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Foreword

If there is one consumer device that has seen the most rapid evolution in the

past few years, it is the SmartPhone. There is a significant battle in the market

place between the different ecosystems, mainly aggregating around the operating

systems that are aiming to deliver the richest and most attractive user experience

to the consumer. At a surface level it appears that there are thousands of software

developers that can develop applications on top of the operating system they are

targeting and execute them on the main application processor in the SmartPhone.

However these are not the only applications that need to run on the SmartPhone.

There are many underlying applications, or lets better call them algorithms, that

have very demanding performance and power consumption targets, yet need to be

flexible.

Here is where the custom processor comes into play for the implementation

of algorithms that will have certain variability but are covering a narrow enough

design space, that a specific processor can be the best implementation choice.

Many companies that developed custom processors had some kind of internal

design automation in place. Over the last 10 years the initial research for the

automated design of such processors has moved from research (example: LISA) into

commercially available products. The areas of instruction-set simulation, compiler

generation and RTL generation from high level models, such as a LISA model, is

a generally solved problem and is now commercially applied to a wide range of

different processor architectures.

Today, design teams are using an iterative approach of manually specifying

instruction-sets, often starting with known good templates, and then through

processor and tools generation profile the performance of their target applications.

The proposed approach in this research addresses the concern of more automation

by applying compiler techniques at the problem of application code analysis and

instruction-set generation. It proves that this is feasible and also shows a prototype

implementation of such a design space exploration tool.
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viii Foreword

I recommend studying this excellent work to any advanced system architect

and tools architect who is investigating how current methodologies can evolve into

the future, where the interaction of application development and implementation

requires very rapid design approaches.

Mountain View, CA Dr. Johannes Stahl

June 2011 Synopsys, Inc.
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Chapter 1

Introduction

1.1 The Consumer Electronics Landscape

Over the past two decades, the market for portable consumer electronic gadgets

has been growing at a tremendous pace. During this period, portable electronic

devices such as mobile phones, digital cameras, digital video recorders, portable

music/video players and laptop/palmtop computers have become almost ubiquitous.

This explosive growth has been mostly brought about by the worldwide spread

of internet and mobile communication networks, and the emergence of digital

multimedia technologies. Between 1990 and 2009, the number of mobile phone

users has increased from 12.4 million to approximately 4.6 billion, and the number

of internet users has grown from 3 million to include almost a quarter of earth’s

entire population. Over the same period, digital cameras, video recorders, television

sets and video/audio players have almost completely replaced their older analog

counterparts. It is, therefore, not surprising that portable consumer electronic

appliances constitute a major segment of today’s global electronics industry.

The design complexity of portable electronic devices has also been increasing

commensurately with their numbers. This is primarily due to two reasons. The

first is the convergence of multiple services and applications onto single electronic

products – e.g. today’s mobile handsets typically support internet browsing and

multimedia recording/transmission capabilities, apart from simple text messaging

and wireless telephony. Management of these different services has become so

complicated that modern mobile phones usually come with full-fledged operating

systems.

The second reason for the growing complexity is the increasing computational

demands of the applications themselves. For example, transmission of rich multime-

dia content over mobile networks has necessitated higher data bandwidth and more

involved communication protocols which, in turn, have significantly complicated

the design of sender/reciever architectures for individual phones. Similarly, the

complexity of the multimedia recorder/player devices has been steadily increasing

to support newer higher definition multimedia standards.
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Fig. 1.1 The portable consumer electronics landscape
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This trend of growing design and architectural complexity of portable electronic

devices is going to continue for some time. The primary effect of this growing

complexity has been a similar increase in processing performance (i.e. MOPs)

requirements. According to the International Technology Road-map for Semicon-

ductors (ITRS) 2009 [84], the requirement of processing performance in portable

consumer electronic devices will grow more than 10,000� in the next 15 years.

To cope with this exponentially increasing demand for performance, any form of

parallelism available in the corresponding applications must be exploited to the

fullest extent. Not surprisingly, the ITRS 2009 report suggests that a highly parallel

and heterogenous system-on-chip (SoC) architecture consisting of a main memory,

several main control processors, peripherals and heterogeneous processing elements

(PEs) (Fig. 1.1) is the most suitable design template for this area. Each PE is a

hardware entity customized to accomplish a specific task. Complicated tasks can be

implemented by combining several PEs. This architecture template can satisfy the

performance and energy efficiency requirements both at the task level (by selecting

optimized PE implementation for each task) and at the system level (by exploiting

the inter-task parallelism).

In light of the above, it can be easily surmised that the successful development

of future consumer electronic products will hinge on two closely intertwined design

processes. The first one will be the development of efficient PEs for individual tasks.

The second process will involve constructing suitable system level architectures by

combining the PEs, main processors, memory modules and various peripherals via

effective communication networks. Naturally, in recent years, both of these issues

have received considerable research attention in industry and academia.

This book will confine itself in exploring design techniques for the first problem –

i.e. development of efficient PEs for individual tasks. The second issue – that

of designing efficient system level architectures – is out of scope of this work.

Interested readers may look into [59, 98, 114] for more insights into this area.

1.2 Design Alternatives for Processing Elements

We have just mentioned that the selection of PEs is going to be one of the pivotal

issues in designing future consumer electronic SoCs. Depending on the design

objectives, system developers must choose the right set of PEs from a broad array

of available alternatives which range from off-the-shelf embedded micro-processors

to custom designed hardware blocks. Although the exact design objectives are

different for different applications, they are generally determined by a handful

of technological and market trends. These trends, which constitute the key in

understanding the relative merits and demerits of different PE design alternatives,

are briefly mentioned below.

Design complexity The design complexity of individual PEs has been growing

continually due to the increasing computational requirements of newer multimedia
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Fig. 1.2 Processing performance, power consumption and design effort trends for portable

consumer electronic devices (Source: ITRS 2009 [84])

and wireless applications. For example, the H.264 [177] standard – the state-of-the-

art in digital video compression – has much higher computational complexity than

its predecessor MPEG-2 [117]. Similarly, the peak data rate requirement for the 4-G

[86] wireless standard is far greater than that of the 3-G standard [154]. Mobile

transceivers and video players are getting more and more complex to deal with such

increased computational demands.

Performance and energy efficiency Like design complexity, the increased per-

formance requirements for consumer electronic devices are also a direct result

of increased computational demands of corresponding applications. Based on the

current trends, the ITRS 2009 report predicts more than 10,000� increase in

processing requirements for portable consumer electronic products over the next

15 years (Fig. 1.2). Such exponentially increasing computational requirements will

have an extremely adverse effect on energy efficiency of battery operated portable

electronic gadgets, since the battery lifetime of them is not expected to grow

significantly over the same time period. This trend of stagnant static/dynamic power

budget for portable SoCs has been depicted by the power axis in Fig. 1.2.

Time-to-market The development time available to a design team is mostly

determined by the time-to-market of the corresponding product. Due to intense

competition and short lifetimes of most consumer electronic appliances, the time-

to-markets for such products are quite short – typically less than 12 months [84]
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and will continue to remain so in near future. This trend has been depicted by the

design effort axis in Fig. 1.2. The short time-to-market puts tremendous pressure on

design teams already hard pressed to tackle the increased design complexity and

performance demands.

Mask costs Today, the non recurring engineering (NRE) costs for most electronic

products are dominated by silicon mask-set costs. For the past few years, these

costs are steadily increasing due to continuous technology scaling. Technology

scaling [137, 178] is the process of shrinking device dimensions and interconnect

lengths on a silicon die so as to improve circuit speeds (i.e. delays of interconnects

and individual devices) and gate density (i.e. number of gates per unit area).

However, these improvements come at the expense of increased mask-set costs,

because the shrinking dimensions make photo-lithographic techniques used for

mask manufacturing extremely complex. As a result, masks for smaller and newer

technologies are becoming prohibitively expensive. For example, a cutting edge

65 nm mask-set may cost up to 1 million USD, a 45 nm mask-set up to 2.2 million

USD, and a 32 nm mask-set is predicted to cost up to 4 million USD [38]. Such

increasing mask costs have made design re-usability a very important criteria for

portable consumer electronics devices.

The major challenge for current and future PE designers will lie in meeting the

ever increasing performance/energy efficiency requirements under short time-to-

markets, growing design complexities and increasing mask costs. The key to cope

with the short time-to-market lies in incorporating high-levels of programmability in

each individual PE. From this perspective, the best design solution is to implement

each PE as a programmable general purpose microprocessor running pure software.

This facilitates short design time through high-degrees of code reuse, incremental

software updates and bug-fixes. High degrees of software reuse can also reduce the

design complexity to a great extent. Moreover, the reusability of the programmable

hardware ensures a longer time-in-market for each PE and lowers the mask

manufacturing and other NRE costs. To summarize, programmable general purpose

processors (GPPs) [13, 116] are clear winners in the PE selection race when the

challenges posed by increasing complexities, growing NRE costs and shortening

time-to-markets are taken into account.

Unfortunately, even with the key advantages of software programmability,

current and future GPPs will not be able to meet the stringent performance and

energy efficiency demands that nowadays characterize most mobile and multimedia

applications. Traditionally, such tasks have been off-loaded to customized appli-

cation specific integrated circuit (ASIC) based hardware accelerators which can be

designed to deliver far higher performance under tight area and energy consumption

budgets. For example, quantitative comparisons of ASICs and programmable

processor based implementations of various signal processing algorithmic kernels

– presented in [163] – show a gap of almost five to six orders of magnitude

in energy efficiency (measured in mW/MOPs) and area efficiency (measured in

MOPS/mm2) between ASICs and GPPs. However, ASIC designs are increasingly

becoming unattractive due to their lack of flexibility and programmability. Absence
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of flexibility in an ASIC means that it can not be reused for a new task which

deviates even slightly from the original ASIC’s intent and functionality. The

necessity to completely re-design ASIC PEs not only lengthens the time-to-market,

but also increases the overall cost and design complexity of a new product. The cost

of a complete design re-spin for a new ASIC will become more crucial in future due

to the prohibitively expensive mask costs as technology scales further.

A better blend of programmability and peformance/energy efficiency than

ASICs/GPPs can be found in domain specific processors and field programmable

gate arrays (FPGAs). Domain specific processors are programmable cores cus-

tomized for efficiently running applications from a certain domain. Common

examples of them are digital signal processors (DSPs) [9, 63, 167] used for signal

processing tasks in multimedia and communication applications, and network

processing units (NPUs) [147] used for network management and routing.

In contrast to the software programmability of domain specific processors,

FPGAs offer flexibility through re-configurable hardware. FPGAs contain pro-

grammable logic components – called logic blocks – which can implement a variety

of logic functions (or, store results of intermediate computations). The blocks can be

wired together to build arbitrarily complex logic networks through re-configurable

interconnects. The configurations for logic blocks (i.e. which boolean function

each individual block implements) and the interconnects (i.e. which blocks each

interconnect joins) are usually stored in a configuration memory. Consequently,

implementation of a new digital circuit only requires loading a new configuration

into the configuration memory.

General purpose FPGA devices capable of implementing arbitrarily complex

logic circuits are available from several commercial vendors [1, 6, 103, 180]. How-

ever, for low power portable electronic devices, embedded FPGAs (eFPGAs) are

far more promising implementation alternatives. eFPGAs are application specific

field programmable devices having highly customized logic blocks and interconnect

topologies targeted to the consumer electronics market. Examples of possible

application specific customizations in eFPGAs can be found in [100, 122, 163].

Commercial offerings of such devices have also recently come into existence

[2, 152].

In the last few years, a new breed of programmable processors – called

application specific instruction-set processors (ASIPs) [80, 97] – have appeared

in the market to conciliate the conflicting demands of programmability and per-

formance/energy efficiency. An ASIP has a heavily customized architecture that

may even contain ASIC like hardware accelerators targeted to efficiently run a

single task/application. However, unlike ASICs, ASIPs retain varying degrees of

programmability by embedding the application specific features inside a processor

pipeline. The application specific customizations can be usually accessed via special

instructions, and the original target application can be upgraded/bug-fixed/modified

by simple re-programming of the original instruction sequence.

As illustrated qualitatively in Fig. 1.3, in the wide spectrum of PE implementation

alternatives, ASIPs provide the best balance between performance/energy efficiency

and flexibility. Quantitative validation of this qualitative analysis can be found
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Fig. 1.3 Comparison of PE implementation alternatives for current and future SoCs

in [89, 141]. The ASIP based GNSS receiver design presented in [89] is at least

2–3 orders of magnitude more energy and area efficient than other programmable

alternatives, and is more flexible than FPGA or ASIC based solutions. Similarly,

the ASIP design presented in [141] not only is one order of magnitude more energy

efficient than DSP based implementations, but also has almost the same energy cost

per pixel as dedicated ASICs. The overhead of maintaining programmability (i.e.

pipeline control logic, general purpose register file etc.) usually makes ASIPs some-

what larger in area than their ASIC counterparts. Still, the continuous technology

scaling is gradually hastening a shift towards ASIP based SoCs by putting an ever

increasing number of gates at the disposal of system architects.

1.3 The ASIP Design Conundrum

Even with various significant advantages, the widespread acceptance of ASIPs

has been greatly hindered because of the high design effort involved in the initial

development of a complete processor architecture for a given set of applications.

Once designed, an ASIP can significantly lower the time-to-market, time-in-market

and NRE costs for subsequent products. However, the first time development

of a fresh ASIP architecture is an extremely complex task involving not only
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the development of the processor hardware, but also the construction of the so

called software ecosystem consisting of the compiler tool chain and instruction-

set simulator (ISS). The enormous amount of software and hardware expertise and

design effort required to accomplish these tasks is usually not available in small

technical teams working under tight design times. Not surprisingly, quite a few high-

level design frameworks [11, 49, 56, 88, 115, 166, 182] have appeared in the last few

years to fill this design gap.

The prevalent ASIP development frameworks can be broadly categorized under

two major design philosophies. The first one permits designers to develop complete

ASIP architectures from scratch through a specification driven design cycle [49,

56, 166]. It lets designers capture an ASIP’s instruction-set architecture (ISA) and

micro-architecture through a single, unified specification in an architecture descrip-

tion language (ADL). A set of automatic generators is then used to generate both

the software ecosystem and the hardware model from the ADL description. ADL

based design methods free architects from the tedium of manually implementing

new architectural features and maintaining consistency between the software and

hardware models, and allow them to concentrate more on optimizing the ISA and

micro-architecture at a higher level of abstraction.

The second ASIP design philosophy lowers the development and verification

effort further by providing designers with a pre-designed and pre-verified con-

figurable/customizable base processor core [11, 88, 115, 182]. System architects

are allowed to add either a set of predefined functional units (e.g. floating point

units) and micro-architectural features (e.g. zero overhead loops, single instruction

multiple data processing capabilities etc.), or a set of new application specific special

instructions, or both, to tune the customizable base processor to the computational

requirements of the given application.

An important question that mostly remains unanswered in both of these design

philosophies is – how to derive the initial ASIP architecture for a given set

of applications. In most of the specification based design flows, a combination

of manual algorithm analysis (or, expert knowledge) and guesswork is used to

infer the first prototype architecture. This initial version is then iteratively refined

through design space exploration (DSE) or architecture exploration – a process

of simulation guided incremental enhancements of the basic architecture. In most

of the configurable processor based design flows too, finding the best set of

configuration options for a predefined base processor can only be done through

manual analysis (It should be noted that some of the configurable processors

provide design automation tools for this purpose [181]. However, by and large,

most of these processors can only be configured through trial-and-error). Naturally,

pre-architecture design decisions are extremely important for the overall ASIP

development process, because convergence of the architecture exploration cycle

greatly depends on how closely the initial architectural prototype captures the

computational properties of a target application. Unfortunately, to the best of our

knowledge, no commercial or academic design automation software has yet targeted

this area of ASIP design.
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This book presents a design framework that facilitates quick and accurate pre-

architecture application analysis and exploration of ASIP design alternatives. The

framework is built around two program analysis and synthesis tools – a novel

fine-grained application profiler that can characterize the computational properties

of a target application for micro-architecture design, and an ISA customization

tool which suggests promising application specific special instructions for accel-

erating computational bottlenecks. The whole framework is built as an interactive

workbench that complements the prior algorithmic knowledge of system architects.

Additionally, some of the analysis results produced by the framework – specially

the application specific instructions suggested by the ISA customization software –

can be automatically linked to various existing ASIP design technologies giving rise

to a seamless application to architecture flow.

1.4 Outline of the Book

This book is organized as follows. The next two chapters familiarize readers

with the state-of-the-art in ASIP design by introducing the various architectural

alternatives and available design automation tools. This introduction is necessary

to understand the design gaps in current ASIP development frameworks and the

primary motivation of the rest of this book. The two major components of our

design flow – the application profiler and the ISA customization framework – are

described in detail from Chap. 4 to Chap. 9. In Chap. 10, several ASIP design case

studies demonstrate the applicability of the design flow for real life architecture

developments. Chapter 11 sums things up by highlighting the unique contributions

of this book and providing pointers to several future improvements.



Chapter 2

The ASIP Design Space

2.1 Introduction

ASIPs represent a growing trend of application oriented processor specialization

for computationally intensive embedded applications. The first micro-processors –

Intel 4004, TI TMS 1000 and Central Air Data Computer (CADC) – designed

way back in the early 1970s were mostly intended for general purpose usage.

This trend continues even today as general purpose programmable microprocessors

and micro-controllers remain in wide use not only in the server and desktop

PC market [8, 82, 130], but also in the embedded computing domain [13, 116].

However, the need for new, application specific programmable devices started to

grow with the growth of the Internet, digital multimedia, mobile and wireless

technologies, because general purpose processors were often found inadequate to

meet the performance requirements of mobile or networking applications under

tight cost, area and power consumption budgets. Not surprisingly, a wide array

of domain specific programmable devices – such as DSPs [9, 63, 167] and NPUs

[147] – are now employed to address the specific computational requirements

of these application domains. Domain specific processors contain special micro-

architectural features (e.g. multiple memory banks and address generation units in

DSPs, multiple parallel processing engines in NPUs) or customized instructions

(e.g. multiply-accumulate instruction in DSPs) to accelerate applications from the

corresponding domain in hardware. ASIPs take this application oriented design

philosophy to the extreme where a processor is designed to optimally execute only a

single, or at most, a handful of applications.1 However, the architecture is expected

to be flexible enough to accommodate bug fixes and enhancements without incurring

significant performance degradation to ensure longer time-in-market (and shorter

time-to-market for subsequent products).

1The corresponding application will be called the target application for the rest of this book.

K. Karuri and R. Leupers, Application Analysis Tools for ASIP Design: Application

Profiling and Instruction-set Customization, DOI 10.1007/978-1-4419-8255-1 2,

© Springer Science+Business Media, LLC 2011
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Although most ASIP designs adhere to the general design principles introduced

in the classical computer architecture and organization texts by Hennessy and

Patterson [125, 126], the vast gulf of differences in design objectives between

ASIPs and general purpose processors usually compels designers to employ design

alternatives not commonly found in the general purpose computing domain. This

chapter intends to familiarize readers with all such standard and application

specific architectural tricks available to the ASIP developers. It discusses standard

architectural issues – instruction-set architecture, pipeline, register file (RF) and

memory hierarchy design – along with special topics like partially reconfigurable ar-

chitectures and hardware accelerator development. For each topic, a brief historical

perspective and description of standard design practices are followed by an in depth

discussion of customization options pertinent to ASIP architectures. The material

presented in this chapter provides the necessary background for understanding the

various design issues discussed in later parts of this book.

2.2 Architectural Alternatives for ASIPs

2.2.1 Instruction-set Architecture

The instruction-set architecture of a processor represents a simplified programmer’s

view of the micro-architecture (i.e. underlying implementation and organization

details of the processor hardware). The ISA specifies the instruction opcodes,

instruction encoding, memory/register addressing modes and supported data types.

Depending on their ISA structures, processors are usually classified into two

categories: reduced instruction-set computers (RISC) and complex instruction-set

computers (CISC) [125]. CISC ISAs are characterized by the presence of sev-

eral complex instructions (usually created by combining multiple arithmetic/logic

computations and memory access operations), special purpose registers, variable

length instruction encoding and complicated addressing modes. The absence of

general purpose registers as well as the abundance of complicated instructions and

addressing modes make CISCs extremely unsuitable for compiler code generation

phases like register allocation and code selection.

In contrast to CISCs, RISCs (also called load-store architectures) generally em-

ploy a uniform general purpose register (GPR) file, simple addressing modes, fixed

length instruction encoding and simple instructions. One RISC instruction usually

contains one arithmetic/logic/memory access operation. Input/output operands of

all arithmetic/logic instructions come from the GPR file, while memory accesses

are performed by a separate set of load/store instructions. Because it is far easier

to design compilers for RISCs than CISCs, almost all general purpose embedded

processors [13, 116] today are RISC machines.

Various instruction-set design issues for ASIP architectures are briefly touched

upon in the rest of this section.
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2.2.1.1 Instruction-set Characteristics

As a general rule, ASIP ISAs are closer to many modern DSP instruction-sets which

tend to combine properties of both CISC and RISC machines. Most ASIPs generally

have a load-store architecture with a GPR file as a base processor. The base

processor usually implements simple unary or binary arithmetic, logical, relational,

shift and memory access operations in a basic instruction-set (a. k. a. base pro-

cessor instruction-set). However, this basic instruction-set can be augmented using

application specific instructions2 which may use complex addressing modes and

hidden special registers. For example, two most prominent configurable processor

technologies – MIPS CorXtend [115] and ARC Tangent [11] – allow designers to

add special instructions and registers to their RISC ISAs. Similarly, the ASIP design

presented in [141] has a set of extremely complex special instructions like a CISC

and a GPR file like a RISC machine.

2.2.1.2 Base Processor Instruction-set

An important issue for ASIPs is which instructions to include in the basic

instruction-set. Normally, all integer arithmetic, logic, shift and relational operations

except multiplication and division are included in the basic instruction-set. Integer

multiplication and division, as well as floating point operations, are included only

when the target application contains them in significant numbers. Leaving out

infrequent operations from the basic instruction-set saves area and improves energy

efficiency. Left out instructions can be easily emulated in software without hurting

performance in any significant way. The operations included in the basic instruction-

set are called base processor instructions (BPIs).

A simple example of this application oriented design philosophy can be con-

structed by considering two different application domains – multimedia and private

key cryptography. Most multimedia applications (e.g. H.264 [177], MPEG-2 [117]

and MP3) contain considerable number of multiplications, whereas private key

cryptographic algorithms (e.g. AES, DES and Gost [145]) only need addition,

subtraction, logical and shift operations. Consequently, multipliers have to be

included in the basic ISA of any multimedia ASIP, but can be safely left out from

private key cryptographic processors.

2.2.1.3 Instruction Encoding

Another vital consideration for ASIP ISAs is the instruction encoding scheme.

A compact instruction encoding increases code density and lowers instruction

2Such application specific instructions are also called instruction-set extensions (ISEs) or custom

instructions (CIs). For the rest of this book, these three terms will be used interchangeably.
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memory requirement. However, such encoding schemes can often adversely af-

fect performance by limiting instruction-set functionalities. Examples of possible

restrictions due to a compact instruction encoding include constraints on the number

of instruction opcodes, number of bits per register/immediate operand and total

number of operands per instruction. As will be seen later in this book, the number

of register operands available to application specific ISEs is a key contributing

factor for achieving high hardware acceleration. Similarly, the number of bits

made available for immediate operands or branch targets must be selected very

judiciously. Selection of wider bit-widths for immediate operands can lengthen

instruction words and decrease code density. Choosing very narrow fields for

immediate values can affect performance, since wider immediate operands have to

be loaded to registers before use. For ASIP development, these concerns must be

balanced very carefully by considering all pertinent design constraints.

Other possible ways of increasing code density include variable length encod-

ing and dual instruction encoding. Variable length instruction encoding involves

different encoding schemes for different classes of instructions – instructions with

several operands are encoded using more bits than instructions which have no or

few operands. The most common example of dual encoding can be found in ARM

processors which support the 16-bit thumb/thumb-2 [81] instruction-sets along with

normal 32-bit encoding. The thumb ISA encodes only a subset of the normal ARM

instruction-set and limits many instructions to only access half of the register file.

During execution, the thumb instructions are translated to normal ARM instructions

by a de-compression unit embedded in the ARM processor pipeline. Any one of the

above architectural alternatives can be used for ASIPs, if the size of the instruction

memory is an important design parameter.

A properly selected instruction encoding can also reduce the overall dynamic

energy consumed by the instruction memory and the instruction bus [23, 41, 187].

This optimization is mostly orthogonal to the code density issue – but is equally

important for improving the energy efficiency of application specific architectures.

2.2.2 Instruction Pipelining

Since its inception in the 1970s, instruction pipelining has become a universally

accepted technique for increasing instruction throughput by lowering clocks per

instruction (CPI). Pipelining divides the execution of an instruction into several

simple, single cycle stages so as to overlap the execution of successive instructions

in an instruction stream. The classical pipeline architecture – the template for most

modern day RISC processors – described in [126] has five stages: instruction fetch

(FE), instruction decode (DE), instruction execution (EX), memory access (MEM)

and result write-back (WB) (Fig. 2.1). In this architectural template, the execution

of the first instruction in an instruction stream can be overlapped with the decoding

of the second and the fetching of the third instruction. Successive stages use pipeline

registers ( 1 and 4 in Fig. 2.1) for communicating intermediate results.
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Fig. 2.1 Example pipeline architecture for ASIPs

Depending on the design constraints, ASIP pipelines can be designed completely

from scratch or can be based on the classical template described above. An example

of a completely customized ASIP pipeline is presented in [141]. The pipeline

structure described in this work consists of seven stages. The customary instruction

fetch and decode are followed by five stages which have been designed specifically

for piecewise approximation of some image processing functions required in retinex

like image enhancement algorithms. However, such extreme specialization is not

common for most ASIP architectures. Majority of them [11, 89, 115, 182] uses

extensions of the classical five stage RISC architectural template shown in Fig. 2.1.

The EX stage usually implements simple integer arithmetic/logic instructions and

a single cycle integer multiplier. Application specific special instruction data-paths

are usually implemented in a custom functional unit (CFU) ( 2 in Fig. 2.1) which

executes in parallel with the base processor’s EX stage. Similarly, other application

specific execution units such as FPUs and SIMD data-paths can also be implemented

in parallel with the base processor’s EX stage ( 3 in Fig. 2.1).

Extracting the ideal CPI of 1 from a single-issue3 processor pipeline is usually not

possible due to structural, data and control hazards. The reasons of these hazards

and their possible remedies within the context of ASIP architectures are discussed

in the rest of this section.

3CPI of less than 1 can be achieved in multiple-issue processors, i.e. processors which can start

execution of multiple instructions in parallel. More on this in Sect. 2.2.3.
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2.2.2.1 Structural Hazards

Structural hazards occur in a processor pipeline when two instructions simulta-

neously compete for the same processor resource. To construct an example of a

structural hazard, a processor architecture with a single memory for storing both

instructions and data can be considered. In this processor pipeline, a conflict for the

main memory can occur between a memory load instruction in the MEM stage and

any other instruction in the FE stage.

Structural hazards can be handled either by providing more processor resources,

or by stopping one of the conflicting instructions from executing. The structural

hazard arising out of a single main memory can be avoided if separate memory

banks are used for instructions and data (as in Fig. 2.1). Alternatively, the hazard

can be handled by preventing any instruction from entering the FE stage when a

load enters the MEM stage.

In ASIPs, structural hazards can occur due to multi-cycle, non pipelined special

instructions. A conflict for the CFU can develop between a multi-cycle ISE and any

other special instruction immediately following it. Such conflicts can be resolved

either by pipelining the CFU itself ( 2 in Fig. 2.1), or by preventing any other

ISE from entering the CFU as long as a multi-cycle ISE is executing inside it. The

first solution eliminates any performance penalties due to the structural hazard, but

is difficult to implement and increases CFU area. In contrast to this, the second

solution is easier to implement, but may cause significant performance degradation

because any special instruction following a multi-cycle ISE has to be stalled several

cycles. The stalling can be implemented through hardware interlocks, or can be

achieved by having the compiler insert an appropriate number of No OPeration

(NOP) instructions between a multi-cycle ISE and any other ISE following it.

2.2.2.2 Data Hazards

In the instruction pipeline shown in Fig. 2.1, the result of a computation done in

the EX stage is percolated through the EX/MEM and MEM/WB pipeline registers

( 4 in Fig. 2.1) and are written to the GPR file after two cycles in the WB stage.

A data hazard occurs in this pipeline, if a read-after-write (RAW) data dependence

exists between two consecutive instructions – i.e. the destination register of the first

instruction is one of the source register operands of the second instruction. The

effects of the hazard can be understood by considering that the value computed by

the first instruction in the EX stage is written back to the corresponding GPR after

two cycles, while the second instruction needs the correct value in EX stage in the

next cycle. Due to the data dependency, the second instruction ends up reading the

old value from the source register instead of the current value computed by the first

instruction.

Like structural hazards, data hazards can be eliminated by stalling the pipeline

for appropriate number of cycles – either using NOPs inserted by the compiler, or



2.2 Architectural Alternatives for ASIPs 17

Fig. 2.2 Data forwarding architecture

through hardware interlocks. However, due to the significant performance penalties

of this scheme, most processors usually employ data forwarding logic ( 5 in

Fig. 2.1) to reduce the effects of data hazards.

An exemplary forwarding architecture is presented in Fig. 2.2 where the indices

of the destination registers ( 1) are carried along with their values through the

EX/MEM and MEM/WB pipeline registers. Before starting the execution of an

instruction in the EX stage, the index of each of its source operands ( 2 in Fig. 2.2)

is compared against the indices of the destination registers of the previous two

instructions ( 3). If one of the destination indices matches with the source index,

then the corresponding value is selected as the source operand ( 4). Otherwise, the

value is taken from the GPR file ( 5).

Application specific ISEs in ASIPs often require more GPR input/output

operands than available to base processor instructions. Even a very simple ISE

like the multiply and accumulate (MAC) instruction requires three input operands

(compared to two operands required by all arithmetic/logic operations). ISEs

designed for ASIPs are usually far more complex than MAC and need several

input/output operands. However, the complexity of the data forwarding architecture

often becomes a limiting factor in such cases.

Figure 2.2 shows the data forwarding logic for a single source and destination

operand. For multiple source operands, the forwarding logic has to be replicated

multiple times. In addition to this, the complexity of the forwarding logic for each

individual source operand increases with the number of output operands. It can
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be easily seen from Fig. 2.2 that four comparison operators instead of two ( 3)

will be required if an instruction is permitted to have two destination operands.

Similarly, a 4�1 MUX will be required for selecting the right forwarded value

instead of the 2�1 MUX ( 4). The matter becomes even more complicated if multi-

cycles ISEs are taken into account. It is of course possible to implement a partial

data forwarding policy, e.g. data forwarding only for base processor instructions.

However, such policies can increase latencies of special instructions and adversely

affect performance.

2.2.2.3 Control Hazards

Another important pipelining issue is the handling of control hazards arising from

conditional branches. In the classical RISC pipeline of Fig. 2.1, the outcome of a

conditional branch instruction is not known till the DE stage. However, by that time,

another instruction following the conditional branch is already in the FE stage of the

pipeline. If the branch is taken, then the effect of this following instruction must be

canceled, i.e. it must not be allowed to commit its results to memory or register file.

Several schemes for handling control hazards are presented in Fig. 2.3 which shows

an example C code and four pseudo assembly code representations of it. The C code

contains a for loop ( 1) and an if-then-else statement ( 2) – both of which have to be

implemented using conditional branches. The four different pseudo assembly codes

show four different ways of handling control hazards. The italicized conditional

branches in the pseudo assemblies originate from the for loop, while the normal

ones originate from the if-then-else statement.

Like structural and data hazards, control hazards can be handled by simply

stalling the instruction pipeline and preventing any instruction following the branch

from entering the pipeline till the branch outcome is known. The stalling can be

done by insertion of a NOP instruction after each conditional branch ( 3). This

results in the so called branch penalty – lost execution cycles for each conditional

branch instruction.

One commonly used mechanism to eliminate branch penalties is to always

execute a fixed number (usually, not more than two) of instructions following a

branch irrespective of the branch outcome. These instructions are said to be placed

in delay-slots of the branch and the corresponding branch instruction is called a

delayed branch. Obviously, an instruction in a branch delay slot must not be control

dependent4 on the branch, and the branch must not be control or data dependent

on it. The load instruction, val=*(a+i), ( 4 in Fig. 2.3) can be placed in the

delay slot of the branch, if (!t2) goto L2, because it fulfills both of these

conditions. However, the instruction preceding the branch, t2=i%2, can not be

4An instruction is control dependent on a branch if its execution depends on the outcome of the

branch. For example, instructions in the if and else portions of the if-then-else statement in Fig. 2.3

are control dependent on the corresponding conditional jump.
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Fig. 2.3 Architectural options for minimizing branch penalty

placed in the delay slot, because the branch is data dependent on it. Usually the task

of filling the delay slots is left to the compiler. If suitable instructions for filling the

delay slots of a branch are not found, NOPs are inserted instead ( 5 in Fig. 2.3).

Another more complex strategy – known as branch prediction – attempts to

predict beforehand whether a branch will be taken or not. Depending on the

prediction outcome, instructions from either the branch fall-through or the branch

target are fetched and speculatively executed. In case of a miss-prediction, the

instructions executed after the branch must be annulled.
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There are two more strategies which try to eliminate branches altogether. The

first of these is called predicated execution where a condition – called a predicate –

is attached to all instructions control dependent on a branch. The predicate is usually

placed in a predicate register. If the predicate is true, then the instruction commits

its result to processor storage, otherwise it is annulled. This method works only

for forward conditional branches (i.e. branches originating from if-them-else of

switch-case structures in the source code) and not for loops. An example of this

scheme is presented in Fig. 2.3) which shows the predicated version ( 6) of the

if-then-else statement of the original C code. Readers can easily observe that this

scheme completely eliminates the corresponding conditional jump instruction.

The other scheme reduces the overhead of loop iterations by eliminating the loop

condition testing and the jump instruction at the end of a loop. This technique only

applies to loops for which the iteration count is known at compile time. In this

scheme, a special instruction – usually called a zero overhead loop (ZOL) instruction

– repeats a certain portion of code a predefined number of times. The portion of code

to execute and the iteration count are initialized through some special instructions

before the ZOL instruction is triggered ( 7 in Fig. 2.3). Many embedded DSP

architectures use this technique for speeding up loops.

Among the techniques described above, delayed branches and ZOLs are usually

preferred candidates for ASIP architectures. Predicated execution is not commonly

found in single-issue RISC architectures, but is a prominent feature in many VLIW

architectures [176]. The predicated execution scheme converts control flow to data

flow which lets VLIW compilers easily discover parallelism.

Hardware branch prediction is a scheme which is not commonly found in em-

bedded architectures, although high performance general purpose processors often

use it. Branch prediction significantly complicates the pipeline implementation and

is not suitable for data dominated embedded applications.

2.2.3 Instruction and Data Parallelism

In order to meet the stringent performance and power efficiency requirements of

most portable consumer electronic gadgets, SoC designers usually try to exploit any

form of available parallelism in the target applications. Readers may recall from

Sect. 1.1 that these applications are usually composed of several coarse-grained

tasks. Parallelism in such an application may exist between two independent tasks

(inter-task parallelism) as well as within a single task (intra-task parallelism). While

inter-task parallelism can only be exploited at the SoC architecture level, intra-task

parallelism must be handled in the corresponding PEs. In this section, some stan-

dard techniques to deal with fine-grained, intra-task parallelism in programmable

processors are discussed briefly.
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2.2.3.1 Exploiting Instruction Level Parallelism

An application exhibits instruction level parallelism (ILP), if, at any point in its

execution, there exists a set of yet-to-be-executed instructions which are mutually

independent (i.e. there exists no control or data-dependence between any two

instructions in the set) and therefore, can be executed in parallel. The parallelism

available in an application can be increased by re-ordering its sequential instruction

stream through instruction scheduling.

Instruction level parallelism can be exploited by a processor if it can simultane-

ously issue multiple instructions in each clock cycle. Multiple issue architectures

can be categorized into two classes: very long instruction word (VLIW) [58] and

superscalar [148] processors. In a VLIW processor, as the name suggests, multiple

instructions packed into each single very long instruction word are executed in

parallel. The pipeline structure for such a processor usually consists of the classical

RISC pipeline (Sect. 2.2.2) replicated as many times as the maximum number

of instructions in an instruction word. Each such parallel execution pipeline is

called an issue slot. For a VLIW machine, the compiler tool-chain statically

schedules a sequential stream of instructions into parallel issue slots. In contrast to

this, superscalar architectures use dynamic scheduling, i.e. scheduling and parallel

issue decisions are taken by the processor hardware during program execution.

The runtime scheduling and issue mechanisms used in superscalars are extremely

complex and usually not suitable for embedded processors due to area and energy

efficiency reasons. On the other hand, the VLIW philosophy has found its way

into several embedded digital signal processor architectures [10, 168, 176] due to

its apparent simplicity.

Figure 2.4 presents a comparison between sequential and VLIW instruction

schedules generated for a given piece of C code. The VLIW architecture in

question allows only one memory access per cycle (assuming a single data

memory with a single read/write port), but can simultaneously execute three

arithmetic/logical/comparison/shift operations in three parallel issue slots. The

sequential pseudo assembly code takes eight cycles in total to implement the C code

fragment, whereas the VLIW schedule achieves the same in only five cycles. The

first three add instructions for generating data memory addresses in the sequential

code are packed in the same instruction word in the VLIW operation schedule ( 1 in

Fig. 2.4). The memory load instructions ( 2 in Fig. 2.4), which use these computed

addresses, can not be scheduled in parallel due to memory access restrictions.

However, the first addition operation following the memory loads can be scheduled

in parallel with the last load instruction ( 3 in Fig. 2.4). Thus, a total saving of three

execution cycles w.r.t. the sequential schedule is achieved.

VLIWs are attractive design alternatives for target applications which contain

high degrees of fine-grained parallelism. Still, the VLIW option must be weighed

carefully against other possible performance enhancement techniques such as

special instructions or hardware co-processors due to its high design complexity.

Although VLIWs are not as complex as superscalar processors, designing them
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Fig. 2.4 Comparison between sequential and VLIW instruction schedules

from scratch still requires considerable design effort. The key challenge is to design

a suitable optimizing compiler that can identify parallelism in an in-order instruction

stream and effectively schedule it.

For embedded consumer electronic applications, the low code density of the

VLIWs is another major concern. During instruction scheduling, a VLIW compiler

may not find enough parallel instructions to fill each issue slot in an instruction word.

Such unused slots are filled using NOP instructions (e.g. seven unused issue slots

have been filled with NOPs in the VLIW instruction schedule shown in Fig. 2.4).

This policy adversely affects code density.

To alleviate this problem, some VLIW processors like Philips Trimedia [176]

apply code compression on the scheduled instruction stream. The compressed

instruction words are decompressed using a special hardware unit after instruction

fetch from the instruction memory. However, any such code compression technique

further raises the design complexity of the corresponding architecture.

2.2.3.2 Exploiting Data Level Parallelism

Single instruction multiple data (SIMD) – originally described in Flynn’s famous

taxonomy [60] of computer architectures – is a type of parallel computer organiza-

tion where multiple processing elements simultaneously apply the same operation

on several data elements. Unlike scalar architectures which process one single

data item at a time, a SIMD computer contain instructions which can operate
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on entire data vectors (i.e. one dimensional arrays of data items). The SIMD

philosophy was the basis of most vector processing supercomputer architectures

designed in 1970s and 1980s. Today, SIMD instructions are commonly used to

exploit the data level parallelism in a variety of multimedia – especially video

processing – algorithms. Two very common applications of SIMD instructions are

computation of sum of absolute differences (SAD) and sum of absolute transformed

differences (SATD) functions. Most video compression/de-compression algorithms

use some variant of these functions for block matching in their motion estimation

kernels. Similar examples can be found for audio and static image processing

algorithms, too. Not surprisingly, a large number of desktop general purpose

processors provide SIMD extensions to their normal instruction-sets (e.g. MMX,

SSE and SSE-2 from Intel, AltiVec for PowerPC and 3DNow! for AMD) or use

SIMD based graphics processing units (GPUs) (e.g. NVidia GeForce and ATI

Radeon) for accelerating media processing and graphics rendering. Due to the recent

convergence of various multimedia applications onto handled consumer electronic

gadgets, SIMD instructions have also become very common in embedded DSP

(e.g. C6000 series of processors from Texas Instruments [168] and Tigershark

from Analog Devices [10]), and configurable processor cores (e.g. TenSilica Xtensa

[182] and ARC Tangent [11]).

Although SIMD instructions for GPPs and GPUs can be as complex as sup-

porting operations on entire data vectors, most embedded processor exploit simple

sub-word parallelism through SIMD operations. This technique takes advantage of

the fact that many multimedia applications use 8 bit or 16 bit wide data elements

(e.g. image processing algorithms may use 16 bits per pixel) which can be easily

stored as sub-words of 32 bit wide general purpose registers. Operations like

simultaneous addition/subtraction of all the sub-words of two registers can be

accomplished by simply stopping the carry propagation path between consecutive

sub-words. An example of this is presented in Fig. 2.5 which shows a piece of C code

that adds two arrays containing four 8 bit wide char elements ( 1 in Fig. 2.5a). The

sequential implementation of this C code ( 2 in Fig. 2.5a) requires a loop construct

containing six instructions per iteration. This amounts to the execution of a total of

24 instructions. The same example can be implemented using only four instructions

which exploit the sub-word parallelism of the data elements. In this implementation,

all the elements of the two input arrays – a and b – are loaded into the sub-words of

two GPRs using normal memory load instructions ( 3 in Fig. 2.5b), added in parallel

using the SIMD add operation ( 4), and stored back to memory using a normal

memory write operation( 5). The SIMD add has very little hardware overhead,

because the four 8 bit adders can be implemented simply by deactivating the carry

path of the normal 32 bit adder at the 8 bit sub-word boundaries. This example

clearly demonstrates why SIMD instructions are so attractive for embedded ASIP

architectures.

SIMD and VLIW are complementary paradigms for exploiting fine-grained,

intra-task parallelism in programmable architectures. These two approaches are of-

ten combined together [10,168] to take maximum advantage of available parallelism

in target applications.
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Fig. 2.5 Example of SIMD using sub-word parallelism

2.2.4 Hardware Acceleration Technologies

General purpose processors are often found inadequate to meet the performance and

energy efficiency requirements of applications with high-computational complexity.

As a consequence, designers have traditionally off-loaded computationally intensive

tasks to customized hardware accelerators. This trend continues even today for

ASIPs where specialized hardware accelerators continue to remain the primary

means of performance optimization. The prevalent approaches for accelerator

design are discussed in this section.
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As a general rule of thumb, a large portion of the execution time of a program

is spent inside only a few critical segments of code. Hardware accelerators are

normally designed to speed-up execution of such critical segments. One can

categorize various accelerator design techniques into two different approaches based

on the granularity of these critical program segments. The first approach advocates

migration of performance critical coarse-grained subtasks of the original target

application to dedicated ASIC based co-processors. In a co-processor based system,

the main-processor usually retains the control intensive software code of the original

application and co-ordinates the execution of various computation heavy tasks on

different co-processors. The controller commonly initiates the execution of a co-

processor by initializing a number of interface registers, and then waits for the

co-processor to return results after successful completion of the designated task.

Translating a coarse-grained task to a hardware description is usually done using

high level synthesis (HLS) [113]. A large number of commercial offerings of HLS

tools are already available in the market [19, 36, 42, 61, 111, 165].

The second approach of accelerator design, which has been already mentioned

several times in preceding sections, is to integrate application specific ISEs into the

original processor core. An ISE combines program elements of the finest possible

granularity, i.e. individual program statements, into hardware blocks. Readers may

recall from Sect. 2.2.2 that ISEs are usually implemented inside a tightly coupled

CFU within the base processor pipeline and are permitted to access the GPR file

and base processor resources.

Examples of both of these approaches are presented in Fig. 2.6. Figure 2.6a

shows a small code snippet from an implementation of the edge and corner

detection algorithm SUSAN (an acronym for smallest univalue segment assimilating

nucleus) [162]. The code snippet, encapsulated inside the corner draw function,

marks the detected edges/corners of a given image by black points. In the co-

processor based implementation, the entire functionality of the code snippet is

executed on a dedicated hardware block. The main processor initializes interface

registers of the co-processor with the required execution parameters and then waits

for the hardware accelerator to finish execution. The co-processor block directly

modifies the shared memory regions holding the corner list structure during

its execution. The processor/memory/accelerator communications are done over a

shared bus.

In the ISE based implementation, source line 1 of Fig. 2.6a is implemented

using a special instruction, get pixel address, inside the main processor’s

pipeline. get pixel address is allowed to access GPRs and main memory of

the base processor core to finish execution, and does not need to go over a shared

system bus to access the pixel data.

The ASIC based coarse grained co-processor design does not really fit well with

the philosophy of the ASIP’s. One of the major advantages of ASIPs over ASICs –

added flexibility and programmability – is lost with the usage of coarse grained

accelerators, although some amount of flexibility can be incorporated into co-

processor based accelerators by using FPGA or eFPGA devices instead of ASICs.

This is illustrated in Fig. 2.6b which shows a modified version of the corner draw
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Fig. 2.6 Comparison of coarse-grained and ISE based hardware accelerators

function which can employ an enhanced drawing mode to mark edges/corners in

black with white borders (instead of simple black points as in the original). This

drawing mode can not be supported by the coarse grained co-processor and has to

be executed in software. However, the same get pixel address instruction can

be used to provide some hardware acceleration for even this modified drawing mode.
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The usage of co-processors and ISEs for hardware acceleration are not mutually

exclusive. For example, Sun et al. [161] proposes a technique to find the right

balance between ISEs and co-processors during ASIP customization. Similarly, the

GNSS receiver ASIP presented in [89] uses ISEs, and ASIC and eFPGA based

co-processors for hardware acceleration.

One interesting commercially available co-processor design technology is of-

fered by the Cascade technology from Critical Blue [50]. Cascade claims to

generate programmable co-processors with high degree of instruction level par-

allelism for accelerating computation intensive, coarse grained code segments.

Designers can even specify some efficient application specific functional units (FUs)

that can be embedded in the co-processor hardware. Still, the usage of co-processors

for hardware acceleration is more in the domain of system design than processor

design, and is beyond the scope of this work. For the rest of this book, we will

concentrate on the issues concerning ISE based accelerator generation.

2.2.5 Register File Architecture

The design of the register file needs a special mention within the ASIP design con-

text, because it has special ramifications for ISEs and instruction level parallelism,

among other things. We have already mentioned that most ASIP architectures today

are built around pipelined RISC base processors. As a natural consequence, an ASIP

usually contains a GPR file which is used by both base processor instructions and

ISEs. However, unlike the unary or binary BPIs, most ISEs require more than two

input operands and one output operand from the GPR file. These extra operands are

often provided via special registers which do not appear in the instruction encoding.

Since these special registers are invisible to the BPIs, they are usually placed inside

the CFU instead of the base processor pipeline. The usage of these special registers

for ISE design will be revisited again in Chaps. 6 and 8.

The GPR file design of an ASIP might itself be different from those used in

general purpose processors. One common GPR file design strategy found in many

embedded VLIW architectures [58] is called clustering. VLIW architectures need

several RF input/output ports due to multiple parallel FUs. However, the area

and latency of a RF increases with increasing number of ports. In a clustered

architecture, this problem is solved by dividing the monolithic GPR file into several

smaller register files. Each smaller RF is grouped together with a set of FUs to from

a cluster. Each FU from a particular cluster can access the entire RF of the same

cluster, but is only granted limited access to registers from other clusters through

restricted inter-cluster interconnection networks.

The advantages of a clustered register file over a non-clustered one can be easily

understood from Fig. 2.7. Figure 2.7a shows a VLIW with four parallel FUs and a

monolithic register file with N registers. Figure 2.7b shows the same architecture

divided into two clusters – each containing N=2 registers. For the sake of simplicity,
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Fig. 2.7 Register file ports and data forwarding architectures in clustered and non-clustered

VLIWs

no inter-cluster communication network has been shown here. Each read port of the

non-clustered register file requires a N � 1 vector MUX, whereas the same in the

clustered version requires only a N=2 � 1 vector MUX. For typical values of N ,5

the savings in register file area and latency due to clustering can be considerable.

5Typical values of N , i.e. the size of the GPR file, are usually 8, 16 or 32 for most embedded

processors.
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Unfortunately, the improvements due to clustering come at the cost of register

access restrictions. As an example, let us suppose that all the FUs in cluster B in

Fig. 2.7b in a particular cycle need to read all their sources from cluster A. Due to

the limited number of inter-cluster interconnection paths, all these read operations

can not be supported in a single cycle. This issue can be resolved either by inserting

special move operations which copy source registers from cluster A to cluster B,

or by scheduling some of the competing instructions in later cycles. Both of these

solutions lead to a loss of execution cycles. Minimizing such performance penalties

due to clustering is an active area of compiler research.

The concept of clustering can also be used to provide multiple input/output GPR

operands to ISEs in single issue RISC processors. This technique will be described

in detail in Chap. 9.

2.2.6 Memory Subsystem Design

Nowadays, the memory subsystem in any computer system constitutes a primary

bottleneck w.r.t. the two most important design criteria – power consumption

and performance. It is the main bottleneck for system performance due to the

continually increasing speed-gap between memories and processors. For battery

driven embedded applications, a more urgent concern is the energy efficiency of

memory devices. Memory accesses account for a vast bulk of power consumption

in embedded systems. For example, in real time signal processing applications –

such as speech processing in a mobile phone – 50–80% of the power is consumed in

the traffic between the CPU and the off-chip memory [151]. Naturally, the memory

subsystem is one of the most important architectural concerns for ASIP design.

The performance of the memory subsystem can be optimized using a variety

of hierarchical memory configurations. The most common configuration preferred

in almost all existing desktop GPP architectures consists of one or more levels

of fast, hardware controlled cache memories between the processor and the main

memory [125]. Caches are generally implemented using SRAMs which are usually

far faster (by a factor of 10 or more) and more expensive (by a factor of 20 or

more) than the DRAMs used for main memories. Due to the cost of SRAMs, they

are normally far smaller in capacity than main memories and are used to store only

those memory objects (instructions or data) which are most likely to be accessed

during the execution of a program. In desktop systems, caches are used for lowering

the average memory access latency whereas the main memory is used for building

capacity.

Besides the standard memory hierarchy design for GPPs, several other memory

subsystem alternatives common in embedded systems can also be employed for

ASIP architectures. This section briefly discusses these alternatives. A pictorial

overview of these alternatives is presented in Fig. 2.8.
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Fig. 2.8 Options for ASIP register file and memory hierarchy design

2.2.6.1 Software Controlled Caches

In desktop systems, the policies that govern the placement and allocation of

instruction and data objects in caches are implemented in hardware. For embedded

systems, the area and energy consumption overhead of such hardware cache

controllers makes caching quite unattractive. The other alternative is to use fast

SRAMs as scratch-pads where the placement of memory objects is controlled

by software – usually by the compiler. Due to the absence of complicated cache

controllers, scratch-pad based memory systems can be far smaller in area and far

more energy efficient than caches. For example, the study by Banakar et al. [22]

demonstrates that a scratch-pad memory is around 34% smaller and 40% more

energy efficient than a cache of the same capacity.

Scratch-pads are promising alternatives of caches for ASIPs. Unlike a general

purpose processor designed to run a large variety of applications with varying

memory footprints, memory access patterns of target applications are known in

advance for an ASIP. A suitable scratch-pad allocation policy – selected by using

such a priori knowledge – can even outperform hardware caching. For example,

Banakar et al. [22] observed a 18% reduction in cycle count (compared to a cache)

using a simple knapsack based static allocation algorithm. It is, therefore, not

surprising that the compiler assisted software scratch-pad allocation has become

an area of active research [22, 124, 170].
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Many embedded applications contain data arrays which are initialized once and

are not written thereafter during program execution. Some common examples of

these are the coefficients used in digital filters [135] and the so called S-Boxes used

in private key block cipher algorithms [145]. Such arrays are also good candidates

for placement inside scratch-pads. Often enough, application kernels, which make

heavy use of such data arrays, are accelerated using ISEs. In such cases, the

corresponding scratch-pads can be placed directly inside the CFU. This issue will

be revisited again in Chaps. 6, 7 and 8.

2.2.6.2 Multiple Memory Banks

Another possible architectural feature for ASIPs is to add multiple memory banks.

In many signal processing applications, elements from multiple arrays have to be

processed simultaneously. The classical example of this is found in digital FIR

or IIR filters where the elements of input sample arrays (in case of IIR filters

also previously computed output sample arrays) are multiplied with elements of

coefficient arrays. Efficient implementations of such filters require instructions

which can simultaneously access both the sample array and the coefficient array.

For supporting such filter applications, many DSP architectures contain dual X-Y

memory banks, and provide MAC or multiply instructions which can use two

memory operands – one from each memory bank.

2.2.7 Arithmetic Data Types

A very important consideration for ASIPs is which data types to support for a given

target application. This design decision determines the bit-widths of GPRs, FUs

and data bus in an architecture. General purpose desktop and embedded processors

use integer data types for representing positive and negative whole numbers, and

floating point data types for real numbers. Normal practice is to use 32 bit wide

integers, and IEEE 754 [69] standard compliant single precision (32 bit), double

precision (64 bit) or extended precision (more than 64 bit) floating point numbers.

These values can be entirely different for an ASIP.

The ideal size of the integer data type for an ASIP depends on the target

application. As an example, recall from Sect. 2.2.3 that many multimedia programs

use only 8 or 16 bit data elements. The integer data type, as well as the FUs

and GPRs, can be appropriately resized for such algorithms. Operations on wider

integers can be emulated in software in such architectures.

A floating point unit can be optionally incorporated in an ASIP for floating point

multimedia and signal processing applications. Still, due to the design complexity

and area/power consumption overheads of a fully IEEE 754 compliant FPU, only
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limited and absolutely necessary functionalities are included in such cases. A more

widely accepted practice in embedded system domain is to represent fractional

numbers using fixed point data types. A fixed point data type, as the name suggests,

uses a fixed number of bits for representing the fractional part of a real number.

This is in contrast to a floating point type which uses a mantissa and an exponent

to represent a real number. A floating point type can represent a far wider range

of values than a fixed point type of the same width, but also has far higher

implementation complexity.

A fixed point type is essentially an integer type scaled down by a specific factor

which is determined by the number of bits in the fractional part. As an example, let

us consider a 8 bit wide signed fixed point type with 3 bits reserved for the fractional

part. The scaling factor in this fixed point type is 2�3, (or, in decimal, 0.125) and

all the numbers represented in this type are multiples of this scaling factor. The

range of values for a 8 bit wide signed integer lies between �128 (D �27) to C127

(D 27 � 1). The range of values of the corresponding fixed point type, which lies

between �16 (D �27

2�3 ) and �15:875 (D 27
�1

2�3 ), can be derived by simply scaling

the ranges of the original integer down by the scaling factor. As a consequence of

this, fixed point operations can be simply implemented in an ASIP using slightly

modified integer arithmetic FUs. The optimal bitwidth of the fractional part can be

determined by profiling the real numbers used in the target application.

2.2.8 Partially Reconfigurable ASIPs

In the past few years, one of the most interesting developments in the ASIP design

landscape has been the emergence of partially reconfigurable ASIPs (rASIPs). An

rASIP combines a processor’s data-path with a tightly coupled reconfigurable fabric.

While the base instruction-set of the processor provides flexibility in software, the

reconfigurable fabric offers flexibility in hardware.

The Stretch [158] architecture is a good representative example of rASIPs. It

embeds an instruction-set extension fabric (ISEF) inside an Xtensa LX processor

(which by itself is configurable!). The ISEF is a programmable fabric that offers

designers the opportunity to implement computation intensive data-paths. Re-

tuning the architecture for newer applications, or bug-fixing older applications

can be simply achieved by re-programming the ISEF. Other prominent rASIPs

from industry and academia include Xilinx Microblaze [179], Altera NIOS [5],

ADRES [110], MOLEN [172] etc. Most of these architectures are very close to the

configurable processors in their design philosophy because they also try to lower the

verification effort through their pre-designed base-architectures and reconfigurable

data-paths.

Although rASIPs represent a promising development for future SoC designs,

their acceptance is still very limited due to the high area and energy consumption

generally associated with reconfigurable fabrics. A complete discussion of design
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issues related to rASIPs is beyond the scope of this book. Interested readers may

refer to [40] for a more in-depth overview of reconfigurable architectures. However,

for the rest of this work, we will only confine ourselves to fixed ASIPs without

reconfigurable fabrics.

2.3 Cross Cutting Issue: Designing Optimizing Compilers

In the preceding sections of the current chapter, several standard and application spe-

cific customization options for ASIPs have been discussed. We will like to conclude

this chapter by discussing a very important cross-cutting issue – that of designing

optimizing compilers which can take advantage of the architectural alternatives

discussed so far. Today, the embedded system design community overwhelmingly

uses high level programming languages like C/C++ for system specification, and

depends on software compilers to convert such specifications to the final executable

representations. Naturally, the performance and energy efficiency of the executable

is largely determined by the optimizations performed during compilation.

A normal high level language (HLL) compiler consists of a generic front-end

and a target processor dependent back-end (Fig. 2.9). The front-end converts a

Fig. 2.9 Optimizing compilers for ASIPs
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HLL application into an intermediate representation (IR) and applies several target

independent high level optimizations on it. Interested readers may consult the classic

compiler construction text by Aho, Sethi and Ulman [4] for a detailed treatment of

the front-end design issues. However, for ASIPs, the back-end optimizations have a

higher relevance.

The standard compiler back-end for any processor – embedded or otherwise –

consists of three phases – instruction selection, register allocation and instruction

scheduling. Instruction selection converts the IR representation of an application to

a sequence of processor instructions, register allocation maps program variables to

processor registers, and instruction scheduling reorders the sequential instruction

stream so as to avoid pipeline hazards and maximize parallelism. Depending on the

selected architectural alternatives, an ASIP’s compiler may have several additional

back-end phases, or may need to incorporate special optimization capabilities in

the traditional back-end steps. This is due to the fact that most of the architectural

customizations introduced in the previous sections can not be utilized properly

without appropriate compiler support. For example, the performance of a processor

with scratch-pads or multiple memory banks largely depends on how the compiler

allocates program variables to them, and clustered VLIWs require special instruc-

tion scheduling and register allocation techniques to minimize the performance

penalties incurred due to clustering. Similarly, addition of SIMD operations to a

processor’s ISA necessitates changes in the instruction selector.

Another important task of an ASIP’s compiler is ISA customization, i.e. the

process of automatically adding application specific ISEs to an ASIP core. It

involves identification of promising special instructions from a given application’s

source code (called ISE generation), integration of the identified instructions into

the target processor’s architecture (called ISE implementation), and insertion of

the special instructions into the final executable (called ISE utilization). The

ISE generation step is a computationally complex software-hardware partitioning

problem and is extremely difficult to solve manually. Automated ISE generation can

be integrated as a separate back-end phase to the ASIP compiler. These techniques

for ISA customization will be discussed in detail in Chaps. 6–9.

ISE utilization is another complex problem which requires modifications in

register allocator and instruction selector. However, this problem is less urgent

than ISE generation, because it can be partially alleviated by manually inserting

the special instructions into the C code using assembler functions. In practice, this

policy works fairly well because the special instructions are usually needed for small

fragments of computation heavy code. The rest of the application is compiled to the

instruction-set of the base processor using standard back-end techniques.
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Design Automation Tools for ASIP Design

3.1 Introduction

The design complexity of digital integrated circuits (ICs) has grown exponentially

during the intervening five decades since their invention by Jack Kilby in 1958. As

predicted by Gordon Moore in 1965, the number of transistors on ICs have doubled

every two years since then, and will continue to do so in near future. This increase

in complexity can be gauged by the fact that the number of gates for cutting edge

microprocessors has grown from a few thousand to a few billion in slightly less than

four decades since the birth of the first commercial microprocessor – Intel 4004 – in

1971.

Coping with such mind-boggling growth in design complexity would have

been impossible for human designers without the assistance of electronic design

automation (EDA) tools. In past, one of the primary reasons for the success of the

ASIC paradigm has been the excellent EDA tool support. The acceptance of ASIPs

for current and future SoC designs will also hinge on the same factor. Therefore,

it is not surprising that the research on various aspects of ASIP design automation

has intensified in industry and academia in the last few years. The work presented

in this book tries to further advance the state-of-the-art in such design automation

technologies by providing pre-architecture application analysis capabilities. In order

to understand the main motivation of this work, readers first need an introduction to

the existing ASIP design frameworks and what is missing from them. This chapter

provides this important background information.

3.2 A Generic ASIP Design Flow

Figure 3.1 sketches a generic and widely applicable ASIP design flow to derive a

customized processor architecture from the computational characteristics of a given

target application. This application is usually specified in a high level programming

K. Karuri and R. Leupers, Application Analysis Tools for ASIP Design: Application

Profiling and Instruction-set Customization, DOI 10.1007/978-1-4419-8255-1 3,
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Fig. 3.1 A generic ASIP design flow

language so that it can be directly compiled and executed on the finally designed

ASIP (referred to as the target architecture or target ASIP for the rest of this book).

In this book, we will assume that the target application is specified in ANSI C which

is the most common and widely used language in embedded systems domain. The

concepts presented in the current work, however, are quite generic and can be easily

extended to other languages and programming frameworks as well.

The design flow of Fig. 3.1 consists of two main phases – pre-architecture

application analysis and architecture refinement and implementation. The
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pre-architecture analysis is used to infer an initial ASIP architecture which is

subsequently improved in the architecture refinement phase for obtaining a final

implementation model. The pre-architecture analysis phase consists of the following

major steps:

1. Identification of computational bottlenecks. This is the first step of the appli-

cation analysis phase which tries to characterize the hot spots – i.e. the most

frequently executed and the most computationally intensive segments of source

code – in a target application. Optimizing the target processor’s architecture to

execute the hot-spots efficiently is the primary focus of the whole ASIP design

process, because a major chunk of the execution time is spent in those segments

of code.

2. Analysis for micro-architecture design. In this design step, the hot-spots of

the target application are analyzed to identify micro-architectural features that

closely match the computational requirements of the hot-spots. Several important

architectural elements introduced in the last chapter – such as the best set of

functional units, the ideal arithmetic bit-widths and data-types and the best suited

memory hierarchy etc. – can be derived by closely investigating the hot-spots.

3. Specification of the basic instruction-set and a set of hardware accelerators.

The basic ISA can be derived by omitting infrequent operations from the set

of integer arithmetic, logic and relational operations. This basic ISA is usually

augmented with either coarse-grained or ISE based hardware accelerators to meet

the stringent performance constraints.

The initial architectural specification, derived by analyzing the computational

bottlenecks of a target application, is used as the starting point for architecture

exploration and implementation. In this phase, the architectural specification is

converted to an initial prototype which is iteratively refined by applying incremental

changes. Each incremental modification is verified for correctness and evaluated for

performance through instruction-set simulation or detailed register transfer level

(RTL) based hardware simulation, and the beneficial ones are incorporated in the

final architecture. This architecture exploration process converges when all design

goals are met.

The enormous complexity of the above ASIP design flow can be understood by

visualizing the ASIP design space discussed in the last chapter (Fig. 3.2). The size

of this design space clearly rules out exhaustive enumeration of all design points

during architecture exploration. On the other hand, excluding some design options

from exploration may lead to suboptimal final architectures. As a consequence,

design decisions taken during the application analysis phase assume tremendous

importance. Correct choices made during application analysis can greatly reduce

the number of design points to be explored during architecture optimization, while

wrong decisions may force designers to go back to the drawing board and delay

convergence to the final optimized ASIP.

The next section delves into the existing ASIP design automation technologies

to clearly point our their scope and applicability within the context of the aforemen-

tioned application to ASIP design flow.
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Fig. 3.2 The ASIP design space

3.3 The State-of-the-Art in ASIP Design

The state-of-the-art ASIP design technologies can be categorized into two major

classes – specification based and configuration based design flows. The specifica-

tion based design flows allow development of an ASIP completely from scratch,

whereas the configuration based flows permit limited customization of an already

existing base processor. Both of these flows are discussed in detail in the next two

sections.

3.3.1 Specification Based Design Flows

Specification based design flows enable designers to capture the complete be-

havior/functionality of a digital architecture in a golden specification format.

The specification format provides an abstract modeling framework which hides

most of the lower level implementation details so that designers can concentrate

more on architectural optimization. Usually, a specification based framework is

accompanied by a set of tools for translating the high level specification to lower

level implementation. Specification driven design flows have been in use for a long

time in the ASIC design community. Of course, the exact format of the high level
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Fig. 3.3 The evolution of specification based design technologies

abstraction has evolved over time. As shown in Fig. 3.3, boolean logic optimization

and place-and-route tools helped designers to migrate from transistor level to logic

gate level abstraction. A more significant development was the advent of hardware

description languages (HDLs) like Verilog or VHDL, and logic synthesis tools

which popularized the RTL abstraction in 1990s.

The current RTL based design methods used for ASICs can not be easily

extended to ASIPs. An ASIP is significantly more complex to develop than an ASIC,

because it requires a software ecosystem (i.e. the compiler tool-chain and ISS) along

with its hardware model. The design problem is further complicated by the fact that

changing the specification of any single ISA or micro-architectural element may

affect both the software ecosystem and the hardware model. For example, addition

of a new instruction in the hardware model must be accompanied by a change in the

assembler to parse and recognize this instruction. Similarly, changing the number

of registers in GPR file, or altering the behavior of an instruction necessitates

changes in the compiler’s register allocator and code selector, respectively. In such
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Fig. 3.4 Specification based ASIP design flow

circumstances, it is extremely difficult to maintain coherence between software

tools and hardware model using purely RTL based design flows. Consequently,

specification based ASIP design frameworks provide a higher level of abstraction

than RTL for modeling and development of processor cores.

As shown in Fig. 3.4, the design entry point in a specification based flow is

the description of an ASIP in an architecture description language. An ADL

usually provides language elements needed to describe both a processor’s ISA (e.g.

instruction coding, syntax, semantics and latencies etc.) and its micro-architecture

(e.g. the memory and register file structure, the pipeline structure, the behavior

of the instructions etc.) from which both the RTL hardware and the software

ecosystem can be automatically derived. The target application is then compiled

using the generated compiler, and simulated using either the generated ISS, or

the RTL hardware model. The results of the simulation are used to identify the

primary architectural bottlenecks and derive a set of refinements that can overcome

the identified problems. These modifications are subsequently implemented in the

original ASIP specification, and the whole process starts afresh. This iterative

architecture exploration continues till all the design constraints are met. The

software tools and RTL hardware generated from the final architectural specification

might be directly used as the finished implementation version, or can be used as a

starting point for manual, hand coded optimizations.

A variety of ADLs – MIMOLA [109], nML [57], EXPRESSION [56], LISA [70]

– has already been reported in the academic literature. Some of these ADLs and

the associated design automation tools have also found their way into commercial
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offerings [49,166]. Although there exist significant differences between the descrip-

tion styles, intent and capabilities of the various ADL based frameworks, almost all

of them broadly adhere to the DSE based methodology depicted in Fig. 3.4. A few

prominent ADL based design frameworks are briefly described below to provide a

better understanding of their capabilities and limitations.

3.3.1.1 EXPRESSION

The EXPRESSION project [56], from University of California, Irvine, was con-

ceived with the primary goal of providing a DSE framework for ASIPs and their

associated memory hierarchies. The core of this framework is the EXPRESSION

ADL for processor modeling. An EXPRESSION specification of a target processor

consists of a behavioral part and a structural part. The behavioral specification

contains operation specification, instruction description and operation mapping.

This information is primarily utilized to generate the C compiler and simulator

for the target architecture. The structural specification consists of architecture

component specification, pipeline and data transfer specification and memory

subsystem specification.

Design automation tools built around this ADL include EXPRESS – a re-

targetable C compiler system to generate optimized target specific code from

EXPRESSION models, SIMPRESS – a cycle accurate, structural simulator and

V-SAT (Visual Specification and Analysis Tool) – an environment to graphically

capture a processor architecture and automatically generate an EXPRESSION

description from it.

3.3.1.2 CoWare Processor Designer

CoWare Processor Designer [49] is a commercially available ASIP design frame-

work based on the LISA 2.0 ADL [70] which facilitates an easy, intuitive and hierar-

chical specification of a target architecture’s ISA. The processor designer is shipped

with a fast ISS generator [123], an RTL generator [143] and a semi-automatic

GUI based compiler generator [71]. Quite a few complex ASIP architectures from

multimedia, encryption and communication systems domain [85, 141] have been

designed using this framework.

A LISA 2.0 description consists of two types of elements – resources and

operations. Resources represent the storage and data-path units (e.g. the memory

hierarchy, register file, pipeline stages, pipeline registers, global interconnections

and functional units) in a target processor. Conceptually, an operation represents an

arbitrarily complex architectural micro-operation that can activate other operations

in subsequent pipeline stages. An instruction in the target processor’s ISA can be

perceived as a sequence of such activations. The behavior of each operation can

be specified in a super-set of C where resources in the processor architecture can

be accessed and operated on like ordinary variables. This C based description greatly
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facilitates modeling of any arbitrary processor behavior. but it makes automatic

compiler re-targeting somewhat difficult because of the imprecise semantics of

arbitrary C code. To alleviate this problem, a more precise description of the

instruction behavior for the compiler code selector can be attached to each operation

through a separate semantics section.

3.3.1.3 Target Compiler Technologies

Target Compiler Technologies [166] is a commercial provider of ASIP design tools

based on the nML ADL [57]. The related tool-chain is marketed as IP Designer.

It consists of a re-targetable compiler generator called Chess, an ISS and graphical

debugger generator called Checkers, an RTL generator called Go and a test program

generator called Risk.

nML is a hierarchical ADL quite similar to LISA. Like LISA, an architecture in

nML is described in two parts. The first part contains description of resources (FUs,

register files, memories, I/O ports and special registers) and their interconnections.

The second part contains the ISA description in terms of operations. nML operations

are more coarse grained than LISA operations (e.g. they can describe the behavior of

an instruction in all the pipeline stages, whereas a LISA operation is always confined

to a single pipeline stage) and their behaviors can only be described in terms of

a set of predefined micro-operations (in contrast to arbitrary C based behavior

specifications in LISA). The precisely defined semantics of micro-operations makes

it difficult to describe arbitrarily complex instruction behaviors in nML, but greatly

simplifies re-targeting of the compiler code selector.

While the ADL based design flows considerably simplify the development of

complete ASIPs from scratch, the higher level of abstraction introduced by them

also adds one more level of verification effort. This is the primary reason for their

limited acceptance in the embedded systems industry. The next section presents con-

figuration based design flows which lower the design and verification effort further

through limited customization of a pre-designed and pre-verified processor core.

3.3.2 Configuration Based Design Flows

Configuration based ASIP design flows are based on the premise that tuning a

processor to an application can be done through selective customization/extension

which leaves most of the basic architecture unchanged. Therefore, configuration

based frameworks provide designers with a pre-designed and pre-verified processor

core – usually called a configurable base processor – which can be customized in a

limited number of ways depending on the computational requirements of the target

application. The customization options may include, but are not limited to, addition

of special predefined functional units (e.g. FPUs and SIMD operations), addition of

extra issue slots for increasing parallelism in VLIW processors, changing the size
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Fig. 3.5 Configuration based ASIP design flow

and organization of the register files and memories, and addition of user defined,

application specific ISEs. Customization of a base processor for an application only

involves selecting the right configurations and verifying their interfaces with the

base processor.

Unlike specification based design flows, where initial ISA and micro-

architectural descriptions are needed to start the architecture exploration, the target

application can be directly simulated on the base processor’s HDL model (or ISS)

in a configuration based design flow (Fig. 3.5). The results of simulation are then

used to select the right configuration options and ISEs for the final architecture.

The availability of the base processor template greatly accelerates the architecture

exploration process, but it also restricts the scope of exploration.

Some prominent configurable processor based frameworks are described below

to illustrate what types of customization options are typically supported in such

frameworks.

3.3.2.1 Tensilica Xtensa Configurable Cores

Tensilica Xtensa [182] is one of the leading commercially available configurable

processor cores. All the Xtensa variants are five stage pipelined, 32-bit RISC

processors which support 16/24 bit compact instruction encoding with mode-less
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switching. There exists two possible ways to customize an Xtensa processor to a

given target application

1. Processor configuration which involves selecting a suitable combination from

a predefined set of existing architectural features. These features are typically

presented to the user as a list of check-boxes or drop-down menus in a pro-

cessor customization GUI named Xtensa Xplorer. Configuration options allow

customization of the size of the register file (16, 32 or 64 registers), the set

of arithmetic/logical functional units (e.g. 16 or 32 bit single cycle multiplier

or low area multi-cycle multiplier, DSP engines and advanced Vectra LX DSP

engine, floating point co-processor), the interface of the processor to the external

world (e.g. number of interrupts, designer defined queues or ports, X-Y style dual

memory access configurations found in many classical digital signals processors)

and the memory subsystem (e.g. size of caches, memory management units).

2. Processor extension which allows designers to add their own custom functional-

ities to an Xtensa core. Special registers, functional units and instructions can be

added to an Xtensa core using the TIE (Tensilica Instruction Extension) language.

The TIE Compiler integrates the user defined functionalities into the base Xtensa

core by automatically generating a compiler tool chain, simulation model and

RTL hardware for the modified core.

Tensilica also provides extensive application analysis tools built around the

Xtensa architecture for both manual and automated processor customization. Man-

ual identification of application hot-spots as well as selection of suitable configu-

rations can be done through the Xtensa Xplorer GUI. The XPRES Compiler [181],

on the other hand, provides a completely automated customization flow. XPRES

suggests the best suitable Xtensa configurations for a given target application by

exploring a large number of possible alternatives. Additionally, XPRES can also

generate TIE code for the selected configurations which can be handed over to the

TIE compiler for automated software ecosystem and RTL generation. This results

in a seamless application to implementation flow for Xtensa architectures.

3.3.2.2 ARC Configurable Cores

ARC international [11] is another supplier of configurable processor cores. Similar

to the Xtensa processor, ARC cores can be either configured with a number of

optional features (e.g. cache hierarchy and size, DSP and SIMD instructions,

floating-point unit, CPU register file size), or extended with user defined special

instructions.

Like Xtensa Xplorer, ARC provides a GUI based configuration tool – ARChitect

– which lets designers select a set of suitable predefined configurations for a target

application. ARChitect also provides an extension wizard for creation of new user

defined instructions by directly entering their behavior in SystemC or Verilog. The

RTL and the compiler tool-chain of the modified processor with the extensions are

automatically generated through ARChitect. However, an automated analysis and

customization tool similar to the XPRES compiler is missing for the ARC cores.
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3.3.2.3 Jazz Configurable Cores

The Jazz processors constitute a family of 16 and 32-bit configurable DSP processor

cores from Improv Systems [88]. Jazz cores are 4-slot VLIW (Very Long Instruction

Word) processors with a 2-stage pipeline. The register file architecture is clustered,

i.e. each computational unit has its own register file. Each slot can be equipped with

MAC, arithmetic logic unit (ALU) and shift operations.

The Jazz framework allows designers to customize various aspects of the VLIW

base processor including the bit-width of the instructions, number of standard

functional units in each VLIW slot, number and placement of memory interface unit

(MIU) slots for enabling parallel memory accesses, the number of global registers

available to all functional units etc. Additionally, designers are allowed to extend

the VLIW core with custom defined functional units (called DDCUs – an acronym

for designer defined computation units) and special instructions. Like ARC and

Tensilica, Improv offers a GUI based configuration tool named Jazz Composer

which facilitates profiling based manual analysis and customization of Jazz cores.

However, unlike Tensilica Xplorer, Jazz does not offer a completely automated

customization flow.

3.3.2.4 MIPS CorExtend Technology

MIPS Technologies has traditionally been a supplier of general purpose RISC

cores for embedded applications. The MIPS CorExtend technology [115] adds

further value to the MIPS portfolio by allowing application specific customization

of a standard MIPS 32 processor. Since the MIPS 32 CPU was not originally

designed as a configurable core, the number of customization options offered by

CorExtend are quite limited. Unlike ARC, Tensilica and Jazz cores – which allow

both processor configuration and extension – CorExtend only lets designers extend

the MIPS ISA with user defined instructions (UDIs) which execute in parallel

with the MIPS integer pipeline. A GUI based tool – called CorXpert [48] – is

offered in partnership with CoWare to simplify the process of UDI development.

UDI data-paths, internal registers, instruction codings and other details can be

entered via CorXpert which automatically generates cycle accurate ISS, RTL

model, base processor/UDI interface signals and assembly functions for the special

instructions.

3.4 The Application Analysis Design Gap

As has been shown in the previous section, most of the state-of-the-art ASIP design

flows are primarily concerned with the architecture refinement and implementation

phase. Both configuration based and specification based design frameworks provide



46 3 Design Automation Tools for ASIP Design

tool-chains to simplify the DSE loop in such a way that the designers can

concentrate more on architectural optimizations. The pre-architecture exploration

phase remains largely ignored.

Almost no pre-architecture analysis capabilities exist in the specification based

design flows. Designers have to rely on a combination of manual analysis, algo-

rithmic know-how and profiling results on general purpose computing platforms

(e.g. x86 workstations. Such computing platforms will be called native or host

platforms for the rest of this work) to identify the computational bottlenecks and

design an initial architectural prototype accordingly. Application profilers on host

machines usually provide very little information for micro-architectural design. In

the initial stages of ASIP development, execution profiling statistics such as the

usage frequencies of various fixed and floating point arithmetic operations, the

dynamic bit-widths of the various integral data types, the branching and memory

access behavior of the target application etc. can be used to take important design

decisions related to the instruction bit-width, data-cache structure, bit-widths of

register files and functional units etc. Standard profilers on native machines, on the

other hand, either provide code coverage and function execution frequencies (e.g.

gprof [68]) or report profiling information relevant only for the underlying native

architectures [7, 83]. Additionally, the profiling information can be very unreliable

in predicting the right computational bottlenecks. For example, the native machine

might have an efficient hardware floating point unit. Consequently, application

segments with floating point operations might not be identified as hot-spots.

However, floating point operations almost always constitute a huge performance

bottleneck and area overhead for small embedded ASIPs. For specification based

design frameworks, computational bottlenecks should be ideally characterized

in an architecture independent manner – e.g. in terms of the usage of various

arithmetic/logical/memory access and branch operations. Decisions about which

operations should be included in the base processor’s ISA should be left to the

designers’ discretion.

The configuration based design-flows provide target architecture specific perfor-

mance evaluation and analysis tools. These tools are often adequate for identification

and optimization of the computational bottlenecks on a specific architecture already

chosen for implementation. However, in the pre-architecture stage, designers may

also like to evaluate different alternative customizable cores and short-list a few

promising ones for further investigation. A parameterizable performance estimation

engine, which can mimic the behavior of a wide variety of base-architectures, is

required to assist designers in such cases. Moreover, advanced pre-architecture

application profiling can be also utilized to select the right set of configurations

for various configurable processors.

ASIP ISA customization is another important step in the pre-architecture or

initial architecture design phase. The primary focus of almost all the works and tool-

chains in this area has been on finding efficient ISE generation algorithms. Most of

these works directly use various configurable processor based design-flows for ISE

implementation. Such approaches usually ignore the complex interplay between the
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Fig. 3.6 State-of-the-art in design automation tools for various PE design alternatives

micro-architectural design alternatives and the quality of the ISEs. The interface of

the CFU with the base processor core plays an important part in determining the

speed-up achievable with ISEs. This can be specially important for specification

based design flows where the CFU/base processor interface can be perfectly tuned

to an application’s computational needs through a pre-architecture exploration.

This current state of affairs for ASIP design is summarized in Fig. 3.6 which com-

pares the state-of-the-art design automation tools for various PE design alternatives.

For general purpose and domain specific off-the-shelf processors, target applications

can be directly translated to executable binaries using C compilers. ASIC and FPGA

based PE design flows are also well supported by high level synthesis, RTL synthesis

and other back-end tools. In stark contrast to this, ASIP development still requires

considerable manual design effort. The advent of configuration and specification

based design flows have somewhat reduced this design effort. However, a major

design gap still exists in the pre-architecture application analysis phase.

This work presents a tool-flow that attempts to fill this design gap. The overall

software architecture of this design framework is presented in Fig. 3.7. The design-

flow is centered around two application analysis tools – a fine grained application

profiler called �-Profiler which can be used for computational bottleneck iden-

tification and micro-architectural analysis, and an ISA customization tool which

can identify promising special instructions from a target application’s source code.

The �-Profiler can be used to characterize the computational bottlenecks of an

application in an architecture independent manner and to provide relevant micro-
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Fig. 3.7 Software architecture of the proposed design flow

architectural analysis statistics. It can also be parameterized to provide cycle count

estimates for a wide variety of single issue RISC like machines. This information

can be used to select a predefined base processor for customization from a set of

candidate architectures.

The ISA customization tool-chain can extract a set of promising special in-

struction data-paths from a given target application under various architectural

constraints imposed by the CFU structure and interface. For a set of newly

identified ISEs, the ISA customization tool also produces estimates of performance

improvement using the results of �-Profiling. Unlike other works in this area, our

ISA customization tool-chain is linked to both specification and configuration based

design frameworks giving rise to an seamless application to architecture flow.

The ISA customization framework can be utilized in two ways. In specification

based design-flows, ISA customization can be used to explore various alternative

CFU structures and base processor/CFU interfaces. For configurable processor

based designs, the ISA customization can treat the CFU interface restrictions as hard

constraints and accordingly generate special instructions ready for implementation.

The whole process of �-Profiling and ISA customization can be coordinated

through an ISA customization GUI which lets designers configure various profiling

and ISE generation options and parameters and presents the analysis results in user

friendly graphical and tabular formats. The combined tool-chain provides a generic,

widely applicable and interactive application to architecture tool flow built on top

of the state-of-the-art ASIP design frameworks.
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3.5 Synopsis

1. A growing trend of application oriented processor customization can be clearly

distinguished in the embedded systems industry. Consequently, a number of

ASIP design or customization tools have appeared in the market recently.

2. Although extensive pre-architecture application analysis is key to a successful

ASIP design, most of the existing ASIP design tools ignore this area. Instead

they are primarily focused on the architecture implementation and refinement

phase.

3. This book presents a powerful design framework for pre-architecture analysis.

The framework combines architecture independent application profiling and ISE

generation for deriving the ISA and micro-architecture.



Chapter 4

Profiling for ASIP Design

4.1 Introduction

In this chapter, we will attempt to provide a thorough background on profiling

for ASIP design. Readers may recall that profiling constitutes one of the two

primary components of the processor design-flow presented in Sect. 3.4 of the

previous chapter. This chapter describes the roles and design techniques of various

conventional profiling tools, and clearly outlines the motivations for having a

completely new profiler technology for ASIP design purposes.

Traditional profiling tools are widely used in design, performance evaluation and

optimization of software systems. They are generally employed to report various

dynamic execution statistics for applications written in high-level languages like C,

CCC or Java. Most common examples of such dynamic statistics are execution time

(in absolute values such as seconds/milliseconds, or relative to the total program

execution time), or code coverage of each individual program statement/basic

block/function from the original source program. The gathered statistics can be

used to optimize a given application in a variety of ways. For example, the code

coverage information is usually used to manually eliminate unreachable/unused

segments of code and reduce code size, while the execution time and execution

frequency information is exploited by many profile driven optimizing compilers. In

the recent past, a new generation of profiling tools [7, 83, 171], which go beyond

simply reporting the execution time and code coverage statistics, have emerged in

the general purpose computing market. These profilers report a variety of execution

statistics – such as cache miss rates, branch miss-predictions, threading behavior,

illegal memory accesses and leaks etc. – for application analysis, optimization

and bug fixing on specific general purpose computing engines used in desktop

computers, servers and workstations.

Profiling information can also be extremely important in the initial stages

of designing an ASIP for a given target application. However, the objectives

of such profiling are completely different from that of conventional profilers.

As we have already mentioned, traditional profilers have been always used for
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optimizing applications for an already available target architecture. The goal of

profiling for ASIP design is to find a matching architecture for a (possibly highly

optimized) given application. This rules out the usage of profiling tools for existing

architectures.

For ASIP design, dynamic execution statistics of a target application can be

extremely valuable for obtaining micro-architectural hints. Such statistics include,

but are not limited to, the usage frequencies (absolute counts and relative percent-

ages) of different arithmetic/logic/memory access/control transfer operations, the

dynamic bit-widths of various integral data types, the data cache access behavior

and memory access patterns etc. This information can be utilized in making various

important early design decisions about the architectural alternatives discussed in

Chap. 2. For example, the operation usage statistics and the dynamic bit-width

information of integral data types can be used to suggest the right combination and

bit-width of arithmetic FUs.

Another important usage of a profiler in the pre-architecture phase is to provide

performance estimates which can be used to identify the hot-spots of the target

application. Such estimates can be utilized to evaluate various potential hardware

accelerators and special instructions for the hot-spots, and select the right accel-

erators and instructions that match the computational requirements. Moreover, if

designers intend to customize an ASIP rather than design one from scratch, then

the pre-architecture performance estimates can be utilized to select an existing base

processor template from different available alternatives.

The objective of this chapter is to familiarize readers with the various existing

profiling tools and techniques for embedded ASIP architectures, and highlight

the inadequacies of these existing tools to address the pre-architecture profiling

problem. The last section of this chapter clearly points out the contribution of our

profiling framework – �-Profiler – in assisting pre-architecture application analysis.

4.2 Limitations of Traditional Profiling Tools

In the general purpose computing domain, profiling tools are mostly used for

performance optimization and software bug-fixing (e.g. detection of memory

leaks and illegal memory accesses [78, 171]) on desktop computers, servers and

workstations. Based on their objectives, profilers can be classified into the following

two categories:

1. Source level profilers which report execution frequencies for various high-level

program elements (e.g. functions and program statements) for the profiled ap-

plication. The collected statistics can be used to detect most frequently executed

pieces of code for manual optimization [68], delete unreachable segments of code

through code coverage analysis [67, 79], or eliminate illegal memory accesses

and memory leaks due to high level program objects [78].
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2. Architecture level profilers [7, 83] which can provide detailed architectural

execution statistics such as the execution time of various segments of code (in

absolute time units), cache miss rates, branch miss predictions, illegal memory

accesses, threading behavior etc. for a given architecture. Most of the architecture

level profilers can also produce detailed source level information. The profiling

results can be used to perform manual modifications or profile driven automated

compiler optimizations of the application code.

Pre-architecture profiling for ASIP design has an objective similar to architec-

ture level profilers, i.e. gathering of relevant computational complexity statistics.

However, unlike architecture level profilers, pre-architecture application profiling

needs to report these statistics in a processor independent manner, i.e. in terms of

abstract C level operations. Nowadays, general purpose desktop machines come

with extremely optimized architectures and perfectly tuned compiler tool-chains.

Naturally, the computational characteristics of an application on such a computer

may not have any relation to the same on a small embedded ASIP. Therefore, neither

source level nor architecture level profiling statistics obtained on a general purpose

architecture is very useful for pre-architecture application analysis.

For an embedded ASIP core, the only way to collect reliable architectural

profiling statistics is to execute the given application on the target processor. The

problem with this approach is that the hardware of the processor core might not be

available in early phases of ASIP design. Simulation of RTL models can be ruled

out because of their extremely slow speed. The best option available to designers for

fast and precise architectural simulation in the early ASIP design phases is to use

instruction-set simulation discussed in the next section.

4.3 Profiling for ASIP Architectures:

Instruction-set Simulators

In the early phases of ASIP design, ISSs can provide reliable, yet relatively fast

(w.r.t. RTL simulation) simulation models for architecture analysis and refinement.

An ISS is a software simulator which mimics the computations and state modi-

fications performed by each instruction in an instruction stream. The computer, on

which the simulation software is executed, is called the simulation host, or the native

host machine. For ASIP design, general purpose desktops, servers or workstations

are normally used as hosts.

An ISS can be either instruction accurate or cycle accurate. Instruction accurate

models only count the number of instructions executed, whereas cycle accurate

simulators can accurately model the pipelining behavior, caching performance and

branching behavior of a target application. However, the increased accuracy of cycle

accurate models usually come at the cost of considerably reduced simulation speed.

Conceptually, an ISS is the software counterpart of architecture level profilers. Any

number of software counters and data-structures can be embedded into an ISS to

record whatever dynamic statistics is of interest to designers.
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One major problem of ISS is the relatively slow simulation speed. The simulation

speed of ISS ranges from several kilo instructions per second (KIPS) to, at best,

a few mega instructions per second (MIPS). Such slow speed is often a major

hindrance in the early ASIP design steps where fast architecture exploration is the

key to a successful design. Naturally, several techniques for solving this speed issue

have been suggested in academic literature.

The most basic technique of ISS is called interpretive simulation [153]. An

interpretive simulator conceptually emulates a virtual machine for the target ar-

chitecture in software. It performs the usual operations of a processor pipeline –

fetch, decode and execute – on each instruction read from an instruction stream.

Interpretive simulators are often excessively slow – specially due to the huge

overhead of decoding each instruction in software. Compiled simulators [35, 188]

try to solve this speed problem by statically converting the entire target binary to

an executable binary of the simulation host. Although compiled simulation results

in better simulation speed, it can not support self modifying code found in many

operating systems. This limitation considerably restricts its applicability.

Quite a few dynamic translation techniques, which try to overcome the limi-

tations of compiled simulation, can be found in literature [136, 139, 144]. One of

the prominent works in this area, by Nohl et al. [123], uses just in time cache

compiled simulation (JIT-CCS) for improved speed. In JIT-CCS, the behavior of an

instruction at a certain program location is translated to native program code only

once and utilized multiple times. When an instruction is executed for the first time,

its behavior is translated to native code and executed on the simulation host. This

behavior is cached for future reference against the address of the corresponding

instruction in the instruction memory. Prior to executing each instruction in an

instruction stream, the JIT-CCS engine looks up the address of the instruction in

the behavior cache and uses the pre-translated behavior if found. Self modifying

code can invalidate the behavior of an instruction at a certain program location.

In that case, the new instruction at the program location has to be re-translated.

Another important recent work [169] uses dynamic binary translation to convert

each instruction from an instruction stream to a sequence of instructions on the

native host. This technique achieves a peak simulation speed of almost 1000 MIPS

for ARC processors.

Apart from the above mentioned dynamic translation techniques, statistical

simulation, hybrid simulation and performance annotation based techniques have

been also applied to speed-up ISS. In statistical simulation, only limited segments

of application code – known as samples – are executed on a detailed and slow

ISS model, and the results are statistically extrapolated for the whole application.

Sherwood et al. [149,150] presents an analytical sampling based statistical simulator

where basic blocks of an application are grouped into several equivalent categories

depending on their computational properties. The computational properties of each

basic block are derived by functional simulation. One representative basic block of

each equivalent category is simulated in detail and the results of simulation are used

to infer performance estimates for the whole application.
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Muttreja et al. [120] presents a hybrid simulation technique for software energy

estimation where parts of the application are executed on the native host for

speeding-up the overall simulation process. Designers can control the selection of

program segments for execution on native host by placing upper bounds on the

simulation time and a maximum error rate. This framework achieves considerable

simulation speed without significantly sacrificing performance prediction accuracy.

Lazarescu et al. [21] present an interesting approach for fast performance

estimation without directly using ISS. In this approach, assembly code of the target

application is translated back to a low level C code annotated with performance

information. The annotated C code can produce accurate performance estimates

for the target architecture. This framework has the advantage that all the high and

low level compiler optimizations applied on the target source code can be predicted

exactly, since the executable C code is generated from the target assembly.

4.4 �-Profiler: A Pre-architectural Profiling Tool

The ISS technologies described in the previous section are the state-of-the-art in

profiling for ASIP architectures. However, ISS based simulation may not be useful

for pre-architecture analysis because the ISA of the target processor might not be

fully available. This is especially true for ADL based design flows. Even when

the complete architectural model is available (e.g. in configurable processor based

flows), analysis of dynamic execution statistics such as operator usage frequencies,

branching behavior, dynamic word length of data types and memory and cache

access patterns can provide valuable hints for processor tuning. The profiling

technology of our ASIP design framework – the �-Profiler – has been specifically

designed to report such dynamic execution statistics even before the first architec-

tural prototype is ready. Additionally, �-Profiler can be easily parameterized to

report cycle count estimates for a large variety of single issue RISC processors.

Such parametrization capabilities can be used to even perform some primitive design

space exploration in the pre-architecture phase.

An important prerequisite for the initial ASIP design phases is the speed of

profiling to enable rapid application analysis. Here also �-Profiler scores over ISS.

Experimental results show that �-Profiling – even in the worst case – is an order of

magnitude faster than ISS.

Among the recently reported profiling and performance estimation techniques,

three works [37, 77, 138] come very close to �-Profiler in that they also provide

architecture independent or easily parameterizable estimates of computational

complexity. However, the scopes of them are slightly different from �-Profiler.

Kai et al. [37] proposes a system level performance estimation tool to facilitate

a largely automated DSE flow for SoC designs. In this framework, the target

application is defined using SpecC [156] – a variant of C with additional features for

specification of system level designs. Although the scope of this work is different
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from ours (i.e. system level design vs. individual processing element design), its

profiling technology produces analysis information very similar to that of �-Profiler.

Profiling information for the application includes usage statistics of computation

and communication operations. However, some of the advanced memory profiling

capabilities of �-Profiler are missing from this framework. Communications to

memory elements are not inferred from the source code, rather they are explicitly

specified through language elements in SpecC (the framework can only compute

the total storage requirement for a given application). This is certainly a major

limitation, since automated prediction of memory access behavior is an important

analysis requirement.

Hwang et al. [77] present a cycle accurate performance estimation framework

for heterogeneous multi-core systems. One major component of this framework is

the performance estimation mechanism for individual processing elements which

can potentially be ASIP cores. Each programmable processing element can be

configured with a number of architectural parameters such as the instruction

scheduling policy, the number and types of FUs in the architecture, execution delays

of individual FUs, the branching policy etc. Given such a parameterized processor

model, the framework can produce fairly accurate cycle count estimates for different

target architectures. This is done by performing an operation scheduling for each

basic block in a target application such that the schedule mimics the possible

instruction schedule for that basic block on the corresponding processing element.

The schedule length for each block is then multiplied with its execution count

to obtain cycle count values. Like the previous work by Kai et al., the advanced

memory profiling capabilities of �-Profiler are absent from this tool, too. Rather

the designer has to provide an estimation of average memory latency to facilitate

accurate scheduling of basic blocks.

In [138] Ravasi et al. describe a profiler – called Software Instrumentation

Tool (SIT) – for complexity analysis of multimedia applications. SIT translates

the ANSI C code of a target application to CCC. C data types from the original

code are translated to CCC classes and C operations are translated to calls to

overloaded operator methods which gather and report profiling information. This

framework can report both computational complexity (i.e. operator usage) and

communication complexity (i.e. memory access) statistics. However, it does not

have any parameterizable performance estimation facilities and is not embedded

in an advanced ASIP design flow with ISA customization.

The necessity of a new profiler for pre-architecture exploration can be understood

by considering the comparative summary of different existing profiling technologies

presented in Table 4.1. �-Profiler fills this role by providing suitable means for

accurate and fast characterization of target applications in a processor independent

manner. Additionally, the profiling technology can be seamlessly connected to spec-

ification or configuration based ASIP design flows through the ISA customization

tool chain. To the best of our knowledge, this direct link to ASIP implementation

technologies is missing from all other existing profilers.
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Table 4.1 Comparison of different profiling technologies for ASIP design

Profiling

techniques Examples Disadvantages

Profiling on GPPs 1. Source level

profilers [67, 68, 78, 79]

2. Architecture level

profilers [7, 83]

1. Source level information is too

coarse-grained

2. Architecture level profiling

information can not be extrapolated to

ASIPs

ISS 1. Interpretive simulation [153]

2. Compiled simulation [35, 188]

3. Dynamic translation [123, 136,

139, 144, 169]

4. Hybrid/statistical

simulation [120, 149, 150]

5. Other techniques [21]

1. Slow simulation speed (w.r.t. native

execution)

2. Pre-architectural profiling not possible.

An initial ISA and micro-architectural

description is needed

Others [37, 77, 138] 1. Advanced memory profiling techniques

are absent from [37, 77]

2. Not connected to configuration and

specification based ASIP design flows

4.5 Synopsis

1. Profiling is an important design tool in the pre-architecture phase. However,

profiling statistics obtained on host machines are unusable for ASIP design.

2. ISS is the most precise performance estimation method for initial stages of

ASIP design, but designers need to first construct a basic architectural model

to perform ISS. Moreover, the relatively low simulation speed of ISS hinders fast

architecture exploration.

3. �-Profiler provides a fast and accurate computational complexity analysis tool

which can be put to use even before any architectural details have been finalized.

This makes it ideal for pre-architecture application analysis and performance

estimation.



Chapter 5

�-Profiler: Design and Implementation

This chapter provides an elaborate description of the �-Profiler framework. The

software architecture of the profiler, the profiling options, and the internal data-

structures and algorithms used to collect profiling statistics are explained in detail

in the following sections.

5.1 Introduction

As stated in Chap. 4, the �-Profiler has been designed to report the computational re-

quirements of a given target application in a target architecture independent fashion,

e.g. in terms of relative usage statistics of various arithmetic/logical/memory access

operations. Due to this unique profiling objective, the implementation techniques

used for �-Profiling are also different from that of the traditional profilers.

Traditional profilers normally use one of the following two techniques for

gathering profiling statistics:

1. Instrumentation. An instrumentation based profiler inserts extra code – called

instrumentation code – in the original application. The instrumentation code does

not change the program semantics, but maintains data-structures to gather and

report profiling statistics at the end of program execution. An in-depth discussion

of instrumentation based profiling frameworks can be found in [93].

Instrumentation based profilers are generally integrated into a compiler tool-

chain. The source code of an application usually goes through a number of

program representations – intermediate representation or IR, assembly code, pre-

linking object code – before the generation of the final post-linking executable

binary (Fig. 5.1). Depending on the goal of profiling, instrumentation code can be

inserted into any of these program representations. Some of the modern profiling

frameworks can also instrument a completely linked executable through link time

or post linking executable editing [54, 102, 140, 157], or through execution time

dynamic binary instrumentation (DBI) [171].

K. Karuri and R. Leupers, Application Analysis Tools for ASIP Design: Application

Profiling and Instruction-set Customization, DOI 10.1007/978-1-4419-8255-1 5,
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Fig. 5.1 Instrumentation of

different program

representations

2. Statistical profiling or sampling. Instead of inserting extra instrumentation

code, sampling based profilers repeatedly record the program counter of the

host processor using operating system interrupts. The CPU of the host processor

might also be interrupted to record other special events relevant for application

performance (such as cache misses, branch miss predictions etc.) which can

never be counted through instrumentation based techniques. Execution time and

other pertinent architectural statistics are collected in the corresponding interrupt

service routines. Most of the architectural level profilers [7,83] use sampling due

to its speed advantages.

Because the �-Profiler is intended to be used in the pre-architecture phase, it can

not use any profiling technique which is closely tied to a specific target processor.

This rules out the usage of almost all sampling and DBI techniques, as well as any

assembly level, object code level or, linker-level static instrumentation technique.

Directly instrumenting the source code of the application is also not a viable

option, since the unaltered source code does not usually contain fine-grained

information. A C source line may contain several atomic operations. Some of these

operations might not be even explicitly visible (e.g. memory access and address

calculation operations hidden in structure or array references). Moreover, many

source level operations can be eliminated by later compiler optimizations. Such

effects must be considered for precise reporting of computational complexity.

In order to overcome the above mentioned issues, the �-Profiler applies the

following techniques from the compiler construction domain.
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Fig. 5.2 Instrumentation at IR level

1. The original C code is lowered to three address code (3-AC). Each line of such

code contains at most one operation, which enhances the profiling granularity.

We use the LANCE compiler [101] to generate executable three address code

intermediate representation (3-AC IR) in C syntax.

2. In the three address code, all primitive C-level operations, including type casts,

pointer scaling etc. are made explicit and hence can be profiled like regular

operations. All high-level operations are appropriately lowered to a canonical

form, e.g. all memory accesses, including global variables, arrays, and structures,

are mapped to explicit LOAD/STORE operations via pointers.

3. By exploiting the built-in standard code optimizations (e.g. constant propagation,

dead code elimination) of LANCE that operate on the three address code, the �-

Profiler can emulate many code transformations likely to be performed later in

the target specific C compiler. This increases the profiling accuracy.

Figure 5.2 shows a piece of C code and the corresponding three address IR to

highlight the limitations of profiling at C source code level. The example code, in

Fig. 5.2a, has embedded control flow due to the ?: operator, hidden computations in

the address generation of a[p * 2] and a load operation due to the array access.

A source level instrumenter will not be able to profile these in detail. Since the
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execution frequencies of lines 2 and 3 are always same, a source level instrumenter

will report them to be equally contributing to the application’s run time, whereas in

reality, line 3 is costlier.

Profiling at IR level solves these problems by the lowering operation. As can

be seen from Fig. 5.2b, the control flow, address computation and memory access

are explicit in the IR. It also prevents any false prediction by running high-level

optimizations such as the propagation of the constant definition of p in line 2 in

Fig. 5.2a to the next line and then folding the expression p * 2 to a constant. These

optimizations ensure that the corresponding multiplication is not counted.

The details of the 3-AC IR based instrumentation engine, as well as the

techniques for collecting and reporting profiler statistics are described in the next

section.

5.2 Software Architecture

The high-level work-flow of the �-Profiler is presented in Fig. 5.3. The input to the

work-flow is the ANSI C code of a target application which is lowered to optimized

3-AC IR by the LANCE compiler front-end. The generation of the 3-AC IR is

Fig. 5.3 The �-Profiler work-flow
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followed by the core technology of the �-Profiler – instrumentation engine – which

inserts extra function calls into the LANCE IR to collect profiling information. The

definitions of these function calls are available in a pre-compiled library called the

profiler-library.

A simple example of code instrumentation is shown in Fig. 5.3. In order to

count the usage of add operations for the given application, the instrumentation

engine inserts a function call, incrAddCount, after each addition in the IR. The

implementation of the incrAddCount function is provided in the profiler library.

During execution of the instrumented binary, this function is invoked to increment

a counter that keeps track of the total add operations used.

The instrumented code is written out in a subset of ANSI C which can be

compiled on a host-machine by the native compiler tool-chain, and subsequently

linked with the profiler library to produce an instrumented executable. Choosing

ANSI C as the output format of the instrumented code has the advantage that the

profiling infrastructure can be easily ported to a wide variety of host architectures.

Execution of the modified application on the host machine produces profiling

reports by invoking the instrumentation code.

The whole process of profiling can be controlled from a �-Profiler GUI which

is a part of the integrated ASIP design GUI introduced in Chap. 3. The GUI not

only assists users to configure the instrumentation process by enabling/disabling

various profiling options, but also facilitates manual analysis of profiling statistics

by collating and presenting the profiler reports in user friendly tabular and graphical

formats.

The working of the instrumentation engine and the profiler library is described

in detail in Sect. 5.4. Since the instrumentation mechanism is based on the LANCE

compiler system, a brief overview of LANCE is provided in the next section to make

the material more coherent.

5.3 The LANCE Compiler System

The LANCE compiler system [101], which originated in the University of Dort-

mund, Germany, provides a flexible and modular compiler development framework.

As shown in Fig. 5.4, the whole system is built around a simple and intuitive

intermediate representation, called the LANCE IR. The framework provides an ANSI

C front-end to parse and translate a C application to the IR format, and a CC C

library, namely LANCE library, to browse, analyze and modify the IR. The LANCE

library can be used to build a variety of compilation tools such as code optimizers,

source-to-source transformation engines or code generation back-ends for specific

architectures. By default, the LANCE framework provides a collection of standard,

high-level optimization utilities written using the LANCE library. The LANCE

library also provides a set of printing functions for writing out the IR in a subset

of ANSI C.
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Fig. 5.4 The LANCE compiler infrastructure

The LANCE IR corresponding to a C source file consists of the following

elements:

1. Global symbol table which stores declarations of all the global and static

variables, structures/unions, and functions used or defined in the source file. Each

entry in the global symbol table is hashed against an unique name for faster

reference.

2. List of functions defined in the source file. While the global symbol table stores

the signatures of all the defined functions, the function list stores the bodies of

them. Each function in the list contains a local symbol table to hold local variable

declarations, and a list of executable IR statements to represent the execution

behavior.

A list of different types of LANCE IR statements and their formats is presented

in Table 5.1. Almost all IR statements can have, at most, three operands – one

destination and two sources (hence the name 3-address IR). Only function calls

can have more than two source operands as actual arguments. Each source and

destination operand of a statement is called a primitive expression. A primitive

expression can either be a variable symbol (x and y in Table 5.1), a constant,
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Table 5.1 Formats of different types of LANCE IR statements. Source and destination operands

are primitive expressions

Statement Type Format Example ANSI C Code Comment

Assignment dst src 1 op src 2 x = y + 2; op is a binary

operator

dst op src x = !(*y); op is a unary

operator

dst (type) src x = (int*) y; (type) is a cast

operator

dstDfunc. src 1 ; src 2 ; : : : ; srcn / factorial (n); func is a

function call

Return return return;

return srcI return *y; Return a value

Label labelW LL1:

Conditional Jump if . src/ goto label if (*y) goto LL1;

Jump goto label goto LL1;

or a pointer de-reference operation (*y in Table 5.1) on a pointer type variable.

Conditional and unconditional jump statements can specify jump targets using a

label name (LL1 in Table 5.1).

The semantics of the LANCE IR closely resembles the ISA of a generic

RISC processor which has an infinite set of GPRs, and which implements all

arithmetic/logical operations defined by the ANSI C standard. The operation level

granularity of the IR facilitates characterizing the computational requirements of

an application in architecture independent terms. Additionally, the RISC ISA like

format of the IR aids in accurately estimating application performance for single

issue RISC processors.

A brief overview of how LANCE lowers the original C code to the IR format is

provided next.

5.3.1 Computations in the LANCE IR

The LANCE front-end lowers each C source level statement of the form d s t D s r c ,

where s r c is an arbitrarily complex C rvalue expression and d s t is a valid C lvalue

[95], to a sequence of IR assignment statements connected by temporary variables.

Each assignment statement can contain at most one arithmetic/logical operation,

and a maximum of 3 operands. Examples of the lowering process and the resultant

IR representations for various ANSI C constructs are presented in Fig. 5.5. The left

hand side code fragments in this figure present the original C code whereas the right

hand side code fragments show the lowered IR format.

Figure 5.5a shows the IR representation of a multi operation computation,

d=(a+b)*(c+2). Since the IR format does not permit more than one operation
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Fig. 5.5 ANSI C computations in LANCE IR

per IR statement, the right hand expression is broken down into three assignment

statements connected by the temporaries t1 and t2 ( 1 in Fig. 5.5a).

In ANSI C, global/static variable accesses, as well as all composite data structure

accesses (i.e. structure field and array element accesses), may contain a number

of implicit computation steps which can not be counted by source-level profiling

tools. One major advantage of the LANCE IR is that all such hidden computations

arising from global/static/array/structure accesses are explicitly visible in it. This is

illustrated in Fig. 5.5b, c.

In any real processor, an application’s global/static variables are usually stored

in a global data area during execution. Consequently, an access to a global/static
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variable gives rise to a main memory access. This stands in contrast to local

scalar variables inside various functions which are usually retained in, and accessed

from, GPRs. This distinction is commonly not visible in the C source code of an

application. For example, 2 in Fig. 5.5b shows a source code line where a global

variable, g, is assigned the result of an addition between a local variable, i, and a

local static variable,ls. In the source code level, all three accesses look the same. At

the IR level, however, the accesses to g and ls are replaced by pointer de-reference

operations which use the addresses of the respective variables ( 3 in Fig. 5.5b).

Such lowering greatly simplifies the process of memory access profiling described

in Sect. 5.6.

In general, any operation, which will definitely give rise to a memory access

in any target processor, is represented by a pointer de-reference operation. These

operations include:

1. Global and static scalar variable accesses

2. Any (i.e. local or static or global) composite data-structure accesses

3. Heap memory (allocated through dynamic memory allocation routines) accesses

Note that, in a real processor, there may exist other potential sources of memory

traffic, e.g. memory accesses arising from stack frame creation and destruction

during function prologues and epilogues. The amount and pattern of these memory

accesses strongly depend on the target processor. The IR format has no mechanism

to represent such accesses. Rather, the structure of the IR is ideal for target

independent characterization of memory access behavior of a given application.

Apart from hidden memory accesses, array element and structure field accesses

also contain implicit address calculation operations. These operations are also made

visible in the IR format. For example, the array access operation, a[i], in 4 in

Fig. 5.5c is represented by an address calculation step followed by a pointer de-

referencing operation ( 5 and 6, respectively, in Fig. 5.5c).

5.3.2 Control Flow in the LANCE IR

In the LANCE IR, control structures like if-then-else, switch-case, and loops like

while, do-while and for are implemented using jump and label statements. An

example representation of such a control construct is shown in Fig. 5.6. The for loop

in Fig. 5.6a is represented in the IR format using a backward conditional jump ( 2

in Fig. 5.6b) to the starting label of the loop body, loop begin ( 1 in Fig. 5.6b).

When the loop terminating condition is met, the backward jump is not executed and

control falls through to the return statement ( 3 in Fig. 5.6b).

In the basic LANCE IR, control structures are represented by a linear list of

IR statements as shown in Fig. 5.6b. However, it is possible to construct a control

flow graph (CFG) from this linear representation using the control flow analysis

routines of the LANCE library. A CFG is a directed graph structure well known
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Fig. 5.6 Control flow and basic block structure in LANCE IR

in the compiler construction area. It contains basic blocks connected by control-

flow edges. A basic block is a segment of code which can be formally defined as

following.1

Definition 5.1. A basic block is a straight-line sequence, h s0; s1; : : : ; sn i , of IR

statements which has only one entry and one exit point. Apart from the first

1The definition here is specific to the LANCE IR format. However, this definition is very close to

the classical definition of a basic block [4, 119] in compiler construction parlance.
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statement, s0, and the last statement, sn, all other statements of a basic block are

of type assignment (refer to Table 5.1 for a list of IR statement types).

The first statement, s0, of a basic block can be any of the following:

1. The first statement in a function, or

2. Any label statement which is the target of one or more conditional/unconditional

jumps, or

3. Any statement which immediately follows a conditional/unconditional jump or a

return statement.

The last statement, sn, of a basic block can be any of the following:

1. A conditional/unconditional jump or a return statement, or

2. Any statement which immediately precedes a jump target (i.e. a label statement).

The control-flow analysis routines of the LANCE library can construct a local

CFG for each function body in a given source file. An example CFG, for the C code

of Fig. 5.6a, is presented in Fig. 5.6c. It contains three basic blocks created from the

original piece of C code. Each basic block is marked with an unique identifier shown

in an adjacent dark colored box. In a CFG, an edge exists between two basic blocks,

bi and bj , if control can pass from the last statement of bi to the first statement of

bj . Such control transfer can occur due to execution of jump statements (e.g. the

edge from BB2 to itself due to the conditional jump statement), or due to simple fall

through (e.g. edges between BB1 and BB2, and between BB2 and BB3).

CFG is an important structure used in many compiler optimization passes. In

�-Profiling technology, CFG facilitates basic block based instrumentation which

exploits the property that each statement of a basic block is executed exactly as many

times as the basic block itself is executed. This facilitates collection of profiling

statistics for each basic block, rather than for each individual statement. As will be

explained shortly, this results in much faster execution of the instrumented code.

5.4 Instrumentation Engine and the Profiler Library

This section provides a thorough description of the core components of the �-

Profiler framework, i.e. the instrumentation engine and the profiler library. As

depicted in Fig. 5.4, the LANCE library provides printing routines to write out the

IR format as a subset of ANSI C. The �-Profiler adds extra instrumentation code

into this executable ANSI C representation of the IR to collect profiling statistics.

The task of adding extra code is performed by passing instrumentation functions as

callback routines to the LANCE printing functions. In the actual implementation,

the callback routines are passed using C function pointers. The callback mechanism

provides a flexible and powerful way to invoke customizable printing routines,

without modifying the LANCE source code, from the LANCE library. The callback

process also facilitates quick addition, modification, or removal of instrumentation

functionalities by simply changing the callback routines.
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The working of the instrumentation engine is illustrated using a simple example

in the next section. After that, Sect. 5.4.2 puts together the complete picture of the

profiling process by explaining how the instrumentation code collects and manages

execution statistics.

5.4.1 A Simple Example of Instrumentation

In this section, we will attempt to illustrate the instrumentation mechanism using

a simple profiling task – counting the number of addition operations performed

during execution of a given program. The instrumentation techniques involved in

this simple example are representative of those used in all profiling options currently

supported by our framework.

An instrumented application for collecting addition usage statistics is shown in

Fig. 5.7a where the lines in italics constitute the instrumentation code. This extra

code performs the following three tasks:

1. Initialization of a global counter by invoking the function initialize-

Counter at the beginning of program execution, i.e. at the start of the main

function.

2. Updating the initialized counter during execution. In Fig. 5.7a, this is accom-

plished by invoking incrementCounter after each addition. This function

has an argument which specifies the amount by which the global counter has to

be incremented.

3. Reporting of the profiling statistics. In our example, this is done by calling

outputResults before the program exits.

The above three tasks can be accomplished by inserting instrumentation code at

certain program points which, for the current example, are the following:

1. Beginning of a function, i.e. before the first IR statement in a function’s body

(e.g. call to initializeCounter).

2. Before or after any IR statement (e.g. calls to incrementCounter and

outputResults).

Figure 5.7b shows the mechanism to insert the instrumentation code at the above

mentioned program points. The actual printing takes place from the LANCE print-

ing routine printLANCEIR ( 2 in Fig. 5.7b) invoked from the instrumentation

engine ( 1 in Fig. 5.7b). printLANCEIR has three formal arguments which corre-

spond to callback routines for printing instrumentation code at the beginning of each

IR function (callBackFunc invoked at 3), and before and after each IR state-

ment (callBackBeforeStm and callBackAfterStm at 4 and 5, respec-

tively). The invocation of printLANCEIR from the instrumentation engine ( 1)

substitutes the formal arguments with actual callback routines instrumentFunc

and instrumentStm. The instrumentFunc ( 6) routine is responsible for
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Fig. 5.7 Instrumented code and instrumentation mechanism

printing calls to initializeCounter at the beginning of the main function,

while the instrumentStm ( 7) prints calls to incrementCounter and

outputResults. Note that the same routine, instrumentStm, is used to print

instrumentation code before and after IR statements.
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5.4.1.1 Basic Block Versus Statement Level Instrumentation

The instrumentation strategy presented in Fig. 5.7 applies statement level

instrumentation technique, i.e. the instrumentation engine inserts a call to the

incrementCounter function after each IR statement. Upon closer inspection,

it becomes obvious that this strategy is not optimal as far as execution speed of

the instrumented application is concerned. Addition of an extra line of code after

each IR statement slows down the instrumented application by, at least, a factor

of two.

One alternative to statement level profiling is basic block level profiling. In our

current example, the number of additions for each basic block in an application

can be calculated statically at instrumentation time. Naturally, the instrumentation

engine, instead of printing a separate call to incrementCounter after each IR

statement, can print a single call to the same function at the end of each basic block

to increment the global counter by the number of additions in that block. For the

example in Fig. 5.7a, this strategy can save one call to the incrementCounter

function for each invocation of foo. For larger instrumented applications and more

complex profiling options, the savings in execution time can be significantly higher.

In general, basic block level strategies result in much faster runtime for instru-

mented applications. However, such instrumentation has two drawbacks:

1. Basic block level techniques usually require more analysis and calculations at

instrumentation time than statement level techniques. For example, to replace

statement level instrumentation with basic block level techniques in Fig. 5.7,

the instrumentEngine must first perform an extra analysis to count the

number of additions in each basic block before invoking printLANCEIR. Still,

the runtime improvements for the instrumented code almost always justify the

analysis overhead of basic block level instrumentation.

2. Basic block level instrumentation requires that the execution statistics of interest

must be statically determinable for each block at instrumentation time (e.g.

in our current example, number of additions per block are statically known).

This might not be possible for some of the profiling options supported by

our framework, e.g. cache and memory access behavior profiling described in

Sect. 5.6.2. Therefore, we employ a mixed strategy in the �-Profiler – we use

basic block level instrumentation wherever possible, and resort to statement level

instrumentation only when it is the only available option.

The LANCE library does not provide any callback routine to print instrumenta-

tion code at the beginning or end of a basic block. However, callback routines for

printing instrumentation code before or after each IR statement can be easily used

for this purpose. A statement level callback routine can simply check whether an IR

statement is the beginning (or end) of a basic block and can accordingly write out

basic block level instrumentation code.
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5.4.2 Algorithms and Data Structures of the Profiler Library

In the previous section, the working mechanism of the instrumentation engine

has been described. This section explains how the extra code, inserted by the

instrumentation engine, collects, manages and prints out profiling statistics.

All the profiling options supported by the �-Profiler use function calls to

initialize, update and report profiling statistics. The definitions of these functions are

available in a pre-compiled profiling library (which is linked with the instrumented

IR to produce the final instrumented application). The current �-Profiling options

are far more complex than the simple example of Sect. 5.4.1, and require much more

complicated data-structures than a simple counter variable. The definitions of these

data-structures are also supplied by the profiler library.

Although the exact format of the data-structures defined in the profiler library

depend on the profiling option, they can be broadly classified into those which

store global (or, application wide) information, and those which maintain local

(or, per IR function level) information. The most complex example of the global

information storing data-structures keeps track of the memory access behavior of an

instrumented program, and, will be discussed in Sect. 5.6.2. In this section, we will

take a look at the creation and handling of per function level information, since they

are required by most of the profiling options.

For each IR function invoked during the execution of an instrumented applica-

tion, a data-structure, named FuncStruct (abbreviation for function structure), is

created by the profiler library. This structure holds the following information.

1. The name of corresponding function, and the source file name/line number of the

function’s definition. This information is used for printing profiling reports.

2. A counter of how many times the function has been invoked.

3. A local memory array which is used to keep track of local array and structure

accesses. This will be discussed in more detail in Sect. 5.6.2.

4. Information about constituent basic blocks. Each basic block is represented

by a BBStruct (abbreviation for basic block structure) which stores various

statically collected information as described below:

(a) A counter of how many times the basic block has been executed.

(b) The constituent source line numbers. This information is used to back-

annotate profiling statistics to exact lines of original source code.

(c) Number of occurrences for each kind of arithmetic/logical/memory access

operation in the basic block. This information is used to calculate the operator

usage and weighted cycle count statistics described in Sect. 5.5.

(d) A list of the immediate constants used in the basic block. This is used in

generating immediate usage statistics described in Sect. 5.5.

The issues governing the creation and manipulation of the above structures will

be explained now by using the instrumented CFG of the function abs shown in

Fig. 5.8. We will assume that the main function of the instrumented application

invokes abs twice during execution.
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Fig. 5.8 Example of instrumented IR

The primary usage of BBStruct is to enable basic block level profiling.

Every time a basic block is entered, the execution counter of the corresponding

BBStruct is incremented by one ( 3 in Fig. 5.8b). At the end of program

execution, the aggregated profiling statistics for a basic block can be created by just

multiplying the statically calculated statistics for the block with the execution count

(e.g. total usage of additions in a basic block can be calculated by multiplying the

number of occurrences of addition with the execution count of the basic block).

Profiling statistics for the entire application can be created by summing up the

aggregated statistics for all the constituent basic blocks.
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Fig. 5.9 Changes in function table and profiler stack during execution of an instrumented program

Since the BBStruct of a basic block is contained in the FuncStruct of the

enclosing function, incrementing the basic block execution count involves accessing

the FuncStruct of the currently executing function. It is, therefore, important to

understand how the FuncStructs are managed by the profiler library.

A function in an instrumented program can be invoked multiple times from

multiple call sites. However, it is unnecessary to create multiple instances of the

same FuncStruct for each invocation, because all the information for a particular

function excluding the execution count and the local memory array will be same

between two such instances. In order to maintain a single instance of FuncStruct

for each function, the profiler library puts all created FuncStructs into a hash

table called Function Table. When a function is entered for the first time, the

instrumentation code creates a corresponding FuncStruct and inserts it into the

function table ( 1 in Fig. 5.8b). Creation of a FuncStruct involves initialization

of BBStructs for all the constituent basic blocks (BB1, BB2, BB3 and BB4 in

our current example). The initialization process is carried out only once for each

function. For each subsequent invocation, the FuncStruct is directly retrieved

from the function table.

The changes in the function table during the execution of our example instru-

mented application are presented in Fig. 5.9. The FuncStruct for abs is retained

in the function table even when the first invocation of the function returns (Fig. 5.9c).

This structure is again referenced in the future calls (Fig. 5.9d).

The function table alone is not sufficient for managing the collection of

FuncStructs created during execution. To understand the issues involved, one
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can consider the state of function table after the first call to abs from main returns

(Fig. 5.9c). At this stage, the function table contains two FuncStructs – one

each for main and abs. From the function table, it is not clear which one is the

currently executing function. However, this information is vitally important for

incrementing the right basic block counters.

The profiler library uses another structure, called Profiler Stack to solve this

problem. The profiler stack contains pointers to the FuncStructs of currently

active functions. Whenever a function is entered its FuncStruct is added to

the top of the profiler stack 2 in Fig. 5.8b). When the function returns, the

FuncStruct is popped from the stack ( 4 in Fig. 5.8b). Consequently, the top of

the profiler stack always points to the currently executing function’s FuncStruct.

5.5 Profiling Options and the �-Profiler GUI

The �-Profiler, as a stand-alone tool, produces large amount of data which is then

parsed and presented in convenient, user-readable forms such as tables, pie and

bar-charts in the �-Profiler GUI. Depending on the profiling options, the GUI can

present either global (i.e. application wide) statistics, or local (i.e. per function level)

profiling statistics, or both. A snapshot of the GUI is presented in Fig. 5.10.

Fig. 5.10 The �-Profiler GUI
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Table 5.2 Summary of profiling options

Type of Profiler library Reporting

Profiling option instrumentation data-structure used style in GUI

Function/statement

execution count

Basic-block level FuncStruct and

BBStruct

For each statement

and function

Operator execution

frequencies

Basic-block level BBStruct For each function,

and global

Weighted cycle

count

Basic-block level BBStruct For each statement,

function and global

Dynamic value

ranges

Statement level Global tracker

variables

Global

Immediate value

usage

Basic-block level BBStruct Global

Branch statistics Statement level FuncStruct Global

Memory profiling Statement level FuncStruct,

BBStruct and

global data-structures

Global

The �-Profiler can be run with a variety of profiling options which can be

configured through the GUI. The different profiling options currently supported

by the �-Profiling framework, and how these options can be used for ASIP

customization are described next using some real life examples. A brief summary

of these profiling options is presented in Table 5.2.

1. Statement and function execution frequencies: Like most of the traditional

source level profilers, this option collects execution count statistics for each

function and each statement in a given application using basic block level

instrumentation. The execution count statistics is useful to identify the most

frequently executed segments of code.

2. Weighted cycle count statistics: Using this option, the �-Profiler can be

configured to obtain cycle count data for a predefined processor architecture.

The weighted cycle count calculation uses a rudimentary re-targeting technique

where a user configurable cycle count weight is assigned to each combination of

C operators and types. For an application consisting of n IR statements, the cycle

count estimate is given by the formula2:

Cycles D

nX

iD1

E.Si/ � W.Si/

where E.Si/ and W.Si / are the execution count and weight, respectively, for

statement Si . The weight is equivalent to the software latency (i.e. the number of

cycles an IR statement may take to execute in a real processor architecture) used

2This applies mainly to RISC like single instruction issue processors. For multiple instruction issue

processors, the code instrumenter has to statically analyze the potential amount of parallelism for

higher accuracy.
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by the ISA customization framework described later in this book. The weighted

cycle count is reported for the entire application as well as for each function

and statement. This profiling option is also implemented using basic block level

instrumentation.

The performance estimates provided by �-Profiler can be utilized in a variety

of ways. They can be used to identify hot spots in an application and aid

the ISA customization process. Additionally, various alternative architectural

configurations can be quickly evaluated using the weight based re-targeting

technique. An example of such usage is later presented in Sect. 10.5 of Chap. 10

which demonstrates how the weighted cycle count information is employed to

decide the right set of functional units for an ASIP designed to run the H.264

decoder application. The decoder’s source code contained integer multiplications

as well as modulo and division operations. However, the weighted cycle count

profile showed that the performance penalty of emulating the modulo and

division operations in software was not significant, whereas emulation of the

multiplications resulted in 4.56� slowdown. As a consequence, only a multiplier

unit was added to the final processor.

3. Operator execution frequencies: This option reports execution count for each

C operator per C data type in different functions and globally. The operator

execution statistics is calculated using basic block level instrumentation. The

BBStruct for each basic block in the target application is initialized with the

statically calculated number of operations in that block. The final reporting is

done by multiplying the number of operations with the execution frequency of

each block, and then adding up the individual statistics for all the basic blocks in

a given application.

Table 5.3 presents samples of operator execution frequencies for three appli-

cations – the Advanced Encryption Standard (AES), Adaptive Differential Pulse

Code Modulation (ADPCM) and the Fast Fourier Transform (FFT) algorithm. In

the �-Profiler GUI, elaborate reporting schemes exist to browse operator usage

information for each individual operator. However, in order to save space in

Table 5.3, the operators have been grouped into five classes – arithmetic (C, �

and negation), relational (==, !=, < D, > D, < and > ), logical/bitwise/shift (&&,

jj, !, &, j, ,̃ ,̂ > > and < < ), memory access and multiplication/division/modulo

(*, / and %). Additionally, for each operator class, usage statistics have been

presented for integral and floating point data types.

Table 5.3 Examples of operator execution frequencies reported by �-Profiler (all values are in

thousands)

Logical/Shift/ Memory

Arithmetic Relational Bitwise Access Mult./Div/Mod

Application Int. Float Int. Float Int. Float Int. Float Int. Float

AES 718 0 100 0 938 NA 550 0 0.5 0

ADPCM 187 0 145 0 395 NA 122 0 0 0

FFT 467 213 123 0 311 NA 0 864 16 180

Mods. Mults.
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The sample results in Table 5.3 clearly illustrate how the operator usage

statistics can be utilized to select appropriate FUs for an ASIP architecture. For

example, integer multiplications constitute only a very small fraction of the total

number of executed operations in AES and ADPCM (415 and 0, respectively).

Therefore, designers may decide to emulate multiplications in software in

an AES or ADPCM processor. On the other hand, the large percentage of

floating point operations in the FFT algorithm necessitates a hardware floating

point unit comprising an adder, subtracter and multiplier in the corresponding

ASIP architecture. However, floating point comparison and division units can

be excluded from the FFT processor because they appear too infrequently

(0 comparisons and only 12 divisions executed) in the operator execution

profile.

4. Dynamic value ranges of C data types: This option enables the �-Profiler

to keep track of the maximum and minimum values taken by various C data

types. Since the values a variable may take during execution are not known

statically, value range profiling can only be performed using statement level in-

strumentation strategies. In our profiling framework, the instrumentation engine

inserts a function call after each IR statement to intercept the values used in the

corresponding calculations and to subsequently update a set of tracker variables.

The value range statistics helps designer to take decisions on data bus, register

file and functional unit bit-widths.

Examples of dynamic value range statistics of integral data types for AES,

FFT, and ADPCM algorithms are shown in Table 5.4. It can be observed that

the values taken by integer variables in the ADPCM application can fit inside

17 bits. Consequently, the integer register file and functional units of an ADPCM

processor can be designed using less than 32 bits (e.g. 24 bits). In contrast to this,

no such optimization are possible for AES and FFT, because the integer values

used in these applications have a wider range.

�-Profiler also reports the maximum and minimum values taken by floating

point data types during execution. As discussed in Sect. 2.2.7 of Chap. 2, many

ASIP architectures employ fixed point data types for representing fractional

values used in the target application. The value range statistics of floating point

variables can be utilized to find the right bit-widths and precisions of such fixed

point data types.

Table 5.4 Examples of dynamic value range and branch execution statistics reported by �-Profiler

Dynamic value range of integral

data types Conditional branch execution statistics

Maximum Minimum Total branches Backward branches

Application value value (% of all operators) (% of all branches)

AES 2062913220 �2087894857 4.52% 71.04%

ADPCM 61436 �32768 19.21% 9.72%

FFT 2147469841 0 5.84% 77.12%



80 5 �-Profiler: Design and Implementation

5. Conditional branch execution frequencies and average jump lengths: If

this option is enabled, the �-Profiler reports execution counts of condi-

tional/unconditional and forward/backward branch or jump statements in a

given application, as well as the frequencies of taken conditional jumps and

the lengths (in terms of the number of IR statements between a branch and

its target) of executed branch statements. This allows designers to select the

right branch penalty reduction scheme from the available architectural options

(such as delayed branches, branch prediction hardware, ZOLs and predicated

execution) discussed in Sect. 2.2.2 of Chap. 2. The branch execution statistics

is collected by adding statement level instrumentation code after each branch

statement, and is reported for the entire application.

Table 5.4 presents some branch execution statistics reported by the �-Profiler.

The listed statistics shows the number of conditional branches as percentages

of total number of operators executed, and the total number of backward

conditional branches as percentages of total number of conditional branches

executed. According to the listed statistics, conditional branches constitute

almost 20% of all executed operations in ADPCM and more than 90% of all

these branches are forward branches. This observation implies that ADPCM

is a control intensive application which may benefit from delayed branches

and predicated execution, but not from ZOLs. In contrast to this, both FFT

and AES are processing dominated programs with only around 5% conditional

branches. The large percentage of backward conditional branches in both of these

applications implies presence of loop structures which might be accelerated using

ZOL instructions.

6. Occurrences, execution frequencies and bit-widths of immediate values:

The immediate value statistics is presented for each C operation in the entire

application. This option allows designers to decide the ideal bit-width for integral

immediate values in an instruction word. The collected statistics can also be

used to enable some advanced strength reduction optimizations in the source

code, or to facilitate implementation of optimal application specific arithmetic

hardware. For example, in the H.264 decoder application, 20, 5, and 36 were

found to be the most frequently encountered immediate values used in integer

multiplications. The immediate value statistics also showed the exact source code

locations where these values were used. Using this information, we replaced

the corresponding multiplications with shift-add structures. This brought down

the total number of multiplications by almost 3 million in the operator usage

profile.

Since the list of immediate values used in each basic block is known at

instrumentation time, this profiling option can be implemented using a basic

block level instrumentation strategy by storing the number of immediates used

for each basic block in the corresponding BBStruct during initialization.

7. Memory access frequencies and data-cache behavior profiling: In most

modern embedded processors, the memory subsystem constitutes the primary

performance bottleneck. The memory access profiling facilities of the �-Profiler
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framework enable designers to evaluate the impacts of various static and dynamic

cache configurations, and select the best possible memory hierarchy for a given

application.

The memory access profiling techniques of our framework deserve special

mention, because they have applications beyond the ASIP design problem – into

the realms of SoC communication architecture and memory subsystem design.

From the implementation point of view also, tracking memory accesses to specific

data-objects through an application’s lifetime is considerably more complex than

collecting any other profiling information. Therefore, we devote the next section for

describing the objectives and techniques used for memory access profiling in detail.

5.6 Profiling for Memory Hierarchy Design

As we have already seen in Chap. 2, the design of the memory hierarchy greatly

affects the performance and energy consumption of embedded systems. Finding an

optimal memory configuration for an ASIP is too important a task to be left alone for

later stages of architecture development. For this very reason, �-Profiler provides

extensive pre-architecture analysis capabilities for assisting memory subsystem

designers.

Readers may recall from Sect. 2.2.6 that the memory subsystem alternatives for

ASIPs include software controlled caches (i.e. scratch-pads), hardware controlled

caches and multiple memory banks. Memory access profiling information from

�-Profiler can be used not only for selecting one of these policies, but also for

deciding the particulars of the chosen policy. �-Profiler directly supports explo-

ration and evaluation of various data-cache configurations for a target application.

Additionally, it provides useful hints on the most frequently accessed global and

local data-objects, the portions of code which cause most of the memory traffic and

estimates of the maximum dynamic memory usage by an application. For software

controlled caches, such statistics can be either utilized manually to select the right

scratch-pad size and allocation strategy, or used automatically by the compiler

to derive the appropriate scratch-pad layout. Similarly, the memory access traces

generated through profiling can be analyzed to decide whether multiple memory

banks are useful for the target application.

Some sample memory access statistics for the AES, ADPCM, and FFT are pre-

sented in Table 5.5. For each of the three target applications, the table lists three most

heavily accessed composite data objects (i.e. arrays and structures) and the total

number of reads from (and writes to) each one of them. The profiling information

shows that there exists global arrays in both AES and ADPCM which are never

written after initialization (it tab and ft tab for AES, stepsizeTable and

indexTable for ADPCM), but are read several times. In ASIPs designed to run

AES or ADPCM, such arrays can be placed inside scratch-pads to improve the

average memory access latency. However, such optimizations can not be applied for

the FFT algorithm, because no such constant array constructs could be found for it.
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Table 5.5 Memory access profile for AES, ADPCM, and FFT

Most heavily Second most heavily Third most heavily
Application accessed data accessed data accessed data

AES it tab (0 Writes ft tab (0 Writes inbuf (16384 Writes

106704 Reads) 106496 Reads) 10241 Reads)

ADPCM stepsizeTable (0 Writes indexTable (0 Writes pcmdata (10240 Writes

20500 Reads) 20480 Reads) 10240 Reads)

FFT ai (81918 Writes ar (81918 Writes NA

147456 Reads) 147456 Reads)

5.6.1 Memory Accesses in the LANCE IR

Accurate characterization of the memory access behavior of a target application

is possible in �-Profiler, because a large majority of the potential data memory

accesses are visible in the LANCE IR format. In a real processor, data memory

accesses can arise from the following sources:

1. Global/static scalar variable access.

2. Local/global array element/structure field access.

3. Access to a chunk of memory dynamically allocated on the program heap.

4. Access to a global/local/heap variable through pointer de-referencing.

5. Accesses to local scalar variables/function parameters placed on function stack.

6. Register spilling.

7. Stack build-up and clean-up in function prologue/epilogue.

For RISC processors with load-store based ISAs and large GPR banks, the ma-

jority of the memory accesses result from the first four cases. In ASIPs/configurable

processors based on the RISC principle, register spills are extremely rare and

normally most of local scalar variables/function arguments can fit into registers.

Therefore, their contribution to the total data memory traffic is minimal.

As discussed in Sect. 5.3, the LANCE front-end lowers all global/static accesses,

array element and structure field and heap accesses to pointer de-reference oper-

ations. Consequently, any memory profiling strategy can be easily implemented

by adding instrumentation code before any pointer de-reference operation in the

LANCE IR.

5.6.2 Memory Profiling Techniques

Memory profiling options in �-Profiler can generate hints for both hardware and

software controlled memory management schemes. The simplest of these profiling

options facilitate simulation of the data-cache behavior of an application in the pre-

architecture phase. More complex profiling options can track all accesses to C level

data-objects such as global/static variables and local composite variables.
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Our cache simulation framework uses the well-known trace-driven cache simula-

tion technique [52]. A memory trace is the sequence of memory addresses accessed

by an application during its execution. Each access in a trace is usually annotated

with the type of the access, i.e. read or write. Important cache parameters – such

as the cache miss rate and the average memory access latency – can be deter-

mined off-line by simulating the sequence of accesses using a trace driven cache

simulator.

In the �-Profiler framework, trace generation is accomplished by adding in-

strumentation code after each pointer de-reference operation contained in the IR

of an application. The task of the instrumentation code is to simply print out the

address of the de-reference operation. The generated trace is simulated using the

freely available trace-driven dineroIV [52] cache simulator. The framework allows

the user to experiment with different cache-hierarchies and cache parameters (such

as associativity, block size, cache size etc.) easily and quickly. The collected cache

miss statistics can be used to decide an optimal memory system for the application

in consideration. Since the data-cache behavior for any application depends on the

memory access patterns (and not the actual memory addresses), memory traces

obtained on a general purpose host machine mimics the cache behavior of an ASIP

fairly accurately (as will be seen later in the results section).

Tracking accesses to C level data-objects during an application’s entire lifetime

requires far more complex profiler library data-structures and algorithms than

are needed for memory trace generation. This profiling option, like cache trace

generation, inserts instrumentation code after each pointer de-reference operation

in the LANCE IR. However, the task assigned to each such piece of instrumentation

code – relating an access to a global/static/local or heap data object – is far

more involved than simply printing out the address of the access. In order to

map an access to a C level variable, the instrumentation code needs to search

profiler library data-structures and determine whether an accessed address lies in

the memory range of either a global variable, a local composite or an allocated

heap memory chunk, and update corresponding read/write counters. In this way,

by the end of program execution, all accesses to relevant memory locations can be

recorded.

For each global/local variable or heap memory chunk, the profiler library is

initialized with the name (for a heap memory chunk, this is the location of source

code where it was allocated) and the address range (a start and an end address)

for that variable. Whenever a memory access is made, the profiler library has to

search this address in its data structures, identify the local/global/heap variable to

which this access goes, and increment the corresponding counters. These objectives

demand fast and efficient search and retrieval of the data stored in the profiler

library. Due to the differences of scopes and lifetimes of global, static, local

and heap variables, the strategies and data structures for storing/retrieving them

also differs significantly. They are described in detail in the remainder of this

section.
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5.6.2.1 Tracking Global/Static Accesses

Profiling information about all globals/statics are stored in an associative array – an

abstract data structure containing key-value pairs such that each key is unique and

is associated with a single value. The most important operation on an associative

array is to look-up the corresponding value for a given key. In the current context,

the memory address of each global or static variable is used as the key, while the

value field holds the following information in a structure called VarStruct:

• Name and Type: Name and C data type of the corresponding variable

• Start: Start address of the memory occupied by the variable

• End: End address of the memory occupied by the variable

• Reads: Number of reads from the variable

• Writes: Number of writes to the variable

• Location: File names and line numbers of the C statements which accessed the

variable.

The two counters, reads and writes, are updated throughout the execution of an

instrumented application. When a function in the application is entered for the first

time, a call to the profiler library registers each global/static variable accessed in

that function in the global associative array (if the variable does not already exist

there due to accesses from previously invoked functions). During execution of the

application, each pointer de-reference operation triggers a look-up in the global

array using the de-referenced address. If a matching VarStruct is found for the

given address, the corresponding counter is incremented accordingly.

The global associative array is implemented using a red-black-tree [47] – a self

balancing binary search tree with a worst case look-up time of O.log2n/, n being

the total number of tree nodes. As the addresses of the global and static variables

are not completely random and are confined to certain areas of the memory, the

balancing of the tree works well making insertion and searching very efficient.

5.6.2.2 Tracking Accesses to Local Composite Variables

Like the global/static variables, information about local composite variables are also

stored in associative arrays implemented using red-black-trees. However, a separate

array is necessary for every function that declares and accesses local composite

variables. Each such array is created when the corresponding function is entered for

the first time. This is in contrast to the global array which exists as a single instance.

Moreover, unlike global/static variables, multiple instances of local variables can

exist at the same time (due to self or indirect recursion). The simplest solution to this

problem is to have a stack of arrays, i.e. to create a new associative array whenever

a function is called. In the following paragraphs, we describe an improved solution

that overcomes the large memory overhead of this scheme.

In order to avoid the overhead of maintaining a stack of arrays, we use a

displacement stack. The idea of the displacement stack relies on the fact that,
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Fig. 5.11 The displacement stack

usually, local variables of a particular function always have the same relative

position in the system function stack. This idea is illustrated in Fig. 5.11. The system

function stack, shown in left hand side of the figure, holds three different instances

of a function (the top and third instance being the current function) due to recursive

calls. The function contains two local composite variables, A and B, and there exist

three instances of them in the function stack. The starting address of the second

instance of B can be derived by adding a displacement dB to the starting address of

the first instance of B. Since the relative positions of all instances of A and B remain

unchanged, the displacement of the second instance of A from the first instance,

dA, is same as dB . This remains true for all other instances of A and B. Therefore,

the starting address of any instance of A and B (or any other local variable) can be

easily calculated, if only the corresponding displacement from the first instance of

either A or B is stored. This is done by storing a stack of displacement values, in

the FuncStruct of the corresponding function, as shown in the right hand part

of Fig. 5.11. The top of the stack always contains the displacement of the current

instance. Displacements are pushed or popped as the same function is entered

recursively. The starting address (for any one local variable) of the very first instance

of the function is stored and whenever the function is entered again, it is subtracted

from the current starting address of the corresponding variable to calculate the

displacement.
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5.6.2.3 Tracking Heap Accesses

To profile accesses to heap memory, any calls to heap allocating functions are

replaced by calls to profiler library functions (e.g., malloc is replaced by ProfMalloc,

and calloc by ProfCalloc and so on). The requested memory is then allocated by

the library function and a pointer to the memory location is returned back to the

application. At the same time, this pointer and the size of the allocated memory are

stored into a dynamically growing associative array in the library. If a read or write

access could not be tracked to any global or local composite variables, then its target

address is compared to the entries of the array holding heap memory information.

If the target address lies inside a heap memory block, then the corresponding

counter is incremented. If a chunk of heap memory is freed by the application,

the equivalent entry in the heap array is made invalid and is excluded from future

look-ups.

5.7 Profiling Results

This section presents some experiments to demonstrate the comparative advantages

of �-Profiler over the other commonly used profiling and performance evaluation

technique for ASIP design – ISS. The first section focuses on the accuracy of the �-

Profiler vis-a-vis ISS in correctly predicting the computational and memory access

behavior of a set of benchmark programs. The last section illustrates the crucial

speed advantages of �-Profiling over ISS for fast, pre-architecture design space

exploration.

5.7.1 Profiling Accuracy

This section presents a set of experiments designed to demonstrate that the �-

Profiler can predict the performance bottlenecks of a target application with

high degrees of accuracy. For all the experiments described below, instruction-

set simulators generated from LISA 2.0 [49] processor models for two target

architectures – LTRISC and MIPS – have been used.3 Both are 5-stage pipelined

32-bit RISC processors with GPR files (16 GPRs in LTRISC and 32 in MIPS) and

load/store based ISAs.

3The same processors have also been used in many experiments related to the ISA customization

flow described later in this book.
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5.7.1.1 Accuracy in Estimating Weighted Cycle Count and Operator

Execution Frequencies

The accuracy of �-Profiler in correctly estimating the weighted cycle counts and

operator execution frequencies is of great importance. As has been repeatedly

mentioned earlier, these statistics are the key to correctly identify the computational

bottlenecks for a target application in the pre-architecture phase.

Figure 5.12a shows the relative cycle counts reported by cycle accurate ISS of

LTRISC and �-Profiler (with and without running high level IR optimizations)

normalized to ISS reported cycle count values. The average deviation from ISS

without high level optimizations is 27%. But when high level LANCE optimizations

are run on the IR code, the average deviation becomes much smaller (11%). This

indicates that the �-Profiler can be fairly accurate in reporting cycle counts if

it is properly configured to mimic the front-end optimizations for a single issue

processor. However, the weight based simple re-targeting mechanism does not work

for multiple issue architectures, because the �-Profiler has no means to predict the

effects of instruction level parallelism on the overall cycle count.

Figure 5.12b shows the operator count comparisons obtained from MIPS in-

struction accurate simulation and instrumented code for ADPCM benchmark. For

the sake of convenience and brevity, we have subdivided the C operators into five

categories: arithmetic (C, �, unary C and �), logical, bitwise and shift (&&, jj, Š , &,

j, ,̃ ,̂ >> and <<), multiplication/division/modulo, comparison (DD, Š D, >, >D,

<, <D) and load/store. As can be readily seen, the average deviation with target

mapping, is reasonable in this case, too. Moreover, the average deviation is lower

(23%) with IR optimizations than without (36%).

One major limitation of �-Profiler is that it can not trace the effects of many

important micro-architectural design alternatives (e.g. register file size, instruction

level parallelism, branch prediction mechanism, predicated execution etc.) and

compiler back-end transformations (e.g. register allocation and scheduling, software

pipelining, function inlining, loop unrolling etc.). For example, loop unrolling can

completely change the branch execution profile of an application, while register

allocation can add a lot of extra memory accesses in a program due to register

spill and restore options. Capabilities to evaluate such effects in the pre-architecture

phase can be extremely useful to the designers.

One possible way to predict the effects of various architectural features during

profiling is to mimic the behavior of compiler back-end phases (e.g. scheduling,

instruction selection and register allocation, function inlining, software pipelining)

on the optimized IR. For example, in order to observe the effects of register file size

on the overall cycle count, a mock register allocation on the optimized IR can be

performed to estimate the total number of register spills/restores. Such mock back-

end phases can be further parameterized through a rudimentary architecture model

(e.g. number of registers in the architecture and their access rules can be passed to

the mock register allocator). Such techniques can bring the profiling accuracy close

to detailed ISS while still retaining the speed advantages of �-Profiling.
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Fig. 5.12 Accuracy comparison of �-Profiler and ISS
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Fig. 5.13 Miss rate comparison of LISATek on-the-fly and �-Profiler based cache simulation

5.7.1.2 Accuracy of Memory Access Profiling

Figure 5.13 shows the accuracy of �-Profiler based cache simulation for an ADPCM

speech codec w.r.t. the LISATek on-the-fly memory simulator (integrated into the

MIPS instruction accurate simulator). The memory hierarchy in consideration has

only one cache level with associativity 1 and block size of 4 bytes. The miss rates

for different cache sizes have been plotted for both memory simulation strategies.

As can be seen from the comparison, �-Profiler can almost accurately predict the

miss rate for different cache sizes. This remains true as long as there is no or

little overhead due to standard C library function calls. Since �-Profiler does not

instrument library functions, the memory accesses inside binary functions remain

un-profiled. This limitation can also be overcome if the standard library source code

is compiled using �-Profiler.

In order to verify the correctness of �-Profiler in detecting the most frequently

used data objects in an application, we profiled three common symmetric key block

cipher algorithms – Blowfish [29], GOST and Data Encryption Standard (DES)

[51] – for which the most frequently accessed data elements were already known.

These algorithms are known to use S-Box substitution. An S-box is a constant

look-up table, which takes a number of input bits m and produces a number of

output bits n. Earlier studies have shown that all the three algorithms spend about

85% of the time in substitution functions which heavily access these S-boxes. We

found that the �-Profiler reliably identifies the C source data objects that hold the

S-boxes, and thus verified that the proposed memory profiling extension is working

correctly.
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Fig. 5.14 Execution speed comparison between �-Profiler instrumented binaries and MIPS

instruction accurate ISS

5.7.2 Speed of �-Profiling

For fast design space exploration, the �-Profiler instrumented code needs to be at

least as fast as ISS of any arbitrary architecture. Preferably, it should be as fast

as code generated by the underlying host compiler, such as gcc. Figure 5.14 (not

drawn to scale) compares average speeds of instrumented code vs. gcc (version

2.95.3) generated code, and a fast compiled MIPS instruction accurate instruction-

set simulator (generated using LISATek tool suite) for different configurations of

�-Profiler.

As can be seen, the speed goals are achieved. The basic profiling options slow

down instrumented code execution vs. gcc by a factor of only 3. More advanced

profiling options increase execution time significantly. However, even in the worst

case, the instrumented code is almost an order of magnitude faster than ISS.

5.8 Synopsis

1. The software architecture of the �-Profiler consists of two main modules –

the instrumentation engine and the profiler library. The instrumentation engine

inserts extra function calls inside LANCE 3-AC. The functions collect and

report profiling information during execution of the instrumented application.

The definitions of the functions are available in the profiler library.
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2. �-Profiler currently supports a variety of profiling options which can be con-

trolled via the profiler GUI. The instrumentation engine performs either basic

block level or statement level instrumentation depending on the selected profiling

options.

3. The �-Profiling results closely match those generated using ISS for single issue

RISC machines. At the same time, �-Profiler instrumented binaries are almost

an order of magnitude faster than fast compiled ISS even in the worst case.



Chapter 6

A Primer on ISA Customization

6.1 Introduction

This chapter intends to familiarize the reader with the background and related work

on ISA customization, i.e. the process of integrating application specific special

instructions, also known as ISEs, into an ASIP’s ISA. In many ASIP design or

customization flows, ISEs constitute the primary (and in some cases, the only)

source of hardware acceleration for a given target application. Consequently, ISA

customization often forms the primary hurdle in the ASIP design process, and has

deservedly received a lot of research attention in industry and academia.

The usage of application specific ISEs to speed-up software execution is not

limited to ASIPs alone. Classical instances of ISEs can be found in many do-

main specific architectures like digital signal processors (e.g. multiply-accumulate

and add-compare-select instructions) or network processing units (e.g. bit-slice

manipulation instructions for packet processing). However, the issues involved in

the ASIP ISA customization process differ fundamentally from those of domain

specific processors. In contrast to DSPs or NPUs, ASIPs are designed by far

smaller engineering groups under much tighter schedules, but are expected to deliver

discernibly higher performance and energy efficiency. As a consequence, ASIP ISA

customization requires far greater amount of design automation than is needed for

domain specific architectures.

An ISE for a domain specific processor is manually designed and implemented

by studying the computational properties of applications from the corresponding do-

main, and combining a frequently encountered sequence of arithmetic/logical/data-

transfer operations into one single instruction. Once such a sequence has been

identified and implemented in the processor data-path, the primary issue is to

automatically replace all occurrences of that sequence with the corresponding ISE

in any given target application. As shown in Fig. 6.1, this automatic replacement

step is performed in the code selection phase of the compiler back-end of the

target processor. The compiler front-end parses the given application and translates

it into a control flow graph consisting of basic blocks connected by control

K. Karuri and R. Leupers, Application Analysis Tools for ASIP Design: Application

Profiling and Instruction-set Customization, DOI 10.1007/978-1-4419-8255-1 6,

© Springer Science+Business Media, LLC 2011
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Fig. 6.1 Traditional compilation flow with ISEs versus ISA customization of ASIPs

flow edges. Each basic block is represented by a data flow graph (DFG) where

arithmetic/logical/data-transfer operations constitute the set of nodes, and the data

dependencies between the operations are represented by directed edges.1 The ISEs

in the target architecture are also provided to the code selector as DFG fragments.

Given these two inputs, the task of the code selector is to perform subgraph

matching to identify occurrences of ISEs in the application’s DFGs. This is an

extremely well researched problem in the compiler community and volumes of work

have been published on it [3, 66, 107, 142].

The ISA customization framework for an ASIP can also be integrated into the

compilation tool-chain of the target processor. However, unlike traditional domain

specific processors, the compiler for an ASIP may not be supplied with a predefined

set of ISEs. Since manual identification of application specific ISEs may not be

possible due to limited manpower and design time, an ASIP’s compiler must itself

infer a set of beneficial ISEs from the target application. As a consequence, ISA

customization demands a complete re-thinking of the traditional compilation flow.

A modified compilation flow with ISA customization facility is shown in

Fig. 6.1 where, unlike traditional compilers, the DFGs produced by the front-end

1A more formal definition of DFGs will be provided later in Chap. 7.
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is handed over to an ISE generator. The ISE generation process attempts to identify

sets of operations (also called subgraphs of operations or clusters of operations)

from the DFGs which can be realized as special instructions. The next step, ISE

implementation, involves integrating the generated ISEs into an ASIP’s hardware

data-path. In the final step, called ISE utilization, the newly added ISEs are inserted

into the target application’s code. Note that the ISE implementation step is not

really a part of the compilation flow and can be performed off-line. Moreover, the

ISE utilization step can be realized differently from a typical code-selector. The

ISE generator keeps complete information about the origin of each ISE and the

constituent DFG nodes in the original application. This information can be used

during the ISE utilization phase to replace a set of constituent nodes with their

corresponding ISE.

The ISE generation step forms the primary bottleneck in the whole ISA

customization process, and requires the maximum amount of design automation.

As a consequence, ISE generation algorithms and issues will remain our primary

focus for the rest of this book. Nonetheless, ISE implementation and utilization are

also important issues and will be touched upon at various places.

Given the DFG of a basic block of a target application, ISE generation algorithms

generally attempt to pack tens of operations into single instructions in order to

maximize speed-up. Consequently, the special instructions created through ISE

generation process are much larger than conventional domain specific special

instructions such as MAC. Re-usability of such ISEs across applications, or even

in other DFGs of the same application, is usually very limited.

Since the primary objective of ISE generation is to maximize performance,

the best solution is to combine all operations from each given basic block into a

single special instruction. However, not all adjacent sequences of operations from

a basic block can qualify as ISEs due to constraints imposed by the enclosing

ASIP architecture. For example, an instruction requiring 4 inputs can not be

implemented if the target processor’s instruction word can not encode more than

two input operands. In order to create ISEs which can maximize speed-up under

such architectural constraints, the ISE generation process is commonly modeled as

a constrained optimization problem. In the rest of this chapter, we will introduce

the vast array of techniques which have been proposed to exactly or approximately

solve this very complex problem.

6.2 ISE Generation Under Various Constraints

This section provides an overview of the implications of various constraints on the

ISE generation process so as to make the related work more accessible.

There are two types of constraints that any ISE must conform to. The first type of

constraints, called generic constraints, ensure that identified special instructions do

not induce any circular dependencies with base processor instructions or other ISEs.
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This is a simple legality check to ensure that ISE data-paths can be implemented

in any realistic digital hardware platform. The second type of restrictions are more

specific to the underlying architecture. The ISA customization flow usually assumes

a pipelined base processor architecture with a GPR file and RISC instruction-set.

The architectural constraints are formulated with this execution model in mind. Both

of these types of constraints are discussed in the next two sections.

6.2.1 Generic Constraints

Identification of special instructions can be formulated as enumeration of subgraphs

from the DFGs of the basic blocks of a target application. A DFG G D .V ; E/ of

a single basic block is represented by a node set V containing arithmetic/logic/data

transfer/control operations, and an edge set E containing the data-dependencies

between the nodes. Not all subgraphs of a DFG G are valid candidates for

implementation as special instructions. For example, let us consider the DFG shown

in Fig. 6.2a where nodes 1 and 2 constitute a subgraph of the 3 node DFG. If an ISE

is constructed using only these two nodes, then that ISE will be circularly dependent

on node 3. The same situation is illustrated in Fig. 6.2b where mutual dependence

between two ISEs, instead of between an ISE and a BPI, is shown. Although there

exists no path between nodes 1 and 2 in this example, collapsing nodes 3 and 4

into a single instruction will cause convexity violation in this case. The circular

dependence between two instructions makes the resulting DFG non-schedulable. In

order to prevent such illegal subgraphs being identified as ISEs, the ISE generation

algorithms normally impose the property of convexity on each candidate subgraph.

An enumerated subgraph qualifies as a valid ISE if and only if it is convex.

Convexity is a property which ensures that all the inputs to an ISE are available at

the beginning of its execution, and all the results are produced at the end. Formally,

it is defined as the following.

Fig. 6.2 Example of

non-convex ISEs
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Definition 6.1. Convexity: A convex subgraph S � G is a subgraph such that for

any pair of nodes u; v 2 S there does not exist another node w … S which lies on a

path between u and v.

Readers can easily verify that both the subgraphs presented in Fig. 6.2 are non-

convex. It can be easily shown that a convex subgraph can not have any mutual

dependence with any other graph node or any other subgraph, i.e. it is schedulable

w.r.t. an other instruction. This is a very important property which is used in many

ISE generation algorithms to prune the vast search space of all possible subgraphs

of a given DFG G.

6.2.2 Architectural Constraints

In a complete ASIP design/customization process, ISA customization is usually

performed after the base processor architecture and instruction-set has been defined.

Recall from Sect. 2.2.2 that ISEs are usually implemented inside a CFU tightly

coupled to the base processor pipeline. The CFU usually executes in parallel to

the base processor functional units, and can read/write base processor resources

like general purpose registers through a well defined interface. ISE generation

tools are required to produce instructions which conforms to the CFU structure

as well as the base processor/CFU interface. While convexity is a property

that any ISE data-path must obey irrespective of the underlying hardware plat-

form, the architectural constraints largely depend on specific base architectures.

The most important architectural constraints are described in the rest of this

section.

6.2.2.1 Restrictions on Input/Output Operands

For a RISC processor, all instructions (except the load/store instructions) must

read their input operands and write their output operands to the GPR file. The

address of each input/output GPR is encoded into the corresponding instruction

word. Therefore, the length of the instruction word essentially limits the number of

input/output operands to an instruction. For example, let us consider an architecture

with 32 GPRs and 32 bit instruction word. Since each GPR input/output operand

requires 5 bits for encoding, a maximum of 6 GPR operands can be encoded into

any special instruction (And even this encoding scheme hardly leaves any room for

the instruction opcode).

Apart from the encoding issue, it is difficult to provide a large number of GPR

inputs/outputs to an ISE due to a variety of implementation difficulties. Firstly, the

area and the access time of a register file increases proportionately to the number

of its input/output ports. Secondly, most of the pipelined processors nowadays

employ data forwarding to avoid pipeline stalls. The complexity of the forwarding
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Fig. 6.3 Example of I/O restrictions

architecture increases rapidly with the number of input/output operands of an

instruction. Both of these issues have been already discussed in detail in Sects. 2.2.2

and 2.2.5 of Chap. 2.

The restrictions on the number of GPR input/outputs (also called data bandwidth

from GPRs) to CFUs can severely limit the size of ISEs which, in turn, can lower the

achievable speed-up. Intuitively speaking, one possible way to build a good ISE is

to combine several independent and potentially parallel operations into one single,

large instruction. Combining such parallel operations becomes feasible only when a

special instruction is allowed to have multiple input/output operands. For example,

the MAC instruction – one of the simplest possible special instructions – needs one

input operand more than all basic arithmetic/logical instructions.

An example of GPR restrictions is shown in Fig. 6.3a using the DFG of the

corner edge function mentioned in Sect. 2.2.4. Light colored circles in the DFG

represent arithmetic/logical/memory access operations, while the light and dark

colored boxes represent the input variables and compile time constants, respectively.

Each operation node is associated with an unique identifier which has been shown

in light colored boxes beside the corresponding node.

The figure shows two subgraphs in the DFG, encircled by the dotted curves,

which are potential ISEs. Let us assume that a compile time constant can be directly

embedded in the hardware of an ISE, and therefore, such a constant does not

constitute an input to any special instruction. Even with this assumption, both the

subgraphs will not qualify as valid ISEs with 2 in/1 out restriction, i.e. if only 2 input

operands and 1 output operand accesses are permitted for any instruction. The first
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subgraph, consisting of nodes 1, 2, 3 and 4, is disqualified because it has two outputs.

The second subgraph, with nodes 7, 8, 9 and 10 violates both input and output

constraints. The entire DFG has a total of 4 inputs, and hence, can also not qualify

as a valid ISE.

In order to obtain better performance, ISE generation algorithms exploit a variety

of architectural tricks to overcome the input/output constraints and create large

instructions. One example of this is shown in Fig. 6.3b where the ISEs use internal

registers (IRs) to overcome the input/output restrictions. IRs are special registers

inside the CFU which do not appear in the instruction coding. They can be read and

written from inside the CFU, but values produced in them must be moved to the GPR

file for consumption by base processor instructions. In the figure, the subgraphs of

Fig. 6.3a have been converted into two ISEs. Node 4 in the first ISE produces its

results in an IR which has to be moved to a GPR (shown by the Mov node inserted

after node 4) for consumption by the base processor instruction (the load operation

in node 6). Similarly, the results produced by node 5 and 6 are moved from GPRs

to IRs for consumption in the second ISE.

6.2.2.2 Restrictions on Memory Accesses

Restrictions on memory accesses from the CFU is another important architectural

constraint. Since it is difficult to synchronize memory accesses originating from

the base processor and the CFU, many ASIP design flows do not permit memory

accesses from special instructions, e.g. almost all configurable processors forbid

memory accesses from CFUs. The effects of such restrictions can be easily

understood by considering the DFG of Fig. 6.3. The memory load operations (nodes

5 and 6 in Fig. 6.3a) partitions the DFG into two sub-sections and limits the scope of

ISE identification. Such restrictions can significantly lower the achievable speed-up.

One possible way to increase the memory bandwidth to ISEs is to use scratch-

pads. Scratch-pad memories are fast cache-like storage units which can be con-

trolled by compiler (see Sect. 2.2.6). Such memories can be implemented inside

CFUs to hold frequently accessed data-objects. However, usage of exclusive scratch-

pad storage inside a CFU gives rise to coherence problems similar to cache

coherence. Therefore, such storage elements are often restricted to hold non-

writable data (i.e. constant objects).

6.2.2.3 Restrictions on Area and/or Computational Resources

Embedded ASIPs are usually designed under tight area constraints which puts an

upper limit on the silicon area available for CFUs. The area restriction can be

expressed in absolute terms (i.e. K Gates or mm2), or, can be specified in terms of

functional units available in the CFU (i.e. number of adders/multipliers/subtracters

etc.). Such restrictions often limit the maximum size of the identified instructions.
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6.2.2.4 Restrictions on Instruction Latency

The CFU is usually implemented as another functional unit inside the processor

pipeline. Consequently, the ISEs are required to finish execution within a specified

number of processor clock cycles. Such a limit on instruction latency restricts the

size of valid ISEs.

Enumeration of promising subgraphs under the above mentioned generic and

architectural constraints is a difficult task. The complexity of the problem can be

understood by considering the DFG of Fig. 6.3a. The DFG contains 10 nodes from

which a total of
P10

rD2 C 10
r subgraphs can be created.2 However, under 2/1 GPR I/O

constraints, only small subgraphs such as f 2,3 g , f 2,4 g or f 7,9 g qualify as valid

ISEs. Usage of IRs allows us to discover larger ISEs as shown in Fig. 6.3b. However,

the cost of data moves from GPRs to IRs and the hardware cost of including

special registers inside the CFU must be weighed against the speed-up gains in

such cases. The manual identification of promising special instructions under all

these constraints is extremely difficult and therefore, this problem surely demands

effective design automation tools.

6.3 Related Work on ISA Customization

Design automation of the ISA customization step has already received a lot of

research attention due to its high importance in the overall ASIP development

process. This section enumerates the various approaches, techniques and tools

reported in literature on the ISA customization problem so as to clearly highlight

the specific contributions of the current work.

Two prominent – but often interrelated – tracks of work on the ISA customization

problem can be clearly distinguished in the existing literature. These tracks are:

1. ISE generation. This step involves automatic identification/extraction of promis-

ing special instructions from an application’s DFG under micro-architectural and

generic constraints defined in the previous section.

2. Increasing data bandwidth to ISEs. It has been clearly illustrated in the

previous section that the available data bandwidth over the CFU interface largely

determines the quality of the generated ISEs. Quite a few works have suggested

innovative architectural features to increase this data bandwidth. To take full

advantage of the suggested architectural tricks, many of the works in this area

apply novel compiler transformations during or after the ISE generation step.

We discuss both of the aforementioned issues in the following two sections.

There exists another closely related area of research which investigates the

effects of compiler optimizations on the ISE generation step [25, 30]. The first of

2Here C n
r denotes the number of ways n things can be combined taken r at a time.
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the these works, by Bonzini and Pozzi [30], primarily focuses on two compiler

optimizations – loop unrolling and if-conversion – to demonstrate that newer

heuristics than those used in traditional compilation flows might yield better results

for ISE extraction. The second work by Bennett et al. [25] explores the effects of

a large array of compiler transformations on the ISE customization process using a

completely automated probabilistic source-level transformation algorithm [62]. We

consider this as an orthogonal field of work with a different focus which can be used

to complement our work on ISA customization.

6.3.1 ISE Generation

The ISE generation process has been quite extensively studied in the past. It can

be subdivided into two very closely related subproblems – pattern enumeration and

pattern selection – discussed in the rest of this section.

6.3.1.1 Pattern enumeration

Pattern enumeration (also called pattern generation, candidate generation, can-

didate enumeration, or subgraph enumeration) is the most important step in

overall ISA customization process. Not surprisingly, majority of the works on ISE

generation focus on this problem. Pattern enumeration involves identification of

subgraphs from an application’s DFG under architectural and generic constraints

imposed by the base processor architecture. Each pattern is a node induced

subgraph of the original DFG and is a potential candidate for implementation as

a special instruction. Enumeration of all architecturally viable patterns from a target

application’s DFG has very high computational complexity. For example, if a basic

block from the target application has N nodes, then the total number of candidate

patterns in worst case is O.2N /. Quite a few approximate or heuristic solutions have

been proposed for obtaining solutions for the pattern generation problem within

reasonable CPU time.

Two competing approaches of subgraph enumeration can be distinguished in

literature. The first approach tries to identify small but recurring patterns from an

application [24, 34, 72, 108, 134] whereas the second one tries to enumerate larger

subgraphs without looking into reusability [44, 131, 184].

To the best of our knowledge, the work by Bennett [24] is the first attempt to

automatically enumerate small and reusable candidate subgraphs. The objective

of this work was to derive an instruction-set for the BCPL language which

minimizes the code size for given applications. Pattern enumeration was performed

by combining all pairs of chained operations for a set of given applications. Pattern

selection consisted of selecting those pairs which produce the maximum code size

reduction. A similar approach towards pattern generation has been reported in

[73, 74]. In these works, Holmer et al. described a candidate generation algorithm
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which searches for those sequences of micro-operations which can be executed

inside one processor cycle and which conform to memory, register I/O and opcode

size constraints.

Similar approaches to recurring pattern enumeration can be found in [14, 15,

34, 92, 108, 134]. Although the exact algorithmic details of these works vary,

the underlying philosophy remains the same. These techniques iteratively search

for small sequences of recurring operations in an application’s DFG (e.g. Brisk

et al. [34]) or in its dynamic execution trace (e.g. Arnold et al. [15]). Most of these

works limit the search to enumerate only single output patterns consisting of data-

dependent operation nodes. However, Arnold et al. [15] describe a technique which

could enumerate multi-output patterns, and Brisk et al. [34] present a technique

which could identify patterns consisting of parallel (i.e. non data-dependent)

operations.

One major advantage of the recurring pattern enumeration approaches is their

polynomial runtime. Given a large set of benchmark applications from the same

application domain, such approaches can find promising special instructions which

can be potentially reused not only within an application, but across several similar

applications. However, ASIPs are mainly designed to accelerate only a few very

heavily executed and computationally intensive application kernels. Application

performance, rather than reusability, is the primary objective in such scenarios.

Therefore, small special instructions are often found inadequate to meet the very

high performance expected from ASIPs.

Enumeration of large subgraphs combining several operation nodes have been

tackled in [17,31,44,131,184,186]. The simplest possible way to solve this problem

is to exhaustively enumerate all subgraphs of each basic block DFG for a target

application. Despite its simplicity, this approach can be immediately ruled out due

to its high runtime complexity. In order to solve the pattern generation problem

in polynomial time, many of the existing algorithms limit the search space using

architectural constraints. A pattern which violates the architectural restrictions is

immediately discarded and in some cases, its super-graphs are also not considered.

For example, Choi et al. [43] restrict the identifiable patterns to those whose

operands can fit into the �-code format of their target architecture. The results show

that the amount of speed-up achievable using this technique is quite limited.

Even with the architectural restrictions – especially under the input/output

restrictions imposed by the limited number of GPR operands available to an

ISE – identification of large subgraphs remains a complex problem. Bonzini

et al. [31] show that the convex subgraph enumeration problem has a complexity

of O.nINMAXCOUTMAX / where n is the total number of graph nodes, and INMAX and

OUTMAX are the maximum number of inputs and outputs allowed to a special

instruction, respectively (e.g, the complexity of generating large patterns under 4/2

GPR I/O constraint is O.n6/). This complexity is still quite high and forms a major

bottleneck in the overall ISA customization flow.

The work by Pozzi et al. [133] shows that the pattern enumeration problem can be

solved in polynomial time if subgraphs are restricted to have only a single output.
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Their work also describes a linear complexity algorithm to identify such multiple

input single output (MISO) patterns. Cong et al. [46] also use MISO patterns in

their ISA customization framework.

MISO patterns have an important property which enables polynomial time

enumeration algorithms. Let MaxMISO be a MISO pattern which is not completely

included into any other MISO. Pozzi et al. [133] prove that two MaxMISOs can

not partially overlap. Their linear complexity algorithm is constructed using this

property. Unfortunately, no such property can be exploited for the general problem

of multiple input multiple output (MIMO) patterns.

Clark et al. [44] and Sun et al. [159,160] propose two very similar methodologies

to enumerate large candidate MIMO subgraphs. Subgraph generation in these works

is performed by creating a pattern with a single seed node and then gradually adding

operation nodes which are adjacent to already included operations in the pattern.

In order to limit the runtime of pattern enumeration, a heuristic guiding function is

used to determine which neighbors should be given priority while adding new nodes.

Naturally, the key to a fast candidate generation algorithm in both of these works is

the selection of the right guiding function. For example, [44] use criticality, latency,

area and the number of inputs/outputs of a node as guiding factors. Criticality

gives priority to nodes which are on the critical path. Latency and area prioritize

nodes which have lower area and hardware delays (e.g. a bitwise and operation has

higher priority over a multiplication). Additionally, nodes whose inclusion does not

increase the I/O port numbers are given priority. It is claimed that a selection scheme

based on equal weight of each of these factors yields the best result. Unfortunately,

no algorithm runtime results have been presented for these works.

Although all of the previously mentioned algorithms manage to extract convex

instruction candidates, pattern generation as a convex subgraph (also called a convex

cut) identification problem is first formulated in Atasu et al. [18]. This work also

proposes exact algorithms to identify single and multiple best cuts in a given basic

block under GPR I/O and convexity constraints (a best cut is defined as one which

is estimated to produce the best speed-up result). The exact algorithm to identify

the single best cut sorts the nodes of a basic block DFG in topological order. A

binary search tree is built using these sorted nodes such that a pair of 0 and 1

branch at any particular level of the tree denotes exclusion and inclusion (in a cut),

respectively, of the next node in topological ordering. The root of the tree represents

an empty cut and one of the leaves denote the best cut. Readers may observe that this

technique is very close to the brute-force subgraph enumeration. However, the key

idea behind this algorithm is to add nodes to a cut in topological ordering. This paper

observes that if a node appearing later in topological ordering violates the convexity

or output constraints of a cut, then that violation can not be corrected by adding

newer nodes. This trick allows the algorithm to prune the search space and find the

best cut much more effectively than exhaustive subgraph enumeration. The multiple

cut identification algorithm extends this technique by using a n-ary – rather than

binary – tree. Even with the effective pruning techniques, both single and multiple

cut identification algorithms have exponential worst case timing complexity and can

only handle small basic blocks (in general, far less than 100 nodes).
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Extensions to the above convex cut enumeration algorithm are described in

various subsequent publications [26, 131]. Pozzi et al. [131] describes algorithms

to solve the general ISA customization problem, i.e. identification of multiple best

convex cuts from multiple basic blocks from an application (as opposed to a single

basic block as in [18]). It proposes an iterative solution which identifies one best

cut from one of the basic blocks, collapses all the constituent nodes in the cut to

a single node, and continues with the basic block which has maximum number of

nodes outside any pattern. It observes that the exact algorithm of [18] to identify

one single best cut in a single basic block still has exponential runtime in worst case

and can not be directly employed by the iterative algorithm. Therefore, it proposes

two approximate algorithms to tackle the single cut identification problem. One of

these approximate algorithms use genetic programming. The other algorithm pre-

partitions large basic blocks into smaller subgraphs using hMetis [112] and then

applies exact single cut enumeration on each partition. Biswas et al. [26] also attack

the problem of single cut enumeration using the well known Kerninghan-Lin min-

cut heuristic [96]. Their algorithm – named ISEGEN – starts with an empty cut

to which newer nodes are gradually added. Similar to the algorithms described by

Clark et al. and Sun et al. [44, 160], this work also makes use of a guiding function

to steer the growth of the convex cut. ISEGEN runs upto 29� faster than the genetic

algorithm of [131] and can handle basic blocks with hundreds of nodes.

The works described above solve the general problem of disjoint MIMO pattern

identification. Yu et al. [184] describes an algorithm to identify only connected

MIMO subgraphs. Their algorithm starts by enumerating the upward input cone

and the downward output cone for each node in a given DFG. Each such cone

becomes an individual pattern. The main algorithm then selectively joins some

of the cones together to form larger patterns. Due to this joining (i.e. set union)

operation, they call their algorithm the union algorithm. The major advantage of

this work, compared to the disjoint MIMO identification algorithms presented so

far, is that it scales well with the size of the basic blocks. Yu and Mitra [186] uses

the union algorithm as the basis for disjoint pattern generation.

The above mentioned algorithms are only a selection of the most prominent

works on pattern generation. Interested readers may refer to [17, 20, 64, 75, 129]

for other works in this area. In summary, we can say that pattern enumeration

still remains a complex problem, but the most recent advances in this area have

equipped designers with algorithms that can handle very large basic blocks in

reasonable amount of CPU time without compromising the quality of the candidate

ISEs too much.

6.3.1.2 Pattern Selection

In most of the ISA customization flows, pattern selection is the immediately

following step of pattern generation. In this step, all the patterns generated in the

subgraph enumeration phase are characterized by estimating their areas, latencies

and possible gains, and a subset of the enumerated subgraphs are selected for the

final ASIP design.
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Sun et al. [160] proposes a pattern selection technique where different versions

of each identified pattern are created by changing the clock period or adjusting the

number of execution cycles. Each pattern is then exactly characterized in terms of

area through RTL synthesis, and gain (i.e. achievable speed-up) through ISS on

the Tensilica configurable core. Their pattern selection problem is to find the best

versions for all the patterns that maximizes speed-up under certain area restrictions.

The general pattern selection problem – discussed in [33,44,46,183] – has a different

formulation than the one given by Sun et al. This formulation is primarily directed

towards finding recurring subgraphs from a given application so as to minimize the

total number of ISEs and keep the area of the CFU under control. Interested readers

may consult [76,185] for a slightly different formulation of the instruction selection

problem directed towards reducing the worst case execution time (WCET) of real-

time systems (rather than the general case of average execution time minimization).

Let the set of patterns identified from different basic blocks in an application

be P D fp 1; p2; : : : ; png. In the pattern selection phase, each pattern p 2 P

is first characterized by its area A.p/ and its gain G.p/. Gain is calculated by

estimating the number of cycle savings for each pattern p if it is executed once, and

then multiplying the savings with the total number of times the pattern is executed.

The execution frequency information for each pattern is calculated by considering

dynamic profiling information. The objective of the pattern selection problem is

to find the best set of patterns that maximizes the speed-up gain under a designer

specified area constraint. As Clark et al. [44] clearly points out, this formulation

is equivalent to the well known 0–1 knapsack problem where the objective is to

maximize the value (i.e. speed-up gain) for a given weight (i.e. area). Unfortunately,

this problem is NP-complete and needs efficient heuristic solutions.

Another associated problem is the identification of recurring patterns in the

graph. This involves detection of isomorphism between two enumerated subgraphs.

This problem is not difficult in frameworks which identify small connected pat-

terns [15, 34, 73]. Frameworks which enumerate large patterns [33, 44, 46, 183]

usually detect graph isomorphism using generic graph matching tools such as nauty

or vf2 [121, 174]. In order to find greater amount of recurrence, techniques like

subgraph subsumption [44] or algebraic transformations [127] can also be applied.

Detection of recurring patterns affects the pattern selection problem in two

ways. Firstly, the gain G.p/ for a pattern p 2 P needs to consider the execution

frequencies of all occurrences of p in such a scenario. The second, and the more

important issue, is that two recurring patterns may overlap, i.e. the same graph node

might be covered by the two different patterns. This issue further complicates the

0–1 knapsack problem, because giving priority to one pattern over another changes

the weight of the second pattern. Clark et al. [44] propose a greedy method to solve

this problem where the pattern with the best
G.p/

A.p/
ratio is always selected. Once a

pattern is selected, the heuristic iterates through all other subgraphs and eliminates

the nodes covered by the selected pattern from all other patterns. Two other pattern

selection algorithms – one based on linear programming and the other on heuristic –

have been described in [183]. Bonzini et al. [32, 33] describe exact and heuristic

algorithms to solve the simultaneous pattern generation and selection problem so
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as to maximize the amount of recurrence. A major contribution of their technique

is that they consider isomorphic graphs from multiple basic blocks, whereas [44] is

limited to only graphs within a single basic block.

6.3.2 Increasing Data Bandwidth to ISEs

The limitation on the available data bandwidth between the base processor core and

the CFU is a major restriction in forming high quality ISEs. Multiple studies [132,

183] demonstrate that the overall speed-up achievable using special instructions

depends greatly on the data bandwidth restrictions. The effects of these restrictions

have already been illustrated in Sect. 6.2.

It has been already mentioned in Sect. 6.2 that the data bandwidth restrictions can

take two forms – limitations on the number of GPR reads/writes permitted from a

special instruction, and restrictions on the memory access from the CFU. The GPR

I/O limitations exist mainly due to the difficulty of encoding multiple operands in

an instruction word. Increased area of multi-port register files and the complexity of

data forwarding with multi output instructions are also important factors. From the

practical viewpoint, almost all the ISA customization tool-chains use configurable

processor cores as implementation and validation platforms. Such configurable

processors only allow limited number of GPR accesses through fixed interfaces.

Unlike the GPR operands, memory accesses from the CFU do not necessarily

impose encoding constraints. In fact, some of the recent works on ISA customization

advocate inclusion of memory access nodes in special instructions [104]. However,

memory accesses are generally not included in special instructions because most

of the configurable processors do not permit loads/stores from CFUs. Primary

reasons include cost of memory ports and, possible synchronization problems due to

simultaneous memory accesses arising from the CFU and the base processor core.

Several architectural and ISE generation techniques have been proposed to

overcome both kinds of data bandwidth restrictions. We will discuss them in detail

in the rest of this section.

Several past and recent works have proposed inclusion of Internal Registers in

the CFU to overcome the GPR I/O restrictions [16,27,160]. If an ISE requires more

inputs than available input operands from GPR, then it can read them from IRs. As

has been already illustrated in Sect. 6.2, extra move instructions might be required to

transfer data between GPRs and IRs in such scenarios. The works described in [16,

160] take the cost of such move instructions into account during candidate pattern

generation, but neither provide any means to minimize the number of moves, nor

suggest any technique to keep the number of internal registers under control. Biswas

et al. [27], on the other hand, only place loop carried variables (such as loop indices)

into IRs because they have high usage potential. Edges coming from such variables

are excluded from input edges during convex pattern generation.

Cong et al. [45] propose a technique based on shadow registers to minimize

the number of move instructions for transferring data from GPRs to local storage
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inside CFU. Any instruction (ISE or basic) may choose to produce a copy of its

result in a shadow register while writing into the GPR file in the WB stage. An

ISE is also allowed to directly read a value from a shadow register. Consequently,

if a base processor instruction writes a copy of its result into a shadow register,

then that result can be directly consumed by an ISE eliminating the need for a

move instruction. The limitation of this approach is that, unlike IRs, shadow register

appear in the instruction coding. This subsequently limits their maximum number

in the architecture. Cong proposes a binding algorithm for assigning variables to

shadow registers in such a way that the total number of move instructions are

minimized.

Another approach to increase register data bandwidth has been published by

Jayaseelan et al. [87]. Their technique makes up-to two extra operands available

to ISEs through data forwarding paths in the processor pipeline. An ISE can only

use such extra operands if they are produced by the two immediately preceding

base processor instructions. Otherwise, the extra inputs have to be moved to the

internal register file. Their results show that this technique can achieve speed-ups

very close to the ideal case (i.e. without any move operations). Still this scheme

does not provide a general solution to the data bandwidth problem.

Pozzi et al. [132] describe a technique to minimize the number of GPR accesses

per cycle from ISEs. They suggest to distribute the execution of an ISE over several

cycles so that only a limited number of GPR reads and writes are performed in each

processor clock (e.g. an ISE data-path requiring four GPR inputs is distributed over

two processor cycles such that only two accesses are made per cycle). Naturally, this

technique requires a complete re-thinking of pattern enumeration algorithms so as

to identify only those data-paths whose I/Os can be serialized over several processor

clocks. Such algorithms have been proposed in [132, 173]. This technique ensures

that ISE data-paths can fit within fixed CFU interfaces, but still does not answer how

multiple register operands can be encoded within a single instruction. Other similar

approaches can be found in [128].

Almost all ISA customization frameworks reported in literature exclude memory

access nodes while forming special instructions. Biswas et al. [27] suggests to use

local scratch-pad memories inside the CFU to overcome this restriction. Copies of

most frequently executed data objects can be placed in scratch-pad memories inside

the CFU so as to make them available to ISEs. However, writing to scratch-pad

memories gives rise to coherence issues similar to the well known cache-coherence

problem [125]. To bypass this problem, Biswas et al. propose to only place constant

(i.e. non-writable) data-objects into scratch-pads. Their later work [28] proposes

to insert DMA instructions in an application to move data from the main memory

to local scratch-pads in the CFU. In this scheme, ISEs are permitted to both read

and write data from scratch-pad memories which facilitates formation of larger

instructions. When an ISE finishes execution, the copied data-objects (usually large

vectors) have to be moved back to the main memory if needed. This scheme is

useful only if the overhead due to the DMA transfers are insignificant compared

to the total number of accesses from ISEs. Therefore, Biswas et al. describe an

algorithm which places DMA instructions only at infrequently executed program
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locations. The algorithm ensures that all program paths from the beginning of an

application to a frequently executed and ISE-fied loop kernel pass through such

a DMA instruction, and the data-objects accessed in the ISE-fied kernel are not

written between the DMA copy and the ISEs.

The data bandwidth constraints from GPR and main memory still constitute ma-

jor bottlenecks in the process of ISA customization. One of the major contributions

of this work is to suggest innovative techniques to bypass some of these restrictions

during ISE generation.

6.4 A Seamless Application to Architecture ISA

Customization Flow

This work presents a complete application to architecture ISA customization

framework integrated inside a complete pre-architecture exploration design flow.

One major differentiator of our framework is its clearly defined modular software

architecture consisting of two parts – the ISE generation infrastructure and a set

of implementation back-ends. The ISE generation infrastructure allows designers to

experiment with various ISE extraction algorithms and CFU interfacing schemes

in a processor independent way. The implementation back-ends, on the other hand,

are designed to translate generated ISEs to special instruction descriptions for real

life processor architectures. This modular architecture has allowed us to support

multiple ASIP implementation platforms. This is in stark contrast to other works

in literature which either support single processor architectures, or present results

using abstract cost models.

One main contribution of our framework is its direct link to an ADL based

ASIP design flow. Almost all the published work in literature use configurable

processor based design tools. Since configurable processors completely predefine

the CFU interface, it is not easy to experiment with new architectural features for

overcoming the data bandwidth restrictions. Our ADL based back-end allows us to

explore arbitrary communication schemes such as memory accesses from the CFU,

clustered register file architectures as well as all other architectural tricks described

in related literature. Our tool flow frees designers from devising workarounds to fit

their ISE data-paths into existing CFU interfaces, and lets them perfectly tune their

ASIP architectures to the target applications.

Algorithmically, our primary contribution lies in suggesting two novel schemes

to increase GPR data bandwidth to ISEs. The first of these strategies is based

on integrated ISE generation and internal register minimization algorithms. We

observe that the communication overhead between GPRs and IRs can be minimized

if intra-ISE communication through IRs is maximized. Our algorithms exploit

this property to form several ISEs close to each other so that the number of IR

move instructions are kept to a minimal. Additionally, we suggest several post-

ISE generation optimizations to keep the total number of IRs under control through

temporal reuse. The second scheme to increase GPR I/O bandwidth applies the well
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known technique of clustered register files from multiple issue VLIW processors

to single issue ASIPs with ISEs. This strategy is not tightly integrated with the

ISE generation algorithms and therefore, remains widely applicable. A minor

contribution is that we suggest a scheme to make main memory accesses possible

from CFUs in our ADL based design flow.

Currently, two pattern generation algorithms have been integrated into our design

framework. The first one uses integer linear programming (ILP) to identify convex

subgraphs from an application, while the second one completely pipelines an

application’s DFG using high level synthesis techniques. Both the algorithms are

designed to generate several adjacent ISEs to maximize communication through

IRs. The ILP based algorithm can also be used to identify large convex patterns

without considering communication costs. Both the algorithms have good runtime

and can handle large basic blocks with hundreds of nodes.

One downside of our pattern generation techniques is that the achievable speed-

ups heavily depend on clusters of closely connected ISEs – and not on the quality

of single large ISEs – because of the extensive usage of IRs. Consequently, our

ISEs can not be easily reused over several hot-spots from an application unless the

hot-spot DFGs are exactly identical. Pattern selection in our framework is a trivial

problem because we do not detect multiple occurrences of the same subgraph.

Our remedy to this problem is to reuse processor resources in hardware, rather

than in software. The HLS based algorithm can precisely consider restrictions on the

number of various computational resources in the CFU and can generate ISEs which

conform to these restrictions. ISEs are executed in the processor pipeline in such a

fashion that two special instructions can always share the same resource between

themselves. This scheme keeps the overall processor area under control.

6.5 Synopsis

1. ISA customization of ASIPs is a different problem than that encountered in tra-

ditional domain specific processors. This process involves automatic extraction

of promising instruction candidates from an application’s source code.

2. ISA customization consists of three primary steps – ISE generation, ISE imple-

mentation and ISE utilization. ISE generation is a complex problem which has

been formulated as convex subgraph enumeration under architectural constraints.

Most of the existing literature specifically targets this issue. Increasing data

bandwidth to ISEs also remains a major factor for maximizing speed-up with

special instructions.

3. The current work provides a complete application to architecture tool-flow.

Unlike the previous works in this area, our tool-chain can be used to generate ISE

implementations for a variety of architectures due to its largely re-targetable soft-

ware architecture. The major contribution of this work is its direct link to a state-

of-the-art ADL based design flow which has allowed us to experiment with quite

a few novel CFU interfacing techniques such as IRs and clustered register files.



Chapter 7

ISA Customization Design Flow

In Chap. 5 we have introduced the �-Profiler which forms one major component

of our pre-architecture application analysis flow. This chapter is dedicated to

provide an overview of the other main component of our design flow – the ISA

customization framework.

7.1 Introduction

Figure 7.1 sketches an outline of our ISA customization flow. Similar to the �-

Profiler tool-chain introduced in Chap. 5, the entry point to this customization flow is

also the ANSI C source code of a given target application for which a set of ISEs are

to be identified. The source code is parsed and translated to a control data flow graph

(CDFG) by the ISA customization front-end, and passed to the core component

of our design-flow – the ISE generation engine. From the input CDFG, the ISE

generation algorithm infers a set of optimized ISEs which are then inserted in the

original application’s source code, and converted to hardware definitions by the ISA

customization back-end. The whole customization process can be supervised and

coordinated from the ISA Customization GUI which is a part of the integrated ASIP

design GUI introduced earlier. Through the GUI, designers can use �-Profiling

results to interactively select hot-spots of the original application for ISE generation,

and characterize the underlying CFU structure and base processor/CFU interface

by specifying various architectural constraints and parameters. The ISE generation

process and the back-end ensure that the identified ISEs conform to the specified

CFU architecture.

Our ISE design framework provides a seamless design-flow from a target

application to the final integration of a set of optimized ISEs inside an ASIP

architecture. It allows designers to closely guide the customization process while

simultaneously providing high degrees of design automation for all three ISA
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Fig. 7.1 ISA customization work-flow

customization tasks described in Chap. 6, namely ISE generation, utilization and

implementation. Using our design-flow, a base processor ISA can be configured

with special instructions within a few hours.

Our customization flow also facilitates pre-architecture design space exploration

of the CFU structure and the base processor/CFU interface while designing ASIPs

from scratch. Using the �-Profiling results, the ISA back-end can create speed-up

estimates for ISEs generated for a certain CFU structure. Designers can use this

feature to evaluate a large number of alternate CFU structures and interfaces, and

can short-list a few promising ones for detailed investigation.

The next section briefly describes the roles and interactions of the three com-

ponents of our ISA customization framework – the front-end, the ISE generation

algorithm and the back-end.

7.2 Components of the ISA Customization Flow

This section intends to provide an overview of the three components of the ISA

customization design-flow introduced earlier. The main focus here is to describe

how the components interact with each other and what sequence of transformations

they apply to a given target application for extracting a set of optimized ISEs. The
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details of the transformations themselves – specially those applied during the ISE

generation process and by the back-end – will be discussed in subsequent sections

and chapters.

7.2.1 The ISA Customization Front-End

Similar to the �-Profiling tool-chain described in Chap. 5, the ISA customization

front-end also uses the LANCE C compiler infrastructure (see Sect. 5.3 for more

details of the LANCE compiler) for converting a target application’s source code

to the LANCE IR. Each function body in the LANCE IR is transformed to a

control flow graph using control flow analysis routines of the LANCE library. A

CFG consists of basic blocks connected by control flow edges (CF edges). Each

basic block, in turn, is represented by a flattened list (i.e. a sequence) of LANCE

IR statements. While this flattened list format is suitable for the �-Profiler, the ISE

generation algorithms require a DFG representation for each basic block where data

dependencies between any pair of operations are explicitly visible. A DFG is defined

as the following.

Definition 7.1. The Data Flow Graph for a basic block is a directed acyclic graph

(DAG), G D .V; E/ where the node set, V D fv1; v2; : : : ; vng, corresponds to the

arithmetic, logical, memory access and branch operations present in the block, and

the edge set, E � V �V , represents the data dependencies between the nodes. Each

element of E is an ordered pair, .vi ; vj / of two nodes vi ; vj 2 V , which indicates

that there exists a flow dependency, or read-after-write dependency, between vi and

vj , i.e. vi produces a result which is consumed by vj .

To understand the above definition of a DFG, a brief digression on data

dependence relations is needed here. Three types of data dependence may exist

between two operation nodes, vi , vj 2 V , where vi precedes vj in sequential

execution order. These three types are:

1. Read-after-write (RAW) or true dependence. A RAW dependency between vi

and vj implies that the output of operation vi is used as an input of vj . vi and vj

are usually called producer and consumer nodes, respectively.

2. Write-after-write (WAW) or output dependence. A WAW dependency between

vi and vj implies that the output of operation vi is also the output of vj .

3. Write-after-read (WAR) or anti dependence. A WAW dependency between vi

and vj implies that one input of operation vi is the output of vj .

These three types of data dependence relations have been illustrated in Fig. 7.2a

which shows the DFG for a small piece of C code. In this figure, solid lines represent

RAW dependence relations, whereas dashed lines are used to depict WAW and WAR

dependencies. In the DFG corresponding to the C code, a WAW dependence ( 1 in

Fig. 7.2a) exists between DFG nodes corresponding to the statements y = t1 <<

3 and y = x * 10, because both of them write to the same variable y. Similarly,
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Fig. 7.2 Data dependence

relations between various

DFG nodes

a WAR dependence exists between y = x * 10 and x = t2+ 15 ( 2), and a

RAW dependence exists between y = t1 << 3 and z = y + 5.

Data dependencies impose a sequential execution order on a list of statements,

which in turn, limit the scope of compiler transformations. For example, instruction

scheduling can not change the relative position of two DFG nodes, if there exists

a data dependence between them (e.g. the relative positions of the nodes for

y = x * 10 and x = t2 + 15 can not be changed without violating the

original program semantics). However, it is possible to remove the WAW and WAR

dependencies from a DFG by converting the corresponding IR to a single static

assignment (SSA) [119] form where a variable can be defined only once, but used

multiple times. One example of this is shown in Fig. 7.2b, where the anti and output

dependencies have been removed by renaming the targets of the third and fourth

assignments. After SSA-fying the IR, only true dependencies are to be considered

for DFG construction.
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A control flow graph where each basic block is represented by a DFG is called

a control data flow graph. The conversion from the standard LANCE IR format to

the CDFG structure is performed by the CDFG generation step which also provides

CDFG analysis and transformation routines that are extensively used by the ISE

generation algorithms and the back-end.

The CDFG generation step linearly scans each constituent statement of a given

block to create and add DFG nodes to the node set V . This is followed by the

construction of data flow edges by connecting producer and consumer nodes. Each

IR statement consists of, at most, one operation and three operands of type primitive

expression (Sect. 5.4.1). The CDFG generation process creates a single node for the

operation contained in an IR statement after recursively creating DFG nodes for all

its constituent operands. The exact type of the operation (i.e. binary/unary/type cast

operation, memory write, jump or return) is attached as an attribute to the node.

The creation of DFG nodes for primitive expressions are governed by the following

rules.

1. If the primitive expression is a literal constant, then a node of type constant is

created. The exact value of the expression is attached as an attribute to the node.

The dark colored boxes with constants inside them in Fig. 7.2 represent such

constant nodes.

2. If the primitive expression is a variable which is only read, but not written, inside

the basic block in question, then a node of type variable is created. The variable

symbol is attached as an attribute to the created node. The dark colored boxes for

the variables t1, t2 and x in Fig. 7.2b represent such variable nodes.

A source operand variable, which is written inside the basic block, is not

converted to a DFG node, and is represented by a DFG edge connecting the

producer to the consumer operation. Such a case is depicted in Fig. 7.2b by the

data flow edge labeled y.

3. If a primitive expression performs a pointer de-reference operation, then it is

converted to a load, or memory read node. The pointer variable being de-

referenced is recursively converted to DFG as per the previous rule.

7.2.2 ISE Generation

The goal of the ISE generation phase is to extract a set of promising special instruc-

tions from a target application’s CDFG produced by the front-end. In our processor

customization flow (indeed, in almost all ISE generation flows found in literature)

this step involves a form of software/hardware partitioning of the application hot-

spots under architectural constraints. An application hot-spot usually corresponds

to one of the most frequently executed basic blocks. The ISE generation algorithm

partitions the DFG, G D .V; E/, of such a hot-spot basic block into a set of non-

overlapping subgraphs, ISE D fise1; ise2; : : : ; isemg, such that each isei 2 ISE can

be implemented as a special instruction inside the target processor.
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As shown in Fig. 7.1, the ISA customization GUI allows designers to specify

three kinds of inputs to the ISE generation process. These inputs ares:

1. A set of hot-spot basic blocks for which ISEs need to be generated. In the

ISA customization GUI, designers can browse the original source code of the

application annotated with the weighted cycle count information from the �-

Profiler, and can mark the most computationally intensive lines of source code for

ISE generation. The basic blocks corresponding to the marked lines are passed

to the ISE generation algorithm as hot-spots.

2. A set of architectural constraints (such as the number of GPR and memory

read/writes permissible from the CFU, or the maximum area and critical path

of a special instruction) which any ISE must conform to. The effects of these

constraints on the ISE generation process has been discussed in Sect. 6.2. How

these constraints are used in our ISE generation algorithms will be discussed in

Chap. 8.

3. A set of architectural parameters to guide the software/hardware partitioning

process. In contrast to the architectural constraints which specify the restrictions

on the base processor/CFU interface and the CFU structure, the architectural

parameters mainly provide a cost model required by the partitioning algorithm

to estimate the area, latency and speed-up of each candidate special instruction.

Our ISE generation framework attaches three architectural parameters, namely

software latency, hardware latency and area cost, as attributes to each operation

node in the DFG just prior to ISE generation (constant and variable nodes in the

DFG have all three parameters permanently assigned to zero). The definitions of

these parameters are provided below.

Definition 7.2. Software Latency, SW.vi /, of an operation node vi 2 V represents

the number of cycles it takes to execute vi in software using a base processor

instruction. In a pipelined base processor with full data forwarding, most of the

integer operations can finish execution and produce result within a single cycle,

except load instructions which normally need two cycles. Software latency for any

DFG node must be a non-negative integer.

Definition 7.3. Hardware Latency, HW.vi /, of an operation node vi 2 V represents

the delay of executing the operation in hardware. For each operation type, we

normalize the hardware latency to the period of one processor clock. For example,

if an addition has a worst case delay of 0.8 ns, and the processor clock period is 2 ns,

then the normalized hardware latency of the adder is 0:4.D 0:8
2

/. Hardware latency is

only meaningful for arithmetic/logical/comparison operations, and not for memory

access and jump/return nodes.

Definition 7.4. Area cost, Cost.vi /, which usually indicates the silicon area re-

quired to implement a node, vi 2 V , in hardware. Like hardware latency, this

value is only meaningful for arithmetic/logical/comparison operations. The area cost

for each operation is normalized to the costliest integer arithmetic unit – a 32 bit
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Fig. 7.3 An example partitioned DFG produced by the ISE generation algorithm

multiplier. For example, if an adder implementation requires 1.3 K gates, and a 32

bit multiplier requires 13 K gates for the same technology library, then the area cost

of the adder is 0:10.D 1:3
13

/.

The hardware latency and cost values are characterized by synthesizing the

C level operators to a specific implementation library.1 As we will see in Chap. 8,

one of our ISE generation algorithms is based on integer linear programming and

can only use whole integer values. Therefore, the fractional latency and area costs

in this algorithm are translated to percentages and rounded off to the nearest integer.

The ISE generation step uses the aforementioned cost model to select a set

of optimized ISEs by partitioning the DFG of a given hot-spot basic block. An

example of such a partitioned DFG is presented in Fig. 7.3a. The light colored

circles in the figure represent operation nodes, whereas the light colored boxes

show the variable nodes – a, b, c, d, e, f, g and h – which are written

by operations outside of the current DFG, but are read in the current basic block. The

figure shows four ISEs, i1, i2, i3 and i4, created by partitioning the original

graph into four subgraphs. Note that some of the nodes might not be included into

any ISE (e.g. node 11 and 12), and these operations must be executed by BPIs.

1The RTL synthesis software used for the characterization process is Synopsys Design Compiler

[164] which is the preeminent EDA tool in its area. All other RTL synthesis results presented in

the rest of this book were also obtained using this tool.
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If the underlying base processor only allows two input and one output operand

from the GPR file (i.e. 2/1 GPR I/O constraint), then all the ISEs shown in Fig. 7.3

are invalid. As has been explained in Sect. 6.2, the input/output constraints can be

overcome by using internal registers inside the CFU. For example, node 1 in i1

can produce its result in an IR which can be later read by the node 4 in i2. Two

nodes in two different ISEs (e.g. nodes 1 and 4, or 2 and 6) can communicate using

an IR without any overhead, whereas BPIs can not directly read from/write to an

IR. Outputs produced by BPIs must be moved to IRs from GPRs prior to their use.

Same holds true for variable nodes because they are also assumed to be written by

BPIs. (e.g. the content of c must be moved to an IR before node 2 in i1 can use it).

The overhead of such extra move instructions is called communication cost.

After graph partitioning, ISE generation assigns DFG edges to either GPRs or

IRs so as to minimize the communication cost while conforming to the GPR I/O

restrictions. The edges drawn in bold lines in Fig. 7.3a indicate values which are

communicated to ISEs via IRs. Intra ISE edges (i.e. edges connecting two nodes

in the same ISE) are not assigned any type, since they can be implemented using

wires connecting two hardware units. The rest of the edges in Fig. 7.3a show

communication using GPRs.

7.2.2.1 Construction of ISE Annotated-DFG

The output of ISE generation for a DFG, G D .V; E/, is a graph partitioned between

a set of non-overlapping subgraphs, ISE D fise1; ise2; : : : ; isemg, which are to be

executed as ISEs, and a set of operation nodes which are to be executed as BPIs.

This partitioning information is conveyed to the next ISA customization phase by

creating an ISE annotated-DFG (IA-DFG), Gia D .V ia; E ia/, by collapsing all the

constituent nodes of each ISE into a single node. An example of the resulting IA-

DFG, for the DFG of Fig. 7.3a, is shown in Fig. 7.3b.

The node set, V ia, of Gia is defined as

V ia D V ia
OP

[
V ia

NON�OP

[
V ia

ISE (7.1)

where V ia
OP, V ia

NON�OP and V ia
ISE are three mutually non-overlapping sets described

below.

1. V ia
NON�OP corresponds to the set of variable and constant nodes in G (e.g. variable

nodes a, b, c, d, e, f, g and h belong to V ia
NON �OP in Fig. 7.3b).

2. V ia
ISE corresponds to the set of ISEs, ISE, extracted from G (e.g. in Fig. 7.3b, nodes

i1, i2, i3 and i4 are included in V ia
ISE).2 For each ISE, isei 2 V ia

ISE, the set

of constituent nodes from the original DFG G is denoted as NODE.isei /.

2For sake of convenience we will refer to ISEs either as members of the set V ia
ISE, or as elements of

the set ISE in the subsequent discussions or algorithms.
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3. V ia
OP corresponds to the set of operation nodes in V which are left out of ISEs by

the generation process and have to be executed on the base processor (e.g. nodes

11 and 12 in Fig. 7.3b).

Moreover, the ISE generation process also constructs a mapping, EDGE TYPE W

E ia ! fgpr; irg which conveys whether an IA-DFG edge, .via
i ; via

j / 2 E ia, transfers

a value through a GPR or an IR.

7.2.3 The ISA Customization Back-End

The IA-DFGs produced by the ISE generation algorithm for the input basic blocks

are handed over to the ISE back-end. The back-end provides a direct way from

the annotated DFGs to ISE implementation and utilization in various configurable

processor or ADL based ASIP design flows. Using the back-end, generated ISEs can

be easily integrated into an ASIP’s data-path for detailed area/performance/energy

efficiency benchmarking. Apart from the annotated application DFGs, the architec-

tural constraints and parameters mentioned in the previous section are also passed

to the back-end as a characterization of the underlying ASIP architecture.

In order to facilitate easy re-targeting for new ASIP design frameworks, the

back-end is built in two phases. The first phase, post ISE generation DFG

transformations, applies a set of transformations on an IA-DFG to convert it into

an executable sequence of ISEs and BPIs. This phase is constructed in a completely

generic manner and can be easily parameterized to generate instruction sequences

for a variety of ASIP architectures. The second phase incorporates various target

ASIP specific details into the generated instruction sequence and writes out a set

of files for ISE implementation and utilization. Naturally, creating a new back-

end mostly involves rewriting some portions of this target architecture dependent

phase. In our experience, a couple of man weeks work is sufficient to adapt our ISE

generation back-end to a new ASIP design tool-chain.

Although the back-end is fairly flexible, it can not generate ISE description files

for any arbitrary base processor architecture. Consequently, it assumes a template

architecture where the ISEs might be implemented. The template architecture and

the post ISE generation DFG transformations will be briefly discussed in the rest of

this section so as to give a clearer picture of the entire tool flow. Interested readers

may consult Appendix A for a detailed discussion of the DFG transformations.

7.2.3.1 The Template Architecture

The template base processor in our design flow is a pipelined, single issue RISC

processor with a GPR file. The template architecture is assumed to have a pipeline

structure very similar to that described in Sect. 2.2.2. The integer arithmetic/logical

operations in the template processor are performed in the EX stage. An unspecified
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number of stages prior to the EX stage perform fetching and decoding of individual

instructions from an instruction stream in program memory. Data memory access

operations are initiated in the EX stage and their results are committed to the GPR

file in following stages. Already calculated, but uncommitted, results of preceding

instructions may be made available to the EX stage through a data forwarding

network. Our template architecture is fairly generic, and encompasses a wide variety

of existing embedded processors.

In our template processor, the CFU is modeled as just another functional unit

which works in parallel with the main ALU in the EX stage. The accessibility of the

data forwarding network, data memory and the GPR file from the CFU depends on

the actual target ASIP architecture, and can be configured in the ISA customization

GUI before the back-end is invoked.

Since we assume a non-pipelined CFU structure, a multi-cycle ISE blocks the

CFU stage for the entire duration of its execution. This introduces a structural

hazard in the architecture which prevents the execution of any subsequent ISE till

the multi-cycle instruction finishes. This situation is illustrated in Fig. 7.4.

Figure 7.4a shows a multi-cycle ISE, I1, which contains three chained multi-

plication operations such that each one of them is executed in a separate cycle (the

cycle boundaries are marked by dotted lines). Intermediate results of the calculations

are stored in three temporary registers t1, t2 and t3. Because these temporaries

are not pipeline registers, the results of unfinished calculations always remain

confined within the CFU and can not propagate to the next pipeline stages. The final

calculation results are committed to the GPR or IR file (or, to pipeline registers) in

the last execution cycle of a multi-cycle ISE even if some of the final results are

available earlier.

Figure 7.4b shows the execution of I1 followed by a BPI (B1) and another ISE

(I2) in a classical 5 stage pipeline structure described in Chap. 2. For each cycle,

each pipeline stage is marked with the names of the instructions occupying that

stage. The corresponding cycle numbers have been shown in the right hand side of

the figure.

In the first cycle, the ISE I1 enters the FE stage. It enters the CFU (not shown

in the figure) in the EX stage in the third cycle and occupies that stage till the

fifth cycle. Since B1 is not data dependent on I1 and it does not require any CFU

resources, it can be issued immediately after I1. However, I2 must not enter the

EX stage while I1 is executing in the CFU, which means that I2 can be issued

no earlier than the fourth cycle. This can be accomplished by inserting a pipeline

bubble in the third cycle (indicated by the dashed rectangle in the figure) – either

through hardware interlocks or, through compiler inserted NOPs. For the template

architecture, it is assumed that no hardware interlocks exist and the static instruction

scheduler in the compiler back-end must insert NOPs in the right place to guarantee

correct execution semantics.

All the DFG transformations, as well as compiler re-targeting techniques de-

scribed next, use the conservative assumption of non-pipelined CFU. Designers

can manually improve the automatically generated ISE descriptions by creating a

pipelined CFU where a multi-cycle ISE does not block any other special instruction
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Fig. 7.4 Execution of multi-cycle ISEs in the processor pipeline

unless there exists a data-dependency between them. However, synchronization of

the integer pipeline and the CFU pipeline can become extremely complex in such

cases and will not be considered for the rest of this book.

7.2.3.2 Post ISE-Generation DFG Transformations

The task of the post ISE-generation DFG transformations is to prepare the IA-DFG

of a hot-spot basic block for the final generation of the integration files. The effects

of these transformations on the example DFG of Fig. 7.3 are shown in Fig. 7.5.

The first transformation applied on Gia estimates the delay (in terms of the

number of base processor clock cycles required) for each ISE based on the
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Fig. 7.5 An example of post ISE generation back-end transformations applied on an IA-DFG

hardware latency values supplied as architectural parameters. The calculated value

is equivalent to the software latency of an ordinary instruction, and attached as an

attribute to each ISE node in V ia. The resulting graph after this transformation

is shown in Fig. 7.5a where the larger circles represent the ISEs and the integer

values in light colored boxes adjacent to each ISE represents its calculated software

latency. The next step, ISE scheduling, constructs a schedule of execution from the

nodes of V ia using the software latency values previously calculated. The schedule

imposes a sequencing on the nodes without which the modified source code can not

be generated. The scheduled sequence for the original IA-DFG in Fig. 7.3b is shown

in Fig. 7.5b.

The final DFG transformation is IR allocation. It has been mentioned earlier that

some of the data flow edges between ISEs may use IRs for communication. The

ISE generation algorithm assigns an edge type to the input/output edges of each ISE

to indicate whether an edge uses GPR or IR, but it does not specify which register

from the IR file is used by an edge. Assignment of a register index to each IR edge

is the task of the IR allocator. An example of IR allocation is presented in Fig. 7.5c

where the dark colored boxes adjacent to an ISE indicate inputs coming through, or

outputs produced in, IRs. At the end of IR allocation each box has a number which

represents the IR index used by the corresponding input/output (e.g. the variable

c is passed to i1 through IR[0] and the output of i1 used by i2 is produced

in IR[1]).
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7.3 Generation of Implementation and Utilization Files

The final step of the ISA customization back-end is the generation of implemen-

tation and utilization files for integrating extracted ISEs to a given base processor

model. We have already mentioned that our ISA customization tool-chain has been

built as a workbench for pre-architecture exploration. The most likely usage scenario

of this tool-chain consists of the following steps

1. GUI assisted creation of several processor configurations. Each configuration

corresponds to a CFU structure (i.e. number and types of various computational

resources in the CFU) and a CFU interface (number of GPR, IR, main memory

and scratch-pad read/write ports).

2. ISE generation for each processor configuration. At the end of ISE generation,

latency estimation, scheduling and IR allocation are performed to estimate the

speed-up achievable for each CFU configuration. The comparative results are

presented in a graphical format to the designer. The graphical format plots the

speed-up for each configuration against the total (estimated) CFU area, or the

total number of required computational resources such as adders, multipliers and

subtractors.

3. Configuration selection and detailed evaluation. If the estimated speed-up for a

certain configuration meets the performance constraints of the target application,

then designers can integrate the corresponding ISEs to a target base processor.

If multiple configurations look promising, then designers can integrate each of

them to the base processor for detailed evaluation.

Generation of implementation/utilization files is the final link in the above

mentioned application to architecture ISA customization flow. The objective of this

step is to automatically integrate a set of ISEs to a target base processor to enable

quick evaluation of various processor configurations. The input to this step is the

scheduled and IR allocated IA-DFG produced by the post-ISE generation DFG

transformations, and the output is a set of files for ISE utilization (i.e. recognition

of the ISEs by the target processor’s compiler tool-chain) and implementation (i.e.

integration of the instruction behaviors into the base processor’s data-path).

Currently our ISA customization framework supports generation of implemen-

tation/utilization files for three cutting edge processor customization frameworks.

These frameworks include two configurable processor based design flows (MIPS

CoreXtend [115] and ARC [11] configurable cores) and one ADL based design

flow (CoWare Processor Designer [49] and LISA 2.0 ADL). Usually, three different

sets of files are generated by our framework

1. Modified source code of the target application in ANSI C where the ISEs

are inserted using calls to assembly functions, i.e. functions whose bodies are

composed of inline assembly code and assembler directives. This file is primarily

required for ISE utilization.
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Fig. 7.6 Generation of implementation and utilization files for different configurable processor

back-ends

2. Definition of the assembly function for each ISE. The definitions of all the ISEs

are generated in a separate header file which is included from the modified source

code.

3. Behavior of the ISEs in an RTL like format. This is primarily required for

ISE implementation. The ISE behavior can be directly used for ISS or RTL

generation, or can be hand optimized for final ASIP implementation.

To compile applications containing ISEs, the code selector, register allocator

and the instruction scheduler of the target processor’s compiler are to be made

aware of the presence of special instructions. The modified source code and the

assembly functions circumvent the problem of re-targeting the code-selector. The

register allocator is also easily re-targeted by specification of register restrictions in

the inline assembly functions. A novel instruction scheduling re-targeting scheme

will be described later in this section.

As shown in Fig. 7.6, the exact format of the generated files depends on

the processor design framework used. Only the structure of the modified source

code remains unaffected, even though the format of the assembly function calls

vary between different design frameworks. This is accomplished by printing out

assembly function calls for all the supported design frameworks within #ifdef

pre-processor directives of ANSI C. During compilation of the modified source

code, assembly functions for a particular framework are activated through the

#define pre-processor directive (or, the -D compilation switch for gcc based

compilers).
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As shown in Fig. 7.6, neither assembly function definitions nor ISE data-paths

are explicitly generated for the MIPS back-end. Rather, we output a CorXpert

project file (CPF) file where instruction behaviors are encoded as three address

ANSI C code. The CPF file is used by the CoWare CorXpert tool-chain to generate

definitions of assembly functions as well ISS and RTL hardware models for a

modified MIPS processor. Users can also view and edit the extra instructions

through the CorXpert GUI.

For the ARC configurable cores, we generate both the assembly function

definitions for proprietary ARC compilers, and the instruction behaviors in RTL

Verilog. Like the CorXpert GUI, the ARChitect tool-chain allows viewing and

editing of the ISE descriptions through a graphical interface.

For the LISA 2.0 based ASIP design framework we explicitly generate assem-

bly function definitions and instruction behaviors. Moreover, we also generate a

modified instruction scheduler description to facilitate better code scheduling in the

compiler back-end.

One of the major differentiators of our ISA customization flow is its direct link to

the ADL based ASIP design flow. The flexibility of LISA in modeling various CFU

and base processor structures and interfaces allow us to explore various novel ISE

implementation techniques. Therefore, we devote the next section to briefly describe

our LISA back-end.

7.3.1 The LISA Back-End

The LISA 2.0 ADL [70] is a flexible and powerful specification format for

describing ASIP architectures. The CoWare Processor Designer tool-chain – built

around LISA – facilitates automatic generation of the software ecosystem and the

RTL model of a processor from a single golden LISA model.

Our ISA customization back-end generates implementation and utilization files

that can be integrated with a single issue RISC processor model – called LTRISC –

written in LISA. However, the back-end can be easily re-targeted to any other

LISA processor model quite easily. The original LTRISC back-end was constructed

in two man weeks time. We expect a similar amount effort for other processor

models as well. Especially, one of the main components of the back-end – the

instruction scheduler generation – is easily parameterizable and can be rapidly

re-targeted.

The basic LTRISC processor model – shown in Fig. 7.7 – is a single issue RISC

processor where the ALU, GPRs and data-bus are all 32 bit wide. The base processor

pipeline is same as the RISC pipeline discussed in Sect. 2.2.2 of Chap. 2 where

the CFU works in parallel with the EX stage. In fact, it is the simplest possible

implementation of the template architecture described earlier.

Several versions of the LTRISC architecture have been created to allow explo-

ration of various CFU interfaces and structures. The LISA back-end can be easily
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Fig. 7.7 The LTRISC architecture

parameterized to generate implementation/utilization files for any of these different

versions. The following parameters are currently available to the designer:

1. Size and structure of the GPR file. The GPR file can be parameterized to hold

either 16 or 32 registers. Moreover, the designer can opt for a clustered register

file (described in Chap. 9) instead of a monolithic register file. The number of

clusters and the number of registers per cluster can also be configured.

2. Number of GPR input/output ports to the CFU. The GPR I/O restriction forms

the most important architectural constraint in ISE formation. Unlike configurable

processors, where the numbers of GPR in/out ports are fixed, our LTRISC models

allow designers to experiment with various I/O restrictions. A number of other

processor configurations also depend on the number of GPR accesses permitted

from an ISE as described below.
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(a) Structure of the forwarding logic. The original LTRISC processor uses

data forwarding from the output of the EX and MEM stage to the input of

the EX stage. The CFU can also avail these forwarded results if it conforms

to the 2/1 GPR I/O restriction as any other base processor instruction. Data

forwarding is completely disabled if the CFU is configured to read more than

two GPRs, or write more than one GPR. This in turn affects scheduling of

ISEs which are data dependent on base processor instructions.

(b) Instruction coding. If the CFU is allowed to make multiple simultaneous

accesses to the GPR file, then the base processor’s ISA must be wide

enough to accommodate all the register addresses. In our customization flow,

multiple GPR accesses are enabled by creating an LTRISC version with 64-

bit wide instruction word. In the 16 and 32 GPR configurations, 15 and 12

register addresses, respectively, can fit inside the 64 bit instruction word.

3. Maximum latency of ISEs. The LTRISC architecture can accommodate multi-

cycle instructions of arbitrary length. For a multi-cycle instruction requiring n

cycles, the behavior description generated through the LISA back-end calculates

all the results in the first cycle, but commits the results only after n cycles. This

model can be used for accurate ISS, but needs to be modified by hand to distribute

the computations over several cycles for RTL generation. The results to the GPR

file are committed through the forwarding logic like any other BPI.

4. Memory accesses from the CFU. Unlike other configurable processors, our

LTRISC base processor model lets ISEs access the main memory. However, only

a single memory access (read/write) can be performed from an ISE and a memory

read operation in an ISE can not have any successor node in the same instruction,

i.e. the results produced by it can not be used in the same ISE. Memory accesses

are initiated in the EX stage and are completed in the MEM stage. A memory read

operation from an ISE can directly write to an IR in the MEM stage or can write to

a GPR through the WB stage. A multi-cycle ISE is assumed to initiate the memory

access in its last cycle.

The above rules are used to determine the latency of an ISE which contains a

memory read. A single cycle ISE containing a memory read essentially behaves

like a load instruction (which has a latency of 2 in our architecture) with data

forwarding. A multi-cycle ISE with a memory read has a latency of n C 1 cycles

if its data-path takes n cycles to execute.

5. IR files and scratch-pad memories. The CFU in any LTRISC base processor

version can be configured to have any number of local scratch-pad memories and

IRs. Some extra instructions are provided by each LTRISC model to move data

values between GPRs and IRs.

7.3.1.1 Automatic Generation of Scheduler Descriptions

In our ISA customization flow, insertion of assembly function calls in the modified

source code circumvents the problem of re-targeting the code selector and register
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allocator of the target compiler. Here we will describe a novel technique to re-target

the last phase of the compiler back-end – the instruction scheduler.

The schedule of the ISEs in a hot-spot basic block is determined during the post-

ISE generation DFG transformations. This schedule is calculated using the CDFG

generated from LANCE IR. To ensure that the target processor’s compiler does

not disturb this schedule (and thus violate program semantics), scheduling barriers

(special assembler directives) are inserted before and after each ISE. Because

instructions can not be moved across a barrier, the original schedule generated by

the ISA customization flow is obeyed.

Although the above approach is sufficient to guarantee correct execution se-

mantics, it might prevent the target compiler from generating good instruction

schedules. For example, the target compiler may need to insert register spill/restore

instructions in the modified source code, or apply aggressive optimizations such as

loop unrolling. In such cases, overlapping the execution of spill/restore instructions

(or instructions from different loop iterations) with multi-cycle ISEs can result in

shorter instruction schedules. Presence of scheduling barriers greatly hinders such

optimizations. Effects of such optimizations can not be anticipated and handled

during the post-ISE generation CDFG scheduling – they have to be remedied in

the target compiler’s instruction scheduler.

The problems arising from scheduling barriers are illustrated using Fig. 7.8. The

schedule generated by the post-ISE CDFG scheduling step for a DFG containing

two ISEs – I1 and I2 – is shown in Fig. 7.8a. Let the latencies of I1 and I2 be five

Fig. 7.8 Effect of barriers in instruction scheduling
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Table 7.1 An example

scheduler table. Each row

corresponds to a producer

class, while each column

is a consumer class

Load Other BPIs Con(I1) Con(I2)

Load 2 2 2 2

Other BPIs 1 1 1 1

Prod(I1) 5 5 5 5

Prod(I2) 1 1 1 1

and one, respectively. To ensure correct scheduling, the assembly function for I1

contains four NOPs following the special instruction. Both the assembly functions

for I1 and I2 also contain barrier directives before and after the corresponding

instructions.

The instruction schedule coming out of the target compiler is shown in Fig. 7.8b.

Due to scarcity of registers, the target compiler inserts spill-restore instructions ( 1)

in the scheduled instruction stream. The length of the instruction schedule with these

instructions becomes 10 compared to the original 7. Figure 7.8c shows a better

schedule which can be easily constructed for the given DFG, but the presence of

barriers prevents the compiler from generating this ordering.

For ARC and MIPS CoreXtend based design flows, the target compiler is fixed

and the designer has to live with such inefficient schedules. However, the LTRISC

compiler from the CoWare Processor Designer can be re-targeted to eliminate

the scheduling barriers for constructing efficient, as well as correct instruction

schedules.

The instruction scheduling in the LTRISC compiler (and in fact, in all LISA

processor models) is based on a scheduler description contained in a compiler

configuration file. The scheduler description lists the different resources in the

processor which are read or written by various consumer and producer classes,

respectively. For each processor instruction, the description also lists which pro-

ducer and consumer class it belongs to. Finally, a scheduler table lists the latencies

between different producer and consumer classes.

The LISA back-end automatically modifies this scheduler description by creating

different producer and consumer classes for various ISEs, and inserting appropriate

latencies for them in the scheduler table. A new scheduler generated from this

description can easily schedule code containing the ISEs.

An example of the scheduler description for the DFG of Fig. 7.8 is presented

in Table 7.1. The original scheduler table contained two producer classes – load

instructions with a latency of 2 and all other BPIs with a latency of 1. For each

ISE, the LISA back-end adds a new producer class (marked with Prod(ISE name))

and a new consumer class (marked with Con(ISE Name)). The latencies of each of

the newly created producer and consumer classes are also inserted in the modified

scheduler table.

The LISA back-end removes the scheduling barriers and NOPs from the

assembly functions for I1 and I2 and hands the modified source code to the

LTRISC compiler. The LTRISC compiler modifies the DFG by inserting the spill-

restore instructions during register allocation and passes this modified code to the

instruction scheduler.
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Because of the data dependencies, the add operation and I1 are scheduled in the

first two cycles by the LTRISC compiler. Due to the absence of scheduling barriers,

the spill-restore instructions can be scheduled immediately after I1. Two NOPs

have to be inserted after the restore operation because the next instruction I2 is

dependent on I1 which has latency of 5. The ISE I2 is scheduled after these two

NOP instructions. The final schedule is same as that of Fig. 7.8c.

Note that the scheduler description is essential in ensuring the correctness of

instruction ordering. Without the proper latency values, the compiler could have

scheduledI2 immediately after the restore instruction resulting in a wrong sequence

of instructions.

7.4 Synopsis

1. The ISA customization tool flow consists of three components – CDFG genera-

tion infrastructure, ISE generation algorithms and the ISE back-end.

2. The back-end is responsible for translating generated ISEs to instruction de-

scriptions inside real-life processor models. It is built in two parts. The first

part applies a set of generic transformations on the ISEs, while the second part

encapsulates most of the architecture specific details.

3. The back-end is capable of generating ISE descriptions for two configurable

processor based and one ADL based design flows. The direct link to the ADL

based design flow grants users full freedom in tuning their processors to the exact

computational requirements of a target application.



Chapter 8

ISE Generation Algorithms

This chapter focuses on the ISE generation algorithms1 which form the backbone

of our ISA customization framework. Currently, two different ISE extraction

algorithms – one based on integer linear programming and the other on high level

synthesis – have been integrated into our design flow. Both of these algorithms will

be discussed in detail in the subsequent sections.

Before going into the details of the individual ISE generation algorithms,

Sect. 8.1 provides a precise mathematical formulation of the ISA customization

problem. Some of the notations and assumptions used in this formulation have

already been introduced in Chaps. 6 and 7, but they are re-stated here for the sake of

completeness and convenience.

8.1 Mathematical Formulation of the ISA

Customization Problem

As has been already mentioned in Chaps. 6 and 7, the goal of an ISE generation

algorithm is to extract a set of special instructions from a target application to

maximize its execution performance. Each special instruction corresponds to a

cluster of operations from an application’s CDFG and is implemented in a custom

functional unit inside an ASIP base processor architecture. Any cluster of operations

selected as a special instruction must obey the generic, architectural and CFU

interface constraints described in Sect. 6.2.

1For the sake of convenience, ISE generation algorithms will be interchangeably called ISE

extraction algorithms, ISE identification algorithms or simply, generation algorithms for the rest of

this book.

K. Karuri and R. Leupers, Application Analysis Tools for ASIP Design: Application

Profiling and Instruction-set Customization, DOI 10.1007/978-1-4419-8255-1 8,
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An ISA generation algorithm is provided with the following three kinds of inputs:

1. Hot-spots of the target application which are to be accelerated using ISEs. Ap-

plication hot-spots correspond to the most computationally expensive segments

of code (i.e. functions, basic blocks or loop kernels). Since the ISE generation

algorithms operate on the CDFG representation of a given application, hot-spots

need to be defined in terms of CDFG elements.

The CDFG of an application consists of a set of basic blocks, B D

f b 1; b2; : : : ; bk g , connected by control-flow edges. The body of each basic block

can be represented by a DFG, G D .V; E/, where each node represents either

an operation, or a variable, or a literal constant, and the edges represent the true

data-dependencies (or, flow dependencies) between the nodes. The node set, V ,

of any basic block is composed of the following three mutually non-overlapping

and possibly empty subsets

(a) VNON�OP which contains the variable and constant nodes in V .

(b) VCAND which contains the set of CANDidate nodes in V that are eligible for

inclusion in a special instruction.

(c) VFORBID which contains operations that are FORBIDden inside an ISE, and

must be implemented in the base processor core. Nodes belonging to VFORBID

are called forbidden nodes, and may include (but are not limited to) function

calls, jumps and floating point operations.

Using the CDFG terminology, application hot-spots supplied as inputs to an

ISE generation algorithm can be defined as a set, BHS � B, which contains

the most computationally intensive and most frequently executed basic blocks.

A generation algorithm usually iterates over the elements of BHS one by one,

and extracts ISE definitions from each basic block by clustering nodes from the

corresponding VCAND set.

2. A set of architectural constraints that characterize the CFU interface as well

as the size and delay restrictions on ISE data-paths. The following user specified

architectural constraints are considered by our ISE generation algorithms.

(a) GPR INMAX and GPR OUTMAX which specify the maximum number of in-

put and output operands accessible from the GPR file to a special instruction.

(b) MEM READMAX and MEM WRITEMAX which specify the maximum number

of main memory read and write operations permissible from an ISE.

(c) LATMAX which specifies the maximum number of base processor clock

cycles an ISE can take to compute and commit its results.

(d) AREAMAX which specifies the maximum total area of the identified ISEs.

This constraint can be alternatively specified by placing a restriction on the

maximum number of arithmetic/logical/comparison computational resources

in the CFU.

3. A set of architectural parameters to guide the identification heuristics. Espe-

cially, these parameters are used for area and latency estimation of candidate

ISEs. Each operation node, vi 2 V , for a basic block, b 2 BHS, is associated
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with three parameters – software latency SW.vi /, hardware latency HW.vi /, and

hardware cost Cost.vi /. The meanings of these parameters have been discussed

in Chap. 7.

Since maximization of performance is the primary goal of an ISE extraction

algorithm, we must first define a metric which quantifies performance due to ISEs

for a hot-spot basic block. The ISE generation process partitions the DFG, G D

.V; E/, for a basic block b 2 BHS into a set of ISEs, ISE D fise1; ise2; : : : ; isem g,

and a set of operation nodes, V NON�ISE � V � V NON�OP, which are left outside

ISEs and have to be executed using BPIs. For each node vj 2 VNON�ISE its software

latency, SW.vj /, specifies the number of cycles required for its execution. Similarly,

one can estimate a software latency value, SW.isei /, for each ISE isei to denote the

number of cycles required to execute the ISE inside the CFU. Using these values,

the total execution cycle of the basic block DFG, G, partitioned into the set of ISEs,

ISE, can be estimated as

CycleISE.b/ D
X

isei2ISE

SW .isei /C
X

vj2VNON�ISE

SW.vj / (8.1)

Using the above estimation formula of execution cycles, the ISE identification

problem can be formally stated as:

Definition 8.1. ISE Generation Problem: Given the DFG, G D .V; E/, of a basic

block, b 2 BHS, find a set of ISEs, ISE D fise1; ise2; : : : ; isemg, which minimizes

the execution time, CycleISE.b/, under the following constraints:

1. 8isei 2 ISE, the condition isei � G holds, i.e. each ISE is a subgraph of G. The

subset of the nodes of G included in isei is denoted by NODE.isei/.

2. 8isei 2 ISE and 8vj 2 NODE.isei /, the condition vj 2 VCAND holds, i.e. an

ISE must not contain any forbidden nodes.

3. 8isei ; isej 2 ISE such that i ¤ j , the condition NODE.isei /\NODE.isej / D ;

holds, i.e. all the ISEs are mutually non-overlapping.

4. 8isei 2 ISE, the condition that isei is convex holds, i.e. for any node u 2

NODE.isei/, there exists no path to any other node v 2 NODE.isei/, which

goes through a node w … NODE.isei / where w 2 .ISE
S

VNON�ISE/.

5. 8isei 2 ISE, the CFU interface constraints defined below hold

(a) 8isei 2 ISE, the condition IN.isei / � GPR INMAX holds, where IN.isei /

denotes the total number input values required by isei . IN.isei / is equal to the

size of the predecessor node set, PRED.isei /, of isei which is defined as

PRED.isei / D fvj j vj … NODE.isei / ^ .vj ; vk/ 2 E ^ vk 2 NODE.isei /g

i.e. a set of nodes whose elements are … NODE.isei /, but has least one

successor in isei .

(b) 8isei 2 ISE, the condition OUT.isei / � GPR OUTMAX holds, where

OUT.isei / denotes the total number of output values produced by isei .
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OUT.isei / is equal to the size of the output node set, OUTPUT.isei /, of isei

which is defined as

OUTPUT.isei / D fvj j vj 2 NODE.isei/^.vj ; vk/ 2 E^vk … NODE.isei /g

i.e. a set of nodes whose elements are 2 NODE.isei /, but have least one

successor outside the corresponding special instruction.

(c) 8isei 2 ISE, the conditions that the total number of memory reads operations

in the ISE � MEM READMAX , and the total number of memory write

operations in the ISE � MEM WRITEMAX , hold.

6. For the set of the generated ISEs, the condition that
P

isei2ISE AREA.isei/ �

AREAMAX , where AREA.isei/ is the area of the ISE data-path, holds. This

condition ensures that the total area of the ISEs can be restricted within a certain

upper limit.

7. 8isei 2 ISE, the condition that SW.isei / � LATMAX , holds. This condition

ensures that the critical path of an ISE’s hardware implementation can be

accommodated within the maximum permissible latency of a special instruction.

8.1.1 ISEs and Internal Register Files

The most important architectural constraint in the ISA generation problem is the

restriction on the number of input and output operands accessible from the GPR

file. It has been already discussed in Chap. 6 that the access restrictions primarily

arise due to the limited number of coding bits available to encode GPR operands

in a processor’s instruction word. The current work proposes a novel approach for

increasing the communication bandwidth between the CFU and the base processor

core to overcome these I/O constraints. The key idea is to store the inputs and

outputs of an ISE in special purpose registers – called internal registers or IRs –

embedded inside the CFU itself. Although each ISE may be restricted to access

only a small, fixed number of GPRs, larger I/O bandwidth can be enabled via these

special registers because they do not appear in the instruction coding. The set of

IRs accessed from each ISE gets fixed during the ISE generation process (in fact,

in the IR allocation step mentioned in Chap. 7) and remains unchanged as long as

the instruction is retained in the target processor’s ISA.2 Theoretically, an arbitrarily

large number of IR accesses are possible from each instruction. In practice, however,

the area and access latency of the IR file puts a limit on the maximum number of IR

accesses per ISE.

2This is similar to the way many older non-RISC architectures employ special registers to provide

extra operands to various customized instructions, e.g. the T register in the TI C54x family of DSPs

[167].
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Fig. 8.1 Example of IR and GPR usage

The conventions for IR and GPR usage in ISEs and BPIs are the following:

1. IRs are only visible to ISEs, and not to BPIs. Therefore, any communication

between two BPI nodes (e.g. between nodes 1 and 7 in Fig. 8.1) must always

occur through GPRs. Moreover, two ISEs, or one ISE and one BPI (e.g. nodes

5 and 8) can always communicate using a GPR if sufficient number of GPR

read/write slots are available. Values of constant and variable nodes are assumed

to be available in GPRs. Such values have to be either moved to an IR before

being used in an ISE, or can be directly accessed from a GPR if there exists free

GPR read slots for an ISE.

2. An ISE can use an IR to store inputs coming from BPIs. This situation is shown

in Fig. 8.1 where node 4 in ISE1 receives an input from node 1 via an IR. Since

the IR file is not visible to BPIs, the loading of an IR from a GPR is accomplished

using a special move instruction (the MOV rectangle on the output of node 1). An

ISE incurs an extra communication cost cycle for each such data movement.

3. A ISE can also use internal registers to provide outputs to BPIs. This situation

is shown in Fig. 8.1 where node 4 produces an output via an IR. Similar to

the IR inputs coming from BPIs, each IR output used by BPIs also incurs a

communication cost due to an extra move instruction.

4. The third possibility of using internal registers is for transferring values between

two nodes that belong to two different ISEs. This situation does not incur any

communication cost as the IR file is visible to both the producer and the consumer

instructions. The communication between nodes 6 and 9 illustrates this situation.

Thus, communication between two ISEs with any kind of register (GPR or IR)

does not incur any communication overhead.
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Introduction of the IRs adds a new dimension to the ISE generation problem

outlined earlier. In addition to partitioning a basic block DFG into a set of special

instructions, now the generation process must also attach an attribute to each

input/output edge of an generated ISE to indicate whether the edge transfers value

using an IR or a GPR. We will refer to this problem as edge type assignment

problem for the rest of this book. The goal of the edge type assignment problem is to

minimize the total communication cost for the ISEs (caused by extra instructions for

moving data between the IR and the GPR file). Moreover, the generation algorithm

must also ensure that the total number of values that are passed using IRs must not

exceed two user defined parameters – IR INMAX and IR OUTMAX – which stand

for the total number of IR read and write ports available to a special instruction,

respectively. Taking these new constraints into account the ISE generation problem

can be re-formulated as:

Definition 8.2. ISE Generation Problem: Given the DFG, G D .V; E/, of a basic

block, b 2 BHS, find

1. A set of node induced subgraphs, ISE D fise1; ise2; : : : ; isemg, of G, and

2. A mapping, EDGE TYPE W E ! fir; gprg, which assigns an edge type to each

input/output edge of all subgraphs 2 ISE.

which minimizes the execution time, CycleISE.b/, given by

CycleISE.b/ D
X

isei2ISE

.SW.isei /C comm cost.isei //C
X

vj2VNON�ISE

SW.vj /

where comm cost.isei/ is the total communication cost for isei 2 ISE, such that

(a) 8isei 2 ISE, all the constraints specified in Definition 8.1, except the GPR

I/O constraints, are met.

(b) 8isei 2 ISE, the conditions, IR IN.isei/ � IR INMAX and IR OUT.isei / �

IR OUTMAX , hold. IR IN.isei / and IR OUT.isei / denote the total number

of inputs and outputs via IRs to any isei 2 ISE.

(c) 8isei 2 ISE, the conditions, GPR IN.isei/ � GPR INMAX and

GPR OUT.isei/ � GPR OUTMAX , hold. GPR IN.isei / and GPR OUT.isei /

denote the total number of inputs and outputs via GPRs to any isei 2 ISE.

The exact solution of the ISE generation problem can be obtained by solving

three subproblems – enumeration of all convex patterns in G under the I/O,

area and latency constraints, selection of a subset of enumerated patterns that

maximizes speed-up, and assignment of edge types. As we have already men-

tioned in Chap. 6, the convex subgraph enumeration problem has a complexity of

O.nINMAXCOUTMAX /, where INMAX D IR INMAX C GPR INMAX and OUTMAX D

IR OUTMAX C GPR OUTMAX . Although this complexity is polynomial in theory,

even for moderately large I/O constraints (e.g. 4-in/4-out or 6-in/4-out) the runtime

can become too long in practice. The second problem – that of pattern selection –

can be modeled as a 0–1 knapsack problem [47] where the areas and speed-ups
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of the patterns can be used as their weights and values, respectively. However, this

problem is far more difficult than the usual 0–1 knapsack problem which itself is NP-

complete. This is because the communication cost – and consequently the speed-up

– for each identified pattern is not constant and depends on other patterns. Therefore,

the runtime of the optimal solution of the ISE generation problem is exponential for

all practical purposes.

As the optimal solution to the ISE generation problem has non-polynomial

time complexity, we have used approximate heuristics to solve it in the current

flow. The heuristic algorithms solve two (rather than three) subproblems – graph

partitioning and edge type assignment – one after another. The graph partitioning

process combines pattern enumeration and selection in a single step. Since the two

subproblems are highly interrelated, we employ fitness functions to ensure that the

partitioning algorithms take estimates of the communication cost and its effects on

edge type assignment into account.

The rest of this chapter describes two algorithms – based on ILP and HLS

techniques – that produce heuristic solutions to the generation problem.

8.2 ISA Customization Using ILP

Integer linear programming or ILP is a well known technique for solving a

constrained optimization problem where the optimization goal is modeled using

a linear objective function and the constraints are specified through linear equal-

ities/inequalities [146]. The coefficients and the variables of an ILP problem can

only take integer values, which distinguishes it from the more general case of

linear programming (LP). ILP is a highly active area of research in the applied

mathematics community, and a number of ILP solver software are available either

commercially, or for free.

The ISE generation problem is structured in such a way that it can be quite easily

transformed into a ILP problem. Given a hot-spot basic block, b 2 BHS, and a set of

architectural parameters and constraints, an ILP formulation of ISE generation with

the goal to minimize CycleISE.b/ can be readily constructed. This ILP formulation

can be solved using one of the available ILP solver technologies and the results

can be annotated back to the CDFG of the target application. An ISE generation

algorithm based on ILP facilitates ISE generation for a wide range of ASIPs by

simple accommodation of new architecture specific constraints if the need arises.

Because of the exponential time complexity of ILP in worst case, an optimal

solution to the complete ISE generation problem from Definition 8.2 can not

be found within reasonable CPU time. Therefore, we use a phased methodology

to solve the two subproblems – graph partitioning and edge type assignment –

one after another. The first phase optimally partitions the DFG into different

clusters of nodes that qualify as valid ISEs without a strict enforcement of the

register I/O constraints. The ILP uses heuristics that takes into account the possible

communication overheads that might result due to the I/O constraints, but does not
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Algorithm 8.1: Two step ISE generation algorithm

PROCEDURE(generate ises) ;1

INPUT :

1. BHS: A set of hot-spot basic blocks, and

2. constraints: CFU interface, latency and area constraints.

OUTPUT: Hot-spot basic blocks partitioned between ISEs and BPIs with edge type

assignment

begin2

foreach b 2 BHS do3

Let G D .V; E/ be the DFG of b ;4

// DFG Partitioning

STEP1: ;5

G0  G ;6

i  1 ;7

ise generation feasible true ;8

while ise generation feasible ¤ false do9

isei  construct and solve dpilp.Gi�1; constraints/ ;10

if isei ¤ ; then11

Gi  construct pia dfg.Gi�1; isei / ;12

i  i C 1 ;13

else14

ise generation feasible false ;15

end16

end17

// Edge Type Assignment

STEP2: ;18

EDGE TYPE construct and solve etilp.Gi / ;19

G ia annotate edge types.Gi ; EDGE TYPE/;20

end21

end22

try to exactly quantify the edge assignments to avoid runtime explosion. When this

partitioning is done, the algorithm again uses another ILP model in the second step

to decide about the means of communication between different nodes.

An overview of the two step ISE generation algorithm is shown in Algorithm 8.1.

The input to the algorithm is the set of hot-spot basic blocks, BHS, and user

specified CFU interface/area/latency constraints. The generation algorithm applies

graph partitioning and edge type assignment on each basic block in BHS one at a

time, and constructs a corresponding ISE Annotated-DFG or IA-DFG3 which can

be handed over to the ISA customization back-end. The DFG partitioning step (lines

5–17 in Algorithm 8.1) is run iteratively over the nodes of a basic block DFG G,

and in each iteration, exactly one ISE is formed (lines 9–17) by selecting a cluster of

3Definition of IA-DFG has been provided in Sect. 7.2.2.
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operation nodes, isei � VCAND. After each iteration, a partially ISE annotated-DFG

(PIA-DFG) is constructed by collapsing all nodes 2 isei to a single vertex (call to

procedure construct pia dfg in line 12). The PIA-DFG constructed in iteration i is

denoted as Gi and is used as the input for the next iteration. The input PIA-DFG

for the first iteration is the original basic block DFG G itself (initialization done in

line 6).

The node clustering process (call to the procedure construct and solve dpilp in

line 10) creates an ILP model – DFG partitioning ILP (DPILP) – from the DFG

and the set of constraints, and invokes an ILP solver with the created model. The

ILP solver returns a (possibly empty) set of nodes isei . If the node set is empty (e.g.

when all the nodes in VCAND have been selected in various ISEs) then further search

for ISEs in the PIA-DFG is deemed infeasible and the DFG partitioning process

terminates (line 15). The edge type assignment step takes the final Gi produced

by the DFG partitioning algorithm, and constructs another ILP – edge type ILP

(ETILP) – for finding an edge type mapping, EDGE TYPE W E ! fir; gprg, to

construct the IA-DFG, Gia (lines 19–21).

Note that the ILP based ISE generation algorithm can also be used to generate

instructions without IRs. In that case, the GPR constraints are strictly enforced in

the DPILP itself and the ETILP is completely skipped. This technique has been used

to obtain ISEs for the experiments on clustered register files described later in this

work.

8.2.1 DFG Partitioning into ISEs

The task of the DFG partitioning algorithm is to iteratively construct a set of non-

overlapping subgraphs ISE D fise1; ise2:; : : : ; iseng from a given DFG G D .V; E/

of a hot-spot basic block. Each iteration i C 1, where 0 � i � n � 1, of the DFG

partitioning algorithm starts with a PIA-DFG, Gi D .V i ; E i /. The node set V i of

the PIA-DFG is given by

V i D V i
NON�OP [ V i

CAND [ V i
FORBID [ V i

ISE

where

1. V i
NON�OP (� VNON�OP) represents the set of variable and constant nodes.

2. V i
FORBID (� VFORBID) represents the set of forbidden nodes (e.g. jumps and

branches, function calls, floating point operations) which can not be included

into any ISE.

3. V i
ISE represents the set of ISEs identified in previous iterations. Each node in V i

ISE

corresponds to a convex subgraph of G.

4. V i
CAND represents the set of nodes which are not part of any ISE, but are potential

CANDidates for inclusion in an ISE in iteration i C 1.

Nodes in .V i
FORBID[V i

ISE[V i
NON�OP/ are nodes which can not be part of any ISE

in the current iteration and are called non-candidate nodes.
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Algorithm 8.2: The construct and solve dpilp procedure

PROCEDURE(construct and solve dpilp) ;1

INPUT :

1. A PIA-DFG Gi D .V i ; E i/, and

2. CFU interface, latency and area constraints.

OUTPUT: A new ISE iseiC1 � V i

begin2

// The ILP construction and solving start from here

create node variables.V i /;3

ODPILP  create objective function.Gi ; constraints/;4

trial 1;5

while trial � 3 do6

create area interface constraints.Gi ; constraints/ ;7

if trial > 1 then8

create convexity constraints./;9

if trial > 2 then10

create latency constraints./;11

12

iseiC1 solve dpilp./ ;13

if is convex.iseiC1/^ obeys latency.iseiC1/ then14

return iseiC1;15

else16

trial trialC 1;17

end18

end19

return ;;20

end21

The main partitioning function construct and solve dpilp, presented in

Algorithm 8.2, identifies a node cluster iseiC1 from a given Gi in each iteration.

The node set returned by this function is then used to construct a new GiC1 for the

current iteration. The major steps in this function are the following

1. Creation of a boolean variable U.vi/ for each vi 2 V i
CAND (line 3 in

Algorithm 8.2). The ILP model is constructed on the basis of these variables.

For a variable U.vi /, a value of 1 in the solution of the ILP indicates that the

corresponding node vi is included in iseiC1. The value 0 indicates otherwise.

These variables will be referred to as node variables from now on.

2. Construction of an objective function ODPILP using the boolean variables created

in the previous step (line 4). The objective function is designed to select a cluster

of nodes that maximizes the speed-up function locally.

3. Construction of a set of linear inequalities/equalities representing the identifica-

tion constraints and obtaining a solution of the ILP model using an ILP solver

(lines 6–19). This step uses three trials to prevent possible runtime explosions of

the ILP solver. The reason for this will be explained shortly.
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The solving time of an ILP problem usually depends on the number of con-

straints, i.e. the total number of linear equations. It was observed that, for a DPILP

problem, the solving time increases with the number of constraints generated. It was

also observed that a large percentage of the node sets selected under a reduced set of

constraints may actually obey all the constraints. Our algorithm tries to exploit this

property by generating solutions with a reduced set of constraints. If the selected

node set obeys all the constraints (lines 14–15) then the trial is successful and the

node set is returned as an ISE. Otherwise, a new set of constraints is added in the

next trial and the process is repeated. An empty set is returned, if a valid ISE can

not be found even with all the constraints (line 20). As shown in Algorithm 8.2,

the first trial uses all the constraints except the convexity and latency constraints,

because these two were found to produce most of the equations. The second trial

adds convexity to the set of constraints (line 9), and the third trial uses all the

constraints (line 11).

The rest of this section is devoted to the mathematical modeling of the objective

function and the different constraints.

8.2.1.1 The Objective Function ODPILP

The objective function in each iteration of DFG partitioning guides the ILP solver to

select those nodes for ISEs which would provide the maximum speedup. Typically

a node is a good candidate for inclusion in an ISE if the number of cycles taken

to execute it in software is high. For example a multiplication might take 2 cycles

for software execution, but in hardware it might only take 1.2 cycles and can be

combined with an adder to produce the result of a MAC in the same 2 cycles. As

a result, priority should be given to select nodes with higher software latency for

forming an ISE.

Additionally, comm cost.vi
m/, the cost of communication of a node vi

m with its

neighbors play an important role in the net speedup. For instance, a cluster of

nodes might take 5 cycles less to execute in hardware than that required when the

individual nodes were executed in software, but this cluster might also require 3

cycles for moving data into its internal registers. As a result the net speedup achieved

might be much less than what is expected. So the communication cost of the nodes

is also important for designing the node selection criteria.

Considering the above arguments, the contribution of any node vi
m to the net

speedup achieved by ISE iseiC1 can be given as:

f .vi
m/ D .SW.vi

m/ � comm cost.vi
m// � U.vi

m/ (8.2)

Note that f .vi
m/ is designed in such a way that if U.vi

m/ is assigned a value 0 by the

ILP solver (i.e. if it is excluded from the set of nodes selected for iseiC1), then the
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contribution also becomes zero. The objective function ODPILP which takes into

account the contribution of each node in V i
CAND can be stated as:

ODPILP D
X

vi
m2V

i
CAND

f .vi
m/ (8.3)

The objective function forces the ILP solver to select nodes with high software

latencies and low communication costs. The communication cost incurred by a node

vi
m 2 V i

CAND is given by

comm cost.vi
m/ D

X

fvi
p j.v

i
p ;vi

m/2Ei_.vi
m;vi

p/2Ei g

comm cost.vi
m; vi

p/ (8.4)

where comm cost.vi
m; vi

p/ is the individual communication cost with a single

neighbor vi
p 2 V i . The rules for calculating communication cost based on the type

of the neighboring node are summarized by the following cases

• Case (a): vi
p 2 V i

FORBID, i.e. vi
p can never be part of any special instruction.

This implies that vi
p can only use GPRs for communication. Consequently, if

the node vi
m is selected to form an ISE, then one GPR to IR (or, IR to GPR)

move instruction will be required to communicate with vi
p . Note that this is a

pessimistic estimation of the communication cost, because the two nodes can

simply use GPRs if the enclosing ISE of vi
m has enough GPR read/write slots

available.

If vi
p 2 V i

NON�OP, i.e. vi
p is a variable of a constant input, then also the

communication overhead is assumed to be 1, because such values are available in

GPRs only. Due to similar reasons, if vi
m produces an output which is used outside

the current block, then the communication overhead is considered to be 1.

• Case (b): vi
p 2 V i

ISE , i.e. vi
p corresponds to a special instruction identified in some

earlier iteration. In this case, no communication overhead is incurred, because

both the nodes are free to use either GPRs or IRs if vi
m is selected to form an ISE.

• Case (c): vi
p 2 V i

CAND, i.e. vi
p is also a candidate for selection in an ISE. In this

case, if node vi
m is selected to form a special instruction, then the communication

with vi
p might incur a move cost only if vi

p is not selected, i.e. if U.vi
p/ is 0. Note

that this is also a pessimistic assumption because vi
p might just get selected in a

special instruction at a later iteration.

Considering all the above cases, the communication cost between a candidate

node vi
m and any node vi

p , such that vi
p provides an input to node vi

m, can be

written as:

input comm cost.vi
m; vi

p/ D

8

<

:

1 case .a/

0 case .b/

.1 � U.vi
p// case .c/

(8.5)
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Similarly the communication cost between a candidate node vi
m and any other

node vi
p , such that vi

p uses the result of vi
m, can be summarized as

output comm cost.vi
m; vi

p/ D

8

<

:

1 case .a/

0 case .b/

0 case .c/

(8.6)

The total communication cost of vi
m is the sum of all the input and output

communication costs. Note that if vi
m and vi

p are both candidates and vi
p uses an

output from vi
m, then the contribution of vi

p to output comm cost.vi
m/ is considered

to be 0 (case (c) in (8.6)). This is because the communication cost between these two

nodes is modeled in the input comm cost.vi
p; vi

m/. Consequently, it is not duplicated

in the output cost of vi
m.

Let us consider an example of objective function calculation for Fig. 8.2a which

shows the nodes of a DFG along with their corresponding IDs. Node 4 is a forbidden

node and can not be included in any ISE. The rest of the nodes drawn inside circles

are all candidate nodes. The contribution of node 5 to the objective function is

given by

f .5/ D .SW.5/ � U.5// � input comm cost.5; 3/ � input comm cost.5; 4/

where input comm cost.5; 3/ is .1 � U.3// (as per case (c) of (8.5)) and

input comm cost.5; 4/ is 1 (as per case (a) of (8.5)). The cost of the outgoing

communication with node 6 is counted in the input comm cost of node 6 and is not

included in the calculation of f .5/. Combining the values for communication costs,

the value of f .5/ can be written as

f .5/ D .SW.5/ � U.5// � .1 � U.3//� 1

The contributions of all other nodes to the objective function ODPLILP can be

similarly calculated. These values are given below

f .1/ D SW.1/ � U.1/� 1 � 1

f .2/ D SW.2/ � U.2/� 1

f .3/ D SW.3/ � U.3/� .1 � U.1// � .1 � U.2//

f .6/ D SW.6/ � U.6/� .1 � U.5// � 1

The rest of this section shows how the node variables are used to construct

linear equations to enforce all the generic as well as architectural, area or latency

constraints.
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Fig. 8.2 Example graphs for explaining communication costs and various constraints

8.2.1.2 Modeling of the Convexity Constraint

As mentioned in Sect. 6.2, convexity is the most important generic constraint to

ensure the feasibility of ISEs. Convexity constraint implies that if two candidate

nodes for iteration iC1, ui ; vi 2 V i
CAND, are included in ISE iseiC1 generated in that

iteration, then there must not exist a node wi 2 V i which lies on a path between ui

and vi and which is not part of iseiC1.

In order to express convexity constraints through a set of linear inequalities, we

define the following two sets for each node wi 2 V i
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1. INPUT CONE.wi / represents the set of candidate nodes from which wi is

reachable via a path, and

2. OUTPUT CONE.wi / represents the set of candidate nodes which are reachable

from wi via a path.

Using these definitions, the convexity constraint can be conversely stated as – if

any node wi 2 V i is not included in iseiC1, then any pair of nodes ui ; vi 2 V i
CAND,

such that ui 2 INPUT CONE.wi / and vi 2 OUTPUT CONE.wi /, can not be

simultaneously included in iseiC1. This condition can be expressed by a linear

inequality using the node variables for ui , vi . The equation can take two forms

depending on the type of wi .

1. U.ui/CU.vi / � U.wi /C 1 if wi is itself a candidate node. This enforces that if

both U.ui/ and U.vi/ are 1 (i.e. included in iseiC1) in the ILP solution, then wi

is also 1. Otherwise, at most, one of vi and ui is included.

2. U.ui/C U.vi/ � 1 if wi is not a candidate node. This ensures that either U.ui/

or U.vi / is included in iseiC1.

Let us consider the example presented in Fig. 8.2b to understand how the above

equations accurately capture the convexity constraints. If we take node 7 as wi

then its INPUT CONE and OUTPUT CONE contain nodes f1, 2, 3g and f4,

5, 6g, respectively. If 7 is not included in an ISE, then 1 and 6 can not be

simultaneously included into the same ISE. This condition can be expressed as

U.1/C U.6/ � U.7/C 1

if 7 is a candidate node. If 7 is non-candidate, then the following equation

U.1/C U.6/ � 1

ensures that either of 1 or 6 is selected.

Note that, in order to enforce convexity constraints, we need jOUTPUT CONE

.wi /j � jINPUT CONE.wi /j number of inequalities for each node wi . For example,

we need a total of nine inequalities to enforce convexity for 7 in Fig. 8.2b.

The total number of inequalities is O.jV i j3/ in the worst case. Therefore, the

above mentioned naive solution generates a huge number of inequalities which

subsequently increases the ILP solving time. We provide a remedy of this in the

following.

In order to minimize the total number of inequalities, we introduce two auxiliary

boolean variables – P.wi / and S.wi / – for each node wi . P.wi / is designed in such

a way that it is forced to assume a value of 1 if any member of INPUT CONE.wi / is

assigned a value of 1 (i.e. selected in ISE). This is enforced by creating an inequality

of the form

P.wi / � U.ui/

for each ui 2 INPUT CONE.wi /.
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Similarly, S.wi / is forced to have a value of 1 if any member of

OUTPUT CONE.wi / is 1. This is enforced by

S.wi / � U.vi /

for each vi 2 OUTPUT CONE.wi /. Finally, the following inequality

P.wi /C S.wi/ � U.wi /C 1

enforces the convexity constraint. For instance, for node 7 in Fig. 8.2b, convexity

constraint is enforced by the following inequalities

P.7/ � U.1/

P.7/ � U.2/

P.7/ � U.3/

S.7/ � U.4/

S.7/ � U.5/

S.7/ � U.6/

P.7/C S.7/ � U.7/C 1

Readers can verify that if U.7/ is assigned a value of 0, then either f1, 2, 3g or

f4, 5, 6g are forced to zeroes to maintain convexity. The number of inequalities

for each node wi is O.jOUTPUT CONE.wi /jC jINPUT CONE.wi /j/ and the total

inequalities generated is quadratic (as opposed to cubic) w.r.t. the size of V i .

8.2.1.3 Register I/O Constraints

As we have previously mentioned, the DPILP algorithm does not strictly enforce

the input/output constraints from register files. In the DFG partitioning phase, only

the following restrictions are enforced for iseiC1 identified in iteration i C 1

IN.iseiC1/ � IR INMAX CGPR INMAX

OUT.iseiC1/ � IR OUTMAX C GPR OUTMAX

The exact mapping of inputs/outputs to IRs or GPRs is considered in the next phase

of ISE generation. In the following, we will describe the inequalities required to

enforce the input constraint on IN.iseiC1/ in detail. The output constraint can be

similarly represented.

To enforce the input constraint, we consider the input edges of each candidate

node vi 2 V i
CAND. For each input edge .ui ; vi / coming from one of its predecessors,
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an auxiliary boolean variable I.ui ; vi / is created. This variable is enforced to 1 if vi

is included in iseiC1 and ui is not, i.e. if the edge from ui really constitutes an input

to the ISE. Two cases are to be considered for creating such equations

1. Case 1: ui is not a candidate node. In that case, I.ui ; vi / will always constitute

an input to the ISE if vi is selected in iseiC1. This is denoted by the equation

I.ui ; vi/ D U.vi/

2. Case 2: ui is also a candidate node. In that case, .ui ; vi / is an input edge if vi

is selected in an ISE and ui is not. If both of them are selected in the ISE, then

the edge is not an input, but an intra-ISE edge. This is denoted by the following

equation

I.ui ; vi/ � U.vi/ � U.ui/

which forces I.ui ; vi/ to 1 only when U.vi/ is 1 and U.ui/ is 0.

The input constraint for each ISE is then enforced by

X

vi2V i
CAND

I.ui ; vi / � IR INMAX C GPR INMAX

Output constraints for ISEs can be similarly constructed by creating auxiliary

variables for each output edge of each candidate node and enforcing their sum to be

less than the total outputs to GPRs and IRs.

For example, let us consider the DFG of Fig. 8.2c. The nodes in dark colored

circles represent non-candidate nodes, whereas those in light colored circles are

candidate nodes. The auxiliary edge variables for the candidate nodes are

I.2; 3/ � U.3/� U.2/

I.1; 2/ � U.2/� U.1/

I.c; 2/ � U.2/

I.a; 1/ � U.1/

I.b; 1/ � U.1/

The inequality which enforces the input constraint (assuming only 2 inputs are

allowed to each ISE) is

I.2; 3/C I.1; 2/C I.c; 2/C I.a; 1/C I.b; 1/ � 2

If nodes, 1, 2 and 3 are selected to form an ISE, then the last three auxiliary

edge variables in the above sequence are forced to 1, which violates the input

constraint. However, if only 2, 3 are selected, then only I.1; 2/ and I.c; 2/ are

forced to 1 which satisfies the input constraint.
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8.2.1.4 Latency and Area Constraints

The ISE generation algorithm uses a very primitive estimation of the critical path

and area of the selected instructions to ensure that very large or time consuming

instructions, which can never be mapped to a real CFU, are already eliminated.

In order to enforce the latency constraint, all paths P in Gi from all start nodes to

end nodes are constructed. A start node is an operation node which has at least one

input from a variable or a constant node. An end node is one which has no successor

in Gi . Each path p 2 P contains sequences of candidate nodes interspersed

by chains of non-candidate nodes. We define a maximal candidate sequence as a

sequence, S D hvi
1; vi

2; : : : ; vi
ki, of candidate nodes on a path p 2 P such that

1. vi
1 is either the start node, or its predecessor on p is a non-candidate node.

2. vi
k is either an end node, or its successor on p is a non-candidate node.

In the extreme case, all the nodes in a maximal candidate sequence can be

included in an ISE. Therefore, the following condition must hold for each maximal

candidate sequence S in the graph

X

vi2S

U.vi/ �HW.vi / � LATMAX

Let us consider Fig. 8.2d to understand the working of the latency constraint. In

this figure, nodes 1 and 2 are start nodes while 6 is an end node. Two paths exist

from the start nodes to the end nodes and each path is divided into two maximal

candidate sequences by the non-candidate node 7. The maximal candidate sequence

f4, 5, 6g is common to both the paths.

Assuming that all the candidate nodes have a hardware latency of 40 (i.e. each

node takes 40% of the base processor cycle to produce a result 4) and LATMAX is

100 (i.e. an ISE can have a maximum latency of 1 cycle), the latency constraint can

be expressed by the following inequalities

40 � U.1/C 40 � U.3/ � 100

40 � U.2/C 40 � U.3/ � 100

40 � U.4/C 40 � U.5/C 40 � U.6/ � 100

Enforcement of area constraint is even simpler. Designers can specify a maxi-

mum area AREAMAX and a maximum number of possible ISEs NMAX as algorithm

4Recall from Sect. 7.2.2 that the hardware latencies of nodes are expressed as percentages of the

base processor clock for the ILP based algorithm.
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parameters. Given these two values, the DFG partitioning algorithm tries to restrict

the size of each ISE within AREAMAX

NMAX
. This is enforced by the following constraint

X

vi2V i
CAND

U.vi/ � Cost.vi / �
AREAMAX

NMAX

8.2.1.5 Memory and Scratch-Pad I/O Constraints

Unlike many other ISA generation frameworks which consider loads and stores as

forbidden nodes, we allow memory accesses from the CFU. In our framework, the

user can configure whether any memory access is allowed from an ISE or not (At

most, one memory access is permitted per special instruction). Let V i
MEM�ACCESS be

the set of load and store candidate nodes in V i for iteration i C 1. The memory

access constraints are enforced by the following equation

X

vi2V i
MEM�ACCESS

U.vi/ � 1

Additionally, it is required that a memory access node has no successor in an

ISE as per the execution model of our LTRISC architecture (Sect. 7.3.1). For each

vi 2 V i
MEM�ACCESS, we create the following inequality for each of its successor

nodes wi

U.vi/C U.wi / � 1

to enforce this constraint.

There are many instances where a data-object is very frequently accessed from a

hot-spot. In such a case, the object can be allocated to a scratch-pad memory inside

the CFU. Our framework allows the designer to specify a scratch-pad configuration

consisting of

1. A scratch-pad definition section. Users can specify multiple scratch-pad memo-

ries in the CFU. Each memory is associated with a name and size (in bytes or

words).

2. A scratch-pad mapping section. A data-object of the source code can be mapped

to a certain address in a scratch-pad. A duplicate copy of the object has to

be kept in the main memory for BPIs because they can not use any CFU

resources. If all the accesses to the mapped object are included in various

ISEs, then the duplicate copy is no longer necessary. In order to maintain

coherence between the two copies, only constant objects are allowed inside

scratch-pads.



150 8 ISE Generation Algorithms

Let V i
S�ACCESS be the set of all candidate nodes in V i which access data objects

mapped to a scratch-pad S . The access constraint to S is enforced by the following

inequality:
X

vi2V i
S�ACCESS

U.vi / � ACCESSS
MAX

where ACCESSS
MAX is the maximum number of accesses permitted to S .

8.2.2 Edge Type Assignment

The DFG partitioning algorithm partitions the DFG of a hot-spot basic block into

several ISEs represented by convex subgraphs. The final outcome of this algorithm

is an IA-DFG where the subgraphs corresponding to different ISEs are collapsed

to single nodes. Each ISE can potentially require more inputs and outputs than

permitted from the base processor GPR file. We have already mentioned that the

extra inputs/outputs are communicated using IRs. However, the DFG partitioning

algorithm does not specify whether a certain input (or, an output) to an ISE is

provided via a GPR or an IR. This is the task of the edge type assignment algorithm.

Given an IA-DFG Gia D .V ia; E ia/ the edge type assignment algorithm creates

a mapping EDGE TYPE W E ia ! fir; gprg such that for an edge, eia 2 E ia,

1. E.eia/ D gpr indicates that the value corresponding to eia is passed via a GPR.

2. E.eia/ D ir indicates that the value corresponding to eia is passed via an IR.

Note that the algorithm simply assigns an edge type, but does not really perform

IR allocation to minimize the total number of IRs. This is done in the back-end as

explained in the previous chapter. Edge type assignment need not be done if both

ends of an edge eia 2 E ia are BPIs (such nodes are restricted to use GPRs only) – it

has to be done only for the input and output edges of ISEs.

The motivation of the edge type assignment step can be understood from Fig. 8.3.

Figure 8.3a shows a partitioned IA-DFG with three ISEs – ISE1, ISE2, ISE3.

For the sake of convenience we also show the constituent nodes of each ISE (light

colored circles) and the edges originating from each of them. Edges e9, e10 and

e12 are the only inter ISE edges. All other input/output edges to ISEs are assumed

to come from, or go to BPIs.

Assuming that each input coming from a BPI (or, each output to a BPI) costs

an extra cycle due to a GPR to IR (or, IR to GPR) move instruction, the IA-DFG

in Fig. 8.3a needs a total of 12 extra move cycles if all ISE inputs/outputs are

communicated via IRs. Moreover, the IR file needs to contain at least 5 registers

because ISE1 has 5 inputs.

The objective of the edge type assignment is to minimize both the number of

move cycles and the total number of IRs by forcing the ISEs to use as many

GPRs as possible. This is illustrated in Fig. 8.3b which shows a valid edge type
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Fig. 8.3 Example of edge type assignment

assignment under 2-input/1-output GPR I/O constraint for the partitioned DFG of

Fig. 8.3a. In this edge type assignment, each ISE is forced to communicate some of

its inputs/outputs via GPRs (shown by dashed edges) which brings the total number

of move operations down to 5 (from 12), and the total number of required IRs to 3

(from 5).

The edge type assignment algorithm constructs another ILP using the elements

of the edge set E ia of the IA-DFG produced by the DFG partitioning algorithm. In

order to construct the ILP model, an unique boolean variable G.eia/ for each edge

eia 2 E ia – such that eia is either an input or an output edge of an ISE – is created.

Recall from the Sect. 7.2.2 that two sets – INPUT EDGE and OUTPUT EDGE –

are constructed to represent the input and output edges for each ISE node via 2 V ia
ISE

in the IA-DFG. The set of all input/output edges to ISEs in a hot-spot basic block is

denoted by

E ia
ISE D [via2V ia

ISE
.INPUT EDGE.via/ [ OUTPUT EDGE.via//

If the ILP solver assigns 1 to G.eia/ for an edge eia 2 E ia
ISE, then the edge

communicates a value using a GPR. Otherwise, the value is passed via an IR. Since

the goal of edge type assignment is to maximize the usage of GPRs, the objective

function OETILP is simply expressed as

OETILP D
X

eia2Eia
ISE

G.eia/
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For example, the objective function for the DFG of Fig. 8.3a can be expressed as

OETILP D G.e1/CG.e2/C � � � CG.e15/

8.2.2.1 Enforcing the GPR I/O Constraints

The edge type assignment algorithm must also ensure that the total number of GPR

reads/writes from a special instruction obeys the GPR I/O constraints. Using the

INPUT EDGE and OUTPUT EDGE sets, the I/O constraints for a particular ISE

via 2 V ia
ISE can be written as

X

eia2INPUT EDGE.via/

G.eia/ � GPR INMAX

X

eia2OUTPUT EDGE.via/

G.eia/ � GPR OUTMAX

For the graph in example 8.3a with 2/1 GPR I/O constraints the corresponding

inequalities are given below:

For ISE1:

G.e4/CG.e5/CG.e6/CG.e7/CG.e11/ � 2

G.e12/CG.e15/ � 1

For ISE2:

G.e1/CG.e2/CG.e3/ � 2

G.e9/CG.e10/ � 1

For ISE3:

G.e8/CG.e9/CG.e10/CG.e12/ � 2

G.e13/CG.e14/ � 1

Readers can verify that the edge type assignment in Fig. 8.3b is an optimal

solution for the above ILP problem.

8.3 Instruction-set Customization Using High Level Synthesis

The ILP based ISE generation algorithm presented in the previous section suffers

from three major drawbacks. Firstly, the runtime of ILP is non-deterministic and

in worst case, exponential. Secondly, the reusability of the generated ISEs is fairly
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limited due to the usage of IRs. Consequently, the total area of the CFU can become

very large if many hot-spots are selected for ISE generation. Thirdly, the algorithm

often generates multi-cycle ISEs to achieve better performance. However, such ISEs

are difficult to implement in the processor pipeline.

This section presents an algorithm which solves all of the three above mentioned

problems using algorithms from the domain of high level synthesis [113]. HLS is a

well known technique to directly map applications written in high level languages

(usually C or variants of C, C++ or System C) to RTL data-paths. This is done

by scheduling the target application’s DFG under designer specified interface and

computational resource constraints. The area of the generated data-path is kept

under control by reusing computational resources between two or more operation

nodes mapped to different scheduling cycles.

The idea behind the HLS based ISE extraction algorithm is to use a similar

technique to pipeline the DFG of each hot-spot basic block of a target application

under computational resource and CFU interface constraints. Each scheduling

cycle5 becomes a special instruction if it contains only candidate nodes.

The HLS based algorithm has three-fold advantages over the ILP based ISE

generation algorithm

1. Faster runtime. The HLS algorithm uses resource constrained scheduling

and a greedy resource allocation and binding heuristic. These algorithms have

deterministic and polynomial computational complexities. The HLS based ISA

customization is much faster compared to the ILP based solution.

2. No multi-cycle ISEs. The HLS algorithm only generates single cycle ISEs

which significantly reduces the manual effort to integrate multi-cycle special

instructions into a base processor’s pipeline.

3. Precise modeling of computational resource constraints. In a realistic situ-

ation, designers might like to restrict the number of computational resources

such as adders/multipliers and subtractors in the CFU rather than limiting the

absolute CFU area – especially because the absolute area depends on a large

number of lower levels details and can not be accurately calculated during ISE

generation. Our HLS algorithm can precisely consider the CFU computational

resource constraints for ISE generation.

Note that it is possible to apply high-level synthesis after ISE generation to

reuse resources between ISEs (or within a multi-cycle ISE) as suggested by

[104]. However, if resource constraints are not taken into account during ISE

generation, then identified ISEs might easily exceed designer imposed resource

limits. This situation can not arise in our HLS based algorithm.

The only problem of HLS based ISE generation is that a large number of ISEs

might be needed to cover a single hot-spot basic block (because ISEs do not span

5For the rest of this work, scheduling level, scheduling step or cycle will be used interchangeably.
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multiple cycles). This might be an issue if the target processor’s ISA does not

contain enough space to encode all the instructions.

The next section introduces the basic idea behind HLS based ISE generation. The

algorithmic details are then explained in the following sections.

8.3.1 Basics of Processor Customization Using HLS

The HLS based ISE generation algorithm applies resource constrained scheduling

on a given DFG G D .V; E/, i.e. it schedules the graph in such a way that nodes

placed in each scheduling step obey the ISE generation constraints (Definition 8.1)

specified by the designer. In this algorithm, the area constraint is replaced by compu-

tational resource constraints. We assume that the CFU may only implement a limited

amount of computational resources such as adders, multipliers and barrel shifters.

Any ISE should only include operations which can be executed using the resources

available in the CFU. Two different instructions can, however, share these resources

between themselves. Since forbidden nodes must be executed by BPIs, they are

scheduled alone in a single scheduling step. Each scheduling step containing mul-

tiple operation nodes becomes an ISE. The algorithm ensures that the delay of the

longest chain of operations in a single scheduling cycle never exceeds the duration

of the base processor’s clock period. This prevents creation of multi-cycle ISEs.

To understand the working of the HLS based algorithm, the DFG G D .V; E/

of the application hot-spot shown in Fig. 8.4a can be considered. In this figure,

operation nodes belonging to the hot-spot basic block are lightly shaded, whereas

variable nodes bringing in values produced outside the basic block are shown in dark

color. Node 7 is a conditional branch which uses the result of node 6 as the branch

condition. The branch instruction is a forbidden node which can not be included into

any ISE. All other nodes are candidate nodes.

The scheduled DFG produced by the HLS engine is shown in Fig. 8.4b. The

scheduling constraints used are 2-in/1-out GPR access restriction and a maximum of

one adder resource for each scheduling cycle. Observe that the first two scheduling

steps contain multiple operations from the DFG and obey all the generic, I/O,

memory access and computational constraints. Consequently, both of them are

eligible to become special instructions in a processor data-path. The third scheduling

step contains a branch operation which, as per the definition of forbidden nodes, can

not be included in an ISE and has to be executed as a BPI.

Note that the scope of ISE generation using HLS under realistic I/O constraints

can be quite limited if only GPRs are used to communicate values between special

instructions. Therefore, the HLS algorithm also uses IRs to overcome the I/O

restrictions. For example, the DFG in Fig. 8.4c can not be scheduled in less than 6

cycles without IRs. Insertion of IRs between the first two scheduling steps (denoted

by dark rectangles) allows the HLS algorithm to find a 3 cycle schedule for the

same DFG.

The model of communication using IRs is same as the one used for the ILP

based algorithm (Sect. 8.1.1). Readers may observe that, in such a model, it might
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Fig. 8.4 ISE generation using resource constrained scheduling

be necessary to introduce GPR to IR (or, IR to GPR) move instructions if an ISE (i.e.

a scheduling step) already has used up all its GPR input/output slots. For example,

an ISE that combines nodes 1, 2, 3 and 5 in Fig. 8.4c has 3 GPR inputs. One

of them has to be moved into an IR through an explicit move instruction under 2/1

GPR I/O restrictions. The combined cost of such move instructions can significantly

degrade the overall performance.

In the resource constrained scheduling algorithm, we eliminate the move costs

by strictly enforcing the following conditions:

1. All candidate nodes in a hot-spot DFG are included in some ISE. This is in con-

trast to the ILP based algorithm where users can enforce a limit on the maximum

number of ISEs which may, in turn, leave many candidate nodes outside ISEs.

Additionally, two ISEs are forced to use only IRs for communicating values.
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2. Let NON CAND PRED.l/ be the set of non-candidate predecessor nodes for a

scheduling step l (A node is a predecessor node of a scheduling step l if it does

not belong to l , but has at least one successor in it). The following constraint

must hold for any scheduling step

j NON CAND PRED.l/ j� GPR INMAX

3. Let NON CAND OUTPUT.l/ be the set of nodes in a scheduling step l

which have at least one non-candidate successor node outside l . The following

constraint must hold for any scheduling step

j NON CAND OUTPUT.l/ j� GPR OUTMAX

The last two conditions enforce that the total number of edges from/to non-

candidate inputs/outputs of a special instruction is always less than the number of

available GPR I/O ports. However, this might leave some of the GPR input/output

slots unused for an ISE that does not have enough incoming or outgoing edges

from, or to non-candidate nodes. Instead of IRs, ISEs can use some of these free

GPR slots to communicate among themselves. A post-scheduling register recovery

step is needed to accomplish this.

To conclude, the HLS based ISA customization problem can be divided into two

subproblems:

1. ISE Generation which schedules the DFG G of a hot-spot basic block under

GPR I/O and computational resource constraints. It also performs on-the-fly

resource allocation and binding for the CFU data-path.

2. IR Minimization which tries to minimize the number of IRs by reusing IRs

and forcing ISEs to use as many GPR I/Os as possible. These two problems are

described in the next two sections.

8.3.2 ISE Generation Through Resource Constrained

Scheduling

As has been shown in the previous section, the ISE identification problem can

be easily modeled as a resource constrained scheduling of nodes as in high-level

synthesis. Each scheduling level can be thought of as an ISE in the ISE identification

problem. A formal definition of the problem is provided below

Definition 8.3. Given a DFG G D .V; E/, the resource constrained scheduling

problem can be modeled as finding an integer labeling of the operations � W V !

N0
6 such that the largest label is minimized. Two nodes, u; v 2 E , belong to the

same ISE, if �.u/ D �.v/, i.e. they have the same labels. Nodes scheduled in a

single scheduling step must obey the following constraints

6
N0 is the set of all non-negative integers.
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1. Computational Resource Constraints: These constraints ensure that each

scheduling step conforms to the designer specified limits on computational

resources. Computational resources include adders, multipliers, subtractors,

barrel shifters and comparators. In our algorithm, it is possible to specify a set

of computational resources R, and the maximum number rMAX for each resource

type r 2 R in the CFU. An operation v 2 V may need a resource of certain type

for its completion. The function rusage.v; r/ denotes the number of resources of

type r 2 R required by the node v.

Let the set of nodes grouped into a scheduling step l be NODE.l/. A

schedule of the DFG G obeys computational resource constraints if the following

equation
X

v2NODE.l/

rusage.v; r/ � rMAX

holds for each resource type r in each scheduling level.

2. Latency Constraint: This constraint restricts the critical path of an ISE to a

single base processor clock cycle. Latency constraint dictates that the following

constraint must hold for each path P D hv1; v2; ::; vni in the DFG G such that all

the nodes in the path belong to the same ISE (i.e. �.v1/ D �.v2/ D :: D �.vn/)

n
X

iD1

HW.vi / � 1

3. GPR and IR I/O and memory access constraints: These constraints are similar

to the ones of Definitions 8.1 and 8.2. They ensure that the generated ISEs

conform to the CFU interface restrictions.

Our ISE generation algorithm employs list scheduling [113] for solving the above

optimization problem. This algorithm has a polynomial runtime in the number of

graph nodes and is similar in nature to the post ISE generation IA-DFG scheduling

algorithm described in Appendix A. However, unlike IA-DFG scheduling, multiple

DFG nodes can be placed into the same cycle. Such nodes might be chained

with other nodes in the same scheduling cycle, or might execute in parallel

with them.

The resource constrained scheduling algorithm is presented in Algorithm 8.3.

The algorithm uses two data-structures – a ready set and a set of unscheduled nodes.

The ready set, at any scheduling step, contains those nodes whose predecessors

have been scheduled, i.e. which are ready for scheduling in the next step. Initially,

all nodes in the DFG are put into the set of unscheduled nodes. The ready set

contains those nodes whose inputs are coming from outside the hot-spot DFG.

In each scheduling step, a node is selected from the ready set and scheduled in a

scheduling level. Removal of a node from the set of unscheduled nodes may free

up other nodes for scheduling which are then added to the ready set. This process

continues till the set of unscheduled nodes is empty.
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Algorithm 8.3: Resource constrained scheduling algorithm

PROCEDURE(resource constrained scheduling) ;1

INPUT :

1. A DFG Gi D .V; E/, and

2. CFU interface and resource constraints

OUTPUT: A mapping � W V ! N0 such that all nodes with the same � value constitute an

ISE

begin2

calculate delay to output./;3

unscheduled node V ;4

ready set  construct ready set.V /;5

// The HLS Synthesis Algorithm starts from here

while unscheduled nodes ¤ ; do6

v select ready node.ready set/;7

sched cycle get start cycle.v/;8

while violates constraints.v; sched cycle/ do9

sched cycle sched cycleC 1;10

end11

schedule node.v; sched cycle/;12

unscheduled nodes unscheduled nodes� fvg;13

update ready set./;14

end15

end16

The scheduling algorithm consists of the following steps:

1. Node selection: In this step (line 7 in Algorithm 8.3), a node is selected from

the ready set for scheduling. Selection of a node is based on the value delay to

the output. This quantity D.v/ for node v signifies the length of the longest path

from the node to any output node of the block (An output node of a basic block

is one whose outputs are only used by nodes outside the block). Heuristically,

we select a node with highest D.v/ value to ensure that nodes on the most time

critical paths are scheduled first.

2. Determining the minimum scheduling level: A node can only be scheduled in

a level which is larger than or equal to the scheduling level of all its predecessors.

This task is accomplished by the function get start cycle (Algorithm 8.4) which

calculates the start scheduling level of the selected node.

The start scheduling level is determined by using the quantity FINISH TIME.

FINISH TIME.u/ of a node u 2 V scheduled in level l is a fractional quantity

satisfying l < FINISH TIME.u/ � l C 1. The difference FINISH TIME.u/� l

denotes the delay of the longest path from the beginning of the level l till

the node u finishes its execution. For each node u, this quantity is calculated

in the schedule node function (Line 21 of Algorithm 8.4) using the following

rules
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Algorithm 8.4: get start cycle and schedule node for the resource constrained

scheduling algorithm

PROCEDURE(get start cycle) ;1

INPUT : A node v 2 V

OUTPUT: The earliest possible scheduling cycle for node v

begin2

max pred finishing time 0;3

max pred scheduling level 0;4

foreach p 2 PRED.v/ do5

if FINISH TIME.p/ > max pred finishing time then6

max pred finishing time FINISH TIME.p/;7

max pred scheduling level �.p/;8

9

end10

if max pred finishing timeC HW.v/ > max pred scheduling levelC 1 then11

return max pred scheduling levelC 1 ;12

else13

return max pred scheduling level ;14

end15

end16

PROCEDURE(schedule node) ;17

INPUT :

1. A node v 2 V

2. A cycle l where node v is to be scheduled

OUTPUT: Updated data structures for l

begin18

�.v/ l ;19

bind resource.v; l/;20

update finishing time.v/ ;21

foreach p 2 PRED.v/ do22

if p 2 VCAND then CAND PRED.l/ CAND PRED.l/[ fpg;23

else if p … VCAND then NON CAND PRED.l/ NON CAND PRED.l/[ fpg;24

end25

foreach s 2 SUCC.v/ do26

if s 2 VCAND then CAND OUTPUT.l/ CAND OUTPUT.l/[ fvg;27

else if p … VCAND then28

NON CAND OUTPUT.l/ NON CAND OUTPUT.l/[ fvg;
end29

end30

(a) FINISH TIME.u/ D l C HW.u/ if u is scheduled in level l and all its

predecessors are scheduled in levels < l .

(b) FINISH TIME.u/ D maxfFINISH TIME.p/ j p 2 PRED.u/ ^ �.p/ D lg

C HW.u/, if u has some predecessors scheduled also in level l .

Note that the FINISH TIME quantity is only valid for nodes which have

already been scheduled in some scheduling cycle. The get start cycle function
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uses the pre-calculated FINISH TIME value of all the predecessors of a ready

node v to determine the minimum possible scheduling level for the node

itself. This function first calculates two quantities max pred finishing time and

max pred scheduling level such that

max pred finishing time D maxfFINISH TIME.p/ j p 2 PRED.v/g

max pred scheduling level D bmax pred finishing timec

The minimum possible scheduling level of v must, at least, be equal

to max pred scheduling level. In order to enforce latency constraints, the

get start cycle function considers the following two cases (lines 11–15 in

Algorithm 8.4)

(a) Case 1: max pred finishing timeCHW.v/ > max pred scheduling levelC1.

In this case, addition of v in max pred scheduling level will violate the

latency constraint. Therefore, the minimum possible scheduling level of v in

this case is max pred scheduling levelC 1.

(b) Case 2: max pred finishing timeCHW.v/ � max pred scheduling levelC1.

Addition of v in scheduling level max pred scheduling level will not violate

any latency constraint in this case. Consequently, the minimum possible

scheduling level for v is determined as max pred scheduling level.

3. Determining the correct scheduling level under resource constraints: In this

step (lines 9–11 in Algorithm 8.3), the node v selected for scheduling is added

to a certain scheduling level which is greater than or equal to the minimum

possible level calculated in the previous step. Due to the resource constraints,

it might not be possible to schedule a node in the minimum scheduling level.

The while loop (lines 9–11 in Algorithm 8.3) finds a scheduling level where

node v can be scheduled without violating any of the constraints defined at

the beginning of this section. The function violates constraints (Algorithm 8.5)

ensures that the addition of a node in a certain scheduling cycle does not break

any of the I/O, memory access, or resource restrictions. Note that this function

does not verify the latency constraints because that is already enforced by the

get start cycle function while determining the minimum scheduling level for a

node.

4. Updating ready set and unscheduled nodes’ set: The scheduled node is deleted

from the ready set and the unscheduled nodes’ set. Scheduling of the node might

free other nodes for scheduling which are added to the ready set. The data-

structures of the scheduling algorithm are then updated in the schedule node

function (Algorithm 8.4).

The above four steps are repeated till all the nodes are scheduled, i.e. when the

set of unscheduled nodes becomes empty.

An example run of the constrained scheduling algorithm is presented in Fig. 8.5.

The figure shows the eight iterations of the scheduling steps required to identify the

ISEs. In each step, the already scheduled nodes are marked using dark color, while
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Algorithm 8.5: violates constraints function

PROCEDURE(violates constraints) ;1

INPUT :

1. An unscheduled node v 2 V

2. A scheduling level l

OUTPUT: Returns true if v can not be scheduled in l without violating any of the

scheduling constraints. Returns false otherwise.

begin2

// Enforcing forbidden node constraint

if v 2 VFORBID ^ NODE.l/¤ ; then return true ;3

// Enforcing memory access constraints

if v 2 VMEM�ACCESS ^ .9u 2 NODE.l/ j u 2 VMEM�ACCESS/ then return true ;4

// Enforcing computational resource constraints

foreach r 2 R do5

rusage in level 0;6

foreach u 2 NODE.l/ do7

rusage in level rusage.u; r/C rusage in level;8

end9

if rusage in levelC rusage.v; r/ > rMAX then return true ;10

end11

// Enforcing I/O constraints

node gpr in 0I node gpr out 0 ;12

node ir in 0I node ir out 0 ;13

foreach p 2 PRED.v/ do14

if p … VCAND^p … NON CAND PRED.l/ then node gpr in node gpr inC 1;15

else if p 2 VCAND ^ p … .CAND PRED.l/[ NODE.l// then16

node ir in node ir inC 1;
end17

foreach s 2 SUCC.v/ do18

if s … VCAND then node gpr out 1;19

else if s 2 VCAND then node ir out 1;20

end21

if j NON CAND PRED.l/ j Cnode gpr in > GPR INMAX then return true ;22

if j CAND PRED.l/ j Cnode ir in > IR INMAX then return true ;23

if j NON CAND OUTPUT.l/ j Cnode gpr out > GPR OUTMAX then return true ;24

if j CAND OUTPUT.l/ j Cnode ir out > IR OUTMAX then return true ;25

return false ;26

end27

those still to be scheduled are shown in light color. The node number for each node

is shown using dark boxes, whereas the gray boxes show the finishing time of each

node, and the white boxes represent the delay to the output (the D value) for each

unscheduled node. Only nodes in the ready set are marked with this delay.

The hardware latencies for the operations +, *, ,̃ & are assumed to be 0.40,

1, 0.05 and 0.15, respectively. We also assume 2/1 GPR I/O constraints, and the

resource constraint of having only 1 multiplier per ISE.
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Fig. 8.5 Example run of the ISE generation algorithm

At the beginning of the algorithm the ready set contains nodes 1, 2 and 3.

However, since 1 has a higher D value it is scheduled in the first step. Scheduling 1

does not add any new node in the ready set. The finishing time of 1 is set to 1.

In the second iteration, the node 3 is scheduled based on its D value. However, it

can not be scheduled in the first level since two of its inputs come from outside the
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basic block and it violates the GPR Input resource constraint (Level 1 already has

one GPR input due to node 1 and adding 2 will increase its GPR input count to 3).

The third and fourth iterations add nodes 2 and 4 into level 1 and 2, respectively.

Note that adding 4 into level 2 does not violate GPR I/O constraints, since the inputs

to the node (from 1 and 2) are assumed to come through IRs. The rest of the nodes

are added in the subsequent iterations. The DFG is scheduled in three steps. The

DFG has 7 operations and therefore, takes 7 cycles to execute in software. However,

it can be executed in 3 cycles using ISEs which correspond to a 2.33� speed-up.

8.3.3 Resource Allocation and Binding

In common HLS parlance, resource allocation and binding is a step which attempts

to share computational resources between different operations in order to keep

the total circuit area under control. This task involves finding a mapping between

operation nodes in a DFG and computational resources available in a hardware

circuit such that one operation is mapped to one and only one resource instance.

However, several mutually exclusive nodes (i.e. operations which can never be

triggered at the same time) may share one single computational resource through

input multiplexing. One of the major advantages of our HLS algorithm is that it

facilitates resource sharing between different ISEs so as to minimize the total area of

the generated CFU. The sharing is implemented through an on-the-fly allocation and

binding step performed during the resource constrained scheduling process (in the

schedule node function at line 20 of Algorithm 8.4). The details of this binding7

algorithm will be described in the rest of this section.

The general binding problem is commonly encountered in two variants –

minimum resource binding and minimum area binding [113]. These two are not

necessarily the same because the total area of a binding solution depends on the

extra multiplexer (MUX), wiring and control logic area required to share resources.

In some cases, the binding algorithm may also need to perform module or resource

type selection which involves selecting a certain resource type for each operation

node from a set of different resources having different areas and execution delays.

For example, an addition can be mapped either to an adder or an ALU unit, if both

of them are available as hardware components. An ALU increases the degree of

resource sharing because it implements multiple functionalities, but it is slower and

larger than an adder. In such cases, the binding algorithm needs to find the right

mix of modules which minimizes the total circuit area while meeting the timing

constraints.

In the classical HLS binding problem, the task of the binding algorithm is

to derive a suitable number of resources for each resource type to satisfy the

7Because resource allocation and binding are two very closely related steps, we will refer to them

together as either allocation or binding for the rest of this book.
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optimization goal, i.e. minimum number of resources or minimum area. In contrast

to this, our HLS based ISE generation algorithm lets the designer decide the

total number of computational resources in the CFU and ensures that the resource

constraints are met during scheduling. The task of our binding algorithm is to simply

assign each scheduled node to a resource which does not contain another node

scheduled in the same cycle. Moreover, the module selection issue does not arise

in our algorithm, as we assume that an operation can be bound to one and only one

resource type. Consequently, the resource binding problem in our algorithm is far

simpler than the classical one.

The allocation algorithm starts by creating an array, RAŒ1::rMAX �, of resource

instances for each sharable resource type r 2 R. Sharable resource types include

multipliers, adders, subtractors, and barrel shifters, because sharing such large and

complex units is always beneficial for the overall CFU area. Other computational

resources, such as logical operators, are assumed to be available in abundance,

because sharing these resources is not economical. Each element of RA is a set

of DFG nodes. Any node, v 2 V is allocated to a resource instance, RAŒk�, iff

v 2 RAŒk�. At the beginning of the algorithm, all the elements of RA are initialized

to null.

When a new sharable node is added to a scheduling level, it is assigned to

one corresponding resource instance. When the data-path is finally mapped to a

behavioral description, MUXes are inferred at the input of each instance for all

the different DFG nodes assigned to it. Since the delay of such a MUX is directly

proportional to the number of nodes (i.e. the number of inputs) assigned to an

instance, adding a node to an instance might lengthen the finishing time of nodes

already assigned to it, and thus violate the latency constraint. We take care of this

issue in the binding algorithm itself.

A new node can not be assigned to a resource instance which already contains

some node from the same scheduling step, because it violates exclusivity. From

the rest of the resource instances, an instance with minimum number of assigned

nodes is selected, and a new MUX delay is calculated for this instance assuming

that the new node would be added to it. This greedy strategy ensures that the fastest

resource instance is always selected and all the sharable nodes of a certain type are

uniformly distributed over different instances. The MUX delay calculation function

can be supplied to the allocation algorithm. Currently we assume that MUX delays

increase logarithmically with the MUX size.

After re-calculation of the MUX delay, the finishing time of all nodes assigned

to this resource instance and its successors are updated. If the updated delays do

not violate the latency constraint for any of them, then the node is assigned to the

selected resource instance. Otherwise, the next instance with minimum number of

nodes is selected.

If no resource instances are finally found or if the total MUX area for the resource

instance selected is more than the area of the instance itself, then the algorithm

reports an error and prompts the user to re-run the process with higher number of

resources.
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8.4 IR Minimization

The ISE customization algorithm, presented in the last section, always assumes that

two nodes belonging to two different ISEs always communicate using IRs. This

leaves the GPR I/O slots of the ISEs unused and can result in large number of IRs.

This problem can be remedied by forcing ISEs to GPRs for communication. This

section presents an algorithm which uses this fact to minimize the total number of

IRs required to implement a given set of ISEs.

The IR minimization algorithm is described in Algorithm 8.6. The algorithm

takes the set of ISEs constructed by the scheduling algorithm as input, and tries

to maximize the usage of GPRs in the special instructions. In each iteration,

the algorithm tries to find a candidate node for IR minimization (lines 6–13 in

Algorithm 8.6). All the successors of this node receive their inputs through GPRs

(instead of IRs). Thus, the candidate node reduces one IR output of its parent ISE,

and one IR input of each of the parents of its successors.

A candidate node, v, has the following two properties:

1. All the successors of v are in ISEs. If this is not true, then at least one successor

of v is a BPI which implies that the result of v is already produced in a GPR.

2. Consider any successor s of v. If v and s communicate using a GPR, then

it will increase the GPR input count of the parent ISE of s. Therefore, all

successors of v must belong to ISEs which have sufficient unused GPR inputs. In

a similar fashion, the parent ISE of v itself must have at least one unused GPR

output.

Algorithm 8.6: IR minimization algorithm

PROCEDURE(minimize IR) ;1

INPUT : A set of ISEs ISE D fise1; ise2; : : : ; isemg

begin2

repeat3

best rank 0 ;4

cand node ; ;5

foreach isei 2 ISE do6

foreach v 2 NODE.isei / do7

if is candidate.v/ ^ rank.v/ > best rank then8

cand node v ;9

best rank rank.v/ ;10

end11

end12

end13

assign gprs.cand node/ ;14

until cand node D ; ;15

end16
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Fig. 8.6 Effects of IR

minimization

For each candidate node, the algorithm calculates a rank using the rank function

(line 8 in Algorithm 8.6). The rank calculation is done using the following two

metrics:

1. Number of successors. The more successors a candidate node has, the better the

rank.

2. The lifetime of the output variable produced by the candidate node. Longer

lifetime implies a better candidate.

The rationale behind rank calculation is to put those values in GPRs which have

long lifetime and repeated usage. This reduces the register pressure on the IR file

during IR allocation.

The rank of a node is simply the sum of the above two metrics. The minimization

algorithm selects a node with largest rank and marks the corresponding output of the

parent ISE as a GPR output. The algorithm terminates when it can no longer find a

candidate. The temporal reusage of IRs is ensured by the left-edge algorithm based

IR allocation already described in the previous chapter. IR minimization followed by

a pass of IR allocation can significantly reduce the total number of internal registers.
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An example of IR minimization is shown in Fig. 8.6. Figure 8.6a shows the

original DFG partitioned into 4 ISEs which uses a total of 6 IRs. Assuming that

each ISE can read two GPRs and write one, it is easy to see that some of the

ISEs have unused GPR inputs/outputs. For example, ISE2 and ISE3 have one

unused GPR input each, and ISE4 has both the GPR inputs unused. The DFG

after IR minimization is presented in Fig. 8.6b which uses only 3 IRs instead of

the original 6.

It is also easy to see that, for the DFG in Fig. 8.6b, the input IR of each ISE can

be reused as the output IR. The IR allocation algorithm takes care of such temporal

reuses. The resulting DFG (Fig. 8.6c) only uses 1 IR instead of the original 6.

8.5 Computational Complexity of the HLS Based Algorithm

This section briefly discusses the computational complexity of the HLS technique

so as to highlight its advantages over other ISE generation algorithms reported in

literature (including our ILP based one). The complexity calculation assumes a total

of n candidate nodes in the input DFG G of a hot-spot basic block.

The list scheduling technique used in the HLS based algorithm is a variant of

the minimum-latency resource constrained scheduling problem described in [113]

and has a worst case runtime of O.n2/. The in situ resource allocation and binding

performed during scheduling may change this time complexity. Allocation of a node

to a certain resource instance requires a scan over all instances of the corresponding

resource type to determine which instance has the least number of nodes bound to it.

To guarantee exclusivity, the allocation algorithm must make sure that every node

previously assigned to that instance does not belong to the same scheduling level

as the node being currently allocated. This scanning may require as many steps as

total number of nodes already allocated which, in worst case, may be comparable

to the total number of nodes in the graph, i.e. O.n/. A similar number of steps

might also be required in MUX delay calculation for a selected resource instance.

Therefore, the worst case bound for the runtime of the list scheduling algorithm is

O.n3/, assuming O.n/ scanning steps for binding each new node.

The worst case time complexity of the IR minimization step is also O.n3/. This

calculation is based on the complexities of the is candidate and rank functions

as well as how many times they might be invoked in the worst case (line 8 in

Algorithm 8.6). Since both of these functions need to scan all successors of a given

DFG node, the runtime of both of them are bounded by the total number of nodes

in the graph, i.e. O.n/. They are called a total of n times for each iteration of the

repeat-until loop between lines 3–15, and the repeat-until construct can execute at

most n times before the set of candidate nodes is exhausted. Combining these, we

get a worst case complexity of O.n3/ for the IR minimization algorithm.

From the above analysis, the worst case complexity of the HLS based algorithm

can be derived as O.n3/. Still, this complexity is far better than any other algorithm

described so far in literature.
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8.6 Results

This section presents some results of processor ISA customization using the

previously described techniques. More detailed case-studies of ISA customization

for real-life processors are described in Chap. 10. We have used the 16 GPR LTRISC

processor model (Sect. 7.3.1) as our back-end for all the following experiments.

The cycle count results have been obtained using cycle accurate ISS. All the area

results have been obtained by synthesizing the RTL processor models (automatically

generated from customized LISA processor descriptions) using a 130 nm tech-

nology library. The benchmarks used in the experiments have been selected from

a variety of embedded benchmark suites such as DSPStone [53] (2 dimensional

FIR filter – fir2dim, and IIR filter), EEMBC (convolutional encoder – conv enc,

and fft), Mediabench (row-wise and column-wise IDCT – idct row and idct col –

from MPEG2) and from the publicly available implementation of various encryption

algorithms (AES, DES and blowfish).

8.6.1 ILP Versus HLS Based Algorithms

The first set of experiments was designed to compare the runtime and the application

speed-ups for the ILP and the HLS based algorithms. Both the algorithms were run

on different benchmarks with varying IR I/O constraints while keeping the GPR I/O

constraint fixed at 2-in/1-out. The maximum speed-ups obtained for the different

benchmarks are presented in Fig. 8.7. The instruction latency constraint for the ILP

algorithm was three cycles. Additionally, ISEs were permitted to make a single

memory access. As can be easily seen, the HLS based algorithm clearly produces

better ISEs than the ILP based algorithm. ISEs generated by the HLS algorithm can

improve performance by 2.37� on average w.r.t. software execution, whereas those

generated by the ILP can only deliver an average performance improvement of 1.6�.

Fig. 8.7 Speed-up obtained using HLS and ILP based algorithms
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There are two primary reasons for the lower performance of the ISEs obtained

through the ILP based algorithm. Firstly, each iteration of the ILP algorithm con-

structs a locally optimal ISE by greedily selecting a set of nodes to maximize per-

formance. This aggressive selection procedure often creates small isolated groups of

candidate nodes outside ISEs. Such nodes negatively affect the attainable speed-up

not only because they have to be executed as BPIs, but also because they often intro-

duce extra communication cycles with ISEs. For example, if there are two memory

access nodes in a DFG, the ILP algorithm might create a large multi-cycle special

instruction with a single memory access. The second memory access – left out to be

executed as a BPI – might require an extra IR to GPR move instruction if it uses any

result produced by the ISE. The HLS based algorithm, on the other hand, deliber-

ately includes all candidate operations into ISEs so as to eliminate such extra move

costs between IRs and GPRs. This approach also creates more balanced sets of ISEs

by evenly distributing the available computational and communication resources.

The second reason for the lower speed-up is the edge assignment step of the ILP

algorithm which forces special instructions to use as many GPRs as possible – even

for inter-ISE communication. The increased use of GPRs usually increases register

pressure and causes register spills which, in turn, limit the achievable speed-up. As

we will see shortly, this effect can be also observed for the HLS algorithm if IR min-

imization is used to maximize GPR based communication between different ISEs.

Due to polynomial time heuristics, the HLS algorithm takes less than 1 s to

generate ISEs for all the benchmarks for all different I/O constraints. In contrast

to this, the ILP algorithm often takes several minutes to generate ISEs for programs

with large basic blocks. The runtime figures of the ILP algorithm are summarized

in Table 8.1. The BB size column indicates the sizes of the basic blocks (in the

number of operation nodes) for which ISEs were generated. The ILP algorithm

was run on each benchmark with 6 different IR I/O configurations (6-in/4-out,

6-in/6-out, 6-in/8-out, 8-in/4-out, 8-in/6-out and 8-in/8-out). The average time and

maximum time columns denote the average and maximum runtimes of the algorithm

over these six configurations. As can be seen from the table, ILP can take upto

40 min to generate ISEs for some of the benchmarks.

Table 8.1 Average and maximum runtime of the ILP algorithm for

various benchmarks

BB sizes Average time (s) Maximum time (s)

blowfish 38 < 1 < 1

fft 52 < 1 1

iir 54 4 10

idct row 91 221 985

fir2dim 93 67 120

conv enc 121 170 416

des 137;92;126 141 636

idct col 146 1; 381 2;342

aes 154 411 1;516
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Although the HLS algorithm is better than the ILP algorithm both in terms of

speed-up and algorithm performance, it is not possible to generate ISEs without

IRs through the HLS algorithm. This is the only weakness of the HLS algorithm

vis-a-vis the ILP based one.

8.6.2 Accuracy of Speed-Up Estimation

The next set of experiments was designed to evaluate the accuracy of our speed-

up estimation technique based on �-Profiling results. Speed-up estimation is an

important part of our design flow, because it helps designers to quickly separate

better CFU configurations from a set of potential candidates without going through

time consuming ISS. The estimated and simulated speed-ups (with both the ISE

generation algorithms) of AES and FFT benchmark kernels are presented in

Figs. 8.8 and 8.9 for 6 different IR I/O constraints. It is evident from the presented

Fig. 8.8 Accuracy of speed-up estimations for AES algorithm
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Fig. 8.9 Accuracy of speed-up estimations for FFT algorithm

results that our speed-up estimates can be quite close to those obtained using

actual simulation. Even when our estimates are off by some amount (e.g. Figs. 8.8b

and 8.9a), they accurately predict the relative merits/demerits of various CFU

configurations. Therefore, they can be reliably employed to short-list promising ISE

candidates in the pre-architecture phase.

8.6.3 Effects of I/O Constraints

The effects of IR I/O constraints on the obtainable speed-up for fir2dim and idct col

benchmarks are presented in Fig. 8.10. As can be easily seen from this figure (and

also from Figs. 8.8 and 8.9), IR I/O constraints have a predictable and almost linear

effect on the HLS based algorithm. With increasing I/O bandwidth – specially
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Fig. 8.10 Effects of IR I/O constraints on speed-up

with increasing output bandwidth – the speed-up increases steadily for the HLS

algorithm. The effects of increased I/O bandwidth on the ILP algorithm is uncertain

due to the potential increase of IR-GPR move instructions. Designers are therefore

advised to experiment with a large array of IR I/O constraints while using this

algorithm.

8.6.4 Effects of Resource Sharing and IR Minimization

We conclude this section by presenting some results on resource sharing and IR

minimization techniques used in the HLS based algorithm.
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Fig. 8.11 Effects of resource sharing and IR minimization

The effects of resource sharing on processor area are presented in Fig. 8.11a.

We compare the area of the base processor with that of the customized processors

for fir2dim and idct col. We also compare the total area when the processor is

customized for both fir2dim and idct col. For each customized processor version

with resource sharing, we also present results for a corresponding processor with

the same set of ISEs – but without resource sharing.

Currently, our resource sharing algorithm only produces information about the

assignment of resources to respective resource instances. The generated LISA code

has to be modified by hand to actually create the correct behavior. As a consequence

we could only obtain results by sharing multipliers which are the most critical

resources.
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As both fir2dim and idct col use a number of multipliers, the areas of the

customized processor cores climb steeply without resource sharing. With resource

sharing, however, the area comes down considerably. The extra MUXes for resource

sharing cause some area overhead. The rest is due to the addition of IRs and extra

adders, subtractors and other operators which are not shared.

These results clearly highlight the importance of resource sharing in hardware

for controlling the area overhead of customized processor cores. A logical next step

is to enable automatic generation of resource shared instruction data-paths.

The results of our IR minimization algorithm are presented in Fig. 8.11b. All the

results show the area saving and speed-up degradation w.r.t. no-IR minimized runs

of the HLS algorithm.

IR-minimization causes some significant speed-up degradation due to the in-

creased register pressure for keeping values in GPRs. This is very pronounced in

LTRISC since it only has 16 GPRs. In almost all cases, it also saves some register

area – however, such savings are usually offset by larger performance losses. We,

however, conjecture that one can expect better results with larger GPR files. Further

investigation has to be done in this area in future.

8.7 Synopsis

1. Two ISE generation algorithms – one ILP based and the other HLS based – have

been incorporated into our tool-flow. Both use IRs to effectively increase data

bandwidth to ISEs. Both the works perform pattern generation and selection in a

single step.

2. Our ISE generation algorithms use a two phase approach. The first phase

partitions the DFG into several closely connected ISEs, while the second phase

tries to maximize the total amount of inter-ISE communication via GPRs.



Chapter 9

Increasing Data Bandwidth to ISEs

Through Register Clustering

9.1 Introduction

Throughout the preceding chapters, it has been mentioned several times that the

number of GPR file reads/writes permitted from an ISE greatly affects the amount

of speed-up achievable. The restrictions on the number of GPR inputs/outputs to an

ISE arise from two primary reasons – limited number of coding bits in an instruction

word, and the larger area and longer access latency of a many ported GPR file.

The algorithms presented in Chap. 8 use internal registers in the CFU to overcome

the GPR data bandwidth restrictions. Although the problem of limited number of

instruction coding bits can be overcome using IRs, the techniques described in the

previous chapter have the following limitations:

1. Increased area of the CFU due to the IR file. The area increase due to the IRs is

usually more than that for a many ported GPR file.

2. Tight coupling of the ISE generation and IR assignment algorithms. Both the

ILP and HLS based algorithms need to run post ISE generation IR minimization

passes which are strongly dependent on the DFG partitioning techniques. If the

ISE generation algorithms are substituted by new ones, then the IR minimization

algorithms are also affected.

This chapter proposes a novel approach to increase the data bandwidth between

the GPR file and the CFU based on the idea of localized register files commonly used

in clustered VLIW machines. Apart from lowering the area of a many ported register

file, this technique also decreases the total number of bits required to represent each

GPR address in an instruction word. However, the usage of clustering is not without

its limitations. As we will see later, clustering often introduces unnecessary register

moves in the code. We also present a greedy algorithm that can minimize the number

of such moves ensuring minimal loss of speed-up for clustering. Unlike the IR

minimization schemes described in the previous chapter, this greedy algorithm is

not dependent upon the ISE generation technique employed. Consequently, it can

be easily adapted to other ISA customization tool flows, too.

K. Karuri and R. Leupers, Application Analysis Tools for ASIP Design: Application

Profiling and Instruction-set Customization, DOI 10.1007/978-1-4419-8255-1 9,

© Springer Science+Business Media, LLC 2011
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The register clustering method described in this work derives its inspiration from

techniques used in clustered VLIW machines which have been already introduced

in Chap. 2. To recall from Sect. 2.2.5, clustered VLIWs try to minimize the size and

access latency of GPR files by partitioning the register file into several small register

files a. k. a. clusters, and by generally restricting a functional unit to access only one

of these clusters [58]. Special instructions are used to move data from one cluster to

another. While such an architecture reduces the hardware cost of multi-port register

files, it makes instruction scheduling and register allocation extremely complex for

the compiler [105, 106].

The key contribution of the current chapter is that it identifies clustering as a

promising technique for reducing the register file port-size and the number of coding

bits in presence of ISEs. It also recognizes the issues that can arise out of such

architectures and provides tooling solutions which can mostly do away with such

disadvantages.

The rest of this chapter is arranged as follows. The rationale behind clustered

register file architectures is described in the next section. The following section

introduces the issue of extra register moves due to clustering, and suggests an

algorithm to solve this problem. Finally, Sect. 9.4 compares clustering with un-

clustered register file access in terms of area and speed-up, and shows that

multi-ported clustered register files can significantly reduce the GPR file area

without sacrificing performance.

9.2 Clustered Register File Architecture

This section describes the rationale behind using clustered register file architectures

in presence of special instructions. Like the rest of this work, here also we assume

that the ISEs are implemented in a tightly coupled CFU which works in parallel

with the base processor ALU. The base processor is assumed to be a single issue

processor and therefore, the clustering techniques commonly employed in multiple

issue processors are not directly applicable to the current problem.

The objectives of our clustering are twofold. Firstly, we want to increase the data

bandwidth between the GPR file and the CFU without significantly increasing the

GPR file port area. Secondly, we want to ensure that such measures do not affect the

base processor instruction-set in any way.

Before going into the details of our clustered architecture, we first introduce the

parameters that are used in the subsequent discussions:

• N : total number of GPRs in the architecture.

• W : bit-width of each GPR.

• Acfu: maximum number of GPR accesses permitted from the CFU.

• Abase: maximum number of GPR accesses permitted from the base processor

ALU. We assume that Abase < Acfu which is generally true.

• C : number of clusters in the clustered architecture.
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Fig. 9.1 Register access in a non-clustered register file

The details of the non-clustered and the clustered architecture are presented in

Figs. 9.1 and 9.2, respectively. For sake of simplicity we only show a single register

read from the base processor ALU, and C register reads from the CFU (i.e. one

read from each cluster in the clustered architecture). However, the analysis of the

area estimates, presented in units of 2 � 1 MUXes, is completely generic.

Let us first consider the non-clustered architecture where a ISE makes C GPR

reads from the register file using log2N bit wide addresses adr1, adr2, : : :, adr C

(Left-top corner of Fig. 9.1). For each such read, a N � 1 vector MUX is required

to select one of the W bit wide outputs coming from the N registers (The select

signals for each MUX is derived from the corresponding register address).1 A N �1

vector MUX with vector width of W can be constructed from W simple N � 1

MUXes. Each simple N � 1 MUX, in turn, requires N � 1 units of 2 � 1 MUXes.

Therefore, the total area requirement for the C register ports is C � W � .N � 1/

units. One of these ports, naturally, can be shared with the register read port of the

ALU. In general, the total port area of a non-clustered GPR file with Acfu accesses

is given by:

Areanon�clustered D Acfu � W � .N � 1/ (9.1)

1GPR file ports can also be constructed using address decoders. However, we use vector MUXes

since it simplifies the analysis. Both implementations are area wise equivalent.
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Fig. 9.2 Register Access in a Clustered Register File

The clustered GPR file, presented in Fig. 9.2, breaks the register file into C

smaller register files – R1, R2, : : :, RC – each having a total of N=C registers. The

CFU is still allowed to access a total of C registers, but only one from each cluster.

Each such access requires a .N=C / � 1 vector MUX. So the total port area for these

CFU accesses is C � W � .N=C � 1/. The number of address bits required for each

access is log2.N=C /.

Note that, the view of the register file for a base processor instruction still remains

unchanged, since it still needs log2N address bits for accessing a single register (left

bottom of Fig. 9.2). Internally, however, this address is broken into an adr field to

select one output from each cluster, and a cluster id field to select one cluster output

through a C � 1 vector MUX.

In general, each GPR access from the ALU for the clustered architecture comes

with the overhead of a C � 1 vector MUX. Therefore, the total area of the register

file ports for the clustered architecture is:

Areaclustered D Acfu � W � ..N=C / � 1/ C Abase � W � .C � 1/ (9.2)

Comparing the equations for Areanon�clustered and Areaclustered, it is easy to see

that the overall area of the non-clustered implementation can become almost C

times that of the clustered implementation when Acfu is larger than Abase. Another
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advantage of clustering is that each register address in a ISE now requires log2.C /

bits less than the non-clustered architecture. Therefore, more register addresses can

be specified in the instruction word of a ISE. For example, in a processor with 32 bit

instruction word and 32 registers, no more than 6 register addresses can be specified

in the instruction word. However, with a 4-cluster register file, upto 10 addresses

can be accommodated into the instruction word, since each address only requires

3 bits.

9.3 Cluster Allocation in Presence of ISEs

In the previous section we have seen that clustering can significantly reduce the total

area requirement of GPR file ports while providing high data bandwidth between the

GPR file and the CFU. This increased bandwidth comes at the cost of GPR access

restrictions from the CFU which is explained below.

In a GPR file with C clusters, a ISE which needs to read Rcfu values from the

GPR is restricted to read the first Rcfu=C values from the first cluster, next Rcfu=C

values from the second cluster and so on. When a single ISE is considered in

isolation, this is not a very stringent restriction. However, we have already seen that

in the general case a set of ISEs are required to cover the hot-spot of an application.

The access restriction imposed by clustering can adversely affect the obtainable

speed-up as illustrated in Fig. 9.3. This example shows a sequence of five ISEs used

to cover the hot-spot of one application. The data dependence edges between these

ISEs are shown using arrows connecting the inputs of one ISE to the outputs of

other. There are only two clusters – each one permits one read and one write. For

each ISE, the edges emanating from the dark and light boxes signify the outputs

produced in registers of the first and second cluster, respectively. Similarly, inputs

taken from the first and second cluster are shown through edges impinging on dark

and light boxes, respectively. The name of the variable corresponding to each data

dependence is shown beside each edge.

In Fig. 9.3, I1 produces variable output t1 in cluster 2, but t1 is accessed from

cluster 1 in I2 and I3 (edges drawn in dashed lines). Since the register sets of

the clusters are disjoint, this will require moving the variable t1 from cluster 2 to

cluster 1. In a similar way, variable t2, produced as output from I2 into cluster 1, is

accessed from cluster 2 in I3. This will also require a GPR move. Such GPR moves

can have two effects. Firstly, they can affect the overall speed-up obtained through

ISEs. Secondly, they can increase the register pressure during compilation, since

the same variable might have to be retained into different clusters. For example,

the variable t1 in the above example has to be retained into both cluster 1 (due to

accesses from I2 and I3), and cluster 2 (due to accesses from I4). The increased

register pressure may cause the compiler to spill some of the variables to memory

which indirectly lowers the speed-up.

The next sections provide a formal description of the cluster allocation problem

and present a greedy cluster allocation algorithm.
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Fig. 9.3 Example of access restrictions imposed by clustering

9.3.1 Cluster Allocation Problem

Cluster allocation can be done during or after ISE identification (automatic or

manual) for a given target application. In terms of optimality, cluster allocation

during ISE generation is probably the best solution, because the ISE generation

algorithm can take into account the costs of register moves induced by clustering.

Cluster allocation can be also performed during ISE scheduling (Chap. 7 and

Appendix A) as is done in many VLIW compilers. However, unlike VLIW ma-

chines, the instruction schedule might not affect the optimality of cluster allocation

for single issue ASIPs to a great extent.

Our cluster allocation algorithm is designed to work on the scheduled IA-DFG

produced through ISE generation, latency estimation and scheduling. Although this

approach might produce worse results than simultaneous cluster allocation and ISE

identification, it has wider applicability to different ISE identification techniques

and algorithms, including manual ISE insertion through assembly functions.

The input to our cluster allocation algorithm is the scheduled IA-DFG Gia D

.V ia; E ia/ (Sect. 7.2.2) partitioned between a set of ISEs and BPIs. The set of vari-

ables accessed (i.e. read or written) by the ISEs is denoted as: X D fx1; x2; : : : xng.

Each of these accesses can come from any of the C D fc1; c2; : : : ; cmg clusters

constituting the register file. The set of accesses to any variable xi from the ISEs

is denoted by Ai D fa1
i ; a2

i ; : : : ; a
p
i g. For any access, ak

i 2 Ai , the mapping

Alloci W Ai ! C defines from which cluster the access is made.

For any variable xi , let counti be the number of different clusters from which the

accesses 2 Ai are made. For example, the count values for the variables t1 and t2

in Fig. 9.3 are 2, since both of them are accessed from 2 different clusters. From the

preceding discussion, it is clear that these accesses to different clusters can result in,
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at least, .counti � 1/ GPR move instructions. The objective of optimal cluster

allocation is to reduce the number of move instructions resulting from different

cluster accesses. In other words, optimal cluster allocation tries to find a mapping

Alloci for each xi 2 X such that the following objective function is minimized:

Mgpr D

nX

iD1

counti

Cluster allocation during register allocation is definitely a difficult problem, since

register allocation itself is NP-complete. It is, however, possible to assign each

variable xi 2 X to a cluster before register allocation. The next section provides

a greedy algorithm which performs this task. We can not prove that this will always

lead to an optimal solution. Still, the results indicate that such an allocation strategy

can achieve optimal solutions in most cases. Optimality here means that counti ,

for any variable xi , is 1. However, it is entirely possible that register allocation

introduces extra moves in the generated code due to register spills resulting from

insufficient number of registers in a single cluster. This issue is not factored into our

solution.

9.3.2 Cluster Allocation Algorithm

This section presents an algorithm that tries to optimally allocate clusters between

different ISEs. The inputs to this algorithm are the following:

• The IA-DFG of a basic block from an application which is partitioned between

ISEs and BPIs. Since our ISE generation is run on an SSA-fied DFG, each

variable is written only once and accessed multiple times. We also assume

that the ISEs have been scheduled before cluster allocation. Since we are only

considering single-issue processors, we do not expect the schedule of CIs to

affect the speed-up to any extent.

• The set of variables X accessed from different ISEs and the set of accesses Ai

for any variable xi 2 X .

Let there be rcfu read and wcfu write accesses permitted from each of the m

clusters in a single ISE. We assume that each ISE has � m � rcfu GPR reads, and

� m � wcfu GPR writes. This condition helps us to ensure that no cluster is read

more then rcfu times and written more than wcfu times from a single ISE.

The top-level cluster allocation algorithm – allocate clusters – is presented in

Algorithm 9.1. The allocation starts by performing an initial cluster assignment.

This assignment can be done in many different ways. For our purpose, we

allocate accesses to clusters randomly without violating the number of reads/writes

permitted for a ISE from each cluster. After this allocation, the value of counti for

each xi 2 X can be computed.
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Algorithm 9.1: Cluster allocation algorithm

PROCEDURE(allocate clusters) ;1

INPUT :

1. IA-DFG G ia D .V ia; E ia/,

2. A set of variables X D fx1; x2; : : : xng accessed in G ia, and

3. For each xi 2 X a list of accesses Ai D fa
1
i ; a2

i ; : : : ; a
p
i g from ISEs

OUTPUT: Mapping Alloci W Ai ! C which minimizes total moves due to cluster accesses

begin2

perform initial allocation.X/ ;3

alloc changes true ;4

while alloc changes do5

alloc changes false ;6

// Xsorted is an array storing variables in descending order of count.

// XsortedŒi � is the variable with i th highest value of count.

Xsorted  sort variables by descending count.X/ ;7

for i  1I i � nI i  i C 1 do8

if try reshuffling ( Xsorted Œi �) then9

alloc changes true ;10

11

end12

end13

end14

PROCEDURE(try reshuffling) ;15

INPUT : A variable xi 2 X

OUTPUT: Returns true if some access to xi from a cluster csrc 2 C is moved to another

cluster cdst 2 C

begin16

reshuffle possible false;17

foreach ak
i 2 Ai do18

let csrc be the cluster from where ak
i is accessed ;19

foreach cdst 2 C j F.xi ; csrc/ � F.xi ; cdst/ do20

if try move.xi ; ak
i ; csrc; cdst/ D true then21

reshuffle possible true;22

23

end24

end25

end26

After this initial allocation, the do-while loop between lines 5 and 13 tries

to reshuffle accesses of a variable between clusters. In line 7 of Algorithm 9.1,

the variables are first sorted in descending order of counti so that variables

which are subject to the highest number of register moves are considered first.

The try reshuffling function called in line 9 then tries to move the accesses to

such a variable xi to other clusters. The try reshuffling function monotonically

decreases the objective function Mgpr till either, counti becomes 1 for all xi 2 X ,
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Algorithm 9.2: The try move function

PROCEDURE(try move) ;1

INPUT :

1. A variable xi 2 X

2. An access ak
i 2 Ai for xi

3. Two clusters csrc; cdst 2 C

OUTPUT: Returns true the access ak
i from csrc can be moved to cdst

begin2

// Let Uhave src slots be the set of ISEs where xi is

// accessed from cdst, and for which free slot(csrc/ is true

// Let Uhave dst slots be the set of ISEs where xi is

// accessed from csrc, and for which free slot(cdst) is true

if F.xi ; csrc/ < F.xi ; cdst/ then3

let u be the ISE where the access ak
i is made ;4

if free slot.u; cdst/ D true then5

move access ak
i to cdst ;6

return true ;7

end8

xj D select victim.cdst/;9

if 9xj then10

exchange access to xj and ak
i ;11

return true ;12

end13

end14

else if F.xi ; csrc/ D F.xi ; cdst/ then15

if jUhave src slotsj � jUhave dst slotsj then16

swap csrc with cdst ;17

swap Uhave src slots with Uhave dst slots;18

end19

foreach u 2 Uhave src slots do20

move accesses to xi from csrc to cdst;21

return true ;22

end23

end24

return false;25

end26

or no more moves are possible. The convergence of the algorithm depends on

the monotonicity of try reshuffling. This is guaranteed by strictly enforcing the

following two conditions:

1. Let F be a function F W .X � C / ! N that defines the number of accesses

made to a certain cluster for variable xi 2 X . We attempt to move an access ak
i

to xi from cluster csrc to another cluster cdst only when F.xi ; csrc/ � F.xi ; cdst/.

To put it intuitively, we try to increase the number of accesses made to a heavily

accessed cluster at the expense of lightly accessed clusters. The rationale behind
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this move is that – by gradually shrinking the number of accesses from lightly

accessed clusters it will be possible to eliminate accesses from such clusters

altogether.

2. A cluster move to reduce counti for xi is performed only when it does not

increase countj for any other variable xj .

The first of the above conditions is enforced in line 20 of Algorithm 9.1. The

second condition is enforced in the try move function shown in Algorithm 9.2. This

function tries to move access ak
i of variable xi from cluster csrc to cluster cdst. When

csrc has strictly less accesses than cdst, the access is attempted to be moved to cdst.

This can give rise to the following two cases:

1. The best possible way of such a move is to search for a free slot in cluster cdst in

the corresponding ISE u. A free slot in cdst might mean that, less than rcfu GPR

read (or wcfu write – depending on the type of ak
i ) accesses to that cluster have

been utilized in u. Another possibility is that one of the rcfu read (or wcfu write)

accesses to cluster cdst is an access to a variable which is used only once in any

ISE (e.g. it is a temporary which is written by a base processor instruction, and

read only once inside a ISE). In both cases, ak
i is moved to the free slot, and the

access from the free-slot (if any) is moved to csrc. This case is handled in lines

5–8 of Algorithm 9.2.

2. Moves can still be possible when no free-slots are found. For this, a victim

variable xj is selected (line 9 of Algorithm 9.2) from the accesses to cdst in u.

This victim must satisfy the condition that it has already more accesses to csrc

than cdst, i.e. if the accesses of xi and xj are exchanged between csrc and cdst

it will not increase countj in any way (On the contrary, it can reduce countj if

the access to cdst in u is the only access to that cluster). This enforces the second

condition of monotonicity for try reshuffling.

When csrc and cdst has exactly equal number of accesses, the algorithm attempts

to favor the cluster which has larger number of free-slots in different ISEs (lines

15–25). For this, two sets are constructed. Uhave src slots is the set of ISEs which have

free-slots in csrc, and yet where xi is accessed from cdst. Similarly, Uhave dst slots

is the list of ISEs with free slots in cdst, and accesses of xi from csrc. Moves

are performed from csrc to cdst if such number of CIs is greater for cdst (i.e.

jUhave dst slotsj > jUhave src slotsj). Otherwise, moves are performed from cdst to csrc

An example run of the algorithm is presented in Fig. 9.4. The algorithm starts

with the initial allocation given in Fig. 9.4. We assume that the variable t5 is

produced by a base processor instruction and can be allocated to any cluster. The

algorithm terminates after two moves through the try move function. Each move is

presented as a step.

• After the initial allocation, t1 and t2 have the largest values of count. Therefore,

try reshuffling can be called with either t1 or t2. We assume that it is called with

t1. The first call to try move with the write access from I1 results in no move

since that will increase the count value for t3.
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Fig. 9.4 Example run of the cluster allocation algorithm

Step 1 in Fig. 9.4 correspond to the call to try move with the read access from

I2. At this point, the values of F.t1; 1/ and F.t1; 2/ are equal, since t1 is

accessed twice from both of the clusters. However, cluster 2 has one free slot.

t5, which is accessed from cluster 1 in I2, is a single access variable. Therefore,

lines 20–24 of Algorithm 9.2 are executed, and t1 is accessed from cluster 2

in I2.

• Step 2 shows the call to try move with the access from I3 as argument. At this

point, t1 is still accessed from two clusters. But the number of accesses to

cluster 2 is greater than that to cluster 1. So a move from cluster 1 to cluster 2

can be attempted in I3.

Since no free slot exists in cluster 2 in I3, try move searches for a victim

variable. t2 qualifies for such a victim since it already has more number of

accesses to cluster 1 (i.e. csrc for the move) than cluster 2 (i.e. the corresponding

cdst). The algorithm terminates after the accesses are exchanged in this step (lines

10–13 in Algorithm 9.2).

9.3.2.1 Runtime Complexity of the Cluster Allocation Algorithm

The runtime complexity of the cluster allocation algorithm depends on the complex-

ity of the try reshuffling function and the number of times it is called from the main

cluster allocation procedure (line 9 in Algorithm 9.1). The following discussion
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derives an worst case bound for the runtime of the cluster allocation algorithm based

on the above two factors.

For a given variable xi 2 X , each call to the try reshuffling function may make

at most jAi j � .m � 1/ calls to the try move function (line 21 of Algorithm 9.1),

where jAi j denotes the total number of accesses to xi from various ISEs and m

represents the total number of clusters in the GPR file. try move takes a constant

amount of time if the condition in line 3 of Algorithm 9.2 is true. Otherwise, it may

take a maximum of jV ia
ISEj steps to finish due to the loop between lines 20–23 in

Algorithm 9.2, where V ia
ISE is the set of ISEs in the IA-DFG produced by the ISE

generation algorithm (refer to Sect. 7.2.2). Assuming that jV ia
ISEj is much larger than

the constant time required to move an access to a free slot, the worst case timing

complexity of try reshuffling, for a given variable xi 2 X , is given by the following

equation

Ttry reshuffling.xi / D jAi j � .m � 1/ � jV ia
ISEj

Each iteration of the while loop between lines 5–13 in Algorithm 9.1 invokes

the try reshuffling function for all the elements 2 X . Consequently, the worst case

bound for a single iteration of the while loop, Tsingle iteration, can be calculated as

Tsingle iteration D

nX

iD1

Ttry reshuffling.xi /

D .m � 1/ � jV ia
ISEj �

nX

iD1

jAi j

The quantity
Pn

iD1 jAi j is the total number of variable accesses made from all

the ISEs in a given IA-DFG, and will be referred to as Naccess henceforth.

The worst case timing bound for the cluster allocation algorithm can now be

derived by estimating the maximum number of while loop iterations required to

converge to a solution. Note from lines 7–12 in Algorithm 9.1, that at least one

call to the try reshuffling function must succeed in each iteration of the while loop

to start a new iteration (a successful call to try reshuffling is one which moves at

least one access to a variable from one cluster to another). For each variable xi 2

X , the number of successful invocations of try reshuffling can never be more than

.m � 1/ � jAi j, because each access might be moved from the starting cluster to

the final cluster through at most .m � 1/ intermediate clusters. This translates to

.m�1/�
Pn

iD1 jAi j, or .m�1/�Naccess, iterations of the while loop for the variable

set X , assuming only one successful call to try reshuffling per iteration. From this

analysis, the worst case timing complexity of the algorithm can be derived as
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Tworst case D .m� 1/ � Naccess � Tsingle iteration

D .m � 1/2 � N 2
access � jV ia

ISEj

D O.m2 � N 2
access � jV ia

ISEj/

For a fixed clustered GPR file (i.e. m being a constant), the worst case timing

complexity of the algorithm can be calculated as O.N 2
access � jV ia

ISEj/ which is still

polynomial. For the benchmarks presented in the results section, the algorithm

only requires a few iterations of the while loop (lines 5–13 of Algorithm 9.1)

before converging to a solution. This solution almost always manages to achieve

our criteria of optimality, i.e. to ensure that all variables are accessed from only

one single cluster. Although our allocation algorithm significantly reduces register

moves induced by clustering, the added access restrictions sometimes result in

some extra register spills. Such spills can only be eliminated by combining cluster

allocation with register allocation in future.

9.4 Results

In this section, we present some results to demonstrate that clustering can be

effective in achieving high-quality ISEs without significant area-overheads in the

register file. The first section presents some benchmark speed-ups to illustrate

the performance penalties of clustering, and the effect of our cluster allocation

algorithm in reducing such penalties. In Sect. 9.4.2, we illustrate the area/speed-up

trade-offs of clustering (w.r.t. a non-clustered GPR file) using the DES benchmark.

9.4.1 Benchmark Speed-Ups

Figures 9.5 and 9.6 present the speed-up values for a set of embedded benchmark

kernels (blowfish, aes, des, fft, convolutional encoder, fir and iir [53, 55]) for

different GPR file sizes, cluster sizes and GPR I/O restrictions. Note that, in order

to simplify the analysis, these results only show the speed-ups relative to those

achievable using a non-clustered GPR file (the absolute values of the speed-ups,

achieved using the non-clustered GPR file, are similar to the ones already reported in

the related literature). For example, compared to the pure software implementation,

the iir filter hot-spot with ISEs executes 1.93� faster with a 16 register, non-

clustered GPR file. If the same ISEs are used with a clustered GPR file and a simple

cluster allocation strategy, the speed-up w. r. t. the software implementation is only

1.37�. Therefore, we say that the clustered GPR file with the simple allocation

strategy achieves 72% (1.37/1.93 � 100%) of the maximum achievable speed-up.
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Fig. 9.5 Speed-ups for the 16 GPR LTRISC

The speed-up results have been obtained by instruction-set simulation with the

LTRISC architecture described in Chap. 7. We used the 64-bit instruction word

LTRISC for accommodating large number of GPR reads/writes in each instruction.

We created four different processor configurations, each of which correspond to a set

of values of the parameters – N , Acfu and C – introduced in Sect. 9.2. For example,

Fig. 9.5b show the results for an LTRISC with 16 GPRs (N D 16), divided among

two clusters (C D 2), each having 8 registers. This configuration permits a total of

8 read and 4 write accesses from the GPR file (Acfu D 8 C 4 D 12) – i.e. 4 reads

and 2 writes are permitted from each cluster. The speed-up values are relative to
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Fig. 9.6 Speed-ups for the 32 GPR LTRISC

those achieved using an LTRISC with the same values of N and Acfu, but having a

non-clustered GPR file. The other configurations are:

1. 16 GPR LTRISC with 2 clusters, 3 reads and 2 writes from each cluster (N D 16,

C D 2; Acfu D 10) (Fig. 9.5a).

2. 32 GPR LTRISC with 2 clusters, 3 reads and 2 writes from each cluster (N D 32,

C D 2; Acfu D 10) (Fig. 9.6a).

3. 32 GPR LTRISC with 2 clusters, 4 reads and 2 writes from each cluster

(N D 32; C D 2; Acfu D 12) (Fig. 9.6b).
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For each configuration, the dark bars represent the speed-ups with simple cluster

allocation strategies.2 The light colored bars represent the speed-ups with the cluster

allocation algorithm (for the rest of this paper, we call this strategy optimal)

presented in Sect. 9.3.

For the 16 GPR LTRISC (Fig. 9.5a, b) the simple allocation strategies only

achieve around 80% of the speed-ups w.r.t. the non-clustered architecture.

However, when optimal cluster allocation is run, the average speed-up increases

to 87%.

The higher performance penalties for the 16 GPR LTRISC are due to the register

spills introduced during register allocation. Such spills are mainly caused by the

relatively high number of GPR reads/writes permitted per cluster. For example, in

the 8 read – 4 write configuration, upto 2 results are written and 4 are read per

cluster by each ISE. In the 16 GPR LTRISC, out of 8 registers in the second cluster,

only 5 are allocatable (3 GPRs are reserved as stack pointer, frame pointer and

link register). If there are two consecutive CIs with the first one writing 2 GPRs

and the second one reading 4 GPRs from the second cluster, one register spill is

necessary.

Naturally, the results are much better for the 32 GPR LTRISC. Even with the sim-

ple allocation strategies, the average speed-up is around 89% of the achievable one.

When optimal cluster allocation is applied, the performance losses are completely

eliminated in most cases.

The benchmark results clearly demonstrate the effectiveness of our optimal

allocation algorithm in presence of clustering. While register clustering certainly

has some performance penalties (around 20% for the 16 GPR LTRISC, and 11% for

the 32 GPR LTRISC), the cluster allocation algorithm can restrict such performance

losses to tolerable limits – especially for larger GPR files.

9.4.2 Area/Speed-Up Trade-Offs for Clustering

In this section, we present the area/speed-up trade-offs of clustering for the DES

application. Figures 9.7 and 9.8, present the speed-ups and areas for different

configurations of 32 and 16 GPR LTRISC. We compare non-clustered GPR files

with 4 reads – 2 writes, 4 reads – 4 writes, 6 reads – 4 writes, 8 reads – 4 writes, and

clustered GPR files with 6 reads – 4 writes, and 8 reads – 4 writes.

In Fig. 9.8a, b, the combinational area results for the different configurations of

the 16 and 32 GPR LTRISC are shown. The speed-up results for the two LTRISCs

are shown in Fig. 9.7. The speed-up values have been presented w.r.t. the maximum

speed-up achievable using the non-clustered register file with 8 reads and 4 writes.

The combinational areas of the GPR file and the overall processor are relative to the

2We have tried two simple cluster allocation strategies. The first one assigns each GPR access

(input or output) to the first available cluster. The second one assigns the first access (to each CI)

to the first cluster, the second to the second cluster and so on. The result only shows the best one

of these two strategies.
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Fig. 9.7 Effects of clustering in speed-up for DES

total combinational area of the basic LTRISC. These area results have been obtained

by automatically generating RTL from the corresponding LISA processor models,

and synthesizing them using a :18� library.

It is easy to see that the combinational area of GPR file is a significant fraction

of that of the overall processor (26% for 16 GPR basic LTRISC and 48% of the 32

GPR basic LTRISC). This area increases almost linearly with the number of GPR

file ports for non-clustered configurations. However, for clustered configurations,

the area increases at a much slower rate. The area of the clustered 8 read – 4 write

GPR file is comparable to that of the non-clustered 4 read – 2 write GPR file for

both 16 and 32 GPR LTRISCs.

The speed-up results clearly emphasize the advantages of clustering. While the

areas of 8 read – 4 write clustered GPR files are only fractions (approximately 50%)

of their non-clustered counterparts, the achievable speed-ups with clustering are

often comparable to the non-clustered architectures (85% and 100% for 16 and 32

GPR LTRISC, respectively).

9.5 Synopsis

1. Register clustering is a technique used in many VLIW processors to reduce the

size and access latencies of register files. This technique can be used to increase

the data bandwidth between the base processor and the ISEs.



192 9 Increasing Data Bandwidth to ISEs Through Register Clustering

Fig. 9.8 Effects of clustering on processor area

2. Clustering can save both register file port area and number of instruction

bits for register operand encoding. However, clustering imposes several access

restrictions on ISEs which can lower the speed-up w.r.t. a non-clustered multi-

ported GPR file.

3. This chapter suggests effective post-ISE generation cluster allocation schemes

which can minimize the speed-up losses due to clustering. The results clearly

indicate that clustering can significantly reduce the register file port area with

minimal speed-up degradation.



Chapter 10

Case Studies

10.1 Introduction

In this chapter, we intend to illustrate the applicability of our ASIP design

framework in developing processor architectures for real-life applications. Two

major components of our design flow – the �-Profiler and the ISA customization

tool flow – have been separately introduced in Chaps. 4 through 9. This chapter

shows how these tools can be used together in the pre-architecture phase to derive an

initial ASIP model for a target application, or to customize an existing architecture

with application specific ISEs.

This chapter contains four case studies on designing application specific pro-

cessors for real-life embedded applications. The benchmark applications selected,

the implementation platforms used and the major focus for all the case studies

are summarized in Table 10.1. All the benchmarks used in the case-studies were

selected from multimedia and encryption domains, because these two areas are the

most computationally intensive of all embedded applications. The first two case

studies apply our ISA customization techniques to two prominent configurable

processor cores – MIPS 32 with CorExtend [115] and ARC 600 [11]. Both the

processors are 5-stage pipelined RISC cores where the basic ISA implements all

integer fixed point C-level operations. The CFU is restricted to use only 2 input/1

output ISEs which may not include any memory accesses. We used proprietary tools

from MIPS and ARC for ISS and RTL generation. The results clearly demonstrate

the potential of our technology even for configuration based ASIP design flows with

restricted CFU interfaces.

The last two case studies of this chapter are more ambitious in nature. They

depict the gradual refinement of an initial processor specification using hints from

our application analysis tools. The first one describes the development process of a

small ASIP for the well known mpeg-layer3 (MP3) audio decoding using the results

of �-Profiling. The last case study uses both profiling and ISA customization to

design a processor core for the H.264 video decoding application. To save time

and development effort, we decided to customize a template processor written in

K. Karuri and R. Leupers, Application Analysis Tools for ASIP Design: Application

Profiling and Instruction-set Customization, DOI 10.1007/978-1-4419-8255-1 10,

© Springer Science+Business Media, LLC 2011
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Table 10.1 A brief summary of the scopes of the case-studies

Benchmark Application domain Template architecture Primary focus

H.264 Encoder [177] Multimedia (Video) ARC 600 ISA customization

DES [51] Encryption MIPS 32 ISA customization

MP3 Decoder [118] Multimedia (Audio) LTRISC Micro-architecture

customization

H.264 Decoder [177] Multimedia (Video) LTRISC Both ISA and

micro-architecture

customization

LISA 2.0 ADL instead of designing the entire processor model from scratch. This

processor model – LTRISC – has been already described in Chap. 7 as one of the

implementation platforms of our ISA customization tool-flow. The initial LTRISC

architecture used for the case-studies had the following properties:

1. RISC architecture with 5-stage pipeline (FE, DE, EX, MEM and WB) as

described in Sect. 2.2.2.

2. 32-bit ISA with all basic integral arithmetic and logical operations except

multiplication, division and modulus.

3. 16 registers in a GPR file with 2 input and 1 output ports.

We used automatically generated software tools (C compiler, assembler, linker,

loader, instruction-set simulator) and hardware model for easy modification and

comparison of results for different processor configurations obtained through the

case-studies. The ADL based design flow granted us full freedom in experimenting

with arbitrary modifications during the course of the case-studies which would not

have been possible with configuration based processor design frameworks.

10.2 ISA Customization of MIPS 32 with CorExtend

The first case study performs ISA customization of a MIPS 32 processor using the

MIPS CorExtend technology. We used the ILP based algorithm for ISE generation.

The target application was Data Encryption Standard (DES) [51] – a symmetric-

key, block cipher algorithm which uses a 56-bit key. The algorithm repeatedly

applies the Feistel function (F function) in 16 rounds on two 32-bit sub-blocks of

a 64-bit wide plain-text block. We used the MIPS Cycle accurate ISS to detect the

primary computational bottlenecks of DES. The cycle count results for the different

customized processor versions were obtained using automatically generated ISS

from the CoWare CorXpert tool-chain.

Not surprisingly, the F-function was found to be the most computationally

intensive part consuming more than 90% of the overall execution cycles. We ran our

ISA customization tool on the F-function to identify promising special instructions

under the 2-1 GPR I/O constraints imposed by the base processor instruction
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Fig. 10.1 DES speed-up and number of IRs for different scratch-pad access configurations

encoding. The first results were not very promising because only around 10% speed-

up was observed in ISS.

Closer inspection of the hot-spot using the �-Profiler revealed two important

statistics – firstly, the F-function contained a lot of memory accesses (18% of total

operations), and secondly, most of these memory accesses were directed towards

the so-called eight S-Boxes (More than 80% of all memory accesses) which are

constant look-up tables. The accesses to S-Boxes are scattered throughout the code

of the F-function which prevents formation of larger ISEs. Therefore, we decided to

move the S-Boxes to scratch-pad memories inside the CFU to form larger ISEs.

Figure 10.1a shows the speed-up values for DES w.r.t. pure software execution.

The X-axis corresponds to the number of simultaneous S-Box accesses permitted
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from the scratch-pad storage elements. The speed-up improves immediately to

around 1.7� with a single S-Box access and goes up-to 6.5� if three parallel

accesses are permitted. Another effect of the scratch-pads is shown in Fig. 10.1b.

The total number of IRs in the CFU comes down drastically because of the scratch-

pads. This effect is due to the formation of larger ISEs and reduced intra-ISE

communication.

10.3 ISA Customization of ARC 600

The second case study was targeted towards customization of an ARC 600 processor

core. The target application was X.264 [175] – a publicly available implementation

of the H.264 video coding standard. We decided to generate a customized processor

for the X.264 encoder sub-module. For different processor versions, we obtained

hardware area results using the automatically generated RTL from ARC’s ARChiect

tool. Cycle count results for the original and customized processor versions were

obtained using the ARCangel 4 [12] FPGA development board. Like the DES

case study, the ILP based algorithm was used to generate the special instruction

extensions.

H.264 is a far more complex application than DES. It contains several thou-

sand lines of C code with no clearly defined hot-spot. Unfortunately, the X.264

implementation contained many gcc specific non-ANSI code segments which

could not be compiled through the LANCE front-end. Therefore, we could not run

�-Profiler on the entire application. This did not prove to be major hindrance due to

the availability of ARC’s compiler and profiling tool-chain.

After algorithmic analysis and profiling, the following application segments were

found to be promising candidates for ISA customization:

1. SAD which calculates the sum of absolute differences between two motion

vectors.

2. CABAC and CAVLC which perform lossless compression on the image data.

3. The Motion compensation kernel.

Among the above hot-spots, SAD is too regular and an immediate candidate

for acceleration through SIMD instructions. CABAC and CAVLC have too much

control-flow with small basic blocks, and is not an ideal candidate for ISA

customization. Therefore, we selected the motion compensation kernel, consisting

of the functions pixel satd wxh, motion compensation chroma and get ref, as our

final candidate.

The results of the case study are presented in Table 10.2. The first results with

motion compensation chroma were extremely disappointing because we only got a

speed-up of around 8% at an exorbitant area cost (almost 2.49� of the basic core).

Closer inspection revealed that the ISEs used a staggering 21 multipliers. It was not

possible to constrain the resource usage because we were using the ILP algorithm.

So the number of multiplications per ISE was also quite high (up-to 7 in some cases).



10.4 Development of an MP3 Audio Decoder 197

Table 10.2 Results of ISA customization for the ARC processor

Number of Number of Area with

ISEs IRs extensions Speed-up

Base ARC core 0 0 1� 1�

motion compensation chroma 12 19 2.49 � 1.08 �

motion compensation chroma 12 19 2.1 � 1.08 �

(with shared multipliers)

pixel satd wxh 18 19 3.21� 1.52 �

pixel satd wxh + 30 19 4.41� 1.58 �

motion compensation chroma

(with shared multipliers)

get ref 5 14 1.49 � 1.29 �

Still we managed to do some manual multiplier sharing and bring down the overall

area cost to 2.1�.

We obtained a speed-up of around 1.52� for the pixel satd wxh function

at an area cost of 3.21�. The total area and speed-up were found to add up

when the processor was customized using ISEs for both pixel satd wxh and

motion compensation chroma. Due to the limited availability of the ARC tools,

we were not able to generate extended processors with all the three hot-spots

taken together. However, we conjecture that the speed-up and area values for the

third hot-spot get ref will simply add-up giving a total of 1.9� speed-up at an

area cost of around 4.9�. Moreover, given more time, it will also be possible

to bring down the ISE area considerably through multiplier/adder and subtracter

sharing.

10.4 Development of an MP3 Audio Decoder

The case study for �-Profiler has been to implement a small ASIP for well known

mpeg-layer3 (MP3) audio decoding. We extracted the frame decoding kernel of the

code (around 800 C source lines) from a publicly available implementation [118] of

the standard. Around 80% of execution time, in any average run, is spent inside this

kernel code.

We started the exploration process by running the kernel through �-Profiler for

several randomly selected frames, and analyzed the profiling data. Depending on

the profiling information we introduced changes in the architectural model. After

each incremental change, we obtained new cycle count and code size figures by

re-targeting the software tools, and obtained area and clock period information by

synthesizing the generated hardware model using gate level synthesis tools (with a

0.18� library).
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Table 10.3 Average operator execution frequencies for frame decoding ob-

tained via �-Profiler

Integral (%) Float (%) Pointer (%) Total (%)

Arithmetic 4 5 23 100 41

Logical/bitwise 1 0 0 1

Multiplication 14 18 0 12

Comparison 22 2 0 2

Load/store 18 57 0 34

10.4.1 Operator Usage Analysis

As the first design step, we decided to analyze the average execution frequencies of

different C operators in the kernel. The collected data is summarized in Table 10.3.

The table shows addition, subtraction and negation as arithmetic operators, and

multiplication statistics is reported separately.

As can be readily seen, there is a considerable number of single precision

floating point as well as integer multiplication operations in the kernel. Our

selected architecture, without an FPU or a multiplier, needed to emulate each of

these operations in software. This constituted the primary performance bottleneck.

We decided to add both signed and unsigned integer multipliers in the architecture.

Still, the primary performance bottleneck – floating point emulation in software –

remained.

Experiments with a floating point emulation library [155] indicated that such

emulation could be at least two orders of magnitude slower than hardware im-

plementation. �-Profiler generated cycle count figures suggested that, with a 100

times slower floating point emulator, around 60 M cycles would be required to

decode one single frame at 192 kbps bit rate. Therefore, to play 38 frames per

second (as required by the MP3 standard) the processor would need 2280 M cycles

per second, resulting in a very high clock frequency. This instantly suggested that

a single precision FPU must be added to the architecture to meet the real-time

constraints of the application.

10.4.2 Processor ISA Modification

Since inclusion of an FPU is extremely costly in terms of area, we decided to

defer this step and look for some other area saving optimizations. Analysis of the

immediate value ranges, dynamic value ranges, branch profiling information and

operator execution frequencies revealed some more useful data summarized below:

1. The integer comparisons are almost entirely due to >= operator. This data

immediately suggested elimination of all comparison operations except >= from

the original processor. The rest could be emulated in software using results of

subtraction.
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2. Bulk (more than 98%) of the immediate integral values, used in different

operations, needed less or equal to 8 bits for representation. Therefore, we

decided to have only 8-bit immediates in instruction-set (rather than 12 and 16-bit

wide immediates as was in the original architecture).

3. The average jump length only needed 8 bits for representation. So we decided

to shorten the immediate jump length to 16 bits from 20 bits of the original

architecture. This estimate is still fairly conservative.

4. The values of integral types was within the range between –7012 and 17664. This

indicated that only 16-bit integral values should suffice in all cases.

Taking clues from the above information, we tried a new configuration with

reduced jump length, shortened immediate value and fewer comparison operations

in the architecture. With fewer instructions and shorter immediates and jumps, it

was possible to re-arrange the instruction coding and reduce the instruction word

length to 24 bits (instead of the original 32 bits). This immediately led to a saving of

around 20% in code size. We also had some area reduction in instruction decoding

logic and ALU, but it was minimal. Moreover, the cycle count increase for leaving

out the comparison instructions was around 18%. So, this configuration did not seem

promising at all.

10.4.3 Deriving the Final Configuration

As an experimental next step, we migrated from 32-bit to s16-bit ALUs and

register files for integral operations following the dynamic value range information.

This brought down the total area of the processor drastically to 8.82 K gates

from 18.81 K gates of the original processor. Since, floating point emulation is

difficult to implement with 16-bit integers, we decided not to re-target the software

tools for this configuration to obtain cycle count figures. Instead, we decided

to use the area savings for implementing a 32-bit FPU with multiplier, adder,

subtracter, comparator and eight 32 bit floating point registers.1 With the FPU, the

average cycle count figures per frame came down to 410 K cycles. At this rate the

architecture can decode 38 frames in 16.31 M cycles i.e. it needs a 16.31 MHz clock.

To be on a safe footing (specially to run files with bit rates higher than 192 kbps), we

decided to have a clock of 25 MHz (40 ns). Using this as a clock period constraint,

we ran gate level synthesis tools to obtain the area and cycle length results for each

intermediate processor configuration.

The final comparison of code size, average cycles per frame, cycle length and

area is summarized in Table 10.4. As can be readily seen, the final processor’s clock

is 16.08 ns slower than the original, but still meets the cycle length requirement

1A refined version of this FPU design has been presented in [91]. However, the results in the current

book are slightly different because we use 8 FP registers rather than 16 and a different gate level

synthesis library.
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Table 10.4 Comparison of code size, area, clock length and cycle counts with

various processor configurations

K cycles/ Clock Area Code size

frame (ns) (K gates) (KB)

Original + signed multiplier 132,649 23.60 18:81 83.08

w/o compare + 24-bit insntr. 156,273 22.07 17:29 66.75

16 bit integer ALU NA 15.29 8:82 NA

With FPU 410 39.68 15:61 11.52

of 40 ns. Additionally, in terms of cycles per frame, the final configuration is around

300 times faster than the original due to the newly added FPU. It also requires less

amount of area (83% of original) and code size (14% of original). The code size

savings are due to two reasons: migration from 32-bit to 24-bit instruction word and

elimination of the floating point emulation routines from the code.

10.5 Development of a H.264 Video Decoder

The case study to illustrate the combined usage of �-Profiler and ISA customization

tools focuses on the development of an ASIP for the H.264 video decoder.

The H.264 [177] standard is a very complex next generation video encoding

standard. We used a proprietary implementation of the decoder software for this case

study. The starting LTRISC model – synthesized using a 0.13� library – was found

to have an area of around 22.7 K gates and met a clock constraint of 3.5 ns. This

initial architecture could only achieve a frame-rate of around 4 frames/s for even

low resolution video streams. Major changes in this original architecture, guided by

the analysis results of profiling and ISA customization, were carried out during the

course of this case-study.

10.5.1 Operator Usage Analysis

Similar to the previous case study, here also we started by analyzing the usage

statistics of C level operators. Operation usage statistics revealed that 0.8% of

total operations executed were integer divisions and modulo operations, and almost

9% were integer multiplications. We used the weighted cycle count calculation

to compare the effects of software emulation vs. hardware execution of these

operations on the overall performance. The results are summarized in Table 10.5.

We assumed 1 cycle for hardware execution of a multiplication vs. 64 cycles

for its software emulation, and 10 cycles each for hardware execution of integer

division and modulo operations vs. 98 and 79 cycles for their software emulation,
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Table 10.5 Multiplication, division and modulo operation usage statistics and effects

of their software emulation

% of Total Hardware Emulation Slowdown due

Operation Ops. executed execution cost cost to emulation

Multiplication 9.32 1 64 4.56�

Division 0.02 10 98 1.01�

Modulo 0.78 10 79 1.32�

respectively. The number of cycles required for emulation were determined by

running the H.264 decoder on the initial LTRISC architecture and recording the

average cycle counts for the corresponding emulator functions.

The weighted cycle count statistics demonstrated that the software emulated

multiplications could affect the overall performance very negatively (an estimated

4.56� slowdown due to emulation). This prompted us to immediately add a signed

multiplier to the original architecture because almost all integer multiplications were

signed (7503440 signed multiplications vs. only 5168 unsigned ones). However,

the emulation penalties for integer divisions (very little slowdown) and modulo

operations (1.32� slowdown) were not as high as multiplication. Therefore, we

decided not to immediately implement the division and modulo operations in

hardware because of their high area costs, and started to investigate scopes of further

optimizations.

Investigation of the immediate value usage statistics revealed that a large

number of division and modulo operations actually use immediate values which

are powers of 2 (mostly 2, 4 and 8). Occurrences of such divisions and modulo

operations were manually removed by right shift and bitwise and operations.

Moreover, in source code, we also found many occurrences of modulo operations of

the form dividend%divisor immediately following divisions by the same divisor.

Such operations were removed by the formula dividend � .divisor � quotient/

where quotient was obtained through the immediately preceding division operation.

Implementation of these two simple software optimizations increased the frame-rate

on LTRISC by a factor of 1.76� of the original without any area penalty. The total

number of division and modulo operations came down to only 0.07% of the overall

operator usage from the original 0.80%. The frame-rate further increased to a factor

of 3.83� with the addition of the signed multiplication instruction. However, this

increase in performance was paid for by 17% area increase of the original core.

10.5.2 Manual ISA Customization

Unlike the MP3 decoder case study, where the performance was dominated by the

software emulation of floating point instructions, no clear computational bottleneck

for the H.264 decoder could be found. Therefore, we looked into the weighted



202 10 Case Studies

cycle count profile for various functions in the original source code to identify

opportunities for manual or automated ISE customization.

The weighted cycle count profile, after the software optimizations, revealed that

a function called CustomClip accounted for more than 20% of the execution time

of the application. On closer inspection, it was found that this simple function clips

a value between specified upper and lower bounds. Immediately, it was decided to

implement this function as a special instruction in the processor core.

The execution count profile of the application further revealed that two other

functions – Abs and CombineSign – together accounted for more than 14% of all

function calls and almost 3% of the overall cycle count. TheAbs function calculated

the absolute value of a given integer, while the CombineSign function returned

the negation of a given integer depending on an input flag variable. Because both of

these functions could be efficiently implemented in hardware using a few MUXes

and 2’s complement operations, we decided to include them as special instructions

in the ISA.

With CustomClip, Abs and CombineSign implemented in hardware, the

frame-rate increased to 5.38� of original with a very minor increase in the overall

area (around 11%).

10.5.3 Automated ISA Customization

Apart from CustomClip, Abs and CombineSign, no other promising special

instruction could be identified manually for the H.264 decoder. Therefore, we

decided to run automated ISA customization on the hot-spots of the application.

Eight promising hot-spot functions with a combined execution time share of

almost 45% were selected for automated ISE generation. The following CFU

interface alternatives were considered during ISE customization.

1. Memory Accesses were allowed from the CFU, because they were found to be

one of the most frequently executed group of operations in the overall decoder

application, as well as in the hot-spots. The operator usage profile indicated that

almost 17% of all executed operations were memory accesses. For the eight

selected hot-spots, this number varied from 11% to upto 25%.

2. IR File was considered as one of the possible options for increasing data

bandwidth to the CFU. Moreover, we decided to use the HLS based ISE

generation algorithm, because it has been found to perform better than the ILP

based algorithm in our earlier experiments described in Chap. 8.

3. Clustered GPR File was considered as another possible option for increasing

data bandwidth to the CFU.

The first design decision was concerned with selection of either an IR file,

or a clustered GPR file in the architecture. For this, we generated ISEs for

three prominent hot-spot functions – pFilterVert, pFilterHor and

GetLMCTempBlock – using the ILP and HLS algorithms. The ILP was run
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assuming 4-in/4-out, 6-in/4-out and 8-in/4-out clustered GPR files (i.e. without any

IR in the CFU), while the HLS algorithm was run assuming 8-in/8-out, 10-in/10-out

and 12-in/12-out IR files, and a 2-in/1-out GPR file.

The speed-up estimates for the ISEs generated using both the algorithms were

fairly similar. The ISEs generated using HLS were estimated to provide slightly

better speed-ups for pFilterVert and pFilterHor, while those generated

using ILP were found to be somewhat better for GetLMCTempBlock. However,

as we have already seen in Chap. 9, the estimated speed-ups can get lowered by

upto 10% for clustered GPR files. Additionally, the ILP algorithm generated several

multi-cycle ISEs which could not be accommodated into the LTRISC pipeline

without manual modifications. Therefore, in absence of a clear speed advantage

for ISEs using clustered GPR files, we decided to use an IR file in the CFU.

The HLS based customization algorithm was run with various CFU interface and

computational resource constraints to identify the best CFU configuration. The 14-

in/12-out configuration of the IR file yielded the best speed-ups for all the hot-spots.

The resulting CFU contained a total for 17 IRs and provided a total frame-rate of

7.46� the original. Many of the identified ISEs were extremely complex having ten

or more nodes. Two examples of the largest ISEs, presented in Fig. 10.2, make it

abundantly clear that such instructions could never have been found without our

automated generation process.

The special instructions caused considerable increase in the core area because

larger resources such as multipliers, adders and subtractors were not shared between

ISEs. Using the resource sharing hints generated by the ISA customization tool, we

were able to manually share several multipliers, adders and subtractors. Sharing of

these large resources brought down the total area of the core considerably.

10.5.4 Final Optimizations

Even with resource sharing, the total area of the LTRISC architecture with ISEs was

4.27� that of the base LTRISC processor. Therefore, we decided to do some final

fine-tunings of the customized processor to further minimize the core area.

Details of ISE customization for the eight selected H.264 decoder hot-spots are

presented in Table 10.6. The hot-spot functions are sorted in descending order of

the total number of cycles saved by ISEs. These values were obtained using cycle

accurate simulation on the LTRISC ISS. The combinational area due to ISEs (with

resource sharing) for each hot-spot is also listed in the last column.

A quick glance over Table 10.6 reveals that the last three hot-spot kernels, i.e.

DirectICT, GetCMCTempBlock and CalcMBLuma, account for only around

14% of the total cycles saved, but almost 44% of the total combinational area of

all the ISEs taken together. Consequently, we decided to drop the ISEs for these

three functions from the customized LTRISC. The Abs and CombineSign special

instructions were also deleted from the ISA because all occurrences of them were
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Fig. 10.2 Two large ISEs identified in the H.264 decoder

Table 10.6 Details of ISE customization for eight H.264 decoder hot-spots

K cycles Number of

saved Number nodes in the Combinational

Function name by ISEs of ISEs largest ISE area of ISEs (K gates)

pFilterVert 58,378 9 12 9:14

pFilterHor 43,589 9 12 6:79

GetLMCTempBlock 41,769 25 9 8:46

MotionCompensateChroma 19,926 21 11 13:12

InverseQuantize 14,364 8 6 6:95

DirectICT 13,543 29 13 13:52

GetCMCTempBlock 9,350 22 11 10:55

CalcMBLuma 7,648 16 8 11:63
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Fig. 10.3 Summary of the eight H.264 processor configurations

only found inside the first five ISE-fied hot-spots. The resulting architecture was

around 7.03� faster than the base LTRISC, but only 3.07� larger.

10.5.5 Summary of Configurations

The results of the case study are summarized in Fig. 10.3. Overall, the following

eight architectural configurations were tried for the case study:

• Config1: The basic LTRISC processor.

• Config2: Software optimization of the H264 decoder.

• Config3: Signed multiplication added on top of software optimizations.

• Config4: Manual ISA customization with CustomClip,

Abs and CombineSign.

• Config5: ISEs added to the ISA without resource sharing.

• Config6: Manual multiplication sharing between ISEs.

• Config7: Manual adder/subtracter sharing between ISEs.

• Config8: ISEs for DirectICT, GetCMCTempBlock and CalcMBLuma

dropped from ISA. Abs and CombineSign removed, too.

Each configuration in the above list also subsumes all the modifications of the

previous configurations. Figure 10.3 presents the speed-up/area trade-offs for all

the configurations. One can observe that two values are displayed beside each

configuration. The first of these values represents the overall speed-up obtained



206 10 Case Studies

using the configuration w.r.t. pure software execution on the basic LTRISC. The

second value denotes the overall area of the customized processor w.r.t. the basic

LTRISC.

All the configurations met the original clock constraint of 3.5 ns. With the

combined usage of profiling and ISA customization, the frame-rate of the decoder

application could be increased to 7.46� in fastest (seventh) configuration which is

4.27� larger in area than the original base processor. This translates to a frame rate

of almost 30 frames/sec in the fastest configuration compared to 4 frames/sec in

pure software execution. Configuration eight saves a lot of area from the fastest

configuration without considerable loss of speed-up. The final decision on which

configuration to select depends on the frame rate requirements supplied by the

designer.



Chapter 11

Summary: Taking Stock of Application Analysis

In the preceding chapters of this book, we have introduced an application analysis

tool-chain which extends the state-of-the-art of ASIP design automation. In this final

chapter, it is necessary to evaluate the utility of this tool-chain for the generic ASIP

design process introduced in Chap. 3.

Pre-architecture application analysis is the key to narrow down the design space

before the initial architectural specification is drawn out. Naturally, the utility of a

pre-architecture analysis tool can be gauged by the number of design points which

can be explored through it. As a result, we need to again take a look at the ASIP

design space depicted in Fig. 3.2 for understanding the usefulness of the application

analysis tool-chain described in this work.

In order to portray how much of the ASIP design space can be covered by

our analysis tools, Fig. 3.2 has been redrawn as Fig. 11.1. The dark colored boxes

represent design points which can be almost fully explored using our tool-chain,

while the two colored boxes are design points which can be partially covered. Light

colored boxes are architectural options which can not be explored at all with the

current versions of the tools.

Almost all the architectural options related to memory hierarchy design, control

hazard handling, and arithmetic data types and their precisions can be reviewed

by examining the dynamic execution statistics supplied by the �-Profiler. Example

usage scenarios of our profiling technology for these purposes have been presented

in Sects. 5.5 and 5.6 of Chap. 5, and in the various case studies described in Chap. 10.

Similarly, decisions regarding the ideal register file structure and the best set of ISEs

for hardware acceleration can be taken by combining the results of �-Profiling and

ISA customization (Chaps. 8 and 9).

Decisions about instruction encodings and instruction-set characteristics can not

be instantly inferred through our application analysis tools. However, �-Profiling

and ISA customization can be used indirectly to derive an ASIP’s ISA. Results of

�-Profiling and ISA customization can be used to deduce the number of BPIs and

ISEs in an ASIP, and the branch length and immediate value width statistics from

�-Profiler can be used to infer the number of bits to be reserved for immediate fields

K. Karuri and R. Leupers, Application Analysis Tools for ASIP Design: Application

Profiling and Instruction-set Customization, DOI 10.1007/978-1-4419-8255-1 11,

© Springer Science+Business Media, LLC 2011
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Fig. 11.1 Covering the ASIP design space

in instruction words. These information can be combined together to deduce the

instruction opcode widths and the right instruction encoding scheme. An example

of such usage has been described in Sect. 10.4 of Chap. 10.

Another major advantage of the application analysis tool-flow is its direct link

to ASIP implementation technologies through the ISA customization back-end

(see Chap. 7). Using this route, at least some results of application analysis can

be directly translated to processor components. The case-studies presented in the

previous chapter demonstrate that the combined application analysis capabilities can

significantly shorten design time and yield highly optimized ASIP architectures.

Of course, there is still a lot of room for improvement. Several important design

points are still left untouched by our application analysis tool-chain. The most

important of them is the discovery of instruction and data level parallelism from

a target application’s source code, and capturing such parallel execution behavior

within the �-Profiling framework. For example, the amount of instruction level

parallelism in a C application can be captured by scheduling the atomic operations

of each basic block under a parameterized resource model which specifies the exact

FUs available in each VLIW slot. The cycle count estimates thus obtained can be

compared to the cycle count estimates obtained for single-issue RISC processors to

decide whether there exists sufficient ILP in the target application. Similar models

can be constructed for SIMD instructions, too. Adding these extra modeling and
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analysis capabilities within the current �-Profiler infrastructure can be a promising

direction of future research.

At the introduction of this work, we have conjectured that the extreme per-

formance and energy efficiency demands of the modern wireless, mobile and

multimedia applications can be only tackled by multi-PE SoC architectures which

can effectively exploit inter and intra task parallelism. Although the focus of the

current book has been the development of individual PEs, we strongly believe

that the research work presented here can be extended towards other aspects of

SoC design as well. For example, the �-Profiler based performance estimation

framework has already been used for accurate early system level performance

evaluation and memory hierarchy exploration [65, 94]. Further extension of these

profiling capabilities for SoC communication architecture exploration is an exciting

new research prospect. Another interesting avenue of future work is to explore the

reconfigurable ASIP design space. Some groundwork on this topic has already been

laid in this area [39, 90].



Appendix A

Post ISE Generation DFG
Transformation Algorithms

The task of the post ISE generation DFG transformations, briefly introduced in

Chap. 7, is to prepare an IA-DFG produced by the ISE customization algorithms

for the final generation of implementation and utilization files. Because these

transformations use standard algorithms from compiler construction and HLS

domains, a detailed discussion of them were skipped in Chap. 7. Here we will

present a more elaborate description of them for interested readers.

The post ISE generation transformations consist of three different steps – ISE

latency estimation, ISE scheduling and IR allocation – which will be discussed in

the next three sections.

A.1 ISE Latency Estimation

The ISE latency estimation is the first step of the post-ISE generation DFG

transformations. This step estimates the number of base processor cycles required to

execute each ISE in software. This estimate is used later in ISE scheduling as well

as scheduler description generation for LISA 2.0 based processor models.

The objective of the latency estimation step is to identify the critical path of

a special instruction in terms of the hardware latencies of its constituent nodes.

The algorithm estimates the delay of the longest path from each primary input to

each primary output of an ISE isei . A primary input of isei is defined as a node

v 2 NODE.isei / which has no predecessor node in NODE.isei /. A primary output,

similarly, is a node which has no successor in NODE.isei /. The delay of a path

between a primary input and output is calculated by simply adding up the hardware

latencies of all the nodes on the path. The maximum of these delays gives the length

of the critical path. Note that this delay can be a fractional value because hardware

latencies of DFG nodes are expressed as fractions of the base processor clock period.

K. Karuri and R. Leupers, Application Analysis Tools for ASIP Design: Application

Profiling and Instruction-set Customization, DOI 10.1007/978-1-4419-8255-1,

© Springer Science+Business Media, LLC 2011
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Fig. A.1 Example of latency estimation

However, the latency of ISEs can only be expressed in positive whole number of

clock cycles. Therefore, the ISE latency is derived by rounding off the delay of the

critical path to the next largest integer value.

Let longest delay.v/ denote the delay of the longest path from any node v 2

NODE.isei / to a primary output of isei . Our latency estimation algorithm calculates

the longest delay of each node in NODE.isei / using the following recursive rules

1. longest delay.v/ HW.v/ if v is a primary output, or

2. longest delay.v/  HW.v/ C maxfs j s 2 NODE.isei / ^ s 2 SUCC.v/g1 if v

has successors in NODE.isei /.

An example of latency estimation for an ISE data path is presented in Fig. A.1.

The hardware latencies HW and longest delays (to primary output nodes 3 and 5)

of various nodes in the data-path are specified in boxes adjacent to each node. The

delays of the longest paths from primary input nodes 1 and 2 to the primary outputs

are 1.2 and 0.5, respectively and the critical path of the ISE is estimated as the

maximum of these values. Therefore, the latency of the ISE is estimated as the

nearest integer value of the calculated critical path length, i.e. 2 (D d 1:2 e ).

Note that the above latency estimation neglects the effects of multi-cycle imple-

mentation of ISE data paths which may significantly alter the estimated latencies.

For example, node 3 in Fig. A.1 spans two base processor clock cycles which may

not be possible if the CFU has the same clock speed as the base processor. Addi-

tionally, temporary registers may need to be inserted in an ISE data-path to transfer

intermediate values between two operations across clock boundaries. However, our

objective is to provide designers with a fast pre-architecture exploration tool-chain

1Here SUCC.v/ denotes the set of successors of v in the original DFG G.
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for which a crude latency estimation suffices. Lower level details such as exact

latency calculation of special instructions can be performed manually after a set

of basic ISEs have been short-listed via quick DSE.

A.2 ISE Scheduling

Scheduling of Gia is the next step of the back-end after software latency estimation.

It imposes a total ordering on the nodes of the IA-DFG, without which neither IR

allocation, nor modified source code generation can be performed. We use a variant

of well known list scheduling [119] technique from the compiler construction

domain. The algorithm is presented in Algorithm A.1 where the main task of

scheduling is performed between lines 4–14.2 The algorithm maintains three data-

structures during scheduling.

1. schedule which is a sequence of already scheduled nodes at any point of the

execution of the algorithm. It is initialized as an empty sequence in line 4.

Algorithm A.1: ISE scheduling algorithm

PROCEDURE(schedule ises) ;1

INPUT : G ia D .V ia; E ia/ where each node via
i 2 V ia has a software latency SW.via

i /

OUTPUT: A sequence schedule D hvia
1 ; via

2 ; : : : ; via
n i of scheduled nodes

begin2

calculate time to finish.V ia/;3

schedule  ; ;4

unscheduled set  .V ia � V ia
NON�OP/;5

foreach via
i 2 V ia do6

if each node in PRED.via
i / is in V ia

NON�OP then7

insert into ready set.vIA
i ; ready set/;

end8

while unscheduled set ¤ ; do9

node  � select ready node (ready set);10

add node to schedule ;11

remove node from unscheduled set and ready set;12

update ready set.ready set; unscheduled set/;13

end14

return schedule;15

end16

2In the following discussions, PRED.via/ and SUCC.via/ denote the set of predecessor and

successors, respectively, for a node via 2 V ia.
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2. unscheduled set which represents the set of nodes yet to be scheduled. This is

initialized as .V ia � V ia
NON�OP/, i.e. all nodes which are neither constants nor

variables in line 6.

3. ready set which stores the nodes ready to be scheduled. A node becomes ready

when all its predecessors have been scheduled. At the beginning, only those

operation nodes which have constant and variable nodes as predecessors can

be scheduled. This initialization is performed in lines 6–8. The ready set is

maintained as a sorted list where the ready nodes are stored in the decreasing

order of a rank – time to finish – which will be explained shortly.

The initialization process is followed by the main scheduling loop in lines 9–14.

The scheduling process continues till unscheduled set is empty. In each iteration

of the scheduling loop, one node is selected from the ready set and added to the

end of schedule. The node is subsequently removed from unscheduled set and the

ready set. All the nodes in unscheduled set, for which the current node was the only

remaining unscheduled predecessor node, are then added to the ready set with a call

to update ready set (line 13).

Conventional list scheduling algorithms employ a ranking heuristic to select a

ready node when multiple nodes exist in the ready set. The ranking mechanism is

usually designed to prioritize critical nodes over non-critical ones. In our scheduling

algorithm, we use a ranking parameter – time to finish – for prioritization of critical

nodes. For a node, via
i 2 V ia � V ia

NON�OP, this represents the length of the longest path

to another node via
j such that SUCC.via

j / D ;. The node with largest time to finish

value is the most critical one and has to be scheduled first.

time to finish.via
i / for a node via

i 2 V ia � V ia
NON�OP is calculated using the

following recursive rules:

1. time to finish.via
i /  time self .via

i / if SUCC.via
i / D ;, i.e. if via

i has no

successors in Gia, or

2. time to finish.via
i / time self .via

i /Cmaxftime to finish.via
j / j via

j 2 SUCC.via
i /g

if SUCC.via
i / ¤ ;.

where time self .via
i / is the time required for the node, via

i , itself to finish

execution. For any node via
i , time self added to the maximum time to finish of its

successors is the final time to finish.via
i /. time self .via

i / is defined as sum of the

software latency of the node and the communication cost comm cost.via
i /, which,

for an ISE, is the total count of the inputs to be loaded and outputs to be moved out

from IRs. comm cost is 0 for non-ISE operation nodes.

An example run of the scheduling algorithm for the IA-DFG of Fig. A.23 is

presented in Fig. A.3. The DFG is scheduled in six iterations. For each iteration,

the content of ready set at the start of the iteration is shown at left, and the partially

scheduled sequence at the end of the iteration is shown in right. The subscripts for

the nodes of the ready set denote the time to finish value of the corresponding node.

3This IA-DFG is a reproduction of the annotated DFG of Fig. 7.3b in Chap. 7.
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Fig. A.2 Example IA-DFG

In the first iteration, only node i1 is ready and is accordingly added to schedule.

Scheduling of i1 adds nodes i2 and i3 in the ready set. At this point, node i3

is selected for scheduling because of its higher time to finish value. This frees up

11 for scheduling. Note that, at this point, 11 is placed ahead of node i2 in

the ready set because it has a larger time to finish value. The scheduling process

continues till the last node i4 is scheduled.

A.3 IR Allocation

IR allocation is the last post ISE generation DFG transformation which tries to

increase the temporal reuse of internal registers between ISEs. This step is extremely

important to reduce the total amount of local storage in the CFU.

The IR allocation scheme is presented in Algorithm A.2. This algorithm is based

on the well known left edge algorithm [99] used by many high-level synthesis tools.

Our scheme maintains two data-structures for keeping track of allocated and free

registers:

1. free set which denotes the set of registers free for allocation at any point of the

algorithm, and

2. IR INDEX.eia/ which for each edge eia 2 E ia denotes the index of the IR

allocated to this edge. Initially, all input/output edges to ISEs are assigned a value

of –1 to indicate that they have not been allocated to any IR.
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Fig. A.3 Example run of ISE scheduling

The algorithm scans all the ISEs in a scheduled IA-DFG from left to right (i.e

from the first ISE node to the last in the schedule). In each scanning step, it performs

three operations:

1. It checks whether an input value of the previous ISE is used in any subsequent

ISE (including the current ISE) later in the schedule. If no such usage exists it

frees the allocated IR by adding the corresponding entry in the free set (lines

10–13).
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Algorithm A.2: IR allocation algorithm

PROCEDURE(allocate irs) ;1

INPUT : A scheduled sequence S sched D hvia
1 ; via

2 ; : : : ; via
n i of nodes

begin2

foreach ir 2 ir set do3

free set free set [ firg ;4

end5

prev ise ; ;6

foreach via
i 2 V ia such that via

i 2 ISE do7

curr ise via
i ;8

if prev ise ¤ ; then9

foreach edgej 2 INPUT EDGE.prev ise/ do10

if value not used in later ise.edgej ; prev ise/ then11

free set free set [ fIR INDEX.edgej /g ;12

13

end14

end15

foreach edgej 2 INPUT EDGE.curr ise/ do16

if IR INDEX.edgej / < 0 then17

free idx get first free idx.free set/ ;18

allocate idx to all aliases.free idx; edgej / ;19

free set free set � fIR INDEX.free idx/g;20

end21

end22

foreach edgej 2 OUTPUT EDGE.curr ise/ do23

if IR INDEX.edgej / < 0 then24

free idx get first free idx.free set/ ;25

allocate idx to all aliases.free idx; edgej / ;26

free set free set � fIR INDEX.free idx/ ;27

end28

end29

prev ise curr ise ;30

end31

end32

2. Next it is checked whether an input edge of the current ISE is not yet assigned

to an IR. This might happen if the edge is coming from a BPI. If such an edge

is found, then a free IR with the lowest index in free set is allocated to the edge

and its aliases. An alias of edge an edgej is another edge edgek such that both of

them have the same common predecessor node (lines 16–22).

3. In the final step, all the output edges of the current ISE are assigned IR indices.

A free IR with the lowest index in the free set is always chosen first for such an

assignment.

An example run of the algorithm is presented in Fig. A.4 where IR-allocation

is performed for four ISEs – i1, i2, i3, i4. For each iteration, the current



218 A Post ISE Generation DFG Transformation Algorithms

Fig. A.4 Example run of IR allocation

ISE being scanned is marked with a vertical dashed line. In the first iteration, the

input and output edges of i1 are marked with IRs that have smallest indices in the

free set – 0, 1, 2. While scanning the next ISE i3, the algorithm first frees up

IR 0 allocated to an input edge of i1, because it is not used in any subsequent ISE.

This IR is then assigned to the input of i3. The same happens for i2. The final

allocation requires only three internal registers even though there are a total of five

values communicated via IRs.
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