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Preface

Product design and manufacturing are tightly connected to innovation. They have
thus been the key areas that support and influence a nation’s economy since the
eighteenth century. As the primary driving force behind economic growth, design
and manufacturing serve as the foundation of and contribute to other industries,
with products ranging from heavy-duty machinery to hi-tech home electronics.
In the past centuries, they have contributed significantly to modern civilisation and
created the momentum that drives today’s economy. Despite various achieve-
ments, we are still facing challenges due to the growing complexity in design and
manufacturing.

The complexity in product design and manufacturing becomes obvious when
solving problems simultaneously against multiple objectives that conflict to each
other. In solving such problems, with or without the presence of constraints, it
gives rise to a set of trade-off optimal solutions, popularly known as Pareto-
optimal solutions. Due to the multiplicity in solutions, these problems were pro-
posed to be solved suitably using evolutionary algorithms that use a population
approach in its search procedure. Nevertheless, multi-objective evolutionary
optimisation problems remain highly challenging in product design and manu-
facturing with increasing complexity. Designers and engineers across organisa-
tions often find themselves in situations that demand advanced optimisation
capability when dealing with their daily activities related to product design and
manufacturing.

Targeting the challenge in solving complex problems, over the past decades,
researchers have focused their efforts on multi-objective evolutionary approaches
to improving the optimality of solutions. While these efforts have resulted in a
large volume of publications and impacted both present and future practices in
design and manufacturing, there still exists a gap in the literature for a focused
collection of works dedicated to multi-objective evolutionary optimisation. To
bridge this gap and present the state-of-the-art to a much broad readership, from
academic researchers to practicing engineers, is the primary motivation behind this
book.
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The first three chapters form Part-1 of the book on literature survey and trends.
Chapter 1 begins with a clear definition of multi-objective optimisation. Based on
a comparative analysis of the existing literature, this chapter provides an intro-
duction to the operating principles of evolutionary optimisation and outlines the
current research and application studies in both single- and multi-objective deci-
sion making. The chapter also highlights some research trends, particularly the
issues of handling uncertainties, dynamic problems, many objectives, decision
making, and knowledge discovery through the recently proposed innovization

approach. The discussion on multi-objective optimisation is extended in Chap. 2 to
supply chains. Supply chains are in general complex networks composed of
autonomous entities whereby multiple performance measures in different levels
have to be taken into account. Particularly, it reviews the research and practices of
the existing multi-objective optimisation applications, both analysis- and simula-
tion-based, in supply chain management. This chapter also identifies the needs of
an integration of multi-objective optimisation and system dynamics models and
presents a case study on its application to the investigation of bullwhip effects in a
supply chain. Chapter 3 then introduces a unique perspective of state-of-the-art in
multi-objective optimisation based on thermo-mechanical simulations. This per-
spective is reinforced through two case studies of friction stir welding and metal
casting. Future challenges are also identified at the end of the chapter.

Part-2 of the book focuses on product design and optimisation, and is consti-
tuted from four chapters. Recognising the importance of optimisation in product
family design, Chap. 4 presents a novel approach based on multi-objective evo-
lutionary optimisation and visual analytics to resolve trade-offs between com-
monality and performance objectives when designing a family of products. A
design example of a family of aircraft with a 10-objective trade-off is provided to
validate this approach. Based on the functional behaviour in product family design,
Chap. 5 introduces a product family hierarchy, where designs can be classified into
phenomenological design family, functional part family and embodiment part
family. Product portfolio selection is then possible after identifying and clustering
non-dominated solutions. Chapter 6 applies the product family design concept to a
family of industrial robots. The design problem is treated as a multi-objective
optimisation problem where a Pareto optimal front is used to visualise the trade-off
between commonality and performance of individual family members. In the area
of rapid prototyping using the fused deposition method (FDM), Chap. 7 depicts a
unique approach to simultaneously minimising two conflicting goals—average
surface roughness and build time. Within the context, a comparative study between
genetic algorithm and particle swarm optimisation is also conducted.

Optimisation issues in process planning and scheduling are covered in Chaps. 8
through 12, and organised into Part-3 of the book. Chapter 8 utilises ant colony
optimisation for automatic machining setup planning of cast parts. It simulta-
neously considers the selection of available machines, tolerance analysis and cost
modelling for achieving an optimal setup planning result. A tolerance cost factor is
introduced when machining error stack-up occurs. The ant colony optimisation is
extended in Chap. 9 to include a preference vector when searching for a set of
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Pareto-optimal scheduling solutions using meta-heuristics. The scheduling prob-
lem is to minimise make-span and energy consumption, whereas the preference
vector allows the search to focus on specific areas of interest to decision makers
instead of searching for the entire Pareto frontier. However, in order to greatly
improve the performance of a manufacturing system, the scheduling problem is
better integrated with process planning. This issue is dealt with in Chap. 10 using a
multi-agent approach that optimises the two functions simultaneously based on
particle swarm optimisation. The feasibility and performance of this approach is
verified through a comparative analysis against simulated annealing and genetic
algorithm, with positive outcomes. The agent-based approach is also adopted in
Chap. 11 for real-time scheduling, whereas reinforcement learning is implemented
to job agents and resource agents in order to improve their coordination processes.
Two case studies are performed to verify the effectiveness of the proposed method
in dynamic shop environment. However, operation disruptions often occur on
dynamic shop floors, which increase manufacturing complexity and trigger fre-
quent rescheduling. Targeting the problem, Chap. 12 introduces a multiple ant
colony optimisation approach to minimise changes during rescheduling while
searching for trade-offs between time and cost.

In Part-4 of the book, the aspect of systems design and analysis is shared by
Chaps. 13–17. Dynamic operations not only demand for rescheduling but also
affect shop floor layout. The latter is the focal point of Chap. 13, looking into a
hybrid approach for dynamic assembly shop layout. In this case, genetic algorithm
is used to search for an optimal new layout if the change can justify a significant
relocation cost. Otherwise, a function block-based approach is utilised to find the
best routing of assembly jobs under a new condition but the existing layout. The
multi-objective facility layout issue is further examined in Chap. 14 using a
simulation-based optimisation approach where a genetic algorithm helps generate
new design parameters for optimisation. Chapter 15 addresses a production system
design problem by integrating the concept of innovization with discrete-event
simulation and data mining techniques. The uniqueness of the integrated approach
lies on applying data mining to the data sets generated from simulation-based
multi-objective optimisation, in order to automatically or semi-automatically
discover and interpret the hidden relationships and patterns for optimal production
system analysis. An industrial case study of an automotive assembly line
improvement is also presented to validate the new method. In reality, a good
system design requires a good system optimisation, particularly from a cost per-
spective. Chapter 16 thus proposes to expand simulation-based optimisation and
post-optimality analysis to cover the cost aspects of a production system, such as
investments and running cost. Industrial empirical results indicate that this
approach has opened up the opportunity to identify a set of design solutions with
great financial improvement, which are otherwise not feasible to be explored by
using current industrial procedures. Another application domain of multi-objective
optimisation is manufacturing supply chain. Chapter 17 addresses the design of
supply chain networks including both network configuration and related opera-
tional decisions such as order splitting, transportation allocation and inventory
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control. The goal is to achieve the best compromise between cost and customer
service level. To illustrate its effectiveness, the proposed methodology is applied to
two real-life case studies from automotive industry and textile industry.

All together, the seventeen chapters provide an overview of some recent R&D
achievements of multi-objective evolutionary optimisation applied to product
design and manufacturing. We believe that this research field will continue to be
active for years to come.

Finally, the co-editors would like to take this opportunity express their deep
appreciation to all the authors for their significant contributions to this book. Their
commitment, enthusiasm, and technical expertise are what made this book pos-
sible. We are also grateful to Springer for supporting this project, and would
especially like to thank Anthony Doyle, Senior Editor for Engineering, and Claire
Protherough, Senior Editorial Assistant, for their constructive assistance and ear-
nest cooperation, both with the publishing venture in general and the editorial
details. We hope that readers find this book informative and useful.

Skövde, Sweden, May 2011 Lihui Wang and Amos H. C. Ng
Kanpur, India, May 2011 Kalyanmoy Deb
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Part I
Literature Survey and Trends



Chapter 1
Multi-objective Optimisation Using
Evolutionary Algorithms:
An Introduction

Kalyanmoy Deb

Abstract As the name suggests, multi-objective optimisation involves optimising
a number of objectives simultaneously. The problem becomes challenging when
the objectives are of conflicting characteristics to each other, that is, the optimal
solution of an objective function is different from that of the other. In the course of
solving such problems, with or without the presence of constraints, these problems
give rise to a set of trade-off optimal solutions, popularly known as Pareto-optimal
solutions. Because of the multiplicity in solutions, these problems were proposed
to be solved suitably using evolutionary algorithms using a population approach
in its search procedure. Starting with parameterized procedures in early 90s, the
so-called evolutionary multi-objective optimisation (EMO) algorithms is now an
established field of research and application with many dedicated texts and edited
books, commercial softwares and numerous freely downloadable codes, a biannual
conference series running successfully since 2001, special sessions and workshops
held at all major evolutionary computing conferences, and full-time researchers
from universities and industries from all around the globe. In this chapter, we
provide a brief introduction to its operating principles and outline the current
research and application studies of evolutionary multi-objective optmisation (EMO).

K. Deb (&)
Department of Mechanical Engineering, Indian Institute of Technology,
Kanpur, Uttar Pradesh 208016, India
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1.1 Introduction

In the past 15 years, EMO has become a popular and useful field of research and
application. Evolutionary optimisation (EO) algorithms use a population-based
approach in which more than one solution participates in an iteration and evolves a
new population of solutions in each iteration. The reasons for their popularity are
many: (i) EOs do not require any derivative information, (ii) EOs are relatively
simple to implement, and (iii) EOs are flexible and have a wide-spread applica-
bility. For solving single-objective optimisation problems, particularly in finding a
single optimal solution, the use of a population of solutions may sound redundant,
in solving multi-objective optimisation problems an EO procedure is a perfect
choice [1]. The multi-objective optimisation problems, because their attributes,
give rise to a set of Pareto-optimal solutions, which need further processing to
arrive at a single preferred solution. To achieve the first task, it becomes quite a
natural proposition to use an EO, because the use of population in an iteration
helps an EO to simultaneously find multiple non-dominated solutions, which
portrays a trade-off among objectives, in a single simulation run.

In this chapter, we present a brief description of an evolutionary optimisation
procedure for single-objective optimisation. Thereafter, we describe the principles
of EMO. Then, we discuss some salient developments in EMO research. It is clear
from these discussions that EMO is not only being found to be useful in solving
multi-objective optimisation problems, it is also helping to solve other kinds of
optimisation problems more efficiently than they are traditionally solved. As a
by-product, EMO-based solutions are helping to elicit very valuable insight about
a problem—a which is difficult to achieve otherwise. EMO procedures with a
decision making concept are discussed as well. Some of these ideas require further
detailed studies and this chapter mentions some such topics for current and future
research in this direction.

1.2 Evolutionary Optimisation for Single-Objective
Optimisation

EO principles are different from classical optimisation methodologies in the fol-
lowing main ways [2]:

• An EO procedure does not usually use gradient information in its search pro-
cess. Thus, EO methodologies are direct search procedures, allowing them to be
applied to a wide variety of optimisation problems.

• An EO procedure uses more than one solution (a population approach) in an
iteration, unlike in most classical optimisation algorithms which updates one
solution in each iteration (a point approach). The use of a population has a
number of advantages: (i) it provides an EO with a parallel processing power
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achieving a computationally quick overall search, (ii) it allows an EO to find
multiple optimal solutions, thereby facilitating the solution of multi-modal and
multi-objective optimisation problems, and (iii) it provides an EO with the
ability to normalise decision variables (as well as objective and constraint
functions) within an evolving population using the population-best minimum
and maximum values.

• An EO procedure uses stochastic operators, unlike deterministic operators used
in most classical optimisation methods. The operators tend to achieve a desired
effect by using higher probabilities towards desirable outcomes, as opposed to
using predetermined and fixed transition rules. This allows an EO algorithm to
negotiate multiple optima and other complexities better and provide them with
a global perspective in their search. An EO begins its search with a population
of solutions usually created at random within a specified lower and upper bound
on each variable. Thereafter, the EO procedure enters into an iterative operation
of updating the current population to create a new population by the use of four
main operators: selection, crossover, mutation and elite-preservation. The
operation stops when one or more pre-specified termination criteria are met.

The initialisation procedure usually involve a random creation of solutions. If in
a problem the knowledge of some good solutions is available, it is better to use
such information in creating the initial population. Elsewhere [3], it is highlighted
that for solving complex real-world optimisation problems, such a customised
initialisation is useful and also helpful in achieving a faster search. After the
population members are evaluated, the selection operator chooses above-average
(in other words, better) solutions with a larger probability to fill an intermediate
mating pool. For this purpose, several stochastic selection operators have been
developed as discussed in the EO literature. In its simplest form (called the
tournament selection [4]), two solutions can be picked at random from the eval-
uated population and the better of the two (in terms of its evaluated order) can be
picked.

The ‘variation’ operator is a collection of a number of operators (such as
crossover, mutation, etc.) which are used to generate a modified population. The
purpose of the crossover operator is to pick two or more solutions (parents) ran-
domly from the mating pool and create one or more solutions by exchanging
information among the parent solutions. The crossover operator is applied with a
crossover probability ðpc 2 ½0; 1�Þ; indicating the proportion of population mem-
bers participating in the crossover operation. The remaining ð1� pcÞ proportion of
the population is simply copied to the modified (child) population. In the context
of real-parameter optimisation having n real-valued variables and involving a
crossover with two parent solutions, such that each variable may be crossed at a
time. A probability distribution which depends on the difference between the two
parent variable values is often used to create two new numbers as child values
around the two parent values [5]. Besides the variable-wise recombination oper-
ators, vector-wise recombination operators also suggested to propagate the cor-
relation among variables of parent solutions to the created child solutions [6, 7].
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Each child solution, created by the crossover operator, is then perturbed in its
vicinity by a mutation operator [2]. Every variable is mutated with a mutation
probability pm; usually set as 1=n (n is the number of variables), so that on an
average one variable gets mutated per solution. In the context of real-parameter
optimisation, a simple Gaussian probability distribution with a predefined variance
can be used with its mean at the child variable value [1]. This operator allows an
EO to search locally around a solution and is independent on the location of other
solutions in the population.

The elitism operator combines the old population with the newly created
population and chooses to keep better solutions from the combined population.
Such an operation makes sure that an algorithm has a monotonically non-
degrading performance. Rudolph [8] proved an asymptotic convergence of a
specific EO but having elitism and mutation as two essential operators.

Finally, the user of an EO needs to choose termination criteria. Often, a pre-
determined number of generations is used as a termination criterion. For goal
attainment problems, an EO can be terminated as soon as a solution with a pre-
defined goal or a target solution is found. In many studies [2, 9–11], a termination
criterion based on the statistics of the current population vis-a-vis that of the
previous population to determine the rate of convergence is used. In other more
recent studies, theoretical optimality conditions (such as the extent of satisfaction
of Karush–Kuhn–Tucker (KKT) conditions) are used to determine the termination
of a real-parameter EO algorithm [12]. Although EOs are heuristic based, the use
of such theoretical optimality concepts in an EO can also be used to test their
converging abilities towards local optimal solutions.

To demonstrate the working of the above-mentioned GA, we show four
snapshots of a typical simulation run on the following constrained optimisation
problem:

Minimise f ðxÞ ¼ ðx21 þ x2 � 11Þ2 þ ðx1 þ x22 � 7Þ2

subject to g1ðxÞ � 26� ðx1 � 5Þ2 � x22 � 0;

g2ðxÞ � 20� 4x1 � x2 � 0;

0�ðx1; x2Þ� 6:

ð1:1Þ

Ten points are used and the GA is run for 100 generations. The SBX recombi-
nation operator is used with probability of pc ¼ 0:9 and index gc ¼ 10: The
polynomial mutation operator is used with a probability of pm ¼ 0:5 with an index
of gm ¼ 50: Figures 1.1, 1.2, 1.3 and 1.4 show the populations at generation zero,
5, 40 and 100, respectively. It can be observed that in only five generations, all 10
population members become feasible. Thereafter, the points come close to each
other and creep towards the constrained minimum point.

The EA procedure is a population-based stochastic search procedure which
iteratively emphasises its better population members, uses them to recombine and
perturb locally in the hope of creating new and better populations until a prede-
fined termination criterion is met. The use of a population helps to achieve an
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implicit parallelism [2, 13, 14] in an EO’s search mechanism (causing an inherent
parallel search in different regions of the search space), a process which makes an
EO computationally attractive for solving difficult problems. In the context of
certain Boolean functions, a computational time saving to find the optimum
varying polynomial to the population size is proven [15]. On the one hand, the EO
procedure is flexible, thereby allowing a user to choose suitable operators and
problem-specific information to suit a specific problem. On the other hand, the
flexibility comes with the onus on the part of a user to choose appropriate and
tangible operators so as to create an efficient and consistent search [16]. However,
the benefits of having a flexible optimisation procedure, over their more rigid and
specific optimisation algorithms, provide fensibility in solving difficult real-world
optimisation problems involving non-differentiable objectives and constraints,

Fig. 1.2 Population at
generation 5

Fig. 1.1 Initial population
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non-linearities, discreteness, multiple optima, large problem sizes, uncertainties in
computation of objectives and constraints, uncertainties in decision variables,
mixed type of variables, and others.

A wiser approach to solving optimisation problems of the real world would be
to first understand the niche of both EO and classical methodologies and then
adopt hybrid procedures employing the better of the two as the search progresses
over varying degrees of search-space complexity from start to finish. As demon-
strated in the above typical GA simulation, there are two phases in the search of a
GA. First, the GA exhibits a more global search by maintaining a diverse popu-
lation, thereby discovering potentially good regions of interest. Second, a more
local search takes place by bringing the population members closer together.
Although the above GA degenerates to both these search phases automatically
without any external intervention, a more efficient search can be achieved if the

Fig. 1.3 Population at
generation 40

Fig. 1.4 Population at
generation 100
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later local search phase can be identified and executed with a more specialized
local search algorithm.

1.3 Evolutionary Multi-objective Optimisation

A multi-objective optimisation problem involves a number of objective functions
which are to be either minimised or maximised. As in a single-objective optimi-
sation problem, the multi-objective optimisation problem may contain a number of
constraints which any feasible solution (including all optimal solutions) must
satisfy. Since objectives can be either minimised or maximised, we state the multi-
objective optimisation problem in its general form:

Minimise/Maximise fmðxÞ; m ¼ 1; 2; . . .;M;

subject to gjðxÞ� 0; j ¼ 1; 2; . . .; J;
hkðxÞ ¼ 0; k ¼ 1; 2; . . .;K;

x
ðLÞ
i � xi � x

ðUÞ
i ; i ¼ 1; 2; . . .; n:

9

>

>

=

>

>

;

ð1:2Þ

A solution x 2 R
n is a vector of n decision variables: x ¼ ðx1; x2; . . .; xnÞ

T: The
solutions satisfying the constraints and variable bounds constitute a feasible

decision variable space S � R
n: One of the striking differences between single-

objective and multi-objective optimisation is that in multi-objective optimisation
the objective functions constitute a multi-dimensional space, in addition to the
usual decision variable space. This additional M-dimensional space is called the
objective space, Z � R

M : For each solution x in the decision variable space, there

exists a point z 2 R
M in the objective space, denoted by fðxÞ ¼ z ¼

ðz1; z2; . . .; zMÞ
T: To make the descriptions clear, we refer a ‘solution’ as a variable

vector and a ‘point’ as the corresponding objective vector.
The optimal solutions in multi-objective optimisation can be defined from a

mathematical concept of partial ordering. In the parlance of multi-objective
optimisation, the term domination is used for this purpose. In this section, we
restrict ourselves to discuss unconstrained (without any equality, inequality or
bound constraints) optimisation problems. The domination between two solutions
is defined as follows [1, 17]:

Definition 1 A solution x
ð1Þ is said to dominate the other solution x

ð2Þ; if both the
following conditions are true:

1. The solution x
ð1Þ is no worse than x

ð2Þ in all objectives. Thus, the solutions are
compared based on their objective function values (or location of the corre-

sponding points ðzð1Þ and z
ð2ÞÞ on the objective space).

2. The solution x
ð1Þ is strictly better than x

ð2Þ in at least one objective.

For a given set of solutions (or corresponding points on the objective space, for
example, those shown in Fig. 1.5a), a pair-wise comparison can be made using the
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above definition and whether one point dominates the other can be established. All
points which are not dominated by any other member of the set are called the non-
dominated points of class one, or simply the non-dominated points. For the set of
six solutions shown in the figure, they are points 3, 5, and 6. One property of any
two such points is that a gain in an objective from one point to the other happens
only because of a sacrifice in at least one other objective. This trade-off property
between the non-dominated points makes the practitioners interested in finding a
wide variety of them before making a final choice. These points make up a front
when they are viewed together on the objective space; hence the non-dominated
points are often visualized to represent a non-domination front. The computational
effort needed to select the points of the non-domination front from a set of N points

is OðN logNÞ for two and three objectives, and OðN logM�2 NÞ for M[ 3 objec-
tives [18].

With the above concept, now it is easier to define the Pareto-optimal solutions
in a multi-objective optimisation problem. If the given set of points for the above
task contain all points in the search space (assuming a countable number), the
points lying on the non-domination front, by definition, do not get dominated by
any other point in the objective space, hence are Pareto-optimal points (together
they constitute the Pareto-optimal front) and the corresponding pre-images
(decision variable vectors) are called Pareto-optimal solutions. However, more
mathematically elegant definitions of Pareto-optimality (including the ones for
continuous search space problems) exist in the multi-objective literature [17, 19].

1.3.1 Principle of EMO’s Search

In the context of multi-objective optimisation, the extremist principle of finding the
optimum solution cannot be applied to any one particular objective alone, when
the rest of the objectives are also important. Different solutions may produce trade-
offs (conflicting outcomes among objectives) among different objectives. A
solution that is extreme (in a better sense) with respect to one objective requires a

(a) (b)

Fig. 1.5 A set of points and the first non-domination front are shown
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compromise in other objectives. This prohibits one to choose a solution which is
optimal with respect to only one objective. This clearly suggests two ideal goals of
multi-objective optimisation:

1. Find a set of solutions which lie on the Pareto-optimal front, and
2. Find a set of solutions which are diverse enough to represent the entire range of

the Pareto-optimal front. EMO algorithms attempt to follow both the above
principles similar to the other a posteriori multiple criteria decision making
(MCDM) methods (refer to this chapter).

Although one fundamental difference between single and multiple objective
optimisation lies in the cardinality in the optimal set, from a practical standpoint a
user needs only one solution, no matter whether the associated optimisation
problem is single or multi-objective. The user is now in a dilemma. As a number of
solutions are optimal, the obvious question arises: Which of these optimal solu-
tions must one choose? This is not an easy question to answer. It involves higher-
level information which is often non-technical, qualitative and experience-driven.
However, if a set of many trade-off solutions are already worked out or available,
one can evaluate the pros and cons of each of these solutions based on all such
non-technical and qualitative, yet important, considerations and compare them to
make a choice. Thus, in a multi-objective optimisation, ideally the effort must be
made in finding the set of trade-off optimal solutions by considering all objectives
to be important. After a set of such trade-off solutions are found, a user can then
use higher-level qualitative considerations to make a choice. As an EMO proce-
dure deals with a population of solutions in every iteration, it makes them intuitive
to be applied in multi-objective optimisation to find a set of non-dominated
solutions. Like other a posteriori MCDM methodologies, an EMO based procedure
works with the following principle in handling multi-objective optimisation
problems:

Step 1. Find multiple non-dominated points as close to the Pareto-optimal front
as possible, with a wide trade-off among objectives.

Step 2. Choose one of the obtained points using higher-level information.
Figure 1.6 shows schematically the principles, followed in an EMO procedure.

As EMO procedures are heuristic based, they may not guarantee in finding Pareto-
optimal points, as a theoretically provable optimisation method would do for
tractable (for example, linear or convex) problems. But EMO procedures have
essential operators to constantly improve the evolving non-dominated points (from
the point of view of convergence and diversity discussed above) similar to the way
most natural and artificial evolving systems continuously improve their solutions.
To this effect, a recent simulation study [12] has demonstrated that a particular
EMO procedure, starting from random non-optimal solutions, can progress
towards theoretical KKT points with iterations in real-valued multi-objective
optimisation problems. The main difference and advantage of using an EMO
compared with a posteriori MCDM procedures is that multiple trade-off solutions
can be found in a single simulation run, as most a posteriori MCDM methodol-
ogies would require multiple applications.
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In Step 1 of the EMO-based multi-objective optimisation (the task shown
vertically downwards in Fig. 1.6), multiple trade-off, non-dominated points are
found. Thereafter, in Step 2 (the task shown horizontally, towards the right),
higher-level information is used to choose one of the obtained trade-off points.
This dual task allows an interesting feature, if applied for solving single-objective
optimisation problems. It is easy to realize that a single-objective optimisation is a
degenerate case of multi-objective optimisation, as shown in details in another
study [20]. In the case of single-objective optimisation having only one globally
optimal solution, Step 1 will ideally find only one solution, thereby not requiring
us to proceed to Step 2. However, in the case of single-objective optimisation
having multiple global optima, both steps are necessary to first find all or multiple
global optima, and then to choose one solution from them by using a higher-level
information about the problem. Thus, although seems ideal for multi-objective
optimisation, the framework suggested in Fig. 1.6 can be ideally thought as a
generic principle for both single and multiple objective optimisation.

1.3.2 Generating Classical Methods and EMO

In the generating MCDM approach, the task of finding multiple Pareto-optimal
solutions is achieved by executing many independent single-objective optimisa-
tions, each time finding a single Pareto-optimal solution. A parametric scalarizing
approach (such as the weighted-sum approach, �-constraint approach, and others)
can be used to convert multiple objectives into a parametric single-objective
function. By simply varying the parameters (weight vector or �-vector) and opti-
mising the scalarised function, different Pareto-optimal solutions can be found. In
contrast, in an EMO, multiple Pareto-optimal solutions are attempted to be found
in a single simulation by emphasizing multiple non-dominated and isolated

Fig. 1.6 Schematic of a
two-step multi-objective
optimisation procedure
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solutions. We discuss a little later some EMO algorithms describing how such dual
emphasis is provided, but now discuss qualitatively the difference between a
posteriori MCDM and EMO approaches.

Consider Fig. 1.7, in which we sketch how multiple independent parametric
single-objective optimisations may find different Pareto-optimal solutions. The
Pareto-optimal front corresponds to global optimal solutions of several scalarised
objectives. However, during the course of an optimisation task, algorithms must
overcome a number of difficulties, such as infeasible regions, local optimal
solutions, flat regions of objective functions, isolation of optimum, etc., to con-
verge to the global optimal solution. Moreover, because of practical limitations, an
optimisation task must also be completed in a reasonable computational time. This
requires an algorithm to strike a good balance between the extent of these tasks its
search operators must do to overcome the above-mentioned difficulties reliably
and quickly. When multiple simulations are to performed to find a set of Pareto-
optimal solutions, the above balancing act must have to performed in every single
simulation. Since simulations are performed independently, no information about
the success or failure of previous simulations is used to speed up the process. In
difficult multi-objective optimisation problems, such memory-less a posteriori
methods may demand a large overall computational overhead to get a set of
Pareto-optimal solutions. Moreover, even though the convergence can be achieved
in some problems, independent simulations can never guarantee finding a good
distribution among obtained points.

EMO, as mentioned earlier, constitutes an inherent parallel search. When a
population member overcomes certain difficulties and make a progress towards the
Pareto-optimal front, its variable values and their combination reflect this fact.
When a recombination takes place between this solution and other population
members, such valuable information of variable value combinations gets shared
through variable exchanges and blending, thereby making the overall task of
finding multiple trade-off solutions a parallelly processed task.

Fig. 1.7 Generative MCDM
methodology employs
multiple, independent single-
objective optimisations
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1.3.3 Elitist Non-dominated Sorting GA or NSGA-II

The NSGA-II procedure [21] is one of the popularly used EMO procedures which
attempt to find multiple Pareto-optimal solutions in a multi-objective optimisation
problem and has the following three features:

1. it uses an elitist principle,
2. it uses an explicit diversity preserving mechanism, and
3. it emphasises non-dominated solutions.

At any generation t; the offspring population ðsay;QtÞ is first created by using
the parent population ðsay;PtÞ and the usual genetic operators. Thereafter, the two
populations are combined together to form a new population ðsay;RtÞ of size 2N:
Then, the population Rt classified into different non-domination classes. There-
after, the new population is filled by points of different non-domination fronts, one
at a time. The filling starts with the first non-domination front (of class one) and
continues with points of the second non-domination front, and so on. Since the
overall population size of Rt is 2N; not all fronts can be accommodated in N slots
available for the new population. All fronts which could not be accommodated are
deleted. When the last allowed front is being considered, there may exist more
points in the front than the remaining slots in the new population. This scenario is
illustrated in Fig. 1.8. Instead of arbitrarily discarding some members from the last
front, the points which will make the diversity of the selected points the highest are
chosen.

The crowded-sorting of the points of the last front which could not be
accommodated fully is achieved in the descending order of their crowding distance
values and points from the top of the ordered list are chosen. The crowding
distance di of point i is a measure of the objective space around i which is not
occupied by any other solution in the population. Here, we simply calculate this
quantity di by estimating the perimeter of the cuboid (Fig. 1.9) formed by using
the nearest neighbors in the objective space as the vertices (we call this the
crowding distance).

Fig. 1.8 Schematic of the
NSGA-II procedure
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Next, we show snapshots of a typical NSGA-II simulation on a two-objective
test problem:

ZDT2 :

Minimize f1ðxÞ ¼ x1;
Minimize f2ðxÞ ¼ gðxÞ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f1ðxÞ=gðxÞ
p� �

;

where gðxÞ ¼ 1þ 9
29

P30
i¼2 xi

0� x1 � 1;
�1� xi � 1; i ¼ 2; 3; . . .; 30:

8

>

>

>

>

<

>

>

>

>

:

ð1:3Þ

NSGA-II is run with a population size of 100 and for 100 generations. The
variables are used as real numbers and an SBX recombination operator with
pc ¼ 0:9 and distribution index of g

c
¼ 10 and a polynomial mutation operator [1]

with pm ¼ 1=n (n is the number of variables) and distribution index of g
m
¼ 20 are

used. Figure 1.10 is the initial population shown on the objective space. Fig-
ures 1.11, 1.12 and 1.13 show populations at generations 10, 30 and 100,
respectively. The figures illustrates how the operators of NSGA-II cause the
population to move towards the Pareto-optimal front with generations. At gener-
ation 100, the population comes very close to the true Pareto-optimal front.

Fig. 1.9 The crowding
distance calculation

Fig. 1.10 Initial population
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Fig. 1.11 Population at
generation 10

Fig. 1.12 Population at
generation 30

Fig. 1.13 Population at
generation 100
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1.4 Applications of EMO

Since the early development of EMO algorithms in 1993, they have been applied
to many real-world and interesting optimisation problems. Descriptions of some of
these studies can be found in books [1, 22, 23], dedicated conference proceedings
[24–27], and domain-specific books, journals and proceedings. In this section, we
describe one case study which clearly demonstrates the EMO philosophy which
we described in Sect. 1.3.1.

1.4.1 Spacecraft Trajectory Design

Coverstone-Carroll et al. [28] proposed a multi-objective optimisation technique
using the original non-dominated sorting algorithm (NSGA) [29] to find multiple
trade-off solutions in a spacecraft trajectory optimisation problem. To evaluate a
solution (trajectory), the SEPTOP (Solar Electric Propulsion Trajectory optimi-
sation) software [30] is called for, and the delivered payload mass and the total
time of flight are calculated. The multi-objective optimisation problem has eight
decision variables controlling the trajectory, three objective functions: (i) maxi-
mize the delivered payload at destination, (ii) maximize the negative of the time of
flight, and (iii) maximize the total number of heliocentric revolutions in the tra-
jectory, and three constraints limiting the SEPTOP convergence error and mini-
mum and maximum bounds on heliocentric revolutions.

On the Earth–Mars rendezvous mission, the study found interesting trade-off
solutions [28]. Using a population of size 150, the NSGA was run for 30 gener-
ations. The obtained non-dominated solutions are shown in Fig. 1.14 for two of the
three objectives and some selected solutions are shown in Fig. 1.15. It is clear that
there exist short-time flights with smaller delivered payloads (solution marked 44)

Fig. 1.14 Obtained non-
dominated solutions using
NSGA
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and long-time flights with larger delivered payloads (solution marked 36). Solution
44 can deliver a mass of 685.28 kg and requires about 1.12 years. On other hand,
an intermediate solution 72 can deliver almost 862 kg with a travel time of about
3 years. In these figures, each continuous part of a trajectory represents a thrusting
arc and each dashed part of a trajectory represents a coasting arc. It is interesting to
note that only a small improvement in delivered mass occurs when comparing the
solutions 73 and 72 with a sacrifice in flight time of about an year.

The multiplicity in trade-off solutions, as depicted in Fig. 1.15, is what we
envisaged in discovering in a multi-objective optimisation problem by using a
posteriori procedure, such as an EMO algorithm. This aspect was also discussed in
Fig. 1.6. Once such a set of solutions with a good trade-off among objectives is
obtained, one can analyze them for choosing a particular solution. For example, in
this problem context, it makes sense to not choose a solution between points 73
and 72 attributable to poor trade-off between the objectives in this range. On the
other hand, choosing a solution within points 44 and 73 is worthwhile, but which
particular solution to choose depends on other mission related issues. But by first
finding a wide range of possible solutions and revealing the shape of front, EMO
can help narrow down the choices and allow a decision maker to make a better
decision. Without the knowledge of such a wide variety of trade-off solutions, a

Fig. 1.15 Four trade-off trajectories
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proper decision-making may be a difficult task. Although one can choose a scal-
arised objective (such as the �-constraint method with a particular � vector) and
find the resulting optimal solution, the decision-maker will always wonder what
solution would have been derived if a different � vector was chosen. For example,
if �1 ¼ 2:5 years is chosen and mass delivered to the target is maximised, a
solution in between points 73 and 72 will be found. As discussed earlier, this part
of the Pareto-optimal front does not provide the best trade-offs between objectives
that this problem can offer. A lack of knowledge of good trade-off regions before a
decision is made may allow the decision maker to settle for a solution which,
although optimal, may not be a good compromised solution. The EMO procedure
allows a flexible and a pragmatic procedure for finding a well-diversified set of
solutions simultaneously so as to enable picking a particular region for further
analysis or a particular solution for implementation.

1.5 Constraint Handling in EMO

The constraint handling method modifies the binary tournament selection, where
two solutions are picked from the population and the better solution is chosen. In
the presence of constraints, each solution can be either feasible or infeasible. Thus,
there may be at most three situations: (i) both solutions are feasible, (ii) one is
feasible and other is not, and (iii) both are infeasible. We consider each case by
simply redefining the domination principle as follows (we call it the constrained-

domination condition for any two solutions xðiÞ and x
ðjÞÞ :

Definition 2 A solution x
ðiÞ is said to ‘constrained-dominate’ a solution

x
ðjÞðor xðiÞ �c x

ðjÞÞ; if any of the following conditions are true:

Fig. 1.16 Non-constrained-
domination fronts
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1. Solution x
ðiÞ is feasible and solution x

ðjÞ is not.

2. Solutions x
ðiÞ and x

ðjÞ are both infeasible, but solution x
ðiÞ has a smaller con-

straint violation, which can be computed by adding the normalised violation of
all constraints:

CVðxÞ ¼
X

J

j¼1

h�gjðxÞi þ
X

K

k¼1

absð�hkðxÞÞ;

where hai is � a; if a\0 and is zero, otherwise. The normalization is
achieved with the population minimum ðhgjiminÞ and maximum ðhgjimaxÞ
constraint violations: �gjðxÞ ¼ ðhgjðxÞi � hgjiminÞ=ðhgjimax � hgjiminÞ:

3. Solutions xðiÞ and x
ðjÞ are feasible and solution xðiÞ dominates solution xðjÞ in the

usual sense (Definition 1).

The above change in the definition requires a minimal change in the NSGA-II
procedure described earlier. Figure 1.16 shows the non-domination fronts on a six-
membered population because of the introduction of two constraints (the mini-
mization problem is described as CONSTR elsewhere [1]). In the absence of the
constraints, the non-domination fronts (shown by dashed lines) would have been
((1,3,5), (2,6), (4)), but in their presence, the new fronts are ((4,5), (6), (2), (1),

(3)). The first non-domination front consists of the ‘best’ (that is, non-dominated
and feasible) points from the population and any feasible point lies on a better non-
domination front than an infeasible point.

1.6 Performance Measures Used in EMO

There are two goals of an EMO procedure: (i) a good convergence to the Pareto-
optimal front and (ii) a good diversity in obtained solutions. As both are conflicting
in nature, comparing two sets of trade-off solutions also require different perfor-
mance measures. In the early years of EMO research, three different sets of per-
formance measures were used:

1. metrics evaluating convergence to the known Pareto-optimal front (such as
error ratio, distance from reference set, etc.),

2. metrics evaluating spread of solutions on the known Pareto-optimal front (such
as spread, spacing, etc.), and

3. metrics evaluating certain combinations of convergence and spread of solutions
(such as hypervolume, coverage, R-metrics, etc.).

A detailed study [31] comparing most existing performance metrics based on
out-performance relations has concluded that R-metrics suggested by [32] are the
best. However, a study has argued that a single unary performance measure (any of
the first two metrics described above in the enumerated list) cannot adequately
determine a true winner, as both aspects of convergence and diversity cannot be
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measured by a single performance metric [33]. That study also concluded that
binary performance metrics (indicating usually two different values when a set of
solutions A is compared withB and B is compared with A), such as epsilon-
indicator, binary hypervolume indicator, utility indicators R1 to R3, etc., are better
measures for multi-objective optimisation. The flip side is that the binary metrics
computes MðM � 1Þ performance values for two algorithms in an M-objective
optimisation problem, by analysing all pair-wise performance comparisons,
thereby making them difficult to use in practice. In addition, unary and binary
attainment indicators of [34, 35] are of great importance. Figures 1.17 and 1.18
illustrate the hypervolume and attainment indicators. Attainment surface is useful
to determine a representative front obtained from multiple runs of an EMO
algorithm. In general, 50% surface can be used to indicate the front that is dom-
inated by 50% of all obtained non-dominated points.

1.7 EMO and Decision-Making

Finding a set of representative Pareto-optimal solutions using an EMO procedure
is only half the task; choosing a single preferred solution from the obtained set is
also an equally important task. There are three main directions of developments in
this direction.

In the a priori approach, preference information of a decision-maker (DM) is
used to focus the search effort into a part of the Pareto-optimal front, instead of the
entire frontier. For this purpose, a reference point approach [36], a reference
direction approach [37], ‘light beam’ approach [38], etc. have been incorporated in
a NSGA-II procedure to find a preferred part of the Pareto-optimal frontier.

In the a posteriori approach, preference information is used after a set of rep-
resentative Pareto-optimal solutions are found by an EMO procedure. The MCDM
approaches including reference point method, Tschebyscheff metric method, etc.
[17] can be used. This approach is now believed to be applicable only to two, three
or at most four-objective problems. As the number of objectives increase, EMO

Fig. 1.17 The hypervolume
enclosed by the non-
dominated solutions
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methodologies exhibit difficulties in converging close to the Pareto-optimal front
and the a posteriori approaches become a difficult proposition.

In the interactive approach, decison maker (DM) preference information is
integrated to an EMO algorithm during the optimisation run. In the progressively
interactive EMO approach [39], the DM is called after every s generations and is
presented with a few well-diversified solutions chosen from the current non-
dominated front. The DM is then asked to rank the solutions according to pref-
erence. The information is then processed through an optimisation task to capture
DM’s preference using an utility function. This utility function is then used to
drive NSGA-II’s search till the procedure is repeated in the next DM call.

The decision-making procedure integrated with an EMO procedure makes the
multi-objective optimisation procedure complete. More such studies must now be
executed to make EMO more usable in practice.

1.8 Multi-objectivisation

Interestingly, the act of finding multiple trade-off solutions using an EMO pro-
cedure has found its application outside the realm of solving multi-objective
optimisation problems per se. The concept of finding multiple trade-off solutions
using an EMO procedure is applied to solve other kinds of optimisation problems
that are otherwise not multi-objective in nature. For example, the EMO concept is
used to solve constrained single-objective optimisation problems by converting the
task into a two-objective optimisation task of additionally minimizing an aggre-
gate constraint violation [40]. This eliminates the need to specify a penalty
parameter while using a penalty based constraint handling procedure. A recent
study [41] utilises a bi-objective NSGA-II to find a Pareto-optimal frontier cor-
responding to minimizations of the objective function and constraint violation. The
frontier is then used to estimate an appropriate penalty parameter, which is then
used to formulate a penalty based local search problem and is solved using a
classical optimisation method. The approach is shown to require an order or two

Fig. 1.18 The attainment
surface is created for a
number of non-dominated
solutions

22 K. Deb



magnitude less function evaluations than the existing constraint handling methods
on a number of standard test problems.

A well-known difficulty in genetic programming studies, called the ‘bloating’,
arises because of the continual increase in size of genetic programs with iteration.
The reduction of bloating by minimizing the size of programs as an additional
objective helped find high-performing solutions with a smaller size of the code
[42]. Minimizing the intra-cluster distance and maximizing inter-cluster distance
simultaneously in a bi-objective formulation of a clustering problem is found to
yield better solutions than the usual single-objective minimization of the ratio of
the intra-cluster distance to the inter-cluster distance [43]. A recently published
book [44] describes many such interesting applications in which EMO method-
ologies have helped solve problems which are otherwise (or traditionally) not
treated as multi-objective optimisation problems.

1.8.1 Knowledge Discovery Through EMO

One striking difference between a single-objective optimisation and multi-objec-
tive optimisation is the cardinality of the solution set. In the latter, multiple
solutions are the outcome and each solution is theoretically an optimal solution
corresponding to a particular trade-off among the objectives. Thus, if an EMO
procedure can find solutions close to the true Pareto-optimal set, what we have in
our hand are a number of high-performing solutions trading-off the conflicting
objectives considered in the study. As they are all near optimal, these solutions can
be analyzed for finding properties which are common to them. Such a procedure
can then become a systematic approach in deciphering important and hidden
properties which optimal and high-performing solutions must have for that
problem. In a number of practical problem-solving tasks, the so-called innoviza-

tion procedure is shown to find important insight into high-performing solutions
[45]. Figure 1.19 shows that of the five decision variables involved in an electric
motor design problem involving minimum cost and maximum peak-torque, four
variables have identical values for all Pareto-optimal solutions [46]. Of the two
allowable electric connections, the ‘Y’-type connection; of three laminations, ‘Y’-
type lamination; of 10–80 different turns, 18 turns, and of 16 different wire sizes,
16-gauge wire remain common to all Pareto-optimal solutions. The only way the
solutions differ, relates to having different number of laminations. In fact, for a
motor having more peak-torque, a linearly increasing number of laminations
becomes a recipe for optimal more design. Such useful properties are expected to
exist in practical problems, as they follow certain scientific and engineering
principles at the core, but finding them through a systematic scientific procedure
had not been paid much attention in the past. The principle of first searching for
multiple trade-off and high-performing solutions using a multi-objective optimi-
sation procedure and then analysing them to discover useful knowledge certainly
remains a viable way forward. The current efforts [47] to automate the knowledge
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extraction procedure through a sophisticated data-mining task is promising and
should make the overall approach more appealing to the practitioners.

1.9 Hybrid EMO Procedures

The search operators used in EMO are generic. There is no guarantee that an EMO
will find any Pareto-optimal solution in a finite number of solution evaluations for
a randomly chosen problem. However, as discussed above, EMO methodologies
provide adequate emphasis to currently non-dominated and isolated solutions so
that population members progress towards the Pareto-optimal front iteratively. To
make the overall procedure faster and to perform the task with a more guaranteed
manner, EMO methodologies must be combined with mathematical optimisation
techniques having local convergence properties. A simple-minded approach would
be to start the optimisation task with an EMO and the solutions obtained from
EMO can be improved by optimising a composite objective derived from multiple
objectives to ensure a good spread by using a local search technique. Another
approach would be to use a local search technique as a mutation-like operator in an
EMO so that all population members are at least guaranteed local optimal solu-
tions. A study [48] has demonstrated that the latter approach is an overall better
approach from a computational point of view.

However, the use of a local search technique within an EMO has another
advantage. As, a local search can find a weak or a near Pareto-optimal point, the
presence of such super-individual in a population can cause other near Pareto-
optimal solutions to be found as a an outcome of recombination of the super-
individual with other population members. A recent study has demonstrated this
aspect [49].

Fig. 1.19 Innovization study
of an electric motor design
problem
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1.10 Practical EMOs

Here, we describe some recent advances of EMO in which different practicalities
are considered.

1.10.1 EMO for Many Objectives

With the success of EMO in two and three objective problems, it has become an
obvious quest to investigate if an EMO procedure can also be used to solve four or
more objective problems. An earlier study [50] with eight objectives revealed
somewhat negative results. EMO methodologies work by emphasizing non-dom-
inated solutions in a population. Unfortunately, as the number of objectives
increase, most population members in a randomly created population tend to
become non-dominated to each other. For example, in a three-objective scenario,
about 10% members in a population of size 200 are non-dominated, whereas in a
10-objective problem scenario, as high as 90% members in a population of size
200 are non-dominated. Thus, in a large-objective problem, an EMO algorithm
runs out of space to introduce new population members into a generation, thereby
causing a stagnation in the performance of an EMO algorithm. Moreover, an
exponentially large population size is needed to represent a large-dimensional
Pareto-optimal front. This makes an EMO procedure slow and computationally
less attractive. However, practically speaking, even if an algorithm can find tens of
thousands of Pareto-optimal solutions for a multi-objective optimisation problem,
besides simply getting an idea of the nature and shape of the front, they are simply
too many to be useful for any decision making purposes. Keeping these views in
mind, EMO researchers have taken two different approaches in dealing with large-
objective problems.

1.10.1.1 Finding a Partial Set

Instead of finding the complete Pareto-optimal front in a problem having a large
number of objectives, EMO procedures can be used to find only a part of the
Pareto-optimal front. This can be achieved by indicating preference information by
various means. Ideas, such as reference point based EMO [36, 51], ‘light beam
search’ [38], biased sharing approaches [52], cone dominance [53], etc. are sug-
gested for this purpose. Each of these studies have shown that up to 10 and 20-
objective problems, although finding the complete fortier is a difficulty, finding a
partial frontier corresponding to certain preference information is not that difficult
a proposition. Despite the dimension of the partial frontier being identical to that of
the complete Pareto-optimal frontier, the closeness of target points in representing
the desired partial frontier helps make only a small fraction of an EMO population
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to be non-dominated, thereby making rooms for new and hopefully better solutions
to be found and stored.

The computational efficiency and accuracy observed in some EMO imple-
mentations have led a distributed EMO study [53] in which each processor in a
distributed computing environment receives a unique cone for defining domina-
tion. The cones are designed carefully so that at the end of such a distributed
computing EMO procedure, solutions are found to exist in various parts of the
complete Pareto-optimal front. A collection of these solutions together is then able
to provide a good representation of the entire original Pareto-optimal front.

1.10.1.2 Identifying and Eliminating Redundant Objectives

Many practical optimisation problems can easily list a large of number of objec-
tives (often more than 10), as many different criteria or goals are often of interest
to practitioners. In most instances, it is not entirely definite whether the chosen
objectives are all in conflict with each other or not. For example, minimization of
weight and minimization of cost of a component or a system are often mistaken to
have an identical optimal solution, but may lead to a range of trade-off optimal
solutions. Practitioners do not take any chance and tend to include all (or as many
as possible) objectives into the optimisation problem formulation. There is another
fact which is more worrisome. Two apparently conflicting objectives may show a
good trade-off when evaluated with respect to some randomly created solutions.
But if these two objectives are evaluated for solutions close to their optima. they
tend to show a good correlation. That is, although objectives can exhibit con-
flicting behavior for random solutions, near their Pareto-optimal front, the conflict
vanishes and optimum of one can approach close to the optimum of the other.

Thinking of the existence of such problems in practice, recent studies [54, 55]
have performed linear and non-linear principal component analysis (PCA) to a set
of EMO-produced solutions. Objectives causing positively correlated relationship
between each other on the obtained NSGA-II solutions are identified and are
declared as redundant. The EMO procedure is then restarted with non-redundant
objectives. This combined EMO–PCA procedure is continued until no further
reduction in the number of objectives is possible. The procedure has handled
practical problems involving five and more objectives and has shown to reduce the
choice of real conflicting objectives to a few. On test problems, the proposed
approach has shown to reduce an initial 50-objective problem to the correct three-
objective Pareto-optimal front by eliminating 47 redundant objectives. Another
study [56] used an exact and a heuristic-based conflict identification approach on a
given set of Pareto-optimal solutions. For a given error measure, an effort is made
to identify a minimal subset of objectives which do not alter the original domi-
nance structure on a set of Pareto-optimal solutions. This idea has recently been
introduced within an EMO [57], but a continual reduction of objectives through a
successive application of the above procedure would be interesting.
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This is a promising area of EMO research and definitely more and more of
computationally faster objective-reduction techniques are needed for the purpose.
In this direction, the use of alternative definitions of domination is important. One
such idea redefined the definition of domination: a solution is said to dominate
another solution, if the former solution is better than latter in more objectives. This
certainly excludes finding the entire Pareto-optimal front and helps an EMO to
converge near the intermediate and central part of the Pareto-optimal front.
Another EMO study used a fuzzy dominance [58] relation (instead of Pareto-
dominance), in which superiority of one solution over another in any objective is
defined in a fuzzy manner. Many other such definitions are possible and can be
implemented based on the problem context.

1.10.2 Dynamic EMO

Dynamic optimisation involves objectives, constraints, or problem parameters
which change over time. This means that as an algorithm is approaching the opti-
mum of the current problem, the problem definition has changed and now the
algorithmmust solve a new problem. Often, in such dynamic optimisation problems,
an algorithm is usually not expected to find the optimum, instead it is best expected
to track the changing optimum with iteration. The performance of a dynamic opti-
miser then depends on how close it is able to track the true optimum (which is
changing with iteration or time). Thus, practically speaking, optimisation algorithms
may hope to handle problems which do not change significantly with time. From the
algorithm’s point of view, as in these problems the problem is not expected to change
too much from one time instance to another and some good solutions to the current
problem are already at hand in a population, researchers ventured to solving such
dynamic optimisation problems using evolutionary algorithms [59].

A recent study [60] proposed the following procedure for dynamic optimisation
involving single or multiple objectives. Let PðtÞ be a problem which changes with
time t ðfrom t ¼ 0 to t ¼ TÞ: Despite the continual change in the problem, we
assume that the problem is fixed for a time period s; which is not known a priori
and the aim of the (offline) dynamic optimisation study is to identify a suitable
value of s for an accurate as well computationally faster approach. For this pur-
pose, an optimisation algorithm with s as a fixed time period is run from t ¼ 0 to
t ¼ T with the problem assumed fixed for every s time period. A measure CðsÞ
determines the performance of the algorithm and is compared with a pre-specified
and expected value CL: If CðsÞ�CL; for the entire time domain of the execution of
the procedure, we declare s to be a permissible length of stasis. Then, we try with a
reduced value of s and check if a smaller length of statis is also acceptable. If not,
we increase s to allow the optimisation problem to remain stasis for a longer time
so that the chosen algorithm can now have more iterations (time) to perform better.
Such a procedure will eventually come up with a time period s	 which would be
the smallest time of statis allowed for the optimisation algorithm to work based on
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chosen performance requirement. Based on this study, a number of test problems
and a hydro-thermal power dispatch problem have been recently tackled [60].

In the case of dynamic multi-objective problem solving tasks, there is an addi-
tional difficulty which is worth mentioning here. Not only does an EMO algorithm
needs to find or track the changing Pareto-optimal fronts, in a real-world imple-
mentation, it must also accommodate an immediate decision about which solution to
implement from the current front before the problem changes to a new one. Deci-
sion-making analysis is considered to be time-consuming involving execution of
analysis tools, higher-level considerations, and sometimes group discussions. If
dynamic EMO is to be applied in practice, automated procedures for making
decisions must be developed. Although it is not clear how to generalize such an
automated decision-making procedure in different problems, problem-specific tools
are certainly possible and certainly a worthwhile and fertile area for research.

1.10.3 Uncertainty Handling Using EMO

A major surge in EMO research has taken place in handling uncertainties among
decision variables and problem parameters in multi-objective optimisation. Prac-
tice is full of uncertainties and almost no parameter, dimension, or property can be
guaranteed to be fixed at a value it is aimed at. In such scenarios, evaluation of a
solution is not precise, and the resulting objective and constraint function values
becomes probabilistic quantities. optimisation algorithms are usually designed to
handle such stochasticities by using crude methods, such as the Monte Carlo
simulation of stochasticities in uncertain variables and parameters and by
sophisticated stochastic programming methods involving nested optimisation
techniques [61]. When these effects are taken care of during the optimisation
process, the resulting solution is usually different from the optimum solution of the
problem and is known as a ‘robust’ solution. Such an optimisation procedure will
then find a solution which may not be the true global optimum solution, but one
which is less sensitive to uncertainties in decision variables and problem param-
eters. In the context of multi-objective optimisation, a consideration of uncer-
tainties for multiple objective functions will result in a robust frontier which may
be different from the globally Pareto-optimal front. Each and every point on the
robust frontier is then guaranteed to be less sensitive to uncertainties in decision
variables and problem parameters. Some such studies in EMO are [62, 63].

When the evaluation of constraints under uncertainties in decision variables and
problem parameters are considered, deterministic constraints become stochastic
(they are also known as ‘chance constraints’) and involves a reliability index ðRÞ to
handle the constraints. A constraint gðxÞ� 0 then becomes Prob ðgðxÞ� 0Þ�R: In
order to find left side of the above chance constraint, a separate optimisation
methodology [64], is needed, thereby making the overall algorithm a bi-level
optimisation procedure. Approximate single-loop algorithms exist [65] and
recently one such methodology has been integrated with an EMO [61] and shown
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to find a ‘reliable’ frontier corresponding a specified reliability index, instead of
the Pareto-optimal frontier, in problems having uncertainty in decision variables
and problem parameters. More such methodologies are needed, as uncertainties is
an integral part of practical problem-solving and multi-objective optimisation
researchers must look for better and faster algorithms to handle them.

1.10.4 Meta-Model Assisted EMO

The practice of optimisation algorithms is often limited by the computational
overheads associated with evaluating solutions. Certain problems involving
expensive computations, such as numerical solution of partial differential equa-
tions describing the physics of the problem, finite difference computations
involving an analysis of a solution, computational fluid dynamics simulation to
study the performance of a solution over a changing environment, etc. In some
such problems, evaluation of each solution to compute constraints and objective
functions may take a few hours to a day or two. In such scenarios, even if an
optimisation algorithm needs 100 solutions to get anywhere close to a good and
feasible solution, the application needs an easy three to six months of continuous
computational time. In most practical purposes, this is considered a ‘luxury’ in an
industrial set-up. optimisation researchers are constantly on their toes in coming up
with approximate yet faster algorithms.

Meta-models for objective functions and constraints have been developed for
this purpose. Two different approaches are mostly followed. In one approach, a
sample of solutions are used to generate a meta-model (approximate model of the
original objectives and constraints) and then efforts have been made to find the
optimum of the meta-model, assuming that the optimal solutions of both the meta-
model and the original problem are similar to each other [66, 67]. In the other
approach, a successive meta-modelling approach is used in which the algorithm
starts to solve the first meta-model obtained from a sample of the entire search
space [68–70]. As the solutions start to focus near the optimum region of the meta-
model, a new and more accurate meta-model is generated in the region dictated by
the solutions of the previous optimisation. A coarse-to-fine-grained meta-model-
ling technique based on artificial neural networks is shown to reduce the com-
putational effort by about 30–80% on different problems [68]. Other successful
meta-modelling implementations for multi-objective optimisation based on Kri-
ging and response surface methodologies exist [70, 71].

1.11 Conclusions

This chapter has introduced the fast-growing field of multi-objective optimisation
based on evolutionary algorithms. First, the principles of single-objective EO
techniques have been discussed so that readers can visualize the differences
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between EO and classical optimisation methods. The EMO principle of handling
multi-objective optimisation problems is to find a representative set of Pareto-
optimal solutions. Since an EO uses a population of solutions in each iteration, EO
procedures are potentially viable techniques to capture a number of trade-off near-
optimal solutions in a single simulation run. This chapter has described a number
of popular EMO methodologies, presented some simulation studies on test prob-
lems, and discussed how EMO principles can be useful in solving real-world
multi-objective optimisation problems through a case study of spacecraft trajectory
optimisation.

Finally, this chapter has discussed the potential of EMO and its current research
activities. The principle of EMO has been utilised to solve other optimisation
problems that are otherwise not multi-objective in nature. The diverse set of EMO
solutions have been analyzed to find hidden common properties that can act as
valuable knowledge to a user. EMO procedures have been extended to enable them
to handle various practicalities. Finally, the EMO task is now being suitably
combined with decision-making activities in order to make the overall approach
more useful in practice.

EMO addresses an important and inevitable fact of problem-solving tasks.
EMO has enjoyed a steady rise of popularity in a short time. EMO methodologies
are being extended to address practicalities. In the area of evolutionary computing
and optimisation, EMO research and application currently stands as one of the
fastest growing fields. EMO methodologies are still to be applied to many areas of
science and engineering. With such applications, the true value and importance of
EMO will become evident.
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Chapter 2
Multi-objective Optimisation
in Manufacturing Supply Chain Systems
Design: A Comprehensive Survey
and New Directions

Tehseen Aslam, Philip Hedenstierna, Amos H. C. Ng and Lihui Wang

Abstract Research regarding supply chain optimisation has been performed for a
long time. However, it is only in the last decade that the research community has
started to investigate multi-objective optimisation for supply chains. Supply chains
are in general complex networks composed of autonomous entities whereby
multiple performance measures in different levels, which in most cases are in
conflict with each other, have to be taken into account. In this chapter, we present a
comprehensive literature review of existing multi-objective optimisation applica-
tions, both analytical-based and simulation-based, in supply chain management
publications. Later on in the chapter, we identify the needs of an integration of
multi-objective optimisation and system dynamics models, and present a case
study on how such kind of integration can be applied for the investigation of
bullwhip effects in a supply chain.
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2.1 Introduction

Supply Chain Optimisation (SCO) is an area that has been studied for more than
two decades. Traditionally, the main focus of the research studies has been
regarding minimising the overall cost or maximising the total revenue as a single-
objective optimisation problem. The majority of these single-objective studies
have been conducted with the help of various mathematical programming

approaches. For instance, in the late 1980s, Cohen and Lee [1] presented a four-tier
(suppliers, assembly plant, distribution centres and customers) global supply chain
model based on mixed-integer non-linear programming (MINLP). The intent of
the study was to help companies to establish a global manufacturing strategy
through the evaluations of various economic order quantity (EOQ) techniques by
maximising the total profit after tax for the manufacturing facilities and distribu-
tion centres. In the 1990s, Arntzen et al. [2] helped an electronic manufacturer to
solve their supply chain design problem, by looking at location selection of
facilities as well as the production, inventory and shipping quantities. In this study,
they developed a supply chain model based on mixed-integer programming (MIP),
which minimised the total cost, including production costs, distribution costs and
inventory expenses, etc. In addition to just looking at the cost, their model also
considered time in the objective function. The time variable was measured as the
amount of days that were required for production and transportation between each
connection in the supply chain. Hence, both cost and time could be weighted as a
combination in the single-objective optimisation function. Voudouris [3] presented
a mixed-integer linear programming (MILP) model which was used to streamline
the supply chain operation and increase the efficiency by improving the scheduling
process. In contrast to the aforementioned studies, here the objective function was
formulated to maximise the supply chain flexibility, i.e. the capability to meet the
fluctuating demands. In recent years, researchers such as Jayraman and Pirkul [4]
as well as Amiri [5] have continued to model supply chains as single-objective
problems. Jayraman and Pirkul [4] studied an integrated logistic model with which
they explored the facility location problem regarding production and warehouse
facilities. They provided an MIP model of the logistic network in which their
objective was to minimise the overall cost of the supply chain. Amiri [5] examined
a similar problem by addressing the supply chain distribution network design
problem, i.e. locating production plants and distribution warehouses and deter-
mining the optimal strategy for distributing the product between production plant,
distribution warehouse and customers, using MIP. The goal of the study was to
select the optimum number of plants and warehouses that can fulfil customer
demand at a minimum total cost for the supply chain. In other literature review
studies, such as [6] and [7], one can find many more studies that optimise supply
chains with single-objective functions.

Despite the successful implementations of aforementioned studies, in our view,
supply chain decisions are much more complex than treating them as single-
objective optimisation problems. For instance, while cost, revenue and flexibility
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as presented in [3] can be the indicators to determine the performance of a supply
chain, there are other important metrics used in supply chain analyses, like lead
time, inventory levels, service levels, Work-In-Process (WIP), etc. that should be
considered when optimising a supply chain network. A short average lead time
means that the total time a product stored in the system is short, which also means
that customer orders can be fulfilled within a shorter time and thus leverages the
overall performance of the supply chain. A low WIP means that the cost spent on
transportation and inventory is lowered and thus is also highly desired. Therefore,
to a decision maker, an ideal configuration is the one that maximises delivery
service level while simultaneously minimising lead time and WIP. Because of the
conflicting nature of the above mentioned metrics, modelling a system using
traditional optimisation techniques in which one optimises a single objective or a
single weight-based objective to combine multiple objectives would very likely
lead to misleading results in a dynamic system such as a supply chain.

In a general Multi-Objective Optimisation (MOO) problem, there exists no
single best solution with respect to all objectives; a solution might be optimal in
one objective but worse in the other objective. In an MOO problem, a decision
maker is presented with Pareto-optimal solutions, which are a set of trade-offs
between the different objectives. These solutions are non-dominated solutions,
i.e., there exists no other solution which would increase a performance measure
without causing a simultaneous decrease in at least one of the other objectives
[8]. In this chapter, we present a comprehensive literature review of MOO
applications in supply chain management (SCM). Such a review has led us to
identify the need for a multi-objective and multi-level optimisation (MLO)
framework for SCM which considers not only optimisation of the overall supply
chain, but also each entity within the supply chain. The content of this chapter is
as follows. In Sect. 2.2, we present a comprehensive literature review of MOO
for SCM, which is summarised in Sect. 2.3. In Sect. 2.4, a case study in which
MOO is applied for to investigate the behaviour of the bullwhip effect in a
supply chain is presented.

2.2 Literature Review: MOO for SCM

Multi-objective optimisation (MOO) is a discipline that has been studied since
1970s, and its application areas range widely from resource allocation, trans-
portation, investment decision to mechanical engineering, chemical engineering,
automation applications, to name a few. The main concept of MOO is to
evaluate two or more conflicting objectives against each other. A simple method
to handle an MOO problem is to form a composite objective function as the
weighted sum of the conflicting objectives. Because the weight for an objective
is proportional to the preference factor assigned to that specific objective, this
method is also called preference-based strategy [8]. Apparently, preference-based
MOO is simple to apply, because by scalarising an objective vector into a single
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composite objective function (e.g., combining all performance measures into a
weighted average objective function to represent the overall system cost), an
MOO problem can be converted into a single-objective optimisation problem and
thus a single trade-off optimal solution can be sought effectively. However, the
major drawback is that the trade-off solution obtained by using this procedure is
very sensitive to the relative preference vector. Therefore, the choice of the
preference weights and thus the obtained trade-off solution is highly subjective to
the particular decision maker.

At the same time, it is also argued that using preference-based MOO to obtain a
single ‘‘global’’ optimal solution for multi-tier systems, like supply chains, is not
desirable if the ‘‘global’’ optimum suggests a set of decision variable values that
may sacrifice the performance of the sub-system level. For example, the optimal
solution found by the simulation optimisation may be optimal when considering
the overall supply chain but totally not acceptable to the company that plays the
role as the manufacturer. Therefore, for a decision maker, it would be useful if the
posterior Pareto front can be generated quickly by using an MOO algorithm, as
shown in Fig. 2.1, so that he/she can choose the most suitable configuration among
the trade-off solutions generated.

Examining a supply chain, one clearly sees that a supply chain is a complex
system consisting of multiple entities (e.g., suppliers, manufacturers, distributors
and retailers, as mentioned earlier), which individually have their own perfor-
mance measures and objectives to optimise for their internal process e.g., maxi-
mising the throughput whilst minimising the WIP. However, optimising these
individual entities is not adequate when optimising a supply chain as it is a
dynamic network consisting of multiple transaction points with complex

Fig. 2.1 General Pareto-
based MOO procedure
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transportations, information transactions and financial transactions between enti-
ties. Hence, optimising the supply chain as whole is as crucial as optimisation of
the individual entities, and the aim of SCM is to align and combine all these
objectives, individually as well as in supply chain, so that they work towards a
common goal—increasing the efficiency and profitability of the overall supply
chain. SCM is thus multi-objective in nature and involves several conflicting
objectives, both on the individual entity level and on the supply chain level.

The literature review that has been conducted in this chapter focusses on
research in which different authors have utilised MOO techniques for managing
supply chains, in contrast to other reviews like [6, 7, 9]. The survey in [6] mainly
focusses on the issues regarding supply chain design problem and the majority of
the review papers are based on single-objective optimisation. In [7], the authors
concentrate their survey on MIP models for supply chains and as in the previous
review the majority of papers are based on single-objective optimisation. Addi-
tionally, the scope of the current chapter attempts to cover all supply chain areas,
including supply chain design, operation, facility location, supplier selection etc.,
as long as the SCM problem has been solved with the help of MOO. In this sense,
the review reported in [9] can be seen as the closest related work to our targeted
scope. However, their main focus lies in presenting a research trend in a specific
area of SCM, namely, supply chain revenue management. With the above men-
tioned scope in mind, we have conducted a search ranging over various major
international journals in management science and operations research including:
European Journal of Operational Research, International Journal of Production

Economics, International Journal of Production Research, International Journal

of Management Science, International Journal of Information Science, Journal of

Computers & Industrial Engineering, Journal of Transportation Research, Inter-

national Journal of Revenue Management, Journal of Computers & Operations

Research, European Journal of Purchasing & Supply Management, etc.
From these sources, we selected publications that span over the last two decades

in the area of applying MOO for SCM. After examining the articles we have
divided the publications into three main areas, namely, mathematical program-
ming techniques, which include MIP, MILP, MINLP etc., simulation techniques,
which include discrete-event simulation (DES), system dynamic (SD), Petri nets,
Multi Agent Systems (MAS) incorporating Agent Based Simulation (ABS), etc.
and modelling technique not depicted in which we have gathered all the papers in
which the authors have not specified explicitly what approach they utilise to model
the supply chain.

2.2.1 Mathematical Programming Techniques

In this section, we present publications in which authors have used mathematical
programming techniques to model the supply chain. For instance, Yimer and
Demirli [10] present a two-phase MILP model over a multi-product, multi-plant
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build-to-order (BTO) supply chain. The purpose of the paper is to address the
dynamic scheduling of materials through the supply chain, ranging from replen-
ishment, component manufacturing, customised assembly to distribution of the
products. In the proposed approach, the authors break down the supply chain into
two subsystems which are then evaluated and analysed sequentially. In the first
phase, they looked at the assembly and distribution schedule of the customisable
product, whereas in the second phase they looked at manufacturing and procure-
ment planning of component and raw materials. The two subsystems were for-
mulated as MILP models with the objective to minimise the associated aggregate
costs whilst maximising the customer satisfactions. The authors used a genetic
algorithm (GA) based solution procedure to solve the sub problems.

Another MILP model for MOO using GA in supply chains is presented in [11]
whereby a company that produces plastic products needed to design a supply
chain, i.e. to choose suppliers and to define the subsets of manufacturing plants and
distribution centres and create the distribution network strategy that would satisfy
the capacity and demand requirements for the product. The objective of the study
was to minimise the total cost of the supply chain, maximise the customer service
level in terms of acceptable delivery times and maximise the capacity utilisation
balance for the distribution centres. Some observation that can be made from the
investigation was that the cost of the supply chain decreased when the service
quality and equity on utilisation ratios for the supply chain was reduced. The
authors also noticed that when all Pareto-optimal solutions were examined one
specific plant was operational in each solution and that four distribution centres
were operational in 90% of the solutions. The authors also compared the perfor-
mance of the GA with an approach where they implemented simulated annealing;
the comparison showed that the GA outperformed the simulated annealing
approach in respect to finding the most Pareto-optimal solutions and with better
quality of these Pareto-optimal solutions.

In [12], the authors investigate a future hydrogen cell supply chain. They argue
that in order for hydrogen to succeed as sustainable fuel source for cars in the
future an entirely new infrastructure needs to be created, from production, through
storage, distribution and disposal. To assist the strategic decision making process
of designing a new supply chain network, they present a generic MILP optimi-
sation model in order to identify optimal investment strategies and integrated
supply chain configurations. When optimising they look at both investment and
environmental criteria, in which they try to establish the optimal trade-off between
net present value (NPV) and the greenhouse gas emissions throughout the lifecycle
of the hydrogen cell. The authors also conducted a case study in which they
showed that the MILP model could identify an optimised supply chain design as
well as capacity expansion policies and investment strategies.

Authors in [13] examine the simultaneous MOO of a multi-echelon supply
chain with uncertain customer demand and product prices by implementing fuzzy
MOO method. They develop a supply chain model as a MILP problem that
investigate how to maximise each participant’s expected profit, the average safety
inventory levels for each entity, the average customer service level for the retailer,
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the robustness of selected objectives to demand uncertainty and maximise the
acceptability levels of buyers and sellers regarding product price. The demand
uncertainty is handled as discrete scenarios with specified probabilities whereas
the product price uncertainty is handled as fuzzy variables. In their results, Chen
and Lee [13] point out that considering robustness measures as part of multiple
objectives significantly reduces the variability of other objective values to product
demand uncertainties. They also show that the proposed fuzzy decision method
provided a compensatory solution for the multiple conflicting objectives.

Guillén et al. [14] also present a MILP model of a supply chain to solve a
stochastic multi-objective problem by using the standard e-constraint method and
branch-and-bound techniques. The problem statement that they investigate is
regarding configuration of a supply chain that maximises the NPV and the demand
satisfaction while minimising the financial risk that they define as a probability of
not meeting a certain profit target level. The result from this study provided the
decision makers with a set of Pareto-optimal solution from which they could
choose their supply chain configuration based on their preferences.

In [15], Sabri and Beamon present a supply chain model for simultaneous
strategic and operations planning of the supply chain. The model consists of a four
echelon (suppliers, manufacturing plants, distribution centres and customer zones)
supply chain and is divided in two sub-models, namely, the strategic sub-model
and the operational sub-model. The strategic sub-model’s objective is to optimise
the supply chain configuration and material flow. More specifically, the authors
use the e-constraint method to: (1) seek the optimal number and locations for the
plants and distribution centres; (2) determine the best distribution centres for the
customer zones; (3) optimise the material flow throughout the supply chain. The
objective function for this sub-model is to minimise cost whilst ensuring sufficient
volume flexibility. The operational sub-model is integrated with the strategy in
order to incorporate the uncertainty of production, transportation and distribution.
Hence, when the output variables of the strategic sub-model have been determined,
customer demand, required service and flexibility levels, cost, lead times etc. are
estimated under uncertainty. The multi-objective function in the operational sub-
model incorporates all trade-offs between costs, service levels and flexibility
levels. Thus, the model that is presented in this paper is based on an iterative
structure, first one optimises the strategic sub-model for an existing or a proposed
supply chain configuration, after that the output variables from the strategic sub-
model are sent to the operational sub-model as input data and the operational sub-
model is optimised based on the determined supply chain configuration. Output
variables from the operational optimisation runs are sent back to the strategic sub-
model where a new optimisation is performed with the new variables which also
incorporate uncertainty.

In all of the above presented publications supply chains have been modelled
utilising MILP; however there are several publications that model supply chains
with the help of MINLP. In contrast to [13], the authors in [16] develop a fuzzy
multi-objective MINLP model for a single product, multi-stage, multi-objective
supply chain design problem where they propose an approach based on spanning
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tree-based GA (st-GA) for a Chinese liquor company. The company intends to
start producing fruit beverages, and they wish to design a supply chain network for
the new product to determine the amount and location of plants and distribution
centres (DC), as well as to determine the optimal distribution strategy that will
satisfy the demand in a cost-effective manner under a fuzzy market demand. To do
so, the MINLP model considers two objectives namely minimisation of total cost,
which includes fixed plant and DC cost as well as inbound and outbound distri-
bution costs, and maximisation of customer service level which basically is the
acceptable delivery time. At the end the authors compare st-GA to a matrix-based
GA, in order to see the efficiency and effectiveness of the st-GA in a random fuzzy
environment.

Guillén-Gosalbez and Grossman [17] investigate a supply chain design and
planning problem for a sustainable chemical supply chain. The aim of the paper is
to identify a supply chain configuration e.g., number, location and capacities of
plants and DC, and transportation links between the entities, together with its
optimal planning decisions, e.g., production rate at plants, material flow between
plants, DC and market etc. The authors formulate the overall problem as a bi-
criterion stochastic non-convex MINLP that attempts to optimise two objectives
namely, maximise the NPV and minimise the environmental impact. The authors
solve the bi-criterion stochastic non-convex MINLP problem by applying e-con-
straint method and spatial branch-and-bound technique. They also present two
examples of a case study in which they show that there clearly exist a conflict
between economical and environmental factors in SCM, however they point out
that the approach presented in their paper allows them to identify process alter-
natives that can reduce the environmental impact by adjusting the strategic supply
chain decisions.

In [18] the authors study a supply chain network design problem for a forward/
reverse logistic network. They present a bi-objective MINLP model representing a
multi-stage logistic network which includes production, distribution, customer
zones, collection/inspection centres, as well as disposal centres. In their paper the
authors argue that in the vast majority of cases logistic networks are designed for
forward logistic activities, i.e. a traditional supply chain, without taking into
account the reverse flow of the products i.e. from customer to disposal centres. The
main focus of their study is to determine the location, amount and capacity of
production, distribution, collection and disposal centres together with determining
the product flow between the mentioned facilities. For the MOO and finding the
non-dominated solutions they develop a multi-objective memetic algorithm
(MOMA) which, similar to GA, is a population based heuristic algorithm. The
authors point out that pure GAs often lack the capability of sufficient search
intensification whereas memetic algorithms provide additional local searches and
combines the advantages of efficient heuristics incorporating domain knowledge
and population based search approaches. The objective functions that they con-
sider is minimising the total cost which includes fixed costs for opening the
different centres, transportation cost and cost savings from integrating different
centres at one location. The second objective is maximising the responsiveness of
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both the forward and reverse networks. At the end they compare their MOMA with
the multi-objective genetic algorithm (MOGA) presented in [12] and with LINGO
8.0 which is an optimisation software. According to their results their MOMA
performed better than the MOGA in terms of average ratio of obtained Pareto-
optimal solutions, and the comparison between LINGO and MOMA showed that
the quality of the solutions that they got from their MOMA were reasonable.

In both [19] and [20] the authors apply fuzzy methods for the MOO and both
studies formulate the supply chain as MINLP model; however they investigate two
different topics. In [19] they try to establish a fair profit distribution for a tradi-
tional supply chain. The authors develop a multi-stage, multi-product, multi-period
production and distribution planning model which they later on formulate to an
MINLP problem. The optimisation objectives in the study are to maximise the
customer service level, maximise the safe inventory level and maximise the profit
for each supply chain entity. Fuzzy sets were used in order to get the trade-off
solutions among the participating entities in the supply chain. In contrast to this, in
[20] the authors attempt to study the effects of uncertain parameters for a mid-term
supply chain planning problem where there are no available probability distribu-
tions for these parameters. For their study the authors build five different models;
two LP, one MILP and two MINLP models. The authors found that the MINLP
mid-term planning model developed by [21] performs the best, and they applied a
fuzzy programming approach for the MOO with the aim to minimise the costs
whilst maximising the demand satisfaction.

In [22] as in [17] the authors also use the e-constraint method, but here they
develop a multi-objective stochastic model which uses Six Sigma measures to
evaluate the financial risk. They also propose a two-stage approach where first the
strategic variables are investigated i.e. which manufacturing plants and distribution
centres should be opened, and then investigate the operational variables i.e.
material flow between the entities, capacity, production etc. The authors seek to
maximise the total profit for the supply chain and to increase the Sigma quality
level by minimising the total number of defects obtained from the suppliers.

A multi-objective stochastic MINLP approach is used in [23] to study a supply
chain design problem under uncertainty. Demands, supplies, shortage, processing,
transportation and costs for capacity expansions are all considered uncertain
parameters. Here as in [22] the authors also propose a two-stage approach where
the first stage deals with the network configuration and the second with decision
variables related to number of product to manufacture and store, material flow etc.
For the MOO and general Pareto-optimal solutions they use a variation of the goal
programming approach called the goal attainment technique. The three objective
functions in this study are minimising the total investment cost for the first-stage
and the second-stage processing, transportation, shortage and capacity expansion
costs, minimising the variance of the total cost and minimising the financial risk.

The authors in [24] present a mathematical modelling approach for three sub-
chains for a supply chain in which the authors have decomposed the supply chain
participants into four models. The three sub-chains, which are the supplier,
manufacturer and the retailer, incorporate decision making regarding stochastic
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customer demands, procurement scheduling, production scheduling and resource

allocation. Each model of the above mentioned supply chain entity tries to
maximise its utility which is achieved by maximising the net profit. The fourth
model, which the authors present, is the broker; this model manages all the issues
regarding resource allocation amongst the supply chain participants. The broker
also deals with maximising the utility for the entire supply chain network. Hence,
the authors present an approach where each entity model represents its optimal
solutions with a set of tuples and then given these solutions the broker maximises
the supply network and presents possible configurations of the supply chain as a
set of tupels. To perform this optimisation the authors propose a distributed multi-
objective GA (DMOGA), which according to the authors is known to be an effi-
cient algorithm for distributed GA. The authors point out that the main difference
between traditional MOGA and DMOGA is that being able to use subpopulations
in DMOGA allows one to exploit information in a better way. Utilising the
DMOGA the authors broke down the population of the entire supply chain deci-
sions into four subpopulations, where each subpopulation implemented traditional
GA to generate sets of optimal solutions. After generating a set of optimal solu-
tions the subpopulations swap the strings with the help of the migration operator,
this procedure is only done for the optimal solutions which are attained when
running the local GA on the individual models. In their paper the authors also
present a case study where they investigated how to obtain the best combination of
products, customers and parts that maximises the revenue of the supply chain
participants as well as the utility for the entire supply chain. From their study the
authors could see that the DMOGA could find optimal or near-optimal solutions
for the problem in hand and also that the DMOGA improved the computational
performance.

Researchers in [25] also have presented a paper investigating a supplier
selection problem; here the authors aimed to integrate the analytic network process
(ANP) with multi-objective MINLP in order to examine tangible and intangible
factors for picking the best of the suppliers and defining the optimal order quan-
tities among the selected suppliers. The authors present a two-stage approach,
namely the selection stage and the shipment stage. In the selection stage, the
authors evaluate the suppliers based on 14 criteria that concern benefits, oppor-
tunities, cost and risk, for a company. To determine the suitable suppliers the
authors use the ANP which is an extension of the analytic hierarchy process

(AHP) with the difference that in the ANP there exist a feedback loop between
elements in different levels of the hierarchy as well as between elements in the
same level. The shipment stage utilises the developed multi-objective MINLP
model to attain non-dominated solutions for the objective functions. To solve
MOO problem the authors implemented two approaches; e-constraint method and
a reservation level-driven Tschebyscheff procedure (RLTP), which later on were
evaluated against each other. For the optimisation the authors considered three
objectives: maximising the total value of purchasing and minimising the budget
and the defect rate. Results from a numerical example showed that the RLTP
approach was better than the e-constraint method.
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Another supplier selection issue is presented in [26]; here the authors propose a
mathematical model using Microsoft Excel, for a single buyer, multi-objective,
multi-supplier, multi-product procurement problem incorporating product lifecycle
(PLC) aspects in a buying firm’s sourcing strategy. For the MOO a standard
MINMAX technique is utilised in order to obtain the Pareto-optimal solutions with
the objective to minimise the overall cost of procurement and maximise the total
quality level of a product and the delivery performance.

Du and Evans [27] address a closed loop reverse logistic network problem
which deals with product returns requiring service. Addressing the problem the
authors developed a multi-objective MIP optimisation model with the objective to
minimise total reverse supply chain cost and the total tardiness of cycle time. To
run the optimisation the authors used a combination of three different algorithms,
namely; scatter search (SS), dual simplex method and constraint method. The SS
algorithm is used to deal with discrete/binary variables in the model which
e.g., could represent capacity planning among potential facilities in the reverse
network. Whereas the dual simplex algorithm is implemented to represent trans-
portation arrangement and to deal with continuous parameters in the MIP model,
and the constraint method is utilised to attain the non-dominated solutions for the
reverse supply network. The numerical results from their study showed that they
were able to attain trade-off relationships between the analysed objectives and
configure a reverse logistic supply chain.

Both Jayaraman [28] and Farahani and Asgari [29] present a facility location
problem. [28] investigate a service facility location problem in order to find the
location of a given number of service facilities in a supply chain network. In the
study the authors develop a MIP model implementing the non-inferior set esti-

mation (NISE) method for the MOO incorporating three objective functions. The
first two objectives are cost-related, where one cost objective relates to the costs
occurred when opening a facility e.g., fixed cost required to open a facility and the
other cost related objective is the operating cost. The third objective is to fulfil
the customer demand as quickly as possible. Hence, the authors seek to minimise
the fixed costs incurred when opening a facility, minimise the operating cost
incurred when satisfying customer demand and minimise the average response
time for serving the customer demand. In contrast to finding the optimal service
facility locations, the authors in [29] investigate a DC location problem in a real-
world military logistic system with the objective to establishing the least number
of DC and locating them at the best possible location, hence minimise the cost for
locating the DC and maximise the quality of the location. To solve this problem
the authors develop a LP model that implements the utility function method to
perform the location optimisation. Both these studies showed that one could
establish, operate and locate the respective studied facilities in a cost effective
manner whilst satisfying customer demands.

In the papers [30–33] the researchers have looked into the supplier/vendor
selection problem. [30] proposes a mathematical supplier selection model that
utilises visual interactive goal programming (VIG) in order to obtain non-domi-
nated solutions. A case study was presented for a hydraulic gear pump
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manufacturer examining a multiple replenishment purchasing problem and helping
them select suppliers and allocating orders among them. The multiple objectives of
this case study were to minimise the purchasing costs, maximise the quality if the
products purchased from different suppliers and maximise the delivery reliability
of each product. The result showed that the purchasing team were able to find
solutions with the help of MOO that increased the quality whilst decreasing the
costs. Wadhwa and Ravindran [31] formulate a vendor selection problem
exploring quality, lead-time and total cost of purchasing under quantity discount as
the three objective functions for the optimisation. The authors develop a mathe-
matical model considering multiple buyers and vendors. The multi-objective
problem is solved utilising three approaches; weighted objective, goal program-
ming and compromise programming. A comparison of these techniques together
with a single-objective formulation, where the objective is to minimise the price, is
performed using the value pathapproach. The result showed that the goal pro-
gramming technique was the most suitable approach for this vendor selection
problem. Erol and Ferrell Jr [32] present an integrated methodology that simul-
taneously addresses the supplier selection problem and the customer assignment
problem. One aspect of the proposed methodology is to select appropriate sup-
pliers from the point of view of each warehouse and the other aspect of the
methodology is to assign the warehouses to the customers. To realise their
methodology the authors present an example study where they consider a dis-
tributor supply chain consisting of ten warehouses, ten suppliers and ten cus-
tomers. To resolve this problem a multi-objective mathematical programming
model is developed with the objective to maximise the supply chain satisfaction,
which includes element from both the supplier selection and customer selection,
and minimise the total cost. Solving the multi-objective problem the authors use an
approach similar to pre-emptive gaol programming but with a slight modification.
The authors assume that for an objective in one of the sub problems experts can
specify an appropriate level of the objective decreasing the search space for that
objective. The study showed that trade-offs between the examined objectives could
be gained implementing the proposed methodology and the results pointed out
some suppliers and warehouses that were recurring in different solutions. In [33] Li
and Zabinsky develop a two-stage stochastic programming (SP) model, a chance-
constrained programming (CCP) model as well as a MIP model with the aim to
identify minimal set of supplier and optimal order quantities considering volume
discounts. The first two modelling approaches incorporate uncertainty in the shape
of uncertain customer demand and supplier capacity whereas the MIP model is
deterministic. The research question that the authors intend to investigate is: how
many suppliers are appropriate, which suppliers should we choose and what are the
optimal ordering or replenishing policies? To represent the uncertainty the SP
model utilises a scenario-based approach called penalty coefficients whereas the
CCP model undertakes a probability distribution and constraints the probability of
not meeting the demand. The authors argue that the SP model is more suitable
when decision maker do not have a clear definition about the distribution of the
stochastic variables but may instead have access to historical data to define
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scenarios and investigate possible future scenarios. Whereas the CCP model is
developed as an alternative to the SP model in order to incorporate the uncer-
tainties and in contrast the CCP model requires that the demand and capacity
constraints are fulfilled with some predetermined probability. The optimisation
objective of these models is to minimise the number of selected suppliers and to
minimise the total cost which includes purchasing costs, transportation, coordi-
nation and inventory costs. To find the Pareto-optimal solutions the model utilises
the e-constraint method. As opposed to the CCP approach the SP model included
two-stages; in the first stage it deals with decision regarding which supplier to
select, whereas the order amounts and shipments plans are considered in the
second stage. Thus, the minimisation of number of selected suppliers is done in the
first stage and the minimisation of the expected total cost is done in the second
stage. The third approach which was a MIP model is based on the CCP model and
has the same objectives and utilises the same optimisation method for finding the
Pareto-optimal solutions as the other two models. The sample problem presented
in this paper consists of ten potential suppliers and four plants with the option to
order 50 different types of components. The result from this study showed that out
of 38 Pareto-optimal solutions the CCP model was able to find 26, the SP model 24
and the MIP model only found 6 solutions. Furthermore, the result showed that the
two stochastic models provided more robust solutions as compared with the
deterministic MIP model, and the SP model was preferable. The uncertainty was
represented by scenarios whereas the CCP model could provide the Pareto-front in
more straightforward way and with less computational time when the uncertainties
were represented by distributions. At the end the authors found the CCP approach
to be the most suitable for the problem in hand because of computational
advantage and straightforwardness of exploring the solutions.

Che and Chiang [34] aim to investigate a supply chain planning problem for a
build-to-order (BTO) supply chain. They present a mathematical model for the
BTO supply chain integrating the supplier selection, product assembly, and the
logistic distribution planning. The main purpose of the paper as the authors
described is first of all to develop a multi-objective mathematical model for the
investigated supply chain as well as implement and evaluate their own modified

Pareto GA (mPaGA) optimisation technique. mPaGA which is based on the Pa-

reto GA (PaGA) has the intention to improve the crossover and mutation operators
of the PaGA in order to attain a higher solving efficiency. Moreover, an equilib-
rium and feasibility-adjustment mechanism are proposed in order to maintain the
feasibility of each individual with the aim of reducing the computational time for
searching after feasible individuals. A two-stage supply chain example study
implementing the proposed model and algorithm as well as a comparison between
the mPaGA and PaGA approach is presented at the end. The study was divided
into three scenarios, in the first scenario the optimisation objectives were to
minimise the cost and the delivery time, second scenario objectives were mini-
misation of cost and maximisation of quality and the third scenario contained all of
the above i.e. minimisation of cost and delivery time along with maximisation of
quality. The result generated from the study showed that mPaGA was significantly
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superior to PaGA in all three scenarios and that it gives less variation and greater
solution stability solving the Pareto-optimal solutions sets.

In [35], the authors present a study covering two research questions: (1) how to
find the preferred solutions showing the trade-offs between environmental and
business issues and (2) how to improve the understanding of the decision maker
for the trade-offs between these performance measures. For answering these
questions, the authors present a two-phased heuristic approach in which they
implement a multi-objective linear model with the objective to minimise the costs,
the cumulative energy demand (CED) and the waste associated with the reverse
logistic network. In the first phase the model generates a number of non-dominated
frontiers for the multiple objectives by implementing the e-constraint method. The
second phase deals with question of how to increase the decision maker’s
understanding. Here the authors focus on visual representation of generated
frontier; selecting his/her preferred solutions from the frontiers provided from
phase one, the algorithm projects the selected solutions into the efficient frontier of
the problem with the three objectives. Another reverse logistic problem is pre-
sented in [36], wherein the author conducts a study based on the concept of green–
SCM, and addresses the optimisation of the nuclear power generation and the
corresponding issue of reverse logistics for the nuclear waste. The author for-
mulates a linear MOO model implementing the composite method for the opti-
misation. The objective of the study is to increase the total net profit of the nuclear
supply chain by maximising the power supply chain-based net profit and mini-
mising the reverse logistic chain-based costs. Results gained from the executed
numerical study showed that implementing the proposed approach the total per-
formance of the nuclear supply chain could be improved by 7–18%, depending on
the weights associated with the investigated objective functions.

A mathematical model for a food processing supply chain is presented in [37],
the author propose a hybrid meta-heuristic approach combining a multi-objective
Bee Colonyalgorithm with constructive rough set heuristics for a supply chain
process scheduling problem. Hence, the authors introduce the concept of Pareto
Bee Colony Optimisation (PBCO) and present a case study concerning scheduling
of several processes in a milk production centre. The PBCO approach is also
compared and evaluated in terms of performance with two other meat-heuristic
methods, namely; Ant Colony Optimisation (ACO) and Tabu Search (TS). Their
results showed that the TS method provided the most likelihood results within the
shortest execution time. The proposed PBCO performed slightly better than the
standard Bee Colony approach.

2.2.2 Simulation Techniques

Attributable to its rich expressiveness to handle complexity and its powerful
programming flexibility, simulation is capable of predicting system performance
with extremely high accuracy. Unfortunately, using simulation alone is not
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sufficient to yield optimal solutions. Simulation by itself is not a real optimisation
tool and ‘‘an extra step is needed—a step that joins simulation and optimisation’’
[38]. This technique is called simulation-based optimisation (SBO), whereby
simulation models are integrated with meta-heuristic search algorithms (e.g.,
Genetic Algorithms or Tabu Search). When compared to classical optimisation
methods, SBO is, because of its inherent attributes, very suitable for solving real-
world industrial-based complex problems. In this section, we present a number of
papers that use SBO for the MOO of SCM.

In [39] the authors present a toolbox called ONE (Optimisation methodologies
for Networked Enterprises) that supports the decision makers in their effort to
assess, design and improve supply chain networks. The ONE architecture consists
of four modules: (1) a network module that supports development of supply chain
models, (2) an optimisation module that offers different methods e.g., mathemat-
ical programming and GAs, (3) a statistical data miner that offers various data
mining methods, and (4) a simulation module for evaluating the supply chain
models. Besides presenting the toolbox the authors also presented two case studies
that both required MOO, one for the automotive industry and the second for the
textile industry. In the automotive case study the authors consider an existing
multi-facility supply chain where the objective is to increase the profit and the
responsiveness of the supply chain by redesigning the distribution network. The
company involved wants to investigate which facilities should be closed down and
which should continue to operate, how the production order assignments should be
distributed among the manufacturing facilities and what inventory policies should
be applied. In order to assist the company in their decisions the authors develop a
simulation model over the supply chain based on their object-oriented simulation
framework, and use the NSGA-II algorithm for the MOO in which the optimi-
sation objectives are to minimise the average total cost for each product unit and
minimise the average demand response time. In the case study conducted for the
textile industry the authors look into a supplier selection problem with the
objective to evaluate new supply chain configuration because of new supplier
selection and transportation links, evaluate the sensitivity of the solutions in
respect to demand variations, evaluate the effect of uncertainty of the data for the
reliability of the supply chain configuration and evaluate the effects of different
inventory policies on the supply chain. As in the first case study they use GAs for
the MOO with the aim of minimising the total cost and maximising the service
level. In [40] the authors present a more comprehensive investigation of the same
case study and in [41] the automotive case study is presented in a greater detail.

Amodeo et al. [42] present approach based on Petri nets where they first model
the supply chains as batch deterministic and stochastic Petri nets and then they
develop a multi-objective search engine for simulation based optimisation in order
to evaluate inventory policies for the modelled supply chain. The presented case
study is a three-echelon supply chain where the company wants to determine the
optimal inventory policies between the entities. As in the previously mentioned
article the authors use the NSGA-II algorithm in order to find the Pareto-optimal
solutions where the two conflicting objectives are total inventory cost and service
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level. In another publication [43] the authors have presented the same approach
and case study, however, with a more comprehensive literature review and detailed
description of their Petri net model. In both publications, they showed that with
help of their approach the company involved in the case study could obtain much
better inventory policies with reduced inventory costs and improved service levels
than the policies that the company is using currently.

Researchers in [44] demonstrate the applicability of combining SD and MOO.
The author presents a simplified version of the well-known beer game developed
by Sterman [45] in the late 1980s. In this study only a two-echelon supply chain is
modelled consisting of a wholesaler and a retailer. In contrast to the original beer
game where the aim is to minimise the total costs for the entire supply chain in this
study the aim of the optimisation is to investigate the trade-offs between the two
conflicting minimisation objectives: wholesaler cost and retailer cost.

Mahnam et al. [46] investigate an assembly supply chain network and develop
an inventory model where each production entity can have several suppliers
feeding the entity but it only has one subsequent predecessor. Other uncertainty
parameters such as customer demand and supplier reliability are represented by
utilising fuzzy sets. The aim of the study is to determine the order-up-to level for
each storage-keeping unit (SKU) in the supply chain. To meet the aims the authors
purpose a hybrid approach where simulation optimisation strategy and particle
swarm algorithms are combined for a two-objective optimisation problem. They
use a multi-objective particle swarm algorithm (MOPSO) with an elitist strategy
where the efficient solutions are kept during the generations. The strategy also
evaluates the particles and compares the swarm particles with the non-dominated
solutions and updates the Pareto front. The objective function regarded in the study
is to minimise the cost satisfying an appropriate fill rate of the SKUs.

Authors in [47] propose a DES and optimisation model for investigating supply
chain design problem that considers supply chain operations and end-of-life pro-
cess under an uncertain environment. Their study aims to analyse original
equipment manufacturers (OEMs) capability to reconfigure their supply chains and
end-of-life operations. In the study they consider three performance measures: (1)
total cost, (2) environmental impact and (3) rate of market fulfilment. These
performance measures are also transformed for the MOO where the aim is to
minimise the total cost and environmental impact whilst maximising the delivery
performance. GAs are used for finding the Pareto-optimal solutions and the
optimisation is run for four end-of-life scenarios. The first scenario considers
disposing the products immediately after they have been collected. In scenario
two, the product are disassembled and the components are reused for product
remanufacturing. The third scenario investigates the outcome of when the broken
products are disposed whereas the healthy products are stored in OEMs inventories
for reuse and redistributed into the market depending on the demand. The fourth
scenario combines the second and third scenario i.e. healthy products are stored for
reuse, however they are disassembled after a while when they no longer fulfil the
redistribution conditions and the components are then reused in the product
remanufacturing. The results show that scenario three i.e. reuse of products gives
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the best results in terms of average performance whereas scenario two is the
poorest.

The concepts of MAS is used in [48] in which the supply chain is modelled,
simulated and managed by computational agents with the objectives to minimise
the lead time and maximise the revenue using NSGA-II algorithm. The author
developed a model in which the multi-objective, multi-criteria and multi-role
nature of supply chains is represented by utilising and combining evolutionary
MOO and multi-criteria decision making within the autonomous agents. The
agents in the model have the possibility to take multiple roles as clients selecting
supplier and suppliers managing their production. Furthermore, besides optimising
their manufacturing strategy they also have the ability to modify their decision
parameters for supplier selection using analytical hierarchy process (AHP).
Implementing this approach the author presents an agent based simulator (ABS)
model, which includes functionalities such as discovery of supplier service,
manufacturing, service bidding, shipping, multi-criteria supplier selection, internal
parameter optimisation etc. The research questions of the study were divided into
three simulation experiments to: (1) compare the local parameter optimisation of
suppliers with classical reactive strategy aiming to investigate its local parameter
optimisation that generates better global results, (2) compare the performance of
the multi-objective multi-role supply chain with a single-objective supply chain
approach, and (3) compare the multi-objective multi-role supply chain with a
single-role supply chain. The result showed that the multi-objective multi-role
supply chain approach outperformed the supply chains that had single objective or
single role. Among other things it was also observed that the internal optimisation
feature allowed agents to earn more revenue and obtain shorter lead times when
compared with runs without the optimisation.

The same authors in [39–41] present a supplier selection problem in [49].
Addressing the problem they develop a simulation optimisation methodology
composed of GA which optimises the supplier selection, discrete event simulator
(DES) in order to evaluate operational performance and a framework for model-
ling supply chains. The case study presented in this paper is based on a part of a
supply chain for boot distribution, where the overall objective is to redesign the
supply chain by selecting new suppliers and evaluating different solutions in terms
of overall cost and robustness to changes in demand etc. The main difference
between the current paper and the previous ones is that in this paper the authors
explain the simulation optimisation methodology in a greater extent.

2.2.3 Other Modelling Techniques

In this section we have gathered two categories of papers; first category includes all
the papers that do not utilise mathematical or simulation approaches, e.g., Multi
Agent Systems or other program-based approaches. The second category includes
the papers which the authors have not explicitly specified what approach they utilise.
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Mansouri [50] investigates a multi-objective batch sequencing problem
between two successive stages in a supply chain of a kitchen manufacturer in order
to coordinate setups between the two stages in a flow-shop manner. The author
point out that different processes might have different preferences on how to group
products into batches e.g., before the cutting process you might group them by
shape or material whilst before the paint shop parts might be grouped according to
colour. Accordingly, in an assembly system the parts may be arraigned to fit the
final product. This procedure indicates that each stage will try to minimise its own
total setup costs, however the objectives of the stages might be conflicting. Out-
lining the problem the author aims to minimise the total number of setups in two
stages and minimise the maximum number of setups in each stage. Doing so, the
author proposed a multi-objective simulating annealing (MOSA) solution
approach to discover the Pareto-optimal solutions. The MOSA approach is also
compared with an existing MOGA approach. The case study presented in the paper
is based on the production chain of a kitchen manufacturer, where they consider 32
cutting groups and 14 colour groups and the plant applies an assemble-to-order
production strategy. Finishing the study the author observed that the proposed
MOA was capable of finding Pareto-optimal solutions and outperformed the
MOGA in respect to quality of the discovered solutions.

In [51] the authors present a model over a multi-objective supply chain
inventory optimisation problem with the aim of calculating base-stock-levels in a
serial supply chain. The problem was first solved as a single-objective inventory
cost problem and subsequently as a MOO problem considering two cost objec-
tives, namely, holding cost and shortage cost. In the single-objective study the
authors aim to obtain optimal installation base-stock policies in order to minimise
total supply chain cost. For the optimisation they implement and compare standard
GA with three variations of GA, namely, gene-wise GA (GGA), random-key GA

(RKGA) and random-key gene-wise GA (RKGGA). After presenting the result for
the single-objective study, in which they found the RKGGA to be the best
approach, the authors present the multi-objective study with a key question in
mind: how would the total supply chain cost and the holding cost be affected if the
supply chain were to increase its service levels in comparison to the results gained
from the single-objective solutions? Addressing this question the authors develop a
MOGA for supply chain inventory problem (MOGA-SCIP) for generating the non-
dominated solutions, with the objective to minimise the total holding cost and the
total shortage cost. Completing the study, 183 non-dominated solutions were
discovered and the authors argued that the MOGA-SCIP could be implemented to
other multi-objective inventory problems within supply chains with simple mod-
ification. Pokharel [52] presents another multi-objective supply chain design
problem proposing a deterministic simulation model involving minimisation of
cost and maximisation of the reliability of supply from one entity to another. For
the MOO the author proposes to use the STEPmethod to locate the non-dominated
solutions.

Authors in [53] address a supply chain scheduling problem that considers the
availability of both internal and outsourced machines with the objective to
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minimise the utilisation of the outsourced machines and the total number of late
orders. In their proposed model the authors assume that there are similar machines
available within the internal organisation as well as the outsourced to process a
number orders. But the manufacturing costs at the outsourced locations are higher
than those of internal production, thus the focus on minimising the total external
machine utilisation. For the MOO the authors use four heuristic approaches pre-
sented by Ho and Chang [54]; these approaches are later compared using three
evaluation methods, namely, best deviation method (DEV), integrated preference

functional method (IPF) and the free disposal hull method (FDH). Attaining the
results the authors could see that the heuristic methods used here were not suffi-
cient, and thus recommended the development of additional methods for the
problem in order to generate non-dominated solutions.

In [55] the authors investigate optimisation of vehicle routing where multiple
depots, multiple customers and multiple products have been considered. The
model objective is to minimise total travel distance for all vehicles and the total
time required to serve customers for all vehicles. To solve the optimisation
problem the authors utilise a multi-objective evolutionary algorithm (MOEA)
called fuzzy logic guided non-dominated sorting GA II (FL-NSGA II), where the
fuzzy logic is implemented to dynamically adjust crossover rate and mutation rate
in ten consecutive generations in order to improve the search performance of the
MOEA approaches. To demonstrate the efficiency of their proposed algorithm the
authors also compare it with five other MOEA algorithms, namely, the standard
NSGA II, strength Pareto evolutionary algorithm II (SPEA II), fuzzy logic guided

strength Pareto evolutionary algorithm II (FL-SPEA II), micro-GA (MICROGA)
and fuzzy logic guided micro-GA (FL-MICROGA). Three scenarios were imple-
mented to evaluate the algorithms; first scenario consisted of 5 depots and 50
customers, second scenario included 15 depots and 150 customers and the third
scenario contained 25 depots and 250 customers. In order to compare the quality of
the solutions from the algorithms the authors implemented two performance
metrics; the convergence metric proposed by Deb and Jain [56] and the spread

metric developed by Deb [57]. Final result from the study showed that the pro-
posed algorithm (FL-NSGA II) was able to find non-dominated solutions with
better convergence and diversity than the other algorithms examined in this study.
When implementing the fuzzy logic guidance to the algorithms, they were able to
attain better results than without it. The authors explain that this could depend on
the ability of the fuzzy logic to adjust the crossover rate and the mutation rate to
suitable values for various evolution states of the population.

2.3 Review Summary

This section concludes the presented literature review. Presenting this review
summary we hope to give the reader opportunity, in a quick way, to overview the
available literature treating MOO for supply chain management.
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In summary, it has been observed from this literature review that the majority of
the research conducted on MOO for SCM is based on mathematical approaches
e.g., LP, MIP MILP etc. In comparison with the large amount of publications on
applying simulation approaches to SCM problems, it seems that the exploration of
using SBO, in the context of MOO, is far from adequate. As it can be seen in
Table 2.1, we have tried to display the content of each paper considering MOO for
SCM. The table is divided into five sections, Article that displays the article
reference,Modelling techniques which show what approach has been used in order
to model the supply chain, Research scope presents the main research scope of the
paper, Optimisation technique displays the technique that has been utilised in order
to attain Pareto-optimal solutions and Optimisation objective presents the various
objectives that have been studied in the surveyed papers.

In total, 42 journals have been reviewed which concern MOO for SCM, ranging
from various major international journals in management science and operational
research. It should be noted that in some of the papers the authors have imple-
mented several approaches e.g., [11, 33, 37], etc., the best approach/technique as
defined by the authors in the paper has been highlighted by writing the favourable
approach in italic.

2.3.1 Modelling Techniques

In this section we present a summary over which modelling approaches have been
used the most in order to model supply chains. We would like to point out that in
some papers (e.g., [33]) the author/authors have investigated several modelling
approaches, however in our data collocation we have only considered the most
favourable approach defined by the author/authors.

In terms of modelling approaches, Fig. 2.2 depicts that majority of papers, or
more exactly 53% of them, have used a mathematical approach. By further
investigating this approach we see in Fig. 2.3 that the most popular mathematical
approach to model supply chains is by MINLP which counts for 33% of the papers
that applies a mathematical approach. MINLP is followed by MILP as the second
most implemented mathematical approach at 21%, the rest of approaches are fairly
equally distributed, as shown in Fig. 2.3. The group called Other in Fig. 2.3
consists of approaches that have only been used once or twice such as, non-linear
stochastic programming, MS Excel etc.

Coming back to Fig. 2.2, we observe that simulation approaches only count for
24% of implemented modelling techniques. This clearly indicates that more
research is needed in this field i.e., performing MOO for supply chain management
using a simulation model. The group Na includes the papers where a modelling
technique could not be identified.
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2.3.2 Research Scope

Here, we summarise the various research scopes that have been investigated in the
reviewed journals. As with modelling techniques, some papers had more than one
research scope e.g., [17] that investigates supply chain design and planning, [19]
that examines supply chain production and distribution planning, etc. In this case
we have only considered the main scope of the paper as presented by the authors,
i.e. [17] has been categorised as supply chain design and [19] is regarded as supply
chain planning paper.

Figure 2.4 shows the majority of research that has been conducted in the field of
supply chain design, representing 29% of reviewed articles. This category is
closely followed by another research, namely, supplier selection that accounts for
21% of the reviewed articles. Here, it could be argued that selecting new supplier
changes the supply chain configuration and thus the supply chain design; however
as we reviewed the papers we found that some papers only dealt with the issue of
selecting an appropriate supplier but there were also papers that extended this

Fig. 2.2 Modelling
techniques

Fig. 2.3 Mathematical
approaches

Fig. 2.4 Research scope
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notion and considered alternate supply chain configurations. In these cases we
choose to classify these papers as a supplier selection problem as pointed out by
the authors to be the main topic of the papers.

The rest research areas other than the two mentioned above show a quiet equal
distribution among the surveyed papers.

2.3.3 Optimisation Techniques

In this section we summarise the various optimisation techniques that has been
used in the reviewed papers. Similar to the previous two sections, we only consider
one optimisation approach from each paper and categorise it into the following
groups of optimisation techniques: GA, fuzzy logic, e-constraint and goal pro-
gramming. The optimisation technique that is selected is the one that has proven to
be the most suitable for the problem in hand and favoured by the authors.

The pie-chart presented in Fig. 2.5 shows that the most utilised optimisation
technique has been GA, implemented in 38% of the reviewed papers. It should be
pointed out here that in this category (i.e. GA) we include all approaches that are
based on GA, e.g., NSGA-II, distributed-GA, memetic algorithm etc. The second
largest category other, contains all the optimisation approaches that only has been
implemented once such as Pareto Bee Colony optimisation, NISE, Particle Swarm,
etc. whereas the other approaches (i.e. GA, fuzzy logic, e-constraint, etc.) have
been implemented in several papers.

2.3.4 Optimisation Objectives

During the review, we found 101 optimisation objectives that had been investi-
gated in the 42 reviewed papers. In this section we have categorised the vast
amount of optimisation objectives in seven categories, namely, cost, time, profit/
revenue, quality, environment, delivery/demand/service level (DDS) and other.

The cost category includes all the optimisation objectives related to cost such
as, total/overall supply chain cost, transportation cost, purchasing cost, inventory
cost, investment cost, etc. In the time category we have included all the

Fig. 2.5 Optimisation
techniques
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optimisation objectives related to time, such as lead-time, preferred path, time
serving customers, etc. As one can forebode the profit/revenue category includes
the objectives where authors have tried to maximise the profit/revenue, and fol-
lowing the same pattern, quality and environment objectives relate to respective
category. Two interesting categories are DDS and other; in DDS we include all the
optimisation objectives related to demand satisfaction, delivery reliability and
customer service level and in the other category we include optimisation objec-
tives that are only used once or twice, such as number of selected suppliers, SKUs
fill rate, utilisation of outsourced machines, late orders, etc.

As one can see from Fig. 2.6, 35% of the 101 optimisation objectives are
somehow cost related, and the second most evaluated optimisation objectives are
DDS-related.

2.4 Simulation-Based MOO: A Case Study

Given the lack of simulation-based MOO applications, there should be plenty of
problems, especially those that mathematical models cannot describe properly. In
this section, we describe the optimisation of a system dynamics model that
describes a classic production and inventory control problem.

The principal problem within supply chain management is concerned with
finding a way to render the highest customer service at the lowest expense. Service
is usually considered as either delivery time or as fill rate, while expense can be
expressed in various dimensions, such as unit cost and tied-up capital require-
ments. Given that there are two (or more) objectives, the problem is multi-
objective by design. Maintaining inventory is a preferred way of keeping service
levels high while keeping production rates stable, which serves to lower the cost of
production. However, keeping and managing inventories has been proven to
increase the volatility of production, rather than to decrease it. This happens due to
the desire to maintain a desired level of safety stock at any time, meaning that
discrepancies from the desired stock level will be compensated for when placing
production orders. The consequence is that the stock-keeping policy not only
transfers variability upstream, but amplifies it. This phenomenon is termed the
‘‘bullwhip effect,’’ and is known for inducing large swings in production orders,
especially when several tiers of production are concerned.

Fig. 2.6 Optimisation
objectives
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The initial discovery of the effect was done in [58] that developed a simulation
model to describe the inventory swings observed at a company. Later develop-
ments include [59–62]. A comprehensive review is presented in [63], which covers
the area from a control-theoretic perspective. The bullwhip problem is of interest,
because it considers the basic trade-off between three different dimensions, being
production rate, inventory levels and service level. Using a modified version of the
well-established APIOBCS model (see [60]), we demonstrate what insights multi-
objective optimisation can give, even for simple problems that have been thor-
oughly explored by single-objective analyses. The objectives are presented in
Table 2.2.

The model in Fig. 2.7 reflects the APIOBPCS model with the exception of an
added backlog, which records the demand, which may not be fulfilled immedi-
ately; orders remain in the backlog until they are fulfilled. The ‘‘On order’’ stock,
which mirrors eventual stock-outs on the supply side is also an addition over

Table 2.2 Objective functions

Goal Parameter Objective

Bullwhip MAX(order quantity) Minimise
Capital tied-up WIP + FGI Minimise
Service level Backlog Minimise

FGIWIP
WIP completion

rate

On order

Delivery rateOrdering rate Sales rate

Backlog

Backog entry rate

Backlog exit rate

Demand rate

Possible release

rate

Forecasted

demand Change in

forecast

FGI correction

WIP correction

Order quantity

<Forecasted demand>

<Backlog>

Process time

Tw

Ti
Target FGI

coverage

Ta

Tb

Backlog correction

Fig. 2.7 The system dynamics model
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APIOBPCS; however, it is not used in the experiment as supply-side shortages are
not considered.

The only decision rule investigated in the model is the reorder quantity; orders
are placed continuously, so there is no need to consider order timing or whether
order quantities are economically optimal. Equation 2.1 shows the ordering policy,
with the two discrepancies shown in Eqs. 2.2 and 2.3.

Order quantity ¼ Forecasted demand� On orderþWIP discrepancy=Tw
þ FGI discrepancy=Ti þ Backlog=Tb ð2:1Þ

WIP discrepancy ¼ WIP� Desired WIP
¼ WIP� Lead time� Forecasted demand ð2:2Þ

FGI discrepancy ¼ FGI� Desired FGI
¼ FGI� Desired FGI coverage � Forecasted demand ð2:3Þ

The parameters used in the model are shown in Table 2.3; as only one echelon
is optimised, Ta is not considered due to its limited effect on the dynamics of the
model.

The demand rate used in the experiment is a step increase from a base level of
100 units of demand to 120. Figure 2.8 shows the demand rate and an example of a
possible resulting order rate; note that the order rate peaks well above the step
increase, representing how the system adjusts its stocks to reach the new
equilibrium.

Table 2.3 Optimisation parameters

Stocks Controlling parameters

FGI Ti, desired coverage
WIP Tw

Backlog Tb

Forecasted demand Ta

Graph for Demand rate

135

125

115

105

95

0 36 71 107 142

Time
Demand rate[Echelon1] : Current

Demand rate[Echelon2] : Current

Fig. 2.8 Input signal
(Echelon 1) and output signal
(Echelon 2)
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Using the NSGA-II [64] algorithm to optimise backlog, max order quantity and
inventory gives the results in Fig. 2.9 (a small number of points have been
interpolated to complete the Pareto front). To attain the lowest backlog, a com-
bination of inventory and production rate variance (maximum order quantity) is
required. A key insight that the optimisation shows is that if only inventory and
backlog were to be considered, production variance (max order quantity) would be
high; however the same service can be attained with less variance in production
rate if slightly more inventory is held.

With this simple experiment, it has been possible to show the trade-off between
production order quantity variance (which often is a determinant of production
cost), inventory (which determines how much capital must be tied up), and
backlog (which reflects the average delivery delay). The insight gained is that
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Fig. 2.9 Optimisation results
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Fig. 2.10 Parameter configurations for a set of random Pareto-optimal solutions
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production stability can be achieved by keeping inventory in excess of the bare
minimum, and at the same time adjusting the control parameters of the production
system, especially Ti and Tw (see Fig. 2.10).

While the insights gained from MOO of theoretical experiments are of some
value, the greatest benefit may well come from applying it to industrial scenarios,
where multiple conflicting goals must be taken into account.

2.5 Conclusions

In this chapter, we presented a literature review of MOO for supply chain man-
agement. In total, 42 journal papers were reviewed which concern MOO for SCM,
ranging from various major international journals in management science and
operations research. The review concerned four main topics, namely, which
modelling techniques have been used, which research scopes have been popular,
which type of optimisation algorithms have been implemented and what optimi-
sation objectives have been investigated.

The review showed that majority of papers have used a mathematical approach
such as LP, MINLP, MILP etc. to model supply chains. Some researchers have used
simulation techniques such as DES, SD, ABS etc. but in comparison to the mathe-
matical approaches, implementation of simulation approaches were lacking. Hence,
this clearly indicates thatmore research is need in the field of simulation-basedmulti-
objective optimisation for supply chain management. For the research scope, supply
chain design and supplier selection were the two most investigated topics. From the
review, we found 101 optimisation objectives that had been investigated in the 42
reviewed papers in which cost and objectives related to time, such as lead-time,
preferred path, time serving customers etc., were the mostly investigated. The most
implemented optimisation algorithm was GA and approaches based on GA such as
NSGA-II, Distributed-GA, Memetic algorithm etc.

In this chapter we also presented a case study that shows an example of how
simulation models (in this particular case, an SD model) can be better understood
by using MOO. The model in question was a modified version of APIOBPCS,
popularly used when approaching the bullwhip problem. By adjusting the desired
inventory coverage, as well as three feedback controllers, it was possible to choose
whether demand volatility should be buffered by quickly changing the production
rate, or by the finished goods inventory. A MOO of the model provided Pareto-
optimal solutions across the dimensions of production rate, inventory and backlog.
Apart from indicating the trade-offs, the optimisation results also showed the
required parameter configurations, something which can be used when designing
real supply chain systems. To address specific industry problems, companies
wishing to utilise simulation-based MOO should create models specific to their
supply chain, to get a better correspondence between model and reality. After a
model is created, the approach demonstrated in this chapter can be used to evaluate
how the supply chain performs, and how it can be optimally configured.
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Chapter 3
State-of-the-Art Multi-objective
Optimisation of Manufacturing Processes
Based on Thermo-Mechanical Simulations

Cem Celal Tutum and Jesper Hattel

Abstract During the last couple of decades the possibility of modelling
multi-physics phenomena has increased dramatically, thus making simulation of
very complex manufacturing processes possible and in some fields even an
everyday event. A consequence of this has been improved products with respect to
properties, weight/stiffness ratio and cost. However this development has mostly
been based on ‘‘manual iterations’’ carried out by the user of the relevant simu-
lation software rather than being based on a systematic search for optimal solu-
tions. This is, however, about to change because of the very tough competition
between manufacturers of products in combination with the possibility of doing
these highly complex simulations. Thus, there is a crucial need for combining
advanced simulation tools for manufacturing processes with systematic optimi-
sation algorithms which are capable of searching for single or multiple optimal
solutions. Nevertheless, despite this crucial need, it is interesting to notice the very
limited number of contributions in this field and consequently this makes us
wonder about the underlying reasons for it. The understanding of the physical
phenomena behind the processes, the current numerical simulation tools and the
optimisation capabilities which all mainly are driven by the industrial or academic
demands as well as computational power and availability of both the simulation
and the multi-objective optimisation oriented software on the market are the main
concerns to look for. These limitations eventually determine what is in fact
possible today and hence define what the ‘‘state-of-the-art’’ is. So, seen from that
perspective the very definition of the state-of-the-art itself in the field of
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optimisation of manufacturing processes constitutes an important discussion.
Moreover, in the major research fields of manufacturing process simulation and
multi-objective optimisation there are still many issues to be reserved.

3.1 Introduction

Manufacturing processes have been and still are exposed to a major transformation
because of unforeseen dynamic challenges arising in different production scales
varying from huge cast parts to the current trend of miniaturised devices such as cell
phone lenses. The emergence of new materials and the evolving interaction
between natural sciences and engineering applications promotes this transformation
in a substantial way. Both design and manufacturing practices are inspired from
nature and living objects day by day. This challenge drives engineers and scientists
to explore ‘‘bottom-up’’ approaches rather than traditional ‘‘top-down’’ approaches
to manufacture today’s highly complex products. It is quite worthwhile to give the
following quotation which belongs to a forming expert in one of the leading car
manufacturing companies, Schacher emphasising the pressure on the manu-
facturing industry leading to drastic reduction of development periods via ‘‘virtual
production’’ technology: ‘‘In the past we introduced three new models every 10
years, now we introduce 10 new models every 3 years’’ [1]. This approach obvi-
ously requires a good understanding of the interaction of multi-disciplinary
research fields, e.g., thermal, mechanical, flow, magnetic, electro-static, etc.,
Consequently, manufacturers have to define, most likely, several success and/or
failure criteria concerning different aspects of these disciplines, next evaluate the
designs and finally construct a robust work frame for different process conditions.
Efforts in this direction of research, which aim at simultaneous improvements in
process efficiency and product quality, are typically conflicting with each other, i.e.,
better product quality requires higher production technology, therefore each solu-
tion, the so-called ‘‘trade-off’’, having different combinations of importance of
these goals gives an idea of how much gain could be obtained and sacrifice could be
accepted. Different numerical modelling approaches are utilised to evaluate the
performance of these trade-off designs related to the manufacturing processes,
where it is most likely not possible to have closed form solutions in terms of design
variables, e.g., process parameters, geometry, etc., Computational fluid dynamics
(CFD), computational solid mechanics (CSM) and computational materials science
(CMS) are such branches of numerical modelling used for simulation of these
processes and these in general require high computational power varying from
hours to days or even weeks. Thus, engineers have to use some approximation
methods in order to reduce the number of high fidelity simulations, in other words,
the computational cost. Moreover, high performance computing has almost become
a standard tool to exploit the inherent parallelism built into some stochastic
or statistical algorithms used both in the evaluation and exploitation phases of
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simulation and optimisation. Moreover, their population-based search strategy
could seem to be overkill for a single objective optimisation; however it is a perfect
fit for multi-objective optimisation problems. Some examples of exploiting
numerical simulation together with multi-objective optimisation have resulted in,
for instance, (i) reducing the residual stresses in a welded mechanical component
together with a simultaneous improvement of the production efficiency (e.g., higher
welding speed) in case of friction stir welding [2–4], (ii) increasing the casting yield
via riser optimisation meanwhile reducing the porosity in a gravity sand-cast steel
part [5] or (iii) optimising the chemistry of bulk metallic glasses for improved
thermal stability [6], (iv) optimising alloy composition of high temperature
austenitic stainless steels for desired mechanical and corrosion resistant properties
[7], as well as (v) improving the formability of the fender drawing process by
minimising wrinkle tendency, thinning ratio and spring back caused by elastic
deformation by controlling blank-holding force and draw-bead restraining force
parameters [8], and a few other challenging manufacturing applications [9–18].
These are some of the very limited number of already analysed examples of
among many potential real world multi-objective optimisation problems in
manufacturing.

This chapter is outlined as follows. First, a brief discussion of the modelling of
thermal and mechanical phenomena as well as the combination of the two are
given followed by two important application fields, i.e., friction stir welding and
metal casting processes. Apart from the obvious influence of the past history of
these processes, i.e., the metal casting process could be said to be much more
mature as compared with the friction stir welding process which has been
developed just two decades ago, also the process simulation level and the
performed optimisation studies in each of the fields have their own share of this
historical development. The presentation of the different studies should be seen in
this light. Moreover, the focus on these two specific topics is biased towards the
relative expertise of the authors in these two research fields based on thermo-
mechanical simulations however the thoughts and ideas put forward in the present
chapter are to a large extent also applicable to optimisation of other branches of
manufacturing processes.

3.2 What Determines State-of-the-Art?

In order to be able to give an overview of the research in multi-objective
optimisation of manufacturing process based on numerical simulations with focus
on thermo-mechanical aspects, the major actors behind the stage should be
introduced. This attempt will, or should, eventually initiate the following question:
what is meant by the state-of-the-art and what makes it state-of-the-art? Here, this
question will constitute the basis of fundamental discussions in this challenging,
integrated research area which is still very much in its infancy. This initial dis-
cussion of current capabilities, resources and limitations will naturally emphasise
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as well as hopefully clarify some of the important determining factors and
moreover give some directions awaiting future quests in this interesting field.

The development in the field of applying optimisation for manufacturing
processes and ultimately the products that they produce is affected by many
factors, see Fig. 3.1: (i) First of all, the most important physical phenomena
should be understood before anything else and for some processes there is still a
substantial demand concerning this issue. (ii) Regarding the mathematical
models describing these physical phenomena, some have been developed
recently and others have evolved into more advanced levels. This gives huge
variations in quality and applicability of these models. (iii) The computational
power is obviously an important factor in itself. For matured processes with
well-established mathematical models, it will be a determining bottle-neck,
however, for cases where both processes and simulation tools are still
less-developed the bottle-neck for development will be somewhere else. (iv) The
degree of available solution algorithms can of course be very determining for
the development. For the process simulation models the important issue here will
be the quality of the solvers for the resulting algebraic equation systems as well
the efficiency of the numerical schemes used for iterations due to non-linearities
whereas for the optimisation part the available MOO-algorithms at hand will be
determining, i.e., classical or evolutionary algorithms, DOE studies, machine/
statistical learning and so forth.

3.2.1 Lack of Knowledge About the Physical Phenomena

Many manufacturing processes that seem straightforward at first glance are in
fact extremely complex being governed by multi-physical behaviour. Although
metal casting has been around for several thousands of years, it is a process

Fig. 3.1 State-of-the-art in manufacturing process simulation and multi-objective optimisation
composed of a network of interrelated issues
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which involves phenomena like fluid flow with free surfaces during mould
filling, phase change and microstructural development during solidification and
build-up of residual stresses and deformations during solid state cooling.
All these phenomena involve complex models and for some alloy systems like
ductile cast iron the knowledge of what really happens in the microstructure
during e.g., solidification is very limited. In solid state processes, like forging
the material flow is relatively well described however for friction stir welding
which can be characterised as a hybrid between a thermal and a mechanical
process a lot of questions are still unanswered. This for instance goes for the
material flow under the rotating tool as well as the origin of tunnel defects
and worm holes. Despite all these uncertainties the processes are used on a
daily basis, producing products even though all the mechanisms are not fully
understood and described.

3.2.2 Development of Numerical Models

The level and applicability of the different mathematical models for process
simulation is of course linked closely to how well the physics, that they are
supposed to describe, is understood. So, even though there are many general
purpose software systems around for solid mechanics, fluid mechanics and to some
extent also materials sciences it does not necessarily mean that sufficient mathe-
matical models are readily available. It always depends very much on the purpose
of the model and also the experience of the user of the simulation system. For
optimisation purposes it is also reasonable to ask the question whether we actually
need all the physical details if only trends and tendencies are sufficient to come
closer to a more optimised solution. In these cases simpler solutions based on
‘‘coarse-meshed numerical simulations’’ or even closed form analytical solutions
might very well be applicable.

3.2.3 Computational Power

The rapid evolution of technology in terms of processors (multi-core CPUs or
many-core GPUs [19]), networks (Infiniband [20]), architectures (GRIDs, clus-
ters), memory (shared, e.g., [21] or distributed, e.g., [22]), storage capacity, etc.,
(i.e., the components which eventually serve for the computational power) has
made the parallelisation very popular for both numerical modelling and opti-
misation applications [23]. In particular, parallelisation is even more tempting for
stochastic and mostly population-based evolutionary single- or multi-objective
optimisation algorithms which are inherently built for parallel execution [23–25].
Alongside with this, the capability to approximate the physics and search for
an optimum set of design variables is improving with an unpredictable pace;
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however the level and the amount of questions arising from the numerical tools
are also increasing with an even higher rate. For instance, the lack of availability
of multi-objective optimisation case studies of manufacturing process simulations
based on residual stresses points out the challenge clearly; the level of com-
plexity of the numerical manufacturing process models steer the resources to be
mostly used at the fitness evaluation level rather than the distribution of them.

3.2.4 Algorithms

Numerical simulation of manufacturing processes in general requires efficient
ways of solving the field problems, e.g., thermal, mechanical or flow fields as
well as the interaction of these, expressed in terms of Partial Differential
Equations (PDEs) [26]. As opposed to applying continuous functions in closed-
form solutions (valid for an infinite number of points), the domain is discretised
into a finite number of elements, volumes or cells in numerical methods.
The particular arrangement of these elements constitutes the mesh. Expressing
the PDEs on discretised form in this mesh leads to a system of algebraic
equations (be it linear or non-linear) in the unknowns to be solved for at the
nodes, i.e., the connection points of the elements. These algebraic equations can
be written in terms of matrices and vectors, and they can be solved either in a
direct manner or iteratively depending on the characteristics of the system, such
as band structure, sparseness as well as the nonlinearity arising from the terms of
the unknown field variable [27–30]. This nonlinearity, be it a material nonlin-
earity in the case of high temperature manufacturing process simulations such as
in casting, or a geometrical nonlinearity in the case of high deformations
experienced in the FSW process while stirring the workpiece material, should be
solved in a reasonable manner. Whatever formulation is used, e.g., finite element
method (FEM), finite difference method (FDM) or finite volume method
(FVM) as well as smooth particle hydrodynamics (SPH) or arbitrary Lagrangian–
Eulerian (ALE), the numerical solution algorithms at hand need to be developed
aiming at a better performance, i.e., either better accuracy or lower solution
time; hence developers also have to bear in mind to exploit the currently
available hardware architecture in parallel. This is also the case in optimisation
as well. There are quite a number of successful evolutionary multi-objective
optimisation (EMO) algorithms which already have been applied in engineering
optimisation applications [24, 31–37], but a few coupled with manufacturing
process simulations. The computational expense is obviously the most critical
limitation. However, on the other hand, the population-based search strategy of
the EMO algorithms gives the user an important possibility to obtain multiple
optima in a single run. Covering all the relevant challenges in this field is
beyond the scope of the present work, however further details can be found in
the following references [24, 25, 37–39].
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3.2.5 Working Environment

The working environment, in other words the software resources at hand, is one of
the most decisive factors in accomplishing state-of-the-art work. The software
available in the market, which enables users (from different, but related engineering
or manufacturing backgrounds) to apply the multi-objective optimisation based on
the manufacturing process simulations, could be sorted into commercial versus
freeware and dedicated versus general purpose ones. Although there are dozens from
each, it would still be worthwhile to mention some of them to motivate newcomers
to this field who are willing to initiate their own applications. Development of
general purpose commercial multi-physics simulation software (e.g., ANSYS,
ABAQUS,Msc. NASTRAN,MARC, COMSOL, LS-DYNA, DEFORM, etc.) dates
back as compared with commercial multi-objective optimisation software
(e.g., modeFRONTIER, iSIGHT, OPTIMUS, etc., [40]) in parallel to the develop-
ment of the theory and demands as well as technological trends. Besides these,
dedicated commercial software (e.g., WELDSIM, MORFEO, MAGMASOFT, etc.)
which is built for more specific purposes provide users the possibility of investi-
gating some of the physical phenomena in more detail and in shorter time since the
time to develop the model is more straightforward. In this respect, as expected, the
general purpose codes call for more fundamental knowledge about the application,
e.g., the physical phenomena needs to be decomposed into thermal, metallurgical,
flow and mechanical models in case of simulation of a welding process, since the
user needs to express most of the physical phenomena, e.g., boundary conditions,
load steps, etc., in terms of mathematical expressions available in the program.
This might even be more challenging in case of freely downloadable (open source)
multi-physics codes (Code Aster, Elmer, OpenFOAM, PARAFEM, etc.) since the
capabilities could be either limited or technical support is not available (this is even
more crucial in debugging), apart from the online forums. However, availability of
the source code sometimes gives some users, who have strong background in that
specific application and experience in programming, the possibility to implement
more detailed features that are not available in commercial software. This is mostly
preferred in research and development departments of some industrial companies
and universities for education or advanced research as well as consultancy purposes.
This need is also somehow fulfilled in commercial software by opening some
backdoors for users to integrate their own subroutines (e.g., distributed heat flux or
visco-elasto-plasticmaterial models, etc.) written in Fortran, C, Python, etc., or other
general purpose programming languages. The integration of this varying set of
software with multi-objective optimisation software is another challenge as it calls
for even further knowledge although the severity of difficulties is reduced in case of
using commercial tools. However, as aforementioned, the pros and cons in using
open source codes also apply in the application of multi-objective optimisation. It is
interesting to mention that some of these open source codes (e.g., NSGA-II [31],
SPEA [32], NIMBUS [41], etc.) became very successful, therefore popular, and
consequently implemented in several commercial competitors.
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3.3 Essence of Thermo-Mechanical Modelling

The theory of thermo-mechanics is not just a trivial extension to ordinary solid
mechanics, although it may seem that way when looking at the governing equa-
tions. But there is more to it than that. For example, in the purely mechanical case
positive strain is normally accompanied by positive stress, i.e., tension. In other
words when we pull (tension) in each end of a bar, it expands (positive strain). For
thermally induced stresses and strains, it is very often the other way around. That
is, even though a body which is locally heated will expand, i.e., positive strain, the
stress state itself will typically be in compression, i.e., negative stress. Therefore,
in this case we have a positive strain and a negative stress. This might seem
difficult to understand for a newcomer to the field of thermo-mechanics, but it is
easily explained with the use of the terms elastic strain, thermal strain and total

strain, which are given later in Eq. 3.3. Indeed, this example does not cover all
differences between solid mechanics at room temperature and thermo-mechanics
at elevated temperatures. On the other hand, however, it serves very well to show
just one of the principal differences [42].

Apart from discussions of specific details on numerical nonlinearities, cou-
plings, discretisation of time, heat generation, boundary conditions and material
property, the essence of pure thermal modelling can be understood as the solution
of the heat conduction equation given in Eq. 3.1 [43, 44], for the general case,

qcp
oT

ot
¼ r � ðkrTÞ þ qvol ð3:1Þ

where q denotes the material density, cp the specific heat capacity, T the tem-
perature field to be solved, k the thermal conductivity, and qvol the volumetric heat
source term. This time-dependent problem can be solved equivalently in both
Lagrangian and Eulerian reference frames with an appropriate set of initial and
boundary conditions in the case of a moving heat source, see Table 3.1 for an
overview. The combination of the choice of reference frame and degree of
enmeshed modelling level offers a huge range of possibilities, and the ‘‘correct’’
choice depends on the objective of each model.

For calculation of the transient as well as the residual stress field during many
manufacturing processes, a standard mechanical model based on the solution of
the three static force equilibrium equations can be used, i.e.

Table 3.1 Governing (heat conduction) equations in thermal models with respect to different
reference frames and time domains [45, 46]

Reference
frame

Transient Steady-state

Lagrangian qcp
oT
ot
¼ rðkrTÞ þ qvol (3.1a) 0 ¼ rðkrTÞ þ qvol (3.1b)

Eulerian qcp
oT
ot
¼ rðkrTÞ þ qvol � qcpurT

(3.1c)

0 ¼ rðkrTÞ þ qvol � qcpurT(3.1d)
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rij;i þ pj ¼ 0 ð3:2Þ

where pj is the body force at any point within the calculation domain and rij is the
stress tensor. The well-known Hooke’s law and the linear decomposition of the
strain tensor as well as small strain theory are applied together with the expression
for the thermal strain, i.e.

etotij ¼ eelij þ e
pl
ij þ dije

th

rij ¼ Cel
ijkle
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kl ¼ Cel
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2
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Z
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ð3:3Þ

where etotij denotes the total strain, eelij the elastic strain, e
pl
ij the plastic strain, e

th
ij the

thermal strain, rij the stress, Cel
ijkl the elastic constitutive (stiffness) tensor, m the

Poisson’s ratio and ui the displacement field to be solved for. The plastic strain
can often be assumed to follow the standard J2-flow theory with a temperature-
dependent VonMises yield surface. More information on the numerical treatment of
this in an FE-framework can be found in e.g., the textbook by Simo and Hughes [28].

After this brief overview on thermal and mechanical fields and the governing
equations for each, a few last words should be spent on coupling frames to sum
up the major thermo-mechanical modelling issues. Depending on the purpose of
the thermo-mechanical simulation, numerical coupling frames can be classified
in three major sets according to the main driving force for the simulated
physics: (a) fully coupled model, (b) thermally driven semi-coupled model, and
(c) mechanically driven semi-coupled model [42, 43], as shown in Fig. 3.2.

In the first case (a), the unknowns in both the thermal and the mechanical fields,
i.e., T and u, are solved simultaneously (e.g., friction stir welding process), while
in the second case the thermal analysis is performed first and the mechanical

Fig. 3.2 Typical main
couplings in thermo-
mechanical analyses [42]
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analysis afterwards (e.g., casting process) or vice versa in the third case (c)
(e.g., sheet metal forming process).

3.4 Case Study-1: Friction Stir Welding

The FSW process is an efficient solid-state joining technique (i.e., the metal is not
melted during the process) that was invented by Wayne Thomas and a team of his
colleagues at The Welding Institute (TWI), UK, in December 1991 [47]. It is used
especially for heat treated, high strength aluminium alloys which in general are
difficult to weld with traditional welding techniques [47, 48].

Figure 3.3 shows a standard welding tool having a cylindrical shoulder and
probe which in general are designed in different sizes and shapes with/without
thread features or manufactured with different materials based on workpiece and
process-specific needs or limitations. The process, which is schematically shown
in Fig. 3.4, consists of several subsequent procedures denoted as plunging,
dwelling, actual welding and pulling the tool out of the workpiece. First, the tool is
submerged vertically into the joint line with high rotational speed in the plunge
period and then dwelling takes place, where the tool is held steady relative to the
workpiece while keeping rotation and heating the surrounding workpiece material
locally. Following dwelling, the tool is moved forward while stirring two
workpiece materials to be joint (welding period) and is pulled out of the workpiece
leaving a key hole behind as seen in Fig. 3.5.

Fig. 3.3 A standard tool
having a cylindrical shoulder
and probe (pin) design [49]

Fig. 3.4 Schematic view
of the FSW process
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These sequences have also been represented schematically in Fig. 3.6 empha-
sising different computational modelling approaches with respect to different
reference frames, i.e., the Lagrangian (also known as ‘‘global approach’’ [2–4, 50],
where transient effects are captured) and the Eulerian (‘‘local approach’’ [51, 52],
in general used for steady-state conditions).

In FSW, heat is generated by friction (mainly at the interface between the
tool shoulder and the upper surface of the workpiece) and plastic deformation
(by the tool probe or pin in the plunging stage and during the welding period
via stirring the two workpiece materials along the joining line). The heat flows into
the workpiece as well as the tool. The amount of heat conducted into the work-
piece influences the quality of the weld, distortion and residual stress in the
workpiece [48]. Insufficient heat generation from the tool shoulder and the probe
could lead to failure of the tool pin as the workpiece material is not soft enough.
Therefore, understanding the heat aspect of the FSW process, which is the main
driving force for all subsequent coupled simulations, e.g., microstructure and solid
mechanics models, is extremely important, not only for understanding the physical
phenomena, but also for improving the process efficiency, e.g., welding faster and

Fig. 3.5 A welded structure
having a key hole at the end
[49]

Fig. 3.6 The FSW process in different reference frames
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safer [51, 52]. This complex coupling sequence is also represented schematically
in Fig. 3.7.

Some examples of using numerical optimisation methods in combination with
process modelling of FSW have been given in literature. Most of them are based
on thermal models and they are typically targeted at obtaining optimal process
parameters with respect to predefined single-objectives or used as a means of
inverse modelling to obtain unknown thermo-physical material properties and a
few will be mentioned in the following. Liao and Daftardar [53] implemented a
thermal model in FLUENT in combination with two simpler surrogate models to
investigate the performance of different optimisation algorithms for obtaining the
three process parameters, heat input, weld speed and shoulder diameter. Tutum
et al. [51] combined a gradient-based optimisation technique (i.e., SQP) with a
simple analytical thermal model in order to obtain heat input and welding speed
for a desirable average temperature distribution under the tool shoulder in the FSW
process. The same process criterion is studied using space and manifold mapping
by Larsen et al. [54]. An application of the differential evolution algorithm for
reducing the uncertainty associated with specific process parameters, i.e., the
friction coefficient, the extent of slip between the tool and the workpiece, the heat
transfer coefficient at the bottom of the workpiece, the mechanical efficiency, and
the extent of viscous dissipation converted to heat, is studied by Nandan et al. [55].
It should be mentioned that this application is based on a coupled viscoplastic
thermal-flow model for FSW. A recent contribution is given by Tutum et al. [52],
and this will be explained in detail in Sect. 3.4.3, it encompasses a 2-D steady state
Eulerian TPM (thermal pseudo mechanical) heat source model including an
analytically prescribed flow field with a hybrid evolutionary multi-objective
optimisation algorithm (i.e., NSGA-II and SQP) to find multiple trade-off designs.
The only example in literature so far, regarding optimisation of FSW based on
residual stress calculations has been given by Tutum and Hattel [2], see Sect. 3.4.7

Welding

Microstructures

Heat generation

Temperatures

Material flow

Cooling

Microstructures

Temperatures

Stresses, distortions

Temperatures

Stresses and strains

Material properties

Stresses and strains

Material properties

Service loads

E.g. damage

Mechanical loads

Stresses, distortions

Fig. 3.7 Major modelling couplings in FSW during welding, cooling and loading [45]
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for further details. This work combines a thermo-mechanical model implemented
in ANSYS (neglecting the material flow) with the NSGA-II algorithm investi-
gating the optimal process parameters, i.e., the welding speed and rotational speed,
to simultaneously minimise the peak residual longitudinal stress in the weld and
increase the production rate which is related to welding speed.

3.4.1 Thermal Model

The core part of any thermal model of FSW is how the heat generation from the
rotating tool is described and applied as either a boundary condition, or a source
term in the heat conduction equation, or a combination of the two. Most pure
thermal models apply a surface flux as representing the entire heat generation,
thereby avoiding the source term in the heat conduction equation, which is
governed by the plastic dissipation and therefore in essence calls for knowledge
about the material flow and hence the formation of the shear layer. As there is no
access to the mechanical field in a pure thermal model, the heat generation because
of plastic work needs to be represented somehow! Several suggestions in literature
are given for this surface flux formulation, but common for them all is the need for
‘‘calibration’’ parameters. If one has access to an experiment and it is possible to
back out the total heat generation from the measurements, one can use the
well-known expression given in Eq. 3.4 to obtain the surface flux.

qtotalðrÞ
A

¼ 3Qtotalr

2pR3
shoulder

ð3:4Þ

Moreover, if you have information about the friction coefficient and the total
downward force from the tool, and you assume full sliding you can express the
total heat generation as

Qtotal ¼ 2

3
pxR3

shoulderlp ð3:5Þ

Either way, you need experimental information, so in the present work, the
slightly different thermal model proposed by Schmidt and Hattel [56] is applied.
In this model the heat generation is again expressed as a surface heat flux from the
tool shoulder (without the tool probe) into the workpiece, however it is a function
of the tool radius and the temperature dependent yield stress as follows

qsurfaceðr; TÞ
A

¼ xrsðTÞ ¼ 2pn

60

� �

r
ryieldðTÞ

ffiffiffi

3
p ; for 0� r�Rshoulder ð3:6Þ

where n is the tool revolutions per minute, r is the radial position originating in the
tool centre, Rshoulder is the tool shoulder radius and the temperature-dependent
yield stress ryield is defined as
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ryieldðTÞ ¼ ryield;ref 1� T � Tref

Tmelt � Tref

� �

ð3:7Þ

where ryield,ref is the yield stress at room temperature, Tref is 20�C and Tmelt is the
solidus temperature (500�C). Once the temperature reaches the solidus tempera-
ture, i.e., T becomes equal to Tmelt in Eq. 3.7, the ‘‘self-stabilising effect’’ causes
the heat source to ‘‘turn itself off’’, i.e., the material looses all its resistance, and
the heat generation decreases automatically because of thermal softening.
The model is often denoted ‘‘thermal-pseudo-mechanical’’ as the heat generation is
expressed via the temperature dependent yield stress, thus taking some mechanical
effects into account, however, it should be underlined that the model is a purely
thermal model involving a temperature-dependant heat generation and in that
sense it also uses a ‘‘calibration’’ parameter like the more conventional procedure
in Eqs. 3.4 and 3.5. Obviously, this adds a non-linearity to the thermal model,
meaning that the calculation time is increased by roughly a factor of two as
compared with other thermal models where the heat source is prescribed itself, like
in Eq. 3.4. The heat source model expressed by Eqs. 3.6 and 3.7 has been vali-
dated against experimentally obtained thermal profiles, see e.g., [56] for a more
detailed description. Finally, it should be mentioned that both expressions in
Eqs. 3.4 and 3.5 can be directly derived from the more general formulation of
analytically modelling the heat source in FSW given by the authors in [57, 58].

3.4.2 Implementation of Steady-State Eulerian Thermal Model

in COMSOL

Arising out of the relatively high heat generation contribution from the surface of
the tool shoulder, an assumption based only on modelling the tool shoulder is
taken into account. The radius or in other words location of the tool probe is
hypothetically included as a design variable to compute the first objective function
(i.e., temperature difference) and temperature variation under the tool, between the
tool shoulder and the probe, to be used in the decision making step. Modelling the
whole welding process, i.e., plunge, dwell and pull out periods, holds some notable
complexities. In order to reduce the computational cost regarding the moving heat
source, meanwhile preserving the applicability, only the welding period is taken
into account and a moving coordinate system (i.e., Eulerian reference frame)
which is located on the heat source is applied. The shear layer formed below the
tool shoulder caused by the high tool rotational speed is also included; hence an
asymmetric temperature field along the joint line is obtained in the present
numerical model. Equation 3.1d in Table 3.1, describes the steady-state heat
transfer in the plate (the transient term on the left side disappears). The temper-
ature field, T, is solved including the temperature-dependent material density (q),
the specific heat capacity (cp) and the heat conductivity (k) of the AA2024-T3
(the workpiece material) respectively, besides u expressing the material flow
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vector and qvol which is the volumetric stationary heat source representing the tool
as a circle in Fig. 3.8.

In the present model [52], the heat generation is a function of the tool radius and
the temperature-dependent yield stress of the workpiece material (ry(T) of
AA2024-T3) and assumed to be uniform through the thickness (3 mm) of the
plates to be welded. Apart from the brief explanation in the former section,
the details of this temperature and position dependent heat source model entitled as
TPM model are given in detail in [56]. The traverse motion of the tool and the
relatively complex flow field under it are modelled by prescribing a material flow
through the rectangular plate region, as shown in Fig. 3.8. Because of this flow
prescription, Eq. 3.1d includes a convective term (u) in addition to the conductive
term. The derivation of the mathematical prescription of the material flow is also
schematically represented in Fig. 3.9 and components of the flow vector in the
welding and the transverse directions are formulated for an arbitrary point on the
periphery of tool shoulder as a function of h (in Cartesian reference frame).
Equation 3.8 generalises the flow field description (u(h) = u(x, y) = (vx, vy)) for
the whole domain as follows,

u ¼ ½uweld � sinðhÞxRshoulder; cosðhÞxRshoulder� if rðx; yÞ�Rshoulder

½uweld; 0� if rðx; yÞ[Rshoulder

	

ð3:8Þ

Fig. 3.8 2-D Eulerian steady
state thermal model

Fig. 3.9 Mathematical
modelling of the flow field
under the tool shoulder in
detail
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where r(x, y) is the radius or the position vector. As a boundary condition,
the room temperature (20�C) is defined at the left edge of the rectangular region
where the tool is assumed to be moving towards. The heat flux on the right edge of
the plate region, where the material leaves the computational domain, is dominated
by convection. On the upper and lower edges of the plate boundaries, thermal
insulation is enforced.

3.4.3 Optimisation Study

In this section, optimum process parameters and tool geometries in FSW are
investigated to minimise the temperature difference between the leading edge of
the tool probe and the workpiece material in front of the tool shoulder, i.e., to
soften the material enough to move the tool probe forward without failure, and
simultaneously to maximise traverse welding speed, hence production rate, sub-
jected to hot and cold weld conditions [52]. More specifically, the choices of the
tool rotational speed and the traverse welding speed together with the radii of the
tool shoulder and the probe have been investigated in order to achieve the goals
mentioned above which are in essence conflicting. The steady-state Eulerian
thermal finite element model described in the previous section, with temperature-
dependent thermo-physical (i.e., heat-treated aluminium alloy, AA2024-T3)
material data has been implemented using the commercial multi-physics simula-
tion software COMSOL for the function evaluations. An evolutionary multi-
objective optimisation (EMO) algorithm, i.e., non-dominated sorting genetic
algorithm (NSGA-II) is initially performed to find the Pareto-optimal front.
The non-dominated solutions found so far have been clustered based on their
Euclidean distances (in the objective space) in a prefix grid structure to reduce the
number of the solutions, which in turn will be serving as initial starting points for
the gradient-based local search technique, i.e., sequential quadratic programming
(SQP). The e-constraint method [59] is applied by fixing the second objective
(i.e., welding speed) as a constraint for each clustered non-dominated solutions
independently to obtain the modified optimised front. Further improvement in
accuracy and confidence in the convergence of the Pareto-optimal front is
achieved, and following this, a brief post-optimality study is performed to unveil
some common design principles among members of the clustered Pareto-optimal
set. Finally, two reasonable design solutions among those multiple trade-off
solutions have been selected based on different characteristics of the temperature
distribution under the tool shoulder induced by the material flow, tool selection
and production rate preferences. More details are given in the following.

As briefly described above, the multi-objective optimisation problem (MOP),
which is related to the thermal aspects of the FSW process, is formulated. Opti-
mum process parameters, i.e., the tool rotational and traverse welding speeds (nrev
and uweld), and geometrical tool parameters, i.e., tool shoulder and probe radii
(Rshoulder and Rprobe), are investigated to minimise the temperature difference
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(DT) between the leading edge of the tool probe and the workpiece material in
front of the tool shoulder, and simultaneously to maximise traverse welding speed.
The second objective, based on the duality principle, is reformulated as the min-
imisation of -uweld due to the way of implementation of the EMO algorithm, i.e.,
MATLAB implementation of the original NSGA-II [31] algorithm by the first
author [46]. This MOP problem is constrained with hot and cold weld conditions,
geometrical constraints (the tool shoulder radius is desired to be 5 mm larger than
the tool probe radius), besides lower and upper limits of the design variables.
In order to evaluate hot and cold weld conditions, the average temperature (Tavg) is
computed under the tool shoulder, in other words, the temperature values on each
element inside the circular region (i.e., Area = pRsh

2 ) are integrated and divided by
the number of elements. The constrained multi-objective optimisation problem is
given below

Minimise: f1 xð Þ ¼ DT ¼ Tprobe � Tahead

Minimise: f2 xð Þ ¼ �uweld
subject to: g1 xð Þ ¼ 450�C� Tavg� 500�C;

g2 xð Þ ¼ Rprobe þ 5 mm�Rshoulder;

g3 xð Þ ¼ 8 mm�Rshoulder� 17 mm;

g4 xð Þ ¼ 3 mm�Rprobe� 12 mm;

g5 xð Þ ¼ 100 rpm� nrev� 1250 rpm;

g6 xð Þ ¼ 0:5 mm=s� uweld� 15 mm=s:

ð3:9Þ

As mentioned above, NSGA-II, which is an EMO algorithm enabling finding
well-spread multiple Pareto-optimal solutions for an MOP by incorporating three
substantial features, i.e., elitism, non-dominated sorting, and diversity preserving
mechanism (crowding distance), is used for the proposed constrained problem.
The population size is 100 and the number of generations is fixed to 10 because of
relatively high computational cost of the function evaluations, i.e., the simulation
time for each set of designs is approximately 10 min on a PC having Core 2 CPU,
2.33 GHz, and 2 GB of RAM. Real variable-coding is used for the design vari-
ables. Therefore the simulated binary crossover (SBX) and the polynomial
mutation [24], with distribution indices of 5 and 10, are used as crossover and
mutation operators, respectively. Figure 3.10 shows all NSGA-II (non-dominated)
solutions composing a non-convex Pareto-optimal front, having -uweld on the
horizontal axis and DT on the vertical axis. As expected, the higher welding speeds
result in higher temperature difference indicating steeper gradients in front of
the tool, which is not desirable in case of limitations due to improper tool or
machine designs. More detailed analysis of these trade-off designs is performed
after the local search procedure which aims for further improvement in the
convergence of the obtained trade-off frontier.

Prior to the local search step, the non-dominated solutions found so far are
clustered simply based on their Euclidean distances (i.e., minimum di) with respect
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to their mean, which is computed in each cell and in each axis, in a prefix grid
structure to reduce the number of the solutions (for the sake of computational
cost), as represented in Fig. 3.11 on a hypothetically distributed points in the
objective space. Figure 3.12 shows 17 clustered solutions, indicated by cross
markers, out of 72 non-dominated solutions for the FSW problem in a 10-by-10
grid.

After completing the multi-objective optimisation task, a set of optimal solu-
tions specifying the design variables and their trade-offs is obtained. If these
optimal solutions are sorted according to the worse order of the first objective
(min. DT), they would also get lined up in the second objective (min. -uweld) in an
ascending order. Having such a wide variety of solutions provides a much better
basis for the decision-making process as compared with having only one optimal
solution. This enables engineers or designers to judge or plan the performance of a
product or a process in a larger perspective in terms of sacrifices and gains with
respect to multiple criteria [24]. Moreover, a basic post-optimality study can
unveil interesting design knowledge that is common to all of these trade-off
solutions or a partial set of them [60]. This design methodology, which was

Fig. 3.10 The non-convex
Pareto-optimal front obtained
with NSGA-II

Fig. 3.11 Clustering scheme
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originally formulated as ‘‘innovization’’ (the creation of innovative knowledge
through multi-objective optimisation) [60–63], has also been applied manually
to the current FSW problem [52]. A partial set of design variables on the
Pareto-curve (Fig. 3.13) have been listed in Table 3.2.

Three intervals can be distinguished looking at Table 3.2, i.e., 0.5 mm/s B
uweld\ 4 mm/s, 4 mm/s B uweld\ 10 mm/s and 10 mm/s B uweld\ 14 mm/s.
In the first and the third intervals, the tool shoulder and probe radii are approxi-
mately the same (10 mm and 5 mm, respectively). In the middle interval, there is a
significant increase in the tool dimensions, but there is also a common tendency to
have a 5 mm difference in the radius dimensions (the second constraint is active)
along the Pareto-front. Moreover, in the middle interval, as the tool shoulder is
getting larger, the heat generation is increasing because of the increase in the
frictional surface area (consequently, the hot weld condition becomes active),

Fig. 3.12 Clustered non-
dominated solutions indicated
by crosses and the
corresponding numbers on
top of them

Fig. 3.13 Pareto-optimal
front modified after the local
search on each clustered non-
dominated solutions
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and the tool rotational speed (nrev) shows a decrease as compared with other two
intervals on the Pareto-curve. In most of the designs, the distribution of the
temperature field under the tool is almost uniform (i.e., the cold weld condition is
not active), thus the standard deviation is close to the mean value, which is a
desired process condition. The main criterion for the manufacturer to select one or
two designs out of these possibilities would be welding speed which is related to
investment and operating cost of different kinds of tool-machine combinations.
In case of limited financial resources, the manufacturer or engineer would like to
weld slower (need to sacrifice in production rate) in order to improve the
lifetime of the tools. In this case, such a design set: uweld = 2-3 mm/s, nrev =
700-800 rpm, Rshoulder = 9-10 mm and Rprobe = 4-5 mm would be preferable.
In an opposite case, where financial limitations are negligible, the production rate
would be a dominant criterion (e.g., uweld[11 mm/s), but similar tool geometries
with higher rotational speeds would be sufficient (e.g., Figure 3.14).

3.4.4 Thermo-Mechanical Model

The maximum tensile residual stresses are typically found on, or at either side of,
the weld line. The mechanisms behind the evolution of residual stresses in different
welding processes, in general, are the same, only the magnitudes and distribution of

Table 3.2 Set of designs
corresponding to some of the
members on the modified
Pareto-optimal front in
Fig. 3.13

Rshoulder (mm) Rprobe (mm) uweld (mm/s) nrev (rpm)

10.932 5.155 13.224 1037.8
10.819 5.377 12.359 1014.9
10.896 5.831 11.261 1119.6
14.959 9.887 9.694 974.33
13.793 8.263 7.171 856.07
13.579 8.005 4.304 718.17
10.998 5.74 3.672 1057.7
11.113 5.527 1.539 880.33
10.694 4.581 0.643 968.65

Fig. 3.14 Thermal field
for a parameter set:
uweld = 11.3 mm/s,
Rshoulder = 10.5 mm,
Rprobe = 5.5 mm,
nrev = 1,100 rpm
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these show some difference depending on the modelling of the heat sources.
A schematic view of these thermo-mechanical mechanisms are shown in Fig. 3.15
on a half-plate (under symmetry assumption) clamped on the sides and described
with respect to a fixed coordinate system (i.e., Lagrangian reference frame) rep-
resented by an observer standing on the lower-right side of the workpiece.
The thermal history profiles are shown below the workpiece together with the
corresponding longitudinal stress-(mechanical) strain curves in the welding direc-
tion for convenience since they are dominating. The heat source, i.e., the welding
tool, is assumed to be moving from left to right with a constant speed. When the
heat source is approaching the observer, where the workpiece material is still at
room temperature which is relatively colder than the heat source, the material in
front of the tool is heated up and expands meanwhile softening, but as it is con-
strained by the surrounding colder material, this causes compressive stresses as well
as compressive plastic strains after exceeding the yield limit. It should be men-
tioned that the stress–strain curves shown at the lower row of the graphs in Fig. 3.15
for simplicity are schematically drawn under the assumption of ideal plasticity,
i.e., no hardening after yielding as well as no temperature dependency of the yield
stress, which is not the case in real applications, but still representative.

After the heat source passes by, the material in the joint line starts to cool down
as seen from the schematic graphs in the middle column in Fig. 3.15. Following
the cooling, tensile stresses (or shrinkage forces in other words) start to evolve
caused by negative thermal strain increments, i.e., positive mechanical strain
increments because of the constraint, in the longitudinal direction. At the last,
left-most graphs, the workpiece cools to the reference room temperature and the
tensile stresses, which have been following the stress–strain curve in the elastic
regime, eventually reach to the critical level where the material yields in tension.

Fig. 3.15 The FSW process in different reference frames
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These tensile stresses, so-called residual stresses, lower the loading capacity of the
component and the compressive plastic misfit situated at the end of the welding
process causes distortion, i.e., shrinkage, in the plate unless some removal tech-
niques, i.e., thermal and mechanical tensioning [64–66], shot peening [67, 68] and
local-dynamic cooling [69] are applied.

Many contributions regarding modelling of residual stresses in FSW have been
given in the literature [2, 50, 66, 70–86] and common for them all are that they
somehow predict the thermally induced stresses arising from the welding process.
Some models only consider the rotating tool as a moving heat source [2, 50, 66,
70–77, 86] whereas others take the coupling between the temperatures and the
material flow into account [78–85]. All models take the thermal softening into
account somehow, however while some just employ temperature dependent yield
strength, others apply metallurgical models of varying complexity for predicting
the evolution of e.g., hardness and thereby yield strength [87].

3.4.5 Implementation of Thermo-Mechanical Model in ANSYS

As described above, the semi-coupled thermo-mechanical model of the FSW
process used in this work [2] consists of a transient thermal model and a quasi-
static elasto-plastic mechanical model, which is accomplished by utilising the
commercial finite element software ANSYS. In order to facilitate the automation
of the optimisation procedure both models are implemented by means of the
Parametric Design Language (APDL) of ANSYS.

The model represents the welding of two flat plates by considering the bead on
plate. Arising out of symmetry assumptions, e.g., neglecting the asymmetric shear
layer and the asymmetric heat source, only one of the plates is modelled.
The dimension of the workpiece is 300 9 100 9 3 mm. This means that the
thermally induced out-of-plane stresses will be negligible and a plane-stress
analysis is reasonable. Regarding boundary conditions, the effect of the thermal
contact with the backing plate is modelled by an equivalent heat transfer coeffi-
cient of 700 W m-2 K-1 at the bottom of the workpiece and with an ambient
temperature of 20�C. For mechanical boundary conditions, as the first assumption,
the plates are assumed to be free (however fixed in one point in a corner to avoid
rigid-body motion). This is obviously not the case for real FSW applications;
however, this very important assumption is made in order to avoid the releasing
step as it might give some problems with out of plane deformations that would
complicate the optimisation analysis considerably. This way, we will still obtain
residual stresses being in self-equilibrium but of course not entirely reflecting the
right clamping history. This was for instance taken into account by the authors in
[50] where the effect of different clamping conditions together with releasing and
mechanical loading during in-service was investigated. However, for the present
feasibility analysis with focus on the multi-objective optimisation methodology
combined with residual stresses, the simpler approach as described above is used.
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The temperature-independent material properties, which are given in Table 3.3,
do not correspond to any specific commercial aluminium alloy but should be
understood as a representative aluminium benchmarkmaterial. This assumption is in
agreement with the study presented by Zhu and Chao [88], which concludes that the
temperature-dependent yield stress has a significant effect on the residual stress and
distortion, and except for this yield stress, using material properties at room tem-
perature gives reasonable predictions of the transient temperature fields, the residual
stresses and distortions. The temperature dependence of the yield stress for both
thermal and mechanical analyses is shown in Fig. 3.16 as a linear function of
temperature with a negative slope, decreasing from 200 MPa to 0 MPa at 20�C and
500�C respectively. There is an exception for the mechanical analysis that 475�C is
chosen to be the cut-off temperature and the yield stress is kept constant at 10 MPa
above this temperature. This engineering simplification of using a linear relationship
together with a lower bound for the yield stress provides a substantial convenience
for controlling computational cost as it reduces the nonlinearities that do not have a
significant effect on the global behaviour of the thermo-mechanical model [88].

Because of the very low contribution to the heat generation coming from the tool
pin, only the tool shoulder is considered in the heat source. The diameter of the tool
shoulder is 20 mm. The mechanical effects of the tool are not included, and thus
residual stresses are assumed to be primarily a function of the thermal load history
[66, 71, 86]. The moving heat source starts and stops at 50 mm away from the left
and the right edges of the plate, respectively. The SHELL 131, 4-Node layered
thermal shell element is used for the transient thermal analysis while the PLANE
182, 2-D 4-node structural solid element is used for the quasi-static mechanical
analysis and the same structured finite element mesh is used in both cases.

The accuracy of the thermal and mechanical simulation using shell and plane
stress models has been compared with a 3-dimensional solid linear 8-node element

Table 3.3 Temperature-
independent material
properties of benchmark
material

Heat conductivity, k (W m-1 K-1) 160
Heat capacity, cp (J kg-1 K-1) 900
Young’s modulus, E (GPa) 70
Tangent modulus, Et (GPa) 7
Thermal expansion coefficient, a (K-1) 2.3 9 10-5

Density, q (kg m-3) 2,700

Fig. 3.16 The FSW process
in different reference frames
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model. Here, SOLID 70 elements are used for the transient thermal analysis and
SOLID 45 for the quasi-static mechanical analysis, respectively. As expected,
when comparing the thermal profiles obtained at the position of the moving heat
source when it is in the middle of the plate along the transverse direction as well as
the longitudinal stress profiles there is very little difference between the plane
stress model and the full 3-dimensional model. Thus, it can be concluded that for
the present case the sequentially coupled shell and plane-stress models can be used
for the purpose of doing preliminary optimisation studies while being both
accurate and computationally efficient.

3.4.6 Parameter Study

Before doing the actual optimisation it is beneficial to do a parameter study with
the simulation tool. This is also done in the present work. Figure 3.17 shows the
contour plots of the resulting temperature field of the symmetric models
(with increments of 47.2�C) for a chosen welding speed of 1 mm/s and 10 mm/s,
respectively, for a rotational speed of 1,000 rpm. Figure 3.18 shows a parameter
study for the thermal profiles along the transverse direction at the longitudinal
location of the heat source for two welding speeds, i.e., 1 and 10 mm/s, and two
rotational speeds, i.e., 100 and 1,000 rpm.

These results show the main characteristics of the applied thermal model:

(i) A higher welding speed for a fixed rotational speed yields lower temperatures
in general, but the decrease in peak temperature right under the tool is very
small as it is mainly governed by the temperature dependent yield stress.

(ii) A higher rotational speed for a fixed welding speed results in substantially
higher temperatures in general.

(iii) The gradients in thermal profiles along the transverse direction of the plate
become higher with increasing welding speed, while more uniform and wider
thermal profiles are obtained for the lower welding speeds.

Figure 3.19 shows the contour plots of the resulting longitudinal stress field of
the symmetric models (isotherms in 25 MPa) for a chosen welding speed of 1 mm/s

Fig. 3.17 Contour plots of
the temperature fields for
rotational speed of 1,000 rpm
for each traverse welding
speed of 1 mm/s (top) and
10 mm/s (bottom),
respectively
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and 10 mm/s, respectively, for a rotational speed of 1,000 rpm. A parameter study
regarding longitudinal stress profiles along the transverse direction and at the
middle of the plate with two welding speeds, i.e., 1 and 10 mm/s, and two rotational
speeds, i.e., 100 and 1,000 rpm, is presented in Fig. 3.20.

These results show the main characteristics of the applied model for the residual
stresses:

(i) A higher welding speed for a fixed rotational speed results, in general, in
slightly higher stress levels in the tension zone.

(ii) A higher rotational speed for a fixed welding speed yields somewhat lower
peak residual stress, however a much wider tension zone leading to a sub-
stantially higher residual tensile force.

(iii) The gradients in residual stress profiles along the transverse direction of the
plate become steeper with increasing welding speed.

Some comments should be made regarding these observations. First of all,
a microstructure model predicting final hardness/yield strength was not included in

Fig. 3.19 Contour plot of the
longitudinal stress field with
increments of 22 MPa

Fig. 3.18 Temperature
profiles for different process
variables along transverse
direction
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the analysis. If this was done it might influence the trend of the analyses.
In particular, the final strength recovery in the middle of the weld is more pro-
nounced for hot weld conditions than for cold weld conditions [89] and this will of
course influence the ability to build-up residual stresses.

Another important issue is the choice of hardening model. In the present work,
bilinear kinematic hardening was used and this gives a very pronounced dis-
placement of the yield surface towards compression at high temperatures resulting
in lower residual stresses when returning to tension upon cooling as compared with
e.g., isotropic hardening in which case the yield surface expands due the hardening,
thus resulting in considerably higher residual stresses in tension after welding.

Finally some comments on computational time should be given. Depending on
the chosen welding speed, for a thermal analysis it is minimum 1 h (for a cold
weld, i.e., fast welding speed) while the mechanical analysis, for the same welding
speed, is approximately 4 h on an Intel Xeon 3.00 GHz processor using two cores
(the limitation is because of the shared memory parallelisation allowed by the
ANSYS v11 Academic License).

3.4.7 Optimisation Study

3.4.7.1 Case-1

In the following sections a study of the chosen multi-objective optimisation problem
in the FSW process is presented [2, 3]. It considers the minimisation of the peak
residual stresses in the workpiece together with the maximisation of the production
efficiency expressed in terms of traversing welding speed, respectively. These two
objectives are conflicting and techniques to deal with this issue are also considered.

The optimisation procedure, which includes process integration of the ANSYS
software and the EMO algorithm NSGA-II, is handled by applying modeFRON-
TIER. The optimisation cycle is initiated by creating an initial population of 16

Fig. 3.20 Residual normal
stress in longitudinal
direction as a function of
distance from weld line
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pre-chosen Design-of-Computational-Experiments (DOCE), for the considered
process variables, i.e., the tool rotational speed (revolutions per minute), n, and the
traverse welding speed, uweld. The FSW thermal and mechanical simulations,
which are built by using APDL in ANSYS, are coupled in a sequential way by
execution of parametric input files in a batch mode. The design variables are
updated by the optimisation algorithm and are read by the thermal analysis. Then
the peak temperature obtained at the end of the welding session is saved in order to
be used as a thermal constraint together with the transient temperature field results
in order to yield the thermal strains for the mechanical analysis. The mechanical
analysis gives as a result the maximum longitudinal stress value at the middle of
the plate in the transverse direction, and this is used as an objective to be
minimised. This optimisation cycle runs until the stopping criterion, i.e., the total
number of generations, is reached.

The specific optimisation problem here is stated as the goal of finding the
FSW process parameters, i.e., tool rotation speed and traverse welding speed,
which provide a set of trade-off solutions for the minimisation of two conflicting
objectives. As mentioned earlier, these are the peak residual stresses, which are
measured at the middle of the plate along the transverse direction, and the
welding time that can also be stated equally as the maximisation of the traverse
welding speed. The optimisation problem is constrained by the process-specific
thermal constraints, which are given as the upper and the lower bounds on the
peak temperatures in the workpiece. The lower bound of 420�C on the peak
temperature represents the need for easy traversing of the tool, i.e., to minimise
the tool loads along the weld line by contributing to thermal softening of the
workpiece material. The upper bound of 480�C is defined in order to consider
the tool life and the workpiece properties which are affected by hot welding
conditions. This constrained multi-objective problem can then be expressed in
mathematical terms as

Minimise: f1 xð Þ ¼ rx;max

Maximise: f2 xð Þ ¼ uweld

subject to: g1 xð Þ ¼ 420 �C� Tpeak

g2 xð Þ ¼ Tpeak� 480 �C

x ¼
uweld ¼ 1; 2; . . .; 10 mm=s

n ¼ 100; 200; . . .1000 rpm

	

ð3:10Þ

where x represents the design variable vector, i.e., uweld, the traverse welding
speed that is changing from 1 mm/s to 10 mm/s in 1 mm/s increments and n, the
tool rotational speed which varies from 100 rpm to 1,000 rpm in 100 rpm incre-
ments (this results in 10 discrete values in each design variable), rx,max defines the
peak longitudinal stress, and Tpeak is the peak temperature in the workpiece.

The initial population for the NSGA-II algorithm that is used for both cases
is chosen as a modified Full Factorial Design with 4-levels (n: 100, 400,
700, 1,000 rpm and uweld: 1, 4, 7, 10 mm/s) resulting totally in 16 designs.
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The crossover and the mutation probabilities of 0.9 and 1.0, respectively, are chosen
for running a total of 20 generations giving in a total number of 320 solutions.

The solution of the optimisation case which is formulated as in Eq. 3.10, is
presented in both the design and the criterion space in the following figures. Some
of the designs out of a total of 320 designs are overlapping because of the rela-
tively coarse discretisation of the chosen design variables and also the selection
operator. This lies in the nature of the genetic algorithm that implies the survival of
some designs without evolution. Figures 3.21 and 3.22 represent feasible and
unfeasible designs with dark and light colours respectively; constituting 49 dif-
ferent design points out of 100 (we use a 10 9 10 discretisation). The surface in
each figure, i.e., the peak temperature and the peak residual stress, is constructed
by 16 DOE points which are evaluated as an initial population for the NSGA-II.
It can be clearly seen from these figures that the feasible region, which can also be
called the robust process parameter region in this case, is defined by n-values in the

Fig. 3.21 Peak temperature
versus design variables

Fig. 3.22 Residual stress
versus design variables
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interval between 200 and 400 rpm. Because of the random evolution strategy of
EA, some of the feasible solutions (4, 6, 8 mm/s with 200, 300 and 400 rpm), are
missing but the quality of these can be estimated from the surrounding solutions
which are positioned on a linear varying region. Although the coarse discretisation
results in a few missing solutions, it is advantageous to have an overall idea
regarding the optimal feasible process frame with a moderate computational cost.
In addition to this, the purpose of this study is to focus on the optimisation
methodology to find and discuss alternative trade-off solutions for minimisation of
welding residual stresses, not to conclude precise values. Having such solutions
provides the engineer or manufacturer practical insight about the relationship
among process variables corresponding to the Pareto-optimal solutions.

The objective space that is constructed by minimisation of the peak residual
stresses and maximisation of the welding speed is shown in Fig. 3.23. Most of the
designs lie close to the Pareto-front, which is shown in Fig. 3.24. This is caused by
the relatively low sensitivity of the n parameter towards the peak residual stresses
for a given welding speed. If the minimum-residual stress solution is emphasised
for the MOO problem, i.e., choosing weightings of 1.0 for the objective of min-
imum-residual stress and 0.0 for the objective of maximum-welding speed, the
combination of 1 mm/s and 400 rpm would be chosen. If the other extreme
solution, i.e., with opposite weightings, is considered, the combination of 10 mm/s
and 400 rpm would be preferred. In the case where one is looking for a 70-30%
trade-off solution for the same objectives, respectively, it is not clear how to
estimate the optimal combination of the process variables. Because of relatively
this desired preference in objectives, the solution would be expected to be more
similar to the minimum residual stress solution than the maximum welding speed
solution. It is important to note that there are some different solutions satisfying
such trade-off, but there is only one which is the optimum, i.e., 4 mm/s and
400 rpm in this case. In other words, that solution makes the optimum trade-off,

Fig. 3.23 Objective space
of the solution
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meaning that for a particular amount of sacrifice in one objective, the optimum
solution will correspond to the maximum gain in the other objective [24, 60].

All Pareto-optimal solutions correspond to the maximum feasible rotational
speed of 400 rpm while having different welding speeds varying from 1 mm/s to
10 mm/s. The Pareto-front shown in Fig. 3.24 gives an idea of ranking
the alternative trade-off solutions depending on the available working conditions.
If a manufacturer is able to use a standard milling machine instead of an advanced
FSW machine and can afford using simple tool designs with low welding speed,
he would probably not dare to go from 1 to 7 mm/s in welding speed because
the residual stresses yielded per unit increment in welding speed would cost higher
comparing to those at higher welding speeds. The amount of sacrifice of
the manufacturer relatively depends on the welding speed while one can keep the
rotation speed between 200 and 400 rpm.

3.4.7.2 Case-2

The specific optimisation problem here is stated as the goal of finding the FSW
process parameters, i.e., tool rotation speed and traverse welding speed, which
provide a set of trade-off solutions for the minimisation of two conflicting
objectives [4]. As mentioned earlier, these are the peak residual stresses, which are
measured at the middle of the plate along the transverse direction, and the wear
path of an arbitrary point on the tool shoulder which can equally be written as the
ratio of the tool rotational speed divided by the traverse welding speed
(the mathematical formulation is given below in Eq. 3.11). The optimisation
problem is constrained by the process-specific thermal constraints, which are given
as the upper and the lower bounds on the peak temperatures in the workpiece.
The lower bound of 420�C on the peak temperature represents the need for easy
traversing of the tool, i.e., to minimise the tool loads along the weld line by
contributing to thermal softening of the workpiece material. The upper bound of

Fig. 3.24 Pareto set
of the solution
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480�C is defined in order to consider the tool life and the workpiece properties
which are affected by hot welding conditions.

The wear path at the radius r at any point on the tool/workpiece interface can be
approximated by the following expression,

Lpath ¼ vcircumf tcircumf ¼ xrtweld ¼ xr
Lweld

uweld
¼ ðrLweldÞx

uweld
¼ C

x

uweld
ð3:11Þ

where C is a parameter that will remain constant for the point under consideration.
Minimisation of the ratio of the rotational speed/welding speed corresponds to
maximising the tool advance per revolution. The constrained multi-objective
optimisation problem can then be expressed in mathematical terms as,

Minimize: f1 xð Þ ¼ rx;max

Minimize: f2 xð Þ ¼ x=uweld

subject to : g1 xð Þ ¼ 420�C� Tpeak

g2 xð Þ ¼ Tpeak� 480�C

ð3:12Þ

The objective space that is constructed by minimisation of both the peak
residual stresses and the ratio of the rotational speed divided by the traverse
welding speed is shown in Fig. 3.25. Most of the designs lie close to the non-
dominated-front, which is shown in Fig. 3.26. This is because of the relatively low
sensitivity of the n parameter towards the peak residual stresses for a given
welding speed.

The Pareto-front shown in Fig. 3.26 gives an idea of ranking the alternative
trade-off solutions depending on the available working conditions. Two extreme
sets of solutions are obtained as (1 mm/s, 400 rpm) and (10 mm/s, 200 rpm) for

Fig. 3.25 Objective
space of the solution
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the minimum residual stress and the minimum wear path or in other words the
ratio of the rotational rate divided by welding speed, respectively. The other non-
dominated solutions between these extrema are varying between 200 rpm and
400 rpm for different welding speeds, while most of these solutions have a rota-
tional speed of 200 rpm. If a manufacturer is able to use a standard milling
machine instead of an advanced FSW machine, such as the ESAB SuperStirTM

machine [90] or RoboStir Robotic FSW Machine [91], and can afford using simple
tool designs (flat tools instead of threaded ones) with low welding speed, he would
probably prefer to use a welding speed of 1 or 2 mm/s with relatively high rota-
tional speed, i.e., 400 rpm, because the residual stresses yielded per unit increment
in the ratio of rotational speed/welding speed would be lower comparing to those
at higher welding speeds with lower rotational rate (lower values of the wear path
criterion). For instance having a machine which enables us to weld with 2 mm/s
speed and 400 rpm would be sufficient. On the other hand, if a manufacturer who
is able to afford higher residual stresses and lower wear path criterion values, in
other words lower heat exposure, it will be relatively easier to sacrifice in quality,
thereby a welding speed of 7–9 mm/s with the minimum rotational speed of
200 rpm will be preferable.

3.5 Metal Casting

Casting is a manufacturing process in which molten metal flows by gravity or other
forces into a mould, containing a hollow cavity of the desired shape, where it
solidifies in the shape of the mould cavity, see Fig. 3.27. The solidified part is also
known as a casting, which is ejected or broken out of the mould to complete the

Fig. 3.26 Non-dominated
set of the solution
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process [92, 93]. The casting process is mainly used to produce ingots, i.e., large
cast parts which are simple in shape and intended for subsequent reshaping by
processes such as rolling or forging, and cast parts having more complex geom-
etries that are much closer to the final desired shape of the product (i.e., shape
casting). Different variants of shape casting techniques are available in industry,
thus making it one of the most flexible and attractive of all manufacturing pro-
cesses. Besides, it allows manufacturers to produce products having both external
and internal geometrical complexities, and moreover some casting processes are
capable of producing parts having no need for further manufacturing operations to
satisfy required tolerances and are suitable for mass production as well as pro-
ducing very large parts weighing more than a hundred tons. There are also some
varying disadvantages associated with different casting processes which include
limitations on mechanical properties, porosity, poor dimensional accuracy and
surface finish for some casting processes, safety hazards to humans when
processing hot molten metal, and environmental problems [93].

The physical description of the metal casting process in a virtual environment,
i.e., via numerical models, demands the quantification of process parameters and
process steps as they directly impact the casting quality. The idea of utilising
numerical models to predict the filling and solidification of castings, instead of
intuition and trial-and-error based incremental procedures came from physicists,
mathematicians, and mechanical engineers. Today, it is well established by
foundry engineers and management as well as customers that casting simulation
tools provide more than just a look into a black box. The heat transfer simulations,
i.e., solidification process in particular, paved the initial steps to the fundamental
research for understanding the process. Mould filling is a complementary and
complex step of the casting simulation. This is not only important for the gating
layout which is also designed to support the feeding effectively, but for the
detection of filling related defects as well, e.g., a potential premature solidification.
Indeed, the inhomogeneous temperature distribution in the melt during the filling
process, which mostly represents highly turbulent flow (as understood from
the rheological properties of metal melts), has in many cases an impact on the
solidification process. This is still the case even if the melt surface appears to be

Fig. 3.27 Schematic view of a casting process [93]
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rising quietly. Many casting defects originate from these under-surface move-
ments, as well as reactions between melt and mould material. These defects
include mould defects, air entrapments, oxidation defects, slag entrainments or
metallurgical challenges which have strong effects on the feeding behaviour [94].
The local shrinking and expansion behaviour of a casting can only be predicted
under the consideration of the locally developing phases (graphite, austenite,
cementite). The evolution of each phase should therefore be considered together
with the alloying elements and the inoculation, i.e., microstructure modelling,
throughout the entire solidification analysis prior to the residual stress and
distortion analysis or prediction of hot tears. A schematic representation of some
of the simulation steps for the casting process is presented in Fig. 3.28. Readers
who are interested in further details about the historical development of casting
simulation and future challenges in this area are encouraged to refer to the
following references [94–98].

Casting process modelling in essence involves the simulation of mould filling
and solidification of the cast metal as well as the solid state cooling [42]. At the
macroscopic scale, these processes are governed by basic equations which describe
the conservation of mass, momentum, and energy. Heat transfer is perhaps
the single most important discipline in casting simulation. The solidification
process depends on heat transfer from the part to the mould and from the mould to
the environment. Solidification modelling involves the application of the heat
transfer concepts along with techniques to account for the release of latent
heat during solidification [95]. The mould and any other solid materials
(chill, insulation, feeder, etc.) are modelled using the standard heat conduction

Fig. 3.28 Multi-physics modelling of the casting process [94, 99]
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equation given in Sect. 3.3, Eq. 3.1. The extent of solidification at any location
within the casting is represented by the fraction of solid fs. At temperatures greater
than or equal to the liquidus temperature, the cast metal is in a completely liquid
state with a solid fraction of zero. As the latent heat is removed, the fraction of
solid increases and reaches a value of unity when the metal is in a completely solid
state (i.e., at solidus temperature). The region where the solid fraction is between
zero and unity is referred to as the mushy zone. There are two approaches to
determine the solid fraction value: (1) Solid Fraction-Temperature Equilibrium,
where the solid fraction is assumed to be a known function of temperature
(i.e., temperature dependent property of the metal). (2) Solidification Kinetics,
which permits the accurate prediction of phenomenon such as undercooling.
It considers the evolution of the solid fraction in time depending on several
parameters and it requires detailed metallurgical data which is not easy to access.

The release of latent heat during solidification can be accounted for by a
volumetric heat generation term in the heat conduction equation (i.e., qvol in
Eq. 3.1) as shown below,

qvol ¼ qDHf

ofs

ot
ð3:13Þ

where DHf represents the latent heat of solidification. Equation 3.10 assumes that
the latent heat varies in proportion to the solid fraction, which is a reasonable
approximation for casting process modelling [95].

The most accurate method of determining the initial conditions is to perform a
mould filling simulation. The temperature distribution at the end of the mould
filling simulation will then serve as the initial temperature distribution for the
solidification simulation. However, because of the computational demand, the
mould filling simulation is frequently omitted and some reasonable initial
temperature values are used. For the cast metal, the initial temperature usually is
set somewhere between the liquidus temperature and pouring temperature,
whereas the initial mould temperature depends on the type of casting (e.g., for sand
castings, the initial mould temperature will most likely correspond to the ambient
temperature).

Another modelling issue is the contact condition at the interface between the cast
and the mould (not in perfect contact) which affects the heat transfer having a
discontinuity in temperature. If the unknown characteristics of the gap such as the
thickness variation with time (caused by shrinkage or distortion in the casting) and
the properties of the gas within the gap were known, then the heat transfer across the
gap could be computed directly, i.e., via defining heat convection boundary con-
dition assuming a heat transfer coefficient that is empirically determined [42, 95, 96].

Mathematical modelling of stress/strain phenomena in casting processes is a
complex subject, which in the general case among other phenomena involves a
coupled 3-dimensional thermo-mechanical analysis including solidification and
other phase transformations, shrinkage-dependent interfacial heat transfer caused
by relative motion between casting and mould as mentioned above, mould

3 State-of-the-Art Multi-objective Optimisation of Manufacturing Processes 105



distortion, temperature and time-dependent plasticity, hot tears, hydrostatic pres-
sure from the liquid and crack formation. All of these phenomena are obviously
not equally important and as for other branches of numerical process modelling,
one of the keys to a successful stress/strain analysis of a casting process is to take
into account only what matters for the solution of the problem at hand [42].

Making castings today requires more than just pouring liquid metal into a
mould; it is actually only one part of an integrated chain of processes. Most
castings receive their final properties through processes after the casting process,
i.e., heat treatment or machining, as illustrated in Fig. 3.29. Therefore it is crucial
to be able to predict the performance of the cast part, e.g., final mechanical
properties, in a reliable process window under a set of uncertainties [94]. In a
similar way, the integrated modelling approach combining the thermo-mechanical
simulation of the casting and in-service load performance supplies a substantial
efficiency for engineering companies to make modifications in the process or the
product design to stay competitive. Figure 3.30 represents an integrated engine
development cycle for improving the robustness under considerable loads [94].

As known from previous studies which have also been mentioned in the
beginning of this section [14, 15, 94], the casting design, in particular the gating
and riser system design has a direct influence on the quality of cast components.
Changes in one process parameter impact many casting quality-defining features
during the process, i.e., a change of the pouring temperature does not only change
the solidification behaviour, it also changes the fluidity of the melt, which can lead
to a misrun. The metallurgy of the melt might be impacted, which could lead to

Fig. 3.29 Stress history in a cylindrical head over the entire manufacturing process (courtesy of
MAGMA GmbH) [94, 100]
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changes in the temperature balance of the mould or die, which again can lead to
problems with overheating or erosion [94, 98]. Thus, it is almost impossible for a
human-being to analyse the different effects of all these nonlinear interactions
between process parameters through several process steps. However, most of the
design activities were, or still up to some extent are, based on past experience and
empirical rules [94]. Despite high computational expenses, the autonomous inte-
gration of casting process simulations with numerical optimisation methodologies
has recently been initiated and it seems to be getting more attractive for
researchers and manufacturers [5, 14–18, 94]. In the next section, a recent case
study on a real world multi-objective optimisation application for casting of a
forging ram will be given in more detail which considers several manual (intuitive)
and autonomous design iterations to improve the casting yield.

3.5.1 A Casting Yield Optimisation Case Study

This section presents a multi-objective optimisation case study in the gravity sand
casting process of a forging ram in which top riser volume and shrinkage porosity
are minimised, subjected to a constraint on centreline porosity, via searching for
the optimum set of design variables, i.e., dimensions of the riser and the chills.
Readers are encouraged to find further details in the original work [5].

The iterative product design cycle includes five different layouts of a steel
forging ram (as see Fig. 3.31) manufactured by a gravity sand casting process.
The initial layout is obtained from a foundry, Vitkovice Heavy Machinery a.s.,

Fig. 3.30 An integrated engine development cycle for improving the robustness under
considerable loads (courtesy of MAGMA GmbH) [94]
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which manufactures the forging ram. The second layout with manually rearranged
gating system and chills is also provided by the foundry, and last three layouts are
generated by using numerical optimisation. The first two designs are analysed both
in terms of filling and solidification using MAGMASOFT (the commercial
software dedicated to the numerical simulation of the casting process), and then
the results are compared with experimental casting trials, no numerical optimi-
sation are involved at this stage. The last three designs are optimised numerically
using MOGA (Multi-Objective Genetic Algorithm [16]) implemented in
MAGMAfrontier [16–18] (the numerical optimisation module integrated into
MAGMASOFT) and are assessed only in terms of solidification as the filling
pattern remains unchanged; however the temperature fields at the beginning of the
solidification are inherited from the filling stage.

A riser is designed and placed on top of the heaviest section based on the
thermal analysis of the part itself. In order to enhance the feeding ability of
the riser, insulation is applied (see the dark blue section in Fig. 3.32). The main
cylindrical padding is insulated and the melt surface is covered by an exothermic
powder as well as the additional insulating powder is applied. Next, it is deter-
mined that the part will be bottom-filled using a gating system comprised of the
refractory tiles of which the cross-sectional areas are constant over the entire
gating system. Last, the chills (the light blue parts in Fig. 3.32) are added around
the cylindrical section of the casting to establish directional solidification and to
push the macro segregation-related flaws from the surface further inside the
casting. The original casting layout is simulated using the casting conditions and

Figs. 3.31 and 3.32 (3.31) 3-D view of the cast part used in the project, (courtesy of Vitkovice
Heavy Machinery, a.s.) [5]. (3.32) Initial casting layout. The riser is indicated by green,
chills indicated by light blue; insulation is denoted dark blue, (courtesy of Vitkovice Heavy
Machinery, a.s.) [5]
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parameters listed in Table 3.4. Both filling and solidification analyses are
conducted. A stress analysis is not considered in any of the presented cases.

The heat transfer coefficients (HTC) at the casting/mould interface are assumed
to be constant (800 W/m2K), i.e., temperature independent. This assumption holds
only in the case of gravity sand casting. The reasoning is that in sand casting the
contact between the melt and the mould is poor from the very beginning because
of the rough surface of the mould. As a result, there is a high resistance to heat
removal, giving low interface HTCs. When the casting shrinks during solidifica-
tion and solid state cooling, an air gap is formed in the casting/mould interface,
inducing even more resistance to the heat removal. Nevertheless, since the heat
transfer has been poor from the very beginning the decrease in HTC caused by
volumetric changes is not that determining for the results and the HTC can be
assumed more or less constant (low) over the entire casting process. Moreover, it is
not primarily the interface that induces the largest resistance to heat transfer; it is
the large sand mould and its poor thermal properties that really govern the heat
removal.

Figure 3.33 shows three intermediate stages of the filling process, i.e., 1%,
2.5% and 16% filled, respectively, which is supposed to indicate whether the
current gating system will provide a uniform filling without any melt aspiration
in the downsprue or surface turbulence that would likely lead to excessive
oxidation of the propagating melt thus causing various filling-related defects, i.e.,
re-oxidation inclusions, entrapped air pockets, etc., [101]. The primary source of
oxygen in re-oxidation inclusion formation is air, which contacts the metal stream
during pouring as well as the metal free surface in the mould cavity during filling.
It can be seen in Fig. 3.33a that because of a constant cross-sectional area over the
entire downsprue, the melt starts to spire from the mould walls and gets oxidised.
This phenomenon can actually be explained simply via the continuity equation.
The melt experiences a free fall from the nozzle of the pouring ladle down to the

Table 3.4 Material settings in MAGMAsoft [5]

Material of the casting GS20Mn5 (DIN 1.1120)
Material of the mould Furan sand
Material of chills Common steel
Material of the insulating padding IN5
Material of the exothermic powder Ferrux
Material of the insulating powder Vermikulit
Initial (pouring) temperature of the casting 1,540�C (2,804 F)
Initial temperature of the mould 20�C (68 F)
Filling time 120 s
Feeding efficacy of the applied steel alloy 40%
Sand permeability Activated-value taken from a standard

database
Weight of the casting- incl. risers and gating

system
59,596 kg (131,111.2 lbs)

Weight of the casting itself (fettled) 29,898 kg (65,775.6 lbs)
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bottom of the gating system. During the free fall it accelerates because of the effect
of the gravity force and changes its area (the area decreases with the increasing
velocity). In order to compensate for the area reduction resulting in the aspiration
from the mould walls, one has to decrease the area of the downsprue accordingly.
The nearly ideal solution would be an application of a streamlined gating system
[102]. However, for such a large cast part, this solution is infeasible.
The streamlined gating system is used mainly in the gravity die casting. Another
option would be the use of ‘‘choke’’ conical elements at several locations in the
downsprue. Figure 3.33b shows that due to no velocity control during the early
stage of the filling process the melt reaches the mould cavity with a quite high
velocity (approx. 5 m/s). A very rapid entrance naturally leads to a formation of
fountains (1.47 m high) inside the mould cavity. When the melt starts to fall down
again, it splashes, becoming highly turbulent and disintegrated. In most of the
bottom-filled casting assemblies it is a difficult task to fully avoid this formation.
Nevertheless, it should always be the primary objective of a designer to design
such a gating system with all necessary attributes to keep this phenomenon at a
minimum. Finally, Fig. 3.33c indicates the melt falling down from the two top
runners on top of the melt front progressing from the bottom of the mould cavity.
This is again a feature that should be kept at a minimum during filling for the same
reason as the fountains, i.e., oxidation. Moreover, there is an oxide layer already
present on top of the melt front coming from the bottom which very likely gets
torn apart by the melt streams and a surface turbulence and disintegration of the
melt front is thus established.

The thermal analysis during solidification evaluates the efficacy of the top riser
and the cooling effect of the chills placed around the cylindrical section of the cast
part. In Fig. 3.34, one can see that during the solidification process, particularly at

Fig. 3.33 Three different stages of filling process of the bottom-filled forging ram [5]
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42% solidified, there are indications of isolated liquid pools in the lower section of
the casting. This fact raises a probability of porosity formation attributable to a
lack of liquid feeding. The chills cool the cylindrical section too rapidly, when
compared with the very bottom area in which the cooling rate is lower because of
the enlarged cross-section, thus creating a hot spot. A potential remedy might be
either to increase the thickness of the chills towards the bottom area or to redesign
the gating system so that there is a chance to add a chill plate underneath the
casting bottom. Cooling of the bottom of the casting would be significantly
promoted and directional solidification towards the riser would be established.

A direct consequence of having both isolated liquid pools (see Fig. 3.34) and
very flat temperature gradients as seen in Fig. 3.35 in the casting domain is
the presence of a shrink (porous area). Areas solidifying early always ‘‘suck out’’
the liquid melt from areas solidifying last to compensate for the volumetric
changes evoked by the solidification process. As long as there is an open and

Fig. 3.34 Fraction liquid
criterion function indicating
an isolated liquid pool in the
bottom section of the cast part
at 42% solidified [5]

Fig. 3.35 Gradient criterion
function depicting a very
shallow gradient in various
areas of the casting [5]
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active feeding path to these areas no problem occurs. However, when the liquid
melt supply is cut off and drained, areas solidifying last will be short of melt and so
when the time comes for them to solidify no compensation for the volumetric
shrinkage will be available, giving rise to porosity. This issue can be addressed by
means of the Niyama criterion function [103–105], that is a local thermal
parameter defined as the relationship between the gradient (G) in K/mm and the
cooling rate (R) in K/s, both of which are assessed at a specified temperature near
the end of solidification, when the solidification shrinkage forms, see Eq. 3.14.
In the present study, the Niyama criterion is evaluated at a temperature 10% of the
solidification range above the solidus temperature. This is important to state, as the
choice of Niyama evaluation temperature can remarkably affect the resulting
Niyama values [106].

Niyama ¼ G
ffiffiffi

R
p ð3:14Þ

With the help of the Niyama criterion, it is feasible to predict the presence of
centreline shrinkage porosity, i.e., micro- and macro-shrinkage in steels, caused by
shallow temperature gradients [107, 108]. It indicates that in regions that solidify
quickly, there must be hot metal nearby to establish a high gradient to feed the
shrinkage during solidification. It has been proven by numerous trials that for suf-
ficiently large Niyama values, no shrinkage porosity forms. When the Niyama value
decreases below a critical value, small amounts of micro-shrinkage begin to form.
As the Niyama value decreases further, the amount of micro-shrinkage increases
until it becomes detectable on a standard radiograph. This transition occurs at a
second critical value. Both of these threshold values are heavily dependent on the
composition of the alloy and in some cases on the casting process conditions.

Figure 3.36 shows the numerically predicted presence of centreline porosity
in the lower areas together with results obtained from the casting trials

Fig. 3.36 Prediction of the
centreline macro/micro
shrinkage and its
experimental validation
obtained from the foundry [5]
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(by the radiographic technique). It is seen that indeed, the porous areas occurred in
the casting where the isolated pools of liquid were once present. Looking at the
dimensions of the defect area, one can see a very good agreement between the two
types of results (numerical-red (right) versus experimental-black (left)). The close
correlation also justifies the use of the Niyama threshold value of 0.45 for this
particular steel alloy. However, it should be emphasised that the geometrical
extension of the shrinkage obtained numerically, to some extend is approximate
because of its dependency on the mesh quality.

Figure 3.37 shows the results obtained from the casting trials. The cast part was
cut into several sections and the porous area (also predicted by the simulation) was
detected and measured. Besides the macro-shrinkage both V- and A-type
macro-segregation bands are spotted in the casting. A general cause of the macro-
segregation is relative movement or flow of segregated liquid and solid during
solidification. The most common form of solid movement is the settling or floating
up of small solid pieces formed early in the solidification process. These solid
pieces may be dendrite fragments that separated from an existing solid structure or
equiaxed grains that nucleated in the bulk liquid. They settle or float, depending on
their density relative to the liquid. The solid pieces generally have a composition
different from the nominal alloy composition, and their movement to different
parts of the casting thus induces macro-segregation [109–111].

Next, the new casting arrangement with manually redesigned gating system and
rearranged chills is developed. It may be seen in Fig. 3.38 that the shape of the
forging ram is somewhat different when compared with the initial one in Fig. 3.32.
It is attributable to the fact that the second design is manufactured for a different
customer who requested these geometrical adjustments, i.e., larger diameter of the
cylindrical section and geometrical adjustments in the ram’s head. The aim is to
investigate the effects of a cooling plate located underneath the casting. In order to
place the plate, the gating system has to be changed from bottom filling to side
filling. Also, new vertical runners are added to support filling in higher sections of
the casting. Furthermore, the chills are rearranged a bit. In order to ensure suffi-
cient cooling of the very bottom, thicker chills are added around the conical

Fig. 3.37 Results from the
casting trial—presence of
porous areas and bands of
macro-segregation, (courtesy
of Vitkovice Heavy
Machinery a.s.) [5]
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bottom section of the casting. Furthermore, new chills are incorporated into the top
head section of the casting. Besides the aforementioned geometrical changes, all
casting and simulation parameters remain the same as in the first casting
arrangement.

After the initial assessment of various stages of the manufacturing process,
potential drawbacks and defects were recognised. This was then verified by casting
trials creating a solid ground for subsequent improvements and optimisation.
As centreline porosity depends primarily on thermal gradients and the cooling rate,
the next step was to induce steeper thermal gradients in the section surrounded by
the chills and to establish a directional solidification towards the heaviest top
section where the riser is placed to keep the feeding path open as long as it is
necessary. This was pursued by the rearrangement of the chills and by adding a chill
plate underneath the casting bottom. Because of the chill plate, the bottom filling
was no longer feasible. Therefore, the gating system was somewhat redesigned,
which after the first filling analysis was strongly recommended anyhow. The reason
for adding the vertical extensions of the two horizontal runners is to reduce the
kinetic energy of the melt. This is an easy way to slow down the melt front.
However, in many foundries world-wide it has been overlooked and not applied.

Figure 3.39 shows early stages of the filling process. One can argue that the
new gating system really improved the filling pattern. The two vertical extension
channels significantly slowed down the melt (approximately 4 m/s in the runners
as compared with almost 10 m/s in the original layout) and thus it propagates
uniformly towards the thin gates. When the melt reaches the cavity it does not
form fountains but creates a relatively small splash during impingement of the
streams. A solution to this problem might be an application of tangentially oriented
thin gates which then help to avoid any impingement of propagating melt fronts.

However, as the shape of the downsprue remained untouched, melt aspiration is
still seen at that area. This issue should really be addressed by the manufacturing
foundry to eliminate oxidation of the melt in the downsprue area. It was expected

Fig. 3.38 Manually
optimised casting design [5]
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that the new system of chills will change the solidification pattern of the casting
and will have positive effects on the formation and distribution of the defects.
The results are captured in Figs. 3.40, 3.41 and 3.42. In Fig. 3.40a and b, by means
of the fraction liquid function a new solidification pattern was predicted at 42%
and 75% solidified.

The size of the riser together with the new arrangement of the chills obviously
positively affected solidification, completely avoiding the isolation of the liquid
pools seen in Fig. 3.34. Moreover, the steel plate placed below the casting evoked
rapid cooling and facilitated directional solidification towards the riser.
The comparison of centreline porosity indicates that the increased temperature
gradients via enhanced chilling readily eliminated likelihood of its formation see
Fig. 3.41. The only two areas that might be of a concern are the two bottom pins.
In the original layout no porosity was present in these areas however this is not
true for the current layout. This is depicted in Figs. 3.41 and 3.42. Considering that
they are used for transportation purposes and the entire casting weighs around 58
tons, this porosity cannot be neglected as it corrupts the mechanical properties and
weakens those areas. This issue can be eliminated by adding a sufficient draft to

Fig. 3.40 a Improved solidification pattern arising out of the reworked system of the chills- 42%
solid [5]. b Fraction liquid at 75% solidified [5]

Fig. 3.39 New filling pattern arising out of the redesigned gating system [5]
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the pins and changing their solidification pattern. The critical value for porosity in
Fig. 3.42 has been set to 1%. Areas containing less than 1% porosity are con-
sidered ‘‘healthy’’ and thus they are filtered out by the X-Ray function.

After inserting all datasets and parameters into the standard simulation envi-
ronment, the manually refined casting layout in Fig. 3.38 is assessed to create a
reference solution to compare the optimisation results with. It has been decided to
try to reduce the size of the top riser as much as possible to increase the casting
yield, providing that there will be no defects occurring in the casting because of
the riser’s reduced size. When the riser and the chills are transformed into para-
metric objects, the optimisation process is initiated. The design variables (those
which are subjected to optimisation) are: dimensions of the chills (height and
thickness of the bottom cylindrical chills), dimensions of the top riser (height,
bottom and top diameters), and the top diameter of the riser neck, see Table 3.5.

The main optimisation objectives are (i) to design the top riser so that the
casting is sound (i.e., with minimum shrinkage and centreline porosity), and (ii) at
the same time having a top riser’s volume as small as possible to increase the
casting yield. In this context, ‘casting yield’ is defined as the gross weight

Fig. 3.41 Prediction of
centreline porosity [5]

Fig. 3.42 Distribution of
macroscopic shrinkage [5]
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including the riser and the gating system divided by the weight of the fettled
casting. Based on the number of design variables and their ranges of variation, the
optimiser generates the initial population which is in size of 100 and based on
the Sobol algorithm providing a quasi-random distribution [112]. An elitist
EMO algorithm MOGA is used with the directional crossover probability of 0.6,
the selection probability of 0.3 and the mutation probability of 0.1. Moreover,
constraints are handled with the penalisation methodology [24].

After the two preceding analyses one could think that a reasonably good
solution has been found. The gating system has been improved; the solidification
pattern changed and fewer defects are present. This was also confirmed by the
manufacturing foundry which is using this improved design at the present state.
Thus it is a favourable state for a subsequent geometry optimisation. Both of the
previous designs weighted approximately 60 tons together with the riser and the
gating system. From Figs. 3.41 and 3.42, it is seen that the major shrinkage pipe in
the riser is still too far from the actual casting body to be critical therefore, there is
room for a volume reduction to obtain an increased casting yield. From now on,
only the solidification results will be discussed since the gating system remained
unchanged, thus the filling pattern does not change.

The objective space for the optimisation problem in Fig. 3.43 is constructed by
the two following objectives: minimisation of shrinkage porosity and minimisation
of the remaining volume of the top riser. The first objective is represented by the
Weighted Volume Porosity which stands for the total volume of areas having issues
with porosity. The remaining volume of the riser is then calculated as the geomet-
rical volume of the riser minus the volume of the shrinkage pipe in the riser.
There are several features in that figure that should be addressed. The blue line is the
Pareto set which comprise the non-dominated solutions, although, it is up to the user
to determine which solution out of the Pareto set will be the most desirable. In other
words, the decision-maker has to figure out whether she wants to minimise the riser
as much as possible, at the cost of increased porosity or to have a porosity-free
casting with a slightly larger riser. In this case, three distinct designs were selected.
The first one, marked as 1 in Fig. 3.43 does not lie on the Pareto set and represents
the most modest solution i.e., the largest riser volume. It should be emphasised that
although it may not be clear from the figure, solution 1 is dominated by solution 2.
The second one marked as 2 resembles a single optimum case—the lowest amount
of porosity, and the third one marked as 3 stands for a trade-off solution.

Table 3.5 Design variables for optimisation [5]

Design variable Lower limit (mm) Upper limit (mm) Step (mm)

Cylindrical chill- height 549 1,149 50
Cylindrical chill- thickness 100 200 10
Riserneck- top diameter 1,200 1,300 10
Riser- bottom diameter 1,260 1,660 20
Riser- top diameter (1,260 9 1.06) (1,660 9 1.06) 20
Riser- height 500 1,350 50
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Then, the three designs have been analysed in the standard simulation envi-
ronment. In order to obtain realistic temperature fields during solidification, filling
has also been considered in the simulation, but its results are not shown here. The
reason for choosing such designs was the following: the primary aim has been to
keep the level of porosity very low, possibly not above the value of the original
design but still increasing the casting yield. That is why the focus was put on the
solutions very close to the Y-axis. Moreover, the manufacturing foundry wanted to
see different layouts-from ‘‘modest’’ to those ‘‘on the edge’’ to make a better
comparison and decision as to which solution to select for the subsequent pro-
duction. From the optimisation perspective it is given that the best solutions
constitute the Pareto line, so why should we pick a design not on the Pareto line
that is solution 1? Many foundries will rather prefer a very safe solution to
compensate for potential flaws during production, e.g., human factors, deviations
from alloy compositions, etc., Solution 1 was selected for the subsequent analysis
because it has a large enough riser to keep porosity far from the casting and still
has its total volume remarkably smaller than the original layout. Figure 3.44
depicts the three selected designs. Information regarding dimensions of the opti-
mised designs is listed in Table 3.6.

Regarding the solidification patterns of the three optimised designs, no isolated
liquid areas are forming in the bottom area as in the original layout, depicted in
Fig. 3.34. The bottom chill plate and the stair-type chill around the conical section
induced directional solidification towards the thermal axis and the riser. Solidifica-
tion patterns were checked over the entire solidification interval. It was found that
none of these designs exhibit apparent isolated liquid areas although solution 3 is
really on the edge later in the solidification in an area right below the riser-neck, see
Fig. 3.45. The reason is that the riser is too small and the heaviest section of the
casting slowly begins to be the last to solidify. If one should fully rely on
the numerical results, solution 3 would be good enough for production. However, as

Fig. 3.43 Design space with
the highlighted Pareto set [5]
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argued before simulation does not take into account all crucial factors that occur in
practice. For instance the quality of themelt can be compromised by a dirty ladlewith
residuals from the previous batch. Next could be the human factor, which often
compromises the quality of a casting process. Having all this in mind it was decided
together with the foundry not to go for solution 3 to avoid failure in production. But
this solution is still shown and discussed here.

Table 3.6 Comparison of the three optimised designs [5]

Solution 1 Solution 2 Solution 3

Total height 4,037 mm 3,837 mm 3,537 mm
Total weight 48,406.8 kg 45,850 kg 40,968 kg
Height of the bottom cylindrical chills 999 mm 999 mm 1,149 mm
Thickness of the bottom cylindrical chills 160 mm 160 mm 160 mm

Fig. 3.44 Three distinct designs proposed by the optimisation tool [5]

Fig. 3.45 Solidification pattern of the three optimised designs at 90% solidified [5]
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In Fig. 3.46, the centreline porosity is expressed by the Niyama criterion. The
light blue areas stand for values of 0.4 and lower which will contain macroscopic
shrinkage. Everything above 0.45 up to 1 will most likely be micro-porosity not
detectable by the radiography techniques. It is seen that despite solution 3 being on
the edge, it still shows no occurrence of porosity in the casting body. Only the
bottom pins contain small porous areas. The reasonable remedy for this was
addressed earlier.

A similar situation applies for shrinkage porosity shown in Fig. 3.47. The
casting body appears to be porosity free in all three cases, except for the pins again.

The last assessment concerns the casting yield. The aim of the entire project has
been primarily to eliminate the presence of various casting defects. Once this was
achieved, the next step was to optimise the riser volume for the casting yield
improvement. The results of this assessment are given in Table 3.7. Compared with

Fig. 3.46 Occurrence of centreline porosity in the optimised designs [5]

Fig. 3.47 Occurrence of macroscopic shrinkage in the optimised designs [5]
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the original design the casting yield could be increased by approximately 25% if the
optimised solution 3 was applied. Because of a high risk a shrinkage occurrence
below the riser neck, solution 3 was however not approved for production.

3.6 Future Challenges

Unsurprisingly, some of the issues which are going to be presented briefly here in
the present section have some overlaps with the joint work written by Miettinen
et al. [39] on the new trends and future challenges which the multi-objective
optimisation and decision making field is facing. However, the effort put in here is
more directed towards the manufacturing process simulations and moreover the
thermo-mechanical aspects of it.

Depending on the demands for the manufacturing process simulations, more
specifically the level of interaction and complexity between different simulation
domains, more than three objectives will eventually have to be optimised simul-
taneously. On top of that, considering improvement of the service-load perfor-
mance of the products already during the initial design and manufacturing stages
will contribute to this complexity even further [87, 113]. Therefore, many-
objective problems will need to be solved and this field has actually received
increasing attention recently [114–119]. Although current EMO procedures are
quite successful in solving two or three objective problems, they have some
computational deficiencies in finding multiple and well-spread solutions in case of
problems comprising more than three objectives. Besides improving the ineffi-
ciency of selection operators available in current EMO algorithms (i.e., insufficient
selective pressure, driven by the dominance, towards the true Pareto optimal front)
without using very large population sizes since this is not practical in computa-
tionally expensive simulations, the number of objective functions or design vari-
ables could efficiently be reduced via some pattern recognition methodologies or
data mining and clustering techniques. Moreover, the preference-based methods
which utilise decision-maker preferences a priori, a posteriori or progressively

[114], are arguably the best current techniques for handling large numbers of
conflicting objectives. Such methodologies will be an essential part of the man-
ufacturing process and product design using multi-objective optimisation tools.
Improving the level of understanding the physical phenomena and implementation
of the outcome of it into the numerical models to better capture the essential
behaviour will also increase the interaction between experimentalists and the

Table 3.7 Casting yield assessment [5]

Original
solution

Optimised
solution 1

Optimised
solution 2

Optimised
solution 3

Total height 4,337 mm 4,037 mm 3,837 mm 3,537 mm
Total weight 59,640 kg 48,406.8 kg 45,850 kg 40,968 kg
Casting yield 55.36% 61.76% 72.01% 80.59%
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theoreticians for a more interactive decision-making procedure [120, 121] in a
MOP. This will also be a potential path to deal with many-objective optimisation
problems to reduce the search space, or in other words, focus on a partial set of it.
However, these different expertises should be combined in an efficient and user-
friendly way, for instance leading to a working environment combining dedicated
process simulator and multi-objective optimisation capabilities powered by
advanced algorithms (including meta-modelling techniques [122], hybrid algo-
rithms, etc.), post-processing tools (scatter charts, parallel coordinates) and the
aforementioned multi-criterion decision making tools. In this way, practitioners
(e.g., foundry men), apart from academicians can also be involved in this iterative
process of manufacturing product design without really considering the theoretical
basis of the applied procedures.

The field of knowledge discovery in MOO, which recently has been addressed
in a more structured way under the name of ‘‘innovization’’ [61–63], as briefly
mentioned in Sect. 3.4.3, seems to hold a big potential for the manufacturers. This
autonomous way of discovering the common principles among the trade-off
designs, which point out either the optimal process conditions or the optimal
product designs, will help them to save time and resources, therefore money. For
instance, referring to the problem briefly investigated in Sect. 3.4.3, investigation
of defect-free welds while having higher production rate and keeping other
manufacturing benefits in mind has always been a crucial problem for engineers.
The main purpose, in case of the FSW process, is to find a robust work-frame
(see Fig. 3.48b) which avoids hot and/or cold weld conditions (see Fig. 3.48a, c,
respectively). Identification of these unknown ‘‘utopic’’ regions for different scales
of mass production will allow manufacturers to keep their tools in certain
geometrical sizes and shape for different welding speeds and different workpiece
materials. This again requires efficient integration of realistic process simulations

Fig. 3.48 a Red denotes hot condition (over-stirring), low k; b green denotes stable (robust)
condition, intermediate k; c blue denotes cold condition, high k (k: advancement per revolution
(APR), k = uweld/nrev) [89]
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with multi-objective optimisation tools. That being said, are should bear in mind
that defect predictions via simulation in FSW have not been addressed satisfac-
torily yet due to several challenges. Extreme deformation of the FE mesh due to
the stirring motion is one of the severe difficulties to be handled, besides complex
contact boundary conditions at the tool/workpiece interface. Figure 3.49 shows
one of the most advanced FSW thermo-mechanical models incorporating an ALE
formulation and having the contact boundary conditions as part of the solution set
therefore enabling the separation at the interface to be captured (see void forma-
tion behind the tool in Fig. 3.49, bottom row) [80].

Improvement in computational resources, including clusters, grid computing,
etc., will always be a positive side effect for both of the research areas. Paralleli-
sation of non-overlapping regions of the Pareto optimal front (which has already
been applied by [123]) is another way of using distributed resources. Besides these
more common issues assuming that the simulation times for each design set are
more or less equal, the more unique case, such as having a range of different
welding speeds leading to different computation time, should also be taken into
account. Thus, a more efficient distribution of these non-homogeneous large-scale
simulations among resources will be more crucial. This will call for an efficient
hybridisation strategy of shared and distributed memory applications. Graphical
processing units (GPUs) are also good candidates for these types of applications
even though the current attempts are mostly at an individual or non-standard level.
This potential gap will play an important role for commercial (simulation and
multi-objective optimisation) software companies to stay competitive. For instance,
implementation of a GPU-based Conjugate Gradient solver in a commercial soft-
ware that is used to simulate a casting process will not only allow to investigate
further details in understanding of particular physical phenomena, but also open the

Fig. 3.49 Top three-
dimensional local FE model
in the FSW process; bottom
an example of void formation
predicted by the model [80]

3 State-of-the-Art Multi-objective Optimisation of Manufacturing Processes 123



doors to perform a multi-objective optimisation using a fully coupled, e.g., thermo-
mechanical, simulation both to reduce the porosities, residual stresses and to
maximise the product performance under service-loads.

Material layout (or ‘‘pseudo-density’’ in SIMP approach [124]) optimisation,
i.e., topology optimisation [125] in common terminology, is in essence a semi-
definite optimisation application [126] where the objective is minimised with
respect to a constraint represented as a positive semi-definite matrix. In other
words, the optimum distribution of a fixed amount of material in a restricted
domain is sought. A recent aerospace design application, i.e., weight minimisation
of the Airbus A380 (main wing box) inner leading edge ribs [127, 128], is shown
in Fig. 3.50 where compliance of the structure is treated as a constraint resembling
an e-constraint problem [59] as also mentioned in Sect. 3.4.3. Initially the ribs are
having few holes enabling wiring, next further material removal in optimum
locations are performed with specialised algorithms which use direct or adjoint
sensitivity calculations [125], then shape and size optimisation are applied, and
following this, CAD models of the ribs are prepared. Figure 3.50 (right) shows the
actual prototype at the final stage. Similar variations of this material distribution
problem under structural loads with/without flow around the structure, or thermo-
elastic behaviour, etc., have been investigated [125].

This design procedure naturally excites us and brings several questions to our
minds, for instance: can we design a FSW tool pin to increase the plastic work and
the friction heating, to promote the material stirring, closure of voids and dis-
persion of surface oxides by formulating this design assignment as a semi-definite

Fig. 3.50 Left topology optimisation (weight minimisation) of the Airbus A380 (main wing box)
inner leading edge ribs; Right actual prototype at the final stage after shape and size optimisation
[127, 128]
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optimisation problem? There are many tool probe designs currently available in
the market, as seen in Fig. 3.51a [47, 89], however almost all of them have been
designed by trial-and-error approach, a systematic approach has not been presented
yet. For such a systematic approach, first of all one should have a robust CFD
solver (the shear thinning effect in the workpiece material brings extra nonlin-
earities) and on top of that, a CSM solver should be applied in order to investigate
the strength and fatigue endurance of the pin while traversing ahead without
failure for a reasonable range of welding speeds. Figure 3.51b shows CFD sim-
ulations of some well-known FSW tool probes [129] and Fig. 3.51c indicates the
unknown cross-sectional designs [89].

Engineers know that every parameter of an analysis is subjected to scatter and
randomness, e.g., material property values differ inherently from one specimen to
the next, geometric properties of components can only be reproduced within certain
manufacturing tolerances, and almost all thermal input parameters such as heat
transfer coefficients used in finite element analyses are inexact and the degree of
uncertainty grows sharply at elevated temperatures. It is neither physically possible
nor financially feasible to eliminate the scatter of input parameters completely.
The reason for this is that the reduction of scatter typically is associated with higher
costs either through better and more precise manufacturing methods and processes
or increased efforts in quality control; hence, accepting the existence of scatter and
dealing with it rather than trying to eliminate it, makes products more affordable
and production of those products more cost-effective [130–132]. Therefore, real
world optimisation applications, e.g., manufacturing of a wind turbine blade aiming
at reduction of its weight meanwhile improving its aeroelastic behaviour and
endurance in varying wind loads by controlling the curing process to keep the
residual stress related defects in an acceptable range, inevitably involve

Fig. 3.51 a There are many FSW tool probe designs currently available in the market [47, 89];
b A few examples of CFD simulations of different FSW tool probes [129]; c The unknown cross-
sectional designs [89]
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uncertainties in manufacturing processes and operating conditions. A brief and self-
explaining comparison between traditional optimisation and robust optimisation is
represented in Fig. 3.52 [133], where solution-A is the global optimum in a tra-
ditional sense, although having a risk of getting an infeasible response when being
exposed to small variations in design variables or environmental parameters,
whereas solution-B is moderately good in terms of optimality and moreover it lies
on a more flat region of the objective function, thus the dispersion of the objective
function is narrow against perturbations in the design variable.

Having said that, optimal solution(s) in a real world optimisation problem should
provide higher performance having satisfactory robustness which might be con-
flicting with the former in some cases, however the latter has been included in a few
engineering fields using different optimisation methodologies [134–136]. Robust-
ness can be studied either by replacing the original objective function by an
expression measuring both the performance and the expectation of each criterion in
the vicinity of a specific solution, or by inserting an additional optimisation criterion
assessing robustness in addition to the original criteria [13] and this has recently
been addressed in multi-objective optimisation problems [137, 138]. It is the firm
expectation of the authors, that these theoretical studies will soon be combined with
manufacturing process simulations such as the ones investigated briefly in this
section and numerous other processes having similar physical aspects, as well.
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Chapter 4
Many-Objective Evolutionary
Optimisation and Visual Analytics
for Product Family Design

Ruchit A. Shah, Patrick M. Reed and Timothy W. Simpson

Abstract Product family design involves the development of multiple products
that share common components, modules and subsystems, yet target different
market segments and groups of customers. The key to a successful product family
is the product platform—the common components, modules and subsystems—
around which the family is derived. The fundamental challenge when designing a
family of products is resolving the inherent trade-off between commonality and
performance. If there is too much commonality, then individual products may not
meet their performance targets; however, too little sharing restricts the economies
of scale that can be achieved during manufacturing and production. Multi-objec-
tive evolutionary optimisation algorithms have been used extensively to address
this trade-off and determine which variables should be common (i.e., part of the
platform) and which should be unique in a product family. In this chapter, we
present a novel approach based on many-objective evolutionary optimisation and
visual analytics to resolve trade-offs between commonality and many performance
objectives. We provide a detailed example involving a family of aircraft that
demonstrates the challenges of solving a 10-objective trade-off between com-
monality and the nine performance objectives in the family. Future research

R. A. Shah � T. W. Simpson (&)
Industrial & Manufacturing Engineering, Pennsylvania State University,
University Park, USA
e-mail: tws8@psu.edu

R. A. Shah
e-mail: ruchit@psu.edu

P. M. Reed
Civil & Environmental Engineering, Pennsylvania State University,
University Park, USA
e-mail: preed@engr.psu.edu

L. Wang et al. (eds.), Multi-objective Evolutionary Optimisation for Product

Design and Manufacturing, DOI: 10.1007/978-0-85729-652-8_4,
� Springer-Verlag London Limited 2011

137



directions involving the use of multi-objective optimisation and visual analytics
for product family design are also discussed.

4.1 Balancing Commonality and Performance During
Product Family Design

For most companies, product variety is a key to maintaining their market share.
Today there are wide arrays of choices available for nearly all consumer products
and services; thus, for a company to create a niche for itself its product offerings
must be diverse enough to appeal to multiple market segments. However, offering
a wide variety of products has its downsides as proliferation of product variety
may incur substantial costs to the company [1–6] and reduce its profitability. Many
companies struggle to provide variety in their product offerings while maintaining
reasonably low costs. This often results from a company’s failure to embrace
commonality, compatibility, standardisation and modularisation across the product
lines [7], which degrades a company’s ability to achieve economies of scale across
their production/manufacturing process.

Unique product offerings are advantageous to customers but expensive for
companies to achieve. High product variety offers customers options customised to
their specific needs and preferences but reduces the margins for the company as the
increased price might not be proportional to the perceived value estimated by the
customer. Commonality on the other hand is cost-effective for the company, but it
can compromise customer needs and requirements. Increased commonality allows
the company to share resources across products, decrease inventory and take
advantage of economies of scale to reduce procurement costs [8]. However, if the
products are too common, then they can lose their distinctiveness [9]. In a cus-
tomer-driven and highly competitive marketplace a company must effectively
balance customer preferences against its profitability and economic stability. Thus
the challenge is to meet the individual customer’s wants and needs while keeping
overall costs low.

Developing product platforms and designing families of products based on
these platforms is one way to address the challenge associated with sharing assets
across the products [7]. Product family design involves concurrent design of
multiple products that share common features, components and subsystems based
on a common product platform [10]. Optimising the design of product families is
the key to resolving the trade-off between the conflicting objectives of common-
ality and individual product performance. A successful design of a product family
maximises the commonality as much as possible without sacrificing the distinc-
tiveness of the individual products in the family.

Many researchers have focussed on multi-objective optimisation approaches for
balancing the conflicting objectives of commonality and performance. Simpson [11]
reviews and categorises over 40 such approaches. For instance, Nelson et al. [12]
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use multi-objective optimisation to analyse the Pareto sets of two derivative prod-
ucts to find a suitable product platform for a family of nail guns. Fellini et al. [13, 14]
use a similar approach to study a family of three automobiles with varying levels of
commonality in the powertrain. Fujita et al. [15] perform a similar analysis for a
family of two aircrafts. Fellini et al. [13, 14] introduce a shared penalty vector and
performance loss constraints to study the Pareto sets of automotive bodies. Gonz-
alez-Zugasti et al. [16] use real options concepts to help select the most appropriate
product family design from a set of alternatives; they also investigated the use of
multi-objective optimisation to design modular product platforms [17, 18]. Allada
and Rai [19] introduce an agent-based multi-objective optimisation framework to
capture the Pareto frontier for module-based product families of power screwdrivers
and electric knives. Simpson et al. [20] examine the trade-off between different
levels of platform commonality within a family of three aircraft. Tseng and Jiao [21]
use optimisation techniques to facilitate design for mass customisation, and Chid-
ambaram and Agogino [22] present a catalogue-based optimisation strategy for
customising goods. Finally, Nayak et al. [23] and Messac et al. [24] have proposed
methods for using commonality indices as part of multi-objective optimisation for
product family design.

Resolving the commonality–performance trade-off inherent in product family
design yields a set of efficient or Pareto solutions where each solution is better than
the other solutions in at least one other objective. Based on the size of the product
family and number of decision variables, single-stage and multi-stage optimisation
approaches exist to help determine the best design variable settings for the product
family and individual variants within the family [11]. Single-stage approaches
optimise the product platform and the family simultaneously whereas multi-stage
approaches initially optimise the product platform followed by optimisation of the
individual products in the family [25]. Single-stage approaches have been shown
to yield the best overall performance for product family design problems [26];
however, the high dimensionality of single-stage optimisation problems poses
computational challenges to many traditional methods. The curse of dimension-
ality and limitations of traditional methods have motivated researchers to approach
these problems with multi-objective evolutionary algorithms (MOEAs). MOEAs
evolve solutions through a process analogous to Darwinian selection [27] with
search operators that mimic selection, mating and mutation. Over the past few
decades, evolutionary algorithms have been extensively used to address a broad
range of single- and multi-objective problems. MOEAs have been shown capable
of approximating solution sets that compose the trade-offs for highly nonlinear,
discrete and non-convex objective space landscapes [28–30].

This chapter presents a MOEA-based many-objective analysis of product
family design to help resolve the trade-off between commonality and individual
product performance in a product family. In this chapter the phrase ‘‘many-
objective’’ refers generally to problems with four or more objectives and is an area
of increasing interest in a range of applications [31, 32]. We also demonstrate the
benefits of visual-analytic techniques [31–33] to analyse the high-dimensional
trade-offs evolved by MOEAs and guide designers in identifying the best possible
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compromise solution based on their needs. In short, this chapter introduces a
decision-making method for product family design based on many-objective
MOEA search and visual analytics. Section 4.2 presents an overview of the
process and introduces an example involving the design of a family of aircraft.
We describe the problem parameters and state the problem formulation and con-
straints used for optimisation. Section 4.3 provides a brief description of the
MOEA used in the study. Section 4.4 provides a detailed description of the
computational experiment required to evolve high quality approximate solutions
from the algorithm. Section 4.5 discusses the results and describes the use of
visual analytics in the decision-making process. Finally, Sect. 4.6 provides key
findings and recommendations for future work.

4.2 Method for Product Family Optimisation

4.2.1 Overview

As discussed earlier, performance and commonality are inherently conflicting
objectives during the process of developing product family design. Many-objective
optimisation provides a mechanism for discovering high-dimensional multivariate
dependencies between performance objectives and exploiting these dependencies
in negotiated trade-offs. This method requires both the identification of many-
objective Pareto approximate solutions and interactive visual exploration. This
chapter uses a many-objective product family design problem to demonstrate
how designers can navigate the high-dimensional trade-off surfaces and make
well-informed decisions.

Figure 4.1 provides an overview of our method which seeks to facilitate design
insights and negotiated solution selection. Overall our many-objective visual design
analytics work bridges the historical work in joint cognitive systems [34] and visual
analytics [35]. Our framework in Fig. 4.1 approaches many-objective design as a
‘‘top-down sense-making’’ exercise [36, 37] by progressively increasing the com-
plexity of trade-off representations presented to decision-makers while utilising
solution filtering to focus their attention on key design discoveries and potential
compromises. Initially, the problem formulation should be carefully constructed to
reflect the key decisions and performance measures that will strongly shape
designer preferences and potential conflicts. The formulation should be flexible
enough such that if the designer’s requirements change then a new design can be
created without reformulating and resolving the problem. Problem formulation
dictates subsequent analysis, and thus considerable time should be spent to ensure
its correctness and appropriateness for the product family at hand.

The next step after the problem formulation is the selection of an optimisation
algorithm. The designer has to identify an optimisation algorithm that would
provide a sufficient approximation for a given problem’s Pareto optimal set. It
should be ensured that the results from the heuristic are repeatable and the results
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should be validated to measure the performance of the algorithm. The next stage is
the most critical part of the method: analyses of the solution set. Decisions made
after the analyses of the solution set are transformed into products. Success or
failure of the product family can have a significant impact on the reputation and
profitability of the company. Thus extreme care and diligence should be taken to
fully exploit the information captured in a many-objective solution set to guide
design decisions.

Extracting meaningful and relevant information from a high-dimensional
solution set is a challenging task. The visual analytics method discussed in this
chapter presents an organised and structured approach to filter out the relevant and
useful information from the solution set. It gradually guides the designer from
simple two-dimensional tradeoffs to high-resolution high-dimensional trade-off
surfaces. It informs the designer on how each objective contributes to the problem
and thus guides the designer to select his/her solution filtering criteria. The
designer eventually thins out the solution set and selects the best compromise
solution that fits his/her requirements. An important aspect of the method is that
none of the decisions require perfect a priori knowledge of design preferences,
variable interactions and constraints. These problem properties emerge with
exploration of the solution set, which itself has the potential to reshape problem
conceptions, expert decision rules/heuristics and designer preferences.

The rest of the chapter walks the reader through the method with the help of a
real-world product family design problem. It highlights the challenges encountered

Fig. 4.1 Overview of
suggested steps for exploiting
many-objective optimisation
and visualisation for
improving product family
designs
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during the problem formulation and the corresponding analyses. The example also
shows how the proposed method can aid designers in discovering product family
designs that offer the best compromises between their objectives.

4.2.2 Test Case Development

The General Aviation Aircraft (GAA) problem was introduced by Simpson et al.
[38] as an example problem focussing on the design of a family of aircraft based
on three different seating configurations. The term ‘‘General Aviation’’ encom-
passes all flights except military operations and commercial carriers. Potential
buyers form a diverse group that includes weekend and recreational pilots, training
pilots and instructors, travelling business executives and even small commercial
operators. Satisfying a group with such diverse needs and economic potential
poses a constant challenge for the General Aviation industry because a single
aircraft cannot meet all of the market needs. Hence, the example seeks to design a
family of three aircraft to accommodate two, four, or six people that can easily be
adapted to satisfy distinct groups of customer demands. For this example, the
configuration for the GAA is a fixed-wing, single engine, single-pilot, propeller-
driven aircraft. The challenge is to determine the best values of top-level design
specifications for the fuselage, wing and engine to satisfy a variety of performance
and economic requirements. The problem parameters are described in the next
section, which provides a detailed discussion of the problem formulation used in
the study.

4.2.3 Problem Parameters

For this example the baseline configuration has been derived from a Beechcraft
Bonanza B36TC, a four-to-six seat, single-engine business-and-utility aircraft,
which is one of the most popular GAA sold. The general aircraft configuration has
been fixed at three propeller blades, high wing position and retractable landing
gear based on prior studies [38]. The design variables used in this study and the
corresponding ranges of interest are mentioned in Table 4.1.

The General Aviation Synthesis Program (GASP) [39] is used to determine the
aircraft sizing and performance estimates. Input variables for GASP are general
descriptors of aircraft type, size and missing requirements. The numerical output
from GASP includes various performance characteristics of aircraft such as empty
weight (WEMP), fuel weight (WFUEL), direct operating cost (DOC) and maxi-
mum flight range (RANGE). To reduce the computational expense of performing
these calculations, statistical approximations (i.e., response surface models) are
employed to provide simplified, yet accurate, approximations of each performance
parameter as a function of the input design variables [38].
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There are a total of nine responses that are of interest for each aircraft: takeoff
noise (NOISE), DOC, ride roughness (ROUGH), WEMP, WFUEL, purchase price
(PURCH), maximum cruise speed (VCMAX), RANGE and lift/drag ratio
(LDMAX). The constraint values and the min/max preferences for the perfor-
mance variables are summarised in Table 4.2. Overall a product family design that
satisfies the constraints; minimises the NOISE, WEMP, DOC, ROUGH, WFUEL,
PURCH and maximises the RANGE, LDMAX and VCMAX is preferred.

4.2.4 Objective Formulation and Constraints

The problem was first solved using robust design methods embodied in the Robust
Concept Exploration Method [38, 40]. Product variety trade-off studies were later
performed using the compromise Decision Support Problem (DSP) for the family
of aircraft [20]. In the prior work of the GAA problem, the values of the response
variables were consolidated into one function to reflect the product-performance.
A deviation function was adapted from goal programming to measure product
performance, with lower deviations being preferred [41]. This approach requires

Table 4.1 Design parameters and their respective ranges

S. No. Design variable Name Units Min Max

1 Cruise speed CSPD Mach 0.24 0.48
2 Aspect ratio AR – 7 11
3 Sweep angle SWEEP degrees 0 6
4 Propeller diameter DPROP ft 5.5 5.968
5 Wing loading WINGLD lb/ft2 19 25
6 Engine activity factor AF – 85 110
7 Seat width SEATW inch 14 20
8 Tail length/diameter ratio ELODT – 3 3.75
9 Taper ratio TAPER – 0.46 1

Table 4.2 Constraints and preferences for the performance parameters

S. No. Performance parameters Name Units Preference Performance limits

2-seater 4-seater 6-seater

1 Takeoff noise NOISE dB Min 75 75 75
2 Empty weight WEMP lb Min 2200 2200 2200
3 Direct operating cost DOC $/h Min 80 80 80
4 Ride roughness ROUGH – Min 2 2 2
5 Fuel weight WFUEL lb Min 450 475 500
6 Purchase price PURCH 1970$ Min – – –
7 Flight range RANGE nm Max 2000 2000 2000
8 Max life/drag ratio LDMAX – Max – – –
9 Max cruise speed VCMAX kts Max – – –
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the designer to specify target values for the response variables a priori to opti-
misation. With very little information available about the problem’s objective
space, specifying reasonable target values might be difficult, and the specified
target values might not reflect the true requirements of the designer.

This chapter presents a novel approach to the problem formulation. Ideally, a
designer would like to have the knowledge of the interaction between the various
performance parameters and their respective contributions towards commonality
and overall product performance. This information would enable the designer to
design and introduce products that cater to specific performance parameters without
sacrificing the commonality across the families. For instance, DOC (a response
variable) might have a greater contribution to the market success of an aircraft as
compared with the contributions of other response variables. Thus, a designer might
seek to balance DOC and commonality to introduce products that have both eco-
nomic and market viability. In other words, a designer would like to balance each of
the performance parameter independently with the commonality objective to design
products based on their requirements. However, such an approach requires solving a
high-dimensional and far more complicated problem which may be too computa-
tionally expensive or intractable. Toward that end, this chapter introduces a novel
approach to the problem formulation which seeks to resolve the trade-off between
commonality and individual performance parameter using visual analytics.

During the optimisation process, we seek to find values of the design variables
that optimise the performance parameters while maintaining high commonality.
Ideally, one would like to optimise the performance parameters for each of the
three (2-seater, 4-seater and 6-seater) aircraft in the family. With nine performance
parameters per aircraft and three aircraft per family, it would lead to optimising 27
(= 9 9 3) objectives in addition to the objective of maximising commonality
within the family. It can be immensely challenging and overwhelming to analyse
trade-offs for such high-dimensional problem; thus, we adopt a min–max/max–min
optimisation approach and try to optimise the worst-case performance measure
across the three product families. If a performance parameter has to be minimised
on all the three product families, then a min–max criterion aims at constructing
solutions that minimise the maximum performance value across the three aircraft.
This formulation minimises the maximum deviation and ensures the best possible
performance in the worst case. Similar explanation holds true for the max–min
optimisation approach on the response metric that has to be maximised. A sig-
nificant advantage of the min–max/max–min optimisation approach is that it
ensures that variation of design variables does not degrade the performance of a
specific aircraft significantly. Another advantage in terms of problem formulation
is that the problem reduces from 27 independent performance objectives to nine
robust performance objectives. A 10-objective problem (nine robust performance
objectives plus the commonality objective) is relatively more tractable and easier
to solve as compared with the original 28-objective problem.

To measure the commonality across the product families we use the Product
Family Penalty Function (PFPF) developed by Messac et al. [24]. PFPF penalises
the uniqueness within the product family by measuring the percentage variation of
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the design variables within the product family. The percentage variation of design
variables is measured as follows:

pvarj ¼
varj
�xi

ð4:1Þ

where,

varj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pp

ði¼1Þ ðxij � �xjÞ2

ðp� 1Þ

s

and �xj ¼
Pp

ði¼1Þ xij

p
ð4:2Þ

xij is the value of the jth design variable for the ith product, i = 1, 2, …, p and
j = 1, 2, .., n. PFPF is computed by summing the percentage variations of all
n design variables across all p products:

PFPF ¼
Xn

j¼1 pvarj ð4:3Þ

Unlike many commonality indices available in the literature [42–44], the PFPF
compares commonality not only on how many variables are common but also on
how similar the values of the unique variables are to one other (i.e., parametric
variation). Product families with high variation in design parameters (i.e., distinct
inputs) have higher values of PFPF while product families with low variation in
design parameters (i.e., common inputs) have lower values of PFPF. As high
commonality is desired, a lower PFPF value is preferred. A summary of the
problem objectives used in this study is given in Table 4.3.

As mentioned in Table 4.2, each aircraft is associated with certain performance
limits. These are rigid constraints that establish the feasibility of each product. The
violation of a constraint can be measured as follows:

cin ¼
value� limitð Þ

limit ; if value[ limit

0; if value� limit

(

; n 2 1; 2; 3ð Þ; i 2 1; 2; . . .; 9ð Þ

ð4:4Þ

Table 4.3 Objectives used in the General Aviation aircraft formulation

S. No. Objectives Value Preference

1 Maximum NOISE Max (NOISE2, NOISE4, NOISE6) Minimise
2 Maximum WEMP Max (WEMP2, WEMP4, WEMP6) Minimise
3 Maximum DOC Max (DOC2, DOC4, DOC6) Minimise
4 Maximum ROUGH Max (ROUGH2, ROUGH4, ROUGH6) Minimise
5 Maximum WFUEL Max (WFUEL2, WFUEL4, WFUEL6) Minimise
6 Maximum PURCH Max (PURCH2, PURCH4, PURCH6) Minimise
7 Minimum RANGE Min (RANGE2, RANGE4, RANGE6) Maximise
8 Minimum max LDMAX Min (LDMAX2, LDMAX4, LDMAX6) Maximise
9 Minimum max VCMAX Min (VCMAX2, VCMAX4, VCMAX6) Maximise
10 PFPF – Minimise
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The total constraint violation for the product family is computed by summing
the violation of each constraint for each aircraft.

CV ¼
X

3

i¼1
c1i þ c2i þ c3i þ c4i þ c5i þ c6ið Þ ð4:5Þ

In summary, the size of the product family optimisation problem in this study
is: 27 design variables, 10-objectives and 1 constraint (CV\ 0).

4.3 Optimisation Algorithm Selection

The Epsilon-dominance Nondominated Sorted Genetic Algorithm-II (e-NSGAII) is
based on the NSGAII [45] an elitist MOEA. NSGAII uses a non-domination
sorting approach to classify solutions according to the level of non-domination and
a crowding distance operator to maintain solution diversity across approximation
solution sets. The e-NSGAII developed by Kollat and Reed [46, 47] reduces the
extensive parameter calibration by using the concepts of e-dominance archiving
[48, 49], adaptive population sizing [50] and self-termination. The e-NSGAII
has been validated extensively across a suite of test problems and applications [46]
and has been shown to perform as well or better than state-of-the-art MOEAs
[47, 51].

The e-NSGAII algorithm generates an initial small random population and uses
non-domination and crowding distance to assign fitness to each individual. A non-
domination sort is performed across all the solutions, and individuals are classified
into fronts based on their ranks, with rank 1 assigned to the solutions that are non-
dominated. Additionally, crowding distance is calculated for all individuals based
on the average Euclidean distance between an individual and the individuals
within the population which are assigned the same rank. Selection is done using
binary tournaments and is based on the rankings and crowding distances of the
individuals with a preference given to larger crowding distance. Individuals with
larger crowding distance add to the diversity of the population and help to ensure
that the e-NSGAII explores the entire trade-off landscape. Selected individuals
now become parents of the next generation, and the evolution process is repeated.
These individuals are also eligible to enter an offline archive that stores the best
solutions throughout the run. To achieve entry into the archive, individuals should
be e-non-dominated with respect to solutions in the archive.

The e-NSGAII thereafter uses a series of ‘‘connected runs’’ to inject the archive
solutions into the population of the next run using a 25% injection scheme. The
injection scheme requires that the present archive forms 25% of the next popu-
lation and the remaining 75% is filled with randomly generated individuals. This
assists the performance of the e-NSGAII by directing the search towards previ-
ously known good solutions; however the 75% random solutions help to ensure
that the algorithm does not pre-converge while encouraging the exploration of new
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regions in the objective space. The algorithm can increase or decrease its popu-
lation size as the search progresses and adapts its population based on the solutions
obtained.

The e-dominance archive allows the user to control the computational costs of
evolution by specifying their precision requirements for each of the objectives.
Based on the user’s preferences, the algorithm applies a grid to the search space of
the problem that can significantly reduce its computational costs when solving
multi-objective problems by avoiding unnecessary precision in calculations [52]
Larger e values result in a coarser grid (and ultimately fewer trade-off solutions)
while smaller e values produce a finer grid. The fitness of each solution is then
mapped to a box fitness based on the specified e values. Non-domination sorting is
then conducted using each solution’s box fitness, and solutions with identical box
fitness (i.e., solutions that occur in the same grid block) are compared, and those
that are dominated within the grid block are eliminated. Only a single non-dom-
inated solution is permitted in any one grid block, preventing clustering of solu-
tions and promoting a more diverse search of the objective space. We refer
the reader to Laumanns et al. [48] and Deb et al. [49] for additional details.
Meanwhile, dynamic population sizing allows e-NSGAII to start with a small
initial population to pre-condition the search at a low computational cost in terms
of the number of function evaluations. When the size of the e-dominated archive
stabilises, the connected runs are equivalent to a diversity-based EA search
enhancement recommended by Goldberg [53] termed time continuation, where
diverse search is sustained as long as it is required or feasible. Prior work using
the e-NSGAII by Kollat and Reed [46, 47] can be referenced for more details on
the algorithm and its dynamic search features.

4.4 Computational Experiment

The e-NSGAII was used to approximate the trade-offs in the family of aircraft and
its evolutionary operators were parameterised as follows: probability of cross-
over—pc = 1.0, probability of mutation—pm = 0.04, cross-over distribution
index—gc = 15 and the mutation distribution index—gm = 20. The e-NSGAII’s
adaptive population sizing was initialised using 152 individuals, and maximum
number of function evaluations per trial was set at 500,000. Epsilon resolution
settings (e) for the 10 objectives are given in Table 4.4. These values represent the
precision with which each objective is quantified and were chosen to represent the
full precision Pareto-optimal set. Since MOEA search is initialised with randomly
generated populations and as evolutionary operators are probabilistic, the process
can yield high variability in search efficiency and reliability. It is standard practice
to overcome this variability by running MOEA for a distribution of ‘‘seeds’’ for
the random number generator which is used to initialise and guide their proba-
bilistic search. In this study, our analysis across the 10-objective GAA problem
was characterised using 50 random seed trial runs.
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4.5 Results and Discussions

This chapter aims to evolve the non-dominated trade-off for a 10-objective
problem and demonstrate the value of visual analytics in understanding key trade-
offs. Solving such high-dimensional problems is a challenging proposition for
most of the domination-based MOEAs. It becomes extremely difficult to effec-
tively parameterise the algorithm and effectively guide the evolution process.
Many authors have highlighted that on high-dimensional problems (objectives
more than five or six) that some MOEAs may struggle in evolving high quality
approximation sets and in some cases devolve into a ‘‘random walk’’ [31, 54–56].
As a test of the value and quality of the e-NSGAII attained results, we have utilised
a Monte-Carlo analysis to establish a pure random search baseline for the GAA
problem where any selected trial solution is fully independent of any previous
choice and its outcome [30]. If the results of the Monte-Carlo simulations are
comparable with those obtained from the optimisation algorithm, then it negates
the value of the optimisation algorithm and may also highlight the ease of solving
a product family design problem such as this.

To validate the performance of the e-NSGAII and test the quality of solutions
generated by it, the results obtained from the optimisation algorithm were com-
pared against the results obtained from Monte-Carlo simulation. The optimisation
algorithm had 50 random trials with 500,000 function evaluations per trial. Thus,
the algorithm used a total of 25 million (=50 9 500,000) function evaluations to
generate a non-dominated set for the 10-objective GAA problem. The comparison
was biased towards the Monte-Carlo simulation as it was allowed to generate 50
million samples (twice the number of function evaluations used by e-NSGAII) to
identify the non-dominated set for the problem. Table 4.5 presents a summary of
run results from both approaches.

Comparative analysis of the Monte-Carlo simulation and e-NSGAII revealed
some interesting insights about the objective space of the problem. Of the 50 million
random samples generated by theMonte-Carlo simulation study, only four solutions

Table 4.4 Epsilon settings and ranges of the objectives

S. No. Objectives Name e Range

Min Max

1 Maximum NOISE MAX_NOISE 0.05 73.25 74.46
2 Maximum WEMP MAX_WEMP 10 1879.20 2032.91
3 Maximum DOC MAX_DOC 2 58.67 80.00
4 Maximum ROUGH MAX_ROUGH 0.01 1.81 2.00
5 Maximum WFUEL MAX_WFUEL 10 367.87 500.00
6 Maximum PURCH MAX_PURCH 1000 41901.85 44925.33
7 Minimum RANGE MAX_RANGE 50 2000.00 2496.87
8 Minimum max LDMAX MAX_LDMAX 0.1 14.20 16.00
9 Minimum max VCMAX MAX_VCMAX 1 185.33 200.17
10 PFPF PFPF 0.1 0.07 2.50
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were found feasible. The identification of only four feasible solutions from a set of 50
million solutions shows that the GAA problem is heavily constrained with respect to
its performance parameters and a challenging overall search space. In the GAA’s
27-dimensional decision (input) space it is almost impossible to randomly pick a
point that would be feasible in the objective space. On the other hand e-NSAGII
generated a non-dominated set of 16,900 solutions from the 25 million function
evaluations. On each run of the algorithm, e-NSGAII found its first feasible solutions
after only 1000–2000 function evaluations. The algorithm struggled for brief dura-
tion during the onset of a run; however, once it identified a feasible solution it quickly
adapted and redirected its search to the favourable region of the objective space to
generate more feasible solutions. Non-domination sorting of results from theMonte-
Carlo simulation study and the e-NSGAII indicated that the four solutions generated
by the Monte-Carlo simulation were dominated by the solutions generated by the
e-NSGAII.

Superior performance of e-NSGAII can be attributed to the use of e-dominance
archiving and adaptive population sizing. The combination of adaptive population
sizing and epsilon archiving represents a diversity enhancement that also ensures
stable and bounded archiving of high-dimensional approximation sets. As the
dimensionality of a problem’s objective space increases, generally the size of their
Pareto-optimal solution sets grows rapidly yielding an impediment to search that
Purshouse and Fleming [54] termed ‘‘dominance resistance’’. Dominance resis-
tance represents the increasing difficulty of converging a high-dimensional set
towards Pareto-optimality. In e-NSGAII, the population size grows commensurate
with the e-dominance archive. In this strategy it controls the dominance resistance
by setting epsilons [48] and uses archive size as a proxy for problem difficulty that
triggers increases in the population size. Increased population sizes serve to both
add diversity and selective pressure due to the truncation selection used in the
e-NSGAII algorithm framework. Moreover, e-dominance archiving provides a
theoretical bound to the approximation set size and population size [57].

The comparative analyses justified the need of an optimisation algorithm like
e-NSGAII to solve the problem. Thus a reference set was generated by pooling
the non-dominated solutions across the 50 runs of the optimisation algorithm. The
reference set consisted of 16,900 solutions. Analysing the high-resolution trade-off
solutions on a 10-dimensional objective space can be difficult and overwhelming
for a designer. Thus before analysing the high-dimensional trade-off we analyse
relatively simple and easier to understand two-dimensional trade-offs of the per-
formance parameters. Two-dimensional trade-offs provide valuable insights about
the performance parameters and their mutual interactions and are much simpler

Table 4.5 Number of
solutions by Monte-Carlo
simulation and the
optimisation algorithm

Method Total number of
non-dominated
solutions generated

Contribution
to the
reference set

Monte-Carlo simulation 4 0
Optimisation algorithm 16900 16900
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than analysing 10-objectives at a time. Having some prior knowledge about the
mutual interactions of performance parameters assists the designer in analysing the
high-dimensional trade-off surface by eliminating the redundant information
content.

A 10-objective problem yields 45 two-dimensional trade-offs. Figure 4.2
highlights some of the interesting two-dimensional trade-offs identified by the
algorithm. The colour in the subplots indicates the performance on the com-
monality objective. Blue solutions indicate high commonality, and green solutions
indicate low commonality. In each subplot the solutions highlighted with a red-
coloured outline represent the trade-off for the corresponding set of objectives.

Figure 4.2a shows the interactions between PURCH and WEMP, both of which
are to be minimised. The plot clearly indicates that there is a strong positive
correlation between the PURCH and WEMP: an increase in WEMP results in an
increase in PURCH. As the two objectives are positively correlated the trade-off
solution set for this sub-problem essentially reduces to one solution. Figure 4.2b
represents the interactions between the WFUEL and WEMP, where both the
objectives are to be minimised. The plot shows there is a strong negative corre-
lation between the two objectives, indicating a strong conflict between the two
objectives. Thus a design with low WEMP results in higher WFUEL and vice
versa. Figure 4.2c and d represent the interactions between LDMAX and ROUGH,
and RANGE and ROUGH ,respectively. RANGE and LDMAX are to be maxi-
mised and ROUGH has to be minimised. The plots indicate that as the RANGE
and LDMAX increases, there is proportional increase in ROUGH. Figure 4.2e and
f represent the interactions between the DOC and NOISE, and RANGE and
NOISE, respectively. DOC and NOISE are to be minimised and VCMAX is to be
maximised. An interesting aspect of the trade-off seen here is that there is a steep
drop in DOC (and a steep rise in VCMAX) for a relatively small increase in
NOISE. However, beyond a threshold (65 for DOC and 198 for VCMAX) any
further decrease in DOC (or increase in VCMAX) requires a significant increase in
NOISE.

While Fig. 4.2 presents only a small subset of the 45 two-dimensional plots, it
presents valuable information to the designer. It highlights the facts that while the
designer is optimising WEMP, the PURCH is also being optimised; meanwhile,
the designer cannot optimise WFUEL and WEMP at the same time—he/she will
need to prioritise one over the other. Furthermore, the designer cannot target
extreme performances for DOC and VCMAX as they might result in unacceptable
values for NOISE which is a constraint. The rest of the two-dimensional plots can
be analysed to extract further information about the performance parameters and
their behaviour. In summary, a few other strong relationships observed in other
plots were: (1) decreases in WEMP results in increases in VCMAX and (2) low
PURCH results in high WFUEL. Having some prior information about the
interaction between the performance objectives the designer is better placed to
analyse the complete reference set.

The two-dimensional analysis in Fig. 4.2 informs the designer about the strong
trade-offs for the problem, and this information can be used to when visualising the
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higher-dimensional reference set. Figure 4.3 represents the reference set for the
10-objective GAA problem. It uses the information captured in Fig. 4.2 to organise
the response objectives into corresponding axes such that it highlights the conflicts
at the higher-dimension. The WEMP, DOC and WFUEL objectives have been
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plotted on X-, Y- and Z-axes respectively. PURCH is represented by the size of the
cones, which is scaled so that smaller cones represent higher PURCH while larger
cones represent lower PURCH. Transparency is used to represent the LDMAX
with lighter cones representing lower values of LDMAX and darker cones rep-
resenting higher values of LDMAX. The colours of the cones represent the scaled
values of the PFPF. Blue cones represent low PFPF values (high commonality) and
red cones represent high PFPF values (low commonality). The values of PFPF
range from 0.065 to 2.5.

Objective values for this non-dominated set range from 367.87 to 500lbs on
WFUEL, 1879–2032lbs on WEMP, 58–80$/h on DOC, 41901.85–44925.33
(1970$) on PURCH, 14.20–16 on LDMAX and 0.065–2.5 on PFPF. For the ease
of understanding and analysis the PFPF values have been scaled to vary between
0 and 1, with 0 representing high commonality and 1 representing no common-
ality. PFPF values have been scaled using the following equation:
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PFPFScaled ¼
PFPF � 0:065

2:5� 0:065
ð4:6Þ

WFUEL, WEMP, DOC, PURCH and PFPF (scaled) are to be minimised
whereas LDMAX has to be maximised. As discussed earlier, the figure shows a
clear conflict between the WFUEL and WEMP. LDMAX is in conflict with DOC
as the solutions on the farther end of DOC axis yield more favourable performance
on LDMAX. To optimise commonality in the family, a designer should focus on
dark, large, blue solutions.

Ideally, a designer would like to optimise the product performance while
maintaining high commonality (low PFPF). In other words, the designer’s focus
would be to maximise the commonality (low PFPF) and then subsequently get the
best performance measure available from the performance parameters. Thus, we
would like to concentrate only on the solutions with high commonality and
eliminate the low commonality solutions.

Figure 4.4 filters out the low commonality from the set and displays only the top
5% (PFPFScaled values from 0 to 0.05) of the high commonality solutions. The figure
clearly shows there are two conflicting regions of the objective space: (1) Regions A
and B, and (2) Region C. Region A (marked in blue box) offers high WFUEL, low
PURCH, lowWEMP, lowDOC and lowLDMAX.The PFPF values for the solutions
in Region A are in the range of 0.04–0.05. Region B (marked in green box) offers low
WFUEL, high WEMP, high PURCH, high DOC and high LDMAX. The PFPF
values for the solutions in Region B are in the range of 0.04–0.05. Thus, Regions A
and B offer designers a few conflicting design options while maintaining relatively
high commonality. Based on his/her priorities she/he can focus on a specific region of
the objective space. However, if a designer is interested in extremely high com-
monality (PFPFScaled values from 0–0.01) there is a small trade-off region available
in terms of Region C. Region C offers solutions that compromise on the values of the
performance metrics to yield extremely low PFPF values. Thus if a designer is
willing to sacrifice performance and is willing to accept a compromise value then
s/he can design products with extremely high commonality.

Figure 4.5 shows solutions highlighted in Fig. 4.4 on a parallel coordinate plot.
Parallel coordinate plots help visualise the performance across many-objectives
simultaneously [58]. The vertical axes represent the individual objectives. The lower
and higher end values of the vertical axes represent the ranges of the objective values.
Each coloured line represents a solution with its intersection point on the vertical
axes representing the performance on the corresponding objective. Colour coding of
the boxes in Fig. 4.4 correspond to the colour coding of solutions in Fig. 4.5. Blue
solutions represent solutions fromRegionA in Fig. 4.4, green solutions represent the
solutions fromRegion B and red solutions represent the solutions fromRegion C. As
discussed earlier, the blue set performs favourably on WEMP, DOC, PURCH,
RANGE,VCMAXand performs fairly well on PFPF. The green set on the other hand
performs favourably on WFUEL, LDMAX and shows similar performance as the
blue set on the PFPFobjective. The red set offers the compromise performance values
onmost of the objectives and the best performance value for ROUGH and PFPF. The
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dotted solutions represent the best possible compromise in their respective region.
The blue dotted line represents the best possible compromise solution among all the
solutions of Region A. It represents the best performance for DOC, ROUGH,
RANGE, LDMAX and VCMAX while maintaining a fairly decent level of com-
monality. The green dotted line represents the compromise solution in the Region B
with favourable performances on WFUEL, PURCH and LDMAX. Finally, the red
dotted line represents a high commonality (3 inputs common across all three aircraft)
solution with acceptable compromise values on the rest of the performance
objectives.

Depending on the market demands and economic viability the designer can
select a suitable product family design from either of the regions. This visual
analytics-based approach gives the designer the flexibility in terms of focussing on
specific performance metrics while maintaining high commonality. Thus a
designer can create dedicated and customised products for various market seg-
ments without compromising on the commonality of the products.
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4.6 Conclusions

Multi-objective optimisation provides a useful tool for resolving the trade-offs
between commonality and individual product performance (i.e., distinctiveness)
within a family of products. This chapter presents a novel method to the product
family optimisation based on MOEA and visual analytics. It uses a General
Aviation Aircraft (GAA) example to demonstrate the relative merits of the pro-
posed method to optimise a family of products for specific market needs without
sacrificing commonality across the family. It introduces a 10-objective robust
problem formulation where each objective represents a different performance
parameter in the family. This formulation expands the dimensionality of the
problem and seeks to resolve the trade-off between commonality and individual
performance parameters. MOEAs are known to struggle on such high-dimensional
problems, and selecting an algorithm that effectively solves the problem was a
challenge. The e-NSGAII has been shown to perform reasonably well on high-
dimensional real-world problems. It uses the concepts of e-dominance archiving
and adaptive population sizing to balance the dominance resistance associated with
high-dimensional problems. Thus, e-NSGAII was used to resolve the trade-off for
the 10-objective problem and the results were benchmarked against a Monte-Carlo
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73.20 1879.10 58.66 1.80 367.85 41901.85 2000 14.19 185.32 0
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Fig. 4.5 Parallel coordinate plot for solutions displayed in Fig. 4.4
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simulation. The results indicate the GAA is a highly constrained problem, thus
making it virtually impossible to generate a feasible solution through random
search. The e-NSGAII on the other hand performs well, navigating the search
space to identify feasible solutions.

The proposed method integrates the use of visual analytical-techniques to gain
insight into the high-dimensional trade-off surfaces generated by the algorithm.
We illustrate some of the tools that are available for designers to identify strong
conflicts between the performance parameters. These tools inform designers about
the trade-offs for the problem, and this information is further used to effectively
visualise the higher-dimensional reference set. The method allows designers to
reduce the full-resolution set to a tractable set focussing on the most relevant and
useful information. Aware of the interactions between the performance parame-
ters, the designer can select the best compromise solution from the reduced set to
satisfy his/her requirements. The key aspect of this method is that it does not
require a priori knowledge of the problem, and it provides designers with a
plethora of solutions from which to choose. Designers can enjoy the flexibility of
creating a wide variety of products customised to different market segments
without re-solving the problem.

The proposed method provides an efficient way to analyse the high-dimensional
trade-offs for many-objective problems. The method explains through an example,
on how best compromise solutions can be identified from a high-resolution high-
dimensional trade-off surface. Future work can be based on improving the method
by including the designer’s requirements as an integral part of the method while
allowing for interactivity between designers and the optimisation algorithms as
solutions evolve. This also includes developing effective strategies for dealing with
high-dimensional input spaces and handling product family problems with many
product variants. Finally, extending the visual analytics techniques to help identify
platform variables within a product family would be beneficial to designers.

Acknowledgments The first and second authors were partially supported by the National
Science Foundation (NSF) under CAREER Grant No. CBET-0640443, and the third author
acknowledges support from NSF Grant No. CMMI-0620948. The computational experiments
in this work were supported in part through instrumentation funded by NSF Grant No.
OCI-0821527. Any opinions, findings and conclusions or recommendations in this chapter are
those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

1. Anderson, D.M. (1997). Agile product development for mass customization: How to develop
and deliver products for mass customization, Niche Markets, JIT, Build-to-Order and
Flexible Manufacturing. Chicago, IL: Irwin.

2. Galsworth, G. D. (1994). Smart, simple design: Using variety effectiveness to reduce total

cost and maximize customer selection. Essex Junction, VT: Omneo.
3. Ho, T. H., & Tang, C. S. (1998). Product variety management: Research advances. Boston,

MA: Kluwer Academic Publishers.

156 R. A. Shah et al.



4. Child, P., Diederichs, R., Sanders, F.-H., & Wisniowski, S. (1991). The management of
complexity. Sloan Management Review, 33(1), 73–80.

5. Ishii, K., Juengel, C, & Eubanks, C.F. (1995). Design for product variety: Key to product line
structuring. Proceedings of the ASME Design Engineering Technical Conferences—Design

Theory and Methodology (pp. 499–506). Boston, MA 83(2)
6. Lancaster, K. (1990). The economics of product variety. Marketing Science, 9(3), 189–206.
7. Meyer, M. H., & Lehnerd, A. P. (1997). The power of product platforms: Building value and

cost leadership, Free Press. NY: New York.
8. Thevenot, H. J., & Simpson, T. W. (2007). A comprehensive metric for evaluating

commonality in a product family. Journal of Engineering Design, 18(6), 577–598.
9. Robertson, D., & Ulrich, K. (1998). Planning product platforms. Sloan Management Review,

39(4), 19–31.
10. Simpson, T. W., Siddique, Z., & Jiao, J. (Eds.). (2005). Product platform and product family

design: methods and applications. New York: Springer.
11. Simpson, T. W. (2005). Methods for optimizing product platforms and product families:

Overview and classification. In T. W. Simpson, Z. Siddique, & J. Jiao (Eds.), Product
platform and product family design: Methods and applications (pp. 133–156). New York:
Springer.

12. Nelson, S. A., I. I., Parkinson, M. B., & Papalambros, P. Y. (2001). Multicriteria optimization
in product platform design. ASME Journal of Mechanical Design, 123(2), 199–204.

13. Fellini, R., Kokkolaras, M., Michelena, N., Papalambros, P., Saitou, K., Ferez-Duarte, A., &
Fenyes, P.A. (2002). A sensitivity-based commonality strategy for family products of mild
variation, with application to automotive body stractures. Proceedings of the 9th AIAA/

ISSMO Symposium on Multidisciphnary Analysis and Optimization, Atlanta, GA, AIAA,
AIAA-2002-5610.

14. Fellini, R., Kokkolaras, M., Papalambros, P., & Perez-Duarte, A. (2002). Platform selection
under performance loss constraints in optimal design of product families. Proceedings of the
ASME Design Engineering Technical Conferences—Design

15. Fujita, K., Akagi, S., Yoneda, T., & Ishikawa, M. (1998). Simultaneous optimization of
product family sharing system structure and configuration. Proceedings of the ASME Design

Engineering Technical Conferences, Atlanta, GA, ASME, Paper No. DETC98/DFM-5722.
16. Gonzalez-Zugasti, J. P., Otto, K. N., & Baker, J. D. (1999). 12–15 September. Assessing

value for product family design and selection. Advances in Design Automation, Las Vegas,
NV, ASME, Paper No. DETC99/DAC-8613.

17. Gonzalez-Zugasti, J.P., & Otto, K.N. (2000). Modular platform-based product family design.
Proceedings of the ASME Design Engineering Technical Conferences—Design Automation

Conference, Baltimore, MD, ASME, Paper No. DETC-2000/DAC-14238.
18. Gonzalez-Zugasti, J. P., Otto, K. N., & Baker, J. D. (2000). A method for architecting product

platforms. Research in Engineering Design, 12(2), 61–72.
19. Allada, V., & Rai, R. (2002). Module-based multiple product design, IIE Annual Conference

2002, Orlando, FL, IIE.
20. Simpson, T. W., Seepersad, C. C., & Mistree, F. (2001). Balancing commonality and

performance within the concurrent design of multiple products in a product family.
Concurrent Engineering: Research and Applications, 9(3), 177–190.

21. Tseng, M.M., & Jiao, J. (1998). Design for mass customization by developing product family
architecture. ASME Design Engineering Technical Conferences—Design Theory and

Methodology, Atlanta, GA, ASME, Paper No. DETC98/DTM-5717.
22. Chidambaram, B., & Agogino, A. M. (1999). 12–15 September. Catalog-based

customization. Advances in Design Automation, Las Vegas, NV, ASME, Paper No.
DETC99/DAC-8675.

23. Nayak, R. U., Chen, W., & Simpson, T. W. (2002). 10–13 September. A variation-based
method for product family design. Engineering Optimization, 34(1), 65–81.

24. Messac, A., Martinez, M. P., & Simpson, T. W. (2000). Introduction of a product family
penalty function using physical programming. 8th AIAA/NASA/USAF/ISSMO Symposium

4 Many-Objective Evolutionary Optimisation and Visual Analytics 157



on Multidisciplinary Analysis and Optimization, Long Beach, CA, AIAA, AIAA-2000-4838,
to appear in ASME Journal of Mechanical Design.

25. Khajavirad, A., Michalak, J. J., & Simpson, T. W. (2009). An efficient decomposed
multiobjective genetic algorithm for solving the joint product platform selection and product
family design problem with generalized commonality. Structural and Multidiscipilnary

Optimization, 39(2), 187–201.
26. Messac, A., Martinez, M. P., & Simpson, T. W. (2002). Effective product family design using

physical programming. Engineering Optimization, 34(3), 245–261.
27. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning.

New York, NY: Addison-Wesley Publishing.
28. Back, T., Fogel, D., & Michalewicz, Z. (2000). Handbook of evolutionary computation.

Bristol, UK: Oxford University Press.
29. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. New York: John

Wiley & Sons LTD.
30. Coello, C. C., Van Veldhuizen, D. A., & Lamont, G. B. (2002). Evolutionary algorithms for

solving multi-objective problems. New York, NY: Kluwer Academic Publishers.
31. Fleming, P. J., Purshouse, R. C., & R. J. Lygoe (2005), Many-objective optimization: An

engineering design perspective, in Evolutionary Multi—Criterion Optimization, ser. Lecture
Notes in Computer Science. Springer: Berlin, Heidelberg pp. 14–32.

32. Kasprzyk, J. R., Reed, P. M., Kirsch, B., & Characklis, G. Managing population and 761

drought risks using many-objective water portfolio planning under uncertainty, Water
Resources 762 Research, doi:10.1029/2009WR008121.

33. Kollat, J. B., & Reed, P. M. (2007). A framework for visually interactive decisionmaking and
design using evolutionary multiobjective optimization (VIDEO). Environmental Modelling

and Software, 22(12), 1691–1704.
34. Woods, D. (1986). ‘‘Paradigms for intelligent decision support,’’ Intelligent Decision Support

in Process Environments, Springer, New York, NY
35. Keim, D. A., Mansmann, F., Schneidewind, J., & Ziegler, H. (2006). Challenges in visual

data analysis. Proceedings of Information Visualization, IEEE Computer Society 9–16,
London, UK.

36. Russell, D. M., Stefik, M. J., Pirolli, P., & Card, S. K. (1993). The cost structure of
sensemaking. Proceedings of the SIGCHI Conference on Human factors in Computing

Systems, Amsterdam, The Netherlands, April 24–29.
37. Qu, Y., & Furnas, G. W. (2005). Sources of structure in sensemaking. Proceedings of the

SIGCHI ‘05 Conference on Human Factors in Computing Systems, ASM Press: Portland,
OR, April 2–7.

38. Simpson, T. W., Chen, W., Allen, J. K., & Mistree, F. (1996). 4–6 September. Conceptual
design of a family of products through the use of the robust concept exploration method. 6th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
Bellevue, WA, AIAA, Vol. 2, pp. 1535–1545. AIAA-96-4161-CP.

39. NASA. (1978). GASP—General aviation synthesis program, NASA CR-152303, Contract
NAS 2-9352, NASA Ames Research Center, Moffett Field, CA.

40. Simpson, T. W., Chen, W., Allen, J. K., & Mistree, F. (1999). Use of the robust concept
exploration method to facilitate the design of a family of products. In U. Roy, J. M. Usher,
et al. (Eds.), Simultaneous engineering: Methodologies and applications (pp. 247–278).
Amsterdam, The Netherlands: Gordon and Breach Science Publishers.

41. Mistree, F., Hughes, O.F., & Bras, B.A. (1993). The compromise decision support problem
and the adaptive linear programming algorithm, In: M. P. Kamat (ed.), Structural

optimization: Status and promise, Washington
42. Jiao, J., & Tseng, M. M. (2000). Understanding product family for mass customization by

developing commonality indices. Journal of Engineering Design, 11(3), 225–243.
43. Kota, S., Sethuraman, K., & Miller, R. (2000). A metric for evaluating design commonality in

product families. ASME Journal of Mechanical Design, 122(4), 403–410.

158 R. A. Shah et al.



44. Siddique, Z., Rosen, D.W., & Wang, N. (1998). On the applicability of product variety design
concepts to automotive platform commonality, Design Theory and Methodology—DTM’98,
Atlanta, GA, ASME, Paper No. DETC98/DTM-5661.

45. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–
197.

46. Kollat, J. B., & Reed, P. M. (2005). The value of online adaptive search: A performance
comparison of NSGA-II, e-NSGAII, and eMOEA. In C. C. Coello, A. H. Aguirre, & E.
Zitzler (Eds.), The Third International Conference on Evolutionary Multi-Criterion

Optimization (EMO 2005). Lecture Notes in Computer Science 3410 (pp. 386–398).
Guanajuato, Mexico: Springer.

47. Kollat, J. B., & Reed, P. M. (2006). Comparing state-of-the-art evolutionary multiobjective
algorithms for long-term groundwater monitoring design. Advances in Water Resources,

29(6), 792–807.
48. Laumanns, M., Thiele, L., Deb, K., & Zitzler, E. (2002). Combining convergence and

diversity in evolutionary multiobjective optimization. Evolutionary Computation, 10(3), 263–
282.

49. Deb, K., Mohan, M., Mishra, S. (2003). A fast multi-objective evolutionary algorithm for
finding well-spread pareto-optimal solutions. Tech. Rep. KanGAL 2003002, Indian Institute
of Technology Kanpur.

50. Harik, G. R., Lobo, F. G. (1999). A parameter-less genetic algorithm. Tech. Rep. IlliGAL
99009, University of Illinois at Urbana-Champaign.

51. Tang, Y., Reed, P., Wagener, T. (2006). How effective and efficient are multiobjective
evolutionary algorithms at hydrologic model calibration? Hydrology and earth system
sciences 10 (2).

52. Kollat, J., & Reed, P. (2007). A computational scaling analysis of multiobjective
evolutionary algorithms in long-term groundwater monitoring applications. Advances in

Water Resources, 30(3), 408–419.
53. Goldberg, D. E. (2002). The design of innovation: lessons from and for competent genetic

algorithms. Norwell, MA: Kluwer Academic Publishers.
54. Purshouse, R. C., & Fleming, P. J. (2007). On the evolutionary optimization of many

conflicting objectives. IEEE Transactions on Evolutionary Computation, 11(6), 770–784.
55. Farina, M., & Amato, P. (2004). A fuzzy definition of ‘‘optimality’’ for manycriteria

optimization problems. Systems, man and cybernetics, part A: Systems and humans, IEEE
Transactions on, vol. 34, no. 3, pp. 315 – 326, May 2004.

56. Teytaud, O. (2006). How entropy-theorems can show that on-line approximating high-dim
pareto-fronts is too hard. in PPSN BTP Workshop, 2006.

57. Laumanns, M., L. Thiele, K. Deb, & Zitzler, E. (2001), On the convergence and diversity-
preservation properties of multi-objective evolutionary algorithms.

58. Inselberg, A. (1985). The plane with parallel coordinates. The Visual Computer, 1(1), 69–91.

4 Many-Objective Evolutionary Optimisation and Visual Analytics 159



Chapter 5
Product Portfolio Selection of Designs
Through an Analysis of Lower-Dimensional
Manifolds and Identification of Common
Properties

Madan Mohan Dabbeeru, Kalyanmoy Deb and Amitabha Mukerjee

Abstract Functional commonalities across product families have been considered
by a large body of product family design community but this concept is not widely
used in design. For a designer, a functional family refers to a set of designs
evaluated based on the same set of qualities; the embodiments and the design
spaces may differ, but the semantics of what is being measured (e.g., strength of a
spring) remain the same. Based on this functional behaviour we introduce a
product family hierarchy, where the designs can be classified into phenomeno-
logical design family, functional part family and embodiment part family. And
then, we consider the set of possible performances of interest to the user at the
embodiment level, and use multi-objective optimisation to identify the non-
dominated solutions or the Pareto-front. The designs lying along this front are
mapped to the design space, which is usually far higher in dimensionality, and then
clustered in an unsupervised manner to obtain candidate product groupings which
the designer may inspect to arrive at portfolio decisions. We highlight and discuss
two recently suggested techniques for this purpose. First, with help of dimen-
sionality reduction techniques, we show how these clusters in low-dimensional
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manifolds embedded in the high-dimensional design space. We demonstrate this
process on three different designs (water faucets, compression springs and electric
motors), involving both continuous and discrete design variables. Second, with the
help of a data analysis of Pareto-optimal solutions, we decipher common design
principles that constitute the product portfolio solutions. We demonstrate this
so-called ‘innovization’ principles on a spring design problem. The use of multi-
objective optimisation (evolutionary and otherwise) is the key feature of both
approaches. The approaches are promising and further research should pave their
ways to better design and manufacturing activities.

5.1 Function in Portfolio Planning

Product portfolio selection [1, 2] is a key question facing the firm as it goes from
design to manufacture—which set of designs in a part family best meet the
multiplicity of user expectations across market segments without overly increasing
manufacturing and servicing complexity? Arriving at a good portfolio leads to
reduced inventory and efficient service, and crucially impinges on profitability.

There are two aspects of product portfolio selection. The first is to maximise the
commonality between the parts, metrics for which have been the focus of a large
body of work. A second, and relatively less modelled aspect is to consider the
functional diversity among the objects. While work on part families have con-
sidered performance requirements to various degrees [3–5], and other aspects such
as manufacturing process design [6], it has proved challenging to apply these ideas
to portfolio standardisation.

Various methodologies have been proposed to aid various manufacturing
industries to reduce product family manufacturing costs and assist marketing
managers in product portfolio decision making [7]. A two level optimisation is
proposed that switches back and forth between the upper (family) level and the
lower (variant) level to determine the best combination of the product platforms
and product variants that yields maximum overall profit [8]. The product family
variables are market segment, product family architecture, product platform
architecture and the number of platforms.

In product portfolio decision making, clustering can be used to find the group of
products based on similar performative behaviours or similar forms [7, 9]. Agard
et al. [9] used neural networks to learn user preferences to build a target user and
also clustered users based on similar behaviour in the design of standardised
products. In many of these situations, as in most design contexts, the task involves
trade-offs between various functional requirements. One of the difficulties has been
to map the idea of function itself. Recently Stone et al. [10] proposed a customer-
need-motivated conceptual design method, to plan a product portfolio before any
embodiment design occurs by using Functional Basis developed by [11] as the
language for representation and modelling of product function in the early design
phase.
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5.2 Product Family Design

A product family refers to a set of similar products that are derived from a
common platform and yet possess specific features/functionality to meet particular
customer requirements [12]. Within a product family, the set of common elements,
interfaces and processes is generally called the product platform. Here, we con-
sider a product family hierarchy based on a set of products that serve a related set
of market applications—they are similar in form and function, share a phenom-
enological premise (e.g., faucets control water by constricting a valve) and may
adopt similar embodiments [12] (our usage is focussed more on a design per-
spective, but see [13] for a general review).

In its broadest generality, design deals with all possible artefacts (Fig. 5.1 top
level), at which point, ‘function’ is at its most vague. Next, we may consider
designs that use similar principles to serve similar functional needs, which con-
stitute the phenomenological design domain (PDD)—e.g., arranging for light and
air in an architectural space, or restricting access to some interior space. Still there
are many ways in which these design goals may be specified and met. Within a
PDD, the designs that are evaluated in terms of the same performative behaviours
are what we call the functional part family (FPF). Thus, single panel windows,
multi-panel windows, possibly even rolling shutters, if evaluated using similar
performative behaviours, may belong to the same FPF. However, some other
structures, like fixed windows (which do not have ‘letting in air’ as a performative
behaviour) would constitute a different FPF. Within a specific functional class
FPF1 the designs that meet a set of functions using the same physical structures, so
that the design variables map to the performance metrics in the same way, con-
stitute the embodiment part family (EPF, or the embodiment class).

For example in case of locking devices, the phenomenological level is based on
some physical mechanism for restricting access. Of these, some may share the
same set of performative behaviours (FPF). In Fig. 5.1, FPF1 and FPF2 both
involve keys moving a latch in and out, except that in the latter, the object
which will be constrained by the latch is external to the design object. For FPF1
(padlocks, rotating barrel locks, etc.), shared performance metrics may involve the
maximum force it can resist (strength), weight, ease of use, etc. On the other hand
the class FPF2 which are intended to be fixed to something like a door frame, the
performative behaviour may consider volume instead of (or in addition to) weight,
and thus the set of performative behaviours are different. The class of padlocks,
which share the same design structures, constitute an EPF within FPF1:

Each EPF is associated with a design space X; characterised by a n-tuple design
vector v ¼ ðx1; x2; . . .; xnÞ 2 X where xi are the independent design variables or
driving variables for the design. Any other variables needed for specifying the final
structure (dependent variables) are defined in terms of these driving variables.
At lower levels in the hierarchy, there are fewer degrees of freedom (i.e., number
of design variables go down), but the function becomes more crisply specified.
At the bottom of the hierarchy are specific design instances, each of which is
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completely specified (degrees of freedom is zero). The EPF is the niche class that we
shall consider throughout this chapter where we present a computational model for
designing scalable product family. Later, we will also demonstrate the procedure for
visualising higher dimensional scalable product platforms in low-dimensional design
spaces by using non-linear dimensionality reduction techniques.

5.2.1 Multi-objective Optimisation in Product Family Design

In product family design we consider the products at the embodiment level. At this
level of design, generally the user preferences involve multiple aspects of per-
formance, which are often conflicting. Once these performative measures are
available, we formulate the product family optimisation problem in terms of
design variables as multi-objective optimisation problem. Multi-objective opti-
misation approaches have been used for designing families of products [14–16].
Nelson et al. [14] formulate the product platform design problem using multi-
criteria optimisation to resolve the trade-off between commonality and individual
product performance within the product family. Simpson and D’Souza [15] use
genetic algorithms based approach (NSGA II) for product family design, which is
capable of designing the product platform and its corresponding family of products
while considering varying levels of platform commonality within the product
family.

Embodiment Part

Family

Instance

Phenomenological

Design Domain

Functional Part

Family

PDD

11 21 22
EPFmnEPFEPF EPFm1EPF

12
EPF

FPF2FPF
1

FPF
m

All Artifacts

Fig. 5.1 Hierarchy in design. Starting with all possible artefacts, the designs that share some
principles of operation constitute the phenomenological design domain (PDD). Within these,
those that have the same set of shared user needs constitute a functional part family (FPF).
Among these, designs with the same embodiment constitute the embodiment part family (EPF)
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Simpson et al. summarised two approaches in multi-objective optimisation in
product family design, (a) single-stage approaches, wherein the product platform
and the individual products are optimised simultaneously [15–18], (b) two-stage
approaches, wherein the product platform is designed during the first stage of
optimisation, followed by instantiation of the individual products from the product
platform during the second stage of optimisation [19, 20]. Simpson and D’Souza
[15] have used single-stage approach to simultaneously optimise the product
platform and the associated product family, where the designer need not specify
the platform commonality a priori to optimisation; at the end of optimisation, the
designer will know whether design variables should be made common/unique
within the product family and the non-dominated front for different product
families based on varying levels of platform commonality within each family. The
main limitation in this work is the commonality decision for each variable to
whether it is shared by all products in the product family or has different values in
each product. To overcome this limitation Khajavirad and Michalek [21] introduce
a two-dimensional chromosome to control the commonality use an upper-level GA
that controls commonality decisions and a set of lower-level GA that controls the
design variables of each product. Similar to [15], Akundi et al. [17] have proposed
a multi-objective optimisation method with three objectives, maximising the
efficiency, minimising the mass and minimising the variance coefficient among the
eight design variables for ten universal motors.

In all these approaches,commonality indices have been used for resolving the
trade-off between the commonality and achievement of distinct performance tar-
gets. Also, in these approaches, the number of products within a product family is
decided a priori, for example the number of products in a family of general
aviation aircraft (GAA) is to be scaled around 2-, 4- and 6-seated aircraft to meet
different goal targets [15]; in a family of universal motor example the number of
products is 10 to meet different torque requirements [17]. Most of these approaches
to the product portfolio problem emphasise minimising product and component
variety, especially in terms of finding better commonality measures [1, 21–23].
Before we propose our methodology, we briefly mention another similar
methodology which uses a multi-objective optimisation and a post-optimality
analysis to find properties that are common to the set of Pareto-optimal solutions.

5.2.2 Innovization: Innovation Through Optimisation

In 2006, Deb [24] suggested a post-optimality procedure which works in two steps.
First, a set of near Pareto-optimal solutions are found using a multi-objective
optimisation procedure. Either a generative classical method [25] or an evolu-
tionary multi-objective optimisation method [26] can be used for this purpose.
Second, a manual [24] or an automatic data-mining method [27] is used to
unveil hidden properties involving the decision variables and objectives that are
common to the obtained trade-off solutions. As these properties are common to
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near Pareto-optimal solutions, they directly indicate innovative principles which if
present in a solution would make it a high-performing solution. These properties
are useful to practitioners, as they indicate valuable knowledge pertaining the
problem.

5.3 Proposed Approach

Product variety is the diversity among the products that a production system
provides to the marketplace [28]. And this is meaningful to customers if products
meet widest functions. To predict the user- preferred groupings here we propose a
methodology based on a simple insight regarding the nature of non-dominated
fronts in multi-criteria decision making—the reduced dimensionality these
embody in function space is reflected in terms of small clusters based on similarity
in the variable space—and these regions may constitute the nucleus based on
which product portfolio choice can proceed. While a number of approaches have
considered issues of multi-function optimisation in design, and even explore the
ramifications on the design space [14, 29, 30], these approaches have not carried
out this idea to extend it to portfolio selection.

Given a product family design, the key steps in the proposed approach are
(see Fig. 5.2):

• Identify the desired performative dimensions, and the associated performance

metrics for the user preferences.
• Estimate the non-domination front, using a suitable technique. This corresponds
to a lower-dimensional hyper-surface or manifold in the design space along
which these non-dominated designs lie.

• Map these non-dominated designs from the performative space to design space
and cluster these into groups based on some notion of product similarity (e.g.,
a simple Euclidean metric in normalised design variable space), using an
unsupervised clustering algorithm—for our demonstrations, we use a neural gas
algorithm, but one may also use dbScan or hierarchical clustering.

• Identify the lower-dimensional manifold ðRdÞ embedded in the high-dimen-
sional design space ðRDÞ using nonlinear dimensionality reduction algorithms to
visualise the clusters in ðRdÞ: For this we use locally linear embedding (LLE) as
discussed in Sect. 5.6.1.

• Each resulting clusters may be considered as a product grouping. The design
team may inspect these groups in low dimension space and choose a single
exemplar from each to constitute the product portfolio.

In the product family literature, we observe the notion of a ‘scalable part
family’ [1] is a family where designs that can be ‘scaled up’. While this usage
shares some aspects of an integral design [28], in that certain variables are con-
tinuous and can take different values, it is not quite the same idea. To take an
example, a Boeing 747 may be scaled up, but clearly, its body height would not
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vary continuously, as in integral designs, but would go from a range appropriate to
a single deck, to another appropriate to a double deck. Thus the considerations in
scalable product families, such as that of a ‘scale factor’ may be quite different.

In our approach we consider product family optimisation, in which all products
share the same set of variables and we assume that the part family is associated
with an embodiment (e.g., the spring as a coiled wire with certain material
properties). Given this embodiment, we may now define the performance metrics,
i.e., the quantitative relation by which each performative measure can be evaluated
instead of determined from the design choices. In order to validate these perfor-
mance metrics, clearly a considerable amount of prototyping, user validation and
other measures may need to have been done on some sample designs from the part
family. Also, over the lifetime of the product, the degree to which these functions
reflect actual performance keeps improving. Also, new functions may be added,
resulting in different product groups forking off based on these differences [31].
However, for the purposes of this work, we simply assume that some reasonable
estimates are available.

Next we can use any multi-criteria optimisation algorithm to identify the non-
dominated set of designs (in the demonstration below, we use an evolutionary
algorithm, NSGA-II [26]). It appears that using NSGA for multi-objective opti-
misation may results superior to those obtained by gradient-based approach [26].
Given a set of k performance criteria f1; f2; . . .; fk; usually there is no single solution
which is optimum with respect to all performance criteria. The resulting problem
usually has a set of optimal solutions, known as Pareto-optimal solutions, non-
inferior solutions. It stands to reason that user preferences would lie among
the designs which constitute the non-dominated set, which amounts to a vast
pruning and a significant dimensionality reduction in the design space. Finally,
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Fig. 5.2 In this chapter, our main focus is to determine clusters in the design space of a product
family using unsupervised learning algorithms. In case of higher dimensional design spaces we
use dimensionality reduction techniques for visualising these clusters in low-dimensional
manifold
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we show how given this non-domination set, one may cluster these designs in a
completely unsupervised manner to obtain regions of the design space corre-
sponding to different functional trade-offs. These product groupings reflect similar
behaviours both in terms of design space as well as function, and the design team
may then consider these groupings as candidate product classes, each of which
may be represented by a single exemplar or product variant, the set of which would
constitute the product portfolio.

In the following sections, we explain our proposed approach with the help of
three examples.

1. Water faucets.
2. Compression springs.
3. Universal motors.

To demonstrate our proposed approach we first start with the basin faucets
involving only continuous variables and then move to the second example, that of
spring design, is well known in optimisation [32]. In Sect. 5.5 we show the spring
product family, where we consider both discrete and continuous variables. Finally
we consider the universal motor product family design problem involving eight
design variables and three objective functions in Sect. 5.6. In Sect. 5.6.1, we use
the well known dimensionality reduction technique to visualise the high-dimen-
sional product groupings in low-dimensions.

5.3.1 Unsupervised Clustering: Growing Neural Gas

In order to find out the clusters based on product similarities we have used an
unsupervised learning algorithm in which the designs, defined in terms of the
corresponding design vectors, are clustered in an unsupervised manner based on
the notion of distance between products. For this purpose, we use a neural gas
algorithm [33] which learns important topological relations in a given set of input
vectors (signals) in an unsupervised manner by means of a simple Hebb-like
learning rule. It takes a distribution of high-dimensional data, PðnÞ and returns a
densely connected network resembling the topology of the given data.

A fixed number of random neurons are taken in <n; n being the dimension of
the design (or signal) space. For every signal vi an edge is introduced between the
two closest neurons. The resulting network would be a sub-graph of Delaunay
triangulation of the set of neurons (Fig. 5.3) with edges present in the regions of
high similarity. The neurons that do not participate in this process are called dead

units. To make use of all the neurons, a Vector Quantisation procedure called
Neural Gas is used [33]. For every signal the neurons are adapted towards the
signal; the adaptation falls off exponentially as the distance of neuron from the
signal increases. This step makes the dead units move towards the signal area and
participate in the edge growing process. An edge aging mechanism is introduced,
to remove the edges made obsolete by the neuron movement, by setting an upper
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bound (edge aging amax parameter) for the edge ages. These steps are repeated
over the signal set till the adaptation or movement of neurons goes to zero and the
closely connected neurons lie in the signal activity region. The resulting connected
subsets constitute the clusters or product groupings found in the design space. As
the process grows out of local neighbourhoods, it will preserve any manifold
connectivities inherent in the data. The important input parameters for this algo-
rithm are k; the fixed node insertion rate, eb; en are the fractions of distances for
movement of nodes, amax is an upper bound for edge aging parameter and Tmax is
the total number of iterations of this algorithm (see [33]).

In the following section we first explain the product grouping based on the
unsupervised learning in the design space with three examples (i) water faucets,
(ii) spring design (having three design variables) and (iii) electric motors (having
eight design variables) and then proceed to dimensionality reduction analysis for
the high-dimensional design space of universal motor problem.

5.4 Example A: Water Faucet

Here we demonstrate the process of obtaining clusters in the design space based on
the user preferences in the form of performance behaviours. With suitable metrics
on these performance behaviours and the search in the design space based on these
metrics we can come up with a set of Pareto-optimal solutions in the space high
dimensional performance measures. In this chapter, we consider performance
metrics (user preferences) to be optimised may be defined over product families
involving (a) continuous design variables and (b) discrete design variables.

As an example task, we first take up the detailed design of a basin faucet
modelled using simple geometric elements for the inlet, outlet and knob. Each of
these design elements has a set of driving design variables, in terms of which all
other shape parameters as well as joining constraints can be defined. Also the
design space for overall product family may have up to 20 parameters, in the
analysis below, we restrict the driving parameters to three for the ease of dem-
onstration in this chapter. In this example, we consider all three driving variables
are continuous variables.

Figure 5.4 shows the water faucets and their design space spanned by ~v ¼
fwo; Lo; h2g: The design parameters w; L; and h2 are continuous design variables.

Fig. 5.3 (Left) Delaunay
triangulation of vectors in <n:
(Right) Induced triangulation
(dark edges) in high
similarity (dark) region
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After deciding these three independent design variables, the design problem is
formulated as multi-objective optimisation problem shown in Eq. 5.1 for the
performative behaviours (a) maximum discharge and (b) minimum weight.

5.4.1 Estimating the Non-domination Front for Faucets

During any design, designers tries to find optimum solutions through searching the
design space. The member of the part family is characterised by a set of design
variables. In which we focus on a 3-tuple design vector w; L; and h2 which we call
as driving variables as the other design dimensions internal to the faucet (Fig. 5.4)
are defined in terms of these driving variables. For example, the radius ðRÞ of the
knob is w

2: Given a set of values for a design vector, one can determine its shape.
The optimal solutions can be obtained by modelling the above problem as a multi-
objective optimisation problem for searching the design space. The task of multi-
objective problems is different from that of single objective optimisation. Usually
in multi-objective solution, there is no single solution which is optimum with
respect to all objectives. The resulting problem usually has a set of optimal
solutions, known as Pareto-optimal solutions, non-inferior solutions, or effective
solutions. As there exists more than one optimal solution and since without further
information no one solution can be said to be better than any other Pareto-optimal
solution, one of the goals of multi-objective optimisation is to find as many non-
dominated (Pareto-optimal) solutions as possible [26].

Multi-objective optimisation for faucets.

Minimise pweightðvÞ ¼ CdAV ; A ¼ wh; V ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2gHnet

p

Maximise pdischargeðvÞ ¼ qVvol

L2
;

Subject to gðvÞ � 55:0\h1\60:0; 5:0\w; h\8:0

20:0\L\40:0; 70:0\h\150:0

h2 ¼
55:0w�20:0

3:0 ; h1 ¼ 0:5Lþ 40:0

h ¼ wþ 0:5

ð5:1Þ

where Hnet ¼ ððH � L cosðh1Þ � ð0:85hÞ cosððh1 � h2ÞÞ � Hf ÞÞ H ¼ 1; 000 and

Hf ¼ 0:8H: Vvol ¼ Vtap; Vtap ¼ VbodyþVspoutþVmouth; Vbody ¼
pw2

2 hþwh2 Vmouth ¼

0:8h2w sinðh22 Þ Vspout ¼ 0:5wðL2 sinðh1Þ sinðh0ÞþL2 cosðh0Þ sinðh0ÞþwLcosðh0Þ;

Cd ¼ 0:95:
In our NSGA-II run, the probabilities of recombination and mutation operators

used are pc ¼ 0:8 and pm ¼ 0:3 respectively. Considering the two objective
functions flow of water, and weight of faucet we obtain a set of non-dominated
solutions (Pareto-front). Pareto-optimal front aids the decision maker to choose the
non-dominated solution. Any point on the front gives the respective design vector
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which defines a design with a set of desired functions. In each generation, new
Pareto-fronts are computed based on further explorations in the design space.

Having obtained the non-dominated solutions for maximising the discharge
and minimising the weight (Fig. 5.5a), the non-dominated solutions are mapped
into the design space, where the good designs are distributed in three-dimensional
design space as shown in Fig. 5.5b. On this design data distribution we use the GNG
clustering, based on the product similarity. The product similarity is measured by
using the Euclidean distance between the design vectors~v ¼ fw; L; h2g:

Fig. 5.4 Complete faucet with knob. The driving parameter set fwo; Lo; h2g
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Fig. 5.5 Product groupings for faucet based on non-domination front. The non-dominated
solutions (a) are mapped into the design space (b) where clusters are obtained using unsupervised
clustering. Here two clusters are shown in design space (d) and in the corresponding non-
dominated space (c) for data input of 500. Note that some clusters obtained from the design space
overlap along the Pareto front
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The main purpose of GNG is to generate a graph structure which reflects the
topology of the input ‘good designs’ data and the internal structure of the data. After
running GNG on this input data we identified clusters in the design space. Initially
we experimented with different input GNG parameters. The results shown in
Fig. 5.5c, d are obtained for k ¼ 200; eb ¼ 0:06; en ¼ 0:009; amax ¼ 4; Tmax ¼
40; 000; a ¼ 0:01: With these GNG parameters we obtain two product groupings
(clusters) and when these two clusters are mapped back on to the non-dominated
space, the mapping is almost linear from the design space to function space. There is
also few members of one cluster are overlapped with the other cluster.

Now this will constitute a product family having two product groupings. Each
group shares similar performance behaviours (discharge, weight) but the particular
performance values’ ranges are different to satisfy two market segments. Faucets
having high discharge and heavy weight are grouped into one group and the other
group has low discharge and low weight faucets. The design vector and the per-
formance measures for the mean of the two product groupings are shown in
Table 5.1.

Sometimes it is useful to visualise these clusters in the design spaces for
identifying the common design variable values for inventory, manufacturing and
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Fig. 5.6 Product groupings for faucet based on non-domination front: 2D sectional distribu-

tions. The projections of clusters are shown in design subspaces a ðw;LÞ; b ðL; h2Þ; and c and d
ðw; h2Þ

Table 5.1 The mean values of two faucet clusters obtained (Fig. 5.6)

Faucet Faucet no. Design variables Performance measures

w L h2 pDischarge pWeight

þ 1. 6.16 35.44 120.91 4.54 4.02
deg 2. 5.41 31.19 95.92 3.53 3.41

172 M. M. Dabbeeru et al.



for other decision making purposes. Figure 5.6 shows the 2D sectional distribution
of the projected clusters in the design subspaces ðw; LÞ; ðL; h2Þ; and ðw; h2Þ:
From Fig. 5.6c, d, faucets having both high discharge and heavy weight are having
long spout lengths L and high spout angle ðh2Þ values whereas the low discharge
and light weight faucets are having low width w; low spout lengths ðLÞ and less
spout angles ðh2Þ: From these design spaces, user can take any product from each
cluster as one standard product. The mean values of each cluster are shown in
Table 5.1. From the mean values of these clusters it is clearly understood that
faucets having less spout angle are grouped into second cluster ðdegÞ and high
spout angles are grouped into first cluster (+).

5.4.2 Varying GNG Parameters

Faucet Family with 2-Clusters
With a different set of GNG parameters k ¼ 200; eb ¼ 0:00006; en ¼ 0:00004;

amax ¼ 80; Tmax ¼ 40; 000; a ¼ 0:01; we obtain two clusters as shown in Fig. 5.7.
Figure 5.8 shows the 2D sectional distribution of the projected clusters in the design
subspaces ðw; LÞ; ðL; h2Þ; and ðw; h2Þ: From Fig. 5.8b, c, the spout length of the
faucet L is partitioned into two groups, one� 25–32 cm and the other� 32–40 cm.
Thus, for high discharge values, higher lengths are preferred though the weight
is also heavy. Hence, this product family obtained here is divided based on the
(high-discharge, low-weight) and (low-discharge, high-weight). From Fig. 5.8d it is
partly helpful to decide the w values between 5–6 cm as one group and 6–7 cm as
another group.
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Faucet Family with 5-Clusters
Next, we experiment with another GNG parameters k ¼ 200; eb ¼ 0:0001;

en ¼ 0:0004; amax ¼ 10; Tmax ¼ 40; 000; a ¼ 0:1 and Fig. 5.9 shows the same
Pareto-front shown in Fig. 5.7a but with five clusters. Now, we have a product
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family consisting five groupings satisfying five groups of users. Now, selecting a
standardised product from each cluster is a difficult task. The actual product
instances within each cluster are not determined by us. We assume here that
situational aspects—e.g., set of existing products, competitor’s products, etc. may
impact this, and the cluster are simply a guide for the end user. One possible
approach may be to consider the means of each cluster. Table 5.2 shows the set of
such means to illustrate the variation between the clusters (Fig. 5.10).

From Table 5.2, we can observe that some products in the product family are
very close on some common variables. For example, the product 2 has nearly the
same w as 5. Similarly, product 3 shares a similar L with the 4. To determine these
common values, we have used Dendrograms to determine the common variables in
the product family (see [20, 34] for more details on product portfolio optimisa-
tion). Figure 5.11a–c are showing the Dendrograms for w; L and h2 respectively.
The horizontal axis is the product number and the vertical axis is the index of
dissimilarity.

Table 5.2 The mean values of five faucet clusters obtained (Fig. 5.10)

Faucet no. Design variables Performance measures

w L h2 pDischarge pWeight

þ 1. 6.05 35.35 123.84 4.39 3.85
deg 2. 5.74 31.43 118.02 3.96 3.64

3. 6.30 36.73 108.93 4.73 4.01
� 4. 6.17 36.68 116.54 4.55 3.93
r 5. 5.50 31.01 108.29 3.66 3.48
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tions. The projections of clusters are shown in design subspaces a ðw;LÞ; b ðL; h2Þ; and c and d
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From this Dendrograms one may take a decision to choose the common vari-
ables based on the similarity observed in Table 5.3. Faucet 1 is having individual
design variable values, faucet 2 is sharing w2 and L2 with faucet 5 and faucet 3 and
4 are sharing the same L values.

For choosing the value of these common variables showed in Table 5.3 one can
use sensitivity of design variables with respect to overall performances to select
the commonisation values for each product platform variable [20].

5.5 Example B: Spring Design

Here, we consider the design of a helical compression spring, which is a well-
studied problem in the context of optimisation in design [32]. We are interested in
obtaining clusters in the design space based on the performative dimensions of (a)
weight and (b) strength. The design space is represented by the three design
variables: the number of spring coils N; which is an integer value in the range
[1, 32], the wire diameter d; which is a discrete variable in the range 0.009 and
0.5 in and in unequal steps as presented in [29, 32], and the mean coil diameter D;
which is a continuous variable in the range [1, 30].

These constitute the design vector v ¼ ðx1; x2; x3Þ ¼ ðN; d;DÞ; which is the
signal space both for the optimisation, and subsequently for the GNG clustering
(Fig. 5.12). We define the optimisation problem as follows:

Multi-objective optimisation for compression spring.
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Fig. 5.11 Commonisation

among the design variables:
Dendrograms resulting from
cluster analysis of five values
of each design variable w; L
and h2

Table 5.3 Faucet product family having five faucet groupings

It is observed that some of these mean values in each cluster share nearly same values across
different groupings.For example, the lengths of Faucets 3 and 4 can have a single value L3 and
Faucets 2 and 5 can have w2
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Minimise pvolumeðvÞ ¼ 0:25p2x22x3ðx1 þ 2Þ
Minimise pstressðvÞ ¼ 8KPmaxx3

px23
;

Subject to g1ðvÞ � lmax �
Pmax

k
� 1:05ðx1 þ 2Þx2 [ 0

g2ðvÞ � x2 � dmin � 0; g3ðvÞ � C � 3 � 0;
g4ðvÞ � dpm � dp � 0;
g5ðvÞ � Dmax � ðx2 þ x3Þ � 0
g6ðvÞ �

Pmax�P
k

� dw � 0;

g7ðvÞ � S� 8KPmaxx3
px23

� 0

g8ðvÞ � Vmax � 0:25p2x22x3ðx1 þ 2Þ � 0
Pmax ¼ 1; 000 lb P ¼ 300 lb

Dmax ¼ 3 in k ¼ Gx2
4

8x1x33

dw ¼ 1:25 in dp ¼
P
k

dpm ¼ 6 in S ¼ 189 ksi
C ¼ x3

x2
Vmax ¼ 30 in3

K ¼ 4C�1
4C�4 þ

0:615x2
x3

lmax ¼ 14 in

dmin ¼ 0:2 in G ¼ 11; 500; 000 lb

in2

ð5:2Þ

As in the previous section for the faucets, here also we model the multi-
objective optimisation problem and obtain a set of Pareto-optimal solutions
(Fig. 5.13) based on these two performative behaviours represented by the per-
formance metrics pvolume and pstress; as used in the literature. The obtained Pareto-
front (Fig. 5.13) closely follows [29], where it is shown to distribute well over the
Pareto-front as obtained by the normal constraint method [30].

Having obtained the Pareto-front, we now map all these ‘good springs’ to the
design space. In the design space shown in Fig. 5.13b, the designs are distributed
in d–D–N space, where we use unsupervised clustering to obtain the clusters based
on product similarities. The GNG parameters considered here are: k ¼ 600; eb ¼
0:08; en ¼ 0:0009; amax ¼ 90; Tmax ¼ 90; 000; a ¼ 0:5: The resulting three
clusters are shown in Fig. 5.13d and the corresponding non-dominated space is
shown in Fig. 5.13c.

With this, the designer can divide all products into three different groups. Now,
this product platform has three spring groups and if a spring has to be designed
with a material having yield strength ranging from 185,000–123,900 psi then from
the cluster A–B the optimal diameter can be either 0.283 or 0.331 and in the similar
way, if the designer is looking for material having yield strength 119,000–
69,240 psi then he can choose the diameter of the wire either 0.394 or 0.437 from
the cluster B–C and for the yield strength 64,870–55,950 psi with a fixed diameter

Fig. 5.12 Compression
spring and it’s design
variables v ¼ fN; d;Dg
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of the wire d ¼ 0:5 in in the cluster C–D: The main advantage with this clustering
is to group the products based on their product similarities (Table 5.4).

5.6 Example C: Universal Electric Motors

In this section we consider the universal motor, a product family involving a high-
dimensional design spaces. Universal motor problem is a well studied product
family problem in portfolio optimisation literature. Simpson [35] considers the
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Fig. 5.13 Non-dominated function space for the spring and the corresponding design space.
a Non-dominated solutions are obtained with three variables N (integer), d (discrete), D

(continuous). The objective functions are minimising both volume and stress for the helical
compression spring. b The non-dominated solutions are mapped into the design space. d Three
clusters are determined using the unsupervised learning and the corresponding non-dominated
front is shown in (c)

Table 5.4 Design variables and the corresponding performance measures for three clusters
shown in Fig. 5.13

Spring no. Design variables Performance measures

d D N pvolume pstress

þ 1. 0.3104 1.35 10 4.15 155,082
I 2. 0.4226 1.91 13 13.04 86,043

3. 0.5000 2.15 16 25.17 59,466
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case of universal motor, with ten instantiations being considered, in order to reduce
the cost, size and mass and finally have developed the universal motor family.
The design space for embodiment design consists of ten design variables ~v ¼
fNc;Ns;Awa;Awf ; ro; t; lgap; I;Vt; Lg (see [35]), and the performance behaviours are
taken as strength, mass, energy and efficiency and the corresponding performance

metrics in terms of these design variables can be ptorqueð~vÞ ¼ Nc/I
P

; pmassð~vÞ ¼
masswindings þ massarmature þ masswindings; ppowerð~vÞ ¼ VtI � I2ðRa þ RsÞ � 2I; and

pefficiencyð~vÞ ¼
ppower
VtI

:

Akundi et al. [17] have considered the same universal motor example to have
the highest efficiency and least possible mass to develop a family of ten universal
electric motors to satisfy a range of torque requirements. Along with the two
objective functions maximising efficiency and minimising the mass, they have
considered the third objective function to minimise the variance coefficient of the
design variables of ten motors to maximise the commonality. However, this
requires a considerably larger population in the GA (10n instead of original
population n) (Fig. 5.14).

Here in our method, we do not have any information either on the commonality
of product platform or the number of products in the product family. Our method is
helpful for decision makers who would like to visualise the possible product
families for a given set of user preferences. We initially model the user preferences
as a multi-objective optimisation problem and based on the unsupervised learning
we determine the product groupings of ‘good designs’ in the design space based on
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the product similarity. The mathematical formulation of multi-objective optimi-
sation problem as follows:

Multi-objective optimisation.

Minimise pmassðvÞ
Maximise pefficiencyðvÞ
Maximise ptorqueðvÞ
Subject to g1ðvÞ � ro � t[ 0

g2ðvÞ � 5; 000� H[ 0;
g3ðvÞ � 2:0� pMass � 0;
g4ðvÞ � 0:5 � ptorque � 5:0;
g5ðvÞ � 300 � pPower � 600
g6ðvÞ � pefficiency � 0:15 � 0

ð5:3Þ

Figure 5.15 is the showing the non-dominated Pareto-optimal surface for three
performative behaviours mass, efficiency and torque. After mapping these non-
dominated solutions into the eight-dimensional design space for unsupervised
grouping, we can obtain different number of clusters by varying GNG parameters.
So farwehave considered examples (water faucets, springs), those are not havingmore
than three design variables. But in real life design problems, we may have design
problem consisting of more than hundred design variables and hence constitute high-
dimensional design spaces. In these cases it is difficult to visualise these design spaces.

In the following section, we demonstrate the process of mappings from high-
dimensional design spaces to low-dimensional spaces for visualising the clusters
obtained with different sets of GNG parameters.

5.6.1 Clusters in Low-Dimensional Manifolds

We now present the algorithm used for obtaining a low-dimensional representation
for the ‘good design’ subspace of the original high-dimensional design space.
Although, the design is defined in terms of a hundred parameters, for the class of
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‘good designs’, there are often many interrelations between these; each such inter-
relation constitutes a chunk or a dimension in the resulting low-dimensional
surface or manifold.

One of the strategies to handle high dimension data is dimensionality reduction,
involves finding low-dimensional structures in high-dimensional space. A large
number of different methods have been developed for this purpose. There have
been linear dimensionality reduction methods [36]—e.g., independent component
analysis, linear discriminate analysis, principal component analysis but these linear
methods fail when the data lies on a nonlinear manifold; in such situations the
linear algorithms give the smallest convex subspace encapsulating the manifold,
which is often of a much higher dimension. In practice, non-linear relations
between design variables are extremely common, and in such situations, nonlinear
dimensionality reduction yields superior results [37]. Approaches for obtaining the
non-linear representation of the data include Global methods (Isomaps [37]) and
Local methods (LLE [38] and Laplacian Eigenmaps [39]). Local approaches try to
preserve the local geometry of the data. By approximating each point on the
manifold with a linear combination of its neighbors, and then using the same
weights to compute a low-dimensional embedding, LLE tries to map the nearby
points on the manifold to nearby points in the low-dimensional representation.

High dimensionality and computational complexity are curses typically asso-
ciated with many product family design problems [40]. In this chapter, we have
applied an eigenvector method—called LLE for the problem of non-linear
dimensionality reduction. The basic idea in LLE is that of global minimisation of
the reconstruction error of the set of all local neighbourhoods in the given data
(Fig. 5.16) [38]. LLE is an unsupervised learning algorithm and it was first pro-
posed by Roweis and Saul [41]. The main interesting property of this algorithm 1
[38] is that it preserves the relationships between neighbours in a data set and
represents high dimensional data X ¼ fx1; x2; . . .; xng; xi 2 RD in a lower dimen-
sional space Y ¼ fy1; y2; . . .; yng; yi 2 Rd:

Having obtained non-dominated sets of designs, and mapping these to the
design space reveals that the good designs are often restricted to a few patches on a
low-dimensional manifold, thus resulting in significant dimensionality reductions
for the design space. Figure 5.17a shows the non-dominated surface and the
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corresponding low-dimensional design space is shown in Fig. 5.17b. In the fol-
lowing sections, we show the product families in these low-dimensional design
spaces.

Universal Motors: 3 Clusters
Next, we experiment with another set of GNG parameters k ¼ 100; eb ¼ 0:008;

en ¼ 0:004; amax ¼ 5; Tmax ¼ 10; 000; a ¼ 0:02: Figure 5.18a shows the non-
dominated space with three clusters.

Table 5.5 is showing the mean values of each cluster and their corresponding
mappings in low-dimensional manifold. From the mean values of the performance

Fig. 5.16 Local linear
embedding (LLE) algorithm
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measures, we can observe that motors are grouped based on three different torque
values ranging from low torque (0.614 Nm), medium torque (1.703 Nm) and high
torque (3.6 Nm) while having different mass and efficiency values. Some of the
design variables like current I; number of winding on the field Ns and thickness t
are sharing among these three clusters. Figure 5.18b shows these three clusters in
the low-dimensional manifold embedded in high-dimensional design space
obtained by using the LLE. We can observe that some of the members of each
cluster are overlapping with other clusters in this low-dimensional space.

Universal Motors: 10 Clusters
In this case, with k ¼ 110; eb ¼ 0:0001; en ¼ 0:00025; amax ¼ 5; Tmax ¼

20; 000; a ¼ 0:2; we obtain ten clusters shown in Fig. 5.19a in non-dominated
space. Table 5.6 is showing the mean values of each clusters obtained here.

Figure 5.19b is showing the corresponding low-dimensional manifold space
embedded in eight-dimensional design space. Here it is clearly shown that there is
overlapping among these clusters.
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Fig. 5.18 Clusters in the non-dominated space for universal motor. a The non-dominated
solutions with three clusters (Pareto-front) in the three-objective space of mass, efficiency and
torque. b The manifold space corresponding to three clusters, the map from the high-dimensional
design space D ¼ 8 to low-dimensional design space d ¼ 2 obtained with the help of LLE

Table 5.5 Design variables and the corresponding performative behaviours for universal motor
designs in three clusters shown in Fig. 5.18

High-dimensional design variables D = 8 p for cluster means

Nc Ns Awa Awf ro t I L pmass pg ps

1 1,461 495 0.966 0.930 11.3 4.25 5.98 18.9 1.41 83.2 1.703
2 1,472 492 0.7741 0.587 15.1 4.5 6.0 26.7 1.62 68.4 3.602
3 1,071 500 0.259 0.265 10.4 4.0 6.0 10.2 0.24 67.1 0.614

Low-dimensional design variables d = 2 p for cluster means

q1 q2 pmass pg ps

1 -0.3600 1.5752 1.40 0.83 1.70
2 -0.8196 -0.3512 1.6 0.684 3.6
3 1.9885 -0.11283 0.24 0.67 0.61
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The non-linear dimensionality reduction technique used here is not so powerful
when confronted with noisy data, which is often the case for real-world problems
[42]. When the given data is having high-noise, there will be a chance of over-
lapping clusters and becomes difficult to visualise [43]. There have been research
on various non-linear dimensionality reduction techniques for classification and
visualisation [42, 43], which is currently under our investigation.

5.7 Summary

In this chapter, we determined product portfolios based on user preferences
modeled as a multi-objective optimisation problem. In the initial stages of intro-
ducing any product into the market, the method proposed here is helpful to
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Fig. 5.19 Clusters in the non-dominated space for universal motor. a The non-dominated
solutions (Pareto-front) in the three-objective space of mass, efficiency and torque with ten
clusters. b The manifold space showing ten clusters corresponding to the mapping from the high-
dimensional design space D ¼ 8 to low-dimensional design space d ¼ 2 obtained with the help of
LLE. Note that there is overlapping between the ten clusters in this low-dimensional space

Table 5.6 Design variables and the corresponding performative behaviours for universal motor
designs in ten clusters shown in Fig. 5.19

Design variables p for cluster means

Nc Ns Awa Awf ro t I L pmass pg ps

1. 1,418 492 0.454 0.417 12.75 4.09 5.97 18.46 0.728 64.6 1.93
2. 1,417 492 0.475 0.431 13.17 4.09 5.98 19.63 0.806 64.0 2.16
3. 1,336 493 0.781 0.821 14.51 4.46 5.93 23.57 1.541 76.5 2.67
4. 1,346 494 0.768 0.812 14.77 4.46 5.94 24.46 1.582 75.3 2.87
5. 1,356 495 0.756 0.806 14.98 4.45 5.94 25.16 1.617 74.3 3.04
6. 1,446 493 0.539 0.469 14.54 4.05 5.98 23.66 1.091 61.3 3.06
7. 1,366 496 0.728 0.786 15.46 4.48 5.95 26.92 1.680 71.8 3.43
8. 1,463 495 0.570 0.488 15.28 4.07 5.99 26.24 1.270 59.5 3.66
9. 1,383 496 0.712 0.764 15.74 4.45 5.96 28.09 1.722 69.9 3.73
10. 1,472 496 0.612 0.531 16.07 4.07 5.99 29.09 1.512 58.9 4.35
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decision makers to have an idea on groupings of ‘good designs’ lying on the non-
dominated Pareto-front.

In real world design situations, for example, a digital camera (in terms of all its
components, and assembly processes) may have several hundred design variables
(let us say design space with D ¼ 100) but only about ten performative measures.
Now, restricting our attention to designs in the non-dominated set implies that pð~vÞ 2
P (P—performance space). Clearly, this constitutes an additional restriction on~v;
and thus bounds it more tightly than~v 2 X: Here, we claim that the obtained non-
dominated sets of designs based on these ten performative measures reveals that
these good cameras are restricted to a few patches on a low-dimensional manifold
ðd\100Þ; thus resulting in significant dimensionality reductions for the design space
and the design seems to be constrained to a much lower dimensional manifold.

After obtaining product groupings in the design space with the help of GNG
algorithms, we have used LLE, a dimensionality reduction technique, for visual-
ising the clusters embedded in the low-dimensional manifold. The advantage lies
here is that it is possible to map any new design vector~v from RD to Rd and vice
versa. These mappings are provided by [38].

It is observed that in Fig. 5.19b the clusters in the low-dimensional spaces are
mixed up. We are currently investigating to alleviate this problem.
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Chapter 6
Multi-objective Optimisation of a Family
of Industrial Robots

Johan Ölvander, Mehdi Tarkian and Xiaolong Feng

Abstract Product family design is a well recognised method to address the
demands of mass customisation. A potential drawback of product families is
that the performance of individual members are reduced because of the constraints
added by the common platform, i.e., parts and components need to be shared by
other family members. This chapter presents a framework where the product
family design problem is stated as a multi-objective optimisation problem and
where multi-objective evolutionary algorithms are applied to solve the problem.
The outcome is a Pareto-optimal front that visualises the trade-off between
the degree of commonality (e.g., number of shared components) and performance
of individual family members. The design application is a family of
industrial robots. An industrial robot is a mechatronic system that comprises a
mechanical structure (i.e., a series of mechanical links), drive-train components
(including motors and gears), electrical power units, and control software for
motion planning and control.
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6.1 Introduction

Product family design based on a modular architecture, has for a long time been a well
recognised method to address the demands of mass customisation. Based on the
concept of product platforms, it is possible to deliver products within a short time
frame and have a broad product range to meet specific customer requirements while
maintaining low development and manufacturing costs. A possible drawback of
product families is that the performance of individual members are reduced attribut-
able to the constraints added by the common platform, i.e., parts and components need
to be shared by other family members (a trade performance or cost for commonality).

A product family is represented by a number of variant products sharing a
common platform. The platform typically consists of a set of components, modules
or manufacturing and assembly processes. Product family design can reduce cost
because of the commonality between the variants, but there is always a trade-off
between commonality and individually optimised performance [1, 2].

The design of a product family has been the subject of research for several
years, and many approaches have been presented for various product domains, for
a survey of different methods, see [3]. The major tasks can however by summa-
rised as indicated in [4]:

• Design of the platform for a specified family
• Design of the family based on a specified platform
• Simultaneous design of both platform and family

The above design tasks typically result in a combinatorial optimisation problem
including both continuous and discrete optimisation parameters.

Naturally, there is a trade-off between commonality and performance, e.g., a
large product family with a high degree of commonality is expected to have lower
cost and performance than if the same product family is based on a larger number
of different components with low commonality between the family members.
It is therefore natural to look at the problem as a multi-objective optimisation
problem. The problem consists of a mix of discrete and continuous variables and
the objectives and constraints are in the general case represented by non-linear
functions where no analytical derivatives are available. Examples of optimisation
methods that can handle this type of problems in general are genetic algorithms
(GA) [5] and specifically multi-objective genetic algorithms (MOGA) [6].
There are also many examples in the literature where GAs and MOGAs are applied
to platform design problems, see [4, 7, 8].

6.1.1 Multi-Objective Optimisation

Real engineering design problems are usually characterised by the presence of many
conflicting objectives, and hence it is natural to look at them as multi-objective
optimisation problems. As most optimisation problems are multi-objective to their
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nature, there are many methods available to tackle these kinds of problems.
Generally, a multi-objective optimisation problem can be handled in four different
ways depending on when the decision-maker articulates his or her preference on
the different objectives; never, before, during or after the actual optimisation
procedure, [9].

In the first approach (no preference articulation) the objective function is not
depending on the preference of the decision-maker. Examples are the min–max
formulation and global criterion method where the objective is to minimise the
distance to the utopian solution, see [10].

The most common way of handling problems with multiple objectives is by
priori articulation of the decision-makers preferences. This means that before the
actual optimisation is conducted the different objectives are aggregated to one
single figure of merit. The aggregation could be done in many ways, one of the
most common methods being the weighted sum approach.

The third approach (during) includes iterative methods where the decision-
maker articulate his or her preferences as the optimisation process evolves.

In the final approach the search is not for one optimal solution but for the
complete Pareto-optimal front, which visualises the trade-off between the objec-
tives. In this approach one could consider multiple run methods where the opti-
misation algorithms are run several times to sample points on the Pareto front.
Alternatively a population-based method could be used that is capable of identi-
fying the Pareto front within one single optimisation run. One of the most efficient
techniques to obtain a good spread of Pareto optimal solution is to employ multi-
objective evolutionary algorithms [6]. Within this chapter, one problem is solved
using a multiple run approach based on a standard GA, whereas the second
problem is solved using NSGA-II [11].

6.1.2 Product Development

Product development is a special form of problem solving where a number of
frequently unclear objectives have to be balanced without violating a set of con-
straints. Based on this statement it could be said that design is essentially an
optimisation process, as stated by Herbert Simon [12] already in 1967. By
employing modern modelling, simulation and optimisation techniques, vast
improvements could be achieved, even in the conceptual part of the design
process.

A great deal of research has been done in the field of product development
leading to different design processes and methods. Various authors present dif-
ferent models of the design process, see refs [13–17]. They all describe a phase
type process of different granularity with phases such as: planning, concept
development, system-level design, detail design, testing and refinement, and
production ramp up, using the nomenclature from [17].
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In this chapter two different design cases from the field of industrial robotics are
studied. The first study considers the conceptual phase, whereas the second is more
focused on system-level development and detailed design.

6.1.3 Chapter Outline

The remaining of the chapter has the following outline. First a brief introduction to
industrial robotics is given describing both technical aspects as well as the robot
design process. Thereafter a generic mathematical framework for product family
optimisation is presented. In the following sections two multi-objective product
family design problems are studied. The first considers a conceptual kinematics
design study whereas the second focusses on detailed dynamic design. Eventually
the chapter closes with discussions and conclusions.

6.2 Industrial Robotics

An industrial robot is a typical mechatronic system, consisting of a mechanical
structure, or normally referred to as robot manipulator, and a controller. The
mechanical structure of an industrial robot consists of a base followed by a series
of structure links. The motion of each link is generated by a drive-train comprising
permanent magnet electric motors and precision gears. Major components of the
robot controller are power units, rectifier, transformer, axis computers and a high-
level computer for motion planning and control. An example of a traditional serial
manipulator is shown in Fig. 6.1a and a modular industrial robot is shown in
Fig. 6.1b. These two types of robots will be used as examples in this chapter.

The traditional robot manipulator is of type IRB6640-185/2.8 from ABB and it
consists of six rotational joints. Joint 1 between stand and base, joint 2 between
lower arm and stand, joint 3 between arm house and lower arm, joint 4 between
upper arm and arm house, joint 5 between tilt house and upper arm, and joint 6
between tool flange and tilt house.

The mechanical structure of the modular robot consists of a base followed by a
series of modular structure parts. Each module consists of drive-train components
(servo actuator, combining precision harmonic drive gearing with highly dynamic
AC servo motors) integrated to one module. The modular robot also has six
degrees of freedom.

Performance of the industrial robots are normally characterised by

• Number of degrees of freedom (number of rotational joints)
• Reach or shape of workspace
• Payload handling capacity
• Axis speeds or cycle time measured by some typical cycles
• Some pose or path accuracy measures
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Design of an industrial robot is a very complex process involving tremendous
modelling and simulation efforts. Major steps in robot manipulator design are;
kinematics design, dynamics design, thermal design, and stiffness design, see
Figs. 6.2 and 6.1. In addition, the design of a robot manipulator is an iterative
process because of the following complex issues: serial connection of robot links,
configuration-dependent robot performance, multiple-domain nature of the robot
system including mechanical, electrical, software, and control sub-systems.

6.2.1 Kinematics Design

Kinematics design is the first step in the design process of a robot manipulator.
The ultimate goal of the kinematics design is to decide manipulator configuration,
the number of robot joints, the link lengths, the link offsets, and the arm rotational
limits in order to meet the performance requirement specification. In practice,
manipulator configuration and the number of robot joints are normally chosen in
the first place, and then link lengths, the link offsets, and the arm motion limits are
determined in a more quantitative manner based on some robot kinematics per-
formance measure. The different performance measures for kinematics design
could be divided into the following groups:

• Based on maximum reach of a robot manipulator, a robot performance measure
normally used by industrial robot manufacturers

• Shape or volume of workspace, or reach envelop of the wrist centre point
(WCP) of the robot

• More physics-based robot kinematics design measures based on the manipu-
lability of the robot.

Fig. 6.1 Example of industrial robots with serial kinematics, (a) IRB6640-185/2.8 from ABB
(b) a modular industrial robot
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The more physics-based kinematics performance measures of a robot manipu-
lator are often obtained by examining the Jacobian matrix of the manipulator [18].

6.2.2 Dynamics Design

As a first step in the dynamics design stage drive-train components, robot configu-
ration and structure components are preliminarily designed. Tool centre point (TCP)
acceleration or axis rotational speed and acceleration at a large number of predefined
points in robot workspace, are normally used as design criteria. Based on this initial
design preliminary mass properties of the robot are obtained. Detailed design of both
structure components and drive-train components are then conducted based on
motion simulations, where actual trajectories are run. This stage require detailed
models of the geometry of the robot (CAD models) and dynamic simulation models
incorporation rigid-body dynamics, dynamic models for the drive train, as well as
control algorithms and software for motion planning and trajectory generation.

6.2.3 Stiffness Design

Stiffness of a robot manipulator is essential to ensure required accuracy-related
performance, for example, path tracking accuracy and the accuracy and settling
time when the tool centre point of a robot manipulator approaching a posture in its
workspace. Two basic approaches are normally used for stiffness design, based on
Eigen-frequency analysis and based on robot path tracking accuracy simulations. In
both approaches, flexible multi-body modelling of a robot manipulator is required.

Kinematics 
design

Dynamics
design

Thermal
design

Stiffness
design

Workspace

Application

Calibration

Time performance

Drive-train sizing

Structure design

Lifetime

Temperatures 

in gearbox and motors

Controllability

Path accuracy

Fig. 6.2 Workflow for industrial robot design process
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6.2.4 Thermal Design

Thermal design is essential because the thermal problems normally are noticed in
the prototyping phase of a new robot development. Thermal design concerns
structure cooling design and drive-train components thermal sizing. The design
criteria are often that a number of critical temperatures in motors and gears may
not exceed their maximum allowed temperatures. Both stiffness and thermal
design are also essential steps in the iterative design process.

6.3 Product Family Formulation

This section presents a formal framework for product family optimisation, and a
family of industrial robots will be used as an illustrative example. The robot is a
rather modular product in its design including among others the following com-
ponents/modules for the mechanics: stand, lower arm, upper arm and wrist. The
robot typically can move in six degrees of freedom, which means that the robot
structure has six axes. Each axis is driven by an electric motor and a gearbox which
adds another set of modules. In the common product platform there are component
libraries, e.g., motor and gearbox library to fill the different module slots.

The product family design problem is thus to find the optimal number of
components in each library, to parameterise each component, and finally to select
components for the modules for each member of the product family. The objec-
tives could for example be to minimise the cost of the entire family and maximise
the performance of all family members. Thus it is a multi-objective problem which
yields a trade-off between degree of commonality and product performance.
Figure 6.3 provides a visualisation of the problem.

In order to minimise the cost a high degree of commonality is desired as it gives
economics of scale in design, purchasing, logistics and maintenance. However,
one possible drawback with a high degree of commonality is deterioration in
performance for individual family members, as they cannot be optimised sepa-
rately to meet the requirements for that particular family member.

6.3.1 Generic Problem Representation

Consider a product family with np different product variants denoted p1; p2; . . .; pnp

or simply pi, (i = 1, 2, 3,…, np), where i is the index of a product member in the
family. Each product pi is composed of a series of modules Mi

1;M
i
2; . . .;M

i
nm

or

simply Mj
i, (j = 1, 2, …, nm), where j is the index to a module in the product i. The

product pi is defined by the choice of components to fill each module slot Mj
i. This

selection is represented by the integer variable mj
i. For each module, j, there are cj
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different possible choices of components to fit in that slot. Thus mj
i could be seen as

a matrix where each row contains the choice of components for a particular family
member. For example, the entries in column j are integers, l, less than or equal to cj
that refers to different components. Each component selected by mj

i is described by
a set of design variables x

cjl ¼ x
cjl
1 ; x

cjl
2 ; . . .; x

cjl
nxc

� �

, where cjl is the index to the
component selected by mj

i, and nxc is the number of design variables required to
describe component cjl. In total, there is nc number of different components in the
common platform.

The cost for the entire product family could be obtained by summing up the cost
for all modules for every product variant in the family, as expressed in Eq. (6.1)

Cost ¼
X

i

X

j

niCi
j mi

j; x
cji ; ncj

� �

ð6:1Þ

ni is the expected sales volume of product pi. The relationship cij mi
j; x

cjl ; ncj

� �

represents that the cost for a particular module is a function of what component is
selected (mj

i), how it is parameterised x
cjlð Þ and how many units (nj

c) there are of
that component in the entire product family.

A performance metric for a product family should consider the performance of all
family members. One approach is thus to employ a weighted sum to aggregate the
performance of each family member to an overall performance metric, where the
weight expresses that some variantsmight bemore important than others, see Eq. (6.2).
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Perf ¼
X

i

wiperf
i mi

j; x
cjl

� �

ð6:2Þ

6.3.2 General Problem Formulation

Based on the problem representation, four general problem types are defined. In
this section the structure of these problems will be outlined and later the problems
will be explained in more detail for the two applications. The objectives for all
problems are to minimise the cost and maximise the performance of the entire
product family, as expressed in Eqs. (6.1-6.2).

Problem One: Given np products, select components mj
i for each module from an

existing set of predefined components, i.e., given the platform design the product
variants.

min
z

X

np

i¼1
Costi zð Þ;max

z

X

np

i¼1
Perf i zð Þ

z 2 Sp1

z ¼ mi
j; i ¼ 1; 2; . . .; np; j ¼ 1; 2; . . .; nm

ðP1Þ

This is a combinatorial problem with np,nm integer variables. The solution space
Sp1 expresses constraints such as which components could be selected for which
module, and naturally constraints on performance and attributes of the different
products, e.g., stress in the mechanical structure.

Problem Two: Given np products, select components mj
i for each module, and

determine how a predefined set of components should be parameterised, i.e., given
the structure of the platform (the number cj for each component library) define the
components of the platform and design the product variants.

min
z

X

np

i¼1
Costi zð Þ;max

z

X

np

i¼1
Perfi zð Þ

z 2 Sp2

z ¼ mi
j; x

cjl

h i

; i ¼ 1; 2; . . .; np; j ¼ 1; 2; . . .; nm;

l ¼ 1; 2; . . .; cj

ðP2Þ

This problem consists of a set of integer variablesmj
i but also a set of variable vectors

x
cjl predominantly containing continuous variables that describe the components.

The solution space Sp2 for this problem contains constraints inherited from Sp1, but
also constraints regarding the parameterisation of the different components.
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Problem Three: Given np products, select components mj
i for each module, and

determine the number of components available for each module and how they
should be parameterised, i.e., design both the platform and the product variants

min
z

X

np

i¼1
Costi zð Þ;max

z

X

np

i¼1
Perfi zð Þ

z 2 Sp3

z ¼ mi
j; x

cjl ; cj

h i

; i ¼ 1; 2; . . .; np; j ¼ 1; 2; . . .; nm;

l ¼ 1; 2; . . .; cj

ðP3Þ

This problem is again a mixed integer programming problem with an extra nm
integer variables, which influence the number of variable vectors xc. Furthermore,
as the structure of the platform is not given in this problem, Sp3 will contain more
constraints expressing rules for the structure of the product platform.

Problem Four: Given the demands of the customer, obtain a set of Pareto-optimal
product families, i.e., (P3) is extended to also include the number of product
variants that should be offered.

min
z

X

np

i¼1
Costi zð Þ;max

z

X

np

i¼1
Perf i zð Þ

z 2 Sp4

z ¼ mi
j; x

cjl ; cj; np

h i

; i ¼ 1; 2; . . .; np; j ¼ 1; 2; . . .; nm;

l ¼ 1; 2; . . .; cj

ðP4Þ

The problem has again the same structure and the solution space, Sp4, includes
more constraints expressing the demands of the customer, e.g., required reaches
and payloads for the different robots in the family.

In the following sections two different applications are studied and hence the
product family design problem is discussed in more detail.

6.4 Optimal Kinematics Design

Most common commercial industrial robot manipulators have six degrees of
freedom and have spherical wrist. The motion of such robot manipulators may be
characterised by the translational motion of the wrist centre point (WCP) delivered
by three main axes, and orientation of the centre point of robot tool interface flange
delivered by three wrist axes normally intersecting at the WCP. In this work,

198 J. Ölvander et al.



a robot manipulator consisting of only the three main axes, shown in Fig. 6.4, is
considered.

The three main axes are represented by three links, or the three bars in red
colour, in Figs. 6.4a and b. The shape and stroke (difference between maximum
and minimum reach) of the workspace is determined only by dimensions Llow, the
length of the lower arm, Lup, the length of upper arm, the rotation angle bounds of
joints 2 and 3 (for the shape), and the minimum allowed angle between link 2 and
3 (for the stroke). The rotation of joint 1 has no effect on the shape of the
workspace. The offset O1 influences only the vertical position of the workspace
and has no effect on the shape or reach of the workspace. The offset O2 influences
the horizontal position of the workspace and thereby the reach. The dimensions
Llow and Lup are referred to as the lengths of lower and upper arms, respectively
and O1 and O2 are two offsets defining the location of joint 2.

As performance measure we will evaluate the stroke (the offset between
maximum reach and minimum reach of the WCP of a robot, see Fig. 6.4a and an
overall manipulability measure robot averaged over all pre-defined configurations
in the entire workspace. Ideally, this type of overall performance measure should
be independent of the size of the workspace, for example, reach. In this work, the
overall manipulability index is obtained, based on the manipulability measure
w [18], averaged over the entire workspace [19]

woverall ¼
dx� dzð Þ �

P

w

Llow þ Lup þ o2
� �5

ð6:3Þ

where woverall is the overall manipulability index, dx and dz are dimensions of a
grid,

P

w is the summation of manipulability measure over all grids that are
inside of the workspace envelope.

Based on the Jacobian matrix of the manipulator, J(h), Yoshikawa proposed the
following quantitative manipulability measure (w) of a robot manipulator [18]

Fig. 6.4 Kinematics definition for a serial manipulator, (a) Shape, reach, and stroke of the
workspace of an ABB IRB6640-158/2.8 (b) Kinematics structure of main axes
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w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det J hð ÞJT hð Þð Þ
p

ð6:4Þ

where w is a scalar value, det denotes the determinate of a matrix and T the
transpose of a matrix. Please observe that the Jacobian matrix varies with the pose
of the manipulator, so it needs to be recalculated for every position of the
manipulator.

6.4.1 Optimisation Problem Formulation

Consider the design of a product family with nrob number of robots where each
robot Ri should have the reach, ri. Thus the vector R ¼ r1; r2; . . .; rnrob½ � represents
the reach for all robots in the family. The objective is to maximise the performance
index for all robots in the product family. In this study, we will evaluate stroke and
the overall performance index, woverall.

The problem is parameterised so that x1 represents the length for the lower arm
of the first robot, Llow1. The length of the upper arm, Lup1, of robot one could then
be determined so that the reach is fulfilled, i.e.,

Lup1 ¼ r1 � Llow1 � o2 ð6:5Þ

where the Llow1 and Lup1 are the lengths of lower arm and upper arm of robot 1 (the
number in the subscript represents the robot index) respectively.

For the second robot, it could either share the upper or the lower arm of the first
robot or have its own arms. For the first two cases the arm lengths could be calculated
based on the arm that is shared and the required reach. For the last case the arm
lengths need to be determined which introduces one more parameter. The selection
is modelled using three binary decision variables, x21, x22 and x23. If x21 equals 1,
robot 2 shares the lower arm of robot 1. If x22 is 1, robot 2 shares the upper arm, and if
x23 is 1, robot 2 shares no arms with robot 1. Only one of x21, x22 and x23 could be
equal to 1. x24 represents the length of the lower arm of robot 2, should x23 equal 1.
The arm lengths could be calculated according to the following.

Llow2 ¼ x21Llow1 þ x22 r2 � Lup1
� �

þ x23x24

Lup2 ¼ r2 � Llow2 � O2
ð6:6Þ

The quotient, ki, between the length of the lower and the sum of the lower and
upper arms for each robot should be between the limits kmin and kmax. This con-
straint will assure that the length of the lower and upper arms are somewhat similar
which will guarantee good manipulability of the robot. For the majority of
industrial robots on the market, k is between 0.4 and 0.5. However for exceptional
cases values of 0.35 and 0.6 exist. ki is calculated as.

ki ¼
Llowi

Llowi þ Lupi
ð6:7Þ
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where the Llowi and Lupi are the lengths of lower arm and upper arm of robot i,
respectively.

The maximum number of arms (or arm modules), narms in the robot family
constitutes a measure of commonality and is a number between nrob ? 1 and 2nrob.
If narms = nrob ? 1 all robots share one arm with at least one other robot, and if
narms = 2nrob no robot share arms with another robot.

Thus the number of arms in the product family determines how many robots
that needs to share arms, i.e., how many xi3 that could be non-zero. This is
expressed in the inequality below.

X

nrob

i¼2
xi3 � narms � nrob � 1 ð6:8Þ

Thus the product family optimisation problem could be described according to
the equation below.

max
X

nrob

i¼1

kiPerfi xð Þ

X

3

j¼1

xij ¼ 1; 8i 2 2; 3; . . .; nrobf g

X

nrob

i¼2

xi3 � narms � nrob � 1

kmin � ki xð Þ� kmax ; i ¼ 1; 2; . . .; nrob
x1

r1 � O2
2 kmin; kmax½ �

xij 2 0; 1½ � ; i ¼ 2; 3; . . .nrob; j ¼ 1; 2; 3
xi4

ri � O2
2 kmin; kmax½ � ; i ¼ 2; 3; . . .nrob

ð6:9Þ

The problem has nrob continuous variables and 3(nrob - 1) binary variables.
The objective function is non-linear and the problem has nrob ? 2 linear con-
straints and 2nrob non-linear constraints. The input to the optimisation is a vector
of required reaches R ¼ r1; r2; . . .; rnrob½ �, a vector of weighting factors k ¼
k1; k2; . . .; knrob½ �, where in the simplest case all ki = 1/1nrob.nrob and kmin and kmax.
Finally the maximum number of arms of the product family needs to be specified.
If the problem is solved for different settings on narms the trade-off between per-
formance and commonality (number of arms) will be obtained. Hence, here we use
a single objective formulation (6.9) but solve the problem for increasing degree of
commonality will yield a Pareto-optimal front showing the trade-off between
performance and commonality.

Furthermore, the product family problem described in (6.9) is of problem type
three (P3) as describe in Sect. 6.3.2. The problem does not have exactly the same
parameterisation as (P3), but it has the same structure, i.e., to determine the
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component for each individual robot (to decide on mj
i), to design the actual

components (xcjl = length of the arms), and determine the number of components
for each module (cj = number of upper and lower arms).

6.4.2 Optimisation Method

The optimisation algorithm used in this application is an elitist GA with a popu-
lation size of 40 individuals which is run for 100 generations. The design solutions
are represented using a mixed chromosome including nrob continuous variables
(x1 and xi4) and 3(nrob-1) binary variables (xij), as described in (6.9). The crossover
operation is uniformed crossover where the real values are crossed with each other
using blend crossover and the integer values are chosen randomly from either the
mother or the father. After crossover a repair algorithm makes sure that only valid
chromosomes are generated, i.e., the constraints in (6.9) need to be fulfilled before
evaluating the chromosome. If an individual violate any of the nrob constraints
expressed in (6.9), it is modified in a random fashion until it does no longer violate
any constraints. Selection is made using Roulette wheel selection where the fitness
values are obtained using a linear ranking of the raw objective score.

6.4.3 Optimisation Results

In this section the problem stated in (6.9) will be solved for two different objective
functions, namely stroke and manipulability. For each objective the problem is
solved for different degrees of commonality in order to obtain a Pareto front
showing the trade-off between performance and number of parts in the product
platform.

First, consider the case where we should design a robot family consisting of
nrob ? 1 arms, i.e., the maximum degree of commonality, with the relative stroke as
the objective. The relative stroke is the stroke of each robot divided by the maximal
stroke obtained if lower and upper arms have the same length. The stroke is cal-
culated based on the length of the upper and lower arms of the robot, the minimal
angle between the arms, and the offset (O2) between link 1 and 2, see Fig. 6.4.

It turns out that solving problem (6.9) gives two possible solution topologies, a
family with 2 lower and 3 upper arms or 3 lower and 2 upper arms. Both have a
mean stroke of 95.06% but one has smallest lower arm of 737.8 mm, while the
other has smallest lower arm of 562.4 mm. However, these two designs are very
similar, as shown in Table 6.1. In fact, they are mirror images obtained by mir-
roring one design over the line k = 0.5, see Fig. 6.5. In the figure, the parallel
diagonal lines with different colours represent possible arm lengths for each reach
when the offset is 200 mm. The stars represent optimal arm lengths of individual
family members.
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The kinematics performance of robot family (a) is shown in Fig. 6.6. For each
robot shown, the shape of workspace in red line is compared with that of an ideal
robot that has the same reach and the same length of lower and upper arms
(in black). It is evident that for each robot in the family, an acceptable compromise
in the shape of workspace has been made.

Now let us consider more arms in the common platform. First, if we allow one
extra arm and solve the problem stated in (6.9), the average relative stroke could
be increased to 97.6%. With a third arm the optimum stroke would be 98.27%, and
finally, using eight arms there are no common components and the relative stroke
will be 100% for all robots. These results are presented in Table 6.2.

Table 6.1 Optimal product families with stroke objective

Family 1: 2 lower and 3 upper arms

Reach [mm] 1500 2000 2500 3100
Configuration [mm]

[lower arm; upper arm]
[738; 562] [738;1062] [1238;1062] [1238;1662]

k 0.568 0.410 0.538 0.427
Stroke [%] 64.70 64.90 70.94 69.29
Relative stroke [%] 95.28 92.02 98.41 94.52
Family 2: 3 lower and 2 upper arms

Reach [mm] 1500 2000 2500 3100
Configuration [mm]

[lower arm; upper arm]
[562; 738] [1062; 738] [1062; 1238] [1662; 1238]

k 0.433 0.590 0.462 0.573
Stroke [%] 64.71 64.88 70.94 69.28
Relative stroke [%] 95.30 92.01 98.41 94.51

Fig. 6.5 Two equivalent optimal product families, a with two lower and three upper arms and
b with three lower and two upper arms
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If the objective is changed to manipulability and problem (6.9) is again solved
for different degrees of commonality the results in Table 6.3 are obtained. A
visualisation of the manipulability measure over the work space for a product
family with the highest degree of commonality, i.e., family E is shown in Fig. 6.7.
In the figure, dark red colour represents points with high manipulability whereas
dark blue represents points with low manipulability.

In Figs. 6.8, 6.9 and 6.10 through Fig. 6.11 the different product families are
visualised in the same graphs. Solid lines and stars represent families obtained
with manipulability as objective, whereas circles and dashed lines represent
families obtained with stroke as the objective. The solid diagonal lines represent
the different reaches (actually reach minus offset O2), and each marker (star or
circle) represent one individual robot, with the smallest robot to the left.

Studying Fig. 6.8 through Fig. 6.11, it is obvious that the manipulability
measure favours longer upper arms, compared to the stroke measure. Figure 6.12
shows the trade-off between performance (relative stroke and manipulability) and
commonality. The graph could be looked upon as Pareto front showing the trade-
off between performance and cost; where on the vertical axis it is shown how the
performance increases with the number of components (costs) of the common
platform.
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Fig. 6.6 Workspace and stroke visualisation of the four robots in the product family in Fig. 5a,
minimum angle of 25� between lower and upper arms is used
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Fig. 6.7 Visualisation of the manipulability measure for family E

Fig. 6.8 Visualisation of
family A (circles) and E
(stars)
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6.5 Optimal Dynamic Design

The natural step after performing the kinematics design is to continue with the
dynamic design. However, in the dynamic design stage rather extensive simulation
models are required, and it is necessary to combine models from several disci-
plines in order to obtain a holistic view of the system. Furthermore, in order to
achieve an optimal design, the product must be treated as a complete system
instead of developing the different subsystems independently. For all the various

Fig. 6.9 Visualisation of
family B (circles) and F
(stars)

Fig. 6.10 Visualisation of
family C (circles) and G
(stars)
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domains of robot design, the geometry plays a significant role as input provider.
Therefore, it is essential to develop efficient methods for CAD-modelling in order
to integrate the geometric models into the optimisation framework.

6.5.1 Geometric and Dynamic Modelling

One outcome of modularity within a product family is increased external variety
and decreased internal variety, e.g., the number of components. The same principle
is adopted here for the geometric modelling of the product family, where the
geometries are saved as templates and instantiated with unique internal design

Fig. 6.11 Visualisation of
family D (circles) and H
(stars)
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variables. Thereby the number of model variants is effectively increased by
sharing few geometric templates between the model variants. By importing such
High Level CAD template geometries (HLCt), the robot is defined in three steps.
First, the number of axes is determined in a user interface, defining the skeleton
model of the robot, which is stored in the Datum HLCt and placed according to the
logic of the inference engine. The type of component HLCt for each axis is then
decided and an appropriate structure, from Structure HLCt, is chosen in the final
step. The model of the robot is thereby transformed from an empty initial model
into a complete model in three steps, as shown in the Fig. 6.13.

To simulate the dynamic properties of a robot, a dynamic model has to be
utilised. The dynamic model in the outlined framework is made using an in-house
simulation tool developed at ABB. The motion of the rigid manipulator can be
described by

Q ¼ MðqÞ � €qþ Vðq; _qÞ þ GðqÞ þ Bð _qÞ ð6:10Þ

where M is the inertia matrix, V is the vector of Coriolis and centrifugal forces,
G is a vector of gravity forces and B is a vector of viscous friction forces, q is a
vector of generalised coordinates e.g., angular position of each joint in the
manipulator. For more information about dynamic models and trajectory planning
for robots, see [20, 21].

The geometric and dynamic models are seamlessly integrated through a user
interface, where various engineering aspects of the robot are analysed concur-
rently. Furthermore the geometrical and dynamical aspects of the robot compo-
nents are stored in a component library.

Although commercial CAD tools are well suited to generate high fidelity
geometry for various analyses tools, they often require extensive time to update the
model after a parameter change. Therefore, a geometry database has been created
to reduce the simulation time required for generating the sought after geometry

Fig. 6.13 Relations between
the robot models and the
HLCt libraries
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during the optimisation. To produce the database the morphology and topology of
the robot structure are varied, and the geometric properties such as mass, centre of
gravity and inertia are stored in a geometric database, see Fig. 6.14.

All links subjected to parametric modification are coloured white. For link 1
and 3 the morphology is altered by modifying the actuator parameters. These are
modified by altering discrete values ranging from 1 to 15 representing different
actuator choices. A change of actuator will initiate a topologically import of the
actual detailed actuator geometries from the component HLCts. The logic stated in
the inference engine will then update the internal design variables of the link
housing the actuator so that it will fit. For link 2 and 4 the morphology is modified
by varying the lengths between 200–450 mm and 200–400 mm respectively.

Creating the geometric database is essentially to span the largest possible size
of the product platform as it contains all possible actuators and link configurations.
Hence for this application the product family optimisation problem will be of type
(P1) as describe in Sect. 6.3.2, i.e., the largest possible common platform has been
created and the problem is to design the family members and by doing so also
deciding the common platform.

6.5.2 Problem Formulation

The problem formulation consists of concurrently optimising the performance and
commonality level of a product family consisting of four robots. The optimisation

Geometry 

Database

Link 1

Motor 1:15

Link 2

200-450

Link 3

Motor 1:15

Link 4

200-400

Base

Motor 1:15

User Interface

l1

l2

Geometric Model

Fig. 6.14 The geometry
database is created by altering
the design variables of the
geometric model through the
user interface

Table 6.4 Payload and reach
requirements of the robot
family

Robot 1 Robot 2 Robot 3 Robot 4

Reach [mm] 760 860 960 1060
Payload [kg] 3 5 10 14
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variables are choice of servo actuators for axes 1, 2 and 3 as well as lengths of link
2 and 4, amounting to overall 16 optimisation variables for the entire product
family. The four robots’ reach and payload requirements are tabulated in
Table 6.4. Moreover, various trajectories have been implemented for each robot.

The problem is multi objective with the performance and commonality being
the objective functions. The performance objective, f1, is the sum of cycle time
(CT) and the robot weight (Weight) for all four robots, i. The performance
objective is to be minimised, hence low weight and cycle time is preferred.
The commonality objective is to maximise number of common components in the
robot family, summing up both links and actuators. The unit for the commonality
objective f2 is in percentage ranging from 0 to 100.

f1 ¼
X

ðk1CTi þ k2WeightiÞ

f2 ¼ 100 � k1

P

Linkshared
P

Link
þ k2

P

Actuatorshared
P

Actuator

	 


i ¼ 1; 2; 3; 4

ð6:11Þ

ki and ki are weighting factors where
P

ki = 1. The weighting factors ki have
been chosen to prioritise link commonality prior to actuator commonality. The
weight and cycle time are normalised and ki are chosen for even weighting.

The presented problem consists of discrete variables, and the two objectives and
the constraints are represented by non-linear functions where no analytical
derivatives are available. Therefore a multi-objective GA [6] has been chosen as
the optimisation algorithm. In references [4] and [7], GAs and MOGAs are applied
to solve platform design problems. In this chapter, NSGA-II are used as the
optimiser [11].

6.5.3 Computational Framework

In previous work [22] the robot design framework was utilised to design an
optimal modular robot for a specific task and a set of requirements. A product
family optimisation involves a higher computational burden, as all members in the
family need to be evaluated. Generally also the number of evaluations increases
because of the increased number of optimisation variables.

To shorten the optimisation procedure, several modifications have been made to
the earlier framework. As stated previously the mass properties are stored in a
geometry database prior to the optimisation. Moreover during the actual optimi-
sation all dynamic and static simulation results are stored in a dynamic database.
When a previously evaluated design is suggested by the optimisation algorithm,
the results will be retrieved from the dynamic database, thereby skipping both the
static and dynamic simulations. Naturally one should not evaluate a solution that
has been visited before. However, for the product family problem there might be
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parts of a solution (some family members) that have been evaluated, and hence
need not be simulated again.

Furthermore, the analyses of all robots in the family are executed in parallel, in
a distributed framework where the master PC sends out design variables to four
worker PCs. These will then return the performance objective for each family
member, whereas the commonality objective is calculated within the master PC,
see Fig. 6.15.

The static simulation calculates the torque required at different robot workspace
positions in order to withstand the gravitational forces. If the configuration does
not meet the gravitational forces i.e., the actuators are too weak, the performance
objective is given a penalty value. The dynamic simulation will not be initiated,
and hence the computational burden is reduced.

The geometrical data from the geometry database model is used to parameterise
the matrix and vectors in Eq. (6.10). The equation of motion for the robot is
implemented in a dynamic simulation program which also includes path and tra-
jectory planner and calculates properties such as torques, accelerations, speed and
cycle times.

6.5.4 Optimisation Results

The outlined optimisation framework has been utilised to search for the Pareto
frontier of the presented problem. The performance objective is to be minimised
with the aim of decreasing weight and cycle time, while the commonality
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Fig. 6.15 To speed up the
evaluation process, the robot
family is concurrently
computed on four worker
workstations

Table 6.5 Population size
and generations settings

Opt. 1 Opt. 2 Opt. 3 Opt. 4

Individuals 40 60 100 300
Generations 200 200 200 200
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objective is to be maximised to increase component sharing. Table 6.5 shows the
individual and generation settings that have been evaluated in order to estimate the
probable Pareto frontier.

Final results of the Pareto frontiers, up to the 5th rank, are visualised in
Fig. 6.16. Not surprisingly, as the number of individuals increase, the Pareto
frontiers move to more optimal locations. However this movement is progressively
minimised, suggesting that about 100 to 300 individuals is sufficient for finding the
optimal-Pareto frontier.

Judging from the 1st order Pareto frontier in Fig. 6.17, the algorithm is well
suited to find solutions for both high commonality and performance. In the robot
family with best performance, the highest reach robot has more powerful actuators,

20 40 60

17

18

19

20

21

22

Commonality

Performance

40 Individuals

60 Individuals

100 Individuals

300 Individuals

Fig. 6.16 Pareto frontiers for
40, 60, 100, and 300
individuals

Fig. 6.17 Pareto front showing the trade-off between performance and commonality (left), and
the product family, with best performance (1) and highest commonality (2) (right). The shared
modules are marked with an arrow
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while the smaller robots are capable in performing the pre-set trajectories with
smaller actuators. However the commonality level is low. For the robot family
with highest commonality, the actuators and arm lengths are selected in order to
maximise commonality, consequently punishing the overall performance.

6.6 Discussions and Conclusions

This chapter presents a mathematical framework for optimal design of product
families. Furthermore it illustrates how multi-objective evolutionary algorithms
could be employed to solve the product family problem for industrial robot
applications. A set of generic mathematical formulation for the product family
problem is presented, and later two of them are adapted for the specific
applications.

In general, the product family problem has multiple conflicting objectives, e.g.,
the degree of commonality is in conflict with the performance or customisation of
individual family members. Furthermore, the problem often contains of a mixture
of both discrete and continuous variables. The discrete variables are needed to
handle the combinatorial nature of the problem, i.e., to determine which module
to use with which family member, whereas the continuous variables are needed to
design the modules themselves. Finally, for real world problems a set of different
computer aided engineering tools are needed to evaluate design proposals, and
hence it is seldom possible to obtain any derivatives for the objective and con-
straint functions. These are all reasons for employing multi-objective evolutionary
algorithms for this type of problems.

In this chapter two different design applications are considered. The first example
is from the conceptual design stage and involves kinematics design of a traditional
industrial robot, whereas the second example is from a more detailed design stage
and considers dynamic design of a modular industrial robot. Hence the described
methods are applied at different stages of the product development process.

For the kinematics design case two different performance measures are used,
namely stroke and manipulability. The optimisation variables are the length of the
lower and upper arms of the robots. The results obtained show the trade-off
between performance (stroke and manipulability) and number of components in
the common platform. For this application the Pareto front is obtained by sampling
points on the Pareto front by running multiple GA optimisations.

Stroke is a rather simplistic performance measure which is easy and fast to
calculate. From a stroke perspective only the difference between the length of the
upper and lower arm is of importance, and in order to maximise the stroke
the lower and upper arm should have equal length. As only the difference between
the arms are of importance, multiple optima could be obtained by mirroring the
design over the line k = 0.5. In order to calculate the manipulability measure the
workspace need to be meshed and the Jacobian calculated for each discrete point.
An overall kinematics performance measure is then obtained by aggregating the
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manipulability for each point. Hence, manipulability is more complicated to
compute as compared with stroke.

From a manipulability perspective it is advantageous with a longer upper arm
compared to stroke, and hence the graphs in Fig. 6.8 through Fig. 6.11 are shifted
upwards for the manipulability measure. The majority of the serial manipulators
manufactured today have in fact a slightly longer upper arm, which favour the
applicability of manipulability as a measure for kinematic performance.

For the dynamic design problem a framework for product family design of mod-
ular robots is presented. Complex products generally have an intricate dependency
between geometry and dynamic performance. Knowledge based engineering is uti-
lised tomanage the framework complexity which automatically creates the geometric
CAD model and seamlessly integrates the dynamic simulation model. Thereby, a
framework for multidisciplinary design optimisation has been established.

Based on the framework a product family optimisation problem has been set up
where the combination of discrete component selections invokes changes in the
geometric model, as well as in the dynamic simulation model. The links and drive
train of a modular robot family has been optimised, and a Pareto frontier generated
using a multi-objective GA. The Pareto front shows the trade-off between com-
monality of the common platform and performance of the individual family
members. It could be seen how individual performance is deteriorated when
commonality is increased.

It seems natural that there is a trade-off between commonality and performance,
especially as a high degree of commonality also implies low cost. However, this is
not always the case. One means of obtaining a high degree of commonality for the
modular robot is to use the largest actuators for all robots. Hence a high degree of
commonality could be obtained by always sharing the best (or most expensive)
component. This is obviously not cost effective. For the modular robot this
problem was handled by including the weight in the performance measure and thus
penalising too large actuators. An alternative is to introduce a commonality
measure that better reflects the cost of the family.

For future work, continuous variables for the actuators, e.g., limits on
torque and angular velocity can be taken into consideration during the optimisa-
tion. This will facilitate life time estimation of the drive train components.
Furthermore, FE-analysis needs to be incorporated in order to evaluate the stress
levels in the links, and hence facilitate detail design of the link cross sections.
However by increasing the complexity of the problem formulation, the optimi-
sation framework needs to undergo further modifications. One approach is to
introduce several hierarchical layers for the optimisation, where one algorithm
optimises the overall layout, whereas detailed component optimisation is per-
formed by another algorithm.

Another future improvement is the development of cost measures, considering
both development and manufacturing costs, cost saving as a result of commonality,
component costs and life cycle costs of the robot family.
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Chapter 7
Multi-objective Optimisation and
Multi-criteria Decision Making for FDM
Using Evolutionary Approaches

Nikhil Padhye and Kalyanmoy Deb

Abstract In this chapter, we methodologically describe a multi-objective problem
solving approach, concurrently minimising two conflicting goals—average surface
roughness—Ra and build time—T, for object manufacturing in Fused Deposition
Method (FDM) process by usage of evolutionary algorithms. Popularly used multi-
objective genetic algorithm (NSGA-II) and recently proposed multi-objective
particle swarm optimisation (MOPSO) algorithms are employed for the optimi-
sation purposes. Statistically significant performance measures are employed to
compare the two algorithms and approximate the Pareto-optimal fronts. To refine
the solutions obtained by the evolutionary optimisers, an effective mutation-driven
hill-climbing local search is proposed. Three new proposals and several sugges-
tions pertaining to the issue of decision making in the presence of multiple optimal
solutions are made. The overall procedure is integrated into an engine called
MORPE—multi-objective rapid prototyping engine. Sample objects are consid-
ered and several case studies are performed to demonstrate the working of
MORPE. Finally, a careful investigation of the optimal build orientations for
several considered objects is done or selected basis and a trend is discovered,
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which can be considered highly useful for various practical rapid prototyping (RP)
applications.

7.1 Introduction

Rapid prototyping (RP) or layered manufacturing refers to processes in which a
component is fabricated by layer-by-layer deposition of material from 3D com-
puter-assisted design models. It is an emerging technology which is becoming
increasingly important in the market today. RP is playing a significant role in
development of new products and for effecting cost reductions by enabling speedy
development of prototypes.

Today there exist a multitude of RP techniques. Common examples of RP
techniques are fused deposition method (FDM), stereolithography (SLA), selective
laser sintering (SLS), laminated object manufacturing (LOM), 3D printing and
direct metal deposition (DMD). The advent of these technologies has made it
possible to fabricate prototypes directly from Computer -Aided Design (CAD)
models. The prototypes can be checked for the feasibility of a design concept and
prototype verification.

The first step in the RP cycle is creation of a geometric model using CAD tool.
This is followed by determination of suitable deposition orientation, slicing,
generation of material deposition paths, part deposition and post-processing
operations. Many of these steps can be done automatically by the RP machine, but
usually part deposition orientation is selected by the user. Part orientation has
significant effect on build time and surface quality [1]. For some RP methods, e.g.
FDM, build orientation also effects the support structure requirement.

While using any RP method, an obvious desire is to manufacture components
with low surface roughnesses (Ra) and build times (T) and a systematic meth-
odology to determine an orientation is required. This chapter proposes a novel
approach to search for optimal build orientations, while simultaneously mini-
mising Ra and T with respect to the FDM process. The minimisation of the con-
sidered objectives is conflicting in nature which leads to set of trade-off solutions
with varying Ra and T : Further, in presence of such trade-off points the issue of
decision making, i.e. selecting one orientation from a set of available optimal
orientations becomes important which is addressed in this chapter. Interestingly,
post-optimal analysis of obtained trade-off solutions, for various objects consid-
ered in this study, provides a deeper insight into FDM process and leads to
development of knowledge via. optimisation.

The entire procedure is automated using a developed software—multi-objective

rapid prototyping engine (MORPE). The software tool is developed for FDM system
and is easily modifiable for other RP techniques. MORPE incorporates two evolu-
tionary algorithms elitist non-dominated sorting genetic algorithm (NSGA-II)
and multi-objective particle swarm optimisation (MOPSO) to perform
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optimisation, variable slicing module to carry out slicing of a solid model and
computing subsequently (Ra; T) at any given orientation, and inbuilt tools like
attainment surface estimator and hypervolume calculator to arrive at results of
statistical importance.

The rest of the chapter is organised as follows: Sect. 7.2 reviews various studies
carried out in past in context to build orientations. Section 7.3 provides a multi-
objective problem formulation for FDM process. Section 7.4 develops a system-
atic approach to address the multi-objective optimisation task. This section
discusses the variable slicing procedure and popular multi-objective evolutionary
optimisers (NSGA-II and MOPSO). Then, an introduction to statistically compa-
rable performance measures is made, Finally, a description on mutation- driven
hill-climbing local is provided. In Sect. 7.5 three decision making techniques are
proposed for selecting a favourable build orientation. Section 7.6 validates the
proposed approach through several simulations. The results and discussions are
carried out in Sect. 7.7. This section also provides an insight into the decision
making issue and innovative design principles are deciphered via. post-optimal
analysis. Finally, conclusions are made in Sect. 7.8.

7.2 Related Works

Choice of build orientation for part fabrication in layered manufacturing has been
an active area of research for more than a decade. Broadly speaking, the goals are
to minimise fabrication time (or cost) and maximise part accuracy. Usually these
goals depend on the build orientation in accordance with the characteristics of the
specific LM technology involved. The objective function formulation of such goals
has been widely researched in the past. The measure employed for quantifying
build time (or cost) is usually the number of layers [2–7] or, the part height when
layer thickness is constant [1, 8, 9]. For LM technologies that require support
structures during fabrication, the estimated support structure volume has also been
applied as time-cost criterion [1, 10]. Post-processing time is another important
cost factor that gets directly affected by the orientation choice and has been
considered as a criterion for the orientation selection [8].

To account for the fabrication quality several indicators have been suggested:
estimated surface roughness [3, 6, 11], weighted average surface roughness
[12, 13], and total area of surfaces with estimated roughness above a certain limit
[14]. Additionally, various criteria related with known sources of dimensional
inaccuracies such as volumetric error [15, 16], the process planning or stair
stepping error [2, 4, 11], and trapped volume error [17] for sintered layer parts
have been proposed. Other quality related measures proposed are total overhang
area [7, 10], the stability of the part structure during fabrication [4, 7], and per-
ceived mechanical strength [18].

Once the measure to quantify time or cost (first objective) and surface quality
(second objective) are decided, an appropriate search procedure is required to
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discover favourable orientations—which optimise the considered objectives
simultaneously. Since determination of these objectives at different orientations
often involves substantial computational cost (i.e. rotation of CAD model and
subsequent slicing) employment of efficient optimisation algorithms is desired.
Depending on the part shape, model choice for surface quality or time the
objective functions may exhibit discontinuity, rendering gradient-based methods
ineffective. Evolutionary algorithms like genetic algorithms (GAs) have estab-
lished themselves as potential candidates in addressing the challenges posed by
real world problems where classical optimisation techniques fail [19]. In the past,
evolutionary methods have also been applied for determination of optimal build
orientations. A brief review of past works related to such optimisation tasks is in
order as follows.

Previous studies in LM literature employing GAs for build orientation opti-
misation have mostly considered either single objective study or combination of
multiple objectives into one using weighted approach. In [13] optimal build
directions were explored using GA for different RP processes. Two goals,
average weighted surface roughness (AWSR) and build times were combined to
form a single objective and treated for minimisation. In [14], single objective
GA was employed to determine optimal fabrication directions for LM processes
so as to minimise the required post-machining region (RPMR) (as post-
machining is often required to improve the surface quality). Here, authors
developed an expression of the distribution of surface roughness and relation
between the RPMR and fabrication direction. In [20] build orientations for parts
fabricated with stereolithography were derived for optimising build time, surface
roughness and post-processing times using single objective weighted approach.
Other studies in literature that have also employed single objective weighted
approach are [5, 7, 10, 11].

For the optimisation of a single criterion, like the part height, the average cusp
height, or the total post-processing area, specific algorithms have been proposed in
previous studies [9, 14, 21]. In [3, 9] authors selected orientations from a list of
pre-selected set (determined by ranking of objectives and thus, allocating impor-
tance). Such a pre-selection mechanisms or minimisation of weighted single
objective functions (discussed earlier) have well-known deficiencies and opti-
mality of the solutions cannot be guaranteed [19]. However, more recently suitable
multi-objective optimisation approaches using GAs, i.e. simultaneously minimis-
ing or maximising several goals, have been studied for different LM processes
[6, 22–25]. Similar attempts to optimise multiple goals in this direction have been
made [26–29].

Despite such studies, a systematic application of nature inspired heuristics
addressing multi-objective optimisation, decision-making and knowledge discov-
ery through optimisation is still missing. To address the existing shortcomings, we
have chosen FDM process for which optimal build orientations are determined and
post-optimal analysis is carried out.
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7.3 Multi-objective Problem

Without loss of generality, we assume that the goal is to minimise m functions
f1; . . .; fm of n-dimensional decision variables /: A decision vector /1 2 S is called
Pareto-optimal if there is no other decision vector /2 2 S that dominates it. Any
vector /1 is said to dominate /2; if /1 is not worse than /2 in all of the objectives
and it is strictly better than /2 in at least one objective. In case two solutions
/1 and /2 do not dominate each other, we say that they are indifferent to each
other or are non-dominated with respect to each other. To solve multi-objective
problems, algorithms which can ensure a well distributed and well converged set
of trade-off solutions are needed.

In current study the objectives of interest are average surface roughness Ra and
total build time T: The formulation of bi-objective optimisation problem is done as
follows:

Minimise f1 ¼ Rað/Þ;
Minimise f2 ¼ Tð/Þ;

where / ¼ hx; hy

subject to:

0� hx � 180;

0� hy � 180:

The decision variables of the problem are hx and hy which represent the rota-
tions about X and Y axes, respectively. Figure 7.1a, b describe the rotation scheme
stated here by considering rotation of a facet or planar triangle (CAD model is
represented in the form of facets and can be rotated by rotation of all the facets).

Computation of Ra and T has been borrowed from [6, 23, 24]. For FDM the
surface roughness for each layer is a function of slice thickness t and build angle h
as shown in Fig. 7.2. Note that h should not be confused with hx and hy: The Ra

computation is done as follows: if build angle h is between 0–70�:

Ra ðlmÞ ¼ K �
t ðmmÞ

cos h
; ð7:1Þ

where K lies in (69.28–72.36). For build angle = 90� i.e. for a horizontal surface

Ra ðlmÞ ¼ 117:6� t ðmmÞ: ð7:2Þ

If build angle is greater than 70� and less than 90�:

Ra ðlmÞ ¼
1

20
90Ra70� � 70Ra90� þ hðRa90� � Ra70�Þ½ �; ð7:3Þ
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where Ra70 and Ra90 are surface roughnesses at 70� and 90� build angles. Finally
the average part surface roughness is calculated as:

Ra ðlmÞ ¼

P

Rai

total number of slices
; ð7:4Þ

where Rai is the roughness of the ith trapezium, refer Fig. 7.2. The build time
(T) for a component is equal to the sum of build times of individual layers:

Tbuild ¼
X

Nlayer

i¼1

tlayeri þ Nlayer � tzmove þ
Nlayer

k
� twipe: ð7:5Þ
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Here twipe is machine-specific time to wipe the nozzle and time to build ith layer is
itself sum of times to lay the part tparti; support structure tsuppi and table movement
tmovei:

tlayeri ¼ tparti þ tsuppi þ tmovei; ð7:6Þ

where tparti for ith layer is computed as follows:

tparti ¼
Asi

rw
� v: ð7:7Þ

Here, Asi

rw
is the material contained area in ith layer; rw is the road width and v is the

nozzle speed. It is assumed that because of support structure build time is negli-
gibly affected as taken in [23]. The machine-specific parameters have been taken
for Stratasys FDM 1650 system installed at IIT Kanpur equipped for prototyping
with ABS plastic. It is worthwhile to mention that optimal build orientation
directly depends on the model employed for computation of Ra and T ; thus more
realistic and accurate model is favourable. The focus in this study is to work with a
reasonable model and demonstrate the multi-objective optimisation problem
solving and decision making principles.

Since material laying deposition is assumed to be along z-axis, the rotation
about z-axis is invariant for the computation of objectives. Thus, rotations only
about x-axis and y-axis are considered.

7.4 Proposed Approach

The overall procedure is carried out by MORPE which comprises following
modules: (a) adaptive slicing procedure, (b) multi-objective optimisers—NSGA-II
and MOPSO, (c) performance comparison tools—hypervolume indicator and
attainment surface approximator, (d) local search procedure, (e) decision making
tools. Figure 7.3 portrays the working of MORPE.

7.4.1 Adaptive Slicing

The adaptive slicing procedure has been developed in MATLAB version R2007a.
The optimisation routines and performance comparison measures are developed in
C (gcc version 4.3.2) language. MATLAB code is compiled using MCR
(MATLAB compiler runtime) version 7.6 and integrated with optimisation engine.
The experiments reported in this study have been carried out on Intel single core
2.9 GHz, RAM-2.0 GB, Hard disk-80 GB, OS-Linux-Ubuntu-9.04, Computer
architecture-32 bit . Figure 7.4 shows the flowchart for adaptive slicing module.
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In the past adaptive slicing procedure has been adopted to improve the surface
quality and accuracy in LM processes. The adaptive procedure developed in this
study is borrowed from [30]. Its salient features are discussed next.

Fig. 7.3 Flowchart illustrating the working of developed MORPE procedure
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The basic function of any slicing module is to generate two dimensional slices
from a three-dimensional tessellated model. The input to the slicing engine is a
STL file of the solid model under consideration. The STL file comprises coordi-
nates of the triangular facets and their normals and entire solid model is repre-
sented by its constituent facets. A triangular facet comprises three points each of
which is associated with (x, y, z) coordinate. For the purpose discussion we assume
that z-axis denotes the vertical direction (direction of material deposition) and
zmin and zmax denote the lowest and highest z-coordinates on the solid model.

For efficient slicing procedure an effective facet-processing technique is
employed: first, facets are grouped into facet groups (based on same zmin) and then
into sub-facet-groups (based on same zmin and zmax). Next, slicing planes are
considered at intervals from zmin to zmax: a, facets have already been grouped and
sub-grouped, as stated before, intersection of slicing planes with facets can be
found efficiently, saving considerable amount of computational overhead. At each
new slicing plane a check for a new feature using feature recognition rules is
carried out. In case a new feature is detected a series of slicing planes is considered
at small intervals so that feature informations are well captured.

If user has defined an upper limit on roughness value, then surface roughness is
calculated at every slicing step for two adjacent slices and if the value exceeds the

Fig. 7.4 Flowchart for slicing procedure
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specified bound, position for the upper slicing planes are recomputed so that
roughness value stays within the bounds.

In case of constant height slicing procedure, feature detection mechanism and
bound-check on roughness are omitted. Here, the slicing planes are considered at
specified interval height. Figure 7.5a, b compare constant and adaptive height
slicing procedures for a cuboid oriented at an angle of 45� about X-axis. In con-
stant slicing, interval height of 1.5 units is chosen. In adaptive slicing a maximum
height interval of 1.5 units is allowed and bound on roughness value for each layer
is set to 40.0 units. As observed, in adaptive case slice thicknesses are automati-
cally calculated while keeping roughness values bounded. It should be noted that
although roughness value for a layer can be controlled to stay below the chosen
threshold but overall roughness Ra may be larger than the threshold.

7.4.2 Evolutionary Optimisers

Although there exist several multi-objective evolutionary algorithms (MOEAs) in
literature, popularly used GA based NSGA-II and particle swarm based MOPSO
optimisers have been utilised in this study. In the following paragraphs we briefly
describe the working and salient features of these algorithms.

MOPSO. Particle swarm optimisation (PSO) is now a well established opti-
misation technique in variety of contexts. PSO is a population based technique,
similar in some respects to other evolutionary algorithms, except that potential
solutions (particles) move rather than evolve through the search space. PSO
consists of several candidate solutions called particles each of which has a position
and velocity, and experiences linear spring-like attractions towards two attractors:

1. the best position attained by that particle so far (particle attractor or personal
best pbest);
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Fig. 7.5 a Constant height slicing procedure. Ra for object turns out to be 61.67 units. b Ra

adaptive slicing procedure. Ra for object turns out to be 45.12 units
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2. the best of the particle attractors in a certain neighborhood (neighborhood
attractor or global best gbest).

More recently, PSO has been successfully extended to multi-objective opti-
misation problems and such methods are called MOPSO. Its simple implemen-
tation, population based approach, success in handling continuous search spaces
and notions of individual position and velocity are major reasons for its popularity.
PSO works with a population of individuals each of which is subjected to
movement in direction of ‘Pbest’—position corresponding to best fitness attained
by an individual and a ‘Gbest’—position of best fitness individual in the entire
population. In each generation or cycle (‘t’), every individual is associated with a
position vector (�/t) and a velocity vector (�vt). The size of these vectors is equal to
the number of variables in the problem. The position and velocity of each indi-
vidual is updated according to following equations:

�vtþ1 ¼ w�vt þ c1r1 � ðPBestt � �/tÞ þ c2r2 � ðGBestt � �/tÞ; ð7:8Þ

�/tþ1 ¼ �vt þ �/t; ð7:9Þ

�/tþ1 ¼
�/tþ1 þ

�d: ð7:10Þ

Above are position and velocity update equations. The term w is known as
inertia weight and c1 and c2 are known as learning factors. In our procedure w has
been chosen as 0.5, c1 and c2 are both taken to be 1.0. Once the velocities and
positions have been updated, a random perturbation, denoted by �d; is added to an
individual’s position based on some probability. This is known as ‘turbulence
factor’ and is analogous to ‘mutation’ employed in GAs. Goal of ‘turbulence’ is to
preserve diversity in the population.

The MOPSO utilised in this study has been borrowed from [31, 32]. At the start
of optimisation, for all N particles positions (/) are initialised randomly and
velocities (v) are set to zero. At the onset ‘pbest’ for each particle is assigned as the
particle itself. The current MOPSO maintains an external archive of non-
dominated solutions of the population which is updated after every generation.
This global archive is empty in the beginning and can store only a maximum
number of non-dominated solutions which is specified at the start. In case the
number of non-dominated solutions exceed the maximum size of the archive, in
any generation, clustering is invoked to restore the archive size. For each particle
in the population a personal archive, also called ‘pbest archive’ is maintained. The
‘pbest archive’ contains the most recent non-dominated positions that particle has
encountered while searching the space. Such an additional archiving scheme for
the particles is often found to be extremely effective.

In every generation, each particle is assigned two guides ‘pbest’ and ‘gbest’
from its ‘pbest archive’ and swarms global archive. The way in which these guides
are allocated has a great impact on algorithms performance and there exist several
methods for guide selection. In this study, ‘NWtd.’ and ‘Dom.’ methods for per-
sonal best selection and global best selection have been chosen. For more details

7 Multi-objective Optimization and Multi-criteria Decision Making 229



on guide selection in MOPSO reader is referred to [32, 33]. Maximum number of
generations is set as the termination criterion.

NSGA-II. Elitist non-dominated sorting genetic algorithm (NSGA-II) is one of
the most popularly used GA for multi-objective optimisation. Several salient
features like elite preservation and explicit diversity preserving mechanisms
ensure its good convergence and diversity. Brief description of NSGA-II proce-
dure is described here, for further details reader is referred to [19, 34].

In NSGA-II, offspring population (size N) is created using parent population
(size N) by usual genetic operators—selection, crossover and mutation. The cre-
ated child population is combined with parent population to form a combined
population of size 2N, and then a non-dominated sorting is carried out to classify
the entire population into several non-dominated fronts. The new population
(size N) is then filled by the members of combined population belonging to
different non-dominated levels or starting from first level. As all members of
combined population cannot be accommodated in the new population, several non-
dominated fronts have to be discarded. As all members of last front entering the
new population may not be accommodated, only few members (corresponding to
number of available slots) are selected from the last front based on the crowding
distance technique. Binary tournament selection, SBX, and polynomial mutation
operators are used for NSGA-II.

7.4.3 Performance Comparisons

Arising out of the stochastic nature of evolutionary approaches, it is difficult to
conclude anything about performance from just one simulation run. To eliminate
the random effects and gather results of statistical significance, we perform mul-
tiple (11) runs of both the algorithms corresponding to different initial population.
Two performance measures commonly used in EA literature have been employed
in this study:

Attainment surfaces. Multiple runs of an evolutionary algorithm usually result
in multiple non-dominated set. To deduce overall performance, an approximation
of best non-dominated set, also referred to as first (0%) attainment surface, is
computed from available non-dominated sets. As non-dominated set can be vis-
ualised easily in two and three dimensions, attainment surfaces provide a good
insight the algorithms performance. The computation of attainment surfaces is
done by using attainment surface package described in [35].

Hypervolume indicator. Hypervolume is a measurement which takes into
account the diversity as well as the convergence of the solutions [36]. Hypervo-
lume represents the sum of the areas enclosed within the hypercubes formed by the
points on the non-dominated front and a chosen reference point. For minimisation
type problems a higher value of hypervolume is desirable, as it is indicative of
better spread and convergence of solutions. Hypervolume computation for a set of
non-dominated points is done with respect to a reference point ‘R’. It should be
noted that contribution to hypervolume is only made by points which dominate the
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reference point. Any other point which does not dominate the reference point has
zero hypervolume contribution. In this study, we have computed average hyper-
volume curves over several generations for comparisons purposes. Although,
hypervolume computation is dependent on the choice of reference point, yet it is
regarded as a good measure and is applicable to two or more objectives.

7.4.4 Local Search Method

In general, for a real-world multi-objective optimisation problem location of
Pareto-optimal front is unknown. Although, MOEAs provide a good means to
reach approximate or close to Pareto-optimal solutions, often further improvement
on obtained solutions is possible by conducting ‘local search’. Local search usu-
ally considers an already found non-dominated solution and tries to improve it by
utilising a construction of some single objective function.

In this study we construct an achievement scalarising function (ASF) [37] and
carry out its minimisation. A single-objective optimisation problem is formulated
as follows. Consider a starting point y (having objective vector f ðyÞ and setting
z ¼ f ðyÞ; obtained from an multi-objective optimisation simulation and formulate
the optimisation problem:

min
x2S�Rn

max
M

i¼1

fiðxÞ � zi

fmax
i � fmin

i

þ q
X

M

j¼1

fjðxÞ � zj

fmax
j � fmin

j

;

where z ¼ f ðyÞ is usually referred to as the reference point for local search, and
fmax
i and fmin

i are maximum and minimum objective values of the ‘best non-
dominated’ set. By this minimisation the solutions are projected on Pareto-optimal
front and convergence can be guaranteed.

Although various single-objective optimisation techniques could be applied for
minimising ASF, but because of discontinuous nature of objective functions
(attributable to max operator) gradient-based methods are not applicable. We
employed SQP (sequential quadratic programming)-based local search for this
purpose and no improvement was found. To overcome this problem we propose a
mutation-driven or hill-climbing strategy in this chapter. Figure 7.6b describes the
hill-climbing approach. To conduct the local search a maximum number of trials
(MaxTrials) are pre-set to limit the number of function evaluations. Then, with
equal probability, problem variables hx and hy are perturbed according to Gaussian
distribution (mean 0.0 and standard deviation ri). Standard deviation (ri) for
Gaussian distribution is varied linearly from 10.0 to 1.0 over the iterations. Such a
local search enables the investigator to explore wider regions in the starting and
becomes more focussed towards the end. If ASF value at newly created orienta-
tions is lowered, then the perturbations in hx and hy are accepted. The whole
procedure is continued till termination criteria is met. In this study MaxTrials is set
at 1,500.
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7.5 Decision Making

When a set of trade-off solutions is obtained from a multi-objective optimisation
exercise, a decision point needs to be chosen to proceed further. This is often a
non-trivial task for an operator and certain guidelines are necessary. To address
this task, we introduce three decision making techniques, namely—‘Reference
Point Method’, ‘Marginal Utility Method’ and ‘L2 Metric Method’ [38]. The first
method requires an ‘aspiration point’, as an input from the user. The remaining two

points
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f2

points
Ref.

Obtained

PO front

For i =1 to MaxTrials

r = RandomDouble(0,1)

If (r 0.5)

θNew
x = θx + N 0, σi

2

else

θ
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y = θy + N 0, σi

2

end

If(ASF( θNew
x ,θNew

y ) ASF( θx,θy ))

Update(θx, θy)

Update(σi)

end

End

General Parameters:

Population size 40

Generations 80

Runs 11

Other NSGA-II Parameters:

Crossover probability 0.9

Mutation probability 0.5

Crossover Index 10

Mutation Index 20

Other MOPSO Parameters:

Turbulence Factor 0.25

pBest Archive Size 3

Archive Size 200

(a)

(b) (c)

Fig. 7.6 Description for ASF, Hill Climber and Parameter Settings. a Achievement scalarisation
based local search, b mutation-driven hill-climbing local search, c parameter setting for
evolutionary algorithms
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methods do not require any user input. The description of these methods follows
next.

Reference point method. Here it is assumed that the designer has some pre-
decided preference (or aspiration) for an operating point with which he/she is
likely to settle. The goal is to find a solution which is better than the aspiration of
the designer and thereby this method is known as the ‘Aspiration Point Method’.
The aspiration point is allocated as the reference point for ASF scheme described
in Sect. 7.4.4, and ASF is evaluated for all points on the Pareto-optimal front. The
Pareto-optimal solution which corresponds to the minimum ASF value is selected.

For illustration purposes, following three aspiration points are considered:

Asp1 ¼
Ramin þ Ramax

2
;
Tmin þ Tmax

2

� �

;

Asp2 ¼
Ramin þ Ramax

2
; Tmax

� �

;

Asp3 ¼ Ramax;
Tmin þ Tmax

2

� �

:

The corresponding decision choices obtained on the Pareto-front will be indi-
cated as P1; P2 and P3: Asp1; for example, implies that user is willing to accept an
available and better point in the proximity of the mean of best and worst obtained
(Ra; T) values. In case of convex Pareto-optimal decision choice dominates the
aspiration point, whereas in case of concave set decision choice gets dominated by
the aspiration point.

Marginal utility method. This approach does not require any prior information
from the user and searches for a Pareto-optimal solution which shows least affinity
towards any of its neighbours in the objective space. For computing this affinity,
consider three non-dominated points P1; P0 and P2; such that ðRa1 �Ra0 �Ra2Þ
and ðT1 	 T0 	 T2Þ and we are interested in evaluating the affinity at the middle
point P0: P1 and P2 lie in the neighbourhood of P0 and are selected as follows.
Consider k points, P0;m m = 1 to k; nearest to P0; with Ra0;m �Ra0: Then, the
centroid of all P0;ms is computed and out of the P0;ms the one which is closest to
the centroid is selected as P1: For selecting P2 same exercise is repeated but this
time considering points such that Ra0;ms are greater than Ra0:

Once P1 and P2 are computed for a P0; ‘affinity function’ (AF), is calculated as:

AFP0 ¼ maxðW1;W2Þ; where W1 ¼
RaP0 � RaP1

TP1 � TP0

and W2 ¼
RaP2 � RaP0

TP0 � TP2

:

For each point in the non-dominated set, except for k extreme points at both
ends, AF is computed and the solution with minimum AF is assigned as the
decision choice. This solution is argued to possess least affinity towards any of its
neighbours. The value of k decides the resolution of the proximity in which we are
interested to compute the affinity function. We have taken the value of k equal to 6.
Decision point by this method is usually a ‘knee point’. ‘Knee points’ are often of
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great practical importance as they denote a coordinate on Pareto-front where
increase (decrease) in one objective is very large when compared with decrease
(or increase) in the other objective. From a practical view-point there is not much
gain in moving away from the ‘knee’ position.

L2-metric. This is a straight-forward method to select one solution out of many
non-dominated solutions without any user information. Firstly, each objective is
normalised in ½0:0; 1:0�: Then, an ‘ideal point’ is constructed, which is origin in
case of normalised space, and set as the reference point. Euclidean distance (L2) of
each point in the non-dominated set is calculated from the reference point and the
solution with smallest Euclidean distance is finally selected.

7.6 Experiments

In this section a series of simulations are performed on various solid models to
demonstrate the working of MORPE. The major goals of this study are:

1. Compare the performances of MOPSO and NSGA-II by computing hypervo-
lume over generations and draw conclusions on their convergence and diversity
characteristics.

2. Approximate the Pareto-optimal set by computing first (0%) attainment surface
from 11 runs of each MOPSO and NSGA-II.

3. Fine tune the best joint non-dominated of MOPSO and NSGA-II by carrying
out ‘Local Search’, and find truly (or close to) Pareto-optimal solutions.

4. Analyse the trade-off solutions and validate the overall procedure. In particular,
examine the extreme solutions and identify similarities.

5. Demonstrate the working of ‘Decision Making Methods’ and highlight their
significance in selecting the build orientations.

6. Draw out practical guidelines for a designer through careful post-optimal
analysis.

First, basic geometrical solid models like Cuboid, Cuboidal Pyramid, Prism and
Pyramid are considered. The objective function evaluation is comparatively less
intensive (computationally speaking) for these simple models as they are made up
of flat and lesser number of faces. Results arrived here provide preliminary con-
clusions regarding MOPSO and NSGA-II performances and validate the working
of MORPE. Next, more complicated solid models (with time consuming function
evaluations)—Pentagon Bar, Cylinder, Pie, Diamond and Connector are consid-
ered for the bi-objective optimisation. For this set of objects only a single run of
MOPSO and NSGA-II is performed and the best joint non-dominated is computed
i.e. non-dominated set from MOPSO and NSGA-II are merged and non-dominated
sorting is carried out to find non-dominated solutions in the combined set.

For all the solid models, non-dominated sets and orientations corresponding to
minimum Ra and minimum T are plotted. It should be noted that minimum Ra and
minimum T solutions are chosen from the best joint non-dominated set after doing
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local search. Decision choice based on L2metric for each solid object is also
highlighted. Similarities amongst extreme solutions of different solid models is
found and valuable insight is gained. Several practical aspects and design con-
siderations are also addressed through careful analysis of trade-off fronts.

7.7 Results and Discussions

In general, it is difficult to predict an optimal build direction for any solid model.
Major difficulty arises caused by complex and non-differentiable expressions for
surface roughness. This is also the main reason for using an optimisation algo-
rithm. For a minimum time orientation least number of layers are required. Since
layer thicknesses vary according to the adaptive slicing procedure described ear-
lier, an orientation with minimum length in the build direction may not lead to
minimum number of slices. The total number of slices depends on slice thick-
nesses which in turn solely depends on the local geometry of the solid model.

An orientation in which facets are inclined with respect to vertical would
require a support structure and is likely to result in higher surface roughness.
However, one should note that because of adaptive slicing procedure local surface
roughness is limited and appearance of a support structure is counteracted by
thinner slices, thus increasing the number of slices. The thinner slices are also
associated with smaller strip areas, and as local roughness is weighted with the
strip areas the overall surface roughness tends to decrease. For an optimal solution
these two opposing factors are balanced. This also explains why a trade-off exists
between the build time and surface roughness. Based on this discussion, we see
that minimum T and Ra orientations are non-intuitive. Now, we study few simple
objects—Cuboid, Cuboidal Pyramid, Prism and Pyramid, and investigate their
optimal orientations one by one.

For Cuboid, we find that MOPSO performs better by showing a faster rise in
hypervolume as compared with NSGA-II and attains a steady value which is
higher than NSGA-II hypervolume, Figure 7.7a. Better performance of MOPSO is
also highlighted from the first (0 %) attainment surface, Figure 7.7b. MOPSO
shows a better convergence and spread by dominating a major portion of NSGA-II
attainment surface. The extreme solutions corresponding to minimum T and Ra

found by MOPSO were more accurate and are shown in Fig. 7.7c and 7.7d,
respectively. For the minimum T orientation shortest dimension occurs along the
z-axis (the build direction). But, minimum Ra orientation is a tilted one and
requires support structure. The appearance of support structure causes an increase
in roughness locally which is compensated by lowering of layer thicknesses
because of adaptive slicing. Smaller slice thicknesses result is larger number of
layers and Ra gets minimised. The L2 metric based decision choice is a solution at
the ‘knee’ of the Pareto-front and its orientation is shown in Fig. 7.7e. The
decision choice has an orientation which is similar to minimum T orientation.
‘Aspiration point method’ is shown in Fig. 7.7f and solutions found by this method
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lie on the Pareto-front and dominate the corresponding ‘aspiration point’. The
solution found by the ‘Marginal utility method’ is shown in Fig. 7.7g and corre-
sponds to a ‘knee’ point. It is important to understand the significance of ‘knee’
point and why for practical purposes a ‘knee’ solution is most favourable point.
For e.g., Fig. 7.7b, at the ‘knee’ point one encounters a sharp increase in T on a
very small reduction in Ra (if we move along decreasing Ra) and a sharp increase
in Ra without much lowering in T (if we move along increasing Ra). Thus, at the
‘knee’ point moving in either direction is not advantageous as one needs to make a
large sacrifice in one objective in order to gain marginal (or practically no)
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Fig. 7.7 a Average hypervolume curves for Cuboid with reference point (50, 75.0). b First
attainment surface for Cuboid. cMin.T orientation for Cuboid ðhx; hyÞ ¼ ð0:0�; 90:0�Þ; ðRa; TÞ ¼
ð45:58; 17:0Þ: d Min. Ra orientation for Cuboid ðhx; hyÞ ¼ ð180:0�; 68:62�Þ; ðRa; TÞ ¼ ð41:51;
46:0Þ: e L2-metric decision choice orientation for Cuboid ðhx; hyÞ ¼ ð133:4�; 86:4�Þ; ðRa; TÞ ¼
ð43:725; 23:0Þ: f ‘Aspiration point method’ based on ’ASF’. g ‘Marginal utility method’ in
Normalised Space
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improvement in the other. In presence of multiple ‘knee’ points a higher level
decision theory is needed to decide on the best ‘knee’ which we do not present
here. Finally, for the purpose of illustration, we show the achievement of local
search method in Fig. 7.8. Non-dominated sets from several runs of MOPSO and
NSGA-II were combined and global non-dominated was found. On this non-
dominated set (marked as MOEA) local search was applied. As shown, many
solutions after the local search are modified and improved.

The next object considered is Cuboidal Pyramid, shown in Fig. 7.9. From the
hypervolume curves and attainment surfaces shown in Fig. 7.9a, b, NSGA-II
shows better performance compared to MOPSO. The minimum T solution,
Fig. 7.9c, lies flat and is similar to minimum T orientation for Cuboid. The
minimum Ra solution is rotated by 135:029� about Y-axis and requires a support
structure. Due to the appearance of support material, local surface roughness
increases and adaptive slicing sets in, decreasing the layer thicknesses and mini-
mising overall Ra: The L2 metric decision choice is a ‘knee’ solution and is
slightly lifted from the horizontal as shown in Fig. 7.9e.

For Pyramid, the performance of NSGA-II is better compared with MOPSO
from hypervolume curves and attainment surfaces as shown in Fig. 7.10a, b. The
minimum T orientation, Fig. 7.10c, is the one in which Pyramid rotates about both
the axes and attains a position such that one of its faces is horizontal. Investigation
of chosen dimensions revealed that this orientation led to minimum height along
z-axis, and is justified. The minimum Ra orientation, Fig. 7.10d, is raised from the
horizontal level and requires a support presence. The L2 metric decision choice is a
non-rotated configuration and corresponds to a ‘knee’ point on the attainment
curve.

The last simple object considered is Bipyramid, Fig. 7.11. The performance of
NSGA-II is again better based on hypervolume curves and attainment surfaces,
Fig. 7.11a, b. As in the case of Pyramid, in the minimum T orientation one of the
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faces on Bipyramid is horizontal, Fig. 7.11c. The minimum Ra orientation is
shown in Fig. 7.11d and Bipyramid is rotated about both X and Y axes. The L2
metric decision choice is a ‘knee’ solution and has a more raised orientation,
Fig. 7.11e, compared to minimum T orientation.

Based on the hypervolume curves and attainment surfaces for objects discussed
till now, NSGA-II outperforms MOPSO in three out of four cases. It is interesting
to note that in all the hypervolume curves MOPSO shows a faster hypervolume
rise in initial generations, but in most cases the MOPSO hypervolume settles at
values lower than that of NSGA-II. Hypervolume trends of MOPSO indicate
premature convergence—a well known drawback in swarm optimizers. According
to authors, pre-mature convergence of MOPSO highlights the absence of potential
global guides due to discontinuities in the objective space. Presence of disconti-
nuity slows the march towards Pareto-optimal solutions. It is fair to conclude that
NSGA-II is a better performer in general, but it is equally important to note that
extreme solutions (corresponding to minimum T and Ra) found by MOPSO were
often better. Thus, highlighting the importance of using two optimisers and using
best solutions from the combined pool of solutions. Overall similar convergence
and spread of trade-off fronts, except for Cuboid, builds our confidence in close-
ness of the obtained solutions to the true Pareto-set.
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It is worthwhile to note that for these four objects the minimum T orientation
occurs when minimum dimension aligns along z-axis, though this may not be
true in general because of action of adaptive slicing method. These minimum
T orientations can be explained on the basis of ‘planar’ or ‘flat’ surfaces on these
solid objects (or absence of curved features).

Next, we consider more complicated solid models—Pentagon-Bar, Cylinder,
Pie, Diamond and Connector in Figs. 7.12, 7.13, 7.14, 7.15, and 7.16. Calculation
of Ra for these solid models is computationally intensive and takes large time.
Hence, instead of 11 runs we perform only a single run of MOPSO and NSGA-II.
Non-dominated sets obtained from NSGA-II and MOPSO runs are combined and
global non-dominated sorting is carried out to form the best non-dominated set.
This best non-dominated set represents the Pareto-front. It is important to mention
that for various solid models, majority of NSGA-II solutions were found to
dominate MOPSO solutions, which is consistent with the superiority of NSGA-II
over MOPSO as noted earlier.

For Pentagon-Bar, the minimum T solution almost lies flat on one its larger
faces, Fig. 7.12b. Although this orientation is not exactly horizontal, i.e. hx found
is equal to 90:1� and not 90:0�; but for practical purposes difference of 0:1� is of
little importance. (Authors computed the estimate of build time for hx ¼ 90:0�
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while keeping hy fixed, and found T to be 33.0 as opposed to minimum T of 31.0
with hx ¼ 90:1�: This behaviour can be explained on the basis of adaptive slicing
procedure and/or possible numerical errors, resulting in more number of layers in
perfectly horizontal configuration). The minimum Ra orientation is tilted in the
space, Fig. 7.12c and requires a support structure. The L2 metric based decision
choice is a ‘knee’ solution and has a configuration which is raised from the
horizontal, Fig. 7.12d.

For Cylinder, it is found that minimum T orientation, Fig. 7.13b, is tilted in
space and requires a support structure. Whereas, minimum Ra orientation is a flat-
lying position. The nature of the minimum T and Ra orientations for Cylinder is
opposite to the ones obtained earlier, where minimum T orientation was flat and
minimum Ra orientation was tilted. The explanation for these orientations can be
based on the curved surface of Cylinder and action of adaptive slicing. In the flat
position, adaptive slicing causes smaller layer thickness due to Cylindrical cur-
vature. Smaller thicknesses increase the count of slices which minimises Ra and
maximises T: The L2 metric solution lies on the middle of 3-point-knee and has an
orientation with rotations about both the axes, Fig. 7.13d.

For Pie, in the minimum T orientation the object lies flat, Fig. 7.14b. The
Minimum Ra orientation stands-up, Fig. 7.14c, and requires a support structure in

0 10 20 30 40 50 60 70 80
570

580

590

600

610

620

630

640

650

660

670

Generations

A
v

e
ra

g
e

 H
y

p
e

rv
o

lu
m

e

MOPSO

NSGA−II

(a)

41 42 43 44 45 46 47 48
15

20

25

30

35

40

45

50

55

Surface Roughness (Ra)

B
u

il
d

 t
im

e
 (

T
)

MOPSO

NSGA−II

Decision Choice

(b)

(c) (d) (e)
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the lower half. It should be observed that in the minimum Ra orientation, the slice
areas considered along z-axis while computing the weighted roughness Ra are
smaller than the slice areas occurring in Fig. 7.14b. Small slice areas tend to
reduce the Ra in accordance with Eq. 7.4. Moreover, because of the presence of
support adaptive slicing causes smaller slice thicknesses leading to larger number
of slices. Both these factors, smaller strip/slice areas and larger number of slices,
minimise Ra in this orientation.

For an object like Diamond, curved surface invokes adaptive slicing in almost
any orientation. The minimum T orientation occurs with Diamond resting on its
conical surface, Fig. 7.15b. Although this orientation does have a minimum height
along z-axis but results in minimum number of slices as compared with any other
orientation. The minimum Ra occurs at an orientation slightly tilted from the ver-
tical, Fig. 7.15c, with conical surface pointed upwards and requiring a support
material. The L2 metric decision choice is a middle point on a 3 point knee and has an
orientation, Fig. 7.15d, which is not too disparate from minimum Ra orientation.

For Connector, a flat orientation (similar to the case of Pentagon Bar) leads to
minimum T; Fig. 7.16b. The minimum Ra is slanted away from vertical z-axis,
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Fig. 7.16c. It should be noted that the contribution to Ra because of holed features
is very small as compared to the exterior surface and minimum Ra orientation is
governed by the roughness of exterior surface.

Finally, two more objects are considered—Prism and Sharp. Both, MOPSO and
NSGA-II were applied and a small spread of trade-off solutions was discovered. On
conducting local search and manual inspection, the trade-off solutions converged to
a single optimum solution which minimised both T and Ra: The orientations min-
imising both T and Ra for Prism and Sharp are shown in Fig. 7.17a, b, respectively.

Important observations from the case studies presented here can be summarised
as follows. The minimum T orientation for objects with planar surfaces (Cuboid,
Cuboidal Pyramid, Pyramid, Bipyramid, Pentagon Bar, Pie, Connector, Prism and
Sharp) was found by aligning the shortest object dimension along z-axis. In the
presence of curved features (Cylinder, Diamond) the minimum T orientation is
unpredictable. The minimum Ra; in general, cannot be predicted. However, based
on the results obtained in this study, minimum Ra orientations have some rotations
about x and y axes and show a support presence. Although, the support material
tends to increase the roughness locally but adaptive slicing compensates the effect
of increased roughness by lowering the slice thickness. Another possible factor for
titled orientations, which we have not discussed so far, could be the role of build
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Fig. 7.13 a Trade-off front for Cylinder. b Min. T orientation Cylinder ðhx; hyÞ ¼ ð113:43�;
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angle h: The roughness for any layer depends on h and the slice thickness t; as
discussed in Sect. 7.3. For a large range of h around (0–70�) roughness for a layer
increases with an increase in h: Thus, to minimise the roughness of each layer
(hence, minimise the Ra of entire object) a lower value of h will be preferred.
Although, there may not exist any orientation in which h is minimum for all layers,
but an orientation in which h is reduced for one or more surfaces may be preferred.
An increase in h on other surfaces, caused by rotations aimed at decreasing h for
one of more surfaces, is not a major consequence, since increased h for other
surfaces will invoke adaptive slicing which will again limit the roughness.

7.8 Conclusions

In this chapter, a systematic approach has been presented to derive the optimal
build orientations, simultaneously minimising surface roughness Ra and build time
T ; for the FDM process. To address the multi-objective optimisation task two
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Fig. 7.14 a Trade-off front for Pie. b Min. T orientation for Pie ðhx; hyÞ ¼ ð180:0�; 0:0�Þ;
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popularly used evolutionary approaches—elitist non-dominated sorting genetic
algorithm (NSGA-II) and multi-objective particle swarm optimisation (MOPSO)—
have been applied. A performance comparison of these two optimisers is carried out
by evaluating the ‘hypervolume’ metric, and NSGA-II has been found to perform
better. Attainment surfaces are computed to provide an approximation of Pareto-
optimal-set. Employment of two optimisers is found useful in identifying the best
non-dominated set, particularly the extreme solutions which are better found by
either NSGA-II or MOPSO. To further refine the non-dominated solutions obtained
from MOEAs a mutation driven hill climbing local search strategy based on ‘ASF’
has been proposed. The local search has been found effective in bringing solutions
closer to the true Pareto-optimal solutions. Three decision making methods have
been introduced to aid the designer in choosing a preferred solution once the Pareto-
optimal set is found. A post-optimal analysis of several objects considered in this
study indicates a trend, particularly amongst the extreme solutions found. Such an
analysis can be useful in gathering valuable information about the optimal orienta-
tions from a practical view-point.
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Fig. 7.16 a Trade-off front for Connector. b Min. T orientation for Connector ðhx; hyÞ ¼
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Fig. 7.17 a Min. T and Ra orientation for Prism ðhxm; hyÞ ¼ ð90:0�; 0:0�Þ; ðRa; TÞ ¼
ð37:69; 20:0Þ: b Min. T and Ra orientation for Sharp ðhx; hyÞ ¼ ð180:0�; 180:0�Þ; ðRa; TÞ ¼
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Chapter 8
A Setup Planning Approach Considering
Tolerance Cost Factors

Binfang Wang and A. Y. C. Nee

Abstract In this study, an ant colony optimization (ACO)-based setup planning
system focusing on an integrated procedure for automatic setup planning for
machining cast parts is presented. It considers the selection of available machine
tools, tolerance analysis and cost modelling simultaneously for achieving an
optimal setup planning result. A tolerance cost factor is introduced when
machining error stack-up occurs. The setup planning process can be divided into
three stages: preliminary setup planning, tolerance planning and optimal setup
planning. During the preliminary setup planning stage, design information is
extracted from CAD models and each machining feature is assigned certain
machine resource based on its tool access directions (TAD) and the tool orientation
space of the available machine resource. During the tolerance planning stage,
machining features are grouped into setups based on machine tools assigned and
their TADs, and the machining datum for each setup is determined. The setups are
next sequenced. Then the blueprint tolerances of the machining features are
checked based on their ideal setup datum, and a tolerance cost factor is generated
accordingly. During the optimal setup planning stage, the manufacturing cost of
each setup plan is evaluated based on the cost model, in which, multiple objectives
(setup change cost, machine tool cost, cutter change cost, etc.) that are possibly in
conflict with each other are combined through the use of a weight vector and an
aggregation function. The setup plan which incurs the least cost is taken as the
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final result. The feasibility of using the ACO algorithm is studied to address the
NP-complete setup planning problem. A case study is carried out to illustrate the
proposed approach. This approach can optimize product design and its manufac-
turing processes simultaneously to meet cost, time and performance objectives,
achieving product quality and user satisfaction.

8.1 Introduction

Setup planning is a function of both process planning and fixture design [1].
Its task is to determine the number and sequence of setups, the features to be
machined in each setup, and the part orientation and locating features of each
setup. The purpose of a setup plan is to locate and fix a part in a specific manner on
a machine tool so that machining can take place according to design specifications.

Two factors have to be considered in setup planning, design specifications and
manufacturing resources. Design specifications include workpiece geometry,
dimension, tolerance and features which can be both functional and aesthetic.
Manufacturing resources include production requirements, available machines,
cutting tools and fixtures. A setup plan which considers all these factors optimally
can ensure to deliver the product not only with high quality but also with high-
throughput rate and low cost.

From published work, these two factors of setup planning are treated separately.
Most research attempted to satisfy the first factor, i.e., analysis of the design
specifications, including tolerance analysis, precedence constraint satisfaction,
geometric data analysis and tool access direction verification. The main objective
of these studies is to reduce the locating error and minimize the number of setups.
While the second factor was normally considered at the optimization stage in
terms of cost, quality and lead time, and under an assumption of the availability of
certain machine tools.

Different setup plans can be generated in a different manufacturing environ-
ment. Different setup plans may also lead to different locating methods and
manufacturing cost, and different fixture configurations can result in different
locating stack-up errors and stability. Machining accuracy and the capability of
available machine tools would need to be considered simultaneously during setup
planning in order to achieve a higher level of optimization. An optimized setup
plan can eliminate unnecessary machining error stack-up, improve product quality
and reduce production cost.

In this study, an optimized setup planning approach which considers machining
error stack-up and the capability of available machine tools simultaneously is
addressed. It considers seven conflicting cost objectives, i.e., the setup change cost,
cutter change cost, machine tool cost, fixture cost, machining cost, scheduling cost
and transport cost. It is assumed that a machining environment contains several
machine resources which include 3-, 4- or 5-axis machining centres, and can be
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distributed and located in different places. A tolerance cost factor, which will be
applied in the case of a stack-up, has been introduced. The strategies are achieved
by minimizing a cost model among the distributed machine resources.

8.2 Literature Review

In the literature, attempts were made to satisfy the design specifications, i.e.,
tolerance analysis, precedence constraint satisfaction, geometric data analysis and
tool access direction verification. Various approaches have been applied. Fuzzy
sets theory was used by Ong et al. [1–5] to present the geometrical relations,
tolerance relations, fixturing relations, machining requirements, operation features,
etc., in the setup planning systems for manufacturability and fixturability evalu-
ation Zhang et al. [6] proposed a hybrid approach in which various constraints
other than tolerances in setup planning are identified and discussed. Precedence
relationships among the features have been analyzed by Ong et al. [7] to generate a
precedence relationship matrix. This matrix acts as the main constraint for setup
planning optimization.

Most research adopted tolerance analysis as the main criterion in setup gen-
eration and sequencing. Boerma and Kals [8] reported on the development of a
computer-aided planning system for the selection of setups and the design of
fixtures in part manufacturing. The automated selection of setups is based on the
comparison of the tolerance relations between the different shape elements of the
part. A tolerance factor has been developed to compare the effect of different
tolerances. The system selects the positioning faces automatically and supports the
selection of tools for positioning, clamping and supporting the part. Zhang et al.
[9] and Huang et al. [10] discussed the importance of setup planning in relation to
tolerance control in process planning. A graphical approach was proposed to
generate optimal setup plans based on design tolerance specifications. Wu and
Chang [11] described an approach that uses the tolerance specification in a feature-
based design system to generate setup plans with explicit datum elements. The
focus of this research is an automated tolerance analysis approach for selecting
setups and datum for prismatic workpieces in the design system. Zhang and Lin
[12] introduced a systematic approach for automated setup planning in CAPP. The
concept of ‘‘hybrid graph’’, which can be transferred into directed graph by
changing any two-way edge into one-way edge, is introduced. Tolerance relations
are used as critical constraints for setup planning. Lin et al. [13] developed a
variant CAPP system with tolerance charts to automate the generation of operation
illustration for aircraft components. Zhang et al. [14] employed an extended graph
to describe a feature and tolerance relationship graph (FTG) and a datum and
machining feature relationship graph (DMG), which could be transferred to an
analytical computer model, and a tolerance decomposition model to partition a
tolerance into interoperable machining errors. These could be used for locating
error analysis or for feedback to the design stage for design improvement.
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Tseng and Huang [15] presented a multi-plant tolerance allocation model to
determine the working tolerance of each of the components by considering all the
feasible manufacturing operations of the available plants. The primary objective is
to maximize the cumulative sum of the working tolerances. Hebbal and Mehta [16]
focused on the development of a formalized procedure for automatic generation of
feasible setups and then to select an optimal setup plan for machining the features
of a given prismatic part. The proposed work considers simultaneously the basic
concepts of setup planning from both machining and fixturing viewpoints in order
to formulate feasible setup plans.

A few researchers have considered machine resources during setup planning.
Zhang et al. [17] proposed object-oriented manufacturing resources modelling
(OOMRM) and agent-based process planning (AAPP). OOMRM describes
manufacturing resource capability and capacity in an object-oriented manner,
which intends to encapsulate manufacturing system knowledge and the methods of
using the knowledge. Based on OOMRM, an AAPP prototype is implemented as a
man–machine integrated process planning platform. It supports an experienced
manufacturing engineer in mapping out a more reasonable and flexible machining
process. Ong et al. [7] presented a hybrid generative algorithm and simulated
annealing (SA) approach for setup planning and re-setup planning in a dynamic
workshop environment. Cai et al. [18] proposed an adaptive setup planning
approach for various multi-axis machine tools, focusing on kinematic analysis of
tool accessibility and optimal setup plan selection.

Since setup planning can produce alternate setup plans due to different
considerations between design specifications and machine resources, the question
of optimization arises. Different approaches have been applied to deal with this
problem. Zhang et al. [6] used a numerically exhaustive approach to select the best
solution from all the possible alternatives that satisfy the required constraints.
Zhang et al. [9] and Huang et al. [10] proposed a graph theoretical approach to
represent the design specification of a part. The problem of identifying the optimal
setup plan is transformed into a graph search problem. Zhang et al. [19] applied
SA to setup planning and Zhang [20] used GA for the optimization. Zhang et al.
[14] presented seven setup planning principles to minimize machining error stack-
up under a true positioning GD&T scheme assisted with the extended graph
approach. An optimal tolerance assignment strategy has been developed and
implemented by Song et al. [21]. The optimization criteria are to minimize the
manufacturing cost and cycle time while maintaining product quality. The cost
model considers effective factors at the machine level, part level and feature level.
Optimization of tolerance assignment plan with genetic algorithm is formulated.
The Monte Carlo simulation-based tolerance stack-up analysis is employed to
determine the satisfaction of design tolerance requirements.

From the literature, it is observed that previous research on setup planning
mainly focused on analysis of tolerance specifications of a workpiece, and there
are few applications considering machine tools simultaneously with tolerance
analysis. When dealing with tolerance analysis, the operation sequences are
generated based on dimensions and shapes by checking whether the parts produced
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are within the designed tolerances. If the parts produced are out of the specified
tolerances, it needs to use a more accurate machining centre or operation to meet
the requirements. Nowadays products are fabricated in a distributed manufacturing
environment, and the transportation cost should be considered as well. In addition,
in most reported research, the tolerance charts are input manually and there is no
clear extraction of machining and tolerance features from the CAD model.

This research reports on an approach which will extract design information
automatically from CAD models through geometric reasoning and will integrate
machine tools selection with tolerance analysis, and to achieve optimal setup
planning by optimizing the real-time integration process with a cost model. The
real-time integration is achieved by performing setup planning with the machining
resources in real-time, which takes into account production schedules and some
unexpected events, such as machine tool breakdown and an urgent job which needs
to be rushed out. Seven cost objectives which address the manufacturing process
are considered. A weight vector is applied to the multiple objectives and combined
them into an aggregation cost function, i.e., the cost model. The optimization
function is then to minimize the cost model. In addition, a tolerance cost factor is
introduced in the cost model, which is applied when a more accurate machining
centre or operation is required due to the effect of tolerance stack-up in a setup.

8.3 Setup Planning System

8.3.1 Consideration of Design Specifications

Setup planning should satisfy the design specifications, i.e., geometric, dimen-
sional and tolerance requirements, precedence constraint satisfaction and tool
approach direction (TAD) verification. Product design information in a CAD
model would need to be recognized and extracted before setup planning.

In this research, hole and plane features, which commonly exist on a cast part,
are considered. The heuristics used for reasoning the hole and plane features are
shown in Table 8.1. There are two types of hole features. One is a smaller hole

Table 8.1 Reasoning heuristics for machining features

Small hole Large hole Plane

Reasoning
heuristics

1. It has three faces: one
cylinder face and two
plane faces;

2. The cylinder face is
machined

1. It has four faces, two
cylinder faces and two
plane faces;

2. The outer cylinder face is
machined

1. It has one machined
plane face
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feature which is generated purely by machining, and it is the ‘‘Small Hole’’ shown
in Table 8.1. The other is the larger hole generated by casting and requires finish
machining. This type of hole is usually quite large, and it is the ‘‘Large Hole’’
shown in Table 8.1. The TAD of a feature is determined by searching whether
there are any intersection entities in the candidate direction with a ray which has a
radius similar to the cutter. If the result is negative, the candidate direction can be
considered as a TAD. Otherwise, this candidate direction should be discarded. For
a hole feature, the candidate directions are the two directions of the hole axis. For a
plane feature, the candidate direction is the direction of the face normal.

Tolerances, which represent the characteristics and relationships of features on
a part, serve as functional description of the design requirements which should be
satisfied during manufacturing processes. Tolerances can usually be classified into
self-tolerances and relative-tolerances. Self-tolerance is the tolerance reflecting the
size deviation of a feature. It is related to the operations, but not directly related to
other features. The examples are the straightness for feature B and flatness for
feature A in Fig. 8.1. Both are typical casting features. While relative-tolerance
reflects the position tolerance in relation to the other features, such as feature C,
which is a machining feature having dimension tolerances with A and B,
respectively, which are shown in Fig. 8.1. Relative-tolerance can be used to
identify the locating datum of a feature. For example, in Fig. 8.1, to guarantee the
dimensions of C, it is logical to take A and B as the locating datum. Otherwise,
tolerance stack-ups would arise and tolerance compression might happen.

Tolerance compression means a feature has to be machined with higher tol-
erances compared with the blueprint values, and therefore a more accurate
machining centre or operation may be needed. Tolerance compression can happen
between setups and within a setup. The tolerance compression between setups
usually happens due to tolerance stack-up. Figure 8.2 shows an example of how
the compression of operational tolerances happens in this case. In Fig. 8.2,
dimension 10 ± 0.10 is to be obtained from the previous operation. To obtain
dimension 5 ± 0.05, if it is machined taking B as the base, tolerance for dimension
10 has to be compressed to less than 0.05 by considering the tolerance stack-up.
For a process plan with multiple setups, this could happen quite frequently.

Fig. 8.1 Self and relative-
tolerance
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For a CNC machine, no chain analysis is needed for the relative and positional
relationships between the geometry surfaces in a setup because they can be pro-
grammed accurately. If the specified tolerances cannot be obtained, nothing can be
done in the sequence unless a machining method or a machine tool with a higher
process capacity is adopted or a higher rate of scrap can be accepted. For example,
assuming the two dimensions in Fig. 8.2 have to be achieved in a setup. A more
accurate machining method may be used for dimension 10 ± 0.10 comparing with
obtaining it in a separate setup. In a multi-axis machine tool environment where
multiple operations can be carried out in a single setup and the design datum
cannot always coincide with the setup datum, tolerance compression would occur
quite frequently.

The compression of operational tolerances will lead to an increase of the
manufacturing lead time and production costs and should be taken into consid-
eration during setup planning.

8.3.2 Consideration of Real-time Machine Resources

For setup planning, the application of setup datum may vary according to different
machining environment, e.g., 3-, 4- or 5-axis machining centre, whether vertical or
horizontal. The number of setups and the selection of the machining features in
each setup depend on the machine tool configuration, that is, the number of axes
and the orientation of the axes.

In setup planning, features are grouped into setups according to the type of
machining centres. For a 3-axis machining centre, the machining features are
grouped based on their TADs. Features with the same TADs are assigned to the
same group. In this case, the number of setups is determined by the number of
TADs of the machining features. For a 4/5-axis machining centre, the machining
features are grouped based on the tool orientation space (TOS) of the machining
centre. Features with TADs within the machining centre’s TOS are assigned to the
same group. In this case, the number of setups is determined by both the TOSs of
the machining centres and the TADs of machining features. To determine the

Fig. 8.2 Tolerance
compression
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locating features for a setup, the position tolerances for the machining features in a
setup are verified.

In this research, it is assumed that a machining environment contains several
machining centres which could be distributed and located in different places. Each
machine has different capabilities (rigidity, power, accuracy, etc.), schedule,
tooling, operation cost, with unique machine type, configuration, table size, main
axis direction, machine ID code and location. Among them, the schedules of
machining centres are very important when making setup planning. From a tech-
nical viewpoint, a setup plan may appear to be good, but by taking into account the
schedules of candidate machining centres, it may not be the most economical.

Machine resources are provided in a manufacturing database. A user interface is
developed, and it provides a way for the user to configure and update the
machining environment in real-time, i.e., the currently available machining
resources along with their capabilities, attributes and their operating schedules. It
is integrated with the database and therefore each time the user updates the
manufacturing environment using this interface, the database will be updated
accordingly. The process planning module will read information from this data-
base when performing setup planning. Therefore, the setup planning is performed
with the machining resources with real-time response, which takes into account the
production schedule and some unexpected events, such as the machine tool
breakdown and an urgent job which needs to be handled immediately.

8.3.3 Tolerance Analysis

Depending on the accuracy of the machine tool, features machined in a single
setup can be maintained in accurate relationship with respect to the machine tool
coordinate system. This position will be lost if the part is dismounted from the
machine tool and remounted again in a different fixture. The errors in the align-
ment of the part and fixture on the machine tool can be equal to or even larger than
the accuracy requirements of small-tolerance relations. As a result, the position
accuracy of a feature machined in a previous setup can be insufficient to realize the
required accuracy in the relation to the features to be machined in the present
setup. Even in a single setup, when the setup datum is different with the design
datum, the required position tolerances of a feature may not be guaranteed. It is
necessary to check the blueprint tolerances during setup planning to ensure that the
setup to be used is a feasible one.

Case 1: Dimension datum coincides with setup datum If the setup datum coin-
cides with a feature’s dimension datum, then it is not necessary to check the
tolerance for this feature. It is based on the assumption that the selected machining
process and fixturing method can guarantee the dimensions and tolerances.

Case 2: Dimension datum does not coincide with setup datum In this case, it is
necessary to take into consideration the stack-up error. For example, in the
workpiece illustrated in Fig. 8.3, the position dimensions clearly state that the
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centre of the hole (a machining feature) should be at the distance X from face A
and Y and from face C. Consequently, it must use face A and face C as datum to
locate the workpiece while drilling this hole. This would ensure that the hole is at
the specified distance from face A and face C. If one uses face B as a stopper, the
derivation in length X1 between faces A and B would cause inaccuracies in the
position of the hole. If length X1 is oversized by 1 mm, the centre of the hole will
be at (X ? 1) millimetre away from face A. If the length X1 is undersized, the
hole would shift towards face A and would be nearer than distance X from face A.
However, if location is on face A, the hole would always be at the same distance
from face A irrespective of the variation in length X1. Similarly, the same situation
will occur when locating with face D instead of face C for dimension Y.

To satisfy the dimension requirements, sometimes a more accurate process or
even a more accurate operation has to be chosen, and it would be more expensive.
To reflect the additional cost if a higher accuracy machining process/operation is
required, a tolerance cost factor (f) is introduced, which will be applied when
calculating the machining time. Each operation can achieve a typical tolerance,
and it is always within a certain range (Fig. 8.4). Machining processes operating
under normal conditions would produce parts within the tolerances as indicated in
Fig. 8.4a. Figure 8.4b indicates the ANSI B4.1 Standard Tolerances. According to

Fig. 8.3 Tolerance chain

Fig. 8.4 Dimensional tolerance capabilities of operations [22]
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blueprint tolerances specified on the workpiece, suitable machining processes will
be selected to generate the machining features. To calculate f, it is first assumed
that the operation selection for a machining feature is according to the lowest
tolerance which this operation can achieve. For example, if there is a hole with
tolerance around 0.25 mm, a drilling operation with the lowest tolerance 0.254 as
shown in Fig. 8.4 is chosen for this. The tolerance range is defined as grades, and a
grade represents a cell in Fig. 8.4a. For example, for the drilling process, the
tolerance range can be divided into four grades: grade 10 to grade 13. f is cal-
culated based on the grade. The initial value f is set to 1. If the tolerance jumps to a
new grade, f is increased by the number of grades jumped. If the jump is in
between the grades, half a jump is used. If a selected machining operation cannot
achieve this higher tolerance, a more accurate process will be selected.

8.3.4 Cost Model

One of the ultimate goals of an enterprise is to be profitable. Hence, every com-
pany has the mandate to reduce cost and increase profit margin, which can be
achieved more effectively at the design planning stage rather than the manufac-
turing stage. In this research, setup planning is performed based on a cost model
and an optimization methodology has been formulated to minimize the overall cost
of machining all the features on a workpiece. It justifies the machining overhead
with machining time, and considers the tolerance requirements simultaneously.

Minimizing the manufacturing cost is a multi-objective problem which can be
achieved by minimizing several cost objectives, such as the setup change cost,
cutter change cost, machine and fixture cost, etc. Those objectives, however, are
possibly in conflict with each other. Depending on how the features are to be
located on the faces of a workpiece, they can be grouped into different TADs.
Usually, the smallest number of TAD groups would be the best as the cost of
setups will be lower. However that is not always true because the grouping is
dependent on the type of tooling used. The schedules and the locations of different
machine resources will result in different machining times thus the manufacturing
costs. A planned machine tool with a schedule requiring additional waiting time to
start work will cost more considering the wasted waiting time, and a machine tool
located elsewhere may cost more than one which is nearby, considering the
transport cost. In addition, different machine tools have different fixturing meth-
ods, leading to different costs. For example, for a 5-axis machining centre, fewer
setups are needed, so the total machining time would be less. However, there may
be a trade-off between reduced machining time and a higher overhead on a 5-axis
machine. In addition, since the fixturing method is likely to be more complex, it
will cost more. Conducting tolerance analysis of a setup incurs additional steps and
this will move up the manufacturing cost. Therefore, the cost model should con-
sider all these objectives and is a composite of: (1) machine tool overhead; (2)
cutter cost due to wear and tear; (3) fixture cost; (4) schedule-based cost per unit
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time; (5) setup time cost; (6) tool change time cost and (7) transport cost. Seven
cost factors with respect to the seven objectives are described in detail in the
following.

Machine tool cost per unit time (MCP) The machine tool cost per unit time is
the summation of the operating cost per unit time and the fixed investment cost
amortized over time. It is constant for each machine.

Cutter cost per unit time (CCP) Similar to MC, the cost of a cutter per unit time
is the summation of operating cost per unit time and fixed investment cost
amortized over time. It can be considered a constant for each cutter when
machining a specific part of a particular material.

Fixture cost per unit time (FCP) Fixture cost is also treated as a constant that
occurs when a fixture is used in a setup. It is the summation of the operating cost
per unit time and fixed investment cost amortized over time. Modular fixtures are
considered and used in this research for all types of machine tools.

Schedule-based cost per unit time (SCP) The cost is also treated as a constant
that occurs when a machine is needed to wait for some time to perform the
operations planned. It is based on the schedule of the machine.

Setup change cost per time (SCCP) Setup change is required when a machine
tool change is needed which will also require a new fixture. The setup change cost
is treated as a constant per time.

Cutter change cost per time (CCCP) Cutter change is required when two adja-
cent operations are performed on the same machine tool using different cutters. In
addition, machine tool change may also result in cutter change. The cutter change
cost incurred between any two operations is also treated as a constant per time.

Transport cost per unit distance (TCP) Transport is required when operations
on the same workpiece have to be performed on different machine tools which are
located in different places. The transport cost incurred between any two machine
tools is treated as a constant per unit distance.

Although the seven cost factors are treated as constants, for different machining
environments, their values would need to be changed. Therefore, when performing
for each setup planning, one has to set these values accordingly.

A setup plan usually contains several setups. Each setup contains resources
which includes a machine tool, a fixture and different cutters to complete the
machining processes in this setup. The cost for the tooling is calculated using the
machining times of machining the features in this setup. The setup change cost and
the cutter change cost is based on the change times. The transport cost depends on
the distance of the current machine to the next machine.

As stated previously, minimizing the manufacturing cost is a multi-objective
problem and there are two general approaches for solving this. One approach is the
Pareto-optimal solution. It is suitable for problems where the objectives are not
conflictive. If the objectives are possibly in conflict with each other, the second
approach known as the classical weighted-sum approach where the objective
function is formulated as a weighted sum of the multiple objectives can be adapted.
A weight vector is applied to the objectives in the cost model to evaluate the
overall cost. Therefore, the cost model can be formulated as Eq. 8.1. The setup
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planning is to solve this NP-complete problem. It is mentioned in Eq. 8.1 that the
objectives of machine cost and fixture cost are combined and the same weight is
used. This is due to the fact that in this study, it is assumed that a machine tool uses
a particular fixture, therefore the machine and fixture cost factors can be considered
as a constant together. Using this cost model as the objective function for obtaining
an optimized solution, a feasible setup plan with the minimum cost can be found.
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where,
Ti
Machining machining time for ith machine tool, a summation of operations’

machining time on this machine;
Tk
Machining machining time for kth cutter, a summation of operations’ machining

time on this cutter;
Tij
Machining machining time for jth operation performed on ith machine;

Ti
Waiting waiting time for ith machine tool, determined by the schedule of this

machine tool;
Tkj
Machining machining time for jth operation performed on kth cutter;

fij tolerance cost factor for jth operation performed on jth machine;
fkj tolerance cost factor for jth operation performed on kth cutter;
Ns number of setups in the current setup plan;
Nc number of tool changes in the current setup plan;
Dmn distance between mth and nth machine, m, n , i, m = n;
MCPi machine cost per unit time for ith machine;
CCPi tool cost per unit time for ith machine;
FCPi fixture cost per unit time for ith machine;
I number of machines selected in the current setup plan;
J number of operations selected in the current setup plan;
K number of cutters selected in the current setup plan;
W weight element for each of the cost objectives.

For a specific machine, the machining time, which considers the tolerance cost
factor, f is computed by calculating and summing the individual operation times
for all the operations performed on a particular machine in a setup plan. The
individual operation time is estimated by computing the volume of material
removed in that operation divided by the material removal rate. The tool approach
time and other travelling time from feature to feature where no materials are
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removed are not considered. The volume of material removed in an operation can
be obtained from the machining feature geometry, while the material removal rate
can be computed from tool geometry and processing parameters.

In this study, it is assumed that a setup corresponds to a particular machine tool
and fixture. It is also assumed that a machining feature can be generated in an
operation with a specific cutter. In this way, the number of setups can be obtained
after the completion of the setup plan, and the total number of cutter changes is the
summation of the cutter changes in each setup.

The distances between the locations of the machine tools and their schedules
can be obtained from the machine resource database. Cost factors can be used
either individually or collectively as a compound cost factor based on the actual
requirement and the data availability of the machine resources in a machining
environment.

8.4 System Implementation

As setup planning is an NP-complete problem, different optimization techniques
are commonly employed to achieve an optimal or near-optimal setup plan. The ant
colony optimization (ACO) algorithm is a probabilistic technique for solving
computational problems. ACO mimics ant activities of finding food in the real
world. It is a meta-heuristic-like generic algorithm and has been used for solving
many different discrete optimization problems. Dorigo and Gamberdella [23]
proposed ACO and applied it to the travelling-salesman problem. They also
compared the solutions of ACO and showed it to be better than other heuristic
approaches like GA, evolutionary programming (EP), simulated annealing (SA)
and a combination of GA and SA. Dorigo et al. [24], Jayaraman et al. [25] and
McMullan [26] have proved that the ACO is a useful technique and it has been
successful in solving NP-complete problems in engineering applications. The
ACO meta-heuristic framework describes the scheduling of several processes and
is presented in Fig. 8.5.

Construct solution: this process is responsible for the construction of new
solutions. This is achieved using probabilistic stepwise solution construction. The
probability of a particular solution component being added to a growing solution is
based on a combination of problem specific (heuristic) information and learned
(pheromone) information of how well this component is used in the past solutions.
The exact combination of this information and the greediness of the selection
mechanism are important implementation specific details.

Extract Problem 
Information 

Initialise 

Heuristic Values

Construct 
Solution

Initialise 
Pheromone

Update 
Pheromone

Pheromone 
Matrix

Decay 
Pheromon

Fig. 8.5 ACO meta-heuristic
framework
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Pheromone trail update and decay: once solutions have been evaluated, they
can influence the pheromone matrix through a pheromone update process. To
allow the replacement of old information with new information, a pheromone
decay process is also employed that removes the influence of past solutions over
multiple successive algorithm cycles.

Daemon actions: any action which does not fit into the regular cyclic processes
of solution generation, evaluation, update and decay are called Daemon actions.
An example of such an action is the storage of an elite solution.

In this study, the feasibility of using the ACO algorithm is studied to address the
multi-objective NP-complete setup planning problem.

8.4.1 System Structure

Setup planning starts with extracting workpiece information from the raw and final
CAD parts. A file, recording the extracted information inclusive of machining
features, tolerances, datum, etc., is generated for subsequent searching use. The
extracted information can be displayed in an interface through which users can
check and modify, and can also add other necessary information, such as form
tolerances, to certain features. Figure 8.6 shows the overall flowchart of this
developed system. An interface which links with the machine resource database is
provided. Through this, users can check, modify and update the machining envi-
ronment. In this way, the machine resources used in the search are able to reflect
the current resource status and make the setup planning more reliable. During the
ACO optimizing process, tolerance analysis is conducted, and the cost is evaluated
for each solution based on the cost model. Finally, an optimal or near-optimal
result can be obtained.

The extracted design information is saved in a structure as follows. The ideal
datum is the datum obtained through tolerance definition.

{Feature Name, TAD, Self_tolerance, Relative_tolerance, Operation, Ideal

Datum, Length (L), depth, Machining_time, tolerance_cost_factor}
Features can be machining features and cast features. For cast features, only

self-contained tolerance is saved, other attributes are set to null. The machining
time is estimated as:

TMachining ¼ L=fcþ ðDepth=cut of depthÞ ð8:2Þ

Design Information

Start

Extract Design Specifications

Read Machine Resources Tool Information
Machine 

Resource 

Database

ACO Search Tolerance Analysis

Cost ModelEnd

Fig. 8.6 Overall system
flowchart
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where, L is the length of a machining feature, f the feed and n the rotation speed.
The technical parameters other than L are taken based on the average capability
of the given machine resources. The machining time of each machining feature is
estimated before setup planning starts.

The machine resources are saved in a structure as:
{Machine Name, f, n, cut of depth, schedule, TOS, MCP, FCF}
{Cutter ID, CCP, Type, Radius}
Schedule indicates the available time of the machine tool. If it is zero, it means

the machine tool is available currently. If it is larger than zero, it means the
machine tool is only available at a later time. If tasks are assigned to this machine
tool now, a waiting time is required. Each operation is performed with a cutter, and
each has a unique CCP. A planner can select suitable cutters for operations to be
performed. In this study, the machine tools are assumed to be located in different
places to reflect the distributed manufacturing environment in the real world.
Therefore, if workpieces are machined on machine tools in different locations, they
have to be transported from one place to another and transport cost will occur. The
transport cost depends on the distances (dij) between the locations of machine
tools. An example of the distance matrix for n machine tools is shown in
Table 8.2, where, dij = dji; dij = dji = 0, if i = j.

SCCP, CCCP, SCP and TCP are saved outside the data structure of the machine
resources as they are applied at the setup level.

8.4.2 ACO-Based Setup Planning

The setup planning process can be divided into three stages: preliminary setup
planning, tolerance planning and optimal setup planning. During the preliminary
setup planning stage, each machining feature is assigned certain machine resource
based on their TADs and the TOSs from the available machine resources. During
the tolerance planning stage, the machining features are grouped into setups based
on the machine tool assigned and their TADs, and the machining datum for each
setup is determined. The determination is performed according to the two rules: (1)
if there are more than two machining features sharing the same ideal datum, this
datum is taken as the setup datum; (2) if Rule 1 cannot be applied, choose the ideal
datum of a machining feature with tighter blueprint tolerances. After that, the
setups are sequenced. Then the blueprint tolerances of the machining features are
checked based on their ideal datum and the setup datum, and a tolerance cost

Table 8.2 Distance matrix between machine tools

M1 M2 M3 … Mn
M1 0 d12 d13 … d1n
M2 d21 0 d23 … d2n
M3 d31 d32 0 … d3n
… … … … 0 …

Mn dn1 dn2 dn3 0
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factor is generated according to the rules described in Sect. 8.3.3. During the
optimal setup planning stage, the manufacturing cost of each setup plan is eval-
uated based on the cost model described in Sect. 8.3.4. The setup plan which has
the least cost is taken as the final result. This setup planning process is adapted in
the ACO algorithm which is described as follows.

8.4.2.1 Pheromone Structure

During setup planning, a machining feature on a given workpiece is assigned to a
setup based on its TAD, operation type and the TOSs of machine tools, linked to a
specific operation for the processing of this feature on a chosen machine tool (M),
using a suitable cutter (T) and fixture (F), and in a particular setup orientation
(TAD). It can be represented by the set of M, T, F and TAD. Given a particular job
shop with available machine tools, cutters and fixtures, a set of alternative oper-
ation methods can be generated for a feature by traversing all the possible com-
binations of M, T, F and TAD that can be used to perform the operation. Thus, the
method to process a machining feature can be represented as a set of feasible
combinations of M/T/F/TAD.

A setup plan can be specified as a linking of the operation methods for
machining all the features on a given part. Therefore, the pheromone dimension
can be determined by the number of the machining features. In this study, it is
assumed that when a machine tool is selected for a machining feature, its fixture is
decided since a machine tool would correspond to a particular fixture in a setup.
The cutter would need to be selected among the available cutters. Thus, the
pheromone has two levels. One is the machine tool level which contains all the
information exclusive of the cutters, and the other is the cutter level.

8.4.2.2 Initialize Pheromone

The design information and machine resources are loaded. The pheromone
dimension is assigned accordingly and some heuristic variables are initialized.
Matrix structures M and T (Tables 8.3, 8.4) are used to represent the pheromone at
the machine tool level and cutter level, respectively. They are initialized with a
zero value.

8.4.2.3 Construct Solution

Solution construction is the preliminary setup planning. Each machining feature is
taken as a region that an ant has to visit. At each region, the ant has to select a
machine tool with a cutter from the loaded machine resource. The fixture infor-
mation can be obtained from the attribute of the machine tool. Figure 8.7 presents
a graph that an ant travels. It contains eight regions, i.e., eight machining features
in the design space. Tool selection is based on the TAD of the machining feature
and the TOS of available machine tools. The TAD of the machining feature must
be inside the TOS of the selected machine tool. The cutter is selected according to
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the dimension and operation of the machining feature and the radius and type of
the cutter. The radius of a cutter should be smaller than the dimension of the
machining feature. The type of the cutter should also match with the operation of
the machining feature.

8.4.2.4 Refinement of Solution

The constructed solutions are analyzed at this stage. Setups together with setup
datum are determined, and the setups are sequenced. A tolerance analysis is
conducted, and a tolerance cost factor is generated for each machining feature.
A setup plan is generated for each solution.

Upon satisfying the above rules, the machine tools and cutters are selected
based on probability. The probability with which ant k on nodes i chooses the next
node j at the current iteration h is according to the State Transition Rule [27]
Eq. 8.3. It is directed by both the pheromone amount and the heuristic value.

pkijðhÞ ¼ ðsijðhÞÞ
aðgijÞb

.

X

ðsijðhÞÞaðgijÞb; j � NK
i ð8:3Þ

Table 8.3 Pheromone matrix at machine tool level

M1 M2 M3 … Mn
M1 0 m12 m13 … m1n

M2 m21 0 m23 … m2n

M3 m31 p32 0 … m3n

… … … … 0 …

Mn mn1 mn2 mn3 … 0

Table 8.4 Pheromone
matrix at cutter level

T1 T2 T3 … Tn

T1 0 t12 t13 … t1n
T2 t21 0 t23 … t2n
T3 t31 t32 0 … t3n
… … … … 0 …

Tn tn1 tn2 tn3 … 0

M,T M,T
M,T

M,T

M,TM,T

M,T

M,T

End

Start F1

F2 F3

F4

F5

F6F7
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Fig. 8.7 An example of the
travelling graph
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where, h iteration index; sij pheromone value between nodes i and j; gij heuristic
value between nodes i and j; pij probability to travel from node i to node j; Ni

K

nodes not yet traversed in the ant-tour so far.
Where, i, j , (1, n) and n are the number of nodes. Parameters a and b are used

to tune the relative importance of the pheromone and the heuristic distance in
decision-making. The heuristic value at the machine level is determined from
Eq. 8.4 and the heuristic value at the cutter level is determined from Eq. 8.5.

gmij ¼ 1=ðMCPi þ FCPi þ TCP� dijÞ ð8:4Þ

gcij ¼ 1=CCPi ð8:5Þ

8.4.2.5 Evaluate Solution

The feasible solutions are evaluated based on the objective function Eq. 8.1
described in Sect. 8.3.4. The parameters in Eq. 8.1 are obtained as follows:

• Ns: it is obtained from the setup plan of each constructed solution.
• Nc: the number of cutters selected in a solution is obtained first, and then the
tool change number is obtained.

• MCP/CCP/FCP/Distance/Schedule: these parameters are obtained from the
attributes of the machined tools.

• SCCP/TCCP/TCP: these parameters are obtained from the machine resource
database.

• Tolerance cost factor: it is obtained from the attributes of the machining
feature, which have been stored in the machining feature data structure during
the solution refinement stage.

8.4.2.6 Updating Pheromone

After each iteration, an updating process is triggered if there are better solutions in
the population which is used to store the global best results. The pheromone values
are updated at both the machine level and the cutter level. It is based on Eq. 8.6.

sijðhþ 1Þ ¼ qsijðhÞ þ osbestij ðhÞ; osbestij ðhÞ ¼ 1

,

X

S

s

CsðhÞ ð8:6Þ

where, S is the number of solutions at the current iteration that are better than
anyone in the population, Cs the cost of a solution and q the pheromone evapo-
ration rate.
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8.5 System Performance

8.5.1 Illustration of an Example Part

An example part is presented in this section to demonstrate the proposed approach
and present the test results. It is a simplified front knuckle of an automotive chassis
system, and it is cast followed by machining. Figure 8.8 gives the details of the
cast and machined parts. The input CAD model, which contains the dimensions
and tolerance information, is constructed using Inventor�.

The planning procedure starts with design information extraction and machine
resource configuration, followed by setup planning. For setup planning, the system
selects the features on the part to be machined in a setup and determines the
sequence of the setup. The setup plan depends on both the tolerance requirement of
the geometrical relations between the features and the required orientation of the
part with regard to the machine tool orientation.

Fig. 8.8 Example part
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8.5.1.1 Design Information Extraction

The design information, i.e., the geometric and dimensional specifications in the
machined and cast CAD models, is recognized and extracted. By performing
Boolean operations on the two models and using rules stated in Table 8.1, five
machining features, i.e., Plane A, Hole B, Hole C, Hole D and Plane E, together
with the machining depths, are obtained and shown in Fig. 8.9. Other information
listed in Table 8.5, which include TADs, operations, tolerances, design datum and
machining length are obtained by geometric reasoning using the API provided by
Inventor�.

8.5.1.2 Machine Resource Configuration

The specifications of machine resources available for the setup planning are shown
in Tables 8.6, 8.7, 8.8 and 8.9, which are configured through an interactive
interface.

Other parameters such as TCP are assumed to be $10 per hour, CCCP is $10 per
change, SCCP is $20 per change and SCP is $100 per hour.

Fig. 8.9 Extracted
machining features

Table 8.5 Extracted design information

Features TAD Operation Self-
tolerance

Relative-
tolerance

Design
datum

L
(mm)

Machining
features

Plane A -z Milling ± 0.3 1.0 X/Y/Z 378
Hole B ± z Reaming ± 0.1 1.0 X/Y/Z 40
Hole C ± z Boring ± 0.2 0.8 A/B/Z 40
Hole D 45@x Drilling ± 0.3 0.8 A/B/Z 30
Plane E +x Milling ± 0.3 0.8 A/B/Y’ 38

Cast features X, Y, Z, 1.2
Y’, A, B
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Table 8.6 Machine information

Available machine centre Feed f (mm) Rotation speed n (s-1) FCP MCP Schedule (s)

3-axis machine M1 0.5 2 70 100 480
3-axis machine M2 0.5 2 100 150 120
4-axis machine M3 0.5 2 150 220 60
4-axis machine M4 0.5 2 150 200 180
5-axis machine M5 0.5 2 180 250 600

Table 8.7 Machine tool orientation space

Available machine
centre

TOS

X Y Z

UA
- UA

+ UB
- UB

+ UC
- UC

+

3-axis machine M1 0 0 0 0 0 0
3-axis machine M2 0 0 0 0 0 0
4-axis machine M3 0 0 -90 +90 0 0
4-axis machine M4 -135 +90 0 0 0 0
5-axis machine M5 -135 +45 -90 +90 0 0

Table 8.8 Cutter
information

Cutter no. CCP Type Radius

C1 3 Drill 2
C2 3 Drill 4
C3 3 Drill 10
C4 4 Drill 12
C5 3 Drill 18
C6 3 Drill 24
C7 4 Drill 30
C8 10 Mill 10
C9 10 Mill 15
C10 12 Mill 20
C11 12 Mill 30
C12 15 Mill 50

Table 8.9 Distance matrix between machine tools

M1 M2 M3 M4 M5

M1 0 2 4 5 6
M2 2 0 6 8 4
M3 4 6 0 3 4
M4 5 8 3 0 10
M5 6 4 4 10 0
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8.5.2 Results and Discussions

At the start of setup planning, a suitable weight vector needs to be assigned
according to Eq. 8.1. Since there are possible conflicts between the seven objec-
tives and there is no bias for any of them, the same weight of value 1 is chosen and
applied to all of them, i.e., {wm wc ws wsc wcc wt} = {1 1 1 1 1 1}. Arguably
through this way, how some objectives are to be traded-off by others can be
observed through some cases studies.

The machining time would also need to be calculated. It is performed for each
machining feature according to Eq. 8.2. The depth of cut for drilling is 2.5 mm and for
milling/boring/reaming is 1 mm. The results are shown in Table 8.10. It is assumed
that a feature’s operation time is the same no matter which machining centre is used.

During setup planning, the blueprint tolerances of the machining features in the
candidate plans are checked. From Table 8.5, the design datum of feature C is A, B
and Z and the relative-tolerance with respect to A, B, Z is 0.8 mm.While the design
datum for feature A, B is X, Y, Z with relative-tolerance 1.0 mm. In this case, if
machining C uses X, Y, Z as the setup datum, the relative-tolerance between C and
A, B would be more than 1.0 mm due to the tolerance stack-up. Therefore the
relative-tolerance between A, B and X, Y should not be more than 0.8 mm, which
should be ensured when machining A and B with datum X and Y. Since a more
accurate method would be needed to achieve the tolerance of 0.8 mm instead of
1.0 mm, a tolerance cost factor is applied to A and B in this setup. The same
analysis would be conducted automatically for feature D and E if they are planned
to be machined in the same setup with A and B. The setup sequence is arranged
according to the sequence of the design datum. The distances used to calculate the
transport cost are distances between machines based on the setup sequence.

The results based on the above machining environment are shown in Fig. 8.10
and Table 8.11. The first (top) thick solid curve in Fig. 8.10 shows the cost of the
optimization results, and Table 8.11 shows the optimal setup plans. There is one
setup change and two cutter changes. The tolerance cost is applied to feature E
since the setup datum does not coincide with its dimensional datum. However
there is a trade-off by the other cost factors, making it the optimal one.

To demonstrate the effects of some objectives considered in the cost model,
four different situations are considered, and the results are shown in Fig. 8.10 and
Tables 8.12, 8.13, 8.14 and 8.15 for the comparison.

Case 1 there is no tolerance consideration in each setup plan, i.e., the tolerance
cost factor for all machining feature is one. There is no waiting time based on the
machine schedules in the setup plans, and the distances between the machine
centres are the same as 4 h away. The forth thin solid curve in Fig. 8.10 shows the
optimized cost results.

Table 8.10 Operation times for the machining features

Plane A Hole B Hole C Hole D Plane E

Machining time (s) 1890 200 80 72 95
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Case 2 the tolerance analysis is conducted for each setup plan, and different
tolerance cost factors other than one are assigned to each machining feature based
on the analysis results. The other two conditions are kept the same as in Case 1.
The third thin dot curve in Fig. 8.10 shows the optimized cost results.

Setup p lan

C
o
st

340

17 34 52 69 86

230

0

450

560

670

780
general

case 1

case 3
case 2

case 4

Fig. 8.10 Cost of setup plans

Table 8.11 Optimal setup plan

Optimal setup plan

Setups Feature Machine Cutter Datum Cost
Setup 1 A M4 C11 X/Y/Z 527

B C5
E C9

Setup 2 C M3 C1 A/B/Z
D C1

Table 8.12 Optimal setup plan for case 1

Optimal setup plan

Setups Feature Machine Cutter Datum Cost
Setup 1 A M5 C11 X/Y/Z 445

B C5
C C1
D C1
E C8

Table 8.13 Optimal setup plan for case 2

Optimal setup plan

Setups Feature Machine Cutter Datum Cost
Setup1 A M1 C12 X/Y/Z 460

B C5
C C2

Setup2 D M1 C1 A/B/Z
Setup3 E M1 C9 A/B/Y’
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Case 3 the schedules of the machining centres are considered, i.e., some
machining centres may not be available, and thus the waiting cost will apply to
them accordingly. The other two conditions are kept the same as in Case 1. The
second thick dot curve in Fig. 8.10 shows the optimized cost results.

Case 4 the machining centres are considered to be located in places with
different travel times between them, and not the same distances as considered in
Case 1. This will result in different optimal results. The other two conditions are
kept the same as in Case 1. The fifth thick dot curve in Fig. 8.10 shows the cost
results.

Tables 8.12, 8.13, 8.14 and 8.15 show the optimal setup plans for each case
separately. They show the differences in costs due to different machining situa-
tions. For case 1, the optimal one is using machine M5 to manufacture the five
features in one setup. Therefore, there is no setup change and therefore no setup
change cost, but there are three cutter changes. Although the tolerance cost factors
have been applied to feature C, D and E, there is a trade-off by no setup change and
less expensive machine tool cost. For case 2, the optimal solution has two setup
changes and two cutter changes, and the tolerance factor has been applied to
feature C. It is the lowest machine tool cost without any transport cost which
makes it the lowest one. For case 3, there is one setup change, two cutter changes
and the tolerance cost has been applied to feature C and E. Its lowest cost is due to
fewer setup changes, no transport cost and less waiting time. For case 4, the result
is the same as case 1. This is because if all the features are machined in one setup
using one machine tool, the transport cost will not be incurred. In this case, it is the
same situation as in case 1.

The results show that different machining environment would result in different
setup planning results, and this depends much on the dynamic situation of a

Table 8.14 Optimal setup plan for case 3

Optimal setup plan

Setups Feature Machine Cutter Datum Cost
Setup 1 A M4 C10 X/Y/Z 519

B C4
C C1
E C1

Setup 2 D M4 C8 A/B/Z

Table 8.15 Optimal setup plan for case 4

Optimal setup plan

Setups Feature Machine Cutter Datum Cost
Setup 1 A M5 C11 X/Y/Z 445

B C5
C C1
D C1
E C8
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company at a particular instant. The seven objectives are conflictive and the trade-
offs among them results in the final optimal result.

8.5.3 Performance Comparison

This research considers dynamic machining environment as by Ong et al. [7], and
the machine resources include not only the 3-axis machining centre as it was
considered by Zhang [20] and Zhang et al. [19], but also 4- and 5-axis machining
centres. Compared with the cost model in the studies of Ong et al. [7], Zhang [20]
and Zhang et al. [19], the cost model in this research takes more objectives into
account, and therefore the cost evaluation is more reliable. There are several
improvements in the cost model. Firstly, it considers the machining cost based on
the machining time of the machining feature. Dimension differences in the
machining features will result in large differences in machining time thus the cost
incurred. Secondly, it considers the distributed machining environment which is
the current pervasive manufacturing scenario. This is reflected by considering the
transport cost between machining centres located in different places. It also con-
siders the cost arising from the current schedules of a machining centre. Another
important factor which was not fully addressed in the cost is the tolerance cost
factor. It is applied to situations where the setup datum does not coincide with
ideal datum of a machining feature, and a more accurate machining method will be
needed, and hence the cost will be increased. Other objectives taken into account
include machine tool cost, cutter cost, fixture cost, setup change cost and cutter
change cost. The consideration of all the cost objectives would make the cost
evaluation of a setup plan more accurate and reliable. These multiple objectives
are combined into an aggregation function through a weight vector, and the ACO
algorithm is applied to solve this multi-objective problem.

This approach has been compared with the methodology presented by Ong et al.
[7] since they also considered 4- and 5-axis machining centres. The comparison
was done based on the case study shown in [7]. It is worth mentioning that the
machining time, the tolerance cost factor, the schedules of machine tools and the
transport cost are not considered in the cost model in the comparison.

8.6 Conclusions

In this study, a setup planning system, which focuses on the development of an
integrated procedure for automatic setup planning for machining features of a
given cast part, is presented. It considers both machine tools selection and
tolerance analysis, and is able to achieve an optimal setup planning result by
incorporating a cost model. This cost model considers the optimal setup planning
as a multi-objective problem. ACO is employed to solve this multi-objective
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NP-complete problem. Parts can be produced within designed tolerances and with
the lowest cost in a particular production environment. The contributions of this
research are:

• The design specifications and the machining environment are considered in an
integrated manner, and a cost model is used to optimize the setup planning
process.

• Both dimension and position tolerance requirements are taken into account and
a tolerance cost factor is introduced to consider the compression of operational
tolerances.

• A distributed machining environment, i.e., machine tools located in different
places, is considered. A variety of machine tools, e.g., 3- to 5-axis machine
tools can be taken into account.

• Real-time machining environment, i.e., the uncertain events that may occur to
machine resources, can be taken into account by updating the machine
resources in real-time.

• Except for higher tolerance cost consideration, the schedules of the machine
tools and the transport cost are taken into account, making the cost model more
realistic.

• Optimal setup planning is treated as a multi-objective optimization problem,
and the weighted-sum approach is used for its solution.

• ACO is adapted to solve the multi-objective NP-complete setup planning
problem.
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Chapter 9
Preference Vector Ant Colony System
for Minimizing Make-span and Energy
Consumption in a Hybrid Flow Shop

Bing Du, Huaping Chen, George Q. Huang and H. D. Yang

Abstract Traditionally, scheduling problems usually deal with the objectives
related to production efficiency (e.g., the make-span, the total completion time, the
maximum lateness and the number of tardy jobs). However, sustainable manu-
facturing should minimize the energy consumption during production process.
Energy consumption not only constitutes a major portion of total production cost
but also results in significant environmental effects. In this chapter, we discuss a
multi-objective scheduling problem in a hybrid flow shop. Two objectives con-
sidered in the proposed model are to minimize make-span and energy consump-
tion. These two objectives are often in conflict with each other. A Preference
Vector Ant Colony System (PVACS) is developed to search for a set of Pareto-
optimal solutions using meta-heuristics for multi-objective optimization. PVACS
allows the search in the solution space to focus on the specific areas which are of
particular interest to decision-makers, instead of searching for the entire Pareto
frontier. This is achieved by maintaining a separate pheromone matrix for each
objective, respectively and assigning each ant a preference vector that represents
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the preference between the two objectives of the decision-makers. The perfor-
mance of PVACS was compared to two well-known multi-objective genetic
algorithms: SPEA2 and NSGA-II. The experimental results show that PVACS
outperforms the other two algorithms.

9.1 Introduction

The consideration of environmental issues in manufacturing has taken on
increasing importance nowadays. The first decade of the twenty-first century was
10 years of change for the environment, as new environmental issues emerged and
existing issues evolved. Pollution, environmental degradation, resource depletion,
climate change and global warming, such environmental crises constitute a serious
threat to human health, reduce economic productivity and lead to the loss of
amenities. It has been increasingly realized that economic development without
environmental consideration can cause irreversible damage to the world. There-
fore, the concept of ‘‘green economy’’ has been advanced as a solution to many
problems afflicting the world at present. The green economy refers to businesses
that care about environmental protection, energy efficiency, preservation of bio-
diversity and sustainable development. The importance of green economy has
been recognized by United Nations Environment Programme that has launched the
Green Economy Initiative, aiming to assist governments in ‘‘greening’’ their
economies by reshaping and refocusing policies, investments and spending
towards a range of sectors, such as clean technologies, renewable energies, water
services, waste management, green transportation and green manufacturing [1].

The manufacturing sector plays a critical role in the economy. For example,
according to the Manufacturing Institute, the manufacturing sector generated $1.64
trillion worth of goods in the United States and accounted for nearly 57% of total
exports in 2008 [2]. By contrast, manufacturing is still far from a dominant sector
in the ‘‘green’’ economy. According to a recent report by the Economics and
Statistics Administration at the US Department of Commerce, the manufacturing
sector accounted for only 13% of green business activity [3]. In addition, the
impact of manufacturing on the environment is enormous. Manufacturing indus-
tries are predominant in their environmental impact in areas such as toxic chem-
icals, waste, energy and carbon emissions. When all of these facts are considered,
it can be concluded that green manufacturing should be given more attention and
play a more important role in the green economy, for the sake of reducing negative
environmental impacts and achieving sustainable development. Green manufac-
turing (also sometimes referred to as sustainable manufacturing or environmen-
tally benign manufacturing) is defined by the US Department of Commerce as ‘‘the
creation of manufactured products that use processes that are non-polluting,
conserve energy and natural resources, and are economically sound and safe for
employees, communities, and consumers’’. Generally speaking, it involves the
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technologies, operational practices, analytical methods and strategies for sustain-
able production within the industrial ecology framework. It covers a number of
important issues such as minimizing waste and toxicity, reducing energy con-
sumption, using renewable energy sources and process optimization.

Energy conservation has always been a major concern in green manufactur-
ing. There are several reasons why energy conservation is critical to the man-
ufacturing industry. First of all, energy consumed by industrial sector is
considerable. According to Annual Energy Review released by the US Energy
Information Administration, the industrial sector consumes about 31% of all
energy in the US in 2008 (see Fig. 9.1) [4]. Secondly, the major sources of the
energy consumed by industrial sector are non-renewable, e.g., petroleum, natural
gas and coal (see Fig. 9.2) [5]. When energy is produced from non-renewable
resources, CO2 will be emitted into the atmosphere, resulting in greenhouse
effect and undesired climate change. For example, for every kilowatt-hour of

Fig. 9.1 US energy
consumption by sector in
2008. (Source Annual Energy
Review 2008 Report by US
Energy Information
Administration)

Fig. 9.2 US energy
consumption by major source
in industrial sector. (Source
Annual Energy Review 2008
Report by US Energy
Information Administration)
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electricity used, approximately two pounds of carbon dioxide are released into
the atmosphere. If the world continues on its current path of increasing energy
consumption, CO2 emissions are predicted to rise up to 43 billion tons by 2030
[6]. Thirdly, from the point of view of a manufacturing company, the cost of
energy consumption usually constitutes a major portion of the total production
cost. Energy costs for US manufacturer were 100 billion US dollars annually [7].
Consequently, saving cost could also be an incentive for a company to think
about reducing energy consumption.

Production scheduling is an essential activity in manufacturing. In this
chapter, the authors would like to discuss a multi-objective scheduling model in
a hybrid flow shop considering minimizing both the make-span and energy-
consumption criteria. Although multi-objective scheduling problems have been
well addressed before, most previous literature focuses on optimizing objectives
related to production efficiency, such as the make-span, the total completion
time, the maximum lateness or the number of tardy jobs [8]. The issues related
to energy conservation have seldom been investigated. However, in a hybrid
flow shop, jobs can be processed on one of several machines at each stage.
Machines at each stage may have different speed and power. Consequently,
different processing routes may lead to different make-spans, as well as different
energy consumptions. As the two objectives are usually in conflict with each
other, a Preference Vector Ant Colony System (PVACS) is developed to search
for a set of Pareto-optimal solutions. PVACS is an Ant Colony Optimization
(ACO)-based meta-heuristic for multi-objective optimization problems. Unlike
other multi-objective evolutionary algorithms, it allows the search in the solution
space to focus on the specific areas which are of particular interest to decision-
makers, instead of searching for the entire Pareto frontier. With the set of Pareto-
optimal solutions, production managers could strike a balance between produc-
tion efficiency and energy consumption.

The remainder of the chapter is organized as follows. In the next section,
previous studies related to energy conservation, multi-objective evolutionary
optimization and hybrid flow shop are reviewed, respectively. Section 9.3
describes the multi-objective scheduling problem in a hybrid flow shop where each
stage consists of a set of uniform parallel machines. PVACS is described in detail
in Sect. 9.4. Its performance is evaluated through extensive computational
experiments in Sect. 9.5. A summary and discussion of future research directions
concludes the chapter.

9.2 Literature Review

The problem considered in this chapter involves several important research areas.
They are: (1) energy conservation in manufacturing industry, (2) multi-objective
evolutionary optimization and (3) hybrid flow shop scheduling problems. The rest
of the section will discuss the related work in these areas.
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9.2.1 Energy Conservation in Manufacturing Industry

Over the past 20 years, advances have been made by academic and industrial
researchers in energy conservation in manufacturing industry. In an earlier work in
1992, Ross [9] showed that the energy intensities of all production processes
should continue to decline through new technologies and appropriate public pol-
icies. He also discussed some potential difficulties in energy conservation. Park
et al. [10] proposed a decomposition method to divide a change in manufacturing
energy consumption into three effects: output growth, energy intensity and
structural change. Fromme [11] surveyed the energy conservation in the Russian
manufacturing and showed that energy savings of 47% of current demand can be
achieved. The most important obstacles for energy conservation in Russia were
also discussed. As for energy consumption in the US, Golove and Schipper [12]
performed an analysis to examine long-term trends in US manufacturing energy
consumption, as well as carbon dioxide emissions. Adenikinju [13] examined the
impact of efficiency in energy consumption on the growth in productivity in the
Nigerian manufacturing sector using a panel data technique. Bentzen [14] noticed
that there is a ‘‘rebound effect’’ in energy consumption, which is estimated for the
US manufacturing sector using time series data applying the dynamic OLS method
(DOLS).

The studies mentioned above were all conducted from a macro perspective.
Meanwhile, there have been a number of studies addressing the technologies and
applications for energy saving as well as measuring energy efficiency. Draganescu
et al. [15] carried out experiments for statistic modelling of machine tool efficiency
and of specific consumed energy in machining as a function of different working
parameters. From this model, the amount of the mean economic specific-energy
consumed can be determined for a given amount of material. However, this model
cannot be easily applied to other machining processes and machine configurations.
Dietmair et al. [16] introduced a generic model for the energy consumption
behaviour of machines. Successful forecasts of energy consumption and optimi-
zations of machines for minimal energy consumption under a given application
scenario were demonstrated with this model. By focusing on the interdependencies
and dynamics of all technical processes, Herrmann and Thiede [17] presented an
integrated chain concept to foster energy efficiency in manufacturing companies
for different layers (e.g., input, logic, user and evaluation layer). A holistic five-
step approach for increasing energy efficiency was also developed. Wolters et al.
[18] studied sequencing problems in designing energy efficient production sys-
tems. They showed that by taking decisions sequentially, the energy conservation
potential may be reduced drastically. Mouzon et al. [6] observed there can be a
significant amount of energy savings when non-bottleneck equipment are turned
off when they will be idle for a certain amount of time, and thus developed
operational methods to minimize energy consumption of manufacturing equip-
ment. A Comprehensive review of energy conservation in manufacturing could be
found in [19].
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9.2.2 Multi-objective Evolutionary Optimisation

Multi-objective evolutionary algorithm (MOEA) stands for a class of stochastic
optimization methods that simulate the process of natural evolution for multi-
objective problems. They are able to achieve better performance than other blind
search strategies in multi-objective optimization [20]. In addition, they deal with a
set of possible solutions simultaneously which allows us to find several members
of the Pareto optimal [21]. MOEA therefore becomes the most popular issue in
multi-objective optimization. The earliest work in designing a MOEA appears to
be that of Schaffer [22]. He proposed a Vector Evaluated Genetic Algorithm
(VEGA) based on the traditional genetic algorithm, but using a modified selection
mechanism. After VEGA, researchers have introduced the concept of Pareto
optimality into evolutionary algorithms [23]. The basic idea of such algorithms is
to identify the set of solutions in the population that are Pareto non-dominated by
the rest of the population. These solutions are then given more opportunities to
participate in further competition. The earlier works were Non-dominated Sorting
Genetic Algorithm (NSGA) proposed by Srinivas and Deb [24], Niched-Pareto
Genetic Algorithm (NPGA) by Horn et al. [25] and Multi-Objective Genetic
Algorithm (MOGA) by Fonseca and Fleming [26].

The next generation of MOEA started when elitism became a standard mech-
anism. Zitzler and Thiele [27] were generally recognized as the first researchers
who introduced the concept of elitism in a MOEA. After the publication of
their work, most researchers in this area started to incorporate external populations
in their MOEAs and the use of this mechanism became a common practice. In
fact, the use of elitism is a theoretical requirement in order to guarantee conver-
gence of a MOEA [28]. There were several representative MOEAs that incorporate
elitism. The first one was Strength Pareto Evolutionary Algorithm (SPEA) [27], as
well as an improved version SPEA2 [29], which incorporates a fine-grained fitness
assignment strategy that considers for each individual the number of individuals
that dominate it and the number of individuals by which it is dominated. The
second one was Pareto Archived Evolution Strategy (PAES) proposed by Knowles
and Corne [30]. PAES employs a (1 ? 1) evolution strategy (i.e., a single parent
that generates a single offspring), and uses a reference archive recording the non-
dominated solutions previously found. Another notable algorithm was Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [31], introduced by Deb et al.
as an improved version of NSGA. NSGA-II introduced the concept of ‘‘crowding
distance’’, and during selection, the NSGA-II takes into account both the non-
domination rank of an individual in the population and its crowding distance.
Besides, the elitist mechanism of NSGA-II is different and does not incorporate
external memory. A recent study has been conducted by Chaudhuri and Deb [32],
who developed an interactive MOEA procedure integrating both multi-objective
optimization process and decision-making process into a unified framework. The
procedure not only allows a user to find a set of well-distributed non-dominated
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solutions, but also helps the user to impose preference information so as to obtain a
particularly preferred solution.

All the MOEAs discussed above are GA-based, however, there have also been
some works addressing other meta-heuristics in multi-objective optimization.
Doerner et al. [33, 34] developed a Pareto ant colony optimization to solve the
multi-objective project portfolio selection problem. Xia and Wu [35] investigated
multi-objective flexible job-shop scheduling problem using a hybrid approach by
combining particle swarm optimization (PSO) and simulated annealing (SA).
A comparative study performed by Sedenka and Raida [36] has reported that a
novel multi-objective PSO outperforms NSGA-II in many cases, and shows better
ability to find the extreme solutions. Another interesting study was published by
Berrichi et al. [37], who have developed a multi-objective ant colony optimization
(MOACO) approach to optimize production and maintenance scheduling problem.
The results of their experiments indicated the advantage of MOACO over SPEA2
and NSGA-II. For a comprehensive review on MOEA, the authors can refer to
Jones [38], Tan [39], Zitzler [40] and Coello [21].

9.2.3 Hybrid Flow Shop Scheduling

A hybrid flow shop (HFS), also sometimes referred to as flexible flow shop, is a
generalization of the flow shop and the parallel machine environments. Most
hybrid flow shop scheduling problems are difficult to solve and have been proved
to be NP-hard [41, 42]. Therefore, a large number of heuristics and approxi-
mation algorithms have been proposed for different HFS problems. As there have
been extremely extensive studies on HFS [43–45], in this section the authors
would focus only on the problems with uniform parallel machines addressed in
this study.

In a HFS environment with uniform parallel machines, each machine i is
associated with a speed vi, the actual time that operation Ojk spends on machine i is
equal to pjk/vi, where pjk is the processing time of job j at stage k. Huang and Li
[46] investigated the two-stage problem with uniform machines in the second
stage. Two heuristics, along with eight effective sequencing rules were developed
to assign the jobs to the machines. Besides, Dessouky et al. [47], Soewandi and
Elmaghraby [48] and Kyparisis and Koulamas [49] considered the problems with
uniform machines at both stage. Bertel and Billaut [50], as well as Dessouky et al.
[47] have considered the three-stage problems. The generalized k-stage HFS
problems with uniform machines at each stage have been studied by Sevastianov
[51], Kyparisis and Koulamas [52, 53] and Verma and Dessouky [54]. In addition,
Voss and Witt [55] considered a real-world application in steel manufacturing
where the HFS consists of 16 production stages, and 30,000 production jobs
forming several thousand projects. The problem includes sequence-dependent
setup costs and the ability to form batches. A heuristic solution procedure based on
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different dispatching rules that are capable to realize low tardiness and to form
batches was developed.

9.3 Problem Description

The problem under study is formally stated as follows. The shop floor consists of
s stages in series. There are mk uniform machines in parallel at stage k, k ¼
1; . . .; s: The ith machine at stage k is denoted by Mi,k and the power of machine
Mi,k is Wi,k. The speed of machine Mi,k is Vi,k. The impact of speed Vi,k is that
machine Mi,k can carry out Vi,k units of processing in one time unit. We assume
that the power of machine is constant during processing. As industrial machines
and equipment usually cannot be switched off completely during processing, there
is power consumption even if the machine is idle. However, such standby power is
generally trivial compared to the total power consumption. We therefore set the
standby power of machines to zero for simplicity.

There are n jobs to be processed. Each job Jj j ¼ 1; . . .; nð Þ consists of a
chain of operations Oj;1; . . .;Oj;s

� �

: An operation Oj,k is to be processed at stage
k on one of mk uniform parallel machines. The operation Oj,k requires Pj,k units
of processing (Pj,k is the task time of operation Oj,k). If operation Oj,k is assigned
to machine Mi,k, then it requires Pj,k/Vj,k time units to be completed. An oper-
ation Oj,k+1 may start only after the previous operation Oj,k has been completed.

The following assumptions are considered for the problem as well:

1. All machines and jobs are simultaneously available at time zero.
2. Machine used at each stage cannot process operations corresponding to any

other stages.
3. Each machine can process at most one job at a time.
4. Pre-emption of jobs is not allowed, i.e., any commenced operation must be

completed without interruptions.

Let Cj,s denote the completion time (of operation Oj,s) of job Jj at stage s. The
first objective is to minimize the make-span Cmax ¼ max1� j� n Cj;s

� �

, which is
the completion time of the last job leaving the system. The other objective is to
minimize the total energy consumption of all machines. Let xij;k be a binary

variable that is equal to 1 if operation Oj,k is assigned to machine Mi,k, and 0
otherwise. Then the total energy consumption (EC) can be formulated as
follows:

EC ¼
X

s

k¼1

X

mk

i¼1

Wi;k

X

n

j¼1

xij;kPj;k

Vi;k

 !

ð9:1Þ

Using the well-known three-field notation for scheduling problem [56], the
above problem can be denoted by HFk QM1; . . .;QMkð ÞjjCmax;EC:
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9.4 Preference Vector Ant Colony System

9.4.1 Ant Colony Optimisation and its Implementation

Ant colony optimization (ACO), first introduced by Colorni and Dorigo [57–59], is
a probabilistic technique for solving computational problems. It has drawn
extensive attention since it was proposed and has been successfully applied to
many applications in practice, including some scheduling problems [60–64]. ACO
algorithms are stochastic search procedures. They are based on a parameterized
model called the pheromone model, which is used to sample the search space
probabilistically. In the model, artificial ants incrementally construct solutions by
adding opportunely defined solution components to a partial solution until a
complete solution is built. The construction of solutions is guided by pheromone
trails and problem-specific heuristic information. In the context of combinatorial
optimization problems, pheromones indicate the intensity of ant trails with respect
to solution components, and such trails are determined on the basis of the con-
tribution to the objective function. Before the next iteration starts, some of the
solutions are used for performing a pheromone update. The algorithm iteratively
searches the solution space following the above procedures until some stopping
criteria are satisfied.

The motivation for using an ACO-based algorithm in this chapter is as follows.
First, the ACO algorithm includes an important component, i.e., the heuristic
information. Heuristic information allows the users to provide problem dependent
knowledge to guide the search and is helpful in identifying high quality areas in
the search space. Consequently, the ACO-based algorithm can effectively find
satisfactory solutions to a combinatorial problem if the heuristic information is
well structured [65]. Second, the ACO algorithm is a constructive method that
generates solutions step by step by adding a solution component to the current
partial solution. It is easier to incorporate users’ preference into the process of
solution construction because the transition rule, also called the transition proba-
bilities, can easily be redefined with preference consideration.

Traditionally, ACO algorithms are aimed at solving single-objective optimi-
zation problems. However, some recent efforts have been directed to develop ACO
algorithms for multi-objective optimization problems. For example, Mariano and
Morales [66] proposed a Multiple-Objective Ant-Q algorithm (MOAQ) for the
design of water distribution irrigation networks. Yagmahan and Yenisey [67]
presented a multi-objective ant colony system algorithm (MOACSA), which
combines ant colony optimization approach and a local search strategy in order to
solve a flow shop scheduling problem. Pareto Ant Colony Optimization, proposed
by Doerner et al. [33, 34] was dedicated to solve the multi-objective portfolio
selection problem.

The PVACS approach presented in this chapter is basically a Pareto
optimization approach. It tries to find a set of solutions that are Pareto non-domi-
nated by other solutions. Additionally, users’ preferences are also incorporated into
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the algorithm. Such preferences are important because in real-world applications it
is normally the case that the users do not need the entire Pareto-optimal set, but only
a small portion of it. Consequently, it is desirable that the users can define a
preference vector that can narrow the search and magnify certain portions of the
Pareto frontier. As the ACO algorithm was originally designed for single-objective
optimization problems, and does not contain any user preference, the procedure of
the basic ACO algorithm should be modified for the proposed multi-objective
problem. For each objective, a separate matrix to store pheromone trail is main-
tained. For instance, the element sMK(j, h) represents the pheromone information
with respect to the make-span objective of job h to follow job j. In the construction
phase of the algorithm, each ant tries to construct a feasible solution using both
heuristic information and combined pheromone information which is a weighted
sum of the corresponding elements in the pheromone matrices. The weight is
determined by the preference vector. If the solution constructed is not dominated by
any other solution previously obtained, then it is stored and will be used to perform
a global pheromone update. The details of the PVACS approach will be provided in
the following sections.

9.4.2 Solution Encoding

The problem presented in Sect. 9.3 consists of two tasks. The first task is to
determine the sequence of jobs. The other is to assign jobs to one of the machines.
A possible encoding scheme is to consider all the sequences of jobs at each stage
in view of the fact that different sequences may occur at different stages, as well as
job assignment. However, this representation may lead to extremely large search
space. In addition, this representation can cause difficulties in solution construction
and pheromone updating. An alternative is to consider the permutation of jobs only
at the first stage, and then a list scheduling algorithm is used to decode solutions to
a full schedule. This representation may be able to search only a small portion of
search space. However, if the list scheduling algorithm is effective, such repre-
sentation will also provide high quality solution, with much less complexity.
Hence, in the encoding scheme of PVACS, a string of n integers, which is a
permutation of 1, 2, …, n, corresponding to the job list at the first stage, is used to
represent a solution. Each integer in the permutation that represents a job is a
solution component in the PVACS algorithm.

To obtain a valid schedule, a solution is decoded by using a list scheduling
algorithm. Generally, a list scheduling algorithm is to make an ordered list of jobs
by assigning them some priorities. Then select from the list the job with the highest
priority for scheduling, and a machine is also selected to accommodate the job. In
this study, the list scheduling (LS) algorithm selects jobs according to their
sequences in a solution at the first stage. Then a new list is created at each stage,
and the sequence of jobs is arranged in the increasing order of their completion
time at the previous stage. For machine selection, there are generally two different
strategies. The first one is Makespan-First (MF), which assigns the jobs to the
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machine with the highest speed in a set of available machines (AMS). The other is
Energy Conservation-First (ECF), which assigns the jobs to the machine with the
lowest energy consumption. The set of available machines is dynamically deter-
mined. If machineMi,k is idle at time t, thenMi;k 2 AMS tð Þ: If at time t, there is no
machine in the set of available machines, namely AMS(t) = U, then the job is
assigned to the machine with the earliest available time.

Let pk denote the list for stage k and pk(h) denote the job at position h in list pk.
The pseudo-code of Algorithm LS is represented as follows:

In order to illustrate how Algorithm LS works, an example of five jobs to be
scheduled in a two-stage hybrid flow shop, with three machines at each stage is
considered. Tables 9.1 and 9.2 provide the data for the job set and machine set,

Table 9.1 Data for
the job set

Job 1 2 3 4 5

Pj,1 12 20 6 15 4
Pj,2 15 10 8 12 6
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respectively. And Fig. 9.3 demonstrates a full schedule decoded from a job per-
mutation p1 = 1, 2, 3, 4, 5. It should be noted that Algorithm LS will build a non-
permutation schedule, that is, the sequence of jobs at each stage may be different.
In this example, we assume that Algorithm LS adopts a Makespan-First strategy.

9.4.3 Pheromone Trails

As stated in the previous section, each solution is coded as a permutation of jobs in
the algorithm PVACS. Another important issue before applying the algorithm is to
define the pheromone trails. Instead of using a single pheromone matrix for all the
objectives, the algorithm maintains a separate pheromone matrix for each objec-
tive, respectively. Such arrangement can distinguish impacts from different
objectives. Let pheromone trail sMK(j, h) represent the sequence desire of job h to
follow job j for the make-span criterion, and sEC(j, h) for the energy-consumption
criterion. The range of possible pheromone trails on each solution component is
limited to an interval [smin, smax] to avoid premature convergence. In the initial-
ization phase, the pheromone information are initialized to smax, achieving in this
way a higher exploration of solution space at the beginning. Furthermore, a
preference vector u = (uMK, uEC) (0 B uMK, uEC B 1) provided by users is
introduced to determines the relative importance of different objectives so that we
can narrow the search and magnify certain portions of the Pareto front that are of

Table 9.2 Data for the
machine set

Machine M1,1 M2,1 M3,1 M1,2 M2,2 M3,2

Vj,k 2 1 3 1 2 3
Wj,k 10 6 12 4 8 10
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Fig. 9.3 A numerical example of Algorithm LS
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particular interest to the users. uMK is the vector component for the make-span
criterion, and uEC for the energy-consumption criterion.

9.4.4 Heuristic Information

Heuristic information is an optional ingredient in ACO, but usually the use of
heuristic information to direct the ants’ probabilistic solution construction is
important because it provides problem-specific knowledge. In the original Ant
Colony System, the heuristic information g(j, h) is defined by the reciprocal of a
cost measure from node j to node h. In this study, Heuristic information used is
based on Palmer’s heuristic [68], which is a quick method to obtain a near-
optimum solution for flow-shop problems. This heuristic measures the slope index
of job j (SIj) using the following equation and then constructs the sequence based
on the non-increasing order of the magnitude of SIj.

SIj ¼
X

s

k¼1
2k � s� 1ð ÞPj;k j ¼ 1; 2;. . .; n ð9:2Þ

The idea of Palmer’s heuristic is to assign priority to the jobs that have the
strongest tendency to progress from short- processing times to long-processing
times in the sequence of processes. The heuristic information g(j, h) in PVACS is
defined by g(i, j) = SIh–min(SI)+1.

9.4.5 State-Transition Rule

When constructing a job permutation for the first stage, an ant a at the current job
j selects the next job h to be added to the job permutation from Ua(j), where
Ua(j) represents the set of candidate jobs that have not been added to the job
permutation. The state-transition rule is given as follows:

y ¼ arg max
h2Ua jð Þ

uMKsMK j; hð Þ þ uECsEC j; hð Þ½ �a g j; hð Þ½ �b
n o

if q� q0

Y otherwise

(

ð9:3Þ

where q is a random number uniformly distributed in [0,1), q0 is a parameter
(0 B q0\ 1) set by the user that determines the relative importance of exploitation
versus exploration. Additionally, the random variable Y is selected according to the
probability distribution given:

Y ¼
uMKsMK j;hð ÞþuECsEC j;hð Þ½ �a g j;hð Þ½ �b

P

l2UaðjÞ
uMKsMK j;lð ÞþuECsEC j;lð Þ�a½g j;lð Þ½ �

b if h 2 Ua jð Þ

0 otherwise

(

ð9:4Þ
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This probability distribution is biased by the parameters a and b, which
determines the relative importance of the pheromone trails and heuristic infor-
mation, respectively.

9.4.6 Pheromone Trail Update

A local pheromone update is performed once an artificial ant has found a solution.
The amount of pheromone on the solution components sMK(j, h) and sEC(j, h) is
decreased for the make-span objective and the energy-consumption objective,
respectively. The local pheromone update rule for these solution components can
be represented as follows:

sMK j; hð Þ ¼ 1� qlð Þ � sMK j; hð Þ þ ql � s0 ð9:5Þ

sEC j; hð Þ ¼ 1� qlð Þ � sEC j; hð Þ þ ql � s0 ð9:6Þ

where s0 is the initial value of pheromone trails and ql (0 B ql B 1) is the local
evaporation rate. On account of local updating, the ants prefer those sequences that
have not yet been constructed. As a result, the diversity of the solutions provided is
enhanced.

After all the ants in the population have completed constructing the job per-
mutation, global pheromone information is updated to increase the pheromone
values on solution components that have been found in high-quality solutions. This
is done first by lowering the pheromone trails at the global evaporation rate qg and
then by allowing the ants to deposit pheromone on the paths searched. A set of
non-dominated solutions (NDS) are used to update pheromone trails. The set of
non-dominated solutions is used to preserve all the non-dominated solutions
previously found. The set is updated after each iteration. If some elements in the
set are Pareto dominated by a new found solution, then they will be removed from
the set. And new found non-dominated solutions are added to the set. However, the
amount of pheromone deposited by ants differs in terms of solution quality. The
global pheromone trail update rule is given below:

sMK j; hð Þ ¼ 1� qg
� �

� sMK j; hð Þ þ qg �
X

sol2NDS

DssolMK j; hð Þ ð9:7Þ

sEC j; hð Þ ¼ 1� qg
� �

� sEC j; hð Þ þ qg �
X

sol2NDS

DssolEC j; hð Þ ð9:8Þ

The amount of pheromone deposited by a solution (sol) follows these equations:

DssolMK j; hð Þ ¼
valbestMK

valsolMK � val
best

MKþ1
if h follows j in the solution sol

0 otherwise

(

ð9:9Þ
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DssolEC j; hð Þ ¼
valbestEC

valsolEC � val
best

EC þ1
if h follows j in the solution sol

0 otherwise

(

ð9:10Þ

where valsolMK and valbestMK are the make-span value of the solution sol and the best
make-span value in the set of non-dominated solutions, respectively. Similarly,

valsolEC and valbestEC are the energy-consumption value of the solution sol and the best
energy-consumption value in the set of non-dominated solutions, respectively.

It is possible that sometimes the algorithm might get trapped in local minima.
This may happen if at each choice point, the pheromone trail is significantly higher
for one choice than for all the others. In order to avoid this situation and maintain
the diversity of solutions, explicit limits smin and smax are imposed on the mini-
mum and maximum pheromone trails such that for all pheromone trails s(j, h),
smin B s(j, h)\ smax. After each update if s(j, h)\ smin, then s(j, h) is set to smin;
analogously s(j, h) is set to smax if s(j, h)[ smax. This ensures that every path has
at least a small amount of pheromone, thus the probability of choosing any
solution component is never 0.

The algorithm will stop after a preset number of iterations. The flowchart of the
proposed PVACS algorithm is given in Fig. 9.4.

9.5 Computational Experiments

In the following section computational experiments are described. The experi-
ments are carried out to compare the solution quality and performance of the
proposed PVACS with two well-known algorithms NSGA-II and SPEA2. Both the
algorithms use the same encoding method as PVACS, that is, solutions are rep-
resented as permutation of jobs, and Algorithm LS is then employed to obtain a
valid schedule. In addition, for NSGA-II [31] and SPEA2 [29], the same genetic
operators are used: binary tournament selection, single-point crossover and a
single-point mutation. The descriptions of the crossover and mutation operators
can be found in [69]. All the algorithms are coded in C#; a Core 2, 2 GHz
computer with 2 GB RAM was used to run the experiments.

9.5.1 Data Generation

The experiments are implemented using randomly generated data. Different
problem sizes are taken into consideration. Each test problem can be denoted by a
triple (J, S, M), where J is the number of jobs, S the number of stages and M the
number of machines at each stage. The test problems proposed are (10, 2, 2), (10,
4, 4), (20, 2, 2), (20, 4, 4), (50, 2, 2) and (50, 4, 4). For all the problems the
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Fig. 9.4 The flowchart of the
proposed PVACS algorithm
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following assumptions are made: processing times of jobs at each stage are gen-
erated from a discrete uniform distribution of U(10, 50); machine speeds are from
a discrete uniform distribution of U(2, 5) and machine powers are uniformly
distributed over interval [10, 30].

9.5.2 Performance Measure

To compare the quality of three Pareto sets obtained from different algorithms, the
following performance metrics are considered.

Number of Pareto solutions metric (NPS): this metric presents the number of
Pareto-optimal solutions which is obtained by each algorithm.

Coverage metric (C): this metric is a relative measure which allows clearly
differentiating two sets A and B [70]. The value of C(A,B) represents the per-
centage of solutions in B dominated by at least one solution in A. It can be
calculated by the equation:

C A;Bð Þ ¼ b 2 Bj9a 2 A : a � b or a ¼ bf gj j

Bj j
ð9:11Þ

where a � b represents that a dominates b. The closer the value of C(A, B) is to 1,
which means almost all the solutions in B are dominated by some solution in A, the
better the set A compared to B. However, this metric is not symmetrical, that is,
C(A, B) = 1 - C(B, A) usually does not hold. Consequently, it is necessary to
calculate C(B, A) and A is better than B if C(A, B)[ (B, A).

Users preference metric (UP): this metric is used to measure whether the
solutions in set A are interesting to users according to the predefined preference
vector u = (uMK, uEC). The UP value of set A is given as follows:

UPðAÞ ¼

P

sol2A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uMK
valsolMK

valbestMK

� 1
� �2

þuEC valsolEC

valbestEC

� 1
� �2

r

Aj j ð9:12Þ

The UP metric uses a weighted normalized distance to measure the quality of a
set of non-dominated solutions. If the make-span criterion is more preferable for
the users, the distance between the make-span value of solution sol and the best
make-span value will be assigned a higher weight, similarly the energy-
consumption criterion. The lower a UP value is, the better is the solution quality.

9.5.3 Sensitivity Analysis of the Parameters

Sensitivity analysis of the parameters is important because it can determine the
influence of input parameters on the output. The study of such influence may help

9 Preference Vector Ant Colony System 295



to investigate the robustness of the algorithm and improve its performance. There
are a number of parameters that affect the search behaviour of the proposed
PVACS. Some of the parameters are basic elements of ACO, such as the number
of artificial ants na, the number of iterations iter, the relative importance of
pheromone trails a, the relative importance of heuristic information b, the local
evaporation rate ql and the global evaporation rate qg. Some others are developed
to define users’ preference, i.e., preference vector u = (uMK, uEC) and the
assignment strategy in Algorithm LS.

A group of values were selected and tested for each parameter. Extensive
experiments were carried out by varying one parameter at each step using a trial
and error approach, as described by Yagmahan and Yenisey [67]. An instance of
problem (20, 2, 2) was used, and the criterion used to measure the quality of the
obtained solutions is the UP metric. The preference vector was assumed to be
u = (0.5, 0.5), and the Algorithm LS adopts a Makespan-First strategy. It should
be noted that using a dynamic population size is preferable, therefore the number

of ants was set to na ¼ 10
ffiffiffi

J
p

; where J is the number of jobs. The parameters and

Table 9.3 Parameter
selection for PVACS

Parameters Tested values Selected values

na na ¼ 10
ffiffiffi

J
p

na ¼ 10
ffiffiffi

J
p

a {0.5, 1, 2} a = 1
b {0.5, 1, 2} b = 0.5
ql {0.05, 0.1, 0.2, 0.3} ql = 0.1
qg {0.05, 0.1, 0.2, 0.3} qg = 0.3

smin
MK

{10, 20, 30} smin
MK ¼ 10

smax
MK {200, 300, 500} smax

MK ¼ 500

smin
EC

{20, 50, 100} smin
EC ¼ 50

smax
EC {500, 1000, 2000, 5000} smax

EC ¼ 2000

iter {100, 500, 1000} iter = 1000

Fig. 9.5 The best value found for the combination of a and b
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their values are shown in Table 9.3. In addition, Fig. 9.5 presents the UP metric
values from combination of a and b (the lower the better).

We next examined how the users’ preferences and the assignment strategies in
Algorithm LS affect the search behaviour of PVACS. For the preference vector,
two values u1 = (0.8, 0.2) and u2 = (0.2, 0.8) were considered, and two strategies
Makespan-First (MF) and Energy Conservation-First (ECF) for the assignment
strategy in Algorithm LS. Figure 9.6 reports the distribution of the non-dominated
solutions with respect to preference vector u1 and u2 using the MF strategy in
Algorithm LS, and Fig. 9.7 reports the results using ECF strategy. It can be
observed that the distribution of non-dominated solutions is significantly affected
by the predefined preference vector. If the user prefers the make-span criterion and
thus gives it a larger weight, then the algorithm will be more likely to search for
non-dominated solutions with better make-span values, and vice versa. The
assignment strategies do not directly determine the shape of the distribution.
However, using an ECF strategy will significantly reduce the energy-consumption
values of all the solutions found, but result in an increase in the make-span values
accordingly.

In addition, the parameters needed to determine for NSGA-II and SPEA2 include
the population size, archive size, crossover probability, mutation probability and

Fig. 9.6 The distribution of
the non-dominated solutions
under MF strategy

Fig. 9.7 The distribution of
the non-dominated solutions
under ECF strategy
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the number of iterations. After pilot experiments, the parameter values are sum-
marized in Table 9.4.

9.5.4 Experimental Results

This section investigates the performance of PVACS against NSGA-II and SPEA2
in terms of the three metrics listed previously. For each problem, ten instances
were randomly generated. We set the preference vector u = (0.5, 0.5) and the
Makespan-First strategy was used for PVACS.

Table 9.5 presents the number of Pareto-optimal solutions obtained by the three
algorithms. The left column of each algorithm represents the minimum number of
the Pareto-optimal solutions found among the ten runs, while the middle column
and right column represent the maximum and average number, respectively. It can
be observed that all the three algorithms have very similar performance. PVACS

Table 9.4 Parameter selection for NSGA-II and SPEA2

Problem
size

NSGA-II SPEA2

J = 10 Population
size = 40

Crossover
probability = 0.9

Population
size = 40

Crossover
probability = 0.9

Archive
size = 20

J = 20 Population
size = 60

Population
size = 60

Mutation
probability = 0.05

Mutation
probability = 0.05

Archive
size = 30

Iterations = 1000

J = 50 Population
size = 100

Iterations = 1000 Population
size = 100

Archive
size = 50

Table 9.5 Comparison of the three algorithms using the NPS metric

Problem PVACS NSGA-II SPEA2

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

(10, 2, 2) 4 9 6.3 4 8 6.5 3 9 6.5
(10, 4, 4) 6 10 6.9 5 11 6.8 5 9 6.7
(20, 2, 2) 4 12 7.0 4 11 6.7 4 11 7.0
(20, 4, 4) 6 13 8.7 5 13 8.7 6 13 8.4
(50, 2, 2) 5 12 8.0 5 14 8.1 5 14 7.8
(50, 4, 4) 5 12 8.8 7 14 8.6 6 13 8.4
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performs slightly better than the other two algorithms in terms of the average
performance. However, there is generally no considerable difference between the
PVACS and NSGA-II. It is also noted that all the algorithms are able to find more
Pareto-optimal solutions when the number of jobs, stages and machines increases,
as in this case the search space becomes much larger.

The NPS criterion is only able to evaluate the number of Pareto-optimal
solutions obtained by an algorithm, however, the solution quality can be measured
by the two set coverage metric. The best, worst and average values of the C metric
over 10 instances are summarized in Table 9.6. As the C metric is not symmet-
rical, it is necessary to calculate both C(A, B) and C(B, A) to determine which
algorithm is better. Algorithm A is better than B if C(A, B)[C(B, A).When
comparing PVACS with NSGA-II, it can be noticed that PVACS obtains good
results in terms of the best, worst and average performance, and it clearly out-
performs NSGA-II. The advantage of PVACS is even more impressive when
compared to SPEA2. Such advantage of PVACS may come from the heuristic
information incorporated in the algorithm, which enables the algorithm to search
the solution space more effectively.

Table 9.6 reports UP metric values produced by the three algorithms. This
metric is used to measure whether an obtained Pareto set are of interest to the users
according to the predefined preference vector. However, as traditional NSGA-II
and SPEA2 are GA-based MOEAs that are usually without preference consider-
ation, the non-dominated solutions they found are evenly distributed in the Pareto
frontier in most cases. Consequently, the UP metric values of PVACS are sig-
nificantly better than both NSGA-II and SPEA2 (the lower the better), and thus are
more attractive to the users.

In order to visualize the performance of the different algorithms, three instances
generated from (10, 4, 4), (20, 4, 4) and (50, 4, 4) are selected to provide graphical
representation for the small (Fig. 9.8), medium (Fig. 9.9) and large problems
(Fig. 9.10). These figures illustrate and confirm some conclusions derived from the
numerical analysis based on the metric values. As we can observe, the proposed
PVACS algorithm is able to provide better solutions than NSGA-II and SPEA2 in
terms of quality and distribution.

Table 9.6 Comparison of the three algorithms using the C metric

Problem C(PVACS,
NSGA-II)

C(NSGA-II,
PVACS)

C(PVACS,
SPEA2)

C(SPEA2,
PVACS)

Best Worst Avg. Best Worst Avg. Best Worst Avg. Best Worst Avg.

(10,2,2) 1.00 0.00 0.32 0.60 0.00 0.20 0.89 0.33 0.55 0.33 0.00 0.14
(10,4,4) 0.90 0.20 0.51 0.57 0.00 0.27 1.00 0.20 0.48 0.40 0.00 0.12
(20,2,2) 0.86 0.17 0.44 0.60 0.00 0.26 1.00 0.40 0.63 0.33 0.00 0.05
(20,4,4) 0.89 0.37 0.57 0.42 0.00 0.13 0.91 0.37 0.69 0.10 0.00 0.01
(50,2,2) 1.00 0.40 0.68 0.37 0.00 0.07 1.00 0.57 0.81 0.00 0.00 0.00
(50,4,4) 0.92 0.33 0.73 0.10 0.00 0.01 1.00 0.67 0.87 0.00 0.00 0.00
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Table 9.7 Comparison of the three algorithms using the UP metric

Problem PVACS NSGA-II SPEA2

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

(10, 2, 2) 0.0095 0.0164 0.0115 0.0124 0.0315 0.0195 0.0135 0.0514 0.0351
(10, 4, 4) 0.0132 0.0327 0.0283 0.0552 0.0940 0.0762 0.0538 0.0925 0.0753
(20, 2, 2) 0.0159 0.0415 0.0212 0.0296 0.0834 0.0571 0.0492 0.0817 0.0671
(20, 4, 4) 0.0217 0.0355 0.0241 0.0348 0.0952 0.0712 0.0365 0.0983 0.0856
(50, 2, 2) 0.0122 0.0326 0.0178 0.0251 0.0635 0.0454 0.0254 0.0716 0.0524
(50, 4, 4) 0.0143 0.0411 0.0223 0.0399 0.0731 0.0645 0.0481 0.0881 0.0764

Fig. 9.8 Non-dominated
solutions for the small
problem

Fig. 9.9 Non-dominated
solutions for the medium
problem

Fig. 9.10 Non-dominated
solutions for the large
problem
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9.6 Concluding Remarks

In this chapter, we have discussed some important issues related to green manu-
facturing. Energy conservation has now become a major concern in green man-
ufacturing. In view of the increasing importance of energy conservation, a multi-
objective scheduling model considering to minimize both make-span and energy
consumption has been proposed. As the two objectives are usually in conflict with
each other, a PVACS has been developed to obtain a set of Pareto-optimal solu-
tions. PVACS searches for feasible job permutations and a List Scheduling (LS)
heuristic is then adopted to decode the solution and obtain a valid schedule.
PVACS allows the users to define a preference vector so that the search is focused
on the specific areas which are of particular interest to users. The performance of
PVACS has been compared to SPEA2 and NSGA-II using three different metrics:
number of Pareto solutions, coverage metric and users preference metric. The
experimental results show that PVACS outperforms the other two algorithms.

There are a number of important directions for future research. First of all, the
solutions for the proposed model are encoded as job permutations. In this coding
scheme PVACS is only able to search for solutions in a small portion of the search
space. Therefore, different solution encoding techniques may be considered to better
explore the search space. Secondly, the heuristic information and the pheromone
update rule of PVACS may be further improved. Some local search procedures can
be incorporated to make the algorithmmore effective and efficient. Thirdly, different
heuristics for assigning jobs to machines may also improve the performance of
PVACS. In addition, other multi-objective evolutionary algorithms can be devel-
oped to solve the problem. Finally, it also seems interesting to extend the model to
the unrelated machine environment, or a more complex job-shop environment.
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Chapter 10
Intelligent Optimisation for Integrated
Process Planning and Scheduling

Weidong Li, Lihui Wang, Xinyu Li and Liang Gao

Abstract Traditionally, process planning and scheduling were performed sequen-
tially, where scheduling was executed after process plans had been generated.
Considering the fact that the two functions are usually complementary, it is neces-
sary to integrate them more tightly so that the performance of a manufacturing
system can be improved greatly. In this chapter, a multi-agent-based framework has
been developed to facilitate the integration of the two functions. In the framework,
the two functions are carried out simultaneously, and an optimization agent based on
evolutionary algorithms is used to manage the interactions and communications
between agents to enable proper decisions to be made. To verify the feasibility and
performance of the proposed approach, experimental studies conducted to compare
this approach and some previous works are presented. The experimental results show
the proposed approach has achieved significant improvement.
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10.1 Introduction

In a manufacturing system, process planning and scheduling used to link product
design and manufacturing are two of the most important functions. A process plan
specifies what manufacturing resources and technical operations/routes are needed
to produce production jobs for a product. The outcome of process planning
includes the identification and specification of machines, tools and fixtures suitable
for a job, and the arrangement of operations and processes for the job. Typically, a
job may have one or more alternative process plans. With the process plans of jobs
as input, a scheduling task is to schedule the operations of all the jobs on machines
while precedence relationships in the process plans are satisfied. Although as
mentioned above, there is a close relationship between process planning and
scheduling, the integration of them is still a challenge in both research and
applications [1]. In traditional approaches, process planning and scheduling were
carried out in a sequential way. Scheduling was conducted after the process plan
had been generated. Those approaches have become an obstacle to improve
the productivity and responsiveness of manufacturing systems and to cause the
following problems in particular [2, 3]:

• In manufacturing practice, process planner plans jobs individually. For each job,
manufacturing resources on the shop floor are usually assigned on it without
considering the competition for the resources from other jobs [4]. This may lead
to the process planners favouring to select the desirable machines for each job
repeatedly. Therefore, the generated process plans are somewhat unrealistic and
cannot be readily executed on the shop floor for a group of jobs [5]. Accord-
ingly, the resulting optimal process plans often become infeasible when they are
carried out in practice at the later stage.

• Scheduling plans are often determined after process planning. Fixed process
plans may drive scheduling plans to end up with severely unbalanced resource
load and create superfluous bottlenecks.

• Even though process planners consider the restriction of the current resources on
the shop floor, the constraints in the process planning phase may have already
changed due to the time delay between the planning phase and execution phase.
This may lead to the infeasibility of the optimized process plan. Investigations
have shown that 20–30% of the total process plans in a given period have to be
modified to adapt to the dynamic change in a production environment [2].

• In most cases, both for process planning and scheduling, a single criterion
optimization technique is used to determine the best solution. However, the real
production environment is best represented by considering more than one cri-
terion simultaneously [2]. Furthermore, the process planning and scheduling
may have conflicting objectives. Process planning emphasizes the technological
requirements of a job, while scheduling involves the timing aspects and resource
sharing of all jobs. If there is no appropriate coordination, it may create con-
flicting problems.
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To overcome these problems, there is an increasing need for an integrated
process planning and scheduling (IPPS) system. The IPPS introduces significant
improvements to the efficiency of manufacturing resources through eliminating or
reducing scheduling conflicts, reducing flow-time and work-in-process, improving
production resources utilizing and adapting to irregular shop floor disturbances [5].
Without IPPS, a true Computer Integrated Manufacturing System (CIMS), which
strives to integrate the various phases of manufacturing in a single comprehensive
system, may not be effectively realized.

10.2 Literature Survey

In the early studies of CIMS, it has been identified that IPPS is very important for
the development of CIMS [2, 6]. The preliminary idea of IPPS was first introduced
in [7]. In [8], alternative process plans were used to improve the flexibility of
manufacturing systems. In [9], the concept of dynamic feedback was introduced
into IPPS. The integration model proposed by [9, 10] extended the concepts of
alternative process plans and dynamic feedback and defined an expression to the
methodology of hierarchical approach. Some earlier works of IPPS had been
summarized in [6]. The most recent works related to the IPPS optimization can be
generally classified into two categories: the enumerative approach and the
simultaneous approach. In the enumerative approach [11–13], multiple alternative
process plans are first generated for each part. A schedule can be determined by
iteratively selecting a suitable process plan from alternative plans of each part to
replace the current plan until a satisfactory performance is achieved. The simul-
taneous approach is based on the idea of finding a solution from the combined
solution space of process planning and scheduling [14–17]. In this approach, the
process planning and scheduling are both in dynamic adjustment until specific
performance criteria can be satisfied. Although this approach is more effective and
efficient in integrating the two functions, it also enlarges the solution search space
significantly.

In recent years, the agent-based system used to build up the communicative
collaborative framework in manufacturing planning has captured the interest of a
number of researchers. In [18], the agent technology for collaborative process
planning was reviewed. The focus of the research was on how the agent tech-
nology can be further developed in support of collaborative process planning as
well as its future research issues and directions in process planning. In [19], a
literature review on IPPS was made, particularly on the agent-based approaches
for the problem. The advantages of the agent-based approach for scheduling
were discussed. In [20], the research on manufacturing process planning,
scheduling as well as their integration was summarized. In [21], a multi-agent
system, where process routes and schedules of a part are accomplished through
the contract net bids, was proposed. IDCPPS is an integrated, distributed and
cooperative process planning system [22]. The process planning tasks are
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separated into three levels, namely, initial planning, decision-making and detail
planning. The results of these three steps are general process plans, a ranked list
of near-optimal alternative plans and the final detailed linear process plans,
respectively. The integration with scheduling is considered at each stage with
process planning. A computerized model that can integrate the manufacturing
functions and resolve some of the critical problems in distributed virtual man-
ufacturing was proposed [23]. This integration model is realized through a multi-
agent approach that provides a practical approach for software integration in a
distributed environment. A multi-agent-based framework for the IPPS problem
was introduced [24]. This framework can also be used to optimize the utilization
of manufacturing resources dynamically as well as provide a platform on which
alternative configurations of manufacturing systems can be assessed. In [25], a
new methodology of distributed process planning was developed. It focused on
the architecture of the new approach, using multi-agent negotiation and coop-
eration, and on the other supporting technologies such as machining feature-
based planning and function block-based control. An online hybrid agent-based
negotiation multi-agent system to integrate process planning with scheduling/
rescheduling was proposed [26, 27]. With the introduction of the supervisory
control into the decentralized negotiations, this approach is able to provide
solutions with a better global performance. A bidding-based multi-agent system
for solving IPPS was presented in [28]. The proposed architecture consists of
various autonomous agents capable of communicating (bidding) with each other
and making decisions based on their knowledge. A new method in IPPS was
discussed in [29]. A multi-agent learning-based integration method was devised
in the study to solve the conflict between the optimality of the process plan and
the production schedule. In the method, each machine makes decisions about
process planning and scheduling simultaneously, and it has been modelled as a
learning agent using evolutionary artificial neural networks to realize proper
decisions resulting from interactions between other machines. An agent-based
architecture of an IPPS system for multiple jobs in flexible manufacturing sys-
tems was devised [30]. In the literature of agent-based manufacturing applica-
tions, much research applied simple algorithms such as dispatching rules which
are applicable for real-time decision-making.

To identify optimal solutions in IPSS is a critical and challenging research.
Some optimization approaches based on modern heuristics or evolutionary
algorithms, such as genetic algorithm (GA) (for operation sequencing problem,
[31–35]; for IPPS problem, [16, 36]), simulated annealing (SA) algorithm
(for operation sequencing problems, [37, 38]; for IPPS problem, [11, 39]), Tabu
search algorithm [40], game theory-based approach for IPPS problems [41], and
particle swarm optimization (PSO) algorithm for operation sequencing problems
[42], have been developed in the last two decades and significant improvements
have been achieved. However, for parts with complex structures and features and
multiple parts involved, these optimization processes are well known as compli-
cated decision problems. The major difficulties include: (1) both operation
sequencing and IPPS problems are NP-hard (NP: non-deterministic polynomial)
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combinatorial optimization problems. The search space is usually very large
especially for IPPS problem because it involves multiple parts’ scheduling, and
many previously developed methods could not find optimized solutions effectively
and efficiently, and (2) there are usually a number of precedence constraints in
sequencing operations and manufacturing resource utilization constraints due to
manufacturing practice and rules, which make the search more difficult. Therefore,
it is necessary to develop efficient models for the operation sequencing and the
IPPS optimization problems and the optimization algorithms need to be more agile
and efficient to solve practical cases.

10.3 IPPS Optimisation Formulation

The IPPS problem can be defined as follows:

Given a set of n parts that are to be processed on machines with operations including
alternative manufacturing resources, select suitable manufacturing resources and sequence
the operations so as to determine a schedule in which the precedence constraints among
operations can be satisfied and the corresponding objectives can be achieved.

A model of IPPS is shown in Fig. 10.1.
The most popular criteria for scheduling include make-span, job tardiness and

the balanced level of machine utilization, while manufacturing cost is the major
criterion for process planning:

Fig. 10.1 Illustration of IPPS problems

10 Intelligent Optimisation for Integrated Process Planning and Scheduling 309



Makespan:

Makespan ¼ Max
m

j¼1
ðMachine½j�:Available timeÞ ð10:1Þ

Total job tardiness. The due date of a part is denoted as DD, and the completion
moment of the part is denoted as CM. Hence,

Part Tardiness ¼
0 if DD is later than CM
CM� DD Otherwise

�

ð10:2Þ

Balanced level of machine utilization: the Standard Deviation concept is
introduced here to evaluate the balanced machine utilization (assuming there are
m machines, and each machine has n operations).

Machine½j� � Utilization ¼
X

n

i¼1

ðOperation½i� �Mac TÞ ðj ¼ 1; . . .;mÞ ð10:3Þ

v ¼

Pm
j¼1 ðMachine½j� � UtilizationÞ

m
ð10:4Þ

Utilization Level ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

j¼1

ðMachine½j� � Utilization� vÞ2

v

u

u

t ð10:5Þ

In this problem, the following assumptions are made:

• Jobs are independent. Job pre-emption is not allowed and each machine can
handle only one job at a time.

• The different operations of one job cannot be processed simultaneously.
• All jobs and machines are available at time zero simultaneously.
• After a job is processed on a machine, it is immediately transported to the next
machine on its process, and the transmission time is assumed to be negligible.

• Set-up time for the operations on the machines is independent of the operation
sequence and is included in the processing time.

10.4 A Multi-agent System for IPPS

In this research, an IPPS framework has been proposed based on the concept of a
multi-agent system. A multi-agent system is a distributed artificial intelligence
system that embodies a number of autonomous agents to achieve common goals.

10.4.1 A Multi-agent System

The architecture of the multi-agent system developed in this study and the
relationships between the agents and their sub-agents are illustrated in Fig. 10.2.
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In this framework, there are three agents and several databases. The job agents and
machine agents are used to represent jobs and machines. The optimization agent is
used to optimize the alternative process plans and scheduling plans. With the
consideration of the scheduling requirements and availability of manufacturing
resources, these agents negotiate with each other to establish the actual process
plan of every job and the scheduling plans for all jobs. The detailed description of
three types of agents is provided in the following section.

10.4.2 Agent Description

Job agents represent the jobs to be manufactured on the shop floor. Each agent
contains the detailed information of a particular job, which includes job ID, job
type, quantity, due date, quality requirements, CAD drawing, tolerance and surface
finish requirements, etc. This agent also includes the job status. In this research, the
following statuses for the job agents are considered:

• Idle: the job agent is idle and waiting for the next manufacturing operations.
• Manufacturing operation: the job agent is under manufacturing on a machine.
Based on the assumption in the previous section, when the job is under a manu-
facturing process on a machine, it cannot be processed by other machines. The
function of this agent is to provide the job’s information to the multi-agent system.

The job agents use the rules from the knowledge database and negotiate with the
machine agents to generate all the alternative process plans of each job. Therefore,
they contain the information of alternative process plans. There are three types of
flexibility considered in process plans [39]: operation flexibility, sequencing flexi-
bility and processing flexibility [39]. Operation flexibility [14], also called routing
flexibility, relates to the possibility of performing one operation on alternative
machines, with possibly distinct processing time and cost. Sequencing flexibility is
decided by the possibility of interchanging the sequence of the required operations.
Processing flexibility is determined by the possibility of processing the same man-
ufacturing feature with alternative operations or sequences of operations. Better
performance in some criteria (e.g., production time) can be obtained through the
consideration of these flexibilities. There are many methods used to describe the

Job Agent 1

Job Agent 2

…

Job Agent n

Machine Agent 1

Machine Agent 2

…

Machine Agent m

Optimisation Agent

Product databases Manufacturing databases

Fig. 10.2 A multi-agent system for IPPS
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types offlexibility explained above, such as Petri net, and/or graphs and networks. In
this research, a network representation proposed by [13, 14] has been adopted. There
are three node types in the network: starting node, intermediate node and ending
node. The starting node and the ending node, which are dummy ones, indicate the
start and end of the manufacturing process of a job. An intermediate node represents
an operation, which contains the alternative machines that are used to perform the
operation and the processing time required for an operation according to the
machines. The arrows connecting the nodes represent the precedence between them.
OR relationships are used to describe the processing flexibility that the same man-
ufacturing feature can be processed by different process procedures. If the links
following a node are connected by anOR-connector, they only need to traverse one of
theOR-links (the links connected by theOR-connector are calledOR-links).OR-link
path is an operation path that begins at anOR-link and ends as itmergeswith the other
paths, and its end is denoted by a JOIN-connector. For the links that are not connected
by OR-connectors, all of them must be visited. Figure 10.3 shows two jobs alter-
native process plan networks (job 1 and job 2). In the network of Fig. 10.3b, paths
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{5, 6} and {7, 8} are two OR-link paths. For the links that are not connected by
OR-connectors, such as {6, 7} and {8} in Fig. 10.3a, all of them must be visited.
But they do not have precedence constraint, this means that {6, 7, 8} and {8, 6, 7} are
available. The objective of the IPSS problemhas been defined in the previous section.

Machine agents represent the machines. They read the information from the
resource database. Each agent contains the information of the particular machine.
The information includes the machine ID, the manufacturing features that this
machine can process, the processing time and the machine status. After the job
agents are created, the machine agents negotiate with the job agents and determine
the jobs’ operations to be processed on each machine, and the processing time of
these operations is also determined at the same time. In this research, the following
statuses for the machine agents are considered: (1) idle: the machine agent is idle
and waiting for next machining operation; (2) manufacturing operation: the
machine is processing one job and (3) breakdown: the machine has been broken
and cannot process any jobs. Based on the assumption in the previous section,
when the machine is processing one job, it cannot process other jobs. Each
machine agent negotiates with the optimization agent and job agents to get the
information that includes the operations’ ID to be processed on them, the pro-
cessing sequence of these operations and the starting time and ending time of each
operation. A scheduling plan is then determined. A scheduling plan determines
when and how many jobs have to be manufactured within a given period of time.
Therefore, this plan has to be carried out according to the current shop floor status.
If there are many changes on the shop floor and the determined scheduling plan
cannot be carried out, the machine agents need to negotiate with other agents
(including jobs agents and optimization agent) to trigger a rescheduling process.

Optimization agents are important parts of the proposed multi-agent system.
They can optimize the process plans and scheduling plans to get more effective
solutions. In order to accomplish this task, the optimization agent explores the
search space with the aid of evolutionary algorithms, such as a hybrid SA and GA,
a modified GA and a PSO algorithm. In the following section, the PSO algorithm
is explained to better understand the mechanism of the optimization agent.

10.5 PSO Algorithm for Optimisation Agent

The IPPS problem usually brings forth a vast search space. Conventional
algorithms are often incapable of optimizing nonlinear multi-modal functions.
To address this problem effectively, some modern evolutional optimization
algorithms, such as PSO and GA, have been developed to quickly find a solution in
a large search space through some evolutionary or heuristic strategies. A standard
PSO algorithm was inspired by the social behaviour of bird flocking and fish
schooling [43]. Three aspects are considered simultaneously when an individual
fish or bird (particle) makes a decision about where to move: (1) its current moving
direction (velocity) according to the inertia of the movement, (2) the best position
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that it has achieved so far and (3) the best position that its neighbour particles have
achieved so far. In the algorithm, the particles form a swarm and each particle can
be used to represent a potential solution of a problem. In each iteration, the
position and velocity of a particle can be adjusted by the algorithm that takes the
above three considerations into account. After a number of iterations, the whole
swarm will converge at an optimized position in the search space.

The IPPS problem can be modelled as an extension of the operation sequencing
optimization problem into one of multi-parts with scheduling objectives [37, 38,
40, 44]. To achieve this, the representation of the process planning shown in
Fig. 10.4 needs to be extended as that of IPPS shown in Fig. 10.5:

• In encoding process. compared to the representation of a process plan shown
in Fig. 10.4, several new variables including Mac_time, Change_time,

Operation 1 Operation 2 Operation n

Feature 1 Feature m

Applicable machines

Applicable tools

Applicable TADs

Position

Velocity    

Particle

ParticleDimension nParticle Dimension 2ParticleDimension 1

Applicable machines

Applicable tools

Applicable TADs

Position

Velocity    

Fig. 10.4 Representation of a process plan (particle)
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Fig. 10.5 Representation in IPPS (particle)
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Machine_s_time and Machine_e_time are added in Fig. 10.5 to record and track
the time related to the execution of the operation so as to determine the time
allocation on the machines. Mac_time, Change_time, Machine_s_time and
Machine_e_time are set as 0 initially. Table 10.1 shows the extended class
definition of a particle dimension (an operation).

• In decoding process. To record the machine utilization status (available time)
and operations being executed on every machine (including start time, operation
time and end time for each operation) at different times, a machine class is
defined. When the sequence for all the operations is generated and the manu-
facturing resources are selected, the assignments of specific operations and
machines are determined and therefore the schedule is obtained. By using a
number of iterations to update the positions and velocities of the particle
dimensions in each particle, an optimized sequence (i.e., an optimized solution)
can be achieved eventually.

A traditional PSO algorithm can be applied to optimize IPPS in the following
steps:

(1) Initialization

• Set the size of a swarm, e.g., the number of particles and the maximum
number of iterations.

• Initialize all the particles (a particle is an IPPS solution) in a swarm.
Calculate the corresponding criteria of the particles (a result is called fitness

here).
• Set the local best particle and the global best particle with the best fitness

(objective function).

(2) Iterate the following steps until the pre-set maximum iteration time is reached

• For each particle in the swarm, update its velocity and position values.
• Decode the particle into an IPPS solution in terms of new position values

and calculate the fitness of the particle. Update the local best particle and
the global best particle if a lower fitness is achieved.

Table 10.1 Class definition of a particle dimension (an operation)

Class ParticleDimension: an operation

Variable Description

Operation_id The id of the operation
Machine_id The id of a machine to execute the operation
Tool_id The id of a cutting tool to execute the operation
TAD_id The id of a TAD (tool approach direction) to apply the operation
Machine_list[] The candidate machine list for executing the operation
Tool_list[] The candidate tool list for executing the operation
TAD_list[] The candidate TAD list for applying the operation
Position The position value of the operation
Velocity The velocity value of the operation
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(3) Decode global best particle to get the optimized solution

However, the traditional PSO algorithm introduced above is still not effective in
resolving the operation sequencing problem. There are two major reasons for it:

• Due to the inherent mathematical operators, it is difficult for the traditional PSO
algorithm to consider the different arrangements of machines, tools and setups
for each operation, and therefore the particle is unable to fully explore the entire
search space.

• The traditional algorithm usually works well in finding solutions at the early
stage of the search process (the optimization result improves fast), but is less
efficient during the final stage. Due to the loss of diversity in the population,
the particles move quite slowly with low or even zero velocities and this
makes it hard to reach the global best solution. Therefore, the entire swarm
is prone to be trapped in a local optimum from which it is difficult to escape.

To solve these two problems and enhance the ability of the traditional PSO
algorithm, new operations, including mutation, crossover and shift, have been
developed and incorporated in an improved PSO algorithm. Meanwhile, consid-
ering the characteristics of the algorithm, the initial values of the particles have
been well planned. Some modification details are depicted below.

(1) New operators in the algorithm

• Mutation. In this strategy, an operation is first randomly selected in a par-
ticle. From its candidate machining resources (machines, tools, setups), an
alternative set (machine, tool, setup) is then randomly chosen to replace the
current machining resource in the operation.

• Crossover. Two particles in the swarm are chosen as parent particles for a
crossover operation. In the crossover, a cutting point is randomly deter-
mined, and each parent particle is separated as left and right parts of the
cutting point. The positions and velocities of the left part of Parent 1 and the
right part of Parent 2 are reorganized to form Child 1. The positions and
velocities of the left part of Parent 2 and the right part of Parent 1 are
reorganized to form Child 2.

• Shift. This operator is used to exchange the positions and velocities of
two operations in a particle so as to change their relative positions in the
particle.

(2) Escape method

• During the optimization process, if the iteration number of obtaining the
same best fitness is more than 10, then the mutation and shift operations are
applied to the best particle to try to escape from the local optima.

The workflow of the improved PSO algorithm is shown in Fig. 10.6.
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10.6 Implementation and Experimental Studies

10.6.1 System Implementation

Microsoft Visual C++ programming language has been used to implement the
multi-agent framework developed in this study, and Microsoft Access is used as
the database to store information (e.g., resource and knowledge databases). The
agents are executed on three hosts. The inter-agent communication is based on the
point-to-point method using TCP/IP protocol, and is managed by the Knowledge
Query and Manipulation Language (KQML). All messages in this research are
compliant with a set of standard performatives of KQML. And, Windows Sockets
which is supported by Microsoft Foundation Classes (MFC) is used to implement

Initialise Swarm_Size and Iter_Num; 
Initialise the particle swarm 
and set Pi as particle itself

Swarm_Size: the population of particles,

Iter_Num: the max iteration number of PSO

Calculate the fitness of particles; 
Initialise Pg, set N=0

N: iteration index number

For each iteration

Select particles randomly to do mutation, 
crossover and shift operations, set M=0

M: particle index number

For each particle in swarm

1. Update Mth particle’s position and velocity

2. Calculate the fitness of Mth particle

If current fitness < fitness of Pi?

Update Pi with the current position

If fitness of Pi < fitness of Pg?

Update Pg with Pi

M = M+1

M >= Swarm_Size?

N = N+1

N >= Iter_Num?

Output current Pg and the fitness

Y

Y

Y

Y

N

N

N

N

Fig. 10.6 The workflow of the PSO application for IPPS
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the inter-agent communication. The job agents and machine agents are used to
represent jobs and machines. The optimization agent is used to optimize the
alternative process plans and scheduling plans. In consideration of the scheduling
requirements and availability of manufacturing resources, these agents negotiate
with each other to establish the actual process plan of every job and scheduling.
The user interface of the developed system is shown in Fig. 10.7.

10.6.2 Experimental Results and Discussions

on the Optimisation Agent

In order to illustrate the effectiveness and performance of the proposed optimi-
zation agent, we consider three experimental case studies. The algorithm termi-
nates when the number of generations reaches to the maximum value.

Two experiments are used here to verify the efficiency of the PSO algorithm-
based optimization agent for IPPS problems. The first experiment is designed to
compare the efficiencies of the PSO, GA and SA algorithms in the application of
operation sequencing optimization. The second one is used to further compare
them for the IPPS optimization.

10.6.2.1 Experiment 1

Three parts taken from the works of [37, 39] are used here as example parts.
The GA and SA algorithms were used to compare their performance with this

Fig. 10.7 The user interface of the developed multi-agent system
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developed PSO algorithm. As shown in Fig. 10.8, at the initial optimization stage,
the GA optimizes faster than the SA and the PSO (this is shown by a more rapid
fall in Fig. 10.8). However, at the middle and late stages, the GA converges while
the SA and the PSO continue to decline to give better results. From Table 10.2, it
can be observed that the SA and PSO algorithms outperform the GA in all the
experiments of all three parts and both the SA and PSO can achieve results that are
nearer the optimum.

10.6.2.2 Experiment 2

Two criteria are used here as the optimizing direction for IPPS problem, i.e., the
make-span and the balanced machine utilization. The example parts and manu-
facturing resources from [39] are used here to verify the efficiencies of the PSO.
Eight parts have been used to test the algorithm under more complex conditions. It
can be found that the PSO can optimize the make-span after nearly 4,000 iterations
and the balanced machine utilization after 3,000 iterations.

Make-span. As shown in Fig. 10.9 and Table 10.3, with the same time period,
the PSO and the SA can achieve better results than the GA. But for 20 random
consecutive trials, the SA can only proceed with optimization successfully in six
trials, the PSO and the GA can proceed with optimization successfully in all 20
trials. Figure 10.10 shows the Gantt chart generated by the optimization agent.

Fig. 10.8 Comparisons of PSO, GA and SA

Table 10.2 The comparisons of GA, SA and PSO for three parts

Algorithm Part 1 Part 2 Part 3

Best cost
achieved

Mean cost of
ten trials

Best cost
achieved

Mean cost of
ten trials

Best cost
achieved

Mean cost of
ten trials

GA 1381.0 1459.4 1228.0 1340.0 2667.0 2796.0
SA 1421.0 1447.4 1088.0 1122.0 2535.0 2668.5
PSO 1361.0 1430.0 1068.0 1103.0 2535.0 2680.5
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Balanced machine utilization: From Fig. 10.11 and Table 10.4, it can be
observed that all of the algorithms can reach good results, while different char-
acteristics are shown due to the inherent mechanisms of the algorithms. The SA is

Fig. 10.9 Comparisons of PSO, GA and SA of make-span

Table 10.3 The comparisons
of GA, SA and PSO of make-
span

Algorithm Time for 5,000 iterations Robustness
(successful optimization
trials out of 20 trials)

GA 16 min 45 s 20
SA 45 min 6
PSO 7 min 20

Fig. 10.10 The Gantt chart generated by the optimization agent
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much ‘sharper’ to find optimized solutions than the GA and the PSO. The SA can
achieve better results than the GA and the PSO. However, in 20 trials, the SA can
only proceed with optimization successfully in six trials but the GA and the PSO

Fig. 10.11 Comparisons of PSO, GA and SA of balanced machine utilization

Table 10.4 The comparisons
of GA, SA and PSO of
balanced machine utilization

Algorithm Time for 5,000 iterations Robustness
(successful optimization
trials out of 20 trials)

GA 16 min 45 s 20
SA 22 min 6
PSO 7 min 30 s 20

Fig. 10.12 The Gantt chart generated by the optimization agent
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can proceed with optimization successfully in all 20 trials. Figure 10.12 shows the
Gantt chart generated by the optimization agent.

10.7 Conclusions

Considering the complementary roles of process planning and scheduling, the
research has been conducted to develop an agent-based approach and optimization
agent to facilitate the integration and optimization of these two systems. Process
planning and scheduling functions are carried out simultaneously. An optimization
agent based on an evolutionary algorithm (PSO) has been developed to optimize
and realize the proper decisions resulting from interactions between the agents.
To verify the advantage of the optimization algorithm, experimental studies have
been carried out to compare this approach with other previously developed
approaches. The experimental results show that the proposed approach is very
effective for the IPPS problem and achieves better overall optimization results.

With the new method developed in this work, it would be possible to increase
the efficiency of manufacturing systems. One future work is to use the proposed
method for practical manufacturing systems. The increased use of this approach
will most likely enhance the performances of future manufacturing systems.
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Chapter 11
Distributed Real-Time Scheduling
by Using Multi-agent Reinforcement
Learning

Koji Iwamura and Nobuhiro Sugimura

Abstract Autonomous Distributed Manufacturing Systems (ADMS) have been
proposed to realize flexible control structures of manufacturing systems. In the
previous researches, a real-time scheduling method based on utility values has
been proposed and applied to the ADMS. Multi-agent reinforcement learning is
newly proposed and implemented to the job agents and resource agents, in order to
improve their coordination processes. The status, the action and the reward are
defined for the individual job agents and the resource agents to evaluate
the suitable utility values based on the status of the ADMS. Some case studies of
the real-time scheduling have been carried out to verify the effectiveness of the
proposed methods.

11.1 Introduction

Recently, automation of manufacturing systems in batch productions has been
much developed aimed at realising flexible small-volume batch productions. The
control structures of the manufacturing systems developed, such as flexible man-
ufacturing system (FMS) and flexible manufacturing cell (FMC) are generally
hierarchical. The hierarchical control structure is suitable for economical and
efficient batch productions in steady state, but not adaptable to very small batch
productions with dynamic changes in the volumes and the varieties of the products.
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Computer systems and manufacturing cell controllers have recently made much
progress, and individual computers and controllers are now able to share the deci-
sion-making capabilities in the manufacturing systems. The network architectures
are widely utilized for the information exchange in the design and themanufacturing.

New distributed architectures of manufacturing systems are therefore proposed
to realize more flexible control structures of the manufacturing systems, which are
adaptable to the dynamic changes in the volume and the variety of the products
and also the unforeseen disruptions, such as malfunction of manufacturing
equipment and interruption by high-priority jobs. They are so called as Autono-
mous Distributed Manufacturing Systems (ADMS) [1, 2], Biological Manufac-
turing Systems (BMS) [3, 4], and Holonic Manufacturing Systems (HMS) [5–8].

Distributed scheduling methods were proposed and applied to the real-time
production scheduling problems of the ADMS, in the previous research [6].
The proposed method was adaptable to dynamic changes and unforeseen disrup-
tions, and it was suitable for the improvement of the objective functions of the
whole ADMS such as total make-span. However, there were still remaining
scheduling problems from the viewpoint for the improvement of the objective
functions of the individual components of the ADMS. Therefore, a real-time
scheduling method based on the utility values have been proposed and applied to
the ADMS, in order to improve the objective function values of the individual
components of the ADMS [7].

Multi-agent reinforcement learning is newly proposed and implemented to the
job agents and resource agents, in order to improve their coordination processes.
In the reinforcement learning method [9], an agent must be able to sense the status
of the environment to some extent and must be able to take actions that affect the
status. The agent must also have a goal or goals relating to the status of the
environment. The status, the action and the reward are defined for the individual
job agents and the resource agents to evaluate the suitable utility values based on
the status of the ADMS.

11.2 Reinforcement Learning and Its Application

11.2.1 Reinforcement Learning

Reinforcement learning is a way of teaching agents (decision-makers) about near-
optimal control policies [10]. This is accomplished by assigning rewards and
punishments for their actions based on the temporal feedback obtained during
active interactions of the learning agents with dynamic systems. The agent should
choose actions that tend to improve the measure of system performance [11]. Such
an incremental learning procedure suitable for prediction and control problems
was developed by Sutton [12].

Figure 11.1 shows a typical single-agent learning model containing four elements,
which are the environment, learning agent, a set of actions and environmental
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response. The learning agent selects an action for the system, which leads the
system evolution along a unique path till the system encounters another decision-
making state. At that time, the system consults with the learning agent for the next
action. After a state-transition, the learning agent gathers sensory inputs repre-
senting the status from the environment, immediate reward and the time spent
during the most recent state-transition. Using the information and the algorithm,
the agent updates its knowledge base and selects the next action. This completes
one step in the iteration process. As this process repeats, the learning agent
continues to improve its performance. A simulation model of the system provides
the environment component of the model.

11.2.2 Reinforcement Learning Applications to Scheduling

Problems

Reinforcement learning has received some attention in recent years because it
deals with the problem of how an autonomous agent learns to select proper actions
for achieving its goals through interacting with its environment [13]. Following
researches are typical examples of the applications of reinforcement learning to the
scheduling problems.

A scheduling method using reinforcement learning was proposed for a semi-
conductor manufacturing system [14]. A scheduling agent with a classifier system
(a reinforcement algorithm) was employed to generate product dispatching rules
that put materials into the production floor according to the state of the production
floor. Computer simulations were executed using data extracted from an actual
semiconductor fabrication. Comparison results of the proposed reinforcement
learning-based scheduling method with current scheduling algorithms, a uniform

System

Environment

Learning

Agent

Learning algorithm

Real or simulated world 

action

response

Fig. 11.1 Typical
reinforcement learning
scheme
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dispatching rule (UNIF) and a constant work-in-process number dispatching rule
(CONWIP) showed that the proposed method obtained similar performance to the
current UNIF and CONWIP scheduling methods in terms of turnaround time, and
work-in-process number.

An intelligent agent-based dynamic scheduling system was presented by using
Q-III which had been developed based on the Q-learning (a reinforcement algo-
rithm) [15]. The system is composed of the agent and the simulated environment
(SE). The agent is able to perform dynamic scheduling based on the available
information provided by the SE. It makes decision for selection of the most
appropriate dispatching rule in real-time. It was trained byQ-III learning algorithm.
The authors compared the proposed scheduling system trained by their reinforce-
ment learning mechanism to the three dispatching rules: SPT, COVERT and CR.
Their results showed that the proposed scheduling system outperformed the use of
each of the three rules individually in mean tardiness on most of the testing cases.

A multi-agent approach was proposed for the dynamic scheduling of mainte-
nance tasks of a petroleum industry production system [16]. Agents simultaneously
carried out the effective maintenance scheduling and the continuous improvement
of the solution quality by means of reinforcement learning, using the SARSA
algorithm. The results of experiment showed that proposed approach can generate
on-line scheduling solutions for predictive and corrective maintenance tasks on-line
and improve their quality by minimising the variation of the outflow from the tanks.

A simulation optimization methodology using the reinforcement learning
approach was proposed for the problem of scheduling of a single server on multiple
products, in order to find a dynamic control policy [10]. The dynamic (state
dependent) policy optimized a cost function based on the work-in-process inven-
tory, the backorder penalty costs and the setup costs, while meeting the productivity
constraints for the products. The methodology was tested on a stochastic lot
scheduling problem. The dynamic policies obtained through the reinforcement
learning-based approach outperformed various cyclic policies. The reinforcement
learning approach was implemented via a multi-agent control architecture where a
decision agent was assigned to each of the products. The multi-agent reinforcement
learning scheme was able to reduce the base-stock levels in the system while
keeping the product demand backorders at low levels.

11.3 Real-Time Scheduling Method for ADMS

11.3.1 Rule-Based Real-Time Scheduling Process

One of the important objectives of the ADMS is to provide the system components
with the flexible and robust capability against the unforeseen disturbances of the
manufacturing systems, such as failure of machining equipment and interruptions
by high-priority jobs. A real-time production scheduling system has therefore been
proposed for control of the components of the ADMS [6]. The real-time scheduling
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means that the production schedules of the workpieces and the machining
equipment are determined dynamically only when the status of the manufacturing
system and its components are changed due to some events occurred in the man-
ufacturing system. Therefore, the scheduling system only determines the schedules
of the workpieces and machining equipment in the next time period. The time
period means the period between the time when one event occurs and that when
another successive event occurs.

The scheduling system consists of a set of ADMS components named job
agents and resource agents, which represent the information processing part of the
workpieces to be manufactured and that of the machining equipment, respectively.
A distributed real-time scheduling method has been proposed, in the previous
paper [6], to determine suitable production schedules dynamically, based on
the decision-makings of the individual agents. The procedure to determine the
schedule is summarized in the following.

The individual agents in the ADMS firstly modify their status, if one of the
following events occurs. The status of the resource agents and the job agents are
represented by ‘operating’ or ‘idling’.

1. A machining operation of a job is finished.
2. A new job is input to the ADMS.
3. A resource is broken down, or is recovered, and
4. A status of a job is changed from normal one to high-priority one.

In the second step, all the job agents which are ‘idling’ at that time select
suitable resource agents, which are ‘idle’ and can carry out their machining
operations in the next time period. Some collisions may occur among the selec-
tions of the job agents. For example, more than one job agent selects the same
resource agent for their next machining operations, as shown in Fig. 11.2a. If a
resource agent is selected by more than one job agent, the resource agent selects a
most suitable job agent, as shown in Fig. 11.2b, in order to avoid the collisions, in
the third step. The job agents and the resource agents select most suitable ones by
applying their own decision rules.

11.3.2 Real-Time Scheduling Process Based on Utility Values

The rule-based scheduling process was adaptable to the dynamic changes and
the unforeseen disruptions, and it was suitable for the improvement of the
objective functions of the whole ADMS such as total make-span. However, there
were scheduling problems still remaining from the viewpoint of improving
the objective functions of the individual components of the ADMS.

Therefore, a real-time scheduling method based on the utility values have been
proposed and applied to the ADMS, in order to improve the objective function
values of the individual components of the ADMS [7]. The agents in the ADMS
are divided into three classes based on their roles in the scheduling processes.
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• Resource agents. They are the information processing parts of the resources.
The resources transform the jobs in the manufacturing process. In the scheduling
process, the resource agents evaluate the utility values for the candidate job
agents which are processed by the resources in the next time period.

• Job agents. They are the information processing parts of the jobs. The jobs are
transformed by the resources from the blank materials to the final products in the
manufacturing process. In the scheduling process, the job agents evaluate the
utility values for the candidate resource agents which carry out the machining
operations in the next time period.

• Coordination agents. It selects a most suitable combination of the resource
agents and the job agents for the machining operations in the next time
period, based on the utility values sent from the resource agents and the job
agents.

It is assumed here that the individual job agents have the following techno-
logical information.
Mik kth machining operation of the job i. (i = 1,…, a), (k = 1,…, b)
ACik Required machining accuracy of machining operation Mik. It is assumed

that the machining accuracy is represented by the levels of accuracy
indicated by 1–3, which means rough, medium high and high accuracy,
individually.

Rikm mth candidate of resource, which can carry out the machining operation
Mik. (m = 1,…, c).

Wi Waiting time until the job i becomes idle if it is under machining status.

Job agent 

Resource agent

Job-1 Job-3 Job-a

Res.-1 Res.-2 Res.-3 Res.-4 Res.-ω

Selection Collision

Job-2 Job-4

(a) Selection by job agents 

Job agent

Resource agent

Job-1 Job-3 Job-α

Res.-1 Res.-2 Res.-4 Res.-ω

Job-2 Job-4

Selection

Res.-3

(b) Selection by resource agents 

Fig. 11.2 Rule-based real-time scheduling process
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The individual resource agents have the following technological information.
Tikm Machining time in the case where the resource Rikm carries out the

machining operation Mik.

MACikm Machining accuracy in the case where the resource Rikm carries out the
machining operation Mik. MACikm is also represented by the levels of 1,
2 and 3.

MCOikm Machining cost in the case where the resource Rikm carries out the
machining operation Mik.

Wikm Waiting time until resource Rikm becomes idle if it is under machining
status.

At the time t, all the ‘idling’ agents have to select their machining schedules in
the next time period, as shown in Fig. 11.3. The following procedure is proposed
for the individual agents to select their machining schedules.

1. Retrieval of status data. The individual ‘idling’ agents firstly get the status
data from the other agents which are ‘operating’ or ‘idling’. The ‘idling’ resources
and jobs can start the machining operation in the next time period.

2. Selection of candidate agents. The individual ‘idling’ agents select all
the candidate agents for the machining operations in the next time period.
For instances, the job agent i selects the resource agents which can carry out the
next machining operation Mik. On the other hand, the resource agent j selects all
the candidate job agents which can be machined by the resource agent j.

Coordination 
agent

Resource agent 1
Job agent 1

Resource agent 2

Utility values

Job agent 1 1
Job agent 2 0

Utility values

Job agent 1 1
Job agent 2 0

Utility values

Resource agent 1 0
Resource agent 2 1

Job agent 2

Utility values

Resource agent 1 1
Resource agent 2 0

Combination of     
job agents and 

resource agents

Total utility values 
of combination

Adopt or reject for 
next machining 

schedule

1 Reject

3 Adopt

Fig. 11.3 Real-time scheduling method based on utility values
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3. Determination of utility values. The individual ‘idling’ agents determine the
utility values for the individual candidates selected in the second step. For instance,
the job agent determines the utility values, based on its own decision criteria for all
the candidate resource agents which can carry out the next machining operation.

4. Coordination. All the ‘idling’ agents send the selected candidates and the
utility values of the candidates to the coordination agent. The coordination agent
determines a suitable combination of the job agents and the resource agents which
carry out the machining operations in the next time period, based on the utility
values. The decision criterion of the coordination agent is to maximize the total
sum of the utility values of all the agents.

11.3.3 Evaluation of Utility Values

The utility values are evaluated based on the decision criteria of the individual
agents, and various decision criteria are considered for the agents. Therefore, it is
assumed that the individual agents have one of the objective functions shown in
Table 11.1 for evaluating the utility values.

The following procedures are provided for the resource agents to evaluate the
utility values. Let us consider a resource agent j at a time t. It is assumed that TTj�t,
MEj�t and MAj�t show the total time after the resource j starts its operations, the
efficiency, and the evaluated value of machining accuracy of the resource j,
respectively. If the resource agent j selects a candidate job agent i for carrying out
the machining operation Mik, the efficiency and the evaluated value of the
machining accuracy are estimated by the following equations.

MEj�tþ1 ið Þ ¼ MEj�t � TTj�t þ Tikj
� �

= TTj�t þ Tikj þWi

� �

ð11:1Þ

MAj�tþ1 ið Þ ¼ MAj�t þ MACikj � ACik

� �

ð11:2Þ

where the resource j can carry out the machining operation Mik of job i (j = Rikm).
As regards the job agents, the following equations are applied to evaluate the

flow-time and the machining costs, for the case where a job agent i selects a
candidate resource agent j (=Rikm) for carrying out the machining operation Mik.
It is assumed that JTi�t and JCi�t give the total time after the job i is input to the
ADMS and the machining cost, respectively.

Table 11.1 Objective functions of agents

Objective Functions Objective Function Values

Efficiency of resource agent R Machining time/total time
Machining accuracy of resource

agent
R(Machining accuracy of resources - required machining
accuracy of jobs)

Flow-time of job agent R(Machining time ? waiting time)
Machining cost of job agent R(Machining cost of resources)
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JTi�tþ1 jð Þ ¼ JTi�t þ Tikj þWikj ð11:3Þ

JCi�tþ1 jð Þ ¼ JCi�t þMCOikj ð11:4Þ

The objective functions mentioned above have different units. Some of them
shall be maximized and others minimized. Therefore, the utility values are
normalized from 0 to 1, by applying the following equations.

1. Efficiency of resource agents:

RUVj ið Þ ¼ 1�
max
i¼1;...;s

MEj�tþ1 ið Þ
� �

�MEj�tþ1 ið Þ

max
i¼1;...;s

MEj�tþ1 ið Þ
� �

� min
i¼1;...;s

MEj�tþ1 ið Þ
� � ð11:5Þ

2. Machining accuracy of resource agents:

RUVj ið Þ ¼
max
i¼1;...;s

MAj�tþ1 ið Þ
� �

�MAj�tþ1 ið Þ

max
i¼1;...;s

MAj�tþ1 ið Þ
� �

� min
i¼1;...;s

MAj�tþ1 ið Þ
� � ð11:6Þ

3. Flow-time of job agents:

JUVi jð Þ ¼
max
j¼1;...;c

JTi�tþ1 jð Þf g � JTi�tþ1 jð Þ

max
j¼1;...;c

JTi�tþ1 jð Þf g � min
j¼1;...;c

JTi�tþ1 jð Þf g ð11:7Þ

4. Machining cost of job agents:

JUVi jð Þ ¼
max
j¼1;...;c

JCi�tþ1 jð Þf g � JCi�tþ1 jð Þ

max
j¼1;...;c

JCi�tþ1 jð Þf g � min
j¼1;...;c

JCi�tþ1 jð Þf g ð11:8Þ

where max{f(x)} and min{f(x)} give the maximum value and the minimum value
of f(x) evaluated for all the candidates. s and c give the number of the candidate job
agents for the resource agent j, and the number of the candidate resource agents for
the job agent i, respectively.

One of the important problems to be solved in the proposed system is lack of
improvement capabilities of the individual agents, which have fixed decision
criteria represented by the utility values. Following issues should be considered to
modify the utility values by the individual agents from the view point of the
property of the objective functions of the individual agents.

• The individual agents with the objective functions of efficiency or flow-time are
not to be in ‘idling’ status, and they have to be assigned to some candidate agents
for the next machining operations, in order to improve their objective functions.
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Therefore, higher utility values are given to the candidate agents, even if the
candidates are not suitable from the viewpoint of objective functions.

• The individual agents with the objective functions of machining cost or
machining accuracy are to be in ‘idling’ status for the cases where they do not
have any suitable candidate agents, in order to improve their objective functions.
Therefore, they give lower utility values to the candidate agents not suitable
from the viewpoints of the objective functions, and wait until some suitable
candidate agents are found.

It is not easy to establish flexible decision criteria adaptable to the situation
mentioned above. Therefore, a reinforcement learning mechanism is proposed to
modify the utility values of the candidate agents based on the status of the man-
ufacturing systems.

11.4 Application of Multi-agent Reinforcement Learning

A multi-agent reinforcement learning is newly proposed and implemented to the
job agents and resource agents, in the present research, in order to improve their
coordination processes.

Figure 11.4 summarizes the multi-agent reinforcement learning procedure pro-
posed here. The individual job agents and resource agents carry out the following

Job 1

Resource 1

Job 2

Resource 2

Job 3

Step 1  Real-time scheduling process

(1) Observation of status s

(3) Determination of action a based

on value Q(s, a)

Step 3  Obtainment of reward r

and calculation of Q(s, a) 

Job i

Resource j

t

Fig. 11.4 Application of multi-agent reinforcement learning
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four steps to obtain their suitable decision criteria for evaluation of the utility values
by applying the multi-agent reinforcement learning.

Step 1 The individual job agents and resource agents carry out the real-time
scheduling process described in Sect. 11.3.2, when their previous
machining operations are finished. The real-time scheduling processes (1)
and (3) are modified as following for implementation of the multi-agent
reinforcement learning.

1. Retrieval of status data

The individual ‘idling’ agents get the status data from the other agents
which are ‘operating’ or ‘idling’, and observe the status s of the manu-
facturing systems.

2. Determination of utility values

The individual job agents and resource agents execute the action a based on the
value Q(s, a), to evaluate the utility values for all the candidate machining oper-
ations in the next time period, where, s and a represent the status and the actions in
the reinforcement learning method, respectively.

Step 2 The real-time scheduling processes are repeated until all the machining
operations of the jobs are finished by the resources in the ADMS.

Step 3 The individual job agents and resource agents obtain the reward r based on
their own objective function values, and calculate the value Q(s, a).

Step 4 Step 1 to Step 3 are repeated for the new jobs to be manufactured in the
manufacturing systems, in order to converge the value Q(s, a) of the
individual job agents and resource agents.

In these steps, the status s, the action a and the reward r are given as follows.

1. Status s
The status s observed by the job agents and the resource agents is represented
by the following equation, in the present research.

s ¼ s1; s2; s3; s4ð Þ ð11:9Þ

where sp (p = 1, 2, 3, 4) are the number of ‘idling’ agents that have the objective
functions of efficiency, machining accuracy, flow-time and machining cost,
respectively. This means that the learning process of the individual agents is
carried out based on the numbers and the types of the ‘idling’ agents.

2. Action a

The individual job agents and resource agents select the parameter n (= 1/5, 1/3,
1, 3, or 5) in the following equation to evaluate the utility values.

UV 0 ¼ UVð Þn ð11:10Þ
where UV is the utility value calculated by the individual job agents and resource
agents described in Sect. 11.3.3. UV0 is the modified utility value by applying the
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action a based on the status s. Figure 11.5 shows an example of the modified utility
values for the cases where the resource agent whose objective function is efficiency
evaluate the utility values for the five candidate job agents by selecting the parameter
n. In the figure, the horizontal and vertical axes show the evaluated value of the
efficiency for the cases where the resource agent selects the individual candidate job
agents, and modified utility values obtained by changing the parameter n, respec-
tively. As shown in the figure, higher utility values are obtained when n is\1, and
lower utility values are obtained when n is[1 in comparison with n = 1.

e-greedy policy is applied for the individual job agents and resource agents to
determine the action a. e-greedy policy means that most of the time agents choose
an action that has maximal estimated action value, but with probability they
instead select an action at random [9].

3. Reward r

The individual job agents and resource agents obtain the reward r based on their
own objective function values. Three different methods are considered to calculate
the reward r.

Type 1 Reward calculated by the objective function values of individual agents.
The individual job agents and resource agents obtain the reward rh given by

following equations, based on their own objective functions.

a. For the case where the objective function is efficiency

rh ¼ ah � bhð Þ=bh ð11:11Þ

b. For the case where the objective function is either machining accuracy,
flow-time or machining cost

rh ¼ bh � ahð Þ=bh ð11:12Þ
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Fig. 11.5 Example of utility value obtained by action a
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where ah and bh are the objective function values obtained by applying the
proposed method with the reinforcement learning, and those obtained without the
reinforcement learning.

Type 2 Reward calculated by the averaged values of the objective function of
all the agents which have same objective function.

The individual job agents and resource agents obtain the reward rp given by
following equations.

rp ¼
X

n

h¼1
rh=n ð11:13Þ

where p and n are the types of objective functions and the total number of agents
with pth type of objective functions, respectively. rh is calculated by Eqs. 11.11
and 11.12 based on the types of objective functions.

Type 3 Reward calculated by the averaged values of objective function of all
the agents

The individual job agents and resource agents obtain the reward rq given by
following equations.

rq ¼ 1=4ð Þ
X

4

h¼1
rp ð11:14Þ

where rp is calculated by Eq. 11.13.
The value Q(s, a) is determined by applying the Monte Carlo method [9]. The

individual job agents and resource agents save the n rules (st, at) (t = 0, 1,…,
n - 1) between the time when they obtain the reward r and the time when they
obtain the new reward r. The rule (s, a) means the set of status s and action a. The
value Q(s, a) is calculated by the following equations.

Sum Reward st; atð Þ  Sum Reward st; atð Þ þ r ð11:15Þ

Q s; að Þ  Sum Reward s; að Þ=Reward Count ð11:16Þ

where Sum Reward(s, a) is the cumulative rewards in the case where the action a is
applied in the status s. Reward Count is the total number in the case where the rule
(s, a) gets the reward r.

11.5 Case Studies

11.5.1 Case Without Unforeseen Event

Some case studies have been carried out to verify the effectiveness of the proposed
methods. The ADMS model considered in the case studies has 10 resources.
The individual resource agents have the different objective functions and the
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different machining capacities, such as the machining time Tikm, the machining
accuracy MACikm and the machining cost MCOikm.

As regards to the jobs, three cases are considered in the case study, which have 16,
20 and 30 jobs. The individual job agents have the different objective functions and
the machining sequences. It is assumed that the same jobs are input to the ADMS
after the resources finish all the manufacturing processes. 12 cases are considered, in
the case study, by changing the machining capacities of the resources.

e is set to 0.2 for the e-greedy policy.
Figure 11.6 shows the best result for the case where the reward is calculated by

using Type3 described in Sect. 11.4. In the figure, the horizontal and vertical axes
show the repeat count c and the improvement ratio kz, respectively. The repeat
count c here means the number of repetitions of all the manufacturing processes of
the input jobs. The improvement ratio kz means the ratio between the objective
function values of all the agents obtained by the proposed method and the ones by
the conventional method in the case z. kz is calculated by following equation.

kz ¼
X

m

h¼1
lh=t ð11:17Þ

where lh and t are the improvement ratio of the objective function values of the
agent h and the total number of agents, respectively. The lh is calculated by the
following equation based on the type of the objective functions.

a. For the case that the objective function is efficiency

lh ¼ bh=ah ð11:18Þ

b. For the case that the objective function is either machining accuracy, flow-time
or machining cost
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lh ¼ ah=bh ð11:19Þ

where ah and bh are the objective function values of the individual agents
h obtained by the proposed method and the previous conventional method. As
shown in the figure, the improvement ratio kz is converged until the episode
reaches to 100.

Figure 11.7 shows the average improvement ratio k averagez of the best case
and the worst case. Following equation gives the k averagez which means the
average of improvement ratio kz until the episode reaches to x in the case z.

k averagez ¼
X

x

c¼1
k=x ð11:20Þ

where kc is the improvement ratio kz at the repeat count c.
Figure 11.8 shows the comparison of the cases using Types 1–3 rewarding

methods described in Sect. 11.4, from the view point of k average. k average the
average of k averagez in the all 12 cases. k average is calculated by the following
equation.

k average ¼
X

12

z¼1
k averagez=12 ð11:21Þ

As shown in Fig. 11.8, all cases are effective to improve the objective function
values in comparison with previous method without reinforcement learning.
It means that the individual job agents and resource agents obtain the suitable
decision criteria for evaluation of utility values. However, as shown in the figure,
the value Q(s, a) does not converge in the case using Type 1 where the reward is
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calculated by the objective function values of individual agents. The individual job
agents and resource agents most improve their objective function values while
using Type 3 where the reward is calculated by the objective function values of all
agents.

11.5.2 Case with Unforeseen Event

Some case studies have been carried out to verify the effectiveness of the proposed
method in the cases with unforeseen events, such as breakdown of resources and
changing the number of input jobs. The individual job agents and resource agents
calculate the reward by using Type3. Sixteen jobs are manufactured by 10
resources when the manufacturing processes are started in the ADMS. Following
events occurred during the repetition of manufacturing processes.

1. The number of input jobs is changed to 20 when the repeat count c reaches to
100.

2. One resource is broken down when the repeat count c reaches to 200.
3. The broken resource is recovered when the repeat count c reaches to 300.

Two cases are considered to compare with and without using the previous
value Q(s, a) when unforeseen events have occurred. It means that, the indi-
vidual resource agents and job agents continue to use the same value after
unforeseen events have occurred, in the first case. And the individual resource
agents and job agents reset the value when unforeseen events have occurred,
in the second case.
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Figure 11.9 shows the results of comparison between cases with and without
using previous value. As shown in the figure, both cases are effective to improve
the objective function values, and the difference between the cases with and
without using previous value is small.

11.6 Conclusions

A multi-agent reinforcement learning approach is applied to the real-time
scheduling method based on the utility values for the Autonomous Distributed
Manufacturing Systems. The following remarks are concluded.

1. The real-time scheduling process proposed in the previous research is modified,
aimed at implementing multi-agent reinforcement learning, in order to obtain
the suitable decision criteria for evaluation of utility values.

2. The status, the action and the reward are defined for the individual job agents
and the resource agents to evaluate the suitable utility values based on the status
of the ADMS.

3. Some case studies of the real-time scheduling have been carried out to verify
the effectiveness of the proposed methods in comparison with the previous
method. It was shown, through case studies, that the proposed methods are
effective to improve the objective function values of the individual agents.
The objective function values of individual agents are improved most effec-
tively in the case where the reward is calculated based on the averaged
objective function values of all the agents.
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Chapter 12
A Multiple Ant Colony Optimisation
Approach for a Multi-objective
Manufacturing Rescheduling Problem

Vikas Kumar, Nishikant Mishra, Felix T. S. Chan, Niraj Kumar
and Anoop Verma

Abstract Manufacturing scheduling is a well-known complex optimization
problem. A flexible manufacturing system on one side eases the manufacturing
processes but on the other hand it increases the complexity in the decision making
processes. This complexity further enhances when disruption in the manufacturing
processes occurs or when arrival of new orders is considered. This requires
rescheduling of the whole operation, which is a complex decision making process.
Realizing this complexity and taking into account the contradictory objective of
making a trade-off between costs and time, this research aims to generate
an effective manufacturing schedule. The existing approach of rescheduling
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sometimes generates entirely a new plan that requires a lot of changes in the
decisions, which is not preferable by manufacturing firms. Therefore, in this
research whenever a disruption occurs or a new order arrives, the proposed
approach reschedules the remaining manufacturing operations in such a way that
minimum changes occur in the original manufacturing plan. Evolutionary opti-
mization methods have been quite successful and widely addressed by researchers
to handle such complex multi-objective optimization problems because of their
ability to find multiple optimal solutions in one single simulation run. Inspired by
this, the present research proposes a multiple ant colony optimization (MACO)
algorithm to resolve the computational complexity of a manufacturing resched-
uling problem. The performance of the proposed MACO algorithm will be com-
pared with the simple ant colony optimization (ACO) to judge its robustness and
efficacy.

12.1 Introduction

Last few decades have seen rapid growth in the world economy. This growth is the
result of the advancement in modern technologies and escalating demand in both
the manufacturing and service sector. The rapid growth in the manufacturing
sector has on one hand managed to serve the escalating demand whereas on the
other hand, it has increased the complexity of handling different related
manufacturing processes. Nowadays, in manufacturing environment, several new
orders are introduced frequently in the market and at the same time the customer
demand changes at a fast pace. Therefore, manufacturing processes need frequent
adjustments to accommodate these changes and avoid any disturbances. Whenever
an order arrives, a manufacturing plan is generated for that particular order and
appropriate resources are then allocated. Thereafter, the corresponding manufac-
turing processes are decided and finally manufacturing operations are carried out
to deliver the final product. Therefore, a number of decisions are made and
processes need to be successfully scheduled and managed. A schedule is generated
for every order and again rescheduled when a new order arrives or when any
disruption occurs. Thus, rescheduling makes the process more complex, as the
number of decisions needs to be re-considered such as the allocation of the
raw materials, the tools and fixture requirements for the particular order and
allocation of machines to perform different machining operations. Realizing
these complexities, several researchers have attempted to resolve them using
different optimization evolutionary algorithms (EAs). Researchers have studied
various complex scenarios in different industrial context and proposed solutions
accordingly under number of constraints.

The manufacturing scheduling problems commonly addressed by researchers,
nowadays, mainly deal with the scheduling or planning, and focuses on
minimizing make-span, generating reschedule to incorporate new product or to
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resolve discrepancies. Although the research meets the aforementioned need, the
issues highlighted cause frequent disturbances in the manufacturing processes.
These disturbances raise a big question in the real-world application of the solution
proposed by the existing research. To address the issue in this research an attempt
has been made in the manufacturing plan to accommodate a new order or to
address the discrepancies, with the minimum changes in the existing schedule.
Trade-off is made between the objective function of minimizing the make-span
and the minimizing changes in the existing schedule. This will help to smoothly
run manufacturing processes and reduce the cost occurred during the material flow
for the manufacturers. The reallocation of the material due to the changes in the
plan also causes a chaos in the process, makes manufacturing process more
complex, incurs additional cost to the manufacturers and fails to optimally utilize
the manufacturing resources. If the manufacturing process is handled manually
then this issue becomes more severe whereas if it is an automated process then it
increases the workload of the planner. Thus, addressing this issue will also reduce
the material flow processes and resolve reallocation costs. Therefore, this study
will fill the existing gap of research of efficiently handling a multi-objective
rescheduling problem in the manufacturing environment.

The chapter is organized as follows. Section 12.2 reviews the literature in the
area of manufacturing rescheduling which is followed by the mathematical
formulation of this research in Sect. 12.3. Several decision variables, constraints
and objective functions are discussed in Sects. 12.3.1–12.3.3. The detailed
explanation of the proposed MACO algorithm is presented in Sect. 12.4. A case
study example is elaborated in Sect. 12.5 and results and discussions are provided
in Sect. 12.6. Finally, Sect. 12.7 concludes this research and provides some future
research directions.

12.2 Literature Review

Manufacturing rescheduling is of prime importance for researchers because of
the dynamic nature of the manufacturing operations and high probability of the
occurrence of the unexpected events. The empirical research findings shows that
firms that frequently reschedule perform better. Yamamoto [1] proposed a
rescheduling procedure for real-time control of a computerized manufacturing
facility managed by a central manufacturing operating system. His study showed
that rescheduling is more advantageous compared to fixed sequencing and priority
despatching procedures. Wu et al. [2] developed one machine rescheduling
heuristics to resolve the unforeseen disruption in manufacturing environment.
Their study aimed at the minimization of the make-span and the impact of the
schedule change. Abumaizar and Svestka [3] performed a factorial experiment
on benchmark scheduling problems to study the effect of different resched-
uling methods, various problem characteristics and disruption scenarios on the
performance of the new schedules. They proposed an algorithm to resolve the
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rescheduling problem of affected operations and the result indicated that the pro-
posed algorithm overcomes the disadvantages associated with other rescheduling
methods. Jain and ElMaraghy [4] pointed out the necessity of generation of new
and modified production schedules in the complex manufacturing environment.
They proposed using genetic algorithm (GA) to revise only those operations that
must be rescheduled and can, therefore, be used in conjunction with the existing
scheduling methods to improve the efficiency of flexible manufacturing systems.
Fang et al. [5] also studied the manufacturing rescheduling problem and proposed
GA to resolve the problem.

Vieira et al. [6] describe a framework for understanding rescheduling strategies,
policies and methods. In their study they highlighted the significance of under-
standing rescheduling that addresses some aspects of scheduling theory and
practice. Silva et al. [7] presented a comparative study of GA and ACO applied to
the online re-optimization of a logistic scheduling problem. Their study indicated
that although GA converges faster; however, in dynamic environment, it fails to
cope with the disturbances unless they re-optimize the problem. On the other hand,
the ant colonies are able to find new optimization solutions without re-optimizing
the problem, through the inspection of the pheromone matrix. This study signifies
the efficacy of the ACO in resolving manufacturing rescheduling problem. Hozak
and Hill [8] highlighted some of the issues and opportunities regarding re-planning
and rescheduling frequencies. Potthoff et al. [9] studied the railway crew
rescheduling problem of the Dutch railway network when a disruption occurs and
proposed an algorithm based on column generation techniques combined with
Lagrangian heuristics. Their findings indicated that the proposed algorithm was
efficient in rescheduling. These studies indicate that the rescheduling problem has
been addressed by many researchers and they are still developing new robust
methods to resolve these problems more efficiently. The present study will also
address the rescheduling problem and proposes a MACO algorithm which will be
discussed later in the upcoming section.

A great amount of literature exists that deals with the multi-objective optimi-
zation (MOO) problems in the manufacturing context. Several researchers advo-
cate the use of EAs in resolving the complexity of the MOO problems such as the
use of particle swarm optimization (PSO), GA, ACO and bee colony optimization
(BCO) [10–12]. Moreover, several researchers have also proposed hybrid evolu-
tionary optimization algorithms to deal with specific optimization problems.
Zitzler et al. [13] point out that popularity of the EAs in resolving the
multi-objective problems is due to their inherent parallelism and their capability to
exploit similarities of solutions by crossover. Tan et al. [14] proposed an
evolutionary artificial immune system algorithm to solve the MOO problem.
They examined the effectiveness of the proposed algorithm based upon seven
benchmark problems characterized by different difficulties in local optimality,
non-uniformity, discontinuity, non-convexity, high-dimensionality and constraints.
Wei and Yuying [15] applied the Pareto-based multi-objective GA to optimize
sheet metal forming process. Sbalzarini et al. [16] also favour the use of EAs for
the MOO problem. A multi-objective vehicle routing problem (VRP) was studied
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by Jozefowiez et al. [17]. Coello [18] provided a general overview of the work that
has been done in the last twenty years in evolutionary MOO and highlighted some
of the methodological issues related to the use of the multi-objective evolutionary
algorithms (MOEA). He also suggested some of the general research trends in this
area.

Schaffer [19] proposed a vector evaluated GA (VEGA) method that consists of
a simple GA with a modified selection mechanism to solve the multi-objective
optimization problem. This approach was criticized due to number of deficiencies
such as its inability to retain solutions with acceptable performance that could be
possibly good candidates for becoming non-dominated solutions. However, Zitzler
et al. [13] emphasized, in their study of the comparison of the different MOEA,
that VEGA were superior to other EAs such as Hajela’s and Lin’s weighted sum-
based approach (HLGA) [20] and the Niched Pareto GA (NPGA). Deb and Jain
[21] suggested a couple of running metrics for measuring the convergence to a
reference set and for measuring the diversity in population members at every
generation to reveal important insights and dynamics of the working of an
MOOEA. Loetamonphong et al. [22] proposed a genetic-based algorithm to find
the ‘‘Pareto optimal solutions’’ for the multi-objective problems. In particular, they
studied a new class of optimization problems which have multiple objective
functions subject to a set of fuzzy relation equations. Srinivas and Deb [23]
investigated Goldberg’s notion of non-dominated sorting in GAs along with a
niche and speciation method to simultaneously find multiple Pareto-optimal
points. Konak et al. [24] also used GA with specialized fitness functions for
solving problems with multiple objectives.

The studies discussed above shows the popularity of the EAs in multi-objective
optimization problems. Earlier, Silva et al. [7] pointed out that ACO algorithm
was better in resolving the rescheduling problems as compared to the GA. Dorigo
et al. [25] in his study suggested how best to apply ACO to dynamic and stochastic
variations and highlighted the importance of having a better understanding of the
theoretical properties of ACO algorithm. Realizing the popularity of the EAs in
resolving the MOO problems, this research proposes a MACO algorithm.
The ACO algorithm takes inspiration from the foraging behaviour of the ant
species. These ants deposit a substance known as ‘pheromone’ while travelling on
the ground in order to mark some favourable path that should be followed by other
members of the colony. If there are multiple paths to the destination, the ants
follow the path that has the highest concentration of the pheromones deposited by
the other ants. ACO algorithm uses a similar mechanism for solving optimization
problems. Several researchers have successfully applied the ACO algorithm to
solve the multi-objective optimization problems such as Dorigo et al. [26], Grave
et al. [27], García-Martínez et al. [28], and Yagmahan and Yenisey [29].
The proposed MACO algorithm amalgamates the property of the multiple ant
colony system (ACS) to meet the objective of minimizing the make-span and the
minimum changes in the manufacturing plan. The next section discusses the
problem formulation part of this research.
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12.3 Problem Formulation

In the manufacturing scenario studied in this research, the introduction of a new
order or disruption causes the change in the manufacturing strategy and thus the
manufacturing plans needs to be rescheduled to accommodate these changes. These
changes make the manufacturing process more complex. Although, the introduction
of the flexible manufacturing system somehow eases such type of problems, this
problem is still complex because of the frequent changes in the manufacturing plan.
Whenever, a manufacturing plan needs to be rescheduled, the parts and raw
materials are required to move from one machine to another using an automated
guided vehicle. Thus, it causes chaos in the manufacturing process plan. To avoid
the aforementioned chaos the processes need to be altered as minimum as possible.

Therefore, to address the manufacturing rescheduling problem in this research
the objective is to achieve a trade-off between the minimization of the total
make-span and the minimum changes in the manufacturing schedule/plan.
The mathematical formulation of the model studied in this research is explained in
the following subsections. The notations used are presented in Appendix (12.A).
The mathematical formulation of the model is presented below which discusses the
decision variables, constraints and the objective function in detail.

12.3.1 Decision Variables

Several decisions variables used in the study are characterized by binary or 0-1
integer values as shown below:

Xcnim ¼
1; if operation i of part n is assigned on machine m for the

customer order c

0; otherwise ð12:1Þ

8

>

>

<

>

>

:

Zcnim ¼
1; if predecessor of operation i of part n processed for customer

order c on the machine m

0; otherwise ð12:2Þ

8

>

>

<

>

>

:

cijm ¼
1; if operation i precedes operation j on the machine m

0; otherwise

(

ð12:3Þ

Ycnij ¼
1; if there is a precedence relation between operation i and j

for the part type n of the customer order c

0; otherwise ð12:4Þ
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>

>
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>
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:
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12.3.2 Constraints

Apart from the decision variables considered in this research, a number of
constraints were also taken into account such as precedence constraint, machine
constraint and operational time constraint. The explanation and mathematical
expressions of these constraints are expressed below.

C1: Precedence constraints. This constraint signifies that the precedence rela-
tionship between operation i and operation j for the part type n of the customer
order c is feasible if:

Ycnij Xcnim Scnim þ Xcnim PTcnimð Þ�Xcnjm Scnjm 8 c; n; i; j;m ð12:5Þ

C2: Machine constraints. This constraint implies that the machine will start a
new operation only after the completion of the previous operation. This constraint
can be expressed as

n 1� cijmð Þ Xcnjm Scnjm þ Xcnim Scnim
� �

�PTcnim Xcnim8 c; n; i; j;m ð12:6Þ

where n is a very large positive number.

C3: Operational Time Constraint. This constraint signifies that the completion
time of each operation should be either positive or zero, i.e.,

PTcnim � 0 ð12:7Þ

C4: Operation Constraint. This constraint implies that operation is performed
only on one machine and is expressed as:

X

M

m¼1

Xcnim ¼ 1 ð12:8Þ

12.3.3 Objective Functions

This research deals with a multi-objective optimization problem aiming to achieve
the trade-off between the minimization of the total make-span and the minimum
changes in the manufacturing plan. Therefore, this section outlines the mathe-
matical formulation of the objectives of this research.

The total time required to process all the parts for all the customer orders can be
calculated as:

TTR ¼
X

C

c¼1

X

N

n¼1

X

I

i¼1

X

M

m¼1

PTcnimXcnim ð12:9Þ
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Since parallel processing of parts takes place, the working time for each machine
can be calculated as:

WTcm ¼
X

N

n¼1

X

I

i¼1
PTcnim Xcnim ð12:10Þ

The first objective of the proposed model is to minimize the make-span; hence,
the first objective function can be mathematically expressed as:

Objective Function A ¼ Minimize ½Max ðWTcmÞ� ð12:11Þ

The second objective function deals with the minimization of number of
changes in the manufacturing plan which is expressed as

Objective Function B ¼ Minimize CHNGð Þ ð12:12Þ

Since both the objectives contradict each other, it is a multi-objective optimi-
zation problem. In order to resolve these objectives in this research a weighted sum
method has been used. Hence, the overall objective is

Overall Objective ¼ Minimize ðw1 �WTcm þ w2 � CHNGÞ ð12:13Þ

where w1 and w2 are weights corresponding to objective function A and B. These
weights are assigned according to the preference by the decision maker. The next
section elaborates the proposed MACO algorithm in detail.

12.4 MACO Algorithm

The nature has always attracted the attention of the researchers worldwide to
resolve the real-world optimization computational problems. This is due to the
capability of the nature-inspired algorithms to handle the increasing size and
complexity of the real-world problems. EAs, a subset of the evolutionary compu-
tation have emerged as popular method that has been widely applied by researchers
to resolve the MOO problems. This popularity of EAs has led to the development of
a number of nature-inspired EAs such as PSO [10, 30], BCO [12, 31], and ACO
algorithm [11, 32].

All these EAs mimic certain properties of the nature while resolving complex
problems. For example, the PSO method is inspired from the flocking of birds.
Although all the algorithms are capable of resolving the complex optimization
problems, ACO was adopted to resolve the manufacturing rescheduling problem
for the purpose of this research. Deneubourg et al. [33] comprehensively examined
the pheromone laying and following behaviour of ants. They studied the behaviour
of Argentine ants in an experiment known as the ‘‘double bridge experiment’’.
The experiment showed that the ants favoured the path where the highest
concentration of the pheromones was found. The proposed algorithm is the
modified version of the simple ACO algorithm and has been termed as MACO
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algorithm. This proposed MACO algorithm incorporates the concept of multiple
ant colonies system [34] and this will be discussed later in this chapter. The newly
added properties to the original ACO make it more capable of efficiently resolving
the multi-objective optimization problem. This will be also justified later in the
results and discussions section while comparing the results with the other EAs.

The ACO algorithm firstly proposed by Dorigo [11] was inspired from the
behaviour of real ants seeking a path between their colony and a source of food, to
search for an optimal path. Dorigo [11] stated that ants are social insects, that live in
colonies and whose behaviour is directed more to the survival of the colony as a
whole than to a single individual component of the colony. Ants accomplish the task
of searching the food by travelling randomly and then returning to the colony once
being successful. The other ants, following the one, smell the pheromones and apply
a probabilistic approach in selecting the nodewith the highest pheromone trail on the
paths. Following the pheromone trail ants reach to the food source or back to the nest
and vice versa. Using this concept in the real-world problem, the ants acting as an
agent are initially randomly generated on nodes, which stochastically move from a
start node to feasible neighbour node [34]. The agents collect and store information
in pheromone trails while looking for the feasible solution. The pheromone evap-
orates during the search process to avoid local convergence and to explore more
search areas. The next moving ant in turn leaves new pheromone that is added to the
already existing one and the probability to choose a node depends on intensity of
pheromone trail perceived. Therefore, the ants move in an autocatalytic process,
favouring the path along which more ants have travelled and by traversing all the
nodes [32]. This understanding is developed as an algorithm or heuristics and
applied to resolve a number of different computational problems. Kawamura et al.
[35] in their study of the colony level interactions of ants therefore defines ACS as a
constructive population based search technique to solve optimization problems by
using the principle of pheromone information. In the proposedMACO algorithm the
pheromone trail behaviour of the ants will be used to find the optimal solution.

The proposed MACO algorithm was developed earlier by Chan and Kumar [34]
to design a balanced and efficient supply chain network that maintains the best
balance of transit time and customer service. In the proposed MACO algorithm,
ants are defined as simple computational agents having some memory. The ants
are assumed to be living in an environment where time is discrete and finds an
optimal solution using a dynamic memory structure incorporating information
on the effectiveness of previously obtained results. Chan and Swarnkar [32]
highlighted the characteristics of the ACO that includes:

• ACO is a method to construct solutions which balances pheromone trails
(characteristics of past solutions) with a problem-specific heuristic (normally,
a simple greedy rule).

• It is a method to both reinforce and evaporate pheromone, and
• Local (neighbourhood) search to improve solutions.

Therefore in the ACS the ants which act as agents, iteratively construct solutions
to combinatorial optimization problems. The different optimization problems can be

12 A Multiple Ant Colony Optimization Approach 351



resolved using the ACS such as the VRP [36], travelling salesman problem (TSP)
[37–39], quadratic assignment problem (QAP) [40] and production scheduling
problem (PSP) [41]. The solution generation by ants is guided by pheromone trails
and the problem specific heuristic information. The efficiency of theACS in handling
the discrete optimization problems is evidence in the literature [42–47]. Chan and
Kumar [34] in their earlier work identify that ACS works mainly in four phases:

1. Initialization. This phase involves providing initial guidelines to the ants to
pursue the movement in upcoming phases. These guidelines include the laying
of initial pheromone trails on the paths and to diversify the search at
preliminary stages by exploring maximum possible alternative paths.

2. Node Transition. The second phase is the most crucial phase characterized by
the movement of ants on different nodes using a probabilistic approach that is
based on a trade-off between visibility and pheromone trails. The quality of
solution depends upon its working strategy. The nodes in this chapter refer to
the machines.

3. Updating. The third phase is marked by the pheromone update on different
paths exploiting the tours travelled by ants. In the proposed MACO algorithm
the fuzzy function will be used during the updating process. The intensity of
pheromone trails decides the motion of ants in the following cycles.

4. Stopping Criteria. The final phase deals with the termination of the algorithm
which specifies explicit number of cycles to be completed after which the
algorithm stops and the tour with the best result is given as the output.

Although the ACO algorithm is capable of resolving different combinatorial
optimization problem because of its flexible nature, often these algorithms face the
problem of stagnation and quick convergence. The nature of the ACO algorithm to
get entrapped in the local minima is because it depends only on a positive feedback
mechanism by the use of pheromone. To overcome this demerit of the ACO
algorithm in the proposed MACO algorithm several ant colonies are used irre-
spective of the general ant system. These different colonies of the ants interact with
each other to find a global optimal solution. The colony-level interactions also
results in both positive and negative feedback that can be controlled and hence it
works better with respect to the general ACS algorithm. This algorithm works with
multi-dimensional data set, in which each dimension represents a definite col-
lection of nodes with similar attributes. Each node has its characteristics dimension
and a different ant colony moves in each dimension with the mutual cooperation of
its ‘‘clone ants’’ in other colonies. In this system, each colony has the same number
of ants and every colony contains the same number of clones of the ants so that
they can share information from the other colonies. Thus, one colony of ants is
totally devoted to find the optimal solution and once it achieves its objective the
results are shared with the other colonies to avoid the repetition.

The proposed MACO algorithm uses M colonies and each colony is comprised
of N ants. The ants in the colony have clone ants in other colonies that work
together to find the best optimal solution. Each colony of ants associates with
different objective, each colony having its own pheromone structure. During the
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initialization phase i.e., at t = 0, ants are positioned on different nodes; however,
the ants can freely move in any direction. The nth ant belonging to the mth colony is
denoted as (m, n). At each time t, M*N ants move between the nodes to search the
optimal path. Initially ants are moved randomly for a few cycles without any
visibility or pheromone trail identification capacity [34]. This takes the algorithm
out of initial stagnation and provides initial guidelines for the ants to start with.
The notations are presented in Appendix (12.B).

Let sij
m(t) be the intensity of the pheromone on the edge (i, j) i.e., a path from

node i to node j in the mth colony at time t. Initial value of sij
m(t) for trail intensity

on edges are set as zero. After each ant has completed its tour by C time intervals,
the intensity of the pheromone smij ðtÞ becomes,

smij ðt þ CÞ ¼ q � smij ðtÞ þ
X

N

n¼1
Dsmnij ð12:14Þ

where q is a coefficient such that (1 - q) represents the evaporation rate of the
pheromone between time t and t ? C. The value of q must be set to a positive
value less than 1 (q\ 1) to avoid unlimited accumulation of the pheromone.
The value of Dsmnij represents the intensity per unit of length of the edge (i, j) for

ant (m, n) and this is given as

Dsmnij ¼
Q=Tmn

ij ; if ant ðm; nÞ uses edge ði; jÞ between time t and ðt þ CÞ

0; otherwise ð12:15Þ

(

Q is a constant and scarcely affects the behaviour of the algorithm. Tmn
ij is the

total transit time of ant (m, n) i.e., the ant generating a tour with minimum time
can lay a larger intensity of the pheromone on its tour. Two tabu lists are
associated with each ant to do away the repetition of the nodes in an ant’s path.
These tabu lists are simply a data structure and it is different from the tabu
list uses in tabu search. Tabu listmn1 keeps the track of the nodes encounters in
the whole path by the ant (m, n) and it is emptied after one cycle whereas the
Tabu listm2 stores the information about the optimal path found by colony and
this can be used by the ants of different colonies to leave the nodes which is
encountered by first colony and thus best possible tour of every colony can be
determined separately.

The transition probability from node i to j for ant (m, n) is defined below:

Pmn
ij ðtÞ ¼

pmij ðtÞ=
X

r 62tabumnðtÞ
pmij ðtÞ

0; otherwise

8

>

<

>

:

if j 62 tabumn tð Þ ð12:16Þ

pmij ðtÞ ¼ pr srmnðtÞ þ cðmÞ
� �a� �

gij
� �b ð12:17Þ

Here, tabumn(t) indicates the tabu list of ant (m, n) at time t. This list consists of
nodes that have already been visited until time t. The tabu list is emptied after one
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cycle and ants can again freely choose any node where, r denotes the node dif-
ferent from j. pij

m(t) means the degree of preference for an edge (i, j) connected to
node j and if this value is large then the ant (m, n) tends to choose node j as the
next one to visit. The value of pij

m(t) depends on the objective function. The
parameters a and b must be set in advance that controls the relative importance of
trail versus visibility. In addition gij is defined as visibility which is the inverse of
difference between the processing time and the machine node (i, j).

After completion of a tour, pheromone trail on each edge is updated using
Eqs. 12.16 and 12.17. A variable array ‘‘best tour’’ keeps the track of the overall
best result performed. An allocation is considered the best one which associated
with the minimum transit time between nodes. The proposed algorithm is repeated
until the required stopping criterion is fulfilled. The steps of the complete algo-
rithm are described in Appendix (12.C). The next section discusses a small case
study to demonstrate the efficacy of the proposed MACO algorithm.

12.5 Case Study

To demonstrate the efficacy and robustness of the proposed MACO algorithm on
the mathematical model studied in this research, a randomly generated constrained
example is considered. The numerical has two objectives; to minimize the make-
span and to have minimum changes in the manufacturing schedule. A number of
constraints were taken into account that has been discussed earlier in the problem
formulation section. The problem generation scheme used in the research is
demonstrated below.

In this example total eight machines are considered to manufacture six parts.
These are total 17 different operations to be performed on the parts. Each operation
can be carried out on more than one machine. The data for the alternative
machines and corresponding processing times for the different operations and part
types are presented in Table 12.1. There is also a precedence relationship between
the different operations and these relationships are shown in Table 12.2. In this
problem it is assumed that after 310 min, a new part i.e., part no. 6 is introduced
which consists of total two operations. The main objective is to accommodate this
new order/part type and simultaneously minimize the total make-span with the
minimum changes in the manufacturing plan. In this case study equal weights have
been assigned for both the objectives.

12.6 Results and Discussions

The MACO algorithm achieves the optimal or near-optimal solutions for the
objective considered in this research and emerges as a powerful EA. The make-
span before the introduction of the new order was 605 min (Table 12.3). In the
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Table 12.1 Data for the case
study

Part Operation Alternative available machines

1 1 3(210),7 (215)
2 2 1(380), 2 (310)
2 3 2 (140), 5 (130)
2 4 1(216), 8 (220)
2 5 2 (234), 3 (140), 6 (315)
2 6 1 (261), 6 (165)
3 7 1 (321), 7 (318), 8 (390)
3 8 2 (198), 3 (234), 8 (114)
4 9 5(235)
4 10 4 (155), 8(123)
5 11 1 (321), 8 (30)
5 12 2 (43),5 (25)
5 13 3 (122), 7(104)
5 14 4 (38)
4 15 1 (22), 7 (52)
6 16 3(152),4(138), 5(140)
6 17 1 (40)

Table 12.2 Precedent
relationship between
operations

2 ? 3
3 ? 6
4 ? 5; 5 ? 6
7 ? 8
9 ? 10
11 ? 12; 13 ? 14; 12 ? 15; 14 ? 15
16 ? 17

Table 12.3 Initial manufacturing sequence

Operation Operation Operation

Start time
(min)

End time
(min)

Start time
(min)

End time
(min)

Start time
(min)

End time
(min)

M1 4 15
0 216 487 509

M2 2
0 310

M3 1 5
0 210 216 356

M4 10 14
235 390 422 460

M5 9 3 12
0 235 310 440 462 487

M6 6
440 605

M7 7 13
0 318 318 422

M8 8 11
318 432 432 462
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case study discussed earlier, when a new order is introduced the proposed MACO
algorithm accommodates the new order and generates a new manufacturing plan.
During the generation of the new schedule by MACO algorithm, only one part was
required to be shifted from the previous schedule and the total new make-span was
found to be 615 min (Table 12.4). However, when the same problem was tested
using the simple ACO algorithm, it resulted in two changes in the manufacturing
plan and the make-span was found to be same i.e., 615 min.

Thus, the proposed MACO algorithm causes minimum changes in the manu-
facturing schedule and at the same time minimizes the make-span. Hence, MACO
algorithm was found to be more efficient than the normal ACO. The MACO
algorithm was coded in the C++ programming language and the outcome shows
the potential of the proposed algorithm in resolving the manufacturing resched-
uling problem.

12.7 Conclusions

In this research a multi-objective manufacturing rescheduling problem has been
tackled using MACO algorithm. During the rescheduling process the implemen-
tation of the manufacturing plan faces many difficulties. Hence, the main aim of

Table 12.4 Final manufacturing sequence generated by MACO

Operation Operation Operation

Start time
(min)

End time
(min)

Start time
(min)

End time
(min)

Start time
(min)

End time
(min)

M1 4 17 15
0 216 375 415 487 509

M2 2 3
0 310 310 450

M3 1 5
0 210 216 356

M4 10 14
235 390 422 460

M5 9 16 12
0 235 235 375 462 487

M6 6
450 615

M7 7 13
0 318 318 422

M8 8 11
318 432 432 462

356 V. Kumar et al.



this research is to overcome the difficulty during the rescheduling of the manu-
facturing processes. The objective of the research is twofold; to minimize the
make-span and to simultaneously reduce the number of changes in the manufac-
turing plan. This will help the manufacturing firm to accommodate the new order
without making significant changes in the manufacturing process. Thus, this paper
makes significant contribution to the existing literature. Use of MACO algorithm
to resolve the rescheduling problem further helps to overcome the shortcomings of
the general ACS since the general ACS works on the positive feedback mechanism
by the use of pheromone. Thus, the general ACS has a tendency to get trapped in
the local minima. However, in the MACO algorithm, the different colonies of the
ants interact with each other to find a global optimal solution. Therefore, with the
help of colony-level interactions, both positive and negative feedback can be
controlled and thus has better performance. Nevertheless, the MACO algorithm
performs better than the general ACS, as is evident from the outcome of the
analysis.

In the future several other factors can be taken into account during the
rescheduling of the manufacturing processes such as the machine reliability,
outsourcing and vehicle routing functions. Thus, the research has an adequate
scope for further extension by making the problem more complex and adding more
objective functions. Future research may also involve testing the efficacy of the
MACO algorithm under diverse manufacturing scenarios.

Appendix 12.A

C: Customer demand index, c = {1, 2, 3, 4,…, C}
N: Part number, n = 1, 2,…, N.
I: Operation index, I = 1, 2,…, I.
M: Machine index, m = 1, 2,…, M.
Scinm: Start time of operation i for part n on machine m for customer demand c.
MTc: Make-span time for customer demand c.
PTcnim: Processing time for operation i of part n assigned on machine m for
Customer demand c.
WTcm: Working time of machine m for completing customer demand c.
TTRc: Total time required for processing of all parts for customer demand c.
CHNG: Number of changes in manufacturing plan
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Appendix 12.B

Appendix 12.C: Steps of MACO algorithm

M Number of colonies
N Number of ants to each colony
Q A constant
R Nodes still to be visited by ant
i, j Machine nodes
Sij

m(t) Intensity of the pheromone on the edge (i, j) in the mth colony at time t.

q A coefficient
(1 - q) Evaporation rate of the pheromone
Tabu list1

mn Intensity of the pheromone per unit of length of the edge (i, j) for ant (m, n)
Tabu list2

m Total transit time of ant (m, n) in travelling edge (i, j)
Tabu list1

mn List of nodes encounters in the path of ant (m, n)
Tabu list2

m List of nodes which creates the optimum path in colony m

Tabumn(t) Tabulist of ant (m, n) at time t

Pij
mn(t) Transition probability from node i to j for ant (m, n )at time t

Pij
m(t) Degree of preference for an edge (i, j) connected to node j at time t

gij Visibility from node i to j

a Factor that controls the importance of trail
b Factor that controls the importance of visibility
NC Counter for number of cycles
NC,max Maximum number of cycles

Step 1: Initialization

Set t = 0; /* time Counter*/
Set NC = 1; /* number of iterations/number of cycles counter*/
Set sij

m(0) = c; on each node/* this is the initial pheromone trail on the edge (i, j) and c is a small
positive number*/
Set Dsij

mn
= 0; on each node. /* this is the increase in the trail level on edge (i, j)*/

Set tabu list:1
m
= 0; /* tabu list1

mn gives the list of nodes traversed by ant (m, n)*/
Set tabu list2

m
= 0; /* tabu list2

m gives the list of optimum paths traversed in colony m*/
Step 2

Set all ants at the starting node
Set s = 0/* s is the index of tabu list1

mn*/

For m = 1 to M do/* M = total number of colonies*/
For n = 1 to N do/* N = total number of ants in each colony*/
Place the starting node of the (m, n) and insert it in tabu list1

mn (t)
Step 3

Generate the path based on pheromone feedback
For m = 1 to M do
For n = 1 to N do

(continued)
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Chapter 13
Reconfigurable Facility Layout Design
for Job-Shop Assembly Operations

Lihui Wang, Shadi Keshavarzmanesh and Hsi-Yung Feng

Abstract Highly turbulent environment of dynamic job-shop operations affects
shop-floor layout as well as manufacturing operations. Due to the dynamic nature of
layout changes, essential requirements such as adaptability and responsiveness to the
changes need to be considered in addition to the cost issues of material handling and
machine relocation when reconfiguring a shop floor’s layout. Here, based on the
source of uncertainty, the shop-floor layout problem is split into two sub-problems
and dealt with by two modules: re-layout and find-route. Genetic algorithm is used
where changes cause the entire shop re-layout, while function blocks are utilized to
find the best sequence of robots for the new conditions within the existing layout.
This chapter reports the latest development to the authors’ previous work.

13.1 Introduction

A facility layout problem is to find a one-to-one mapping between machine types
and their locations on a shop floor based on the operation routings of products. It is
one of the key areas that significantly affect the manufacturing productivity in
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terms of cost and time. An effective facility layout can reduce the operating cost of
an industry from 10 to 30% [1] by minimising material handling cost, which is the
ultimate goal of a facility layout design.

Since production uncertainty becomes one of the most challenging aspects of
the manufacturing environments in the 21st century, the success of next generation
of intelligent manufacturing depends on its capability of dynamic responsiveness
to the production requirements. In such an environment, frequent changes in
product design, product mix, production volume and process affect the facility
layout as well as other areas [2].

Generally, there exist two types of manufacturing uncertainties: internal and
external. The former is due to internal disturbances such as equipment breakdown,
job delay, reject and rework, while the latter is caused by external forces such as
product demand (volume), product price, product mix and urgent job [3]. From
practical point of view and depending on the degree of uncertainty and the cost of
re-layout, designers can choose one among the following layout types (Table 13.1).

1. Dynamic layout. Considers several production periods, and layouts are deter-
mined for each period by balancing material handling costs over all periods and
the overall cost of relocating facilities in consecutive layouts.

2. Robust layouts. Behaves well over multiple production periods and in different
scenarios with low uncertainty.

3. Distributed layout. Allows a facility to conform future fluctuations in flow-shop
patterns and volumes, particularly when demands fluctuate too much to make
facility reconfiguration cost-effective, and especially when there is a large
number of machines and machine types. This type of layout can be used to
quickly form a temporary (virtual) cell.

4. Reconfigurable layout. Aligns itself with the notion of real-time enterprise in
which the changes to layout context are readily available, and it keeps operating
on the edge by doing real-time layout adjustment with live data [5].

Within the context of a dynamic manufacturing environment, a job shop is
characterized by multiple machine types and multiple part types and thus expe-
riences a high degree of variability in material flow due to growing internal and
external uncertainty factors in today’s manufacturing environment. The choice of
layout for a job shop significantly impacts its performance. Some traditional job-
shop layouts that are commonly found in the literature are as follows [6].

1. Functional layout. Groups the same machine types in a single workcentre that
may process parts of different part families. It results in complicated routes

Table 13.1 Choice of a layout type [4]

Cost of re-layout Uncertainty of future production requirement

Low High

Low Dynamic layout Reconfigurable layout

High Robust layout Distributed layout
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between workcentres, long throughput time, high work-in-process level and
high material handling cost.

2. Flow-line layout. Arranges machine types along a production line. It is usually
infeasible for a job shop due to multiple flow routes caused by the diverse part
mix.

3. Cellular layout. Groups the machines required for the parts with common or
similar operation sequences to form manufacturing cells for part families. This
leads to limited flexibility in case of machine breakdown or change in product
mix.

To overcome the drawbacks of traditional job-shop layouts, the concept of
virtual cell formation and hybrid cellular layout have been developed.

Virtual cells are dynamically formed cells in which machines are configured
logically and temporarily [7]. A virtual cell is a group of machines only in the
system control software (see Fig. 13.1). It allows the time-sharing of workstations
physically distributed in different cells belonging to different part families.

Other factors and design issues may be involved in a facility layout problem:
the type of workshop and production variables, material handling systems, the
number of floors on which the machines can be assigned, workshop shape and size,
facility shape and size, the pick-up and drop-off locations, etc. Considering the
different aspects of facility layout, it is known to be complex and NP-hard [8].
The facility layout problems addressed in the literature are strongly dependent on
the factors that differentiate the nature of the problems.

Different approaches to solving the facility layout problems can be classified
into four groups: exact methods, heuristics, meta-heuristics and hybrid approaches.
Early attempts have mainly incorporated exact methods such as dynamic pro-
gramming [9] and usually consider only material handling and rearrangement
costs. Bounding procedure is employed to decrease the number of possible states,
but it may become too complex when there are a large number of facilities.
Heuristics, such as steepest-decent pairwise-interchange [10] were incorporated to
overcome the intensive computations of the exact methods. The well-known meta-
heuristics, i.e., genetic algorithm [11], ant colony optimization [12], and simulated
annealing [13], are suitable for larger-size facility layout problems with multi-
objective functions including material handling cost, rearrangement cost, work-
in-process, cycle time, etc. Some hybrid methods combining the above-mentioned
methods have also been developed to deal with more difficult scenarios such as
hybrid assembly lines [14].

Virtual cell

Machine

Fig. 13.1 Virtual cells can
be quickly formed in a
distributed layout
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A hybrid layout is a combination of functional and cellular layouts, which is
similar to the concept of virtual cell. It brings the identical machine types next to
each other without destroying the allocation of cells to part families. Recently, the
concept of hybrid cellular layout is extended by combining different layout
modules [6]. The layout modules are shown in Fig. 13.2.

However, dealing with job-shop uncertainty, attempts still need to be made for
distributed decision-making at runtime based on environmental changes. Focusing
on the turbulent and distributed manufacturing environments, this research pro-
poses to incorporate function block technology to increase the adaptability and
proactive responsiveness, so that the system is able to autonomously suggest
alternative routes among robots based on the changes in a robotic assembly shop
floor. This chapter presents the latest development on the assembly shop layout
problem as the continuation of the authors’ previous work [15].

13.2 Assembly Shop Layout Planning

Due to the highly turbulent environment of today’s manufacturing environment,
the potential to frequently alter layout has transformed the shop-floor layout
problem from only considering long-term material handling and machine reloca-
tion costs to also considering other essential requirements such as adaptability and
proactive responsiveness to the dynamic changes when reconfiguring the shop
floor from one layout to another. As shown in Table 13.1, reconfigurable layout is
suitable for a highly turbulent manufacturing environment. It has the primary
advantage of minimising the material handling cost by reconfiguring a layout when
warned by changes. Of course, this cost must not be more than the cost of relo-
cating the equipments.

It is unlikely to solve a complete shop layout problem with all the details yet in
an efficient way [6]. Therefore, researchers normally make several assumptions

(a) 

(f)(d)

(b) (c)

(e)

Fig. 13.2 Various layout modules. a Flowline module, b machining centre module, c branched
flowline module, d functional layout module, e patterned flow module, f cell module
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and simplifications in their models without missing the important underplaying
structure. Considering the assumptions below, reconfigurable layout is considered
to deal with dynamic assembly shop floors in this research.

• An assembly system is a fully automated robotic system. There is no time
variation due to unsteady human operations.

• All equipments are 100% reliable except when failure is considered.
• All the robots work continuously until there is no more part to produce.
• Certain places on the shop floor are specified for locating robots.
• There is no space limitation.
• The shape and size of the equipments are not of concern.

It is quite common to consider equal-size area utilization and ignore the shape
and size of the workstations for a robotic assembly shop where it is not an
unrealistic assumption [16].

Moreover, the source of uncertainty could be a change in product mix/volume,
or an unexpected event such as a machine breakdown or an urgent job. A rea-
sonable change in product mix or volume should happen to make it worthy of
shop-floor re-layout. However, on the other hand, it would be good enough to find
an optimal robot sequence route within the existing layout for an urgent job or
finding the best alternative route in case of machine failure. This splits the shop-
floor layout problem into two parts: re-layout and find-route. To deal with the
re-layout issue, any meta-heuristic method can be incorporated to find an optimal/
near-optimal new layout for the shop floor. However, for the find-route, function
blocks are incorporated to suggest the best route among the robots for the new
conditions. Figure 13.3 depicts the basic idea of the reconfigurable assembly shop
layout problem in this research using both genetic algorithm (GA) and function
block (FB).

13.3 Shop-Floor Re-Layout Using GA

GA is one of the most commonly used meta-heuristic methods, which does not
rely on the analytical properties of the function to be optimized and thus is suitable
to deal with a large class of optimization problems [17]. It has been successfully
incorporated in the facility layout problem [12, 16, 18]. GA starts with an initial set
of random solutions for the problem under consideration. The set of the solutions
is also known as the population of chromosomes. A chromosome may be com-
prised of individuals called genes. The chromosomes are evaluated according to a
specified fitness function, and evolve through an iterative process under GA
operators to generate new populations. This iteration stops upon satisfying a
specific stopping criterion.

In this section, the steps of implementing GA to deal with the re-layout issue of
the prototype shown in Fig. 13.3 are presented. Details of this work are explained
through an illustrative example.
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13.3.1 Chromosome Representation

GA requires a representation scheme for the chromosomes. This is also known as
chromosome encoding. In this study, a form of direct string representation is used
as chromosome. Each chromosome has as many genes as the number of the
locations assigned to the robots on a shop floor. To illustrate this, an example of a
shop-floor layout with 15 robots distributed over 16 designated locations is
depicted in Fig. 13.4, which is simplified according to the assumptions in
Sect. 13.2. The encoded chromosome representation for this shop-floor layout is
(2 1 12 0 7 3 4 13 9 10 8 6 5 14 15 11), where 0 indicates an empty location.

13.3.2 GA Operators

Four genetic operators are incorporated in this research: cut-and-paste, crossover,
mutation and reproduction. These genetic operators and their operation results are

Location 1

Location 6

Location 12

Location 2 Location 3 Location 4 Location 5

Location 7 Location 8 Location 9 Location 10

Location 13 Location 14 Location 15 Location 16

A

2
A

1

G
12

D

8

A
3

C
7

B
4

G
13

D
9

E
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G
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Fig. 13.4 Shop floor layout—letters and numbers inside the circles represent robot types and
identities, respectively

Supervisory planning 

Assembly shop floor

Find-route Module
Finding the best robot 

sequence route within the 

existing layout using FB

Optimal robot sequence route

Minor change (urgent job, robot breakdown)

Re-layout Module
Reconfiguring the shop 

floor layout using GA

New layout

Major change
Change
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product design,

urgent job,

breakdowns, etc.

Fig. 13.3 Reconfigurable assembly shop layout approach
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shown in Fig. 13.5. The chromosomes are selected for the genetic operators based
on their fitness.

In order to select parent chromosomes for implementing crossover operator, the
Roulette wheel selection technique is applied. In this research, a genetic operator
combining cut-and-paste and simple crossover is employed to increase the possi-
bility of examining more variety of different shop-floor layouts. First, a random
number r B 16 is generated for each parent separately. The genes whose ranks in the
chromosome string are greater than r are cut-and-paste to the beginning of the
chromosome as shown in Fig. 13.5a. Then, another random number r0� 16 is
generated for the implementation of simple crossover. As shown in Fig. 13.5b, the
genes whose ranks are greater than r0 in the parents’ chromosome strings are
swapped. Finally, a backward replacement procedure is carried out to eliminate the
repeated genes outside the cutting section and retrieve the missing genes instead of
them in the offspring chromosomes. The rest of the chromosomes remain identical to
their parents.

The probability of applying mutation over chromosomes (mutation rate) within
a population is usually a small number; otherwise, the algorithm may not be able
to converge. The chromosome is chosen randomly and the mutation operator
selects two random genes of the chromosome to swap their positions. Mutation
helps to increase the searching power by avoiding premature convergence and
escaping from local optima where reproduction or crossover may not produce a
good solution to the problem. The procedure is terminated when the number of
generations is reached to a predetermined value.

13.3.3 Fitness Function

The fitness function to evaluate a solution is defined as follows:

Fitness function ¼
X

M

j¼1

�

X

N

i¼1

Ci;iþ1di;iþ1fi;iþ1 þ Ridr

�

j
; ð13:1Þ

Parent(s) Offspring set(s)
(a)

Cut-and-paste

( 0  2  1  12  8  7  3  4  13  9  10  6  5  14  15  11 )      ( 10  6  5  14  15  11 0  2  1  12  8  7  3  4  13  9 )      

( 0  2  1  12  8  7  3  4  13  9  10  6  5  14  15  11 )

( 4  1  11  8  0  3  6  10  7  15  9  2  14  5  12  13 )

 ( 0  6  1  15  8  7  3  4  11  10  9  2  14  5  12  13 )

 ( 4  1  13  8  0  3  2  9  7  12  10  6  5  14  15  11 )

(b)

Crossover
(and adjustment for repetition)

(c)

Mutation

( 0  2  1  12  8  7  3  4  13  9  10  6  5 14  15  11 )      ( 0  2  1  12  8  5  3  4  13  9  10  6  7  14  15  11 )      

(d)

Reproduction
( 0  2  1  12  8  7  3  4  13  9  10  6  5  14  15  11 )      ( 0  2  1  12  8  5  3  4  13  9  10  6  7  14  15  11 )      

Fig. 13.5 Genetic operators
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where
dr = 0 if robot i is not relocated
R robot relocation cost
f product flow
d the distance between two robots i and i+1
C material handling cost per unit distance
N number of robots required to assemble a product
M total number of products

13.3.4 Searching Algorithm

The genetic search process used in this research is as follows. This is also depicted
in the flowchart as shown in Fig. 13.6.

1. Randomly generate the initial set of chromosomes with a predetermined pop-
ulation size.

2. Evaluate the cost of each chromosome in the population according to the fitness
function.

3. Calculate the average fitness of the population.
4. Use the elitist strategy, i.e., keep the potentially best chromosomes to the

following generation by eliminating the same number of the worst members of
the population. For the sake of computation and efficiency, the population size
is kept constant. Any chromosome whose fitness in proportion to the average
fitness of the population is greater than a pre-specified value is omitted, and the
same number of the best chromosomes with the lowest costs gets reproduced to
the next generation.

5. Apply the Roulette wheel selection technique to select the parent chromosomes
from the current population. Implement the cut-and-paste and the simple cross-
over operators as explained in Sect. 13.3.2 to generate the new population.

6. Apply the mutation operator based on the mutation rate.
7. The rest of the chromosomes are reproduced from the current population to the

new generation.
8. Check the termination condition. Stop if the number of iterations reaches the pre-

specified value. Otherwise, proceed to the next generation and go back to step 2.

13.4 FB-Enabled Assembly Routing Planning

As mentioned in Sect. 13.2, a significant change in product volume/mix should
occur to trigger the re-layout of an assembly shop floor. However, in case of an
urgent job arrival or a robot breakdown, it may not be necessary to change the
whole shop-floor layout. Defining an urgent job as a product with main assembly
route A–B–A–D and secondary assembly route F–G–A as shown in Fig. 13.7, an
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optimal/near-optimal sequence of robots to visit (or assembly routing) can be
found within the existing shop layout without carrying out any actual layout
reconfiguration. If there are i robots of type A, j robots of type B and k robots of
type D, there are p = i 9 j 9 (i - 1) 9 k possibilities of robot sequences for the

A B A D

G

F

Fig. 13.7 Robot type-
routing of an urgent job, with
the main assembly route of
A–B–A–D, and the secondary
assembly route of F–G–A

Randomly generate 

the initial population

Terminating 

condition met

Defining

parameters

Reproduce the best chromosomes 

and eliminate the worst 

chromosomes, keeping the 

population size constant 

Stop

Select the parent chromosomes using 

Roulette wheel method

Generate the new 

population

Yes

No

Apply GA operators:

cut-and-paste & simple crossover

Pass the rest of the chromosomes to 

the next generation

Apply the mutation operator

Fig. 13.6 GA procedures
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main assembly line. The optimal/near-optimal robot sequence in terms of material
handling cost should be identified among these possible routings. The same pro-
cess needs to be repeated for the secondary assembly route. If there are n robots of
type F and m robots of type G, there are q = m 9 n possibilities of robot
sequences for the secondary assembly route. Therefore, there are q 9 p possible
assembly routings in total for this product. These possibilities are shown in
Fig. 13.8.

To select the optimal yet feasible route among the possible ones, the evaluation
criteria must also consider the time delay due to in-process productions involving
the robots of the same types. By allocating a designated FB to each robot, the FB
can be used to find the optimal robot route on the shop floor by means of the FB’s
embedded algorithms. The FB can also be incorporated to find the best alternative
robot/route in case of robot breakdown (Fig. 13.9).

13.5 Designing a Find-route Function Block

This section extends the authors’ previous research [15] on incorporating FB
methodology for dynamic assembly planning and control so as to increase a
system’s adaptability to dynamic changes. Particularly, a new FB is designed and
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Fig. 13.8 Possible assembly routings for the urgent job shown in Fig. 13.7 on the shop floor of
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added to the existing FB network for each robot. It deals with the find-route of the
prototype as shown in Fig. 13.3. The new FB, named find-route function block

(FR-FB), is depicted in Fig. 13.10. The embedded algorithms in this function
block are responsible for the issues explained in Sect. 13.4, i.e.:

• Finding a robot sequence within the existing layout based on the robot type-
routing of an urgent job.

• Finding the best alternative robot in case of a robot breakdown.

In what follows, the details of the input, output and internal algorithms of this
function block are explained.

13.5.1 Input

The input data to an FR-FB are: INI_INFO, FR_INFO and RB_INFO.
INI_INFO (initialization information) is coupled with EI_INI, an initialization

event, to receive the latest updates and information from the upper-level super-
visory planning, including:

• Robot’s location.
• Out-of-order devices.
• Material handling cost per unit distance.
• Type of material handling equipment between this robot and other robots.
• Speed of material handling equipments.

Upon receiving all the initialization information, an event output EO_INI is
fired to signal the completion of the initialization process.

FR_INFO (find-route information), coupled with the event input EI_FR, con-
tains the following information used by the find-route algorithm ALG_FR:

EO_INI

EO_FR

EI_BD
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Fig. 13.10 The find-route function block FR-FB
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• Robot sequence to assemble a product (main or secondary assembly route).
• Product flow.
• Type of material handling equipment receiving at this robot.
• Time left to complete the current job by the robot.

In case of a robot breakdown, the situation is informed to the function block by
the input event EI_RB, which in turn triggers the output event EO_RB broad-
casting the situation to other robots of the same type, as well as the previous and
the next robots in the routing. Any reply is received by the FR-FB via event EI_BD
together with the RB_INFO data input.

RB_INFO (robot breakdown information), used by the alternate-route algo-
rithm ALG_AR, includes:

• Time left on the same-type robot to complete its current job.
• The robots’ locations.
• The type of material handling equipment to these robots.

13.5.2 Output

On the other side, the output data, namely RR and AR, are produced by the
embedded algorithms ALG_FR and ALG_AR, respectively.

RR (robot routing):

• Accumulated material handling cost.
• A string representing the robot sequence (see Sect. 13.5.3 for details).
• Suggesting the best sequence of robots if the robot is the last one in the chain.

AR (alternative route):

• Evaluation of the routing with other robots in case of breakdown.
• Suggestion of the best alternative robot for substitution.

Upon completion of algorithms ALG_FR and ALG_AR, output events EO_FR
and EO_BD are fired, respectively. Details of the two algorithms embedded in an
FR-FB are described in the next section.

13.5.3 Embedded Algorithms

ALG_FR (find-route algorithm) is responsible for finding the best robot sequence
among many possible ones for an urgent job as illustrated in Fig. 13.8. The
routing evaluation is divided into the main and the secondary assembly routings.
A double-row string is utilized to represent the types and IDs of the robots to form
a robot sequence. This string is passed to the robots for processing, starting from
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the first robot type in the string. The cost evaluation is based on Eqs. 13.2–13.6.
Since different type of material handling equipment (MHE) serves in different
routes between the robots, Eqs. 13.3–13.5 are defined to consider the cost of time
due to the different possible combinations of MHEs and robots.

MHC ¼ Cj�1; jdj�1; j fj�1j; ð13:2Þ

Cost of Time ðCT) = CT1 + CT2 ð13:3Þ

CT1 ¼ L� Tmax; where Tmax ¼ max Tj
� �

and j 2 1; N½ � ð13:4Þ

CT2 ¼ L�
X

N

j¼2

dj�1;j

vj�1;j
fj�1;j ð13:5Þ

Total Cost ðTC) ¼ MHCþ CT ð13:6Þ

where
L cost per unit time.
N number of robots required for assembling the product.
T time left on robot j to finish its in-process job.
d the distance between two robots j - 1 and j.
v speed of the MHE receiving by robot j from robot j - 1.

As shown in Fig. 13.11, each FR-FB receives the robot routing, ID numbers of
the previous robots, accumulated MHC, accumulated CT2, CT1 and TC up to this
point for the main and secondary assembly routings of a product. It then adds its
ID to the string under its type and calculates the robot’s associated MHC, CT1 and
CT2 and updates these values in the string. The algorithm eliminates repetitive
robot IDs to avoid using the same robot for the evaluation. It also checks the ID of
the out-of-order robots to ignore them for the evaluation. The last robot in the
chain also compares the total costs and chooses the best sequence of robots with
the least cost. Figure 13.12 depicts the procedure of the algorithm.

ALG_AR (alternate-route algorithm) is the next algorithm embedded in the
FR-FB. It is used to find the best alternative robot in case of a robot breakdown.
It communicates with the previous and the next robots as well as other robots of

R1 R2 R3 R4 R5 A B A

(a)

(b)

D Tmax CT1 CT2 MHC TC

0 0 0 0 0

Robot type and IDOut of order/in-use robots

R1 R2 R3 R4 R5 F G A Tmax CT1 CT2 MHC TC

0 0 0 0 0

Fig. 13.11 Function block’s routing strings: a main assembly routing, and b secondary assembly
routing of Fig. 13.8
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the same type, and then calculates the total cost including MHC for a robot
sequence consisting of the previous robot, the alternative robot and the next robot
in the routing.

13.6 Case Study

The input data required for a facility layout study is usually comprised of:

1. Set of products.
2. Operation sequence for each product.
3. Production quantity for each product.
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Pass the string to the robots of the 

next type in the routing except for 

the one with the repeated ID 

Calculate MHC (eq. 2) 

and add this value to the 

accumulated MHC 

No

The next 

robot type is 

repetitive

Yes

This 

is the first 

robot in the 

routing

Insert the robot ID 

under the robot type

Pass the string to the robots 

of the next type in the routing

Yes

No

Compare the time left on 
this robot Tj with the so-

far Tmax, if Tj> Tmax then 

Tmax =Tj . Update CT1.

Calculate CT2 (eq. 5) and 

add this value to the 

accumulated CT2 

CT1= L ×  T1

CT2 = 0

Compare all the TCs and choose 

the least-cost robot sequence

Send a copy of the result to 

the supervisory planning

Yes

No

This
 is the last 

robot in the

 routing

Update CT

Fig. 13.12 Procedures of
find-route algorithm

378 L. Wang et al.



Figure 13.13 shows a hypothetical but typical example of a job-shop assembly
environment. The chromosome string of this layout is shown in the figure as well.
Table 13.2 presents the current product routings for this shop floor including the
new products (shaded). In the supervisory planning, according to the operation
sequence and based on the capacity and the capability of the robots, the sequence
of robot types required for the operations have been specified and presented as
robot routings in the table.

Incorporating the elitist strategy during GA implementation, the chromosomes
with a fitness value more than 1.5 times of the generation’s average cost are
replaced with the same number of the chromosomes with the least costs. Other
parameters used in the GA are as follows.

Conveyor: C = 0.1 (cost unit)/(distance unit).
AGV: C = 1 (cost unit)/(distance unit).
Relocation: R = 0.75 (cost unit)/(distance unit).
Initial population: 150 (chromosomes).
Mutation rate: 1/150.
Termination criterion: 800 (generations).

The output of GA calculation is presented in Fig. 13.14 with two best layouts.
Choosing solution 1 as shown in the figure, the optimized chromosome string
resulting from the re-layout module is decoded in Fig. 13.15.
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Fig. 13.13 Example of an assembly shop floor
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The urgent job of Fig. 13.7 is considered to be carried out within this new
layout. Table 13.3 shows the current situation of the robot types involved in the
robot type-routing of the urgent job. The total time left on a robot to finish
producing the in-process product is shown as well.

As discussed in Sect. 13.2, the find-route module is in charge of finding the
robot sequence for the urgent job by means of FR-FB as well as finding the best
robot to substitute the robot that breaks down during production. The two
embedded algorithms of this function block are developed in MATLAB�, which
deals with the following two cases for the same example:

1. Finding the best robot sequence for the routing of Fig. 13.7 in the layout of
Fig. 13.15.

2. Finding the best robot alternative in case of breakdown of robot G.

The results are calculated using the following parameters.

Conveyor: v = 0.2 (distance unit)/(time unit).
AGV: v = 0.3 (distance unit)/(time unit).
Cost per unit time: L = 0.15 (cost unit)/(time unit).

Case 1 The first algorithm ALG_FR searches for the optimal sequence of robots
for the main assembly routing, i.e., A–B–A–D. As shown in Fig. 13.16a, the least-
cost robot sequence is found as 3–5–1–8, with the total cost of 196.6 (unit cost).

Table 13.2 Product routings (new products are shaded)
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For the secondary assembly routing, i.e., F–G–A, where the robot of type A is
already chosen as in the main assembly routing (robot 1), the least-cost robot
sequence is 11–14–1 as shown in Fig. 13.16b with the total cost of 92 (unit cost).

Solution 1: (15  4  2  12  9  7  10  0  14 11  1  5  3  13  8  6)

Solution 2: (15  9  2  12  1  4  3  0  14  11  5  10  7  6  13  8)

Fig. 13.14 GA results of assembly shop floor re-layout at a cost of 73.1 cost unit
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Case 2 The second embedded algorithm ALG_AR is triggered to deal with the
robot breakdown. Assuming a failure of robot G in this example, the best alter-
native robot for substitution is found to be robot 13 with a total cost of 116.4
(Fig. 13.17).

13.7 Conclusions

This chapter presents a hybrid approach for the assembly shop-floor layout
problem by incorporating both genetic algorithm and function blocks. This
combined approach is particularly useful for a turbulent job-shop assembly
environment where function blocks can deal with configuration changes due to
dynamic operations. It consists of two different modules: (1) re-layout module, and

R1 R2 R3 R4 R5 A B A D Tmax CT1 CT2 MHC TC

2 12 0 0 0 3 5 1 8 5 50 90.6 56 196.6

R1 R2 R3 R4 R5 F G A Tmax CT1 CT2 MHC TC

2 12 0 0 0 11 14 1 7 70 11 11 92

(a)

(b)

Fig. 13.16 Search result for case 1. a Main assembly routing, b secondary assembly routing

Table 13.3 Remaining time
on robots involved in robot
type-routing of the urgent job

Robot type Robot ID Time left on
in-process
job (h)

In-use/
out-of-order

1 5
A 2 8 9

3 5
4 5

B 5 6
6 6

D 8 6
9 7
12 10 9

G 13 5
14 7
15 6

F 11 7

R1 R2 R3 R4 R5 F G A Tmax CT1 CT2 MHC TC

2 12 0 0 0 11 13 1 7 70 21 15.4 116.4

Fig. 13.17 Search result for case 2
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(2) find-route module. The former deals with major shop-floor changes and derives
an alternative layout using GA when the reconfiguration cost can be properly
justified against material handling cost, etc., whereas the latter utilizes a special-
ized function block to deal with soft changes, such as an urgent job and/or a robot
breakdown, when alternative assembly routes can be determined within the
existing layout.

The novelty of this approach is incorporating the function block methodology
in finding alternative assembly routes where the quantity of the assembly opera-
tions is low and the unavailability of a robot is of temporary nature. In addition to
GA-based global optimization of shop-floor re-layout, the FB-based methodology
applies embedded algorithms for proactive and adaptive decision-making
according to the current assembly plan and assembly sequence. As function blocks
can also be used for process control, it is possible to make decision at run-time and
continue the current assembly operation with the least interruption but using
alternative resource in alternative route.

For proof of concept, the proposed method has been implemented and tested
through a case study in the simulated environment of MATLAB. As demonstrated
by the case study, the hybrid approach can enhance the adaptability of an assembly
shop against disturbances by providing (near) optimal layout and routing solutions
effectively. It is expected that this approach can also contribute to factory auto-
mation in the next-generation adaptive manufacturing systems. Conducting real-
world tests to further validate this approach is the future work of this study.
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Chapter 14
A Simulation Optimisation Framework
for Container Terminal Layout Design

Loo Hay Lee, Ek Peng Chew, Kee Hui Chua, Zhuo Sun and Lu Zhen

Abstract Port designers are facing challenges in choosing appropriate terminal
layouts to maximise operational efficiencies. This study aims to address this
problem by providing a simulation optimisation framework for container terminal
layout design. This framework consists of three main modules which are auto-
mated layout generator (ALG), the multi-objective optimal computing bud-
get allocation (MOCBA) algorithm and the genetic algorithm (GA). ALG is to
automatically generate a simulation model for a set of given design parameters;
MOCBA is to intelligently determine the simulation replications to different
designs for identifying promising designs; GA is to help generate new design
parameters for optimisation. Numerical examples are used to demonstrate the
applicability of this framework.

L. H. Lee (&) � E. P. Chew � K. H. Chua � L. Zhen
Department of Industrial and Systems Engineering, National University of Singapore,
10 Kent Ridge Crescent, Singapore, Singapore
e-mail: iseleelh@nus.edu.sg

E. P. Chew
e-mail: isecep@nus.edu.sg

K. H. Chua
e-mail: u0508477@nus.edu.sg

L. Zhen
e-mail: isezl@nus.edu.sg

Z. Sun
Centre for Maritime Studies, National University of Singapore,
12 Prince George’s Park, Singapore, Singapore
e-mail: sunzhuo@nus.edu.sg

L. Wang et al. (eds.), Multi-objective Evolutionary Optimisation for Product

Design and Manufacturing, DOI: 10.1007/978-0-85729-652-8_14,
� Springer-Verlag London Limited 2011

385



14.1 Introduction

In the past decades, the container shipping industry has been growing rapidly.
In order to capture this growing market, many governments and private operators
increase their investment on port infrastructures, e.g., building new terminals,
employing new port technologies or enlarging the size of the existing terminals.
This has resulted in intense competition among these ports. Hence it is important
for these port operators to improve the efficiency of container terminal operations,
especially when they set up their new terminals.

When the port operators decide to build a new terminal, they need to first decide
the layout skeleton (e.g., horizontal stack layout versus vertical stack layout) and
the operation logic that governs the processes in this new terminal (e.g., how
vessels are going to moor given limited number of available berths). There are
some design parameters in these layouts and operation logics need to be deter-
mined, and usually port operators will choose few different sets of these param-
eters based on their experiences, for examples the number of blocks, the dimension
of each block, the number of resources used, such as quay cranes, yard cranes and
vehicles. Then, they will develop simulation models for this new terminal by using
some simulation software (e.g., Automod and eM-Plant). After that, they will run
the simulation models with these few sets of parameters to determine which set of
design parameters they should choose based on the estimated performance.
Simulation models are used in this case because they can capture many real
constraints and uncertainties in ports which analytical models cannot do.

Simulation is a powerful tool and is often used to evaluate alternative designs
and explore possibilities. A vast variety of research topics have utilised simulation
to improve port processes. Steenken et al. [1] and Vis and Koster [2] both gave a
comprehensive review and classification of the current research and future
direction on the container terminal operation. Many research works are focusing
on port-related decision support systems. Kozan [3] conducted a comparison
between the analytical and simulation planning models for a container terminal.
Bruzzone et al. [4] showed the advantages and effectiveness of simulation
approach for managing complex container port. By using simulation models, Yun
and Choi [5] analysed the performance of a container terminal system in Pusan;
Nam et al. [6] determined the optimal number of berths and quay cranes used in a
terminal in Pusan; Shabayek and Yeung [7] predicted the performance of the
operations in a terminal in Hong Kong; Sgouridis et al. [8] analysed the inbound
container handling in the ‘‘All-Straddle-Carrier’’ system; Yang [9] analysed the
effect of the increase in the number of automated lifting vehicles on the produc-
tivity of the terminal.

All the above works assumed a fixed layout to work on, and do not consider a
large number of design alternatives. If the port operators want to use the sim-
ulation approach in finding an optimal port layout design they will face three
challenges. First, it is not easy to modify the simulation models when the design
parameters are changed. For example, when the number of blocks or the width
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and the length of the block are changed, we need to redraw the layout and
possibly to redefine the logic used in the model [10]. This may require a sub-
stantial amount of time and effort to create these new simulation models.
Second, in order to estimate an accurate performance through simulation, we
usually need to run the simulation with many replications. This means that the
simulation time can be quite long. Third, there might be a lot of possible design
parameters, and to enumerate all of them might be computationally infeasible.
Due to these reasons, the port operators can only test a limited set of design
parameters.

To improve the port operators’ layout design capability, we need to address the
above three challenges. For the first challenge, we should develop a program that
can take any design parameters and easily create simulation models without any
human intervention. The second and third challenges belong to the domain of
simulation optimisation. Simulation optimisation is defined as the process offinding
the best values of some decision variables for a system where the performance is
evaluated based on the output of a simulation model for this system [11]. Fu et al.
[12] has given a comprehensive review on the approaches used in simulation
optimisation. Many real life problems can be solved using simulation optimisation
technique, such as inventory control problems [13], cross-docking problems [14]
and aircraft spare part problems [15]. For multi-objective simulation optimisation
problems, Lee et al. [16] propose a framework which integrates the multi-objective
computing budget allocation algorithm (MOCBA) [17] with the search method,
where MOCBA can handle the second challenge while the search method can deal
with the third challenge. In multi-objective optimisation problems, we might not be
able to find a single best solution (or design) that simultaneously optimises all the
objectives. In this case, we may want to find solutions for which their objectives
have been optimised to the extent that if we try to optimise a subset of these
objectives any further, then the remaining objective(s) will become worse. These
designs are called non-dominated designs or Pareto designs. Hence, for multi-
objective problems, instead of finding a unique single best solution to the problem,
we aim to find a set of non-dominated designs. This set is also known as Pareto set.
MOCBA aims to allocate simulation runs effectively to all design alternatives so as
to maximise the probability to correctly identify the Pareto set. However, MOCBA
only deals with a finite number of design alternatives. If we want to explore a larger
feasible space, we need to integrate it with a search method, and Lee et al. [16]
provide a framework on how this can be done.

In this study, we will develop a simulation optimisation framework based on
Lee et al. [16] to solve the port layout design problem. The port layout design
problem is defined as follows: given a fixed dimension of land space, we want to
find promising port layout design parameters which consider few objectives at the
same time. The objectives will be the performance measures determined by port
operators which might include quay crane productivity, vehicle utilisation, vessel
turnaround time, etc.

In this simulation optimisation framework, we will first create an automated
layout generator (ALG) which automatically generates a new simulation model
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given a set of design parameters. Then a simulation optimisation algorithm that
combines the genetic algorithm (GA) and MOCBA is developed. GA is to generate
new design parameters for optimisation while MOCBA attempts to efficiently
allocate computing resources to different designs to identify the Pareto optimal
design parameters.

In Sect. 14.2, we will describe the simulation optimisation framework.
Section 14.3 will provide the numerical experiments. Finally, we give conclusions
in Sect. 14.4.

14.2 Simulation Optimisation Framework

This study is motivated by the actual port layout design problem faced by port
operators. Generally, it is very time-consuming to find an optimal design for
container terminals. Port operators usually choose a few sets of design parameters
according to their experience, and then evaluate them through simulation to
identify the promising design. Our aim here is to automate this process and help
port operators to explore more design alternatives so that they can select better
designs.

14.2.1 General Framework

Simulation optimisation is the process of finding the best values of some decision
variables for a system where the performance is evaluated based on the output of a
simulation model for this system [11]. In this chapter, a simulation optimisation
platform is developed for facilitating port layout design. The general framework of
the platform is illustrated in Fig. 14.1.

The framework comprises of two main modules: an ALG and a simulation
optimisation module. The ALG module is developed to allow the port designer to
change the port simulation model parameters and generate multiple designs. The
simulation optimisation module is developed to address two main issues in the port
design process. First, the number of possible design alternatives grows exponen-
tially as more parameters are considered or when the range of possible values for
parameters increases. This means that the search space for all possible designs can
be very large, which makes it computationally infeasible or costly to do an
exhaustive search. Second, instead of only one single performance measure, users
may require a port design that optimises more than one performance measure.

The general flow of the framework is as follows.
Port operators will first decide the performance measure they want to optimise

for the port. They should define the port design space, which includes (1) port
parameters i.e., the number of parameters to consider and their ranges; (2) port
operation logic; (3) port layout skeleton. Based on the information from the
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port design space, the simulation optimisation module will first generate an initial
set of design parameters. The ALG module of the program will subsequently
generate a simulation model for each of these design parameters. In this study,
Automod is chosen as the simulation tool. The simulation optimisation module will
allocate the computing budget (or number of simulation runs) among the different
simulation models (or different design alternatives). Based on the simulation out-
puts, it will identify all the non-dominated designs and will be stored in the elite set.
Fitness values are computed for all the designs based on the probability of non-
dominating which can be obtained when we run MOCBA algorithm. GA will use
these fitness values to generate a new population which consists of different sets of
design parameters. These new sets of design parameters are then fed into the ALG
module to generate new simulation models. Then simulation optimisation module
will determine the number of simulation replications to be allocated to each design
and also identify non-dominated designs from this new population. These non-
dominated designs will then be placed in the elite set. This process will repeat until
a stopping criterion is met. Eventually we will run the MOCBA algorithm again on
the elite set to get the final non-dominated designs from the same set. These designs
will be candidates for port operators to select their designs from.

The following sections will introduce the key modules contained in the pro-
posed framework.

Fig. 14.1 The flowchart of the simulation optimisation for port layout design
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14.2.2 Automod Model of Port Layout

As mentioned earlier, a library of port skeleton layouts and port logic needs to be
defined. In the framework that we develop, only one port skeleton layout and one
port logic are defined. It is envisioned that additional port skeleton layouts and port
operation logic can be added on at a later time without making major changes to
the framework. The current Automod base model of port layout is described as
follows:

This is the base model of the port whose modifications will be carried out by the
ALG automatically to reflect the user’s requirements. In this type of layout, the
containers are stacked horizontally and parallel to the berth (Fig. 14.2), a popular
layout mainly used in Asian ports such as port Bander Abbas in Iran and the Jebel
Ali port of Dubai.

In the simulation of port, users are interested in the long run performance of the
system. This type of simulation is more commonly known as steady-state simu-
lations. Autostat is a complementary software tool of Automod used to study the
simulation runs and determine the appropriate warm-up period. However, given
that the proposed framework is to be fully automated, conducting warm-up
analysis manually using Autostat is not appropriate. Therefore, we develop an
automated warm-up analysis algorithm in the logic file of Automod model.

In selecting the warm-up analysis method, it is decided to choose the method
mainly based on two criteria: ease of automation and computer time taken. Ease of
automation is necessary as the method chosen must not require any additional

Fig. 14.2 An example of port layout model built in Automod
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human intervention during the runs, while computer time taken must be minimised
as a lot of simulation models with different parameters will be run, each requiring
its own warm-up analysis. It is noted that the warm-up analysis method chosen
may not be the best available but it serves our objectives in developing the
framework and can be easily changed in the future.

14.2.3 Automated Layout Generation

As mentioned earlier, many simulation programs do not have the capability of
adjusting the positions of the layout when any of the parameters needs to be
changed. The ALG module (Fig. 14.3) is developed to ease human efforts in
changing parameters of the simulation model. The ALG program can effectively
convert user desired specifications into Automod system files to build a new
Automod model based on the skeleton layout and the port operation logic that are
developed earlier.

First the initial design parameters are stored in a ‘‘.csv’’ input file (Microsoft
office excel comma separated values file). Some of the parameters in the input file
are fixed while others can be varied. Parameters that can be varied (which define
the difference in designs) will be generated externally and then will be written in the
input file while keeping the fixed parameters constant. Upon reading the information
from the input file, the ALG module will generate several Automod model files,
which currently are port*.asy, pm.asy and yc.asy. The first file is the main process
system which defines the simulation logic, resource definition, etc., while the latter
two files define the path mover systems for the prime movers and the yard cranes,
respectively. The last thing that needs to be done is to generate the model.amo file,
which is the executable file for Automodmodels. The random number set is changed
in the model.amo file. With these system files, the Automod model is ready.

With the ALG module as shown in Fig. 14.4, the Automod system files can be
created in a few seconds. Changing some design parameters and creating a new
simulation model becomes far more efficient than the manual process. Current
features of ALG include:

Fig. 14.3 Framework of the
ALG module
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1. The ALG code is divided into sections corresponding to each system file that the
Automod model needs. The developer can locate parts of ALG to make changes
easily if there are any changes to the Automod base model logic or layout.

2. All variables used in the different sections of ALG are located in the start of the
sections. This allows the developer to access the variables they need easily.

3. All the parameters pertaining to port layout or operation logic are coded as
variables, allowing the developer to choose the variables which the user may
want to vary.

We have developed an interface for user to input the design parameter, and it is
illustrated in Fig. 14.4.

14.2.4 Simulation Optimisation

The simulation optimisation framework integrates the MOCBA algorithm and the
GAwhereMOCBA is controlling the assignment of simulation replications for each
design alternative and GA is in charge of generating promising design alternatives.

MOCBA is an algorithm that is used to tackle the multi-objective ranking and
selection problem. It aims at allocating simulation replications to design alterna-
tives so as to minimise type 1 and type 2 errors. Type 1 error is defined as the

Fig. 14.4 Interface for port layout generation
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probability of missing non-dominated designs in the Pareto set while the type 2
error refers to the probability of including dominated designs in the Pareto set [17].
These two errors are also related to the probability of correct selection. The
algorithm of implementing MOCBA is as follows:

1. Running the simulation model for each design alternative with an initial
number of simulation replications.

2. Compute the sample mean and the sample variance based on the simulation
outputs, and then select the designs into the Pareto set based on these values.

3. Compute the type 1 and type 2 errors, if these errors are less than preset
tolerance levels or the computing budget has been exhausted, we will terminate
the algorithm. Otherwise, go to step 4.

4. Allocate additional simulation replications to design alternatives according to
the asymptotic allocation rule of MOCBA (the designs which play the domi-
nating role will be assigned according to the square root rule while the designs
playing the non-dominated role will be assigned according to the noise-
to-signal ratio), go to step 2.

The details of the algorithm as well as the asymptotic MOCBA allocation rules
can be found in [17].

GA is introduced as a computational analogy of adaptive systems. It is mod-
elled loosely on the principles of the evolution i.e., natural selection, in which a
population of individuals undergo selection in the presence of variation-inducing
operators such as mutation and recombination (crossover) operators. A fitness
function is used to evaluate individuals, and the reproductive success varies with
fitness.

GA is chosen as the search engine to find the best design for two main reasons.
The first reason is that GA is commonly used in industries and is proven as an
effective search heuristic. Institutions such as National Aeronautics and Space
Administration (NASA) have employed GA in their research. The second reason is
that GA is able to help the search escape from local optimum.

When we implement the simulation optimisation framework to solve the port
layout design problem, we use a standard type of GA. For chromosome repre-
sentation, we represent each decision variable as a gene. In our case studies, there
are six decisions to be decided, and therefore there are six genes in each chro-
mosome. These six decisions are the number of blocks, the length and the width of
a block, the number of quay cranes, the number of yard cranes and the number of
vehicles. We use arithmetic crossover as the crossover operator. For mutation
operator, we use a generic operator to alter one or more genes in the chromosome
at one time. Tournament selection is used as the selection mechanism.

We have integrated MOCBA with GA algorithm in the following way:

1. In each generation of GA, we will use MOCBA algorithm to determine the
simulation replications allocated for design alternatives in the population.

2. We use the approximated probability of non-dominating as the fitness of
the designs. This probability of non-dominating can be estimated when we run
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the MOCBA algorithm. This is also the fitness value chosen by Lee et al. [10]
when they utilise MOCBA in their research.

3. In each generation of GA, all the non-dominated designs will be put into an
elite set. When the GA terminates, MOCBA algorithm will be run on all the
designs in the elite set again in order to identify the true Pareto designs.

The GA code is developed in-house to facilitate the link between the ALG and
MOCBA modules, and to allow future developers easily modifying the code if
necessary.

The GA module is coded such that users can input the settings required for
GA. Users will be able to define the number of designs in one generation; the
number of designs to be carried over to the next generation; the number of
designs to be designated as parent candidates; the number of parent candidates to
be selected as the mating parents in the tournament selection phase; the mutation
probability; and the number of generations to evaluate before the stopping
criteria are met.

14.2.5 The Overall Procedure of the Framework

The input from the port operators will be directly entered into .csv files, which will
be served as an input file for the different modules in the program. Another set of
input with regard to the port usage, such as vessel arrival and container counts, will
have to be input into text files to use with the Automod simulation models. The
general steps of the framework are presented below:

1. Initialisation: users define settings for GA and MOCBA. Users define port’s
fixed parameters and variable parameters range. Users define the following
files for Automod simulation: vessel inter-arrival time; vessel’s quay crane
requirements and number of containers in a vessel; each container type
(import, export or transhipment), size (20 or 40 ft), their stay in the yard and
destination; containers sizes and inter-arrival times coming from the hinter-
land for export; quay crane and yard crane parameters (loading and dis-
charging times).

2. Generate initial set of port designs based on user inputs.
3. Run the MOCBA module to determine the number of simulation replications to

be allocated to each design. Output the performance index for each design and
place the non-dominated designs into an elite set.

4. Run the GA module to generate a new set of designs based on the performance
index from MOCBA.

5. If termination criterion is not met, repeat from step 3. Else, run MOCBA on the
elite set to delete all the dominated designs from the set.

6. Output the non-dominated designs from the Pareto set.

The details of the framework can be found in the Fig. 14.5.
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14.3 Numerical Experiments

We use some case studies created based on hypothetical example with real port
parameters to demonstrate the application of this framework. We also compare the
performances of different algorithms.

14.3.1 Specifications

A port operator decides to build two container terminals (Ports A and B) given two
lands with fixed dimension. The proposed platform will be used to perform the
simulation optimisation and offer recommendations on the layout and equipments
requirements for these two pieces of lands.

Initial 

Population

Fitness

Evaluation

Simulation 
(ALG) 

Generate New 
Population 

(recombination, 
Mutation)

Select Elite 

Population

MOCBA

Termination 

Condition 

satisfied?

Stop and Return 

Pareto Set 

Yes

No

Fig. 14.5 Flow chart of the multi-objective simulation optimisation framework
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Port A uses a land with a dimension of 3,744 ft by 2,000 ft and Port B uses a
land with a dimension of 6,040 ft by 1,000 ft. For both lands, the longer side faces
the sea. Using the standard berth size of 1,148 ft, Ports A and B can hold 3 and 5
berths, respectively (refer to Fig. 14.6). It is decided that they would use cranes,
which have a width of 88.5 ft. Each quay crane will be placed 130 ft apart. Their
budget allows them to purchase up to a maximum of 15 quay cranes, while they
can afford a maximum of 8 prime movers per quay crane.

Based on the past experiences and forecasts, the vessel type, inter-arrival
timings and the number of containers each vessel carries, loading and discharging
time of the yard and quay cranes are given.

In order to attract more vessels to the container terminal, it is required that the
layout minimises vessel turnaround time. Another additional requirement is to
maximise the quay crane utilisation, which saves cost in the long-run as quay
cranes are the most expensive equipment of the container terminal.

14.3.2 Experiment Results

Figures 14.7 and 14.8 shows the results of Ports A and B, respectively. We could
see that the QC utilisation of both ports is about 70–90%, and the Port A’s
turnaround time is a slightly lower than Port B.

To illustrate the efficiency of the MOCBA module that was suggested in the
proposed platform, we ran the same design parameters using UCBA (uniform
computing budget allocation algorithm, i.e., the computing budget will be allo-
cated equally among all the designs), which is another commonly used algorithm
when the simulation budget is abundant. In order to have a fair comparison,
MOCBA and UCBA are allocated with the same total computing budget.

We compare the results from MOCBA and UCBA. From the results in
Figs. 14.7 and 14.8, we could see that the MOCBA is better than the UCBA.

The non-dominated points of MOCBA and UCBA for Port A and B are
illustrated in Figs. 14.9 and 14.10. Although those result points are close to each
other we still could see the MOCBA is better than UCBA. By combining the
results obtained from MOCBA and UCBA, we analysed the percentages of non-
dominated results from MOCBA and UCBA, respectively. For Port A, the

Fig. 14.6 Land specifications for Port A and Port B (not to scale)
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percentage ratio of non-dominated results (MOCBA: UCBA) is 5:3; for Port B, the
ratio is 5:4. The results validate that MOCBA outperform the UCBA.

Figure 14.11 shows the evolution process of results of MOCBA and UCBA in
different generations for Port A. We use CDE (closest distance to efficient frontier)
as a measure to compare MOCBA and UCBA. Here, CDE is weighted sum of the
closest distances between the results to the Pareto front. The lower CDE value is

Fig. 14.7 Results of Port A

Fig. 14.8 Results of Port B

Fig. 14.9 The non-
dominated results of Port A
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better. For Port A, the CDE of MOCBA and UCBA are 87.22 and 115.79,
respectively, which demonstrates that MOCBA is better than UCBA.

Figure 14.12 shows the evolution process of results of MOCBA and UCBA in
different generations for Port B. We also use CDE (closest distance to efficient
frontier) as a measure to compare MOCBA and UCBA. For Port B, the CDE of
MOCBA and UCBA are 53.69 and 338.95, respectively, which demonstrates that
MOCBA is better than UCBA.

14.4 Conclusions

In this chapter, the port layout design problem is solved using the proposed
simulation optimisation framework. It is built to ease human effort in manual port
design process and utilise the power of optimisation algorithms in selecting the

Fig. 14.10 The non-
dominated results of Port B

Fig. 14.11 The results of
MOCBA and UCBA in
different generations (Port A)
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promising port designs. We use Automod software to illustrate the implementation
of the framework, and the ALG is developed to create Automod simulation models
given the design parameters. This helps to make simulation optimisation possible.
We show in our case studies that the proposed simulation optimisation algorithms
are effective in allocating computing resources and able to find better non-
dominated designs.

The framework is envisioned to be a ‘‘plug and play’’ program where
developers can add in different modules when they want to try new designs,
different operation strategies and other simulation optimisation techniques. On the
other hand, even though Automod is used in this framework, these concepts are
general enough to be applied to other commercial software if they can be effec-
tively communicated with some external programs.
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Chapter 15
Simulation-Based Innovization Using Data
Mining for Production Systems Analysis

Amos H. C. Ng, Catarina Dudas, Johannes Nießen
and Kalyanmoy Deb

Abstract This chapter introduces a novel methodology for the analysis and
optimization of production systems. The methodology is based on the innovization
procedure, originally introduced for unveiling new and innovative design princi-
ples in engineering design problems. Although the innovization method is based
on multi-objective optimization and post-optimality analyses of optimised solu-
tions, it stretches the scope beyond an optimization task and attempts to discover
new design/operational rules/principles relating to decision variables and objec-
tives, so that a deeper understanding of the problem can be obtained. By inte-
grating the concept of innovization with discrete-event simulation and data mining
techniques, a new set of powerful tools can be developed for general systems
analysis, particularly suitable for production systems. The uniqueness of the
integrated approach proposed in this chapter lies on applying data mining to the
data sets generated from simulation-based multi-objective optimization, in order to
automatically or semi-automatically discover and interpret the hidden relationships
and patterns for optimal production systems design/reconfiguration. After
describing the simulation-based innovization using data mining procedure and
its difference from conventional simulation analysis methods, results from an
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industrial case study carried out for the improvement of an assembly line in an
automotive manufacturer will be presented.

15.1 Introduction

A production system can be defined as the arrangement and operation of material,
machines, tools and human resources and information to produce the value-added
physical or service products to satisfy certain customer/market needs [1, 2].
In practice, designing a production system involves a series of complex decisions
over time to satisfy the strategic objectives of the company [3]. The decisions on,
e.g., equipment sizing, layout, level of automation, workload allocations, material
and information flow, for a new production system or for the re-configuration of an
existing production line to cope with new product variants, can pose big challenges
to the designer/manager because of the complex combinations and interactions
among the system entities. Furthermore, to select the optimal parameters of the
system entities so as to achieve the desired overall performance of the production
system is a very complex task that has been proven to be difficult for the decision-
maker in the design process. Take an example from the automotive industry. In
connection to the current adaption to more CO2 efficient powertrains and vehicles,
the automotive industry must change-over to the production of new fuel-saving
products, including other variants and components than in current production. As a
result from this, gaining profitability is not just a matter of simply running current
production in a more efficient way. Automotive manufacturers worldwide are
facing many important decisions in designing or re-configuring production facil-
ities to accommodate this increased number of variants. These decisions are
extremely important since they tend to lock around 80% of cost of the investment
and operation costs. In other words, if the optimal alternatives are not explored and
considered so that non-optimal decisions have been made in the early stages, then
the investment cost will be significantly higher and the operational costs of the
production system will be affected throughout its whole life cycle. The aim of
production systems analysis, particularly in the design, re-configuration and/or
improvement phases, is therefore to provide the advanced methods and tools to aid
the production designers/managers to have a deeper understanding of the problem in
hand, systematically explore and evaluate different alternatives and then generate the
essential information/knowledge to support them to make the right decisions in order
to optimise the performance of the production system as a whole.

Despite the essential role that production systems analysis can play, the com-
mon industrial practice today seems to make important decisions based mainly on
the experience from existing processes and static estimation tool. With the
abundance of data collected and saved in industry today, it is possible to perform
detailed analysis on an existing process. Nevertheless, when it comes to making
important decisions for the design/re-configuration or improvement in the system
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level, then the decision-makers are very often caught into the problem of shifting
the right and accurate information out of the data ocean—the so-called data
haystack syndrome [4]. One of the barriers for more efficient production is that while
there is in principle abundant data about both the productivity at different level of the
factory, these data need to be organised and transferred into knowledge suitable for
decision-making support. As an example, unravelling or discovering relationships
between input parameters and output parameters such as productivity and product
quality requirements in manufacturing is seen as an important task. In general, the
term ‘‘knowledge discovery’’ refers to a higher-level task in which in addition to
solving the current problem, important insights about solving similar problems are
also gained. Thismakes the user aware of the interactions among problemparameters
and their combined effect on the overall performance of the system.

Many books and research papers have been written on the issue of knowledge
discovery, but most literature focuses on the importance of the knowledge dis-
covery task rather than suggesting any pragmatic and realisable procedure of
discovering hidden knowledge in a systematic manner. Recently, Deb [5] proposed
an ‘innovization’ task (the term comes from the task of creating innovative design
principles through optimization) for this purpose and demonstrated its use in many
engineering design and process optimization problems by performing a manual
knowledge retrieval procedure. By integrating the concept of innovization with
discrete-event simulation (DES), we believe that a new set of powerful tools can
be developed for general systems analysis, particularly suitable for production
systems analysis in order to support optimal decision-making in design and
improvement activities. This method is so-called simulation-based innovization
(SBI). The proposed SBI method can be divided into three main tasks:

1. Gathering high-performing solutions through multi-objective optimizations
(MOO) via simulations: by considering at least two conflicting objectives of
design, an evolutionary multi-objective optimization (EMO) procedure creates
multiple trade-off optimal (or high-performing) solutions to a problem [6]. This
procedure will generate a set of variable-objective data set in which each
solution is an optimal or near-optimal solution and there exists a clear trade-off
among objectives from one solution to the other. The user is thus able to take an
informed decision, i.e., selecting a solution that is best for the situation at hand.
For production systems design in the conceptual phase, this step can be fully
supported by using FACTS analyzer, an internet-enabled DES tool with built-in
EMO capability [7].

2. Retrieving hidden knowledge: it is argued that since the obtained solutions are
all optimal (or close to being Pareto-optimal solutions), they are bound to
follow and exhibit certain relationships among variables vis-à-vis objectives.
For example, in one type of problem, it may be observed that all trade-off
optimal solutions require a particular design/operation variable to take a fixed
or almost fixed value whereas other variables must be changed linearly or
exponentially with an expected change in an objective value. Insight in such
intricate relationships provides useful knowledge about ‘how to solve the
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problem optimally’, and moreover, it results in a better expertise in solving the
problem (or related problems) in the future with different data or parameters.

3. Developing a knowledge-base for future use: once such knowledge as men-
tioned above has been obtained, it has to be documented/stored so that
meaningful generic and specific implications of this knowledge can be under-
stood and disseminated within various divisions/levels of the organization in
order to achieve a better/improved design/operation of the production system.

The solution of using innovization for knowledge extraction, in forms of rules,
will be an important scientific achievement and would be a unique attempt to find
such relationships in an automated manner. This should have a long-term impact to
the scientific community and industrial practice. The developed rule bases will be
investigated for their validity from the theory of optimization. Thereafter, the rule
bases will be verified using either the real system or its simulation model for their
contextual validity and usefulness. If needed, more solutions can be created until a
set of rules which describe the relationships among variables and objectives of
trade-off optimal solutions is obtained. In other words, SBI is an iterative process
that may require frequent interactions with the decision-maker. The knowledge
generated from SBI will be most valuable for better modelling and understanding
the good design/operational principles for the production system under study.
Schematically, the proposed approach and the conventional approach in using
simulation for optimization can be distinguished by comparing the system analysis
and design technique (SADT) diagrams in Fig. 15.1. It is important to emphasise
that while the concept of SBI is a research challenge, it is targeted to be an
automated or semi-automated procedure. In other words, we are aiming at
developing a SBI-based decision- support system in which users have no need to
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possess any specific expertise to use it when compared to running experiments and
performing statistical analysis using design of experiments. With this in mind,
state-of-the-art data mining (DM) techniques like clustering [8] and decision trees
[9], which can be used to automatically or semi-automatically discover and
decipher hidden properties, relationships or patterns of the optimal solutions are
hence very suitable for the purpose of SBI. On one side, DM techniques, partic-
ularly decision trees, can offer many benefits, like generating easy-to-follow and
self-explanatory ‘rules’ [10], not merely in the knowledge/pattern extraction as
required in the second step of SBI, but also for step 3—developing a knowledge-
base. On the other side, MOO facilitates the generation of a set of wide-spread and
diversified optimal solutions as the training data set required for a reliable DM
process, which in contrast cannot be obtained with a singleton of optimal solution
in a single objective optimization scenario [8].

The aim of this chapter is to introduce such a SBI using DM, or SBI-DM,
procedure for production systems analysis. The rest of the chapter is organised as
follows: we begin with a literature review of DM for knowledge discovery so that
the terminology and concepts of general DM techniques related to SBI-DM are
defined and briefly explained (Sect. 15.2). Description of the SBI-DM procedure is
provided in Sect. 15.3. A case study and results from applying SBI-DM to an
assembly line at an automotive manufacturer are presented in Sect. 15.4. Con-
clusions and our current plan in applying SBI-DM for more complex production
scenarios/case studies can be found in Sect. 15.5.

15.2 Data Mining for Knowledge Discovery: A Literature
Review

A widely accepted definition of DM is ‘the nontrivial process of identifying valid,
novel, potentially useful and ultimately understandable patterns in data’, given by
Fayyad et al. [11]. Pattern in this case can be any relationship between data sets,
data fields and values or regularity in the data. DM is usually associated with the
term knowledge discovery in databases (KDD) because relevant data sets are
mainly found and searched in different databases [12] and to identify the important
patterns in the data stored in databases is still the key application of DM
techniques.

The term KDD was introduced in the early 1990s [13]. Just a short period of
time later the idea to see the discovering as a guided process for extracting useful
knowledge from huge data sets was developed. To some authors, like Fayyad et al.
[11], the KDD process enlarges the DM process with some pre- and post-pro-
cessing tasks which are necessary to be more problem-specific. This is important
to prevent negative impacts on the validity of the analysis results. To acknowledge
a data analysis task as an overall process has quickly become a wide-spread
standard so that the KDD process model is nowadays applied in different
domains like crime prevention and clear up, forensic and judicial environment and
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especially in the business world where KDD helps with credit scoring or the
realization of direct marketing [14].

The quality of the discovered knowledge in many cases is influenced by the
effectiveness of the DM technique used in the pattern detection step and the size as
well as the quality of the data being investigated. ‘If users select the wrong data,
choose inappropriate attributes, or transform the selected data inappropriately, the
results will likely suffer’ [15]. Because of this, knowledge discovery has to be
understood as a process where each single step is paramount. As illustrated in
Fig. 15.2, an ordinary KDD process consists of four consecutive steps: data
selection, preprocessing and transformation, pattern detection as well as inter-
pretation and evaluation.

Although the first step is data selection and the last step is interpretation and
evaluation, the KDD process cannot be seen as a linear process. In the pre-pro-
cessing step it might come out that there is some missing data which require some
modification in the selection step. This applies for the pattern detection and
interpretation/evaluation steps as well. When it comes out during the interpretation
that the found patterns are not applicable or useless, some changes of the input
parameters of the used DM method might enhance the situation. In the worst case,
the entire process must be restarted from the beginning. Feedback loops are
essential for the whole analysis process [15]. Each step of the KDD process will be
described with more details in the following sections.

15.2.1 Data Selection

In general, data selection in a KDD process is defined as the extraction of a subset
from all accessible data which is related to the underlying problem area. This
implies that there is an elimination process for some data in the data set which are
considered to be not sufficiently important to the data analysis process [16].

It is sometimes overlooked that the process idea of KDD is also valuable for
artificial data sets generated from simulation data. Those data sets usually do not
have their origin in the real-world but have an experimental character. The the-
oretical accessible data in this case might be the complete permutation of all input
variables which can be evaluated to gather some output. To evaluate all different
permutations might not be possible due to computational limitations. Therefore,
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the focus has to be set on a smaller subset which has predefined characteristics
(e.g., being a Pareto-optimal solution). In other words, the data selection process
can also be seen as a search (optimization) process.

15.2.2 Pre-Processing and Transformation

The task to be done in the pre-processing and transformation step can be very
different and depends on the characteristics of the underlying data set selected.
Because of this, there are several different terms connected to this step in the
literature:

• Data cleaning sets up priorities on incorrect data and is necessary whenever
there are mistakes in the data acquisition process [16]. Incorrect data sets make
representation through missing values which have to be filled as the case may be
ignored or noisy data which have to be corrected.

• Data integration is relevant if data sets from different sources are used/fused.
Different sources (databases, websites, flat files, etc.) often stand for incompatible
data models and formats as well as for incomprehensible naming convention [15].
Data integration prevents the pattern detection step from using redundant data sets
and increases the quality of the data set by supplementing missing attributes,
removing duplicate instances and resolving data inconsistencies [17].

• Data reduction is needed to downsize the data sets. This should be done for two
reasons: (1) there might be a computational bottleneck due to data volumes of
several giga- or terabytes; (2) the pattern detection algorithm might find more
interesting pattern if it workswith reduced data sets using downsize procedures [18].

Regardless of which DM operation is applied, the purpose of the pre-processing
and transformation step is to prepare the data for the subsequent mining process. It
is important because appropriate data sets can improve the quality of the mining
results and can also decrease the time required for running the DM algorithm [12].

15.2.3 Pattern Detection/Data Mining

Pattern detection is the step where the prepared data is analysed by the application
of specific algorithms for extracting patterns from data [11]. Since the techniques
to find pattern are originated from DM, both terms (pattern detection and DM) are
used synonymously. In the present paper it is assumed that DM is a step in the
overall KDD process which is surrounded with some previous and subsequent
steps. Besides the term DM, there appear some other expressions less frequently
used in the literature, e.g., knowledge mining, knowledge extraction, data analysis,
pattern analysis, data archaeology and data dredging [12]. While the emphasis can
be slightly different, but in general it is assumed that all these terms can be covered
by the term DM.
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There are many different interpretations of data mining in general. The question
whether an operation is a DM method or not can be simplified by the analysis of
the goals. Basically there are two different goals to be reached by analysis—
pattern detection and hypotheses verification:

• Verification-driven data mining refers to the goal hypotheses verification.
Usually it extracts information in the process in order to validate a hypothesis
postulated by a user. Predominant techniques in this field are multi-dimensional
analysis.

• Discovery-driven data mining refers to the goal pattern detection. It automati-
cally extracts knowledge from data sets when there is not much known about it.
Patterns are derived or functions are learned, which are valid for the underlying
data set [17].

Other authors like Neckel and Knobloch [19] assign only methods for pattern
detection to DM. This chapter takes this view because the discovery of new
knowledge is in the foreground. To verify a hypotheses means there is already an
understanding about the investigated field and there already exist some
assumptions.

Different DM algorithms have different characteristics for handling the ana-
lysed data. A wide-spread differentiation is to classify in supervised learning and
unsupervised learning:

• Supervised Learning—a supervised learning method differs between input attri-
butes and target attributes (also dependent and independent attributes, see [20]).
Methods which follow the supervised learning paradigm attempt to discover the
relationship between these attribute types. The structure of the discovered rela-
tionship is covered in a model which can be used for further operations [10].
During the learning phase different samples of a training set are given as an input.
A pattern in the training set on which the transformation from input variables to
also target variables is based on is occupied with costs. These costs usually are a
figure that represents how well a pattern is able to transform input variables to
target variables correctly. The goal is to find a model which minimises the sum of
costs for all training samples [21]. Because of the evaluation part where bad
solutions are punished with high costs it can be spoken about a supervisor or
teacher which leads to the name supervised learning. Since supervised learning
improves the ability of the trained method to transform input variables to target
variables correctly, it is commonly used for prediction methods [20]. For good
predictions there must be enough training cases, otherwise there is a risk that some
pattern will not be found. On the other hand, some prediction methods might be
unstable which mean that more training cases lead to weaker results [18].

• Unsupervised learning—in contrast to supervised learning where the relation-
ship between input variables and a target variable is important, unsupervised
learning refers to ‘modelling the distribution of instances in a typical, high-
dimensional input space’ [20]. There is no dependent attribute like the target
variable in supervised learning methods and there is also no explicit teacher [21]
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which means that it is free from user influences. Unsupervised learning methods
detect similarities and differences in a data set and is also able to group similar
subsets into clusters or segments [22]. Clustering and dependency analysis are
usually done by an unsupervised learning method.

15.2.4 Interpretation and Evaluation

The final step is the interpretation and evaluation of the found patterns. Since there
can be too many different solutions or patterns found which might not represent
certain knowledge due to uncertainties, incomplete data or faulty data capturing, it
is important to have an instrument to separate a good solution from a bad solution
[23]. All calculations which are done for this can be framed by the term inter-
estingness measures [12].

The goal of interestingness measures is the identification of the interesting
patterns which represent interesting knowledge. There exists a vast amount of
interestingness measures due to different perspective on interestingness. Liu and
Özsu [17] state that those patterns are interesting which deliver useful knowledge
for a given application and have a certain degree of validity. Usefulness and
validity are also important for Han and Kamber [12] and they demand novelty and
easily understandable solutions. Bissantz and Hagedorn [23] remind especially that
the definition of DM demands novelty and non-triviality; found patterns are trivial
and therefore not interesting if:

• They are tautological (e.g., all pregnant patients were female).
• Multiple rules describe the same context.
• The found statement refers only to a single element of the whole data set.
• An expert has known this statement before.
• A simple data operation like multi-dimensional query could produce the same
result.

The absence of a wide-spread agreement on a formal definition, interestingness
is defined as a broad concept in [24]. On top level they differ between three
measurement groups: objective measures, subjective measures and semantics-
based measures:

• Objective measures are the most common measurement group where neither
knowledge about the user nor knowledge about the application is needed. The
measures are only based on the raw data so this is why they are designated as
objective. The used measures often have their origin in theories from probability
and statistics [24]. Terms and measures which fit to this group are accuracy,
conciseness, generality, reliability, peculiarity and diversity.

• In contrast to objective measures, subjective measures consider explicit
knowledge or expectation of the user or offer an interacting process with the
user [24]. This causes alternative result patterns for different users with different
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characteristics and therefore can be designated as subjective because they reflect
the needs and interests of a particular user [12]. A difficulty in this measurement
group is the representation of user knowledge which is required. Terms and
measures which fit to this group are novelty and surprise.

• For semantics-based measures, domain knowledge of the investigated area is
needed. Since this knowledge can be gained from an expert user it can also be
seen as a special case of subjective measures. The difference is that domain
knowledge in this case is not about the data itself like in subjective measures,
but represents a kind of utility function where user goals are reflected [24]. DM
results should be patterns that optimise this utility function. The functions of the
different measurement groups are not equal. Good values for objective measures
are an imperative condition because an adequate objective measure which shows
that a found pattern is not interesting from an objective perspective cannot
become interesting from a certain perspective of an individual user. Subjective
measures (also semantics-based measures) can be seen as a sufficient condition.
Figures of those measures are alone not able to show whether a pattern is
interesting or not but without them it is not possible to say if a pattern is
interesting for a certain application area.

The relationship of subjective and objective measures for supporting the dis-
covery of interesting patterns is summarised in Fig. 15.3 [25]. For all measuring
methods count they are associated with a threshold [12]. This threshold is con-
trolled by the user and finally is decisive for labelling a pattern as interesting or not
interesting. For example, found rules that do not reach a confidence threshold of
70% might be designated as not interesting by the user. A rule which does not
reach this threshold is more likely to reflect exceptions or noise and give no helpful
information.

All interestingness measures usually appear in the last step of the KDD
process model. They make it possible to rank different solutions—which mean
that some kind of comparison of two solutions is also possible—and it is pos-
sible to filter interesting solutions from not interesting solutions. Besides those
helpful actions sometimes, interestingness measures are used during the mining
step to avoid the waste of computational capabilities for the discovery of
uninteresting patterns.

Fig. 15.3 Relationship of
subjective and objective
measures
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15.3 A Data Mining Procedure for SBI

The research methodology proposed in this chapter is driven by the assumption
that Pareto or near Pareto-optimal solutions generated by using SMO have some
common properties, which make them outstanding than other solutions. Therefore,
the overall goal can more precisely be stated as the extraction and translation of
those common attributes to useful pattern which can be presented in form of
knowledge. The necessary steps to reach this goal do not deviate significantly to a
standardised process model of an ordinary KDD process. Therefore, based on the
general DM procedure reviewed in the previous section, we introduce a novel DM
procedure for SBI to extract knowledge from a simulation model. This procedure
is referred to as SBI-DM and is illustrated in Fig. 15.4. As mentioned, the major
deviation, when comparing SBI-DM with a KDD process, lies on the data used for
the pattern detection which is not from a data source with historical data, but from
experimental data generated from SMO. On the other hand, as it will be seen in
Sect. 15.3.2, mapping the extracted rules with the colour-coded visualization of the
Pareto-optimal solutions in the objective space is another uniqueness associated
with SBI-DM.

15.3.1 Data Selection and Pre-Processing Using SMO

The first step in any DM studies involves data gathering to form a data set. In the
proposed SBI-DM procedure, the data set is generated from a SMO process where
both input and output data are collected. Since DM techniques are used to discover
pattern in the data, it is advantageous to have a good diversity of solutions from the
Pareto front. Apart from using an efficient algorithm like NSGA-II [26], it is
important to note that uncertainty handling is a critical issue if stochastic simu-
lation is used to generate the data set. Uncertainty due to the randomness of
stochastic simulation output can be regarded as the noise for EMO algorithms. In
production simulation, this kind of noise may be posed by disturbances (machine
breakdowns) in the operations or due to their natural variations. Solutions that are
statistically superior (or inferior) might be discarded (selected) and wrongly
ordered if the selection operation and non-dominating sorting (NDS) procedure in
an EMO algorithm, like NSGA-II, do not take into account the deviations of the
output data. Because of this, a novel definition of dominance, called confidence-
based significant dominance (CSD), has been used in the MA-NSGA-II imple-
mentation in FACTS Analyzer (for more details of CSD, see [27]). Additionally,
for the data set to contain a representative set of solutions, Latin hypercube design
(LHD) [28] is more suitable than a random data selection. LHD algorithms fol-
lowing two characteristics which are important to provide a good set of initial
solutions to both the optimization search as well as DM process: (1) the correlation
between input factors can be minimised; (2) theoretically, the selected samples are
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spread out across the whole input space. In the proposed SBI-DM procedure, all
decision variables which shape the dimensions of the input space are used as the
input for the LHD. The solution set generated by LHD can then be selected by
the user as the initial solutions for MA-NSGA-II. After the optimization process,
the two sets of data are combined into an integrated data set, sorted with CSD-
based NDS again so that classification can be performed in a later step using DM.

Unlike an ordinary DM process in which data cleaning, integration and
reduction are most important, the main purpose of the data pre-processing phase is
to handle any imbalance of the data set. Actually, imbalanced data sets occur
frequently both for prediction and description in any classification tasks. A data set
is called imbalanced when the analysis task deals with a classification problem in
which the allocation of the samples to the classes is imbalanced. Most samples of
the data sets refer to one class which is also called the majority class and a small
subset of the samples refers to the other classes which are called minority classes.
Usually the minority class is the more important one. Unfortunately, many algo-
rithms used for generating classification models are driven by accuracy which
means that they try to minimise an overall error. The problem is that the minority
class contributes only a little bit to this error. High-accuracy values are also
possible when all samples of the minority class are misclassified. This implies
some specific pre-processing has to be done to deal with the imbalance of Pareto-
optimal and non-Pareto solutions. In SBI-DM, imbalanced data sets are likely to
occur because the amount of Pareto-optimal solutions is very often smaller than
the amount of non-Pareto solutions.

It is possible to reduce the samples of the majority class, or so-called under-
sampling, or to increase the amount of samples in the minority class using over-
sampling. While there are advanced algorithms for performing under-sampling,
the simplest approach is random under-sampling in which an element of the
majority class is randomly chosen and deleted until the majority class has reduced
to the desired size. Similarly, in a random over-sampling approach, elements of the
minority class are randomly selected chosen and duplicated with the same prob-
ability until a desired ratio between the Pareto-optimal and non-Pareto solutions is
reached. In contrast to random over-sampling is the generation of new samples to
enlarge the minority set. Generally speaking, the problem of the under-sampling
approach is that some important information will be lost with the deleted solutions,
especially if the random under-sampling approach is used which can lead to an
uncontrolled waste of information [29]. As the LHD algorithm is used in SBI-DM
to represent properly the whole input space, deleting some of these solutions
would lead to a worse representation of the solution space. Therefore, an over-
sampling seems to be more suitable. In contrast to random over-sampling, there are
some generative over-sampling approaches that re-model the natural distribution
of the minority class in order to generate new samples based on this distribution
model [29]. Another popular method is the synthetic minority over-sampling
technique (SMOTE) developed by Chawla et al. [30] which uses interpolation to
create new samples. There are two major problems of creating new solutions using
methods like SMOTE or generative over-sampling: (1) all the solutions generated
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need to be evaluated with the simulation model; (2) more importantly, against the
intention of the re-sampling, the generated samples do not lead to any new Pareto-
optimal points in most cases. These mean creating new Pareto-optimal solutions
will be both difficult and computationally expensive for any over-sampling algo-
rithms. Therefore, random over-sampling is more suitable for the SBI-DM to
artificially increase the set of Pareto-optimal solutions.

15.3.2 DM for SBI Using Decision Trees

The mining process involves choosing appropriate method(s) to be used for
searching patterns in data depending on the problem at hand. For the modelling
process the input data is used in order to estimate the outcome of a given output
value, i.e., to build a predictive model that can predict an unseen observation and
be able to tell its outcome value. The outcome value can either be nominal (e.g.,
positive/negative) or numerical (e.g., time lengths) and the first case of modelling
is referred to as classification. Hence one wants to find the correct class among a
limited number, and for numerical outcomes the modelling is called regression.
Although the methods used for the modelling can be identical, it is important to
distinguish a predictive model from a descriptive model in terms of the application
purpose. One of the most important features of a predictive model is to be as
accurate as possible when evaluated on independent data and there are several
different measurements. Two measurements for classification models are accuracy,
i.e., the amount of correctly classified, and the area under the ROC curve (AUC),
the probability that a test example belonging to a class is ranked as being more
likely belonging to the class than a test example not belonging to the class. For
regression models, mean squared error measurement, i.e., the sum of all errors
between the correct value and its corresponding estimated value is typically used.
In addition to making correct predictions, to have a comprehensive or descriptive
model is needed in most applications. For descriptive models, the reason behind a
specific prediction can be identified and the decision-maker can also gain infor-
mation about the importance of input variables and in the final analysis this can be
visualised in a lucid way. Apparently, descriptive models are of great interest in
the SBI-DM procedure because rule sets are required for the explanation of how to
solve the problem optimally and as a final step these rules will also be visualised.

Decision trees are particularly appealing descriptive models due to their ability
to provide comprehensible models and at the same time have high-predictive
performance. The main principle when generating decision trees is a special case
of a recursive partitioning algorithm, which the algorithm searches among the
input variables in order to find, in some sense, the best one to split the data set.
After each split there is a new subset of observations waiting to be assigned as a
final leaf or if the process of finding the best split should be repeated on this subset,
hence the term recursive partitioning. The final tree is a graph-like tree where the
root contains the initial set of observations and all other nodes and leaves are
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linked from this first node by edges labelled with the chosen variable and its
corresponding splitting value. Each leaf contains a path description on the how to
go there, i.e., a set of rules, and the predicted value for this specific leaf. For
classification problems, this is a percentage of how likely it is to belong to each
class and for regression problems this is a predicted mean value. In the proposed
SBI-DM procedure, the aim of the DM is to distinguish the properties of decision
variables on Pareto-optimal solutions from non-Pareto solution. Hence, unlike
ordinary regression analysis for a single variable, a multi-variable analysis prob-
lem can be converted to a simple classification problem. The novelty of this
method is that the study of multiple dependent variables can be converted into a
simple output classification problem so that existing DM can be directly used.

The predictive performance can be improved by combining a large number of
decision trees into so-called ensembles, which are used to form a joint vote on the
classification or regression value for the output value [31]. Although the predictive
performance is considerably improved, the lack of interpretation of the classifi-
cations is instead eliminated and hence also the descriptive capability. The path
description, or rule sets, which will lead to a specific value is missing for
ensembles. Nevertheless, advanced data mining tools like Rule Discovery Sys-
temTM (RDS) [32], which is also used in this study, provides some guidance on
how the classifications are done by offering the insight to the importance of each
input variable. Consequently, the results from ensembles and single decision trees
can be combined, where the former indicates the most important variables and the
latter is used for generating rule sets. RDS uses a measure called importance score

to quantify how influencing the input/decision variables to the classification/
regression problem. This value stands for the impact of a variable on the reduction
of the classification error in a decision tree. After the growing phase of the decision
tree the squared error for each node and leaf can be calculated. These values are
the basis for calculating the contribution of the variables for the overall squared
error reduction. The overall squared error reduction is defined as the difference of
the original squared error and the total resulting squared error which is left after
building the complete decision tree. The contribution of one variable for the
overall error reduction can be calculated as the sum of all differences between the
squared errors of the parent nodes and the sum of the squared errors for its
children. This contribution of the overall error reduction is afterwards transformed
into the importance score by dividing it by the overall error reduction to get a
normalised figure. Using the important scores, after the first run of data mining,
unimportant variables may also be removed in order to get a crisper model with
shorter rules and consequently less noise, as illustrated in Fig. 15.4.

The final step in the DM process is about how to present the results of the prior
processes in a suitable way. Although the decision trees are comprehensive the
results may need some refinement and adjustment in order to be interpretable for a
decision-maker. This can be done by different visualization techniques, such as
plotting the most important input variables versus the output variables in form of
Parallel Coordinates. The SBI-DM procedure proposes a method to map the rules
that are most interesting to the decision-makers to their associated points on the
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objective space using different colours, so-called colour-coded rule visualization.
To understand how this works, it is important to understand how we define and
select ‘interesting’ rules in SBI-DM.

A classification rule is constructed by two parts, an antecedent set of conditions
and the consequent class (c1,…,cj). Each element in the antecedent set of con-
ditions (A) consists of a variable (x1,…,xn) and its corresponding value (v1,…,vn)
which is linked by an operator (op1,…,opn):

Rule rk : If x1 op1 v1ð ÞAND. . .AND xi opi við ÞTHEN class ¼ ci

One needs a way to determine the objective interestingness of these rules and
the evaluation measures used are support and confidence which originate from the
field of association rule mining [33, 34]. The support count (denoted as Sup-

C(A =[ cj)) is defined as the number of patterns that fulfill both the antecedent set
of conditions and the consequent class, and is used in the calculation of both
support and confidence. Support is the ratio of the support count and the total
number of observations (N) [34]:

supportðA) cjÞ ¼
SupCðA) cjÞ

N
ð15:1Þ

Confidence is the ratio of the support count and the number of observations
where the antecedent set of conditions (A) is true [34]:

confidenceðA) cjÞ ¼
SupCðA) cjÞ

SupCðAÞ ð15:2Þ

Support can be seen as an indicator of how frequent a rule is within the data set
and as a consequence how significant that specific rule is. For a rule to be inter-
esting its support has to be convincingly high since the decision support should
disregard infrequent rules. The confidence should also be rather high since it
reveals the strength of the rule among all observations in the data set. In SBI-DM,
the user should set the decisive threshold to an appropriate value for the confidence
level which means that rules with less confidence should be ignored. On the other
hand, if a rule has confidence close to 1 but with very low support would most
likely be labelled as an uninteresting rule due to the infrequency of the rule in the
data set.

15.4 An Industrial Case Study

An industrial case study has been conducted for an engines assembly line in an
automotive manufacturer. The aim of this case study was to investigate how the
SBI-DM procedure can be applied to improve the performance of the assembly
line through locating the critical area to improve, as well as identifying the
key influencing parameters and their optimal values. Specifically, the SBI-DM
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procedure has been applied for finding useful knowledge for the three inherently
conflicting objectives of the production line, i.e., maximising production rate
(throughput or TP), minimising average cycle time1 (CT) and minimising average
work-in-process (WIP).

As mentioned, the efficient SMO algorithm, namely MA-NSGA-II, has been
used to find a number of trade-off high-performing solutions to this industrial
problem. Thereafter, DM has been used to find rules related to variables and
objectives, which are inherent to the obtained Pareto-optimal solutions. This
involves using RDS to cluster the data set and then generate a decision tree-based
predictive DM model using the SMO explored solutions as the data sets.

15.4.1 The Assembly Line and its Simulation Model

A DES model has been built for the assembly line using FACTS Analyzer, or
simply FACTS. The model is an ‘abstracted’ model in the sense that some detailed
operational logic and material handling between the workstations are not modelled
and simulated. With the current configuration of the real line, a simulation (10
replications) has been run with a 6-day simulation horizon and 1 day warm-up
period. Simulation output of the FACTS model gives: TP0 = 67.5 parts/h,
CT0 = 6458.2 s and WIP0 = 189.48. Simple validation has shown the standard
error to be within ±3% in TP and ±5% in CT (due to disturbances, collected TP
and CT figures of the real line are subjected to variances).

Today, there are 110 pallets being circulated in the real line. The number of
pallets (denoted as Np hereafter) has limited the maximum level of WIP that can be
stayed in the main line. In other words, the main line is practically operated as a
CONWIP (CONstant WIP) line, introduced in Spearman et al. [37]. With an
intention to increase the throughput of the whole line, the production engineers
working in the company have considered to increase Np. By intuition, increasing
Np will directly increase TP. But how will this decision affect the other key
performance measures of the production line, namely, CT and WIP? Little’s Law
[35], written in the form TP = WIP/CT, has suggested that the same throughput
can be achieved with a large WIP and long CT or with a low WIP and short CT
[36]. It is therefore an important question to investigate what factors can make the
system to reach a high level of TP, accompanied with a low WIP and short CT.
The answer to this question will have a significant impact on the operational
decisions if the production line at the company has to be improved. In the context
of SMO, this implies the need of finding the multiple best or ‘‘optimal’’ tradeoffs

1 Cycle time, which is also called variously as manufacturing lead time, throughput time or
sojourn time, is used in this paper to refer to the time from a job is released at the beginning of the
line/system until it reaches its end (i.e., the time a part spends as WIP). This terminology follows
the definition found in standard textbooks for manufacturing systems analysis, e.g., [36].

15 Simulation-Based Innovization Using Data Mining 417



between the maximization of TP and the minimization of both average CT and
total WIP (main parts plus sub-assemblies in this study).

While there are small buffers, in form of small storages or conveyors, between all
workstations, there are 11 bigger storage areas between several workstations. The
sizes of the big buffers, along with Np, represent the major decision variables of
the entire assembly line. Therefore, there are totally 12 input variables used in the
simulation-based optimizations under this study. It is very interesting to seek,
through adjusting the 12 decision variables through SMO, the existence of any other
configuration(s) which could improve the TP of line, without producing significant
impact to CT andWIP. In terms of optimization, this is only a simple optimal buffer
allocation problem. Nevertheless, the insights that have been gained in this study are
very useful to the line improvement. For example, surprisingly, the results from
applying SBI-DM to the FACTSmodel have revealed that increasingNpwill not only
deteriorate CT and WIP of the line as suspected, but also not improving TP. These
will be explained in the following sub-sections with the details of the SBI-DM steps.

15.4.2 Results from SMO

All SMO results presented in this paper are generated by using the integrated EMO
algorithm in FACTS Analyzer with the optimization ran on the OPTIMISE plat-
form [38]. Specifically, the algorithm used for all the SMO runs is MA-NSGA-II,
as a variant of NSGA-II, which uses artificial neural networks to filter out can-
didate solutions which are likely to be inferior in the EMO process and CSD to
handle simulation output noise. SMO runs have been carried out with three
optimization objectives (maximise TP, minimise CT and minimise WIP) that
subject to the constraints of the 12 decision variables, e.g., Np [ [100, 135].
Figures 15.5 and 15.6 show the scatter plot of the explored solutions in the CT-TP
space and WIP-CT space, respectively. The current system performance is also
plotted for the ease of comparison. By using an ordinary NDS, Pareto-optimal
solutions from SMO with both the 3 objectives and 2 objectives (maximising TP
and minimising CT) ,are highlighted as yellow and green squares in Fig. 15.5. We
put focus on the Pareto front explored in the 3-objective SMO run and call it PF.
On the other hand, the red dots in Figs. 15.5 and 15.6 are Pareto-optimal solutions
generated with the CSD-based NDS, which was mentioned earlier in this paper.

The large number of CSD-based Pareto-optimal solutions generated from the
SMO (see Fig. 15.5) has indicated that there exist many configurations which can
produce the same level of system performance. In the following, a Pareto front
generated with the CSD technique will be represented as PFs.

Are the PFs solutions significantly better than the current system configuration?
Statistical confidence interval tests [39] with 99 and 97.5% confidence have been
conducted to verify the difference between the current system performance and the
outputs of the solution which produces the best TP in PF (the topmost green square
in Fig. 15.5). Test results are listed in Tables 15.1 and 15.2 with TP, CT and WIP
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of the current system performance denoted as TP0, CT0 and WIP0 in contrast with
the optimal values TP0, CT0 and WIP0, respectively.

While significant reduction in CT and WIP can be verified by the negative
ranges detected in the difference tests, the hypothesis that (TP0 - TP0)[ 0
(i.e., TP0 is higher than TP0) has to be rejected if the confidence level selected is
99% (99.33% is required if the confidence level for each objective has to be 95%,
according to the Bonferroni inequality [39]). This implies that significant
improvement on the current system performance can be made, in terms of CT and
WIP, but not TP, by adjusting the decision variables.

Fig. 15.5 SMO explored
solutions in the CT-TP space

Fig. 15.6 SMO explored
solutions in the CT-WIP
space
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While the SMO results have illuminated that there exist many possible con-
figuration settings which may outperform the current system with respect to CT
and WIP. The basic question on what factors are contributing the ‘optimal’ per-
formance cannot be answered by simply examining the objective space visually
(e.g., looking at the CT-TP plot). In order to identify the key influencing decision
variables and their optimal values as well as exploring their underlying relation-
ships, DM methods have been applied to extract knowledge from the SMO data
sets, as suggested by the SBI-DM procedure.

15.4.3 Results from the SBI-DM

The SBI-SM procedure has been applied to identify if there are any key factors and
their relationships on contributing the solutions to lie on the Pareto front. In this
case, the output data is classified into only two groups: solutions lying on the PFs
(PFs = TRUE) and those that are not (PFs = FALSE). The results obtained in this
analysis are of surprisingly high accuracy and usefulness—the two most important
quality measures in any data mining procedures.

Figure 15.7 is the importance score chart of the PF classification, showing the
key contributing factors for PFs solutions, in the order of importance: Np, capacity
of BCH (the buffer for cylinder head), BCS (the buffer for camshaft) and B20 (the
buffer for OP20). There are five rules generated in the decision tree, with accuracy

Table 15.1 Difference test with 99% confidence

TP0- TP0 CT0- CT0 WIP0- WIP0

[-0.0135, 1.3385] [-1429.6, -1312.9] [-69.74, -57.18]

Table 15.2 Difference test with 97.5% confidence

TP0- TP0 CT0- CT0 WIP0- WIP0

[0.0887, 1.2363] [-1420.4, -1321.0] [-68.72, -58.2]

Fig. 15.7 Importance scores of the PF classification analysis
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99.083% and total AUC = 0.995, indicating very high-prediction accuracy.
Following are the two most important rules extracted from DM:

Rule 1: IF Np[100 THEN PFs = FALSE

Rule 2: IF Np = 100 AND B20[8 AND BCS B 11 ANDBCH B 22 THEN

PFs = TRUE

Rule 1 can be verified by simply plotting Np against CT and TP using the
solutions explored in the SMO, as shown in Figs. 15.8 and 15.9, respectively.
While a linear correlation between Np and CT may be conjectured, there appear to

Fig. 15.8 Linear correlation
between Np and CT; all PFs
solutions lie on Np = 100

Fig. 15.9 Plotting Np again
set TP; all PFs solutions at
Np = 100
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be no direct relationships between Np and TP. The most interesting insight that can
be gained from these two data plots is that all PFs solutions have one common
attribute: Np = 100, which is consistent with the rules extracted from data mining.

15.4.4 SBI-DM Results from Expanded Pallet Range

The first set of SBI-DM results has made a clear indication that the number of
pallets can be reduced because (1) all Pareto solutions lie on Np = 100, the lower
limit during the SMO experiment; (2) no direct relationship between Np and TP
simply indicate the range of Np that determine the TP is much lower than the tested
range [100, 135].

Contrary to the original intention of the production engineers to verify the effect
of increasing Np, a new SBI-SM run was carried out with Np [ [30, 135] to test the
effect of significantly reducing Np. The SBI-DM results presented in form of
colour-coded 3-D plot, is shown in Fig. 15.10. Note, there are only three rules
generated from RDS that have confidence over 0.7 (see Table 15.3), the threshold
we set for this analysis required by the SBI-DM procedure. Several important
observations can be made with the 3-D data plot and the rules extracted:

• CT correlates linearly with Np, as indicated by the shadow on the CT-Np plane.
• While TP increases proportionally with Np in the range [30, 90], TP stops to
increase when Np[ 90. The maximum TP that can be attained by the system is

Fig. 15.10 3-D scatter plot for observing the correlation between Np, TP and CT

422 A. H. C. Ng et al.



68 parts/h, with the optimal buffer setting at Np = 80. Further increasing Np will
not improve TP as intended but only elevate CT and WIP.

• Apart from the effect of Np, Pareto-optimal solutions, particularly those in the
high TP region, illustrated by the green data points, have the common properties
of limited buffer level in BCS (B15) and BCH (B21).

To further investigate the key influencing factors for TP and WIP, two DM
predictive models have been built using the same data set from the SMO of
expanded pallet range. Figures 15.11 and 15.12 shows the decision trees and
importance scores generated for TP and WIP analysis, respectively. While the
decision tree and importance scores generated for the TP simply confirm the
effects of Np on TP, the decision tree and importance scores for WIP have given
some additional information: BCS and BCH are the key influencing factors for WIP.
This explains why it is important to keep these two buffers at their optimal level if
the optimal trade-off between TP and WIP are desired.

15.4.5 Analyzing the Effects of Process Improvement

Using SBI-DM

If neither buffer optimization nor increasing Np is the right approach to improve
the TP of the line, what can be done to do so? Following the philosophy introduced
in the theory of constraints (TOC) [40], we use FACTS Analyzer to locate the
bottleneck (or constraint, using the terms of TOC) that restraints the current
production rate of the line. FACTS Analyzer provides two output data plots for
doing this: (1) utilization (% working) and (2) the more advanced shifting bot-
tleneck detection method developed by researchers at Toyota [11].

Because of its low reliability (currently 80% based on the data collected by the
company), OP10 at the beginning of the line is believed to be the bottleneck, not
by measuring the machine’s working utilization but in terms of the total active
time,2 as listed in Table 15.4. Two more SMO runs were conducted to investigate

Table 15.3 Support and confidence for DM generated rules

Rule Supp.
count

Conf.
count

Total
no.

Support Confidence

Np B 35 and BCH B 21 52 53 3232 0.016 0.981
Np[ 35 and Np B 45 and BCH B 21 53 73 3232 0.016 0.726
Np[ 45 and BCS B 15 and BCH B

21
54 73 3232 0.017 0.740

2 Defined in the shifting bottleneck detection method [41], active time is the time when the
machine is working, changing tools or in repair and inactive time includes starving, blocked or
waiting.
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the effect of improving OP10 on the objective space by making the following
changes to the original FACTS model: (1) availability of OP10 changed from 80 to
95%; (2) availability of OP10 altered to 95% as well as reducing its processing
time by 7%. CSD-based Pareto fronts generated in these two SMO runs are
denoted as PFs1 and PFs2, respectively. Figure 15.13 shows the data plots to
compare PFs, PFs1 and PFs2. As the Pareto-optimal solutions of the improved line
(either PFs1 or PFs2) significantly outperform PF of the existing line in the CT-TP
plot, it may be concluded that improving the availability of OP10 has produced
improvement to the production rate of the whole line. On the other hand, it is
interesting to observe that solutions in PFs1 and PFs2 are non-inferior to each other.
This implies further improving the workstation OP10 by cutting its processing
time will not give any additional enhancement to the performance of the whole
line.

Fig. 15.11 Decision tree and importance score for TP analysis for Np = [30, 135]
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To summarise, based on these SBI-DM analyses, several important conclusions
can be made that will aid the production manager to make decisions on the
improvement for the flow line under study:

• The current system is not configured with an ‘‘optimal’’ setting. Significant
improvement to the line, in terms of the CT and WIP performance measures, is
possible by simply tuning the decision variables, including the number of pallets
and major buffer capacities.

Fig. 15.12 Decision tree and importance score for WIP analysis for Np = [30, 135]

Table 15.4 Bottleneck
analysis

Workstation Utilization
(working %)

Sole (%) Sole ? Shifting
(%)

OP10 76.85 39.24 64.66
OP600 80.57 15.99 41.82
OP430 81.68 2.277 9.975
OP510 80.59 1.504 5.973
OP340 83.91 0.797 3.81
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• Instead of giving any significant improvement in the system throughput,
increasing the number of pallets can only elevate CT and WIP. As a matter
of fact, there is a linear correlation between the number of pallets and CT.
In contrary to the original intention of the production engineers to increase the
number of pallets, reducing the number of pallets to the level that produce the
maximum production rate and optimal trade-off with CT and WIP is highly
recommended.

• While the key influencer of the TP and CT is the number of pallets, to have the
best trade-off between TP and WIP, it is recommended by the SBI-DM analysis
that BCH should be\22 and BCS\ 16.

• The production line can be effectively increased by improving the availability of
the current bottleneck workstation, OP10, from 80 to 95%. Interestingly, further
reducing the processing time of OP10 by 7% does not produce additional
improving effect as observed by comparing the CT-TP plots generated by the
SMO runs.

15.5 Conclusions and Outlook

By integrating the concept of innovization with simulation and DM techniques, a
new set of powerful tools has emerged for production systems design, analysis,
optimization as well as improvement. As a method for retrieving the relationships
between input parameters (decision variables) and output parameters (performance
measures) for production systems, SBI-DM can be regarded as a methodology
applied for continuous improvements within the context of Lean production, TOC
and Six Sigma as well. While this claim needs to be proved with more scientific
research in the future, this paper has presented a successful case study, carried out
in an automotive manufacturer, on how good design/operational principles can be

Fig. 15.13 Comparing
solutions from PFs, PFs1 and
PFs2
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retrieved by following the SBI-DM procedure. Useful insights have been gained
from the decision trees generated by applying DM technologies to the Pareto-
optimal solutions acquired from SMO, as suggested in the SBI-DM procedure. The
extracted knowledge is valuable to aid the decision-maker to make the right
decisions if the production line at the company has to be improved.

Although in this chapter we focus on stochastic production simulations using
DES, it is believed such a SBI-DM procedure is also applicable for other stochastic
simulations in other areas, like supply chain, transportation, etc. Specifically,
applying SBI-DM to supply chain simulation models developed with system
dynamics, has been found to be promising to decipher insights for real-world
complex supply chain networks which cannot be obtained with other classical
optimization/mathematical methods. On the other hand, the optimization problem
addressed in this paper is in fact a simple one. Some industrial case studies
involving more complex combination of product mix, buffer allocation, workload
allocation/balancing, dispatching/sequencing/scheduling logic, flow control as
well as quality control policy are now underway and will be published in the
future.
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Chapter 16
Multi-objective Production Systems
Optimisation with Investment
and Running Cost

Leif Pehrsson, Amos H. C. Ng and Jacob Bernedixen

Abstract In recent years simulation-based multi-objective optimisation (SMO)
of production systems targeting e.g., throughput, buffers and work-in-process
(WIP) has been proven to be a very promising concept. In combination with
post-optimality analysis, the concept has the potential of creating a foundation
for decision support. This chapter will explore the possibility to expand the
concept of introducing optimisation of production system cost aspects such as
investments and running cost. A method with a procedure for industrial imple-
mentation is presented, including functions for running cost estimation and
investment combination optimisation. The potential of applying SMO and post-
optimality analysis, taking into account both productivity and financial factors
for decision-making support, has been explored and proven to be very beneficial
for this kind of industrial application. Evaluating several combined minor
improvements with the help of SMO has opened the opportunity to identify a set
of solutions (designs) with great financial improvement, which are not feasible to
be explored by using current industrial procedures.
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16.1 Introduction

It is widely accepted that simulation is the only general purpose and generally
applicable modelling tool for truly complex systems [1]. Particularly, it is often
said that discrete-event simulation (DES) is the most promising tool to support
decision-making in production systems design and analysis. While DES can be
used to test various scenarios under given sets of parameters in order to evaluate
the specific solutions performance, trying to find optimal solutions using DES
would many times require unrealistic effort of time. Simulation-based optimi-
sation (SBO), the technology that connects meta-heuristics search methods to
simulation models, can be used to address such issues [2]. SBO for production
system and production line analysis has evolved to incorporate multi-objective
optimisation (MOO), using genetic algorithms [3]. An example of utilising MOO
for production system analysis is FACTS Analyser, an Internet-enabled SBO
toolset developed specifically for factory design, analysis and optimisation in the
conceptual phase [4].

The integration of SBO and MOO, or Simulation-based Multi-objective Opti-
misation (SMO), has opened the opportunity to find the optimal or near-optimal
solutions considering several objectives within certain constraints. So far SMO,
applied on production systems, has been used in targeting traditional production
system objectives such as throughput, work-in-process (WIP) and lead time. The
industry often relies on lean methods to solve production issues [5] and lean is a
necessary but not sufficient approach for analysing production system issues [6].
In combination with post-optimality analysis, the concept of SMO has the potential
of creating a foundation for decision support, introduced by Deb using the term
‘‘innovization’’, meaning the task of creating innovative design principle through
optimisation [7, 8].

According to international good practice guidance for accounting, investment
(project) appraisals and capital budgeting, involving the assessment of a project’s
financial feasibility should use Discounted Cash Flow (DCF) analysis as a sup-
porting technique in order to compare costs and benefits in different time periods
and to estimate the net present value (NPV) [9]. This is dependent on an estimation
of the expected cash flows related to the investment or the project, the life of the
investment and the opportunity cost of investing in a project of similar risk profile.
It is also considered that costing contributes to an understanding of profits and value
creation and the efficiency and effectiveness of input to output transformation in an
operational process [10]. Costing for decision support is also useful for the
improvement of performance, value creation, scenario analysis and the effective
and efficient application of resources and processes within an enterprise [11]. In
order to support financial decision-making, the traditional simulation objectives
might not be relevant to provide the needed information on, e.g., cash flow, without
additional calculations. However, there are examples of the merger of DES and
methods for cost estimation connected to activity-based costing (ABC) [11] and the
use of DES as the means for cost reduction and performance improvement [12].
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Some cost models, such as cost deployment [13] and a general economic model
for manufacturing cost simulation [14], require in-depth data mapped bottom-up in
the production system. There is also an approach to overcome pitfalls due to data
complexity by using capacity cost rate within time-driven ABC [15]. The concept
of measuring the cost of capacity [16] includes several tools and techniques within
a framework for analysing capacity cost management issues, e.g., the time-based
resource effectiveness model, and the combination of operational and financial
data creates a strong basis for analysis and decision-making that can be merged
with capital investment models. The time-based analysis results can be transferred
to financial data with a process costing model. The resource effectiveness model
shows similarities to loss models used in industry [5, 17], and is corresponding to
industrial production data.

The aim of this chapter is to propose a novel SMO-based decision-making
support method for production systems design and/or improvement. Such a method
is based on the incorporation of investment and running cost modelling into SMO
so that the best trade-off between cost and other productivity measures can be
sought and analysed effectively. The method is fully tested in an industrial case
study within automotive industry with very promising results. The rest of this
chapter is organised as follows: Sect. 16.2 covers a general overview of the cost
optimisation method. The running cost and investment functions are presented in
Sects. 16.3 and 16.4, respectively. Sections 16.5 and 16.6 introduce the simulation
method and optimisation objectives supporting the cost-based SMO-framework,
respectively. The context, experimental setting, results and analyses of the indus-
trial case study are presented in Sect. 16.7. Conclusions are given in Sect. 16.8.

16.2 The Cost Optimisation Method

Production efficiency is one paramount factor for the survival of any industrial
companies, particularly for those in the automotive industry wherein competition
becomes more and more intensified. The implementation of SMO could be one
contributor of great importance to enhance the production efficiency within the
automotive industry as the technique has been proving very promising [7].

Decision-making in industry is to a great extent based on financial information
due to the fierce competition. However, decision-making regarding production
systems on financial basis may not always be based on a satisfying analysis of
available options and data. How do we find the best trade-off between investment
and running cost? Is it possible to satisfy customer demand and reduce production
cost simultaneously with less investment than planned? What about buffer allo-
cation and complete system cycle time in combination with various investment
alternatives? One way of trying to answer such questions and improve decision-
making within industry would be to combine the optimisation of traditional pro-
duction system objectives with financial objectives. Doing that shall enable finding
Pareto-optimal or near Pareto-optimal solutions or trade-offs between conflicting
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financial objectives and production system properties. In that way, decision-
making could benefit from a transparent, well-prepared analysis of the interaction
between decision parameters. It will also help the decision-maker to select solu-
tions from an area of the objective space that provides the best known trade-off
between conflicting objectives. Another advantage is that relating the near-optimal
solutions back to the parameter settings opens the opportunity to find knowledge
about the analysed system. Are there any specific patterns in the optimised data
that we can benefit from? Are some of the available options more important than
others? Is there a specific order in which to introduce updates in the production
system that results in a better fulfilment of the objectives during implementation?
Any decision-maker would probably benefit from having answers to this kind of
questions.

In order to meet the need for enhanced decision-making within manufacturing
operations, theories required to create method for SMO applied on production
systems including cost aspects as investment against running cost has been
developed. An important part of the development has been to formulate functions
for mapping production system properties into the financial domain by following a
standard cost model. Another part has been integration with simulation and post-
optimality analysis. The preparation of decision scenarios has also been given
some analyses, resulting in an opportunity to identify the major constraints of the
production system. The idea is to prepare the prerequisites for a SMO-framework
targeted at decision-making within manufacturing management and manufacturing
engineering.

Since different techniques and tasks are used as the foundation of the method,
it is vital to arrange them in a process flow. By doing so, the method can be
automated to a certain level in order to facilitate industrial implementation. The
major inputs and outputs connected to the process are illustrating the methods
requirements and its resulting outcomes. Decision-support information is created
in several steps and input can be adjusted accordingly, indicating that the method
should be applied as an interactive flow of events. That is, some decisions might be
made already during the course of the analysis and not after it is finished.
Sometimes, it might be enough to identify the major constraints of the production
system and some relevant improvement proposals to make an acceptable decision.
In other cases, simple plots of the optimised Pareto front can provide enough
information for making decisions. However, when there are complex relations and
several dimensions due to many objectives, or when extended new knowledge is
required, post-optimality analysis may be necessary to be applied to reveal suffi-
cient information to the decision-maker. Depending on the decision situation, the
process may be exited when suitable output information is acquired. The main
process steps with their input and output are described in Fig. 16.1.

The initial input to the process is production system data mainly consisting of
processing times, availability or up-time, mean time to repair (MTTR)—in this
case equivalent to mean down time (MDT)—and buffer capacity. Later on
improvement proposals, investment data, running cost data and business objectives
are required when preparing for optimisation.
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The initial input in combination with information about the flow is used to
create and validate a simulation model of the production line. The first task to
perform with the model is to identify the major constraints of the production
system as input to the selection of relevant improvement proposals. Investment
data is connected to the selected improvement proposals and introduced as input
parameters to the simulation model. Running cost data is collected and cost model
components are selected depending on the scenario to be studied, the business
objectives and the characteristics of the improvement proposals. The simulation
model is updated and prepared for optimisation with objectives and applicable
constraints. After choosing optimisation algorithm and setting of related param-
eters the actual optimisation phase can be started.

In order to evaluate certain patterns in the resulting data, especially among
optimal or near-optimal non-dominated data, post-optimality analysis is conducted
e.g., by sorting and data mining. The result is a selection of the optimised trade-
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offs, knowledge and decision support to be used for production system design and
investment decision-making. Initial validation has been carried out by application
of the method in a real-life industrial case described later in this chapter.

In case of complex relations within the optimisation problem and when there
are several dimensions to consider due to many objectives, post-optimality anal-
ysis might be required in order to produce sufficient decision support. It is also
likely that such analysis can reveal hidden information within the optimised data
and create new knowledge according to the concept of innovization [7]. Suggested
methods to be used depend on the situation but some general methods such as
sorting, clustering and/or data mining using decision trees are some examples.
Simple visual analysis method like colour-coding of results can be a generic
method to visualise decision parameters.

Combinations of analysis tools and presentation techniques may reveal useful
information to the decision-maker. Three-dimensional plotting and colour-coding
enables presentation of four dimensions and clustering of data based on data
mining might help to highlight areas of interest. An example of three-dimensional
plotting of optimised data is found in Fig. 16.2. Some results from innovization
might be possible to present as design principles valid for a certain type of system.

16.3 Running Cost Estimation

There are several cost models available for production system analysis and
improvement. Examples of such models are cost deployment [13] and a general
economic model for manufacturing cost simulation [14]. There are also examples

Fig. 16.2 Three-dimensional
plot of optimisation results
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of merging DES with ABC in order to consider process variation [11]. However,
these methods are very detailed requiring in-depth bottom-up data mapping in the
production system. On many occasions the available time span or lead time to
analyse the options at hand and make a decision is strictly limited due to project
management systems and time-to-market requirements. In the situation of con-
ceptual production system design and improvement prioritisation in industry, the
detailed models tend to be far too impractical to be used.

The above-mentioned methods, cost deployment and the general model for
manufacturing cost simulation, were considered to be used during the development
of the cost modelling method. After trying to collect data for case studies the
conclusion was that data with the very detailed level required by these methods
was rare to be found in industry, especially within a time frame coherent with the
decision-making process demands. The conclusion is that in this case a fast,
accurate model with reduced data complexity is needed.

Are there then any alternatives available that can meet the speed and data
quality requirements, if we consider a need for constantly updated models with
sufficient accuracy to make the right decisions? A time-based method like the
resource effectiveness model [16] can be used as an information source that can
easily be translated into financial figures through a process costing model defined
on process time rather than units of production. This kind of model also corre-
sponds to loss models used in industry [5, 17]. The industrial loss models are
describing the utilisation of production time and man-hours focusing on providing
information on how much of the available resources are used for value adding
activities. Another interesting factor is that many of the key performance indica-
tors used within an industrial loss model are used as sources for decision-making.
In addition to time utilisation these kinds of models also focus on providing
information for minimisation of material and energy consumption.

A similar approach for ABC, referred to as time-driven ABC, is described by
Kaplan and Andersson [15] in order to overcome pitfalls due to data complexity by
focusing on capacity cost rate. The capacity cost rate can be calculated as:

CCR ¼ CCs

PCrs
ð16:1Þ

where, CCR = capacity cost rate, CCs = cost of capacity supplied and
PCrs = practical capacity of resources supplied.

16.3.1 Running Cost Function

Would it be possible to compose a running cost function for production system
optimisation relying on time-based cost theories? In order to answer this question
and try to estimate the effect of improvements from a cost perspective, a function
for translating the effect of production line performance and production system
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improvements to cost has been composed, which is derived from the resource
effectiveness model and time-driven ABC. One basic principle for the suggested
cost model is that reference data from a current running production system is used
as the initial cost base. Then differences appearing due to the introduction of
various investments or improvement options are added in the form of delta costs.

The prerequisite for this approach is to use an aggregated level of information
and then add or subtract relevant deltas induced by changes in the model during
optimisation. In this case the aggregated information used is the annual running
cost for the initial state of the production studied. Annual data is used in order to
correspond with forecasts, budget and accounting values. When the method is used
for analysis of conceptual phase production systems, an estimation of the initial
running cost for the complete system must be made relying on information about
the initial production setup. Then the delta effects corresponding to various options
and scenarios can be studied and analysed.

In its most basic form, the cost model principle is described by:

Cr ¼ Ciþ DC ð16:2Þ

where, Cr = running cost per year (annual running cost), Ci = initial total run-
ning cost per year and DC = delta cost.

Based on the cost of resources for running the production, a cost per hour is
calculated and the reduced need of time for production is calculated from the
increased throughput, defined step by step below.

DCt ¼ DH � Ch ð16:3Þ

where, DCt = throughput delta cost, DH = difference in need of production time
and Ch = average cost per hour (additional time) corresponding to ‘‘capacity cost
rate’’.

DH ¼ H � Hi ð16:4Þ

where, H = time required for production of annual production volume,
Hi = initial time required for production of annual production volume.

DH ¼
Vp

T
�
Vp

Ti
ð16:5Þ

where, Vp = annual production volume.

DH ¼ Vp
1

T
�

1

Ti

� �

ð16:6Þ

where, Ti = Initial Throughput and T = Throughput.
The average cost per hour can be based on several components including

energy consumption, coolant consumption, labour costs, etc. This cost is depen-
dent on the operation to be analysed and can be described through a delta
throughput to cost function:

438 L. Pehrsson et al.



DCt ¼ Ch� Vp
1

T
�

1

Ti

� �

ð16:7Þ

It is important to remember that a certain DCt might only be valid within a
specific interval and it might be needed to introduce several DCt-functions in order
to create a complete model due to constraints in the production setup, e.g., bal-
ancing of manning or different costs on various shifts.

DCti ¼ Chi � Vp
1

T
�

1

Tii

� �

ð16:8Þ

valid for ai\ Tii\ bi
The complete throughput delta cost is then:

DCt ¼
X

m

i¼1

DCti ð16:9Þ

However there is also likely to be a change in the annual cost for a certain part
of the process induced by the selected improvement. Each improvement can have a
number of such delta costs attached and could reflect e.g., maintenance cost deltas.

Delta annual cost function:

DCa ¼
X

n

j¼1

DCaj ð16:10Þ

There may also be a change in the cost per produced item due to the performed
changes, e.g., consumption of cutting tools, welding tips, incoming material and
energy consumption.

Delta cost due to changed cost per produced unit function:

DCu ¼
X

o

k¼1

DCuk � Vp ð16:11Þ

The combination of the cost effects induced by an improvement formulates the
total running cost function. In order to enable tailored applications, a customised
cost component is added to the resulting expression.

The complete annual running cost function:

Cr ¼ Ciþ
X

m

i¼1

DCti þ
X

n

j¼1

DCaj þ
X

o

k¼1

DCuk � Vpþ DCc ð16:12Þ

where, DCc = user definable custom cost component.
The annual running cost expression in its simplified form becomes:

Cr ¼ Ciþ DCt þ DCaþ DCuþ DCc ð16:13Þ
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16.4 Investment Cost Parameters

With traditional industrial methods, it is difficult to estimate and analyse the per-
formance and the resulting running cost induced by combinations of minor invest-
ments and variations in various dynamic system parameters of a production system.
Based on experience from data collected to case studies within machine- intensive
automotive component manufacturing, the common level of industrial data avail-
able for scenario description is up-time, processing time and investment cost.

The local effect on, e.g., the processing time achieved by a specific improve-
ment with a defined cost is rather well known within a mature automotive man-
ufacturing organisation. However, in many times, improvements are not
introduced due to the inability to analyse and optimise the impact from a com-
bination of activities. The running cost function alone cannot solve this issue
without investment data mapped to relevant scenarios in a simulation model.
In order to be able to optimise investments and running cost simultaneously, a
number of parameters must be incorporated in the simulation model.

The suggested solution is to map and index changes in processing time and up-
time to certain objects in the simulation model in a discrete number format. The
index number for each improvement linked to an object can then be related to a
certain investment and the complete investment can be calculated in order to be
used as an optimisation objective.

The impact of investments related to processing time can be written:

Ip ¼
X

m

i¼1
Ipi ð16:14aÞ

where, Ip = processing time-related investments.
The impact of investments related to up-time can be written:

Iu ¼
X

n

j¼1
Iuj ð16:14bÞ

where, Iu = up-time-related investments.
Another factor with potential effect on the production system performance is

buffer capacity and buffer allocation. If there are certain investments related to
changes in buffer capacity they can be modelled in the same way as processing
time or up-time-related investments:

Ib ¼
X

o

k¼1
Ibk ð16:15Þ

where, Ib = buffer capacity-related investments.
In order to enable tailored applications a custom investment component is

added to the resulting expression. The complete investment function for integra-
tion in a simulation model can be expressed as:
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I ¼
X

m

i¼1
Ipi þ

X

n

j¼1
Iui þ

X

o

k¼1
Ibk þ Ic ð16:16Þ

where, I = total investment, Ic = user definable customised investment component.
Following is the total investment expression in its simplified form:

I ¼ Ipþ Iuþ Ibþ Ic ð16:17Þ

16.5 Simulation Model

In order to perform optimisation of the financial impact from investments in a pro-
duction system with the suggested method, a valid simulation model of the pro-
duction system is required. It is highly recommended that the model abstraction level
is alignedwith available data and the prerequisites of the decision situation. There are
a few questions to answer when considering the model abstraction level. Is the
analysis to be made in the conceptual phase, during implementation of production
updates or is it made during running production?What level of decision is to bemade
and which are the main objectives that should be met? Are there any limitations in
lead time, available resources or data until the point of decision?Most likely there are
such limitations in most situations within common industrial operations.

In order to avoid pitfalls regarding too complex modelling and requirements
for very detailed data which are difficult to collect, an easy-to-use modelling
environment with built-in data complexity reduction, targeting at the system level
of production operations, will facilitate creation of models with a balanced model
abstraction trade-off.

16.5.1 Simulation Model Integration

During optimisation, the input parameters must be altered in the simulation model
in each evaluation iteration. In a SBO application, these parameter changes can be
made automatically by integrating an optimisation algorithm to the simulation
model. The simulation model integration is performed by enabling setting of
scenario data from the optimisation engine depending on new parameter settings
generated by the optimisation algorithm. Every object that will be directly affected
by investments or improvements is the subject for the connection to a scenario
selection. The principle of a scenario table for cost and parameter values is shown
in Table 16.1.

The proper parameter value can be selected from the cost parameter value table
by adding an optimisation parameter for the actual scenarios to be simulated in
specific optimisation iterations. In the simulation software, the parameter value can
be set from the table based on an integer value for a specific scenario controlled by
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the optimisation engine. Scenario 0 is corresponding to the initial solution with no
improvements applied.

An essential factor to be considered is the presence of any constraints con-
cerning the order in which improvements and changes can be introduced in the
production system. Any given scenario might be dependent on the implementation
of another scenario.

One way of handling such constraints is to sort the scenarios for a simulation
model object before optimisation and define an implementation order. Another way
is to include a previous scenario in further scenario definitions. If scenario i is
dependent on the previous scenario then apply scenario i - 1 and scenario i together.

Together with the scenario settings each buffer capacity in the simulation model
may be varied simultaneously by the optimisation engine in order to combine the
scenarios with buffer capacity optimisation.

It is not merely a matter of setting values in the simulation model—data must be
acquired aswell. Output data is read from themodel after each simulation run. In order
to estimate the resulting running cost for a simulation the throughput is monitored and
used as the input to the throughput delta cost component in the running cost function.
Before optimisation a reference value for the initial throughput is decided by a sim-
ulation representing the initial production status. During optimisation the delta annual
costs and the delta costs due to changed cost per produced unit are taken from the
scenario tables and summed together in the running cost function.

Shifting bottleneck technique [18] is used for the process step of identifying
production system constraints (bottlenecks). This requires the changes in state of
all machines in the model to be logged while simulating. Their active periods are
divided into bottleneck and non-bottleneck periods and then further into sole and
shifting bottleneck periods.

16.6 Optimisation Objectives

The main objectives addressed by the cost optimisation method are running cost and
investment. In order to evaluate the effect of various improvements and their potential
it is also essential to consider optimisation of buffer allocation and buffer capacity.

The first objective is to minimise the running cost function:

min Ciþ
X

m

i¼1
DCti þ

X

n

j¼1
DCaj þ

X

o

k¼1
DCuk � Vpþ DCc

 !

ð16:18Þ

Table 16.1 Scenario table for an object in the simulation model

Scenario Parameter X Parameter Y Ip Iu Ib DCa DCu

0 A a Ipa Iua Iba DCaa DCua
1 B b Ipb Iub Ibb DCab DCub
… … … … … … … …

n N m Ipn Iun Ibn DCan DCun
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The second objective is to minimise the investment function:

min
X

m

i¼1
Ipi þ

X

n

j¼1
Iui þ

X

o

k¼1
Ibk þ Ic

 !

ð16:19Þ

Simultaneously with the minimisation of the cost and investment objectives the
summation of the capacity of all buffers in the production system is minimised:

min
X

m

i¼1
Bci

 !

ð16:20Þ

where, Bci = capacity of buffer number i in the production system.
Depending on the business goals, there are several other production system

properties that might be the optimisation objective in combination with the financial
objectives. Some other objectives that might be of interest to combine with the
financial objectives are throughput, complete system cycle time, WIP and the
number of pallets, in a part of, or in the complete system. In assembly operations, the
number of workers in the production teams is an essential parameter to optimise.

16.7 Case Study

In order to verify the proposed method, a case study was conducted within the
automotive industry. A production line for automotive components with capacity
constraints is required to be operated on overtime (e.g., night/weekend shifts) in
order to meet the forthcoming increase in customer demand. At the same time,
major product changes will be introduced in the line. There are a number of
potential improvements with various investments attached that could reduce the
capacity constraints. There should be an opportunity to avoid operating the line on
overtime. However, there are not enough data for making a decision to invest and
reduce the operating time and the cost for labour and production resources.

The initially forecasted annual running cost is $4.9 million (M) and the main
objective is to achieve a 20% cost reduction. The challenge is to identify the
optimal investment alternatives that can reduce running cost as much as possible,
minimise total investment cost for improvement, maximise throughput and
simultaneously minimise inter-workstation buffers.

16.7.1 Simulation Model and Validation

In order to analyse and optimise the production line a simulation model was
created by using FACTS Analyser [4], a software tool developed for supporting
factory design, analysis and optimisation during the conceptual design phase.
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Initially the existing production line was modelled for validation against
throughput. The model is visualised in Fig. 16.3.

The model shows great correspondence to the real production line with an
average model throughput of 17 pieces per hour with a standard deviation of 0.21 in
comparison with the real average throughput of 17 pieces per hour. The validation
was based on a simulation horizon of 6 days including 1 day warm-up time.
Five replications were used to get an indication on the standard deviation.

16.7.2 Introduction of Conceptual Changes in the Simulation

Model

Major changes are planned to be introduced in the studied production line due to
product changes and increasing customer demand, including partly parallelised
flow and a combination of additional new and re-used equipment as well as
removal of old equipment. The conceptual line was modelled in FACTS Analyser
and is illustrated in Fig. 16.4.

16.7.3 Simulation with Shifting Bottleneck Detection Analysis

In order to predict the performance of the conceptual production line and in order
to identify major constraints a simulation with shifting bottleneck detection
analysis [18] was carried out using FACTS Analyser. The simulation horizon used
was 8 days including 1 day warm-up with 5 replications. The expected throughput
performance was approximately 30 pieces per hour and the simulation result was
28.7 pieces per hour with a standard deviation of 0.61 and 189 pieces of average

Fig. 16.3 Initial simulation model for validation

Fig. 16.4 Conceptual line configuration model for analysis and optimisation. Allocated buffer
capacity is shown in figures above the triangular buffer symbols
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WIP. The results were also divided into the two connecting parts of the line as seen
in Table 16.2, in which S1 represents products from Source 1 and S2 represents
products from Source 2.

The production volume forecasts indicate that an average throughput of at least
34.5 pieces per hour is required to meet the customer demand. This is where the
shifting bottleneck analysis, illustrated in Fig. 16.5, becomes very useful. By
analysing the major constraints of the line, precise targeted actions can be sug-
gested in order to improve the production system performance.

16.7.4 Production Process Improvement Proposals

with Investments

Based on the shifting bottleneck analysis a number of potential improvement
proposals were collected from the organisation connected to the line. Emphasis
was on the part of the line supplied from source 1 as the throughput potential was
considered to be greater compared to the part supplied from source 2. In this case
the improvement actions are required to be introduced in a certain order when

Table 16.2 Simulation results

Variable Mean Std. dev.

Parts produced 4,814.40 101.89
Throughput 28.66 0.61
Lead time (complete system cycle time) 23,542.36 696.44
WIP 188.56 1.98
S1 (Parts produced) 2,584.40 117.95
S1 (Throughput) 15.38 0.70
S1 (Lead time) 33,756.04 1,687.48
S2 (Parts produced) 2,230.00 27.69
S2 (Throughput) 13.27 0.16
S2 (Lead time) 11,750.50 229.49

Fig. 16.5 Sole and shifting bottlenecks in the conceptual production line
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applied. That is up-time improvement 1 has to be introduced before up-time
improvement 2 and processing time improvement 1 has to be introduced before
processing time improvement 2, in each operation. The collection of relevant
improvement proposals can be seen in Table 16.3.

16.7.5 Optimisation

The cost variables and the running cost function were included in the virtual model
of the conceptual production line. The annual running cost function was in this case
used with the initial cost,Ci, and the delta throughput to cost, DCt. Investment
alternatives combined with lean buffer configuration are the inputs to control during
optimisation. All buffer capacities were subject for optimisation between 1 and 40
entries in steps of 1, except for three buffers where one is a conveyor with a size
constraint limiting the maximum number of entries to 5 and the other two having a
constraint caused by a minimum number of one pallet containing 24 items.

Objectives for optimisation were:

min Crð Þ; min Ið Þ; min Bcð Þ ð16:21Þ

The NSGA-II algorithm [5] for multi-objective optimisation was used. The
optimisation was run with 20,000 simulation iterations, each based on 5 replica-
tions with 8 days as simulation horizon, including 1 day for warm-up.

Table 16.3 Relevant improvement proposals

Operation and
improvement

0 1 Cost 1
($)

2 Cost 2
($)

3 Cost 3
($)

4 Cost 4
($)

Op1E
Iu 91% 95% 5 443 96% 2 500 97% 4 500 – –
Ip 145 s 143 s 10 000 133 s 10 000
Op1G
Iu 91% 95% 5 000 95.5 2 500 96% 25 000 97% 2 500
Ip 145.3 s 138.3 s 20 000 – – – – – –
Op1H
Iu – – – – – – – – –
Ip 153 s 115 s 2 500 – – – – – –
Op1 J
Iu – – – – – – – – –
Ip 145 s 130 s 20 000 – – – – – –
Op1 N
Iu 93% 95% 5 000 – – – – – –
Ip 95 s 80 s 20 000 – – – – – –
Op1O
Iu – – – – – – – – –
Ip 125 s 85 s 20 000 – – – – – –
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16.7.6 Optimisation Results

The result of the optimisation can be plotted by forming Pareto fronts considering
the conflicting objectives, and the most interesting objectives are investment
against running cost as shown in Fig. 16.6.

Since there are three objectives in the optimisation, the two-dimensional plot of
non-dominated solutions does not reflect the typical two-objective Pareto front
appearance.

An interesting conclusion is that the cost performance could be improved from
M$4.9–M$4.4 by re-configuring the buffer capacity only. That is (4.9 - 4.4)/
4.9 = 10% improvement. However, this requires the buffer capacity combinations
to be realistic for implementation. By plotting the throughput against the total
buffer capacity in the line, as shown in Fig. 16.7, some more interesting properties
can be discovered.

The maximum throughput with the suggested changes in the line is approxi-
mately 36 pieces per hour and requires total buffer capacity at 400 entries. The

Fig. 16.6 Investment versus running cost, complete data set to the left and only non-dominated
solutions to the right

Fig. 16.7 Throughput versus buffer capacity, complete data set to the left and only non-
dominated solutions to the right
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total buffer capacity of the initial line was only 238 entries, limiting the maximum
throughput to somewhat over 34 pieces per hour. By running an optimisation with
the same improvement and investment parameters without buffer capacity opti-
misation this becomes even clearer as shown in Fig. 16.8.

The best solutions for throughput are just exceeding 34 pieces per hour without
buffer optimisation and the best results with buffer optimisation is very close to 36
pieces per hour. This indicates that the initial line buffer configuration is a capacity
constraint also negatively affecting the running cost when considering the
throughput to cost model. Another conclusion is that the throughput objective is
not possible to reach, given the proposed equipment improvements, without
re-configuring buffer capacity.

16.7.7 Post-optimality Analysis

In order to find a relevant trade-off between investment and running cost the data
must be analysed with these two objectives in mind. Finding the right solution
within 20,000 data records can be difficult. To reduce the effort, some essential
objective attributes have to be focused. After a discussion with the production
engineers and the line supervisors, it was agreed that the throughput must be at
least 34.5 in order to completely remove the need of production on additional time.

The first analysis, sorting the data for throughput over 34.5 and minimum
investment shows that it would be theoretically possible to reach the throughput
objective with an investment of $50,000. When further looking into this solution,
it contains major changes in buffer capacity, not feasible to implement in the short
run requiring over 400 buffer entries in the line. It was agreed to add a constraint
limiting the maximum buffer capacity to 300 and sort the data accordingly. After this
171 records of the initial 20,000 fulfiled the requirements. The minimum investment
among these solutions was $65,000, requiring 19 buffers to be increased.

Fig. 16.8 Left: experiment run with buffer capacity optimisation; right: experiment run without
buffer capacity optimisation
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After a discussion with the engineering team, these buffer changes were also
considered not to be feasible to implement in a short term. It was agreed to search
for a solution with as few buffer increases as possible. After looking into the best
solutions considering the objectives a new solution was configured manually based
on the optimisation results, including 11 buffer increases and a throughput of 34.7
pieces per hour with a standard deviation of 0.13, verified by simulation in the
same model used for the optimisation, see Tables 16.4 and 16.5.

The new buffer configuration derived from one of the optimised solutions was
achieved by setting the capacity for a number of buffers to the original values. The
selection criteria were to leave buffers with capacity larger than the optimised
levels unchanged and at the same time leave the capacity of buffers with small
optimised increases at original values, as shown in Table 16.6. Despite increasing
the buffer capacity, the selected solution actually performs better than the initial
line configuration in terms of WIP with an average of 165 pieces compared to 188
pieces. The investment for this solution is $150,000 and the annual running cost
would be reduced by approximately $1.4 M.

After taking into consideration that the shift from corresponding to the actual
reduced time is valid for throughput figures between 26.5 and 34.0, the actual
annual saving was recalculated to $1.29 M by using the throughput to cost
function. The delta annual cost and the delta cost due to changed cost per produced
unit were set to zero in this case.

Table 16.4 Selected line configuration

Investments

Iu Ip Ip Ip Ip Iu Ip Iu Ip

Op1E Op1G Op1 J Op1 N Op1O Op1G Op1H Op1 N Op1E

2 1 1 1 1 3 1 1 2
Parameter settings
96% 138,3 s 130 s 80 s 85 s 96% 115 s 95% 133 s
$7 942 $20 000 $20 000 $20 000 $20 000 $32 500 $2 500 $5 000 $20 000
Sum $147943

Table 16.5 Selected line configuration simulation results

Variable Mean Std. Dev.

Parts produced 5,831.20 22.64
Throughput 34.71 0.13
Lead time (complete system cycle time) 17,018.44 292.76
WIP 164.78 3.52
S1 (Parts produced) 3,578.20 26.09
S1 (Throughput) 21.30 0.16
S1 (Lead time) 18,520.25 695.74
S2 (Parts produced) 2,253.00 12.37
S2 (Throughput) 13.41 0.07
S2 (Lead time) 14,636.73 384.83
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DC ¼ DCtþ DCaþ DCu ¼ DCtþ 0þ 0 ¼ DCt ð16:22Þ

DCt ¼ Ch� Vp 1=T� 1=Tið Þ valid for ai\T\bi; 26:5\T\34:0 ð16:23Þ

DCt ¼ 1450� 164000 1=34:0� 1=28:7ð Þ ¼ M$� 1:29 ð16:24Þ

Cr ¼ Ciþ DC ¼ 4:90þ �1:29ð Þ ¼ M$3:61 ð16:25Þ

The team on the line added 0.5 pieces per hour as a safety precaution when the
objective 34.5 was set. The throughput performance improvement is 34.7/
28.7 = 20.9%, the annual cost performance improvement is 1.29/4.9 = 26.3%
and the cost saving year one including investment is (1.29 - 0.150)/
4.90 = 23.3%. The reason for not selecting a solution with lower investment in
this case is the extremely good business case revealed by the optimisation. The
opportunity to choose a solution with fewer buffer changes than one of the solu-
tions on the actual Pareto front was convenient for the engineering team carrying
out the changes. The resulting line configuration is shown in Fig. 16.9.

Table 16.6 Original, optimised and finally configured buffers

Buffer configuration
B1 B2 B3 B4 B5 B6 B7 B8 B9
4 30 33 4 5 4 11 26 10 Original
3 6 15 30 14 5 16 10 16 Optimised
4 30 33 30 14 4 16 26 16 Configured
B10 B11 B12 B13 B14 B15 B16 B17 B18
7 5 2 2 4 4 5 2 2 Original
7 1 2 16 2 15 10 2 2 Optimised
7 5 2 16 4 15 10 2 2 Configured
B19 B20 B21 B22 B23 B24 B25 B26 B27
3 1 1 1 1 4 4 2 2 Original
4 2 4 3 2 8 1 1 1 Optimised
3 1 4 3 1 8 4 2 2 Configured
B28 B29 B30 B31 Throughput mean Total sum
5 24 24 4 28,66 236 Original
13 26 25 3 35,20 265 Optimised
13 24 24 4 34,71 329 Configured

Fig. 16.9 Resulting line with re-configured buffer capacity. Allocated buffer capacity is shown
in figures above the triangular buffer symbols
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16.7.8 Knowledge Extraction Through Data Mining

With the purpose of further investigating the possibilities of extracting knowledge
to be used as an enhancement for decision-making, data mining was applied on the
data from the optimisation. Microsoft SQL Server 2005 Data Mining Add-ins for
Microsoft Office 2007 was used to perform data analysis searching for factors
favouring high throughput and low running cost. Part of the report from the data
mining is shown in Figs. 16.10 and 16.11.

The importance of implementing the improvements IpOp1N, IpO1J and
IpOp1O can clearly be seen as well as the significance of a capacity in buffer
number 4 being equal to or larger than 32. Overall, the selected solution reflects
the characteristics found in the data mining, indicating that the technique can be
useful for providing decision support.

16.8 Conclusions

The potential of applying SMO, taking into account financial objectives, like
investment and running cost, for decision-making support in designing/re-con-
figuring production systems, has been explored in this chapter. Evaluating several

Fig. 16.10 Factors favouring
high throughput

Fig. 16.11 Factors favouring
low running cost
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combined minor improvements with the help of multi-objective optimisation has
opened the opportunity to identify a set of solutions revealing great financial
improvement, which cannot be sought by applying any current industrial proce-
dures. In the production line studied in this chapter the throughput can be
improved by 20.9% and the cost performance on annual basis can be improved by
26.3% by applying SMO including financial objectives. The important results from
the SMO study are briefly summarised below:

One finding by the SMO is that a 10% annual running cost reduction would be
achievable by re-configuring the buffer capacities only.

Given the proposed equipment improvements, the target capacity is not possible
to reach without re-configuring buffer capacity. In other words, investment for
improvements and buffer capacities cannot be optimised separately but need to be
considered simultaneously.

By utilising the knowledge created by SMO a feasible solution with a very
limited need for investments could be selected in order to improve the throughput
by 20.9% and the annual running cost performance by 26.3%. That is, SMO
including investment and running cost objectives has proven to be a very prom-
ising concept for production system improvement and development.

WIP could be reduced despite increased buffer capacity, considering a com-
bination of improvements.

Data mining seems to be a useful tool for finding key influencing factors from
SMO as a support for creating knowledge to be applied within production system
design.

Including cost parameters and cost objectives in SMO enhances the capability
of the method as a decision-support instrument within the industry.

In summary, this case study has adequately proven that such a financial-based
SMO method can be very valuable for practical industrial applications.
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Chapter 17
Supply Chain Design Using Simulation-
Based NSGA-II Approach

Lyes Benyoucef and Xiaolan Xie

Abstract This chapter addresses the design of supply chain networks including
both network configuration and related operational decisions such as order
splitting, transportation allocation and inventory control. The goal is to achieve the
best compromise between cost and customer service level. An optimisation
methodology that combines a multi-objective genetic algorithm (MOGA) and
simulation is proposed to optimise not only the structure of the network but also its
operation strategies and related control parameters. A flexible simulation frame-
work is developed to enable the automatic simulation of the supply chain network
with all possible configurations and all possible control strategies. To illustrate its
effectiveness, the proposed methodology is applied to two real-life case studies
from automotive industry and textile industries.

17.1 Introduction

17.1.1 Context

The global economy and the recent developments in information and communi-
cation technologies (ICT) have significantly modified the business organisation of
enterprises and the way they do business. New forms of organisations such as
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extended enterprises and networked enterprises (also called supply chain networks)
appear and they are quickly adopted bymost leading enterprises. It is well known that
‘‘competition in the future will not be between individual organisations but between
competing supply chains’’ [1]. Thus, business opportunities are captured by groups
of enterprises in the same network. The main reason for this change is the global
competition that forces enterprises to focus on their core competences (i.e., to do
what you do the best and let others do the rest). According to a visionary report of
Manufacturing Challenges 2020 conducted in the USA [2], this trend will continue
and one of the six grand challenges of this report is the ability to reconfigure

networked enterprises rapidly in response to changing needs and opportunities.
Although the resulting supply chain networks are more competitive, the tasks for
planning, managing and optimising are much more difficult and complex.

A supply chain is a network of facilities, such as suppliers, plants, distributors,
warehouses, retailers which performs a set of operations including procurement of
components and raw materials, assembling of products, storage and handling of
semi-finished and finished products, transportation and delivery of products.
Supply Chain Management (SCM) has become recognised as a critical aspect in
today’s fiercely competitive business environment. In 2002, American companies
spent $910 billion, or about 8.7% of the United States gross domestic product
(GDP), on business logistics systems, which contained the warehousing costs,
transportation costs, shipper related costs and logistic administration costs.
In Singapore, the transport and communication industry sector contributed about
10.8% of the GDP in year 2003. Considering the importance and the influence of
SCM, manufacturers and retailers have paid great efforts to handle the flow of
products efficiently and coordinate the management of supply chain smoothly.

While alliance-like enterprise networks with the underlying supply network
represent tremendous business opportunities, they also make the involved enter-
prises face greater uncertainties and risks. Firstly, networks or supply chains have
to be modified or dissolved once the business opportunities evolve or disappear.
Secondly, changes or major perturbations at one enterprise may propagate through
the whole network to other enterprises and hence influence their performance. The
evolution from single enterprise with a high vertical range of manufacture towards
enterprise networks offers new business opportunities especially for small and
medium enterprises that are usually more flexible than larger companies. However,
in order to be successful, performance and expected benefits have to be carefully
evaluated and balanced in order to become a partner of the right supply chain
network for the right task.

17.1.2 Motivations

States-of-the-art on supply chain modelling and optimisation approaches
are presented in [3] and [4]. Schmidt and Wilhelm [3] pointed out that
interactions of decisions at different levels (strategic, tactical and operational)
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should be considered. Goetschalckx et al. [3] presented an overview of the
application of mathematical programming models in the strategic design and
improvement of global logistics systems/supply chain network. They summarised
the international characteristics of published strategic global logistics models.
Among the international characteristics of these global logistics systems,

stochastic features make up an important set.
Meixell and Gargeya [5] reviewed the model-based literature for the global

supply chain design problem by using dimensions related to ongoing and emerging
issues in supply chain globalisation. Overall, they realised that although the
research community has tackled some of the most difficult global supply chain
issues, only few models among them comprehensively address outsourcing, inte-
gration and strategic alignments in global supply chain design. They concluded
that global supply chain models need to address the composite supply chain design

problem by extending models to include both internal manufacturing and external

supplier locations, global supply chain models need broader emphasis on multiple

production and distribution tiers in the supply chain, the performance measures

used in global supply chain models need to be broadened in definition to address

alternative objectives, and more industry settings need to be investigated in the

context of global supply design.
Klose and Drexel [6] presented an extensive state of the art dedicated to facility

location models for distribution system design. Model formulations and solution
approaches vary widely in terms of fundamental assumptions, mathematical
formulation, computational complexity and performance. They focused in par-
ticular on continuous location models, network location models, mixed-integer
programming models and applications. Revell and Eiselt [7] also surveyed a
number of the important decisions problems in facility location. They stated that
the field is very active with many interesting problems still being investigated, both

from a problem statement/formulation and algorithmic point of view. Although the

field is active from a research perspective, when it comes to applications, there

appears to be a significant deficit, at least as compared to other, similar, fields.
After a comprehensive literature review and interviews of industries, we have

identified three keys facts that should be taken into account when designing a
supply chain network.

• Supply chain network is a dynamic, stochastic and complex system. The per-
formance of any particular facility in the system depends to a large extent on the
behaviour of other facilities. For improving the overall performance of a net-
work, it is necessary to view the system as a whole. Strategic decisions, such as
facility location, should be optimised simultaneously with other decisions at the
tactical/operational level related to production planning, transportation, inven-
tory control, etc.

• Existing literature on modelling supply chains is very rich, which includes
techniques like Petri nets [8], fuzzy logic [9], multi-agent systems [10],
mathematical programming [11], etc. Nevertheless, an overwhelming majority
of the literature formulates production–distribution network design problem, as
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a particular case of supply chain design, in terms of mixed-integer program-
ming models. Due to the complexity and tractability, supply chain uncertainties
and dynamics, such as demand fluctuation, production uncertainty and trans-
portation instability, are either absent or over-simplified in most of these
models. In particular, these methods fall short when qualitative optimisation
variables are involved, such as the selection of inventory control and pro-
duction policies.

• The total cost of all supply chain activities is often used as the unique optimi-
sation criterion. While in current competitive environment, the consideration of
only one objective is not sufficient to derive good decisions. Customer satis-
faction related issues should be taken into account at the stage of supply chain
design. True multi-objective optimisation is necessary to avoid the inappropriate
transformation of customer service level to some costs.

17.1.3 Contributions

In this chapter, we present a new hybrid approach to support decision makers
for the assessment, design and improvement of such supply chain networks.
The approach consists of an optimiser and a simulator. The optimiser, based on an
NSGA-II algorithm, is used to find best-compromised solutions with respect to
various criteria, such as cost and customer service level. Candidate solutions
suggested by the optimiser are evaluated through simulation, which enables
realistic evaluation taking into account uncertainties and dynamics along the
whole supply chain. The simulation model builder is developed to facilitate
automatic model creation, which is a challenging issue as decision variables
describe key aspects of supply chain network structure and its operating rules.
To validate the proposed approach, two case studies, proposed by partners from
automotive and textile industries, are presented and the computational results
analysed.

Our approach differs significantly from existing simulation-based optimisation
approaches for supply chain optimisation problem which to the best of our
knowledge, not only focus on the optimisation of quantitative control parameters or
system parameters such as buffer capacities but also for fixed supply chain structure
and given control strategies. Our approach optimises at the same time the structure
of the network, the set of control strategies and the quantitative parameters of
the control strategies. This would not be possible without the properly defined
generic modelling and simulation framework that allows the evaluation of a supply
chain network for all possible configurations and control strategies.

In the remainder part of the chapter, Sect. 17.2 sets the problem under con-
sideration. Section 17.3 gives a brief literature review of existing models and
methods for deterministic and stochastic production–distribution network design
problem, and supplier selection problem. Section 17.4 discusses the architecture of
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the proposed simulation-based NSGA-II and describes in detail the developed
simulation framework and different operational rules. Section 17.5 presents the
first case study from automotive industry. Section 17.6 presents the second case
study from textile industry. The two sections demonstrate how the case studies
are handled by applying the proposed simulation-based optimisation approach.
Section 17.7 concludes the chapter with some perspectives.

17.2 Problem Setting

17.2.1 Supply Chain Network Design

Given a general supply chain network with all existing and potential facilities
comprising four stages: supply stage, production stage, distribution stage and
customer stage (Fig. 17.1), the network design problem consists in selecting the
facilities to open/operate in order to form a network with minimal overall costs and
highest customer service levels.

Due to the complexity and dynamic nature of the problem under consideration,
we present the network design problem in a descriptive manner, i.e., principal
characteristics of facilities, operations and processes are described to clearly set the
problem.

The supply stage contains P potential suppliers. All suppliers provide the same
type of products, but at different prices, duties, supply lead times, etc. Price and
duties are financial attributes that determine the purchasing cost. Supply lead time
is defined as the time span from order reception by the supplier to the moment
when products are ready for transportation. There are several links available for a
supplier to ship products to the plants. In case of multiple links, transportation
allocation rules are used for link selection and volume allocation among selected
links. Transportation lead time could be constant or random.

The production stage is composed of K plants that produce different final
products. Each plant has a limited production capacity. We assume that raw
materials and components are always available. Whenever a production order is
assigned to a plant corresponding products will be available after a period of
production lead-time. The production lead-time could be constant or random. The
number of products that can be dispatched into a plant is limited by the plant
production capacity. Each plant has limited finished goods inventory (FGI). There
is no transportation link between plants. All final products are delivered to cus-
tomers via distribution centres.

The customer stage contains all the customers who are served by different
distribution centres (DCs). Different customers generate independent random
demands for multiple types of products. For each customer and each type of
product, the demand quantity and frequency could be constant or random. No
transportation link exists between customers. In this study, products demanded by
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customers are managed in two manners, either make-to-stock (MTS) or make-to-
order (MTO), according to their characteristics. Demands for MTS products are
served by distribution centres, while demands for MTO products are forwarded to
plants directly.

The intermediate stage is the distribution network, comprising a number of DCs
with links between DCs. The MTS inventory held in a DC is replenished,
according to some given rules such as (R, Q) or (s, S), from plants or other
upstream DCs. In case of stock-out at a DC, the MTS demands assigned to the DC
are backlogged for future fulfilment.

All facilities in the network are connected by transportation links. Each link
could be a combination of various transportation modes such as railway, road and
sea. There could be multiple links available between two facilities. Each trans-
portation link has its carrier departure rule which determines the carrier departure
condition and frequency. Each carrier has a limited transportation capacity. The
products sent out from one end of a link are considered available at the other end
after a period of transportation lead-time, which could be constant or random.
More modelling details will be given in Sects. 17.4 and 17.5.

17.2.2 Decisions and Performance Indicators

Three types of decisions are to be made in the model under consideration. First, an
‘‘open or close’’ decision should be made for each candidate site in order to locate
plants and/or DCs. Such decisions are considered strategic and have major impact
on a system’s performance. Second, appropriate operational rules are to be
selected to manage various operations in the network. For example, for each DC
and each type of products of the DC, it is necessary to determine the corresponding

Fig. 17.1 Multi-echelon supply chain network model
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inventory control policy. Accordingly, the control parameters associated with
selected operational rules represent the third type of decisions.

Given a combination of these decisions, the quality of the corresponding net-
work configuration depends on its profitability and operational efficiency. To
measure the profitability and operational efficiency of a candidate production–
distribution network, it is indispensable to define relevant performance indicators.
Two types of indicators are taken into consideration in this study: financial and
logistics indicators. Various costs are considered as financial indicators, including
investment costs, production costs, transportation costs and inventory holding
costs. Logistics indicators include average demand fill-rate, average demand cycle
time, probability of on-time delivery, etc.

The two types of performance indicators are often contradictory and the balance
between them is critical issue that should be handled directly by the decision-
maker himself. As a result, it is necessary to perform multi-objective optimisation,
instead of transforming them into a single cost function.

17.3 Literature Review

The literature dedicated to supply chain management problems is very rich. In this
section, we restrict our literature review to two classes of problems namely
‘‘production–distribution network design’’ and supplier selection.

17.3.1 Production–distribution Network Design

The production–distribution network design problem has been extensively studied
in the literature. We summarise in the following major literature reviews, and
existing models and methods developed for production–distribution network
design.

17.3.1.1 Deterministic Models

Many dedicated models have been proposed in the past for production–distribution
network design. Due to the complexity, most existing models are deterministic.
In fact, uncertainties and dynamics along a production–distribution network are
simply omitted or not realistically addressed.

Different deterministic facility location models are proposed in [12] which
enable the determination of distribution centre locations and their service areas.
The location problem is formulated using linear mixed-integer programming for
minimisation of investment costs. These models are important basis for later
research. Based on these models, Cohen and Lee [13] proposed a 4-stage

17 Supply Chain Design Using Simulation-Based NSGA-II Approach 461



production–distribution network model ‘‘PILOT’’. PILOT is a multi-period
deterministic model for minimising a nonlinear cost function. Another linear
mixed integer programming model was proposed in [14] for international pro-
duction–distribution network design. This deterministic model is a single period
model, which consists in maximising the total after-tax profit.

The model proposed by Arntzen et al. [15] is a deterministic multi-period
multi-product model initially built for DEC global logistics chain design. This
model is considered as one of the most complex and complete models in the
literature.

A representativemodel ofPirkul and Jayaraman [16] is described in details to give a
better idea on existing deterministic models. The model concerns a 3-stage produc-
tion–distribution network inwhich different products flows from plants to distribution
centres and then to retailers. The plants and retailers are geographically dispersed in a
region. Each retailer faces demands for a variety of products that are manufactured at
the plants. The network under consideration is illustrated in Fig. 17.2.

The costs considered in this model include: (1) site-dependent distribution
centre opening cost, (2) site-dependent plant opening cost, (3) unit transportation
cost of product from plant to distribution centre and (4) unit transportation cost of
product from distribution centre to retailer. Three types of constraints are taken
into account:

• Each plant has a maximum production capacity, expressed in terms of the
maximum operating time units available at the plant. Each unit of product takes
some time units at each plant.

• Each distribution centre has a maximum handling capacity, expressed in terms
of the maximum number of product units that the distribution centre can handle.

• Each retailer is assigned to exactly one selected distribution centre for each type
of products.

The problem consists of selecting W distribution centres and P plants to
serve n retailers with p product types such that the total cost is minimised and the

Retailer I

Retailer 1

Plant 1

Plant 2

Plant K DC J

DC 2

DC 1

Retailer 3

Retailer 2

Fig. 17.2 The network considered in [16]
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above-mentioned constraints are satisfied. A Lagrangian relaxation-based method
is used to solve the problem.

Pirkul and Jayaraman [17] discussed an identical Lagrangian method for a
revised production–distribution model named ‘‘PLANWAR’’. The proposed model
is slightly different in that the DC-Retailer flow is expressed in continuous vari-
ables, there is no single sourcing requirement for retailers and the requirement on
the number of plants and distribution centres to be located is changed to an
inequality constraint. Furthermore, one more variation is related to the capacity at
plants in ‘‘PLANWAR’’, which is a different resource than the storage space.

Pirkul and Jayaraman [18] presented a 4-stage capacitated multi-product supply
chain system models. From the modelling perspective, the new model differs from
the earlier proposed models in several ways. Suppliers with limited capacity are
taken into account. The model also considers the plant production decisions, raw
material requirements from the suppliers and bill-of-materials. The single sourcing
condition is changed into the sole sourcing of each retailer from the same DC for
all products. A Lagrangian relaxation approach was proposed.

Vila et al. [19] presented a generic methodology to design production–distri-
bution networks of divergent process industry companies in a multinational con-
text. The proposed methodology uses a mathematical programming model to map
the industry manufacturing process onto potential production–distribution facility
locations and capacity options. Each facility may use different layouts and the
plant capacity is specified by selecting appropriate technological options.
The objective is to maximise global after tax profit in a predetermined currency.
The proposed methodology was applied to a case study from softwood lumber
industry by using commercial optimisation software.

Martel [20] proposed a mathematical programming approach to design inter-
national production–distribution networks for make-to-stock products with con-
vergent manufacturing processes. Various formulations of the elements of
production–distribution network design models are discussed. Special attention is
paid to modelling issues encountered in practice, which have significant impacts
on the quality of the designed logistics network. The discussed issues include the
choice of the objective function, definition of the planning horizon, manufacturing
process and product structures, logistics network structure, demand and service
requirements, facility layouts and capacity options, product flows and inventory
modelling, as well as financial flows modelling. A typical mixed-integer pro-
gramming model is presented and solved with commercial solvers.

17.3.1.2 Stochastic Models

Literature dedicated to the stochastic facility location problem also becomes rich.
However, limited models have been proposed for the stochastic production–
distribution network design problem.

Snyder [21] presented a comprehensive state-of-the-art review of existing
stochastic models for the facility location problem. Many of these models
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minimise the expected cost or maximise the expected profit of the system under
consideration. Others take a probabilistic approach, e.g., maximising the proba-
bility that the solution is in some sense ‘‘good’’. Part of the models are solved
using algorithms designed specifically for the problem, where others are solved
using more general stochastic programming techniques.

Louveaux [22], presented stochastic versions of the capacitated P-median
problem (CPMP) and capacitated fixed charge location problem (CFLP) were
presented, where customers’ demands, production costs, transportation costs and
selling prices are random variables. The goal is to choose facility locations,
determine their capacities and decide which customers to serve and from which
facilities in order to maximise the expected utility of profit.

Ricciardi et al. [23] proposed a facility location model with random throughput
cost considering DCs. The objective is to minimise the deterministic transportation
cost (plant-to-DC and DC-to-customer) plus the expected throughput cost at the
DCs. The authors first consider the network flow aspect of the problem (assuming
the DC locations are given) and develop a model for the expected flows. Then they
embed the expected cost model into a nonlinear integer program. For each can-
didate solution to the location problem, a Lagrangian problem is solved to compute
the expected flows.

Stochastic versions of the joint inventory-location model are presented in
[24–28]. The models make decisions on DCs location while minimising fixed
investment costs, transportation costs and inventory costs at the DCs given
stochastic customer demands. The demand means and variances could be
stochastic, as well as costs, lead-times and other parameters. They formulated the
problem as a nonlinear integer program and presented a Lagrangian relaxation
approach to solve it. Several computational experiments attested the effectiveness
of the proposed approach.

Erlebacher and Meller [24] formulated a highly nonlinear integer inventory-
location model. The customer demands are stochastic and rectilinear distances are
used to represent the distances between the locations. Each DC operates under a
continuous review inventory system. The problem consists in the determination of
the number of DCs and their locations, as well as the customers they serve in order
to minimise the fixed operating costs at DCs, inventory holding costs and trans-
portation costs. Since the general version of the problem is NP-hard, they devel-
oped analytical models and proposed heuristic procedures for special cases
obtained under some simplified assumptions.

Shen [28] proposed a nonlinear integer-programming model for the multi-
product supply chain design problem. The model determines the location of
facilities and the assignment of retailers to the facilities in order to minimise a
nonlinear objective function that includes the economies of scale costs at the
facilities. It is the first multi-product supply chain design model that incorporates
supply chain costs exhibiting economies of scale. It generalises many well-
studied models. A Lagrangian relaxation solution algorithm is proposed, and
compared with existing algorithms for different special cases of the proposed
model.
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Tanonkou et al. [29] considered a single-product distribution network design
problem where facility location and supplier selection decisions are integrated.
The retailers’ demands are random and supply lead-times constants. A nonlinear
integer-programming model is proposed, for which the determination of exact
solutions is a NP-hard problem. A Lagrangian relaxation solution algorithm is
developed allowing the determination of distribution centres locations, assignment
of distribution centres to suppliers, and assignment of retailers to the distribution
centres to minimise the total fixed distribution centres location costs, running
inventory and safety stock costs at the distribution centres and transportation costs.

Tanonkou et al. [30] presented a Lagrangian relaxation-based approach to solve
a single-product distribution network design problem with random demands and
random supply lead-times. A nonlinear integer-programming model is proposed.
The model determines the location of distribution centres and the allocation of
retailers to the distribution centres. The goal is to minimise the total fixed distri-
bution centres location costs, running inventory and safety stock costs at the
distribution centres and transportation costs through the network, while ensuring a
given retailer service level. The resulting problem is difficult since it incorporates
nonlinear working-inventory costs and nonlinear safety stock inventory costs.
Computational results are presented and analysed by validating the effectiveness of
the proposed approach. The multi-product version of the problem is considered in
[31], where a similar approach is used.

For joint transportation-location problem, França and Luna [32] used Benders
decomposition to solve a problem, which combines the CFLP and the stochastic
transportation problem with random customer demands.

17.3.2 Supplier Selection

Motivated by uncertainty reduction and customer service improvement, more
and more companies are paying attention to multiple sourcing, i.e., to engage
with more than one supplier at the same time. The studies by Moinzadeh and
Nahmias [33], Sculli and Shum [34], Ramasesh et al. [35], Lau and Zhao [36]
and Ganeshan et al. [37] demonstrate the interest of companies to adopt the
multiple sourcing strategies when managing their inventories. Advantages of
using multiple sourcing (i.e., multiple suppliers) to replenish one inventory item
include stocking efficiency, supplier reliability, pricing and quality competi-
tiveness, etc. However, most of the studies assume that items/products of dif-
ferent suppliers are identical, namely that suppliers provide items/products at the
same price and quality [37]. The resulting problem is turned to an ‘‘inventory-
only’’ problem. Lau and Zhao [36] developed computational methods to com-
pute the optimal order-splitting ratio, order quantity and reorder point with only
two suppliers.

Sedarage et al. [38] developed an optimisation model to determine both the
reorder level and the order split quantities simultaneously for general n-supplier
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systems in which the unit time demand and supplier lead times are random
variables. The model minimises the expected total cost, including the ordering
cost, procurement cost, inventory holding cost and shortage cost. Extensive
numerical experiments were performed to analyse the advantages and distinct
characteristics of multiple-supplier systems versus single and dual sourcing
systems.

Ghodsypour and O’Brien [39] presented a nonlinear integer programming
model to solve the multiple sourcing problems, which takes into account the total
cost of logistics, including net price, storage, transportation and ordering costs. An
algorithm is proposed to solve the model and numerical experiments are presented
to illustrate its efficiency.

Qi [40] studied an integrated decision-making model for a supply chain system
where a single manufacture faces pricing, production and procurement constraints.
The market demand is price-sensitive, and the manufacture supply capacity has to
be acquired from a set of capacitated suppliers. The problem consists in simul-
taneously determining the selling price and the production quantity, as well as the
supplying capacity from the suppliers in order to maximise the total profit. The
problem is proved to be NP-hard in the ordinary sense and a heuristic algorithm
and an optimal dynamic programming algorithm were developed. To demonstrate
the efficiency and effectiveness of the algorithms, some experimental studies are
presented.

Wang et al. [41] considered a n-capacity supplier, single item inventory system,
where the suppliers have different lead times and purchase prices. An integer linear
programming model is proposed to help managers select the optimal suppliers and
determine both the reorder level and split suborders of each selected supplier for a
given order quantity so that the total average inventory cost is minimum and
constraints of supplier ability, quality and demand are considered. An approach
combining the branch-and-bound algorithm and the enumeration algorithm is
developed to solve the problem.

Ding et al. [42] presented a simulation-based evolutionary multi-objective
optimisation approach for integrated decision-making including supplier selection,
order splitting, transportation allocation and inventory control. The approach
developed by them includes an optimiser and a simulator. The optimiser, based on
a multi-objective genetic algorithm, is used to find best-compromised solutions
with respect to various criteria, such as the total cost and customer service level.
Candidate solutions suggested by the optimiser are evaluated through simulation,
which enables realistic evaluation taking into account uncertainties and dynamics
along the whole supply chain. The simulation model builder is developed to
facilitate automatic model creation, which is a challenging issue as decision
variables describe key aspects of supply chain network structure and its operating
rules.

For more state-of-the-art analysis including deterministic and stochastic models
of supply chain design, the reader may refer to Slats et al. [43], Beamon [44],
Sarmiento and Nagi [45], and Snyder [21, 27].
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17.4 Simulation-Based NSGA-II Approach

17.4.1 Approach Overview

For supply chain optimisation practitioners, one major obstacle is uncertainty,
which represents the supply chain dynamics. Its stochastic nature makes most
analytical models either over simplistic or computationally intractable. Computer
simulation, with a strong capability in handling supply chain dynamics, is regarded
as the most popular analysis tool for these systems. In particular, discrete-event
simulation is often used to facilitate ‘‘what-if’’ analysis. Simulation-based opti-
misation is thus regarded as an effective method that adapts simulation to appli-
cations requiring optimisation.

A general simulation-based optimisation method consists of two essential
components: an optimisation module that guides the search direction and a sim-
ulation module used to evaluate performances of candidate solutions (network
configuration ? operational rules and parameters). Compared with mathematical
programming techniques, simulation-based optimisation methods replace the
analytical objective function and constraints by one or more simulation models.
The decision variables are the conditions under which the simulation is run.
Iteratively the output of the simulation is used by the optimisation module to
provide feedback on progress of the search for the optimal solution.

Existing literatures related to simulation-based optimisation methods can be
arranged under four major categories: gradient-based search methods, stochastic
optimisation, response surface methodology and heuristic methods [46]. For
industrial applications, several search algorithms have been linked with simula-
tion, including pattern search, simplex, simulated annealing and genetic algorithm.
These search algorithms intelligently guide the simulation model to near-optimal
solutions. According to an empirical comparison of these four algorithms [47],
genetic algorithm showed the capability to robustly solve large problems and
problems with non-numeric variables. It performed well over the others in solving
a wide variety of simulation problems.

In this study, a simulation-based multi-objective optimisation method has been
developed and integrated for joint optimisation of supply chain network structure
and operational parameters (inventory control parameters, transportation alloca-
tion, etc.). More specifically, a non-dominated sort genetic algorithm-II (NSGA-II)
is adapted to perform stochastic search for solutions (network structure and/or
operational rules parameters), which achieves a trade-off regarding conflicting
criteria, e.g., costs and customer service level. Decisions are incorporated into
discrete-event simulation models for the evaluation of KPIs. The structure of the
proposed simulation-based optimisation approach is shown in Fig. 17.3.

The uniqueness of the proposed approach is that it not only makes decision at the
strategic level, but more importantly, it addresses the operational aspects of each
solution through simulation. In the following sub-sections, we present in more detail
the modelling and simulation framework and the adapted NSGA-II algorithm.
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17.4.2 A Supply Chain Modelling and Simulation Framework

The use of simulation instead of analytical evaluation of a supply chain network is
motivated by our objective to make network design decisions based on true
operational performances of the related supply chain. This requires realistic

modelling of uncertainties and supply chain dynamics that cannot be fulfilled with

analytical performance evaluation methods.
For most simulation evaluation approaches, supply chain processes are mod-

elled to perform ‘‘what-if’’ analysis. Simulation plays a different role in our
approach. In this approach, discrete-event simulation is used to estimate the
operational performance of all solutions suggested by the optimiser. Moreover,
unlike most simulation-based optimisation methods, in which decision variables
are only quantitative parameters for system control, our optimisation targets
incorporate structural, qualitative and quantitative variables. Different combina-
tions of facilities and transportation links result in different network structures.
Correspondingly, information flows and material flows in the simulation model are
different from one to another. The simulation model has to be regenerated each
time according to the selected network structure, and operational rules should be
adapted according to both the network structure and control parameters.

Due to the numerous combinations of decision variables, a flexible simulation-
modelling framework is indispensable to facilitate the automatic creation of

simulation models. This difficulty is addressed in our approach by two means. We
first develop an object-oriented modelling framework dedicated to production–
distribution network simulation. Principal facilities, such as plant and distribution
centre (DC), are modelled as C ++ classes. Further, we have defined and imple-
mented main operation rules for decision making during simulation to ensure the
connectivity of information and material flow when simulating a network with
varying structures.

17.4.2.1 Facility Modelling

One advantage of using simulation for performance evaluation is that we could
model complex network operations with respect to their dynamic nature. Four

Genetic Algorithm Optimizer

Discrete-Event Simulation Model

Simulation Model Builder

candidate

solution
performance

evaluation

Fig. 17.3 The simulation-based optimisation framework
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supply chain facilities respectively customer, distribution centre, plant and supplier
and transportation link are abstracted and each is implemented as a C ++ class.
We focus in this part on the presentation of the dynamic characteristics of each
facility and its associated operations considered in this framework.

• Customer: Customers generate demands for final products. Each customer could
generate demands for multiple types of products, with random or constant
quantity and frequency. The customer object contains information on expected
lead-time, used to measure the on-time delivery. All customer demands are
collected and assigned respectively to DCs or plants according to its corre-
sponding production strategy. During the discrete-event simulation, this object
interacts with the whole network through two events respectively for demand
generation and products receiving. Customer demands for products are served
by distribution centres (DC) directly. The inventory held in a DC is replenished
according to some given inventory control rules. It places replenishment orders
to its upstream DCs or directly to plants. Storage capacity is introduced in the
sense that over-capacity products can still be received and stored in the DC,
while an extra over-capacity penalty cost is charged for the excessive volume.
A DC is characterised by four events, (i) inventory check, (ii) ordering, (iii)
goods receiving and (iv) goods dispatching.

• Distribution centre: The inventory held in the DC is replenished according to
some given inventory control rules. It places purchasing orders to plants and
receives deliveries from plants through transportation links. Storage capacity is
introduced in the sense that over-capacity products can be still received and
stored in the DC, while an extra over-capacity cost is charged for the excessive
volume. Relevant costs are inventory holding cost, ordering cost and over-
capacity cost.

• Plant: Plants plays an important role. The maximum production capacity Qmax

of a plant is constant or variable following a given distribution. All types of
products share the capacity. Production lead-time is the period from the moment
when production is started for a certain product until the moment when the
corresponding final product is available. A minimum production quantity Qmin

is introduced for economics of scale, i.e., production will not be started if the
total waiting order quantity is not enough.

For a better understanding of the production process modelled in this
framework, Fig. 17.4 shows different events observed during the production
process.

More specifically, as soon as a production order is assigned to and then received
by a plant at time t0, the order is put in the waiting order queue. According to the
bill-of-material, the order will be confirmed and ready for production at time t1 if
all components are available. In this study, time t0 is equal to t1 since we assume
that components and raw materials are always available. The total waiting order
quantity Qtotal is checked at a given frequency. We note the interval between two
consecutive moments by Tintvl. Then we have Qtotal = N 9 Qmax ? Qres, where
integer N C 0 and Qres\Qmax. If the quantity Qtotal is enough (Qtotal C Qmin),
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then the production is started at time t2. Two cases are possible then, respectively
N = 0 and N[ 0:

(1) In case that N = 0, a volume of Qres will be produced and corresponding
products will be available at time t2 ? Tprod.

(2) In case that N[ 0, N times production of a volume Qmax will be started
consecutively at each possible starting moment. For the rest part Qres, the
production will be started if Qres C Qmin. Otherwise, the rest part will keep
waiting until the arrival of new production orders. For those treated orders, the
final products will be available respectively at t2 ? Tprod, t2 ? Tintvl ? Tprod,
t2 ? 2Tintvl ? Tprod and so on.

• Supplier: Manufacturing details are excluded in this study. Rather, important
information related to the FOB (free on board) price, charged duties for export
and supply lead-time are modelled as attributes. A minimum order size is
introduced to represent the manufacturing economies of scale. A supplier
accepts only those purchasing orders with a quantity larger than the minimum
order size. More precisely, during the simulation, the orders generated by
plants with a quantity less than the minimum order size are accumulated and
sent out as a single order when the total quantity is sufficient. This is not
explicit capacity limitation for suppliers, however we use ‘‘supply lead time’’
to reflect the limited supply capacity. Supply lead-time is a variable attribute
regarding the purchasing quantity. Supplier engagement cost is incurred if a
new supplier is included in the supplier portfolio, representing the costs for
contract negotiation.

• Transportation link: When products are ready for transportation, they are
transported from one facility to another through transportation links.
Products assigned to each transportation link wait in a queue. Transportation
lead-time and carrier capacity are modelled. An order could be divided into
sub-orders and transported in several times. Two types of rules are associ-
ated with this building block to manage issues related to carrier loading and
departure. Transportation cost is calculated depending on unit shipment cost
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and batch shipment cost. The unit shipment cost is applied to the shipped
product quantity, while batch shipment cost occurs once for each shipment.
During the simulation, a transportation link is characterised by two events:
(i) batch size check, and (ii) carrier departure.

Table 17.1 lists the principal attributes of the four facilities plus the transpor-
tation link. The attributes marked ‘‘*’’ could be either a constant or a random
number, following some historical data or a given distribution law.

17.4.2.2 Operation Rules

The principal operation rules considered in this study are introduced as follows:
Demand fulfilment rules concern how customer demands are handled at a DC.

Two non-parameterised local rules are used including first-come-first-service
(FCFS) and Priority Service (PS). With FCFS, customer demands are treated
sequentially according to their arrival date. With PS, the customer with the highest
priority is served first. These two rules are also used for production order

scheduling.
Three inventory control rules commonly used for inventory replenishment are

implemented respectively, (i) base stock: if the inventory position It is lower than
the base stock level B, the order quantity is (B–It); (ii) (R, Q): if the inventory
position It is lower than the reorder point R, the order quantity is Q; (iii) (s, S): if
the inventory position It is lower than the reorder point s, order (S–It).

Order assignment rules are introduced for the assignment of production/
replenishment orders, generated either by customers or by DCs, to different plants
and/or DCs. We defined two global rules to deal with this case. The first consists in
placing the whole order to one plant, according to plants’ and DCs’ performance
characteristics such as production capacity or length of the waiting order queue.
The second choice consists of splitting each order into several sub-orders, one for
each plant/DC, and then placing a sub-order at the same time to each plant/DC,
according to the order assignment weight wi for plant i in our case.

Table 17.1 Supply chain facilities’ attributes

Customer Distribution
centre

Plant Supplier Transportation link

Demand
quantity*

Storage
capacity

Maximum production
capacity*

FOB price* Transportation
lead-time*

Demand
interval*

Over-capacity
cost

Minimum production
quantity*

Duties* Carrier capacity

Behaviour
type

Holding cost Production lead-time* Supply lead-
time*

Unit shipment
cost*

Expected lead-
time

Ordering cost Minimum order
size*

Batch shipment
cost*

Service
priority

Engagement
cost
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Transportation allocation rules are necessary since there may be multiple links
between two nodes. This type of rule facilitates decision-making on which link to
use and how much to ship. Transportation allocation rules used in this chapter are
similar to order assignment rules. Either products are sent out using a unique link
determined according to transportation cost and lead-time or products are allocated
to all possible outgoing links proportional to the allocation weight associated with
each link. In the case of ratio-based rule, the weights are determined by the
optimiser if no appropriate parameter setting is available.

Carrier loading rules are used if a carrier capacity is specified for a transpor-
tation link. If the FCL (full carrier load) rule is applied, the carrier cannot depart
unless the quantity of the products for transportation reaches the carrier capacity,
while such a condition is omitted in the case of LCL (less than carrier load). These
rules are non-parameterised local rules.

Carrier departure rules define the conditions to trigger the shipment process.
Three non-parameterised local rules are used. Carrier departure can be scheduled
upon a regular base, i.e., ‘‘periodic’’, or following any ‘‘given schedule’’. In the case
of a ‘‘ready to go’’ rule, the shipment process can be triggered at any moment. These
rules are generic and flexible in the sense that they guarantee all simulation models
are meaningful and executable with respect to any network structures generated by
the optimiser. Orders could be forwarded to the desired facility with an appropriate
quantity and products are reasonably allocated and delivered through corresponding
transportation links. Simulation models with various network structures could thus
be created automatically without human intervention and successfully run.

The object-oriented structure of the simulation module enables a relatively easy
extension for various applications. More specifically, new attributes could be
added into facility building blocks and new operational rules could also be
designed and added into the simulation module. The utilisation of such operation
rules is further demonstrated in the next section with an application in the auto-
motive industry.

17.4.3 Multi-Objective Evolutionary Optimisation Methods

Classical multi-objective optimisation methods, such as weighted sum and goal
programming, suggest converting amulti-objective optimisation problem to a single-
objective optimisation problem by emphasising one particular Pareto-optimal
solution at a time. The weighted sum approach requires the appropriate weights,
which are often hard to set. To obtain the Pareto-optimal front, such methods should
be applied a large number of times with different weights.

Besides the classical multi-objective optimisation methods, a number of multi-
objective optimisation genetic algorithm (MOGA) variants have been developed in
the past decade. In a pioneering work in the field of Pareto-based MOGA, Fonseca
and Fleming [48] developed an approach that is relatively easy to implement. But
its performance is highly dependent on a parameter named ‘‘niche size’’, which is
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hard to define. Horn et al. [49] proposed a Niched Pareto GA (NPGA) that does not
use a ranking method. Rather, Pareto domination tournaments are used to select
individuals for crossover. NPGA runs very fast but its performance also depends
on a specific parameter that is hard to set.

Recently, Deb et al. [50] presented an improved elitist genetic algorithm named
Non-dominated Sorting Genetic Algorithm II (NSGA-II). The NSGA-II outper-
forms other MOGA variants due to three advanced operations: an improved
non-dominated sorting approach for ranking solutions of a population, a crowded-
comparison approach used in solution selection for diversity preservation and an
elitism selection procedure that combines parent and offspring population. These
operations are summarised in the following.

• Ranking: NSGA-II uses the ranking definition devised by to sort the solutions in
the current population. All the non-dominated individuals in the current gen-
eration are assigned rank 1. These points are then removed from the generation
temporarily and the next set of non-dominated individuals is identified and
assigned rank 2. This process continues until the entire population is ranked.
After the ranking procedure, fitness is assigned accordingly. From the imple-
mentation point of view, NSGA-II proposes a fast non-dominated sorting
approach, which reduces the sorting computation complexity from O(MN3) to
O(MN2), where M denotes the number of optimisation objectives and N denotes
the population size.

• Crowded-comparison operator: It is desired that a MOGA maintains a good
spread of solutions on the Pareto front. To preserve diversity, most MOGA
variants use fitness sharing for this aim, which involves a sharing parameter
rshare. The optimisation performance largely depends on the parameter setting.
However it is a challenging issue to set the parameter for fitness sharing
appropriately. NSGA-II replaces the sharing function with a parameter-free
crowded-comparison operator\ n. This operator guides the selection process
towards a uniformly spread-out Pareto-optimal front. Assume that every indi-
vidual i in the population has two attributes: non-domination rank (irank) and
crowding distance (idistance). The partial order (\ n) is defined as:

i\nj; if irank\ jrankð Þ or irank ¼ jrankð Þ and idistance [ jdistanceð Þð Þ ð17:1Þ

That is, between two solutions with different non-domination ranks, the solution
with the lower (better) rank is preferred. Otherwise, if both solutions belong to the
same front, the solution that is located in a less crowded region is preferred.
• Elitism selection procedure: Given the current population Pt and its offspring
population Gt which is generated from Pt and both of size N, the elitism
selection procedure is used to create the next population Pt +1 (see [50]). First, a
combined population Rt = Pt [ Gt is formed. The population Rt (size 2 N) is
sorted according to non-domination. Since all previous and current population
members are included in Rt, elitism is ensured. The set F1 called non-dominated
set contains all non-dominated solutions in Rt. If the size of F1 is smaller than N,
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we definitely choose all members of the set F1 for the new population Pt+1

and remove these solutions from Rt. The remaining members of the population
Pt+1 are chosen from the new non-dominated set. Thus, solutions from the set F2

are chosen next, followed by solutions from the set F3, and so on. This pro-
cedure is continued until no more sets can be accommodated. Say that Fk is the
last non-dominated set beyond which no other set can be accommodated. To
choose exactly N population members, the solutions of the last front Fk are
sorted using the crowded-comparison operator\ n in descending order and
choose the best solutions needed to fill all population slots. For more details
about GA and different MOGAs, reader is directed to [50–52].

17.4.4 Adapted NSGA-II Algorithm

The main steps of our adapted NSGA-II algorithm can be summarised as follows:
Step 1: Generate the initial population P of size N;
Step 2: Evaluate solutions in P using simulation;
Step 3: Rank solutions in P by the non-dominated sorting approach;
Step 4: Update the current best-so-far Pareto front P*, i.e., Pareto filtering;
Step 5: Select two parents for crossover by applying twice the binary tournament

selection. This type of selection consists in first selecting randomly two
solutions from P and then picking up the best-ranked one;

Step 6: Perform crossover with probability pc to generate two offspring;
Step 7: Perform mutation with probability pm for each offspring;
Step 8: Perform feasibility check and repair for each offspring;
Step 9: Add the two offspring in the offspring population G;
Step 10: Repeat steps 5–9 for obtain N offspring in G;
Step 11: Evaluate by simulation solutions in G;
Step 12: Generate the next population by the elitism selection procedure from

P and G;
Step 13: Repeat steps 4–11 till termination condition is reach.

We describe various sub-modules of NSGA-II in the following subsections for
solving our network design problem.

17.4.4.1 Solution Encoding

Given a supply chain network with all existing and potential facilities (suppliers,
plants and DCs), the network configuration consists in selecting a set of potential
facilities to open and existing facilities to consider. More specifically, each
potential facility is associated with a binary variable. These variables are coded
using binary genes in the chromosome (a GA term representing the set of
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optimisation variables). A gene of value ‘‘1’’ indicates that the corresponding
supplier or plant or DC is decided to be opened or considered. ‘‘0’’ means the
corresponding facility is excluded in the present configuration.

One or more operation rules are associated with each existing/potential facility
to sort different decision-making issues encountered in the operation of the facility.
The selection of the operation rules to use and the setting of the control parameters
of related operation rules are also encoded in the chromosome.

As a result, the solution is encoded in a 3-segment chromosome and designed
with respect to the decisions (see Fig. 17.5): (i) a binary chain indicating the open/
close decision of facilities (ii) a chain of integers indicating the operation rule for
each potential decision-making issue, (iii) a chain of integers for all control
parameters of all potential operation rules. Note that for a network configuration,
segments 2–3 related to closed facilities are not relevant and do not have any
impact on the performance of the network. Similar remark applies for segment 3
related to unselected operation rules.

17.4.4.2 Crossover and Mutation

Due to the different natures of the three segments in the chromosome, crossover
and mutation operations are performed independently on each segment. There are
two basic parameters of GA-crossover probability and mutation probability.
Crossover probability says how frequently crossover will be performed. If there is
no crossover, offspring (child) is exact copy of parents. If there is a crossover,
offspring is made from parts of parents’ chromosome. Crossover is made in hope
that new chromosomes will have good parts of old chromosomes and the new
chromosomes will be better. Mutation probability indicates how often will be parts
of chromosome mutated. If there is no mutation, offspring is taken after crossover
(or copy) without any change. If mutation is performed, part of chromosome is
changed. Mutation is made to prevent the algorithm from falling into local

extreme. The mutation rate should not be set too high; otherwise the algorithm will

become random search in the extreme case.
Classic crossover operators are implemented, such as one-point, two-point and

uniform crossover. A unique mutation method is used, which flips each bit in the
chromosome either from ‘‘0’’ to ‘‘1’’ or from ‘‘1’’ to ‘‘0’’ with given probability.
For this problem, three crossovers are used for this 3-segmented chromosome.

Binary variables
(network configuration)

Integer variables
(selection of

operational rules)

Integer variables
(parameters of

operational rules)

Fig. 17.5 The three-segment chromosome in the model
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Crossover operates on two chromosomes at a time and generates offspring by
combining both chromosomes features. After the crossover operation, the resulting
individual might fall into a local optimum. Hence, mutation is introduced as an
operator to interfere the chromosome with certain possibility. Figure 17.6 illus-
trates two genetic operations: one-point crossover and mutation.

17.4.4.3 Chromosome Feasibility Check and its Repairing Strategy

As the network structure changes during genetic operations, it is necessary to
introduce a network feasibility check and repair procedure. This procedure is used
to verify the feasibility of candidate networks and repair the infeasible ones if some
infeasible genes are occasionally generated (i.e., genes that violate any of the
restrictions) during crossover and mutation. More specifically, in this chapter, we
define the concept of network feasibility from the connectivity point of view.
A feasible network should satisfy two conditions: (i) for each site in the network
and for each type of input product, there is at least one valid upstream site which
supplies the product; (ii) for each site in the network and for each type of output
product, there is at least one valid downstream site which demands the product.
To better understand the concept of feasibility, consider the production–distribution
network design illustrated in Fig. 17.7.

Open or close decisions on three plants and DCs should be made. Given a
chromosome [0, 1, 0, 0, 1, 0], only plant 2 and DC2 are valid, drawn by solid lines
(non valid ones are drawn by dashed lines). As client1 demands for two types of
products (T1, T2) and no plant is available to produce product T1, the network is
considered infeasible. The repair procedure takes action by flipping the gene of
plant 1 from 0 to 1, such that the supply of product T1 for client1 is guaranteed by
plant 1. The corresponding chromosome is changed to [1, 1, 0, 0, 1, 0].

17.5 Automotive Real-life Case Study

In this section, we present a real-life case study from automotive industry to
illustrate the effectiveness of the proposed approach.

Fig. 17.6 Illustration of GA operators

476 L. Benyoucef and X. Xie



17.5.1 The Case Study

The automotive company is taking a strategic transformation effort and would like
to improve the profitability and efficiency of its supply chain. The production–
distribution network rationalisation project is one of the initiatives. As shown in
Fig. 17.8, the network is composed of three plants, five distribution centres and six
customer zones. More specifically, six customer zones generate independent sto-
chastic demands for vehicles. Four regional distribution centres respectively
RDC1, RDC2, RDC3 and RDC4 provide service to the six customers. Truck is the
major transportation mode for vehicles delivery. All the vehicles are produced by
the three plants (Plant 1, Plant 2 and Plant 3) and then consolidated in a nearby
distribution centre (CDC). From the CDC, vehicles are transported to the four
RDCs via two different transportation modes respectively boat and train. Stocks
are only held in CDC and RDC1. The other three RDCs (RDC2, RDC3 and RDC4)
are used as cross-dock points with temporary stock holding.

In order to keep the visibility of Fig. 17.8 to readers, intentionally we have
hidden some links connecting RDCs and customers. In fact, each RDC is con-
nected to each customer by exactly one transportation link using truck. There are
35 transportation links for which the characteristics are reported in Table 17.2.

In this study, each customer zone demand is divided into two parts: MTS
demand and MTO demand. Each MTO demand is forwarded directly to the plant,
which has the lowest workload. MTS demands are served by the RDCs. In case of
stock-out at RDC1, MTS demands are backlogged and put in the waiting queue
until the next replenishment. The MTS replenishment orders generated by RDC1
are sent to CDC, which replenishes its stock by sending production orders to the
plants. It is a multi-echelon inventory system.

Since the network is managed in a ‘‘pull’’ manner, all vehicles produced in
the plants already have their destination. There is no routing problem in this case.
All vehicles produced in the three plants are first accumulated at CDC by train.

Plant 1

Plant 2

T1,T2

T2

Client 2

Client 1

0 1 0 0 01

DC1

T1,T2

Plant 3

T1

T2DC2

DC3

Plant 1

Plant 2

T1,T2

T2

Client 2

Client 1

1 1 0 0 01

DC1

T1,T2

Plant 3

T1

T2DC2

DC3

Fig. 17.7 Feasibility check and repair: case of production–distribution network
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From CDC, MTO vehicles are sent to corresponding RDCs by train in order to
reduce the transportation time. When inventory replenishment orders arrive at
CDC, MTS vehicles are convoyed to RDC1 by boat for transportation cost saving.
MTS vehicles in RDC1 can be delivered directly to its serving customers or
transported to other RDCs (RDC2, RDC3 and RDC4) regarding the MTS demands
generated by their customers.

The attributes of each facility considered in the modelling and simulation
framework are listed respectively in Tables 17.3, 17.4 and 17.5. The data setting
used for the numerical experiments is also presented in these tables. Note that, in
Table 17.5, L1, L2 and L3 correspond to the transportations links between the
three plants and CDC. Links L4 is the sea transportation link between CDC and
RDC1. Links L5, L6, L7 and L8 represent the railway links between CDC and four
RDCs, respectively. Links L9, L10 and L11 are inter-RDC links which connect
RDC1 and other three RDCs for MTS vehicles forwarding. The rest are service
links, which connect four RDCs and all the six customers. Note that the lead-time
of link L4 follows a normal distribution with a standard deviation of 3 days. The
random lead-time is due to the long distance and the use of boat as major trans-
portation mode. All other transportation lead-times are set constant because of the
related short transportation distance.

17.5.1.1 Operation Strategies

The overall operation mechanism is described as following. Six ‘‘customer’’ are
modelled to generate weekly independent demands. The demand quantity follows
a normal distribution with different parameters for different customers. Each
customer demand is divided into MTS demand and MTO demand according to a
given ratio (given by the company). Regarding the order assignment rule, each

Fig. 17.8 The studied automotive production–distribution network
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Table 17.2 Transportation links

ID Transportation lead-time Unit cost
(€)

Min. batch
size

Max. batch
size

Departure
interval (day)

Distribution
type

Mean
(day)

Std. dev.
(day)

L1 Constant 1.0 10 500 500 1
L2 Constant 2.0 20 240 240 1
L3 Constant 3.0 30 240 240 1
L4 Normal 15.0 3 10 1000 5000 10
L5 Constant 5.0 100 240 240 3
L6 Constant 4.0 80 120 240 3
L7 Constant 3.0 70 120 240 3
L8 Constant 2.5 60 120 240 3
L9 Constant 1.0 20 120 240 3
L10 Constant 1.5 25 120 240 3
L11 Constant 2.0 30 120 240 3
L12 Constant 0.5 10
L13 Constant 0.5 10
L14 Constant 0.5 10
L15 Constant 1.0 20
L16 Constant 1.0 20
L17 Constant 1.5 30
L18 Constant 0.5 10
L19 Constant 0.5 10
L20 Constant 1.0 20
L21 Constant 0.5 10
L22 Constant 1.5 30
L23 Constant 1.5 30
L24 Constant 1.0 20
L25 Constant 1.0 20
L26 Constant 0.5 10
L27 Constant 0.5 10
L28 Constant 1.0 20
L29 Constant 1.0 20
L30 Constant 1.5 30
L31 Constant 1.5 30
L32 Constant 0.5 10
L33 Constant 1.0 20
L34 Constant 0.5 10
L35 Constant 0.5 10

Table 17.3 Plants

ID Production
capacity

Production lead-
time (day)

Unit production
cost (€)

Minimum
production lot size

Production
frequency

P1 400 12.0 5000 200 Daily
P2 400 11.0 5500 200 Daily
P3 220 14.0 5500 100 Daily
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MTO demand is forwarded directly to a plant which has the lowest workload,
while MTS demands are served by the RDCs with respect to the on-hand inventory
level at RDC1. In case of stock-out at RDC1, MTS demands are backlogged until
the next replenishment. We assume that it is possible to serve any customer from
any RDC. But for each specific scenario encountered during the optimisation
process, each customer is served by only one RDC for economics of scale. The
service relationship between customer and RDC is determined according to the
distance matrix between the customers and RDCs. Each customer is always served
by the closest RDC available.

Two inventory control policies, (R, Q) and (s, S), are considered for inventory
replenishment of MTS vehicles in CDC and RDC1. The rule selection is con-
sidered as an optimisation option. As replenishment orders of CDC are usually of
high volume, production orders of CDC are split into sub-orders according to the
order assignment weight associated with each plant. Thus, the order assignment
weight is also an optimisation variable. Then each plant is assigned its own pro-
duction order for MTS vehicles and for MTO vehicles. A production capacity is
set for each plant. FIFO (first-in-first-out) production policy is used to handle MTS
and MTO orders of each plant, i.e., all the orders are treated sequentially according
to their arrival time at the plant. Production lead-time is constant in this case. For
all transportation links, transportation lead-time is modelled as random or constant
parameters according to the scenario design.

To summarise, the decisions to be optimised include the open/close decisions
on three plants and three RDCs (RDC2, RDC3 and RDC4). The production order
assignment ratios are also to be optimised, which are indispensable in case with

Table 17.4 Distribution centres

ID Inventory check
interval (day)

Unit inventory
cost (€/day)

Unit ordering
cost (€)

Storage
capacity

CDC 2.0 10.0 10.0 5000
RDC1 7.0 10.7 10.0 1500
RDC2 None 34.0 10.0 200
RDC3 None 15.2 10.0 300
RDC4 None 32.3 10.0 300

Table 17.5 Customers

ID Demand Demand interval (day) MTO ratio (%)

Mean Std. dev

C1 160 30
C2 160 40 7.0 70
C3 160 10 7.0 70
C4 160 50 7.0 70
C5 160 10 7.0 70
C6 160 50 7.0 70
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multiple plants. Moreover, both qualitative and quantitative parameters are to be
optimised for inventory control policies at CDC and RDC1.

17.5.2 Instantiation of the Simulation-based NSGA-II

The simulation scenario is developed based on the simulation framework pre-
sented in Sect. 17.4. No real data is presented in this chapter due to confidentiality.
Instead, we focus on the description of important simulation-modelling features.

As described in Sect. 17.4, each simulation run would evaluate a scenario
comprising a set of decision variables. In our case, the decision variables include
the open/close decision for each plant (Plant 1, Plant 2 and Plant 3) and the three
RDCs (RDC2, 3, 4). A production order assignment weight is associated with each
open plant. Besides the strategic decisions, some qualitative variables, such as the
inventory control parameters for CDC and RDC1, are also taken into account.
Given the decision variables, we code the corresponding four-segment chromo-
some (Fig. 17.9). The first part contains six binary genes for open/close decisions
of the six facilities. Two qualitative variables are used in the second segment
indicating the choice of inventory policy in CDC and RDC1, of which the
parameters are included in the third segment with four integers. At the end of the
chromosome, three integers represent the production order assignment weight for
each plant for MTS replenishment orders issued by CDC.

After the simulation run, a number of performance indicators are evaluated to
measure the effectiveness and efficiency of the candidate network scenario.
A variety of costs are evaluated, including investment cost for facility open/close,
production cost, transportation cost, inventory holding cost and order handling cost.
Besides the evaluation of different costs, three service level indicators are evaluated
by the simulation model. The demand cycle time is the time period from the
moment when a customer order is placed to the moment when corresponding
vehicle is delivered to the customer. The on-time delivery rate is the percentage of
orders that are delivered within a preset lead-time. The fill-rate for MTS demands is
the percentage of MTS demands that are met directly from stock without
backlogging. The three indicators are key measurements of the service level of a
candidate network and should be taken into consideration together with the costs.

17.5.3 Experimental Results and Analysis

Some numerical experiments are conducted using a PC Pentium IV, 1.5 GHz and
512 Mo of RAM. The computational time is estimated to be 17.2 h. Note again
that no real data is presented in this chapter due to confidentiality.

Regarding the strategic nature of production–distribution network design, the
simulation horizon is set as 3 years in order to study more network dynamics.
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The warm-up period, required for the simulation model to reach a steady state, is
set as 3 months. For each set of decision variables, 5 replications are simulated
using different random number streams to smooth out residual randomness. Two
optimisation criteria are considered: (i) minimisation of the average total cost for
each vehicle unit; and (ii) minimisation of the average demand cycle time. Initial
population is randomly generated. We run the optimiser for 2000 GA generations
with a population size of 100. One-point crossover is employed, as the chromo-
some length is relatively short. The probability of crossover and the probability of
mutation is set as 0.9 and 0.1 respectively. Other genetic operations are those of
NSGA-II, such as the Pareto dominance ranking procedure and the elitist selection.

Figure 17.10 shows the best-so-far Pareto-optimal solution obtained. Each point
in the figure represents a solution with a best-so-far compromise between the total
unit average cost and the average customer demand cycle time. Each solution is with
a different network configuration, selection of operation rules and parameter setting.

From left to right, we observe that the cycle time is reduced intensively while
with very limited cost increase. This is the area that real supply chain operation
managers look to improve. While with further reduction of the demand cycle time,
the network cost increases tremendously. This is the area that draws attention in
practice. The decision-maker should choose the most appropriate solution
regarding the company’s specific requirements on cost and demand cycle time.
Furthermore, when we look in detail, we find that the solutions consist of mainly
two types of network configurations, respectively Plant 1-Plant 2-CDC-RDC1 and
Plant 1-CDC-RDC1. Two plants are used for more production capacity when short
demand cycle time is required. Otherwise, only plant 1 is needed which is more
cost-effective. All three RDCs (RDC2, RDC3 and RDC4) are closed. This cen-
tralised distribution network configuration with only RDC1 is expected to benefit
from economics of scale.

17.6 Textile Real-life Case Study

A real-life case study is presented in this section to demonstrate how the proposed
approach is applied to solve a complex problem from textile industry. Experi-
mental results are analysed for validation.

location decisions

of plants and RDCs
Inventory control

parameters

choice of

Inventory policy

production order

assignment weight

Fig. 17.9 Decision variables in the chromosome for the automotive case study
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17.6.1 The Case Study

The supply chain studied in the case is operated by a European company in the
textile industry. The company outsources its production to outside contractors and
it focuses only on product design, marketing and distribution issues. In this case
study, we consider one part of its global supply chain, which distributes a single
type of product, ‘‘classic boot’’, around Europe (Fig. 17.11). Due to confidenti-
ality, no real data of this case study is presented in this chapter.

Actually, the company operates a central DC to hold stock of boots and to meet
customer demands. A unique customer is considered representing the market.
According to the inventory control policy, the DC places replenishment orders
periodically. A unique supplier (S1 in Fig. 17.11) in the Far East is employed for
stock replenishment. All purchasing orders are forwarded to S1 directly. There is
only one transportation link (L1-1 in Fig. 17.11) that connects the DC and the
supplier. After a period of supply lead-time, required boots are collected into
containers and transported by boat from the Far East to a European harbour and
then to the DC by trucks.

The motivation of the company’s effort on supplier portfolio optimisation is
two-fold. Firstly, the current order-to-delivery lead-time (the period from the
moment when the DC places a purchasing order to the moment when the DC
receives required products) is relatively long, due to the long distance between the
Far East and Europe, and the utilisation of boats as the principal transportation
mode. Secondly, demands for ‘‘classic boots’’ have high variability and stock-outs
frequently occur. Hence, the company selects three other suppliers, besides the
existing one, as candidates to form a new supply portfolio. One potential supplier,
denoted by S2, is also located in the Far East that provides the same type of boot at
the lowest price. In order to reduce the order-to-delivery lead-time, the company
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also considers two additional transportation links for both suppliers from Asia.
One transportation link is that products are conveyed by plane from Asia to a
European airport, from where they are moved to the DC by truck. This is the
fastest but also the most expensive way. An intermediate transportation solution is
that products are transported by boat from the supplier to another Asian transit.
Then the products are conveyed by plane to a European airport, from where they
are finally moved to the DC by trucks. Two other potential suppliers are located in
Europe, denoted by S3 and S4 respectively. These two suppliers are more
responsive because they are closer to the DC. Only one transportation mode, using
truck, is provided for each of them. Their lead-times are shorter, but on the other
hand, their prices are higher than that of the two suppliers from the Far East.

The objective is to redesign the supply chain by possibly selecting new suppliers.
Decisions related to order splitting; transportation allocation and inventory control
should also be optimised. The decision-making is complicated by three issues:

• Multiple suppliers offer the same type of products at different prices and with
different supply lead times. A supplier that offers a lower price provides prod-
ucts with a longer lead-time. The trade-off between price and lead-time should
be studied.

• Some suppliers have more than one transportation link. Decisions incorporate
transportation link selection and transportation volume allocation, besides the
supplier selection and inventory control issues.

• Customer demand and transportation lead-time are stochastic. The uncertainties
should be well addressed during the optimisation process.

17.6.2 Instantiation of the Simulation-Based NSGA-II

Given the features of the case study, we customise the simulation model accord-
ingly. The attributes of each supply chain facility and specifications of each

L1-3 (plane+truck)

L1-1 (boat+truck)

L1-2 (boat+plane+truck)

L2-1 (boat+truck)

L2-3 (plane+truck)

L2-2 (boat+plane+truck)

L3 (truck)

L4 (truck)

Delivery

S2

Far East Distribution
Center

S1
Far East

S3

Europe S4

Europe

Customer

Fig. 17.11 Supply chain network structure of the case study
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operational rule are filled in as input data. More precisely, the customer is assumed
to generate daily demand. The demand quantity follows a normal distribution with
a mean of 300 and a standard deviation of 50. The customer is defined as
‘‘impatient’’, i.e., backorders are not allowed. Expected lead-time and service
priority are not needed for the unique impatient customer case. The daily inventory
holding cost is 0.25€ per pair of boots. The DC has a storage capacity of 3000 pairs
of boots, with an over-capacity penalty cost of 10€ per pair per day. Each
replenishment order incurs a fixed ordering cost of 100€. The parameters of the 4
candidate suppliers are summarised in Table 17.6. Supplier lead-times are
assumed to be independent of the purchasing order quantity in this study due to the
large production capacity of these candidate suppliers. Table 17.7 lists the features
of all transportation links.

The operational rules are also specified according to the case study features.
Customer demands are managed in a FCFS manner. The DC uses a weekly-review
(R, Q) rule for inventory control. In case of multiple suppliers, each replenishment
order is split into sub-orders according to the order assignment weight associated
with each supplier. Each sub-order is sent to the corresponding selected supplier.
When products are ready, transportation volume is allocated among the trans-
portation links according to the allocation weight of each link. Considering that the
transportation is completely outsourced to a third-part logistics company, we
assume that there is no limitation for transportation capacity. The allocated
products are loaded as a whole and the carrier departs immediately.

Table 17.6 Suppliers features

ID Engagement
cost (€)

Price
(€/pair)

Duties (%) Supply lead-time Minimum order
size (pair)

Mean (day) Std. dev. (day)

S1 0 12.0 10 15.0 3.5 1000
S2 100000 10.0 20 20.0 4.0 1000
S3 80000 14.0 0 10.0 2.5 500
S4 100000 16.0 0 8.0 2.0 500

Table 17.7 Transportation links features

ID Transportation lead-time Unit cost
(€/pair)

Batch cost
(€/batch)

Distribution
type

Mean
(day)

Std. dev.
(day)

L1-1 Normal 20 4.0 0.5 500
L1-2 Normal 8 2.5 2.0 800
L1-3 Normal 5 1.5 4.0 500
L2-1 Normal 25 5.0 0.5 500
L2-2 Normal 10 2.5 2.0 800
L2-3 Normal 5 1.5 4.0 500
L3 Constant 4 1.0 1.0 300
L4 Constant 2 1.0 0.2 300
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In this study, the supplier portfolio is the focal decision to make. Simulta-
neously, parameters of the selected operational rules should be determined,
including the order assignment weight for each supplier, the transportation
allocation weight for each transportation link and two parameters of the
(R, Q) inventory control rule. More specifically, the order assignment and
transportation allocation are handled as follows. A weight wj is assigned to each
transportation link j and transportation volume is assigned to different links
according to weights wj. No weight is explicitly associated with a supplier
i and we use the sum of weights of transportation links outgoing i as its weight
Wi. Each inventory replenishment order is then split among all selected sup-
pliers according to their weight Wi. Note that this is equivalent to assigning
separately a weight to each supplier and other weights for transportation links.
Figure 17.12 shows the structure of the customised chromosome comprising
three segments.

The first segment of binary variables represents the decisions for supplier
selection. The eight integers in the second segment represent the transportation
allocation weight wj assigned to each transportation link j. The weight can be an
integer between 0 and 31. In the third part, there are two integers representing the
reorder point R and order quantity Q of the distribution centre,respectively. R and
Q can be an integer within [5000, 12000] and [500, 4000], respectively. These
intervals are determined based on historic data and preliminary tests. Suppose that
given a candidate solution, coded as (0,1,0,1)-(0,0,0,30,0,15,0,15)-(6200,2000),
the model builder will decode the string, and build up a simulation model corre-
spondingly (Fig. 17.13). In this case, if the inventory position is discovered to be
below 6200, a replenishment order of 2000 pairs of boots will be placed. 75% of
the required boots will be supplied by S2 as the weights of the three transportation
links of S2 are respectively 30, 0 and 15. Since the weight associated with link
L2-2 is equal to 0, the transportation combination of plane and truck from S2 to
DC is not utilised. Hence, 1000 pairs of boots (50%) are transported through link
L2-1 and 500 pairs (25%) are transported through link L2-3. The rest (25%) are
purchased from S4 and delivered through the unique link L4.

After each simulation run, the KPIs related to various costs are retrieved,
together with the total demand quantity (Qdmd) and the total lost demands (Qlost).
The optimisation objectives are defined as: (i) minimisation of the average unit
cost per filled demand l1 = Ctotal/(Qdmd - Qlost); and (ii) maximisation of the
demand fill-rate l2 = (Qdmd - Qlost)/Qdmd.

Binary variables

for supplier selection

Integer variables

for transportation

allocation weights Integer variable

for reorder point

Integer variable

for order quantity

Fig. 17.12 Decision variables in the chromosome for the textile case study
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17.6.3 Experimental Results and Analysis

The simulation horizon is set to 3 years, with a warm-up period of 3 months.
For each set of decision variables, 10 independent simulation replications are
performed. The performance indicators are averaged across simulation runs.
These parameters are determined based on a series of preliminary tests. We further
verify the simulation quality of the obtained Pareto-optimal solutions. A 95%
confidence interval is constructed for the mean of average unit cost l1 and the
mean of customer demand fill-rate l2. As a result, the intervals obtained are around
[l1 - 0.1, l1 ? 0.1] and [l2 - 0.01%, l2 ? 0.01%], respectively. This indicates
that the Pareto-optimal solutions are statistically reliable.

The NSGA-II-based optimiser is run for 2000 generations with a population size of
100. The probabilities of crossover and mutation are set as 0.9 and 0.1, respectively.
Binary tournament selection and one-point crossover are employed. It takes 18.5 h to
finish the computation on a machine with a CPU Pentium IV 1.5 GHz.

Considering that customer service level is critical for the company, we focus on
the analysis of solutions that keep the demand fill-rate beyond 90%. Figure 17.14
shows the distribution of the best-so-far Pareto front for solutions with a demand
fill-rate higher than 90%. Each of the 70 points represents a specific solution that is
best-so-far Pareto-optimal. For further analysis, we look into the details of the
best-so-far Pareto set.

L2-1 (50%)

L2-3 (25%)

L4 (25%)

Delivery
S2

Distribution Center
(6200, 2000)

S4

Customer

Fig. 17.13 Network representation of a candidate solution

90%

92%

94%

96%

98%

100%

16 17 18 19 20 21

Average Unit Cost ( /Pair)

D
e

m
a

n
d

 F
ill

-r
a

te

Fig. 17.14 The best-so-far Pareto front
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Table 17.8 summarises several important solutions. We observe that the solu-
tions in the best-so-far Pareto set are composed of basically two categories of
supplier portfolios. Solutions with a demand fill-rate higher than 99.5% have a
common supplier portfolio that combines the cheapest supplier S2 with a European
supplier S3. Solutions with a demand fill-rate lower than 99.5% use a unique
supplier ‘‘S2’’ that is the cheapest supplier. Note that the most expensive trans-
portation link L2-3, which uses plane as the major mode, is excluded in both types
of supplier portfolio.

A number of tests are performed for sensitivity analysis. When the standard
deviation rL of the supply lead-time of supplier S2 is changed from 4 to 6 days,
the best-so-far solutions with a demand fill-rate higher than 99.63% turn to choose
only one supplier S1 using all three transportation links. To obtain the demand
fill-rate of 99.60%, the solution with rL = 4 and the solution with rL = 6 both
choose the same supplier portfolio S2 ? S3 and the transportation solution with
links L2-1, L2-2 and L3. The reorder point R and the order quantity Q are
respectively 6699 and 1653 if rL = 4, 7086 and 1582 if rL = 6. The average unit
cost is 18.43 if rL = 4 and 19.25 if rL = 6.7.

17.7 Conclusions and Future Work

We have presented a simulation-based multi-objective optimisation approach for
design of supply chain networks by integrating the strategic network configuration
decisions and the selection of best-suited operation strategies. The approach relies
on the one hand on a multi-objective genetic algorithm and a generic modelling
and simulation framework. The latter is designed in such a way to allow evaluation
of a network with all possible configurations and all possible operation strategies.
Stochastic phenomena along the whole supply chain (demand fluctuation, trans-
portation uncertainty, etc.) are taken into account during the optimisation process.

Table 17.8 Best-so-far Pareto solutions

l1 l2
(%)

Supplier portfolio Transportation allocation weight R Q

20.13 100 S2 ? S3 L2(19,16,0) ? L3(20) 7239 1619
19.86 99.99 S2 ? S3 L2(18,17,0) ? L3(22) 7100 1661
… … … … … …

18.32 99.51 S2 ? S3 L2(22,19,0) ? L3(22) 6813 1623
18.11 99.28 S2 L2(8,11,0) 8250 1308
18.01 99.24 S2 L2(16,18,0) 8429 1337
… … … … … …

16.13 90.39 S2 L2(23,20,0) 6932 1555
16.12 90.25 S2 L2(13,0,0) 9821 1106
16.10 90.09 S2 L2(10,0,0) 10048 1104
16.08 90.01 S2 L2(13,0,0) 10446 1103
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As perspectives, more supply chain facilities are to be defined and imple-
mented. Most importantly, a more comprehensive supply chain simulation
framework should be established in order to apply the method for more cases.
Some benchmarking works are also to be done for method performance assess-
ment, comparing to the results obtained by analytical methods for some simplified
cases. Another important research direction is to take into account risk related
issues in the supply chain design. The approach presented in this chapter cannot be
easily extended, as the computation time would be prohibitive.
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