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Preface

Video segmentation has been a key technique for visual information extraction and

plays an important role in digital video processing, pattern recognition, and com-

puter vision. A wide range of video-based applications will benefit from advances

in video segmentation including security and surveillance, bank transactions moni-

toring, video conferencing, and personal entertainment.

In the last four decades, this field has experienced significant growth and

progress, resulting in a virtual explosion of published information. The field of

image and video segmentation is still a very hot topic, with much advancement in

recent years. As a consequence, there is a considerable need for books like this one,

which attempts to bring together a selection of the latest results from researchers

involved in state-of-the-art work in video segmentation and its applications.

The objective of this book is to present the latest advances in video segmentation

and analysis techniques covering both theoretical approaches and real applications.

This book provides an overview of emerging new approaches to video segmentation

and promising methods being developed in the computer vision and video analysis

community. It not only deals with the theoretical foundations and algorithms for im-

age/video segmentation, which includes how to extract video features, and how to

segment semantic video objects, this book also provides a comprehensive descrip-

tion of practical applications which I believe fills a hole in the video segmentation

market.

This book is expected to provide researchers and practitioners a comprehensive

understanding of the start-of-the-art of video segmentation techniques and a re-

source for potential applications and successful practice. The principal audience of

this book will be mainly composed of researchers and engineers as well as graduate

students working on video segmentation in various disciplines, e.g. video analysis,

computer vision, pattern recognition, image and video processing, artificial intelli-

gence, etc.

Chapter 1 introduces the current status of research activities including graph-

based, density estimator-based and temporal-based segmentation algorithms. Recent

developments are then discussed while providing a comprehensive introduction to

the fields of image/video segmentation. More challenges ahead are identified whilst

outlining perspectives for the years to come.
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Chapter 2 presents object segmentation algorithms depending on the characteris-

tics of eigen-structure. The eigen-subspaces are obtained from eigen-decomposition

of the covariance matrix, which is computed from the selected color samples. By

a joint consideration of signal and noise subspace projections of desired colors, the

separate eigen-based fuzzy C-means and coupled eigen-based fuzzy C-means are

used to achieve effective color object segmentation. With these proposed algorithms,

the color objects can be successfully extracted by using eigen-subspace projections.

Chapter 3 addresses the issue of semantic object segmentation, which aims to la-

bel each pixel in a video frame to one of the object classes with semantic meanings.

An overview of different technologies and major challenges of the semantic object

are first discussed for each step. The frameworks of conditional random fields and

topic models, which are the representative models of the generative and discrimina-

tive approaches respectively, are applied to achieve semantic object segmentation.

Chapter 4 presents a survey and tutorial on the research on the learning-based

video-scene analysis. Two major tasks based on their application setup and learning

targets are addressed, namely generic methods and genre-specific analysis tech-

niques. Some research challenges in video content analysis and retrieval are reported

for the video scene analysis.

Chapter 5 describes the representative and state-of-the-art approaches in multi-

view image segmentation and video tracking. A depth-based segmentation in the

initial frame and feature-based tracking algorithms from multiview video are pro-

posed for both separated and overlapping human objects.

Chapter 6 discusses segmentation applications such as medical imaging,

computer-guided surgery, machine vision, object recognition, surveillance, content-

based browsing, and augmented reality applications. The expected segmentation

quality for a given application depends on the level of granularity and the re-

quirement that is related to shape precision and temporal coherence of the objects.

Although, there exists still significant challenge to perform robust and fully auto-

mated segmentation that fits generic tasks, a reliable solution can be achieved using

suitable attention and model-based information.

Hong Kong SAR, The People’s Republic of China King Ngi Ngan

Chengdu, The People’s Republic of China Hongliang Li

January 2011
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Chapter 1

Image/Video Segmentation: Current Status,

Trends, and Challenges

Hongliang Li and King Ngi Ngan

Abstract Segmentation plays an important role in digital media processing,

pattern recognition, and computer vision. The task of image/video segmentation

emerges in many application areas, such as image interpretation, video analysis

and understanding, video summarization and indexing, and digital entertainment.

Over the last two decades, the problem of segmenting image/video data has become

a fundamental one and had significant impact on both new pattern recognition

algorithms and applications.

This chapter has several objectives: (1) to survey the current status of research

activities including graph-based, density estimator-based, and temporal-based seg-

mentation algorithms. (2) To discuss recent developments while providing a com-

prehensive introduction to the fields of image/video segmentation. (3) To identify

challenges ahead, and outline perspectives for the years to come.

1.1 Introduction

We often hear the old adage “a picture is worth a thousand words”, which means a

complex semantic information can be conveyed with just a single still picture. Have

you ever wondered when you look at a picture, how do your eyes find the interest-

ing target from the scene and how do your brain understand the scene? How many

activities are involved in the scene recognition progress? The possible answer may

lie in the semantic content processing, which can provide us with the meaningful

cues for the scene understanding [1].

From the content-related services, a semantic object (i.e., meaningful entity in-

cluding a collection of attributes) can be detected and exploited to provide the user

with the flexibility of content-based access and manipulation, such as fast indexing

from video databases, advanced editing and composition, and efficient coding of

H. Li (�)

School of Electronic Engineering, University of Electronic Science and Technology

of China, Chengdu, China

e-mail: hlli@uestc.edu.cn

K.N. Ngan and H. Li (eds.), Video Segmentation and Its Applications,
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2 H. Li and K.N. Ngan

regions of interest [2]. In the past several years, there has been rapid growing interest

in content-based applications of video data including video retrieval and browsing,

video summarization, video event analysis, and video editing. The requirements

for efficiently accessing a great amounts of multimedia content are becoming more

and more important. However, how to obtain semantic contents successfully from

an image/video is still a very challenging task in the computer vision and pattern

recognition.

In order to understand the scene content, we need to known what is the basic com-

ponent for such content. The common answer may be the semantic object, which

represents a data item together with its underlying semantic context. It may consist

of a flexible set of meta-attributes that explicitly describe the implicit assumptions

about the meaning of the data item [4]. Each semantic object should clearly specify

the relationship between the object and the real aspects. Therefore, a crucial step

before the image understanding is to separate the image/video into several con-

stituent parts.

In general, segmentation can be defined as the process of partitioning data into

groups of potential subsets that share similar characteristics. It has become a key

technique for semantic content extraction and plays an important role in digital

multimedia processing, pattern recognition, and computer vision. The goal of image

segmentation is very application oriented, which emerges in many fields. A limited

set of applications of image/video segmentation can be presented as follows:

• Object recognition, where the segmentation is treated as a key component that

groups coherent image areas that are then used to assemble and detect ob-

jects [5]. As important recognition tasks, feature extraction and model matching

rely heavily on the quality of the image segmentation process. When an image is

segmented into several homogeneous intensity regions, each region can be used

as features for deriving the category model since they are rich descriptors, usually

stable to small illumination and viewpoint changes [6].

• Video monitoring, where an object can be divided into pieces to improve tracking

robustness to occlusion by tracking the evolution of the moving objects along the

time axis [7]. The segmented mask allows to predict and identify an intruder or

of an anomalous situation, and help to reveal their behaviors and make quick

decision when “alerts” should be posted to security unit.

• Video indexing, which performs over segments of the media using the annotations

associated with the segments [8, 9]. An ordered list of segments associated with

the query object will be returned to user, which has been applied to the content

classification, representation, or understanding.

• Data compression, which allows suitable coding algorithm to manipulate each

object independently resulting in subjective quality improvement. Segmentation

is used to partition each frame of a video sequence into semantically meaningful

objects with arbitrary shape. More coding bits can be assigned to these object

regions [10], which can reduce visual artifacts after the low-bit rate coding.

• Computer vision, where segmented objects from the input 2-D images or video

sequences can be used to construct the 3-D scene. For example, stereo for

image-based rendering was proposed based on image oversegmentation. Since
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entire segments are matched instead of single pixels, the initial match values are

more robust to image noise and intensity bias [11].

• Videophone applications, which achieve high perceptual quality by coding the

areas of interest with better quality. Fewer bits can be allocated for encoding

the background by using the higher quantization level. The motivation of this

application is that the foreground region is the most important for the viewer [12].

• Digital entertainment, such as video matting and video tooning, which employs

the segmented objects to generate fantastic effect, or puts them into a virtual

scene or game.

There are other possible applications, such as medical diagnosis, tele-education,

industrial inspection, environmental monitoring, or the association of metadata with

the segmented objects, etc.

Segmentation has become an efficient way to bridge the primary image data and

semantic content in image/video processing. In order to satisfy the future content-

based multimedia application, more and more researchers seek for efficient ways to

segment arbitrary object from multimedia data over the past decade. There are many

methods that addressed the segmentation problem, which can be categorized with

respect to various criteria:

(1) Data-based mode: Based on the original data types, segmentation can be clas-

sified into image (e.g., nature, medical, or remote sensing images, etc.), video,

audio, and text segmentations, which can be applied to different scenarios. For

example, we can use the text segmentation to extract captions displayed in

movies, or partition a document into interesting parts. In this chapter, we only

concentrate on the image and video segmentation.

(2) Interaction-based mode: Two main categories can be classified, namely super-

vised and unsupervised modes. Supervised methods require user intervention

for segmentation, which allow users to easily indicate the foreground across

space and time. These methods can provide the better performance than au-

tomatic ways because the prior knowledge of the object can be obtained by

selecting training data on the images. Unsupervised methods mean that there is

no contextual knowledge assumption regarding to the object being segmented.

Object segmentation is performed in fully automatic manner, which has become

the key technique in a large number of real-time application areas such as video

monitoring and surveillance.

(3) Feature-based mode: Feature extraction plays important role in image/video

segmentation. According to the selection of the feature space, segmentation

can be divided into color, texture, intensity, shape, or motion based segmenta-

tion method. These features are usually applied to evaluate the region property.

For example, for color segmentation, the grouping decision relies on the color

distance between neighboring pixels. For the motion segmentation, the main

problem is to find independently moving objects in a video in terms of the

motion cue.

(4) Inference-based mode: Segmentation can be formulated as two message passing

modes, namely bottom-up and top-down segmentations. The first performs seg-

mentation on the basis of low-level visual features (e.g., color, texture, intensity,



4 H. Li and K.N. Ngan

etc.) rather than high-level knowledge about the object of interest. The result-

ing segmentation is usually implemented in unsupervised manner. The second

method usually requires a database of human-annotated images to learn a prior

distribution, which helps to make high-level recognition by incorporating low-

level grouping results.

(5) Space-based mode: Based on the view of space relation, we can classify seg-

mentation into spatial or temporal methods. The first method focuses on the

partition according to the spatial relations among pixels, while the second aims

to divide a sequence of frames into several segments along the temporal axis.

For example, we can use scene analysis techniques such as video cut, fade,

wide, zoom, etc. to perform the scene segmentation so as to group those frames

with similar content.

(6) Class-based mode: Many segmentation methods are proposed to extract specific

objects (e.g., face, human, car, or building) from input images/videos. Since the

object is known in advance, the prior information for this object can be used to

improve the segmentation results. For example, for the face segmentation, the

skin color distribution observed from samples is very helpful for the face region

detection, which allows to access the face efficiently.

(7) Semantic-specific mode: Unlike the non-semantic segmentation that extracts

some uniform and homogeneous segments with respect to texture or color fea-

tures, semantic segmentation can be defined as a process that typically divides

an image into meaningful segments associated with some semantics.

Notice that the existing segmentation methods can be classified into certain

categories based on above analysis. Of course, there is no distinct boundary to

distinguish different segmentation modes, which means that one can develop a seg-

mentation method by combining different modes. For example, unsupervised over

segmentation is usually employed as an important step for the top-down segmenta-

tion method that groups those segments into a semantic object.

Because image segmentation is application oriented, it is very difficult to mea-

sure a given segmentation quality based on an uniform criteria. This means that

“what is a good segmentation?” and “how do we distinguish good segmentations

from bad segmentations?” highly depend on the application scenarios. Therefore,

many researchers answer the above questions by making some assumptions for the

goodness of the segmentation, such as the principle of good continuation states that

a good segmentation should have [13].

The goal of this chapter is to review theoretically and practically different meth-

ods for image/video segmentation. To achieve this goal, we focus our attention to

the task of image/video segmentation only. It may be helpful to the reader to know

that there have been many other articles that have reviewed the image segmentation

from a variety of perspectives in last decade, such as reviews of image segmentation

techniques [14,15], a survey of ultrasound image segmentation [16], an overview of

video segmentation [17]. In this chapter, we not only consider the existing methods

that are classics or milestones in the field, but the trends and challenges, which may

promote future research work.
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This chapter is organized as follows. Section 1.2 reviews the existing algorithms

for image/video segmentation. Emerging methods are discussed in Sect. 1.3 to show

the trends in image/video segmentation. Finally, Sect. 1.4 summarizes main chal-

lenges in the research on segmentation methods and offers the outlook for the future.

1.2 The State-of-The-Art Segmentation Methods

The history of image segmentation (i.e., spatial domain) goes back to the nineteenth

century. In existence for over 20 years, image/video segmentation has undergone

vast technological progress, which has resulted in a great variety of algorithms.

This section focuses on representative technologies and will briefly describe specific

examples of where the emergence of the research works began a small revolution

in image segmentation. A more detailed description of addressed algorithms can be

found in numerous reference articles and books.

1.2.1 Graph-Based Segmentation

1.2.1.1 Graph-Cut Algorithm

In 1989, an interesting work was introduced by Greig [18] that the solution of max-

imum a posteriori estimation (MAP) for binary images can be exactly computed

by graph cut. Unfortunately, this idea did not attract much attention until recent

years. The first report on image processing was presented by Boykov and Jolly [19],

which applied graph cut to image restoration and interactive image segmentation.

Given the subsets of marked object and background pixels, this work used graph cut

to find the globally optimal segmentation based on a minimum cut algorithm, which

also acts as the foundation work in [20–22].

Given an image, this work created a graph G =< V ,E >, which can be described

by a set of nodes V (e.g., pixels or regions) and a set of link edges E . In particular,

two terminals, i.e., the source terminal s and the sink terminal t, are designed to

connect to these nodes. In this graph, all the nodes are connected by two kinds

of edges: the bidirectional n-links between two neighboring nodes and the t-links

between the nodes and the terminals.

A cut C is defined as a binary partition of the nodes with two subsets, which can

be labeled either as the source terminal (foreground) or sink terminal (background).

The goal of graph cut algorithm is to search the best cut that has the globally min-

imal cost (i.e., the sum of the weights of the edges), which is exactly equal to the

maximum flow in the graph [19]. In general, for an image Z ={zi}, the cost of a cut

can be expressed by an energy function, which can be defined as

E(Z) = ∑
i∈V

E1(zi)+ λ1 ∑
{i, j}∈E

E2(zi,z j), (1.1)

where E1 and E2 denote the data and smoothness cost functions, respectively.
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The first term E1 is used to set the penalties for assigning each pixel to foreground

or background, which reflects how the pixel is close to them. In [19], this term was

defined as negative log-likelihoods of histograms for “object” and “background”

intensity distributions. Generally, in the interactive method, two distributions can

be estimated from the labeled regions by the user’s paints. It means that the prior

distributions can be estimated from labeled pixels in a weak supervised manner.

The second term E2(zi,z j) is designed to measure the similarity between two

nodes zi and z j by setting a penalty for a discontinuity between them. This term

is close to zero when the distinct boundary is found for nodes zi and z j, which

means that a larger probability of a cut appears between the adjacent pixels. It can be

evaluated by using the local intensity gradient or other regularization-based criteria.

In [19], an ad-hoc function was used to set the boundary penalties.

The exact solution of the maximum flow problem can be reached by using the

max-flow/min-cut algorithm, which has been discussed in [23] in detail. This algo-

rithm tries to find a new augmenting path, which would saturate at least one edge

in the route and increase the flow to approach the maximum. When no new aug-

menting path can be found, the maximum flow is reached, which corresponds to the

minimum cut.

Figure 1.1 shows an example of graph cut-based image segmentation. The orig-

inal image with user’s inputs is given in Fig. 1.1a, where the red and blue strokes

represent the background and the object, respectively. The defined graph is shown

in Fig. 1.1b, which includes two terminals (i.e., object (flower) and background

(leaves)) except for general nodes. Figure 1.1c shows the segmentation result by

the graph-cut algorithm. It can be seen that the object flower is segmented success-

fully from the image.

Fig. 1.1 An example of Graph-cut based segmentation. (a) Original image flower with user’s

paints. (b) The constructed graph with two terminal nodes. (c) Segmentation result
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1.2.1.2 Random Walks Algorithm

Random walk first appeared in computer vision in the early paper of Wechsler and

Kidode for solving the problems of texture discrimination and edge segment detec-

tion [25]. In the early works, the random walker algorithm was motivated by placing

random walkers at pixels and examining which seeds they first arrive at. However,

such a method of computation would be completely impractical. The successful ap-

plication to the image segmentation was first introduced by Grady’s works [26, 27]

that apply graph theory to the problems in random walks. To compute the desired

probabilities that a walker will first reach the seed with the known label, this work

established connections between random walks and the circuit theory (or potential

theory) on a graph.

The random walker segmentation is formulated on a graph that is built from an

image with a fixed number of vertices and edges. Each edge is assigned a real-valued

weight corresponding to the likelihood that a random walker will cross that edge.

The detailed algorithm can be summarized as four steps:

(1) Initialization: Obtain marked pixels with known labels.

(2) Mapping: Map the image to a graph using the typical Gaussian weighting edges.

(3) Optimization: Compute the probabilities of unlabeled nodes arriving to each

marked label by solving the Dirichlet problem.

(4) Segmentation: Obtain a final segmentation by assigning to each node with the

class label corresponding to the maximum potential.

Figure 1.2 shows an example of random walker-based image segmentation. The

original image with user’s inputs is given in Fig. 1.2a, which indicate the background

Fig. 1.2 An example of random walker-based segmentation. (a) Original image flower with user’s

paints. (b) The constructed graph. (c) Segmentation result
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and the object, respectively. The graph is described in Fig. 1.2b, where the solid and

circle nodes denote the known and unknown labels, respectively. Figure 1.1c shows

the segmentation result by the random walks algorithm. It can seen that the object

flower is segmented from the original image.

1.2.1.3 Spectral Clustering Algorithm

Spectral clustering has become one of the most popular modern clustering

algorithms, which can be solved efficiently by standard linear algebra methods.

Compared to the traditional algorithms (e.g., k-means), spectral clustering is very

simple to implement and has many fundamental advantages that outperform these

approaches [28].

Similar to the graph cut-based method, spectral clustering is also based on

weighted graph partitioning ideas, which can be represented in form of a similarity

graph G = (V,E) with a set of nodes V = {v1, ...,v2} and a set of edges E . Each ver-

tex vi in this graph represents a data point, which connects with its adjacent node by

an edge. The main tools for spectral clustering are graph Laplacian matrices, which

were studied based on the spectral graph theory. The most common spectral cluster-

ing algorithms may include unnormalized spectral clustering, normalized spectral

clustering by [29] and [30].

A classic spectral clustering-based segmentation method was first introduced by

Shi and Malik in [29] using a normalized cut criteria. Assume a graph G can be

partitioned into two disjoint sets A and B by finding a minimum cut. Here a cut is

defined as

cut(A,B) = ∑
i∈A, j∈B

w(i, j). (1.2)

Generally, it is relatively easy to minimize (1.2) by simply separating data into

two parts. However, in practice it often does not lead to satisfactory partitions. To

avoid such weird partition, Shi redefined the cut function, by adding some con-

straints such as the subsets’ volume, to normalize the cut cost (i.e., Ncut). The

definition can be written by

Ncut(A,B) =
cut(A,B)

vol(A)
+

cut(A,B)

vol(B)
, (1.3)

where vol(A) = ∑i∈A, j∈V w(i, j) denotes the volume of subset A, which represents

the relation between nodes in A and nodes in the whole graph. The minimization of

(1.3) can be approximated by solving an eigenvalue system [29].

Based on the Ncut algorithm, an image can be segmented into multiple regions

by using the following steps:
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Fig. 1.3 An example of Ncut-based segmentation. (a) Original image flower. (b) The constructed

graph. (c) Segmentation results with N = 2 and N = 10

(1) Map an image into a weighted graph G = (V,E) with the nodes corresponding

to pixels and weight on the edges setting by the affinity of pairwise pixels.

(2) Construct affinity matrix W and degree matrix D.

(3) Solve the generalized eigenvalue system with the second smallest eigenvector.

(4) Use the eigenvector to partition the graph.

(5) After the stability examination, recursively repartition the segmented parts if

necessary.

Figure 1.3 shows an example of Ncut-based image segmentation. The original

image is shown in Fig. 1.3a. Since this method is performed in unsupervised manner,

there is no user’s input for the known labels. The graph is described in Fig. 1.3b,

where the dashed line denotes a cut to separate this graph into two parts. Figure 1.3c

shows the segmentation results when N = 2 and N = 10. It can be seen that the

original image is segmented into many regions.

1.2.1.4 Efficient Graph Segmentation Algorithm

Another graph-based segmentation algorithm can be found in [24], which computes

image segmentation based on pairwise region comparison in unsupervised manner.

The boundary between two regions is measured by a predicate based on a graph-

based representation of the image. It can be computed using the minimum weight

edge between two regions. Although this algorithm makes greedy decisions, it runs

in time nearly linear to the number of graph edges (e.g., O(m logm) time for m graph

edges) and is also fast in practice. Different segmentation results can be achieved by
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setting various parameters including sigma, which is used to smooth the input image

and the threshold θ . Some experimental results and the source code can be referred

to http://people.cs.uchicago.edu/pff/segment/.

1.2.2 Nonparametric Clustering-Based Segmentation

Mean shift analysis is a nonparametric, iterative procedure introduced by Fukunaga

[31] for seeking the mode of a density function represented by local samples, which

was generalized by Cheng for the image analysis [33]. More specifically, mean shift

estimates the local density gradient of similar pixels via finding the peaks in the local

density. It is proved that mean shift procedure is a quadratic bound maximization

both for stationary and evolving sample sets [32]. Comaniciu and Meer extended

this algorithm to the color image segmentation application [34].

Given n data points xi in d-dimensional space. The general multivariate kernel

density estimator with kernel K(x) is defined as

f̂ =
1

n

n

∑
i=1

KH(x− xi). (1.4)

For the radially symmetric kernel with the identity matrix H = h2I, (1.4) can be

rewritten by

f̂ =
1

nhd

n

∑
i=1

K

(
x− xi

h

)

. (1.5)

By taking the gradient of (1.5) and employing some algebra, a mean shift vector

can be obtained by

m(x) = C
∇ f̂ (x)

f̂ (x)
, (1.6)

where C is a positive constant and

m(x) =
∑n

i=1 xig(‖ x−xi
h

‖2)

∑n
i=1 g(‖ x−xi

h
‖2)

− x. (1.7)

Note that the function g(x) is the derivative of the kernel profile k(x), i.e.,

g(x) = −k′(x).

In general, the kernel K(x) is usually broken into the product of two differ-

ent radially symmetric kernels, namely the spatial domain and the color range.

For a still image, the mean shift segmentation algorithm [35] can be described as

following steps:

(1) Given an image, perform the mean shift filtering procedure until convergence.

(2) Grouping together all points that are closer than spatial and range kernel band-

widths.

http://people.cs.uchicago.edu/pff/segment/
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Fig. 1.4 An example of mean shift segmentation. (a) Original image flower. (b) Segmentation

result with different parameters

(3) For each group, assign a label.

(4) Eliminate those regions with less pixels.

Figure 1.4 shows an example of mean shift image segmentation. The original

image is shown in Fig. 1.4a. Figure 1.3b shows the segmentation results with differ-

ent kernel bandwidths. The spatial and range bandwidths are set to hs = 4,hr = 10

and hs = 10,hr = 15, respectively. We can see that with the increase of kernel band-

widths, more pixels are grouped together, which results in large regions partition.

This method is also implemented in an unsupervised manner.

1.2.3 Motion-Based Segmentation

In general, image segmentation algorithms mentioned above can be regarded as

spatial-based video segmentation. One can simply perform video segmentation

frame by frame using spatial segmentation methods. However, this will result in low

efficiency of video segmentation because high correlation between adjacent frames

in the temporal axis is neglected.

Temporal segmentation is usually based on change detection followed by mo-

tion analysis. The change detection masks can be defined as the absolute difference

between two consecutive frames, which are the most common forms of motion

information incorporated into the segmentation process. This algorithm employs in-

tensity changes produced by the motion of moving object to identify the position and

boundary of objects in time and space. Unlike the spatial segmentation approaches,

higher efficiency can be achieved because of small number of operations for the

segmented moving region instead of the whole image for every frame [3].
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As an important low-level feature, motion can provide the otherwise missing

semantic information in cases where uniform motion is expected. In order to ex-

tract the moving objects, motion estimation methods are needed especially when

change detection masks have been shown to be ineffective. An interesting work on

moving object segmentation can be referred to [2]. The core of this algorithm is

an object tracker that matches a two-dimensional (2D) binary model of the object

against subsequent frames using the Hausdorff distance. To achieve this goal, the

first step is to detect a dominant global motion that can be assigned to the back-

ground based on the six-parameter affine transformation. An object tracker based

on Hausdorff distance is then established to measure the temporal correspondence

of objects and enhance the robustness to noise and changes in shape in the video

sequence.

1.3 Technological Trends for Image/Video Segmentation

Most past research activities on video segmentation have relied on two principles of

spatial (i.e., image) and temporal segmentation. If we treat the motion cue as one of

the low level features such as intensity, color, and texture, many image segmentation

algorithms can be easily extended to video segmentation. For example, to segment

a moving object out from a video clip, a 3D graph cut was presented to partition

watershed presegmentation regions into foreground and background while preserv-

ing temporal coherence. For each frame, the segmentation in each tracked window

is refined using a 2D graph cut based on a local color model [36]. In this section,

we will address the following trends for segmentation algorithm especially for the

spatial domain segmentation.

1.3.1 Towards ‘Good’ Segmentation

An emerging trend is to answer the question “What is a good partition for an

image?” An interesting work in the current literature is to group pixels into “su-

perpixels”, which are local, coherent, and which preserve most of the structure

necessary for segmentation at the scale of interest [13, 37]. To generate the super-

pixel map, the Ncut segmentation algorithm is used by incorporating the contour

and texture cues. To find the “good” segmentation, the gestalt grouping cues, such

as contour, texture, brightness, and good continuation are combined in a principled

way. A linear classifier is trained to combine these features.

An example of superpixel segmentation is shown in Fig. 1.5, which has the num-

ber of superpixels 200. The original image flower is shown in Fig. 1.5a, which has

the superpixel map given in Fig. 1.5b. A result of segmentation can be found in

Fig. 1.5c, which shows that distinct improvement can be achieved with respect to

those classic methods.
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Fig. 1.5 An example of superpixel segmentation. (a) Original image flower. (b) Superpixel map

with the number of 200. (c) Segmentation result based on the superpixel map

In addition, there are many approaches that are proposed recently to partition an

image into meaningful regions. For example, an unsupervised segmentation algo-

rithm for color image was proposed in [38], which utilizes the gradient information

in CIE L*a*b* color space. The initial regions are first created by grouping those

nonedge pixels. The regions with similar color and texture are consequently merged

to obtain a final segmentation map. Using semantics information, an iterative re-

gion growing method was proposed in [39], which is characterized by edge penalty

functions within Markov random field context model and region growing technique.

This method allows various region features to be incorporated in the segmentation

process. In order to allow scene understanding, a region-based model that combines

appearance and scene geometry was proposed to partition a scene into semanti-

cally meaningful regions [40]. This model is defined in terms of a unified energy

function over scene appearance and structure. In addition, an interesting segmenta-

tion technique was proposed to partition multivariate mixed data from a lossy data

coding/compression viewpoint [41]. This work aims to search the optimal segmen-

tation that minimizes the overall coding length of the segmented data based on the

concepts in lossy data compression and rate-distortion theory. From above analysis,

we can see that the goal of these works is to achieve ‘good’ image segmentation in

terms of defined decision strategy.

1.3.2 Towards Machine Learning Based Segmentation

Another emerging trend in image/video segmentation is the learning based segmen-

tation, which seeks good segmentation for understanding images and their semantic

contents. These methods learn the optimal clustering algorithms from unsegmented,

cluttered images using a probabilistic model incorporating both shape model and

bottom-up cues (e.g., color, texture, or edge).

Generative models, as an important probabilistic graphical model, are usually

applied to represent the process by which images of objects are created. Unlike

the grid graph, in this model, each node represents a random variable, and the

links express probabilistic relationships between these variables. A typical prob-

abilistic graphical model for a collection of exchangeable discrete data is Latent
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Dirichlet Allocation (LDA), which is mainly used to model text corpora based on

the bag-of-words assumption. LDA is a text model which was first introduced by

Blei [42] to cluster co-occurring words into topics with semantic meanings. Since it

enable efficient processing of large collections while preserving the essential statis-

tical relationships, LDA was not only used for text classification and summarization,

but also widely used to discover object categories from a collection of images [43].

Some entities are designed to describe the LDA model including “words”, “docu-

ments” and “corpora”. Notice that a document is a sequence of certain words, which

are the basic units of discrete data. A collection of certain documents (e.g., M) cor-

responds to a corpus. The basic idea of LDA is that documents are represented as

random mixtures over latent topics, where each topic z is characterized by a dis-

tribution over words w [42]. To borrow this algorithm from text literature, many

researchers extended LDA model to solve the computer vision problems by mapping

the quantized local descriptors (e.g., SIFT descriptors [44]) to “visual words”. Each

cluster centers after k-means clustering can be regarded as a visual word, which

is used to represent a document (e.g., an image) as a histogram of visual words,

namely the bag of words. Based on LDA graphic model shown in Fig. 1.6, a gen-

erative process for each document in a corpus can be obtained by defining certain

distributions, such as θ ∼ Dir(α), zn ∼ Multinomial(θ ). The details of LDA algo-

rithm can be referred to [42]. Given the training data, the LDA model is used to

maximize the marginal distribution p(w|α,β ) via Gibbs sampler.

Since the traditional LDA model only considers the document as a bag of

words, spatial relationships among adjacent words are ignored, which results in

low accuracy of the recognition tasks. Thus, many researchers considered improv-

ing the performance by incorporating the spatial relations into the LDA model.

For example, Cao and Fei-Fei introduced a spatially coherent latent topic model

(Spatial-LTM) that can improve the traditional bag of words representation of texts

and images [45]. In this model, an image is first partitioned into regions, which are

described by appearance feature and a set of visual words. Each region is treated as

a document. The labels of regions denote the latent topic. The Spatial-LTM model

is estimated by the variational message passing algorithm, which can simultane-

ously segment and classify objects. The similar extension of LDA model can also

be found in the Spatial Latent Dirichlet Allocation model [46], which encodes spa-

tial structure among visual words. It clusters visual words that are close in space

into one topic.

Fig. 1.6 LDA graphical model
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1.3.3 Towards Perceptual Model-Based Segmentation

As an important perceptual model, visual attention is an effective simulation of hu-

man visual characteristic, which allows us to find relevant information quickly and

efficiently. When people gaze at a picture, the human perceptual system always

pays more attention to the meaningful objects among the image. We usually call

these objects as salient objects. For example, given an image in Fig. 1.7a, the ani-

mal (e.g., sheep) should be regarded as the attention object that corresponds to the

white region in Fig. 1.7b.

Unlike the traditional methods, attention-based segmentation aims to segment

the meaningful physical entities which are more likely to attract users’ attention

than other objects in the image/video. Figure 1.8 describes a framework of video at-

tention object segmentation, which mainly consists of three steps, i.e., saliency map

generation, region segmentation, and object tracking. Given a sequence of images,

the first step for this model is to extract the saliency map based on the attentive fea-

tures that can be modeled by the low-level cues. Apart from spatial features, such

as intensity, color, and texture, the temporal feature (i.e., motion) is also important

for developing video attention model. The goal of the second step is to group salient

pixels by using a clustering method. Finally, object tracking should be used to up-

date object mask for the consequent frames.

Fig. 1.7 An example of visual attention model. (a) Original image sheep. (b) Ground truth mask

of the salient object

Saliency Map

Generation

Salient Region

Extraction

Input Video

Object Region

Tracking
Delay

Salient Objects

Object Mask

Updating

motion

Fig. 1.8 Framework of video attention objects segmentation
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To segment attention object successfully, it is important to measure the saliency

from the images/video accurately. The well-known visual attention model is called

Itti model, which was developed for rapid scene analysis by combining multiscale

image features into a single topographical saliency map [47]. A dynamical neural

network was used to select attended locations from the saliency map. This work

presented a conceptually simple computational model for saliency-driven focal

visual attention, which also included some basic concepts for producing some of

the performance of primate visual systems, such as center-surround operation and

multiscale saliency model. This model was successfully applied to object extraction

from color images [48], which formulated the attention objects as a Markov random

field by integrating computational visual attention mechanisms with attention object

growing techniques. In order to extract visual attention effectively, a lot of methods

have been presented recently to deal with salient points detection, such as frequency

tuned saliency (FTA) [49], spectral residual saliency [50], site entropy rate [51], and

context-aware saliency [52].

In addition, based on the visual attention idea, several object attention models

were successfully constructed to extract the object of interest in videos, such as

the facial saliency model [53] and focused saliency model [54]. Unlike the general

saliency model, object attention model is designed based on the prior knowledge

or the training procedure. For example, the first model given in [53] is proposed

to segment human face from the head-and-shoulder type video based on a facial

saliency map, which is defined as:

S(x,y) = P1(x,y) ·P2(x,y) ·P3(x,y), (1.8)

where P1, P2, and P3 denote the “conspicuity maps” corresponding to the chromi-

nance, position, and luminance components, respectively. Each component utilizes

the knowledge of human face, such as the skin color that can be detected by the

presence of a certain range of chrominance values with narrow and consistent dis-

tribution in the YCbCr color space. An example of facial saliency map is shown in

Fig. 1.9, where high saliency values usually correspond to the face regions.

In order to highlight the primary objects in an image, the attention object is usu-

ally shown in sharp focus, whereas background objects are typically blurred being

out-of-focus. The second saliency model [54] was proposed to extract focused ob-

jects automatically based on the matting model, which mainly consists of three

steps. The first step is to generate a re-blurred version of the input video image

by a point-spread function in the proposed method. The focused saliency map of

Fig. 1.9 An example of

facial saliency map. Left:

Original image claire. Right:

The facial saliency map
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Fig. 1.10 An example of

focus saliency map. Left:

Original image gandalf.

Right: The focus saliency

map

Fig. 1.11 An example of image pairs for co-segmentation. Left: Image pair amira. Right: Image

pair stone

an image can be computed from the difference between the original and the blurred

images. Most of the energy in the saliency map corresponds to the focused object,

whilst a large amount of the energy of the defocused region is removed efficiently.

In the second stage, bilateral and morphological filtering are employed to smooth

and accentuate the salient regions. The third stage involves adaptive error control

matting scheme to extract the boundaries of the focused objects. An example of

focus saliency map is shown in Fig. 1.10, where most human regions have higher

saliency values than background.

1.3.4 Towards Object Driven Segmentation

A typical work of object driven segmentation is called “co-segmentation”, which

aims to segment the similar object from images. The main idea of co-segmentation

is to discover common objects from image pairs based on the assumption that each

image contains the foregrounds with similar color, texture, or shape. The first row of

Fig. 1.11 shows two image pairs with similar objects in the foreground but different
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backgrounds, which have been used in many works [55–58]. The second row of

Fig. 1.11 shows the ground truth masks for image pairs. Many approaches have been

proposed to address the co-segmentation problem in terms of different optimization

techniques, such as the L1 norm model [55], L2 norm model [56], and the “reward”

model [57].

Generally, the problem of co-segmentation can be formulated as an energy

optimization, which can be defined as:

x = argmin
x

E1(x)
︸ ︷︷ ︸

Intra term

+E2( f1, f2,)
︸ ︷︷ ︸

Inter term

, (1.9)

where x denotes the label set with the value {0,1}. f1 and f2 are the description

for the foreground or background respectively. E1 is defined as intra penalty within

each image, which can be expressed by the MRF including the unary term and pair-

wise term. The constraint between images is imposed by the second term E2, which

makes the foreground of each images similar with each other. However, the opti-

mization of energy function becomes an NP hard problem. In order to overcome

these problems, different optimization methods have been proposed for solving

this problem, such as trust region graph cut [55], quadratic pseudo boolean op-

timization [56], graph cut [57], and dual decomposition [59]. A brief review of

co-segmentation can be referred to [59].

Another type of object driven segmentation is the class-specific segmentation,

which is to extract the object of interest from the given images/video. An exam-

ple of such works can be found in [62], which segments human faces automatically.

This method proposed an effective segmentation system for cutting human faces out

from video sequences in realtime, which consists of three stages. First, a learning

based face detector is developed to rapidly identify human faces. To speed up the

detection process, a face rejection cascade is constructed to remove most of neg-

ative samples while retaining all the face samples. A coarse-to-fine segmentation

approach is then used to extract the faces based on a min-cut optimization. Finally,

in order to refine the object boundary, this method employed a matting algorithm to

estimate the alpha-matte based on an adaptive trimap generation method.

As a highly nonrigid object, human face holds a high degree of variability in

size, shape, color, and texture. This method developed a fast face detector shown

in Fig. 1.12, which consists of skin color filtering, rejector cascade, and cascades of

boosted face classifier. The filter is used to clean up the non-skin regions in the color

image during face detection. The rejector is designed to remove most of the non-face

candidates while allowing high accuracy for face detection. The promising face-like

locations will be examined in the final boosted face classifier. Note that the real-time

segmentation system for human face can be easily extended to other applications.

For example, if the coarse segmentation is performed on the appropriately defined

body region, this work can be extended to solve more challenging “head-shoulder

segmentation” problem.

In addition, an early work of class-based segmentation method has been dis-

cussed in [60], which aims to capture the common characteristics from a stored



1 Image/Video Segmentation: Current Status, Trends, and Challenges 19

Face
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Rejection

Cascade

Skin-color

Filtering
AdaBoost Classifier

…
Face

Fig. 1.12 Face detection cascade in [62]

representation of the shape of objects within a general class (such as horse images),

and then use this information to segment novel images. An interesting trend can be

observed, which aims to segment a collection of unlabeled images while exploiting

automatically discovered appearance patterns shared between them [61].

1.4 Challenges

In this section, we identify serious challenges that remain despite over ten years of

progress in image/video segmentation.

The first challenge in image segmentation is the semantic gap, which means how

to bridge the semantic gap between low-level features and high-level semantic effec-

tively. As stated in the last section, given a similarity matrix (e.g., intensity based),

many algorithms can be used to implement data clustering. But it is still difficult to

ensure the clustering result with meaningful partitions. For good segmentation, both

spatial and semantic relations are required. The demand is significantly urgent for

image analysis and scene understanding. Thus far, a range of techniques have been

developed to achieve ‘good’ segmentation by incorporating more semantic informa-

tion into the clustering process.

The second challenge is to yield accurate segmentation for images. Although

image segmentation is application oriented, it is not necessary to provide accurate

segmentation mask for some applications. However, accurate segmentation is par-

ticularly interesting in a lot of fields. Many are not willing to accept the coarse

segmentation results that may be obtained by the existing approaches. More specif-

ically, a robust and accurate segmentation will lead to the distinct improvement for

many applications such as content based video coding (e.g., MPEG-4). However, it

is still a challenging task to extract accurate object mask from the image/video be-

cause of the variations of brightness, lighting, view, and other complex backgrounds.

Despite the advances in video segmentation, it remains difficult to segment ob-

jects of interest in real time, which can be regarded as the third challenge. Unlike

the static image segmentation, it seems that temporal features such as motion that
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can be used to improve the video object segmentation. More challenging tasks will

be involved due to the inconsistent motion. To achieve real time segmentation, peo-

ple usually make the trade-off between the segmentation quality and the efficiency,

which will directly reduce the performance of the object segmentation. Apart from

the problems raised in the image segmentation, fast and accuracy object tracking

and mask updating also need to address sufficiently.

The fourth major challenge in image/video segmentation is the need to develop

appropriate validation and evaluation approaches. The first task is the formation

of common databases where all algorithms can be compared with each other.

Fortunately, a good segmentation Dataset and Benchmark was recommended by

Martin [64], which contains a number of static images (i.e., 100 test and 200 train

images) with different objects and backgrounds. The second issue is the develop-

ment of evaluation technique. Most evaluation methods in the current literature are

based on the computation of the scores between the ground truth mask and the seg-

mented result. It is reasonable but not sufficient to address the segmentation quality.

Some researchers in the field have been trying to address this critical issues. One

effort that has been carried out in recent years is the work [63], which presented the

PR index to compare the obtained segmentation with multiple ground truth images

through soft nonuniform weighting of pixel pairs that accounts for scale variation in

human perception.

1.5 Summary

Image/video segmentation will have a major role in intelligent visual signal process-

ing in the decades to come. With the transformation of image analysis from human

interactive mode toward an unsupervised mode, segmentation is becoming an es-

sential tool for pattern recognition and computer vision. It will be very useful for

bridging the semantic gap between the low level feature and the semantic concepts.

Segmentation is a fundamental research topic that provides unique opportunities for

content based coding and media analysis. However, the challenges listed in the last

section should be adequately addressed so as to continue to be a key technology in

pattern recognition.
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Chapter 2

Image Segmentation with Eigen-Subspace

Projections

Jar-Ferr Yang and Shu-Sheng Hao

Abstract In this chapter, object segmentation algorithms dependent on the

characteristics of eigen-structure are proposed. The eigen-subspaces are obtained

from eigen-decomposition of the covariance matrix, which is computed from the

selected color samples. Hence, the color space can be transformed into the signal

subspace and its orthogonal noise subspaces. After statistical analysis of eigen-

structure of target color samples, the color eigen-structure segmentation algorithms

are then designed to extract the desired objects, which are close to the color sam-

ples. The principal component transformation (PCT) techniques, which only use

the signal subspace can be treated as a subset of color eigenspace algorithms. The

eigenspaces discriminated as signal and noise subspaces related to original color

samples should be effectively utilized. The adaptive eigen-subspace segmentation

(AESS) algorithm, which can save the computation of eigen-decomposition, is

applied to adaptively adjust the eigen-subspaces. Finally, the Eigen-based fuzzy

C-means (FCM) clustering algorithm has been proposed to effective segment color

object. By jointly consideration of signal and noise subspace projections of de-

sired colors, the separate eigen-based FCM (SEFCM) and coupled eigen-based

FCM (CEFCM) are used to achieve effective color object segmentation. With

these proposed algorithms, the color objects can be successfully extracted by using

eigen-subspace projections.

2.1 Overview

Image segmentation has been treated as a key technology in many smart image and

video related applications. To achieve effective coding, for example, the image seg-

mentation is the most important kernel in construction of the MPEG-4 video object

plane (VOP) [1, 2]. The four major features, including luminance, motion, color,

J.-F. Yang (�)

Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan

e-mail: jfyang@ee.ncku.edu.tw

K.N. Ngan and H. Li (eds.), Video Segmentation and Its Applications,

DOI 10.1007/978-1-4419-9482-0 2, c© Springer Science+Business Media, LLC 2011

25

jfyang@ee.ncku.edu.tw


26 J.-F. Yang and S.-S. Hao

and depth information, have been used as indexes for segmentation of the scenes.

If we can separate the video objects and encode them in the video bitstreams, we

can achieve the goals such as content scalability, sprite construction, and depth map

estimation [3]. Recently, there are many segmentation researches proposed by using

motion [4, 5], edge [6, 7], shape [8], and textual [9, 10] information. In this chapter,

we introduce the object segmentation algorithms by only using the characteristics

of eigenstructure of the color space. After statistical analysis of eigen-structure of

the color samples, the color eigen-structure segmentation algorithms, which con-

sider characteristics of signal and noise subspaces, are suggested. By using color

information only, simulations show that the proposed algorithm can successfully

detect the desired objects from standard video test sequences. In Sect. 2.2, the ob-

ject segmentation algorithm based on the color eigen-structure characteristics will

be stated. In Sect. 2.3, color object segmentation using adaptive eigen-subspaces

will be discussed. In Sect. 2.4, color object segmentation using fuzzy C-means with

eigen-subspace projection will be described. Conclusions will be stated in Sect. 2.5.

2.2 An Object Segmentation Algorithm Based

on Color Eigen-Structure Characterizations

As mentioned in Sect. 2.1, the principal component transformation (PCT) for im-

age segmentation has been proposed [11–13]. The PCT essentially exhibits a color

transformation to the signal subspace only. In this section, we propose a color eigen-

structure algorithm to efficiently and effectively retrieve the desired objects. In

Sect. 2.2.1, the theory of PCT will be introduced. In Sect. 2.2.2, we further analyze

the properties of eigen-subspaces. In Sect. 2.2.3, we adopt the statistical analysis of

the eigen-structure to design a color eigen-structure segmentation algorithm. The

detailed procedures of the algorithm are also described. In Sect. 2.2.4, simulation

results will be shown to verify the above theoretical development.

2.2.1 Principal Component Transformation (PCT)

The principal component transform (PCT) [17–19] is also called discrete Karhunen-

Loêve (KL) expansion. The KL transformation achieves optimal energy compaction

and independent properties, which are commonly used for data compression. For the

purpose of color object segmentation, the PCT could help to identify the most likely

component. The proposed algorithms can also apply to other color coordinates, for

example, YUV or YCrCb as well. Without losing the generality, we choose RGB

components to form the covariance matrix related to the selected color samples.

First, using mouse clicks on the desired object to choose a few desired color sam-

ples. The kth sample in the RGB color vector is given by

sk = [rk gk bk]
T
, (2.1)
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where rk,gk, and bk are red, green, and blue levels of the kth sample in each color

plane. In (2.1), the superscript T denotes the transpose of the argument vector. Given

M color samples, we can compute the covariance matrix, Rs as

Rs =
1

M

M

∑
k=1

sksT
k . (2.2)

Applying the eigen-decomposition procedure on the matrix Rs, we can obtain

three eigenvectors w1, w2, and w3. The eigenvectors are corresponding to the eigen-

values λ1, λ2, and λ3, which are arranged in the descending order as

λ1 ≥ λ2 ≥ λ3. (2.3)

The covariance matrix Rs can be expressed by

Rs =
3

∑
i=1

λiwiw
T
i . (2.4)

The first principal component w1 corresponding to the largest eigenvalue be-

comes the best representation of the desired data samples. If any unknown color

samples possess large projections along w1, we may treat those samples to have

a higher possibility with the same classification in color as the selected samples.

In order to obtain more satisfactory results, we should jointly consider w1, w2,

and w3 projections. We can divide the projected space into two kinds of sub-

spaces, i.e. signal subspace and noise subspaces. The signal subspace is formed

by the eigenvector w1 associated with the largest eigenvalue λ1 while the noise

subspaces are constructed by the eigenvectors w2 and w3 corresponding to λ2 and

λ3. It is noted that the eigenvectors, w1, w2, and w3 of any covariance matrix

are orthonormal vectors. Thus, the signal and noise subspaces are orthogonal with

each other.

For most PCT methods [14–16], that used the first principal component for color

object extraction, they would face the problem in determination of their thresholds

by statistical analyses of eigen-structures [17]. For semiautomatic color object seg-

mentation, the sampled pixels could be obtained from mouse clicks upon the desired

color objects. With the computed or prestored eigen-structures, the PCT method

can extract the features in some conditions [18–20]. In order to localize the desired

object in the image, the adaptive eigen-subspaces method will be used to extract

the interesting color object [21]. However, the detection performance of the PCT

method will be degraded if the color samples are not properly adopted. To achieve

satisfactory segmentation, we should further cooperate with iterative or fuzzy in-

ferences to improve the PCT method [22]. In order to extract meaningful objects

in different images, we can collect all desired colors to setup color subspaces for

initialization of the fuzzy clustering algorithms.
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2.2.2 Color Eigen-Subspaces

Assumed the desired objects exhibit an average color sensation, which previously is

expressed as (2.1). It is noted that the derivations can be applied to any other color

space. However, we develop the algorithm for the RGB color space only. In order to

divide the three-dimension color spaces into noise and signal subspaces, we further

assume that the desired objects contain no more than two large-displaced colors

in the average sense. In other words, the number of the desired colors is limited to

p = 1 or 2. As to the texture or the shadow effect of the desired objects, the variation

of colors in the desired objects are modeled as independent noises and expressed by

gk = sk + nk == [rk gk bk]
T +[nr,k ng,k nb,k]

T
, (2.5)

where nr,k, ng,k, and nb,k are the kth sampled color noises, which are assumed to be

statistically independent to the desired color vector sk and uncorrelated with each

other. The covariance matrix Rs of the sampled color vectors is defined as

Rg = E
[
gkgT

k

]
. (2.6)

Since the number of average color vectors, p is limited under two, i.e., p = 1

or 2, the noise free color covariance matrix can be expressed by p principal compo-

nents as

Rg =
p

∑
i=1

λiviv
T
i , (2.7)

where λi represents the ith eigenvalue of Rg and vi denotes its corresponding

eigenvector. The span of si, i = 1, . . . , p is equal to the span of vi, i = 1, . . . , p, which

is called the signal subspace.Due to the independent assumption of sample noises,

the covariance matrix of the sample noises can be modeled as

Rn = σ2
n I. (2.8)

The covariance matrix of sampled color vectors composed of both signal and

noise components can be expressed by

Rg = Rs + Rn =
p

∑
i=1

λiviv
T
i + σ2

n I =
p

∑
i=1

(λi + σ2
n )viv

T
i +

3

∑
i=p+1

σ2
n viv

T
i . (2.9)

It is noted that the random noises in the average sense do not change the direction

of original signal subspace but add the noise power (variation) σ2
n to the true eigen-

values of Rs. The remaining subspaces in the RGB color coordinate system, which

are called the noise subspaces, become the span of {vi, i = (p + 1), . . . ,3}. It is ob-

vious that the eigenvectors of a symmetrical matrix are orthogonal to each other.

Accordingly, the signal subspace and noise subspace will be orthogonal to each

other. For example, if we choose the skin as the desired objects by choosing p = 1,
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Fig. 2.1 The relationship of signal and noise subspaces

Fig. 2.2 Problems in the first

principal component with

larger projection (The solid

region (dark blue) and dot

region (blue) have the same

direction)
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the signal is the span of {v1} and the noise subspaces become the span of {v2,v3}.

Figure 2.1 shows the relationship of signal and noise subspaces for the skin objects.

In order to segment the desired object, the most frequent approaches perform the

so-called principal color segmentation [23–27]. First, we can obtain the sampled co-

variance matrix followed by an eigen-decomposition to obtain v1, the eigenvector,

which is corresponding to the largest eigenvalue. With the principal component vec-

tor at hand, we then project all the color vectors of image pixels to the principal

component vector v1. Finally, the object segmentation can be achieved by choosing

the pixels, which have the largest projections with a proper threshold. The threshold

method of the principal value technique is widely adopted for many optimization

applications. However, there are two problems that arise in use of the first principal

color component for color object segmentation. Figure 2.2 shows the fact that the

larger the projection, it implies the better match of color. From the viewpoint of



30 J.-F. Yang and S.-S. Hao

G

R

B

Principal

Component

Vector

Target 

Samples

Matched 

projection value 

≠ ≠ Better matched

Mixed

Color Object

Fig. 2.3 Problem in the first principal component with different hues

color perception, the strong intensity color should be totally different from the low

intensity color even if they share the same color space. To classify the dark-blue

cloth color, the light-blue sky color, however, will have larger projection. Figure 2.3

shows the case that the mixed colors could have the same color projection although

they have different hues. The pure yellow color (R+G) and the pure red color will

have totally the same projection if the pure red color object is selected. The highly

mixture color such as the high intensity white color, usually has larger projection.

Hence, we need exploit the complete eigen-structure to develop a color segmen-

tation algorithm to overcome those deficiencies in using the principal component

approaches.

2.2.3 Color Eigen-Subspaces Segmentation

For given sampled color vectors gk of the target objects, we can obtain the sampled

covariance matrix R̂g as (2.6). Through the eigen-analysis procedures, we can obtain

the eigenvectors v̂1, v̂2, and v̂3 corresponding to the eigenvalues, λ̂1, λ̂2, and λ̂3,

which are arranged in the descending order as

λ̂1 ≥ λ̂2 ≥ λ̂3. (2.10)

Since the covariance matrix R̂g can be expressed by

R̂g =
p

∑
i=1

(λ̂i + σ̂2
n )v̂iv̂

T
i + σ̂2

n

3

∑
i=p+1

v̂iv̂
T
i . (2.11)

The least eigenvalue of the sampled covariance matrix can be used as the

estimator of the noise power as

σ̂2
n ≈ λ̂3, (2.12)
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and the corresponding eigenvector is estimated by v3 ≈ v̂3. The estimated principal

eigenvalues are given by

λ1 ≈ λ̂1 − λ̂3, (2.13)

and

λ2 ≈ λ̂2 − λ̂3. (2.14)

While the estimated eigenvectors are v1 ≈ v̂1 and v2 ≈ v̂2. Before the devel-

opment of our segmentation algorithm, we should further analyze the statistical

properties of the above estimators such that the thresholds of the signal and noise

subspaces are reasonably designed.

2.2.3.1 Statistical Analysis of Eigen-Structures

The covariance matrix of the interested spatial samples is given by gk as in (2.5). The

covariance matrix Rg and its estimated matrix R̂g are respectively defined in (2.9)

and (2.11). Based on R̂g, we can obtain the estimated signal and noise subspaces.

To explore their expectations and deviations, we should first analyze the asymptotic

statistics for the eigenvalues and eigenvectors of the sampled covariance R̂g under

the Gaussian process assumption [28]. Based on the perturbation formulation, the

first- and second-order moments of λ̂i and v̂i can be obtained [20, 29]. The eigen-

vectors of the signal subspace v̂i and its associated eigenvalues λ̂i are asymptotically

normal with noise subspaces v̂ j and λ̂ j, for i, j = 1,2,3, i �= j. According to [20], the

expectation value of v̂i and the covariance of λ̂i can be expressed by (2.15) and

(2.16) as follows:

E[v̂i] ≈ vi −
1

2

3

∑
j=1, j �=i

λiλ j

(λ j −λi)2N
vi, (2.15)

cov(λ̂i, λ̂ j) ≈
δi, jλ 2

i

N
, (2.16)

where N is the number of sampled pixels and δi, j is the Kronecter delta. The esti-

mated values of v̂i and λ̂i can be expressed by

λ̂i = λi + ξi, (2.17)

and

v̂i = vi + si, (2.18)

where the error terms, si and ξi have the following asymptotic properties [20]:

σ2
λiλ j

= E[ξiξ j] ≈
λ 2

i

N
δi, j, (2.19)



32 J.-F. Yang and S.-S. Hao

E[si]≈− λi

2N

3

∑
k=1,k �=i

λk

(λi −λk)2
vi. (2.20)

The noise term ξ i in (2.17), which has been obtained from (2.19) will be used to

set the threshold values on three transformed color spaces in the following section.

2.2.3.2 Object Segmentation Algorithm Based on Color Eigen-Structures

In order to classify the input color vector into the signal and the noise subspace, we

can project the color vector on the eigenvectors of the sample covariance matrix as

yi,k = vT
i ·gk, for i = 1,2,3. (2.21)

Now, we should statistically analyze the projection length of yi,k by taking ex-

pectation of the power as

E[yi,kyT
i,k] = E

[
vT

i gkgT
k vi

]
= vT

i R̂gvi = λ̂i. (2.22)

Thus, the average length of the eigenvector projection should become

|yi,k| =
∣∣vT

i ·gk

∣∣ =

√
λ̂i, for i = 1,2,3. (2.23)

For the principal component approach, we can simply detect the color pixel by

choosing

|y1,k| =
∣∣vT

1 ·gk

∣∣ ≥
√

λ̂1. (2.24)

This is the so-called signal subspace projection. Any pixel color vector, which

has large enough projection onto the direction of the principal color vector, will be

treated as the object pixel for color segmentation. As Fig. 2.2 shown, the brighter

color generally has larger projection. As shown in Fig. 2.3, the mixed color could

have the same projection as the target color space. The approach of principal com-

ponent usually preserves the desired color object, however, erroneously includes

brighter color and mixed color pixels.

From the statistics analysis obtained in Sect. 2.2.3.1, we should classify the color

space by using both signal and noise subspaces by determining the threshold values

in the transformed color spaces. First, we should detect the signal space component

more precisely. In order to include 97.5% confidence interval of the principal pro-

jection, we propose the signal-subspace detection criterion by modifying (2.24) as

√
λ̂1 + k1sσλ1

≥ |y1,k| ≥
√

λ̂1 − k1sσλ1
, (2.25)

where k1s is a constant that equals to 3. The deviation σλ1
of the first principal

eigenvalue is given by

σ2
λ1

= E[ξ1ξ1] ≈
λ 2

1

N
. (2.26)
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We relax the lower bound by three deviations to include the possible shadow

colors and add the upper bound with three deviations to exclude the unwanted

brighter colors. Thus, we can eliminate the incorrect luminance pixels as possible.

The pixels, which meet the signal subspace criterion stated in (2.25), could be very

possible mixed color pixels.

In order to further exclude the mixed color pixels, we should use the noise space

criterion to remove the pixel color pixels from the signal subspace pixels, which

satisfy the criterion stated in (2.25). The noise subspace criterion can be discussed

in two cases: p = 1 and p = 2. For p = 1, the noise subspace now becomes the span

of {v1,v2}. We should perform the noise subspace criterion as

|yi,k| = |vT
i ·gk| >

√
λ̂i + kinσλi

, for i = 2,3, (2.27)

to remove the unwanted pixels, where kin is a constant to specify the confidence

interval of the noise. We know that the pixels, whose projections to the noise sub-

space should be as small as

√
λ̂i for i = 2,3, are matched with the desired color

modal. For any other pixels with mixed colors, their color vectors project onto the

noise subspace will be larger than

√
λ̂i for i = 2,3. Similarly, we can keep the desired

pixels once we find their projections to the noise subspace are beyond the limits of

kin ·
√

λ̂i ± k2n ·σλi
for i = 2,3. For p = 1, we perform the detection of

k1n ·
√

λ̂i + k2n ·σλ2
≥ |y2,k| =

∣∣vT
2 ·gk

∣∣ ≥ k1n ·
√

λ̂i − k2n ·σλ2
(2.28)

and

k1n ·
√

λ̂i + k2n ·σλ3
≥ |y3,k| =

∣∣vT
3 ·gk

∣∣ ≥ k1n ·
√

λ̂i − k2n ·σλ3
(2.29)

to remove the unwanted pixels. We set the constants k1n = 3 and k2n = 3 in our

experiment to achieve the best results. In (2.28) and (2.29), σλ2
and σλ3

denote the

deviation of the second and third eigenvalues respectively given by

σ2
λ2

= E[ξ2ξ2] ≈
λ 2

2

N
, (2.30)

and

σ2
λ3

= E[ξ3ξ3] ≈
λ 2

3

N
. (2.31)

In summary, we utilize the complete projections of both signal and noise sub-

spaces to detect the desired color pixels. The signal-subspace projection helps

to classify the desired pixels while the noise-subspace projection provides the

information to eliminate the unmatched pixels. Theoretically, the noise plane re-

lated to the smallest eigenvalue can highlight the most wanted object after removing
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Fig. 2.4 Simulation function block diagram of video object segmentation

noise. After join considering with signal space, the smallest eigenspace is too

sensitive to extract the objects that contains too many shadows. These shadows

usually are with a similar hue as the desired samples that we should take them

as parts of the objects. In order to correct representing the segmented objects, we

can take the advantage that the extracted color from the second large noise plane

is not so accurate as the smallest one. By inspecting the second noise space re-

lated to the second large eigenvalue, we find out that this plane can well describe

the silhouette of video object. Hence, the proposed color segmentation using com-

plete eigen-structure should result effective and efficient detection performances in

detecting the desired color objects. Figure 2.4 shows the procedures of applying

the proposed color eigen-structure segmentation method on some known or instant

samples of the desired color object such as skin, hair, or clothes.

2.2.4 Simulation Results

In order to verify the effectiveness of the proposed algorithms, we adopt four stan-

dard sequences, Mosaic, Ball, Akiyo, and News, which are shown in Fig. 2.5 in

simulations. For each image, we mark with a triangular sign on it to indicate the

desired color object we want to extract. Because we have not introduced any spa-

tial and temporal information, all the other similarly colored objects with the same

color sensation will also appear in the segmentation results. To clearly exhibit the

desired color in the segmented images, we only show the desired color and unde-

sired color objects by bright pixels with gray level = 255 and dark pixels with gray

level = 0, respectively. First, we only apply the PCT algorithm to extract the de-

sired color objects. From the signal and noise subspaces, the segmented objects are

varied diversely by different threshold setting. By using the threshold determination
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Fig. 2.5 Test sequences: (a)

Mosaic; (b) Ball; (c) Akiyo;

(d) News (The desired color

objects are marked with

triangles)

Fig. 2.6 Segmented images

obtained by the PCT method

using threshold and logical

operation: (a) Mosaic;

(b) Ball; (c) Akiyo; (d) News

sequence

suggested in [17] and applying some logical operations, we can obtain four seg-

mented images as shown in Fig. 2.6. Although the main parts of the desired object

are extracted, noise cannot be easily de-correlated from signal.

The test sequences are shown in Fig. 2.5 embedded with different characteristics.

The scenes of these four sequences are quite different. Akiyo sequence has a blue

static TV screen on her background and with some background color similar to

Akiyo’s face. Carphone sequence has large head movement and fast scene changes

outside the car window. Due to fast head movement, the lightness changes occur

on his face very quickly. This lightness effect is usually hard to overcome by other
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Fig. 2.7 Simulation results of four test sequences: (a) Akiyo; (b) Carphone; (c) News; (d) Mother-

and-daughter sequences (up: original images; down: extracted skin color objects)

segmentation methods. The News sequence has two newscasters that occupy two

small regions in the scene. In this sequence, the background is more complex with

one static blue screen and a large scene-changing TV screen. Actually, the face skin

regions are very small in this sequence. The MD sequence has serious shadow effect

on mother’s clothes and daughter’s head.

While simulation, we extract the desired samples only from the first frame of the

sequences to obtain the covariance matrix. The skin color extraction results of the

first frame from four test sequences are shown in Fig. 2.7. The images on left column

show the original images while the right column exhibits the extracted skin color

regions. Simulation results show that those skin regions are successfully extracted

by using our algorithm.

Inspecting Fig. 2.7, our algorithm can also identify even the small regions such

as eyes and mouth, which are with a different color sensation from the skin. In

Fig. 2.7b, we also extract the car’s roof because it has similar color as the man’s

face. Applying the temporal redundancy, of course, we can remove the car’s roof

by using some motion information. In Fig. 2.7d, the extraction results of Mother’s

and daughter’s faces are influenced by the shadows but the main parts of skin are

revealed. Figure 2.8 shows the extraction results of clothes and hair objects. Inspect-

ing Fig. 2.8a,b, we can extract the Akiyo’s clothes and hair separately according to

different sample color. We can also extract the clothes of News and MD as shown

in Fig. 2.8c,d. In order to verify the robustness of our algorithm, we take different

frames in Akiyo’s sequence with the same transformation matrix obtained from the

first frame. From Fig. 2.9, we find that our algorithm can mostly extract the skin

regions, in which her different expressions can be also observed.

Generally speaking, it is almost unnecessary to perform any post processing

method in our algorithm. Inspecting the simulation results, even the small features

such as eyes and mouth can be also indicated. If needed, we can also utilize the

temporal information to remove the unwanted static scenes. The signal and noise

subspaces’ thresholds can be defined according to (2.25), (2.28), and (2.29). In
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Fig. 2.8 Extracted results of clothes and hair in (a) Akiyo (clothe); (b) Akiyo (hair); (c) News

(clothe); (d) Mother-and-Daughter (clothe)

Fig. 2.9 Extracted results

with same threshold k1n = 2,

k2n = 3, k1s = 3 in different

frames: (a) frame 10;

(b) frame 30; (c) frame 50;

(d) frame 70

order to verify the detection criterion, we need to explore the different deviations,

which will significantly influence the formation of signal subspace applying k1n = 2,

k2n = 3, k1s = 3 and k1n = 1, k2n = 3, k1s = 3 as described in (2.25), (2.28), and

(2.29) to the Akiyo sequence. Figure 2.10b shows that k1n = 2 with ± 3σλ2
devia-

tion achieve better segmentation than that with k1n = 1 with ± 3σλ2
as in Fig. 2.10a,

where the signal deviation is ± 3σλ1
in both cases.
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Fig. 2.10 Extracted results

by different thresholds with

(a) k1n = 1, k2n = 3, k1s = 3;

(b) k1n = 2, k2n = 3, k1s = 3

2.3 Color Object Segmentation Using Adaptive

Eigen-Subspaces

In the previous section, we have shown that the eigen-subspace is an effective

method for separating the signal and noise components. While segmenting the color

video objects, several difficulties could be met. If the object is even originally with

the same color, it could show distinct properties under different lightening condi-

tions such as shade. In order to solve such problem, an adaptive eigen-subspace seg-

mentation (AESS) algorithm is proposed [21]. The proposed method can estimate

and adaptively adjust the eigenvectors under segmentation procedure. Although the

object color is changed with different shade, it is still successfully extracted by using

this algorithm. Accompaning with the proposed AESS algorithm, three searching al-

gorithms are used to effectively and efficiently locate the possible pixel. Both AESS

and the proposed searching algorithms will be discussed in the following sections.

2.3.1 Adaptive Eigenvector Estimation

The eigen-subspace transformation that we have stated in the previous section was

applying the same eigenvectors through the simulation. Sometimes, the eigenvectors

need to be adaptively adjusted according to different simulation conditions. It is

difficult to segment the color object with different shade by just using the same

eigenvectors. We introduce a method that can adaptively adjust the eigenvectors in

simulation. As stated in (2.1), we can choose an initial RGB color pixel to form a

vector sk. Then, the related covariance matrix Rs can be obtained using (2.2). With

covariance matrix, Rs, we can get the initial eigenvectors w0 of the selected color

pixel. Also, we can transform the initial RGB color pixels s0 to eigen-space using

eigenvectors w0 as following:

y0 = wT
0 · s0. (2.32)

The term y0 is projected vectors of the initial color sample, which forms both

the signal space and noise spaces. We can iteratively update the next eigenvectors

with y0. The AESS method is illustrated by the following equations as:

w′
k = wk ±2µskyT

k . (2.33)
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where

wk+1 =
w′

k

‖wk‖
. (2.34)

and

yk+1 = wT
k+1sk+1, k = 0, . . . ,N. (2.35)

The term w′
k is the eigenvector with deviation 2µskyT

k belongs to previous pixel

and wk+1 is the updated eigenvector of the current pixel. The vector sk consists of

the gray values of red, green, and blue component of the current pixel. The value

of the converging parameter µ is small that approximates to 10−6. The plus sign in

(2.33) will conduct the equation to reach a maximum value that represents the signal

subspace. The minus sign in (2.33) will find the noise subspace that is converged to

a minimum value. For iterative computation of the covariance matrix, Rs, it can be

updated as

Rs(k + 1) = (1−α)Rs(k)+ αsk+1sT
k+1, (2.36)

where Rs(k) represents the kth covariance matrix of the kth sample color pixel and

Rs(k + 1) represents the (k + 1)th covariance matrix of the (k + 1)th sample color

pixel. We can apply following equation to update the eigenvalues without computing

the covariance every time.

λk+1 = (1−α)λk + α|yk+1|2, (2.37)

where λk represents the kth eigenvalue and λk+1 represents the (k+1)th eigenvalue.

We can find the mean value of the estimated eigenvectors from (2.33). The estimated

mean eigenvectors can be represented as follows:

E[w′
k] = E[I± µRs(k)]E[wk], (2.38)

where I is the identity matrix. Inspecting (2.38), we find out that normalized eigen-

vector w′
k of previous pixel will approximately equal to eigenvector wk of the current

pixel. According to this property, we can select µ to adaptively adjust and estimate

the eigenvectors of the successive pixels according to (2.33). Using plus and minus

sign in (2.38), wk will converge to signal plane and noise planes respectively.

2.3.2 Search Algorithms for Desired Color Object

The AESS algorithm is applied to the desired region with first selecting an initial

pixel. We take the sampled pixel as the starting point of our searching algorithms.

From this starting point, the eigenvectors will be adaptively updated according to

different searching routes. Finally, the desired color object will be segmented. The

quality of the segmented result is heavily influenced by the shading condition, be-

cause the eigenvectors are very sensitive to the color shade. In order to overcome this
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shading effect, we proposed three searching algorithms to solve the problems. Using

this method, we hope that the segmented result will not be influenced by the back-

ground with similar color. With adaptively updating eigen-subspaces according to

the search routes, the proposed method can obtain a distinct object. The three search

algorithms will be described as follows. The square spiral search (SSS) algorithm is

shown in Fig. 2.11. The four quadrant search (FQS) algorithm is shown in Fig. 2.12.

The slant horizontal vertical search (SHVS) algorithm is shown in Fig. 2.13. The

Fig. 2.11 SSS search

algorithm

Fig. 2.12 FQS search

algorithm
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Fig. 2.13 SHVS search

algorithm

advantage of the SSS method is suitable to segment the interior part of the object

because its color is changing smoothly. But, the SSS method is not good at seg-

menting the exterior part of the object because the boundaries with different color

will be a major problem. The FQS method is searching separately in four quadrants

where each area is independent. The advantage of the FQS method is that different

color area will not influence each other. The disadvantage of the FQS method is that

small area in certain quadrant will be difficult to extract. The main reason is that the

eigenvectors are updating too fast and is hard to segment the abrupt color-changing

area. The SHVS method takes both advantages from the SSS and the FQS methods

that is most suitable to our simulation.

2.3.3 Block Diagram of Adaptive Eigen-Subspace

Segmentation Method

Figure 2.14 shows the block diagram of the proposed AESS method. First, we will

sample the chosen pixel and the surrounding eight pixels to obtain the initial eigen-

vectors as in Fig. 2.15. Then, new eigenspaces, related to the pixel obtained by the

searching algorithms as in Figs. 2.11, 2.12, and 2.13 will be formed. Then, we apply

the eigen-subspace transformation of the color planes to form the signal and noise

planes as shown in Fig. 2.16. Finally, we can use (2.39) to differentiate between the

desired and unwanted color pixel. If the pixel is justified as a desired color pixel then

the AESS method will be applied otherwise the algorithm will search next pixel and

take the eigenvectors of current pixel as reference. We devise an equation to separate
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Fig. 2.14 Adaptive eigen-subspace segmentation (AESS) algorithm

Object
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Sampling Point
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Fig. 2.15 Adaptive eigen-subspace segmentation (AESS) algorithm
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Fig. 2.16 Color space transform to eigenspace

the desired and unwanted pixels that is described as follows:

∣∣∣∣∣
SAα

1

NA
β
1 ·SA

γ
2

− SBα
1

NB
β
1 ·NB

γ
1

∣∣∣∣∣ < Π , (2.39)

where

SAα
1 = sk ·wk−1,s

NA
β
1 = sk ·wk−1,n1

NA
γ
2 = sk ·wk−1,n2

SBα
1 = sk−1 ·wk−2,s

NB
β
1 = sk−1 ·wk−2,n1

NB
γ
2 = sk−1 ·wk−2,n2.

In (2.39), the first term represents the current pixel and the second term repre-

sents the previous pixel. The index k represents the current searching location and

k − 1 represents the previous location. The term sk and sk−1represent the current

and previous RGB color pixel. The term wk−1,s, wk−1,n1, and wk−1,n2 represent the

eigenvectors of the (k − 1)th vectors in signal and two noise planes. The terms,

wk−2,s, wk−2,n1, and wk−2,n2 represent the eigenvectors of the (k− 2)th vectors in

signal and two noise planes. The term of SA1 and SB1 represent the RGB pixels

projected on the signal plane, whereas, NA1, NA2, NB1, and NB2 are the RGB pixels

projected on the noise plane. We find out that is appropriate to take α = 2, β = 1,
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and γ = 1 in simulation. If the difference value of the projection exceeds the thresh-

old Π , then the searching point is set to gray level = 255 otherwise set to 0. Finally,

simulation will be terminated if the pixel number of gray = 0 has exceeded certain

threshold number Nc.

2.3.4 Simulation Results

Figure 2.17a,b show the result of SSS and FQS algorithm, separately. The sim-

ulation sequence Mitq, Clair, Bream, and Students are shown in Fig. 2.18a. The

desired color objects that are to be segmented are shown as arrow marks. Applying

the SHVS algorithm on the four sequences, the segmented results are shown from

Fig. 2.18b. Comparing the Mitq segmentation results in Figs. 2.18 and 2.17, it can

be shown that the SHVS algorithm is better than the other two search algorithms.

Figure 2.19 shows the segmentation results of Bream sequence with two different

parameters according to (2.39): (a) α = 2, β = 1, and γ = 1 and (b) α = 2, β = 1,

and γ = 0.

Fig. 2.17 (a) SSS (b) FQS Segmentation Results of Mitq sequence

Fig. 2.18 (a) Original sequences (Desired color objects are marked with arrows) (b) Segmentation

results by SHVS Methods
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Fig. 2.19 Segmentation

results with parameters of

Bream sequence by AESS

method: (a) α = 2, β = 1,

γ = 1; (b) α = 2, β = 1, γ = 0

2.4 Color Object Segmentation Using Fuzzy C-Means

(FCM) with Eigen-Subspace Projection

In this section, two eigen-based FCM methods by combing both PCT and FCM con-

cepts together to achieve effective color segmentation were proposed. In Sect. 2.4.1,

conventional FCM algorithms are briefly reviewed. In Sect. 2.4.2, the separated

eigen-based FCM (SEFCM) algorithm with the FCM clustering mechanism is

separately applied to projections of signal and noise subspaces. Then, a coupled

eigen-based FCM (CEFCM) method by introducing an eigen-based membership

function embedded in the FCM cluster process is introduced. In Sect. 2.4.3, the sim-

ulation results show to verify the proposed methods for any desired color objects

segmentation.

2.4.1 Fuzzy C-Means (FCM)

The fuzzy C-means (FCM) algorithm [30–32] is an iterative unsupervised clustering

algorithm that robustly adjusts representative centers of each pattern to best parti-

tion the data into several distinct classes. The clustering process is accomplished by

minimizing an objective function, which is defined by some measure similarity of

the data samples. The objective function can be expressed as follows [30, 31]:

Jm(U,V;X) =
N

∑
q=1

c

∑
j=1

um
jq ·dist2(xq,v j), (2.40)

where N is the number of the data, c is the number of clusters, and scalar m is

the arbitrary chosen FCM weighting exponent, which must be greater than one.

In (2.40), X = {x1,x2, . . . ,xN} denotes a set of unlabeled column vectors and

V = {v1,v2, . . . ,vc} represents the unknown prototypes, which are known as the

cluster centers. The vectors xq and v j are both k-dimensional real Euclidean space

ℜk. Hence, the similarity measurement dist(xq,v j) can be specified as either the

Euclidean distance or the Mahalanobis distance. The fuzzy C-partition matrix U is

with size of c×N that its element can be defined as u j,q ∈ Mfcm as,



46 J.-F. Yang and S.-S. Hao

Mfcm ≡

{
U = (ujq)|0 ≤ ujq ≤ 1, for all j,q;

c

∑
j=1

ujq = 1, for all q;0 <

N

∑
q=1

ujq < N, for all j

}
.

If dist(xq,v j) is specified as the Euclidean distance then it can be expressed as

dist(xq,v j) =

[
k

∑
α=1

(xqα − v jα)

] 1
2

. (2.41)

where xqα and v jα are the elements in the vector of xq and v j. If the distance

dist(xq,v j) is an inner product norm that is called Mahalanobis distance, then, it

is expressed as

dist2(xq,v j) = ‖xq −v j‖T A j‖xq −v j‖ = QT
j A jQ j. (2.42)

In (2.42), A j is a k×k positive defined matrix derived from the jth cluster. When

A j = I, (2.42) is equal to the Euclidean norm as specified in (2.41). For m > 1 and

xq �= v j, the objective function Jm(U,V;X) may lead to a minimum if the following

equations hold:

ujq =
(distjq)

−2
m−1

∑c
i=1(distiq)

−2
m−1

∀ j,q. (2.43)

and

vi =
∑N

q=1(ujq)
mxq

∑N
q=1(ujq)m

∀ i. (2.44)

The similarity measure terms distjq and distiq specified in (2.43) can be defined as

either (2.41) or (2.42)with respective cluster center vi or v j. Unlike traditional clas-

sification algorithms, the FCM algorithm assigns all object patterns to each cluster

in fuzzy fashions. Each pattern associated with a belonging specified by member-

ship grades between 0 and 1. The fuzzy membership value describes how close

or accurate a sample resembles an ideal element of a population. The imprecision

caused by vagueness or ambiguity is characterized by the membership value. In-

clusive of the concept of fuzziness, the FCM algorithm computes each class center

more precisely and with higher robustness to the noise. The procedures of the FCM

algorithm [30, 31] are enlisted as follows:

1. Initialization: Fix the number of cluster c and feature coefficient m, set iteration

loop index t = 0, and select initial cluster centers.

We are randomly select c initial cluster centers from the space as v
(0)
j , for

j = 1,2, . . . ,c. Initialized U(0).

2. Sampling: Choose total N data samples xq for q = 1,2, . . . ,N from the image. It

is performed by clicking the mouse on the image.
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3. Calculating the fuzzy cluster centers: Compute all cluster centers {v(t)} using

U(t−1) with the equation specified in (2.9).

4. Update membership function U(t): Update U(t) using v(t) with the equation spec-

ified in (2.8).

5. Check convergence condition: Check the previous defined convergence behavior

as △ by computing

△ =
∣∣∣v(t) −v(t−1)

∣∣∣ . (2.45)

6. If △ < ε or a preset loop count Nt is reached then terminate; otherwise set t =
t + 1 and go to Step 3, where ε is the preset terminating criterion.

In (2.45), the superscript t denotes the number of iterations. If the changes of the

class centers are less than a predefined criterion ε that means the objective function

Jm(U,V;X) is no longer decreasing. The final segmentation result is achieved.

To improve orientation sensitivity (OS), Schmid in [33] suggested a modified

FCM algorithm (OSFCM) by modifying A j described in (2.42) as:

A j = VT
j L jV j, (2.46)

where L j denotes the diagonal matrix containing the inverse of eigenvalues and V j

represents the unitary matrix lining up the corresponding eigenvectors of the fuzzy

covariance matrix Cx
j for the jth cluster. The fuzzy covariance matrix for the jth

cluster Cx
j is given by

Cx
j =

1

N

N

∑
q=1

um
jq

(
xqxT

q −v jv
T
j

)
. (2.47)

From simple matrix derivations, it is obvious that A j = (Cx
j)
−1.

2.4.2 Eigen-Based FCM Algorithms

In this section, we combine the FCM classification with eigen-subspaces projec-

tion together to achieve effective color segmentation. By using eigenvectors, we can

transform the original color space into the modal coordinate system of the desired

color as

zq = [wq w2 w3]
T xq = [φq ϕq ψq]. (2.48)

Now, the first-principal elements, φq for q = 1,2, . . . ,N specify the signal subspace

whereas the second and the third elements ϕq and ψq and build the noise subspaces.

The vector xq is defined as in (2.40). With signal and noise subspaces, we de-

velop two eigen-based FCM detection procedures, the separate eigen-based FCM

(SEFCM) and the coupled eigen-based FCM (CEFCM) methods. The main proce-

dures of eigen-based FCM are shown in Fig. 2.20. First, we compute the covariance

matrix Rs of the desired color samples from the RGB color planes followed by
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Fig. 2.20 The proposed eigen-based FCM algorithms

the eigen-analysis procedures to obtain the eigenvectors. Then, we perform the

eigen-subspace transformation of image color planes with (2.48). Finally, the it-

erative segmentation process with updated membership functions will be applied

on the eigen-subspaces. Although the eigenvectors are generated by the selected

color samples, we still need to adjust the eigen-subspaces to achieve more satis-

factory segmentation results. We are iterative in adjusting the eigen-subspaces with

new eigenvectors obtained from new covariance matrix. The detail algorithms of

SEFCM and CEFCM will be addressed in Sects. 2.4.2.1 and 2.4.2.2.

2.4.2.1 Separate Eigen-Based FCM (SEFCM) Method

In this section, we have proposed the SEFCM algorithm to separately consider the

signal and noise planes. During simulation, we iteratively construct new covariance

matrices that are similar to (2.47) by using the eigen-subspace data zq instead of xq

in color image. The expression of the covariance matrix can be stated as follows:

Cz
j =

1

N

N

∑
q=1

um
jqzqzT

q . (2.49)

The color objects will be extracted after the objective function reaches a mini-

mum. With the help of the eigenvalues, we can obtain the represented segmented

color objects with respective to the signal and noise subspaces. Following, with a

simple logical “AND” operation on both results, we can obtain the segmentation of
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the desired video objects correctly. In the SEFCM, we modify the matrix L j as in

(2.46) that is suitable to extract the signal and noise subspaces. For extracting the

signal space, we can rewrite L j as follows:

Γj =

⎛

⎜⎜⎜⎝

(
λ2, j+λ3, j

2

)−1

0 0

0 λ−1
1, j 0

0 0 λ−1
1, j

⎞

⎟⎟⎟⎠
. (2.50)

Similarly, we can extract the noise planes by using the following matrix:

Γj =

⎛

⎜⎜⎜⎝

λ−1
1, j 0 0

0
(

λ2, j+λ3, j

2

)−1

0

0 0
(

λ2, j+λ3, j

2

)−1

⎞

⎟⎟⎟⎠
. (2.51)

We adopt (2.50) to extract the signal plane by using λ−1
1, j to suppress the noise terms.

In (2.51), we use λ−1
1, j to suppress the signal terms in order to obtain two noise

planes. We can modify the membership function of (2.43) as follows:

ujq =

[
(zq −v j)

T A j(zq −v j)
] −2

m−1

∑c
β=1

[
(zq −vβ )T Aβ (zq −vβ )

] −2
m−1

, (2.52)

where A j = VT
j ΓjV j and Aβ = VT

β Γβ Vβ related to class j and β , respectively. For

class β , the index j appeared in (2.50) and (2.51) should changed to β . The detailed

procedures of the SEFCM are shown in Fig. 2.19 and illustrates as follows:

1. Sample few desired color object blocks.

2. Compute the covariance matrix and obtain the eigenvectors according to (2.2).

3. Transform the color images to signal and noise subspaces with eigenvectors

as (2.48).

4. Initialize the modified membership value and center of each cluster. With iter-

ative updating of the covariance matrices using (2.49), apply FCM to extract

the segmentation results related to signal and noise planes separately. Either

segmenting on signal or noise planes, we apply (2.50) or (2.51) to the new mem-

bership function (2.52) during the FCM classification procedures.

5. Perform logical operation on the results obtained from Step 4.

2.4.2.2 Coupled Eigen-Based FCM (CEFCM) Method

In order to efficiently segment the desired color objects, we devise a coupled eigen-

based FCM (CEFCM) algorithm (Fig. 2.21). In considering signal and noise planes
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Fig. 2.21 Signal flow diagram of proposed SEFCM algorithm

Fig. 2.22 Signal flow diagram of proposed CEFCM algorithm

together, the CEFCM adopts three dimensional eigen-subspaces data for classifica-

tion. The function block diagram of the CEFCM is shown in Fig. 2.22. Similar to

SEFCM, we also construct new covariance matrices that are similar to (2.47) by

using the eigen-subspace data zq in stead of xq in color images. In view of statistical

inference and fuzzy property, we can construct a new covariance matrix for the jth

cluster center as

Ĉz
j =

1

∑N
q=1 um

jq

N

∑
q=1

um
jqzqzT

q . (2.53)

It is not necessary to iteratively rebuild the covariance matrix and construct the

new eigen-subspaces from the original color images because the color objects are

selected under our inspection. We can gradually adjust the direction of principal axes

by using the already built eigen-subspaces so that large amount of transformation

computations can be saved. In updating procedures, we adopt the new covariance
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matrix as described in (2.53), where the belongings are treated as the weightings

of zqzT
q that is formed by the data in the eigen-subspaces. From covariance matrix

Ĉz
j, we can obtain class j’s eigenvector w j,i and the corresponding eigenvalue λ j,i,

where index i denotes the ith component because we order the eigenvalues as

λ j,1 ≥ λ j,2 ≥ λ j,3. (2.54)

Then, the jth cluster center of signal term in the CEFCM can be expressed by

the principal component

v j1 =
√

λ j,1w j,1. (2.55)

The second and the third components are treated as the noise terms. The similar-

ity measure related to the jth cluster center expressed as Euclidean distance between

zq and v j,1 now becomes the orthogonal projection to the noise eigenvectors. The

smaller of ‖zq − v j,1‖ means that zq and v j,1 are closer to each other. Based on

eigen properties, the smaller projection to both w j,2 and w j,3 with respect to
√

λ j,2

and
√

λ j,3 indicates that zq and v j,1 are closer. The measure of ‖zq −v j,1‖ related to

w j,2 and w j,3 is equivalent to the projection of zq to the normalized noise eigenvec-

tors, which can be expressed as 1√
λ j,2

w j,2 and 1√
λ j,3

w j,3, so that the membership of

the qth sample can be modified as follows:

ujq =

(
1

λ j,2
‖zT

q w j,2‖2 + 1
λ j,3

‖zT
q w j,3‖2 + 1

λ j,1

(
‖zT

q w j,1‖2 −λ j,1

)) −2
m−1

∑c
β=1

(
1

λβ ,2
‖zT

q wβ ,2‖2 + 1
λβ ,3

‖zT
q wβ ,3‖2 + 1

λβ ,1

(
‖zT

q wβ ,1‖2 −λβ ,1

)) −2
m−1

.

(2.56)

The success of extracting video objects depends on the proportion of three eigen-

values. Inspecting (2.56), we have adjusted the iterating processes near the cluster

center in the signal subspace according to its eigenvalue to eliminate too bright or

too dark circumstances. In our experiments, we take fuzzy weighting m = 3, the

class number equals to 6 and feature number equals to 3. Observing the simulation

results, we can obtain more satisfactory ones by just considering the principal plane

and the strongest noise plane. In this case, we set λ j,1 = λ j,3 = 1, λβ ,1 = λβ ,3 = 1,

and λ j,2 → ∞; λβ ,2 → ∞ with c = 2 in (2.56).

After obtaining the segmentation results, almost all the desired color pixels

can be found. The few remaining noise pixels can be easily removed by any

post-processing procedure. The detailed procedures for the CEFCM are listed as

follows:

1. As Step 1 in Sect. 2.4.2.1.

2. As Step 2 in Sect. 2.4.2.1.

3. As Step 3 in Sect. 2.4.2.1.

4. Initialize the membership function and cluster centers. Later, we jointly consider

three eigen-subspaces and iteratively update the covariance matrix with (2.53).
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With newly found eigenvectors and eigenvalues, we apply (2.55) and (2.56) to

perform the FCM classification processes.

5. (Optional). Post-processing procedure is optional for smoothing the results from

Step 4. In our experiments, we do not intent to use any post-processing proce-

dures in order to show the inherent classified capability of this algorithm.

2.4.3 Simulation Results

We directly apply the conventional FCM to these four sequences in the RGB

color planes. The simulation results are shown in Fig. 2.23. Without any threshold

determination, the desired objects obtained by the traditional FCM are better than

those obtained by the PCT method. However, the segmented results still contain

many unwanted noises.

Without any other assistance, Fig. 2.24 shows the simulation results by apply-

ing conventional FCM to the transformed planes, which are performed by the KL

projections. Compared to Fig. 2.23, some improvements are achieved. The KL pro-

jections obtained from the desired color samples can translate the image data to the

desired working space in more compaction form. It is reasonable to apply the seg-

mentation efforts on the eigen-subspaces. Theoretically, results of Figs. 2.6 and 2.24

should be identical because of the linear transformation between color-space and

eigenspace. The difference of the results shown in these two figures may be due to

initial data distribution and class centers.

For comparison, we also apply OSFCM algorithm [33] to the eigen-subspaces.

Figure 2.25 shows the segmented images obtained from the OSFCM method.

Although all the main objects can be detected, the objects with near color are also

Fig. 2.23 Segmented images

obtained by the conventional

FCM directly applying on

R,G,B planes: (a) Mosaic;

(b) Ball; (c) Akiyo; (d) News

sequences
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Fig. 2.24 Segmented images

obtained by the conventional

FCM applying on the KL

transformed color spaces:

(a) Mosaic; (b) Ball;

(c) Akiyo; (d) News

sequences

Fig. 2.25 Segmented images

obtained by the OSFCM

method: (a) Mosaic; (b) Ball

(c) Akiyo; (d) News

sequences

extracted. Similar to the PCT approach, the OSFCM method does not separately

use the noise-subspace. The color objects with high signal-subspace projects will be

erroneously included in the similar color pixels.

Figure 2.26 shows the results obtained by the SEFCM. We can find out that

most of the noise has been removed compared to the previous obtained results. The

major defeat of the SEFCM method appears on the clothes of Akiyo since both

signal and noise subspace projections do not perform simultaneously. In order to im-

prove the performance, the CEFCM algorithm adopts the signal and noise subspace
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Fig. 2.26 Segmented images

obtained by the SEFCM

method: (a) Mosaic; (b) Ball

(c) Akiyo; (d) News

sequences

Fig. 2.27 Segmented images

obtained by the CEFCM

method: (a) Mosaic; (b) Ball;

(c) Akiyo; (d) News

sequences

projections together. Figure 2.27 shows the segmented images obtained from the

CEFCM method. It is obvious that the CEFCM method outperforms the other color

object segmentation algorithms.

2.5 Conclusions

Video object segmentation has been recognized as a main technology to achieve

the content-based coding proposed in the MPEG-4 standard. In this chapter, we

proposed color eigenspace segmentation methods to extract the desired objects.
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After theoretical analyses, the color eigen-structure segmentation algorithm uses

both signal and noise subspaces effectively. Without any pre-processing process, we

can precisely detect the desired color and preserve small significant features. If the

segmented results still contain some undesirable pixels, of course, we can easily

remove them once we further introduce temporal or motion information. The pro-

posed color segmentation algorithm performs successfully for single color objects.

When the desired object is with more than two colors, for example color texture or

color pattern, we should apply our algorithm several times accordingly. The final

video object planes will be the union of all the segmented results.

In Sect. 2.3, adaptive eigen-subspace segmentation (AESS) algorithm to locally

extract the desired objects has proposed. Three search methods are used in the AESS

algorithm which is SSS, FQS, and SHVS. Using this algorithm, we can extract the

desired color objects even if the background has the same color as the object. The

simulation results show that the AESS algorithm can achieve better segmentation

results. It has a localized segmentation capability.

In Sect. 2.4, we use the conventional FCM combined with the eigenspace pro-

jections concept to develop two segmentation algorithms. The first algorithm uses

the eigen-structure combined with the FCM method and the second algorithm sim-

ply applies threshold on the eigen-spaces according to the statistical properties. The

method with FCM is very effective to segment desired objects without considering

any threshold. The drawback of the first method is that it costs large amount of com-

putation time. The second method adopting statistical analysis is faster than the first

one but needs to select different threshold values according to different sequences.

Considering signal and noise projections, the SEFCM method shows its effec-

tiveness comparing to use the PCT or the FCM algorithm alone. In order to achieve

satisfactory simulation results, we further suggest the CEFCM algorithm to im-

prove the segmentation performance. Compared to the conventional FCM method

and the OSFCM method, we found that the SEFCM and CEFCM achieve the best

segmentation performance, which is robust and less susceptible to the noise. Fur-

ther integrated with spatial and temporal information, our proposed algorithms can

achieve even better results in the future works. The difference between AESS algo-

rithm and the other method is that our proposed method can be used to segment the

desired object at will. Especially, when several identical color objects exist at the

same frame, our algorithm can extract only the designated object out. Using color

eigen-subspace to segment the object has been proven to be an effective method

but it maybe failed when the color shade is present. In addition to the normal color

distribution conditions, our algorithm is most suitable to segment the object with

color shade.
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Chapter 3

Semantic Object Segmentation

Xiaogang Wang

Abstract Semantic object segmentation is to label each pixel in an image or a video

sequence to one of the object classes with semantic meanings. It has drawn a lot of

research interest because of its wide applications to image and video search, editing

and compression. It is a very challenging problem because a large number of object

classes need to be distinguished and there is a large visual variability within each

object class. In order to successfully segment objects, local appearance of objects,

local consistency between labels of neighboring pixels, and long-range contextual

information in an image need to be integrated under a unified framework. Such inte-

gration can be achieved using conditional random fields. Conditional random fields

are discriminative models. Although they can learn the models of object classes

more accurately and efficiently, they require training examples labeled at pixel-level

and the labeling cost is expensive. The models of object classes can be learned

with different levels of supervision. In some applications, such as web-based im-

age and video search, a large number of object classes need to be modeled and

therefore unsupervised learning or semi-supervised learning is preferred. Therefore

some generative models, such as topic models, are used in object segmentation be-

cause of their capability to learn the object classes without supervision or with weak

supervision of less labeling work. We will overview different technologies used in

each step of the semantic object segmentation pipeline and discuss major challenges

for each step. We will focus on conditional random fields and topic models, which

are two types of frameworks widely used in semantic object segmentation. In video

segmentation, we summarize and compare the frameworks of Markov random fields

and conditional random fields, which are the representative models of the generative

and discriminative approaches respectively.
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3.1 Introduction

The task of semantic object segmentation is to label each pixel in an image or a

video sequence to one of the object classes with semantic meanings (see examples

in Fig. 3.1). The object classes can be predefined or unsupervised learned from a

collection of images or videos. It is different than unsupervised image and video

segmentation, which is to group pixels into regions with homogeneous color or

texture but without semantic meanings. It has important applications to image and

video search, editing, and compression. For example, semantic regions with their

2D spatial arrangement sketched by users can be used as query to retrieve image.

Segmented objects can be deleted from images or copied between images. Differ-

ent regions of images can be enhanced in different ways based on their semantic

meanings.

Semantic object segmentation is a very challenging problem, because there are

a very large number of object classes to be distinguished, some object classes are

visually similar, and each object class may have very large visual variability. These

object classes can be structured, such as cars and airplanes, or unstructured, such

as grass fields and water. Due to variations of viewpoints, poses, illuminations, and

occlusions, objects of the same class have different appearance across images. In or-

der to develop a successful semantic object segmentation algorithm, there are three

important factors to be considered: local appearance, label consistency between

Fig. 3.1 Examples of images (first row) and manually segmented objects (second row) from

PASCAL VOC 2009 [1] (a) and MSRC 21 [2] (b). Different colors represent object categories
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neighboring pixels, and long-range contextual information [3]. In order to model

the local appearance at a pixel, filter-banks and visual descriptors are applied to

the neighborhood around the pixel and their responses are used as the input of a

classifier to predict the object label. The filter-banks, visual descriptors and clas-

sifiers have to be carefully designed in order to achieve a good balance between

high discriminative power and invariance to noise, clutters, and the changes of

viewpoints and illuminations. In order to obtain smooth segmentation results, the la-

bel consistency between neighboring pixels needs to be considered. In order for the

segmentation to be consistent with the boundaries of objects, the algorithm should

encourage two neighboring pixels to have the same object label if there is no strong

edge between them. In addition to smoothness, the likelihood of two object classes

being neighbors should also be considered for local consistency. For example, it is

more likely for a cup to be on the top of desk than on a tree. Only considering the

appearance of an image patch leads to ambiguities when deciding its class label. For

example, a flat white patch could be from a wall, a car or an airplane. The long-range

contextual information of the image may help to solve the ambiguities to some ex-

tent. For example, some object classes such as horses and grass are more likely to

coexist in the same images. If it is known that the image is an outdoor scene, it is

more likely to observe sky, grass, and cars than computers, desks, and floors in that

image. Local appearance, local consistency, and long-range contextual can be incor-

porated in a Conditional Random Field (CRF) model [4], which has been popularly

used in semantic object segmentation.

The approaches of semantic object segmentation can be supervised or unsuper-

vised. The supervision at the training stage can be at three different levels:

• Pixel-level: each pixel in an image is manually labeled as one of the object

classes.

• Mask-level: an object in an image is located by a bounding box and assigned to

a object class.

• Image-level: annotate object classes existing in an image without locating or seg-

menting objects.

Most discriminative object segmentation approaches including CRF need

pixel-level or mask-level labeling for training. They can learn the models of object

classes more accurately and efficiently. However, as the fast increase of images and

videos in many applications such as web-based image and video search, there are

an increasing number of object classes to be modeled. The workload of pixel-level

and mask-level labeling is heavy and impractical for a very large number of object

classes. In recent years, some generative models, such as topic models borrowed

from language processing, have become popular in semantic object segmentation.

They are able to learn the models of object classes from a collection of images and

videos without supervision or supervised by data labeled at the image-level, whose

labeling cost is much less. It is also possible for CRF and topic models to integrate

the strengths of both types of approaches.

A typical pipeline of semantic object segmentation is shown in Fig. 3.2. Filter-

banks or visual descriptors are first applied to images to capture the local appearance
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Fig. 3.2 Typical steps of semantic object segmentation. They are done over image pixels, patches

or oversegmented superpixels

objects. Their responses are typically quantized into textons or visual words accord-

ing to codebooks learned in a supervised or unsupervised way. The histograms of

textons or visual words are used as input to a classifier to predict labels of ob-

ject classes. In order to well capture the local consistency and long-range contextual

information, CRF or generative models are used to incorporate with local classifiers.

These steps can be on at image pixels, patches, or oversegmented superpixels. Many

different technologies have been developed to improve each of the three steps. We

will review these technologies and discuss the major challenges for these steps. In

recent years, some benchmark databases, such as PASCAL VOC 2007 [5], PASCAL

VOC 2008 [6], PASCAL VOC 2009 [1], LabelMe [7], LHI [8], and MSRC 21 [2],

were published to evaluate the performance of different semantic object segmenta-

tion approaches.

In video segmentation, Markov random fields (MRFs) and CRFs are two main

frameworks. Statistically, video segmentation formulizes and maximizes a posterior

probability of the labels given by the observation data. In the case that there is no

or only small number of labeled data, some heuristic or prior knowledge based

distributions can be selected to describe the observation data. Based on the selected

distributions and the prior of labels modeled in a MRF, the MRF approaches for-

mulate the posterior via likelihoods and priors in Baye’s rule. On the contrast, CRFs

model the posterior directly to improve the predictive performance if there are large

quantities of training data. In CRFs, the model of the observation data is obtained

by learning from the training data using some classifiers. Compared to MRFs, CRFs

relax the assumption of data independence, while large more expensive labeled data

is necessary in CRFs.

This chapter is organized as follows. Section 3.2 introduces different types of

filter-banks and visual descriptors to capture local appearance, and different tech-

niques to quantize their responses into textons or visual words. Some popular

classifiers on local appearance are reviewed in Sect. 3.3.1. Section 3.3.2 introduces

CRF and different approaches of using CRF for semantic object segmentation.

Section 3.4 first introduces two classical topic models, Probabilistic Latent Se-

mantic Analysis [9] (pLSA) and Latent Dirichlet Allocation [10] (LDA), which

were directly borrowed from language processing and applied to semantic ob-

ject segmentation. Both pLSA and LDA ignored the spatial distribution of image

patches. Spatial Latent Dirichlet Allocation [11], which is an extension of LDA

and other topic models incorporating spatial structures of objects are introduced in

Sects. 3.4.2 and 3.4.3. The approaches of object segmentations in videos are dis-

cussed in Sect. 3.5. Finally the summary is given in Sect. 3.6.
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3.2 Local Visual Cues

3.2.1 Filter-Banks and Visual Descriptors

Filter-banks and visual descriptors are used to capture the local appearance of ob-

jects. They are calculated from the neighbor of a pixel. On the one hand, they need

to be discriminative enough to distinguish a large number of object classes, some of

which are visually similar; on the other hand, they need to have invariance to noise,

clutters and changes of illuminations and viewpoints. If they are computed at every

pixel, computational efficiency is another issue to be considered. In this section we

will review some popularly used filter-banks and visual descriptors.

Filter-banks. Filter-banks capture certain frequencies within a neighborhood. Winn

et al. [2] proposed a set of filter-banks after testing different combinations of Gaus-

sians, Laplacian of Gaussians (LoG), first and second order derivatives of Gaussians

and Gabor kernels on semantic object segmentation. The proposed set of filter-banks

included three Gaussians, four LoGs, and four first-order derivatives of Gaussians.

The three Gaussian kernels with different standard deviation parameters σ = 1,2,4
were applied to each CIE L,a,b channel. The four LoGs(with σ = 1,2,4,8) and the

four first order derivatives of Gaussians (with σ = 1,2,4,8) were applied to L chan-

nel only. The first order derivatives of Gaussians were in x and y directions. See

the kernels of the proposed filter-banks in Fig. 3.3. Some other filter-banks, such as

rotation-invariant filters and maximum-response filters, were also proposed [12–14].

A comparison study can be found in [15].

SIFT. SIFT (Scale-Invariant Feature Transform) (see Fig. 3.4) proposed by Lowe

[16] is the most widely used local visual descriptors. It has reasonable invariance

to changes in illumination, rotation, scaling, and small changes in viewpoints. SIFT

keypoints were detected by finding local extrema of Difference-of-Gaussian (DoG)

Fig. 3.3 A set of filter banks proposed by Winn [2]. (a) Three Gaussian kernels with σ = 1,2,4.

They were applied to each CIE L,a,b channel. (b) Four derivatives of Gaussians divided into the

x- and y-aligned sets, each with two different values of σ = 2,4. They were applied to L channel.

(c) Four Laplacian of Gaussians with σ = 1,2,4,8. They were applied to L channel
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Fig. 3.4 SIFT descriptor [16]

is computed by combining

the normalized orientation

histograms of gradients

within subregions of the

keypoint into a feature vector

filters at different scales. For each keypoint, its orientation and scale were selected.

A SIFT descriptor of a keypoint was obtained by first computing the gradient

magnitudes and orientations of pixels in the neighborhood region of the keypoint,

using the scale of the keypoint to select a proper Gaussian kernel to blur the im-

age. In order to achieve orientation invariance, the coordinates of the descriptor and

the gradient orientations were rotated relative to the keypoint orientation. The ori-

entation histograms within the subregions around the keypoint were computed and

combined into the SIFT feature vector. This vector was normalized to improve the

invariance to changes of illumination. Gradient Location and Orientation Histogram

(GLOH) [17] extended SIFT by allowing SIFT descriptor to be computed on a log-

polar location grid.

HOG. Histogram of Oriented Gradients proposed by Dalal and Triggs [18] was

similar to SIFT. It computed the histograms of gradient orientations in different

subregions. Different from SIFT, which was computed on detected sparse key-

points, HOG was sampled from a dense and uniform grid and was improved by

local contrast normalization in overlapping spatial blocks. Integral Histogram of

Oriented Gradients (IHO) [19] is an approximation of HOG and can be efficiently

computed using integral images.

MSER. Instead of detecting keypoints, Maximally Stable Extremal Regions

(MSER) proposed by Matas et al. [20] detected regions which were darker or

brighter than surroundings. It was affinely-invariant and robust to changes of illu-

minations. It was extended to colour in [21].

SURF. Bay et al. [22] proposed the SURF (Speeded Up Robust Features) descrip-

tor, which could be efficiently computed using integral images. The neighborhood

of a pixel was uniformly adapted into P×Q spatial bins. The SURF descriptor was

calculated by accumulating the sum of Haar wavelet responses at different spatial

bins. Let dx and dy be the Haar wavelet responses in the horizontal and vertical di-

rections. The descriptor has a four-dimensional vector (∑dx,∑‖dx‖ ,∑dy,∑
∥
∥dy

∥
∥)

for each spatial bin. The resulting 4×P×Q dimensions SURF descriptor was L1-

normalized.
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Spin image and RIFT. Lazebnik et al. [23] proposed two rotation-invariant

descriptors, spin image and RIFT (Rotation-Invariant Feature Transform). The

spin image was a two-dimensional histogram of image intensities and their distance

to the keypoint. To construct the RIFT descriptor, the circular normalized patch

around the keypoint was divided into concentric rings of equal width and a gradient

orientation histogram was computed within each ring.

Most descriptors described above were applied to intensity images. To increase

illumination invariance and discriminative power, color descriptors were proposed.

An evaluation of different color descriptors can be found in [24]. It was shown that

the combination of different filter-banks of visual descriptors could improve the

performance [25].

These filter bank responses and invariant descriptors can be computed at image

patches densely sampled or at sparse interest points. Results in [26] showed that

dense sampling improved the performance because it captured the most information,

but its computation was expensive.

3.2.2 Textons and Visual Words

In semantic object segmentation, the responses of filter-banks or visual descriptors

are usually further quantized to textons or visual words1 according to a learned

codebook. Since the histograms of textons or visual words will be used as the

input of classifiers at later stages, the design of codebooks should consider both

distinctiveness and repeatability. This means that it should try to assign image

patches of different object classes to different codewords and to assign image

patches of the same object class to the same codeword. The codebook should be

compact in order to avoid overfitting of the classifiers at later stages. Because there

are a huge number of image patches in data collections, memory and computation

efficiency is another issue to be considered when learning the codebooks.

K-means is the most commonly used clustering methods to generate the code-

books. Some examples of visual words obtained by k-means are shown in Fig. 3.5.

Since the distribution of image patches in the filter-bank space or in the descriptor

space is far from uniform, one of the disadvantages of k-means is that it clusters cen-

tres almost exclusively around the densest few regions in descriptor space and can-

not over other informative regions well. Based on this consideration, Jurie et al. [27]

proposed a new approach building codebooks using mean shift. Some patches in the

dense regions were removed and the learned codebooks were more informative.

K-means has high computational cost. It also has the difficulty of balancing

the distinctiveness and repeatability by choosing different sizes of codebooks. If

the size of the codebook is too small, image patches of different object classes

will fall into the same bin. At the other extreme, image patches around the same

keypoint observed in different images will fall into different bins. To overcome

1 Textons are quantized responses of filter-banks and visual words are quantized visual descriptors.
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Fig. 3.5 Examples of visual words obtained by the filter-banks proposed in [2] and k-means. The

first row are images and the second row are visual words. Colors represent different visual words

these difficulties, Nister et al. [28] proposed the vocabulary tree constructed by hi-

erarchical k-means. It allowed a larger and more discriminatory codebook to be

used efficiently. Moosmann et al. [29] proposed Extremely Randomized Clustering

Forests, which were ensembles of randomly created clustering trees, to learn the

codebook. It provided more accurate results and was faster than k-means. Elkan

[30] used the triangle inequality to dramatically accelerate k-means, while guaran-

teed always computing exactly the same result as the standard k-means.

K-means assumed hard assignment, i.e. exactly assigning a single visual word to

one image feature. If an image feature is relevant to multiple textons or visual words,

only the best is selected. If none of the codewords in the codebook well represent the

image feature, the best one is still assigned to the image feature. These may cause

problems during object segmentation. van Gemert et al. [31] created codebooks

using kernel density estimation. It modeled the uncertainty between visual words

and image features.

The above approaches are unsupervised. Some supervised approaches learned

codebooks incorporate semantic information. These codebooks were more compact

and discriminative. Winn et al. [2] learned an optimally compact visual codebook

by pairwise merging of visual words given segmented images for training. Shotton

et al. [32] proposed semantic texton forests, which were randomized decision forests

[33] and were learned from image pixels. Perronnin et al. [34] learned different

codebooks for different object classes by adapting a universal codebook, which de-

scribed the content of all the classes of images, using class-specific data. Both the

universal codebook and adapted class-codebooks were used for classification.

3.3 Object Segmentation Using Discriminative Approaches

3.3.1 Classifiers on Local Appearance

The obtained histograms of textons or visual words within local regions capture the

features of local appearance and are usually used as the input of classifiers to predict
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object labels. Support Vector Machines (SVM) and Boosting are widely used to

model the appearance of object classes. Marsalek and Schmid [35] estimated the

shape mask of an object and its object category using nonlinear SVM and with χ2

distance. The appearance of the object within the shape mask was represented by

a histogram of visual words. Shotton et al. [32] used the texton histograms and re-

gion priors, which were calculated from their proposed semantic texton forests, of

image regions as input of a one-vs-others SVM classifier to assign image regions

into different object classes. Gould et al. [36] used the boosting classifier to predict

the label of each pixel. Tahir et al. [25] used Spectral Regression Kernel Discrim-

inant Analysis(SRKDA) [37] and achieved better results than SVM on PASCAL

VOC 2008 [6]. It was also much more efficient than Kernel Discriminant Analysis

(KDA). Aldavert et al. [38] proposed an integral linear classifier, which used integral

images to efficiently calculate the outputs of linear classifiers based on histograms

of visual words at the pixel level.

3.3.2 Conditional Random Fields

Although classifiers such as SVM and Boosting can predict the object label of a

pixel based on the appearance within its neighborhood, they cannot capture local

consistency of other contextual features, such as “sky” appears above buildings

but not the other way around. Local appearance, local consistency and contex-

tual features can be well incorporated under a Conditional Random Fields (CRF)

framework.

3.3.2.1 Multiscale Conditional Random Fields

He et al. [39] were the first to use CRF for semantic object segmentation. Their

proposed CRF framework is described as following. Suppose X = {xi} are image

patches and Z = {zi} are their object class labels. In [39], the conditional distribu-

tion over Z given by input X was defined by multiplicatively combining component

conditional distributions.

P(Z|X) ∝ PC(Z|X)PR(Z|X)PG(Z|X). (3.1)

PC, PR, and PG capture statistical structures at three different spatial scales: local

classifier, regional features, and global features (see Fig. 3.6).

The local classifier PC produces a distribution over the label zi given by its image

patch xi as input,

PC(Z|X,λ ) = ∏
i

PC(zi|xi,λ ), (3.2)

where λ is the parameter of the local classifier. A 3-layer multilayer perceptron

(MLP) was used in [39].
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Fig. 3.6 A graphical representation of CRF. Reproduced from [39]

The regional features PR represent local geometric relationships between objects.

They avoid impossible combinations of neighboring objects such as “ground is

above sky” and also encourage the segmentation results to be spatially smooth.

A collection of regional features are learned from the training data. Let r be the

index of regions and a be the index of the different regional features within each

region, and j be the index of image patches within in region r. PR is defined as

PR(Z, f) ∝ exp

{

∑
r,a

fr,awT
a zr

}

. (3.3)

f = { fr,a} are binary hidden regional variables. fr,a = 0,1 indicating the feature a in

region r exists or not. wa = [wa,1, . . . ,wa,J,αa] are parameters and αa is a bias term.

wa, j connects fr,a with zr, j and specifies preferences for the possible label value of

zr, j. zr = [zr,1, . . . ,zr,J,1]. PR is high of zr matches wa and fr,a = 1 or zr does not

match wa and fr,a = 0.

The global feature PG is defined over the whole image,

PG(Z,g) ∝ exp

{

∑
b

gbuT
b Z

}

. (3.4)

b is the index of the global label patterns, which are encoded in the parameters {ub}.

g = {gb} are the binary hidden global variables.

Both hidden variables f and g can be marginalized, leading to

PR(Z) ∝r,a

[
1 + exp

(
wT

a zr

)]
, (3.5)

PG(Z) ∝b

[
1 + exp

(
uT

b Z
)]

. (3.6)
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Thus (3.2) has a closed form,

P(Z|X;θ ) ∝ ∏
i

PC(zi|xi,λ )×∏
r,a

[
1 + exp

(
wT

a zr

)]
×∏

b

[
1 + exp

(
uT

b Z
)]

. (3.7)

θ = {λ ,{wa},{ub}} are parameters. They are learned from a training by maximiz-

ing the conditional likelihood in [39]. Once the parameters are learned, the object

class labels are inferred by maximizing posterior marginals.

3.3.2.2 TextonBoost

Under the CRF framework, Shotton et al. [40] proposed TextonBoost to learn a

discriminative model of object classes incorporating texture, layout, and context

information. Their CRF includes four types of potentials: texture-layout, color, lo-

cation, and edge.

logP(Z|X ,θ ) =∑
i

texture−layout
︷ ︸︸ ︷

ψi(zi,X;θψ )+

color
︷ ︸︸ ︷

π(ci,xi;θπ )+

location
︷ ︸︸ ︷

ℓ(zi, i;θℓ)

+ ∑
(i, j)∈ε

edge
︷ ︸︸ ︷

ξ (zi,z j,gij(X);θξ )− logC(θ ,X), (3.8)

where i and j are indices of pixels, (i, j) ∈ ε are two neighboring pixels, θ =
{θψ ,θπ ,θℓ,θξ} are parameters, and C(θ ,X) is a normalization term.

The texture-layout potentials are provided by a boosting classifier combining

a set of discriminative features called texture-layout filters. The neighborhood of

pixel i is partitioned into regions by a predefined spatial kernel. Each texture-layout

v[r,t](i) is the number of pixels with texton t in region r. Therefore, texture-layout

filters are histograms of textons over defined spatial kernels. They capture texture,

spatial layout, and textural context. Discriminative texture-layout filters are selected

as weak classifiers and combined into a powerful classifier by Joint Boost [41]. Joint

Boost allows to share weak classifiers among different object classes and the learn

classifier has better generalization.

The color potentials model the color distribution of each object class using Gaus-

sian mixture models in CIELab color space.

The location potentials model the dependence between the locations of pixels

and object classes. For example, trees and sky tend to appear in the top regions of

images while roads tend to appear in the bottom regions of images.

In the edge potentials, gij measures the edge features between neighbor pixels.

A penalty is added if two neighboring pixels have different object class labels unless

there is a strong edge between them.

TextonBoost was evaluated on 21 object classes from the MSRC database and

achieved 72.2% overall accuracy [40]. The confusion matrix is shown in Fig. 3.7.
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Fig. 3.7 Confusion matrix of object segmentation by TextonBoost [40] on the MSRC 21 database.

The figure is reproduced from [40]

The experimental evaluation showed that although the texture-layout potentials had

the most significant contribution to semantic object segmentation, CRF significantly

improved the accuracy of results.

3.3.2.3 Other Approaches Based on Conditional Random Fields

Other semantic object segmentation approaches based CRF were proposed.

Fulkerson et al. [42] treated superpixels [43], which were small regions obtained

from a conservative oversegmentation, as basic units of segmentation. They as-

sumed that superpixels allowed to measure histograms of visual words on a natural

adaptive domain rather than on a fixed patch window. Moreover, superpixels tended

to preserve boundaries and created more accurate segmentation. A one-vs-others

SVM classifier with a RBF-χ2 kernel was constructed on the histograms of visual

words found in each superpixel. This local classifier was used in a CRF operating on

the superpixel graph. CRF was used to add spatial regularization by requiring that if

two neighboring superpixels share a long boundary and were similar in appearance,

they tended to have the same class label. It discouraged small isolated regions and

reduced misclassifications that occurred near the edges of objects. He et al. [44]

also first oversegmented images into superpixels. Superpixels were labeled under a

mixture of CRF. Images in a database were grouped into several contexts and each

context was modeled by a separate CRF.

Torralba et al. [45] proposed Boosted Random Fields for object detection and

segmentation. Boosting was used to learn the graph structure and local evidence

of a conditional random field. The graph structure of CRF was learned using
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boosting to select from a dictionary connectivity templates, which were derived

from labeled segmentations. It exploited the contextual correlations between ob-

ject classes. Rabinovich et al. [46] explicitly defined the interactions between object

classes as semantic context and incorporated it into CRF. The semantic context was

modeled as the co-occurrence of object labels and was learned both from the train-

ing data and Google Sets.2

Quattoni et al. [47] used CRF for part-based object recognition and detection.

CRF was used to model the spatial arranges of object parts. Ma and Grimson [48]

proposed a coupled CRF to decompose the images into contour and texture and to

model their interaction. The decomposed low-level cues were adaptively combined

for object recognition and different discriminative cues for different object classes

were fully leveraged. Reynolds and Murphy [49] proposed a tree-structured CRF

for object segmentation.

3.4 Object Segmentation Using Topic Models

The discriminative approaches described above required training data to be labeled

at pixel-level. If there are a large number of object classes to be modeled, the la-

beling work is very expensive. Some researchers started to explore approaches of

learning the models of object classes from a collection of images or videos with-

out supervision or with weak supervision (such as using training data labeled at

image-level). Inspired by the success of topic models, such as Probabilistic Latent

Semantic Analysis (pLSA) [9] and Latent Dirichlet Allocation (LDA) [10], in the

applications of language processing, they have been also applied to semantic object

segmentation in recent years. Under pLSA or LDA, words, such as “professor” and

“university”, often co-existing in the same documents are clustered into the same

topic, such as “education”. The models of topics are automatically without supervi-

sion. The word-document analysis has been applied to object segmentation through

mapping the concepts of “words” and “documents” to the image and video domains.

For example, if images are treated as documents and visual words (or textons) are

treated as words, with the assumption that visual words of the same object classes

often co-exist in the same images, the models of object classes can be learned as the

models of topics. Object classes are treated as topics. Since an image may include

objects of several classes, it is modeled as a mixture of topics. An advantage of such

an approach is that manually segmenting objects at the pixel level is not required for

training. Some proposed approaches [11, 50, 51] were totally unsupervised. Some

required labeling at the image level [52, 53]. Some semantic object segmentation

approaches based on topics models will be reviewed in this section.

2 http://labs.google.com/sets

http://labs.google.com/sets
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3.4.1 pLSA and LDA

Sivic et al. [50] discovered the object classes from a set of unlabeled images and

segmented images into different object classes using pLSA and LDA. They modeled

an image as a bag of visual words and ignored any spatial relationships among

visual words. Suppose there are M images in the data set. Each image j has N j

visual words. Each visual word wji is assigned one of the K object classes according

to its label zji. Under pLSA, the joint probability P({wji},{d j},{zji}) has the form

of the graphical model shown in Fig. 3.8a. The conditional probability P(wji|d j)
marginalizing over topics zji is given by

P(wji|d j) =
K

∑
k=1

P(zji = k|d j)P(wji|zji = k). (3.9)

P(zji = k|d j) is the probability of object class k occurring in image d j. P(wji|zji = k)
is the probability of visual word wji occurring in object class k and is the model

of object class k. Fitting the pLSA model involves determining P(wji|zji) and

P(zji = k|d j) by maximizing the following objective function using the Expectation

Maximization (EM) algorithm:

L =
M

∏
j=1

N j

∏
i=1

P(wji|d j). (3.10)

Images are segmented into objects with semantic meanings based on the labels zji

of visual words.

pLSA is a generative model only for training images but not for new images.

This shortcoming has been addressed by LDA, whose graphical model is shown in

Fig. 3.8b. Under LDA, {φk} are models of object classes and are discrete distribu-

tions over the codebook of visual words. They are generated from a Dirichlet prior

Dir(φk;β ) given by β . Each image j has a multinomial distribution π j over K object

Fig. 3.8 Graphical models

of pLSA and LDA
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Table 3.1 Confusion table of using pLSA for image classification on a data set of five

object categories from the Caltech 101 database [55]. Class number is equal to 7 in

pLSA. Three classes correspond to the background. The result was reported in [50]

True class → Faces Motorbikes Airplanes Cars Background

Class 1 - Faces 94.02 0.00 0.38 0.00 1.00

Class 2 - Motorbikes 0.00 83.62 0.12 0.00 1.25

Class 3 - Airplanes 0.00 0.50 95.25 0.52 0.50

Class 4 - Cars 0.46 0.88 0.38 98.1 3.75

Class 5 - Background I 1.84 0.38 0.88 0.26 41.75

Class 6 - Background II 3.68 12.88 0.88 0.00 23.00

Class 7 - Background III 0.00 1.75 2.12 1.13 28.75

classes and it is generated from a Dirichlet prior Dir(π j;α). Each patch i on image j

is assigned to one of the K object classes and its label zji is sampled from a discrete

distribution Discrete(zji;π j) given by π j. The observed visual word wji is sampled

from the model of its object class: Discrete(wji|φzji
). α and β are hyperparameters.

φk, π j and zji are hidden variables to be inferred. The inference can by implemented

by variational methods [10] or collapsed Gibbs sampling [54]. Under LDA, if two

visual words often co-occur in the same images, one of the object class models

will have large distributions on both of them. pLSA and LDA perform similarly on

image classification and object segmentation and their results were promising espe-

cially when each image only contained one object. As reported by [50], on a data set

consisting of 4,090 images of five categories from the Caltech 101 database [55], the

image classification accuracy achieved by pLSA was 92.5% (see Table 3.1) and its

object segmentation accuracy was 49%. Both pLSA and LDA requires the number

of object classes to be known in advance. As an extension, Hierarchical Dirichlet

Process (HDP) proposed by Teh et al. [54] could automatically learn the number of

object classes from data using Dirichlet Processes [56] as priors.

3.4.2 SLDA

A shortcoming of using pLSA and LDA to segment objects is to treat an image as

a document of visual words ignoring the spatial structure among visual words. The

assumption that if two types of patches are from the same object class, they often

appear in the same images is not strong enough. As an example shown in Fig. 3.9,

although the sky is far from the vehicles, if they often exist in the same images in

the data set, they would be clustered into the same topic (object class) by pLSA

or LDA. Since most parts of this image are sky and building, an image patch on

a vehicle is likely to be labeled as building or sky as well. Such problems can be

solved if the document of an image patch, such as the yellow patch in Fig. 3.9, only

includes patches falling within its neighborhood, marked by the red dashed window

in Fig. 3.9 instead of the whole image.
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Fig. 3.9 There will be some

problems (see text) if the

whole image is treated as one

document when using LDA to

discover classes of objects

Fig. 3.10 (a) Graphical model of SLDA. (b) Add spatial information when designing documents.

Each document is associated with a point (marked in magenta color). These points are densely

placed over the image. If an image patch is close to a document, it has a high probability to be

assigned to that document

With the assumption that if two types of image patches are from the same ob-

ject class, they are not only often in the same images but also close in space, a

Spatial Latent Dirichlet Allocation (SLDA) was proposed in [11]. Under SLDA,

the word-document assignment becomes a hidden random variable. There is a gen-

erative procedure to assign words to documents. When visual words are close in

space or time, they have a high probability to be grouped into the same document.

The graphical model SLDA is shown in Fig. 3.10. The N visual words in an image

set are assigned to M documents. d j is a hidden variable indicating the document

assignment of visual word i. Each document j is associated with a hyperparam-

eter cd
j = (gd

j ,x
d
j ,y

d
j ), where gd

j is the index of the image where the document is
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placed and (xd
j ,y

d
j ) is the location of the document. Besides the word value wji, the

location (xi,yi) and image index gi of a word i are observed and stored in variable

ci = (gi,xi,yi). The generative procedure is as following:

1. For a topic k, a multinomial parameter φk is sampled from Dirichlet prior φk ∼

Dir(β ).
2. For a document j, a multinomial parameter π j over the K topics is sampled from

Dirichlet prior π j ∼ Dir(α).
3. For a word (image patch) i, a random variable di is sampled from prior p(di|η)

indicating to which document word i is assigned. We choose p(di|η) as a uniform

prior.

4. The image index and location of word i are sampled from distribution

p(ci|c
d
di
,σ). We may choose this as a Gaussian kernel.

p
(

(gi,xi,yi)
∣
∣
∣

(

gd
di
,xd

di
,yd

di

)

,σ
)

∝ δgd
di

(gi)exp

⎧

⎪⎨

⎪⎩

−

(

xd
di
− xi

)2

+
(

yd
di
− yi

)2

σ2

⎫

⎪⎬

⎪⎭

,

p(ci|c
d
di
,σ) = 0 if the word and the document are not in the same image.

5. The topic label zi of word i is sampled from the discrete distribution of document

di, zi ∼ Discrete(πdi
).

6. The value wi of word i is sampled from the discrete distribution of topic zi, wi ∼

Discrete(φzi
).

In [11] both LDA and SLDA were evaluated on the MSRC data set [2] with

240 images for object segmentation. The detection rate and false alarm rate of four

classes (cows, cars, faces, and bicycles) are shown in Table 3.2. Some examples

are shown in Fig. 3.11. The segmentation results of LDA were noisy since spatial

information was not considered. The patches in the same image were likely to have

the same labels. SLDA achieved better results.

In [11] SLDA was also used to segment objects from a video sequence. All the

frames were treated as a collection of images and their temporal order was ignored.

Figure 3.12 shows results on two sampled frames. LDA could not segment out any

objects. SLDA clustered image patches into tigers, rock, water, and grass.

Table 3.2 Detection(Det) rate and False Alarm (FA) rate of LDA and SLDA on MSRC [2]. The

results are from [11]

Cows Cars Faces Bicycles

Det rate FA rate Det rate FA rate Det rate FA rate Det rate FA rate

LDA 0.3755 0.5576 0.5552 0.3963 0.7172 0.5862 0.5563 0.5285

SLDA 0.5662 0.0334 0.6838 0.2437 0.6973 0.3714 0.5661 0.4217
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Fig. 3.11 Examples of object segmentation results by LDA and SLDA. The images are from the

MSRC data set [2]. The first row shows example images. The second row uses manual segmenta-

tion and labeling as ground truth. The third row is the LDA result and the fourth row is the SLDA

result. Under the same labeling approach, image patches marked in the same color are in one ob-

ject cluster, but the meaning of colors changes across different labeling methods. The results are

from [11]

Fig. 3.12 Object segmentation from a video sequence. The first column shows two frames in the

video sequence. In the second column, the patches in the two frames as are labeled as different

object classes using LDA. The third column plots the object class labels using SLDA. In the fourth

column, tigers are segmented out by choosing all the patches of the class marked by red color. The

results are from [11]

3.4.3 Other Topic Models of Including Spatial Information

Some other topic models were also proposed to include spatial information. Russell

et al. [51] first obtained multiple segmentations of each image at different scales

using normalized cut [57] and then treated each segment instead of an image as a
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document. These segments captured the spatial relationships among visual words.

Some good segments are sifted from bad ones for each discovered object class.

Verbeek et al. [52] proposed two aspect-based spatial field models by combin-

ing pLSA/LDA with Markov Random Fields (MRF). One is based on averaging

over forests of minimal spanning trees linking neighboring image regions. A tree-

structure prior is imposed to the object class labels Z j = {zji} of image patches in

image j,

P(Z j) ∝ exp

(

∑
i

ψ(zji,z jχ(i))+ logθ j

)
, (3.11)

where χ(i) is the unique parent of patch i in the tree, and ψ(zji,z jχ(i)) is a pair-wise

potential,

ψ(zji,z jχ(i)) = ρ [̇zji = z jχ(i)]. (3.12)

The other model applies an efficient chain-based Expectation Propagation

method for regular 8-neighbor Markov Random Fields. The prior over Z j is given by

P(Z j) ∝ exp

(

∑
i∼i′

ψ(zji,zji′)+ logθ j

)
, (3.13)

where i ∼ i′ enumerates spatial neighbor patches i, i′ in image j. MRF captures the

local spatial dependence of image patches. These two models were trained using

either patch-level labels or image-level labels. Tested on 240 images of nine object

categories from the MSRC data set, when trained using patch-level labels, they

achieved object segmentation accuracy of 80.2% and when trained using image-

level labels, the accuracy of 78.1% was achieved. The accuracies of pLSA were

78.5% and 74.0% respectively under these two settings. The similar idea was also

explored in [58] and a Dirichlet process mixture was introduced to automatically

learn the number of object classes from data. This framework was extended to

Conditional Random Field (CRF) [4] to integrated both local and global features in

the images [53, 59].

Sudderth et al. [60] proposed a Transformed Dirichlet Process (TDP) model

to jointly solve the problem of scene classification and object segmentation. This

approach coupled topic models with spatial transformations and consistently ac-

counted for geometric constraints. The spatial relationships of different parts of

objects were explicitly modeled under a hierarchical Bayesian model. Cao et al.

[61] proposed a Spatially Coherent Latent Topic Model (Spatial-LTM) to simulta-

neously classify scene categories and segment objects. It oversegmented images into

regions of coherent latent topic model and coherent latent topic model was consid-

ered as visual words. It enforced the spatial coherency of the model by requiring that

only one single latent-topic was assigned to the image patches within each region.
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3.5 Object Segmentation in Videos

A video is composed of a sequence of images. Different from still image

segmentation, video segmentation should take account the temporal information.

Many statistical models have been proposed for video segmentation, either gener-

ative or discriminative. In the discriminative model, a large number of expensive

labeled data is required to train an excellent classifier. On the contrary, the genera-

tive model can handle the incomplete data problem and address the large number of

unlabeled data via small number of expensive labeled data. Therefore, the genera-

tive model is popular for video segmentation. On the other hand, the discriminative

model relaxes the conditional independence assumption and has better predictive

performance than the generative model. This attracts many attentions to the discrim-

inative model in video segmentation. MRFs [62, 63] and CRFs [64–67] are repre-

sentative generative and discriminative models in video segmentation, respectively.

Let X = {xi}i∈S and Z = {zi}i∈S be the observation and labels of a video, where

S = {si} is the set of units (they can be pixels, patches, or semantic regions) in the

video. Then video segmentation is to maximize the posterior p(Z|X).

3.5.1 MRF Model

In the MRF model, the posterior is expressed proportioned to the joint probability

using the Baye’s rule as:

p(Z|X) ∝ p(Z|X) = p(X|Z)p(Z), (3.14)

where the prior p(Z) is modeled as a MRF.

In the MRF model, the strong assumption of conditional independency of the

observed data is enforced. Therefore, the likelihood p(X|Z) is assumed to have a

factorized form, i.e.,

p(X|Z) = ∏
si∈S

p(xi|zi). (3.15)

Here p(xi|zi) indicates the probability that the unit si has the label zi based on the

observation xi at si. Here xi can be features incorporating the color, texture, and

motion information. To adapt to changes of environment, some features robust to

illumination changes are utilized, like gradient direction, shadow models, and color

co-occurrence.

To model the distribution of p(xi|zi), several ways have been proposed. The most

traditional approach is model the distribution in terms of the Gaussian Mixture

Models (GMMs) and the Expectation Maximization (EM) algorithm is used to

estimate the model parameters. The GMM model has several shortcomings: it is

sensitive to the initialization, the EM algorithm takes long time to converge, and a

suitable number of Gaussian components have to be set. To address these problems,
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a non-parametric way, smoothed histograms in the YUV color space [64], has been

proposed. It learns the histograms from some labeled region and stored in 3D look-

up tables with smoothing. Then the value of p(xi|zi) is searched from the histogram

tables.

In the MRF model, p(Z) is used to enforce the Markov properties of the labels.

In the Bayesian view, the prior p(Z) does not depend on the observed data X. It is

assumed to be an Potts model, i.e.,

p(Z) = exp

(

∑
si∈S

∑
s j∈Ni

λ T (zi �= z j)

)
, (3.16)

where Ni is the neighborhood system of si, λ is a negative constant, and T (·) = 1 if

its argument is true and T (·) = 0 if false. In video segmentation, the neighborhood

system includes two parts, the spatial and temporal neighborhoods. The prior in the

spatial neighborhood system incorporates the spatial smoothness constraint, which

can reduce the effect of noise. The prior in the temporal neighborhood system is

used to incorporate the inter-frame information. In the case of binary class problem

(e.g., in foreground/background segmentation, zi ∈ {1,−1}), the prior p(Z) can be

transformed as an isotropic Ising model, i.e.,

p(Z) = exp

(

∑
si∈S

∑
s j∈Ni

λ ziz j

)
. (3.17)

As noted above, the prior p(X) does not depend on the observed data. But in the

applications of video segmentation, observed data-dependent prior is necessary. In

the part of spatial neighborhood system, the contrast information is incorporated by

modulating the prior according to the intensity gradients. In the temporal part, the

intensity difference is used to control the probability of si and s j having the same

label. Therefore, in video segmentation, the prior is expressed as

p(Z) = exp

(

∑
si∈S

∑
s j∈Ni

λ T (zi �= z j) · exp
(
−∆ 2

i, j/σ
)

)

, (3.18)

where ∆i, j is the intensity difference between si and s j and σ is a positive constant.

From the equation we can see that if si and s j have a larger intensity difference, then

they have a higher probability of being different labels.

Combining (3.14), (3.15), and (3.18), the posterior in MRF model is expressed as

p(X|Z) =
1

C
exp

(

∑
si∈S

log(p(xi|zi))+ ∑
si∈S

∑
s j∈Ni

λmT (zi �= z j)

)

, (3.19)

where C is the partition function and λm = λ exp(−∆ 2
i, j/σ).
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3.5.2 CRF Model

Compared with MRFs, the CRF model formulates the posterior p(Z|X) directly

instead of formulating the joint probability p(Z,X) via the likelihood p(X|Z) and

p(Z) by the Baye’s rule. Generally, the posterior in MRFs is written as,

p(Z|X) =
1

C
exp

(

∑
si∈S

ui(zi,X)+ ∑
si∈S

∑
s j∈Ni

vij(zi,z j,X)

)
, (3.20)

where C is the partition function, −ui and −vij are the unary and pairwise potential,

respectively.

Comparing (3.20) with (3.19), the definitions of unary potential and the pairwise

potential are different between MRFs and CRFs. In CRFs, the unary potential is a

function in the term of the whole observed data X, while in MRFs the unary potential

for si is a function in term of observed data at si due to the conditionally independent

assumption. Theoretically, in MRFs, the pairwise potential is a function of only

labels (actually a function of labels and the intensity difference in the applications

of video segmentation) while it is a function of labels and the whole observed data

X in CRFs.

Since the potentials are in term of the whole observed data in CRFs, they are

designed by using some arbitrary local discriminative classifiers. In discriminative

classifiers, it is important to select a good feature space. Compared with MRFs, the

CRF model selects more discriminative features besides colors, constant, and other

features used in MRFs. For example in [65], texture, location, and histogram of

oriented gradient (HOG) features are used for scene labeling. In [66], motion-shape

cues are used for bilayer video segmentation. The features of “motons” (related

to textons) are used for modeling the motion information in videos. A shape-filter

modeling long-range correlation is selected to describe the shape features. Actu-

ally, any fusion of discriminative features used in images can be selected in video

segmentation. The difference between the video and image applications is good

discriminative features describing the motion information, which may be used to

improve the video segmentation results.

The second important thing in the discriminative model is classifier selection. In

common, the classification algorithms build strong classifiers from a combination

of weak classifiers. The difference between these algorithms is the way that the

weak classifiers combine. In [66], the authors construct a tree cube taxonomy for

helping to select classification algorithms. Figure 3.13 is the tree cube taxonomy

of classifiers. The origin is the weak learner and the axes H, A, and B are three

basic ways of combining weak learners: hierarchically (H), by averaging (A), and

via boosting (B). Different strong classifiers, i.e., different combinations of weak

classifiers, correspond to different paths along the edges of the cube in Fig. 3.13.
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Fig. 3.13 The tree cube taxonomy of classifiers. The figure is taken from [66]

3.5.3 MRFs Vs. CRFs

This section summarizes some main differences between MRFs and CRFs.

Formulation: In MRFs, the posterior is proportioned to the joint probability using

the Baye’s rule, and the joint probability is modeled by defining the likelihood and

prior while CRFs model the posterior directly. In MRFs, the unary and pairwise

potentials are functions of observed data at individual site and only the labels,

respectively. While in CRFs, the unary and pairwise potentials are functions of the

whole observed data and labels.

Feature space: In MRFs, since the distributions of the observed data should be

modeled, low-dimension features, like color and motion, are used in common. While

in CRFs, more complex discriminative features would be selected to improve the

predictive performance.

Performance: Compared with CRFs, MRFs can handle data missing problem and

new class adding problem. While CRFs have better predictive performance since

CRFs model the posterior directly. On the other hand, since CRFs relax the assump-

tion of conditional independence of the observed data, they can incorporate global

information in the model.

Training data: MRFs can augment small number of expensive labeled data with

large number of unlabeled data while CRFs need much labeled data for training.

Data modeling: In MRFs, appropriate distributions need to be selected to model the

observed data. In CRFs, good classifier algorithms should be designed for learning

from labeled data.
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Model selection: At last, our question is which model should be selected in

applications. For the tasks of segmentation for video without prior knowledge,

like object cutout in video editing [63] and foreground segmentation in surveillance

[62], since there is no labeled data or a few interactively labeled data, the MRF

model would be selected in common. For the tasks of class labeling problem with

large quantities of labeled data, like scene detection in dynamic image sequences

[65], the CRF model is used commonly. Actually, the MRF and CRF formulations

used in the applications of video segmentation do not strictly comply with the defini-

tion of MRFs and CRFs. For instance, the pairwise potential in MRFs is the function

of not only the labels but also the intensity difference. In CRFs, the color features

are often incorporated in the model by adding the same likelihood term as in MRFs

(for example in [66]). This enforces the data independence assumption in CRFs.

3.6 Summary

In summary, this chapter overviews different technologies developed for each step

of the pipeline for semantic object segmentation and discusses major challenges at

different steps. In order to achieve good performance on semantic object segmen-

tation, local appearance, local consistency, and long-range contextual information

need to be considered together. To capture local appearance, filter-banks, visual de-

scriptors and their quantization schemes need to be well designed. They need to have

both high discriminative power and good invariance to noise, clutters, and changes

of illuminations and viewpoints. Because of the large number of image patches to be

processed during object segmentation, computational efficiency is also an important

issue to be considered. Conditional random fields provide a powerful framework to

integrate local appearance, local consistency and long-range contextual information.

However, it requires training data to be labeled at the pixel-level, which is expensive

for a large number of object classes. Topic models can learn the models of object

classes without supervision or with weak supervision. By including spatial struc-

tures, topic models are able to capture long-range contextual information as well as

local consistency. However, its capability of modeling local appearance is relatively

weak compared with discriminative approaches which use strong classifiers such as

SVM and Boosting to model local appearance. It is expected to achieve better per-

formance if the strengths of both generative models and discriminative models can

be well combined. For video segmentation, we compare two main statistical frame-

works, Markov random fields (MRFs) and conditional random fields (CRFs). The

generative approach, MRFs, models the observation data by selecting some condi-

tionally independent distributions. CRFs have better predictive performance since

in CRFs the assumption of conditional independency for the observation data is re-

laxed. But to achieve good enough results, a large number of labeled data should be

provided in CRFs. Actually in many real applications, the MRF and CRF model is

combined to obtain better results.
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Chapter 4

Video Scene Analysis: A Machine Learning

Perspective

Wen Gao, Yonghong Tian, Lingyu Duan, Jia Li, and Yuanning Li

Abstract With the increasing proliferation of digital video contents, learning-based

video scene analysis has proven to be an effective methodology for improving the

access and retrieval of large video collections. This chapter is devoted to present a

survey and tutorial on the research in this topic. We identify two major categories

of the state-of-the-art tasks based on their application setup and learning targets:

generic methods and genre-specific analysis techniques. For generic video scene

analysis problems, we discuss two kinds of learning models that aim at narrowing

down the semantic gap and the intention gap, two main research challenges in video

content analysis and retrieval. For genre-specific analysis problems, we take sports

video analysis and surveillance event detection as illustrating examples.

4.1 Introduction

With the increasing proliferation of digital video contents, efficient techniques for

analysis, indexing and retrieval of videos according to their contents become more

and more important. In general, the analysis of video sequences involves a wide

spectrum of techniques from low-level content analysis such as feature extraction,

structure analysis, object detection and tracking, to high-level semantic analysis

such as scene analysis, event detection, and video mining. There has been a lot of

progress made in each of the modules in the above pipeline. We refer the readers to

existing texts and reviews for video content analysis [11,26,60] for a comprehensive

treatment.

Scene analysis and understanding plays an important role in video content

analysis and semantic-based video retrieval, since a scene usually contains a collec-

tion of semantically related and temporally adjacent shots, depicting and conveying

a high-level concept or story that users are mostly interested in. In general, scene

understanding may involve, understanding the scene structure (e.g. pedestrian
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sidewalks, east-west roads), scene status (e.g. traffic jam, crowd), scene categories

or concepts (e.g. street, forest), scene motion patterns (e.g. vehicles making

u-turns, north–south traffic), etc. [66]. With the knowledge of scene structure,

categories, activities and motion patterns, low-level tracking and abnormal activity

detection can be improved and high-level event analysis and video retrieval can be

accomplished.

The usage of machine learning techniques has proven to be a robust methodology

for semantic scene analysis and understanding. The main characteristic of learning-

based approaches is their ability to adjust their internal structure according to input

and respective desired output data pairs in order to approximate the relations implicit

in the provided (training) data, thus elegantly simulating a reasoning process. Con-

sequently, learning methods constitute an appropriate solution for scene analysis

when the considered a-priori knowledge cannot be defined explicitly [53]. Vari-

ous learning techniques, such as Bayesian networks (BNs) [1], latent aspect models

[3, 40], linear discriminant analysis [45] and support vector machines (SVMs) [69],

are widely adopted to map data representations to semantic descriptions.

We devote this chapter to present a survey and tutorial on the problems and

solutions of video scene analysis, put in the perspectives of the learning com-

ponents and tasks. We identify two major categories of the state-of-the-art tasks

based on their application setup and learning targets: generic methods and genre-

specific analysis techniques. For generic video scene analysis problems, we discuss

two kinds of learning models that aim at narrowing down both semantic gap and

intention gap, two main research challenges in video content analysis and re-

trieval. For genre-specific analysis problems, we take sports video scene analysis

and surveillance event detection as illustrating examples. Clearly, our review of spe-

cific approaches is by no means complete, in part due to the rapid development in

the area.

Modeling scene semantics and learning them from video data are of interest to

numerous research areas, including multimedia retrieval, machine learning, pattern

recognition, computer vision, knowledge representation, and data mining. Problems

in this area provide synergies among these areas for the understanding of video

content. The underlying data processing and learning methodology used here are

very similar to those seen in many other domains such as text analysis and data

mining, but present new challenges such as cross-media correlation and temporal

indexing. Moreover, with the ubiquitous presence of video data in our lives, better

modeling and learning semantics of video scenes will enable better user experiences

and improve system design in closely related areas such as multimedia resource

management and retrieval.

4.2 Description of Scene Semantics

One of the main difficulties inherent in the video scene analysis is the richness of

semantic content interpretable within a scene. We take Fig. 4.1 as an example to

illustrate the complexity of scene semantics. A human observer can easily deduce
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Fig. 4.1 An example of the faceted representation of scene semantics

many semantic information only from this scene: four persons (a man, a woman

and two children) are waving in an assembly. With contextual knowledge, one

can further know this scene is about B. Obama with his wife and two daughters

when announcing his presidential campaign in Springfield, Illinois, USA. However,

the semantic descriptions that can be automatically inferred by a learning system

are very limited. For example, the scene might be categorized into “outdoor” or

“city” by image classification algorithms or annotated as “crowd, flag, building”

by automatic annotation models; the person in the scene might be recognized as

“B. Obama” by face recognition algorithms; we can also use object localization al-

gorithms to learn the spatial relationship of objects (e.g., B Obama Center-of the

picture); furthermore, high-level concept detection algorithms can be used to de-

tect activities (e.g., “waving”) or events (e.g., “assembly”). As shown in Fig. 4.1,

these semantics can be summarized along the four aspects–which (semantic types or

categories), what (objects or scenes), where (spatial relationships), and how (actions,

activities or events):

1. Which – Semantic Types and Categories: The which facet typically refers to

semantic types or categories of scenes. Given a taxonomy, this facet helps an-

swer the question: which type or category is the scene? Description of scene

semantics using the which facet is very general, but prove to be of great impor-

tance for either organizing unseen images/scenes into broad categories, or for

semantic-based retrieval from large-scale collections.

2. What – Objects and Scenes: The what facet describes the objects and scenes in an

image/video. It answers the question what is the subject (object/scene, etc.) in it?

Extracting the what facets from scenes covers a wide range of visual learning
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tasks. Typically, the generic what description of a scene can be extracted by

automatic annotation, while the specific description can be produced by object

detection and recognition such as face recognition.

3. Where – Spatial Relationships: The where facet often refers to the locations of

objects or spatial relationships between objects in an image/video. It is the answer

to the questions where is the object in a scene?or where the objects are placed

relative to each other? The problem of extracting this where facet is challenging

because objects of the same type may appear in different locations, scales, or un-

der occlusions and deformations. Nevertheless, the localization of objects can

then be used to address a range of tasks, including descriptive classification,

search, and clustering.

4. How – Actions, Activities, and Events: The how facet characterizes high-level

abstract concepts that are expressed in images/videos. It answers the question

how about the subject in the scene? or what is happening in this scene? In gen-

eral, the how facet can be extracted by different high-level concept detection

algorithms, depending on the data available and the target decision. We often

need to elaborately design a detection algorithm with the specific feature repre-

sentation for each of the actions, activities, and events.

Characterization of scene semantics is the basis for setting up learning problems

and defines goals of such systems. Such a faceted representation of scene semantics

can be used to clarify assumptions and targets in learning tasks, because these facets

are key attributes that are sufficient and necessary to summarize the semantic content

of a scene, and also because it is possible to extract them from images or videos by

using machine learning techniques.

4.3 Generic Techniques for Video Scene Analysis

This section will discuss the main challenges for research on video scene analysis,

and then present two representative works on learning-based video scene analysis,

one for bridging the semantic gap with automatic annotation while the other for

capturing user’s visual attention patterns with visual saliency learning.

4.3.1 Research Challenges

The learning problems for video scene analysis exhibit a large variability. Gener-

ally speaking, the problems are essentially influenced by the properties of the target

semantics, constrained by the availability of data, and directed by the goals of the in-

tended tasks and applications. Figure 4.2 summarizes two main research challenges

in video content analysis and retrieval, which should been addressed in the learning

problems for video scene analysis.
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Fig. 4.2 An illustration of two research challenges in video content analysis and retrieval

Generally speaking, the main challenge of video content analysis is understanding

media by bridging the semantic gap between the bit stream on the one hand and the

visual content interpretation by humans on the other. Clearly, the semantic gap is a

fundamental problem in multimedia analysis and indexing that almost all research

papers in the field must address [50]. As a computational problem, the semantic gap

is tightly related to the modeling and analysis of video scenes. As pointed out by

Hare et al. [14], the semantic gap can be further divided into two major sections:

the gap between the low-level descriptors and object labels, and the gap between

the labeled objects and the full semantics. For reasons that will become clear later,

we refer to them respectively as the which–what gap and the where–how gap. It is

should be noted that although expressed by the two designations, the full connota-

tions of the two sections of the semantic gap are much broader. In Sect. 4.3.2, we

will present a general framework for capturing various facets of scene semantics by

taking into account both temporal and spatial contexts.

Another research challenge that has received much attention of research in the

multimedia retrieval field is a gap between users’ search intents and the queries,

called intention gap [67]. Due to the incapability of keyword queries to express

users’ intents, intention gap often leads to unsatisfying search results. Despite origi-

nated from multimedia retrieval, this gap may exist in a boarder range of multimedia

applications such as user-targeted video advertising and content-based filtering. For

example, a less intrusive model of advertising is only displaying advertising infor-

mation when the user makes the choice by clicking on an object in a video. Since

it is the user who requests the product information, this type of advertising is better

targeted and likely to be more effective. By learning user’s visual attention patterns,

the hot-spots that correspond to brands can be further highlighted so as to extract

more attention of users.

Often, visual attention is operationalized as a selection mechanism to filter out

unwanted information in a scene [21]. By focusing on the attractive region, a scene

can be analyzed in a user-targeted manner. Generally, determining which region will
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capture attention requires finding the value, location, and extent of the most salient

subset of the input visual stimuli. Typically, saliency reveals the probability that a

location is salient and involves the stimulus-driven (i.e., bottom-up) and task-related

(i.e., top-down) components in human vision system. In Sect. 4.3.3, we will present

two rank learning approaches for visual saliency estimation in video.

4.3.2 Video Annotation with Sequence Multilabeling

In recent years, various supervised learning methods (e.g. support vector machines

[8, 65], graphical models [41] and multi-modality fusion methods [27, 51]) are

employed to find out the informative feature patterns to detect concepts within

video data. However, due to the well-known semantic gap, video annotation

methods purely relying on low-level features only couldn’t achieve the desirable

performance.

Video data are by nature rich in spatial and temporal context that could be use-

ful to facilitate annotation. Generally speaking, semantic concepts may have spatial

correlations within a shot and temporal consistencies between consecutive shots.

That is, several concepts may co-occur within a shot due to the spatial correlation,

and a concept could be persistent across several neighboring shots due to the tem-

poral consistency. Taking an example in Fig. 4.3, street and building co-occur in

shott and shott+1, while car is present in three consecutive shots. Moreover, it is

noted that two distinct concepts may correlate with each other between shots. This

Fig. 4.3 Illustration of video annotation with multilabels. For a shot sequence, concepts present

in neighboring shots exhibit several contextual relationships. Note that here both temporal con-

sistency of a concept and temporal dependency between concepts across neighboring shots are

referred to as temporal correlation
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contextual relationship can be denoted as temporal dependency. In Fig. 4.3, when

car is present in shott−1, street would probably be detected in next two shots. In

this section, such interaction of concepts within the same shot is referred to spatial

correlation; the temporal consistency of a concept and the temporal dependency be-

tween distinct concepts are jointly referred to as temporal correlation. Both spatial

and temporal correlations of concepts will be exploited to facilitate video annotation

in our proposed sequence multilabeling framework.

In this section, video annotation is formulated as a sequence multilabeling (SML

for short) problem, where a sequence of multilabels is predicted simultaneously

for a set of consecutive video shots given a list of predefined concepts. This is

different from most existing video annotation paradigms working on individual

shots. SML provides a unified video annotation framework to incorporate spatial

and temporal context. Accordingly, learning algorithms seek to capture informative

features and contextual correlations of concepts so as to facilitate video annotation.

To address the SML problem, a novel discriminative method, called sequence mul-

tilabel support vector machine (SVMSML for short), is proposed. In SVMSML, a

joint kernel is employed to model three relationships (i.e., dependencies of labels

on low-level overlapping features, spatial and temporal correlations of labels). Ex-

periments on TRECVID’05 and TRECVID’07 datasets have shown that SVMSML

gains superior performance over state-of-the-art methods.

4.3.2.1 Previous Work

Video annotation is traditionally formulated as a multilabeling problem over indi-

vidual shots, which is referred to individual multilabeling (IML) in this section. IML

treats video shots as independent instances, where either multiple concept detectors

[52, 65] or a multilabel classifier [48] are learned at the shot level. By exploiting

spatial correlations of concepts within individual shots (as shown in Fig. 4.4a),

many research efforts have been devoted to enhance the performance of IML. Smith

et al. [51] propose a two-stage discriminative fusion method to explore the concept

correlation within a shot. Alternatively, graphical methods (e.g., Bayesian network

[41, 42], conditional random fields [26, 63] and graph diffusion [27]) have been

employed to model the spatial correlations and to refine the annotation results.

In addition, re-ranking approaches [17, 28, 43] have attracted much attention. For

example, Kennedy et al. [28] use random walk to exploit the contextual correlation

Fig. 4.4 Three paradigms of video annotation
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of features. Recently, Qi et al. [48] employ a multilabel classifier to build up a cor-

relative multilabeling (CML) framework. CML employs the concept correlations

within individual shots and annotates shots with multiple concepts simultaneously.

Overall, these works detect concepts within individual shots independently. In a

sense, they can be considered as a sort of direct extension of image annotation

methods to video domain, with much less temporal context taken into account.

As video is temporally informative, researches attempt to utilize temporal infor-

mation to enhance video annotation. Generally speaking, video annotation methods

over sequential shots can be categorized into three types. The first type is to model

the temporal pattern of low-level features. For example, hidden Markov model

(HMM) is employed by Xie et al. [59] to model the temporal dynamics of low-level

features (e.g. color and motion) for specific video event detections. Qi et al. [48]

introduce a temporal kernel into CML to model the similarity between sequences

of low-level feature. In these works, the temporal dynamic in low-level feature is

employed to improve specific concept detectors whereas higher-level temporal cor-

relations of concepts are ignored.

The second type is to perform temporal refinement over IML (IML-T), in which

concepts are first annotated over individual shots followed by the refinement with

temporal consistency (as shown in Fig. 4.4b). For example, Yang et al. [64] and Liu

et al. [35] incorporate temporal consistency into active learning to detect multiple

video concepts. Weng et al. [58] and Liu et al. [36] propose several fusion methods

to refine the annotation results of individual shots, where spatial correlations and

temporal consistencies of concepts are modeled by association rules and temporal

filtering respectively. Higher-order temporal consistency of concept is also explored

in [58]. In these methods, the outputs of each concept detector across consecutive

shots are smoothed to keep temporal consistency. However, the pairwise interactions

of distinct concepts across consecutive shots are ignored basically. Despite more or

less improvements, these methods are weak for unstable performance.

The third type is to model the spatial and temporal context of concepts tempo-

rally. Besides the dynamics of low-level features, spatial and temporal contexts of

higher-level concepts would be useful to assist event/action detection [9, 57]. How-

ever, there are few generic approaches in enhancing video annotation with spatial

and temporal correlations of concepts. Naphade et al. [41] try to integrate spatial

co-occurrence and temporal dependency of concepts into a probabilistic Bayesian

network so that the pair-wise relationships of concepts from one frame (or shot) and

between two adjacent frames (or shots) can be modeled. Alternatively, in this sec-

tion, video annotation is formulated as a sort of sequence multilabeling and solved

with a unified learning framework to capture both spatial and temporal correla-

tions of semantic concepts (as shown in Fig. 4.4c). Compared with IML-T methods,

SVMSML learns both SML score function and the contributions of multiple cues

(i.e., distinct low-level features, spatial and temporal correlations of concept labels)

in one single stage over the same training dataset. SVMSML do not require any initial

annotation and has greatly alleviated the problem of error propagation. Also learn-

ing the SML score function as well as spatial and temporal context over the same

training data avoids additional efforts on data collection and labeling. Compared
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with [41], SVMSML is a kernel-based method where the spatial correlation, the first

and the second order temporal correlations are modeled within a joint kernel. More-

over, multimodal features and temporal dynamics of the low-level feature can be

integrated into SVMSML in the manner of basic kernels.

4.3.2.2 SML Formulation for Video Annotation

Let x = (x1, . . . ,xt , . . . ,xT ) ∈ χ denote the sequence of input features (i.e. visual/

audio/text features) extracted from a video clip consisting of T shots, where χ
is the input feature space. The output sequence of multilabels is expressed by

y = (y1
, . . . ,yt

, . . . ,yT ) ∈ κ , where yT ∈ ν . Here ν and κ are the output spaces

of individual shot and shot sequence, respectively. Let C = (c1, . . . ,cm, . . . ,cM)
represent the lexicon of M semantic concepts. Each entry (i.e. the multilabel

of an elementary shot) of the output multilabel sequence can be expressed by

an M dimensional label vector yt = (yt
1, . . . ,y

t
m, . . . ,yt

M)′, where yt
m ∈ {1,0}

indicates whether concept cm is present in the tth shot. Accordingly, L =
{(x1,y1), . . . ,(xi,yi), . . . ,(xN ,yN)} denotes the training set consisting of N

sequences.

Given the training set L, SML aims to learn an optimal mapping from a sequence

of input features to a sequence of output multilabels. For an unknown shot sequence

x, the sequence of output multilabels can be predicted as:

y∗ = (y1∗
, . . . ,yt∗

, . . . ,yT∗)

= arg max
(y1,...,yT )∈κ

F(x1
, . . . ,xt

, . . . ,xT
,y1

, . . . ,yt
, . . . ,yT ), (4.1)

where F(·) is SML score function over the input feature sequence and the output

multilabel sequence. SML predicts the annotation of the shot sequence by maximiz-

ing the score function F(·) over all candidate multilabel sequences. As shown in

Fig. 4.4c, different types of spatial and temporal contexts in the shot sequence can

be also incorporated with the prediction.

SML is a generalized formulation for video annotation. That is, IML and IML-T

can be viewed as two special cases of SML. When all video shots are assumed to be

independent with each other, SML reduces to IML:

y∗ = (y1∗
, . . . ,yt∗

, . . . ,yT∗), where yt∗ = argmax
yt∈ν

F(xt
,yt). (4.2)

In IML, detection of one concept only depends on low-level features and other con-

cepts within current shot.

IML-T is a two-step optimization process which improves the initial annotation

results of IML by:

yt∗ = argmax
yt∈ν

ϕ
(

y(t−w)′
, . . . ,y(t−1)′

,yt′
,y(t+1)′

, . . . ,y(t+w)′
)

where yt′ = argmax
yt∈ν

F(xt
,yt). (4.3)
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In (4.3), w corresponds to the neighborhood size of current shot and ϕ
characterizes the temporal consistencies of individual concepts within the neighbor-

hood (as shown in Fig. 4.4b). IML-T improves the initial detection of one concept

in current shot by smoothing the annotation results within the neighborhood.

We can further explain their differences from the optimization perspective. Given

a sequence of correlated shots (e.g. a scene), IML-based approaches can provide lo-

cal optimal annotation results within each shot; IML-T based approaches improve

the IML results by temporal consistency within neighboring shots; while SML-

based approaches can effectively find out the near-optimal annotation in the sense

of shot sequence.

4.3.2.3 SVMSML: A Discriminative Method for SML

SML is to predict output that is not simple binary label, but instead has a more

complex sequential multilabel structure. By appropriately modeling multiple rela-

tionships (i.e., the dependencies of labels on overlapping low-level features, spatial

and temporal correlation of labels), we extend a machine learning method called

structure SVM (SVMstruct) [55] and propose SVMSML to learn a structured score

function which can make better use of the available training data. Similar to other

structure SVMs, SVMSML learns a discriminative score function F : χ × κ → R

over input/output pairs. In SVMSML framework, the multilabel sequence is then

predicted by (4.1), which maximizes the response score of F over the output space

κ for a given input x. The proposed SML score function is linear in combining the

joint feature representation Φ(x,y):

F(x,y;w) = 〈w,Φ(x,y)〉, (4.4)

w is a vector of linear combination weights, which will be optimized by solving the

dual problem of SVMSML; Φ(x,y) is a joint feature representation w.r.t. input and

output pair. As a variant of SVM, SVMSML employs kernel function to compute

the inner product in the joint feature space. Accordingly, we can explicitly define

a similarity measure between two shot sequences and implicitly map original fea-

ture space to a high dimensional feature space, thereby avoiding explicit feature

representation of Φ(x,y) and the curse of dimension [2]. SVMSML holds some ba-

sic advantages, in particular the generalization abilities that have been theoretically

guaranteed by margin-maximization property of the learning algorithm [4].

Figure 4.5 illustrates the framework of our approach. At the training phase, low-

level multimodal features (e.g. visual features such as color, texture and shape, text

features from ASR/OCR transcripts, or audio features) and the multilabel sequences

from training shot sequences are fed into a joint kernel. This joint kernel models

the dependencies of labels on overlapping low-level features, spatial correlations

of labels within a shot, as well as temporal correlations of labels from consecu-

tive shots in a linear combination of kernels. SVMSML is learnt by a working set

optimization method, where kernel weights of the joint kernel are simultaneously
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Fig. 4.5 The sequence multilabeling framework for video annotation

Table 4.1 Experimental

results of SVMSML and

several state-of-the-art

methods

Annotation Concept

Dataset method number MAP

TRECVID’05 CML [48] 39 0.2901

CML-T [48] 0.3325

GD [27] 0.1858

SVMSML 0.5065

CRF [25] 26 0.5001

SVMSML 0.5573

TRECVID’07 OWA [31] 20 0.1320

MLMK [65] 0.3325

SVMSML 0.3147

optimized by a MKL-based learning algorithm. At the testing phase, one multilabel

sequence is predicted by the learnt SML score function for the testing shot sequence.

During the training and testing phases, a BMRF-based approximate method is em-

ployed to accelerate the search process over the large output space of multilabel

sequence. Finally, testing shots can be ranked by their relevance scores to a given

query concept. It is worthy to note that such framework can work at the finer gran-

ularities (e.g., sub-shots or sampled frames with equal interval). Without loss of

generality, shot sequences are studied here.

In Table 4.1, performance of SVMSML is evaluated with Mean Average Precision

(MAP) over TRECVID’05 and TRECVID’07 datasets. It is shown that SVMSML

gains superior performance over several state-of-the-art methods [25,26,31,48,65].

4.3.3 Visual Saliency Estimation Using Rank Learning

In this section we demonstrate the usage of machine learning approaches in visual

saliency estimation. We begin by introducing the concept and problems in visual
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saliency estimation, followed by a brief review of related works. After that, we

discuss two specific methods that estimate visual saliency by using the rank learning

approaches.

4.3.3.1 What Is Visual Saliency Estimation?

In natural scenes, the complexity of the input visual stimuli usually exceeds the

processing capacity of human vision system. As a consequence, the important vi-

sual subsets will be selected and processed with higher priorities. In this selective

mechanism, visual saliency often plays an essential role in determining which subset

(e.g., pixel, block, region or object) in a scene is important. Therefore, the central

task in visual saliency estimation is to rank various visual subsets in a scene to indi-

cate their importance and processing priorities.

Typically, saliency involves the stimulus-driven (i.e., bottom-up) and task-related

(i.e., top-down) components in human vision system. The bottom-up component

comprises of the low-level processes and is driven by the intrinsic attributes of the

stimuli. In contrast, the top-down component involves the high-level processes in

which the deployment of attention can be modulated by task, consequently demon-

strating a biased selectivity on the input stimuli [21]. Therefore, visual attention

analysis requires modeling visual saliency by simultaneously taking the bottom-up

and top-down factors into account.

4.3.3.2 Previous Work

Typically, most of existing bottom-up saliency models select the unique or rare

subsets in a scene as the salient regions. Generally speaking, these approaches

were guided by the Feature Integration Theory [54], which posited that differ-

ent features can be bound into consciously experienced wholes for visual saliency

estimation. For example, Itti et al. [24] proposed a set of preattentive features in-

cluding center-surround intensity, color, and direction contrasts. These contrasts

were then integrated to compute image saliency through the winner-take-all compe-

tition. In [19], this framework was extended to video saliency by introducing motion

and flicker contrasts. Using the same features, Itti and Baldi [20] recovered video

saliency as “surprise” by combining spatial contrast and temporal evolution. Walther

and Koch [56] extended the framework in [24] to salient “proto-objects,” which were

described as volatile, bottom-up units that could be bound into objects if attended to.

Similarly, Hu et al. [18] assigned high saliency to the image block with high texture

contrast.

Different from these contrast-based approaches, Bruce and Tsotsos [5] estab-

lished a bottom-up model based on the principle of maximizing information sam-

pled from a scene. In [68], video saliency was computed according to the motion

irregularity derived from inter-frame key points matching. Harel et al. [15] built a

graphical model to compute image saliency. A random walker was adopted on the
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graph and the less-visited nodes (pixels) were selected as “salient”. Using spectrum

analysis, Hou and Zhang [16] computed image saliency by extracting spectral resid-

uals in the amplitude spectrum of Fourier Transform, and Guo et al. [13] modeled

video saliency as a sort of inconsistency in the phase spectrum of Quaternion

Fourier Transform. Alternatively, Marat et al. [38] presented a biology-inspired

spatiotemporal saliency model. The model extracted two signals from video stream

corresponding to the two main outputs of the retina. Both signals were then trans-

formed and fused into a spatiotemporal saliency map.

From the phenomenological perspective, the bottom-up approaches estimate

visual saliency mainly based on the visual stimuli. However, the task which in-

volves an act of “will” on the probable salient targets also plays an important role.

Biological evidences show that the neurons linked with various stimuli undergo a

mutual competition to generate the bottom-up saliency, while the task can bias such

competition in favor of a specific category of stimuli [10]. For example, Peters and

Itti [46] showed that when performing different tasks in video games, individual’s

attention could be predicted by respective task-relevant models. In these processes,

the adopted tasks worked as different top-down controls to modulate the bottom-

up process. In real-world scenes, however, it is difficult to explicitly predefine such

tasks. Instead, some approaches such as [18] and [32] treated the top-down control

as the priors to segment images before the bottom-up saliency estimation. In their

works, an image was first partitioned into regions, and the regional saliency was

then estimated by regional difference. Other works, such as [6] and [37], introduced

the top-down factors into the classical bottom-up framework by extracting semantic

clues (e.g., face, speech and music, camera motion). These approaches could pro-

vide impressive results but relied on the performance of image segmentation and

semantic clue extraction.

Recently, machine learning approaches have been introduced in modeling visual

saliency to learn the top-down control from recorded eye-fixations or labeled salient

regions. Typically, the top-down control works as a “stimulus-saliency” function

to select, re-weight and integrate the input visual stimuli. For example, Itti and

Koch [23] proposed a supervised approach to learn the optimal weights for feature

combination, while Peters and Itti [47] presented an approach to learn the projection

matrix between global scene characteristics and eye density maps. Navalpakkam

and Itti [44] modeled the top-down gain optimization as maximizing the signal-

to-noise ratio (SNR). That is, they learned linear weights for feature combination

by maximizing the ratio between target saliency and distractor saliency. Besides

learning the explicit fusion functions, Kienzle et al. [29] proposed a nonparametric

approach to learn a visual saliency model from human eye-fixations on images.

A support vector machine (SVM) was trained to determine the saliency using the

local intensities. For video, Kienzle et al. [30] presented an approach to learn a

set of temporal filters from eye-fixations to find the interesting locations. On the

regional saliency dataset, Liu et al. [33] proposed a set of novel features and adopted

a conditional random field (CRF) to combine these features for salient object de-

tection. After that, they extended the approach to detect salient object sequences in

video [34].
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To sum up, it is highly useful to incorporate the learning-based top-down control

into the visual saliency model. In the remainder of this section, we will discuss two

specific methods that estimate visual saliency by using the rank learning approaches.

4.3.3.3 Cost-Sensitive Rank Learning for Visual Saliency

Estimation in Video

In learning-based visual saliency estimation, the users’ eye traces are usually ob-

tained to construct the ground-truth training data. That is, the eye traces can reveal

whether certain locations are salient enough to attract human visual attention.

However, these eye traces can only provide sparse positive samples in video data

since each video frame can be displayed with quite a short time. Consequently, only

a few locations in a video scene can be labeled by eye fixations as positive, while

most of other locations in the scene remain unlabeled (as shown in Fig. 4.6a). These

unlabeled data may contain many positive samples so that it is improper to treat all

of them as negative samples or randomly select negative samples from them.

To solve this problem, we propose a cost-sensitive rank learning approach on pos-

itive and unlabeled data for visual saliency estimation. In our approach, we avoid

Fig. 4.6 Generating ground-truth saliency from sparse positive samples. (a) Sparse positive

samples (i.e., the eye fixations); (b) the visual similarity map; (c) the spatial correlation map;

(d) the derived ground-truth map
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the explicit extraction of positive and negative samples by directly integrating both

the positive and unlabeled data into the optimization objective in a cost-sensitive

manner. In this process, we first recover the ground-truth saliency maps from the

limited eye fixations received by each frame. The basic principle is that visual sub-

sets that are adjacent and similar to the eye fixations should be assigned with high

saliency values. Toward this end, the visual similarity map is calculated to pop-out

the locations that are similar to the positive samples (as shown in Fig. 4.6b), while

the spatial correlation map is derived to pop-out the neighbors of the eye fixations (as

shown in Fig. 4.6c). Finally, the visual similarity map and the spatial correlation map

are combined to derive the ground-truth saliency map (as shown in Fig. 4.6d). For

the sake of convenience, the ground-truth saliency values are normalized into [0,1].
With the ground-truth saliency values, we train a ranking function ϕ(x) = ωT x

that can integrate various local visual attributes (represented by a column vector x)

for visual saliency estimation. For two locations Bkm and Bkn with ground-truth

saliency values gkm and gkn,ϕ(xkm) > ϕ(xkn), indicates that Bkm ranks higher than

Bkn and maintains a higher saliency. In the training process, it is often difficult to

directly determine the label for each training sample, especially for the one with

medium ground-truth saliency (e.g., around 0.5). Therefore, we integrate all the pos-

itive and unlabeled data into a rank learning framework in a cost-sensitive manner.

Toward this end, the empirical loss can be defined as:

L(ω) = ∑
k

∑
m�=n

[gkm −gkn]+
[

ωT xkm ≤ ωT xkn

]

1
(4.5)

Where[x]+ = max(0,x). Note that here [E]1 = 1 if event E holds, otherwise [E]1 = 0.

We can see that there will be a loss if the ranking function gives predictions contrary

to the ground-truth saliencies. Moreover, the loss emphasizes the correlations be-

tween targets and distractors since the central issue in visual saliency estimation is to

distinguish targets from distractors. That is, the cost of erroneously ranking a target-

distractor pair (i.e., gkm−gkn → 1) is much bigger than that of mistakenly predicting

the ranks between target pairs or between distractor pairs (i.e., gkm−gkm→ 0). Thus

it is cost-sensitive by differentiating target-distractor pairs in our framework.

Often, it is difficult to minimize such a loss with binary terms. Thus we sim-

ply replace each binary term with its upper bound (e.g., exponential upper bound)

and obtain a convex optimization objective. After that, the global optimum can

be reached using gradient-based method and we can obtain the optimal ranking

function.

Experimental results show that our approach outperforms several state-of-the-art

bottom-up (e.g., [13, 15, 16, 19, 20, 24, 68]) and top-down (e.g., [29, 44, 46]) ap-

proaches in visual saliency estimation. On the prevalent video eye-fixation dataset

provided by Itti [22], our approach can reach an ROC score of 0.774. Some rep-

resentative examples are illustrated in Fig. 4.7. From Fig. 4.7, we can see that our

approach can effectively and accurately locate the entire salient objects in various

scenes.
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Fig. 4.7 Some representative results. Note that here the eye density maps are not convolved with

a Gaussian kernel, which is a popular method to recover more positive samples for the evaluation.

(a) Original frames; (b) eye fixation maps; (c) [24]; (d) [19]; (e) [20]; (f) [16]; (g) [13]; (h) [15];

(i) [68]; (j) [46]; (k) [29]; (l) [44]; (m) our approach

Fig. 4.8 Targets and distractors in different scenes can be best distinguished by different features.

(a),(b) the “motion” feature; (c),(d) the “color” feature

4.3.3.4 Multi-Task Rank Learning for Visual Saliency Estimation in Video

Generally speaking, a unified ranking function derived with the proposed approach

can obtain impressive results in some cases but meanwhile may suffer poor per-

formance in other cases since they often construct a unified model for all scenes.

Actually, the features that can best distinguish targets from distractors may vary

remarkably in different scenes. In surveillance video, for instance, the motion fea-

tures can be used to efficiently pop-out a car or a walking person (as shown in

Fig. 4.8a, b); while to distinguish a red apple/flower from its surroundings, color

contrasts should be used (as shown in Fig. 4.8c, d). In most cases, it is infeasible to

pop-out the targets and suppress the distractors by using a fixed set of visual fea-

tures. Therefore, it is necessary to construct scene-specific models that adaptively

adopt different solutions for different scene categories.

Toward this end, we propose a multi-task rank learning approach for visual

saliency estimation. In this approach, visual saliency estimation is also formulated

as a pair-wise rank learning problem. However, this approach constructs multiple

visual saliency models, each for a scene cluster, by learning and integrating the fea-

tures that best distinguish targets from distractors in that cluster. We also propose
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Fig. 4.9 The framework of our approach. In our approach, scenes with similar contents are

grouped into the same cluster. For each cluster, a ranking function is optimized to give ranks for all

subsets in a scene, while these estimated ranks are expected to approximate the ground-truth ranks

a multi-task learning algorithm to infer multiple saliency models simultaneously.

Different from the traditional single-task learning approach, the multi-task learning

approach can carry out multiple training tasks simultaneously with fewer training

data per task. In this framework, the appropriate sharing of information across train-

ing tasks can be used to effectively improve the performance of each model.

The system framework of this approach is illustrated in Fig. 4.9. In this frame-

work, the training scenes are grouped into M clusters and a ranking function is

optimized for each cluster. Here the ranking function is optimized as in the pre-

vious approach (i.e., the same pair-wise losses, the same optimization strategies).

However, several penalty terms are added into the optimization process to improve

the performance of each of the M ranking functions, especially for the general-

ization ability. These penalty terms mainly consist of scene clustering penalty (to

group scenes with similar contents into the same cluster), model diversity penalty

(to improve the generalization ability of each ranking function), and model complex-

ity penalty (to avoid over-complex model). By introducing these penalty terms, the

training process can optimize M ranking functions simultaneously with an appropri-

ate sharing of information across them. Therefore, the performance of this approach

is much better than the other approaches (e.g., [13, 15, 16, 19, 20, 24, 30, 44, 46, 68])

and can reach a ROC score of 0.811 on the video eye-fixation dataset [22]. Some

representative examples are illustrated in Fig. 4.10. From Fig. 4.10, we can see that

our approach can adapt to various scenes and demonstrates a higher accuracy in

locating the most salient targets.
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Fig. 4.10 Some representative results of visual saliency models. (a) Original scenes; (b) Ground-

truth saliency maps; (c) [24]; (d) [19]; (e) [20]; (f) [68]; (g) [15]; (h) [16]; (i) [13]; (j) [30]; (k) [44];

(l) [46]; (m) MTRL

4.4 Content Analysis for Genre-Specific Video

In this section, we will present two representative content analysis works in two

types of video, i.e., sports video and surveillance video.

4.4.1 Sports Video Scene Analysis

Various innovative and original works have been applied and proposed in the field of

sports video analysis. However, individual works focused on sophisticated method-

ologies with particular sport types and there was a lack of scalable and holistic

framework in this field. This section presents a solution for this issue and presents

a systematic and generic approach which is experimented on relatively large-scale

sports consortia.

4.4.1.1 A Generic Framework for Sports Video Analysis

A system overview from a holistic aspect is illustrated in Fig. 4.11, such that the

input sports video is analyzed systematically using a generic and sequential frame-

work. This is interpreted such that the result from a preceding process is input to the

next process with a consistent and coherent fashion. The highlights of this frame-

work include:

1. A generic foundation using domain-knowledge free local feature is developed to

represent input sports videos. This method would fit the general framework in

sports video analysis and provides an alternative solution to alleviate generality,

scalability, and extension issues.
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Fig. 4.11 A flowchart of the proposed generic framework, with one module of generic video

representation and three task modules in sequence

2. A thorough and systematic structure starting from genre identification is

presented, which was ignored in some related works by assuming the genre

type as the prior knowledge.

3. A general platform is introduced, with one module of generic video representa-

tion and three task modules in sequence.

At the module 0, the low-level local feature utilization incorporating with the

codebook generation and the BoW model provides an expandable groundwork for

the semantic tasks of genre categorization, view classification and high-level event

detection. In this structure, a homogenous process is first introduced for extracting

domain-knowledge independent local descriptors. A BoW model is used to rep-

resent an input video by mapping its local descriptors to a codebook, which is

generated from an innovative bottom-up parallel structure. The histogram based

video representation is treated as sole input (no other feature models) to both the

genre categorization and the view classification modules. Such a concise repre-

sentation built from the BoW model benefits users in homogenously extract visual

features and represent videos in a compact and collective form.

At the first module, the videos are categorized by its genre. Video genre nomen-

clature is used to describe the video type, which is defined as the highest level of

granularity in video content representation. Since the video genre categorization

task directly relies on low-level features, the proposed feature extraction of target

video sequence is used in categorization. In large-scale videos, a successful iden-

tification of the genre serves as the first step before attempting higher level tasks.

For instance, in sports event detection, an unknown “shooting” event is the target
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quest, which could be from the ball game or the shooting sport. By indiscriminately

treating the entire dataset, this event will be searched through all types of sports.

However, since sports like figure-skating and swimming have no “shooting” at all,

the effort in searching this event at those non-relevant sports becomes infeasible.

Instead of treating all data indifferently, a more efficient approach is to identify the

genre of the query video first, and then deploy middle/high-level tasks consequently.

In the middle-level and the second module, semantic view types are classified us-

ing an unsupervised PLSA learning method to provide labels for input video frames.

View describes an individual video frame by abstracting its overall content. It is

treated as a bridge between low-level visual features and high-level semantic un-

derstanding. In addition, unsupervised learning saves a massive amount of human

effort in processing large-scale data. Moreover, the supervised methods can also be

implemented upon our proposed platform. Therefore, a SVM model is executed as

the baseline for the comparison purpose.

Finally at the third module, a structured prediction HCRF model using labeled

inputs is a natural fit to the system in detecting semantic events. This can be justified

by the fact that a video event occupies various lengths along the temporal dimension.

Thus, the state event model-based HCRF is suitable to deploy. Less comprehensive

baseline methods such as the hidden Markov model and the conditional random

field can also be applied in this platform.

4.4.1.2 High-Level Event Detection for Sports Video

Content-based video event detection is among the most popular quest for the high

level semantic analysis. Different from video abstraction and summarization which

target on any interesting events happening in a video rush, event detection is only

constrained to a pre-defined request type, such as the third goal or the second penalty

kick in a particular soccer match. In sports video, a consumers interest of events re-

sides in the actual video contents, more than just the information delivered. On the

other hand, sports videos also have a very strongly correlated temporal structure.

In a way, such the structure can be interpreted as a sequence of video frames which

have patterns and internal connections. This pattern existence is ubiquitous due to

the nature of the sports, a competition where players learn from the standard in or-

der to excel. Therefore, an intuitive approach is to find such patterns using certain

representation and learn the temporal structure. Luckily, the PLSA approach pro-

vides such a labeled frame sequence and what we need is a clever technique on

which portion of the video to analyze and what robust structured prediction model

to use. Following, we will introduce a coarse-to-fine scheme and hidden conditional

random field (HCRF) for event detection.

Before learning the tempo and patterns, a starting and entry point of an event

needs to be seized. A two-stage coarse-to-fine event detection strategy is suitable

for this scenario. The first stage is a rough event recognition and localization utiliz-

ing rich and accurate text-based information either from web-casting text or optical

character recognition (OCR) techniques of the score-board update. In the second
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stage, precise video contents associated to the semantic event have been detected

in terms of the event boundary detection and accuracy analysis. For example, Web-

casting text for coarse stage event detection and video alignment was studied and

analyzed such as replay scenes and various goal and shot scenes detection in soccer

video [7, 61].

Since the proposed framework targets on the generic learning model that can

be extended to large-scale, we propose a HCRF based structured prediction model

utilizing previously classified views, and completing the generic approach. For ex-

ample, the HCRF model can be used to detect the score event in basketball for

exciting events and highlights. Such a HCRF technique belongs to the state event

model defined in the related works. Therefore, the HCRF takes the labeled se-

quences as input in a natural and seamless fashion. On the other hand, the HCRF is

a comprehensive model, which can be degraded to hidden Markov models (HMM)

or conditional random fields (CRF) with certain constraints. The merits of HCRF

comparing the other two models are its resilience and robustness with combination

of both the hidden states and the Markov property relaxation.

There are several advantages of using the HCRF in large-scale datasets than

HMM or CRF models. Firstly, HCRF relaxes the Markov property, which assumes

that the future state only depends on the current state. In our generic framework,

video frames are uniformly decimated and sampled, regardless of the temporal pace

of video itself. In some cases, several consecutive frames have the same labeling

while in other cases, different labels are assigned. Markov property based model

such as HMM is appropriate for the former scenarios but not suitable for the latter

ones, since the future state in HMM only cares about the current state label but not

previous states. On the other hand, HCRF is flexible and takes surrounding states

from both before and after the current state. Thus, HCRF is more robust for dealing

with large-scale homogeneous process and uniform sampling with no prior knowl-

edge. For instance, if a key frame immediate preceding the current stage is missed

due to the uniform sampling. such an information loss could be compensated by

including and summing up previous or later information without misclassifying the

event. Secondly, HCRF has merit in its hidden states structure, which helps to re-

lax the requirement of explicit observed states. This is also an advantage in dealing

large-scale uniformly sampled video frames. It is because that in computation, the

CRF model outputs individual result label (such as event or not event) per state and

requires separate CRFs to present each possible event [62]. In HCRF, only one fi-

nal result is presented in terms of multi-class events occurring probabilities. From

the robustness point of view, a CRF model can be easily ruined by semantically

unrelated frames due to the automatic uniform sampling. A multiclass HCRF on

the other hand, can correct the error introduced by such unrelated frames using

probability-based outputs [49]. Moreover, the HCRF is also appealing in allowing

the use of not explicitly labeled training data with partial structure [49]. From lit-

erature, HCRF has been successfully used in gesture recognition [49] and phone

classification [12].

Figure 4.12a illustrates a HCRF structure, in which a label y ∈ Y of event

type is predicted from an input X . This input consists of a sequence of vectors
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Fig. 4.12 Structured Prediction Models. (a): Hidden conditional random field (HCRF). (b): Con-

ditional random field (CRF). (c): Hidden Markov Model (HMM)

X = x1,x2, . . . ,xm, . . . ,xM , with each xm representing a local state observation along

the HCRF structure. Different decision stages of aforementioned three structured

prediction models are employed to detect an event. For the HMM, the query se-

quence will be tested and the highest likelihood of the HMM provides the final

decision in event detection. On the other hand in the CRF model, since each state

variable Y (t) requires a label as Fig. 4.12b shows, a majority-rule voting scheme in

which the most event labels along the Y sequence decide the event result. For the

HCRF model depicted in Fig. 4.12a, a multiclass training process recognizing all

classes at the same time is adopted. Therefore, a detected event with the highest

probability is considered as the final result for the query sequence.

4.4.1.3 Experiments and Results

In the following, experimental results are presented to justify the properties of the

proposed generic framework, specifically using a relatively large-scale video col-

lection including 23 genres with a total of 145 h gathered by the authors, named

as 23-sports dataset. All the video clips have the same length of 167 s with a total

of 500 uniformly sampled frames at a sampling rate of 3 frames per second. This

dataset is composed of 3122 clips. In training, 1,198 clips are used, in which a sub-

set of 46 clips (2 clips per sport) are used in codebook generation with a total of

3,112,341 SIFT points. In testing, the other 1,924 clips are selected.

In this experiment, the task on basketball score event detection is investigated

by employing this labeled video sequence. Two-staged coarse-to-fine scheme is

adopted with firstly detecting scoreboard information change introduced by [39].

By adopting this technique, an entry point of an interesting event is located. How-

ever, this coarse detection only provides a static frame based rough estimation as an

entry point. Since scoreboard information not only appears in score events, but also

in time-out events or intermission events, individual frame based detection with-

out temporal structured information cannot provide robust and satisfactory result.

Therefore, a fine tuning process in finalizing detection is adopted to ensure that

the query video truly conveys the score event as its semantic theme. The proposed

HCRF model is deployed as such process after the first stage coarse detection. Ex-

perimental results of using this HCRF model are compared with CRF and HMM

baselines.
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Two video groups consisting of four matches are utilized, which are defined as

(a) Dataset A: using two NBA games for training, and using another two Olympic

Games for testing; (b) Database B: using one NBA game for training, and using

another NBA game for testing. Frame-based views from the PLSA model and the

SVM model are applied to Dataset A and B. Therefore, four combinations of view

labels and datasets are defined as PLSA+A, PLSA+B, SVM+A, and SVM+B.

Each video clip used in both training and testing is automatically decimated and

consists of 500 uniformly sampled frames. We use a window size N = 20, with a

window N sliding every 10 frames.

The number of approximated events detected after the first stage is given in

Table 4.2. The precision and recall of the coarse stage basketball score detection are

92.03% and 86.19% respectively. In the second stage, the proposed HCRF-based

model and state of the art HMM and CRF models are evaluated and compared. The

advantage of HCRF over HMM is its relaxation on the Markov property that the

current state St can be inferred from both current observation as well as surrounding

observations. As shown in Table 4.3, the HCRF has better performance than the CRF

for the same ω values, while both models outperform the HMM baseline. When us-

ing different ω values for both CRF and HCRF, ω = 1 provides better results than

ω = 0, in which neighboring information assists in a better decision making. How-

ever, when ω = 2 is used for HCRF, the performance has been dropped for all cases

comparing with ω = 1. This can be viewed as an over-fitting issue, in which adding

more surrounding information limits the structured prediction ability. In summary,

the proposed HCRF based model with parameter ω = 1 outperforms both CRF and

HMM models. The best results are obtained at 93.08% and 92.31% by taking SVM

and PLSA based input labels, respectively.

Table 4.2 Precision and recall results of basketball score events detection at the first

(coarse) stage

Correctly detected score Detected score Correct total score Precision Recall

(True positive) (Obtained result) (Obtained result) (%) (%)

231 251 268 92.03 86.19

Table 4.3 Performance comparison on score event detection in basketball.

Dataset A: NBA matches as training, Olympic matches as testing. Dataset B:

NBA matches for both training and testing

Accuracy

Dataset A (NBA/Olympics) Dataset B (NBA/NBA)

SVM+A(%) PLSA+A(%) SVM+B(%) PLAS+B(%)

HMM ω = 0 78.28 75.29 87.50 85.94

CRF ω = 0 78.16 74.57 87.43 86.52

CRF ω = 1 79.52 76.82 88.52 87.89

HCRF ω = 0 80.93 75.53 90.00 90.77

HCRF ω = 1 83.26 80.24 93.08 92.31

HCRF ω = 2 82.09 77.88 91.46 91.77
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4.4.2 Surveillance Video Event Detection

In this section, we present a system for TRECVID’09 surveillance event detection

tasks. Two categories of events are detected in this system: (1) single-actor events

(i.e., PersonRuns and ElevatorNoEntry) irrespective of any interaction between indi-

viduals, and (2) pair-activity events (i.e., PeopleMeet, PeopleSplitUp, and Embrace)

that involves more than one individual. Figure 4.13 shows the framework of this

system.

The system consists of three major stages, i.e., preprocessing, event classifica-

tion, and post-processing. The preprocessing involves view classification, back-

ground subtraction, head-shoulder detection, human body detection and object

tracking. Event classification fuses One-vs.-All SVM and automata-based classifiers

to identify single-actor and pair-activity events in an ensemble way. To reduce false

alarms, events merging and post processing based on prior knowledge are applied

to refine system detection outputs.

4.4.2.1 Pair-Activity Events

Pair-activity events involve the interaction of at least two persons. This is dealt

with as a classification problem. For pair-activity events, the events of PeopleMeet,

PeopleSplitUp and Embrace are first treated as one category and One-vs.-All SVM

is used to classify them from the others. Each kind of three events is identified by

object motion patterns.

Fig. 4.13 A system designed for TRECVID’09 surveillance event detection tasks



4 Video Scene Analysis: A Machine Learning Perspective 111

Given two detected people, their distance, coexisting duration, and motion

direction’s correlation are combined to form a feature vector, which are extracted

in a sliding window of twelve consecutive frames. One-vs.-All SVM is trained to

classify this general category of events. To distinguish “Embrace” or “PeopleMeet”,

a backward search is applied to locate the beginning of an event. In contrast, forward

search is used to detect “PeopleSplitUp”.

Finally, the results are improved with post-processing in which a set of heuris-

tic rules are used. For instance, if two peoples’ distance at the end of an event is

greater than a threshold for “PeopleMeet” and “Embrace”, or their distance at the

beginning of an event is greater than a threshold for “PeopleSplitUp”, those would

be considered as a false alarm.

4.4.2.2 Single-Actor Events

Speed and direction of movements are key characteristics of “PersonRuns”. It is

observed that a running person have a larger velocity than others, and the motion

direction would not change dramatically. According to the feature statistics, the con-

straints of object position and motion direction can be used in a SVM classifier to

identify PersonRuns. In the camera setting of TRECVID dataset, running people

always move from left-bottom to top in the view of camera one. So, by using the

post-processing step we may remove many false alarms caused by tracking drifting.

ElevatorNoEntry is defined as “elevator doors open with a person waiting in

front of them, but the person does not get in before the doors close”. As illustrated

in Fig. 4.14, an automaton is adopted to model the detection process of Eleva-

torNoEntry. As there is no elevator in the view of cameras one, two, and five

over TRECVID’09, the automaton is executed only in the views of camera three

or four.

As the elevator’s position is fixed, the system can easily locate the elevator. When

the elevator door is closed, the elevator region is labeled as background. And when

Fig. 4.14 An automaton for detecting ElevatorNoEntry
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Table 4.4 Results of the system in the TRECVID-ED 2009 formal

evaluation

Event #Ref #Sys #CorDet #FA #Miss Act. DCR

PeopleMeet 449 125 7 118 442 1.023

PeopleSplitUp 187 198 7 191 180 1.025

Embrace 175 80 1 79 174 1.02

ElevatorNoEntry 3 4 2 2 1 0.334

the door is moving, the elevator region is detected as foreground. Thus, each eleva-

tor’s states (open or closed) can be identified by using background subtraction. The

elevator’s opening and closing moments are thus detected and recorded. The fore-

ground area size is related to the number of persons in front of an elevator. Given

an incoming frame, the ElevatorNoEntry event can be detected according to the

elevators’ states and the size of foreground area. Moreover, the area ratio of detected

foreground regions before and after the detected elevator open-and-close action can

be computed to tell whether the number of persons around an elevator has changed.

When the ratio is less than a threshold, it is probable that some people enter the

elevator, and the frame interval is labeled as a potential event of ElevatorEntry.

4.4.2.3 Evaluation Results in TRECVID 2009

This system is evaluated over the surveillance event detection task in TRECVID

2009. Three runs were submitted, by using different human detection and tracking

modules. According to the comparative results in the TRECVID-ED formal evalua-

tion, the experimental results are promising. Among all submissions for the formal

evaluation, four detection results (e.g., PeopleMeet, PeopleSplitUp, Embrace, and

ElevatorNoEntry) ranked at the first place (Table 4.4).

However, there are some problems yet. Regarding the results, the false alarms

have been reduced greatly by effective post-processing. Unfortunately, much correct

detection is wiped off at the same time. In other words, the system recall is too low.

Furthermore, the system should make a good tradeoff between false alarms and

system recall.

4.5 Summary

This chapter presents a tutorial on the problems and solutions of video scene

analysis from the perspectives of the learning components and tasks. Two major

categories of the state-of-the-art tasks are discussed in this chapter, based on their

application setup and learning targets: generic methods and genre-specific analy-

sis techniques. Many of the works discussed in this chapter are deemed by the

authors as good representatives of existing learning-based video scene analysis
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technologies. Clearly, this chapter is only meant to capture the landscape of the

field that is still young and still evolving. For a long-term perspective, video scene

analysis is an interesting issue that currently requires for a lot more research efforts.
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Chapter 5

Multiview Image Segmentation

and Video Tracking

King Ngi Ngan and Qian Zhang

Abstract Image segmentation and video tracking (ISVT) is a necessary and

important preliminary step in many high-level vision tasks such as activity recog-

nition, rendering and modeling, and scene analysis. Comparing with the monoview

ISVT, multiview ISVT is capable of characterizing the visual object and dynamic

scene with three-dimensional (3D) interpretation, which prevails over the traditional

two-dimensional (2D) representation. In this chapter, we categorize and review

the representative and state-of-the-art approaches in multiview image segmen-

tation and video tracking. Additionally, our proposed depth-based segmentation

in the initial frame and feature-based tracking algorithms from multiview video

for both separated and overlapped human objects are discussed respectively, fol-

lowing the ensuring experimental results to demonstrate the algorithms’ superior

performance.

5.1 Introduction

In the recent decades, image segmentation and video tracking (ISVT) has become

an active research topic in image processing, computer vision and computer graph-

ics, leading to the significant breakthroughs on the development of its theories and

technologies. Most of content-based applications are more interested in accessing

and manipulating meaningful objects instead of the whole scene, which makes the

object-based segmentation and tracking in demand. Object-based ISVT aims to seg-

ment the image or video frame into a few semantic object-of-interests (OOIs) that

are described as distinct spatial entities, and track the trajectory of these entities

across the temporal sequence. Object-based representation can be achieved by de-

composing the image or frames into meaningful objects, and visual information can

be further viewed and edited once the silhouette of the objects are available. Thus,
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robust and accurate object segmentation and tracking from image and video has

turned out to be the crucial prerequisite to facilitate various computer vision and ad-

vanced multimedia tasks such as the object-based video coding in MPEG4 standard

[38], video object cut for pasting [23], face segmentation in videotelephony [4],

3D object modeling by joint segmentation [36], motion segmentation for scene

understanding [42], human body configuration recovering and recognition [28], and

video object extraction in surveillance system [16].

According to the type of the source data, object-based segmentation can be

categorized into image segmentation or video segmentation. Even though the video

sequence is composed of a collection of images or frames, video segmentation is

different from segmentation of the single image. Video segmentation may incorpo-

rate image segmentation technique to segment each frame into lots of homogenous

regions. However, temporal coherence constraint in the sequences results in the dif-

ference between video segmentation and the segmentation of series of its single

frame. Temporal coherence constraint addresses strong correlation of segmentations

overtime, but the results can be quite unstable if segmenting them independently us-

ing image segmentation algorithm.

Based on different camera configurations, OOIs can be segmented from single

or multiple views of image/video. Comparing with the intensive and well-studied

work on monoview ISVT, multiview ISVT has not been attracted much attentions

due to the limitation of data acquisition technology and the difficulty to segment all

the images simultaneously in realtime. However, multiview image/video (MVI/V)

capturing the real-world environment from arbitrary viewpoints are capable of de-

scribing dynamic scene from different perspective and can provide the observer

more vivid and extensive viewing experience than the monoview image/video, re-

sulting in more realistic and exciting visual effect. Furthermore, depth information

reconstructed from multiview data assists in recovering scene structures, and char-

acterizing the visual objects using 3D model, which is more efficient and desirable

than the conventional 2D representation. Whereas, the major obstacles of multiview

image segmentation and video tracking are the expensive acquisitions, extremely

large amount of data and intensive computational load.

With the recent advance in the multimedia processing and emergence of new

generation digital devices, multiview capturing system with sparse or dense cam-

era array [7] can be built with ease, which motivates the development of multiview

techniques and its related applications. By producing several image sequences taken

from different viewpoints of the real environment, MVI/V can generate more vivid

and accurate information about the scene structure, resulting in the 3D feeling as the

available depth information. Multiview ISVT provides the capability of describing

dynamic object with multiple angles, and thus has widely been applied into numer-

ous 3D functionalities, for example, image-based rendering, virtual reality and 3D

security. Manually separating the object from background from MVI/V is known

to be a tedious and time-consuming work due to the associated great quantities

of data. Semi-supervised approaches can release the computational cost to certain

extend by introducing human’s interventions. However, the segmentation results

are highly dependent on these interactions. Even though fully automatic method is
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the most efficient way for MVI/V segmentation, this still remains a challenging

problem in the research community because of the insufficient accuracy and

robustness.

In this chapter, we focus on the techniques of object-based image segmentation

and video tracking from MVI/V. The rest of the chapter is divided into two parts:

multiview image segmentation and multiview video tracking. In the reminder, image

segmentation from multiview images is discussed in Sect. 5.2, with compressive re-

view on the current algorithms and description of the proposed method. Section 5.3

addresses the overview on the existing algorithms following our proposed method

on the topic of video segmentation and tracking from multiview video. Finally, con-

clusions are drawn in Sect. 5.4.

5.2 Multiview Image Segmentation

A series of multiview images (MVIs) can be either simultaneously captured by mul-

tiple cameras, or more commonly and economically, collected by a single camera at

different viewpoints and time instances. According to the visual content, multiview

image segmentation can be grouped in to region-based segmentation and object-

based segmentation. The categorical overview of multiview image segmentation

approaches is shown in Fig. 5.1. Region-based segmentation aims to cluster the

perceptually similar pixels in the image into homogenous regions, while object-

based segmentation tries to extract the meaningful object and separate foreground

from background. Region-based segmentation focuses on the interpreting and un-

derstanding of the whole scene which is represented by semantically and geomet-

rically consistent partitions as shown in Fig. 5.2b. On the contrary, object-based

segmentation pays more attention to access and manipulate the OOIs, and the

extracted objects are highlighted in the foreground mask as shown in Fig. 5.2d.

Fig. 5.1 Overview of multiview image segmentation approaches
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Fig. 5.2 Region-based and object-based multiview image segmentation

5.2.1 Region-Based Multiview Image Segmentation

The performance of understanding the semantic content of image and dynamic

scene can be improved by the region-based segmentation and classification from

multiple view images. Xiao and Quan [44] proposed a simple and powerful mul-

tiview segmentation framework, on the Google Maps Street View images captured

by a camera mounted on a car driving along the street. A Markov Random Field

is defined with associated graph for the multiple images in the same sequence,

where a node in the graph corresponds with a super-pixel by over-segmentation.

The extracted 2D image-based appearance and position features, as well as the 3D

geometric features are collected to learn the AdaBoost classifiers for each class la-

bel and define the unary potential function in the Gibbs energy. Color difference in

the same image and dense corresponds across different views are utilized to enforce

smoothness and consistency. The segmentation results apply to the recognition of

street view scene containing several semantic classes such as ground, building, sky,

vehicle and person.

Decomposing the image into multiclass regions is a challenging task due to

various visual concepts involved. In certain applications, the users are more in-

terested in accessing a specific object rather than the scene, which makes the
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object-based segmentation in demand. A comprehensive review on the object-based

multiview image segmentation and our proposed algorithm will discuss in the

following sections.

5.2.2 Object-Based Multiview Image Segmentation

Localizing and extracting the OOIs in MVIs is the objective for object-based mul-

tiview image segmentation. Based on the different methodologies involved, the

existing algorithms of object-based multiview image segmentation can be grouped

into depth-based segmentation and silhouette-based segmentation.

5.2.2.1 Depth-Based Segmentation

Depth information reconstructed from MVIs usually serves as a valuable source

in various related techniques such as 3D reconstruction [18], image-based render-

ing [32], freeview video generation [31], MVI/V compression [45] and virtual view

synthesis [46]. Comparing with the 2D analysis and processing, the recovered depth

information from the geometric relationship of MVIs assists in understanding and

visualizing the 3D world in more efficient way. Accurate object segmentation in the

clutter scene and complicated scenario is almost impossible or error-prone with-

out any semantic knowledge about the scene or only relying on the 2D information

(color, texture, and spatial location) from single-view images, since the semantic

object is not always homogenous with these low-level features. By assuming that

object locates in the different depth layer in the 3D scene and the depth value over

one object forms smooth and consistent distributions, semantic objects can be ex-

tracted with known depth and segmentation performance using 2D features can be

improved. However, object segmentation only exploiting the depth data is problem-

atic due to the inaccuracy of the depth reconstruction resulting from the inherent

difficulties of stereo matching such as the lack of textures and occlusion. Thus, to

obtain more precise and robust segmentation for object-level manipulation, intelli-

gent fusion of depth with other features should be taken into account.

Depth reconstruction and multiview segmentation is generally addressed in

the sequential, joint or iterative fashion in a number of literatures. The most

straightforward way for depth-based segmentation is to perform depth estima-

tion beforehand, and then incorporate the depth information into the segmentation

framework. Kolmogorov et al. in [19] described models and algorithms for bi-

layer segmentation of stereoscopic frames. Stereo disparity is obtained by dynamic

programming in Layered Dynamic Programming algorithm, and stereo match like-

lihood is then probabilistically fused with contrast-sensitive color model to segment

each frame by ternary graph cut. Good quality segmentation of temporal sequence

can be achieved by marginalizing explicit temporal consistency in the realtime

system. To automatically align the panoramic images and segment building from

multiview city-scale street view, a fast and accurate method for multiview alignment
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and segmentation is proposed in [34]. Buildings in each panoramic image are

labeled using graph cut image segmentation based on color and orientation fea-

tures. The mistakes in single-view segmentation are corrected by aggregating the

results over multiple views with the help of available depth, in which a much better

segmentation can be obtained.

To prevent the propagation of error from stereo estimation to foreground ex-

traction in the sequential approaches, depth reconstruction and object segmentation

problems are simultaneously solved by joint optimization. For the challenging out-

door environments analysis with moving cameras, for example, rugby and soccer

scenes [13], multiview scene reconstruction and segmentation are dealt with by

joint graph-cut optimization. Segmentation and depth labeling field are formulated

into the unified energy function, which involves color and contrast term for seg-

mentation, as well as the match and smoothness term for reconstruction. Joint

segmentation and reconstruction enables the high-quality scene representation of

the sport scene. By exploiting strong interdependency between 3D reconstruction

and foreground extraction, Golducke et al. [10] proposed a flexible and homoge-

nous approach to simultaneous depth estimation and background subtraction in a

multiview setting, assisted by a static background image with known depth for each

camera. The results of depth reconstruction and background separations algorithm

is obtained as minimization of energy functional, to generation a dense depth map

and foreground map.

The iterative depth-based segmentation receives the segmentation feedback from

current estimation to improve the depth reconstruction and vice verse. In order to

create the intermediate synthesized view using depth and segmentation information,

an iterative algorithm is developed in [26] which continuously performance the dis-

parity estimation and the image segmentation in the iterative circle, and improve the

result of each other. In [11], the estimated depth map and segmentation mask are

iteratively computed using an Expectation-Maximization (EM) algorithm.

5.2.2.2 Silhouette-Based Segmentation

Object segmentation and reconstruction of 3D shapes are highly related topics in the

field of computer vision and graphics. On the one hand, the acceptable segmentation

of object with accurate silhouette from considerate amount of MVIs is required to

accomplish the 3D object reconstruction, namely Shape-from-silhouette [5, 22] to

combine the multiple silhouettes of same object from different viewpoints as source

of shape information to reconstruct the 3D models. On the other hand, the recon-

structed visual hull [20] from silhouette images, which approximately represents the

geometry of object by linking the object shape in MVIs, is capable of refining the

segmentation by projecting the visual hull onto the image plane and exploiting the

silhouette coherence across MVIs.

Silhouette-based object segmentation from MVIs has been addressed in the

recently extensive literatures. Tsai et al. [39] proposed a semiautomatic MVIs seg-

mentation algorithm for 3D modeling by integrating with visual hull reconstruction.

In the segmentation process, the automatic segmentation initialization is first carried
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out by graph-cut based image segmentation activated by trimap labelling. Then,

it asks for user’s interaction to choose a subset of the segmentation results with

satisfactory quality for 3D reconstruction using volumetric graph cut and learning

shape priors. At last, those discontent segmentations will be refined with the help

of 3D model projection and the learned shape priors to propagate the successful

segmentation and rectify the segmentation errors. An automatic algorithm in [6]

dedicated to obtain the 3D segmentation of rigid object using volumetric graph-cut.

Camera fixation constraint is adopted to initialize the OOI and the color model. Iter-

ative refinement of silhouette extraction and visual hull estimation is performed by

volumetric graph-cut optimization, which ensures that the resulting silhouettes by

propagating the computed visual hull back to the individual view are consistent with

one another at every iteration. Grauman et al. [12] presented a Bayesian approach to

visual hull reconstruction using image-based representation of extracted silhouette

from pedestrian images. The basic background subtraction results in rough seg-

mentation corrupted by noise of each viewpoint in the simple color background.

The visual hull of pedestrian is reconstructed by PPCA-based Bayesian model from

problematic silhouettes. The used class-specific prior in visual hull reconstruction

reduces the effect of segmentation errors in the silhouette extraction process.

The multiview segmentation algorithms using silhouette and visual hull as

mentioned above are developed for equi-tilt set or tunable sequence relying on

the known background, or simple background for a specific object class. For the

silhouette extraction with arbitrarily unknown background, object segmentation

methods are proposed in semiautomatic or fully automatic manner. By employing

the intersection consistency in 3D space and projection consistency in 2D images,

Zeng and Quan [48] proposed a silhouette extraction algorithm from multiple im-

ages of unknown background, and a silhouette carving algorithm for robust visual

hull reconstruction as extension. In [30], provided the minimum user input to hardly

constraint the “target object” and “background” pixels in only one of MVI, tentative

segmentation of all views is achieved using traditional graph cut technique. Then,

the visual hull of an object with calibrated cameras is reconstructed from silhouette

of MVI, and final results are acquired by back-projection 3D model to 2D images to

eliminate the segmentation errors in the tentative stage. Lee et al. [24] proposed an

automatic foreground extraction method which can simultaneously identify region

of interest in MVIs without any a priori knowledge on the background and user

interaction. Driven by the initial segmentation from the intersection of viewing

volumes, iterative optimal segmentation of all views is conducted using graph cut

method, where the prior term in the energy function encodes the spatial consistency

exploiting the multiview silhouette coherence.

5.2.3 Proposed Multiview Image Segmentation Algorithm

Detection and Localization of OOIs is the first but important step for the video

tracking. To initialize the tracked OOIs in the sequence, we propose a depth-based
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object segmentation algorithm to automatically separate the OOIs from background

and identify individual object in the initial frame of a multiview video. The seg-

mentation algorithm is developed for different two scenarios that are the spatially

separated objects and overlapped objects.

5.2.3.1 Automatic Object Extraction

The semiautomatic object extraction algorithms, which require user-supplied pri-

ors such as brush stokes [2, 8] and bounding box [25, 37] are not preferable in the

MVI/V due to large quantities of data with users’ interventions, thus fully automatic

algorithm is in the highly demand. Automatic object extraction is still a challenging

problem, especially when no prior information (background image) is provided or

no semantic cues are extracted from the scene.

In our recent work [47], to automatically extract the OOIs patches for initializa-

tion of the segmentation process, saliency model is employed to compute a saliency

map for the key view (middle view in 5 views) of initial frame, where higher-level

features that are the depth and motion estimated off-line are utilized. The selection

of these two features is based on the following reasons: human attentions are

generally more focused on the moving object than the static one in the video; an

OOI appears to have similar depth values in the 3D scene thus form a uniform distri-

bution in the depth field. By thresholding, morphological operations and connected

component analysis on the saliency map, initial OOIs can be automatically extracted

to trigger the subsequent segmentation process. Figure 5.3 shows the saliency maps

and initial OOIs in two key view images, which are used to model the foreground

and background distributions.

Fig. 5.3 Automatic object extraction: left: input image; middle: saliency map; right: initial OOIs;

top: Reading sequence; bottom: Calling sequence
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5.2.3.2 Segmentation of Multiple Separated Objects

In the computer vision, image segmentation can be formulated as energy minimiza-

tion problem. The general formulation of energy function is given in (5.1):

E( f ) = ∑
(p∈P)

Ep( fp)+ λ ∑
(p,q∈N)

Ep,q( fp, fq), (5.1)

where f is the labeling field, P is the set of pixels, and N is the neighborhood system.

Data term Ep( fp) is the likelihood energy and smoothness term Ep,q( fp, fq) is the

prior energy. λ is a parameter to balance these two terms.

Basic Energy Function for Key View Segmentation

Traditional graph-cut based segmentation using only color/contrast cues is error-

prone especially on the regions with similar foreground/background features, lead-

ing to inaccurate results. It suggests a robust hybrid approach with more features.

Data term: Ep( fp) in (5.1) combines color and depth features to evaluate the like-

lihood of a certain pixel p in the key view images assigned to the label fp:

Ep( fp) = Epc(θc;zp; fp)+ Epd(θd ;zp; fp)

Epc(θc;zp; fp) = − logg(zp | fp,kp)− logw( fp,kp)

Epd(θd ;zp; fp) = − logh(zp, fp) (5.2)

where θc, θd are the color and depth distributions modeled by the Gaussian Mixture

Model (GMM) and the histogram model h(· ) respectively. g(· ) denotes a Gaussian

probability distribution and w(· ) is the mixture weighting coefficient. kp is the GMM

component variable, set as 5 for foreground objects and 10 for the background.

zp = {d,r,g,b} is a 4-dimensional feature vector for pixel p, representing the depth

and the three color components.

Smoothness term: Ep,q( fp, fq) in (5.1) measures the penalty of two neighboring

pixels p and q with different labels and is defined as follow:

Ep,q( fp, fq) = dist(p,q)−1 · exp{−diff (cp,cq)}

diff (cp,cq) =
1

3

(

βr · (rp − rq)
2 + βg · (gp −gq)

2 + βb · (bp −bq)
2
)

(5.3)

where dist(p,q) and diff (cp,cq) are the coordinate distance and the average RGB

color difference between p and q respectively. βr = (2 < ‖rp − rq‖
2

>)−1, where

< ·> is the expectation operator for the red channel. βg and βb are defined similarly

for the green and blue channels respectively.
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Multiple Objects Segmentation Using Graph Cut

Comparing with the single object segmentation, multiple objects segmentation as

a general case is investigated in our work. Based on the assumption that each

object is not overlapped, we convert multiple objects segmentation into several

sub-segmentation problems. For individual object, we construct a sub-graph for

the pixels belonging to its “Object Rectangle”, which is an enlarged rectangle of

bounding box to encompass the whole object and restricts the segmentation region.

Bi-label graph cut is employed to minimize the energy function and segments each

object. Experimental results using basic energy function with different and com-

bined features are shown in Fig. 5.4a–c.

Modified Energy Function for Key View Segmentation

The segmentation quality using combined features in Fig. 5.4c has outperformed

the ones using either single feature in Fig. 5.4a,b. However, when the scenes contain

complex background, notable segmentation inaccuracy around the objects still exists

and leads to unsatisfactory results. These errors can be classified into two groups,

which are highlighted with rectangle and ellipse respectively, as shown in Fig. 5.4c.

To tackle these two problems, we propose a modified energy function containing

two novelties: background penalty with occlusion reasoning is to handle the rect-

angle errors by refining data term in (5.2), and foreground contrast enhancement

is to remove ellipse errors by refining smoothness term in (5.3). Based on the im-

portant observations that the focused object commonly appears in all the cameras,

and background regions around the object boundary are occluded by observing the

same scene from different perspective as shown in combined occlusion map COv
t

Fig. 5.4 Segmentation results using basic energy function and refinement using modified energy

function: Basic energy function using (a) color; (b) depth; (c) combined color and depth; (d) results

using modified energy function; top: Reading sequence; bottom: Calling sequence
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Fig. 5.5 Visualization of background penalty with occlusion reasoning

Fig. 5.6 Visualization of the smoothness term in “object rectangle”

in Fig. 5.5b, background penalty with occlusion reasoning introduces a background

penalty factor αbp = 3.5 to enforce the background energy of the occluded pixels:

E∗
p( fp) = αbp ·Ep( fp) ( fp = 0 & COv

t (p) = 128), (5.4)

where fp = 0 and COv
t (p) = 128 if p is defined as the occluded background. E is the

basic background energy and E∗ is the background energy with occlusion penalty.

The motivation of foreground contrast enhancement is to enhance the contrast

across foreground/background boundary and attenuate the background contrast

shown in Fig. 5.6c by combining the color contrast in L×a×b space in Fig. 5.6a

and motion residual contrast Fig. 5.6b. The improved results using modified energy

function is illustrated in Fig. 5.4d.

Multiview Segmentation

In the above work, we have dealt with the segmentation in a single key view of

the initial frame. Accurate object segmentation for all views of a frame should be

provided for the further applications.
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Fig. 5.7 Disparity projection and uncertain band

Disparity Projection Under Visibility Constraint

Based on the segmentation result of the key view, the coarse predictions of the other

views can be projected by pixel-based disparity compensation, which exploits the

spatial consistency among interview images. However, disparity vectors cannot be

estimated correctly for the occluded areas, introducing serious prediction errors as

in Fig. 5.7a and the undesired effect for the subsequent process. Since only the OOIs

should be projected in the target view, which are defined as visible (CO
vi
t (p) = 0),

thus the projection is performed under visibility constraint:

P
vi
t (p) = f

v j

t

(

p + D
vi,v j

t (p)
)

(CO
vi
t (p) = 0). (5.5)

Uncertain Boundary Band Validation

Because of the existence of noise and non-homogeneity in the estimated field,

and despite performing post-processing after the predictions, inaccuracy still ex-

ist along the object boundary. To improve the segmentation results, we construct

an uncertain band along the object boundary as in Fig. 5.7c based on an activ-

ity measure. We define the activity of a pixel as the motion variance within its

second-order neighborhood. The pixel with the highest activity is searched within

the neighborhood of each contour pixel, and a band centered at the most active

pixel is defined as uncertain region. The pixels lying in the inner band are labeled

as foreground ( fp = n), and outer band pixels are background ( fp = 0). The indices

of pixels in the uncertain band are set to be 255−n. Labeling field for the uncertain

band is validated using graph cut to yield more accurate segmentation layers. The

segmentation results of multiview images are presented in Fig. 5.8.

5.2.3.3 Segmentation of Multiple Overlapped Objects

Segmenting multiple simultaneous objects under occlusion is more difficult task

than when the targets are spatially separated without overlapping regions. In this
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Fig. 5.8 Multiview segmentation of initial frame: First & Second row: Reading sequence; Third

& Fourth row: Calling sequence; top: input image; bottom: superimposed mask

section, we discuss the proposed algorithm that first extract the foreground as mul-

tiple overlapped human objects, and then segment them into individual objects.

Adaptive Background Penalty with Occlusion Reasoning

When the segmentation starts from the initial frame with overlapped objects, not all

parts of the objects in the target view are also visible in other reference views, as

shown in Fig. 5.9a–c. The interview occlusions displayed in Fig. 5.9d exist not only

in the transition between the object and the background (interobject occlusion), but

also in the interior of the object (intraobject occlusion). In order to distinguish the

interobject occlusion from intraobject occlusion, we can assign more background

energy on the interobject occlusion rather than on the intraobject occlusion, adaptive

penalization of the occlusion region is adopted that the penalty factor αbp in (5.4) is

assigned according to the motion property using the following equations:

αbp(p) =
Pmotion(mp| fp = 0)

Pmotion(mp| fp = 1)+ η
Pmotion(mp| fp) = logh(mp| fp), (5.6)
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Fig. 5.9 Adaptive background penalty with occlusion reasoning

where fp = 0 is for the static background and fp = 1 for the moving object. mp

is the motion vector of p and Pmotion(mp| fp) is the motion log-likelihood of the

pixel associated with the label. η is a small value to avoid the division by zero.

Equation (5.6) indicates that the interview occlusion with small motion is more

likely to be the interobject occlusion resulting in large value of αbp, and vice versa.

Figure 5.9e illustrates the segmentation result with constant αbp, where the inter-

view occlusions are equally penalized to be the background using the same factor,

whereas the improved result using adaptive αbp is evident in Fig. 5.9f where the

background penalty is changed according to the value of αbp.

Depth-Assisted Object Segmentation

Given the extracted foreground regions, object segmentation is equivalent to a k-

class pixel labeling problem. By assuming that the human objects stand in the

different depth layers, a coarse labeling field as shown in Fig. 5.10b can be obtained

by k-means clustering of the depth map, where the number of human hypotheses is

automatically determined as the number of continuous bins of the depth histogram.

Due to the outliers in the estimated disparity field and the resultant reconstructed

depth map, misclassifications exist in the coarse labeling field especially in the area

of intraobject occlusion. We improve the initial labeling using the depth ordering

method that If we know the layer L1 is behind layer L2, the occlusion region must

belong to the L1.

Because of the multiple overlapped human objects, segmentation with occlu-

sion cannot be solved using bi-label graph cut. Given the initial results as shown
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Fig. 5.10 Depth-assisted object segmentation: (a) initial frame, (b) initial labeling by depth clus-

tering, (c) improved classification using depth ordering, (d) objects segmentation results, top:

Three-People sequence, bottom: IU sequence

in Fig. 5.10c, graph cut with α-expansion is employed to minimize the energy

function by fusing the color and motion cues, and segment the multiple human

objects simultaneously.

5.3 Multiview Video Tracking

In the video sequence, observers generally focus more on the static or moving ob-

ject than the background, and the video-based applications are commonly developed

based on the object-level, thus we mainly address the object-based multiview video

tracking. Comparing with the image segmentation, segmenting the sequence into

spatiotemporally consistent volume and tracking meaningful video object across

frames increase the complexity of video segmentation and tracking. Segmenting

and tracking multiple moving objects automatically and accurately in wide-range

environment or with largely crowded individuals is more challenging task. Using

monocular camera is insufficient due to the limited field of views and significant

occlusion. stereo/multiple cameras are reasonable alternatives to solve this difficult

problem by data association across-time and across-view. The current works on

multiview video segmentation and tracking are categorized into two main classes,

namely feature-based and homogrophy-based, where segmentation of video objects

are described as different representations such as bounding box, 2D/3D ellipse, or

foreground mask. The categorical overview of multiview video segmentation and

tracking approaches is shown in Fig. 5.11. Feature-based approaches perform seg-

mentation and tracking by fusing various 2D/3D features and/or introducing statistic

filters. Homogrophy-based approaches incorporate homogrophy constraint across

multiple views into the segmentation and tracking framework.
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Fig. 5.11 Overview of multiview video tracking approaches

Table 5.1 Feature-based tracking approaches

Ref. Features Tracker Rep.

IT NF [3] Color, depth, motion No FM

FCV [27] Color, height, width, stereo Kalman filter BB

[49] Shape, appearance, depth, motion Kalman filter BB

[40] Appearance, depth Bayer tracker BB

FCT [29] Luminance, color, human template, 2D position Kalman filter BB

[43] Stereo, 2D position, intensity Kalman filter FM

CT [21] Color histogram, 4D entities of rectangle Particle filter BB

[35] 5D state space of ellipse Particle filter EM

IT: Independent tracking; CT: Cooperative tracking; NF: No fusion; FCV: Fusion to common

view; FCT: Fusion to common tracker; Ref.: Reference; Rep.: Representation; FM: Foreground

mask; BB: Bounding box; EM: Ellipse model

5.3.1 Feature-Based Tracking

Feature-based tracking methods employs feature match framework with two steps:

feature extraction and feature matching. Feature-based tracking can be performed

either independently in each view or cooperatively across views. A classified sum-

mary of feature-based tracking approaches is presented in Table. 5.1.

5.3.1.1 Independent Tracking

Independent tracking firstly implements single camera detection, segmentation, and

tracking on its own view. Based on whether the multi-camera fusion module is in-

volved or not, the independent tracking is further divided into independent tracking

without fusion and independent tracking with fusion.
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Independent Tracking Without Fusion

Independent tracking without fusion is to track the regions of object in multiview

video by segmentation of each frame in individual view.

Cigla et al. [3] presented a multiview video object segmentation algorithm by

integrating color, depth, and motion features. A region-based color segmentation

algorithm based on modified Normalized Cuts is firstly adopted to generate over-

segmented segments. Depth map is then estimated for subregions in the available

segmentation mask by region-wise planarity assumption. Multiview video segmen-

tation is extended from image segmentation by combining the color and depth with

additional optical flow information to provide the motion field.

Independent Tracking with Fusion

Independent tracking with fusion is to segment the tracks in each camera stream

and then project the tracks to another camera view or a common view (ground plane

[27, 49], “plan-view” [40]), or collect the 2D local tracks from individual view to a

global 3D track [29] or central node [43].

A multiview segmentation and tracking system in cluttered scene with mul-

tiple people is presented in [27], which is named M2Tracker. Exploiting the

approximate object’s shape and location prior helps the segmentation of each

view using Bayesian classifications. The region-based stereo algorithm is capable

of finding the 3D points inside the object. By combing evidences from different

camera pair and producing feet-region likelihood estimation on the ground plane,

globally optimum detection and tracking of object is attainable using Kalman filter.

Zhao et al. [49] presented a similar and realtime system that detects and tracks

object independently for each stereo camera, and integrate tracking results from all

camera pairs to a multi-camera tracker (McTracker), which track each object on the

ground plan. An object tracking framework based on dynamic Bayesian formulation

is reported in [40] to observe and track object on the plan-view map by combining

local appearance feature and stereo depth data.

Instead of projecting the multiple single-view tracks to a common view, com-

bining the tracked 2D object into a 3D tracking module is another strategy for

multiview data fusion. In [29], following the people detection using background

subtraction and human-template correlation, 2D objects are tracked separately in

each of camera by a graph matching. A 3D tracker is established using geometrical

consistency between 2D objects to estimate the 3D head position. For tracking large

numbers of tightly-spaced and rapid-moving objects, i.e., hundreds of flying bats, a

multiobject multi-camera tracking framework is proposed in [43]. It maintains the

sensor-level tracking in each view and single-view measurements send to a central

node for across-view data association and tracker fusion. The feedback from central

node is then used for adjusting sensor track with across-frame data association.
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5.3.1.2 Cooperative Tracking

In the cooperative mechanism for multiple camera tracking, the individual target is

tracked not only by the measurement in its own camera view, but also through the

camera interactions from its counterpart in other cameras.

Occlusion increases the complexity in tracking multiple targets. Since single

viewpoint loses the depth and occlusion information, multiple cooperative/coll-

aborative cameras are indeed helpful to maintain the tracking performance since

the tracking process of target in the visible view can assist the process in the oc-

cluded view. Lien and Huang [21] proposed a multiview based cooperative tracking

of multiple human objects. Each object in each view is tracked using particle filter,

and occlusion information is revealed by homography transformation in different

views. The cooperative tracking model integrates the tracking results across views

and applies human interaction between different views, which is proved to be more

effective than non-cooperative tracking system. Qu et al. [35] presented a Bayesian

framework for multiple-target tracking using multiple collaborative cameras. Cam-

era collaboration integrated into a graphical model links the target’s state in the

analyzed camera view and its counterpart state in another view, and is activated by

“need-driven”-based scheme to handle multitarget occlusion as it happens.

5.3.2 Homogrophy-Based Tracking

Locating and tracking dense object in crowded scene is a challenging problem due to

the significant occlusion and extensive motion. Using planar homography constraint

[14] to collect multiview information is a relatively new area, which helps improve

the segmentation and tracking performance towards high accuracy and robustness

in such difficult situation.

5.3.2.1 Single-Layer Homography

Applying single-layer homography is to project the individual track into a visual

plane through homographical transform, which is generally the ground plane from

the top down view in the scene, to detect and track the feature points of object on

the ground (Fig. 5.12).

Park and Trivedi [33] presented a homography-based tracking framework for

analysis of people and vehicle activities in the crowded scene. Multiple views of

the same object are projected onto a common planar homography map to detect the

footage regions of objects. The detected objects are tracked in the homography do-

main using Kalman filter to estimate the position, size, and velocity of persons and

vehicles. In [15], foreground blobs are segmented using human appearance from

background subtraction. To precisely locate the ground locations of the multiple

people possibly experiencing occlusion, center vertical axes of the person across
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Fig. 5.12 Detection and tracking using single-layer homography: projection from multiple views

to the ground plane of top-down view

views are homographically mapped into the top view ground plane and the inter-

sections are estimated as the feet point. Multi-hypothesis trackers are established

using particle filters for robust tracking. A similar work is reported by Khan and

Shan [17], where tracking multiple people is solved by graph cut segmentation of

spatiotemporal feet blob volume.

5.3.2.2 Multi-Layer Homography

To enhance the accuracy of localization and reduce the false alarm, it can exploit

multiplanar homography constraint to combine projections in multiple layers that

are parallel to the ground plane (Fig. 5.13).

Tong et al. [41] proposed a multicamera approach for multipeople localization

using multiplanar homography constraint. Foreground regions are segmented us-

ing Gaussian mixture model-based background suppression for each view and each

frame, which are warped to the reference view to get target section on the plane.

Five-planar homography from ground plane to head plane is adopted to gather all

plane information to final overlooking view, where the people are clustered for

localization. A homography framework in [1] is developed for multicamera track-

ing. Foreground blobs are extracted using graph-cut based foreground sub-traction.

Applying multi-layer homography results in the increasing reliability of localization

by transforming the foreground map of reference view with multiple layers, where

the feet positions are detected to indicate the coherent foreground regions. Instead of

tracking footage of people, Eshel and Moses [9] worked on tracking people’s head
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Fig. 5.13 Detection and tracking using multi-layer homography: projection from multiple views

to several parallel planes

using high elevated cameras. Multi-height homography of three planes parallel to

the floor is involved to detect the head top of the people, which is the feature point

to track the human motion.

5.3.3 Proposed Multiview Video Tracking Algorithm

Unlike the approaches only tracking the interest points (feet, head) of the target,

we propose a feature-based tracking method that define the entire object region as

the tracker and update the deformable objects’ regions frame by frame with various

dynamic motions.

5.3.3.1 Tracking of Multiple Separated Objects

Segmenting the consecutive frame is achievable as the motion information is known.

Motion prediction is a form of tracking, which enforces the temporal consistency

between adjacent frames in video. The coarse prediction of the current frame is pro-

jected by pixel-based motion compensation from the mask of its previous frame.

Uncertain band construction and validation for individual object as in Sect. 5.2.3.2

results in the projection refinement. The excellent performance of the tracking strat-

egy has been demonstrated on a couple of real and complex videos containing

spatially separated objects as illustrated in Fig. 5.14.
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Fig. 5.14 Video tracking of separated objects: First & Second row: Reading sequence; Third &

Fourth row: Calling sequence; top: input frame; bottom: superimposed mask

5.3.3.2 Tracking of Multiple Overlapped Objects

Accurate and consistent tracking multiple overlapped objects is more difficult prob-

lem than that of spatially separated objects resulting from the dynamic change of

objects attributes such as appearance, shape, and visibility.

Tracking Using Basic Strategy

Due to the dynamic movements of the human objects, the motion field between ad-

jacent frames cannot be estimated accurately, especially between the intersections

of different object layers caused by the motion occlusion without correspondence.

These motion compensation errors degrade the segmentation results, which are ac-

cumulated into the following frames. Figure 5.15b shows the tracking results after
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Fig. 5.15 Objects tracking after six frames: (a) input image, (b) mask by only motion compensa-

tion and uncertainty analysis, (c) improved result by motion occlusion with layer transition

six frames of initial frame using only basic strategy in Sect. 5.3.3.1. In the object

mask shown in Fig. 5.15b, the new uncovered regions across different object layers

are lost or mislabeled, resulting from the prediction and segmentation errors accu-

mulating frame after frame.

Motion Occlusion As Layer Transition

Tracking the focused candidate regions by only motion compensation and uncer-

tainty analysis with objects’ overlapping introduces errors because of the motion

occlusion even in the newly exposed regions. To handle this problem, we model

the motion occlusion as layer transition, since the emergence of occlusion is always

accompanied by label transition between different object layers. We now discuss

two distinct classes of layer transitions for the occluded pixels corresponding to

background to be covered and uncovered new regions.

Background to Be Covered

If the pixel in the previous frame is labeled as background layer ( f t−1
p = 0), it will

only transit to a certain foreground object in the current frame.

The determination of the object index is formulated as a Bayesian maximum a

posteriori (MAP) problem:

f t
p = arg max

fp∈Fforeground={1,2,...,N}
P( fp|xp), (5.7)

where f t
p is the label of pixel p in the current frame at time instance t. Fforeground is

the foreground label set and N is the number of objects. According to the Bayesian

rule, the posterior probability P( fp|xp) that an observation of pixel xp belonging to

an object can be decomposed into a joint likelihood function P(xp| fp) and a prior

P( fp) is given as:

P( fp|xp) ∝ P(xp| fp)P( fp). (5.8)
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By assuming the uniform distribution of prior P( fp), the MAP problem is

reduced to a maximum likelihood (ML) problem to maximize the joint likelihood

function P(xp| fp), which is evaluated using the color cue modeled by the GMM,

combined with the depth and motion cues modeled using the histogram:

P(xp| fp) = Pcolor(cp| fp)+ Pdepth(dp| fp)+ Pmotion(mp| fp)

= logg(cp| fp)+ logh(dp| fp)+ logh(mp| fp), (5.9)

where cp is RGB color channels of p, dp, and mp denote the depth and motion

features of p respectively.

Uncovered New Regions

If the pixel in the previous frame is labeled as foreground object ( f t−1
p ∈ Ffore), it

will only transit to the intersected same layer or the back layer.

Similarly, finding the corresponding layer is an ML problem:

f t
p = arg max

fp∈Ffeasible={( f t
p≥ f t−1

p ∪ f t
p=0)∩Ins( f t−1

p )}
P(xp| fp), (5.10)

where f t−1
p is the label of p in the previous frame at time t −1. Ins( f t−1

p ) is defined

as the set of layer that f t−1
p intersects with, and Ffeasible is the feasible label set

for a foreground object, which is located in the same or back layer in ins( f t−1
p ).

The transition between the same layer corresponds to the new uncovered part of the

object. The transition from the front layer to the back layer indicates the exposure

of occluded part.

Feature selection: For the uncovered regions appearing on the scene, the new ex-

posed parts may not be consistent with its associated object, eventhough they are

very similar to the other object. Under such condition, the color component in the

joint likelihood function in (5.9) will mislead the label decision, which makes the

color evidence invalid. To avoid this from happening, we select the appropriate fea-

tures in the evaluation of joint likelihood function based on the statement of new

uncovered regions described in (5.10). Since the label that will be transited to should

exist in Ffeasible, we traverse all the possible labels to measure the color likelihood,

and find the label that corresponds to the maximum color likelihood which is not in

the feasible set Ffeasible:

f t
p = arg max

fp∈Fforeground∪0

Pcolor(cp| fp), f t
p �∈ Ffeasible. (5.11)

This bias indicates that new uncovered parts have nonhomogenous appearance

with the associated object. Thus, we remove the color term and retain the depth

and motion terms in (5.9). Otherwise, we combine color and depth cues to calculate

P(xp| fp), which is distinctive enough to make a good decision.
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Fig. 5.16 Video tracking of overlapping objects: First & Second row: Three people sequence;

Third & Fourth row: IU sequence; top: mask; bottom: superimposed mask

From the comparison of Fig. 5.15b,c, the tracking errors in Fig. 5.15b without

motion occlusion analysis have been successfully handled using the proposed track-

ing strategy towards modeling the motion occlusion as layer transition, which can

achieve more precise representation of individual object by eliminating the lost re-

gions or mislabeling of the new uncovered parts. Object tracking results on every

11th frame on Three-People and IU sequences are shown in Fig. 5.16. The selected

frames show the average performance of video tracking, which contain typical track-

ing problems such as objects’ partial occlusion, separation, and appearance of new

part. 2D regions of each object are tracked consistently and correctly across the

video sequences with various dynamics in the scene. The satisfactory segmentation

and tracking results presented in Fig. 5.16 demonstrate the efficiency and robustness

of the proposed algorithm in subjective performance.
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5.4 Conclusions

In this chapter, we reviewed and categorized the representative and state-of-the-art

approaches for multiview image segmentation and video tracking. The first part

of this chapter dedicates on two classes of multiview image segmentation tech-

niques, namely region-based and object-based segmentation. We pay more attention

to the latter approach due to the popularity of accessing and manipulating scene

on the object level, which can be further grouped into depth-based and silhouette-

based approaches. In the second part, we discuss two classifications of multiview

video tracking methods that are the feature-based and homography-based tracking.

Feature-based tracking focus on integrating various 2D/3D features and statistic

filters into the tracking framework, while the homography-based algorithms per-

form detection and tracking by exploiting single-layer or multi-layer homography

constraint to achieve multiview data fusion. Additionally, our proposed multiview

object-based segmentation and feature-based tracking algorithms are presented in

the corresponding sections, following the experimental results to demonstrate the

excellent performance with high accuracy and robustness.
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Chapter 6

Applications of Video Segmentation

E. Izquierdo and K. Vaiapury

Abstract Segmentation is one of the important computer vision processes that

is used in many practical applications such as medical imaging, computer-guided

surgery, machine vision, object recognition, surveillance, content-based browsing,

augmented reality applications, etc.. The knowledge to ascertain plausible seg-

mentation applications and corresponding algorithmic techniques is necessary to

simplify the video representation into a more meaningful and easier form to ana-

lyze. This is because expected segmentation quality for a given application depends

on the level of granularity and the requirement that is related to shape precision and

temporal coherence of the objects.

6.1 Introduction

With the rapid growth of video data, management, access, and retrieval of desired

information from humongous video library is becoming a headachy experience for

users. Segmentation is one of the important computer vision processes that is used in

many practical applications such as medical imaging, computer-guided surgery, ma-

chine vision, object recognition, surveillance, content-based browsing, augmented

reality applications, etc. The knowledge to ascertain plausible segmentation appli-

cations and corresponding algorithmic techniques is necessary to simplify the video

representation into a more meaningful and easier form to analyze. In fact, expected

segmentation quality for a given application depends on the level of granularity and

the requirement that is related to shape precision and temporal coherence of the

objects. In this chapter, we discuss key applications of video segmentation. Video

Segmentation refers to the process of splitting videos into homogenous spatial tem-

poral segments meaningful from a semantic point of view. Video is a sequence of

frames that have a high degree of temporal correlation among them [21]. Each frame

is an image in 2D spatial plane. Though the underlying segmentation process is the
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Table 6.1 Segmentation

quality matrix [1-highly

desirable, 4-least desirable]

Scenario Real time Offline

User Interactive 2 4

Non-User Interactive 1 3

same, the extra time dimension in video makes segmentation in video different from

that in images. As stated by Zivkovic et al. [23] the vital problem in video analysis

is segmenting foreground object from background and in general, extracting high

level semantics from video could be a task of interest.

Ideally, any video segmentation application should address and satisfy the fol-

lowing two different essential properties:

1. Precision of object contours: This refers to how well the object boundaries are

correctly identified.

2. Temporal coherency of the partition: This refers to ability of segmentation algo-

rithm to identify the segment throughout the time to enable tracking.

Sometimes, very precise contours and high temporal coherency is required. Other

times, a rough identification of the object locations (e.g., using bounding boxes) is

enough. The key issue is to have accurate contour with consistent partition along

time. While segmentation quality is ultimate key factor to rate the performance

of any method, time and need for user interaction are important concerns to be

considered for segmentation. In [9], Izquierdo et al. has explained key components

of segmentation system.

Correia et al. has classified applications of video segmentation into set of scenar-

ios according to application constraints and goals [3]:

1. Real-time Nonuser Interactive scenario

2. Real-time User Interactive scenario

3. Offline User Interactive scenario

4. Offline Nonuser Interactive scenario

Li et al. [13] has classified video application into six categories such as

Video Surveillance, Content-based Video Summarization, Content-based Coding,

Computer Vision, Videoconferencing/Videophone applications, and Digital

Entertainment.

As one can see from Table 6.1, in addition to preserving the accuracy, any highly

desirable segmentation system should be (a) fully automatic, (b) able to work in real

time. The score in Table 6.1 reflects the same.

6.2 Recent Trends in Video Segmentation

Recently, there has been a strong surge for video segmentation in mobile media

applications such as augmented reality and mobile media communications such as

object based coding. A full classification of segmentation applications into a set of
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Table 6.2 Application and related work

Applications Reference work

Visual surveillance and, traffic control [10, 19]

Object based video coding and, event based scalable coding [16, 22]

Three-D reconstruction(visual hull), video tooning and, rendering [5, 20]

Augmented Reality, tourism, games and, surgery [17, 24, 25, 27]

Content based Video Summarization [2]

Video conferencing and video phoning application [1]

scenarios, according to different application constraints and goals can be found in

[3]. There have been a lot of work in video segmentation using colour, motion based

methods [10, 19].

We have summarized the list of potential applications and related work in

Table 6.2.

In fact, there are other applications like video classification, which deals with

problem of categorizing a given videos sequence into one or predefined video genre.

For example one might be interested in finding all non identical duplicate videos

having some personality as a focus [21].

There is a paradigm shift from traditional segmentation to using depth [20],

attention and prior model information [14] in addition to color and motion-based

approaches [18].

Clearly, depth based approaches bear the potential discriminative power of as-

certaining whether the object is nearer of farer. We have proposed and evaluated a

GrabCut segmentation technique based on combination of colour and depth infor-

mation [20].

However, GraphCut techniques demand user initialization. As stated in [4], while

using GraphCut techniques, attention based models can be used instead of man-

ual initialization for segmentation process. The attention models can be based

on saliency map approaches, which leads to saliency-based segmentation model.

However, modeling visual attention models is still a challenging problem. Visual

attention models have been widely used in many applications.

In fact, to find what object is attended to and where the attention likely to be,

filtering and prioritizing the information is vital. This is analogous to the nature of

human fovea, which acts according to stimulus. There are two major computational

models of attention such as:

1. Bottom-up attention: It is based on combination of low level features which in-

clude both oriented as well as non-oriented features such as colour, contrast, and

orientation.

2. Top-down attention: It involves task dependent processing, which generally re-

quires some prior knowledge about the scene. In effect, the user attention is

guided by what he sees.

Itti et al. [8] has proposed a model for finding low-level surprise at every location

in video streams. The method correlates with gaze shifts of two human observers

watching complex video clips such as television programs.
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Model based approaches for video segmentation has been used in works such as

[12,15]. As stated by Hampapur et al. video segmentation requires explicit model of

video [7]. In industrial applications, prior computerized base models are designed

using AutoCAD or CATIA. This knowledge can be used to have model aided object

segmentation. For example, Li et al. [14] has proposed face segmentation based on

saliency model.

6.3 Object Based Surveillance Analysis

Surveillance allows identifying any abnormal activity in a given environment

thereby enhancing public safety and reducing crime. If there are more number of

smart cameras used in surveillance process, then there is a risk that person who

monitors may not be able to analyse the videos effectively. As stated by Li et al.

surveillance helps to anticipate and reveal patterns of their actions and interactions

with one another in their environment to determine when “alerts” should be posted

to security unit [13]. Hence there is a need for inspection process such as detecting

unattended bags, loitering people and any suspicious activity. For example, as stated

in [26], Cromatica has been tested at London Liverpool station. Cromatica is based

on an algorithm, which detects differences in frames. For example, if there is too

much movement in images, then abnormal behaviour event alert might be raised. In

fact, it is easier to segment moving objects in video sequences unlike static objects

in images. Zgaljic et al. has described surveillance centric codec for industrial appli-

cations [22]. It includes target detection recognizing a target instead of segmenting

precisely refer Fig. 6.1. As it can be seen from Fig. 6.2, there exists application to

track car in the jammed or congested park lot. Gelesca et al. has done a brief study

on evaluation of algorithms used for surveillance [6]. Video surveillance systems

concerning algorithms for tracking moving object can be of two types: bounding

box and/or centre of gravity. In surveillance process, video frame is analyzed and

object location is retrieved as a function of time. The flaws include over segmen-

Fig. 6.1 Hall Sequence 110th frame and tracking result [22]
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Fig. 6.2 Finding

Vehicles [28]

tation, under segmentation (border holes), Flickering etc. The detection and false

alarms rates are estimated by counting how many times interesting and irrelevant

regions are detected.

6.4 Object-Based Scalable Video Coding

Surveillance centric methods reduce video bit rate without jeopardising informa-

tion relevant to surveillance application. As stated in [16], H.264/MPEG-4 AVC

provides a fully scalable extension, SVC, which achieves significant compression

gain and complexity reduction when scalability is sought, compared to the previous

video coding standards. Krutz et al. has described a methodology to separate a video

scene into shots that are coded either with an object-based codec or the common

H.264/AVC [11]. Their strategy is to use different video codecs for different kinds

of content in order to obtain higher coding gain. Contrasting conventional coders,

the system [22] addresses the requirements of surveillance application scenarios.

It aims at achieving bit-rate optimization, and adaptation of surveillance videos

for storing and transmission purposes. In the system, the encoder communicates

with a Video Content Analysis module that detects events of interests in videos

captured by CCTV. Bit-rate optimization and adaptation is achieved by exploiting

scalability properties of the target codec. Temporal segments containing events
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relevant to surveillance application are encoded using high spatial temporal resolu-

tion and quality while the portions irrelevant from the surveillance standpoint are

encoded at low spatial temporal resolution and/or quality. The model optimises the

bit allocation between a wavelet-based scalable video coder and a forward error

correction codes.

Ramzan et al. [16] has classified the temporal segments of the video sequence

into two types:

• Temporal segments representing an essentially static scene (e.g. only random

environmental motion is present – swaying trees, flags moving on the wind, etc.)

• Temporal segments containing nonrandomised motion activity (e.g. a vehicle is

moving in a forbidden area).

To enable the above classification, background subtraction and tracking module

is used as Video Content Analysis (VCA). It uses a mixture of Gaussians to separate

the foreground from the background. Each pixel of a sequence is matched with each

weighted Gaussian of the mixture. If the pixel value is not within 2.5 standard de-

viations of any Gaussians representing the background, then the pixel is declared

as the foreground. Since the mixture of Gaussians is adaptive and more than one

Gaussians are allowed to represent the background; this module is able to deal ro-

bustly with light changes, bimodal background like swaying trees and introduction

or removal of objects from the scene. The output of the module defines parameters

of compressed video, which is encoded with the W-SVC framework.

Further, three different scalability issues are discussed:

1. Temporal scalability: It refers to the possibility of reducing the temporal reso-

lution of encoded video directly from the compressed bit-stream, i.e. number of

frames contained in one second of the video.

2. Spatial scalability: It refers to the possibility of reducing the spatial resolution of

the encoded video directly from the compressed bit-stream, i.e. number of pixels

per spatial region in a video frame.

3. Quality scalability: This refers to the possibility of reducing the quality of the

encoded video. This is achieved by extraction and decoding of coarsely quantised

pixels from the compressed bit-stream. This is also called as SNR (Signal-to-

Noise-Ratio) scalability or fidelity scalability.

As shown in Fig. 6.3, if object is detected, then high resolution video is tra-

nsmitted else low quality video is transmitted or no transmission is done

(Figs. 6.4, 6.5, 6.8, and 6.9).

6.5 3D Reconstruction

Using silhouettes and camera calibration parameters, 3D visual hull can be recon-

structed [5]. Now, we explain a depth-based segmentation technique GrabcutD to

obtain visual silhouettes.
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Fig. 6.3 Event based scalable coding (Event occurs) [16]
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Fig. 6.4 Scalable video codec architecture [22]

6.5.1 GrabcutD: Modified GrabCut Using 4 Channels

GrabcutD is a modified version of Grabcut using depth-based information. In [20],

for experimentation purposes, we used the video dataset frames from MSR ballet

sequence dance video. Initially, for each frame, users select a bounding box and

the pixels inside and outside rectangle are represented by foreground and back-

ground classes respectively. From each trimap selection of the foreground and

background, the histograms are formed using 4 channels information (Red, Green,
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Fig. 6.5 Ballet sequence Image [29]

Fig. 6.6 Existing method

(GrabCut) results for Ballet

sequence [20]

Fig. 6.7 Ballet sequence Dancer: (a) GrabCut and (b) GrabCutD (Color and Depth) [20]
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Fig. 6.8 Augmented Game application [27]

Fig. 6.9 Panoramascope [24]

Blue, and Depth) instead of just colour (Red, Green, and Blue). The Gaussian

Mixture Model (GMM) components are assigned to pixels and learned from the

4-channel Image frame. The energy model is defined based on the foreground and

background histograms and the minimum energy represents good segmentation. The

segmentation is estimated using Graph Cut, which provides tentative classification

of pixels belonging to the respective classes. The above process is iterated until

convergence. The formulation of above mentioned process is briefly described be-

low. Let us consider image frame as an array I = (I1, ..In...IN), which includes both

R,G,B levels and depth values respectively. The segmentation is array of opacity

values α = (α1, ...αN) at each pixel. 0 for background and 1 for foreground. θ is
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the model, which defines image foreground and background histogram distributions

and it is defined as follows.

θ = h(I;α),α = 0,1. (6.1)

Given an image frame I and model θ , the segmentation task is to infer unknown

opacity variables α . The energy function E is defined such that minimum represents

good segmentation and can be formulated as follows.

α = argminα E(α,θ ). (6.2)

The model parameters are represented by

θ =
{

π(α,k),µ(α,k),∑(α,k),α = 0,1,k = 1...K
}

, (6.3)

where π is the weight, µ is the mean and ∑ is the covariance of 2K Gaussian compo-

nents for foreground and background distributions. Smoothness factor V is defined

as follows.

V (α, I) = γ ∑
m,n∈C

[αn �= αm]exp−β ||Im − In||
2
. (6.4)

In [20], we used scaling function in smoothness factor thereby emphasizing the

importance of depth, which is achieved using weighted L2 norm.

In fact, user initialization can be avoided by using relevant visual attention

models.

6.6 Augmented Reality

Augmented Reality is widely used in many applications. For example, in [24], a list

of around thirty interesting augmented reality applications has been discussed. Liu

et al. [15] has used model-based video segmentation for interactive games.

6.6.1 Tourism

Depending on the tourist spot, system presents the cultural or heritage story. As

stated in [27], system displays the user movement along with narration. Actually,

using segmentation the virtual tourist guide can be associated along with the narra-

tion. This is one of the exciting applications adding real world experience through

mobile devices.
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Fig. 6.10 Surgery [17]

6.6.2 Virtual Surgery

Augmented Reality has been used in medical fields for (a) virtual face surgery,

(b) location of tumours, (c) treatment planning and (d) anatomical structure study.

For example, as shown in Fig. 6.10, the technique helps surgeons with a view in

transparency of their patient and by tracking surgical tools in real time [17].

6.7 Conclusions and Future Work

In this chapter, we briefly discussed segmentation applications. There is a paradigm

shift from traditional segmentation to using depth, attention and prior model infor-

mation in addition to color and motion-based approaches. The expected segmen-

tation quality for a given application depends on the level of granularity and the

requirement that is related to shape precision and temporal coherence of the objects.

Although, there exists still significant challenge to perform robust and fully auto-

mated segmentation that fits generic tasks, a reliable solution can be achieved using

suitable attention and model-based information.

Acknowledgements Our thanks to colleagues in MMV lab for their suggestions.
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