aggregation operator is MAX; the 
output is defuzzified using the centroid method. 

Conclusions show that the FLC is able to correctly control the system, avoiding 
that batteries be discharged under the SOC, maintain a good quality of service to 
the load while obtaining a certain amount of hydrogen storage. Overall system ef-
ficiency can be increased by fuzzy logic over conventional deterministic control 
logics. 

3.2   Load Control in a Wind-Hydrogen REHHS 

A small hydrogen stand alone power system with a wind turbine FLC has been 
presented by Khan and Iqbal [2009]. A FLC is applied to control a dump load that  
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regulates the wind turbine speed. From the estimated rotor torque, optimal rotor 

speed can be calculated for the whole operating range. The reference speed is 

compared with the actual rotor speed and the FLC adjusts the dump load Rdump to 

achieve optimal variable speed operation.  

The fuzzification is performed using five Gaussian membership functions for 

each of the parameters. The inputs are named with the following linguistic func-

tions depending on the magnitude of deviation from zero: NB (negative big), NM 

(negative medium), ZR (zero), PM (positive medium) and PB (positive big). Simi-

larly, the output variable is named: VL (very low), LO (low), MD (medium), HI 

(high) and VH (very high). 

Comparing the fuzzified inputs and determining their degree of fulfilment for 

each of the given rules, an output of each rule is found. These outputs are defuzzi-

fied by the centroid method. 

Another load control algorithm for a wind-hydrogen REHHS has been devel-

oped by Miland et al [2005]. A Distributed Intelligent Load Controller (DILC) 

based on fuzzy logic algorithm balances the flow of active power in the system 

and its control system frequency. The system voltage is maintained within the lim-

its specified in international standards by a synchronous compensator. 

The maximum load enabled by the DILC is 30 kW, exceeding the turbine 

maximum power even in the strongest winds. The DILC engages to maintain the 

system frequency at 50 Hz or within the specified limits. The fuzzy controller has 

two inputs, frequency and rate of change of frequency, used to compute the con-

trol outputs. 

The rules for the fuzzy controller were selected using knowledge of stand-

alone power system dynamics. A self-tuning feature is embedded in the fuzzy 

controller, aiming at creating a flexible controller capable of good performance 

over a wide range of systems and different operating conditions. The tuning is 

achieved by automatically modifying the input membership functions of the 

fuzzy controller, as a result of the controller monitoring its own frequency control 

performance. 

3.3   Frequency Control in a Micro-grid Power System 

Li et al [2005] submitted a study on the frequency stability of a wind-operated mi-

cro-grid hydrogen power system for the control of a micro-turbine with the fuel 

cell and electrolyzer hybrid system. 

The authors apply self-tuning fuzzy proportional-integral (FPI) controllers to 

deal with real-time frequency fluctuations and sudden real power imbalances. This 

controller readjusts the PID gains in real-time to improve the process output re-

sponse during system operations. Therefore, the fuzzy-logic-based self-tuning or 

self-organizing PI controller may prevail over the deterministic PI controller. 

The control system consists of an adaptive PI controller and a fuzzy self-tuning 

mechanism that adjusts the PI parameters. 
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3.4   MPPT in a Hybrid PV/Fuel Cell System 

El-Shatter et al [2002] applied fuzzy regression modelling (a fuzzy variation of 
classical regression analysis [El-Shatter et al 1997, Kahraman 2006] to maximum 
power point tracking (MPPT). The system comprises a PV array, an electrolyzer, 
an hydrogen storage tank and a PEM fuel cell stack. 

The flows of power and hydrogen are set by a controller according to the state 
of  the system. The fuzzy regression modelling input parameters are the solar ir-
radiation and the panel surface temperature, while the outputs of the model are the 
MPP voltage and current. 

3.5   Selection among Renewable Energy Alternatives 

Fuzzy axiomatic design (AD) and fuzzy analytic hierarchy process (AHP) have 
been compared by Kahraman et al [2009] for the best selection among renewable 
energy alternatives in Turkey. 

Biomass, geothermal, hydropower, solar and wind are the energy alternatives 
analyzed on the basis of technological, environmental, socio-political and eco-
nomic criteria.  

The first technique employed is a modified fuzzy AHP method applied to work 
out the priority weights of energy alternatives. In a typical AHP method, experts 
have to give a definite number within a 1 – 9 range to the pair-wise comparison so 
that the priority vector can be computed. 

Often, experts cannot compare two factors due to the lack of adequate informa-
tion. In this case, a classical AHP method has to be discarded due to the existence 
of fuzzy or incomplete comparisons, so a fuzzy AHP method designed by Zeng et 
al [2007] is preferred, where fuzzy aggregation is used to create group decisions 
and defuzzication is finally engaged to transform the fuzzy scales into crisp scales 
for the computation of the priority weights.  

The group preference of each factor is calculated by applying fuzzy aggregation 
operators, i.e. fuzzy multiplication and addition operators. The application of this 
method reveals that wind energy is the most appropriate renewable energy alterna-
tive for Turkey in the future and the ranking of energy alternatives is determined 
as follows: 

1. Wind. 
2. Solar. 
3. Biomass. 
4. Geothermal. 
5. Hydropower. 

Another technique that can be applied is the fuzzy AD method to provide a de-
sign framework for engineers. The primary goal of AD is to provide a thinking 
process to create a new design and/or to improve the existing design. 

To improve a design, the axiomatic approach uses two axioms named as inde-

pendence axiom and information axiom. The independence axiom states that the 
independence of functional requirements (FR) must always be maintained, 
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whereas FR are defined as the minimum set of independent requirements that 
characterize the design goals. 

The information axiom states that the design having the smallest information 
content is the best one among those that satisfy the independence axiom. This fa-
cilitates the selection of proper alternatives that have minimum information con-
tent. Such axiom is used in order to select the best alternatives when there is more 
than one design that satisfies independence axiom. The authors extend the infor-
mation axiom under fuzzy environment and the new methodology is used for deci-
sion-making problems under fuzzy environment. 

Again, wind energy is selected as the most suitable alternative with respect to 
predetermined FR. 

4   Artificial Neural Networks 

Artificial neural networks (ANN) are soft computing techniques that mimic the 
operations of biological neural systems as a collection of small individually inter-
connected processing units called neurons [Mellit and Kalogirou 2008]. Such  
algorithms have been applied successfully in several fields of mathematics,  
engineering, medicine, economics, meteorology, psychology, neurology, and 
many others [Kalogirou 2001]. 

An important feature of ANN is the automatic learning about a given problem 
domain achievable through the training phase. ANN can work with many numeric 
variables that would be difficult to deal with by other means. It is a black box ap-
proach that does not require sophisticated mathematical knowledge by the user. 

The method is robust even in the presence of noise in the input data and can 
present a high degree of accuracy when used to generalize over a set of raw and 
unstructured data [Mellit and Kalogirou 2008].  

Nevertheless, ANN are not suitable when there is scarcity of appropriate data 
since ANN needs a set of data which should be large enough to be representative 
of  the observed system behaviour [Ghaboussi et al 1991]. 

A basic neuron model [Yu and Jenq-Neng 2001] consists of two parts: the net 
function z and the activation function f(z). 

The net function (Eq. 28) determines how the network inputs xi are combined 
inside the neuron, each input is weighted by wi known as synaptic weights, while 
the bias ș is used to define an offset or threshold: 
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The output y of the neuron is related to the network inputs via the sigmoid  
activation function shown in Eq. 29: 
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Other types of net and activation functions have been proposed [Yu and Jenq-
Neng 2001]. Neurons can be interconnected in layers (such as an input layer, an 
output layer and one or more hidden layers). The configuration of the interconnec-
tions can be described efficiently with a graph consisting of nodes (neurons) and 
arcs (synaptic links).  

To be effective, ANN algorithms must undergo a training and testing period. In 
the training (or learning) phase, weights are adjusted when data pass between arti-
ficial neurons along the connections. A learning rule is used to find a set of 
weights such that the error is minimum [Shahin et al 2001]. Once ANN have been 
trained, the testing phase is initiated with new patterns presented to ANN for pre-
diction or classification [Yu and Jenq-Neng 2001]. 

Several architectures and algorithms of ANN have been developed for engi-
neering problem solving. Details regarding the theory and mathematics behind the 
most widely used ANN are available in Mellit and Kalogirou [2008]. 

This section presents how ANN can be implemented to estimate climatic data 
such as solar irradiance or to model, design and control renewable energy systems. 

4.1   Estimation of Solar Irradiance 

A neural network model (NNM) for predicting global solar irradiance (GSI) dis-
tribution on horizontal surfaces has been developed by Zervas et al [2008]. 

The GSI is predicted using a Radial Basis Function (RBF) neural network, a 2-
layer network where the learning process is performed in two different stages 
[Mellit and Kalogirou 2008]. The training approach is divided in two phases. In 
the first phase, the input data set xn is employed to determine the first layer 
weights (unsupervised stage). In the second phase, the first layer weights are fixed 
while the second layer weights are evaluated. The second stage is supervised as 
both input and target data are required. Final optimization is achieved through a 
classic least squares approach [Mellit and Kalogirou 2008]. 

Zervas et al [2008] have used the RBF neural network to predict the parameters 
of a Gaussian function employing meteo data and daylight duration as input vari-
ables. This function approximates the GSI daily distribution. 

Fuzzy logic has been applied to neural networks, in particular to the RBF train-
ing algorithm [Sarimveis et al 2002] by exploiting databases containing local ob-
servations of the input variables and the parameters of the Gaussian function over a 
year long period of time. A correction methodology for the two tails of the Gaus-
sian function further improves the accuracy of the model. The obtained soft com-
puting model is capable of providing reliable future predictions of the daily GSI 
distributions on horizontal surfaces, given only the meteo and the daylight duration.  

4.2   Simulation and Control of a PEM Fuel Cell System 

Hatti and Tioursi [2009] developed a dynamic neural network model and control-
ler for a PEM fuel cell power system. The neural network model has been derived 
using data collected from single cells. 
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The dynamic neural network controller is based on an input – output non-linear 

mapping principle, and trains the neural controller offline or online by Levenberg–

Marquardt back-propagation method and Bayesian algorithms. 

After the training process, the network was ready to generate I-V characteristics 

for a broad range of conditions. 

The aim of the controller is to regulate the active, reactive and steady state 

power by acting on parameters like voltage and phase angle. For steady state 

power adjustment, power changes must be followed by a proper hydrogen flow 

rate adjustment. 

In the training phase, proportional-integral controllers are used to generate the 

modulation index and phase angle as reference for the dynamic neural network 

controller. It is possible to show that the use of dynamic neural network controller 

provides viable results. 

4.3   Control of REHHS with a Diesel Generator 

Al-Alawi et al [2007] developed a predictive artificial-neural-network-based pro-
totype controller for the optimum operation of an integrated hybrid renewable en-
ergy-based water and power supply system. The integrated system consists of 
photovoltaic modules, a diesel generator, a battery bank for energy storage and a 
reverse osmosis desalination unit. The electrical load is from typical households 
and a desalination plant. 

The ANN controller needs to take decisions, based on predictive information, 
over on/off cycles of the diesel generator under light loads and high solar radiation 
levels while maintaining high efficiency. The key objectives are to reduce fuel de-
pendency, greenhouse gas emissions, and engine wear and tear due to incomplete 
combustion. 

The designed ANN consists of four input nodes, representing time in a 24-hour 
period, power from PV panels, power from battery, and power from inverter. The 
two output nodes represent the power from diesel generator and the generator 
on/off status. 

After adjustments to the parameters, the network is capable of converging to a 
threshold of 0.00001. The statistical analysis of the results indicates that the R2 
value for the testing set of 186 cases is 0.979. This indicates that ANN-based 
model can predict the power usage and generator status at any point of time with 
high accuracy. 

5   Genetic Algorithms 

Soft computing programming stems from ideas that can be traced back to the 50’s 
by scholars who were investigating machine learning by taking advantage of 
analogies with human behaviour [Fogel 1999]. 
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Genetic algorithms (GA), also called evolutionary algorithms, were later devel-
oped and successfully applied to real life optimization problems [Goldberg 1989, 
Bäck 1996]. 

In GA, the programming starts with a set of data (called genes or genotype) en-
coded in potential solutions (called individuals or phenotypes) to an optimization 
problem [Schmitt Lothar 2001]. Individuals are initially generated randomly, and 
are allowed to generate new individuals by inheritance/cross-over, selection and 
mutation of the original genotypes. For each new generation of individuals, the 
fitness of every individual in the population is checked against predetermined cri-
teria, and only fit individuals are randomly selected and allowed to generate new 
individuals to form a new population until a defined fitness level has been 
reached. The basic algorithm steps are: initialization, selection, reproduction and 
termination of the experiment. 

With these algorithms an optimal solution is not necessarily always found; 
hence, often, the number of iterations are capped to save computing time. GA can 
also be successfully used in combination with deterministic algorithms to produce 
an initial set of potential solutions that will be fine-tuned by other methodologies 
[Eiben and Smith 2007]. 

Applications in energy systems have been numerous [Miranda et al 1998]. In 
the following paragraphs, uses in REHHS are presented and discussed. 

5.1   Efficient Design and Control 

As already discussed, REHHS are complex systems characterized by a large num-

ber of variables that increase the complexity of sizing and controlling [Dufo-

Lòpez et al 2007, Bernal-Agustìn and Dufo-Lòpez 2009]. Evolutionary algorithms 

present the advantage of having low computational requirements yielding good so-

lutions in a reasonable timeframe. 

In this example, the REHHS is an hybrid of a PV and Wind conversion system, 

a diesel generator with a battery set and an hydrogen loop to provide electrical en-

ergy to a load. The problem consists in searching for the components and control 

strategies that minimize the lowest total net present cost of the system. 

The GA consists of two sub-GA. 

The main sub-GA is devoted to finding the best system design, the optimal con-

trol strategy for every combination of the system design as per the outcome of the 

main GA. 
The genotype of the main algorithm is a vector of 11 integers: 

• number of PV panels in parallel; 

• type of PV panel; 

• number of wind turbines; 

• type of wind turbine; 

• type of hydro turbine; 

• number of batteries in parallel; 

• type of battery; 

• type of AC generator; 
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• type of fuel cell; 

• type of electrolyser; 

• type of inverter. 

The fitness function of the ith iteration is given by: 

( )
( )[ ]∑ −+

−+
=

j m

m
MAIN

jN

iN
fitness

i 1

1
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where j is the rank in the population (1 for the best individual, Nm for the worst). 
The fitness function determines the probability of selecting an individual on which 
to apply the genotype modification process. 

The secondary algorithm is devised to find the control strategy that minimizes, 
for each configuration provided by the main algorithm, the cost function. Its geno-
type consists of twelve control variables [Dufo-Lòpez et al 2007]: 

• minimum power of the AC generator recommended by the manufacturer; 

• minimum power of the fuel cell recommended by the manufacturer; 

• minimum state of charge of the battery recommended by the manufac-
turer; 

• AC generator critical power limit; 

• batteries SOC set point for the AC generator; 

• fuel cell critical power limit; 

• batteries SOC set point for the fuel cell; 

• set point for the amount of H2 stored in the tank 

• power below which it is more economical to store energy in the batteries 
than in the H2 tank; 

• intersection point of the cost of supplying energy with the batteries and 
the cost of supplying energy with the fuel cell; 

• intersection point of the cost of supplying energy with the fuel cell and 
the cost of supplying energy with the AC generator. 

Similarly to the main algorithm, the fitness function of the ith iteration is given 
by: 
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where j is the rank in the population (1 for the best individual, Nsec for the worst). 
Elitism is the rule common to both algorithms; best individuals are not lost 

from one generation to the following. Gene evolution is performed by means of ei-
ther a uniform or a non-uniform mutation. 

Non–uniform mutation is carried out by changing a randomly selected gene e 

by the following: 
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where HL and LL are the higher limit and the lower limit of the gene e. The func-

tion Δ(Ngen_main, y) produces a value in the interval [0,y] so that the probability of 

Δ (Ngen_main, y) approaching 0 increases as Ngen_main increases. This operator  
initially searches solutions globally, then locally in the last generations in order to 
increase the likelihood of generating individuals with genotypes closer to its suc-
cessor. It is written as: 
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where r is a random number in [0,1], Ngen_main_max is the maximum generation 
number, and b is a parameter determining the degree of dependency upon the gen-
eration number. 

Uniform mutation is achieved by applying to a random gene a value obtained 

by applying a uniform distribution of probability in the interval [LL,HL] where 

LL and HL respectively are the lower and the higher limit for the same gene. 

The parameter ranges of the genotype for the individuals in the main algorithm 

are outlined in Table 1. 

Table 1 Genotype of main algorithm (adapted from Bernal-Agustìn and Dufo-Lòpez 
[2009]). 

Parameter Values 

PV module power 0, 50, 125 Wp 
Number of modules in parallel [1,20] (4 in series) 
Wind power 0, 275, 640, 1760 W 
Number of wind turbines in parallel [1,3] 
Battery capacities 0,.43, 200, 462 Ah 
Number of batteries [1,6] (4 in series) 
Diesel generators: 0, 1.9, 3, 4.5, 5.5 kVA 
FC power 0, 1, 2, 3, and 5 kW 
Electrolyzer power 0, 1, 2, 3, 4.2 kW 
Inverters 3, 4.5, 5.5 kVA 

Each gene has an associated cost. The total cost depends on final gene selec-

tions and is the function that must be minimized by the algorithm. 

5.1.1   Deterministic Evaluation 

A deterministic enumerative algorithm has been applied on all the possible com-

binations (6 480 000) of different genes configurations. The result that minimizes 

the net present cost of the system consists of 4 serial and 20 parallel PV panels of  
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125 Wp, 4 serial and 2 parallel batteries of 462 Ah, a diesel generator of 3 kVA, 

three wind turbines of 1 760 W and an inverter of 4.5 kVA. 
The minimum net present cost is 222 468.10 €€  (with the exclusion of the hy-

drogen loop components). The enumerative method has lasted 1 day and 9 h for 
evaluation of all the possible combinations on the same hardware set. 

5.1.2   GA Evaluation 

The design of the GA algorithm has considered the following: 

• Number of generations: 10, 20, 30, 40, 50, 100. 

• Number of population (Nm): 100, 200, 300, 400, 500, 1000. 

• Crossing rate (CRm): 50%, 70%, 90%. 

• Mutation rate (MRm): 0.1%, 0.5%, 1%. 

• Mutation typology: uniform and non-uniform. 

Every optimization has been performed three times. The runs have lasted from 
9 seconds to 28 minutes, and nearly all optimizations that lasted more than 1 min-
ute have reached the same solution yielded by the deterministic algorithm. Fig-
ures 2 and 3 show a percentage of optimizations that have reached the global op-
timal solution with different mutation rates and typologies. It is possible to 
conclude that convergence improves with uniform mutation and higher mutation 
rates. This can be particularly true when the number of generations or population 
size is low. 

 

Fig. 2 Percentage of projects reaching the global solution by different mutation rates 
(adapted from Bernal-Agustìn and Dufo-Lòpez [2009]). 



Use of Soft Computing Techniques in Renewable Energy Hydrogen Hybrid Systems 57

 

 

Fig. 3 Optimal solution with varying mutation rates and mutation typologies (adapted from 
Bernal-Agustìn and Dufo-Lòpez [2009]). 

The evolution of 6 optimization runs for a design of 20 generations, 200 popu-

lation and a 90% crossing rate shows that by increasing the crossing rate, the con-

vergence becomes faster. After the 13th generation, the solution is not significantly 

improved. With a 90% crossing rate, the size of the population can be reduced 

while still having a close-to-100% probability of reaching a global optimal  

solution. 

To reach a high probability of obtaining the optimal solution, the algorithm 

could be designed with the following settings: 

• number of generations higher than 15; 

• population size higher than 0.003% of the number of total combinations; 

• crossing rate 90%; 

• mutation rate 1%; 

• uniform mutation. 

5.2   Sizing Optimization of a Stand-Alone Lighting System 

A practical application of a combination of a GA with a Simplex Algorithm (SA) 

is described in Lagorse et al [2009] where system parameter and cost optimization 

is performed for a stand-alone photovoltaic hydrogen hybrid system supplying a 

street lighting load. 
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Since power production depends on variable weather conditions, deterministic 

algorithms can be difficult to be modelled; on the contrary, a heuristic global 

search like GA is easily defined to look for a set of individuals whose genotype 

will become the initial data set that will be further refined by the SA. 

The genotype of the individuals is set to be the following: 

• PV power (Ppv); 

• Battery capacity (Qb); 

• FC power (Pfc); 

• PV tilt angle (β); 
• Minimum SOC (SOCmin); 

• Maximum SOC (SOCmax). 

The function to be optimized is an economic cost function. System parameters 

are to be determined by evaluation of penalties related to excess or shortage of en-

ergy produced or stored. 

GA is designed as: 

• 15 individuals per generation; 

• 100 generations; 

• Roulette selection scheme; 

• 47% mutation probability. 

The fitness is defined as a percentage, so that, if the total cost tends to zero, fit-

ness tends to 100%. Table 2 outlines the values of the genotype of the best indi-

vidual as evaluated by the GA. 

Table 2 Genotype of best individual obtained by GA (adapted from Lagorse et al [2009]). 

Variable Value 

β 53.3° 
Ppv 94.6 Wp 
Qb 2.56 kWh 
Pfc 282.6 W 
SOCmin 36.1% 
SOCmax 90% 
Cost 9631.51 €€  
Fitness 80.74% 

The final values obtained by GA are the initial values of the SA. Table 3 shows 
the results after 75 iterations of the SA. 
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Table 3 Genotype of best individual obtained by SA applied on population from GA 
(adapted from Lagorse et al [2009]). 

Variable Value 

β 50.6° 
Ppv 148 Wp 
Qb 2.537 kWh 
Pfc 128 W 
SOCmin 42% 
SOCmax 58% 
Cost 6515.53 €€  
Fitness 67.42% 

REHHS hydrogen consumption is 195 kWh/year with a 6 year fuel cell useful 

life. Storage, using a traditional compression technique, necessitates a 1650 l tank 

at a pressure of 20 MPa. 

GA is employed in combination with a traditional deterministic algorithm, the 

strength of soft computing techniques in finding solution through heuristics join-

ing forces with a more traditional algorithm to increase final solution accuracy. By 

examining the results in Tables 3 and 4, a significant difference is evident between 

the solution given by the GA and the following refinement from the SA. Overall 

computing time is decreased by the synergy between a combined heuristic and de-

terministic approach. 

6   Particle Swarm Optimization 

Kennedy and Eberhart [1995] introduced the concept of Particle Swarm Optimiza-

tion (PSO), where each possible solution in the design space is called particle and 
the overall set of particles is called a swarm. Each particle moves with an adapt-
able velocity within the search space and retains in its memory the best position it 
has encountered. The best position attained by all individuals of the swarm is 
communicated to all the particles [Parasopoulos and Vrahatis 2004, Jarboui et al 
2008]. 

If the search space is n-dimensional, then a particle i can be represented by a 
position vector Xi = [xi1, … ,xin]

T and a velocity vector Vi = [vi1, … ,vin]
T. Particles 

adjust their positions in the k+1 iteration according to the following equations: 
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where subscript k represents a time increment, i
kP represents the best possible po-

sition for particle i at time k, g
kP corresponds to the global best position in the 

swarm at time k; r1 and r2 represent uniform random numbers between 0 and 1. c1 
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and c2 are respectively, the cognitive and the social parameters. If c1 > c2, the cog-
nitive parameter overcomes the social parameter implying that each single particle 
will strive to find the position that represents its own best personal position; in the 
opposite case when the social overcomes the cognitive parameter, the ensemble of 
particles is attracted by the global best overall position. Finding a good balance 
between the two parameters means avoiding excess particle wandering in case the 
cognitive is higher than the social parameter, or reaching a global pseudo-optimal 
position if the social is higher than the cognitive parameter. In Eq. 35, w is the in-
ertia component used to balance between global (higher w) or local exploration 
(lower w). 

6.1   Optimal Sizing of a REHHS with Hydrogen from Biomass 

and Wind 

The PSO has been applied to devise the optimal component sizing [Hakimi and 
Moghaddas-Tafreshi 2009] of an REHHS where hydrogen is obtained from a 
wind conversion source and municipal wastes. 

The algorithm is performed under a certain set of assumptions over the loca-
tion, the availability of wind and quantity of municipal waste. In this case, the 
residential area comprises a population of 2000 with a daily pro capite waste pro-

duction of 0.6 kg, with a daily H2 production rate of 50 kg (equivalent to 1890 
kWh). Hydrogen is then stored in a pressurized tank. 

The PSO is run with c1 = c2 = 2, w = 0.7, a population size of p = 60 and a 
number of iterations g = 500. 

Inputs of the optimization procedure are the capital, replacement, O&M costs, 
the efficiency, the lifetime of components and lifetime of the project, and meteo 
data in the specific region of interest of the study. 

The PSO algorithm computes, with Eqs. 34 and 35, the best position of the par-
ticle and the best position of the group by determining the objective function and 
comparing it with the values obtained from previous iterations. By comparing all 
the best positions of the particles, the best group position is finally found as the so-
lution of the problem. 

The constraints adopted in the optimization algorithm are basic physical limita-
tions due, for instance, to hydrogen storage in tanks and performances of the many 
sub-systems that compose the REHHS under consideration.  

Results provide a nominal power of 7.5 kW for each wind turbine, 1 kW for 
each electrolyzer and each fuel cell, a hydrogen tank capacity of 1 kg, with a life-
time of the project of 20 years, a reactor throughput of 750 kg/day, a hydrogen 
production from the reformer of 31.2 kg H2/day, and a compressor power of 
50 kW. The system cost estimation reaches the optimum after 200 generations. 

6.2   Minimization of Costs with Component Outages 

A similar approach has been followed by Kashefi Kaviani et al [2009] for a wind 
and photovoltaic REHHS. The PSO algorithm is devised to minimize the cost of 
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the system over 20 years of operations with components that may be subject to 
failures. 

For five different optimization experiments, the algorithm converges to the 
same global optimum after nearly 100 generations. It is worth noting that reaching 
the same optimum (or fitness value) does not mean that the solution combination 
is the same, because different points in the solution space may produce very simi-
lar fitness values. 

The energy stored in the hydrogen tank during one year of REHHS operations 
oscillates daily, with a maximum around 5 700 – 5 800 kWh most frequently in 
the first part of the year, and a minimum around 350 – 400 kWh in the second part 
of the year. 

The reliability of many different components can have a profound impact on 
system’s overall reliability and economic results. Results from this study show 
that, for instance, inverter reliability is so impactful that it represents the most im-
portant issue for system overall reliability. 

The PSO algorithm has been proved to offer very quick results that can be of 
help when doing first approximation studies in, say, initial design or sensitivity 
analysis, while deterministic methods can be used in conjunction with PSO to fur-
ther refine the original approximate solution. 

7   Summary and Conclusions 

Fuzzy logic has already shown its potential in many different engineering and  
scientific applications. It comes to no surprise that also in renewable energy engi-
neering and science it represents a very powerful instrument for control or selec-
tion of alternative possibilities. The qualitative, rather than quantitative, approach 
is very useful when a rigorous mathematical modelling is not practical, but this 
limits the possibility to improve the understanding of how a complex system really 
works. 

Neural networks necessitate of an initial phase of training and testing, but are 
instrumental in providing engineers with important engines for the control of 
complex hybrid systems like REHHS. An important and interesting property of 
such soft computing algorithms is the self-tuning capability shown by trained neu-
ral nets, granting the chance to assist the functioning of the system also in far-
from-normal situations and improve robustness of REHHS. Very useful when the 
complex inter-relations between sub-components are difficult to be precisely de-
fined, neural networks promote a black-box approach that only considers inputs 
and outputs, achieving an alternative interpretation of the reality of the systems. 

Advantages of evolutionary algorithms are the low computational efforts 
needed to obtain partial or final solutions. The heuristic quality of the algorithm 
means that it is not necessary to deterministically define the boundaries of the 
problem, but rather the definition of the genotype and fitness functions. Disadvan-
tages entail in some cases the use of deterministic approaches in order to fine-tune 
the genotype of the individuals in case an optimal solution is not found. 

Particle Swarm Optimization algorithms are effective in reaching approximate 
solutions in very small amounts of time; deterministic computations can then be 
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applied to fine-tune the solution. Another advantage is that the combination offer-
ing global optimal solutions can be non necessarily unique, thus providing a set of 
possible solutions that can be chosen depending on other pre-conditions not origi-
nally used in the design of the PSO runs. 

As in many other engineering and scientific fields, the use of soft-computing 
factually adds value and options to improve efficiency and effectiveness of prob-
lem solving techniques for renewable energy systems. 
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Abstract. Absorption cooling systems make sense in many applications for 
process water cooling. Instead of mechanically compressing a refrigerant gas, as 
in the conventional vapor compression process, absorption cooling uses a thermo-
chemical process. Two different fluids are used, a refrigerant and an absorbent. 
Heat directly from natural gas combustion, solar energy, waste-heat source or 
indirectly from a boiler, drives the process.  

In recent years, soft computing (SC) methods have been widely utilized in the 
analysis of absorption cooling systems. Soft computing is becoming useful as an 
alternate approach to conventional techniques. Soft computing differs from con-
ventional (hard) computing in that, unlike hard computing, it is tolerant of impre-
cision, uncertainty, partial truth, and approximation. 

In this chapter, the research of applying soft computing methods for absorption 
cooling applications is presented. 

1   Introduction 

Absorption cooling systems have become increasingly popular in recent years 
from the viewpoint of energy and environment. Absorption cooling system uses a 
source of heat to provide the energy needed to drive the cooling process. 

Absorption cooling operates similarly to conventional electric vapor compres-
sion chillers with some very important differences.  The major differences are 
seen in the components of the system and the refrigerant used in the cycle.  Ab-
sorption systems use what is called a “thermal compressor”, which uses thermal 
energy to operate, in place of the conventional system’s compressor, which uses 
electricity. Absorption cooling system is shown schematically in Fig. 1. 

Compared to an ordinary cooling cycle the basic idea of an absorption system is 
to avoid compression work. This is done by using a suitable working pair. The 
working pair consists of a refrigerant and a solution that can absorb the refrigerant. 
Usually, LiBr-H2O is used, water is the refrigerant. As shown in Fig. 1, when the  
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Fig. 1 Absorption cooling system 

 
refrigerant vapour is coming from the evaporator (10) it is absorbed in a liquid (1). 
This liquid is pumped to higher pressure (1-2), where the refrigerant is boiled out 
of the solution by the addition of heat (3-7). Subsequently, the refrigerant goes to 
the condenser (7-8) like in an ordinary cooling cycle. Finally, the liquid with 
smaller amount of refrigerant returns back to the absorber (6) [Herold et al. 1996].   

The basic absorption cycle employs two fluids, the absorbate or refrigerant, and 
the absorbent. The most commonly fluids used are water as the refrigerant and 
lithium bromide as the absorbent. These fluids are separated and recombined in 
the absorption cycle. In the absorption cycle the low-pressure refrigerant vapor is 
absorbed into the absorbent releasing a large amount of heat. The liquid refrige-
rant/absorbent solution is pumped to a high-operating pressure generator using 
significantly less electricity than that for compressing the refrigerant for an elec-
tric chiller. Heat is added at the high-pressure generator from a gas burner, steam, 
hot water or hot gases. The added heat causes the refrigerant to desorb from the 
absorbent and vaporize. The vapors flow to a condenser, where heat is rejected 
and condense to a high-pressure liquid. The liquid is then throttled though an 
expansion valve to the lower pressure in the evaporator where it evaporates by 
absorbing heat and provides useful cooling. The remaining liquid absorbent, in the 
generator passes through a valve, where its pressure is reduced, and then is  
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recombined with the low-pressure refrigerant vapors returning from the evaporator 
so the cycle can be repeated [Herold et al. 1996, Absorption Chillers 2010]. 

Soft computing is a methodology tending to fuse synergically the different as-
pects of fuzzy logic, neural networks, evolutionary algorithms, and non-linear 
distributed systems in such a way as to define and implement hybrid systems 
which manage to come up with innovative solutions in the various sectors of intel-
ligent control, classification, and modeling and simulating complex non-linear 
dynamic systems. 

The basic principle of soft computing is its combined use of the new computa-
tion techniques that allow it to achieve a higher tolerance level towards impreci-
sion and approximation, and thereby new software/hardware products can be  
obtained at lower cost, which are robust and better integrated in the real world. 
Hybrid systems derived from this combination of soft computing techniques are 
considered to be the new frontier of artificial intelligence [Foryuna et al. 2001]. 

Soft computing methodologies have been advantageous in many applications. 
In contrast to analytical methods, soft computing methodologies mimic con-
sciousness and cognition in several important respects: they can learn from expe-
rience; they can universalize into domains where direct experience is absent; and, 
through parallel computer architectures that simulate biological processes, they 
can perform mapping from inputs to the outputs faster than inherently serial ana-
lytical representations [Chaturvedi 2008]. 

This chapter aims to present a wide view of various soft computing techniques. 
In addition, this chapter introduces various applications of soft computing in ab-
sorption cooling. These include system modeling and determination of working 
fluids properties. 

2   Soft Computing Techniques 

Soft Computing techniques are based on the way information processing is per-
formed in biological systems. The complex biological information processing 
system enables the human beings to survive with accomplishing tasks like recog-
nition of surrounding, making prediction, planning, and acting accordingly. Soft 
computing differs from conventional (hard) computing in that, unlike hard compu-
ting, it is tolerant of imprecision, uncertainty, partial truth, and approximation. The 
guiding principle of soft computing is: Exploit the tolerance for imprecision, un-
certainty, partial truth, and approximation to achieve tractability, robustness and 
low solution cost. The principal constituents of Soft Computing (SC) are artificial 
neural network (ANN), fuzzy logic (FL), Adaptive Network based Fuzzy Infe-
rence System (ANFIS), genetic algorithm (GA) and Data Mining (DM). 

2.1   Artificial Neural Networks (ANN) 

According to Haykin [1994], a neural-network is a massively parallel distributed 
processor that has a natural propensity for storing experiential knowledge and 
making it available for use. It resembles the human brain in two respects: the 
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knowledge is acquired by the network through a learning process, and inter-
neuron connection strengths, known as synaptic weights, are used to store the 
knowledge. 

Artificial neural-network (ANN) models may be used as alternative methods in 
engineering analyses and predictions. ANNs mimic somewhat the learning process 
of a human brain. They operate like a “black box” model, and require no detailed 
information about the system. Instead, they learn the relationship between the 
input parameters and the controlled and uncontrolled variables by studying pre-
viously recorded data, in a way similar to how a non-linear regression might be 
performed. Another advantage of using ANNs is their ability to handle large and 
complex systems with many interrelated parameters. They seem to simply ignore 
excess data that are of minimal significance, and concentrate instead on the more 
important inputs. 

A schematic diagram of typical multilayer feed-forward neural-network archi-
tecture is shown in Fig. 2. The network usually consists of an input layer, some 
hidden layers and an output layer. In its simple form, each single neuron is con-
nected to other neurons of a previous layer through adaptable synaptic weights. 
Knowledge is usually stored as a set of connection weights (presumably corres-
ponding to synapse-efficacy in biological neural systems). Training is the process 
of modifying the connection weights, in some orderly fashion, using a suitable 
learning method. The network uses a learning mode, in which an input is pre-
sented to the network along with the desired output and the weights are adjusted 
so that the network attempts to produce the desired output. The weights, after 
training, contain meaningful information whereas before training they are random 
and have no meaning. 

Figure 3 illustrates how information is processed through a single node. The 
node receives weighted activations of other nodes through its incoming connec-
tions. First, these are added up (summation). The result is then passed through an  
 

 

 
 

Fig. 2 Schematic diagram of a multilayer feed-forward neural-network 
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activation function, the outcome being the activation of the node. For each of the 
outgoing connections, this activation value is multiplied by the specific weight and 
transferred to the next node. 
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Fig. 3 Information processing in a neural network unit 

 
A training set is a group of matched input and output patterns used for training 

the network, usually by suitable adaptation of synaptic weights. The outputs are 
the dependent variables that the network produces for the corresponding input. It 
is important that all the information the network needs to learn is supplied to the 
network as a data set. When each pattern is read, the network uses the input data to 
produce an output, which is then compared with the training pattern, i.e. the cor-
rect or desired output. If there is a difference, the connection weights (usually but 
not always) are altered in such a direction that the error is decreased. After the 
network has run through all the input patterns, if the error is still greater than the 
maximum desired tolerance, the ANN runs again through all the input patterns 
repeatedly until all the errors are within the required tolerances. When the training 
reaches a satisfactory level, the network holds the weights constant and uses the 
trained network to make decisions, identify patterns or define associations in new 
input data sets which were not used to train it. More details on neural networks 
can be found in [Haykin, 1994, Kalogirou 2000, 2001, Matlab 2010]. 

2.2   Fuzzy Logic (FL) 

Fuzzy Logic is basically a multivalued logic that allows intermediate values to be 
defined between conventional evaluations like yes/no, true/false, black/white, etc. 
Notions like rather warm or pretty cold can be formulated mathematically and 
processed by computers. 

Fuzzy set theory has been introduced in 1965 by Zadeh and basically it means 
filling with real numbers the interval between 0 and 1, allowing intermediate val-
ues between these two extremes. Fuzzy logic shares with human reasoning the 
ability of making use of approximate information in order to generate good deci-
sions and precise solutions. Since Aristotle, the theory of logic stated that every 
proposition must either be true or false, excluding the Middle. In contrast, fuzzy 
logic is designed to allow computers to make use of the distinctions among data 
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with shades of gray. It proposes making the membership function (or the values 
False and True) operate over the range of real numbers [0, 1]. This should not lead 
to confusion between the degree of truth used in fuzzy theory and probabilities, 
which are conceptually distinct. Boolean logic can be seen as a subset of fuzzy 
logic [Paulescu 2008]. 

A general fuzzy system, as shown in Fig. 4 has the components of fuzzification, 
fuzzy rule base, fuzzy output engine and defuzzification.  

 

 
 

Fig. 4 Schematic of a general fuzzy system 

 
During building up a fuzzy model, firstly, effective (input) parameters should 

be determined for the system. Secondly, each of the effective parameter should be 
divided into fuzzy sets, that is, classes with sharply defined fuzzy boundaries in 
which the transition from membership to non- membership is gradual rather than 
abrupt, on the scale from 0 to 1. These fuzzy sets are labeled with linguistic ex-
pressions like low, medium, high, etc., reflecting the variable physical condition 
(Fig. 4). In this way, the variable is considered not as a global quantity, but in 
partial groups that provide more room for the justification of sub-relationships 
between two or more variables on the basis of fuzzy words. Then, fuzzy rules are 
written between these variables in IF–THEN format based on the data and expert 
decision. Lastly, results are defuzzified to a specific number as an output. The 
purpose of defuzzification is to convert the final fuzzy set representing the overall 
conclusion into a real number that, in some sense, best represents this fuzzy set. 
More details on fuzzy logic can be found in [Paulescu 2008, Kucukali and Baris 
2010, Matlab 2010; Lau et al. 2008]. 

2.3   Adaptive Network Based Fuzzy Inference System (ANFIS) 

ANFIS is a multilayer feed-forward network consisting of nodes and directional 
links, which combines the learning capabilities of a neural network and reasoning 
capabilities of fuzzy logic. This hybrid structure of the network can extend the 
prediction capabilities of ANFIS beyond ANN and fuzzy logic techniques when 
they are used alone. Analyzing the mapping relation between the input and output 
data, ANFIS can establish the optimal distribution of membership functions using 
either a back-propagation gradient descent algorithm alone, or in combination 
with a least-squares method [Ertunc and Hosoz 2008]. A basic ANFIS was illu-
strated in Fig. 5. 
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Fig. 5 A basic structure of the ANFIS [Reprinted from Journal of Hydrology, Vol. 367, 
Cobaner et al. 2009, Suspended sediment concentration estimation by an adaptive neuro-
fuzzy and neural network approaches using hydro-meteorological data, pp. 52-61, Copy-
right 2009, with permission from Elsevier] 

 
Depending on the types of inference operations of ‘‘if–then rules”, most fuzzy 

inference systems can be classified into three types; Mamdani’s system, Sugeno’s 
system and Tsukamoto’s system. Mamdani’s system is the most commonly used, 
whereas, Sugeno’s system is more compact and computationally more efficient; 
the output is crisp, so, without the time consuming and mathematically intractable 
defuzzification operation, it is by far the most popular candidate for sample-data 
based fuzzy modeling and it lends itself to the use of adaptive techniques [Takagi 
and Sugeno 1985]. 

In first-order Sugeno’s system, a typical rule set with two fuzzy IF/THEN rules 
can be expressed as:  

 

Rule: 1. If x is A1 and y is B1, then f1 = p1x + q1y + rl 
Rule: 2. If x is A2 and y is B2, then f2 = p2x + q2y + r2 
 

where Ai and Bi are the fuzzy sets, fi is the output set within the fuzzy region spe-
cified by the fuzzy rule pi and qi and ri are the design parameters that are deter-
mined during the training process [Efendigil et al. 2009]. The architecture of AN-
FIS is shown in Fig. 5. The functionality of nodes in ANFIS can be summarized as 
follows [Cobaner et al. 2009]: 

 

Layer 1: every node i in this layer is an adaptive node, representing membership 
functions described by generalized bell functions, e.g., 
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where X = input to the node and a1, b1 and c1 = adaptable variables known as pre-
mise parameters. The outputs of this layer are the membership values of the pre-
mise part. 

 
Layer 2: this layer consists of the nodes which multiply incoming signals and 
sending the product out. This product represents the firing strength of a rule.  

)()( 3111,2 yxWZ µµ==        (2) 

Layer 3: in this layer, the nodes calculate the ratio of the ith rules firing strength to 
the sum of all rules’ firing strengths. 
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Layer 4: this layer’s nodes are adaptive with node functions. 
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where W1 is the output of Layer 3 and {pi, qi, ri} are the parameter set. Parameters 
of this layer are referred to as consequent parameters. 

 
Layer 5: this layer’s single fixed node computes the final output as the summation 
of all incoming signals. 

∑
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More information for ANFIS can be found in related literature [Matlab 2010, Jang 
1993]. 

2.4   Data Mining (DM) 

Data mining refers to the application of a machine learning method, as well as 
other automatic knowledge acquisition methods, to the generation of potentially 
useful knowledge from the organization and analysis of raw data [Xie et al. 2006]. 

Data mining is a powerful technique for extracting predictive information from 
large databases. The automated analysis offered by data mining goes beyond the 
retrospective analysis of data. Data mining tools can answer questions that are too 
time-consuming to resolve with methods based on first principles. In data mining, 
databases are searched for hidden patterns to reveal predictive information in 
patterns that are too complicated for human experts to identify [Hoffman and 
Apostolakis 2003]. Data mining is applied in a wide variety of fields for predic-
tion, e.g. stock-prices, customer behavior, production control and many others. In 
addition, data mining has also been applied to other types of scientific data such as 
bio-informatical, astronomical, and medical data [Li and Shue 2004]. 
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A general approach consists of several steps in which the data are collected and 
screened for errors, and descriptors are defined. Finally, the descriptors are trained 
to discriminate between observed data and generated erroneous yet plausible data. 
A short sketch of data mining approach is given as follows [Hoffman and Aposto-
lakis 2003]: 

1. Data are collected. 
2. Poor quality data are removed. This step is very important since even a 

small number of erroneous data can influence the result heavily. 
3. The descriptors for a specific problem have to be defined. These are a set 

of attributes, which, for each data point, contain information relevant to 
the problem being addressed. 

4. Decoys have to be generated. These simple decoys allow for the deriva-
tion of a first approximation of the potentials. 

5. During training, the descriptors are optimized to discriminate between the 
actual data and the decoys. 

6. Finally, the trained potentials were validated. 

The process of knowledge discovery in databases can be seen in Fig. 6. 
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Fig. 6 The process of knowledge discovery in databases 

2.5   Genetic Algorithm (GA) 

GAs were first proposed by John Holland in 1975 [Holland 1975] and further 
developed for engineering applications by Goldberg [1989]. Evolution by natural 
selection is one of the most compelling themes of modern science, and it gives a 
revolutionary way of thinking about biological systems. This is a form of evolu-
tion known as the GA that takes place in a computer. In GAs, selection operates 
on strings of binary digits stored in the computer's memory, and over time,  
the functionality of these strings evolves in much the same way that natural popu-
lations of individuals evolve. GAs allow engineers to use a computer to  
evolve solutions over time instead of designing them by hand. An algorithm is a 
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step-by-step procedure for accomplishing some specific task. Many algorithms 
may be readily implementable by computer programs. Thus, an algorithm is the 
general description of a procedure, and a program is its realisation as a sequence 
of instructions to a computer. Although GAs are known primarily as a problem 
solving method, they can also be used to study evolution itself and to model dy-
namic systems [Sen et al. 2001]. GA is fundamentally different from the classic 
optimization algorithms. A genetic algorithm is a probabilistic search technique 
that has its roots in the principles of genetics [Yuzgec et al. 2006]. 

Genetic algorithms (GA) are suitable for finding the optimum solution in prob-
lems where a fitness function is present. Genetic algorithms use a ‘‘fitness’’ 
measure to determine which of the individuals in the population survive and re-
produce. Thus, survival of the fittest causes good solutions to progress. A GA 
works by selective breeding of a population of ‘‘individuals’’, each of which 
could be a potential solution to the problem [Kalogirou 2004]. 

The search procedure starts from a set of initial possible solutions that are 
represented by ‘‘chromosomes”; this set is called the ‘‘initial population”. The 
solutions presented in a population are then chosen according to a fitness criterion 
and are then used in order to generate a new population of solutions. This multip-
lication and selection procedure permits the ‘‘quality” of the new population to  
be improved with respect to the initial one. The generation and the selection pro-
cedures of new populations are repeated until a given convergence condition is 
satisfied. 

The general form of a GA can be summarized as follows: 

1. Start with a random generation of an initial population of N chromo-
somes. 

2. Carry out a fitness evaluation, f(x), for each x-chromosome forming the 
population. 

3. Apply a cross-over operation to the population in order to generate a new 
one according to the following steps [Dipama et al. 2008]: 
(a) Select two parent chromosomes according to their best fitness. 
(b) Use a cross-over probability in order to reproduce the two parents in-

to two new chromosomes (offspring’s). Note that if crossing the par-
ents is not carried out, then the offspring’s become an exact replica 
of their parents. 

(c) Use a mutation probability to modify the new chromosomes. 
(d) Relocate the new chromosomes in the population space. 

4. Use this new population for continuing searching the best solution, i.e., 
continue the execution of the algorithm. 

5. Carry out a test to check if a convenient convergent criterion is satisfied; 
if this condition is achieved stop the procedure and select the chromo-
some that has the best fitness as the solution of the problem. 

6. If step 5 is not satisfied then go back to step 2. 

One of the main advantages of GAs as opposed to other optimization techniques is 
their ease of use. Furthermore, easy-to-use commercial GA toolboxes are now 
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available. One of the specificities of GAs is that they do not necessitate the calcu-
lation of the objective function gradient with respect to the design variables. This 
feature is particularly helpful in some cases such as for material allocation, order-
ing (combinatory) problems, multi-objective problems, and mixed integer non-
linear programming (MINLP) [Gosselin et al. 2009]. 

3   Applications of Soft Computing in Absorption Cooling 

Systems 

Soft computing has been used by various researchers in absorption cooling system 
applications. This section presents an overview of these applications. The types of 
applications on the use of soft computing techniques in absorption cooling pre-
sented in this chapter are summarized in Table 1. 

 
Table 1 Summary of numbers of applications presented in the absorption cooling  

applications 
 

AI technique Area Number of  
applications 

Artificial neural 
networks 

Modeling of absorption systems 
Optimization of absorption systems 

Refrigerant-absorbent pairs 

8 
3 
3 

Fuzzy logic Controller of solar air-conditioner 
Performance prediction 

2 
1 

Genetic algorithms Optimization of absorption systems 
 

1 

Data Mining Modeling of absorption systems 
Refrigerant-absorbent pairs 

1 
1 

3.1   Applications of Artificial Neural Networks 

Table 2 shows a summary of applications of artificial neural networks for absorp-
tion system applications. 

Sozen et al. [2003] used artificial neural networks for the analysis of ejector–
absorption refrigeration systems (EARSs). ANNs method was used to determine 
the properties of liquid and two phase boiling and condensing of an alternative 
working fluid couple (methanol/LiBr), which does not cause ozone depletion for 
EARS. The back-propagation learning algorithm with three different variants and 
logistic sigmoid transfer function was used in the network. In addition, this paper 
presents a comparative performance study of the EARS using both analytic func-
tions and the properties of the fluid couple predicted by the ANN. After training, it 
was found that the average error is less than 1.3% and R2 values are about 0.9999.  
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Table 2 Summary of absorption system applications of artificial neural networks 

Authors Year Subject 
Sozen et al. 
Sencan et al. 
Sozen and Akcayol 
Rosiek and Batlles 
Manohar et al. 
Sozen et al. 
Aly et al. 
Sencan et al. 

2003 
2007 
2004 
2010 
2006 
2004a 
2010 
2006 

Modeling of absorption systems 
 

Chow et al. 
Hernandez et al. 
Colorado et al. 

2002 
2009 
2010 

Optimization of absorption systems 
 

Sozen et al. 
Sozen et al. 
Sencan and Kalogirou 

2004b 
2005 
2005 

Refrigerant-absorbent pairs 

 
Additionally, when the results of analytic equations obtained by using experimen-
tal data and by means of ANN were compared, deviations in coefficient of per-
formance (COP), exergetic coefficient of performance (ECOP) and circulation 
ratio (F) for all working temperatures were found to be less than 1.8%, 4%, 0.2%, 
respectively. Deviations for COP, ECOP and F at a generator temperature of 90oC 
for which the COP of the system is maximum, are 1%, 2%, 0.1%, respectively. 

A theoretical modeling of an absorption heat transformer for the temperature 
range obtained from an experimental solar pond was presented by Şencan et al. 
[2007]. The working fluid pair in the absorption heat transformer is aqueous ter-
nary hydroxide fluid consisting of sodium, potassium and caesium hydroxides in 
the proportions 40:36:24 (NaOH:KOH:CsOH). Different methods such as linear 
regression (LR), pace regression (PR), sequential minimal optimization (SMO), 
M5 model tree, M50 rules, decision table and back propagation neural network 
(BPNN) are used for modeling the absorption heat transformer. The best results 
were obtained by the back propagation neural network model. A new formulation 
based on the BPNN is presented to determine the flow ratio (FR) and the coeffi-
cient of performance (COP) of the absorption heat transformer. Figure 7 shows the 
architecture of the BPNN used for the flow ratio and COP prediction. As seen 
from the figure, the evaporator temperature, absorber temperature, condenser 
temperature and generator temperature are the input data and the flow ratio (FR) 
and COP of the AHT are the actual outputs. 

Sozen and Akcayol [2004] used artificial neural network for the performance 
analysis of a solar-driven ejector-absorption refrigeration system (EARS) with an 
aqua/ammonia working fluid. The use of artificial neural networks has been pro-
posed to determine the performance parameters as functions of only the working 
temperature, under various working conditions. Thus, this study is considered to  
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Fig. 7 BPNN model used for flow ratio and COP prediction [Şencan et al. 2007] 

 
Fig. 8 ANN architecture used for the estimation of COP, ECOP and F [Reprinted from 
Applied Energy Journal, Vol. 79, Sozen and Akcayol, 2004, Modelling (using artificial 
neural-networks) the performance parameters of a solar-driven ejector-absorption cycle, pp. 
309-325, Copyright 2004, with permission from Elsevier] 

 
be helpful in predicting the performance of an EARS prior being set up in an envi-
ronment where the temperatures are known. The statistical coefficient of multiple 
determination (R2–value) is equal to 0.976, 0.9825, 0.9855 for the coefficient of 
performance (COP), exergetic coefficient of performance (ECOP) and circulation 
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ratio (F), respectively. The ANN structure employed is shown in Fig. 8. The hid-
den layer has twenty neurons, and the input layer has four neurons for generator 
temperature (Tg), evaporator temperature (Te), absorber temperature (Ta) and con-
denser temperature (Tc). There are three output neurons for COP, ECOP and F.  

Rosiek and Batlles [2010] used ANNs to model a solar-assisted air-
conditioning system installed in the Solar Energy Research Center (CIESOL). 
This system consists mainly of the single-effect LiBr-H2O absorption chiller fed 
by water provided from either solar collectors or hot water storage tanks. The 
present work describes only solar cooling systems based on absorption chiller and 
powered by solar collectors. The experimental data were collected during the 
cooling period of 2008. The ANN was used with the main goal of predicting the 
efficiency of the chiller and global system using the lowest number of input va-
riables. The configuration 7-8-4 (7 inputs, 8 hidden and 4 output neurons) was 
found to be the optimal topology. The results demonstrate the accuracy of ANN 
predictions with a Root Mean Square Error (RMSE) of less than 1.9% and practi-
cally null deviation, which can be considered very satisfactory. Figure 9 presents 
the configuration of the two-layer back propagation network selected in this work. 
The input layer includes the entering generator temperature (Teg), leaving genera-
tor temperature (Tlg), entering evaporator temperature (Tee), leaving evaporator 
temperature (Tle), incident radiation intensity (I), leaving flat-plate collector tem-
perature (Tout) and collector’s mass flow rate (mc). The hidden layer has seven 
nodes, and the output layer includes four neurons representing the coefficient of  
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Fig. 9 ANN architecture used for the absorption system [Reprinted from Renewable Energy 

Journal, Vol. 35, Rosiek and Batlles, 2010, Modelling a solar-assisted air-conditioning 
system installed in CIESOL building using an artificial neural network, pp. 2894-2901, 
Copyright 2010, with permission from Elsevier]  
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performance (COP), cooling capacity (Qcool), global system efficiency 1 (ηs1) and 
global system efficiency 2 (ηs2). The global system efficiency 1 (ηs1) is defined as 
the quotient between the cooling capacity and the useful collectors’ array energy. 
The global system efficiency 2 (ηs2) is defined as the quotient between the cooling 
capacity and the incidence energy on the collectors’ array. 

Manohar et al. [2006] carried out the modeling of a double effect absorption 
chiller using steam as heat input. The modeling is based on the artificial neural 
network technique with 6-6-9-1 configuration (i.e., it includes two hidden layers 
with 6 and 9 neurons in each). The neural network is a fully connected feed for-
ward configuration using the back propagation learning algorithm. The model 
predicts the chiller coefficient of performance (COP) based on the time, chilled 
water inlet (Chi) and outlet (Cho) temperatures, cooling water inlet (Cwi) and outlet 
(Cwo) temperatures and steam pressure (stpr). The network was trained with one 
year of experimental data and predicts the performance within ±1.2% of the actual 
values. Figure 10 shows the schematic diagram of the four-layer, feed forward 
ANN used for modeling the absorption system. 
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Fig. 10 ANN model of the absorption chiller system [Reprinted from Energy Conversion 

and Management Journal, Vol. 47, Manohar et al., 2006, Modelling of steam fired double 
effect vapour absorption chiller using neural network, pp. 2202-2210, Copyright 2006, with 
permission from Elsevier] 
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Sozen et al. [2004a] used artificial neural networks to determine the properties 
of the liquid and two-phase boiling and condensation of an alternative working 
fluid couple (methanol/LiCl), which does not cause ozone depletion. A compara-
tive performance study of the ejector absorption heat pump (EAHP) is performed 
between the analytic functions and the values predicted by the ANN for the prop-
erties of the couple. The back propagation learning algorithm with three different 
variants and logistic sigmoid transfer function were used in the network. In order 
to train the neural network, limited experimental measurements were used as train-
ing and test data. The input layer consists of three neurons; temperature, pressure 
and concentration of the couples. Specific volume is in the output neuron. After 
training, it was found that the maximum error was less than 3%, the average error 
was less than 1.2% and the R2 values were about 0.9999. Additionally, the com-
parison of the results between analytic equations obtained by using experimental 
data and the ANN show that the deviations of the refrigeration effectiveness of the 
system for cooling (COPr), exergetic coefficient of performance of the system for 
cooling (ECOPr) and circulation ratio (F) for all working temperatures were less 
than 1.7%, 5.1%, and 1.9%, respectively. Deviations for COPr, ECOPr and F at a 
generator temperature of 90°C (cut off temperature), at which the coefficient of 
performance of the system is maximum, are 0.9%, 1.8%, and 0.1%, respectively. 
When this system was used for heating, similar deviations were obtained. In  
Fig. 11, the selected neural network architecture is shown schematically. 
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Fig. 11 Neural network architecture for thermal properties of methanol/LiCl [Sozen et al. 
2004a] 

 
Aly et al. [2011] carried out an investigation on the performance of lithium 

chloride (LiCl) absorption cooling system using an artificial neural network mod-
el. Using the proposed model, the effect of system design parameters, namely; 
regenerator length and air flow rate on the performance of the system are investi-
gated. Additionally, the variation of the thermo-physical parameters along the 
regenerator length is presented. 
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Sencan et al. [2006] carried out the thermodynamic analysis of absorption sys-
tems using an artificial neural network. ANN is used for the determination of the 
thermodynamic properties of LiBr–water and LiCl–water solutions. The ANN is 
successfully applied to determine the enthalpy values of both solutions. The  
R2-values in both cases were about 0.999, which can be considered as very satis-
factory. In this study, in order to calculate the enthalpy values, mathematical for-
mulations were derived from the ANN model. In addition, performance analysis 
of absorption systems operating with LiBr–water and LiCl–water solutions is 
carried out. Enthalpy values of both solutions were obtained using simple equa-
tions derived from the ANN models. Figure 12 shows the architecture of the ANN 
used for the LiBr–water solution enthalpy prediction. In this, the temperature and 
concentration are the input parameters and enthalpy of the solution is the actual 
output. Configuration 2-8-1 appeared to be the most optimal topology for this 
application. Figure 13 shows the architecture of the ANN used for the LiCl–water 
solution enthalpy prediction. Again the temperature and concentration are the 
input parameters and enthalpy of the solution is the actual output. Configuration  
2-4-1 appeared to be the most optimal topology for this application. 

 

Fig. 12 ANN model used for LiBr–water enthalpy prediction [Sencan et al. 2006] 

Chow et al. [2002] investigated the concept of integrating a neural network and 
a genetic algorithm in the optimal control of an absorption chiller system. Based 
on a commercial absorption unit, a neural network was used to model the system 
characteristics. A genetic algorithm is also employed as a global optimization tool. 
Figure 14 gives a brief outline of the optimization plan. 
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Fig. 13 ANN model for LiCl–water enthalpy prediction [Sencan et al. 2006] 

 
Artificial neural network inverse (ANNi) is applied to calculate the optimal op-

erating conditions on the coefficient of performance (COP) for a water purifica-
tion process integrated to an absorption heat transformer with energy recycling 
[Hernandez et al. 2009]. An artificial neural network (ANN) model is developed 
to predict the COP which was increased with energy recycling. This ANN model 
takes into account the input and output temperatures for each one of the four com-
ponents (absorber, generator, evaporator, and condenser), as well as two pressures 
and LiBr- H2O concentrations. For the network, a feedforward with one hidden 
layer, Levenberg–Marquardt learning algorithm, hyperbolic tangent sigmoid trans-
fer function in the hidden layer and linear transfer function in the output layer 
were used. The best fit of the training dataset was obtained with three neurons in 
the hidden layer. Simulations and experimental data test were in good agreement 
for the validation dataset (R> 0.99). This ANN model can be used to predict the 
COP when the input variables (operating conditions) are known. Input variables 
are input-temperature in the absorber that comes from generator (Tin.GE-AB), input-
temperature in the absorber that comes from evaporator (Tin.EV-AB), output-
temperature in the absorber towards generator (Tout.AB-GE), input-temperature in the 
generator that comes from absorber (Tin.AB-GE), output-temperature in the generator 
towards condenser (Tout.GE-CO), output-temperature in the generator towards absor-
ber (Tout.GE-AB), input-temperature of the condenser that comes from generator 
(Tin.CO), output-temperature in the condenser towards evaporator (Tout.CO),  
input-temperature in the evaporator that comes from condenser (Tin.EV), output-
temperature in the evaporator towards absorber (Tout.EV-AB), pressure in absorber 
(PAB), pressure in generator (PGE), LiBr concentration in the absorber inlet (Xin.AB), 
LiBr concentration in the absorber outlet (Xout.AB), LiBr concentration in the  
generator inlet (Xin.GE) and LiBr concentration in the generator outlet (Xout.GE). 
However, to control the COP of the system, a strategy is developed to estimate  
the optimal input variables when a COP is required from ANNi. An optimization  
 



Soft Computing in Absorption Cooling Systems 83
 

 

Fig. 14 Optimization process based on ANN and GA [Reprinted from Energy and Build-

ings Journal, Vol. 34, Chow et al., 2002, Global optimization of absorption chiller system 
by genetic algorithm and neural network, pp. 103-109, Copyright 2002, with permission 
from Elsevier] 

 
method (the Nelder–Mead simplex method) is used to fit the unknown input va-
riables resulted from the ANNi. The neural network model shown in Fig. 15 with 
three neurons in the hidden layer (51 weights and four biases) was found to be the 
most efficient in predicting the COP values of the water purification process inte-
grated to an absorption heat transformer with energy recycling. 
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Fig. 15 Model for prediction of COP values [Reprinted from Renewable Energy Journal, 
Vol. 34, Hernandez et al., 2009, Optimum operating conditions for a water purification 
process integrated to a heat transformer with energy recycling using neural network inverse, 
pp. 1084-1091, Copyright 2009, with permission from Elsevier] 

 
Colorado et al. [2011] determined the optimal operation conditions of a single-

stage heat transformer by means of an artificial neural network inverse. Analysis 
based on first and second law of thermodynamics together with the direct and 
artificial neural networks inverse (ANNi) have been used to develop a methodolo-
gy to decrease the total irreversibility of an experimental single-stage heat trans-
former. With the proposed methodology it is possible to calculate the optimal 
input parameters that should be used in order to operate the heat transformer with 
lower irreversibilities. The mathematical validation of ANNi was carried out with  
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Fig. 16 Application of neural network inverse in an absorption heat transformer [Reprinted 
from Applied Energy Journal, Vol. 88, Colorado et al., 2011, Optimal operation conditions 
for a single-stage heat transformer by means of an artificial neural network inverse, pp. 
1281-1290, Copyright 2011, with permission from Elsevier] 

a comparison between the total cycle irreversibility (Icycle) obtained thermodynam-
ically and the Icycle determined by using the ANNi. The results showed a mean 
discrepancy of 0.9% of the Icycle values. Figure 16 shows a schematic diagram of 
the strategy to connect the ANNi to the absorption heat transformer. 

Sozen et al. [2004b] also used artificial neural networks to determine the prop-
erties of liquid and two phase boiling and condensation of two alternative refrige-
rant/absorbent couples (methanol–LiBr and methanol–LiCl). The back-
propagation learning algorithm and logistic sigmoid transfer function were used in 
the network. Variants of the algorithm used in the study are scaled conjugate gra-
dient (SCG), Pola–Ribiere conjugate gradient (CGP), and Levenberg–Marquardt 
(LM). In order to train the neural network, limited experimental measurements 
were used as training and test data. In input layer, various temperatures are used in 
the range of 298–498K (with 25K increase), pressures (0.1–40MPa) and concen-
trations of 2, 7, and 12% of the couples. The specific volume is the output parame-
ter. After training, it was found that the maximum error is less than 3%, average 
error is about 1% and R2 value is 99.999. 

Finally, in a similar work Sozen et al. [2005] used a new approach based on ar-
tificial neural networks to determine the properties of liquid and two phase boiling 
and condensation of two alternative refrigerant/absorbent couples (methanol/LiBr 
and methanol/LiCl). In order to train the neural network, the same measurements 
as in Sozen et al. [2004b] were used as training data and test data. The input and 
output data were also the same as in previous model [Sozen et al. 2004b]. In this 
work back-propagation learning algorithm with three different variants, namely 
scaled conjugate gradient (SCG), Pola–Ribiere conjugate gradient (CGP), and 
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Levenberg–Marquardt (LM), and logistic sigmoid transfer function were used in 
the network so that the best approach is selected. The most suitable algorithm is 
found to be SCG with 8 neurons in the hidden layer. For this topology, it is found 
that after the training, the maximum error is less than 3%, the average error is 
about 1% and R2 value is 99.999. As a result, formulation was given to determine 
the properties of liquid and two phase boiling and condensation of two alternative 
refrigerant/absorbent couples.  

Sencan and Kalogirou [2005] used artificial neural networks (ANN) to deter-
mine the thermodynamic properties of two alternative refrigerant/absorbent 
couples (LiCl - H2O and LiBr + LiNO3 + LiI + LiCl - H2O). These pairs can be 
used in absorption heat pump systems. In order to train the network, limited expe-
rimental measurements were used as training and test data. Two feedforward 
ANNs were trained, one for each pair, using the Levenberg-Marquardt algorithm. 
The inputs of the network are concentration (X) and temperature (T), and the out-
put is vapor pressure. The training and validation was performed with good accu-
racy. The correlation coefficient obtained when unknown data were used to the 
networks was 0.9997 and 0.9987 for the two pairs respectively which is very satis-
factory. The present methodology proved to be much better that the linear multiple 
regression analysis. Using the weights obtained from the trained network a new 
formulation is presented for the determination of the vapor pressures of the two 
refrigerant/absorbent couples. In Table 3 a comparison is presented between the 
actual vapor pressure and vapor pressure predicted with the equations derived 
from ANN for LiCl-water fluid couple. In Table 4 a comparison is presented be-
tween the actual vapor pressure and vapor pressure predicted with the equations 
derived from ANN for LiBr + LiNO3 + LiI + LiCl-water fluid couple. 

Table 3 Comparison between actual vapor pressure and vapor pressure obtained with equa-
tions derived from ANN for LiCl-water fluid couple [Sencan and Kalogirou 2005] 

X 
(%) 

T 
(oC) 

Actual vapor 
pressure 
(mmHg) 

ANN predicted 
vapor pressure 

(mmHg) 
Error 

Percentage difference 
(%)* 

12.907 40 46.79 46.80 -0.01 -0.02 

19.265 60 107.33 107.36 -0.03 -0.02 

22.768 40 34.31 34.30 0.01 0.03 

22.768 80 227.87 228.00 -0.13 -0.05 

26.456 60 79.67 79.61 0.06 0.07 

29.788 60 66.55 66.53 0.02 0.03 

33.692 50 31.22 31.21 0.01 0.03 

36.976 40 14.04 13.93 0.11 0.78 

36.976 90 166.21 166.46 -0.25 -0.15 

40.756 70 52.27 52.07 0.20 0.38 

44.186 40 8.01 7.96 0.05 0.62 

44.186 80 67.48 68.05 -0.57 -0.84 
* Percentage difference (%) = (Error/ Actual vapor pressure) *100. 
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Table 4 Comparison between actual vapor pressure and vapor pressure obtained with equa-
tions derived from ANN for LiBr + LiNO3 + LiI + LiCl-water fluid couple [Sencan and 
Kalogirou 2005] 

X 
(%) 

T 
(K) 

Actual vapor 
pressure (kPa)

ANN predicted 
vapor pressure 

(kPa) 
Error 

Percentage difference 
(%)* 

50 350.71 12.35 11.95 0.40 3.24 

50 386.47 54.78 54.13 0.65 1.19 

50 405.01 98.92 98.45 0.47 0.48 

51.8 353.53 12.24 12.41 -0.17 -1.39 

51.8 400.66 81.51 79.77 1.74 2.13 

55 334.21 3.81 3.96 -0.15 -3.94 

55 367.18 19.11 18.55 0.56 2.93 

58 361.84 11.00 10.99 0.01 0.09 

58 399.04 52.09 53.39 -1.30 -2.49 

60 361.06 8.77 8.83 -0.06 -0.68 

60 387.59 27,66 27,68 -0.02 -0.07 
* Percentage difference (%) = (Error/ Actual vapor pressure) *100. 

3.2   Applications of Fuzzy Logic 

Table 5 shows a summary of fuzzy logic applications for absorption systems. 

Table 5 Summary of absorption system applications of fuzzy logic 

Authors Year Subject 
Lygouras et al. 
Lygouras et al. 

2007 
2008 

Controller of solar air-conditioner 

Sozen et al. 2004c Performance prediction 

 
The implementation of a variable structure fuzzy logic controller for a solar 

powered air conditioning system and its advantages were investigated by Lygou-
ras et al. [2007]. Two DC motors are used to drive the generator pump and the 
feed pump of the solar air-conditioner. Two different control schemes for the DC 
motors rotational speed adjustment are implemented and tested: the first one is a 
pure fuzzy controller, its output being the control signal of the DC motor driver. A 
7x7 fuzzy matrix assigns the controller output with respect to the error value and 
the derivative of the error. The second scheme is a two-level controller. The lower 
level is a conventional PID controller, and the higher level is a fuzzy controller 
acting over the parameters of the low level controller. Step response of the two  
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Fig. 17 Flow chart implemented in fuzzy controller software [Reprinted from Applied 
Energy Journal, Vol. 84, Lygouras et al., 2007, Fuzzy logic controller implementation for a 
solar air-conditioning system, pp. 1305-1318, Copyright 2007, with permission from  
Elsevier] 
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control loops are presented as experimental results. The contribution of this design 
is that in the control system, the fuzzy logic is implemented through software in a 
common, inexpensive, 16-bit microcontroller, which does not have special  
 

abilities for fuzzy control. In Fig. 17, the flow chart implemented in fuzzy control-
ler software is shown. 

The design and implementation of a Two-Input/Two-Output (TITO) variable 
structure fuzzy-logic controller for a solar-powered air-conditioning system was 
also described by Lygouras et al. [2008]. Two DC motors are used to drive the 
generator pump and the feed pump of the solar air-conditioner. The first affects 
the temperature in the generator of the solar air-conditioner, while the second, the 
pressure in the power loop. The difficulty of Multi-Input/Multi-Output (MIMO) 
systems control is how to overcome the coupling effects among each degree of 
freedom. Initially, a traditional fuzzy-controller has been designed, its output be-
ing one of the components of the control signal for each DC motor driver. Subse-
quently, according to the characteristics of the system’s dynamics coupling, an 
appropriate coupling fuzzy-controller (CFC) is incorporated into a traditional 
fuzzy-controller (TFC) to compensate for the dynamic coupling among each de-
gree of freedom. This control strategy simplifies the implementation problem of 
fuzzy control, but can also improve the control performance. This mixed fuzzy 
controller (MFC) can effectively improve the coupling effects of the systems, and 
this control strategy is easy to design and implement. In Fig. 18, the flow chart 
implemented in the fuzzy-logic controller software is shown. 

Sozen et al. [2004c] carried out a performance analysis of solar driven ejector-
absorption refrigeration system (EARS) operated with aqua/ammonia. The per-
formance of EARS was predicted using a fuzzy logic controller at different  
working conditions instead of complex rules and mathematical routines. Input data 
for the fuzzy logic controller are experimental results performed in the climatic 
conditions of Ankara, Turkey. Fuzzy input variables are generator temperature 
(Tg), evaporator temperature (Te), condenser temperature (Tc), absorber tempera-
ture (Ta) and fuzzy output variables are the coefficient of performance (COP), 
exergetic coefficient of performance (ECOP) and circulation ratio (F). The results 
between analytic equations and by means of fuzzy logic controller were compared 
to evaluate the performance of the controller and found that the deviations of 
COP, ECOP, F for all working temperatures are less than 2, 5 and 0.2%, respec-
tively. The statistical coefficient of multiple determination (R2-value) equal to 1.0, 
0.9996 and 1.0 for the COP, ECOP and F, respectively. Figure 19 shows the con-
figuration of the fuzzy block. 
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Fig. 18 Flow chart implemented in the TITO Fuzzy-controller software [Reprinted from 
Applied Energy Journal, Vol. 85, Lygouras et al., 2008, Variable structure TITO fuzzy-
logic controller implementation for a solar air-conditioning system, pp. 190-203, Copyright 
2008, with permission from Elsevier] 
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Fig. 19 The configuration of the fuzzy logic estimator [Reprinted from Renewable Energy 

Journal, Vol. 29, Sozen et al., 2004c, Performance prediction of a solar driven ejector-
absorption cycle using fuzzy logic, pp. 53-71, Copyright 2004, with permission from El-
sevier] 

3.3   Applications of Genetic Algorithms 

Table 6 summarizes various applications of genetic algorithms for absorption 
systems. 

Table 6 Summary of absorption system applications of genetic algorithms 

Authors Year Subject 

Chow et al. 
 

2002 
 

Optimization of absorption systems 

 
Only one application is currently available in literature on this subject carried 

out by Chow et al. [2002] who investigated the concept of integrating neural net-
work and genetic algorithm in the optimal control of an absorption chiller system. 
Based on a commercial absorption unit, neural network was used to model the 
system characteristics and genetic algorithm as a global optimization tool. Figure 
15, shown earlier, gives a brief outline of the optimization plan. 

3.4   Applications of Data Mining 

Table 7 summarizes various applications of data mining for absorption systems. 

Table 7 Summary of absorption system applications of data mining 

Authors Year Subject 
Sencan et al. 2007 Modeling of absorption systems 
Sencan 2007 Refrigerant-absorbent pairs 
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A theoretical modeling of an absorption heat transformer for the temperature 
range obtained from an experimental solar pond was presented by Şencan et al. 
[2007]. The working fluid pair in the absorption heat transformer is aqueous ter-
nary hydroxide fluid consisting of sodium, potassium and caesium hydroxides in 
the proportions 40:36:24 (NaOH:KOH:CsOH). Different methods such as linear 
regression (LR), pace regression (PR), sequential minimal optimization (SMO), 
M5 model tree, M5 rules, decision table and back propagation neural network 
(BPNN) are used for modeling the absorption heat transformer. As seen before, 
the best results were obtained by the back propagation neural network model. 
However, the various data mining methods applied gave acceptable results for 
both the flow ratio (FR) and the coefficient of performance (COP) of the absorp-
tion heat transformer. The inputs to all methods tried were the evaporator tempera-
ture, absorber temperature, condenser temperature and generator temperature. 
Şencan [2007] also used data mining process to determine the thermodynamic 

properties of two alternative refrigerant/absorbent couples (methanol/LiBr and 
methanol/LiCl). Linear regression (LR), pace regression (PR), sequential minimal 
optimization (SMO), M5 model tree, M5’Rules and back propagation neural net-
work (BPNN) models are applied within the data mining process for determining 
the specific volume of the methanol/LiBr and methanol/LiCl fluid couples. The 
best result was obtained by using the back propagation model although the results 
obtained with the various data mining processes are very close. The R2 value for 
the predicted specific volume of the methanol/LiBr fluid couple is 0.9840 and for 
the predicted specific volume of the methanol/LiCl fluid couple is 0.9966, which 
can be considered very satisfactory. The worsed results were obtained by the sim-
ple linear regression which gave respective values of 0.926 and 0.813 for the two 
fluid couples investigated. Finally, a new formulation is presented in the paper for 
the determination of the specific volumes of the two refrigerant/absorbent couples 
based on ANN results.  

4   Conclusions 

In this chapter, various soft computing techniques used for absorption systems 
modeling, prediction and control have been reviewed. A summary of available 
literature published in this area are presented. Soft computing techniques are be-
coming useful as alternate approaches to conventional techniques. Soft computing 
have been used and applied in different areas, such as engineering, economics, 
medicine, military, marine, etc. They have also been applied for modeling, identi-
fication, optimization, prediction and control of complex systems, such as absorp-
tion machines. 

The importance of the using soft computing for applications in absorption sys-
tems can be seen from the many applications presented in this chapter. Soft com-
puting techniques have been applied successfully in the wide range of absorption 
system applications. 
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Abstract. This chapter presents a comprehensive overview of short term wind fo-

recasting models based on time series analysis. Several different approaches,  

presently considered as mature, are re-examined with an eye towards setting auto-

mated procedures to clarify grey areas in their application. Additionally, some  

approaches recently proposed in the literature are examined that include the appli-

cation of localized linear models, and clustering algorithms coupled with linear and 

nonlinear models. Additionally, the impact of changing synoptic weather characte-

ristics is captured, through the utilization of global meteorological variables and the 

subsequent development of a customized regime model. The application of the  

developed approach on an annual hourly wind speed data set is presented.  

1   Introduction 

The current large-scale introduction of wind power in the energy mix of European 

countries has undermined the necessity of power system operators, at all levels to 

better understand the dynamic behavior and variability of the wind characteristics. 

This would significantly reduce uncertainties in key wind power generation deci-

sion for optimal scheduling and dispatching. The forecasting of wind behaviour 

(either in terms of speed or directly power) has been identified as an important 

element to the decision making process that would be used to effectively incorpo-

rate the variability in wind power in the operation of power systems [NERC 2009, 

EWEA 2007, 2008].  

The problem of forecasting wind resource can be split into temporal categories 

depending primarily on the time scale of the analysis and subsequently the in-

tended application: 

Very Short Term (seconds to a few minutes). Flow is dominated by turbulence, 

and forecasts depend on the current conditions and trends that cause changes over 

short periods of time. These forecasts are used for the operational aspects. 
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Short Range (up to 72h). Wind flow is on a combination of large scale atmos-

pheric motion and microclimatic effects. Most forecasts over this period of time 

are based on statistical models which utilize relationships between observed quan-

tities. These forecasts are of interest for their potential use in economic dispatch 

and unit commitment. 

Medium Range (up to 7 days). Numerical Weather Prediction models that pre-

dict general circulation characteristics of the atmosphere and associated conditions 

are mainly applied, but recently statistical models (either alone or as part of Model 

Output Statistics) are also tested. This time horizon is primarily used for resource 

planning, e.g. fuels and maintenance issues.  

Monthly and Seasonal. These forecasts usually have a structure that attempts to 

identify whether the specific quantity will be above, below or near normal over a 

specific interval. Such forecasts will be of use in resource planning and allocation. 

Special Category. They involve forecasts of specific events or interest, for exam-

ple periods of extreme winds or winds above the operation range of a wind tur-

bine. Often, these forecasts take the form of probabilities that an event like this 

will occur under certain circumstances. 

Additionally, the increased participation of wind producers in the electricity 

market environment relies on the knowledge of wind power contribution to the 

generation mix to effectively design more beneficiary trading strategies. The de-

termination of both daily and hourly prices and their variation will influence the 

clearing prices for both energy and operating reserves. Thus the increased know-

ledge of the wind behavior is crucial for a number of purposes, such as: generation 

and transmission maintenance planning, determination of operating reserve re-

quirements, unit commitment, economic dispatch, energy storage optimization 

(e.g., pumped hydro storage), and energy trading. 

The introduction of Numerical Weather Prediction models have attracted the in-

terest of the scientific community in recent years with several R&D efforts, such 

as ANEMOS [Kariniotakis 1999], POW’WOW
1
, WILMAR

2
 (both from Risoe), 

and ANEMOS.plus
3
. The installation and deployment of highly sophisticated 

NWP models such as the WRF (Skamarock et al. 2005), MM5 (Dudhia 1994), has 

become fairly straight-forward for anyone without advanced knowledge on mete-

orology. Furthermore the increase of available computational power has increased 

the spatial resolution of the applied model, reaching the order of 1km
2
 for regional 

applications thus allowing for accurate representation of topographic impacts on 

the wind patterns (Vlachogiannis 2008). Another advantage of NWP models is 

that output is provided at many different heights, specified by the user, which 

wind generators are located (typically 50-100m agl). Finally, the performance of 

NWP can be enhanced with the introduction of Model Output Statistics (MOS) 

[Glahn 1972] for post-processing wind speed/ power predictions (e.g., Zephyr 

model [Nielsen et al 2001]).  

                                                           
1 http://powwow.risoe.dk/ 
2 http://www.wilmar.risoe.dk/index.htm. 
3 http://anemosplus.cma.fr/. 
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The literature has numerous statistical models based on the time series analysis, 

such as the Kalman Filters, Auto-Regressive Moving Average (ARMA), Auto-

Regressive with Exogenous Input (ARX), and Box-Jenkins forecasting methods. 

On the majority of the applications these are univariate models and in only a hand-

ful of cases they treat exogenous variables (e.g., wind direction, temperature), 

which can improve the forecast error. A Kalman filter [Bossanyi 1ͻͺ5] with the 

last six measured values as inputs was applied for minutes ahead forecasting. The 

results were good when compared with the persistence for time horizons below 10 

min. of averaged data, but poorer in longer averages and nonexistent for 1-hr av-

erages. Contaxis et al. [1991] employed an AR model to forecast the wind speed 

for time horizons ranging between 30 min. and 5 hr for controlling an isolated  

hybrid diesel/wind system. Poggi et al. [2003] proposed an monthly update for au-

toregressive model in order to forecast the wind speed for the following 3 hr , 

whereas Torres et al. [2005] used five ARMA models to forecast the hourly  

average wind speed for ten hours in advance, reporting a 20% error reduction as 

compared to persistence. Kavasseri et al. [2009] presented the fractional-ARIMA 

(f-ARIMA) model to forecast the daily wind speed, being able to capture long-

range correlations. El-Fouly et al. [2006] presented a new technique based on the 

Grey predictor model reporting an improvement against persistence in the range of 

12% for the hourly wind forecast. 

Alexiadis et al. [1998] proposed a NN model to forecast hourly wind speed us-

ing spatial inputs to the models, showing an improvement of 32% over persistence 

in the forecast error for a 1-hr horizon. Sfetsos [2002] in comparing different 

models found that the non-linear models overcame the performance of linear 

models and that all the non-linear models presented comparable RMSE. Maqsood 

et al. [2005] used more than one model to forecast wind speed for 24-hr-ahead. 

Four different NNs were trained for each season of the year. The best result was 

found when an ensemble of models was used. Barbounis and Theocharis [2006] 

and [152] employed locally recurrent neural networks to forecast wind speed and 

power 72 hr ahead, based on meteorological information. Abdel-Aal et al. [2009] 

applied abductive networks based on the group method of data handling to fore-

cast the mean hourly wind speed. The model achieved an improvement of 8.2% 

compared to persistence in a 1-hr-ahead forecast. 

Damousis and Dokopoulos [2001] and Damousis et al. [2004] present a Takagi-

Sugeno FIS (optimized by a genetic algorithm) based on onsite and nearby loca-

tions of wind for a time horizon of between 30 and 240 min. The improvement 

over persistence ranged between 9.5% and 28.4%, depending on the time horizon 

(it increases with the time horizon). Potter [2006] developed an ANFIS to forecast 

the wind speed for a 2.5-min. time horizon. Wind speed data adjusted through 

splines considerably decrease the forecast error relative to persistence. Ramírez-

Rosado and Fernández-Jiménez [2003] employed fuzzy time series to forecast the 

wind generation for a time horizon of 24 hr. Fuzzy linguistic information about 

wind allowed the forecasting method to register an improvement of 14.3% over 

persistence. Frías et al. [2007] developed a wind power model based on ANFIS 

and using online generation data of wind farms jointly with forecasts for the daily 

market.  
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Costa et al. [2003] tested a purely and fuzzy autoregressive, as well as an MLP 

NN, in order to forecast 10 steps ahead with 10-min. wind power data. The au-

thors report the NN as having the best overall performance. Kusiak et al. in [2009] 

tested many different data-mining models to forecast the wind power: SVM, MLP 

NN, the M5P tree algorithm, the Reduced Error Pruning tree, and the bagging tree. 

The SVM and MLP NN returned the best forecasting ability, SVM for forecasts 

between 10 min. to 1 hr, whereas the MLP NN up to 4 hr. Fugon et al. [2008] 

compared the performance of data-mining models (NN, SVM, regression trees 

with bagging, and random forests for regression) and two reference linear regres-

sion models. All models outperformed persistence, and a superiority of the nonli-

near models was found using data from three wind farms in France. Jursa [2007] 

compared different models for wind power forecasts, including MLP NN, mixture 

of experts, SVM, and nearest neighbor search with a Particle Swarm Optimization 

algorithm for feature selection. The results for 10 wind farms located in Germany 

showed that the best model was the ensemble with three different models (i.e., 

mixture of experts, nearest neighbor, and SVM), with a 15% improvement over  

an NN. 

Pinson et al. [136] applied regime-switching models: the self-exciting threshold 

autoregressive (SETAR), the smooth transition autoregressive (STAR), and the 

Markov-switching autoregressive (MSAR). The performance of the models was 

evaluated on a one-step-ahead forecast in two Danish wind farms. In all test cases, 

the MSAR models significantly outperformed the rest. Ramírez-Rosado and 

Fernández-Jiménez [2004] developed a three-phase model using an FFT transform 

of the last 24 values of mean wind speed is computed, 23 fuzzy inference systems 

(Takagi-Sugeno) to forecast the coefficients of the Fourier transform, which were 

then used to forecast wind speed for the following hour.The reader is directed to 

the wealth of information published in the literature for detailed reviews on wind 

forecasting methodologies and results [Giebel 2003, Costa et al 2008, Wu et al 

2007, Landberg et al 2003, Leia et al 2009, ]. 

The present study aims to cover an aspect that is currently overlooked in the 

area of wind forecasting: the analysis of the impact of exogenous meteorological 

variables on the development of basic and advanced forecasting models. The ex-

amined variables included simple meteorological parameters that would be easily 

measured by a SCADA system on site. Additionally, data from the Mediterranean 

island of Corsica have been used as case studies to support the implementation of 

the developed models.  

2   Model Inventory 

This section describes the developed models that have been employed for the pur-

poses of the present study. The different forecasting approaches that are employed 

during the course of this study, can be described by the generalized equation (1), 

that in principle combines the forecatsed value of the series, yt, with past observa-

tions, yt-k, exogenous variables, xt-j, and previous error terms, et-k. The function f 

can be of any type, either linear or nonlinear.  
 

yt = f (yt-k, xt-j, et-k)             (1) 
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2.1   Linear Regression 

The LR approach uses a linear equation to determine whether a variable of interest 

(yt) is linearly related to past observations of the series (yt-p), and exogenous pa-

rameters (xq), which in this case are meteorological parameters. The expression 

that governs this model is the following: 

  ∑∑ ++= −
q

qq

p

ptpt xyay γβ             (2) 

 

The coefficients α, ȕ and Ȗ are usually estimated from a least squares algorithm. 

As inputs to the linear models, variables (here p and q) significantly different from 

zero on the 95% confidence level are selected using a backwards stepwise elimi-

nation procedure. Therefore, the final forecast is made with only those variables 

judged as statistically significant from the Student t-test statistic.  

2.2   Feed Forward Artificial Neural Networks 

Feed-forward Neural Networks are nowadays a common forecasting tool mainly 

due to their non-linear capabilities and ability to deal with large data sets. The op-

erating principles are presented with many details in many Artificial Intelligence 

textbooks e.g. [Lin and Lee 1996]. The response of a neuron in the output layer as 

a function of its inputs is given from: 
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where f1 and f2 can be non-linear sigmoid, linear or threshold activation  

functions.  

The strength of neural networks lies in their ability to simulate any given prob-

lem, which is achieved from the modification of the network parameters through 

learning algorithms. Thus an ANN with the same structure can model a variety of 

different processes either linear or non-linear. In this study, the Levenberg-

Marquardt algorithm is employed [Hagan and Menhaj 1996] because of its speed 

and robustness against the conventional back-propagation. 

2.2.1   Neural Network Model Considerations 

The most important issue concerning the introduction of ANN in time series fore-

casting is “generalization”, which refers to their ability to produce reasonable 

forecasts on data sets other than those used for the estimation of the model para-

meters. This issue has two important parameters that should be accounted for.  

The first is data preparation, which involves pre-processing and the selection of  

the most significant variables. The second embraces the determination of the  

optimum model structure that is closely related with the estimation of the model  



102 A. Sfetsos

 

parameters. Some useful insight can be found using statistical methods such as the 

correlation coefficients. 

The second aspect can jointly be tackled under the cross-validation training 

scheme. The data set is split into three smaller sets the training (TS), the evalua-

tion or validation (ES) and the prediction or testing (PS) sets. The model is initia-

lized with few parameters. The next step is to train the model using data from the 

training set and when the error of the evaluation set is minimized, the model pa-

rameters and configuration are stored. The number of parameters is then increased 

and a new network is trained from the beginning. If ES error is lower compared to 

the previously found minimum, then the parameters of this new model are stored. 

This iterative process is terminated when a predefined number of iterations are 

reached (Fig. 1). The advantage of this procedure is that the model architecture is 

not defined prior to the training phase, but the entire process becomes more time 

consuming. The performance and forecasting ability of each model is measured on 

the totally unknown prediction or “out-of-sample” set.  

 

 

Fig. 1 Iterative Cross-validation Training Scheme 

In this study, ES was formed using a Euclidean metric withholding a percent 

(here 25% is used) of the TS data that are located nearest to other data. The 

strength of this approach lies in the fact that TS covers more distinct characteris-

tics of the process, thus, allowing for the development of a model with better ge-

neralization capabilities.  

2.3   Nearest Neighbours 

This class of hybrid models includes a local modeling and a function approxima-

tion to capture recent dynamics of the process. The idea behind these predictors is 

that segments of the series neighboring under some distance measure may corres-

pond to similar future values. This claim was endorsed by the work of Farmer and 
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Sidorowich [1988] that showed that chaotic time-series prediction is several orders 

of magnitude better using local approximation techniques than universal approx-

imators. The tricky part in these models is the selection of the embedding dimen-

sion, which effectively determines segments of the series, and the number of 

neighbors. For the purposes of this study the input to the NN model were the same 

as for the neural network: 
 

],...,[ qptt xyy −=       (4) 

 

The number of neighbors was not pre-determined but was set to vary between 

predefined limits. A small number of neighbors increase the variance of the re-

sults, whereas a large number can compromise the local validity of a model and 

increase the bias of results. Once the nearest neighbors to yt have been identified, 

an averaging procedure is followed in the present study to generate predictions. 

2.4   ANFIS Basics 

An Adaptive Neuro-Fuzzy Inference System [Jang 1993, 1995 can incorporate 

fuzzy if-then rules and also, provide fine-tuning of the membership function ac-

cording to a desired input-output data pair. A first order Sugeno fuzzy model 

[1986] is used as a means of modeling fuzzy rules into desired outputs.  
 

if x1 = Ak; …; and xn = Bj  then fi = pix1 +qixn +ri     (5)            
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Fig. 2. ANFIS architecture 

 
Each neuron in the first layer corresponds to a linguistic label and the output 

equals the membership grade of this linguistic label.   

  

OL1i =  µAk (x1)                          (6)  
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Each neuron in layer 2 estimates the firing strength of a rule, wi, which is found 

from the multiplication of the incoming signals.    

OL2i = µAk(x1) ·  µBj(xn)                              (7)     

Each neuron in layer 3 estimates the relative firing strength of a rule which is 

found as the ratio of the ith rule’s firing strength to the sum of the firing strength 

of all rules, (j in total).   
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The output of layer 4 is the product of the previously found relative firing strength 

of the i-th rule and the following rule, fi.  
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The final layer computes the overall output as the summation of all incoming sig-

nals from layer 4. 
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The results are then defuzzified using a weighted average procedure. A back-

propagation training method is employed to find the optimum value for the para-

meters of the membership functions and a least squares procedure for the linear 

parameters on the fuzzy rules, so that the error between the input and the output 

pairs is minimized. The total number of rules, j, equals the possible combinations 

of the number of memberships function of each variable. 

2.5   Hybrid Clustering Algorithm (HCA) 

The hybrid clustering algorithm is an iterative procedure that groups data, based 

on their distance from the hyper-plane that best describes their relationship. It is 

implemented through a series of steps, which are presented below: 
 

(i) Determine the most important variables. 

(ii) Form the set of patterns H(t) = [yt, yt-k, xt-k]. 

(iii) Select the number of clusters nh. 

(iv) Initialize the clustering algorithm so that nh clusters are generated and as-

sign patterns. 

(v) For each new cluster, apply a linear regression model to yt using as ex-

planatory variables the remaining of the set Ht. 
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(vi) Assign each pattern to a cluster based on their distance.  

(vii) Go to (v) unless any of the termination procedures is reached. 

 

The following termination procedures are considered: (a) the maximum pre-

defined number of iterations is reached and (b) the process is terminated when all 

patterns are assigned to the same cluster as in the previous iteration in (vi). The se-

lection of the most important lagged variables, (i), is based on the examination of 

the correlation coefficients of the data. 

The proposed clustering algorithm is a complete time series analysis scheme 

with a dual output. The algorithm generates clusters of data, the identical charac-

teristic of which is that they “belong” to the same hyper-plane, and synchronously, 

estimates a linear model that describes the relationship amongst the members of a 

cluster. Therefore, a set of nh linear equations is derived. 

 

hjtjiktkiioit niXbyaay K1   ,,,,, =++= ∑∑ −−               (11) 

Like any other hybrid model that uses the target variables in the development 

stage, the model requires a secondary scheme to account for this lack of informa-

tion in the forecasting phase. For HCA the only requirement is the determination 

of the cluster number, nh and ncl respectively, which is equivalent to the estimation 

of the final forecast. 

The optimum number of HCA clusters is found from a modified cluster valid-

ity criterion. An estimate of under-partition (Uu) of the data was formed using the 

inverse of the average value of the coefficient of determination (Ri
2
) on all  

regression models. Uo indicates the over-partitioning of the data set, and dmin is 

the minimum distance between linear models (eq 6). The optimum number is 

found from the minimization of a normalized combinatory expression of these 

two indices.  
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2.5.1   Pattern Recognition 

A pattern recognition scheme with three alternative approaches was then applied 

to convert the LMCA and HCA output to the final predictions. Initially, a conven-

tional clustering (k-means) algorithm was employed to identify similar historical 

patterns in the time series. The second was to determine ncl/nh at each time step, 

using information contained in the data of the respective cluster. 
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(p1) Select a second data vector : Pt = [yt-k, xt-k] 

(p2) Initialize a number of clusters nk 

(p3) Apply a k-means clustering algorithm on Pt. 

(p4) Assign data vectors to each cluster, so that each of the nk clusters should 

contain km, m = 1,…, nk data. 

 

To obtain the final forecasts the following three alternatives were examined: 

 

(M1) From the members of the k-th cluster find the most frequent HCA cluster, 

i.e ncl / nh number. 

 

(M2) From the members of the k-th cluster estimate the final forecast as a 

weighted average of the HCA clusters. Here pi is the percentage of appearances of 

the LMCA / HCA cluster in the k-th cluster data. 
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(M3) From the members of the k-th cluster estimate the final forecast as a dis-
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The optimal number of clusters for the pattern recognition stage was determined 

using the modified compactness and separation criterion for the k-means algo-

rithm [Kim et al 2001]. 

2.6   Local Models Based on Clusters 

The idea behind the application of clustering algorithms in time series analysis is 

to identify groups of data that share some common characteristics. On each of 

these groups, the relationships amongst the members are modelled through a sin-

gle equation model. Consequently, each of the developed models has a different 

set of parameters. The process is described in the following steps: 

(i) Selection of the input data for the clustering algorithm. This can contain 

lagged and/or future characteristics of the series, as well as other relevant  

information.  

C(t) = [yt, yt-k, xt-j].                     (15) 
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Empirical evidence suggests that the use of the target variable yt is very useful to 

discover unique relationships between input-output features. Additionally, higher 

quality modelling is ensured with the function approximation since the targets 

have similar properties and characteristics. However, this occurs to the expense of 

an additional process needed to account for this lack of information in the predic-

tion stage. 

(ii) Application of a clustering algorithm combined with a validity index or with 

user defined parameters, so that ncl clusters will be estimated. 

(iii) Assign all patterns from the training set to the ncl clusters. For each of the 

clusters, apply a function approximation model, 

cljtktit niyfy ...1),( == −− x ,               (16) 

so that ncl forecasts are generated. 

In this study, the k means clustering algorithm was selected [McQueen 1967]. 

It is a partitioning algorithm that attempts to directly decompose the data set into a 

set of groups through the iterative optimization of a certain criterion. More spe-

cifically, it re-estimates the cluster centres through the minimization of a distance-

related function between the data and the cluster centres. The algorithm terminates 

when the cluster centres stop changing. 

2.7   Error Metrics 

In addition to previously described models, the ideal case of a perfect knowledge 

(PCF) of the ncl / nh parameter in the HCA is also presented. This indicates the 

predictive potential, or the least error that the respective methodology could 

achieve. Also, the base-case persistent approach (yt = yt-1) is shown as a relative 

criterion for model inter-comparison amongst different data sets. The ability of the 

models to produce accurate forecasts was judged against the following statistical 

performance metrics: 
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3   Data Description 

The examined data set contains hourly values of the following parameters: Wind 

Speed and Direction, Temperature, and Pressure made during the entire year of 

1996. The data were acquired form the French Meteorological Office and are from 

the city of Ajaccio, at the island of Corsica. The exact geographical coordinates of 

this location are 41.550°N and 8.430°E.  

The data set contains in total 8362 points, excluding missing values. The data 

set was split into the predictions set, which contained all available data for the 

months of February, May, August and November, totaling 2763 data points. This 

set was kept aside from any model during the development stage. The statistical 

properties of the two subsets are presented in Table 1 and the time series in  

Figure 3.  

 
Table 1 Statistical properties of examined data sets 

 Training Set Prediction Set 

Number of Points 5619 2763

Maximum  (m/s) 17.70 15.7000

Minimum  (m/s) 0 0.4000

Mean  (m/s) 4.8395 5.5255

Stand. Dev. (m/s) 2.3952 2.5962
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Fig. 3 Plot of Wind Speed and exogenous meteorological parameters 
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4   Modeling Results and Discussion  

4.1   Univariate Models  

Initially, the univariate approaches were examined. The application of the step-

wise LR approach on the Training Set returned the WS(t-1), WS(t-2) and  

WS(t-24) as statistically significant variables. The model that is finally reached is 

introduced in Table 2. The most important variable is WS(t-1) followed by  

WS(t-2), which is an indication of the strong, short term correlation properties of 

the examined data series, evident in many wind speed studies.  

Table 2 Model Development details 

 Coef Std t-stat 

Constant 0.2358 0.0274 8.6121 

WS(t-1) 1.0298 0.0133 77.4915 

WS(t-2) -0.098 0.0133 -7.3615 

WS(t-24) 0.02 0.0048 4.2067 

 
The optimal model settings of the different models are:  

• ANN: 4 layers in the hidden neuron with a sigmoid activation function 

• ANFIS : 2 generalized Bell function for each input and a total of 8 rules 

• NN:  5 Nearest neighbors 

• HCA: ncl = 2 and nh = 15. 

Table 3 Univariate model performance 

 RMS MAPE IA FB 

Persistent 0.8335 14.0163 0.9736 -0.0004 

LR 0.8189 14.1812 0.9731 0.0053 

ANN 0.8168 14.3077 0.9735 0.0032 

ANFIS 0.822 14.3227 0.973 0.0037 

NN 0.879 15.5454 0.9683 0.0088 

HCA-PCF 0.5387 9.2878 0.9888 0.0022 

HCA-M3 0.8237 14.3011 0.9727 0.006 

 
The results show that not all models are able to predict the wind speed on the 

Prediction set considerably better than the persistent approach. This pattern fre-

quently occurs in wind forecasting analysis (e.g. Sfetsos 2002) and is attributed to 

the inability of hourly averages to represent structure in the time series on the high 

frequency side of the ‘spectral gap’, lying at a period of typically around 1 hour. 
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4.2   Multivariate Models  

The following step was concerned with the development of a multivariate series of 

models using exogenous meteorological parameters in addition to historical wind 

speed data. The finally derived model using the linear stepwise regression model 

is presented in Table 3.  

The final variables of the models include historical wind speed parameters with 

WS(t-1), being the most significant of all, temperature and pressure differences of 

the forecast during the past 1h, 6h and 12h. The pressure at forecasted time, used 

to compute the differences has been estimated using a basic univariate model, with 

fairly accurate results. The latter set of variables can be considered as an indica-

tion of large scale forcings in the atmosphere. 

The optimal model settings of the different models are:  

• ANN: 8 layers in the hidden neuron with a sigmoid activation function 

• ANFIS : 2 Gaussian function for each input  

• NN:  5 Nearest neighbors 

• HCA: ncl = 3 and nh = 12. 

Table 4 Model Development details 

 Coef Std t-stat 

Constant 0.2321 0.0319 7.2756 

WS(t-1) 0.9928 0.0133 74.67 

WS(t-2) -0.0863 0.0142 -6.0675 

WS(t-6) 0.032 0.0071 4.4845 

WS(t-24) 0.0187 0.005 3.7544 

T(t-1) 0.1489 0.0159 9.3607 

T(t-2) -0.1514 0.0159 -9.519 

P(t)-P(t-1) -0.4098 0.0428 -9.565 

P(t)-P(t-6) 0.0556 0.0137 4.0687 

P(t)-P(t-12) -0.0142 0.0063 -2.2725 

Table 5 Univariate model performance 

 RMS MAPE IA FB 

LR 0.7982 14.0761 0.9746 0.0046 

ANN 0.7924 14.1094 0.9752 0.001 

ANFIS 0.8026 14.0895 0.9744 0.0055 

NN 1.1552 20.4315 0.9404 0.0267 

HCA-PCF 0.3812 6.2724 0.9945 0.0019 

HCA-M3 0.8087 14.1544 0.9741 0.0104 
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The analysis of the results (Table 5) 

shows that the error metrics of all mod-

els, with the exception of the NN, are 

better. This is an indication that the 

process of introducing exogenous va-

riables in the forecasting phase could be 

beneficiary for the development of more 

accurate models. The overall best per-

formance is found by the ANN (Fig 4), 

also being the better balanced one since 

FB is marginally different to 0.  

 

 

 

4.3   Cluster Models  

The following analysis was based on the development of a set of clusters in an at-

tempt to identify the finer properties of the wind speed properties. Using the k-

means algorithm on the normalized set of variables found as most influential in 

the previous section, 8 clusters were identified. In each cluster, a different step-

wise regression model was applied so that the parameters that are best describing 

the underlying wind behavior are determined.  

 
Table 6 Cluster centers details 

Cluster WS(t-1) WS(t-2) WS(t-6) WS(t-24) T(t-1) T(t-2) P(t)-P(t-1)P(t)-P(t-6) P(t)-P(t-12) 

1 10.0814 10.0912 9.2696 6.4321 9.7532 9.6873 -0.4666 -3.5929 -7.1864 

2 3.9764 3.9548 3.6621 3.9162 19.2678 19.2507 -0.0853 -0.4723 -0.6877 

3 7.4839 7.5712 7.8876 9.1625 7.2448 7.2744 0.6314 3.7131 6.288 

4 2.693 2.6513 2.8165 3.5413 2.4098 2.4304 0.0051 0.1417 0.4474 

5 6.5227 6.5464 6.556 5.944 0.5868 0.5968 0.0729 0.5025 1.023 

6 6.4056 6.4556 6.4444 6.0067 13.7154 13.7387 0.0242 0.1452 0.0774 

7 3.1916 3.1623 3.3928 3.7599 11.86 11.8512 0.0297 0.2049 0.3822 

8 4.9931 4.9772 4.9367 4.9355 6.6671 6.6647 -0.1163 -0.5514 -0.7719 

 
Each cluster can be described as representing one “wind regime”, showing dif-

ferent characteristics  

 

Cluster 1: Corresponds to high winds persisting for at least a day. The pressure 

exhibits a significant drop indicating the rapid arrival of a low pressure system. 

The most important variables for this model are the last recorded wind speed and 

pressure differences at the last hour and 6 hours before.  

Fig. 3 ANN forecast (PS) 
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Table 7 Cluster 1, LR Model details 

 Coef Std t-stat 

Constant -0.0257 0.3023 -0.085 

WS(t-1) 0.9725 0.0297 32.6907 

P(t)-P(t-1) -0.9791 0.1206 -8.1169 

P(t)-P(t-6) 0.0839 0.0271 3.0987 

 
Cluster 2: The wind speed is considered medium to low, connected with high tem-

perature values and a pressure drop of about 0.7 mbar per 12h. This pattern occurs 

on the warmer period of the year and the most important variables appear to be the 

last two recordings of wind speed, indicative of a rather turbulent process.  

 
Table 8 Cluster 2, LR Model details 

 Coef Std t-stat 

Constant 0.7465 0.0937 7.9669 

WS(t-1) 0.9643 0.0377 25.5635 

WS(t-2) -0.1501 0.0382 -3.9311 

 
Cluster 3: Exhibits medium to high winds and an increase in pressure over the 

last 12 hours. This type of weather is mainly associated the fast arrival of a high 

pressure system or passage of a weather front. The correlation with the last rec-

orded value, demonstrates short memory of the process and a possible indication 

of a rather turbulent and gusty regime. 

 
Table 9 Cluster 3, LR Model details 

 Coef Std t-stat 

Constant 0.3139 0.2482 1.2646 

WS(t-1) 0.9379 0.0334 28.1153 

 
Cluster 4: is related with low to medium winds persisting over a period of 24h. It 

is mainly found in cold winter days (low temperature), with a slow increase in 

pressure. The most important variables are the last wind speed value in addition to 

the pressure difference of the last 12h.  

 
Table 10 Cluster 4, LR Model details 

 Coef Std t-stat 

Constant 0.2099 0.0531 3.9527 

WS(t-1) 0.959 0.0179 53.4919 

P(t)-P(t-12) -0.0163 0.0063 -2.5944 
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Cluster 5: It is associated with medium wind speeds, very low temperatures and 

an increase of about 1mbar of pressure in 12h. In addition to the short term corre-

lation of wind speed, the pressure difference 1h and 6h appear to have a measure-

able impact on the variation of wind speed in that regime.  

 
Table 11 Cluster 5, LR Model details 

 Coef Std t-stat 

Constant 0.4345 0.146 2.9761 

WS(t-1) 0.9274 0.021 44.1778 

P(t)-P(t-1) -0.6715 0.1364 -4.9245 

P(t)-P(t-6) 0.097 0.0286 3.3938 

 
Cluster 6: It is associated with medium wind speeds occurring on days warmer 

than average an almost constant pressure gradient. This regime is mostly asso-

ciated with calm conditions, and possibly appearances of sea breezes, justified by 

the appearance of temperature as an important factor explaining in quantitative 

terms the wind speed variation. 

 
Table 12 Cluster 6, LR Model details 

 Coef Std t-stat 

Constant 0.8478 0.2253 3.7636 

WS(t-1) 0.9089 0.0222 41.0269 

T(t-1) 0.2474 0.0441 5.6097 

T(t-2) -0.2747 0.043 -6.385 

P(t)-P(t-1) -0.2731 0.0783 -3.4853 

 
Cluster 7: This regime is associated with constant, low wind conditions and a 

very small increase in pressure. The temperature corresponds to the average yearly 

value. Due to the low variation of the atmospheric conditions, the wind speed ex-

hibits a persistent behaviour, with only the last value defined as an important one.  

 
Table 13. Cluster 7, LR Model details 

 Coef Std t-stat 

Constant 0.2236 0.0833 2.6831 

WS(t-1) 0.8861 0.0182 48.7207 

 
Cluster 8: Corresponds to medium wind speeds occurring during the colder  

period of the year. the pressure pattern is of constant drop with a rate of approx-

imately 0.7 mbars per 12h. A seasonal pattern is observed, evident from the intro-

duction of the respective parameter in Table 14.  
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Table 14 Cluster 8, LR Model details 

 Coef Std t-stat 

Constant 0.0918 0.1135 0.8086 

WS(t-1) 0.951 0.0205 46.2799 

WS(t-24) 0.0245 0.0094 2.6096 

P(t)-P(t-1) -0.3459 0.0629 -5.5019 

5   Summary and Conclusions  

This chapter introduced the development of statistical and time series based  

models to identify and determine in a quantitative manner the impact of easily 

measured meteorological quantities on the variation of hourly wind speed data. 

The introduced variables were wind direction, temperature and pressure, which are 

presently easily measured even in amateur meteorological stations. Using a  

clustering methodology with those exogenous variables that had a statistically sig-

nificant role in determining the variation of hourly wind speed series, a number of 

different “wind regimes” could be identified. The finer analysis of each cluster to-

gether with the development of a customized linear model on each one, were able 

to identify the underlying characteristics of the hourly wind speed.  

References  

Abdel-Aal, R.E., Elhadidy, M.A., Shaahid, S.M.: Modeling and forecasting the mean hour-

ly wind speed time series using GMDH-based abductive networks. Renewable Ener-

gy 34(7), 1686–1699 (2009) 

Alexiadis, M.C., Dokopoulos, P.S., Sahsamanoglou, H.S., Manousaridis, I.M.: Short term 

forecasting of wind speed and related electric power. Solar Energy 63(1), 61–68 (1998) 

Argonne National Laboratory (ANL 2009), Wind Power Forecasting: State-of-the-Art, 

ANL/DIS-10-1 

Barbounis, T.G., Theocharis, J.B.: Long-term wind speed and power forecasting using local 

recurrent neural network models. IEEE Transactions on Energy Conversion 21(1), 273–

284 (2006) 

Bossanyi, E.: Short-Term Wind Prediction Using Kalman Filters. Wind Engineering 9(1), 

1–8 (1985) 

Contaxis, G.A., Kabouris, J.: Short term scheduling in a wind/diesel autonomous energy 

syste. IEEE Tr. on Power Systems 6(3), 1161–1167 (1991) 

Costa, A., Crespo, A., Navarro, J., Lizcano, G., Madsen, H., Feitosa, E.: A review on the 

young history of the wind power short-term prediction. Renewable and Sustainable 

Energy 12, 1725–1744 (2008) 

Costa, A., Crespo, A., Migoya, E.: First results from a prediction project. In: Proceedings of 

the European Wind Energy Conference, EWEC 2003, Madrid, Spain (2003) 

Damousis, I.G., Dokopoulos, P.: A fuzzy model expert system for the fore-casting of wind 

speed and power generation in wind farms. In: Proceedings of the IEEE Int. Conf. on 

Power Industry Computer Applications, PICA 2001, pp. 63–69 (2001) 



A Comprehensive Overview of Short Term Wind Forecasting Models  115

 

Damousis, I.G., Alexiadis, M.C., Theocharis, J.B., Dokopoulos, P.: A fuzzy model for wind 

speed prediction and power generation in wind farms using spatial correlation. IEEE 

Transactions on Energy Conversion 19(2), 352–361 (2004) 

Dudhia, J., Grell, G., Stauffer, D.R.: A description of the fifth-generation Penn Sys-

tem/NCAR Mesoscale Model (MM5), NCAR Tech. Note NCAR/TN-39811A, p. 107 

(1994) 

El-Fouly, T.H.M., El-Saadany, E.F., Salama, M.M.A.: Grey Predictor for Wind Energy 

Conversion Systems Output Power Prediction. IEEE Transactions on Power Sys-

tem 21(3), 1450–1452 (2006) 

EWEA, Making 180 GW a reality by 2020, The European Wind Energy Association Posi-

tion Paper (October 2007) 

EWEA. Pure Power: Wind Energy Scenarios up to 2030, The European Wind Energy  

Association (March 2008) 

Farmer, J.D., Sidorowich, J.J.: Predicting chaotic dynamics. In: Kelso, J.A.S., Mandell, 

A.J., Shlesinger, M.F. (eds.) Dynamic Patterns in Complex Systems, pp. 265–292. 

World Scientific, Singapore (1988) 

Frías, L., Gastón, M., Martí, I.: A new model for wind energy forecasting focused in the in-

tra-daily markets. In: Proceedings of European Wind Energy Conference, EWEC 2007, 

Milan, Italy (2007) 

Fugon, F., Juban, J., Kariniotakis, G.: Data mining for Wind Power Forecasting. In: Pro-

ceedings of the European Wind Energy Conference, EWEC 2008, Brussels, Belgium 

(2008) 

Giebel, G., Kariniotakis, G., Brownsword, R.: State of the Art on Short-term Wind Power 

Prediction, ANEMOS Deliverable Report D1.1 (2003) 

Glahn, H.R., Lowry, D.A.: The use of Model Output Statistics (MOS) in objective weather 

forecasting. Journal of Applied Meteorology 11, 1202–1211 (1972) 

Hagan, M., Menhaj, M.: Training feedforward networks with the Marquardt algorithm. 

IEEE Transactions on Neural Networks 5, 989–993 (1996) 

Jursa, R.: Wind power prediction with different artificial intelligence models. In: Proceed-

ings of the European Wind Energy Conference, EWEC 2007, Milan, Italy (2007) 

Kariniotakis, G., et al.: ANEMOS: Development of a Next Generation Wind Power Fore-

casting System for the Large-Scale Integration of Onshore & Offshore Wind Farms. In: 

Proceedings of the European Wind Energy Conference & Exhibition, EWEC 2003, 

Madrid, Spain, June 16-19 (2003) 

Kusiak, A., Zheng, H.-Y., Song, Z.: Short-Term Prediction of Wind Farm Power: A Data-

Mining Approach. IEEE Transactions on Energy Conversion 24(1), 125–136 (2009) 

Kavasseri, R.G., Seetharaman, K.: Day-ahead wind speed forecasting using f-ARIMA 

models. Renewable Energy 34(5), 1388–1393 (2009) 

Kim, D.J., Park, Y.W., Park, D.J.: A Novel Validity Index for Determination of the Optimal 

Number of Clusters. IEICE Tr. on Information and Systems E84(2), 281–285 (2001) 

Landberg, L., Giebel, G., Nielsen, H., Nielsen, T., Madsen, H.: Short-term Pre-diction – An 

Overview. Wind Energy 6(3), 273–280 (2003) 

Leia, M., Shiyana, L., Chuanwen, J., Honglinga, L., Yana, Z.: A review on the forecasting 

of wind speed and generated power. Renewable and Sustainable Energy Reviews 13, 

915–920 (2009) 

Lin, C.T., Lee, C.S.: Neural fuzzy systems. A neuro-fuzzy synergism to intelligent systems. 

Prentice Hall, Englewood Cliffs (1996) 



116 A. Sfetsos

 

Maqsood, I., Khan, M., Huang, G., Abdalla, R.: Application of soft comput-ing models to 

hourly weather analysis in southern Saskatchewan, Canada. Engineering Applications 

of Artificial Intelligence 18(1), 115–125 (2005) 

McQueen, J.B.: Some Methods for Classification and Analysis of Multivari-ate Observa-

tions. In: Proc. of 5th Berkley Symposium on Mathematical Statistics and Probability, 

pp. 281–297 (1967) 

NERC (North American Electric Reliability Corporation) Accommodating High Levels of 

Variable Generation, Special Report (April 2009),  

http://www.nerc.com/news_pr.php?npr=283 

Nielsen, T.S., Madsen, H., Nielsen, H., Landberg, L., Giebel, G.: Zephyr – The Prediction 

Models. In: Proceedings of the European Wind Energy Con-ference, EWEC 2001,  

Copenhagen, Denmark, July 2-6, pp. 868–871 (2001) 

Pinson, P., Christensen, L.E.A., Madsen, H., Sørensen, P., Donovan, M.H., Jensen, L.E.: 

Regime-switching modelling of the fluctuations of offshore wind generation. Journal of 

Wind Engineering & Industrial Aerodynamics 96(12), 2327–2347 (2008) 

Poggi, P., Muselli, M., Notton, G., Cristofi, C., Louche, A.: Forecasting and simulating 

wind speed in Corsica by using an autoregressive model. Energy Conversion and Man-

agement 14(20), 3177–3196 (2003) 

Potter, C.W., Negnevistky, M.: Very short-term wind forecasting for Tasmanian power 

generation. IEEE Transactions on Power Systems 21(2), 965–972 (2006) 

Ramírez-Rosado, I.J., Fernández-Jiménez, L.A.: Next-day wind farm electric energy gener-

ation forecasting using fuzzy time-series. In: Proceedings Int. Conf. on Modeling, Iden-

tification and Control, Innsbruck, Austria, pp. 237–240 (2003) 

Ramírez-Rosado, I.J., Fernández-Jiménez, L.A.: An advanced model for short-term  

forecasting of mean wind speed and wind electric power. Control and Intelligent  

Systems 31(1), 21–26 (2004) 

Sfetsos, A.: A comparison of various forecasting techniques applied to mean hourly wind 

speed time series. Renewable Energy 21(1), 23–35 (2000) 

Sfetsos, A.: A novel approach for the forecasting of mean hourly wind speed time series. 

Renewable Energy 27(2), 163–174 (2002) 

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Wang, W., Pow-ers, 

J.G.: A Description of the Advanced Research WRF Version 2, NCAR/TN–468 (2005) 

Torres, J.L., García, A., de Blas, M., de, F.: A Forecast of hourly av-erages wind speed with 

ARMA models in Navarre. Solar Energy 79(1), 65–77 (2005) 

Vlachogiannis, D., Sfetsos, A., Andronopoulos, S., Gounaris, N., Yiotis, A., Stubos, A.K.: 

The Demokritos air quality web based system for the Greater Athens Area. In: iEMSs 

2008, International Congress on Environmental Modelling and Software, Barcelona, 

Catalonia, July 7-10 (2008) 

Wu, Y.K., Hong, J.S.: A literature review of wind forecasting technology in the world.  

In: Proceedings of IEEE Power Tech Conference, Lausanne, Switzerland, July 1-5,  

pp. 504–509 (2007) 



K. Gopalakrishnan et al. (Eds.): Soft Comput. in Green & Renew. Ener. Sys., STUDFUZZ 269, pp. 117–156. 

springerlink.com                                                                      © Springer-Verlag Berlin Heidelberg 2011 

Load Flow with Uncertain Loading and 
Generation in Future Smart Grids 

Olav Krause
1
 and Sebastian Lehnhoff

2 

1 The University of Queensland, School of Information Technology and  

Electrical Engineering, Brisbane, Queensland 4072, Australia 

o.krause@uq.edu.au 
2 Carl von Ossietzky University, Department of Computing Science, Escherweg 2,  

26121 Oldenburg, Germany 

sebastian.lehnhoff@uni-oldenburg.de 

Abstract. The growing amount of renewable and fluctuating energy sources for 

the production of electrical energy increases the volatility and level of uncertainty 

in the operation of power systems. Whether it is the growing number of photovol-

taic installations harnessing solar energy or large-scale wind farms, these new 

class of environmentally dependent appliances increase the unpredictability of 

load situations hitherto known only from consumer behavior. One of the mayor 

concerns in grid operation under increasing feed-in from unpredictable generation 

and consumption is the detection of peaks in network strain. In order to limit in-

vestments into grid infrastructure to a reasonable level node-specific limitations 

for power injections are introduced to reduce the probability of such peaks that 

may pose a threat to a stable operation of the power system. In order to support the 

ongoing integration of renewable generation into the grid, a trade-off has to be 

found between investment costs and imposed operational constraints. In order to 

determine the probability of congestions under these unpredictable conditions,  

mathematical algorithms are employed that are able to estimate the probability of 

certain line loading levels from the probabilistic data derived from the appliances’ 

behavior. 

This chapter will cover a variety of approaches to solve (probabilistic) load 

flow problems, ranging from currently deployed state-of-the-art procedures to the 

newest advances in probabilistic load flow calculation and determination. Advan-

tages and drawbacks of those methods are discussed in detail. 

1   Introduction 

In general, electric network states or congestions are determined and calculated 

using power flow calculations. The most popular method of solving the non-linear 

system of power flow equations is the Newton-Raphson (NR) method. The NR 

method starts from initial and likely guesses of all unknown variables (voltage an-

gles, voltage magnitudes at load and generator buses). Next, a Taylor Series is 
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formulated for each of the power balance equations included in the equation sys-

tem. The resulting linearized system of power flow equations is solved to deter-

mine the next iteration (a refined guess) of the voltage angles and magnitudes for 

which the procedure is repeated. This process continues until a stopping criterion 

is met, e.g. the difference of two subsequent results for voltage angles and magni-

tudes being beyond a specified threshold. 

With a high amount of renewable – volatile and unpredictable – generation, 

standard power flow calculations reach their limits when applied to power system 

planning due to the continuous fluctuation of necessary data from the grid’s feed-

in nodes making it difficult to guess likely starting points for the initial step of the 

NR method. Choosing starting points for the NR method that deviate too far from 

the sought solution may cause the iterative method to diverge [Kornerup and Mul-

ler 2006]. Even when choosing appropriate starting values, the iterative method 

may be insufficient for timely detection of congestions in highly dynamic scena-

rios due to the number of (possibly computational complex and time consuming) 

iterations until the algorithm converges. In order to determine the probability – 

and thus mean time of occurrence – of congestions under these conditions,  

mathematical algorithms are employed that are able to estimate the probability of 

certain line loading levels from the probabilistic data derived from the generators’ 

behavior. Hence, the stochastic behavior of (non-deterministic) renewable genera-

tion as well as loads is no longer described through clearly defined values, but 

given as a range of possible states together with their corresponding probability. 

This representation allows the prediction of the behavior for any given generator 

or load with a certain amount of probability or “softness”. This is a sharp contrast 

to conventional power flow calculations, which precisely determine the state of 

the network on the basis of correct data for the (deterministic) behavior of every 

conventional generator and load connected to the network. Conventional power 

flow calculation by design is not able to cope with fuzzy input data and is very 

sensitive to misguesses, in the sense that a poorly chosen value in a scenario-based 

congestion analysis may lead to false results and ultimately to congestions not be-

ing detected [Kornerup and Muller 2006]. Probabilistic load flow calculation  

can tolerate this up to a certain extend without the result becoming useless. The 

concept of probabilistic load flow calculation is known for almost 40 years and 

appropriate research has been conducted in [Borkowska 1974][Dopazo et al. 

1975][Allan and Alshakarchi 1976][Allan and Alshakarchi 1977] [Aboytes 

1978][Allan et al. 1981][Silva et al. 1985][Silva and Arienti 1990]. 

In this chapter the authors will introduce the mathematical basis of probabilis-

tic load flow calculations, current reference approaches and algorithms and give 

an outlook on further developments in this field. 

1.1   Structure of Public Power Systems 

In order to understand the differences in the mathematical formulation and prob-
lem-solving strategies, it is important to first get a basic understanding of the 
structure and operation of a public electric power system. In general, large power 
systems are composed of multiple voltage levels that can be distinguished into the 
transmission system and the distribution system (see Fig. 1).  
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Fig. 1 Overall Structure of a Public Power System 

 
The purpose of the transmission system is the transmission of large amounts of 

power across long distances at high voltages and thus with reduced losses. Most of 

the large (fossil) power plants are connected to the transmission system due to 

their high nominal power. Furthermore, the transmission system’s power grid is 

usually highly interconnected (meshed). It is the network level at which active 

power is balanced. The latter is an important fact for the calculation of probabilis-

tic load flows to which we will come back later within this chapter. 

1.2   Differences between Deterministic and Probabilistic 

Calculation 

A model of a complex technical system can be described as black box having a set 

of input parameters ݔଵ to ݔ௡ that may influence a system’s state. In addition to the 

system’s input parameters there is a set of state variables ݕଵ to ݕ௠ characterizing 

the operational state of the system (see Fig. 2). 
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Fig. 2 Input/Output Characteristics of a System Model 

 
In deterministic calculations of a system’s operational state the set of input pa-

rameters are exactly determined. Hence, the goal of deterministic calculations is to 

derive the exact operational state of the system determined by the input parame-

ters. For a power system this may not be possible (as we will demonstrate later on 

in this chapter). 

In probabilistic calculations based on real numbers input parameters and state 

variables are described by probability functions (PF) and probability density func-

tions (PDF). In Fig. 3 an exemplary PDF for the input parameter ݔଵ is sketched. 

 

 

Fig. 3 Example of a Probability Density Function 

 
The probability density function p(x) is a function that describes the relative li-

kelihood for the variable x to occur at a given point. The probability for the x to 

fall within a particular region is given by the integral of this variable’s density 

over the region. The probability density function is nonnegative everywhere, and 

its integral over the entire space is equal to one because the parameter or variable 

x has to take a value from its possible range (1). න pሺݔଵሻdݔ௜ஶ
ିஶ ൌ ͳ (1) 



Load Flow with Uncertain Loading and Generation in Future Smart Grids 121

 

On continuous numbers the probability of a single, exactly determined value is 

zero. Instead a non-zero probability of occurrence can only exist for a given inter-

val ሾܽ, ܾሿ of values (see (2)). න pሺݔଵሻdݔ௜௕
௔ ൌ P௔,௕ ; ܽ ൏ ܾ (2) 

The main goal of probabilistic calculus in this context is to determine all possible 

operational states of the system that may result from possible input parameters and 

to assign a certain probability to them. The most popular approaches for Probabil-

istic Load Flow Calculation currently applied and often referred to as reference  

algorithms are based on experiments that are performed on the basis of determinis-

tic load flow calculation. Thus, in the following section we will briefly introduce 

the deterministic load flow calculation in before addressing Probabilistic Load 

Flow Calculation. 

2   The Deterministic Load Flow Problem 

In probabilistic load flow calculation the solution of a deterministic load flow is 

the basis or at least an integral part of the solution strategy. Thus, in the following 

this technique is briefly explained. As its name already indicates the deterministic 

load flow calculates an exactly determined system state from exactly determined 

input parameters. More precisely, load flow calculation is a sub-problem of state 

estimation and may be calculated based on different kinds of input parameters. In 

this chapter we want to restrict ourselves to the simplest and most frequently used 

approach to deterministic load flow calculation. The intention of the load flow 

calculation is to calculate all complex-valued nodal voltages, uniquely describing 

the network’s state and thus every other value within the network may be easily 

calculated from it. 

Before going into details some basic mathematical relationships and model 

principles will be recapped in the following section.  

2.1   Relation between AC Voltage and Current 

In today’s electric power systems alternating current (AC) is used for power 

transmission (with the exception of dedicated High Voltage Direct Current 

(HVDC) links). This is mainly due to the possibility of easily transforming power 

between different voltage levels using regular inductive transformers. This allows 

for the transmission of electric power at much higher voltage levels than initially 

being generated at and thus significantly reducing transmission losses. Further-

more, it is possible to provide different voltages to different kinds of loads at an 

acceptable level of technical effort. Under normal conditions all voltages and cur-

rents in AC systems are periodic and sinusoidal. Thus, they may be described by 

their amplitude and a time delay given in angular displacement against each other. 
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This is called phasor representation and will be discussed in detail in the follow-

ing subsection. 

2.1.1   Phasor Representation 

A sinusoidal voltage can be uniquely described by the three parameters: frequency ߱, amplitude ݒො and phase angle ߜ against a reference oscillation of the same fre-

quency. Although a formulation based on the harmonic sine function would be 

possible, traditionally the cosine function is used to describe AC voltages in the 

time domain (see (3)). ݒሺݐሻ ൌ ොݒ ڄ cosሺ߱ ڄ ݐ ൅  ሻ (3)ߜ

Under steady state conditions (to which we want to limit ourselves here) the 

system exhibits a unique frequency ߱. Thus, it is sufficient to specify the voltage 

magnitude ݒො and phase angle ߜ against the reference oscillation of ߱ to uniquely 

describe the voltage ݒሺݐሻ by just two parameters. The operational frequency may 

differ for various power systems (e.g. 50 Hz in the European ENTSO-E grid, or 

60 Hz in the North-American grids). 

In power engineering it is common to represent the oscillating voltages,  

currents, etc. using complex numbers. In general, a complex number is a two-

dimensional number consisting of a real and an imaginary part, which are inde-

pendent of each other. It can be written in the form ܽ ൅  i · ܾ, where a and b are 

real numbers and i is the standard imaginary unit i ൌ √െͳ. Although the imagi-

nary unit is often represented by i, in power engineering j is used more commonly. 

The latter will also be used within this chapter. 

Based on complex numbers the current value of a complex voltage ܸሺݐሻ is giv-

en in (4) where two possible representations are used. On the left hand side the 

voltage is expressed by real and imaginary parts and on the right hand side the po-

lar representation is used. ܸሺݐሻ ൌ ොݒ ൭cosሺ߱ ڄ ݐ ൅ ሻᇣᇧᇧᇧᇤᇧᇧᇧᇥோ௘௔௟ ௣௔௥௧ߜ ൅ j ڄ sinሺ߱ ڄ ݐ ൅ ሻᇣᇧᇧᇧᇤᇧᇧᇧᇥூ௠௔௚௜௡௔௥௬ ௉௔௥௧ߜ ൱ൌ ොݒ ڄ ݁௝ڄఠڄ௧ାఋ  

(4)

The current complex voltage ܸሺݐሻ can be interpreted as a rotating pointer in the 

complex plane (see Fig. 4). Formula (4) shows that the real part of ܸሺݐሻ is the cur-

rent real voltage ݒሺݐሻ. The polar form of ܸሺݐሻ can also be split into a constant 

complex part ݑො ڄ ݁୨ڄఋ  and a complex part ݁୨ڄఠڄ௧ , rotating with the operational  

frequency ߱ (see (5)). 
 ܷሺݐሻ ൌ ොݑ ڄ ݁୨ڄఠڄ௧ାఋ ൌ ොݑ ڄ ݁୨ڄఋ ڄ ݁୨ڄఠڄ௧ (5) 
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Fig. 4 illustrates this distinction. The pointer in black is the complex part rotating 

counter-clockwise with frequency ߱ while the red one is following the black poin-

ter with an angular distance of ߜ (with ߜ ൏ Ͳ in this case).  

 

 

Fig. 4 Time Domain Signal and Phasor Representation 

Since the rotating component is the same for every voltage, current, etc. it may 

be omitted and ݒሺݐሻ only be represented by the complex phasor ܷ (6) consisting 

of the so called absolute value ݒො and the so called argument ߜ. ܷ ൌ ොݑ ڄ ݁୨ڄఋ (6) 

The real valued current voltage value ݒොሺݐሻ can be reformulates using (7) ݑሺݐሻ ൌ ܷ ڄ ݁୨ڄఠڄ௧ (7) 

Under normal conditions the currents in an AC-network are sinusoidal, thus this 

representation is also used to describe alternating currents. 

2.1.3   Modeling of Linear Circuit Elements 

Since most elements of a power grid exhibit a linear behavior in the sense of cur-

rent caused by an applied voltage, they can be described with acceptable precision 

by linear models. As the calculations will be conducted based on complex-valued 

phasor representations, the linear elements have to be complex-valued as well in 

order to model time shifts between current and voltage caused by inductivities or 

capacities. 

In general, these complex elements have two possible representations, imped-

ance and admittance. The impedance ܼ  of an element determines the applied  

voltage ܷ in order to induce a certain current (8) ܫ. 
 ܷ ൌ ܼ ڄ  (8) ܫ
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The real part of the complex-valued impedance ܼ is known as the resistance ܴ, 

while the complex part is known the reactance ܺ (see (9)). ณܼூ௠௣௘ௗ௔௡௖௘ ൌ ณܴோ௘௦௜௦௧௔௡௖௘ ൅ j ڄ ณܺோ௘௔௖௧௔௡௖௘ 
(9) 

The admittance ܻ  of an element is a measure of how much current will flow 

through it if a certain voltage is applied to the element (10). ܫ ൌ ܻ ڄ ܷ (10) 

The real part of the admittance ܻ is known as the conductance ܩ, while the imagi-

nary part is known as the susceptance ܤ (see (11)). ณܻ஺ௗ௠௜௧௧௔௡௖௘ ൌ ณ஼௢௡ௗ௨௖௧௔௡௖௘ܩ ൅ j ڄ  ณௌ௨௦௖௘௣௧௔௡௖௘ܤ
(11) 

In case of a non-zero Impedance the corresponding admittance can be calculated 

as the inverse of the impedance as stated in (12). ܻ ൌ ͳܼ ൌ ͳሺܴ ൅ j ڄ ܺሻ ൌ ሺܴ െ j ڄ ܺሻሺܴ ൅ j ڄ ܺሻሺܴ െ j ڄ ܺሻ ൌ ሺܴ െ j ڄ ܺሻܴଶ ൅ ܺଶ  (12) 

In grid modeling this admittance representation is particularly important since it 

offers the possibility to model open links. The model of an open link has an admit-

tance equal to zero and infinite impedance. If an element has a non-zero admit-

tance the corresponding impedance can be calculated as stated in (13). ܼ ൌ ͳܻ ൌ ͳሺܩ ൅ j ڄ ሻܤ ൌ ሺܩ െ j ڄ ܩሻሺܤ ൅ j ڄ ܩሻሺܤ െ j ڄ ሻܤ ൌ ሺܩ െ j ڄ ଶܩሻܤ ൅ ଶܤ  (13)

2.2   Network Representation 

From an electrical point of view, the most relevant parts a power grid are the 

overhead lines, cables and transformers. Although they are quite different in func-

tionality, shape and physical features, they can be modeled in a similar fashion. 

Most models base on the so called ߨ-equivalent circuit, named after the arrange-

ment of the model’s elements. In the following subsections the basis of this mod-

eling and as well as a complete exemplary network model will be explained and 

demonstrated. 

2.2.1   ࣊-Equivalent Line Model 

The most frequently used model for cables and overhead lines in power system 

analysis is the so called ߨ-equivalent circuit (as its structure closely resembles the 

Greek letter). We will give a brief introduction on this circuit model. For more  
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Fig. 5 ࣊-equivalent circuit 

 
details about the model and especially the modeling of electrically long lines we 

refer the reader to [Grainger and Stevenson 1994]. 

The ߨ-equivalent circuit of a line connecting node ݅ with node ݆ consists of four 

elements of which two occur twice. These elements represent the following phe-

nomena: 

• Serial resistance ࢐࢏ࡾ: Every regular conductor (except super conductors) has a 

specific resistance. It is dependent on the conductor’s material, temperature, 

length and cross-section area. In general, the specific resistance of a material is 

specified as a function of its temperature. This temperature dependence is 

usually neglected in power systems studies, resulting in the specific resistance 

to be a constant value. For conductors with a constant cross-section the resis-

tance ܴ௜௝ can be calculated as the product of the specific resistance and length 

divided by the cross-section area. 

• Serial reactance ࢐࢏ࢄ: Every conductor conducting a current creates a magnetic 

field around itself that is proportional to the flowing current. If the current 

changes over time, the resulting magnetic field change induces voltages in 

neighboring circuits and along the conductor itself. This is because even a sin-

gle, linear conductor can be interpreted as being an induction loop with the re-

turning wire being infinitely far away. These phenomena can be modeled as 

mutual inductivity (induction due to changing currents in another conductor) 

and self-inductivity (induction due to changing currents in the conductor itself). 

In case of a multi-phase symmetrically operated power line (to which we want 

to limit ourselves here for the sake of conceptual clarity) both, self and mutual 

inductivity, can be represented by a fictitious operational inductivity ܮ௜௝ . The 

voltage induced in the conductor of a power line works against the voltage  
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driving the current with a 9Ͳ° shift ahead. In complex numbers this can be 

represented as an imaginary impedance ௜ܺ௝. As the induced voltage depends on 

how fast the magnetic flux changes, it is not only a function of the current  

generating the magnetic field, but also a function of the change rate – the deriv-

ative of the current over time. As power systems are regularly operated with si-

nusoidal voltages and currents – and thus the amplitude of the derivative 

changes proportionally with the frequency – the reactance increases linearly 

with the frequency of operation. Thus, with constant operational frequency ߱଴ 

the reactance is given by ௜ܺ௝ ൌ ߱଴ ڄ ௜௝ܮ . For further details please refer to 

[Grainger and Stevenson 1994] and [Kundur 1994] 

• Shunt Conductivity ࢐࢏ࡳ 
• The shunt conductivity is a model for insulation leak currents, corona losses, 

etc. As there is much effort put into increasing insulation qualities the value of 

shunt conductivity is much lower than of all other elements of a line’s π-model. 

This element is even omitted in many cases since it has no significant effect on 

the result. 

• Shunt Susceptance ࢐࢏࡮ 
• Every conductor being brought to a certain voltage has to be charged to 

reach it. This is because electrons have to be brought into it or withdrawn from 

it in order to build up the electric field of a strength corresponding to the vol-

tage the conductor should be brought to. The amount of charge needed to reach 

a certain voltage is called capacity C. It depends on its shape, its size, the dis-

tance to the counter pole and also of the insulation material surrounding the 

conductor. The shunt susceptance is of crucial importance when it comes to the 

modeling of cables. 

2.2.2   Network Model 

Power grids are usually modeled as a composition of ߨ -equivalent circuits  

for which appropriate admittance matrices are generated. In the center of the  

calculation is always the vector of complex-valued nodal voltages, since it unam-

biguously describes the operational state of the grid and every other value can be 

calculated from it (see (14)). The two most important admittance matrices are the 

line admittance matrix and the nodal admittance matrix. Their composition and 

features are discussed in the following. 

୬୭ୢୣ܄ ൌ ൥ ଵܸܸڭ௡൩ (14) 

Line admittance matrix 

With the help of the line admittance matrix it is possible to calculate the lines’ and 

transformers’ complex-valued currents from the vector of complex-valued nodal 

voltages. In order to set up this matrix the following technique is used. The current 

through a line depends on the voltage difference between the two nodes connected 
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by the line, since the voltage difference is the voltage being active along the line. 

For the current flowing through a line only the two serial elements resistance ܴ௜௝ 

and reactance ௜ܺ௝ are relevant, since they are the only elements connecting both 

nodes. With the current being calculated from the voltage the lines admittance is 

needed which can be calculated as stated in (15). 

௜ܻ௝ ൌ ൫ܴ௜௝ ൅ j ڄ ௜ܺ௝൯ (15) 

In order to set up the line admittance matrix the subtraction within is executed im-

plicitly by expanding the term in braces of formula (16) and assigning the negative 

sign to the second instance of the lines admittance. ܫ௜௝ ൌ ௜ܻ௝ ڄ ൫ ௜ܸ െ ௝ܸ൯ ൌ ௜ܻ௝ ڄ ௜ܸ െ ௜ܻ௝ ڄ ௝ܸ (16) 

For the four-node network depicted in Fig. 2 this results in the line admittance 

stated in (17). 

 

 

Fig. 6 Four Node Example Network 

With this formulation it is possible to calculate all line and transformer currents ܫ௜௝  with a single matrix vector multiplication in one step (see (17)). 

൦ܫଵଶܫଶଷܫଷସܫଶସ
൪ ൌ ێێۏ

ۍ ଵܻଶ െ ଵܻଶଶܻଷ െ ଶܻଷଷܻସ െ ଷܻସଶܻସ െ ଶܻସۑۑے
ې

ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥౢ܇౟౤౛
ڄ ൦ ଵܸܸଶܸଷܸସ൪ 

(17) 

The line admittance matrix is essential for calculating line loadings after deter-

mining the network’s operational state with the Load Flow Calculation. 

Nodal admittance matrix 

The second essential matrix when modeling electric power grids is the nodal ad-

mittance matrix. In contrast to the line admittance, the shunt elements have to be 

considered when stating the nodal admittance matrix. With the nodal admittance 

matrix the nodal currents of a network can be calculated from the vector of com-

plex nodal voltages. Since all currents in a node have to sum up to zero (according 

to Kirchhoff’s point rule), the current flowing from a node or into a node is the 
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sum of all currents flowing away from or into the node within the network. Hav-

ing the ߨ-equivalent circuit in mind, these are the currents flowing through the 

shunt elements of all lines at the particular node and the currents flowing through 

the lines to other nodes (see Fig. 7). There are two different reference-arrow  

systems for this representation that differ in the orientation of positively counted 

nodal current ܫ௜ . The orientation affects whether a positive sign of the nodal power 

indicates power consumption or power feed-in. For the generator reference arrow 

system (GRAS) current flowing in the direction of a node (into the node) are 

counted positively (see Fig. 7). 

 

 
 

Fig. 7 Voltages and currents in a ࣊-equivalent circuit (GRAS) 

 
The shunt elements of a line are represented as ௜ܻ௝,଴  on both ends of the  ߨ-equivalent circuit each representing half of the complex shunt admittance of the 

respective line. Thus, ௜ܻ௝,଴ is 
ଵଶ ൫ܩ௜௝ ൅ j ڄ  ௜௝൯ܤ

Assuming zero admittance between nodes that are not directly connected with 

each other the aforementioned sum of currents within the generator reference-

arrow system results in the form of (18) where the nodal current ܫ௜  is the positive 

sum of all other currents flowing from or towards the node. 

 

෍ ௜ܻ௝ ڄ ൫ ௜ܸ െ ௝ܸ൯௡
௝ୀଵ௝ஷ௜

൅ ෍ ௜ܻ௝,଴ ڄ ௜ܸ௡
௝ୀଵ௝ஷ௜

ൌ  ௜ (18)ܫ

The second reference-arrow system is the load reference-arrow system (LRAS).  

In LRAS currents flowing in the direction out and away from a node are counted 

positively (see Fig. 8). This inverses the sign of the nodal power in comparison to 

the generator reference-node system and lets power consumption appear with a 

positive sign of the nodal power. 
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Fig. 8 Voltages and currents in a ࣊-equivalent circuit (LRAS) 

 
Within LRAS the sum of all positively signed currents has to be zero. This re-

sults in the nodal current ܫ௜  being the negative sum of all other currents from and 

to node ݅ (19). 

െ ෍ ௜ܻ௝ ڄ ൫ ௜ܸ െ ௝ܸ൯௡
௝ୀଵ௝ஷ௜

െ ෍ ௜ܻ௝,଴ ڄ ௜ܸ௡
௝ୀଵ௝ஷ௜

ൌ ௜ܫ  (19) 

Within this chapter we will use the generator reference-arrow system for the fur-

ther explanations. It is important to know about the existence of these two differ-

ent reference-arrow systems, since they affect the set-up of the nodal admittance 

matrix. For the study and further understanding of additional material on this topic 

beyond this chapter it is important to recognize the difference. 

Next, we will transpose formula (18) into the term given in (20): 

෍൫ ௜ܻ௝ ൅ ௜ܻ௝,଴൯ ڄ ௜ܸ௡
௝ୀଵ௝ஷ௜

െ ෍ ௜ܻ௝ ڄ ௝ܸ௡
௝ୀଵ௝ஷ௜

ൌ ௜ܫ  (20) 

With the elements of the ߨ -equivalent circuit being ௜ܻ௝ ൌ ሺܴ௜௝ ൅ j · ௜ܺ௝ሻିଵ and ௜ܻ௝,଴ ൌ ௜௝ܩ ൅ j · ௜௝ܤ  (compare Fig. 5) and having in mind the structure of (20), the 

nodal admittance matrix can be stated as follows (21): 

൥ܫଵܫڭ௡൩ ൌ
ێێۏ
ێێێ
෍ሺۍ ଵܻ௝ ൅ ଵܻ௝,଴ሻ௡

௝ୀଵ ڮ െ ଵܻ௡ڭ ڰ െڭ ௡ܻଵ ڮ ෍ሺ ௜ܻ௝ ൅ ௡ܻ௝,଴ሻ௡
௝ୀଵ ۑۑے

ۑۑۑ
ې

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ܇౤౥ౚ౛

ڄ ൥ ଵܸܸڭ௡൩ (21) 
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It is common standard to index the elements of the nodal admittance matrix in 

lower-case ݕ௜௝  (see (22)) 

൥ܫଵܫڭ௡൩ ൌ ൥ݕଵଵ ڮ ڭଵ௡ݕ ڰ ௡ଵݕڭ ڮ ౤౥ౚ౛܇௡௡൩ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥݕ
ڄ ൥ ଵܸܸڭ௡൩ 

(22) 

The elements ݕ௜௝ of the nodal admittance matrix are then given by (23) and (24). 

௜௜ݕ ൌ ෍ሺ ௜ܻ௝ ൅ ௜ܻ௝,଴ሻ௡
௝ୀଵ  (23) 

௜௝ݕ  ൌ െ ௜ܻ௝ ; ݅ ് ݆ (24) 

 

In order to give a practical example, the nodal admittance matrix for the four-

node example network depicted in Fig. 6 would look similar to (25). 

 

ێێۏ
ێێێ
ۍێێ ଵܻଶ ൅ …ڮ ଵܻଶ,଴ െ ଵܻଶ Ͳ Ͳെ ଵܻଶ ଵܻଶ ൅ ଶܻଷ ൅ ଶܻସ ൅ …ڮ ଵܻଶ,଴ ൅ ଶܻଷ,଴ ൅ ଶܻସ,଴ െ ଶܻଷ െ ଶܻସͲ െ ଶܻଷ ଶܻଷ ൅ ଶܻସ ൅ …ڮ ଶܻଷ,଴ ൅ ଶܻସ,଴ െ ଷܻସͲ െ ଶܻସ െ ଷܻସ ଶܻସ ൅ ଷܻସ ൅ …ڮ ଶܻସ,଴ ൅ ଷܻସ,଴ۑۑے

ۑۑۑ
ېۑۑ
 (25) 

2.4   Power Flow Equations and Their Features 

The central element in Power Flow Calculation is the complex-valued nodal pow-

er ௜ܵ. It is computed from the complex nodal voltage ௜ܸ at the particular node ݅ and 

the conjugate-complex nodal current ܫ௜  (see (26)). ܵ ൌ ܷ ڄ  (26) כܫ

Setting up (26) in real numbers yields (27) with the both types of power, active 

power ܲ and reactive power ܳ. ሺܲ ൅ j ڄ ܳሻᇣᇧᇧᇤᇧᇧᇥௌ ൌ ሺ݁ ൅ j ڄ ݂ሻᇣᇧᇧᇤᇧᇧᇥ௏ ڄ ሺܽ െ j ڄ ܾሻᇣᇧᇧᇤᇧᇧᇥூכ  
(27) 

By transposing (27) to (28) both types of power can be separated and calculated 

separately. 
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 ሺܲ ൅ j ڄ ܳሻᇣᇧᇧᇤᇧᇧᇥௌ ൌ ሺ݁ܽ ൅ ݂ܾሻᇣᇧᇧᇤᇧᇧᇥ௉ ൅ j ڄ ሺ݂ܽ െ ܾ݁ሻᇣᇧᇧᇤᇧᇧᇥொ  
(28) 

Both formulations assume that the current ܫ is constant and does not change or 

more precisely, that ܫ is not a function of ܸ. However, in power systems this as-

sumption does not hold, as a change in voltage at a certain node also changes the 

voltage differences between the particular node and all other nodes within the 

network. This has a direct effect on the currents flowing from or to the particular 

node.  

In order to understand these interdependencies, the origin, structure and fea-

tures of the Power Flow Equations (PFE) for computation of nodal power in a 

network are explained in the following section. 

Nodal Power in a Network 

The basic equations for calculating the power flow into or out of a node in case of 

an interconnected network are similar to the ones given in (26), but set up sepa-

rately for every node ݅ of a network (see (29)). 
 ௜ܵ ൌ ௜ܸ ڄ  (29) כ௜ܫ

As mentioned before, in an interconnected network the nodal current ܫ௜  is a func-

tion of all nodal voltages within the network. Using the elements ݕ௜௝ of the nodal 

admittance matrix, the nodal current ܫ௜  can set up as (30). 

௜ܫ ൌ ෍ ௜௝ݕ ڄ ௝ܸ௡
௝ୀଵ  (30) 

Inserting this expression into formula (29) yields the Power Flow Equations in 

their complex-valued form (31). Please note that all elements within the sum have 

to be conjugate-complex values. 

௜ܵ ൌ ௜ܷ ڄ ෍ כ௜௝ݕ ڄ ௝ܸכ௡
௝ୀଵ  (31) 

Setting up (31) based on real numbers yields (32), where ݃௜௝ and ܾ௜௝  are real and 

imaginary parts of the element ݕ௜௝ of the nodal admittance matrix, respectively. 

ሺ ௜ܲ ൅ j ڄ ܳ௜ሻ ൌ ሺ݁௜ ൅ j ڄ ௜݂ሻ ڄ ෍൫݃௜௝ െ j ڄ ܾ௜௝൯ ڄ ൫ ௝݁ െ j ڄ ௝݂൯௡
௝ୀଵ  (32) 

With the intermediate step (33) the Power Flow Equations can be separated into 

active power ௜ܲ  (34) and reactive power ௜ܳ  (35). 

ሺ ௜ܲ ൅ j ڄ ܳ௜ሻ ൌ ሺ݁௜ ൅ j ڄ ௜݂ሻ ڄ ෍൫݃௜௝ ௝݁ െ ܾ௜௝ ௝݂൯ െ j ڄ ൫ܾ௜௝ ௝݁ ൅ ݃௜௝ ௝݂൯௡
௝ୀଵ  (33) 



132 O. Krause and S. Lehnhoff

 

௜ܲ ൌ ݁௜ ڄ ෍൫݃௜௝ ௝݁ െ ܾ௜௝ ௝݂൯௡
௝ୀଵ ൅ ௜݂ ڄ ෍൫ܾ௜௝ ௝݁ ൅ ݃௜௝ ௝݂൯௡

௝ୀଵ  (34) 

 

௜ܳ ൌ ௜݂ ڄ ෍൫݃௜௝ ௝݁ െ ܾ௜௝ ௝݂൯௡
௝ୀଵ െ ݁௜ ڄ ෍൫ܾ௜௝ ௝݁ ൅ ݃௜௝ ௝݂൯௡

௝ୀଵ  (35) 

 

With these Power Flow Equations it is then possible to calculate all nodal powers 

from the vector of complex-valued nodal voltages. However, in general the vector 

of complex-valued nodal voltages is not known, but has to be determined from the 

given (metered) vector of complex-valued nodal powers. In order to do so and to 

understand the Power Flow Equations and their behavior in detail, their derivative 

will be set up and analyzed. It will be shown, that the Power Flow Equations are 

not complex differentiable and the resulting effects on power flow calculations are 

discussed. 

Partial Differential Equations 

In order to calculate the complex derivative of a complex-valued function – as are 

our Power Flow Equations – the partial derivatives of the real-valued version of 

the particular function have to be set up first. Due to the structure of the nodal  

admittance matrix – and thus the Power Flow Equations – two cases have to be 

distinguished. The first one is a nodal power derived against a component of the 

voltage at the same node (case ݆ ൌ ݅ሻ). The second one is the general case of ݆ ് ݅. 
The derivatives of the Power Flow Equations are given in the following formulas 

(see (36) through (39)). 
 

߲ ௜߲ܲ ௝݁ ൌ ۔ۖەۖ
௜݃௜௜݁ʹۓ ൅ ෍ሺ݃௜௞݁௞ െ ܾ௜௞ ௞݂ሻ௡

௞ୀଵ௞ஷ௜ ; ݆ ൌ ݅
݁௜݃௜௝ ൅ ௜݂ܾ௜௝ ; ݆ ് ݅ (36) 

 

߲ ௜߲ܲ ௝݂ ൌ ۔ۖەۖ
ʹۓ ௜݂݃௜௜ ൅ ෍ሺܾ௜௞݁௞ ൅ ݃௜௞ ௞݂ሻ௡

௞ୀଵ௞ஷ௜ ; ݆ ൌ ݅
െ݁௜ܾ௜௝ ൅ ௜݂݃௜௝ ; ݆ ് ݅ (37) 
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߲ ௜߲ܳ ௝݁ ൌ ۔ۖەۖ
െʹ݁௜ܾ௜௜ۓ െ ෍ሺܾ௜௞݁௞ ൅ ݃௜௞ ௞݂ሻ௡

௞ୀଵ௞ஷ௜ ; ݆ ൌ ݅
௜݂݃௜௝ െ ݁௜ܾ௜௝ ; ݆ ് ݅ (38) 

 

߲ ௜߲ܳ ௝݂ ൌ ۔ۖەۖ
ʹെۓ ௜݂ܾ௜௜ ൅ ෍൫݃௜௝ ௝݁ െ ܾ௜௝ ௝݂൯௡

௞ୀଵ௞ஷ௜ ; ݆ ൌ ݅
െ ௜݂ܾ௜௝ െ ݁௜݃௜௝ ; ݆ ് ݅ (39) 

For a complex-valued function to be complex differentiable, the so called 

Cauchy-Riemann partial differential equations have to be fulfilled. In the case of 

the Power Flow Equations they have the following form (40). ߲ ௜߲ܲ ௝݂ ൌ െ ߲ ௜߲ܳ ௝݁ ; ߲ ௜߲ܲ ௝݁ ൌ ߲ ௜߲ܳ ௝݂  (40) 

It is obvious that they are only fulfilled in case of all nodal voltages being equal 

to zero. Thus, the Power Flow Equations are not complex differentiable and do not 

have a derivative. But it is possible to state the so called Jacobian matrix of the 

Power Flow Equation that in most cases behaves similar to what would be ex-

pected from a derivative. Some effects of the aforementioned deficit will be dis-

cussed in the following section together with the set-up of the Jacobian matrix. 

Jacobian matrix 

The Jacobian matrix describes the behavior of the Power Flow Equations in the 

vicinity of an operational point. The operational point is given by the vector of 

complex nodal voltages. The dependency of the Jacobian matrix on the current 

vector of nodal voltages becomes clear when having a closer look at the partial de-

rivatives (36) to (39). Although the derivatives are a function of the vector of nod-

al voltages, they will be stated here without argument for the sake of readability. 

The overall structure of the Jacobian matrix ۸ሺ܄ሻ is depicted in (41). 

ێێۏ
ۍێ Δ ଵܲΔ ଵܳڭΔ ௡ܲΔܳ௡ۑۑے

ېۑ
ᇣᇤᇥ୼܁

ൌ
ێێۏ
ێێێ
ێێێ
߲ۍ ଵ߲ܲ݁ଵ ߲ ଵ߲ܲ ଵ݂ ڮ ߲ ଵ߲ܲ݁௡ ߲ ଵ߲ܳ ௡݂߲ ଵ߲ܳ݁ଵ ߲ ଵ߲ܳ ଵ݂ ڮ ߲ ଵ߲ܳ݁௡ ߲ ଵ߲ܳ ௡݂ڭ ڭ ڰ ڭ ߲ڭ ௡߲ܲ݁ଵ ߲ ௡߲ܲ ଵ݂ ڮ ߲ ௡߲ܲ݁௡ ߲ ௡߲ܲ ௡݂߲ܳ௡߲݁ଵ ߲ܳ௡߲ ଵ݂ ڮ ߲ܳ௡߲݁௡ ߲ܳ௡߲ ௡݂ ۑۑے

ۑۑۑ
ۑۑۑ
ې

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ۸ሺ܄ሻ

ڄ ێێۏ
߂ଵ݁߂ۍێ ଵ݂݁߂ڭ௡߂ ௡݂ ۑۑے

ېۑ
ᇣᇤᇥ୼܄

 
(41) 
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The Jacobian matrix of the Power Flow Equations translates a change in nodal vol-

tage Δ܄ into a change in nodal power Δ܁ (see (41)). As already discussed for the 

Power Flow Equations themselves, the inverse direction is of higher practical impor-

tance. It is more important to translate a change in the network’s input parameters – 

the nodal power – to a change of the network state – the nodal voltages. This can be 

done using the inverse ۸ିଵሺ܄ሻ of the Jacobian matrix ۸ሺ܄ሻ (see (42)).  Δ܄ ൌ ۸ିଵሺ܄ሻ ڄ Δ(42) ܁ 

The Jacobian matrix of the Power Flow Equations suffers from close-to-

singular conditions and rank deficiency conditions for certain operational states of 

the network. This is closely related to certain instability phenomena like angle-

instabilities or voltage-instabilities. For more details about these instability  

phenomena, please refer to [Kundur 1994]. These close-to-singular and rank-

deficiency issues have a significant impact on the results of some modern  

Probabilistic Load Flow approaches and will be discussed in this context later 

throughout this chapter. 

Under moderate and regular operational conditions of the network the Jacobian 

matrix is of full rank and thus has an inverse ۸ିଵሺ܄ሻ. 

2.5   Newton-Raphson Load Flow Calculation 

As already mentioned before, the main goal of Power Flow Calculations is the de-

termination of a network’s operational state by determining the vector of complex 

nodal voltages from a given vector of nodal powers. This can be interpreted as 

finding a root or null of the equations given in (43). Since the PFE do not have an 

inverse function, the principle strategy is to tune a vector of complex nodal vol-

tages to make the result of the PFE match given (metered) values for the nodal 

powers with an acceptable precision. ܁୥୧୴ୣ୬ െ PFEሺ܄ሻ ൌ Ͳ (43) 

The approach most frequently used is the Newton-Raphson method. The Newton-

Raphson method bases on a shortened Taylor-Series, but suffers from convergence 

issues under certain conditions. To point out the source of these convergence issues 

the Newton-Raphson iterative loop will be derived from a Taylor-Series and it will 

by pointed out, why some of the preconditions for the application of the Taylor-

Series technique are not fulfilled. 

Taylor-Series 

The Taylor-Series representation tries to match, or at least to approximate, a func-

tion by the Taylor-polynomial that bases on the derivatives of a function at a cer-

tain expansion point. The Taylor-Series of a scalar function with one argument 

and one value is stated in (44). A Taylor-Series always refers to a certain  

expansion point ܽ and is developed up to the degree ݉. In case the derivatives of 

degree larger than ݉ are not equal to zero, there is a non-zero residual ܴ௠. 
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݂ሺݔሻ ൌ ݂ሺܽሻ ൅ ෍ ቀଵ௜! ݂ሺ௜ሻሺܽሻ · ሺݔ െ ܽሻ௜ቁ ൅ ܴ௠௠
௜ୀଵ  (44) 

Prerequisite for a Taylor-Series is the differentiability of a function ݂ሺݔሻ up to de-

gree ݉ at least [Bronstein et al. 2000]. In case of a single-value, multi-argument 

function there is no total derivative of function ݂ሺݔଵ, … , -௡ሻ. Thus the Taylorݔ

Series is developed using the partial derivatives (see (45)). ݂ሺݔଵ ൅ Δݔଵ, ڮ , ௡ݔ ൅ Δݔ௡ሻ ൌ ݂ሺݔଵ, ڮ , ௡ሻ൅ݔ ෍ ͳ݅! ቀ డడ௫భ୼௫భାڮା డడ௫೙୼௫೙ቁ௜ ݂ሺݔଵ, ڮ , ௡ሻ௠ݔ
௜ୀଵ ൅ ܴ௠ (45) 

For multi-value, multi-argument functions (45) changes to (46). 

௜݂ሺݔଵ ൅ Δݔଵ, ڮ , ௡ݔ ൅ Δݔ௡ሻ ൌ ௜݂ሺݔଵ, ڮ , ௡ሻ൅ݔ ෍ ͳ݆! ቀ డడ௫భ୼௫భାڮା డడ௫೙୼௫೙ቁ௝ ௜݂ሺݔଵ, ڮ , ௡ሻ௠ݔ
௝ୀଵ ൅ ܴ௠ (46)

In this case the single components ௜݂ሺݔଵ, … ,  .௡ሻ are developed independentlyݔ

The prerequisite for differentiability remains. 

Newton-Technique 

The Newton-technique bases on the development of a Taylor-Series of the respec-

tive function in order to approximate the behavior of the function in the vicinity of 

a given expansion point. With the Newton-technique the Taylor-Series is only de-

veloped up to the degree ݉ ൌ ͳ and the residual ܴ௠ is omitted. Thus, (46) may be 

simplified according to (47). 

௜݂ሺݔଵ ൅ Δݔଵ, ڮ , ௡ݔ ൅ Δݔ௡ሻ ൎ ௜݂ሺݔଵ, ڮ , ௡ሻ൅ݔ ൬ ଵݔ߲߲ Δݔଵ ൅ ڮ ൅ ௡ݔ߲߲ Δݔ௡൰ · ௜݂ሺݔଵ, ڮ ,  ௡ሻ (47)ݔ

The error introduced by omitting the residual ܴ௠  depends on the values of the  

derivatives of the function with a degree higher than ͳ. The partial derivatives of 

degree ͳ may then be assembled to form the Jacobian matrix of the multi-value, 

multi-argument function ܎ሺܠሻ at expansion point ܠ (see (48)). 

ሻܠሺ܎۸ ൌ ൦డ௙భሺܠሻడ௫భ ڮ డ௙భሺܠሻడ௫೙ڭ ڰ ሻడ௫భܠడ௙೙ሺڭ ڮ డ௙೙ሺܠሻడ௫೙
൪ (48) 

Transposing (47) with the help of (48) to its matrix representation yields (49). ܎ሺܠ ൅ Δܠሻ ൎ ሻܠሺ܎ ൅ ሻܠሺ܎۸ · Δ(49) ܠ 
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If the Jacobian matrix is full-rank and thus has an inverse, (49) can be transformed 

to (50) by expansion with the inverse ۸ି܎ ଵሺܠሻ of Jacobian matrix ۸܎ሺܠሻ. ۸ି܎ ଵሺܠሻ · ൫܎ሺܠ ൅ Δܠሻ െ ሻ൯ܠሺ܎ ൎ ି܎۸ ଵሺܠሻ · ሻܠሺ܎۸ · Δ(50) ܠ 

Since multiplying a full-rank matrix with its inverse yields the identity matrix, 

(50) can be simplified to (51). ۸܎ሺܠሻ · ൫܎ሺܠ ൅ Δܠሻ െ ሻ൯ܠሺ܎ ൎ Δ(51) ܠ 

With the Newton-technique (51) is used as the corrected argument ܠ in order to 

reach a certain given value of ܎ሺܠሻ. To achieve this, an iterative loop is used in 

which the value ܎ሺܠ ൅ Δܠሻ is used for the subsequent iteration. This approach 

starts with an initial argument ܠ௞ and the given value ܖ܍ܞܑ܏܎. Formula (51) is uti-

lized to find an argument improvement Δܠ௞.  ۸܎ሺܠ௞ሻ · ቀ܎୥୧୴ୣ୬ െ ௞ሻቁܠሺ܎ ൎ Δܠ௞ (52) 

Fig. 9 illustrates this approach for a single-value, single-argument function ݂ሺݔሻ iteratively approaching the root (or null) of ݂ሺݔሻ in two cycles. 

 

 

Fig. 9 Iterative cycle of the Newton-technique 

 
With the improvement of the argument Δݔ௞ the improved argument ݔ௞ାଵ can 

be calculated using (52) ܓܠା૚ ൌ x୩ ൅ Δܠ௞ (52) 
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For functions that do not have high-order derivatives of significant value, the 

Newton-technique converges quite fast and reliably. In case of the Newton-

Raphson Load Flow Calculation this is not always true due to the non-

differentiability of the Power Flow Equations. 

Newton-Raphson Load Flow Calculation 

The input parameters for a Newton-Raphson Load Flow vary in type according to 

the behavior of the power equipment connected to the nodes of the network. In 

general, three types of nodes are distinguished; Slack-node, PQ-node and PU-

node. First, the Newton-Raphson Load Flow Calculation will be explained only 

with Slack- and PQ-nodes. PU-nodes will be explained later in this chapter. 
In every Load Flow Problem there has to be one node being assigned to be the 

Slack-node. The reason is that the sum of all nodal power balances (active as well 
as reactive) and the network’s power losses or gains (only reactive power) has to 
be equal to zero. But since the network’s active power losses and reactive losses 
and gains are a function of the nodal power balances and the voltages within the 
network, they are a result of the Power Flow Calculation and previously unknown. 
Therefore, the Power Flow Calculation cannot find a solution with only PQ-nodes 
being modeled in the network. Furthermore, the transmission of power can be 
done at multiple voltages. Thus, there is a need for at least one node defining and 
enforcing a certain voltage at its node. To solve this, a Slack-node is introduced 
that has a defined voltage as the input argument for the Load Flow Calculation and 
its active and reactive power balance as a return value. By this, the Slack-node 
balances the overall active and reactive power balance (including possible losses) 
throughout the network. A technical interpretation of the Slack-node in the context 
of transmission and distribution systems will be given at the end of this section. 

A PQ-node models a generator or load that is controlled for its active and reac-

tive power to be held constant. This is only an approximation of the real behavior, 

as active power consumption of generation is a function of the voltage and active 

power consumption or generation at the particular node. However, the model  

provides a good estimate which can be iteratively improved by recalculation after 

adjusting the respective power balance according to a more complex load or gene-

rator model and the results of a previously solved Load Flow. 

The third standard-type of nodes being modeled is the PU-node. A PU-node 

models a generator (mathematically also a load, although technically rarely done) 

that has an automatic voltage regulator. Such generators adjust their reactive  

power balance in order to manipulate the absolute value of the voltage at con-

trolled node. Under regular conditions, an increase in reactive power generation 

generally increases the absolute value of the voltage at the node it is injected. A 

decrease or consumption lowers the absolute value of the voltage. This effect is 

used for automatic voltage regulation. In case the generator reaches its individual 

limit of active power generation or consumption, which is in general a function of 

the generator’s active power balance, the active power balance will remain at its 

maximum and the PU-node model has to be replaced by a PQ-node model during 

the Power Flow Calculation. 
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In this chapter only the Power Flow Calculation with one Slack-node and mul-

tiple exclusive PQ-model nodes will be explained. For more details about model-

ing PU-nodes, please refer to [Grainger 1994].  

Any of the nodes of the network model may be assigned to be the Slack-node. 

Throughout the following explanations node number ͳ will be assigned to be the 

slack node without loss of generality. In order to set up a solvable problem the ac-

tive and reactive power of the slack node will be omitted within the iteration loop 

as they are no argument but the value of the Load Flow Calculation. Thus the re-

duced Power Flow Equations used in the iterative loop have the following form 

(see (53)) 

ێێۏ
ێێێ
ۍ ଵܳܲଵଶܳܲଶܲڭ௡ܳ௡ۑۑے

ۑۑۑ
ې

ൌ
ێێۏ
ێێێ
ۍێ ௉݂భሺ ଵܸ, … , ௡ܸሻொ݂భሺ ଵܸ, … , ௡ܸሻ௉݂మሺ ଵܸ, … , ௡ܸሻொ݂మሺ ଵܸ, … , ௡ܸሻڭ௉݂೙ሺ ଵܸ, … , ௡ܸሻொ݂೙ሺ ଵܸ, … , ௡ܸሻۑۑے

ۑۑۑ
ېۑ
 (53) 

Since the Jacobian matrix of the Power Flow Equations are used to derive an im-

provement for the vector of nodal voltages from the given active and reactive 

power balances at all nodes, the aforementioned reduction requires that the two 

rows of the Jacobian matrix, corresponding to the active and reactive power at the 

slack node, are also omitted. Furthermore, the complex-valued voltage at the 

Slack-node is fixed and not to be changed. Thus, the two columns of the Jacobian 

matrix, which correspond to the voltage at the slack node, also have to be omitted 

(see (54)). Otherwise, the inverse of the Jacobian matrix would also yield changes 

in the Slack-node’s voltage. 

ێێۏ
ێێێ
Δۍ ଵܲΔ ଵܳΔ ଶܲΔܳଶڭΔ ௡ܲΔܳ௡ۑۑے

ۑۑۑ
ې

ᇣᇤᇥ୼܁౨౛ౚ

ൌ

ێێۏ
ێێێ
ێێێ
ێێێ
ۍێێ

߲ ଵ߲ܲ݁ଵ ߲ ଵ߲ܲ ଵ݂ ߲ ଵ߲ܲ݁ଶ ߲ ଵ߲ܲ ଶ݂ ڮ ߲ ଵ߲ܲ݁௡ ߲ ଵ߲ܳ ௡݂߲ ଵ߲ܳ݁ଵ ߲ ଵ߲ܳ ଵ݂ ߲ ଵ߲ܳ݁ଶ ߲ ଵ߲ܳ ଶ݂ ڮ ߲ ଵ߲ܳ݁௡ ߲ ଵ߲ܳ ௡݂߲ ଶ߲ܲ݁ଵ ߲ ଶ߲ܲ ଵ݂ ߲ ଶ߲ܲ݁ଶ ߲ ଵ߲ܲ ଶ݂ ڮ ߲ ଶ߲ܲ݁௡ ߲ ଶ߲ܲ ௡݂߲ܳଶ߲݁ଵ ߲ܳଶ߲ ଵ݂ ߲ܳଶ߲݁ଶ ߲ܳଶ߲ ଶ݂ ڮ ߲ܳଶ߲݁௡ ߲ܳଶ߲ ௡݂ڭ ڭ ڭ ڭ ڰ ڭ ߲ڭ ௡߲ܲ݁ଵ ߲ ௡߲ܲ ଵ݂ ߲ ௡߲ܲ݁ଶ ߲ ௡߲ܲ ௡݂ ڮ ߲ ௡߲ܲ݁௡ ߲ ௡߲ܲ ௡݂߲ܳ௡߲݁ଵ ߲ܳ௡߲ ଵ݂ ߲ܳ௡߲݁ଶ ߲ܳ௡߲ ଶ݂ ڮ ߲ܳ௡߲݁௡ ߲ܳ௡߲ ௡݂ ۑۑے
ۑۑۑ
ۑۑۑ
ۑۑۑ
ېۑۑ

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ۸౨౛ౚሺ܄ሻ

ڄ
ێێۏ
ێێێ
߂ଵ݁߂ۍ ଵ݂݁߂ଶ߂ ଶ݂݁߂ڭ௡߂ ௡݂ ۑۑے

ۑۑۑ
ې

ᇣᇤᇥ୼܄౨౛ౚ

 (54) 
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For the start of a Newton-Raphson Load Flow Calculation an initial vector of 

nodal voltages is needed. To avoid convergence issues, it is common to set all 

nodal voltages to the value of the slack node (in general also the nominal voltage 

throughout the network; see (55)). 

଴܄ ൌ ൦ ଵܸଶܸ௞ ൌ ଵܸڭ௡ܸ௞ ൌ ଵܸ
൪ (55) 

With this vector (and all successive vectors ܄௞ during the iteration) the resulting 

nodal powers for all nodes except the slack node are calculated. Based on this re-

sult and the given nodal powers within the Load Flow Calculation the difference 

between the presently assumed network state and the targeted result is calculated 

using (56). 

ێێێۏ
Δۍێ ଶܲ௞Δܳଶ௞ڭΔ ௡ܲ௞Δܳ௡௞ۑۑۑے

ېۑ ൌ ێێێۏ
ۍێ ଶܲ,୥୧୴ୣ୬ܳଶ,୥୧୴ୣ୬ڭ௡ܲ,୥୧୴ୣ୬ܳ௡,୥୧୴ୣ୬ۑۑۑے

ېۑ െ
ێێۏ
ۍێێ ௉݂మሺ ଵܸ, ଶܸ௞, … , ௡ܸ௞ሻொ݂మሺ ଵܸ, ଶܸ௞ , … , ௡ܸ௞ሻڭ௉݂೙ሺ ଵܸ, ଶܸ௞, … , ௡ܸ௞ሻொ݂೙ሺ ଵܸ, ଶܸ௞, … , ௡ܸ௞ሻۑۑے

 (56) ېۑۑ

Knowing the difference between the given (metered) nodal powers and the nodal 

powers corresponding to the assumed network state, an improvement of the vol-

tage vector can be calculated using (57). 

ێێێۏ
ۍێ Δ݁ଶ௞Δ ଶ݂௞ڭΔ݁௡௞Δ ௡݂௞ ۑۑۑے 

ېۑ ൌ ۸୰ୣୢିଵ ሺ܄௞ሻ ڄ ێێێۏ
Δۍێ ଶܲ௞Δܳଶ௞ڭΔ ௡ܲ௞Δܳ௡௞ۑۑۑے

ېۑ
 (57) 

With the voltage improvement determined using (57) the improved vector of nod-

al voltage ܄௞ାଵ for the next iteration can be calculated using (58). 

௞ାଵ܄ ൌ ൦ ଵܸଶܸ௞ାଵ ൌ ଶܸ௞ ൅ ሺΔ݁ଶ௞ ൅ ݆ ڄ Δ ଶ݂௞ሻڭ௡ܸ௞ାଵ ൌ ௡ܸ௞ ൅ ሺΔ݁௡௞ ൅ ݆ ڄ Δ ௡݂௞ሻ൪ (58) 

Based on the improved vector of nodal voltages the nodal powers and the remain-

ing difference to the given values is calculated and compared against a pre-defined 

convergence limit ߳ (59), (60). หΔ ௜ܲ௞ห ൏ ߳ ; ݅׊ א ሼʹ, … , ݊ሽ (59) 

 หΔ ௜ܳ௞ห ൏ ߳ ; ݅׊ א ሼʹ, … , ݊ሽ (60) 
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Once all absolute values of the remaining differences at all nodes are below the 

convergence limit, the iteration is stopped and the found voltage vectors may be 

interpreted as the desired result. 

 

 
 

Fig. 10 Iterative loop of the Newton-Raphson Power Flow Calculation 
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3   Probabilistic Load Flow 

There are two main kinds of Probabilistic Load Flow Calculation. The first kind is 

based on huge number of experiments, while the other tries to estimate the beha-

vior of the power flow equations in the vicinity of a given operational point. Prob-

abilistic Load Flow calculation is still a field of intense research activities. In this 

chapter we will introduce three approaches that are widely accepted in the scientif-

ic community. Two are experiment-based and the last one is an example of how 

probabilistic calculus is applied to reduce computation time. 

3.1   Sampling with Newton-Raphson 

The first approach for Probabilistic Load Flow Calculation, presented in this chap-

ter, is an experiment-based one. It is frequently used as a reference algorithm. 

However, its applicability to problems of a reasonable size and practical complexi-

ty is limited due to the vast number of experiments needed. The first step of this 

approach is to determine a number of discrete probabilities from a continuous 

Probability Density Function (PDF; see Fig. 11). 

 

 

Fig. 11 Transition to one-dimensional discrete PDF 

 
Assuming a given PDF pሺݔଵሻ and an interval ܶ over variable ݔଵ the probability Pሺ݊ሻ that ݔଵ is going to take a value of interval ݊ can be determined using (61). 

Thus, it is possible to get a set of discrete probabilities that are 

ing pሺݔଵሻ. Obviously, the precision of this approximation depends on ܶ, while the 

range in which pሺݔଵሻ is approximated depends on ܶ and the number of intervals.  

Pሺ݊ሻ ൌ න pሺݔଵሻ ڄ dݔଵ
ቀ௡ାଵଶቁ்ڄ

ቀ௡ିଵଶቁ்ڄ  (61) 
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In case of the Probabilistic Load Flow Calculations explained in this chapter, the 

input data for each node is not a one-dimensional PDF, but a two-dimensional 

PDF reflecting the probability of certain combinations of active and reactive pow-

er at each node. Fig. 12 illustrates this in the complex plane of a node’s complex 

power. The probability density is indicated by the coloration intensity. 

 

 

Fig. 12 Transition to two-dimensional discrete PDF 

In order to derive a set or discrete probabilities from this two-dimensional PDF, 

intervals for both dimensions have to be defined. In case of the complex nodal 

power at node ݅, these are Δ ௜ܲ and Δ ௜ܳ. 
Similar to the one-dimensional case, the probability for the complex nodal 

power ܵ to take a value in the interval, specified by ௜ܲ  and ௜ܳ , is given by (62). 

P௜ሺ ௜ܲ , ௜ܳሻ ൌ න න p௜ሺ݌, ሻݍ ڄ d݌ ڄ dݍொ೔ାଵଶ୼ொ೔
ொ೔ିଵଶ୼ொ೔

௉೔ାଵଶ୼௉೔
௉೔ିଵଶ୼௉೔

 (62) 

With the intervals defined and the discrete probabilities determined, the proce-

dure of experiment-sampling consists of solving the Load Flow Problems for all 

possible discrete combinations of nodal powers, weighting the results with the 

combined probability of the single probabilities associated with the respective 

nodal powers and collecting them. In the following explanation the experiment in-

dex ݇ א ሼͳ, … ,  .ሽ will be used݋

For every experiment ݇ the input argument for the Load Flow Calculation is a 

certain combination ܁௞ of nodal powers for all nodes, except the Slack-node (63). 
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௞܁ ൌ ێێۏ
ۍێ ଶܲ,௞ܳଶ,௞ڭ௡ܲ,௞ܳ௡,௞ۑۑے

ېۑ
 (63) 

The probability ۾௞ሺ܁௞ሻ of occurrence of ܁௞ is the combined probability ௜ܲሺ ௜ܲ , ௜ܳሻ 

of the occurrence of all single nodal values of S௞ (64). 
 P࢑ሺ܁௞ሻ ൌ ෑ P௜൫ ௜ܲ,௞ , ௜ܳ,௞൯௡

௜ୀଶ  (64) 

 

The experiment itself is the Load Flow Calculation (LFC) for ܁௞. The result is,  

as described in the precious section, the vector of complex nodal voltages ܄௞ for 

experiment ݇ (see (65)). ܄௞ ൌ LFCሺ܁௞ሻ (65) 

The probability of occurrence Pሺ܄௞ሻ of the determined vector of nodal voltages ܄௞ 

is equal to the probability of occurrence Pሺ܁௞ሻ of the input argument ܁௞ (see (66)). Pሺ܄௞ሻ ൌ Pሺ܁௞ሻ (66) 

Since the main question of Probabilistic Load Flow Calculation is with which 

probability nodal voltages occur within a certain interval of values, the results of 

the experiments have to be collected and analyzed in a second step. Fig. 13 illu-

strates a typical distribution of a complex nodal voltage within the complex plane. 

 

 
 

Fig. 13 Typical distribution of nodal voltages 
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The typical question to be answered with the results of the Probabilistic Load 

Flow Calculation is the probability of an absolute voltage value at a node ݅ being 

within an allowable voltage band. In order to calculate this probability the aux-

iliary function ߪ௜,௞൫ ௜ܸ,୫୧୬, ௜ܸ,୫ୟ୶൯ is defined according to (67). 
௜,௞൫ߪ  ௜ܸ,୫୧୬, ௜ܸ,୫ୟ୶൯ ൌ ൜ͳ ௜ܸ,୫୧୬ ൑ ห ௜ܸ,௞ห ൑ ௜ܸ,୫ୟ୶Ͳ ݁ݏ݈݁  (67) 

 

With this auxiliary function the probability P൫ ௜ܸ,୫୧୬ ൑ | ௜ܸ| ൑ ௜ܸ,୫ୟ୶൯ of the abso-

lute value | ௜ܸ| of the complex nodal voltage ௜ܸ  being within a defined voltage 

band can be calculated using (68). 

P൫ ௜ܸ,୫୧୬ ൑ | ௜ܸ| ൑ ௜ܸ,୫ୟ୶൯ ൌ ෍ ௜,௞൫ߪ ௜ܸ,୫୧୬, ௜ܸ,୫ୟ୶൯ ڄ Pሺ܄௞ሻ௢
௞ୀଵ  (68) 

The second important question to be answered from the results of the Probabilistic 

Load Flow Calculation is the probability of the absolute value หܫ௝ห of the complex-

valued line current ܫ௝ flowing through line ݆ א ሼͳ, … , ݉ሽ not exceeding the line’s 

individual maximum value ܫ௝,୫ୟ୶. In order to answer this question, the vector of 

complex-valued line currents ۷୪୧୬ୣ,௞  has to be calculated from the previously  

determined vectors of complex-valued nodal voltages ܄௞ for each experiment ݇. 

As described in the previous sections, the vector ۷୪୧୬ୣ,௞ can be determined by mul-

tiplying the line admittance matrix ܇୪୧୬ୣ with the vector of nodal voltages ܄௞ for 

each experiment ݇ (see (69)). ۷୪୧୬ୣ,௞ ൌ ୪୧୬ୣ܇ ڄ  ௞ (69)܄

The probability of occurrence P൫۷୪୧୬ୣ,௞൯ of this result is equal to the probability of 

occurrence Pሺ܄௞ሻ  of the corresponding network state, represented by ܄௞  (see 

(70)). P൫۷୪୧୬ୣ,௞൯ ൌ Pሺ܄௞ሻ (70) 

Similar to the nodal voltages, these results have to be further analyzed in order to 

answer the initial question about the probability of the absolute value of the line’s 

current being below or equal to the line’s individual limit ܫ௝,୫ୟ୶. Fig. 14 illustrates 

a typical distribution of values of ܫ௝,௞ in the complex plane of the line’s complex-

valued current. 

As already used before, an auxiliary function ߪ௝,௞൫ܫ௝,୫ୟ୶൯ will be utilized to cal-

culate the probability of the absolute value หܫ௝ห of line ݆ being smaller or equal to 

the line’s limit ܫ௝,୫ୟ୶ (see (71)). ߪ௝,௞൫ܫ௝,୫ୟ୶൯ ൌ ൜ͳ หܫ௝,௞ห ൑ ௝,୫ୟ୶Ͳܫ ݁ݏ݈݁  (71) 
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Fig. 14 Typical distribution of line currents 

 
With ߪ௝,௞൫ܫ௝,୫ୟ୶൯  defined according to (71) the aforementioned probability P൫หܫ௝ห ൑  .௝,୫ୟ୶൯ can be calculated according to (72)ܫ

P൫หܫ௝ห ൑ ௝,୫ୟ୶൯ܫ ൌ ෍ ௝,୫ୟ୶൯ܫ௝,௞൫ߪ ڄ P൫۷୪୧୬ୣ,௞൯௢
௞ୀଵ  (72) 

The main drawback of this approach is the enormous number of experiments 

needed for sampling the distribution. If, for example, active and reactive power on 

a 20-node network is sampled with 10 intervals each, the resulting number of  

experiments is ͳͲଶڄଶ଴. Obviously, this approach is only feasible for very small 

problems and serves as the means of verification of simplified approaches. 

3.2   Sampling with Newton-Raphson and Monte-Carlo 

One possibility to reduce the computational burden in comparison to the previous-

ly explained approach is to randomly select experiments while skipping most of 

them. This approach is known as the Monte-Carlo approach. By calculating only 

the results for randomly chosen experiments, the computational burden may be 

eased. With an increasing number of experiments the results of the Monte-Carlo 

approach converge to the results of the reference algorithm.  

However, the main benefit of the Monte-Carlo approach is the approximation 

of the results through repeated random sampling for large-scale problems, not 

solvable with the reference algorithm. 

Monte-Carlo methods are often used for the calculation and simulation of real-

world physical systems. Due to the repeated similar computation of random or pseu-

do-random numbers, these methods are qualified for calculation by high-performance 

computer architectures and tend to be used when it is unfeasible or even impossible to 

compute exact solutions with deterministic (reference) algorithms. 
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Fig. 15 Randomly chosen experiments in Monte-Carlo 

 
Monte-Carlo simulation methods are particularly useful when studying systems 

with a large number of coupled degrees of freedom, such as in Load Flow Calcu-

lations in electrical power systems with a wide range of phenomena with signifi-

cant uncertainties in their inputs [Chen et al. 2008], as have been discussed so far. 

3.3   Convolution Based on Jacobian Matrix 

Another promising approach for easing the computational burden is the utilization 

of probabilistic calculus instead of statistical analysis of a huge number of experi-

ments. The principle idea is to avoid having to perform a complete and time  

consuming Load Flow Calculation for every experiment. There are different  

approaches that make use of convolution-based methods out of which we will ex-

amine the one most often found in the literature. It is based on the approximation 

of the behavior of the Power Flow Equations in the vicinity of an operational point 

with the help of the Jacobian matrix. First, we will cover some basics on probabil-

istic calculus and explain the convolution in multi-dimensional cases. 

The first example is a simple addition of two values ݔ and ݕ that are not clearly 

determined, but may vary within a certain range of values (see Fig. 16). The gen-

eral question is which combination of values yields a certain result ݖ. 

 

 
 

Fig. 16 Two argument one value summing unit 
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The trivial relation between ݕ ,ݔ and ݖ is (73). ݖ ൌ ݕ ൅  (73) ݔ

In order to determine which combinations of ݔ and ݕ yield a certain value for ݖ 

(73) has to be transposed to (74). With ݖ given, ݔ may be varied with (74) always 

providing the corresponding value of ݕ that yields the result of (73) being equal to 

the specified value ݕ .ݖ ൌ ݖ െ  (74) ݔ

Provided with the PDF of ݔ and ݕ being p௫ሺݔሻ and p௬ሺݕሻ equation (74) can be 

used to find all combinations of ݔ and ݕ that give a certain ݖ. Based on this the 

probability p௭ሺݖሻ of a certain ݖ can be determined by (75) since the integral runs 

over all combinations that have ݖ as a result in (73). 

p௭ሺݖሻ ൌ න p௫ሺݔሻ ڄ p௬ሺݖ െ ሻݔ ڄ dݔஶ
ିஶ  (75) 

This procedure can also be extended to a multi-argument single-value summing 

unit (see Fig. 17) where the value ݕ depends on ݊ arguments ݔଵ to ݔ௡ . 
 

 
 

Fig. 17 Multi-argument single-value summing unit 

 
The mathematical operation of the multi-input single-value summing unit can 

be expressed as the sum of all its arguments (76). 

ݕ ൌ ෍ ௜௡ݔ
௜ୀଵ  (76) 

 

In order to be able to determine the probability p௬ሺݕሻ of a certain value ݕ, 

again all combinations that yield ݕ through (76) have to be determined first. Simi-

lar to the two-argument single-value summing unit, this leads to one argument (in 

this example ݔ௡) being expressed as a function of the given value ݕ and all other 

arguments ݔ௜ of the summing unit (see (77)). 
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௡ݔ ൌ ݕ െ ෍ ௜௡ିଵݔ
௜ୀଵ  (77) 

With (77) always yielding the right value for ݔ௡ so that the result of (76) is a given ݖ, the probability of a certain value ݖ can be calculated with the nested integral 

(78) as it considers all combined probabilities of all combinations of ݔଵ, … ,  ௡ thatݔ

result in ݖ. 

p௬ሺݕሻ ൌ න ڮ න p௫భሺݔଵሻ … p௫೙ ൭ݕ െ ෍ ௜௡ିଵݔ
௜ୀଵ ൱ dݔଵ … dݔሺ௡ିଵሻஶ

ିஶ
ஶ

ିஶ  (78)

Extending the multi-argument single-value summing unit to a weighted multi-

argument single-value summing unit (see Fig. 18) does not significantly increase 

the complexity of the solution. 

 

 
 

Fig. 18 Weighted multi-argument single-value summing unit 

 
The key to the calculation of the PDF p௬ሺݕሻ again is the mathematical opera-

tion (79). 

ݕ ൌ ෍ ܽ௜ ڄ ௜௡ݔ
௜ୀଵ  (79) 

 

As already demonstrated equation (79) has to be transposed to (80) in order to ex-

press one of the arguments (here ݔ௡) as a function of ݕ and the other arguments ݔଵ, … , -௡. In this case it has to be assured, that the weighting factor ܽ௡ of the arݔ

gument ݔ௡ is not equal to zero. For practical application it is important to choose 

the argument to be expressed as a function of the value and the other arguments 

that has the highest absolute weighting factor. 

௡ݔ ൌ ͳܽ௡ ൭ݕ െ ෍ ܽ௜ ڄ ௜௡ିଵݔ
௜ୀଵ ൱ (80) 
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Similar to above simpler examples, with (80) the PDF p௬ሺݕሻ of ݕ can be calcu-

lated using (81). 

p௬ሺݕሻ ൌ න ڮ න ଵሻݔ௫భሺ݌ … ௫೙݌ ቆݕ െ ∑ ܽ௜ ڄ ௜௡ିଵ௜ୀଵܽ௡ݔ ቇ ଵݔ݀ … ሺ௡ିଵሻஶݔ݀
ିஶ

ஶ
ିஶ  (81)

This weighted multi-argument single-value summing unit is the blueprint for the 

convolution based on the Jacobian matrix since the convolutions corresponding to 

a single row of the Jacobian matrix can be calculated separately. Its mathematical 

behavior is exactly the same as for the weighted multi-argument single-value 

summing unit. 

The Probabilistic Load Flow Calculation based on convolution techniques on 

the Jacobian matrix starts with the approximation of the behavior of the Power 

Flow Equations in the vicinity of an expansion point ܄଴. Two issues have to be 

addressed by the Probabilistic Load Flow: first, the PDF of nodal voltages and the 

second, the PDF of line loadings. In the remainder of this section we will focus on 

determining the PDF of nodal voltages after which we determine the PDF of the 

line loadings. 

In practical application, a reasonable choice for the expansion point is the ex-

pected vector of the nodal powers. Since the nodal powers are complex-valued the 

expected value is complex-valued too. With continuous numbers it has the form of 

(82). The expected values Eሺ ௜ܵሻ will serve as the expansion point for the Jacobian 

matrix later. 

Eሺ ௜ܵሻ ൌ ඵሺ ௜ܲ ൅ j ڄ ܳ௜ሻ ڄ p௜ሺ݌, ሻݍ ڄ d݌ ڄ dݍஶ
ିஶ  (82)

Assuming that p௜ሺ ௜ܲ , ௜ܳሻ is sampled within the interval ൫– ,ݏ … ,  ൯ with an intervalݏ

size Δ ௜ܲ and Δ ௜ܳ  respectively, in discrete numbers the expected values can be cal-

culated for each node using (83). 
 

Eሺ ௜ܵሻ ൌ ෍ ෍ ሺ݌ ൅ j ڄ ሻݍ ڄ P௜ሺ݌, ୼ொ೔ڄሻ௦ݍ
௤ୀି௦ڄ୼ொ೔

௦ڄ୼௉೔
௣ୀି௦ڄ୼௉೔  (83)

In either cases the complex-valued expected values of nodal powers have to be se-

parated into their real and imaginary part, Eሺ ௜ܲሻ and Eሺ ௜ܳሻ respectively, in order to 

calculate the voltage vector ܄଴ serving as the expansion point (see (84)). ൫Eሺ ௜ܲሻ ൅ j ڄ Eሺ ௜ܳሻ൯ ൌ Eሺ ௜ܵሻ (84)
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With (84) the voltage vector ଴ܸ of the expansion point is then determined using a 

regular deterministic Load Flow Calculation (85). 

ێێۏ
ۑۑے௡,଴௡݂,଴݁ڭଵ,଴ଵ݂,଴݁ۍێ

ېۑ
ᇣᇤᇥ܄బ

ൌ LFC
ۈۉ
ێێۏۇۈۈ

Eሺۍێ ଶܲሻEሺܳଶሻڭEሺ ௡ܲሻEሺܳ௡ሻۑۑے
ېۑ

ᇣᇧᇤᇧᇥ۳ሺ܁ሻ ۋی
(85) ۊۋۋ

With the inverse ۸୰ୣୢିଵ ሺ܄ሻ of the reduced Jacobian matrix ۸୰ୣୢሺ܄ሻ as stated in (54) 

and the particular deviation Δ ௜ܵ  from the expected value Eሺ ௜ܵሻ  for each nodal 

power, the impact of a change in nodal power on the nodal voltages can be esti-

mated in the vicinity of ܄଴, ۳ሺ܁ሻ using (86). 

ێێۏ
௡݂௡ڭଶ݂ଶ݁݁ۍێ ۑۑے

ېۑ ൎ ێێۏ
ۑۑے௡,଴௡݂,଴݁ڭଶ,଴ଶ݂,଴݁ۍێ

ېۑ
ᇣᇤᇥ܄బ

൅ ۸୰ୣୢିଵ ሺ܄௢ሻ ڄ
ۈۉ
ۈۈۈ
ۇۈ

ێێۏ
ۍێ ଶܳܲଶܲڭ௡ܳ௡ۑۑے

ېۑ െ ێێۏ
Eሺۍێ ଶܲሻEሺܳଶሻڭEሺ ௡ܲሻEሺܳ௡ሻۑۑے

ېۑ
ᇣᇧᇤᇧᇥ۳ሺ܁ሻᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ୼ࡿ ۋی

ۋۋۋ
ۊۋ

 (86) 

When indexing the elements of ۸௥௘ௗିଵ ሺ܄௢ሻ with ܬ୰ୣୢ,௜௝ the single approximated vol-

tage components ݁௜ and ௜݂ can be calculated as (87) and (88) respectively. 

 

݁௜ ൌ ݁௜,଴ ൅ ෍ ୰ୣୢ,ሺଶ௜ିଵሻሺଶ௝ିଷሻܬ ڄ ቀ ௝ܲ െ E൫ ௝ܲ൯ቁ௡
௝ୀଶ൅ ෍ ୰ୣୢ,ሺଶ௜ିଵሻሺଶ௝ିଶሻܬ ڄ ቀܳ௝ െ E൫ܳ௝൯ቁ௡
௝ୀଶ

 (87) 

 

௜݂ ൌ ௜݂,଴ ൅ ෍ ୰ୣୢ,ଶ௜ሺଶ௝ିଷሻܬ ڄ ቀ ௝ܲ െ E൫ ௝ܲ൯ቁ௡
௝ୀଶ൅ ෍ ୰ୣୢ,ଶ௜ሺଶ௝ିଶሻܬ ڄ ቀܳ௝ െ E൫ܳ௝൯ቁ௡

௝ୀଶ
  (88) 

Although they can be calculated separately they are interconnected closely 

through corresponding input parameters, since they are real and imaginary parts of 

the same complex number. Thus, equation (87) and (88) are real and imaginary 

parts of the same function (89). 
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 ሺ݁௜ ൅ j ڄ ௜݂ሻ ൌ ݂ሺ ଶܲ, … , ௡ܲ , ܳଶ, … , ܳ௡ሻ (89) 

In order to determine the PDF of the nodal voltage ௜ܸ (89) has to be transposed in 

a fashion so that ௜ܸ is an input argument and the two real-valued nodal powers are 

its values. As an example we assume that ௞ܲ and ௟ܳ  were assigned to be the values 

for the function (90). ሺ ௞ܲ ൅ j ڄ ܳ௟ሻ ൌ ݂ሺ݁௜ , ௜݂, ଶܲ, … , ௞ܲ , … , ௡ܲ , ܳଶ, … , ௟ܳ , … , ܳ௡ሻ (90) 

With (90) any combination of nodal powers can be found that would result in (86) 

yielding the given value for ௜ܸ. When ௉݂ೖሺ… ሻ and ொ݂೗ሺ… ሻ are the real and imagi-

nary part of (90), this can be utilized to determine the searched value of the PDF P௏೔ሺ݁௜ ൅ j ڄ ௜݂ሻ of ௜ܸ (91). 

௏ܲ೔ሺ݁௜ ൅ j ڄ ௜݂ሻൌ න ڮ න ଵܲሺ ଵܲ, ଵܳሻ … ௞ܲ൫ ௉݂ೖሺ… ሻ, ܳ௞൯ … ௟ܲ ቀ ௟ܲ , ொ݂೗ሺ… ሻቁ …ஶ
ିஶ

ஶ
ିஶ  (91) 

As mentioned before, the second important issue to be addressed by the Probabil-

istic Load Flow Calculation is the PDF of line loadings. The procedure is very 

similar to the one described before, determining the PDFs of nodal powers. 

As stated in the previous section, the vector of complex-valued line currents 

can be determined by multiplying the line admittance matrix ܇୪୧୬ୣ with the voltage 

vector representing the network state of interest. In this case, in which not only 

one state, but the PDF of line loadings should be estimated by using probabilistic 

calculus and a simplified network model based on the Jacobian matrix, (86) has to 

be modified. Since (86) does not include values for the voltage at the reference 

node, the line admittance matrix has to be stated in a modified way. Using the ex-

ample of section 2.2.2 and the corresponding line admittance matrix as stated  

in (17), the modified matrix that separates the influence of the reference node’s 

voltage is (92). 

൦ܫଵଶܫଶଷܫଷସܫଶସ
൪ ൌ ൦ ଵܻଶͲͲͲ ൪ถౢ܇౟౤౛,౨౛౜

ڄ ଵܸ ൅ ێێۏ
െۍ ଵܻଶଶܻଷ െ ଶܻଷଷܻସ െ ଷܻସଶܻସ െ ଶܻସۑۑے

ې
ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥౢ܇౟౤౛,౨౛ౚ

ڄ ൥ ଶܸܸଷܸସ൩ 
(92) 

Based on this separation of the influence of the reference node’s voltage that is as-

sumed to be constant, the influence of certain combinations of nodal powers in the 

vicinity of ܄଴, ۳ሺ܁ሻ can be estimated using (93). Note that ܇୪୧୬ୣ,୰ୣ୤ is the column of ܇୪୧୬ୣ  that corresponds to the reference node’s voltage. The example of ܇୪୧୬ୣ,୰ୣ୤ 
stated in (93) is only valid for the exemplary network described in section 2.2.2. 
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ێێۏ
ۍێ ܽଵܾଵܽڭ௠ܾ௠ۑۑے

ېۑ
ถ۷ౢ౟౤౛

ൎ ൦ ଵܻଶͲͲͲ ൪ถౢ܇౟౤౛,౨౛౜
ڄ ଵܸ

൅܇୪୧୬ୣ,୰ୣୢ ڄ
ۈۉ
ۈۈۈ
ۇۈۈ

ێێۏ
ۑۑے௡,଴௡݂,଴݁ڭଶ,଴ଶ݂,଴݁ۍێ

ېۑ
ᇣᇤᇥ܄బ

൅ ۸୰ୣୢିଵ ሺ܄௢ሻ ڄ
ۈۉ
ۈۈۈ
ۇۈ

ێێۏ
ۍێ ଶܳܲଶܲڭ௡ܳ௡ۑۑے

ېۑ െ ێێۏ
ۍێ Eሺ ଶܲሻEሺܳଶሻܧڭሺ ௡ܲሻܧሺܳ௡ሻۑۑے

ېۑ
ᇣᇧᇤᇧᇥ۳ሺ܁ሻᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ୼ࡿ ۋی

ۋۋۋ
ۊۋ

ۋی
ۋۋۋ
 (93) ۊۋۋ

 

Separating the constant and variable part of (93) gives the basic line loading ۷୪୧୬ୣ,଴ 

corresponding to the expansion point ܄଴, ۳ሺ܁ሻ (see (94)) 

 

ێێۏ
ۍێ ܽଵ,଴ܾଵ,଴ܽڭ௠,଴ܾ௠,଴ۑۑے

ېۑ
ᇣᇤᇥ۷ౢ౟౤౛,బ

ൌ ൦ ଵܻଶͲͲͲ ൪ถౢ܇౟౤౛,౨౛౜
ڄ ଵܸ ൅ ୪୧୬ୣ,୰ୣୢ܇ ڄ ێێۏ

ۑۑے௡,଴௡݂,଴݁ڭଶ,଴ଶ݂,଴݁ۍێ
ېۑ

ᇣᇤᇥ܄బ
 

(94) 

For the variable part of (93) the two matrices ܇୪୧୬ୣ,୰ୣୢ  and ۸୪୧୬ୣ,୰ୣୢିଵ ሺ܄௢ሻ can be 

summarized with ۸୪୧୬ୣ,୰ୣୢିଵ ሺ܄଴ሻ according to (95). 

ێێۏ
ۍێ ΔܽଵΔܾଵڭΔܽ௠Δܾ௠ۑۑے

ېۑ
ᇣᇤᇥ୼۷ౢ౟౤౛

ൌ ୪୧୬ୣ,୰ୣୢ܇ ڄ ۸୰ୣୢିଵ ሺ܄௢ሻᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ۸ౢ౟౤౛,౨౛ౚషభ ሺ܄బሻ ڄ
ۈۉ
ۈۈۈ
ۇۈ

ێێۏ
ۍێ ଶܳܲଶܲڭ௡ܳ௡ۑۑے

ېۑ െ ێێۏ
ሺܧۍێ ଶܲሻܧሺܳଶሻܧڭሺ ௡ܲሻܧሺܳ௡ሻۑۑے

ېۑ
ᇣᇧᇤᇧᇥ۳ሺ܁ሻᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ୼ࡿ ۋی

ۋۋۋ
ۊۋ

 (95) 

In order to be able to calculate the PDF of the complex-valued line currents, (95) 

has to be transformed to take Δ ௝ܽ  and Δ ௝ܾ  of the respective line current as an input 

argument and yields two active and/or reactive powers for one or two nodes that 

correspond to a certain complex-valued line current. When indexing the elements 

of ۸୪୧୬ୣ,୰ୣୢିଵ ሺ܄଴ሻ as ܬ௟୧୬ୣ,௜௝ , ௝ܽ and ௝ܾ of line ݆ can be calculated using (96) and (97), 

respectively. 
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௝ܽ ൌ ௝ܽ,଴ ൅ ෍ ୪୧୬ୣ,୰ୣୢ,ሺଶ௝ିଵሻሺଶ௜ିଷሻܬ ڄ ቀ ௝ܲ െ E൫ ௝ܲ൯ቁ௡
௜ୀଶ൅ ෍ ୪୧୬ୣ,୰ୣୢ,ሺଶ௝ିଵሻሺଶ௜ିଶሻܬ ڄ ቀܳ௝ െ E൫ܳ௝൯ቁ௡
௜ୀଶ

 (96) 

 

௝ܾ ൌ ௝ܾ,଴ ൅ ෍ ୪୧୬ୣ,୰ୣୢ,ଶ௝ሺଶ௜ିଷሻܬ ڄ ቀ ௝ܲ െ E൫ ௝ܲ൯ቁ௡
௝ୀଶ൅ ෍ ୪୧୬ୣ,୰ୣୢ,ଶ௝ሺଶ௜ିଶሻܬ ڄ ቀܳ௝ െ E൫ܳ௝൯ቁ௡

௝ୀଶ
  (97) 

Although they can be calculated separately they are interconnected closely 

through corresponding input parameters, since they are real and imaginary parts of 

the same complex number. Thus, equation (96) and (97) are real and imaginary 

parts of the same function (98). ൫ ௝ܽ ൅ j ڄ ௝ܾ൯ ൌ ݂ሺ ଶܲ, … , ௡ܲ , ܳଶ, … , ܳ௡ሻ (98) 

In order to determine the PDF of the line current ܫ௝ (98) has to be transposed in a 

fashion so that ܫ௝ serves an input argument and two real-valued nodal powers as its 

values. As an example we assume that ௞ܲ and ௟ܳ  were assigned to be the values 

for the function (99). ሺ ௞ܲ ൅ j ڄ ܳ௟ሻ ൌ ݂ሺ ௝ܽ , ௝ܾ , ଶܲ, … , ௞ܲ , … , ௡ܲ, ܳଶ, … , ௟ܳ , … , ܳ௡ሻ (99) 

With (99) any combination of nodal powers can be found that would result in (93) 

taking the given value of ܫ௝. If ௉݂ೖሺ… ሻ and ொ݂ೖሺ… ሻ are real and imaginary parts of 

(99), respectively, this can then be used to determine the searched value of the 

PDF Pூೕ൫ ௝ܽ ൅ j ڄ ௝ܾ൯ of ܫ௝ (100). 

 

ூܲೕ൫ ௝ܽ ൅ j ڄ ௝ܾ൯ൌ න ڮ න ଵܲሺ ଵܲ, ଵܳሻ … ௞ܲ൫ ௉݂ೖሺ… ሻ, ܳ௞൯ … ௟ܲ ቀ ௟ܲ , ொ݂೗ሺ… ሻቁ …ஶ
ିஶ

ஶ
ିஶ  

(100) 

 

The approach presented here is just one popular example for reducing the compu-

tational complexity of Probabilistic Power Flow Calculation. There are a number 

of approaches, nearly all of which are based on network models, computational 

techniques and approximation of the network’s behavior, techniques which we 

have presented in this chapter. It is meant to be a starting point for the diverse 

spectrum of different methods and ongoing research in Probabilistic Power Flow 

Calculation [Dondera et al. 2007][dong et al. 2010]. 
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3.5   Conclusions and Final Remarks 

In this chapter we covered the basic principles behind the determination of an 

electrical grid’s operational state through load flow calculation. The major chal-

lenge for grid operators in future Smart Grids will be the translation of metered 

and derived probabilistic values of nodal power into nodal voltages and line cur-

rents. These two are subject to operational restrictions and constraints for a stable 

and reliable electrical power supply. The non-linearity of the complex-valued 

power flow equations require the utilization of the so called Newton-Raphson me-

thod, an iterative algorithm starting from likely guesses of all unknown variables 

and formulating a Taylor Series for each of the power balance equations included 

in the equation system. The resulting linearized system of power flow equations is 

solved to determine a refined iteration of the voltage angles and magnitudes for 

which the procedure is repeated until a stop (precision) criterion is met.  

Under increased power feed-in from renewable resources and technological in-

novation with more intelligent applications mainly in the form of dispatchable 

loads and smaller, more geographically distributed Generation units such as com-

bined heat and power cogeneration, photovoltaics, windcraft and in the mid-term, 

plug-in electric or plug-in hybrid electric vehicles (PEV, PHEV), respectively, the 

grid's complexity is increasing drastically [Williams and Crawford 2010]. First at-

tempts on applying these Newton-Raphson-based methods to such highly dynamic 

Smart Grid Scenarios and dealing with related robustness and real-time issues of 

the algorithm are presented in [Krause and Lehnhoff 2008], [Krause and Lehnhoff 

2009] and [Krause and Lehnhoff 2010]. 

Under conventional centralized organization and (thus limited individual) con-

trol, these distributed and highly stochastical power sources could adversely affect 

power standards and quality, generation efficiency or violate capacity limits or re-

liability constraints of the existing infrastructure (feeders, transformers and lines 

especially in low-voltage distribution grids). 

Traditionally, grid utilization through load flows can be relatively well pre-

dicted on the basis of past loads generation schedules but distributed generation 

from renewable sources and high-capacity demand (e.g. from heat pumps, PEV or 

PHEV) is disruptive and stochastic in nature.  

The major weakness of deterministic transmission planning and load flow cal-

culation is their inability to take account of such probabilistic characteristics in 

power systems including uncertainties in load forecasting, generation schedules 

and random system faults. These situations are very difficult to identify using 

classical deterministic power flow mechanisms. 

With the methods of probabilistic load flow calculation covered in this chapter, 

we have demonstrated state-of-the-art approaches to tackle these issues. The 

downside of experiment-based and even Monte-Carlo-based methods is the com-

putational overhead when simulating large-scale networks (or the lack of precision 

for the latter one). In order to apply probabilistic load flow calculation to realistic 

(trans-national) large-scale power grids or even envision on-line algorithms for 

this task probabilistic calculus-based approaches are a major part of current re-

search on this topic. In this chapter we have covered a convolution-based method. 
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Another promising approach is the propagation of characteristic measures through 

the Jacobian matrix or other linearized models [Zhang and Lee 2004][Patra  

and Misra 1993]. With this contribution we have covered the basics that allow 

prospective readers to dive deeper into related further publications mentioned 

throughout this chapter. 
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Abstract. Energy is a critical foundation for economic growth and social progress. 
It is estimated that 70% of the world energy consumption could be provided from 
renewable resources by the year 2050 so that renewable energy which is the in-
evitable choice for sustainable economic growth, for the harmonious coexistence 
of human and environment as well as for the sustainable development is very im-
portant for the humanity. The aim of this chapter is to evaluate the renewable 
energy alternatives as a key way for resolving the Turkey’s energy-related  
challenges because of the fact that Turkey’s energy consumption has risen dramat-
ically over the past three decades as a consequence of economic and social devel-
opment. In order to realize this aim, the Multi-Attribute Utility Theory (MAUT) is 
used for the evaluation of renewable energy alternatives. According to MAUT, the 
overall evaluation U(x) of an object x is defined as a weighted addition of its eval-
uation with respect to its relevant value dimensions. In the evaluation phase, 4 
main attributes and 17 sub-attributes are used to determine the most appropriate 
renewable energy alternative among Solar, Wind, Hydropower, Biomass, and 
Geothermal.  

1   Introduction 

Energy is essential for economic and social development and improved quality of 
life in all countries. For that reason, energy constitutes one of the main inputs for 
economic and social development. In line with the increasing population, urbani-
zation, industrialization, spreading of technology and rising of wealth, energy con-
sumption is increasing. Energy consumption and consequently energy supply at 
minimum amount and cost is the main objective, within the approach of a sustain-
able development that supports economic and social development. Much of the 
world’s energy, however, is currently produced and consumed in ways that could 
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not be sustained if technology were to remain constant and if overall quantities 
were to increase substantially. Energy has an important role in our daily life. 
Moreover, energy sources affect the strategies of a country directly. In the world, 
two kinds of energy are available; non-renewable and renewable. Renewable 
energy is the energy derived from natural sources. Clean, domestic and renewable 
energy is commonly accepted as the key for future life. This is primarily because 
renewable energy resources have some advantages when compared to fossil fuels. 
Renewable energy sources are also often called alternative sources of energy. Re-
newable energy resources that use domestic resources have the potential to pro-
vide energy services with zero or almost zero emissions of both air pollutants and 
greenhouse gases. Main renewable energy resources are biomass energy, hydro 
energy, geothermal energy, solar energy, and wind energy. When we try to select 
any alternative using some attributes, we have to take into account conflicting is-
sues among the considered attributes. For example, two attributes that could be 
used in selecting a renewable energy alternative might be reliability and imple-
mentation cost. These are two conflicting attributes since an attempt to increase 
reliability possibly causes an increase in implementation cost. The selection 
among renewable energy alternatives is a multiattribute problem with many con-
flicting attributes. We have to evaluate some alternatives by taking into account 
their advantages and disadvantages based on selection attributes. Hence, this prob-
lem should be solved by a multiattribute method.  

To assess the environmental impacts of the renewable energy alternatives, life-
cycle assessment (LCA) is an important tool. Selection of product design, mate-
rials, processes, reuse or recycle strategies, and final disposal options requires 
careful examination of energy and resource consumption as well as environmental 
discharges associated with each prevention or design alternative. To accomplish 
this task, LCA models have been developed and software products are available. 
Because of the difficulty in estimating resource consumption and environmental 
discharges produced by processes associated with the life cycle of a renewable 
energy alternative, the scope of a LCA analysis is limited (simplified) by drawing 
an ad hoc system boundary that excludes all but a few upstream and downstream 
processes (Hendrickson et al., 1998). Therefore, the multiattribute utility theory 
used in our chapter evaluates Green and Renewable Energy System Alternatives 
by taking into account their benefits and costs along their life cycles through the 
selection attributes. 

Utility functions give us a way to measure investor’s preferences for wealth 
and the amount of risk they are willing to undertake in the hope of attaining great-
er wealth. The risk aversion property states that the utility function is concave or, 
in other words, that the marginal utility of wealth decreases as wealth increases. 
Different investors can and will have different utility functions. Theoretically, de-
cision makers comprise three types: risk averse, risk neutral, and risk taker (risk 
prone or risk seeking).  

The principle of expected utility maximization states that a rational investor, 
when faced with a choice among a set of competing feasible investment alterna-
tives, acts to select an investment which maximizes his expected utility of wealth. 
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For the construction of utility functions, the decision-maker’s preferences for 
gambles are often analyzed by the method suggested by Bell et al. (1978) and 
Keeney and Raiffa (1993). 

Multiattribute utility models can take into consideration the decision maker’s 

preferences in the form of utility function which is defined over a set of attributes. 

Utility is a measure of desirability or satisfaction and provides a uniform scale to 

compare and / or combine tangible and intangible attributes. A utility function is a 

devise which quantifies the preferences of a decision maker by assigning a numer-

ical index to varying levels of satisfaction of an attribute. A utility value is an ab-

stract equivalent of the abstract being considered from natural units such as years, 

or $, into a series of commensurable units on an interval scale of zero to one. Such 

transformation of value, may, or may not, be a linear function. This is primarily 

dependent upon the decision maker(s) or expert(s) from which such functions 

were derived. The utility models may be multiplicative or additive. The decision 

maker must first check which model is suitable for the considered problem. Tur-

kish energy consumption has risen dramatically over the past 20 years due to the 

combined demands of industrialization and urbanization. Turkey’s primary energy 

consumption has increased from 32 mtoe (million tons of oil equivalents) in 1980 

to 74 mtoe in 1998. According to the planning studies, Turkey’s final consumption 

of primary energy is estimated to be 171 mtoe in 2010 and 298 mtoe in 2020. In 

other words, in 1999, domestic energy production met 36% of the total primary 

energy demand and will probably meet 24% in 2020. The level of Turkey’s energy 

consumption is still low relative to similar sized countries, such as France and 

Germany, with gross inland consumptions of 235 and 339 mtoe in 1995 and with 

estimated values of 290 and 350 mtoe in 2020, respectively (Hepbaslı and Ozalp, 

2003). When the case of Turkey is considered, it can be said that Turkey is heavily 

dependent on imported energy resources placing a big burden on the economy. Air 

pollution is also becoming a great environmental concern in the country. In this 

situation, renewable energy resources appear to be the one of the most efficient 

and effective solutions for clean and sustainable energy development in Turkey. 

Turkey’s geographical location has several advantages for extensive use of most 

of these renewable energy sources. As Turkey’s economy has expanded in recent 

years, the consumption of primary energy has increased. Presently in order to in-

crease the energy production from domestic energy resources, to decrease the use 

of fossil fuels as well as to reduce of green house gas emissions, different renewa-

ble energy sources are used for energy production in Turkey. Among these renew-

able energy resources, hydropower, biomass, biogas, bio-fuels, wind power, solar 

energy and geothermal energy are the most favorite ones in the future. The selec-

tion of the best alternative for Turkey takes an important role for energy invest-

ment decisions. There are various decision-making methodologies developed by 

researches in the literature. Among the most used multi-criteria decision making 

methods for renewable energy investments, it can be counted Analytic Hierarchy 

Process (AHP), Analytic Network Process (ANP), Multi Attribute Utility Models, 

Preference Ranking Organization Method for Enrichment Evaluation 
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(PROMETHEE), the elimination and choice translating reality (ELECTRE), a hy-

brid of ELECTRE III, and PROMETHEE II.  
In this chapter, to the best of our knowledge, the MAUT is first time used for 

the evaluation of green and renewable energy alternatives. The rest of this chapter 
is organized as follows: Multiple attribute utility models and recent studies on de-
cision making by using MAUT are explained in Section 2. Renewable energy and 
alternatives are briefly summarized in Section 3. The application is detailed in 
Section 4 and the obtained results are discussed in Section 5.  

2   Multiple Attribute Utility Models 

Multiple attribute utility theory (MAUT) which is an analytical method for deci-
sion-making based on multiple criteria originated in the eighteenth century  
was developed by Keeney and Raiffa (1976).One important class of methods in 
multicriteria decision making (MCDM) is based on constructing a utility or value 

function ( )U x , which represents the overall strength of support in favor of the 

alternative x . This approach is known as the multiple attribute utility theory 

(MAUT) (Beliakov and Warren, 2001). MAUT is one of the major analytical tools 
associated with the field of decision analysis. The MAUT analysis of alternatives 
explicitly identifies the measures that are used to evaluate the alternatives, and 
helps to identify those alternatives that perform well on a majority of these meas-
ures, with a special emphasis on the measures that are considered to be relatively 
more important. MAUT can be used instead of a costing approach when good cost 
data are not available or when cost is not suitable as a measure of performance. 
Alternatively, MAUT can be used to embellish costing information that is consi-
dered to be incomplete (e.g., to account for the intangibles) (Butler et al., 2001). 

In general, the utility ( ) ( )nxxxxUxU ..., , , , 321= , of any combination of 

outcomes ( )nxxxx ... , , , 321  for n attributes ( )nXXXX ..., , , , 321  can be ex-

pressed as either (i) an additive or (ii) a multiplicative function of the individual 

attribute utility functions ( ) ( ) ( ) ( )nn xUxUxUxU  ,..., , , 332211  provided that 

each pair of attributes is preferentially independent of its complement and utility 
independent of its complement (Canada and Sullivian, 1989). 

2.1   Additive Utility Model 

In this case, the attributes should be additively independent. This will be true if ∑ =
=

n

i ik
1

1  in the model as given in Eq. 1. The utility ( )xU  of any combination 

of outcomes for n attributes ( )nXXXX ... , , , 321  can be expressed as follows 

(Canada and Sullivian, 1989): 
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( ) ( ) ( )∑∑
==

==
n

i

iii

n

i

ii xUkxxUxU
11

0,                                      (1) 

where ( )0, ii xxU  is the utility of the outcome for the ith criterion, xi, and the worst 

possible outcome for the complement of the ith attribute, 
0

ix , ki is the weight 

(scaling factor) for the ith attribute, and  ( )ii xU  is the utility of the outcome xi for 

the ith attribute. Further conditions and explanations for the additive utility model 
are as follows (Canada and Sullivian, 1989): 

• U  is normalized by ( ) 0..., , , , 00

3

0

2

0

1 =nxxxxU  and 

( ) 1..., , , , **

3

*

2

*

1 =nxxxxU .00 (Note: 
0

ix  means the worst outcome of ix  and 

*

ix  means the best outcome of ix ). 

• iU  is a conditional utility function of ix  normalized by ( ) 00 =ii xU  and 

( ) 1* =ii xU , for ni  ..., ,2 ,1=  attributes. 

• ( ), , 0*

iii xxUk =  for ni  ..., ,2 ,1=  attributes.  

2.2   Multiplicative Utility Model 

The utility ( )xU  of any combination of outcomes of n attributes can be obtained 

from the solution to the following equation (Canada and Sullivian, 1989):  

( ) ( )[ ]∏
=

+=+
n

i

iii xUKkxKU
1

11                                  (2) 

Solving for ( )xU  gives 

( )
( )[ ]

K

xUKk

xU

n

i

iii 11
1

−+

=
∏

=                                  (3) 

where  

• ( )xU  is normalized by ( ) 0..., , , , 00

3

0

2

0

1 =nxxxxU  and 

( ) 1..., , , , **

3

*

2

*

1 =nxxxxU . 

• ( )ii xU  is a conditional utility function of iX  normalized by ( ) 00 =ii xU  and 

( ) 1* =ii xU , for ni  ..., ,2 ,1= . 

• ( ) , 0*

iii xxUk = .  
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• K is a scaling constant that is a solution to 

( )∏
=

+=+
n

İ
iKkK

1

11                                             (4) 

and must be found iteratively. When utility independence applies, as assumed by 

the model, 01 <<− K . 

2.3   Determination of Utility Functions for Individual Attributes 

To use either of the models above, a utility function must be specified for each 

attribute, ,iX  where ( ) 00 =ii xU  and ( ) 0.1* =ii xU . The shape of each utility 

function depends on the decision maker’s subjective judgments  on the relative de-
sirability of various outcomes. This can be done by obtaining answers to a series 

of questions such as the following: For attribute ,iX what certain outcome, ,ix  

would be equally as desirable as a P% chance of the highest outcome and (1-P)% 
chance of the lowest outcome? This can be expressed in utility terms, using the 

extreme values, 
*

ix  and  
0

ix , as (Canada and Sullivian, 1989): 

( ) ( ) ( ) ( )0* 1? iii xUPxPUxU −+==                              (5) 

To obtain plotting plots for the utility function, one can vary P as desired. Alterna-

tively, one could specify the certain outcome, ix  over a range of values and ask 

questions such as: At what P is the certain outcome x  equally desirable as   

( ) ( ) ( )?1 0*

ii xUPxPU −+   

Note that the utility of the certain outcome=the probability of the best outcome, 

which saves calculations. The points on possible curve can be determined and 

plotted until one is satisfied with the “accuracy” of his or her utility representation.  

2.4   Determination of Weighting or Scaling Factors 

Once utility functions for all criteria have been determined, the next step is to de-

termine the weighting for each attribute, ik . From the explanations for both the 

additive and multiplicative utility models, ( ) , 0*

iii xxUk = , where  10 ≤≤ ik . 

In words, ik is the utility if the outcome for attribute i is at its best value, 
*

ix , and 

the outcome for all attributes except i are at their respective worst values,  
0

ix . 

Two types of questions often helpful in assessing the ik ’s are given below  

(Canada and Sullivian, 1989):  
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Question A 

For what probability P are you indifferent between: 

• The lottery giving a P chance at ( ) ,..., , , **

3

*

2

*

1

*

nxxxxx =   and (1-P) chance 

at ( ) ,..., , , 00

3

0

2

0

1

0

nxxxxx =  

• The consequence ( ) ,...,, ,, ... , 00

1

*0

1

0

niiii xxxxx +−  

The above is shown diagrammatically and in words in Figure 1. The result of 

such an assessment is that ikP = . 

 

Fig. 1 Illustration of Question A for finding weighting or scaling factor, ki, for the ith 
attribute (Canada and Sullivian, 1989) 

Question B 

Select a level of ( )i e.g. xX i
′  for attribute i and a level of  ( )j e.g. xX j

′  for 

attribute j so that you are indifferent between: 

• An outcome yielding ix′  and 
0

jx  together, and 

• An outcome yielding jx′  and 
0

ix  together. 

Thus one can use the relation 

( ) ( )jjjiii xUkxUk ′=′   

To solve for either ik  or jk , depending on which is unknown. 

Suggested good practice in assessing the k ’s would be first to rank them, then 

to use question A to evaluate the largest ik , and then to use question B succes-

sively to evaluate the magnitude of the other ik ’s relative to the largest ik , or  

vs 

Option 1 

P 

1-P 

**
3

*
2

*
1 ,..., , , nxxxx  

(All attributes outcomes 
are at the best levels) 

00
3

0
2

0
1 ,..., , , nxxxx  

(All attributes outcomes 
are at the worst levels) 

Option 2 

00
1

*0
1

0
1 ,...,, , ,..., niii xxxxx +−  

(Outcome for attribute i is at the 
best level and outcomes for all other 
attributes are at the worst level) 
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relative to any other ik  which has already been determined  The rank ordering of 

the ik ’s can be done by intuitive judgment or by asking the decision maker, for 

instance, whether the prefers ( )0

1

*

1  , xx  or ( )0

2

*

2  , xx . If the former is preferred, 

21 kk > , and if the latter is preferred, 12 kk > . This can be done for as many 

combinations of weighting factors as deemed needed to check for consistency. 

(Note: 
0

1x  means all x  attributes other than 1x are at their respective worst  

values.) (Canada and Sullivian, 1989). 
The usage of MAUT in the literature has been briefly summarized in the fol-

lowing: De Melo Brito et al. (2010) developed several decision models by using 
different multi-criteria methods. They integrated utility functions with the variable 
interdependent parameters method to evaluate alternatives through an additive 
value function regarding mean time to repair, contract cost, the geographical 
spread of the candidate’s service network, the candidate’s reputation and the  
compatibility of company cultures. Zhang and Xing (2010) presented a fuzzy-
multi-objective particle swarm optimization (PSO) to solve the fuzzy time–cost–
quality tradeoff (TCQT) problem. They described the time, cost and quality as 
fuzzy numbers and a fuzzy multiattribute utility methodology incorporated with 
constrained fuzzy arithmetic operations was adopted to evaluate the selected  
construction methods. They applied PSO to search for the TCQT solutions by in-
corporating the fuzzy multi-attribute utility methodology. Nishizaki et al. (2010) 
proposed a method for the sensitivity analysis of multiattribute utility functions in 
multiplicative form, taking into account the imprecision of the decision maker’s 
judgment in the procedures for determining attribute weights. Streicher-Porte et al. 
(2009) applied MAUT to the supply of computers to schools in Colombia by eva-
luating three different supply scenarios. Wang et al. (2009) introduced net promo-
ter score technology to help firms target satisfied or passive consumers, and allow 
them to highlight the additional value to consumers of environmentally-friendly 
products. To achieve the above goals, MAUT was used to develop an aggregated 
fulfillment level in relation to obtaining such products. Yang et al. (2009) devel-
oped a new hybrid methodology to explain the role of Bayesian Networks in 
MAUT. They proposed a novel utility function, which can appropriately represent 
the risk results produced and avoid the arguments resulting from exclusive states 
expressed by linguistic variables with fuzzy nature and the ignorance/incomplete 
representation of context dependency between decision attributes. Cirtita and Ilieş 
(2009) proposed a tool to define the best network alternative in downstream 
supply chain, based on MAUT, creating a value function with scalable importance 
criteria coefficients. Abouelnaga et al. (2009) used MAUT to optimize the selec-
tion process for energy alternatives which are nuclear, hydroelectric, gas/oil, and 
solar in Egypt. Jimenez et al. (2009) considered the situation where there was the 
least knowledge of the alternative consequences or performances, i.e. when there 
is no knowledge whatsoever of the performance of several alternatives for some 
attributes, i.e. neither a precise performance nor a probability distribution can be 
specified in MAUT. Zhang (2008) proposed a framework of multi-objective  
simulation optimization for optimizing equipment-configurations of earthmoving 
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operations by integrating an activity object-oriented simulation, MAUT, a statis-
tical approach like the two-stage ranking and selection procedure and particle 
swarm optimization algorithm. The MAUT was applied to evaluate the perfor-
mances generated through simulation by considering multiple criteria and the pre-
ference of decision-makers. Kainuma and Tawara (2006) extended the range of 
the supply chain to include re-use and recycling throughout the life cycle of prod-
ucts and services and proposed the MAUT method for assessing a supply chain. 
Xu and Huang (2006) proposed a quantitative setup plan evaluation system driven 
by MAUT coupled with manufacturing error simulation to serve three purposes: 
(i) to clarify what is optimality of setup plans, (ii) to provide a systematic method 
of evaluating setup plan alternatives quantitatively, and (iii) to incorporate in ex-
isting automatic setup planning systems a human interface to fulfill their potential 
values. Jimenez et al. (2003) described a decision support system based on an ad-
ditive or multiplicative multiattribute utility model for identifying the optimal 
strategy. Butler et al. (2001) described the application and detailed of how they 
used the simulator, MAUT, and statistical ranking and selection to select the best 
project configuration of possible configurations. Sohn et al. (2001) proposed a me-
thod to aggregate multi-stakeholder opinions and assimilate the public opinions 
during the course of the decision making process. The analytic hierarchy process 
(AHP) and MAUT were employed, and for uncertainty analysis, a fuzzy set based 
approach was adopted in the aggregation phase. Malakooti and Subramanian 
(1999) developed a generalized decomposable multiattribute utility function for 
representing the decision maker's preferential behavior. Malakooti (1989) intro-
duced a quasi-concave nonlinear multiple attribute utility function to rank multiple 
criteria alternatives. 

3   Renewable Energy 

Renewable energy sources have been important for humans since the beginning of 
civilization. In the following, each renewable energy alternative is briefly explained 
(Kaygusuz, 2002; 2003; Ulutaş, 2005; Demirbaş, 2008; Kahraman et al., 2009): 

Biomass 

Biomass refers to living and recently dead biological material that can be used as 
fuel or for industrial production. Most commonly, biomass refers to plant matter 
grown for use as biofuel, but it also includes plant or animal matter used for pro-
duction of fibres, chemicals or heat. Biomass may also include biodegradable 
wastes that can be burnt as fuel. It excludes organic material which has been trans-
formed by geological processes into substances such as coal or petroleum. Unlike 
other renewable energy sources, biomass can be converted directly into liquid fu-
els for transportation needs. It can be used as a diesel additive to reduce vehicle 
emissions or in its pure form to fuel a vehicle. 

Hydropower 

Hydropower or hydraulic power is the power derived from the force or energy  
of moving water, which may be harnessed for useful purposes. Hydropower is  
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obtained in the force of the water on the riverbed and banks of a river. It is particu-
larly powerful when the river is in flood. The force of the water results in the re-
moval of sediment and other materials from the riverbed and banks of the river, 
causing erosion and other alterations. The most common type of hydropower plant 
is using a dam on a river to store water in a reservoir. When the water released 
from the reservoir flows through a turbine, a generator activates to produce electric-
ity by spinning the turbine. Another type of hydropower plant called a pumped sto-
rage stores power. The power is sent from a power grid into the electric generators.  

Geothermal energy 

Geothermal power is energy generated by heat stored beneath the Earth's surface 
or the collection of absorbed heat derived from underground in the atmosphere 
and oceans. 

Solar energy 

Solar energy can be used to generate electricity, provide hot water, and to heat, 
cool, and light buildings. Photovoltaic (solar cell) systems convert sunlight direct-
ly into electricity. A solar or PV cell consists of semi-conducting material that  
absorbs the sunlight. The solar energy knocks electrons loose from their atoms,  
allowing the electrons to flow through the material to produce electricity. 

Wind energy 

Wind turbines capture the wind’s energy with two or three propeller-like blades, 
which are mounted on a rotor, to generate electricity. The turbines sit high atop 
towers, taking advantage of the stronger and less turbulent wind at 100 ft (30 m) 
or more aboveground. Wind turbines can be used as stand-alone applications, or 
they can be connected to a utility power grid or even combined with a photovol-
taic (solar cell) system. Stand-alone turbines are typically used for water pumping 
or communications.  

In recent years, some studies have concentrated on energy planning and energy 

policy making. Kahraman and Kaya (2010) suggested a fuzzy multicriteria deci-

sion-making methodology based on the analytic hierarchy process (AHP) under 

fuzziness and allowed the evaluation scores from experts to be linguistic expres-

sions, crisp or fuzzy numbers for the selection among energy policies for Turkey. 

Aydın et al. (2010) developed a decision support tool for site selection of wind 

energy turbines in the Geographic Information System environment using fuzzy 

decision making approach. This decision support tool enabled aggregation of  

individual satisfaction degrees of each alternative location for various fuzzy envi-

ronmental objectives. Kahraman et al. (2010) suggested axiomatic design metho-

dology for the selection among renewable energy alternatives under fuzzy  

environment. Kaya and Kahraman (2010) proposed a methodology based on fuzzy 

VIKOR and fuzzy AHP to determine the best renewable energy alternative for Is-

tanbul. They also used the proposed methodology to selection among alternative 

energy production sites in Istanbul. Kucukali and Baris (2010) employed a fuzzy 

logic method to forecast the gross electricity demand of Turkey. Kahraman et al. 
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(2009) suggested two fuzzy multicriteria decision making methodologies for the 

selection among renewable energy alternatives. The first methodology was based 

on the fuzzy AHP which allowed the evaluation scores from experts to be linguis-

tic expressions, crisp, or fuzzy numbers, while the second was based on AD  

principles under fuzziness which evaluated the alternatives under objective or sub-

jective criteria with respect to the functional requirements obtained from experts. 

In the application of the proposed methodology the most appropriate renewable 

energy alternative was determined for Turkey. Afgan and Carvalho (2008) used 

sustainability assessment method for the evaluation of quality of the selected  

hybrid energy systems. They used the following indicators: economic indicator, 

environment indicator, and social indicator. Patlitzianas et al. (2008) presented an 

information decision support system, which consists of an expert subsystem, as 

well as a multi criteria decision making (MCDM) subsystem. The system sup-

ported the state toward the formulation of a modern environment, since it incorpo-

rates the ‘‘new parameters’’ of the energy market, namely the liberalization and 

the climate change. The system was successfully applied in the 13 accession 

member states of the European Union. Burton and Hubacek (2007) investigated a 

local case study of different scales of renewable energy provision for local  

government in the UK. They compared the perceived social, economic and envi-

ronmental cost (SEE) of these small-scale energy technologies to larger-scale  

alternatives. In order to investigate whether the energy could have been generated 

at a lower SEE cost if large-scale projects had been available, a multi-criteria  

decision analysis (MCDA) methodology was used to compare the advantages and 

disadvantages of a number of different renewable energy technologies. They con-

sidered eight renewable energy technologies of differing scales: solar photovol-

taic, micro-wind, microhydro, large-scale wind, large-scale hydro, energy from 

waste, landfill gas and biomass (wood chippings) based on the definition of re-

newable energy used by the UK government. Patlitzianas et al. (2007) presented 

an integrated multicriteria decision making approach, ordered weighted average, 

of qualitative judgments for assessing the environment of renewable energy pro-

ducers in the fourteen different member states of the European Union accession. 

Afgan et al. (2007) presented an evaluation of the potential natural gas utilization 

in energy sector. They classified the criteria as economic, environmental, social 

and technological. Among the potential options of gas utilization following sys-

tems were considered: Gas turbine power plant, combine cycle plant, Combined 

Heat and Power (CHP) plant, steam turbine gas-fired power plant, fuel cells power 

plant. They also used multi-criteria method, general index of sustainability, for  

the assessment of potential options with priority given to the economic, environ-

mental, social and technological criteria. Çam (2007) compared a conventional  

proportional integral controller and a fuzzy gain scheduled proportional integral 

controller for applying to a single area and a two area hydroelectric power plant, 

considering Turkey’s several hydro power sources. Jebaraj and Iniyan (2007) de-

veloped a fuzzy-based linear programming optimal energy model that minimized 

the cost and determined the optimum allocation of different energy sources for the 
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centralized and decentralized power generation in India. Polatidis et al. (2006) de-

veloped a methodological framework to provide insights regarding the suitability 

of multi-criteria techniques in the context of renewable energy planning. They 

created a comparative matrix with the various appropriate multi-criteria  

techniques and their performance for renewable energy planning. Ulutaş (2005) 

analyzed the appropriate energy policy problem which considers as a MCDM 

problem with interactive criteria and alternatives. She used the ANP to evaluate 

the alternative energy sources for Turkey’s energy resources. Cavallaro and Cirao-

lo (2005) proposed a multicriteria method in order to support the selection and 

evaluation of one or more of the solutions to make a preliminary assessment re-

garding the feasibility of installing some wind energy turbines in a site on the isl-

and of Salina in Italy. They compared the four wind turbine configurations. They 

used a multicriteria methodology to rank the solutions from the best to the worst. 

Haralambopoulos and Polatidis (2003) described an applicable group decision-

making framework for assisting with multi-criteria analysis in renewable energy 

projects, utilizing the PROMETHEE II outranking method to achieve group con-

sensus in renewable energy projects. The proposed framework was tested in a case 

study concerning the exploitation of a geothermal resource, located in the island of 

Chios, Greece. Beccali et al. (2003) made an application of the multicriteria deci-

sion-making methodology to assess an action plan for the diffusion of renewable 

energy technologies at regional scale. They also carried out a case study for the 

island of Sardinia. They used ELECTRE-III method under fuzzy environment. 

Borges and Antunes (2003) presented an interactive approach to deal with fuzzy 

multiple objective linear programming problems based on the analysis of the  

decomposition of the parametric (weight) diagram into indifference regions  

corresponding to basic efficient solutions. The approach was illustrated to tackle 

uncertainty and imprecision associated with the coefficients of an input–output 

energy-economy planning model, aimed at providing decision support to decision 

makers in the analysis of the interactions between the energy system and the 

economy on a national level. Afgan and Carvalho (2002) presented the selection 

of criteria and options for the new and renewable energy technologies assessment 

based on the analysis and synthesis of parameters under the information deficien-

cy method to define energy indicators used in the assessment of energy systems 

which met the sustainability criterion. They took into account energy resources, 

environment capacity, social indicators and economic indicators. Goumas and Ly-

gerou (2000) extended a multicriteria method of ranking alternative projects, 

PROMETHEE, to deal with fuzzy input data. The proposed method was applied 

for the evaluation and ranking of alternative energy exploitation schemes of a low 

temperature geothermal energy. 
The selection among renewable energy alternatives is a multicriteria decision 

making problem with many conflicting criteria. Hence, this problem should be 
solved by a multicriteria method. In this chapter, the most appropriate renewable 
energy alternative for Turkey is determined by using a multiple attribute utility 
model.  



Evaluation of Green and Renewable Energy System Alternatives 169

 

4   An Application: The Case of Turkey  

The Republic of Turkey, located in Southeastern Europe and Southwestern Asia, 

has an area of about 780,580 sq km and a population of over 70 million. With its 

young population, growing energy demand per person, fast growing urbanization 

and economic development, Turkey has been one of the fast growing power mar-

kets of the world for the last two decades. Turkey is an energy importing country; 

more than half of the energy requirement has been supplied by imports. Turkey’s 

primary energy sources include hydropower, geothermal, lignite, hard coal, oil, 

natural gas, wood, animal and plant wastes, solar and wind energy. In 2004, pri-

mary energy production and consumption has reached 24.1 million tonnes (Mt) of 

oil equivalent (Mtoe) and 81.9 Mtoe, respectively. Fossil fuels provided about 

86.9% of the total energy consumption of the year 2004, with oil (31.5%) in first 

place, followed by coal (27.3%) and natural gas (22.8%). Turkey has not utilized 

nuclear energy yet. The Turkish coal sector, which includes hard coal as well as 

lignite, accounts for nearly one half of the country’s total primary energy produc-

tion (43.7%). The renewable collectively provided 13.2% of the primary energy, 

mostly in the form of combustible renewables and wastes (6.8%), hydropower 

(about 4.8%) and other renewable energy resources (approximately 1.6%) (Erdog-

du, 2010; IEA, 2007). 

Because of the increasing population and life standards in Turkey, fossil fuel 

consumption is increasing. As a result, fossil fuels are being depleted rapidly. 

Another important problem associated with fossil fuels is that their consumption 

has major negative impacts on the environment. Therefore, Turkey has to include 

renewable energy alternatives in their future energy plans so that they can produce 

reliable and environmentally friendly energy. For this aim, a multicriteria decision 

making methodology is used to determine the most appropriate renewable energy 

alternative for Turkey in this paper. 

According to 1970-2006 data, Turkey produced 342,458 ktoe from its own re-

newable energies alternatives and consumed it’s all. It is expected that by the year 

2020, the renewable energy production will be 19,841.49 ktoe, while renewable 

energy consumption will be 19,841.49 ktoe (Republic of Turkey Ministry of 

Energy and Natural Resources, 2008). As fossil fuel energy becomes scarcer, Tur-

key will face energy shortages, significantly increasing energy prices, and energy 

insecurity within the next few decades. In addition, Turkey’s continued reliance 

on fossil fuel consumption will contribute to accelerating the rates of domestic en-

vironmental quality and global warming. For these reasons, the development and 

use of renewable energy sources and technologies are increasingly becoming vital 

for sustainable economic development of Turkey. 

In this chapter, the attributes in Table 1 will be used to evaluate renewable 

energy alternatives. They are briefly explained in the following (Kahraman et al., 

2009):  
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Table 1 Main and sub criteria and their utility ranges to select the best renewable energy  
alternative  

Main Criteria Sub-Criteria Utility Range Utility Characteristics 

C1: Technological 

C11: Feasibility 
0-10  The number of times tested 

successfully

C12: Risk 

20-0  The number of problems 

for failures in a tested case 

C13: Reliability 

0-10  The number of times tested 

successfully 

C14: The duration of prep-

aration phase 

36- 12  Month 

C15: The duration of im-
plementation phase 

12- 6  Month 

C16: Continuity and pre-
dictability of performance 

0-10  The number of times tested 

successfully 

C17: Local technical know 

how 

0-20  Score 

C2: Environmental 

C21: Pollutant emission 
200-50 g/km or g/km

2
 

C22: Land requirements 
100-1 km

2
 

C23: Need of waste dis-

posal 

0-20  Score 

C3: Socio-Political 

C31: Compatibility with 
the national energy policy 

0-20  Score 

C32: Political acceptance 
0-20  Score 

C33: Social acceptance 
0-20  Score 

C34: Labour impact 
5-250 Manpower 

C4: Economic 

C41: Implementation cost 

5,000,000 -

750,000  

$/MW (Megawatt) per site 

C42: Availability of funds 
0-20  Score 

C43: Economic value (PW, 

IRR, B/C) 

750 - 40  MWh (Megawatt Hours) 
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Feasibility (C11): This criterion measures the secure of the possibility for imple-

mentation of the renewable energy. The number of times tested successfully can 

be taken into account as a decision parameter. 

Risk (C12): The risk criterion evaluates the secure of the possibility for imple-

mentation of a renewable energy by measuring the number of problems for fail-

ures in a tested case. 

Reliability (C13): This criterion evaluates the technology of the renewable ener-

gy. Technology may have been only tested in laboratory or only performed in pilot 

plants, or it could be still improved, or it is a consolidated technology. 

The duration of preparation phase (C14): The criterion measures the availabili-

ty of the renewable energy alternative to decrease financial assets and reach the 

minimum cost. The preparation phase is judgment by taking into accounts years or 

months. 

The duration of implementation phase (C15): The criterion measures the appli-

cability of the renewable energy alternative to reach the minimum cost. The cost 

of implementation phase is judgment by taking into accounts years or months of 

implementation. 

Continuity and predictability of performance (C16): This criterion evaluates 

the operation and performance of the technology for renewable energy alterna-

tive. It is important to know if the technology operates continuously and  

confidently.  

Local technical know how (C17): This criterion includes an evaluation which 

is based on a qualitative comparison between the complexity of the considered 

technology, and the capacity of local actors to ensure an appropriate operating 

support for maintenance and installation of technology for renewable energy  

alternative. 

Pollutant emission (C21): The criterion measures the equivalent emission of 

CO2, air emissions which are the results of combustion process, liquid wastes 

which are related to secondary products by fumes treatment or with process water, 

and solid wastes. The evaluation of the criterion includes type and quantity of 

emissions, and costs associated with wastes treatments. Also the electro-magnetic 

interferences, bad smells, and microclimatic changes for energy investment are 

taken into account in the evaluation of this criterion. 

Land requirements (C22): Land requirement is one of the most critical factors 

for the energy investment. A strong demand for land can also determine the  

economic losses. 
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Need of waste disposal (C23): The criterion evaluates the renewable energy’s 

damage on the quality of the environment. The renewable energy alternative can 

be evaluated to reduce damage on the quality of life and to increase sustainability 

by taking into account this criterion. 

Compatibility with the national energy policy objectives (C31): The criterion 

analyzes the integration of the national energy policy and the suggested renewable 

energy alternative. It measures the degree of objectives’ convergence between the 

government policy and the suggested policy. The criterion also takes into account 

the government’s support, the tendency of institutional actors, and the policy of 

public information. 

Political acceptance (C32): The criterion searches whether or not a consensus 

among leaders’ opinions for proposed renewable energy alternative exists. Also it 

takes into account avoiding the reactions of the politicians and to satisfying of  

political leaders.  

Social acceptance (C33): The criterion enhances consensus among social part-

ners. Also it takes into account avoiding the reactions from special interest social 

groups for renewable energy alternatives.  

Labour impact (C34): Renewable energy alternatives are evaluated by taking  

into account labour impact which is analyzed taking care of direct and indirect 

employment and the possible indirect creation of new professional figures are also 

assessed. 

Implementation cost (C41): This criterion analyzes the total cost of the energy 

investment in order to be fully operational. 

Availability of funds (C42): This criterion evaluates the national and internation-

al sources of funds, and economic support of government. 

Economic value (PW, IRR, B/C) (C43): This criterion judges the proposed  

renewable energy alternative as economically by using one of the engineering 

economics techniques which are present worth (PW), internal rate of return (IRR), 

benefit/cost analysis (B/C), and payback period.  

The hierarchical structure for the selection of the best renewable energy  

alternative is shown in Figure 2. The decision makers who are composed of one 

professor from Industrial Engineering Department, two professors from Insti-

tute of Energy, and two top managers of energy sector in Turkey, evaluate the 

selection process. In the first stage, the utility curves are obtained for the  

sub-criteria.  



Evaluation of Green and Renewable Energy System Alternatives 173

 

 

Fig. 2 A hierarchy for the selection of the best renewable energy alternative in Turkey 
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The utility curves for Technological, Environmental, Socio Political and Eco-
nomic criteria are illustrated in Figures 3-6, respectively. 

 

  
 

   
 

  
 

 

Fig. 3 The utility curves for Technological Criteria 

 



Evaluation of Green and Renewable Energy System Alternatives 175

 

  
 

 

Fig. 4 The utility curves for Environmental Criteria 

  
 

  

Fig. 5 The utility curves for Socio-Political Criteria 
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Fig. 6 The utility curves for Economic Criteria 

The local and global weights and ranks of the selection attributes are obtained 
by using AHP. The obtained results are shown in Table 2. 

Table 2 The local and global weights & ranks of attributes for renewable energy criteria 

    Local Global 

 Main Attributes  Sub-Attributes Weight Rank Weight Rank 

Technological (0.440) 

Feasibility 0.106 5 0.046 7 

Risk 0.335 1 0.148 3 

Reliability 0.241 2 0.106 4 

The duration of preparation phase 0.043 6 0.019 12 

The duration of implementation phase 0.037 7 0.016 13 

Continuity and predictability of per- 0.108 4 0.048 6 

Local technical know how 0.130 3 0.057 5 

Environmental (0.411) 

Pollutant emission 0.507 1 0.208 1 

Land requirements 0.074 3 0.030 10 

Need of waste disposal 0.420 2 0.172 2 

Economic (0.084) 

Implementation cost 0.161 3 0.014 14 

Availability of funds 0.291 2 0.025 11 

Economic value (PW, IRR, B/C) 0.548 1 0.046 8 

Socio-Political (0.064) 

Compatibility with the national energy 
policy objectives 

0.629 1 0.040 9 

Political acceptance 0.116 3 0.007 16 

Social acceptance 0.143 2 0.009 15 

Labour impact 0.111 4 0.007 17 
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It is now time to determine the scaling factors. For this aim, the two types of 
questions to obtain the scaling factors are asked: What probability P of all 
attribute outcomes at their best levels (C11*, C12*,…,C15*, C16*,…,C42*, C43*) 

versus probability  (1−P ) of all attribute outcomes at their worst levels (C110, 
C120,…,C150,C160,…,C420, C430) would be as desirable as “pollutant emission” 
at its best level and all other attributes at their worst levels (C110, C120,…,C21*, 
C220,…,C420, C430)? The compromised answer from the decision makers was 

0.05 ( )1 0.05k = . The next step is to ask the second question: What “pollutant 

emission” level, given “need of waste disposal” at its worst, C230, (i.e. 5) would 
be as desirable as what “need of waste disposal”, given the “pollutant emission” at 
its worst, C210, (i.e. 150 g/km or g/km2)? The compromised answers from the  
decision makers were as follows: 

1 150x =  for pollutant emission and 2 18x =  for need of waste disposal. The 

scaling factor for need of waste disposal is calculated as follows: 

( ) ( )

( ) ( )
1 1 1 2 2 2

1 2 2

2

2

0.05 150 18

0.05 0.4 0.85

0.02

k U x k U x

U k U

k

k

=

× = ×

× = ×

=

 

The scaling factors for the other attributes are obtained by the same way and 

they are shown in Table 3. Since 
1

1.00
n

ii
k

=
≠∑ , the multiplicative utility model 

is suitable for renewable energy alternatives.Then the scaling constant K , is de-

termined as -0.000001K = . The compromised outcomes from the decision 
makers for renewable energy alternatives and their utilities are obtained as shown 
in Table 3. 

Table 3 The scaling factor values and utilities for renewable energy alternatives 

   Biomass Hydropower Geothermal Wind Solar 

Rank Sub-Criteria ki Ui(xi) Ui(xi) Ui(xi) Ui(xi) Ui(xi) 

1 C21 0.0500 0.75 0.75 0.7 0.98 0.98 

2 C23 0.0235 0.85 0.7 0.9 0.9 0.9 

3 C12 0.0097 0.9 0.85 0.8 0.95 0.95 

4 C13 0.0051 0.85 0.85 0.85 0.95 0.95 

5 C17 0.0026 0.85 0.85 0.95 0.85 0.3 

6 C16 0.0064 0.8 0.8 0.83 0.9 0.9 

7 C11 0.0053 0.8 0.8 0.8 0.8 0.45 

8 C43 0.0023 0.75 0.75 0.75 0.85 0.85 
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Table 3 (continued) 

9 C31 0.0015 0.8 0.7 0.8 0.95 0.95 

10 C22 0.0019 0.7 0.7 0.7 0.9 0.9 

11 C42 0.0024 0.75 0.9 0.74 0.75 0.75 

12 C14 0.0025 0.8 0.8 0.8 0.8 0.8 

13 C15 0.0031 0.83 0.8 0.83 0.65 0.5 

14 C41 0.0013 0.75 0.72 0.75 0.7 0.7 

15 C33 0.0003 0.85 0.8 0.7 0.9 0.9 

16 C32 0.0004 0.85 0.8 0.7 0.95 0.95 

17 C34 0.0001 0.73 0.7 0.7 0.7 0.7 

The utility values for renewable alternatives are calculated and shown in  
Table 4. 

Table 4 The utility values and their ranking for renewable alternatives 

Alternatives U(x) Rank

Biomass 0.09440 3 

Hydropower 0.09042 5 

Geothermal 0.09243 4 

Wind 0.10899 1 

Solar 0.10527 2 

According to Table 4, “wind energy” alternative is determined as the most  
appropriate alternative for renewable energy in Turkey when the alternative  
“hydropower energy” is clarified as the worst renewable energy alternative for 
Turkey. The ranking of renewable energy alternative is determined as follows: 
{Wind – Solar - Biomass - Geothermal - Hydropower} 

5   Conclusion 

Energy is considered one of the most important factors in the generation of wealth 
and also a key factor to show the economic development. The importance of  
energy in economic development has been recognized almost universally; the his-
torical data attest to a strong relationship between the availability of energy and 
economic activity. It is well accepted that renewable energy alternatives have ad-
vantages over conventional energy systems in terms of environmental acceptabili-
ty. Turkey is a rich country for the purposes of renewable energy and renewable 
energy investments have been increasing in Turkey. For this purpose, this study  
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is based on the selection of the most appropriate renewable energy investment  
for Turkey.  

The selection of the suitable renewable energy alternative is very important to 
plan future’s energy consumption. Since the most forms of renewable energy al-
ternatives are dependent on multicriteria decision making, this paper is concerned 
with using multiple attribute utility analysis to evaluate renewable energy  
resources for Turkey. Multiple attribute utility analysis is targeted in solving prob-
lems of trading off the achievement of some objectives against other objectives to 
obtain the maximum overall utility. Multiple attribute utility analysis is used to as-
sess the decision-maker’s preference structure and model it mathematically with a 
multiple attribute utility function. This multiple attribute utility function is then 
applied to help the decision maker reach an optimal decision. 

In this chapter, MAUT is used to make a decision for selecting the best renew-
able energy for Turkey. The proposed MAUT methodology determines the most 
appropriate alternative based on utilities of criteria. The results of the proposed 
methodology suggest that “wind energy” as the best alternative, after considering 
four main criteria and 17 sub-criteria. Wind and Solar Energy alternatives are de-
termined as the most suitable renewable alternatives, respectively for Turkey. This 
result confirms that wind energy causes no emissions and will be the most suitable 
alternative to resolve Turkey’s energy problem in the future. One of the major 
contributions of wind energy to environmental protection is the decrease in CO2 
emission. The ranking of energy alternatives is determined as {Wind – Solar - 
Biomass - Geothermal – Hydropower}.  

In the future research, the fuzzy set theory can be used in MAUT to increase its 
flexibility and sensitivity . Also the using of fuzzy set theory will bring an advan-
tage to obtain utility curves and to give flexibility for experts’ evaluation. 
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Abstract. In response to the soaring energy crisis and the related pollution prob-
lems worldwide, it is essential to apply new technologies that use renewable ener-
gy sources in both an efficient and environmentally friendly manner. In this way, 
biomass offers one of the largest potential among renewable energy sources. The 
aim of this work is to demonstrate a novel fuzzy-based methodology for selecting 
hybrid energy systems fuelled by biogas. Fuzzy multi-rules and fuzzy multi-sets 
are used to evaluate the main operational characteristics of five types of renewable 
sources fuelled by biogas. The possibility of using the methodology for energy 
storage system evaluation is also assessed.  The construction of the fuzzy multi-
rules and fuzzy multi-sets is based on the following methods: Mamdani (fuzzifica-
tion process), Max-Min (inference process), and Center of Gravity (defuzzification 
process). Several criteria are used: costs, efficiency, cogeneration, life-cycle, tech-
nical maturity, power application range, and environmental impacts. The metho-
dology considers three different settings with two different constraints: costs and 
environment. One of the most relevant aspects presented by this work is about the 
previous classification of the criteria. It was created according to the different re-
levance observed among the attributes. The purpose of the proposed arrangement 
is to facilitate the understanding of the methodology and to increase the possibility 
of incorporating the decision makers’ preferences on the decision-aid process. 
These aspects are essential to strengthen the final decision. 

1   Introduction 

Due to the current and predictable energy deficit and related environmental prob-
lems, the use of renewable energy sources has been attracting much attention  
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[Farret and Simões 2006]. To solve these constraints, several environmental-
friendly fuels have been proposed as substitutes to conventional fossil fuels. In 
particular, the use of biogas is attractive, due to its high electrical efficiency and 
low environmental impact [Xuan et al 2008]. The production of biogas by anae-
robic digesters has been shown to be an effective method for waste treatment. 
When exploiting the animal waste, like swine manure for example, highly concen-
trated hog farming operations often generate manure quantities too large to be ap-
plied to the surrounding land at agricultural rates [Mueller 2007]. In this way, one 
environmental and economically attractive solution is to integrate anaerobic diges-
ters with hybrid technologies that may combine electrical power supply, energy 
storage and also cogeneration. 

In order to increase the application of renewable technologies, there are go-
vernmental incentives in several countries. One remarkable example of this trend 
occurs in Brazil. The Federal Government approved the Decree 10438/02, which 
creates the Program for Alternative Sources of Energy - PROINFA, introducing 
incentives for hydro power, wind generation and biomass sources.  

However, an effective methodology for the energy management is essential to 
guarantee the expansion of hybrid energy sources among users [Zopounidis and 
Doumpos 2002]. This methodology must be able to deal with economic, opera-
tional and environmental constrains. Accordingly, it is important to select a  
multicriteria method that best satisfy the management needs [Cormio et al 2003]. 
Several authors presented excellent results by using muticriteria decision aiding 
methodologies for energy management problems. ELECTRE [Beccali et al 2003], 
PROMETHEE [Belton and Stewart 2002], MACBETH [Bana e Costa and Vans-
nick 1999], AHP [Wedley et al 2001] and also Fuzzy sets [Ramírez-Rosado and 
Dominguez-Navarro 2004] are some examples. 

The problem addressed in this work is the ordering problem. A set of alterna-
tives – renewable energy technologies (RET) and energy storage systems (ESS) – 
must be ordered taking to account their attributes values and the preferences of the 
decision maker represented by the classification of the criteria. This paper there-
fore evaluates the characteristics of RET fuelled by biogas – three types of fuel 
cells (FC), one microturbine (MT) and one Otto Engine (OTTO) – and ESS – 
flywheel and conventional and flow batteries. To address this problem, a new type 
of fuzzy rule-based construction is proposed and it is presented the application of 
the fuzzy-based methodology for biogas fuelled hybrid energy systems decision 
making. 

The paper is organized as follows: Section 2 includes the main characteristics 
about RET and the ESS in analysis. Section 3 presents the selected criteria, the de-
cision makers’ analysis and the classification of criteria under different perspec-
tives. Section 4 introduces the fuzzy concepts and further methodological aspects. 
Subsequently, Section 5 outlines the application of Inference Systems concerning 
RET and ESS. Concluding remarks are discussed in Section 6. 
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2   Renewable Energy Technologies and Storage Energy Systems 

Before presenting the main characteristics of the renewable energy technologies 
and energy storage system, it is essential to evaluate the availability of swine ma-
nure for electricity generation. In this paper, RET and ESS selection are achieved 
for the specific region under analysis, where it is possible to generate about 1 MW 
of power using biodigesters. With those digesters, there are stabilization ponds 
(anaerobic, facultative and maturation) connected in sequence and fed with sludge 
from a swine manure treatment unit. It is necessary to observe that the region un-
der analysis is located in a tropical country, where temperatures typically range 
between 20°C and 35°C year-round - ideal for biogas.  

A brief description of the energy technologies evaluated in this paper is pre-
sented below.  

RET – Fuel cells and microturbines (MT) fuelled by biogas have been increa-
singly used in a wide range of applications. These technologies have attracted  
interest mainly due to their environmental advantages, with the possibility of 
combining high efficiencies with low greenhouse gas (GHG) emissions. In partic-
ular, three high-temperature fuel cells described in the literature were here  
evaluated. The main reason for this choice is the poor compatibility of low-
temperature fuel cells with biogas (due to the poisoning possibility in the catalyst 
of the cell).  

Otto engines are internal combustion engines supported by the Otto cycle. Otto 
engines fuelled by biogas are mature and low-cost technologies, but with high 
GHG emissions. The RET selected in this paper can also support the co-
generation to provide heat for a variety of applications.  

ESS – Flywheels can accumulate and store mechanical energy in kinetic form. 
The stored energy depends on the inertia and speed of the rotating mass (rotor). 
The flywheel is a rotor placed in a vacuum enclosure to eliminate friction-loss 
from the air and mounted on bearings for a stable operation. A flywheel offers 
high density energy and high efficiency.  

Batteries are the most common devices used to store electrical energy. Tradi-
tionally, they have been used for small scale applications. However, due to the li-
beralization of electricity markets, battery manufacturers have been used for large 
scale energy storage applications. Flow Batteries, also known as Regenerative 
Fuel Cells or Redox Flow Systems, are a new class of batteries that have been 
achieving substantial progress – technically and commercially. Flow Batteries 
present some features that make them especially attractive for utility-scale applica-
tions. The operational principle differs from classical batteries, since the latter 
store energy both in the electrolyte and the electrodes, while flow batteries store 
and release energy using a reversible reaction between two electrolyte solutions, 
separated by an ion-permeable membrane. Both electrolytes are stored separately 
in bulk storage tanks, whoze size defines the energy capacity of the storage sys-
tem. The power rating is determined by the cell stack. Therefore, the power and 
energy rating are decoupled, which provides to the system designer an extra de-
gree of freedom when structuring the system.  
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3   Selected Criteria and Proposed Methodology  

A description of the criteria evaluated by the proposed methodology is described 
below. It is important to observe that the definition and evaluation of the selected 
criteria must take into account an actual database and the management needs for 
each specific case. After analyzing these aspects, it is possible to develop the me-
thodology for RET and ESS selection. The criteria evaluated in this work are clas-
sified as qualitative and quantitative. 

The qualitative criteria are expressed through scores stipulated by the decision 
maker (DM) – a group of researchers from The Federal University of Santa Maria 
– in the intervals from 0 to 1.0, with 1.0 being the highest score. These scores are 
defined according to the analysis of the actual database, taking into account social, 
political and economic aspects related to the particular region under analysis, e.g. 
RET and ESS installation in a specific region of Brazil. In addition, the experience 
of the selected decision makers is another key aspect in determining the scores. 

The qualitative criteria considered in this work are: 

• technical maturity (TM); 

• environmental impacts (IMP) concerning: end-of-life disposal of ESS and GHG 
emissions from RET. 

The quantitative criteria are expressed through rated data. The quantitative  
criteria evaluated in this study are: 

• efficiency (EF) in %; 

• efficiency of cogeneration (CO) in %; 

• costs in US$/ kW;  

• life-cycle (LC) in years; 

The perspectives simulated in this study are evaluated by the prior classifica-
tion of the criteria created through DM preferences. This classification was devel-
oped according to the different relevance observed among the attributes. The  
purpose of the proposed arrangement is to facilitate the understanding of  
the methodology and to improve the DM interaction over the decision making 
process. 

The classification defined for RET analysis according to each proposed pers-
pective is:  

• Environmental Perspective: 1st environmental impacts, 2nd efficiency, 3rd life 
cycle, 4th cogeneration, 5th costs.  

• Costs Perspective: 1st costs, 2nd cogeneration, 3rd efficiency, 4th life cycle, 5th 
environmental impacts.  

• Environmental-costs Perspective: 1st environmental impacts, 2nd costs, 3rd  
efficiency, 4th life cycle, 5th cogeneration.  

The classification defined for ESS analysis according to each proposed  
perspective is:  

• Environmental Perspective: 1st environmental impacts, 2nd efficiency, 3rd life 
cycle, 4th technical maturity, 5th costs. 
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• Costs Perspective: 1st costs, 2nd technical maturity, 3rd efficiency, 4th life cycle, 
5th environmental impacts. 

• Environmental-costs Perspective: 1st environmental impacts, 2nd costs, 3rd effi-
ciency, 4th life cycle, 5th technical maturity.  

By using the prior classification of the criteria is possible to produce fuzzy 
models with both a small number of interpretable rules and high precision. The 
proposed fuzzy-based methodology allows the decision maker to interact with the 
methodology, modifying the criteria rank in the classification of criteria and mak-
ing changes in the set of rules. 

4   Fuzzy-Based Methodology 

4.1   Initial Concepts 

Fuzzy Logic was proposed by Zadeh. Fuzzy Logic is considered one of the most 
powerful methods encompassing many fields of application [Siler and Buckley 
2005]. Indeed, fuzzy rule-based expert systems can improve the interpretability of 
results and increase the interaction of DM on the decision making process. 

For the inference fuzzy process there are two well-established classes of fuzzy 
controllers: Mamdani and Takagi-Sugeno. The most fundamental difference be-
tween Mamdani and Sugeno is the way the crisp output is generated from the 
fuzzy inputs [Hamam e Georganas 2008]. While Mamdani uses the technique of 
defuzzification of a fuzzy output, Sugeno uses weighted average to compute the 
crisp output. Therefore in Sugeno the defuzzification process is bypassed. The dif-
ference between the controllers is illustrated in Figure 1. The expressive power 
and interpretability of the Mamdani output are lost when using Sugeno, since the 
consequents of the rules are not fuzzy [Yusoff et al 2007]. 

 

 

Fig. 1 Mamdani controller and Takagi-Sugeno controller (MATLAB® Software) 
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In those controllers, the inference processes are based on a set of rules like: 

• IF A is High and B is Medium THEN Z is Medium  (Mamdani FIS). 

• IF A is High and B is Medium THEN Z = α+ Aȕ + BȖ  (Sugeno FIS). 

In a control system, input variables A and B could be the state variables, while 
output variable Z would be the control variable (α, ȕ, Ȗ are constants) [Matos 
2002]. In this paper, the input variables will be the criteria difference represented 
by membership functions and the output variable Z will be the value difference.  

The most common fuzzy system is the Mamdani system, which is used in this 
paper. The choice of Mamdani controller it is related to the following aspects  
[Li-Xin Wang 1993]: 

• it is suitable for engineering systems because its inputs and outputs are real-
valued variables; 

• it provides a natural framework for incorporating fuzzy rules from human  
experts; 

• there is much freedom for the choices of fuzzifier, fuzzy inference engine, and 
defuzzifier; 

• it provides an effective framework to integrate numerical and linguistic infor-
mation. 

Mamdani controller performs three major steps: fuzzification of the input  
variables; inference (rule evaluation and implication plus aggregation); and defuz-
zification – as illustrated in Figure 2. 

Pertinent

Functions

Linguistic Terms

Rules

IF - THEN

Fuzzification (Mamdani Controller)

Fuzzy Inference

System

Quantitative and

Qualitative Data

Input

Defuzzification Real Number

Output

 

Fig. 2 Basic steps on the Mamdani controller  
* some authors connect the aggregation step together with the defuzzification. 

A basic Mamdani fuzzy system accepts numbers as input, and then translates 
the input numbers into linguistic terms, such as low, medium, high (fuzzification). 
Rules map the input linguistic terms, which are represented in membership func-
tions, into similar linguistic terms describing the output linguistic terms (infe-
rence). Finally, the output linguistic terms are translated into an output number 
(defuzzification). 
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4.2   Fuzzification 

4.2.1   Linguistic Terms and Membership Functions 

The membership functions are represented in fuzzy sets with a certain shape. It is 

popular to use trapezoidal or triangular fuzzy sets due to their computational effi-

ciency [Zimmermann 2001]. In this paper, inputs and the output are arranged in 

five linguistic terms -  very low (VL), low (L), medium (M), high (H) and very 

high (VH)  - represented by five membership functions applied in each fuzzy vari-

able, as shown in Figure 3.  The number of membership functions used in the 

fuzzy set is determined to maintain a good accuracy for the analysis concerning 

the three different perspectives. The same fuzzy set is applied for all selected  

criteria, which enables assessing any perspective that could be suggested by the 

decision makers.  

 

Fig. 3 Fuzzy varaiable defined for each criterion (MATLAB® Software) 

4.2.2   Multi-rules-Based Construction 

The multi-rules-based used in this work consists of a collection of if-then proposi-

tions.  The number of fuzzy rules grows exponentially with the number of input 

criteria and with the number of membership functions used to represent each crite-

rion. The improvement of rules has attracted much attention for a long time in the 

fuzzy community. In the literature, different aspects and various techniques have 

been studied, such as hierarchical fuzzy and genetic algorithms [Alcalá 2007], ar-

tificial neural networks [Mantas et al 2006], among others. These techniques try to 

reduce the number of rules, while keeping a good accuracy.  

In fact, certain states can be neglected in most applications either because they 

are impossible or because a control action would not be helpful. It is therefore  
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sufficient to write rules that cover only parts of the state space.  In the presented 

paper, this aspect is considered for the construction of the classification of criteria.   
The development of these rules for the proposed methodology is established 

according to three important definitions, which follow the classification of the  
criteria. These definitions are presented below: 

• Definition of the Logical Operations – only the Logical Operation “and” is 

used. The application of only one logical operation is optional; it is possible to 

use the “or” logical operation instead or together with “and” in the same rule. In 

this case, the logical operation “and” was applied according to DM preferences.  
 

• Basis Definition following a standard rule, for example:  

IF A = L and B = L and C = L and D = L THEN OUTPUT = L. 

IF A = M and B = M and C = M and D = M THEN OUTPUT = M. 

IF A = H and B = H and C = H and D = H THEN OUTPUT = H. 

•  Definition of Construction level increasing the value of the pertinent function 
after three equal outputs (S), e.g. 

IF A= VL and B= VL and C = VL and D = VL, THEN OUTPUT = VL.  

IF A= VL and B= VL and C = VL and D = L, THEN OUTPUT = VL.  

IF A= VL and B= VL and C = VL and D = M, THEN OUTPUT = VL (last VL). 

IF A= VL and B= VL and C = VL and D = H, THEN OUTPUT = L (first L). 

• Definition of Start/End point establishing the initial point (start) of the Con-

struction level. This definition is applied to attribute some relevance to the most 

important criterion (criterion A in this case), following the classification of the 

criteria, e. g.  

IF A = VL, THEN OUTPUT = VL. Thus, the start point is: 

IF A = L and B= VL and C = VL and D = VL, THEN OUTPUT = VL. 

IF A = VH, THEN OUTPUT = VH. Thus, the end point is: 

IF A = H and B= VH and C = VH and D = VH, THEN OUTPUT = VH. 

It is necessary to observe that application of this definition is optional. In this 
case, it was applied according to DM preferences.  

• Definition of the criterion for increasing value. This step is complementing the 

Definition of Construction level. For this definition, the criterion E (less impor-

tant in the classification of the criteria) is used just to increase the value of the 

Output from Medium to High in the membership function, for instance:  

1.IF A= L and B= L and C = VH and D = VL, THEN OUTPUT = L.  

2.IF A= L and B= L and C = VH and D = L, THEN OUTPUT = M.  

3.IF A= L and B= L and C = VH and D = M, THEN OUTPUT = M.  

4.IF A= L and B= L and C = VH and D = H, THEN OUTPUT = M.  

IF A= L and B= L and C = VH and D = VH, THEN OUTPUT = M
*H

,  

and for M
*H

 :  
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5.IF A= L and B= L and C = VH and D = VH and E = VL, THEN OUTPUT = 

M;(never decreasing the value of Output). 

6.IF A= L and B= L and C = VH and D = VH and E = L, OUTPUT = M; 

7.IF A= L and B= L and C = VH and D = VH and E = M, OUTPUT = M; 

8.IF A= L and B= L and C = VH and D = VH and E = H, OUTPUT = M; 

9. IF A= L and B= L and C = VH and D = VH and E = VH, OUTPUT = H  

(increasing the value of Output). 

Or, for example: 

1.IF A= L and B= M and C = VH and D = VL, THEN OUTPUT = M.  

2.IF A= L and B= M and C = VH and D = L, THEN OUTPUT = M.  

3.IF A= L and B= M and C = VH and D = M, THEN OUTPUT = M.  

IF A= L and B= M and C = VH and D = H, THEN OUTPUT = M
*H

,  

and for M
*H

 :  

4.IF A= L and B= M and C = VH and D = H and E = VL, OUTPUT = M; 

5.IF A= L and B= M and C = VH and D = H and E = L, OUTPUT = M; 

6.IF A= L and B= M and C = VH and D = H and E = M, OUTPUT = M; 

7..IF A= L and B= M and C = VH and D = H and E = H, OUTPUT = M; 

8.IF A= L and B= M and C = VH and D = H and E = VH, OUTPUT = H  

(increasing the value of Output). 

 

IF A= L and B= M and C = VH and D = VH, THEN OUTPUT = M
#H

,  

and for M
#H

 :  

9.IF A= L and B= M and C = VH and D = VH and E = VL, OUTPUT = M; 

10.IF A= L and B= M and C = VH and D = VH and E = L, OUTPUT = M; 

11.IF A= L and B= M and C = VH and D = VH and E = M, OUTPUT = M; 

12.IF A= L and B= M and C = VH and D = VH and E = H, OUTPUT = H  

(increasing the value of Output); 

13.IF A= L and B= M and C = VH and D = VH and E = VH, OUTPUT = H 

(increasing the value of Output). 

Table 1 presents the complete set of rules developed by using the classification 

of criteria and the proposed definitions. To understand the table construction, it is 

necessary to analyze each one of the outputs separately. For example, considering 

the first cell in bold, inside the first line of the Table 1: 

IF A=L and B=L and C= VL and D=VL THEN OUTPUT = VL; or consider-
ing A=M in this same cell - just skipping the first column for criterion B: 

IF A=M and B=VL and C= VL and D=VL THEN OUTPUT = VL. 
Now observing the second cell in bold located in the fourth line: 

IF A=H and B=VH and C= VL and D=H THEN OUTPUT = M (M*H); 
But considering, in this case, the definition of the criterion for increasing value, 
the output is given by: 

IF A=H and B=VH and C= VL and D=H and E=VH THEN OUTPUT = H. 
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Table 1 Complete set of rules follwing the linguistic terms -  very low (VL), low (L), 
medium (M), high (H) and very high (VH). 
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D=VH L L M M M M*
 H

 M
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C = 
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D=VL VL VL  L L L M M 
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D=H L L M M M M*
 H

 M
 # H

 

D=VH L M M M M*
 H

 M
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 H 
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D=VL VL  L L L M M M 

D=L L L L M M M M*
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D=M L L M MBASIS) M M*
 H

 M
 # H

 

D=H L M M M M*
 H

 M
 # H

 H 

D=VH M M M M*
 H

 M
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 H H  

  

C = 
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D=VL L L L M M M M*
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D=L L L M M M M*
 H

 M
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D=M L M M M M*
 H

 M
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 H 
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 H

 M
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D=VH M M M*
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 M
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 H H  H 

  

C= 
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D=VL L L M M M M*
 H

 M
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D=L L M M M M*
 H

 M
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 H 

D=M M M M M*
 H

 M
 # H

 H H 

D=H M M M*
 H

 M
 # H

 H H H 

D=VH M M*
 H

 M
 # H

 H H  H H *
 VH

 
 

The cells defined as “BASIS” inside Table 1 represent the output of the Basis 
Definition. As stated before, the complete set of rules is very flexible, allowing the 
DM to increase or decrease the importance of each criterion. The total number of 
rules created in this study case was 625. Ming-Ling Lee et al [2003] established 
that a single-output fuzzy logic system with n input criteria and m membership 

functions defined for each input variable is composed by fuzzy rules. This 
study evaluates five criteria n, each one represented by one variable with five 
membership functions m. According to [Ming-Ling Lee et al 2003] the total num-
ber of rules would follow equation 1. 

55 3125n
x m= = =                                             (1) 
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In this case, the total number of rules is greatly reduced under the application of 
the classification of criteria. 

4.3   Inference (Implication and Aggregation) 

The Maximum of minimum method – maximum aggregation of the minimum im-
plication - is here used as the inference process. It is the most commonly used in-
ference process found in the literature [Gegov e Gobalakrishnan 2007], [Yusoff et 
al 2007], [Hamam e Georganas 2008], Moreover, Kiszka et al [1985] calculated 
the Medium Square Error for three different inference methods, in which the Max-
Min method achieved the highest performance. The Max-Min method is 
represented in Figure 4.  
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Fig. 4 Maximum of minimum method used as inference process 

4.4   Defuzzification Process 

Regarding the defuzzification process, there are several possible choices to be 
made and many different methods have been proposed [Barros and Bassanezi 
2006]. This study applied the so-called Center of Area (COA) or Center of Gravity 
(COG) method, as illustrated in Figure 5. This method chooses the control action 
that corresponds to the center of the area with membership greater than zero.  
The area is weighted with the value of the membership function. The solution is a 
compromise, due to the fuzziness of the consequences. The choice for COG is  
justified in [Driankov et al 1996], who suggested some requirements that should 
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be satisfied by an ideal defuzzification method.  In conclusion, the COG applica-
tion satisfies the three major requirements analyzed by [Driankov et al 1996] – 
continuity, disambiguity and plausibility. It is necessary to observe that the dezzu-
zification methods Center of sums and Height also satisfy these requirements.  
It could be therefore possible to apply any of these three methods in the proposed 
study. 

Output COG

B (Y)

B
B

B

Y

 

Fig. 5 Center of Gravity method (COG) used as defuzzification process [Virant, 2000]  

5   Fuzzy Practical Analysis  

The methodology is tested using the MATLAB® Software under multi-rules-
based decision and multi-sets considerations. A brief description of fuzzy model-
ing used in this practical analysis is presented below: 

• Fuzzification process – Mamdani Controller; 

• Rule evaluation – logical operator used in the development of rules to obtain a 
single number: AND Operator; 

• Implication – evaluation of each rule generating a single output: Method of 

Minimum (MIN); 

• Aggregation – unification of the output of all rules: Method of Maximum 
(MAX). 

• Defuzzification – the output linguistic value is translated into an output number: Center of Gravity. 

Moreover, the arrangement modeled for RET and ESS analyses is described 

with five inputs (criteria in analysis) and only one output (final score). The main 

fuzzy variable used to characterize each criterion was described in Figure 1. The 

multi-rules-based used in this work consists of a collection of if-then propositions 

taking as basis the prior classification of the criteria, defined for the three different 
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perspectives. The values that represent the rated data and the weights stipulated  

by the DM are presented in Table 2 - RET and Table 3 - ESS. The values are de-

fined in the interval from 0 to 1.0, considering the scores for the qualitative criteria 

and the normalized values (NV) for the quantitative criteria (QC) according to  

equation 2. 

max

QC
NV

QC
=                                                (2) 

Table 2 Database used in the proposed methodology for RET analysis (The higher the 

better) 

RET EF EF cog $ LC EI 

MT 0.56 0.85 0.54 1.00 0.80 

OTTO 0.70 1.00 1.00 0.50 0.40 

PA 0.90 1.00 0.30 0.40 0.70 

MC 1.00 1.00 0.24 0.25 0.90 

SO 1.00 0.93 0.20 0.50 0.90 

Table 3 Database used in the proposed methodology for ESS analysis (The higher the 

better) 

ESS EF $ LC EI TM 

FLY 1.00 0.60 1.00 0.90 0.80 

C. BAT 0.83 1.00 0.40 0.60 0.80 

F. BAT 0.94 0.16 0.80 0.50 0.40 

The comparisons of the final classifications (CL) obtained by using the  
proposed fuzzy methodology for the different perspectives under analysis are  
presented in Tables 4 and 5.  

Table 4 Final Classification for RET analysis acoording the perspectives: costs, 
environment impacts (EI) and environment impacts-costs 

RET Costs CL EI CL EI-Costs CL 

MT 0.750 2nd 0.771 2nd 0.757 1st 

OTTO 0.920 1st 0.683 3rd 0.683 3rd 

PAFC 0.645 3rd 0.567 4th 0.645 5th 

MCFC 0.629 4th 0.797 1st 0.665 4th 

SOFC 0.587 5th 0.797 1st 0.699 2nd 
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Table 5 Final Classification for ESS analysis acoording the perspectives: costs. 
environment impacts (EI) and environment impacts-costs 

RET Costs CL EI CL EI-Costs CL 

FLY 0.771 2nd 0.797 1st 0.910 1st 

C. BAT 0.920 1st 0.645 2nd 0.645 2nd 

F. BAT 0.395 3rd 0.567 3rd 0.500 3rd 

By observing the data presented above, the most appropriate hybrid systems 
selected by the proposed methodology for each perspective are: the Otto engine 
with conventional battery for the costs setting; the SOFC or the MCFC with the 
flywheel for the environmental perspective; the microturbine with the flywheel for 
the environmental-costs scenario. 

To conclude, it is important to emphasize that this novel fuzzy-based 
methodology may consider several criteria and perspectives by simply adjusting 
the fuzzy multi-rules and multi-sets, in accordance to each specific case. 

6   Summary and Conclusions  

This paper presented a study addressing the problem of finding appropriate  
renewable hybrid systems using biogas by anaerobic digesters, according to dif-
ferent perspectives. To achieve this goal, a methodology incorporating fuzzy mul-
ti-rules and fuzzy multi-sets was developed. A prior classification of the criteria 
relevance was defined in relation to each perspective. This arrangement facilitates 
the understanding of the methodology and increases the possibility of incorporat-
ing the DM preferences on the decision making process. 

With relation to the RET scenarios, clean technologies such as fuel cells were 
not selected as most appropriate choice for the environment-costs perspective, 
mainly because their costs are still higher than other options under study. Howev-
er, the microturbine using biogas appeared as a promising renewable energy 
source. 

Regarding ESS analysis, the flywheel was selected as the most appropriate 
technology for the environment perspective and environment-costs perspective. 
This result is understandable, once the flywheel presents a high energy density,  
a high efficiency, a high life cycle, and it does not offer any kind of negative envi-
ronmental impact. 

To summarize, the final results illustrate the use of the novel fuzzy-based me-
thodology for biogas fuelled hybrid energy systems decision making. It takes into 
consideration not only operational characteristics, but also social, economic and 
environmental aspects. Further improvements to the criteria evaluation are rec-
ommended - by using ISO standard 14040 - especially for analyzing and compar-
ing different types of environmental impact categories. The ISO standard 14040 
application would provide more credibility to the methodology outcome. 
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Abstract. The growth of photovoltaic (PV) for electricity generation is one of the 

highest in the field of the renewable energies and this tendency is expected to 

continue in the next years. As an obvious consequence, an increasing number of 

new PV components and devices, mainly arrays and inverters, are coming into the 

PV market. The need for PV arrays and inverters to be characterized has then 

become a more and more important aspect. Due to the variable nature of the 

operating conditions in PV systems, the complete characterization of these 

elements is quite a difficult issue. 

One aspect that can help to achieve this goal is to improve methods for 

estimating the energy produced by photovoltaic generators. Overall, the annual 

energy provided by a PV generator is directly proportional to the annual radiation 

incident on the plane of PV generator and the installed nominal power or peak 

power. However, there are a number of reasons that cause a decrease in the 

expected energy and include; mismatch losses, dirt and dust, ohmic losses and 

many more. In this chapter we present two new studies in the PV field. The first 

one concerns the application of the Artificial Neural Networks (ANN) for 

estimating the instantaneous Performance Ratio, which is the fundamental 

parameter in the characterization of PV systems. The second study aims to 

compare the results of several methods for estimating the annual energy produced 

by a PV generator, three classical and one based on artificial neural networks, in 

different types of systems with different settings and types of modules.  

Therefore, in this chapter the classical methods for estimating the energy 

provided by a PV generator, are compared with a method developed by University 

of Jaén based on artificial neural networks (ANN). While classical methods take into 

account only temperature losses, the method based on ANN take into account in 

addition to temperature losses the low irradiation losses, spectral and angular losses, 

and some other losses as nominal power losses. Additionally, as it was mentioned 

previously a study on the Performance Ratio of PV systems will be presented. 
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Nomenclature 

CA Generator Capacity (kWh) 

CS Accumulator Capacity (kWh) 

EDC Annual energy provided by a PV generator (Wh)  

Eac  Annual energy injected into the grid in kWh 

FF Form Factor 

G Irradiance (W/m
2
) 

GSTC  Incident irradiance at standard test conditions (1000 W/m
2
) 

HA Annual irradiation incident on the plane of PV generator (Wh/m
2
) 

Hd Daily solar irradiation (Wh/m
2
) 

Hdm Monthly mean daily solar irradiation (Wh/m
2
) 

I Current (A) 

IG  PV generator current (A) 

Im Cell current at the maximum power point (A). 

IMAXG PV generator current at the maximum power point (A). 

Im,STC  Module current at maximum power in STC (A). 

Isc Cell short circuit current (A). 

Isc, STC Cell short circuit current in STC (A). 

KT Daily clarity index 

kt Hourly clarity index 

kt-p Predicted value of kt  

kt-ave Average value of kt  

KTDY  Yearly Clarity Index 

LOLP  Loss Of Load Probability 

LLP  Loss of Load Probability 

N Number of samples 

Ncp  Parallel cells number of PV module 

Ncs   Series cells number of PV module 

Nmp  Parallel modules number of PV generator 

Nms  Series modules number of PV generator 

NOCT Nominal Operating Cell Temperature (ºC) 

PDC PV generator output power (W) 

PAC Output inverter power (W) 

PFV PV generator Peak Power generator (W) 

Pgen  Maximum power of the generator in kWp 

Pm Cell maximum power (W) 

PMAXG PV generator maximum power (W) 

Pm,STC Cell maximum power in STC (W) 

PR Performance Ratio 

PRINST Instantaneous Performance Ratio 

PRANNUALAnnual Performance Ratio 

POi Measured power of PV module (W) 

PTi Theoretical power of PV module (W) 

rs Standard resistance 
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Rs  Series resistance of a photovoltaic cell module (Ω) 

Tam Ambient temperature (ºC) 

Tc Cell (Module) Temperature (ºC) 

V Voltage (V) 

VG  PV generator voltage (V) 

Vm  Cell voltage at the maximum power point (V) 

VMAXG  PV generator voltage at the maximum power point (V) 

Vm,STC  Module voltage at maximum power in STC (V) 

Voc Cell open circuit voltage (V) 

Voc, STC Cell open circuit voltage in STC (V) 

Vt Thermal voltage (V) 

ηi  The inverter efficiency  

γ Cell maximum power temperature coefficient (ºC
-1

) 

Abbreviations 

AC Aguiar and Collares-Pereira 

AIL Accredited Independent Laboratory  

ANN Artificial Neural Network 

ARMA  Autoregressive Moving Average 

GH Graham and Hollands 

GCPVS Grid-Connected Photovoltaic System 

IES Instituto Energía Solar (Solar Energy Research Centre) 

LOLP Loss of Load Probability 

MLP MultiLayer Perceptron 

NN Neural Network 

PV PhotoVoltaics  

PVPSP  PhotoVoltaics Power System Program 

STC Standard Test Conditions 

TSP Time Series Prediction 

1   Introduction 

Artificial Neural Networks (ANN) has been used in the Solar Energy field for 

solving several problems during the last decades with very good results. There are 

a lot of ANN applications in this field. The Research & Development Group for 

Solar Energy (IDEA Group) at the University of Jaén has applied different ANN 

for solving problems in various Solar Energy fields such as the generation of 

synthetical series of solar radiation, drawing solar radiation maps, characterization 

of PV modules, etc. 

In this chapter of the book, we are going to present our last two research works 

with ANN; the obtainment of instantaneous Performance Ratio and the 

estimation of the energy provided by PV generators, developed by our R & D  
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Group. In order to present the ANN developed and used, initially we are going to 

present a summary of the evolution of our research. Our first investigations where 

done in 1999 and from that date we have improved an ANN, particularly the 

Multilayer Perceptron (MLP) methodology for our purposes. 

This chapter is developed in this way: the first section is this introduction. In 

section 2 a summary of the evolution of our investigations in the application of 

ANN to solve different problems in Solar Energy field is presented. Our 

investigations in this field are quite wide since we have developed methods using 

ANN for such applications as prediction of solar radiation and drawing solar 

radiations maps, sizing photovoltaic systems or characterisation of photovoltaic 

solar modules. Nevertheless, the two main objectives of this chapter are: the 

obtainment of the instantaneous performance ratio, which is presented in section 3 

and the study on the energy produced by three PV generators using ANN, which is 

described and explained in section 4. At the end we present some conclusions. 

2   Previous Research Work 

2.1   Artificial Neural Networks and Time Series Prediction 

Our first work with ANN was on the prediction of solar radiation data (Time 

Series Prediction, TSP). We developed a MultiLayer Perceptron (MLP), which 

produced very good results when it was compared with other classical methods for 

predicting solar radiation data. This first work was done in 1999 and presented in 

[Zufiria et al. 1999]. Here we are going to summarize these first results. 

The design and analysis of photovoltaic systems is usually performed via 

numerical simulations which require as input data large time sequences of hourly 

or daily irradiation values [Graham and Hollands 1988, 1990, Aguiar and 

Collares-Pereira 1991, 1992]. Nevertheless, these historic radiation measurements 

do not exist in most of the world countries, and, if any, their quality is 

questionable or they have plenty of missing values [Knight et al. 1991]. The 

synthetic generation of hourly or daily solar irradiation values is often the only 

practical way to obtain radiation data for any given location. 

Several mathematical radiation models and methods have been developed 

[Aguiar and Collares-Pereira 1992, Balouktsis and Tsakides 1986,  Graham and 

Hollands 1988, 1990, Goh and Tan 1977, Knight et al. 1991, Mustachi et al. 1979] 

to generate sequences of values, which try to preserve the same statistical 

properties such as average, variance, probability density function [Aguiar and 

Collares-Pereira 1991, Hollands and Hughet 1983, Liu and Jordan 1960] and 

sequential characteristics as those of the historical records (i.e., those observed in 

nature). The output of these models may be used for example for the construction 

of typical meteorological years [Knight et al. 1991] or to provide computer-

generated data sequences for the analysis and design of photovoltaic (PV) 

converters, which is usually performed using numerical simulation tools [Graham 

and Hollands 1990]. For the study of PV systems with a high storage capacity 
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daily radiation data will usually suffice as the storage attenuates the effects of 

hourly variations; but for PV systems with one or two-hour response time, such as 

peak plants or PV plants which return energy to the network at maximum charge 

instants, hourly series are required. 

The models proposed by Aguiar and Collares-Pereira [1992] and by Graham 

and Hollands [1988, 1990] referred from now on as AC and GH respectively for 

short, may be considered as paradigms in the field of hourly [Aguiar and Collares-

Pereira 1991, Graham and Hollands 1990] radiation modelling. They are auto-

regressive first-order models [Priestley 1988], based on a stochastic 

disaggregation methodology, that generate hourly irradiation series making use of 

daily values. These values can be obtained from historic records (which are more 

common than hourly records) or using daily generation methods [Graham and 

Hollands 1988] in turn (which are more validated than hourly methods). Complex 

empirical expressions are proposed to relate the hourly and daily values, obtaining 

the parameters in the formulae via regression analysis [Werbos 1974] over 

historical data. 

The methodology presented for Times Series Prediction and system 

identification via MLP defines the framework of the method developed for the 

generation of hourly clarity index series {kt}. For the computational experiments, 

a set of hourly clarity index kt values measured in several Spanish locations and its 

corresponding daily KT values were used. As a first approach, in order to evaluate 

the quality of the generated series, the first years were considered as a training set 

and the last year was employed for testing the validity of the generated series, in 

each location. 

The proposed method has been developed via a step by step inclusion of the 

available associated information. The greatest advantage of the MLP-based 

methodology is that explicit knowledge of the relationship among all the 

information sources is not needed. Such information sources can be progressively 

incorporated in different steps upon the proposed method. The details of this step-

by-step procedure can be found in [Zufiria et al. 1999]. The final procedure 

carried out by employing a MLP in a mixed feedback-feedforward configuration, 

is shown in Fig. 1. 

The seven inputs required are [Hontoria et al. 1999, Zufiria et al. 1999]: 

• s: this is an input, taking values {0,1} that indicates whether an hour is 

between sunrise and sunset (kt should be different from 0) or not (kt has to 

be 0), 

• dn: distance (days) between the value to be generated and the day with 

maximum value in the {kt} annual distribution. This is used in order to 

keep the hourly global irradiation monthly periodicity and seasonal nature, 

• hn: indicates the hour order number of the kt value (ensuring the hourly 

global irradiation periodicity and seasonal nature). Both inputs (dn and hn) 

are normalised to the range [0,1], 

• KT : daily clarity index, 

• kt(h-3), kt(h-2), kt(h-1): hourly clarity index of the three previous hours. 
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Fig. 1 MLP Architecture for predicting ktm 

The training was done using the backpropagation algorithm (with momentum 

and random presentations), which is eventually combined with second order 

optimisation methods during the last few epochs. The hidden layer has fifteen 

nodes. For the training of the MLP and for the subsequent validation it is 

necessary to use real solar radiation series. For this objective several Spanish 

locations with different latitudes and climates were used. 

In Fig. 2 we present an example of the artificial series of solar radiation 

obtained by our MLP (Neural in the figure),  the Aguiar-Collares Method (AC in 

the figure), the Graham-Hollands Method (GH) and the real data.  
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Fig. 2 Artificial Series obtained by different methods and Real data 
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We have calculated the Root Mean Square Error (RMSE) among the real data 

and the data obtained by the three other methods (AC, GH and Neural) and the 

results shown a better approximation of the data provided by the Neural Networks 

(MLP) method. 

2.2   Artificial Neural Networks and Solar Maps 

A very important application of the methodology proposed using the MLP in the 

solar radiation field is the drawing of solar radiation maps. The availability of 

information about the solar radiation in the location where a solar system is going 

to be installed is necessary for the designer of solar systems. This information, in 

case that exists, can be available in several ways. The most common one is by 

means of several tables with a lot of very useful information (usually large solar 

radiation sequences), but they are extremely difficult to handle. Nevertheless, 

another way to present this information is by means of different solar radiation 

maps (one for each month) of the area where the installation is going to be made. 

This second way is usually more efficient, easy to handle and preferable by the 

designers, and can be used at the initial stage of the solar system design and sizing. 

As part of this work we used the MLP for drawing solar radiation maps for 

Spain [Hontoria et al. 2000]. In this case the MLP was slightly different than the 

MLP of our first work, and included two new input parameters: latitude and 

altitude of the site, to produce the variation needed for the Time Series Prediction 

of solar radiation for different points of the solar radiation map. In Fig. 3, the MLP 

used is shown, and two examples (Figs. 4 and 5) of solar radiation maps obtained 

with this method are presented. 
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Fig. 3 MLP Architecture for clarity indexes prediction, including latitude and altitude 
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Fig. 4 Solar radiation map of Jaén  in winter 

 

Fig. 5 Solar radiation map of Andalucía in autumn 

2.3   Artificial Neural Networks and Stand Alone Photovoltaic 

Systems 

Once we have developed the MLP for applications in the Solar Radiation field, the 

next step was to try to apply our knowledge in the Photovoltaic (PV) field. There 

are mainly two types of Photovoltaic Systems: the Stand Alone Photovoltaic 

Systems and the Grid Connected Photovoltaic Systems. We have used ANN 

methodology in both types of systems. 

The first study we carried out in the PV field was done in order to apply the 

MLP for establishing a relation between  some variables needed for sizing stand 

alone PV systems. There are many methods available for sizing stand alone 

photovoltaic systems. The most important are methods which use equations to 

describe the PV system size as a function of reliability. These are called analytical 

methods. They allow the designer to optimise the energy and economic cost of the 

PV system. Many of the analytical methods employ the concept of reliability of 

the system or the complementary term, i.e., Loss of Load Probability (LOLP). The  
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LOLP represents the percentage of time that the PV/storage system will not be 

able to satisfy the load. Several authors use this type of methodology for sizing 

stand alone PV systems [Chapman 1987, Egido and Lorenzo 1992, Lorenzo et al. 

1994, Sidrach-de-Cardona and Lopez 1998, 1999, Barra et al. 1984, Bartoli et al. 

1984]. With these methods the relations between the generator capacity, the 

accumulator capacity and the LOLP lead to curves called isoreliability curves or 

LOLP curves. Let CA be the generator capacity, which is defined as the ratio of 

the average energy output of the generator in the month with worst solar radiation 

input divided by the average consumption of the load (assuming a constant 

consumption of load for every month). The battery storage system is related to the 

term CS, the accumulator capacity, which is defined as the maximum energy that 

can be extracted from the accumulator divided by the average daily consumption 

of the load. 

With the aim to establish relations between CA, CS and LOLP the numerical 

methods use system simulations while the analytical methods use equations. For 

instance, Egido and Lorenzo [1992] presented a method consisting in creating 

reliability maps for each LOLP value considered, (isoreliability lines). They 

proposed very simple equations to determine the isoreliability lines for many 

Spanish locations. 

Once the LOLP curves are obtained, it is very simple to design both the 

capacity of the generator (CA) and the accumulator capacity (CS). Depending on 

the reliability needed for the PV system design, a specific value of the LOLP will 

be considered. The problem is to obtain the LOLP curves. A new approach for 

obtaining LOLP curves was developed by our Research Group [Hontoria et al. 

2003]. It was based on a Multilayer Perceptron (MLP) neural network. 

Particularly, the method is based on the MLP’s ability to extract, from a 

sufficiently general training data set, the existing relationships between variables 

whose interdependence is not known a priori. As was seen with a very simple 

structure of the MLP [Hontoria et al. 2001, 2002], the solar radiation series in 

locations where data are not available can be generated. For the case of LOLP 

curves prediction, a new architecture for the MLP is used. The MLP is trained 

with LOLP data (different LOLP values, i.e., 0.1, 0.01, 0.05,...) and radiation data 

from different Spanish locations (first stage). After training, the MLP is able to 

generate as many LOLP curves as needed, for a particular site (second stage). The 

main advantage of this tool is that the effort required in the first stage is similar to 

that required in other methods, however in the second stage, when the MLP is 

trained, it is extremely simple to obtain new LOLP curves. 

Summing up, in this work, we trained several MLPs (one for each location 

considered) with many pairs of (CS, CA) data but for very few LOLP curves (just 

the values 0.01, 0.05 and 0.1) and after the training process each MLP was able to 

generate the LOLP for other values (for instance the value 0.02 or 0.25). The 

results obtained were very satisfactory. 
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The structure of the Multi Layer Perceptron (MLP) proposed for the generation 

of LOLP curves is shown in Fig. 6. It consists of three layers. The first one or 

input layer has three inputs as follows: 
 

CS: Accumulator Capacity. 

LOLP: Loss of Load Probability. 

KTDY: Yearly Clarity Index. 
 

The second layer, also called the hidden layer, has nine neurons or nodes. 

Different tests have been done in order to choose the number of neurons and the 

actual number selected produced the best results. Finally the last layer has only 

one node, the value of the generator capacity (CA) to be estimated. 

 

Fig. 6 MLP Architecture for the obtaining of the LOLP curves 

The training was done with the backpropagation algorithm [Rumelhart and 

MacClelland 1986, Weigend et al. 1990]. 

By applying the proposed methodology many different LOLP curves have been 

calculated. Figure 7 shows one such example for Santander, a city in the North of 

Spain. As can be seen the LOLP curve obtained by the MLP is much closer to the 

real curve whereas the curve obtained with the simple IES method, developed by 

the instituto de Energia Solar Madrid, is not as good.  As it was mentioned before 

the generation of the LOLP curves has been carried out not only for the locations 

used for the training, but also for those used for the validation. As a quality 

measure the quadratic error between the real curves and those obtained via the 

MLP has been calculated. In [Hontoria et al. 2003, 2005a], the complete 

methodology is described. 
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Fig. 7 LOLP curves obtained by different methods. LOLP = 0.01. Location Santander 

2.4   Artificial Neural Networks and Characterization of PV 

Modules 

A new evolution in our research with the MLP was to characterize PV modules. 

We applied the ANN methodology developed by our group for the 

characterization of PV modules of different technologies, for instances: 

a) In [Almonacid et al. 2009, Hontoria et al. 2005b] we characterized Si-

Crystalline PV modules with the MLP methodology developed. 

b) In [Almonacid et al. 2010] the modules in study where CIS modules. 

c) Additionally, thin film modules were characterized  by our methodology as it 

can be seen in [Almonacid et al. 2007]. 
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3   Artificial Neural Networks and  Maintenance of Grid 
Connected Photovoltaic Systems 

3.1   Introduction 

In order to make a proper maintenance of a Grid-Connected Photovoltaic System 

(GCPVS) and to optimize its rate and payback, the parameter called Performance 

Ratio (PR) is usually employed. It is considered that a GCPVS is working 

properly if the value of its annual Performance Ratio has a certain value 

depending on the site where the system is located. 

The Photovoltaic Power Systems Programme (PVPS) of the International 

Energy Agency (IEA) collects and analyses performance data of PV power plants 

in various system techniques and disseminates suitable information on the 

performance, long-term reliability and the technical and economic output of PV 

systems. In Table 1, the Annual Performance Ratio, for three years of the PV 

systems monitored, is shown.  

Table 1 International Energy Agency (IEA) data of PR [EA 2007] 

 Annual Performance Ratio (in %) 

United States  78 

Germany  76 

Japan  75 

Israel  70 

United Kingdom 63 

Spain  60 

Norway  59 

Austria  23 

A tool to calculate the instantaneous PR, was designed using Artificial Neural 

Networks. Afterwards, a comparative study between the instantaneous PR 

obtained by the ANN and the one obtained with the measurements monitored by 

the system was carried out. As the comparative study performed indicated that our 

developed tool was adequate, it is possible to know how the PV system is working 

in a quick and efficient way [Rus et al. 2009]. 

Here we explain our investigations done in this work. 

3.2   System Description 

The Univer generator [Drift et al. 2007] consists of four photovoltaic 

subgenerators connected to the low voltage grid at Jaén University Campus 

(37º73’N, 3º78’W) in the south of Spain with a total power of 200 kWp. In Jaén, 

average yearly peak solar hours are 4.9h per day.  
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The installation presents two particular aspects: the system location and the 
use of different PV integration. The system is located at a crowded public 
building. In the whole PV integration plant, different traditional architectural 
solutions were used: parking canopies, pergolas and façade. The analysis was 
done with the data from the generator “Pergola PV system”.  

The Pergola PV system, has an array of 180 semi-transparent Isofotón I-106 

modules (characteristics shown in Table 2), with a total power of 19.08 kWp. The 

PV array is divided into 9 sub-arrays of 20 modules each. Let Nmp be the Parallel 

modules number of  the PV generator sub-array, and Nms the Series modules 

number of PV generator sub-array, the final distribution of the 20 modules in each 

array is: Nms x Nmp = 10 x 2 modules. In the performance analysis, it was 

considered that all 9 subsystems operate with the same performance. In Fig. 8 a 

photograph of the Pergola PV system is presented and in Fig. 9 the schematic 

diagram of the modules connection is shown.  

 

Fig. 8 Photography of “Pergola PV system” 

R

 

Fig. 9 Architecture of GCPVS “Pergola PV system” 
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In Table 2 the electric specifications of the modules used in the Pergola PV 

system are presented. All data are referred at Standard Test Conditions (STC), that 

is: 100 mW/m
2
, AM 1.5 spectrum, and 25ºC cell temperature. 

Table 2 Electrical values of the module 

Electric  Specifications I-106 

Maximum Power (Pmax) 106W 

Short Circuit Current (Isc) 6.54A 

Open Circuit Voltage (Voc) 21.6V 

Maximum power current (Imax) 6.10A 

Maximum power voltage (Vmax) 17.4V 

Standard Test Conditions

Additionally, in Table 3 the generator and modules parameters are presented, 

again at STC. 

Table 3 Generator and module parameters 

MODULES GENERATOR

Model Isofotón I – 106 Orientation 52º SE 

Material Si-monocrystalline Tilt 13º 

Series Cells 36 Series modules 10 

Parallel Cells 2 Parallel Modules 2 

Total  Cells 72 Total Modules 20 

Standard Test Conditions 

The maximum power of each module is 106 Wp, so the maximum power of 

the generator is 2120 Wp. 

3.3   MultiLayer Perceptron Developed 

The MLP that we used and developed for obtaining the Performance Ratio of the 

system is presented in Fig. 10. 



Two New Applications of Artificial Neural Networks 213

 

Tc

G

Entrance layer
Hidden layer Output layer

PDC

Tc

G

Entrance layer
Hidden layer Output layer

PDC

 
Fig. 10 Proposed architecture of the MLP 

The MLP has three layers. The first one or input layer has two neurons or 

nodes, which are the following: 
 

G: Irradiance (W/m
2
) 

Tc: Module Temperature (ºC) 
 

The second layer (hidden layer), has three nodes. And finally the last layer 

(output layer) has only one node: the Power (in DC) PDC of the PV generator in 

study.  

The grid connected PV installations of Univer generator are fully monitored to 

assess the potential of PV technology and performance of this kind of systems. 

The monitoring system was designed according to the European Guidelines and 

IEC 61724 [IEC 1993]. 

This system includes also a data acquisition system, connected to a computer 

and the measured data is recorded every 10 min. The monitoring parameters for 

each PV system are: the ambient temperature Tam (ºC), the in-plane irradiance G 

(W/m
2
), the array voltage Vdc (V), the array current Idc (A) and the output inverter 

power Pac (W). 

3.4   Performance Ratio-Definitions and Calculations 

In order to determine whether a GCPVS is working properly, one of the most 

common parameter used is the yearly value of the performance ratio (PRanual). 

This parameter can be obtained using the following expression: 

( )

( ) ⎟⎠
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⎛
⋅
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yearmkWhHkWp
gen

P

yearkWh
ac

E

annualPR
2

/
                                  (1) 

Where:  

Eac: annual energy fed into the grid in kWh,  

Pgen: maximum power of the generator in kWp and  

H: annual irradiation received by the generator in kW/m
2
. 

TC 
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To determine, in an instantaneous way, the running of equipment PRanual is not 

valid, so that a new parameter must be used. The instantaneous PR is defined as 

the relation between the irradiation received by the system, the power that is fed 

into the grid and the peak power of the generator. It is expressed as follows: 

( )

( ) ⎟⎠⎞⎜⎝⎛⋅

=
2

mkWGkWp
gen

P

kW
ac

P

inst
PR                                   (2) 

It can be checked out that there is not any value of the PRinst which allows us to 

determine if the system works in the right way directly. This happens due to the 

fact that the value of the PR changes every moment of the day in which the 

system is being analyzed. Our aim is to show the way we can track a system 

through the monitoring of its PRinst, and based on this, to classify whether the 

working state of our GCPVS is good or bad. This permits the early detection of 

any deviation from the system. In Fig. 11, the schematic diagram of the algorithm 

proposed is shown. 

 

Fig. 11 Diagram of the algorithm proposed 
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To apply the algorithm proposed, the methodology we applied can be 

summarised as follows: 

• First of all we need some entrance parameters. In this case the 

monitoring parameters used are: 

The ambient temperature Tam (ºC), 

The in-plane irradiance G (W/m
2
),  

The output inverter power Pac_real (W). 

Here we made a slight change, as we need the module (or cell temperature Tc) 

and we were monitoring the ambient temperature (Tam) as mentioned previously. 

The change is done using the following equation:  

20

800c am

NOCT
T T G

−
= + ×                                  (3) 

Where: 

Tam: ambient temperature, ºC 

Tc: cell module temperature, ºC 

NOCT: nominal operating cell temperature (for I-106 module this parameters is 

47ºC) 

G: irradiance for the ambient temperature, W/m
2
  

• Then the values of irradiance and temperature are presented to the net, 

obtaining Module Maximum Power (PM) and Generator Power PM (Pdc) using 

series cells number (Ns), parallel cells number (Np).  

• The inverter efficiency, ηi, quantifies how well the DC input power is 

converter in useful AC power. It is defined as the ratio between AC output 

power (Pac) and DC input power (Pdc). Among the different approaches that 

can be adopted, we have used a descriptive model that provides a good 

equilibrium between precision and simplicity [Pérez et al. 2004].  
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This model has the advantage that parameters b0, b1 and b2 have physical 

meaning according the type of losses involved in the power conversion: 

• b0 represents the self-consumption losses 

• b1 represents the losses that varies linearly with the current (e.g., 

diodes) 
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• b2 represents the Joule losses, which are proportional to the square of 

the current (voltage drops across the wiring, transformers, switching 

semiconductors, etc.).  

• Then the Pac is calculated.  

• Calculation of Instantaneous Performance Ratio (both ANN and 

measured). 

• Finally, a comparative study between different PRinst is done with 

error classification for system maintenance. 

3.5   Accuracy of the Methodology Developed 

As we have explained in the previous subsection with the MLP developed we 

were able to calculate the instantaneous performance ratio, that we called net 

instantaneous performance ratio (PRinst_net). In our investigations we did a 

comparative study between the two instantaneous performance ratios, the one 

obtained via the ANN methodology and the one obtained with the real data. In 

Fig. 12 we can observe that the two performance ratio are quite similar, which 

indicates that our method for obtaining the performance ratio is good. 

 

Fig. 12 PRinst obtained by different methods 

3.6   Behaviour of the System 

Once we have calculated the instantaneous performance ratio it is possible to 

determine if the system is working properly or not thanks to the error system. The 

error system is defined as the difference between the real instantaneous 

performance ratio (PRinst-real) and the instantaneous performance ratio obtained by 
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the ANN (PRinst_net). Initially we have to decide when the system is working in a 

good way and when it is working badly. The hypothesis used is that if the error 

system is not higher than 10% the systems is working properly. An example of the 

results we have obtained is presented in Fig. 13. In this figure the system error 

(remember that our time interval is ten minutes) is presented. As it can be 

observed the systems is always working properly, as the system error is under 

10% always. 

 

Fig. 13 System Error classification. 

4   Estimation of the Energy Produced by pv Generators Using 
ann 

4.1   Introduction 

Photovoltaic (PV) systems have shown themselves to be one of the most 

promising applications for dealing with solar electricity generation. Because of 

this, in the last few years, the PV market has changed drastically. There has been a 

substantial market growth in the last years, with an ongoing trend in grid-

connected applications. Countries enhance the international collaboration efforts 

which accelerate the development and deployment of photovoltaic solar energy as 

a significant and sustainable renewable energy option. 

Nevertheless there is one difference between the theorical installed power and 

the power that actually, the PV system provides. This difference can be due to 

energetic losses introduced by the different factors present in every installation 

[Alonso-Abella and Chenlo 2004] such as:  

 

System Error 
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• Angular and spectral effects 

• Module temperature 

• Low irradiance losses 

• Mismatch losses 

• Dirt and dust 

• Ohmic loses 

• Manufacturer warranted PV 

• Nominal power 

Determining the exact value of each type of loss for a particular system is a 

very complicated task, as it involves the use of complex mathematical models that 

do not always provide favourable results. Therefore, the values used for this 

purpose are the annual average values of energy losses. These annual values of 

losses are based on the experience acquired through the study of systems already 

installed and they are essentially statistical. These values can fluctuate from 11% 

to 45% (Table 4), which implies a wide range of variation, and this can lead to 

highly diverse estimations of energy depending on the values chosen. 

Table 4 Typical maximal and minimum values used in the estimation of annual energy 

losses 

 Minimum Maximum 

Temperature 5 % 15 % 

Low irradiance 0,5 % 3 % 

Angular and spectral losses 0,5 % 7 % 

Tolerance 2 % 5 % 

Mismatch 2 % 4 % 

Dirty and dusk 0,5 % 4,5 % 

Ohmic losses 0,5 % 1,5 % 

Shading 0 % 5 % 

Total 11% 45 % 

On that account, it is interesting to develop models able to objectively consider 

most of these losses and to reduce the number of values that must be chosen in a 

subjective way, based on the experience of the person conducting the study, in 

order to bring down the uncertainty in estimating the energy produced by the PV 

generator. 

4.2   System Description 

The Univer Project [Drift et al. 2007] consists of the installation of a grid-

connected photovoltaic system, with a total power of 200 kWp, in Jaen University 

Campus. We can find four subgenerators with a similar configuration, changing 

only the generator power, and three different architectural solutions: Two 
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subgenerators which are part of the University parking covers and two 

subgenerators embedded in the building where the Transformation Center and the 

inverters are located. The system is made up by two subsystems based on the 60 

kW-inverters and twenty-four subsystems with 2 kW-inverters. 

Photovoltaic Systems 1&2 “Parking” 

System “Parking 1” is integrated in one of the parking covers at the University 

Campus. It consists of a photovoltaic generator with 68 kWp nominal power and a 

60 kW three-phase inverter. The photovoltaic generator consists of 640 modules 

of model ISOFOTON I-106, 80 modules connected in series, and 8 parallel arrays. 

For the integration of the photovoltaic generator, we use the existing parking 

covers at this University Campus, which are totally free from shadows, with a 30º 

southeast orientation and tilted at 7.5º. System “Parking 2” is the same as “Parking 

1”, and it is located in a parallel cover in the same parking area (see Fig. 14). 

 

Fig. 14 Photograph of the ‘Parking’ system. 

Photovoltaic System 3 “Pergola” 

This PV generator is integrated in the Connection and Control Building of the 

project. In this building the inverters, data acquisition system and the safety and 

protection systems are located.  The PV system consists of a photovoltaic 

generator with a nominal power of 20 kWp, made up by 9 subgenerators (2 kWp) 

and string oriented inverters. One of the aims of this integration is to get a shaded 

area that improves the environmental climatic conditions, which is very necessary 

in this part of Spain, and at the same time, to be useful as a PV application 

demonstration for students (see Fig. 15). 
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Fig. 15 Photograph of the ‘Pergola’ system 

Photovoltaic System 4 “Façade” 

This PV generator is integrated in the south façade of the building, which is 

located close to the Connection and Control Building. It consists of 15 

subgnerators with a total of 40 kWp capacity PV polycrystalline modules and a 40 

kW string oriented inverter (see Fig. 16). 

 

Fig. 16 Photograph of the ‘Façade’ system 

4.3   Methodology Developed for the Estimation of the Energy 

In this new application, the methodology developed by our Research Group is 

based on an artificial neural network developed by at the University of Jaen,  
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which allows the electrical characterisation of the PV modules [Almonacid et al. 

2006, 2007, 2009, 2010]. This study uses the advantages of an artificial neural 

network of the Perceptron Multilayer type which does not required any knowledge 

of internal system, has less computational effort and offers a compact solution to 

obtain the V-I curves of si-crystalline modules.  

The structure of the neural network (see Fig. 17) consists of three layers. The 

first one or input layer has two neurons or nodes. The second layer (hidden layer), 

has three nodes. And finally there is a last layer called the output layer. This 

network has been properly trained and validated using V-I curves measured 

outdoor for different radiation and temperatures. The result is an artificial neural 

network which can obtain the V-I curve of a PV module for a pair of irradiance 

[G] and cell temperature [TC] values. 

TC 

G

Entrance 

layer Hidden 

layer 

Output 

layer 

 

Fig. 17 Architecture of the neural network MLP for obtaining V-I curves of PV modules 

The calculation procedure to estimate the annual energy produced by the PV 

generator can be summarized in three steps: 

Step 1. - Calculation of cell temperature.  

As the input values of the method are the irradiance [G] and cell temperature [TC], 

and as the available measured data are irradiance and ambient temperature [TA], 

the first thing to do is to calculate the cell temperature by equation (3). 

Step 2. -  Calculation of the output power of the generator.   

For each pair of values of G and TC, PDC is calculated using the method based on 

artificial neural network. The result obtained in this step is the mean monthly daily 

power output of the generator at intervals of ten minutes for each month of the 

year 2005.  
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Step 3. -  Calculation of annual energy output of the generator.  

Since the data available are mean monthly daily values of power, taken at ten 

minute intervals, the following equation is used to calculate the daily energy from 

the power values: 

∑
=

Δ⋅−∫ ≈=
N

j

t
j

P

day

dttPE

1

)(
                             (6) 

Where:  

E: energy in kWh,  

P(t): power in KW,  

Pj: power values taken at intervals of ten minutes,  

N=144 (values for each day at intervals of 10 minutes) and  

6
1

144
24 ==Δt  (hours). 

The annual energy is obtained as the sum of mean monthly daily energy, 

obtained by the expression above, multiplied by the number of days of each 

month. 

4.4   First Results 

The mean monthly daily energy (Emmd) obtained by the ANN and the mean 

monthly daily energy measured for the three PV generators, are shown in Figs. 18, 

19 and 20.  

 

Fig. 18 Mean monthly daily energy obtained by the ANN and mean monthly daily energy 

measured from the ‘Parking’ system 
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Fig. 19 Mean monthly daily energy obtained by the ANN and mean monthly daily energy 

measured from the ‘Pergola’ system 

 

Fig. 20 Mean monthly daily energy obtained by the ANN and mean monthly daily energy 

measured from the ’Façade’ system 

The annual energy obtained by the ANN and the annual energy measured for 

the three PV generators, are shown in Table 5. 

Table 5 Annual energy obtained by ANN and the annual energy measured for the three PV 

generators 

 Measured (KWh) ANN (KWh) 

‘Parking’ 83459 90491 

‘Pergola’ 2823 2994 

‘Façade’ 2630 2830 
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The percentage error between the energy measured and the energy obtained by 

ANN for the three PV generators are shown in Table 6. It can be observed that the 

error obtained by ANN is very low. 

Table 6 Percentage error between mean monthly daily energy obtains by the ANN and 

mean monthly daily energy measured for the three PV generators  

‘Parking’ ‘Pergola’ ‘Façade

January 16% 8% 15%

February 19% 9% 8%

March 15% 3% 6%

April 4% 4% 8%

May 4% 6% 5% 

June 8% 8% 6%

July 5% 5% 8%

August 12% 6% 8%

September 4% 6% 3%

October 6% 5% 6%

November 12% 9% 11% 

December 10% 9% 10%

Annual Error 8% 6% 8%

The method for estimating the annual energy produced by a PV generator 

based on the ANN developed by the R&D Group for Solar Energy and Automatic 

at the University of Jaen can reduce the rate of error between 6% and 8%. The 

neural network is trained with the values of PV module measured at real weather 

conditions, so the neural network has taken into account the second order effects 

as module temperature, low irradiance losses, nominal power, that other 

traditional methods used to calculate the energy provided by PV system, ignored.  

4.5   Comparative Study Against Other Methods 

A comparative study is carried out in order to evaluate the effectiveness of the 

methods described above. The aim of this study is to compare the results of 

several methods for estimating annual energy produced by a PV generator. Three 

of them are classical methods and the forth one is based on artificial neural 

networks. The methods have been applied in different types of systems and 

different settings and types of modules.  

To perform this study, each method has been used to estimate the annual 

energy produced by a real photovoltaic generator. The results have been compared 

with the value of the energy actually obtained during the corresponding year. 
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4.5.1   Estimation the Power Provided by a Photovoltaic Generator by 
Osterwald´s Method [Osterwald 1986] 

Among the classic methods, Osterwald’s method [Osterwald 1986] has been 

chosen, as this is one of the methods that provide the best results. This method is 

one of the simplest, and is thoroughly described in [Fuentes et al. 2007]: 

 

( )[ ]251, −⋅−⋅= c
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                                    (7) 

Where: 

Pm: Cell maximum power (W), 

Pm,STC : Cell maximum power in STC (W), 

γ:= Cell maximum power temperature coefficient (ºC
-1

).  

Coefficient γ ranges from -0·005 to -0·003ºC
-1

 in crystalline silicon. Although 

this parameter is not provided routinely by the Accredited Independent Laboratory 

(AIL) certificate of calibration of the module, good results are achieved assuming 

γ = -0·0035 ºC
-1

 [Luque and Hegedus 2003]. 

4.5.2   Estimation of the Power Provided by a Photovoltaic Generator by 
Araujo-Green´s Method [Araujo et al. 1982. Green 1982] 

This method uses the following eight relations sequentially to obtain the values of 

maximum power obtained from the operation of the cell: 

1.- Cell short circuit current 
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7. -  Cell voltage and cell current at maximum power point 
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8. - Cell maximum power (Pm) 

mmm IVP ⋅=                                                   (16) 

From the calculated values for the generator cells, the following values for the 

generator operation are assumed: 

cpmpmMAXG NNII ⋅⋅=                                       (17) 

csmsmMAXG NNVV ⋅⋅=                                      (18) 

csmscpmpmMAXG NNNNPP ⋅⋅⋅⋅=                          (19) 

4.5.3   Estimation the Power Provided by a Photovoltaic Generator Using the 
Diode Model [Green 1982] 

To calculate the operation values of a PV generator the next expression, can be 

used. This expression defines the V-I characteristic of the PV generator.  

Where:  
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IG : PV generator current (A) 

VG : PV generator voltage (V) 

Ncp : number of parallel cells in PV module 

Ncs : number of series cells in PV module 

Nmp : number of parallel modules in PV generator 

Nms : number of series modules in PV generator 

Isc : short circuit current of a photovoltaic cell module (A) 

Voc : open circuit voltage of a photovoltaic cell module (V) 

Rs : series resistance of a photovoltaic cell module (Ω) 

Vt : thermal voltage (V) 

The objective is to obtain the maximum power of the generator for a given pair 

of values of irradiance and ambient temperature. For each point of the V-I curve, 

the product of current and voltage represent the output power for these operating 

conditions. The maximum power output of the cell is obtained for: 0/)( =dVIVd . 
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4.6   Results of Comparative Study  

In this section the results of the comparative study are presented. We have 

evaluated these comparative results for the three systems, but as an example we 

are going to present the results for the Parking System. 

In Fig. 21 the mean monthly daily energy obtained with methods presented 

above and mean monthly daily energy measured from the ‘Parking’ system, are 

plotted. As shown in the figure, again the result obtained by the neural network is 

the closest to actual system behavior. In this case, the Osterwald´s method is the 

method that gives the worst performance.  

 

Fig. 21 Values of mean monthly daily energy obtained by different methods and the mean 

monthly daily energy measured of the ‘Parking’ system 

In table 7, the monthly and annual values of the energy produced by 

photovoltaic generator obtained from the measured values and those calculated 

using the above methods, are shown. Again, both monthly and annually, the 

values provided by the artificial neural network are closest to the measured values. 

Table 7 Monthly and annual error values obtained in the estimation of the energy produced 

by ‘Parking’ system using the various estimation methods 

Energy provided by the “Pergola” System (kWh) 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year 

Osterwald 191 221 289 319 335 336 353 338 313 218 184 154 3252 

A-G 190 219 285 315 330 330 347 332 308 215 183 153 3206 

Diode 202 232 292 320 327 321 335 320 304 223 194 164 3234 

ANN 181 211 265 290 305 308 323 309 285 198 175 144 2994 

Measured 169 194 258 278 289 285 307 293 269 189 160 132 2823 
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To quantify the difference between the measured values and those obtained 

with each method, the percentage error between the measured energy and the 

energy obtained by the different methods for the ‘Parking’ system, is calculated. 

The results are presented in Table 8. Both monthly and annually, the values 

provided by the artificial neural network are closest to the measured values. 

Table 8 Monthly and annual percentage error values obtained in the estimation of the 

energy produced by ‘Parking’ system using various estimation methods 

Parking Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year 

Osterwald 34 31 28 17 17 19 16 22 18 19 24 31 21 

Araujo-Green 31 29 26 14 14 16 13 19 15 16 21 28 18 

Diode curve 33 31 27 16 15 15 11 17 16 18 28 32 19 

ANN 16 19 15 4 4 8 5 12 4 6 12 10 8 

The error in the annual prediction of energy generation for the four methods 

and the three systems considered are shown in Fig. 22. These results show that the 

method based on artificial neural networks best characterizes the actual behavior 

of PV systems (with different settings and types of modules). It can be observed 

that the error obtained by ANN is smaller in all cases.  

 

Fig. 22 Error for different methodologies for the three systems considered 

This method based in ANN, besides the effect of irradiance and temperature, 

also takes into account some other second order effects as the different behavior of 

the module at low temperatures, angular and spectral effects and the difference 

between rated power and actual power of the module (see Table 9). 



Two New Applications of Artificial Neural Networks 229

 

Table 9 Losses taken into account with each method 

Parameter Typical percentages of 

annual energy losses 

Losses considered by the 

method 

Minimum Maximal 
Classical 

Methods 
ANN 

Temperature 5 % 15 % Yes Yes 

Low irradiance 0,5 % 3 % No Yes 

Angular and spectral losses 0,5 % 7 % No Yes 

Tolerance 2 % 5 % No Yes 

Mismatch 2 % 4 % No No 

Dirty and dusk 0,5 % 4,5 % No No 

Ohmic losses 0,5 % 1,5 % No No 

Shading 0 %  5 % No No 

Total 11% 45 %   

5   Conclusions 

In this chapter the methodology based on a MLP developed by the IDEA Research 

Group of the University of Jaén is presented. Initially, a review of the evolution 

and application of the MLP developed is presented. 

The last two research projects carried out in this area and application of this 

methodology is also presented. For the estimation of the instantaneous PR the two 

main conclusions are deduced:  

• The method based in ANN has been able to predict the instantaneous 

performance ratio of a PV generator accurately.  

• This method can be used for the maintenance of a PV system and to detect its 

correct operation. 

Additionally, for estimating of the energy produced by three PV generators the 

results presented demonstrate the usefulness of the MLP in this field. As seen, the 

energy production of a grid-connected PV system depends on various factors. 

There are a number of reasons that causes a decrease in the expected energy of a 

PV system. In this study the results of several methods for estimating the annual 

energy produced by a PV generator (three classical and one based on artificial 

neural network) in different types of systems with different settings and types of 

modules have been compared.  

The results shown indicate that the method of estimating the annual energy 

produced by a PV generator based on the ANN developed by the University of 

Jaén can reduce the error between 6% and 8% compared to other methods 

currently used for such estimates. This method based on ANN, besides the effect 

of irradiance and temperature, takes also into account some other second order 

effects. 
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The methodology based on ANN can be used also for other applications as the 

characterization of other parts of the installation, and other PV generators sited in 

different locations of the world. 
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Abstract. This chapter presents the design and optimization of a fuzzy logic con-

troller (FLC) with a minimum rule base for maximum power point tracking in 

photovoltaic (PV) systems. A strategy for automated design and optimization of 

the FLC using genetic algorithms is proposed. An optimal Takagi-Sugeno FLC 

with a rule base of only 9-rules is realized and compared to the conventional de-

sign of 49 or 25 rules. Two FLCs, one using Gaussian input membership functions 

(MFs) and the other using trapezoidal MFs are designed and their performance 

compared. Expert knowledge for tuning the FLC is extracted from a PV module 

model under varying solar radiation, temperature, and load conditions. The pro-

posed method is implemented using C language as a dynamic linked library (.dll 

format) and simulated using LabVIEW. Simulation results are used to compare the 

performance of the optimized FLCs in terms of speed, accuracy, and robustness. It 

is shown that the optimization algorithm produces an optimal FLC for both Gaus-

sian and trapezoidal MFs. 

1   Introduction 

Photovoltaic (PV) power generation is a reliable and economical source of elec-

tricity in rural areas, especially in developing countries where the population has 

low incomes and the grid power supply is not fully extended due to viability and 

financial constraints. The efficiency of PV modules depends on the material used 

in solar cells and the technology used in arranging the solar cells to form a mod-

ule. Currently, PV modules have very low efficiencies with only about 12 29%−  

efficiency in their ability to convert sunlight to electrical power [Ocran 2005]. The 

efficiency can drop further due to other factors such as PV module temperature 

and load conditions. In order to maximize the power derived from the PV module 

it is important to operate the module at its optimal power point. To achieve this, a 

maximum power point tracking (MPPT) controller is required.  

Many maximum power point (MPP) tracking strategies have been proposed 

such as perturb and observe and incremental conductance. Recently artificial  
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intelligence based methods using genetic algorithms, neural networks, and fuzzy 

logic have been introduced in order to improve on the tracking efficiency. Fuzzy 

logic is appropriate for nonlinear control because it does not use complex mathe-

matical equations. The behaviour of a FLC depends on the shape of membership 

functions and the rule base. However, there is no formal method to determine ac-

curately the fuzzy parameters to yield optimum operating point. The conventional 

design of a fuzzy controller and its performance therefore depends on the expe-

rience of the designer. This chapter proposes an automated method for choosing 

the FLC parameters using genetic algorithms. It will be shown that it is possible to 

design and optimize a minimum rule base of 9 rules and attain good transient and 

steady state performance. 

1.1   An Overview on MPPT Algorithms  

MPPT algorithms can be generally categorized into three groups: 1) perturbation 

and observation methods [Hua 1998, Koutroulis 2001, Enslin 1992]; 2) incremen-

tal conductance methods [Bodur 1992, Sullivan 1993]; 3) artificial intelligence 

based methods [Kohata 2009, Larbes 2009, Chen 2002, Veerachary 2002]. An 

overview of each method is presented next.  

1.1.1   Perturb and Observe  

The perturbation and observation (P&O) method, also known as the hill-climbing 

method, is popular because of its ease of implementation. This method tracks the 

maximum power point (MPP) by repeatedly increasing or decreasing (perturbing) 

the module voltage and comparing the output power with that at the previous per-

turbing cycle. Various problems occur in this method when acquiring the maxi-

mum power. It cannot track the MPP during low solar radiation levels and when 

radiation changes rapidly. It also oscillates around MPP instead of directly track-

ing it [Ocran 2005, Hohm 2003]. As oscillations always appear in the method, the 

power loss may be increased. Several improvements of the P&O algorithm have 

been proposed. One approach involves the use of the short-circuit current or the 

open-circuit voltage to determine the direction in which to perturb the module 

voltage. Methods based on this approach can be considered as variations of the 

standard perturb and observe algorithm since instead of observing the change in 

PV module power, change in either module short-circuit current or open-circuit 

voltage is used. The “short circuit current method” [Noguchi 2002] performs 

MPPT control using the PV module short circuit current as a control input. Al-

though this method does not have oscillations like those appearing in the standard 

P&O method, the power loss may increase since the short circuit current flows 

whenever MPPT control is performed. Furthermore, it becomes difficult to per-

form MPPT control during periods of low solar radiation because short-circuit 

current decreases with solar radiation. The “open circuit voltage method” [Enslin 

1997] utilizes the fact that the operating voltage is almost linearly proportional to 

open-circuit voltage of the PV module at MPP. It is simple, cost-effective, and 

avoids power loss associated with the short-circuit current method. A limitation of 
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this method is the fact that the reference voltage does not change between sam-

plings [Ocran 2005].  

1.1.2   Incremental Conductance Method  

The incremental conductance algorithm is a technique used to reduce the oscilla-
tion around the MPP. This method calculates the direction in which to perturb the 
module’s operating point and it can determine when it has actually reached the 
MPP [Hohm 2003]. It is however, computationally intensive and the speed at 
which it approaches the MPP depends on a fixed perturbation step. The perturba-
tion step is difficult to choose when dealing with trade-off between steady state 
performance and fast dynamic response. The control circuit is also complex result-
ing in a higher system cost [Koutroulis 2001]. 

1.1.3   Artificial Intelligence Based Methods  

Artificial intelligence based methods using genetic algorithms, neural networks, 
and fuzzy logic have been introduced in order to improve on the tracking effi-
ciency. With the neural network based method, the solar radiation, temperature, 
module voltage and current are measured and used to identify the maximum pow-
er point of the PV module [Kohata 2009, Ocran 2005, Baghat 2004]. Although 
this method can predict the maximum power point, the data acquisition and mem-
ory space requirements are very intensive and greatly affects the performance of 
the algorithm. Fuzzy logic is appropriate for nonlinear control because it does not 
use complex mathematical equations. The behaviour of a FLC depends on the 
shape of membership functions, input and output scale factors, and size of the rule 
base. However, there is no formal method to determine accurately the fuzzy pa-
rameters to yield optimum operating point and a good control system depends on 
the experience of the designer. 

1.2   Principle of Maximum Power Point Tracking  

The power produced from a PV module depends on the operating voltage of the 
load to which it is connected, solar radiation level, and cell temperature. This is 
illustrated in Fig. 1 and Fig. 2 using BP solar SX 75TU PV module. The electrical 
characteristics for this module are given in Table 1 [BP solar 2002]. 

If a variable load resistance R, is connected across the module’s terminals, the 
operating point is determined by the intersection of module I-V curve and the load 
I-V characteristic. Fig. 3 illustrates the operating characteristic of a PV module. It 
consists of two regions: Zone I is the current source region, and Zone II is the vol-
tage source region. In Zone I, the internal impedance of the module is high, while 
in Zone II the internal impedance is low. The maximum power point Pmp, is lo-
cated at the knee of the power curve. An increase in solar radiation at constant 
temperature causes a decrease in internal impedance as it causes an increase in 
short-circuit current. An increase in temperature at constant solar radiation causes 
a decrease in internal impedance since it causes a decrease in open circuit voltage. 

The power delivered to the load is maximum when the source internal imped-
ance matches the load impedance. The load characteristic is a straight line with a 
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slope of 1/R. If R is small, the module operates in the region AB only and behaves 

like a constant current source at a value close to the short-circuit current, scI . If R 

is large, the module operates in the region CD behaving like a constant voltage 

source, at a value almost equal to the open-circuit voltage, ocV . Maximum power 

point tracking is therefore based on load line adjustment under varying atmospher-
ic and load conditions by searching for optimal equivalent output impedance. A 
dc-dc converter is used to perform load-line adjustment by varying the converter 
duty cycle using a controller. The converter can be buck, boost, or buck-boost 
depending on the application. 

 

 

Fig. 1 Effects of ambient solar radiation for constant temperature 

 

 

Fig. 2 Effects of ambient temperature for constant solar radiation 
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Fig. 3 Tracking the maximum power point by varying load resistance 

1.3   Fundamentals of Fuzzy Logic Controllers  

Fuzzy Logic is a branch of Artificial Intelligence. It owes its origin to Lofti Zadeh, 

a professor at the University of California, Berkley, who developed fuzzy set 

theory in 1965 [Bose 2001]. The basic concept underlying fuzzy logic is that of a 

linguistic variable, that is, a variable whose values are words rather than numbers 

(such as small and large). Fuzzy logic uses fuzzy sets to relate classes of objects 

with unclearly defined boundaries in which membership is a matter of degree.  

 
Table 1 Characteristics of BP SX 75TU PV module 

 

BP SX 75TU Photovoltaic Module 

Type: Silicon Multicrystalline 

Number of Cells in series 36

Number of Cells in parallel 1 

Maximum Power (Pmax) 75 W 

Voltage at Pmax  (Vmp) 17.3 V 

Current at Pmax  (Imp) 4.35 A 

Short-circuit current (Isc) 4.75 A 

Open-circuit voltage (Voc) 21.8 V 

Temperature co-efficient of Isc (0.065 0.015)% / o
C±  

Temperature co-efficient of voltage (80 10) / o
mV C− ±  

Nominal Cell Operating temperature 

(NOCT) 
47 2

o
C±  
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1.3.1   Fuzzy Controller Structure  

The general structure of a fuzzy logic controller is presented in Fig. 4. It comprises 

of four principal components; fuzzification, knowledge base, inference engine, 

and defuzzification.  The fuzzification interface converts input data into suitable 

linguistic values using a membership function while the knowledge base consists 

of a database with the necessary linguistic definitions and the control rule set. The 

inference engine deduces the fuzzy control action using the knowledge of the con-

trol rules and the linguistic variable definitions. The last stage is the defuzzifica-

tion interface which converts an inferred output into a non-fuzzy control action.  

1.3.2   Need for Fuzzy Logic in MPPT Control  

MPPT controller design is an intriguing subject due to the nonlinearity of dc-dc 

converters and PV modules. This is because an accurate model of the plant and the 

controller is necessary while formulating the control algorithm. The nonlinear 

behaviour of dc-dc converters is caused by the switching device. Depending on 

the state of the switch (ON/OFF) the plant structure exhibits very different func-

tioning modes, resulting in a severe nonlinearity. PV modules also have nonlinear 

current-voltage (I-V) characteristics that are dependent on solar radiation, temper-

ature, and degradation due to environmental effects. Therefore, their operating 

point that corresponds to the maximum output power varies with the environmen-

tal and load conditions. Fuzzy logic offers a design approach that avoids precise 

mathematical modelling of the plant and the controller. However it leads to the 

new problem of determining optimal FLC parameters. 

 

 

Fig. 4 Structure of a fuzzy logic controller 

1.4   Automation of Fuzzy Logic Controller Design  

In the recent past the selection of fuzzy membership functions and size of the rule 

base has been automated using genetic algorithms (GAs) and particle swarm op-

timization. Larbes et al [2009] presented optimization of a 25-rule Mamdani based 



Optimization of Fuzzy Logic Controller Design for Maximum Power Point Tracking  239

 

FLC for MPPT using genetic algorithms. They used a combination of trapezoidal 

and triangular membership functions. Otieno et al [2009] presents a fuzzy control-

ler with 21 rules tuned using adaptive neural fuzzy inference system (ANFIS). 

Recent publications have also presented tuning of the FLC for MPPT using swarm 

intelligence. In Khaehintung [ 2010] , a 25 rule base FLC for MPPT with bifurca-

tion control is tuned using particle swarm optimization.  

Automated tuning is crucial because a fuzzy controller consists of a relatively 

large number of parameters. It is noted in the refereed works that optimization is 

done by first selecting a fixed rule base size and type of membership functions. 

The FLC parameters are then optimized using the identified method. This study 

shows that it is possible to optimize a rule base of 9 rules and meet the desired 

performance using genetic algorithms. 

2   Modelling of the MPPT Controller 

This section presents modelling of the MPPT controller for formulating and test-

ing the performance of the formulated fuzzy controllers. Modelling of the PV 

module, buck-boost converter, and the complete system implementation in Lab-

VIEW is presented. The models are implemented in C language and compiled as 

dynamic linked library (dll) for compatibility with the LabVIEW user interface. 

2.1   Modelling of the PV Module  

The PV module was modelled using equations in Hybrid2 theory manual [Man-

well 2006]. Hybrid2 is a computer simulation model for hybrid power systems 

developed by the University of Massachusetts. A PV module is composed of indi-

vidual solar cells connected in series - parallel and mounted on a single panel. The 

goal is to calculate the power output from a PV module based on an analytical 

model that defines the current-voltage (I-V) relationship based on the electrical 

characteristics of the module. The one diode solar cell model of Fig. 5 forms the 

basic circuit used to establish the I-V curve. The diode current 
T

I   and the current 

through the shunt resistance 
sh

I  are given by Equations (1) and (2) respectively; 

where, m  is the idealizing factor, k  is Boltzmann’s gas constant, 
c

T  is the abso-

lute cell temperature, q  is the electronic charge, V  is the voltage imposed across 

the cell, and 
o

I  is the cell reverse saturation current. The module current mI ,
 
un-

der arbitrary operating conditions is given by Equation (3). 
,G m

I  is the module’s 

light generated current, 
,o m

I  is the module reverse saturation current, 
m

V  is the 

module voltage, and 
,s m

R  is the module series resistance, and A is the curve fitting 

parameter. 
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Fig. 5 Equivalent circuit of a solar cell 
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The model was implemented as a C function whose inputs are the ambient solar 

radiation Ga, ambient temperature Ta, and the load resistance R. The model outputs 

are: module operating voltage Vm, output current Im, voltage at maximum power 

Vmp, and the maximum power Pmp. The PV module model is obtained from the 

solar cell model using manufacturer supplied data. The model was validated using 

manufacturer supplied data for BP solar SX 75TU PV module. The LabVIEW 

block diagram of the model is shown in Fig. 6.  

2.2   Converter Modelling  

A buck-boost converter was chosen for the MPPT because of its ability to perform 

maximum power tracking in both zones I and II of Fig. 3. The circuit of a buck-

boost converter is shown in Fig. 7. It consists of four basic components; transistor 

Q , diode T , inductor L , and capacitor C . The inductor is modelled as an ideal 

inductor in series with a resistance LR . The capacitor is modelled as an ideal ca-

pacitor in series with a resistance CR . LR  and CR  are used to model the power 

losses in the inductor and capacitor respectively. The transistor has an on-state 

resistance, tR  while the diode has a forward voltage drop TV . A state space model 

of the converter was formulated using the principle of state-space averaging 

[Erickson 2001]. The obtained model was implemented as C language code. The 

converter transforms the load resistance using the controller generated duty ratio 

into an equivalent input resistance for the PV module. 
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LabVIEW block diagram of the PV module 

 

g. 7 Circuit of a buck-boost converter 
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2.3   Complete MPPT Model  

The complete LabVIEW block diagram model of the maximum power point 

tracker was implemented as shown in Fig. 8. The PV module model of Fig. 6 was 

modified into a single function PVmodule.dll that outputs the module current mI , 

voltage mV , and the possible maximum power mpP  for given solar radiation, tem-

perature, and load. 

3   Fuzzy Logic Controller Design  

The structure of the FLC and formulation of the optimization criteria is presented 

in this section. Two FLCs are designed and optimized. One fuzzy controller 

(GFLC) uses Gaussian input membership functions while the other controller 

(TFLC) uses trapezoidal membership functions. 

3.1   Input Variables  

There are two input variables, error E(k), and change of error CE(k) at the kth sam-

pling instant  as defined in Equations (4) and (5). Pm(k) is the instantaneous power 

of the PV module and E(k) is the gradient of the P-V curve of Fig. 1. The sign of 

E(k) gives the operating mode. When E(k) > 0 the system is moving towards the 

MPP ; at E(k) = 0 the system is operating at the MPP; and for E(k) < 0 the system 

is moving away from the MPP. 

( ) ( 1)
( )

( ) ( 1)

m m

m m

P k P k
E k

V k V k

− −
=

− −
                                           (4) 

( ) ( ) ( 1)CE k E k E k= − −                                              (5) 

3.2   Membership Functions  

The computational effort, simulation time, and quality of the results need to be 

considered when choosing the variables to be optimized. In this study, optimiza-

tion is considered using Gaussian and trapezoidal membership functions. For each 

input the number and type of MF is fixed. The only variable is the area covered by 

each MF. The area of the MF is optimized by varying the defining points shown in 

Fig. 9 and Fig 10 for the Gaussian and trapezoidal MFs respectively.  
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Fig. 9 Encoding input membership using gauss2mf function 

 

 

Fig. 10 Encoding of membership using trapmf function 

3.3   Simulation Software  

The fuzzy control algorithm was developed in C language to avoid limitations in 

the Matlab fuzzy logic toolbox. The toolbox does not allow the area of a member-

ship function to be reduced to zero during online tuning. It was observed that dur-

ing optimization it is computationally efficient to allow the area of an MF to vary 

rather than making a whole MF active or inactive. A large rule base is required 

when rules have to be weighted and this translates to more memory requirements 

and the system takes long to converge. The Takagi-Sugeno inference system was 

chosen as it is more compact and has a computationally efficient representation 

than a Mamdani system [Bose 2002].  

3.4   Encoding of Optimization Parameters  

The input MFs for E(k) and CE(k) are defined using gauss2mf  and trapmf func-

tions defined in Matlab. The MFs are as shown in Fig. 9 and Fig. 10. A gauss2mf 



Optimization of Fuzzy Logic Controller Design for Maximum Power Point Tracking  245

 

function consists of two Gaussian functions and hence four parameters need to be 

identified. For example, to encode the Zero MF the parameters are: sigma 1 (x3), 

centre 1 (x4), centre 2 (x5) and sigma 2 (x6). A trapmf function is defined using the 

same number of parameters. The FLC has only nine rules as shown in Table 2 and 

the output of each rule is the change in converter duty cycle given by Equation (6). 

The constants a, b, and c are to be determined for each output MF in the rule base 

of Table 2.  

( ) ( ) ( )D k aE k bCE k cµ = + +                                    (6) 

The optimization parameters are encoded as a vector S  given by Equation (7) 

where sub-vectors iX and iY  each consist of 8 parameters that correspond to the 

input MFs for E(k) and CE(k) respectively. iZ  consists of linear Sugeno output 

MF parameters of Equation (6). The rule base has 27 parameters to be optimized, 

and hence a complete fuzzy logic controller has 43 optimization parameters. The 

encoding of one FLC is therefore given by (7).  

[ , , ]i i i iS X Y Z=                                                        (7) 

where, 

1 2 8[ , , , ]iX x x x= K                                                      (8) 

[ ]1 2 8, , ,
i

Y y y y= K                                                  (9) 

[ ]1 2 27, , ,
i

Z z z z= K                                                 (10) 

 
Table 2 FLC rule base 

E\CE N Z P 

N MF1 MF2 MF3 

Z MF4 MF5 MF6 

P MF7 MF8 MF9 

3.5   Optimization Criterion  

The mean-square-error defined in Equation (11) is used as the fitness function. Pm 

is the attained PV module power, Pmp is the maximum power, and N is the number 

of iterations. 

( )
2

1

1
( ) ( )

N

m mp

k

J P k P k
N =

= −∑                                       (11) 

The number of iterations N consists of an outer loop and inner loop that run for N1 

and N2 iterations respectively. Solar radiation, temperature, and load resistance are 

held constant in the inner loop but allowed to vary in the outer loop. The inner 
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loop determines the steady state performance while the outer loop determines the 

transient performance of the controller during optimization. This is illustrated in 

the flowchart of Fig. 11. 

4   Optimization of the FLC Using Genetic Algorithms 

Genetic algorithms (GAs) and their application to optimization problems using the 

principle of natural evolution was developed by Holland in 1975 [Sivanandam and 

Deepa 2008]. GAs consist of three basic steps: selection, crossover (mating), and 

mutation. The parameters that specify the potential solutions of the optimization 

problem are encoded as population of chromosomes. The boundaries of the opti-

mization parameters define the space of potential solutions also known as the 

search space. A fitness function is used to evaluate the quality of each potential 

solution. A comprehensive overview and introduction to GAs is presented in [Si-

vanandam and Deepa 2008, Haupt and Haupt 2004]. 

4.1   Generation of the Population  

In this design, the population consists of fuzzy logic controllers. Each FLC is 

modelled as a single chromosome with 43 genes where each gene represents an 

optimization parameter. The initial population is randomly generated using the 

parameters of Table 3. At the end of each iteration the cost of each chromosome is 

evaluated and ranking is done. 50% of the individuals with the least cost are se-

lected to form the next population. The remaining half is reproduced through mat-

ing of the selected individuals. The parents for mating are selected using rank-

weighting and the offspring is generated using single-point crossover [Haupt 

2004]. Finally, random mutations are carried out on the population in order to en-

sure that the entire cost surface is explored. A mutation rate of 20% is applied to 

the population except the best chromosome. 

 
Table 3 Initialization of GA Parameters 

Parameter Value 

Population (N) 30 

No. of iterations (Imax) 50 

No. of bits 8 

Selection rate 0.5 

Mutation rate 0.2 

4.2   Simulation Steps  

At the start of the simulation, the initial population of chromosomes is generated 

in binary format. Each chromosome ( iS ) is then decoded into a fuzzy inference 
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structure (FIS) and the results are passed to the MPPT controller. The controller 

evaluates the fitness of the FIS using the fitness function of Equation (11). The 

genetic algorithm then generates the next population using the crossover and mu-

tation rates of Table 3. The new population is again evaluated for fitness and used 

to generate the population for the next iteration. The procedure is repeated for the 

set number of iterations maxI  as illustrated in the flowchart of Fig. 11. 

 

 

Fig. 11 Illustration of the simulation steps 

4.3   Optimal FLC Structure  

The system converges to an optimal solution which is obtained from the best 

chromosome at the end of the simulation. The input MFs of the best solution for 
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the FLC structure using Gaussian functions (GFLC) is presented in Fig. 12 and 

Fig. 13. The optimal structure of the FLC using trapezoidal MF functions (TFLC) 

is as shown in Fig. 14 and Fig. 15. The defining points of the MFs shown in Fig. 9 

and Fig. 10 were constrained during optimization in order to ensure uniform parti-

tioning. The optimized rule surface for the GFLC and the TFLC are shown in Fig. 

16 and Fig. 17 respectively. The contour maps are shown at the bottom of each 

surface plot. 

 

Fig. 12 Gaussian MF for error (E) after optimization 

 

Fig. 13 Gaussian MF for change of error (CE) after optimization 

 

Fig. 14 Trapezoidal MF for error (E) after optimization 
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Fig. 15 Trapezoidal MF for change of error (CE) after optimization 

 

 

Fig. 16 Rule surface of FLC using gauss2mf (GFLC) after optimization 
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Fig. 17 Rule surface of FLC using trapmf (TFLC) after optimization 

5   Simulation Results and Discussion 

The optimal membership functions of both the GFLC and the TFLC in Fig. 12 to 

15 show that the Zero MF for error has a relatively larger area on the positive side 

compared to the negative side. However, the Zero MF for change of error is 

skewed to negative side in the TFLC. The zero centered MFs correspond to nor-

mal controller operation and determine the accuracy in tracking and maintaining 

operation at the maximum power point. These MFs are therefore expected to ex-

perience a high firing frequency when the controller is running. This is due to the 

fact that the Zero MFs contribute to the firing of 5 out of 9 rules in the FLC rule 

base shown in Table 2. A positive error indicates movement towards the MPP 

while a negative change in error indicates that the previous change in control ef-

fort resulted in decreased change in PV module power. 

It is observed that the rule surfaces of both the GFLC and the TFLC in Fig. 16 

and 17 depict small changes in control effort when the error (E) is positive. This is 

expected because 0E >  means that the controller is operating below the MPP, 

and 0CE >  shows the previous perturbation in control effort resulted in a net in-

crease in module power. The variation of E and CE during maximum power point 

tracking is illustrated in Fig. 18. Fig. 16 shows that when E is close to 100 and CE 

is increasing from 0 to 50, the GFLC slowly increases the duty cycle but starts to 

decrease it smoothly when both E and CE are approaching the maximum value. 

This is a necessary feature because successive increase in CE indicates fast  
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increase in solar radiation. However for the TFLC surface in Fig. 17, the region 

corresponding to positive E and CE is flat with a constant duty cycle with sudden 

decrease in duty cycle when 50CE > . It can therefore be predicted that the TFLC 

will experience overshoots in duty cycle variation during fast change in solar  

radiation. This is confirmed by the simulation plots of Fig. 19 to 22. The control 

signal for the GFLC shows a smooth control signal curve while the TFLC presents 

overshoots.  

The rule surface plots also indicate that the change in duty cycle is smaller 

when the change in error is positive compared with when it is negative. A succes-

sive negative increase in CE indicates that the tracking is fast moving away from 

MPP. It can also indicate a fast decrease in solar radiation. When this scenario 

occurs, it indicates that the controller is operating in Zone II of Fig. 1 where the 

gradient is very steep. The performance of the two fuzzy controllers under a fast 

decrease in solar radiation from 21000 /W m  to 2200 /W m  is presented in Fig. 

22. It is observed that the TFLC reaches the MPP slightly faster than the GFLC. 

However, the control signal of the TFLC is not smooth as observed earlier. 

The performance of the optimized FLCs under fast change in temperature was 

observed to be similar as shown in Fig. 23. The performance under step changes in 

load is also presented in Fig. 24 and Fig. 25. It is generally observed the TFLC 

exhibits a faster response than the GFLC, but both have good steady state perfor-

mance. The drawback of the TFLC is the non-smooth control signal variation.  

The results show that an optimized fuzzy logic controller has improved perfor-

mance and is more robust than the conventional P&O controller. It is also con-

cluded that it is possible to optimize a fuzzy logic controller with a minimum rule 

base of nine rules while still attaining good transient and steady state performance. 

 

 

 

Fig. 18 Illustration of variation of error and change of error 
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Fig. 19 Response during turn on at solar radiation of 
21000 /W m  and temperature of 

25o
C  
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Fig. 20 Response for a fast increase in solar radiation from 
2400 /W m to 

21000 /W m  in 

3s at a constant temperature of 25o
C  
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Fig. 21 Response for a fast decrease in solar radiation from 
21000 /W m to 

2400 /W m  in 

3s at a constant temperature of 25o
C  

 



Optimization of Fuzzy Logic Controller Design for Maximum Power Point Tracking  255

 

 

Fig. 22 Response for a fast decrease in solar radiation from 
21000 /W m to 

2200 /W m  in 

1s at a constant temperature of 25o
C  
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Fig. 23 Response for a fast increase in temperature from 15o
C to 45o

C  in 3s at a constant 

solar radiation of 
21000 /W m  
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Fig. 24 Response during step increase in load at solar radiation of 
21000 /W m and tem-

perature of 25o
C  
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Fig. 25 Response during step decrease in load at solar radiation of 
21000 /W m and tem-

perature of 25o
C  

6   Conclusion 

In this chapter the design and optimization of a Takagi-Sugeno fuzzy logic con-

troller for MPPT in a PV system using genetic algorithms is presented. The PV 

module model and the FLC were implemented using C language and simulated in 

LabVIEW using the .dll format. Two optimal FLCs each with a rule base of only 

9-rules are realized. One FLC uses Gaussian input MFs while the second uses  

trapezoidal MFs. The expert knowledge for tuning the FLCs is extracted using a 

fitness function by simulating the PV module under varying solar radiation,  

temperature, and load conditions. Simulation results are used to compare the per-

formance of the optimized FLCs in terms of speed, accuracy, and robustness.  

Simulation results have shown that the proposed optimized FLC is robust and pro-

vides fast and accurate tracking of the maximum power point compared to  

the conventional FLC. It is also observed that the proposed optimization strategy 
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produces an optimal FLC using either trapezoidal or Gaussian MFs. The FLC  

using Gaussian input MFs shows a smoother variation of the control signal  

compared to the one using trapezoidal input MFs. 
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Abstract. Due to various seasonal, hourly and daily changes in climate, it is rela-

tively difficult to find a suitable analytic model for predicting the output power of 

Grid-Connected Photovoltaic (GCPV) plants. In this chapter, a simplified artificial 

neural network configuration is used for estimating the power produced by a 

20kWp GCPV plant installed at Trieste, Italy. A database of experimentally meas-

ured climate (irradiance and air temperature) and electrical data (power delivered 

to the grid) for nine months is used. Four Multilayer-perceptron (MLP) models 

have been investigated in order to estimate the energy produced by the GCPV 

plant in question. The best MLP model has as inputs the solar irradiance and mod-

ule temperature. The results show that good effectiveness is obtained between the 

measured and predicted power produced by the 20kWp GCPV plant. The devel-

oped model has been compared with different existing regression polynomial 

models in order to show its effectiveness. Three performance parameters that de-

fine the overall system performance with respect to the energy production, solar 

resource, and overall effect of system losses are the final PV system yield, refer-

ence yield and performance ratio. 

1   Introduction 

The technology for power production from renewable energy sources (RES) is 

now widely available, reliable and matured. The use of renewable energy systems, 

such as photovoltaics (PV) is rapidly expanding and has an increasing role in elec-

tricity generation, providing pollution-free and secured power [Mellit 2009].  

The growth of photovoltaics (PV) for electricity generation is one of the highest 

in the field of renewable energies and this tendency is expected to continue in the 
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next years. As shown in Fig. 1 [IEA 2006], the installation of Grid-Connected 

photovoltaic (GCPV) plants is growing at an exponential rate. The world annual 

rate of growth of the cumulative installed capacity is around 40% and is strongly 

stimulated by the economical incentives given by governments to investors and by 

the increased attention to environmental problems created by the burning of fossil 

fuels [Lughi et al. 2008, Pavan et al. 2007, Pavan et al. 2010]. For this reason, the 

need to understand how these plants work becomes more important. The reason 

for monitoring GCPV plants arises from the need of assessing productivity (in 

terms of energy delivered to the grid) and operative conditions [Mellit and  

Pavan 2010a]. Both climate and electrical factors have an impact on productivity. 

Photovoltaic modules are sensitive to climate factors, namely irradiance and tem-

perature. However, electrical factors can also have an impact, especially if some 

quantities deviate from nominal ranges; this may occur in case of certain perturba-

tions, which can be determined both by control issues (DC or AC side) and by grid 

events [Mellit and Pavan 2010b]. Recorded data from GCPV plants offer a valu-

able source of performance information to researchers in their effort to improve 

the performance of these systems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 Overall installed photovoltaic power in the IEA countries 

 
Designers need a reliable tool to predict energy production from photovoltaic 

panels under all conditions. Several models have been developed for predicting 

the output power from the PV modules. Existing models can be classified into 4 

categories [Mayer et al. 2008]:  

- Simple models [Menicucci and Fernandez 1988]; 

- First and second order physical models [De Soto et al. 2006, Mavromatakis et 

al. 2010, Zhou et al. 2007]; 
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- Complex physical models [King et al. 1998, Mayer et al. 2008]; 

- Polynomial regression models [Whitaker et al. 1998, PVUSA 1991, Gianolli-

Rossi and Krebs 1988, Meyer and Dyk 2000, Rosell and Ibanez 2006, Mayer et al. 

2008]; 

However, most of these models require the availability of several parameters that 

are not always available except the simple model. In addition, some models have 

complicated structures (e.g. Sandia, presented by King et al. [1998]), which do not 

permit easy manipulation of the system performance. Furthermore, the provided 

data (open circuit voltage, Voc; open circuit current, Isc; current at maximum power 

point, Imp; voltage at maximum power point, Vmp; and nominal operating cell tem-

perature, Tc) by manufactures are calculated at Standard Rating Conditions (SRC).  

Simplicity and practicality are the main advantages of the polynomial regres-

sion models when a large amount of experimental data is available to characterize 

the PV system or module under study. 

The key characteristic of an Artificial Neural Network (ANN) is its ability to 

learn from examples. If a convenient mathematical model that describes a data set 

is already known, a neural network is unlikely to be required. But, when the rules 

that underlie the data are only partially known, or not known at all, a neural net-

work may discover interesting relationships as it rambles through the database 

[Livingstone 2008]. ANN approach is also helpful in order to determine a predic-

tion of the power produced by the PV plant which can be confronted with the 

logged power trend. ANNs represent a way to solve this kind of problems and can 

be used for modelling, prediction and optimization of complex systems. ANN 

techniques have been widely used in energy and renewable energy systems, such 

as in modelling, simulation, sizing, control and diagnosis of different kinds of the 

energy systems, including stand-alone, grid-connected, and hybrid PV systems 

[Mellit and Kalogirou 2008].  

The main objective of this chapter is to investigate the suitability of the well-

known Multilayer Perceptron (MLP) network for predicting the produced power 

of a 20 kWp GCPV plant installed at the roof top of the municipality of Trieste 

building in Italy. In order to do this, four MLP configurations have been investi-

gated and discussed. A comparison between the proposed MLP-models and sim-

ple polynomial regression models is presented and analysed.  

2   Overview of the Existing Models  

2.1   Simple Model 

The electrical power P produced by the PV system can be calculated as [Mayer et 

al. 2008]: 

 

invHfAP ηη....=                  (1) 
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Where A is the net area of the PV array, f is the fraction of array area with active 

solar cells, H is the irradiance on the plane of the array, η is the module conver-

sion efficiency, and ηinv is the inverter (DC to AC) conversion efficiency. 

A simplified algebraic equation was proposed by Menicucci and Fernandez 

[1988] to give the maximum power: 

 

( ))(1, refrefmp

ref

mp TTP
H

H
P −+= γ    (2) 

 

Where H is the incident irradiance, P is the power output, T is the temperature, 

subscript ‘mp’ refers to maximum power, subscript ‘ref’ refers to standard testing 

conditions (Href = 1000 W/m
2
, Tref = 25°C) and γ is the maximum power correction 

factor for temperature. 

2.2   First and Second Order Physical Models 

Different modifications of the well-known five parameter model have been devel-

oped by De Soto et al. [2006]. According to the authors, the predictions from the 

five-parameter model are shown to agree well with both the King model results 

and the NIST (National Institute of Standards and Technology) measurements for 

all four cell types over a range of operating conditions.   

Mavromatakis et al. [2010] developed a model for estimating the produced 

power by a PV array. The later is based upon the nominal power of the array un-

der study, the temperature coefficient of the modules, the solar irradiance at the 

plane of the array, the air temperature and wind speed.   

Zhou et al. [2007] proposed a novel and simple model to predict the PV module 

performance for engineering applications. Five parameters have been introduced 

in this model to account for the complex dependence of the PV module perform-

ance upon solar-irradiance intensity and PV module temperature. The model’s 

accuracy is demonstrated by comparing the predictions with field measured data. 

The results demonstrate an acceptable accuracy of the model for modelling PV 

array outputs under various environmental conditions. 

2.3   Complex Physical Models  

King et al. [1998] develop an accurate model (Sandia) to predict energy produc-

tion. Five equations are used to describe the variation of short-circuit current Isc, 

open-circuit voltage Voc, and maximum power point current Imp and voltage Vmp, as 

a function of irradiance H, cell temperature Tc, absolute air mass AM and solar 

angle-of-incidence AOI on the PV array [Mayer et al. 2008]. However, it requires 

parameters that are normally not available from the manufacturer. 
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2.4   Polynomial Regression Models 

A US government and utility sponsored activity called PVUSA has developed a 

test method [Whitaker et al. 1998, PVUSA 1991] that relates PV system perform-

ance to the prevailing environmental conditions (solar irradiance, ambient tem-

perature and wind speed) for a variety of technologies. These dependencies are 

combined in the following equation [Mayer et al. 2008]: 
 

)...( WSDTCHBAHP aii +++=     (3) 

 

Where P is the PV array or inverter output, Hi is the plane-of-array solar irradi-

ance, Ta is the ambient temperature, WS is the wind speed and A, B, C and D are 

the regression coefficients. Systems and climatic conditions are monitored for 

several weeks and once a sufficient data set is obtained, data are filtered and fitted 

to obtain the regression coefficients. 

Gianolli-Rossi and  Krebs [1988] developed a regression model (ENergy  

RAting: ‘ENRA’) to compute the power rating:  
 

)(... 2 HLnCHBHAP ++=                                (4) 

                         
The coefficients A, B and C of the model were obtained from data above 500 

W/m
2 
only.  

Meyer and Dyk [2000] developed a regression model based on daily irradiation 

and maximum ambient temperature (Energy rating at Maximum Ambient Tem-

perature ‘EMA’). The model is given as: 
 

max

2

max ... TCHTBHAP ++= −
                     (5) 

 

Where P is the total daily energy produced by the module in Wh/day, H is the 

total daily irradiation in Wh/m
2
/day, Tmax is the maximum ambient temperature in 

°C, and A, B and C the regression coefficients. This model is able to predict the 

daily module energy production based on these two parameters only. The data 

used in this study were collected over a 15-month period at the University of Port 

Elizabeth (UPE), South Africa. 

Rosell and Ibanez [2006] proposed a methodology for estimating the PV elec-

trical production from outdoor testing data. It is based on the adjustment of a well 

known I–V model curve slightly modified and a new maximum power output ex-

pression. The method is validated for a wide range of operating conditions using 

outdoor and indoor testing data. The following expression is proposed to deter-

mine the maximum power output in operating conditions using the parameters A, 

B, C, D and m: 
 

[ ] [ ]. . ln( ) . ln( )
m m

mp
P A H B T C H D T H= + + +             (6)                       

Where A, B, C, D, and m are the coefficients of the model determined by least 

square fits.  
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The following generic polynomial regression model has been described in 

[Mayer et al. 2008]: 
 

2

iiimod
HDHCHTBAP ⋅+⋅+⋅⋅+=

                   
(7)

 
 

Where Tmod is the PV module temperature; Hi is the on-plane global irradiance; A, 

B, C and D are polynomial constants determined by least square fits. 

3   Artificial Neural Networks  

Artificial neural networks have been used widely in many application areas. Most 

applications use a Multilayer perceptron (MLP) network with the back-

propagation (BP) training algorithm. There are numerous variants of the classical 

BP algorithm and other training algorithms. MLP networks consist of units ar-

ranged in layers with only forward connections to units in subsequent layers [Yu 

and Jenq-Neng 2001]. The connections have weights associated with them. Each 

signal traveling along the link is multiplied by a connection weight. The first layer 

is the input layer, and the input units distribute the inputs to units in subsequent 

layers. In subsequent layers, each unit sums its inputs, adds a bias or threshold 

term to the sum and nonlinearly transforms the sum to produce an output. This 

nonlinear transformation is called the activation function of the unit. The output 

layer units often have linear activations. In the remainder of this section, linear 

output layer activations are assumed. The layers sandwiched between the input 

layer and output layer are called hidden layers and units in hidden layers are called 

hidden units. The architecture of such a network is shown in Fig. 2.  
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Fig. 2 Feed-forward neural network 
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The training data set consists of N training patterns {(xp, tp)}, where p is the pat-

tern number. The input vector xp and desired output vector tp have dimensions N 

and M respectively; yp is the network output vector for the p
th

 pattern. The thresh-

olds are handled by augmenting the input vector with an element xp(N + 1) and 

setting it equal to one.  

For the j 
th 

hidden unit, the net input netp(j ) and the output activation Op(j ) for 

the p
th

 training pattern are: 
 

1

1

( ) ( , ). ( ),
N

p p

i

net j w j i x i
+

=

=∑   for 1≤ j≤Nh                     (8) 

 

))(()( jnetfjO pp =       (9) 

 

where w(j, i) denotes the weight connecting the i
th

 input unit to the j
th

 hidden unit. 

For MLP networks, a typical activation function f is the sigmoid, given by: 
 

1

1
=

+ −
p

p

f ( net ( j ))
exp( net ( j ))

              (10) 

 

For trigonometric networks, the activations can be the sine and cosine functions. 

The k
th

 output for the p
th

 training pattern is ypk and is given by: 

 
1

1 1

+

= =

= +∑ ∑hNN

pk io p ho p

i j

y w ( k ,i ).x ( i ) w ( k , j ).O ( j ),    for 1≤ k≤M                 (11) 

 

Where wio(k, i) denotes the output weight connecting the i
th

 input unit to the k
th

 

output unit and who(k, j) denotes the output weight connecting the j
th

 hidden unit to 

the k
th

 output unit. The mapping error for the p
th

 pattern is: 
 

( )∑
=

−=
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k

pkpkp ytE
1

2
   (12) 

 

Where tpk denotes the k
th

 element of the p
th

 desired output vector. In order to train 

a neural network in batch mode, the mapping error for the k
th

 output unit is used 

defined as: 
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=
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p
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v
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)(         (13) 

 

The overall performance of an MLP neural network, measured as mean square 

error (MSE), can be written as: 

1 1

1
( )

M Nv

p

k pp

E E k E
N= =

= =∑ ∑                       (14) 
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The key distinguishing characteristic of a MLP with the back-propagation 

learning algorithm is that it forms a nonlinear mapping from a set of input stimuli 

to a set of outputs using features extracted from the input patterns. The neural 

network can be designed and trained to accomplish a wide variety of nonlinear 

mappings, some of which are very complex. This is because the neural units in the 

neural network learn to respond to features found in the input. By applying the set 

of formulations of the backpropagation (BP) algorithm, presented above, the cal-

culation procedure of the learning process summarized in the Appendix is em-

ployed [Gupta et al. 2003]. 

In the procedure listed in the Appendix, several learning factors such as the ini-

tial weights, learning rate, number of hidden neural layers and number of neurons 

in each layer, may be readjusted if the iterative learning process does not converge 

quickly to the desired point. Although, the BP learning algorithm provides a me-

thod for training MLPs to accomplish a specified task, in terms of the internal 

nonlinear mapping representations, it is not free from problems. Many factors af-

fect the learning performance and must be dealt with in order to have a successful 

learning process. Mainly, these factors include the initial parameters, learning rate, 

network size and learning database. A procedure to select these parameters is pre-

sented by Kalogirou [2001]. A good choice of these items may greatly speed up 

the learning process to reach the target, although there is no universal answer for 

these issues [Gupta et al. 2003]. Advanced methods for learning and adaptation in 

MLPs are presented in [Haykin 1999, Lakhmi and Martin 1998]. 

4   Description of the GCPV Plant and Dataset 

4.1   Description of the GCPV Plant 

With reference to Fig. 3, the GCPV plant considered is the one installed at the 

rooftop of Trieste local government building in Italy. The 174 photovoltaic mod-

ules composing the field are oriented south and tilted at 34°. 

 
 

 
 

Fig. 3 The GCPV plant installed at the roof top of the Trieste local government building 
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The electrical schematic of the plant, which consists of 12 photovoltaic 

strings, is shown in Fig. 4. Each string is made of 14 or 15 series connected EC-

115 Evergreen Solar photovoltaic modules. The main characteristics of the mod-

ules and strings are listed in Tables 1 and 2.  

 
Table 1 EC-115 Evergreen module 

Technology Polycrystalline Si  

Peak power 115 W 

Open circuit voltage at STC 21.5 V 

Maximum power point voltage at STC 17.3 V 

Short circuit current at STC 7.26 A 

Maximum power point current at STC 6.65 A 

Number of cells 72 

Nominal Operating Cell temperature 44°C 

Voltage-temperature coefficient -0.53%/°C 

Current-temperature coefficient 0.049%/°C 

Power-temperature coefficient -0.49%/°C 

 
Table 2 String made of 14 PV modules 

Number of modules 14 

Peak power 1610 W 

Open circuit voltage at SRC 301.0 V 

Maximum power point voltage at SRC 242.2 V 

Short circuit current at SRC 7.26 A 

Maximum power point current at SRC 6.65 A 

 
The 12 strings are subdivided into three groups of four strings. Each group is 

connected to the inverter input stage, as depicted in Fig. 4. Each inverter is en-

dowed with 4 Maximum Power Point Tracking (MPPT) systems, so that the 

maximum power point can be tracked for each string [i.e., in this case a string ar-

chitecture [Pavan et al. 2007] has been used]. Each inverter has a single phase AC 

output (the first one connected to the R phase of the grid, the second to the Y, and 

the third to the B phase). As shown in Fig. 5(a), the inverter used is the Mastervolt 

QS-6400 whose electrical data are reported in Table 3. The monitoring of the pho-

tovoltaic plant is made by using two different data loggers shown in Fig. 5(b); one 

is dedicated to the climate data (Danfoss ComLynx Monitor), while the second 

one is used to record the electrical data (Mastervolt QS Data Control Premium) for 

six groups of two strings called QS1, QS2, QS3, QS4, QS5, and QS6. 
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Fig. 4 Electrical schematic of the 20kWp GCPV plant 

 

 

 

 

 

 

 

 

 

 

 

                (a)            (b) 
 

Fig. 5(a) The inverters used in the plant, (b). Data loggers used for the climate data (left 

side) and for the electrical data (right side) 
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Table 3 Mastervolt inverter electrical data 

Number of MPPT 4 

Output voltage 230V, 50Hz 

Nominal power 5500W 

European efficiency 94% 

Maximum efficiency 95% 

MPPT voltage range 100-380V 

Maximum DC voltage 450V 

Nominal DC current 7.5A 

4.2   Data Used for the ANN Application 

The climate data which are recorder are: the irradiance on the array plane (H), the 

module temperature measured at the backside of a reference module (TPV) and the 

ambient temperature at array side (Ta). Figs 6(a–c) show the calibrated reference 

cell used for measuring H, and the temperature sensors (PT 100) for measuring 

TPV and Ta according with [IEC 1999]. With reference to the electrical data, the 

quantities which are recorded for each string are: the operating voltage (Vstr), cur-

rent (Istr), power (Pstr) and the AC power (Pgrid). Finally, the Mastervolt QS Data 

Control Premium records also the grid voltage (Vgrid) and its frequency (f), and the 

energy produced both for the DC and the AC side. An example of the recorded 

data is presented in Fig. 7(a) showing the evolution of the measured climate and 

electrical data (H, Ta , Tpv and Pgrid) from January 1
st
 to June 30

th
 2009 with a time 

scale of 10 min. 

A correlation between the produced power AC and solar irradiance is shown in 

Fig. 7(b) and as can be seen the power produced by the PV system strongly de-

pends on the solar irradiance. 
 

 

 

 

 

 

 

 

 

 

  (a)     (b)      (c) 
 

Fig. 6 The sensors used in the measuring system: (a) the ambient temperature [PT 100], (b) 

the reference cell, (c) the module temperature [PT 100] 
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Fig 7(a) Database of H , Ta, Tpv and Pgrid recorded by the data logger for the period January 

1st to June 30th 2009 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig 7(b) Correlation between produced AC power and solar irradiance for the period Janu-

ary 1st to June 30th 2009 
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5   ANN Method and Discussion  

5.1   Model Development  

The well-known MLP network is used for predicting the power produced by the 

GCPV system. Four MLP-structures have been proposed: 

• The first MLP structure { ),,(
~

)( PVagrid TTHfP = } has as inputs H, Ta and 

Tpv and provide the power produced (Pgrid) by the GCPV plant.  

• The second MLP structure { ),(
~

)( PVgrid THfP = } has as inputs H and TPV 

and provide the power produced (Pgrid) by the GCPV plant.  

• The third MLP structure { ),(
~

)( agrid THfP = } has as inputs H and Ta and 

provide the power produced (Pgrid) by the GCPV plant.  

• The fourth MLP structure { )(
~

)( HfPgrid = } has only one input H and pro-

vide the power produced (Pgrid) by the GCPV plant.  

Where f
~

 is a non-linear approximation function which can be estimated based on 

the weights and the bias of the optimal MLP structure.  

The numbers of the neurons within the hidden layers are optimized during the 

learning process of the network, according with a specified criterion such as a 

Root Mean Square Error (RMSE).  Figure 8 shows the MLP structure used for 

predicting the power produced by the GCPV plant (first MLP structure).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 MLP structure used for predicting the power produced by the CGPV plant 
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As described in Section 4 and with reference to the way the electrical data are 

logged, the GCPV plant consists of three groups of two strings with 28 PV mod-

ules (called group SQ1, SQ3, and SQ4), and another three groups of two strings 

with 30 PV modules (called group SQ2, SQ5, and SQ6). In order to find which 

MLP model can better predict the power produced by the GCPV, the data re-

corded on group SQ1 are used.  

A database of 3437 patterns is available and is divided into two parts: a set of 

3079 patterns is used for training the two MLP models, while the other set of 358 

patterns is used for testing and validating the MLP models developed.  

A soft computing program for predicting the power produced by the GCPV 

plant based on the Levenberg-Marquard (LM) algorithm has been implemented on 

MatLab® (Ver. 7.5). The LM training algorithm (trainlm) is used to adjust the 

weights such that the neural network produces the required output for the given 

input data.  

Before applying the training algorithm, the data (input/output) should be nor-

malized to [-1,1] using Eq. (15). Traditional normalization techniques use linear or 

logarithmic scaling, which requires the designer to supply practical estimates of 

maximum and minimum values of normalized variables to improve the neural 

network performance. 

 

( )minmax

minmax

min
min yy

xx

xx
yy −

−

−
+=                         (15) 

 

Where min max[ , ]x x x∈  and min max[ , ]y y y∈ ; x is the original data value, and y 

is the corresponding normalized variable. Finally, ymin = -1, and ymax = 1 have 

been assumed. 

5.2   Results and Discussion  

The simulation results are shown in Fig. 9. The graphs on the left show the super-

position curves between measured and predicted power produced by the GCPV 

plant using the different MLP-models. As can be seen, a good agreement is ob-

tained between the measured and the predicted data as the correlation coefficient 

(r) is in the range 97.85-98.60%. In the graphs on the right of Fig. 9, scatter plots 

of the measured and predicted power using the different MLP-models are shown 

in order to illustrate the correlation between the measured and predicted values. 

The plot giving a correlation coefficient of 98.63% shows the strength of the sec-

ond MLP-model.  
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A comparison between the measured (actual) and ANN predicted power given 

by the different MLP models is shown in Table 4. 

Table 4 Comparison between the measured and predicted power given by the four  

MLP-models 

MLP-Model Architecture 

(input,  

hidden,  

output  

neurons) 

Measured 

(actual) 

mean 

power (W)

Predicted 

mean 

power 

(W) 

AMRE  

(%) 

r-

value 

(%) 

),,(
~

)( PVagrid TTHfP =  {3X9X1} 556.23 528.90 4.90 97.85 

),(
~

)( PVgrid THfP =  {3X7X1} 556.23 545.36 1.97 98.60 

),(
~

)( agrid THfP =  {3X7X1} 556.23 566.94 1.92 98.20 

)(
~

)( HfPgrid =  {3X11X1} 556.23 582.58 4.74 98.00 

 
As can be seen from the results presented in Table 4, the second 

),(
~

)( PVgrid THfP =  and the third ),(
~

)( agrid THfP =  models provide more accurate 

results than the other models  ),,(
~

)( PVagrid TTHfP =  and )(
~

)( HfPgrid = . The abso-

lute mean relative error (AMRE) is lower in the second and the third MLP-models 

(less than 2%) whereas, for the first and the fourth model the MRE is more  

than 4%. 

It should be noted that the results obtained with the fourth MLP model are also 

important as this model can be used when only one input parameter, the solar ir-

radiance H, is available.  

The developed MLP-models are based on the following formula: 
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        (16)                 

 

Where w1, w2, b1 and b2 are the weights and the bias of the networks respectively, 

while x represents the inputs data which can be the couple solar irradiance and air 

temperature, or only the solar irradiance. M and N are the number of neurons in 

the hidden layer and in the input layer respectively, and finally y~ corresponds to 

the output, which is the predicted power for the GCPV plant.  
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Fig. 9 Comparison between measured and predicted power produced by the different  

MLP-models 
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5.3   Comparison between Different Regression Models  

In order to verify the effectiveness of the developed MLP-model, a comparison 

between the power predicted by the second MLP-model ),,,(
~

iijaMLP bwTHfP =  with 

some existing polynomial regression models presented in section 2 is given. These 

are: 

 

invHfAP ηη....1 =  

2

mod2 iii HDHCHTBAP ⋅+⋅+⋅⋅+=  [Mayer et al. 2008]  

[ ] [ ]mm
HLnTDHLnCTBHAP )(..)(.. 33 +++=  [Rosell and Ibanez 2006]                      

max

2

max4 ... TCHTBHAP ++= −
 [Meyer and Dyk 2000]  

C.Ln(H) H .BH.A 2

5 ++=P   [Gianolli-Rossi and  Krebs 1988]  

 
The different coefficients have been determined by least square fits. 

The IEC standard 61724 [1998] defines three performance parameters for as-

sessing the overall operation of a PV system: the reference yield Yr, the system 

yield Yf and the performance ratio PR. An evident limitation for the purposes of 

this work is that above the parameters are clearly influenced by weather [Marion 

et al. 2005]: 

• Yr : the ratio between the total in-plane irradiance and the reference  

irradiance – has a month-to-month and year-to-year weather variability; 

• Yf : the ratio between the produced energy and the nominal power of the 

PV generator – is influenced by solar radiation; 

• PR: the ratio between the system yield and the reference year – is influ-

enced to a lower extent by the weather as its value is normalized with  

respect to solar radiation, but is still influenced by seasonal variations in 

temperature and plant availability. 

A statistical test between the measured and predicted power produced is summa-

rized in Table 5. Figure 10 shows the plot of the predicted power produced by 

using different polynomial regression models versus the experimental ones. With 

reference to Fig. 10, it is worth noticing that the predicted power by the different 

polynomial regression models is close to the measured ones, since the correlation 

coefficients are between 97% and 98%.  
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Table 5 Comparison between the predicted power produced by the second MLP-model and 

different existing regression models. 

Model  Measured 

(actual) 

mean 

power (W) 

Predicted 

mean 

power (W) 

AMRE 

(%)  

PR 

(%) 

r  

(%) 

),(
~

)( PVgrid THfP = , {3X7X1} 556.23 545.36 2 89 98.6 

P1=1.037*14* 0.111*0.8 *H 556.23 500.61 10 80 97.5 

2 c

2

P 11.216 0.002T H

1.858H 0.0005H

= − −

+ −
 556.23 545.10   2 89 98.4 

3 c

7.003

7.003

c

P 0.0443H -0.0058T

0.0018Ln(H)

0.0001T Ln(H)

= +

+

−

 

556.23 461.67 17 75 98 

4 2

max

max

H
P 1.2754 H 53.3249

(T )

1.0915T

= +

+

 
556.23 555.67 0.1 87.7 98 

2

5P 0.7552H -0.0009 H

 0.1962H.Log(H)

= +

+
 556.23   539.54 3 89 98.4 

 
The calculated PR for the testing period is 89%. As can be seen from Table 10 

the performance ratio (PR) for all polynomial regression models varies in the 

range between 75% and 89%. It should be noted that, the second regression P2 and 

the fifth P5 regression model provide acceptable results compared with the devel-

oped MLP-model. In addition, the performance ratio for the second and fifth  

regression models is the same as that of the MLP-model.  

Finally, the database described above is used for estimating the degradation rate 

by using the second polynomial regression model. Figure 11 depicts the polyno-

mial AC power rating of the GCPV plant against time from January through June 

2009. Linear fit to the power rating curve indicate that the GCPV roof plant has 

degraded at a rate 0.3% over six months.   
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Fig. 10 Comparison between measured and predicted power by different existing polyno-

mial regression models 
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Fig. 11 AC-estimated power against time 

6   Conclusion and Future Work 

Development of accurate models for predicting the power produced from grid-

connected PV systems (GCPVs) is important for performance analysis and energy 

management.  

In this chapter, four MLP configurations have been investigated in order to pre-

dict the power produced from a grid-connected PV plant. It has been demonstrated 

that the MLP-model which has as input the solar irradiance and the module  

temperature gave accurate results compared to the other examined MLP-

configurations.   

Comparison between the MLP-model designed and some regression polyno-

mial models shows that the second MLP-model provides accurate results. The 

second and the fifth regression models also provide accurate results compared 

with the developed MLP-model.  

The degradation rate of the GCPV plant was determined to be 0.3% per six 

months according to the second polynomial model.  

The MLP has been chosen because its implementation is easy in particular if 

compared with a hybrid ANN (e.g. ANFIS, GA-ANN, etc.) [Mellit and Kalogirou 

2008]. Furthermore, all functions used are available in the neural networks tool-

box 6.0.2 of MatLab®. Therefore, readers interested in this type of predictions  

can use the MatLab®  ANN-toolbox for developing their own models (e.g. newff, 

train, sim, etc.). Moreover, it is worth noticing that other hybrid ANN-

architectures are difficult to use by those who are not familiar with these  

techniques. 
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As ANNs can help to understand how a GCPV works with respect to climate 

conditions, the next step is to develop a software tool for GCPV plants perform-

ances analysis. This will be developed with simple user interface for requiring, for 

example, a spreadsheet file containing climate and electrical data and provide to 

the user the correlation coefficient, the mean bias error or the performance ratio, 

which can be viewed as quality parameters of the PV system operation. 
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Appendix: Back Propagation (BP) Algorithm  

Given a finite length input pattern x1(k), x2(k)….xn(k) ∈ℜ (1≤ k≤K ): 

Step 1: Select the total number of layers M, the number ni (i=1,2,…N-1) of the 

neurons in each hidden layer, and an error tolerance parameter ε >0 

Step 2: Randomly select the initial value of the weight vectors 
)(i

ajw for I=1,2,…,M 

and j=1,2,…,ni 
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Step 3: Initialization
)(i
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Step 4: Calculate the neural outputs; 
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Step 5:  Calculate the output error 
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Step 6: Calculate the output delta’s ( ))()( ' M
jj

M
j se σδ =  

Step 7: Recursively calculate the propagation errors of the hidden neurons;  
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Step 8: recursively calculate the hidden neurons delta values;  
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Step 9; update weight vector: 
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Step 10: Calculate the error function ∑+=
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Step 11: if k=K then go to step 12; otherwise käk+1 and go to step 4. 

Step 12: if E≤ε then go to step 13; otherwise go to step 3. 

Step 13: Learning is completed. Output the weights. 
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Abstract. Artificial Neural Networks (ANN) are widely used as diagnostic and 

predictive tools in atmospheric sciences. This Chapter presents how such practical 

applications of ANN can be employed in the study of various aspects of a quite 

complex atmospheric phenomenon as the atmospheric pollution by particulate 

matter, due to dust transport episodes. It is also discussed how ANN can be uti-

lized in assembling a useful predictive tool for such events. The diagnosis and 

prediction of dust episodes is very important for human welfare: indeed, some 

severe health issues are related to the presence of particulate matter in the atmos-

phere. Also, several human operations are affected by widespread dust presence: 

indeed, transportation and the increasing use of renewable energy systems utiliz-

ing solar radiation are profoundly affected. 

1   Introduction 

The occurrence of high level concentrations of dust originating from deserts is 

quite common even at locations quite distant from the source region. The mechan-

isms for lifting the particulates within the source region, the conditions leading to 

their suspension in the atmospheric air, their transportation to great distances and 

the eventual deposition (either dry or wet) on the ground comprise a highly com-

plex phenomenon, enticing mankind as it affects several activities (e.g., safety of 

air-transportation, efficiency of solar energy systems, etc), as well as human health 

(e.g., population prone to respiratory disorders, eye inflammations, etc). Increased 

levels of fine dust particles in the air are also linked to other health hazards such as 

heart disease and lung cancer. In this respect, Lave and Seskin [1973] have made a 

pioneering work in illustrating the association between mortality rates and air  

pollution. 
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An area which currently receives increasing attention regarding the presence of 

particulate matter in the atmosphere is that of renewable energy systems that util-

ize solar radiation (e.g., photovoltaic systems for the generation of electricity). In 

this respect, the presence of suspended atmospheric dust reduces the intensity of 

solar radiation reaching the system; also the degradation of systems’ performance 

either by dry or wet deposition of dust and the subsequent need for cleaning is 

considered as a quite serious problem. 

Areas adjacent to extensive deserts but even further away from them are occa-

sionally affected by dust transportation and deposition. The occasional transport of 

particles from the Sahara desert is particularly important for countries in the 

southeast Mediterranean region, where this Chapter will be focused (see Michae-

lides et al. 1999). 

This phenomenon has been the subject of numerous studies and an extensive li-

terature on this issue exists. In the following, a brief outline of the four general 

types of studies that were carried out for the investigation of the long-range trans-

portation of desert dust is presented, together with selected literature which can 

form a starting point for the interested reader. 

In the early studies, the large scale atmospheric mechanisms leading to long-

range transportation of dust were identified [e.g., Prospero et al. 1970, Tullet 

1978, File 1986]. Desert dust has also received considerable attention because it 

provides a quite strong aerosol signature in satellite retrievals and several space 

platforms and sensors have been used [e.g., Fraser 1976, Herman et al. 1997, King 

et al. 1999, Kaufman et al. 1997, Dulac et al. 1992, Tanré et al. 1997, Chu et al. 

2002, Retalis and Michaelides 2009]. Remote sensing (other than satellite) of dust 

suspended in the atmosphere has also been explored [e.g., Torres et al. 2002, Balis 

et al. 2004]. Forecasting dust transportation using dynamic atmospheric modeling 

has also been an area of research that has also operational application [e.g., Nick-

ovic et al. 1996, 2001, Lachanas et al. 1998, Gregoryan and Sofiev 1997]. 

In this Chapter, a novel approach will be presented, namely the application of 

Artificial Neural Networks (ANN) for diagnosing and predicting atmospheric pol-

lutant levels over the island of Cyprus, in the eastern Mediterranean, due to the 

transportation of dust from the adjacent deserts. The rather isolated island of Cy-

prus (located at a considerable distance from the dust source regions) is ideal for 

such a study. In this endeavor, employment of synoptic circulation types, satellite 

data and surface measurements will be made. For the implementation of neural 

methodologies, Matlab’s Neural Network Toolbox was employed [Beale et al. 

2010]; Matlab was also used for the development of the regression models, as ex-

plained below. 

A brief outline is given in Section 2 of the atmospheric conditions leading to 

dust transportation, thus introducing the reader in the meteorological conditions 

associated with the phenomenon. This is followed by Section 3 where a presenta-

tion is made of the surface measurements of PM10 (particles that are less than 10 

μm in aerodynamic diameter), as integrated in this study. The methodology for 

using ANN in the classification of synoptic patterns and the identification of those 

of them favoring dust transportation is discussed in Section 4. The exploitation  

of satellite technology in estimating dust load in the atmosphere is presented in 
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Section 5; more specifically, the Atmospheric Optical Depth determined by the 

MODIS (Moderate Resolution Imaging Spectrometer) sensor onboard the Aqua - 

Terra satellites is considered. Section 6 discusses the application of multiple regres-

sion in combination with the synoptic classification for the prediction of dust  

episodes. A neural network prediction methodology is put forward in Section 7. An 

integrated approach for the prediction of dust episodes that makes use of either the 

multiple regression or the neural approaches is considered in Section 8. 

2   Weather Conditions Leading to Dust Transportation 

It is considered useful to start by giving a brief overview of the atmospheric circu-

lation conditions leading to dust episodes; this sets the scene for the discussion 

that follows but also provides a justification for the approach adopted with regard 

to the data selection.  

It has long been revealed that the type of synoptic-scale atmospheric circulation 

which favors wet or dry dust deposits over the eastern Mediterranean is a souther-

ly to south-westerly flow throughout the entire troposphere, extending from the 

northern Sahara desert well into this area. Generally, the phenomenon starts with 

the development of a North African low pressure system which generates a dust 

storm. This low pressure is initiated by an upper-level trough which occurs on the 

polar front jet, when it overlies a heat low. Alternatively, it is initiated by the pres-

ence of a low level frontal system southeast of the Atlas Mountains. For more de-

tails on the synoptic and dynamical aspects for the formation of these low pressure 

systems, the reader is referred to Prezerakos [1990] and Prezerakos et al. [1990]. 

The above atmospheric circulations are more frequent in late winter and spring 

[see Kubilay et al. 2000]. Indeed, this is the time of the year when dust events are 

most frequent over the eastern Mediterranean [Dayan et al. 1991]. 

The rising dust generated by the dust storm forms a cloud stirring up to a few 

tens or hundreds of meters; under favorable atmospheric conditions, the lighter 

grains can be lifted at greater heights, of the order of a few kilometers [see Preze-

rakos et al. 2010]. When the dust cloud is subsequently embedded in a south-

westerly tropospheric flow, it can drift over large distances. Hence, hazy weather 

conditions are often reported at great distances from the source area, sometimes 

lasting for several days. Under dry conditions, the drifting dust cloud gradually 

sediments due to gravity and falls as a dust deposit on the Earth’s surface. Under 

conditions of increased humidity, dust particles mix with rain-droplets and fall on 

the ground as colored precipitation. 

3   Surface Measurements of Dust Deposition 

For the needs of this research, PM10 measurements from the Background Repre-

sentative Station at Ayia Marina Xyliatou in Cyprus were considered. This moni-

toring station is located between the villages of Ayia Marina and Xyliatos (35 02’ 

17’’ N, 33 03’ 28’’ E). This station is operated by the Cyprus’ Ministry of Labour 

and Social Insurance and it is located in an area which has relatively low local 
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pollution sources, thus it is considered as an EMEP (i.e., within the protocol of the 

European Monitoring and Evaluation Program) Background Representative Sta-

tion; for this reason, a large proportion of the PM10 measured can be ascribed to 

external sources (e.g., dust transportation). The measurements cover the three year 

period 2003-2005.  

A dust transport episode is considered as a day when the average PM10 mea-

surement exceeds the threshold of 50mg/m
3
. In the three-year period mentioned 

above, 85 such dust deposition events were recorded (out of a total of 1096 days). 

Figure 1 displays the monthly distribution of these episodes during the three year 

period 2003-2005. It is evident from this figure that there is a seasonal preference 

for dust events to occur. Indeed, experience supports the finding that Spring and 

Autumn are the two seasonal periods favoring dust episodes, whereas Summer 

appear to be suppressing these events. Dust episodes are rather rare in Winter. 

 

Fig. 1 Number of dust events per month in the three year period 2003-2005 

4   Classification of synoptic patterns with Artificial Neural 

Networks 

The systematic use of synoptic weather charts dates back to the beginnings of 

modern meteorological practices.  Synoptic weather stations, scattered all over the 

world, supply meteorological services with observations of specific parameters at 

regular and fixed times. Upper-air observing stations report, generally, geodynam-

ic height, speed and direction of wind, as well as temperature and humidity. Con-

ventionally, for the analysis of the prevailing synoptic situation, charts of the geo-

potential height at selected levels are used. These charts depict the geopotential 

height at which a given pressure value is found and are usually called isobaric 

charts (hPa is the pressure unit used); quite commonly, the 500hPa level is ana-

lyzed. This level possesses several characteristics that make it distinct from others: 
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it is well above the friction layer and therefore is not much affected by factors 

related with the Earth’s surface, at least in the short term; it represents the middle 

troposphere, that is the layer in which most of the weather phenomena take place; 

it is the level at which roughly half of the mass of the entire atmosphere is found 

below and half is found above; at this level, on average, divergence of the atmos-

pheric air is negligible, in mid-latitudes. 

Meteorologists can identify on such isobaric charts discrete geometric patterns 

that characterize a synoptic situation of the atmosphere. There is a strong associa-

tion between large scale atmospheric circulation patterns and regional meteorolog-

ical phenomena that are observed at the Earth’s surface. As a consequence, synop-

tic upper air charts at certain levels provide a valuable tool for the operational 

weather forecaster to predict qualitatively occurrences of certain weather pheno-

mena over particular areas [see Tymvios et al. 2010]. One such typical example is 

the close association between the atmospheric circulation and the onset and main-

tenance of desert dust transport episodes, which is elaborated in this Chapter. 

There are several techniques for weather type classification, developed for dif-

ferent regions and for different purposes. Many of them are based on automatic, 

objective and consistent methodologies. However, none of the proposed methods 

in the literature is accepted as universal and applicable for all problems. Each me-

thod has its strong and weak points. The method to be selected and its parameters 

are usually defined by the application itself.  

An initial effort for categorization of synoptic situations was made by Lamb 

[1950], while in literature there exists an abundance of methods of classification 

[see Hewitson and Crane 1996]. In order to take advantage of these semi-

empirical methods and to simplify the statistical processing, stochastic downscal-

ing methods are often applied to the actual weather patterns in order to generate 

clusters of synoptic cases with similar characteristics. Weather type classifications 

are simple, discrete characterizations of the current atmospheric conditions and 

they are commonly used in atmospheric sciences. For a review of various classifi-

cations, including their applications, the reader is referred to Key and Crane 

[1986], El-Kadi and Smithoson [1992], Hewitson and Crane [1996] and Cannon 

and Whitfield [2002]. 

Recently, a wide ongoing European effort in evaluating different classification 

methods within the framework of COST Action 733, which is entitled “Harmoni-

zation of weather type classifications in Europe” [http://www.cost733.org/] was 

completed [Philipp et al. 2010]. The main objective of this Action is to “achieve a 

general numerical method for assessing, comparing and classifying typical weath-

er situations in European regions, scalable to any European sub-region with time 

scales between 12 h and 3 days and spatial scales of ca. 200 to 2000 km.  

The technique described below was partly developed and expanded within this 

framework. 

The effort in this Section is to present a relatively new methodology for the 

classification of synoptic situations with the use of ANN. More specifically, Ko-

honen’s Self-Organised Features maps (Kohonen 1990, 1997) were used for the 

classification of distribution of isobaric height on charts of the 500hPa. As a result 
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of this classification, synoptic prototypes can be formulated which will be related 

to dust events. 

While ANN proved to be valuable tools for forecasting purposes, Kohonen’s 

Self Organizing Maps (SOM) technique is a relatively new method for climate 

research [Main 1997]. Maheras et al. [2000] used a combination of an ANN clas-

sifier and semi-empirical methods for the classification of weather types in 

Greece, while Cavazos [1999] utilized a mixed architecture of a SOM network in 

line with a feed-forward ANN (FF-ANN) to study extreme precipitation events in 

Mexico and Texas. The same methodology was successfully applied for winter-

time precipitation in the Balkans [Cavazos 2000]. For a research on forecasting 

the risk of extreme rainfall events, a neural classification was recently imple-

mented [Tymvios et al. 2010]. A neural classification was also used in an attempt 

to identify possible climatic trends in atmospheric patterns [Tymvios et al. 2010]. 

The method exploited in the present work for the classification of synoptic  

patterns is the Kohonen’ Self Organizing Maps architecture which is a neural  

networks method with unsupervised learning (Kohonen, 1990). A detailed  

description of the method and procedures used is provided below [see also  

Michaelides et al. 2007].  

4.1   Kohonen’s Self Organizing Maps 

ANN are constructions of artificial neurons (algorithms that mimic the properties 

of biological neurons); they are commonly used to solve artificial intelligence 

problems, to simulate and predict the evolution of complex physical systems, to 

discover hidden structures inside data groups and they are ideal for the classifica-

tion of individuals into groups of similar properties. All of these are achieved  

according to the network’s architecture and parameter tuning. Details of the classi-

fication method are discussed in Tymvios et al. [2010] and Michaelides et al. 

[2010], hence, a short description is sufficient here. 

As mentioned above, the neural network architecture used in this research is 

the Kohonen’ Self Organizing Maps (SOM) [Kohonen 1990]. These networks 

provide a way of representing multidimensional data in much lower dimensional 

spaces, usually one or two dimensions. An advantage of the SOM networks over 

other neural network classification techniques is that the Kohonen technique 

creates a network that stores information in such a way that any topological rela-

tionships within the training set are maintained; for example, even if the Kohonen 

network associates weather patterns with dust events inaccurately, the error ob-

tained will not be of great amplitude, since the result will be a class with similar 

characteristics. The process of reducing the dimensionality of height vectors is 

essential in order to investigate productively the relationship among weather pat-

terns and heavy rainfall. For a recent review of the advantages in using SOM as a 

tool in synoptic climatology, the reader is referred to Sheridan and Lee [2011]. 

The geographical area studied is bounded by latitude circles 20°N and 60°N 

and meridians 20°W and 40°E; it covers Europe, North Africa and the Middle 

East. The data that were exploited comprise the 500hPa field at 1200 UTC (Uni-

versal Time Coordinated) for each day, from 1 January 1980 to 31 December 2005 
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(26 years), retrieved from the online data base of NCEP (National Centers for En-

vironmental Prediction, USA). The grid distance is 2.5°x2.5°, thus the area in 

study is covered by 7x25=425 grid points.  
The Kohonen SOM algorithm in its unsupervised mode was chosen for build-

ing the neural network models, because neither the number of output classes (syn-

optic classes) nor the desired output are known a priori. This is a typical example 

where unsupervised learning is more appropriate, since the domain expert (in this 

case a professional meteorologist) will be given the chance to see the results and 

decide which model gives the best results. The expert’s guidance can help to  

decide the number of output classes that better represent the system (Pattichis  

et al. 1995). 

In unsupervised learning, there are no target values, as in the case of other me-

thods of ANN. Given a training set, Χ(k)
, k=1, 2, … , p, the objective is to discover 

significant features or regularities in the training data (input data). In our case, the 

input data were 9497 vectors (i.e., the number of consecutive days in the 26 years 

1980-2005). The neural network attempts to map the input feature vectors onto an 

array of neurons (usually one or two-dimensional), thereby compresses informa-

tion while preserving the most important topological and metric relationships of 

the primary data items on the display. By doing so, the input feature vectors can 

be clustered into c-clusters, where c is less or equal to the number of neurons used 

[Charalambous et al. 2001]. Input vectors are presented sequentially in time with-

out specifying the desired output [see Schnorrenberg et al. 1996, Michaelides et al. 

2001]. The two-dimensional rectangular grid architecture of Kohonen’s SOM was 

adopted in the present research. 

The input vector X is connected with each unit of the network through weights 

wj, where j = 1, 2,…, M; M equals to 425 grid points, for the area in study. The 

training procedure utilizes competitive learning. When a training example is fed to 

the network, its Euclidean distance to all weight vectors is computed. The neuron 

whose weight vector is closest to the input vector X (in terms of Euclidean dis-

tance) is the winner. This  neuron  is  represented  with  I   and  is  the  winner  

neuron to input X if  

||wI - X|| = mini ||wi - X||, i = 1, …, M.  

Note that ||wI - X|| = [(wi1 - x1)
2
 + (wi2 - x2)

2
 + … + (wiN - xN)

2
] 

½
 is the Eucli-

dean distance between weight vector wi and input vector X [see Charalambous et 

al. 2001]. N refers to the number of output classes. 

The weight vectors of the winner neuron, as well as its neighborhood neurons, 

are updated in such a way that they become closer to the input pattern. Learning 

follows the following rule: 

 w୧ሺ୬ୣ୵ሻ ൌ ቈ       ୵ ౟ሺ౥ౢౚሻ   ,                                   ୧ב୒ሺ୍,ୖሻ  ୵౟ሺ౥ౢౚሻା ஑ቀଡ଼ି୵౟ሺ౥ౢౚሻቁ,        ୧א୒ሺ୍,ୖሻ  
                          (1) 

 

where, the neighborhood set N(I,R) of neuron I with radius R consists of neurons 

1, I±1,…, I±R, assuming these neurons exist, with maximum value being around 

the winner I, in order for a larger number of neighborhood units to share the expe-

rience of learning with the winner unit, and it becomes zero as the distance  
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between the neighborhood units and I increases. The coefficient α in the above 

relationship is called the learning factor and decreases to zero as the learning 

progresses. For simplicity, R is considered to have the shape of a geometric area, 

such as a rectangle or hexagon. 

The radius of the neighborhood around the winner unit is relatively large to 

start with, in order to include all neurons. As the learning process continues, the 

neighborhood is consecutively shrunk down to the point where only the winner 

unit is updated [Patterson, 1995].  

As more input vectors are represented to the network, the size of the neighbor-

hood decreases until it includes only the winning unit or the winning unit and 

some of its neighbors. Initially, the values of the weights are selected at random. 

The method which was used for the SOM to work, can be described as follows: 

1. The initial value of the weights is set to small random numbers, as well as the 

learning rate and the neighborhood. Steps 2 to 4 are repeated until the weights of 

the network are stabilized.  

2. One vector X is chosen from the dataset as an input to the network. 

3. The table for unit I with weight vector closest to X is determined by calculating 

||wI – X|| = mini ||wi – X||. 

4. The weight vector in (t + 1) iteration is updated according to: 

wi(t + 1) = wi(t) + a(t)(X – wi(t)), for units that belong in set N(I,R)  

wi(t + 1) = wi(t) , for units that do not belong in set N(I,R). 

5. The neighborhood and the learning rate of the parameters are decreased [Chara-

lambous et al. 2001]. 

When all vectors in the training set were presented once at the input, the procedure 

is repeated many times with the vectors presented in order each time. This part of 

the algorithm at the end organizes the weights of the one-dimensional map, such 

that topologically close nodes become sensitive to input that is physically similar. 

Nodes are ordered in a natural manner, reflecting the different classes of the train-

ing set [Michaelides et al. 2001].  

The number of outputs is not a priori determined, but an “optimum” can be 

adopted by experimentation, in relation to the specific application under study. For 

several applications, it appears that the optimum number of outputs is around 30, 

as this exhibits the level of discretization required for the synoptic scale phenome-

na examined [see Tymvios et al. 2010]. Although several experiments were car-

ried out with varying output nodes, for the association of weather type patterns 

and dust transportation over the eastern Mediterranean 35 classes were considered. 

4.2   Synoptic Pattern Classification 

One of the major inherent problems in an endeavor to classify synoptic patterns is 

the a priori determination of the number of different classes that one can expect 

from such a classification, as mentioned above. In other words, the number of  
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distinctive synoptic patterns over any particular geographical region is by no 

means fixed. Traditionally, such a synoptic classification was performed by a qua-

litative inspection of synoptic maps. Professional meteorologists examined a series 

of plotted synoptic maps and picked out geometric similarities [e.g., Prezerakos et 

al. 1991]. Nevertheless, it seems that in an attempt to perform a classification with 

an unknown number of classes, experimentation with various possibilities is a 

practical procedure, which can lead to some useful considerations. For this reason, 

it was decided to run a number of experiments and build classification models 

with different numbers of output nodes (i.e., classes). For the present analysis 35 

output nodes are presented, as mentioned above. 

The ability of ANN to group synoptic patterns into seasonally dependent clus-

ters was noted by Michaelides et al. [2007]. This seasonal discretization of classes 

should be an essential attribute of a classification technique. 

 

Fig. 2 Number of days per class, for the 35 classes in the synoptic classification, during 

2003-2005 

Figure 2 shows the frequency of appearance of the synoptic patterns in the 35 

classification for the three-year period 2003-2005. Apparently, class 35 is most 

frequently encountered, followed by classes 1 and 25. Figure 3 is a graphical re-

presentation of the assignment of a class to each day in the three year period. It is 

clear that there is a seasonal “quasi-cyclic” behavior. Certain classes occur, almost 

exclusively, during summer or winter; during the (Mediterranean) transitional pe-

riods of spring and autumn, both the summertime and wintertime patterns can oc-

cur. This graphical representation is proposed as a practical visual tool to identify 

the level of seasonal discretization pursued in adopting a synoptic classification 

technique. 
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4.3   Synoptic Classes and Dust Deposition Events 

Figure 4 shows how the 85 dust transport events are distributed among the 35 

classes in the synoptic classification adopted above. There appears to be a certain 

preference of classes associated with these events: most prone to dust events is 

class 1, followed by class 31; representative synoptic situations for these two 

classes are shown in Fig. 4. Figure 5(a) refers to 1200 UTC  1 February 2003, and 

5(b) at 1200 UTC 10 May 2004: in the former, a central Mediterranean upper 

trough extends well into the north African desert; in the later, the trough axis ex-

tends southwards from the Iberian peninsula. In both cases, typical patterns are 

identified favoring dust raising and its transfer eastwards with the resulting south-

westerly airflow over the eastern Mediterranean. 
 

 

Fig. 3 Daily distribution of 35 classes in the three-year period 2003-2005 

 
Fig. 4 Distribution of dust deposition events per class, for the 35 classes in the synoptic 

classification, during 2003-2005 
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(a) (b) 
 

Fig. 5 Representative synoptic situations corresponding to: (a) class 1; (b) class 31. Isolines 

are drawn for every 60 geopotential meters 

5   Dust Load from Satellite Measurements 

Satellite remote sensing has been widely used for monitoring and assessment of 

air pollution. Several sensors have been employed for the retrieval of air pollution 

products and especially for the estimation of aerosol content. Researchers have 

been mainly devoted to extract the aerosol content in the total atmospheric col-

umn, since there often it is difficult to distinguish the sources of emissions (anth-

ropogenic, natural).  

Satellite products are characterized by both their extended spatial coverage 

and the possibility for real-time air-pollution monitoring against PM ground-

based measurements. Several methods to estimate surface PM concentration 

levels, from aerosol related products have been published in the literature. The 

majority of these are focused on the derivation of statistical/empirical models 

for the estimation of PM2.5 (and secondarily of PM10) from satellite derived 

AOD (Atmospheric Optical Depth, a measure of aerosol loading in the total at-

mospheric column).  

These methods have been applied to different sites of the world and are based 

on aerosol products from various sensors such as MODIS [Gupta and Christo-

pher 2008, Li et al. 2009], MISR [Liu et al. 2007], SeaWiFS [Vidot et al. 2007], 

GOES-12 [Liu et al. 2009]. The PM-AOD correlation coefficients reported in 

the literature vary from low (<0.5) to high values (0.96). This correlation has 

been found to depend on various factors such as the temporal averaging periods 

(hourly versus 24-hr), season, aerosol type, satellite AOD retrieval accuracy, 

meteorological conditions, boundary layer height, station type/location [Hoff 

and Christopher 2009]. Among the existing satellite aerosol products, MODIS 

instruments onboard Terra (EOS a.m.) and Aqua (EOS p.m.) satellites have the  
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Fig. 6 Spatial distribution of the monthly averaged values of AOD for 2003-2005 

 
advantage to provide images twice a day on a global scale. Thus, the majority of 

the research efforts are referred to MODIS aerosol products, which already span 

a period of a decade.  

In the study presented here, Terra and Aqua MODIS level-2 (Collection C005, 

V5.2) daily aerosol products at a spatial resolution of 10×10km were acquired 

from NASA's Level 1 and Atmosphere Archive and Distribution System 

(LAADS). The Collection 005 dark-target aerosol product is based on a true in-

version that uses three pieces of information: apparent reflectance at 470 nm, 660 

nm and 2130 nm to derive AOD and fraction of AOD attributed to non-dust aero-

sol at 470nm, 670nm and 550nm (interpolated) and the surface reflectance at 2130 

nm [Levy et al. 2007, Remer et al. 2009]. For the present work, the AOD values 

used refer to the dark-target AOD values (at 550nm) extracted from the Scientific 

Data Set entitled ‘Optical_Depth_Land_And_Ocean’ and covering the period Jan-

uary 2003-December 2005. 

There is a strong seasonal variability of AOD that reflects the seasonality in 

dust load over dust prone areas, like the eastern Mediterranean. Figure 6 shows the 

spatial distribution of the AOD values for January, April, July and October, aver-

aged in the 2003-2005 period. As expected, spring exhibits larger values com-

pared to other seasons. Also, Fig. 7 shows some statistical characteristics of AOD, 

spatially averaged over the area of Fig. 6. The seasonal dependence is also appar-

ent, with April being the most prominent. 

 

AOD 

 

  

January  April  

  

July  October 
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Fig. 7 Monthly average, minimum and maximum values of the spatially averaged AOD 

during 2003-2005 

6   Multiple Regression Models 

Surface and satellite measurements were considered in establishing linear regres-

sion relationships between PM10 concentrations and satellite estimates of AOD; 

in this respect, measurements at different times preceding the time for which the 

prediction of PM10 concentration is sought (all calculations hereafter refer to the 

EMEP station) were taken into account.  It became evident that PM10 measure-

ments and satellite AOD estimates spanning a few days before the actual event 

yield better results. This is not surprising because the phenomenon that is under 

consideration is the transfer of dust from remote areas over an island, which has 

little local widespread sources. Therefore, it is reasonable to assume that the build-

up of the concentration of dust particles at ground level is a gradually intensifying 

process, whereby increasing amounts of dust are noted as the dust plumes move 

away from the desert source regions. 

One of the aims of the research that was carried out was to demonstrate that the 

neural methodology described above for the classification of synoptic types can be 

combined with a statistical approach in order to provide estimates of the expected 

concentration of particulate matter PM10 at ground level. For this purpose, mul-

tiple regression models were built, making use of PM10 surface measurements 

and satellite AOD from MODIS and several multiple regression models were 

tested; in all of these, the dependent variable was the concentration of PM10 dust 

particles at ground level. Regarding the independent variables, several combina-

tions were tested. Here, the following combination is presented (see Table 1).  

The dependent variable is the predicted value of PM10 level on DAY0 (i.e., to-

day); the set of independent variables consist of previous measurements of par-

ticles on the ground and satellite estimates: two PM10 measurements for DAY0-1 

(i.e., yesterday) and DAY0-2 (i.e., the day before yesterday) and satellite AOD for 

DAY0-1 and DAY0-2, retrieved from Aqua-Terra satellites. In the data set for the 

three year period that was used in this study (years 2003, 2004 and 2005, 1096 
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days), there were 127 days with missing or unreliable data; those were excluded 

from further processing. As the two satellites are not available at all times, an av-

erage of the two measurements from these satellites was used when both satellites 

were available, whereas one value is used when one of the satellites is available. 

Finally, in order to take into consideration the classification of the synoptic  

patterns, different regression models were built for each of the 35 classes. 

 
Table 1 Independent (Input) and Dependent (Output) variables for the regression (neural) 

prediction models 

 

Independent (Input) variables Dependent (Output) variable 

PM10 for DAY0-2  

 

PM10 for DAY0 
PM10 for DAY0-1 

AOD for DAY0-2 

AOD  for DAY0-1 

7   A Neural Network Approach for the Prediction of Dust 

Deposition 

In order to implement a neural network methodology for forecasting the deposi-

tion of dust at ground level, a modular multi-layer perceptron architecture was 

adopted. This is graphically shown in Fig. 8, using Matlab’s notation [Beale et al. 

2010]. Consistently with the regression model described above, the input and out-

put variables for this a network are the same as the independent and dependent 

variables, respectively, and are also shown in Table 1. Hence, the required output 

is the predicted value of PM10 concentration on DAY0 (i.e., today); the input con-

sists of two PM10 measurements and two satellite AOD estimates for DAY0-1 

(i.e., yesterday) and DAY0-2 (i.e., the day before yesterday). 

 

 

Fig. 8 Modular network architecture: four inputs, one output, two layers with 10 neurons in 

the first and 1 neuron in the second. The function used in the first layer is tansig and in the 

second layer is pureline 
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As an example of this application, results for the EMEP Background Repre-

sentative station presented above are given in the following. As mentioned above, 

out of the 1096 days that were employed in this research, there were some days 

with missing or unreliable data; those were excluded from further processing. For 

the training of the network, 646 data sets were used which were randomly fed to 

the system and the Levenberg-Marquardt methodology was adopted [see Fletcher 

1971]. For the verification of the system that was built, the remaining 323 data 

sets were used. 

 
Fig. 9 Measured versus predicted values of PM10 concentration for the verification data set 

(323 days) 

 

 

Fig. 10 Measured versus predicted daily average values of PM10 concentration for the 

verification data set. A linear fit for this relationship is also shown 
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Figure 9 is a comparative presentation of the measured and predicted values of 

PM10 for the 323 days in the verification set. The same measured and predicted 

values are plotted in Fig. 10 together with a linear relationship between the two. 

Overall, the neural network model seems to underestimate the PM10 concentra-

tions, especially when extreme concentrations are recorded; however, apart from 

these outliers, the performance of the neural network predictions is acceptable. 

8   Dust Transport Event Prediction Tool 

All of the above described approaches have been embedded in a user friendly pre-
diction tool, the interface of which is shown in Fig. 11. Input consists of PM10 
measurements and AOD from satellite estimates for the two previous days and the 
synoptic class. The user has an option to perform the concentration prediction by 
using either the neural network or the multiple regression methodology. The out-
put is the predicted PM10 concentration for today; also the probabilities of ex-
ceeding the thresholds of 50, 80 and 100 mg/m

3
 are calculated. 

 

 

Fig. 11 The interface of the prediction tool 

9   Concluding Remarks 

The main aim of the research that was presented above was to demonstrate that the 

use of Artificial Neural Networks can be applied efficiently in the prediction of a 

highly complex atmospheric phenomenon, namely the dust transportation and its 

deposition at a distance from the source regions. The data that were used were 

basically the type of the prevailing synoptic conditions, measurements of dust  
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deposition at ground level (PM10) and Atmospheric Optical Depth (AOD) deter-

mined from satellite information (MODIS). 

A classification of synoptic types as they are portrayed by the 500 hPa isobaric 

analyses was performed, in order to treat the well known association between dust 

transportation and prevailing weather conditions in the middle troposphere. As 

dust transportation eventually leads to deposition at some distance from the 

source, the measurements of dust particles provide such an indication, especially 

where this can be ascribed to a large extent to external sources; hence, such mea-

surements can be used to track dust transportation episodes, although the respec-

tive data must be treated with care. Satellite remote sensing of the atmospheric 

dust load can provide a valuable source of information, especially as regards the 

spatial and temporal evolution of the transportation of dust. 

Although the results of this pilot study are site specific, they indicate that dust 

transportation can be investigated by using ANN, both for diagnostic and prognos-

tic purposes. As the ANN methodologies are generally highly data demanding, the 

techniques developed in this research can be updated and, hopefully, improved as 

more data become available. 

An efficient methodology for predicting dust events can have several applica-

tions. In the Section 1, several human activities were outlined that can be profited 

from accurate dust transport predictions. A rather more recent area of application 

of such predictions is in the planning and running of renewable energy systems 

based on solar energy exploitation (e.g., photovoltaic systems etc). 
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