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Preface

The past decades have witnessed various applications of systems engineering
methodologies to urban planning, economic models, power systems, industrial pro-
cesses, transportation networks, and others. Due to economic factors and socio-
political constraints, a fundamental constituent of these applications is frequently
described by the following attributes: multidimensional, highly interacting, and

complex models. Several approaches have been developed [2–4, 6, 11, 14] to deal
with these models with the intention of reducing some measure of complexity in
the course of analysis and design. Concepts and key ideas from economics, man-
agement science, and operation research have been exploited successfully and gen-
eralized in a dynamic framework. These continuous efforts systematically establish
a body of theories pertaining to interconnected systems (ICS). The voluminous lit-
erature on theories and applications of large-scale systems (LSS), interconnected
systems (ICS) or complex dynamical systems (CDS) includes survey articles and
textbooks and monographs [1, 3, 5] and [7–13].

Throughout this book and in view of our technical experience, we will adopt
decentralized systems (DS) as the most convenient designation for LSS, ICS or CDS
since the common denominator in these systems is to deploy decentralization in the
analysis, control, filtering and processing tasks. Equivalently stated, the effort of any
task is essentially distributed among various units who are cooperating to achieve
the desired objective.

It is often true that a book is developed through a long tour that consists of many
tiny steps and interactions with many people. While the major idea of writing a
book on decentralized systems has been in the back of my mind for quite long time,
the thrust behind this volume started in July 2009 when I met with Oliver Jackson
during the Systems and Control Conference in Saint Petersburg, Russia. It has been
a good opportunity to start a fruitful communication channel that ended with writing
the present book.

Over the past decades it was highly interesting and extensive activity to watch and
interact with the global scientific/engineering development of decentralized systems
leading to thousands of papers published and/or talks presented in journals and con-
ferences about various related aspects. This book is basically an outgrowth of my
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x Preface

academic research work and postgraduate teaching activities. It provides an in-depth
treatment to problems of interconnected systems which some requirements are im-
posed in the course of analysis and/or design.

In engineering and economic organizations, one can easily recognize the pres-
ence of several decision makers (DMs) that

1. generate decisions and control variables by acting on the same system,
2. have access to different information coming from the controlled system and
3. pursue different goals.

Such organizations are addressed in the wide research area called “game theory.”
For the purpose of uniformity, we will adopt the following definition of an in-

terconnected system throughout this book: a dynamical system which contains a

number of interdependent constituents which serve particular functions, share re-

sources, and are governed by a set of interrelated goals and constraints.
It is manifested that “complexity” is an essential and dominating problem in

systems theory and practice. It leads to severe difficulties that are encountered in
the tasks of analyzing, designing, and implementing appropriate control strategies
and algorithms. With focus on the control design goal, these difficulties arise mainly
from the underlying multi-modes of operation and gain perturbations, which from
now onwards we term them as design constraints. Given the advanced development
in robust control and time-delay theories, we treat uncertain time-delay systems as
basic module in our subsequent analysis.

From this perspective, the notion of DS introduced in the context of control engi-
neering problems arose when it became clear that there are real world control prob-
lems that cannot be solved by using conventional approaches. Such typical problems
arise in the control of interconnected power systems with strong interactions, water
systems which are widely distributed in space, traffic systems with many external
signal, or large-space flexible structures. These problems recall for new ideas for
dividing the analysis and synthesis of the overall system into independent or almost
independent subproblems, for dealing with the incomplete information about the
system, for coping with the uncertainties and for dealing with time-delays.

This book is written about recent advances in decentralized systems theories
and methods with design constraints. It aims at providing a rigorous framework
for studying analysis, stability and control problems of DS while addressing the
dominating sources of design constraints. The primary objective is to focus on ro-
bust decentralized methods based on linear matrix inequalities framework while
tacking into consideration possible design considerations and/or constraints. Such
constraints include the presence of quantizers, nonlinear/overflow elements, en-
coder/decoder and networks.

The main features of the book are:

(I) It provides key concepts of decentralized systems with their proofs followed
by efficient computational method;

(II) It establishes decentralized control techniques under design constraints; and
(III) It gives some representative applications.
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Chapter 1

Introduction

The book covers some of the past and present results pertaining to the area of large-
scale, interconnected or complex systems. An emphasis is laid on decentralization,
decomposition, and robustness. These methodologies serve as effective tools to
overcome specific difficulties arising in large-scale complex systems such as high
dimensionality, information structure constraints, uncertainty, and delays. Several
prospective topics for future research are introduced in this contents. The subse-
quent chapters are focused on recent decomposition approaches in interconnected
dynamic systems due to their potential in providing the extension of decentralized
control into networked control systems.

1.1 Introduction

The past several decades have witnessed an increasing amount of attention paid to
the general subject area of large-scale systems. This comes quite naturally from
the relatively rapid growth of our societal needs which often result in multidimen-
sional, highly interacting, complex systems which are frequently stochastic in na-
ture. Though the existence of large-scale systems as objects for understanding and
management is repeatedly affirmed, there has yet been proposed no precise defini-
tion for largeness nor generally acceptable quantitative measures of scale. From the
viewpoint of developing analytical models, a system is large when its input-output
behavior cannot be understood without curtailing it, partitioning it into modules,
and/or aggregating its modularized subsystems. On the other hand, from a systems
viewpoint, a system is large if it exceeds the capacity of a single control struc-
ture. Thus one can enumerate several viewpoints regarding scale. The definition of
a large-scale system we will adopt here is a system which contains a number of in-
terdependent constituents which serve particular functions, share resources, and are
governed by a set of interrelated goals and constraints [9].

Motivated by the prominent structural aspects of an organization and some facets
from the area of automation and control of complex industrial systems and general
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man made communication problems, theoretical investigations were conducted at
the Systems Research Center of Case Western Reserve University starting about
1961. The overall goal was to develop a conceptual framework to the mathemati-
cal theory of complex multi goal decision making systems. Basically, the main idea
behind this approach is the recognition of the hierarchical order in living systems
as well as many existing physical systems. In fact, this approach takes the position
that for a mathematical theory to claim to be dealing with large-scale complex sys-
tems, the complexity of the real systems must be reflected in the structure of the
model [7].

Although there is no universal definition of a large-scale system, it is commonly
accepted that such systems possess the following characteristics [5]:

1. Large-scale systems are often controlled by more than one controller or decision
maker involving “decentralized” computations,

2. The controllers have different but correlated “information” available to them,
possibly at different times,

3. Large-scale systems can also be controlled by local controllers at one level whose
control actions are being coordinated at another level in a “hierarchical” (multi-
level) structure,

4. Large-scale systems are usually represented by imprecise “aggregate” models,
5. Controllers may operate in a group as a “team” or in a “conflicting” manner with

single- or multiple-objective or even conflicting-objective functions, and
6. Large-scale systems may be satisfactorily optimized by means of suboptimal or

near-optimum controls, sometimes termed a “satisfying” strategy.

1.2 Feedback Control

At first sight, feedback control of large-scale systems poses the ‘classical’ control
problem: for a given process with control input u(t) and observed output y(t) find
a controller that ensures closed-loop stability and asymptotic regulation and assigns
the loop a suitable input-output (I/O) behavior. This problem is usually solved in
two steps [6]:

1. The design phase: for a given model of the plant and expected classes of distur-
bances d(t) and command signals v(t) a control law

uc(t) = K(y(t) − v(t))

is chosen which satisfies the specifications given for the closed-loop system.
2. The execution phase: a controller with the control law uc(t) is applied to the pro-

cess, that is at every instant of time t the observed signal y(t) and the command
v(t) are combined according to the control law in order to determine the control
input uc(t).

This well-known control problem has been treated by classical and modern con-
trol theory under the crucial assumptions that there is a unique plant with a unique
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controller and that all computations are based on the whole information about the
plant. This means that the design problem is solved for a model that describes the
process as a whole. In this case, the controller receives all sensor data available and
determines all input signals of the plant. In other words, there is unit thought of as
a centralized decision maker in charge of all information available for a single unit
that designs and applies the controller to the plant. Hence, multivariable control the-
ory deals with the centralized design of centralized controllers. Obviously, such an
assumption can hardly be satisfied if modern technological or societal systems have
to be controlled.

Practical control technologies rely on the cooperation of many different opera-
tional units or transportation systems and all their parts are linked by common re-
sources, by material flows or through information networks. Consequently, neither
a complete model (a priori information) nor a complete set of measurement data
(a posteriori information) can be made available for a centralized decision maker.

For reliability considerations, the overall design problem has to be broken down
into different, albeit coupled, subproblems. As a result, the overall plant is no longer
controlled by a single controller but by several independent controllers, which are
called control stations and which all together represent a decentralized controller.
These control stations are no longer designed simultaneously on the basis of a com-
plete knowledge of the plant, but in different design steps by means of models that
describe only the relevant parts of the plant.

This fundamental difference between feedback control of ‘small’ and ‘large’
systems is usually described by the idea of information structure. The information
structure describes the way in which a priori and a posteriori information is trans-
ferred among decision-making units.

1.2.1 Information Structure

One of the major issues that manifests large-scale systems is the role governed by
the idea of information structure. Initially, in case of centralized systems, refer to
Fig. 1.2, the basic feedback problem is to find control input vector u(·) on the ba-
sis of the a priori knowledge of the plant S described by its design model in the
presence of a class of disturbances v(·) and the control goal given in the form of
the design requirements {C} and the a posteriori information about the outputs y(·)

and the command signals r(·). Classical information structure corresponds to cen-
tralized control as illustrated by Fig. 1.1. It is important to note that the controller
receives all sensor data available and determines all input signals of the plant. In
other words, all information is assumed to be available for a single unit that designs
and applies the controller to the plant. In present-day technologies where several
different units are coexist side by side, neither a complete model (a priori informa-
tion) nor a complete set of measurement data (a posteriori information) can be made
available for a centralized decision maker. Instead, the overall design problem has to
be broken down into different, albeit coupled, subproblems. As a result, the overall
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Fig. 1.1 Information
structure: centralized control

Fig. 1.2 Information structure: decentralized control

plant is no longer controlled by a single controller but by several independent con-
trollers constituting a decentralized controller structure. Moreover, these controllers
are no longer designed simultaneously on the basis of a complete knowledge of the
plant, but in different design steps by means of models that describe only the rel-
evant parts of the plant. This amounts to non-classical information structure which
arises in decentralized design schemes as shown in Fig. 1.2.

1.2.2 System Representation

There are available two main structures of the models of large-scale systems dis-
tinguished by the degree to which they reflect the internal structure of the overall
dynamic system. These structures are called multi-channel systems entailing the
presence of multi-controllers and interconnected systems incorporating coordinated
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Fig. 1.3 Multi-controller
structure

Fig. 1.4 Coordinated control
structure

controllers as illustrated in Figs. 1.3 and 1.4. In multi-channel systems, the associ-
ated input and output vectors are decomposed into subvectors constituting ns chan-
nels, while the system is considered as one whole. More on this type of systems will
be mentioned in later chapters.

1.2.3 Team Problems

In engineering and economic organizations, there may be several decision makers
(DMs) that

(A) generate decisions and control variables by acting on the same system;
(B) have access to different information coming from the controlled system; and
(C) pursue different goals.

Such organizations are addressed in the wide research area called “game theory”.
As to point (C), if all the decision makers cooperate on the accomplishment of a

common goal, the organization becomes a team and the related optimization prob-
lems are named team optimal control problems [4].
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1.2.4 General Methodologies

Interconnected systems operate with interactions among subsystems. They are rep-
resented by signals through which subsystems interact among themselves. These
signal are internal signals of the overall system.

To cope with the aforementioned appearance of the complexity issues, several
general methodologies have been and are being elaborated. Most of them belong to
one of the following three groups [8]:

1. Model simplification,
2. Decomposition,
3. Decentralization

The idea of model simplification is to come up with a reasonable model that pre-
serves or inherits most of the main trends (features or dominant modes) of the orig-
inal large-scale/complex system, see [1–3, 5, 8] for further elaboration. The decom-

position (tearing) process amounts to generating a group of subsystems (smaller
in size) from the original large-scale/complex system. This could be achieved for
numerical purposes or along the boundaries of coupled units. In turns out that de-
composition is only a part of two-step procedure, the second of which is coordi-

nation (recomposing) which amounts to synthesizing the overall solution from the
generated solutions of the subsystems (subsolutions). There are two aspects of de-

centralization: the first issue is concerned with the information structure inherent in
the solution of the given control problem and refers to the subdivision of the pro-
cess in terms of the model and the design goals. The other issue is associated with
on-line information about the state and the command to generate the decentralized
control law. The net result is that a completely independent implementation of the
controllers is made viable. There is a variety of different motivating reasons for the
decentralization of the design process such as weak coupling of subsystems, sub-
systems have contradictory goals, subsystems are assigned to different authorities,
or the high dimensionality of the overall system. Following [6], the principal ways
of decentralizing the design tasks belong to two groups: decentralized design for

strongly coupled subsystems and decentralized design for weakly coupled subsys-

tems.
The decentralized design for strongly coupled subsystems means that at least an

approximate model of all other subsystems must be considered for the design of any
subsystem under the current design, while the coupling can be neglected during the
design of individual control stations when considering the decentralized design for
weakly coupled subsystems.

1.2.5 Hierarchical Systems

One of the fundamental approaches in dealing with large-scale static systems was
the idea of decomposition treated theoretically in mathematical programming by
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treating large linear programming problems possessing special structures. The ob-
jective was to gain computational efficiency and design simplification. There are
two basic approaches for dealing with such problems:

1. The coupled approach where the problem’s structure kept intact while taking
advantage of the structure to perform efficient computations [4], and

2. The decoupled approach which divides the original system into a number of
subsystems involving certain values of parameters. Each subsystem is solved
independently for a fixed value of the so-called “decoupling” parameter, whose
value is subsequently adjusted by a coordinator in an appropriate fashion so that
the subsystems resolve their problems and the solution to the original system is
obtained.

1.3 Outline of the Book

During the past several decades, there have been real world system applications for
which the associated control design problems cannot be solved by using one-shot
approaches. Typical applications arise in the areas of interconnected power sys-
tems with strong coupling ties among network elements, water systems which are
widely distributed in space, traffic systems with many external signal, or large-space
flexible structures with interacting modes. Models of such systems are frequently
complex in nature, multidimensional and/or composed of highly interacting subsys-
tems. Several approaches to deal with these systems have been developed based on
key ideas from economics, management sciences and operations research. Over the
years, such approaches have been dynamically evolved into a body of “large-scale
systems (LSS) theories”.

This book is written about large-scale systems theories. It aims at providing a
rigorous framework for studying analysis, stability and control problems of LSS
while addressing the dominating sources of difficulties due to: dimensionality; infor-
mation structure constraints; parametric uncertainty and time-delays. The primary
objective is three-fold: to review past methods and results from a contemporary
perspective, to examine presents trends and approaches and to provide future pos-
sibilities, focusing on robust, reliable and/or resilient decentralized design methods
based on linear matrix inequalities framework.

The main features of the book are:

1. It provide an overall assessment of the large-scale systems theories over the past
several decades,

2. It addresses several issues like model-order reduction, parametric uncertainties,
time-delays, control/estimator gain perturbations,

3. It presents key concepts with their proofs followed by efficient computational
method,

4. It establishes decentralized control techniques for time-delay and delay-free sys-
tems, and

5. It gives some representative applications.



8 1 Introduction

1.3.1 Methodology

Throughout the book, our methodology in each chapter/section is composed of five-
steps:

• Mathematical Modeling in which we discuss the main ingredients of the state-
space model under consideration.

• Definitions and/or Assumptions—here we state the definitions and/or constraints
on the model variables to pave the way for subsequent analysis.

• Analysis and Examples—this signifies the core of the respective sections and sub-
sections which contains some solved examples for illustration.

• Results which are provided most of the time in the form of theorems, lemmas and
corollaries.

• Remarks which are given to shed some light of the relevance of the developed
results vis-a-vis published work.

In the sequel, theorems (lemmas, corollaries) are keyed to chapters and stated in
italic font with bold titles, for example, Theorem 3.4 means Theorem 4 in Chap. 3
and so on. For convenience, we have provided an appropriate list of references cited
at the end of each chapter. Relevant notes and research issues are offered at the end
of each chapter for the purpose of stimulating the reader.

We hope that this way of articulating the information will attract the attention of
a wide-spectrum of readership.

1.3.2 Book Organization

The book is primarily intended for researchers and engineers in the system and con-
trol community. It can also serve as complementary reading for large-scale system
theory at the post-graduate level. The book is divided into nine chapters.

Chapter 1 provides an overview of the concepts and techniques of large-scale
dynamic systems and introduces the system description and motivation of the study.
Then it sets forth formal definitions pertaining to the scope and objectives of the
book.

Chapter 2 treats the first part of decentralized control methods for some classes
of nonlinear interconnected dynamical systems.

Chapter 3 deals with the second part of decentralized control methods for some
classes of nonlinear interconnected dynamical systems.

Chapter 4 examines stabilization and feedback control of decentralized systems
using multi-controller structures.

Chapter 5 focuses on decentralized control in the presence of quantizers within
continuous-time and discrete-time systems switched. Once again, the analytical de-
velopment starts with time-delay systems then generates the ordinary systems as
important special cases.
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Chapter 6 examines large-scale traffic systems and identifies their features. Ap-
propriate models are derived using continuous and discrete formalisms. Flexible
routing policies are derived under different operating conditions.

Chapter 7 considers large-scale systems with Markovian jumping parameters.
The analytical development deals with ordinary systems as well as time-delay sys-
tems.

Chapter 8 deals with decentralized adaptive control strategies of interconnected
systems.

Chapter 9 contains some relevant mathematical lemmas, basic algebraic inequal-
ities and standard stability theorems.

Throughout the book and seeking computational convenience, all the developed
results are cast in the format of family of LMIs. In writing up the different top-
ics, emphasis is primarily placed on major developments attained thus far and then
reference is made to other related work.

In summary, this book covers decentralized control for interconnected systems
under alternative design considerations which is supplemented with rigorous proofs
of closed-loop stability properties and simulation studies. The material contained
in this book not only organized to focus on the new developments in the analysis
and control methods for LSS, but it also integrates the impact of the design con-
straints like delay-factor, information structures, interaction pattern, quantization
and overflow, switching among multi-controllers. After an introductory chapter, it
is intended to divide the book into self-contained chapters with each chapter being
equipped with illustrative examples, problems and questions. Each chapter of the
book will be supplemented by an extended bibliography, appropriate appendices
and indexes. It is planned while organizing the material that this book would be ap-
propriate for use either as graduate-level textbook in applied mathematics as well as
different engineering disciplines (electrical, mechanical, civil, chemical, systems),
a good volume for independent study or a suitable reference for graduate-students,
practicing engineers, interested readers and researchers from wide-spectrum of en-
gineering disciplines, science and mathematics.
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Chapter 2

Decentralized Control of Nonlinear Systems I

In this chapter, we examine decentralized control techniques for classes of nonlinear
interconnected systems. We identify classes for the system structure along with the
underlying assumptions and emphasize the information and design constraints. The
subsequent sections focus on a class of large-scale interconnected minimum-phase
nonlinear systems with parameter uncertainty and nonlinear interconnections. The
uncertain parameters are allowed to be time-varying and enter the systems nonlin-
early. The interconnections are bounded by nonlinear functions of states. The prob-
lem we address is to design a decentralized robust controller such that the closed-
loop large-scale interconnected nonlinear system is globally asymptotically stable
for all admissible uncertain parameters and interconnections. It is shown that de-
centralized global robust stabilization of the system can be achieved using a control
law obtained by a recursive design method together with an appropriate Lyapunov
function.

The problem of decentralized output-feedback tracking with disturbance atten-
uation is addressed for a new class of large-scale and minimum-phase nonlin-
ear systems. Common assumptions like matching and growth conditions are not
required for the underlying decentralized system with a diagonal structure. An
observer-based decentralized controller design is presented. The proposed decen-
tralized output-feedback laws achieve asymptotic tracking and internal Lagrange
stability when the disturbance inputs disappear, and, guarantee external stability in
the presence of disturbance inputs. These external stability properties include Son-
tag’s ISS and iISS conditions and standard L2-gain property.

2.1 Classes of Nonlinear Interconnected Systems

In what follows, we summarize the classes of nonlinear interconnected systems
(NIS) that will be treated in the subsequent sections. We focus on the features of
each class before addressing the topics of stability analysis and decentralized output-
feedback control design.

M.S. Mahmoud, Decentralized Systems with Design Constraints,
DOI 10.1007/978-0-85729-290-2_2, © Springer-Verlag London Limited 2011
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2.1.1 Class I

In recent years, modern control methods have found their way into decentralized
design of interconnected systems leading to a wide variety of new concepts and re-
sults. This includes, but not limited to, the framework of H∞/H2 design and linear
matrix inequalities (LMIs) [1] which has been shown [6, 44] to be very attractive
particularly when coping with high dimensional systems. Applications having so-
phisticated theoretical generalizations of the underlying concepts have been in con-
trol of multi-agent systems, such as platoons of vehicles on highways and in the air,
interconnected spatially-invariant systems, and large-scale power systems [5–7]. It
turns out that, the decentralized control designs imply, either explicitly or implicitly,
that the system, with local feedback loops closed around the subsystems, remains
stable despite changes in its interconnection topology [4, 60, 66, 67].

2.1.1.1 System Description

According to this class, a nonlinear interconnected system S is considered to be
composed of a finite number N of subsystems represented by

Sj : ẋj = Ajxj + Bjuj + hj (t, x),
(2.1)

yj = Cjxj ,

where xj ∈ ℜnj , uj ∈ ℜmj and yj ∈ ℜpj are the subsystem state, input and output
vectors, respectively, x = [xt

1, . . . , x
t
N ]t is the global state vector with

∑N
i=1 nj = n

and hj (t, x) : ℜn+1 → ℜnj are piecewise continuous vector functions in both argu-
ments, satisfying in their domains of continuity the following quadratic inequalities

ht
j (t, x)hj (t, x) ≤ σ̃−2

j xt H̃ t
j H̃jx, (2.2)

where σ̃j > 0 are bounding parameters and H̃j are constant αj × n matrices, j =
1, . . . ,N .

The interconnected system can be represented as

S: ẋ = Ax + Bu + h(t, x),
(2.3)

y = Cx,

where

u = [ut
1, . . . , u

t
N ]t , y = [yt

1, . . . , y
t
N ]t ,

h(t, x) = [h1(t, x)t , . . . , hN (t, x)t ]t

are the global input, output and interconnection vectors, respectively, with
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N∑

i=1

mj = m,

N∑

i=1

pj = p,

A = diag[A1, . . . ,AN ], B = diag[B1, . . . ,BN ], C = diag[C1, . . . ,CN ]

and h(t, x) is the global interconnection function. Proceeding further, define H̄ t =
[H t

1

... . . .
... H t

N ], where H̃j , j = 1, . . . ,N , are defined in (2.2), and

Γ̃ = diag[γ̃1Iα1, . . . , γ̃N IαN ], γ̃j = ᾱ−2
j , Iαj ∈ ℜαj×αj

then, it is always possible to find matrices H,Γ such that

h(t, x)th(t, x) ≤ xt H̄ t Γ̄ −1H̄x ≤ xtH tΓ −1Hx, (2.4)

where

H = diag[H1, . . . ,HN ], Hj ∈ ℜαj ×nj , Γ = diag[γ1Iα1, . . . , γN IαN ],
j = 1, . . . ,N.

It is not difficult to show that matrices H and Γ satisfy

λM(H̄ t H̄ )min
i

γ̄j ≤ max
i

γj min
i

λmin(HjH
t
j )

represent a possible choice; different structures can be chosen in accordance with
the problem under consideration, see [55, 58] for further elaboration.

Remark 2.1 The main feature of this class is its suitability to develop an LMI-based
method for designing dynamic output feedback for robust decentralized stabiliza-
tion of interconnected systems. This scheme is selected as a methodological basis
for several reasons [55]. First, the method applies to systems composed of linear
subsystems coupled by nonlinear interconnections. This type of model is attractive
since, in most practical situations, local subsystem models are known with suffi-
cient precision to make the linearization successful, while the interconnections are
largely unknown: only their bounds are available for control design. Second, the
scheme allows for maximization of interconnection bounds, and third, the result-
ing closed-loop system is connectively stable. Elaborations of the basic scheme in
[55] presented in the literature have been related either to the state feedback [55], or
to output feedback schemes containing an observer of Luenberger type [9, 46–54,
56–65, 67–89].

As will be shown later on that by assuming decentralized dynamic linear out-
put feedback with a general structure, we apply the classical methodology of H∞
controller design [6, 11, 24] to the basic scheme from [55]. As a result, a new two-
step LMI-based design procedure is obtained, providing at the first step the block-
diagonal Lyapunov matrix, together with the robustness degree vector, and at the
second step the decentralized controller parameters.
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2.1.2 Class II

Large-scale systems, frequently consisting of a set of small-interconnected subsys-
tems, can be found in many applications such as electric power systems, indus-
trial manipulators, computer networks, to name a few. On one hand, the central-
ized control of these systems is usually infeasible mainly due to the requirement
of a formidable amount of information exchange. In this regard, decentralized con-
trol is often preferable [60] whereby a control law based only on local informa-
tion is designed and implemented. In view of the interconnections among subsys-
tems, the design of a decentralized control is in general more difficult than that
of a centralized control. On the other hand, due to their complexity, exact model-
ing of large-scale systems is usually impossible. Therefore, it is of practical sig-
nificance that decentralized control must reflect such design constraints by taking
into account possible modeling uncertainties. Usually, the uncertainties for inter-
connected systems appear not only in local subsystems but also in interconnec-
tions.

From the literature, decentralized robust control for interconnected linear sys-
tems with uncertainties satisfying the so-called strict matching conditions was in-
vestigated in [3, 17, 56] and references cited therein. The interconnections among
subsystems treated in these works are mostly bounded by first-order polynomials.
It was pointed out in [13, 18, 38, 56] that interconnected systems with a decentral-
ized control based on the first-order bounded interconnections may become unsta-
ble when the interconnections are of higher order. Decentralized robust stabiliza-
tion was considered in [20] for systems with interconnections bounded by some
nonlinear functions and uncertainties satisfying the so-called matching conditions.
Decentralized adaptive control for a class of interconnected nonlinear systems was
proposed in [22, 25] based on exact linearization by following the development of
centralized control of nonlinear systems [23, 32, 39] and where the strict matching
condition was relaxed and higher-order interconnections among subsystems were
introduced.

2.1.2.1 System Description

The second class of systems considered in this chapter looks at a large-scale non-
linear system as comprised of N interconnected subsystems with time-varying un-
known parameters and/or disturbances entering nonlinearly into the state equation.
The j th subsystem is given as

żj = fi0(zj , xj1) + gj0(zj , x̄j0,Zj , Yj ; θ)xj1,

ẋj1 = xj2 + gj1(zj , x̄j1,Zj , Yj ; θ),

ẋj2 = xj3 + gj2(zj , x̄j2,Zj , Yj ; θ),

... (2.5)
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ẋj,rj −1 = xj,rj + φj,rj −1(zj , x̄j,rj −1,Zj , Yj ; θ),

ẋj,rj = vj + φj,rj (zj , x̄j,rj ,Zj , Yj ; θ),

yj = xj1,

where x̄j,k = [xj1 xj2 . . . xjk]t with x̄j0 = xj1, xj = x̄jrj , (zj , xj ) is the state vector
of the j th subsystem with

zj ∈ ℜnj −rj , Zj = [zt
1 zt

2 . . . zt
j−1 zt

j+1 . . . zt
N ]t ,

Yj = [y1 y2 . . . yj−1 yj+1 . . . yN ]t

and vj ∈ ℜ is the control input, yj ∈ ℜ is the output, θ is a vector of unknown,
time-varying piecewise continuous parameters and/or disturbances which belong to
a known compact set Ω , the vector fields fj0 and φjk are smooth with fj0(0,0) = 0
and gjk(0,0,0,0; θ) = 0, ∀θ ∈ Ω , 1 ≤ j ≤ N , 0 ≤ j ≤ rj . Observe that the vector
(gjk), k = 0,1,2, . . . , rj , represents the interconnections of the ith subsystem with
the other subsystems.

Remark 2.2 In what follows, we consider the decentralized robust control prob-
lem for a wider class of interconnected systems with partially feedback linearizable
subsystems and nonlinear parameterization of time-varying parametric uncertainty.
Observe from (2.5) that the interconnections involve the zero-dynamics and out-
puts of other subsystems. This is in contrast to [25] where an adaptive stabilization
was considered for a class of interconnected nonlinear systems whose subsystems
are exactly feedback linearizable and with linear parameterization of parameter un-
certainty. Geometrical conditions on the isolated subsystems and interconnections
such that the interconnected nonlinear systems are transformable into the so-called
decentralized strict feedback form has been characterized in [25].

Remark 2.3 Similar to the centralized case discussed in [35, 40], the zero dynamics
of each subsystem in (2.5) are independent of the uncertain parameter vector θ .

In the sequel, we assume that nj = n, rj = r,1 ≤ j ≤ N . Then, by considering
yj = xj1, system (2.5) becomes

żj = fj0(zj , xj1) + gj0(zj , x̄i0,Zj ,Xj1; θ)xj1,

ẋj1 = xj2 + gj1(zj , x̄j1,Zj ,Xj1; θ),

ẋj2 = xj3 + gj2(zj , x̄j2,Zj ,Xj1; θ),

(2.6)...

ẋj,r−1 = xj,r + gj,r−1(zj , x̄j,r−1,Zj ,Xj1; θ),

ẋj,r = vj + gj,r(zj , x̄j,r ,Zj ,Xj1; θ),

where Xj1 = Yj = [x11 x21 . . . xj−1,1 xj+1,1 . . . xN1]t .
The following assumptions are made for system (2.6).
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Assumption 2.1 There exist some smooth real-valued functions

Vj0(zj ), j = 1,2, . . . ,N,

which are positive definite and proper (radially unbounded), such that

∂Vj0

∂zj

fj0(zj ,0) ≤ −νj‖zj‖2, 1 ≤ j ≤ N, (2.7)

for some positive real numbers νj > 0.

Assumption 2.2 The nonlinear interconnections gjk in (2.6) satisfy

|gjk(zj , x̄jk,Zj ,Xj1; θ) − φjk(zj , x̄jk,0,0, θ)|

≤
N∑

ℓ=1

ηjkℓ(zj , x̄jk)[ζ 0
jkℓ(‖zl‖)‖zl‖ + ζ 1

jkℓ(zℓ, xℓ1)|xℓ1|]

≤
N∑

ℓ=1

ηjkℓ(zj , x̄jk)ζjkℓ(‖(zℓ, xℓ1)‖), (2.8)

for any θ ∈ Ω , ηjkℓ(·), ζ 0
jkℓ(·) and ζ 1

jkℓ(·), ℓ = 1,2, . . . ,N , 0 ≤ k ≤ r , 1 ≤ j ≤ N

are nonnegative smooth functions with ζ 0
jki(·) = ζ 1

jkj (·) ≡ 0.

Remark 2.4 By the well-known converse Lyapunov theorem [29, 31], the zero
dynamics of each subsystem are globally asymptotically stable if and only if
there exists a positive definite and proper Lyapunov function Vj0 such that
(∂Vj0/∂zj )fj0(zj ,0) < 0, ∀zj 
= 0. Indeed, the requirement (2.7) is more restric-
tive than this. However, a globally exponentially minimum-phase nonlinear system
(that is, the zero-dynamics of the system are globally exponentially stable) always
satisfies condition (2.7).

Remark 2.5 The interconnections in Assumption 2.2 are very general, including
many types of interconnections considered in existing literature as special cases,
for example, interconnections bounded by linear (first-order) polynomials [3], and
higher-order polynomials [56]. By contrast to the work in [3, 20, 27, 56], no match-
ing conditions are imposed for system (2.6).

Later on, we will deal with the decentralized global robust stabilization prob-
lem for system (2.6) satisfying Assumptions 2.1 and 2.2. More precisely, we are
concerned with the design of decentralized robust control laws vj = vj (zj , xj ),
j = 1, . . . ,N , such that the overall closed-loop interconnected system (2.6) with
the control laws is globally asymptotically stable for all admissible uncertainties
and interconnections.
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2.1.3 Class III

Recent years have seen steady progress in the field of decentralized control of both
linear and nonlinear systems. Decentralized control issues naturally arise from con-
trolling large complex systems found in the power industry, aerospace and chemi-
cal engineering applications, and telecommunication networks, to name only a few.
Among the main characteristics of decentralized control are the dramatic reduc-
tion of computational complexity and the enhancement of robustness and reliability
against interacting operation failures. Many researchers have made significant con-
tributions to the development of decentralized control theory for large-scale, or in-
terconnected, dynamic systems ([60] and a rather complete list of earlier references
cited therein).

In Class III of this chapter, we study a broad class of large-scale nonlinear sys-
tems with output measurements. This problem, usually referred to as decentralized
output-feedback control, is technically challenging because of the lack of a general
theory for nonlinear observer design and the nonlinear version of the well-known
“Separation Principle”.

2.1.3.1 System Description

According to this Class III, a large-scale nonlinear system is viewed as comprised
of N interconnected subsystems with time-varying unknown parameters and/or dis-
turbances entering nonlinearly into the state equation. The j th subsystem is given
as

ẋj = Fj (xj ) + Gj (xj )uj + Πj1(y1, . . . , yN )xj + Πj2(y1, . . . , yN )wj , (2.9)

yj = hj (xj ), (2.10)

where 1 ≤ j ≤ N , xj ∈ ℜnj , uj ∈ ℜ and yj ∈ ℜ represent the state, the single
control input and the single output of the local j th subsystem, respectively, and
wj ∈ ℜnwj is the disturbance input. Also, Fj ,Gj , hj ,Λj1 and Πj2 are sufficiently
smooth functions. In the absence of the interacting terms Πj1 and Πj2, the sys-
tem (2.9)–(2.10) collapses to an isolated single-input single-output SISO system
and has been extensively studied in the recent literature. Various constructive con-
trol algorithms have been developed for large classes of centralized nonlinear sys-
tems in special normal forms. Similar questions in the decentralized context should
be addressed, that is, in the presence of strong interactions among local systems
of the form (2.9)–(2.10). In the sequel, attention is focused on large-scale dynamic
systems of type (2.9)–(2.10) transformable to

żj = Qjzj + fj0(y1, . . . , yN ) + pj0(y1, . . . , yN )wj ,

ẋj1 = xi2 + fj1(y1, . . . , yN ) + gj1(y1, . . . , yN )zj + pj1(y1, . . . , yN )wj ,

... (2.11)
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ẋjnj
= uj + fjnj

(y1, . . . , yN ) + gjnj
(y1, . . . , yN )zj + pjnj

(y1, . . . , yN )wj ,

yj = xj1,

where for each 1 ≤ j ≤ N , zj ∈ ℜnzj and xj = (xi1, . . . , xinj
) ∈ ℜnj are the states of

the ith transformed subsystem. For every j , Qj is a constant matrix with appropriate
dimension, fjk , gjk and pij are known and smooth functions.

In the sequel, the following minimum-phase condition is assumed.

Condition A For every 1 ≤ j ≤ N,Qj is a Hurwitz matrix.

The structure involved in (2.11) is commonly utilized in the past literature in both
centralized and decentralized control, the reader is referred to [20, 23, 26, 32, 40,
48, 56, 80]. In view of the existing results on geometric nonlinear control [23, 29,
32, 40], necessary and sufficient geometric conditions can be easily derived under
which a nonlinear system (2.9), (2.10) is transformed into (2.11), yielding the so-
called “disturbed decentralized output-feedback form”.

Remark 2.6 It is worth noting that the nonlinearities in (2.9) depend only on the out-
put y = (y1, . . . , yN ) and that the unmeasured states Xj [zj , xj2, . . . , xjnj

] in (2.11)
appear linearly. This feature is found appealing in recent studies in global output-
feedback control for both centralized and decentralized nonlinear systems, in the
framework of robust and/or adaptive control. As a matter of fact, simple counterex-
amples found in [43] reveal the fundamental limitation of global output-feedback
control for systems with strong nonlinearities due to unmeasured states. For ex-
ample, it has been shown in [43] that there is no continuous (static or dynamic)
output-feedback control law that can globally asymptotically stabilize a nonlinear
system ẋ1 = x2, ẋ2 = xn

2 + u with output y = x1 whenever n ≥ 3.

2.2 Dynamic Output Feedback: Class I

The objective of this section is to propose an approach to robust stabilization of sys-
tems which are composed of linear subsystems coupled by nonlinear time-varying
interconnections satisfying quadratic constraints. The proposed algorithms, which
are formulated within the convex optimization framework, employ linear dynamic
feedback structure involving local Luenberger-type observers. It is also shown how
the new methodology can produce improved results if interconnections have linear
parts that are known a priori. Examples of output stabilization of inverted pendu-
lums and decentralized control of a platoon of vehicles are used to illustrate the
applicability of the design method.

With the emergence of the powerful convex optimization toolboxes involving
linear matrix inequalities (LMIs), solving problems of controller design within the
convex optimization framework became very attractive, see [1, 6, 10, 11, 14, 21,
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24, 61]. Of wide-spread interest have been the control problems of formulating suf-
ficient conditions for computing output feedback control laws using convex opti-
mization methods due to the fact that the necessary and sufficient conditions are
known to be non convex, in general. These problems become increasingly more dif-
ficult to solve when decentralized information structure constraints are imposed in
the control design [2, 15, 16, 49, 59, 83, 85]. These information structures can be
found in important applications, such as power systems [86], control of formations
of unmanned vehicles [65] and control of large structures [34], to name few.

2.2.1 Observer-Based Control Design

In what follows, we propose novel sufficient conditions for the design of decentral-
ized dynamic output controllers in the convex optimization context for stabilization
of interconnected systems with linear subsystems and nonlinear time-varying in-
terconnections. Controllers are designed to guarantee robust stability of the overall
system and, in addition, maximize the bounds of unknown interconnection terms,
starting from the methodology proposed in [55]. In what follows, we adopt here
the controller structure containing local observers of Luenberger type. Several al-
gorithms are proposed in the general case of full order observers, differing by com-
plexity and the degree of interdependence between the observer and the feedback
gains, where no additional constraints on the parameters of the system model are
imposed [46, 58]. It is also shown how the proposed scheme can be used to build
reduced-order observers. Particular attention is paid to the case when linear parts
of interconnections are known a priori, and an algorithm is proposed which takes
advantage of this knowledge to come up with improved results. To illustrate the ap-
plication of the proposed schemes we include two examples, the first dealing with
interconnected pendulums, and the second with the problem of platoons of vehicles
in the case when the velocity and acceleration of the neighboring vehicles are not
accessible.

Reference is made to model of Class I as described by (2.1)–(2.4). To proceed
further, we consider that

1. The dynamic controller F for S is linear,
2. It obeys the decentralized information structure constraint requiring that each

subsystem is controlled using its own local output and
3. It is composed of an observer of Luenberger-type and a static observer state

feedback.

This motivates us to express controller F into the

F: ẇ = Aw + Bu + L(y − Cw), u = Kw, (2.12)

where w ∈ ℜn is the observer state, with w = [wt
1, . . . ,w

t
N ]t , wj ∈ ℜnj and

K = diag{K1, . . . ,KN }, L = diag{L1, . . . ,LN }
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represent the global controller parameter matrices while pairs (Kj ,Lj ) determine
the local dynamic controllers.

The resulting closed-loop system Sc = (S,F) can be expressed as

Sc: ż = Acz + hc(t, z), y = Ccz, (2.13)

where z is the state vector. Defining

z = [zt
1, z

t
2]t , z1 = w, z2 = w − x

we obtain

Ac =
[
A + Bk −LC

0 A − LC

]
, Cc =

[
C

... −C
]
,

(2.14)
hc(t, z) =

[
0

... −h(z1 − z2)
t
]t

.

In view of (2.4), we have now

hc(t, z)
thc(t, z) ≤ ztH t

cΓ
−1Hcz, (2.15)

where Hc = [H
... − H ].

We now address the key feature of dynamic controller F, that is, it must ro-
bustly stabilizes S. According to the results of [55, 58], it is shown that S is ro-
bustly stabilized with vector degree α = [α1, . . . , αN ]t if the equilibrium z = 0 of
the closed-loop system Sc = (S,F) is globally asymptotically stable for all hc(t, z)

satisfying (2.15) for some Hc and Γ .
It turns out that the controller stabilizes the linear part of S and, at the same time,

maximizes its tolerance to uncertain nonlinear interconnections and perturbations.
This is nicely expressed by the following LMI-based formulation:

System Sc = (S,F) is robustly stable with vector degree α if the following prob-

lem is feasible:

min TrΓ

subject to Xc > 0,

⎡
⎣

XcAc + At
cXc Xc H t

c

• −I 0
• • −Γ

⎤
⎦< 0.

(2.16)

It must be observed that, by and large, observer-based feedback design cannot be
completed directly using (2.16). The main reason for this is that the second matrix
inequality is not an LMI in both Xc and the feedback parameter matrix.

Remark 2.7 At this stage we should recall some basic results from [1, 16]. In the
case of state-feedback the problem can be readily transformed into an LMI problem
by a simple change of variables (convexification procedure). However, in the case
of dynamic output feedback the problem becomes far more complex. A decoupled
quadratic Lyapunov function with block-diagonal weighting matrix has been used in
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[58] to determine the dynamic controller parameters. However, the proposed design
procedure imposes additional constraints on the system model characteristics.

In what follows we will provide some modifications of problem (2.16) obtained
by convexifying the constraints. Solutions to these problems will provide guaranteed
feasible solutions to (2.16) and the upper bound of the objective function TrΓ .

2.2.1.1 Full Order Observer

Introducing the following matrices

Q = diag{Q1, . . . ,QN }, Qj ∈ ℜnj ×nj ,

P = diag{P1, . . . ,PN }, Pj ∈ ℜnj ×nj ,

W = diag{W1, . . . ,WN }, Wj ∈ ℜmj ×nj ,

V = diag{V1, . . . , VN }, Vj ∈ ℜnj ×pj .

For the purpose of simplifying the subsequent analysis, we define the matrix func-
tion

Ψ (S,L,M,Γ ) =

⎡
⎣

S L M

• −I 0
• • −Γ

⎤
⎦ , (2.17)

for some S,L,M,Γ matrices with appropriate dimensions.

Problem 2.1

min TrΓ

subject to Q > 0, P > 0,

Ψ (S1, I,QH t ,Γ ) < 0, Ψ (S2,P ,−H t ,Γ ) < 0,

(2.18)

where S1 = AQ + QAt + BW + W tB t and S2 = PA + AtP − V C − CtV t .

We have the following result:

Theorem 2.1 System S is robustly stabilized by the controller F if Problem 2.1 is

feasible. The controller parameters are given by

K = WQ−1, L = P −1V. (2.19)

Proof In what follows it will be shown that there exists a real number λ > 0 such
that the matrix Xc = diag{λ−1Q−1,P } satisfies LMIs (2.16) for some Γ > 0, where
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P and Q are solutions of Problem 2.1. Substituting (2.14) and Xc into (2.16), we
obtain

⎡
⎢⎢⎢⎢⎣

λS1 −LC I 0 λQH t

• S2 0 P −H t

• • −I 0 0
• • • −I 0
• • • • −Γ

⎤
⎥⎥⎥⎥⎦

< 0. (2.20)

By Schur complements, we obtain the following conditions equivalent to (2.20):

Ξ1 < 0, λΞ3(Γλ) − Ξ2Ξ
−1
1 Ξ t

2 +
[
I 0
0 0

]
< 0,

(2.21)
Ξ1 =

[
−I P

P S2

]
, Ξ2 =

[
0 −LC

0 −H

]
, Ξ3(X) =

[
S1 QH t

HQ −X

]
,

Γλ = λ−1Γ, X ∈ ℜn×n.

Now let Γ0 = diag{γ 0
1 Il1, . . . , γ

0
N IlN } is the optimal Γ obtained by solving Prob-

lem 2.1 and define

ν = λmin(Ξ
−1
1 ), a = λM(Ξ2Ξ

t
2), μ = λM(Ξ3(Γ0)).

It is easy to see that Ξ1 and Ξ3(Γ0) represent principal minors of the matrices
Ψ (S1, I,QH t ,Γ0) < 0 and Ψ (S2,P ,−H t ,Γ0) < 0 and hence both eigenvalues μ

and ν are negative.
Selecting Γ = λ∗Γ0, λ

∗ > |θ |/|μ|, θ = −1 + aν and assuming that 0 < λ < λ∗,
it follows that

λM{Ξ3(Γλ)} = λM{Ξ3((λ
∗/λ)Γ0)} ≤ λM{Ξ3(Γ0)} = μ

bearing in mind that λ∗/λ > 1. For this selection of Γ and λ, (2.21) is implied by

μλ − θ < 0, (2.22)

which holds true for |θ |/|μ| < λ < λ∗. Therefore, the desired λ exists and the proof
is completed. �

Remark 2.8 The local robustness degrees defined by

αj = 1
/√

γ 0
j |θ |/|μ|, j = 1, . . . ,N

guaranteed from Theorem 2.1 are generally conservative. More realistic values can
be obtained by plugging the controller parameters obtained by (2.19) into (2.16) and
by solving the corresponding minimization problem with variables Xc and Γ . This
will be demonstrated in the numerical examples presented later on.
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Remark 2.9 It is interesting to note that Problem 2.1 implements the separation
principle. The constituent problems

Q > 0, Ψ (S1, I,QH t ,Γ 1) < 0, P > 0, Ψ (S2,P ,−H t ,Γ 2) < 0

can be readily solved independently, the first providing K as in the state feedback
design and the second L, robustly stabilizing the observer, so that

Γ = diag{max(γ 1
1 , γ 2

1 )Iℓ1 , . . . ,max(γ 1
N , γ 2

N )IℓN
}.

Remark 2.10 An alternative procedure to simplify LMIs in (2.18) is as follows:

Problem 2.2

min TrΓ

subject to Q > 0, P > 0, Ξ3(Γ ) < 0, Ξ1 < 0
(2.23)

while the controller parameters are obtained by using (2.19).

Generally speaking, the achievable robustness degree is lower than the one
obtained by solving Problem 2.1. Specifically, it is possible to show using the
methodology of Theorem 2.1 that if Q0,W0 and Γ0 are obtained by solving Prob-
lem 2.2, then there exist ρ > 0 and β > 1 such that Ψ (ρ(AQ0 + Q0A

t + BW0 +
W t

0B
t ), I, ρQ0H

t , βΓ0) < 0.

By taking into consideration the interdependence between K and L in the LMIs
(2.16), we will attempt to exploit the structure of (2.20) to construct improved algo-
rithms with higher robustness degree.

Problem 2.3

min TrΓ

subject to P > 0, Ψ (S2,P ,−H t ,Γ ) < 0.
(2.24)

1. Use the solutions P,S2,Γ,L = P −1V .
2.

min TrΔ

subject to Q > 0,⎡
⎢⎢⎢⎢⎣

S1 I −LC 0 QH t

• −I 0 0 0
• • S2 P −H t

• • • −I 0
• • • • −Γ Δ

⎤
⎥⎥⎥⎥⎦

< 0,

(2.25)

where Δ = diag{δ1Il1 , . . . , δN IlN }, δj > 0, ∀j .

The following result stands-out:
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Theorem 2.2 System S is robustly stabilized by the controller F if Problem 2.3 is

feasible. Controller parameters are given by (2.19). The robustness degree bounds

are given by αj = 1/
√

γj δj .

Proof It is readily seen that the second inequality in (2.25) is identical to inequal-
ity (2.16) for Xc = diag{Q−1,P }, with Γ replaced by Γ Δ and hence the desired
result. �

Remark 2.11 It should be noted that Steps 1 and 2 have to be performed consecu-
tively and not simultaneously, like in Problems 2.1 and 2.2. Alternative algorithms
could be derived if one takes, for example,

z = [zt
1, z

t
2]t , z1 = x, z2 = x − w,

Ac =
[

A + BK −BK

0 A − LC

]
, Cc =

[
C

... 0
]
,

hc(t, z) =
[
ht (z1)

... ht (z1)
]t

and arrives at a problem similar to Problem 2.3, in which K is determined in the
first step, and L in the second step.

2.2.1.2 Reduced Order Observer

The results of the foregoing section can be directly extended to the design of con-
trollers with decentralized reduced order observers. For this purpose, we assume
that Cj = [0(nj −pj )×nj

... IP i], pj ≤ nj if xj is divided into

xj = [(xa
j )t , (xc

j )
t ]t , xa

j ∈ ℜnj −pj , xc
j ∈ ℜpj

then yj = xc
j and the output wj ∈ ℜnj −pj of the local reduced order observer is an

estimate of xa
j . Similar to [33], we assume that the local dynamic controllers Fj

have the form:

ẇj = A11
j wj + A12

j yj + B1
j uj + Lj [ẏj − A21

j wj − A22
j yj − B2

j uj ], (2.26)

uj = Gjwj + Jjyj = Kj ξj , (2.27)

where

Aj =
[

A11
j A12

j

A21
j A22

j

]
, Bj =

[
B1

j

B2
j

]
,

ξj = [wt
j , y

t
j ]t = [wt

j , (x
c
j )

t ]t .
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Note that differentiation of yj in (2.26) can be avoided by standard transformation
of variables. Defining

ηj = wj − xa
j , ξ = [ξ t

1, . . . , ξ
t
N ]t , η = [ηt

1, . . . , η
t
N ]t

we take z = [ξ t , ηt ]t as a new state vector for Sc = (S,F ), and obtain

Sf : ż =
[
A + BK L̄A12

0 A11 − LA21

]
z + hc(t, z), (2.28)

where

A11 = diag{A11
1 , . . . ,A11

N }, A12 = diag{A12
1 , . . . ,A12

N },

A21 = diag{A21
1 , . . . ,A21

N }, K = diag{K1, . . . ,KN },
L = diag{L1, . . . ,LN }, L̄ = diag{L̄1, . . . , L̄N },

L̄j =
[−Lt

j −Ipi

]t
,

hc(t, z) =
[[

0t
n1−p1

... hc
1(x)t

]
, . . . ,

[
0t
nN−pN

... hc
N (x)t

]
,−ha

1(x)t , . . . ,−ha
N (x)t

]t

where the decomposition hj (x) = (ha
j (x)t , hc

j (x)t )t is induced by the decomposi-
tion of xj into xa

j and xc
j . This leads to

hc(t, z)
thc(t, z) ≤ α2zt H̄ t

c H̄cz, (2.29)

where H̄c = [H
... − H̄ ], H̄ t = [H̄ t

1

... . . .
... H̄ t

N ], while H̄j is an lj × (nj −pj ) matrix
containing the first nj −pj columns of Hj , having in mind that Hjx = Hj ξ − H̄jη.

The structure of the closed-loop model (2.28) shows that controller design can
be entirely based on the methodology developed earlier. Hence, Problem 2.1 and
Theorem 2.1 yield

Corollary 2.1 System S in which

C = diag
{[

0(n1−p1)×p1

... Ip1
]
, . . . ,

[
0(nN−pN )×pN

... IpN

]}
,

pj ≤ j = 1, . . . ,N

is robustly stabilized by the dynamic controller F defined by (2.26), (2.27) if the

following problem is feasible:

min TrΓ

subject to Q > 0, P̄ > 0,

Ψ (S1, I,QH t ,Γ ) < 0,

Ψ (S̄2, P̄ ,−H t ,Γ ) < 0,

(2.30)
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where

S̄2 = P̄A11 + (A11)t P̄ − V̄ A21 − (A21)t V̄ t ∈ ℜnj −pj ×nj −pj ,

P̄ = diag{P̄1, . . . , P̄N } ∈ ℜnj −pj ×pj , V̄ = diag{V̄1, . . . , V̄N }.

The controller parameters are obtained by using (2.19).

2.2.1.3 Important Special Case

We now look at the special case where the interconnections between the subsys-
tems Sj in S is known, linear and can be represented by a full matrix As ∈ ℜn×n

containing off diagonal interconnection blocks, so that A + As becomes the new
state matrix in the linear part of S in (2.2). The function h(t, x) still represents the
unknown part of interconnections.

The foregoing design methodology can be extended to this case while aiming to
exploit the additional a priori information constraint. A point of caution must be
entertained here. By replacing A by A + As in the observer equation for F in (2.12)
one violates the adopted information structure constraint, i.e. the dynamic controller
ceases to be decentralized. Inserting A+As only in the state model (2.3), we obtain

Ac =

⎡
⎣A + BK

... −LC

−Aδ

... A + As − LC

⎤
⎦ .

This fact indicates that the design scheme could now be based on modifying the
problems described in Sects. 2.2.1.1 and 2.2.1.2 by inserting the new information
in the form of As at the corresponding places in the related LMIs. Robust stabi-
lization is achievable however, when the interconnections are sufficiently weak. For
example, Problem 2.1 turns to be:

Problem 2.4

min TrΓ (2.31)

subject to P > 0, Q > 0, (2.32)

Ψ (S1, I,QH t ,Γ ) < 0, (2.33)

Ψ (S2s,P ,−H t ,Γ ) < 0, (2.34)

where S2s = P(A + As) + (A + As)
tP − V C − CtV t .

Theorem 2.3 The system S with known linear interconnections (modeled by adding

Aδ to A in (2.3)) is robustly stabilized by the decentralized dynamic controller F in

(2.12) if Problem 2.4 is feasible and

δ <
μ2

8θδνδλpλQ

, (2.35)
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where δ = λM(At
sAs), λP = λM(P 2), λQ = λM(Q2), νδ = λm(Ξ−1

1δ ), matrix Ξ1s is

obtained from Ξ1 in (2.21) by replacing S2 with S2s , and θs = −1 + 2avs .

Proof The proof is based on a line of thought similar to that applied in Theorem 2.1.
Inserting

Xc = diag{λ−1Q−1,P }, Ac =
[
A + BK −LC

−As A + As − LC

]

into (2.16) we obtain

⎡
⎢⎢⎢⎢⎣

λS1 −Lδ I 0 λQH t

• S2s 0 P −H t

• • −I 0 0
• • • −I 0
• • • • −Γ

⎤
⎥⎥⎥⎥⎦

< 0, (2.36)

where Ls = LC + λQAt
sP . The last inequality is equivalent to Ξ1s < 0 and

λΞ3(Γs) − (Ξ2 + λΞ2s)Ξ
−1
1δ (Ξ2 + λΞ2δ)

t +
[
I 0
0 0

]
< 0, (2.37)

where

Ξ2s =
[

0 −QAt
sP

0 0

]
.

By similarity to Theorem 2.1, we let P = λ∗Γ0 for some λ∗ > 0, where Γ0 is
the optimal value obtained by solving Problem 2.4. Assume that 0 < λ < λ∗. Then,
(2.37) is implied by

−2δνsλP λQλ2 + μλ − θs < 0, (2.38)

bearing in mind that λM{Ξ3(Γλ)}λM{Ξ3(Γ0)} = μ. Observe that νs < 0 by as-
sumption, as a consequence of the feasibility of Problem 2.4. The existence of
λ > 0 satisfying (2.38) is guaranteed if (2.35) holds, since then we have D =
μ2 − 8δθsνsλP λQ > 0. Consequently, we choose

−μ −
√

D

−4δνsλP λQ

= λ1 < λ∗ ≤ λ2 = −μ +
√

D

−4δνsλP λQ

,

where 0 < λ1 < λ2 since μ < 0 and
√

D ≤ |μ|, so that λ can take any value in
the interval [λ1, λ

∗]. The local guaranteed robustness degree bounds are now αj =
1/
√

γ 0
j λ1, j = 1, . . . ,N , which concludes the proof. �
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2.2.2 Simulation Example 2.1

Consider the motion of two inverted pendulums connected by a spring which can
slide up and down the rods of the pendulums in jumps of unpredictable size and di-
rection between the support and the height equal to 1 [55]. An appropriate linearized
and normalized model is given by

S: ẋ =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦x +

⎡
⎢⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎥⎦u + h(t, x),

y =
[

1 0 0 0
0 0 1 0

]
x, (2.39)

h(t, x) = e(t, x)Gx, G =

⎡
⎢⎢⎣

0 0 0 0
−1 0 1 0
0 0 0 0
1 0 −1 0

⎤
⎥⎥⎦ ,

where e(t, x) : ℜ5 → [0,1] represents a normalized interconnection parameter.
It is required to compute a decentralized control law which would connectively

stabilize the system for all values of e(t, x) ∈ [0,1].
A decentralized state-feedback is designed to provide α = 4.4950 with the local

controller gain matrix K = [−725.9085 −40.4346] and the corresponding closed-
loop poles {−20 ± j17.8093}.

Computer simulation shows that the system is not stabilizable by static output
feedback, since two coefficients of the characteristic equation remain fixed to zero
irrespective of the controller parameters.

Turning to dynamic output feedback obtained by the proposed algorithms, Ta-
ble 2.1 provides results on robustness degree α. In this table, Case A corresponds
to the situation in which H = G in the three algorithms from Sect. 2.2.1.1. Case B
refers to H = G with

As =

⎡
⎢⎢⎣

0 0 0 0
−0.5 0 0.5 0

0 0 0 0
0.5 0 −0.5 0

⎤
⎥⎥⎦

when the algorithms derived from Problems 2.1–2.3 in accordance with the method-
ology of Problem 2.4 and Theorem 2.3. Case C represents the situation with no a

Table 2.1 Robustness degree
α for different algorithms Problem 2.1 Problem 2.2 Problem 2.3

Case A 5.6450 0.3813 21.7304

Case B 4.3840 0.5787 15.2214

Case C 0.6564 0.3191 0.7003
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priori knowledge, when H = I and As = 0, and the algorithms from Sect. 2.2.1.1
are applied.

The ensuing results lead to the conclusion that the best results are obtained
by solving Problem 2.3; the worst case corresponds to Problem 2.2. This is quite
expected. In view of the results of [55], we note that in Case C none of the
algorithms ensures connective stability. For Problem 2.2, connective stability is
achieved only in Case B, when the information about the interconnections is in-
cluded. This corresponds in Case B to have, in fact, e(t, x) = 0.5 + ea(t, x), where
ea(t, x) ∈ [−0.5,0.5], so that any value of α > 0.5 is sufficient for connective sta-
bility. All values of K and L and the corresponding modes are not presented be-
cause of the lack of space. For example, for Problem 2.1 and Case A we have
Kj = [−79.1666 − 11.2883], Lt

j = [27.7711 15.7991], with local closed-loop
poles {−27.2275,−0.5435,−0.5441 ± j6.8052}.

2.2.3 Simulation Example 2.2

This example is concerned with the decentralized control of a platoon of vehicles.
A feedback-linearized state space model of a platoon of N automotive vehicles is
based, according to [65], on the following feedback linearized individual vehicle
model:

ḋj = vj−1 − vj , v̇j = aj , ȧj = −τ−1
j aj + τ−1

j uj , (2.40)

where dj = xj−1 − xj is the distance between two consecutive vehicles, xj−1 and
xj being their positions, vj and aj are the velocity and acceleration of ith vehicle,
respectively, uj the input signal chosen to make the closed-loop system satisfy cer-
tain performance criteria, and τj the time constant of the engine. After obtaining the
overall platoon state space model with the state

X = (d1 − dr , v1 − vr , a1 − ar , . . . , dN − dr , vN − vr , aN − ar)
t

and input

u = (u1, u2, . . . , uN )t ,

where dr , vr , ar are the reference values for inter-vehicle distance, velocity and ac-
celeration, respectively, and applying the state and input expansion by using conve-
nient full-rank linear transformations, the following model in the expanded space is
obtained [65]:

S̃: ξ̇ = Ãξ + B̃ζ, (2.41)

where

ξ = [ξ t
1, . . . , ξ

t
N ]t , ζ = [ζ t

1, . . . , ζ
t
N ]t ,

Ã = diag{A1, . . . ,AN }, B̃ = diag{B1, . . . ,BN }
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with vectors ξj and ζj and matrices Aj and Bj are defined within the formally
defined subsystem models connected to each vehicle:

Sj : ξ̇j = Aj ξj + Bj ζj

=
[

Al
j 0

Ad Av
j

]
ξj +

[
B l

j 0
0 Bv

j

]
ζj , (2.42)

with ξj = [vj−1 − vr , ai−1 − ar , dj − dr , vj − vr , aj − ar ]t being the state vector of
j th subsystem, ζj = (uj−1, uj )

t represents its control vector, while

Aℓ
j =

[
0 1
0 τ−1

j

]
, Āt

d =
[

1 0 0
0 0 0

]
, Bℓ

j =
[

0
τ−1
j

]
,

Av
j =

⎡
⎣

0 1 0
0 0 1
0 0 −τ−1

j

⎤
⎦ , Bv

j =

⎡
⎣

0
0

τ−1
j

⎤
⎦ .

This model is treated in [65] where it is shown that a decentralized dynamic
control law can be designed for the expanded system using the methodology from
Sect. 2.2.1.2, supposing that only the subsystem states dj − dr , vj − vr and aj − ar

are exactly known in j th vehicle (subsystem), that is, vj−1 and aj−1 are not acces-
sible in ith vehicle. Applying the results of Sect. 2.2.1.2, the reduced-order Luen-
berger observer for ξ1

j = (vj−1 − vr , aj−1 − ar)
t is given by

ẇj = Al
jwj + B l

jui−1 + Lj [ξ̇2
j − Ādwj − Av

j ξ
2
j ], (2.43)

where ξ2
j = (dj − dr , vj − vr , aj − ar)

t . The local control law has the following
specific structure:

uj−1 = G1
jwj , uj = G2

jwj + J 2
j ξ2

j , (2.44)

having in mind that (j − 1)th vehicle does not have any information about ith vehi-
cle. Matrices

Kj =
[

G1
j 0

G2
j J 2

j

]
, Lj , j = 1, . . . ,N

can now be obtained by using the algorithm from Corollary 2.1, exploiting the spe-
cific lower-block-triangular structure of Kj .

For τj = τ = 0.1, one obtains:

Gj = G = [−38.6940 −2.1224], G1
j = G1 = [−38.6940 −2.1224],

G2
j = G2 = [0.0095 0.0005],

J 2
j = J 2 = [351.4028 −319.3970 −13.2356],

Lj = L = 104
[

0.0001 0 0
3.2068 0 0

]
, αj = α = 1/4.080
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generating the closed loop poles

102{−1.1480,−0.0116,−0.1561 ± j0.1197,−0.2640,−320.68,−0.00004}.

Obviously, it is also possible to apply the alternative design schemes from
Sect. 2.2.1.1. By using the expansion/contraction matrices as in [60] and [65], the
obtained controller has to be finally contracted to the original space for implemen-
tation.

2.2.4 Simulation Example 2.3

The third example considered here is a linearized two-tank system modeled in the
form (2.1) with data

A1 =

⎡
⎢⎢⎣

0.703 0 0.395 −0.320
−0.052 0 0 −0.137

0 0 0 0.619
0 1.028 1.752 0

⎤
⎥⎥⎦ , B1 =

⎡
⎢⎢⎣

−0.402 0.978
0 0

−0.263 0.159
0 0

⎤
⎥⎥⎦ ,

C1 =
[

0.423 0 0 0.317
0 0.137 0.576 0.340

]
,

A2 =

⎡
⎢⎢⎣

0.695 0.013 0.315 −0.414
−0.193 0 0 0.258

0 0 0 −0.834
0 0.879 0.978 0.015

⎤
⎥⎥⎦ , B2 =

⎡
⎢⎢⎣

−0.375 0.888
0 0

−0.249 0.147
0 0

⎤
⎥⎥⎦ ,

C2 =
[

0.462 0 0 0.351
0 0.098 0.685 0.742

]
,

h(t, x) = f (t, x)Mx, M =
[
M1 M2

M3 M4

]
,

M1 =

⎡
⎢⎢⎣

0 0 0 0
1 0 −1 0
0 0 0 0

−1 0 1 0

⎤
⎥⎥⎦ , M4 =

⎡
⎢⎢⎣

0 0 0 0
−1 0 1 0
0 0 0 0
1 0 −1 0

⎤
⎥⎥⎦ ,

M2 =

⎡
⎢⎢⎣

1 0 −1 0
0 0 0 0
0 0 0 0

−1 0 1 0

⎤
⎥⎥⎦ , M3 =

⎡
⎢⎢⎣

0 0 0 0
−1 0 1 0
1 0 −1 0
0 0 0 0

⎤
⎥⎥⎦

and f (t, x) : ℜ4 → [0,1] represents a normalized coupling parameter. Exploring
decentralized control design, we get state-feedback results with local gains as
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K1 =
[

−6.222 18.345 28.367 17.793
−1.893 −8.148 −13.479 −8.542

]
,

K2 =
[

−13.028 34.718 52.797 33.092
−5.766 12.867 18.465 11.302

]
,

which do not stabilize the two-tank system. On the other hand, the output feedback
gains are given by

K1 =
[
−36.856 10.094
15.441 9.313

]
, K2 =

[
−12.188 16.158
35.738 2.568

]
,

which stabilize the system with robustness degree α = 3.8436.

2.2.5 Dynamic Control Design

Extending on the foregoing section, we now consider a general linear time-invariant
dynamic controller F for S which obeys the decentralized information structure con-
straint. This entails that each subsystem is controlled using only its own local output.
Therefore,

F: ẇ = Fcw + Lcy, u = Kcw + Gcy, (2.45)

where w ∈ ℜs is the global observer state, and

w =
[
w1 . . . wN

]t
, wj ∈ ℜsj , s =

N∑

j=1

sj ,

Fc = diag{Fc1, . . . ,FcN }, Lc = diag{Lc1, . . . ,LcN },
Kc = diag{Kc1, . . . ,KcN }, Gc = diag{Gc1, . . . ,GcN }.

For simplicity in exposition, we denote

Jj =
[

Fcj Lcj

Kcj Gcj

]
∈ ℜsj +mj ×sj +pj

the local controller parameter matrices, and by J = diag{J1, . . . , JN } the global
controller parameter matrix.

By standard algebraic manipulations, the resulting closed-loop system Sc =
(S,F) can be represented by

Sc: ż = Acz + hc(t, z), y = Ccz, (2.46)

where

z =
[
xt

1 wt
1 . . . xt

N wt
N

]t
, Ac = diag{Ac1, . . . ,AcN },

Cc = diag{Cc1, . . . ,CcN }, hc(t, z)
t =

[
ht

c1
(t, z) . . . ht

cN
(t, z)

]t
,
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Acj =
[
Aj + BjGjCj BjKj

LjCj Fj

]
, Ccj =

[
Cj

... 0
]
,

hcj =
[
ht

j (t, x)
... 0
]t

.

In view of the structural constraint (2.4), we have

ht
cj

(t, z)hcj
(t, z) ≤ zt H̄ t

c Γ̄
−1H̄cz ≤ zt H̃ tΓ −1H̃ z, (2.47)

where

H̄ f =
[
H̄

f t

1

... . . .
... H̄

f t

j

]t
,

H̄
f
j =

[
H̄ 1

j

... 0
... H̄ 2

j

... 0
... . . .

... H̄N
j

... 0
]

in which νj × nj matrices H̄ t
j (j = 1, . . . ,N) follow from the decomposition H̄j =

[H̄ 1
j

... . . .
... H̄N

j ] while H̃ = diag{H̃1, . . . , H̃N } with H̃j = [Hj

... 0].
Our immediate objective is to design the dynamic controller F which robustly

stabilizes S. Following the results of [9, 46–54, 56–58], it follows that
System S is robustly stabilized with vector degree

ᾱ =
[
ᾱ1 . . . ᾱN

]t =
[

1/
√

γ̄1 . . . 1/
√

γ̄N

]t

if the equilibrium x = 0 of the closed-loop system Sf = (S,F) is globally asymp-
totically stable for all h(t, z) satisfying (2.4) for some given H̄ and ᾱ, according to
the first inequalities in (2.4) and (2.47).

It turns out that maximizing ᾱ, the controller stabilizes the linear part of S and, at
the same time, maximizes its tolerance to uncertain nonlinear interconnections and
perturbations. In this regard, the nonlinear interconnections bound is represented by
a full matrix H̄ . Bearing in mind that the system model sparsity implied by (2.1)
and (2.3) and the developed controller structure in (2.45) designates the perfectly
decentralized control [52, 53], the corresponding controller subspace is not quadrat-
ically invariant. This entails that the related optimization problem is not convex.

In order to convexify the problem under consideration, we invoke further decom-
positions by applying the second (right hand side) inequalities in (2.4) and (2.47),
and formulate the following modified robust stabilization problem:

System Sf = (S,F) is robustly stable with vector degree α = (α1, . . . , αN )t =
(1/

√
γ1, . . . ,1/

√
γN )t if the following problem is feasible:

Minimize

N∑

i=1

γj

(2.48)

subject to X̃ > 0,

⎡
⎣

X̃Af + Af t
X̃ X̃ H̃ t

X̃ −I 0
H̃ 0 −Γ

⎤
⎦< 0,

where X̃ is the global Lyapunov matrix.
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It must be noted that the matrix H̃ is block-diagonal in accordance with the as-
sumed system sparsity, that is, with the subsystem dimensions. The second matrix
inequality in (2.48) however is still not an LMI in both X̃ and the controller param-
eter matrix.

In the next section, we show that the above general robust stabilization problem
can also be formulated as an LMI problem.

2.2.6 Robust Decentralized Design

Having in mind the availability of the system structure, together with the a priori

knowledge about the interconnection bounds, it is quite natural to consider global
Lyapunov matrices X̃ structurally adapted to S and F:

Assumption 2.3 Matrix X̃ in (2.48) possesses the block-diagonal structure, that
is, X̃ = diag{X̃1, . . . , H̃N } where X̃j ∈ ℜnj +sj ×nj +sj , j = 1, . . . ,N are the local
Lyapunov matrices.

It must be emphasized that this choice does not represent a significant restriction,
giving the fact that the original problem has been already decomposed in (2.48) into
N independent robust dynamic output feedback design problems.

Proceeding further, we let

Ā = diag{Ā1, . . . , ĀN }, B̄ = diag{B̄1, . . . , B̄N }, C̄ = diag{C̄1, . . . , C̄N },

Āj =
[
Aj 0
0 0

]
, B̄j =

[
0 Bj

I 0

]
, C̄j =

[
0 I

Cj 0

]

and then write Ã = Ā + B̄J C̄, where J is the global controller parameter matrix.
Consequently, the second inequality in (2.48) can be written as

R̃ + B̂J C̃ + C̃tJ t B̂ t < 0, (2.49)

where R̃ = diag{R̃1, . . . , R̃N }, B̃ = diag{B̃1, . . . , B̃N }, C̃ = diag{C̃1, . . . , C̃N }

R̃j =

⎡
⎣

X̃j Āj + Āt
j X̃j X̃j H̃ t

j

• −I 0
• • −γj I

⎤
⎦ , B̂j =

⎡
⎣

X̃j B̄j

0
0

⎤
⎦ , C̃t

j =

⎡
⎣

C̄t
j

0
0

⎤
⎦ .

It is interesting to note that the problem (2.49) resembles a compact formulation of
a set of N local classical H∞ problems for virtual subsystems defined as

ẋj = Ajxj + Bjuj + wj , zj = Hjxj ,

where the immediate objective is to compute local controllers that render the H∞-
norms of the transfer functions between wj and zj are less than γj .
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An important observation arises here. The block matrix (2.48) contains the en-
tire Lyapunov matrix X̃, and not of X̃ col[I, .,0] as it should be in the case of the
classical H∞ problems [6, 10, 11].

The following lemma provides a pertinent result:

Lemma 2.1 Let Assumption 2.3 hold and let X̃ > 0. Then, (2.49) holds if and only

if

B̃⊥T̃ B̃⊥t < 0, C̃t⊥R̃C̃t⊥t < 0,

T̃ = diag{T̃1, . . . , T̃N },

(2.50)
T̃j =

⎡
⎣

X̃−1
j Āt

j + Āj X̃
−1
j Ij X̃−1

j H̃ t
j

• −Ij 0
• • −γj Ij

⎤
⎦ ,

B̃⊥ = diag{B̃⊥
1 , . . . , B̃⊥

N },

where B̃ t
j = [ B̄ t

j 0 0 ].1

Proof The structure of X̃ and J implies that (2.49) decouples into N independent
inequalities

R̃j + B̂jJj C̃j + C̃t
jJ

t
j B̂

t
j < 0

with general (sj +mj )× (sj +pj ) matrices Jj . According to the elimination lemma
[1], the necessary and sufficient conditions for these inequalities are

B̂⊥
j R̃j B̂

⊥t
j < 0, C̃t⊥

j R̃j C̃
t⊥t
j < 0, j = 1, . . . ,N. (2.51)

Note that B̂⊥
j R̃j B̂

⊥t
j < 0 holds if and only if B̃⊥

j T̃j B̃
⊥t
j < 0.

Since B̂j = Sj [B̄ t
j 0 0]t , Sj = diag{X̃j , I, I }, we have B̂⊥

j = B̃⊥
j S−1

j , taking into

consideration that S−1
j R̃jS

−1
j = T̃j and X̃ > 0. This concludes the proof. �

Proceeding further, we follow the approach of [6] and introduce the decomposi-
tions:

X̃j =
[

Xj X2j

Xt
2j X3j

]
, Ỹj = X̃−1

j =
[

Yj Y2j

Y t
2j Y3j

]
, (2.52)

where 0 < Xj = Xt
j and 0 < Yj = Y t

j are nj × nj real matrices for j = 1, . . . ,N .
The following result is established:

1A⊥ denotes a matrix with the properties N (A⊥) = R(A) and A⊥A⊥t > 0, where N (.), R(.)

denote the null space and the range space of an indicated matrix.
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Lemma 2.2 Let Assumption 2.3 hold, let X̃ > 0, and let Xj , Yj and X2j be given

by (2.52), j = 1, . . . ,N . Then inequalities (2.50) hold if and only if

EcV Ect < 0, EbWEbt < 0, (2.53)

where

V = diag{V1, . . . , VN }, W = diag{W1, . . . ,WN },
Ec = diag{Ec

1, . . . ,E
c
N }, Eb = diag{Eb

1 , . . . ,Eb
N },

Ec
j =

[
Ct⊥

j 0
0 I

]
, Eb

j =
[
B⊥

j 0
0 I

]

Vj =

⎡
⎢⎢⎣

XjAj + At
jXj Xj X2j H t

j

• −I 0 0
• • −I 0
• • • −γj I

⎤
⎥⎥⎦ ,

Wj =

⎡
⎣

YjA
t
j + AjYj I YjH

t
j

• −I 0
• • −γj I

⎤
⎦ .

Proof By definition, we have

R̃j =

⎡
⎢⎢⎢⎢⎣

XjAj + At
jXj At

jX2j Xj X2j H t
j

• 0 Xt
2j X3j 0

• • −Ij 0 0
• • • −Ij 0
• • • • −γj Ij

⎤
⎥⎥⎥⎥⎦

.

On the other hand, taking into consideration the structure of C̃j and C̄j , we have

C̃t⊥
j =

[
Ct⊥

j 0 0
0 0 Ij

]
.

As the second block-column in C̃t⊥
j contains only zero matrices, the second inequal-

ity in (2.50) gives the first inequality in (2.53).
Turning to the second inequality in (2.53), it is not difficult to show that it can be

obtained analogously. From

T̃j =

⎡
⎢⎢⎢⎢⎣

AjYj + YjA
t
j AjY2j I 0 YjH

t
j

• 0 0 Ij Y t
2jH

t
j

• • −Ij 0 0
• • • −Ij 0
• • • • −γj Ij

⎤
⎥⎥⎥⎥⎦
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and deleting the unnecessary block-rows and block-columns, we arrive at the desired
result. �

It is readily seen that the matrices Xj , Yj and X2j are constrained by (2.53).
This is in contrast to the standard H∞ design [6, 10, 24]) where only the first di-
agonal blocks of the global Lyapunov matrix and its inverse are constrained by the
corresponding LMIs.

Once Xj , Yj and X2j are determined, the next problem is to find X̃j > 0 satisfy-
ing (2.52), j = 1, . . . ,N .

Lemma 2.3 Assume that:

(1) sj = nj ,
(2) X2j in (2.52) is nonsingular, and

(3) Qj =
[

Xj I

I Yj

]
> 0. Then,

X3j = Xt
2j (Xj − Y−1

1 )−1X2j =⇒ X̃j > 0, j = 1, . . . ,N. (2.54)

Proof From (2.52), we obtain Y t
2j = X−1

2j (I −XjYj ), yielding directly (2.54). Obvi-

ously, X̃j > 0, since Xj > 0 and Xj −X2jX
−1
2j (Xj −Y−1

j )(Xt
2j )

−1Xt
2j = Y−1

j > 0,
which completes the proof. �

By combining the foregoing results, we have the following theorem:

Theorem 2.4 Under Assumption 2.3, system S in (2.3) is robustly stabilized by the

dynamic controller F in (2.45) with sj = nj if the following problem is feasible:

minimize

N∑

j=1

γj

(2.55)

subject to X > 0, Y > 0, Q > 0, Z > 0, ĒcV̄ Ēct < 0,

EbWEbt < 0,

where X = diag{X1, . . . ,XN }, Y = diag{Y1, . . . , YN }, Q = diag{Q1, . . . ,QN }, Z =
diag{Z1, . . . ,ZN }, V̄ = diag{V̄1, . . . , V̄N },

V̄j =

⎡
⎣

XjAj + At
jXj + Zj Xj H t

j

• −Ij 0
• • −γj Ij

⎤
⎦

while matrix Ēc is a matrix having the same structure as Ec in (2.53), but with

the elements Ēc
j obtained from Ec

j =
[

Ct⊥
j 0

0 I

]
in such a way that the dimension of

the identity matrix ensures compatibility of the product with V̄j (instead of Vj ),
j = 1, . . . ,N .
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Proof Notice that the inequality ĒcV̄ Ēct < 0 from the problem (2.55) follows im-
mediately from the first inequality in (2.53) in Lemma 2.2 after applying the Schur’s
complement formula and replacing X2jX

t
2j by Zj in view of the expression for V̄j .

Condition Z > 0 results from the requirement that the matrices X2j are nonsingular,
j = 1, . . . ,N . The inequality EbWEbt < 0 is identical to the second inequality in
(2.55). This completes the proof. �

Remark 2.12 Solving (2.55), one gets X > 0, Y > 0 and Z > 0. Nonsingular matri-
ces X2j can always be constructed from any given Zj > 0; one gets X3j from (2.54),
and, consequently, X̃j > 0 from (2.52), j = 1, . . . ,N . Then, we come back to the
original inequality (2.49), which represents then a system of N independent LMIs
with unconstrained matrix variables Jj , j = 1, . . . ,N . Any solution to these LMIs
gives the required block-diagonal parameter matrix J = diag{J1, . . . , JN }, that is, a
robustly stabilizing decentralized dynamic controller F for S.

The underlying assumptions in Lemma 2.3 are important for the formulation of
Theorem 2.1 in terms of LMIs. In general, in the case of reduced order observers
(when sj < nj ), one is faced with the problem of the existence of solutions for
Y2j , Y3j and X3j satisfying (2.52); notice that in the case of H∞ design we have
the rank condition in addition to the condition of the type Qj > 0 [6]. The obtained
estimates of the robustness degree α may appear to be too conservative. A better
insight into the real robustness can be obtained by calculating Af with the obtained
parameter matrix J , replacing it in (2.48), and solving (2.48) for X̃ and Γ . An even
more realistic and less conservative estimate can be obtained by using (2.48) with H̃

being replaced by H̄ and Γ by Γ̄ , and by solving the corresponding LMI problem
for X̃ and Γ̄ . By limiting the norm of the gain matrices Jj via the procedure of [55,
58] some benefits are anticipated.

Remark 2.13 In the case that the interconnection function in S is in the form
h(t, x) = hL(t, x)+hN (t, x), where hL(t, x) = Ahx is a known linear part in which
Ah is a constant N ×N block-matrix with blocks Ah

jk , j, k = 1, . . . ,N , and hN (t, x)

is an unknown nonlinear part satisfying inequality (2.4). Taking A∗ = A + Ah as a
new state matrix in (2.3), instead of (2.49) we have

R̃∗ + ΔR̃ + B̃xJ C̃t + C̃tJ t B̃xt < 0, (2.56)

where ΔR̃ is an N × N block-matrix with blocks

ΔR̃ij =

⎡
⎣

X̃j Ã
h
ij + Āht

jiX̃j 0 0
0 0 0
0 0 0

⎤
⎦ ,

Āh
ij =

[
Ah

jk 0
0 0

]
, j, k = 1, . . . ,N, j 
= k, ΔR̃mm = 0, m = 1, . . . ,N
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and R̃∗ is obtained from R̃ in (2.49) by replacing Aj by A∗
ii = Aj + Ah

ii . Bear-
ing in mind that R̃∗ + ΔR̃ is not block-diagonal, Theorem 2.1 cannot be directly
applied to (2.56). However, (2.56) can have a solution satisfying Assumption 2.3;
it is reasonable to expect that the resulting controller provides better performance
than the one obtained in the absence of the assumed a priori knowledge about linear
interconnections.

2.2.7 Simulation Example 2.4

This examples uses the model of two inverted pendulums connected by a spring
treated in the simulation Example 2.1.

From [55], the decentralized robust linear static state feedback provides α∗ =
α1 = α2 = 4.4950, with the local gain matrix K = [−725.909 −40.435] and the
local closed-loop poles {−20 ± j17.8093}. It easy to see that the system is not
stabilizable by any linear static output feedback.

The local dynamic output feedback controller parameters obtained on the basis
of Theorem 2.1, with Hj = I are

Fj = 104
[

−0.4670 −1.4182
−1.0131 −3.1931

]
, Lj = 104

[
−3.3926
1.5118

]
,

Kj =
[

243.5166 767.0817
]
, Gj = −333.7029, j = 1,2

with the local closed-loop poles

{−3.6543 × 104,−0.0390 × 104,−0.7455 ± j0.5605},

with α∗ = 0.5670 < 1—that is, the desired property is not achieved.
Assuming now that e(t, x) = 0.5 + é(t, x), where é(t, x) ∈ [−0.5,0.5] one ob-

tains the structure with known linear interconnections with

Ah =

⎡
⎢⎢⎣

0 0 0 0
−0.5 0 0.5 0

0 0 0 0
0.5 0 −0.5 0

⎤
⎥⎥⎦ , H̄ =

⎡
⎢⎢⎣

0 0 0 0
−1 0 1 0
0 0 0 0
1 0 −1 0

⎤
⎥⎥⎦ .

In this case the LMI (2.56) is feasible and one gets a decentralized stabilizing con-
troller with α∗ = 1.3526, ensuring stability for all spring positions. The local con-
troller parameter matrices are in this case

Fj = 106
[

−1.4090 −1.5774
−1.0938 −1.2571

]
, Lj = 106

[
−5.0635
5.3116

]
,

Kj = 106[0.5753 0.6573], Gj = 106 × −1.69250,
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and the local closed loop poles

{−2.6487 × 106,−1.7217 × 104,−84.866,−1.8834}.

A direct comparison with the results presented in relation with the same example
in [67] shows that a better performance is obtained by using an observer of Luen-
berger type, incorporating the state matrix of the system model and leaving a smaller
number of free parameters in the controller design procedure.

2.3 Robust Control Design: Class II

In this section, we investigate the problem of robust decentralized control for a
wider class of large-scale nonlinear systems with parametric uncertainty and non-
linear interconnections. This class of systems was labeled in Sect. 2.1.2 as Class II.
In this class, each subsystem of the interconnected system is assumed to be par-
tially feedback linearizable and minimum phase. The uncertain parameters and/or
disturbances are allowed to be time-varying and enter the system nonlinearly. The
nonlinear interconnections are bounded by general nonlinear functions of the zero-
dynamics and outputs of other subsystems. Inspired by the centralized nonlinear
control results [9, 23, 35, 39, 51], we show in the sequel that decentralized global
robust stabilization can be achieved for the uncertain interconnected systems by em-
ploying a Lyapunov-based recursive controller design method. Our result relies on
a proper construction of Lyapunov function for the interconnected systems.

2.3.1 Construction Procedure

In what follows, we first present the following lemma which provides the first step
of the induction in the construction of robust decentralized state feedback control
laws of system (2.6).

Lemma 2.4 Consider the first two state equations of system (2.6):

żj = fj0(zj , xj1) + φj0(zj , xj1,Zj ,Xj1; θ)xj1,

ẋj1 = xj2 + φj1(zj , xj1,Zj ,Xj1, θ), (2.57)

yj = xj1,

satisfying Assumptions 2.1 and 2.2. Then, there exists a smooth function x∗
i2(zj , xj1)

with x∗
j2(0,0) = 0 such that system (2.12) with the control xj2 = x∗

j2(zj , xj1) in the

coordinates

zj = zj , x̃j1 = xj1
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satisfies

V̇j1 ≤ dWj (Vj0)

dVj0

∂Vj0

∂zj

fh00 − bj (zj , xj1)x
2
j1

− rx̃2
j1 + ‖zj‖2 + 1

2

N∑

l=1

δj1l(‖(zl, xl1)‖), (2.58)

where

Vj1 = Wj (Vj0) + 1

2
x̃2
j1, (2.59)

with Vj0 given in Assumption 2.1, Wj (·) and bj (·, ·) are, respectively, a smooth

K∞-function and a smooth function to be chosen; and

fj00(zj ) = fj0(zj ,0), (2.60)

δj1l(‖(zl, xl1)‖) = β−1
j0l(ζj0l(‖(zl, xl1)‖))2 + β−1

j1l(ζj1l(‖(zl, xl1)‖))2, (2.61)

with βj0l and βj1l being positive scaling constants.

Proof First, since fj0(zj , xj1) of (2.12) is a smooth vector with fj0(0,0) = 0, there
exists a smooth vector fj1(zj , xj1) such that

fj0(zj , xj1) = fj00(zj ) + fj1(zj , xj1)xj1,

where fj00(zj ) is as in (2.60). By virtue of Assumption 2.2 and along the state
trajectory of system (2.57), we have

V̇j1 = dWj

dVj0

∂Vj0

∂zj

(fj0 + φj0xj1) + xj1[xj2 + φj1(zj , xj1,Zj ,Xj1; θ)]

= dWj

dVj0

∂Vj0

∂zj

(fj00 + fj1xj1) + xj1xj2 + xj1

1∑

j=0

ψ1
j1(zj )φil(zj , xj1,0,0; θ)

+ xj1

1∑

j=0

ψ1
j1(zj )φj l(zj , xj1,Zj ,Xj1; θ) − φj l(zj , xj1,0,0, θ)), (2.62)

where

ψ0
j1(zj ) = dWj

dVj0

∂Vj0

∂zj

, ψ1
j1(zj ) = 1.

Since φj0(0,0,0,0; θ) = φj1(0,0,0,0; θ) = 0,∀θ , there exists some function
αj1(zj , xj1) such that

∣∣∣∣∣xj1

1∑

ι=0

ψ ι
i1(zj )φiι(zj , xj1,0,0; θ)

∣∣∣∣∣≤ |xj1|αj1(zj , xj1)(‖zj‖ + ‖xj1‖). (2.63)



42 2 Decentralized Control of Nonlinear Systems I

In view of Assumption 2.2, it follows from (2.62) with some algebraic manipula-
tions that

V̇j1 ≤ dWj

dVj0

∂Vj0

∂zj

(fj00 + fj1xj1) + xj1xj2

+ |xj1|
∣∣∣∣
dWj

dVj0

∣∣∣∣
∥∥∥∥
∂Vj0

∂zj

∥∥∥∥
N∑

ℓ=1

ηj0ℓ(zj , xj1)ζj0ℓ(‖(zl, xℓ1)‖)

+ |xj1|
N∑

ℓ=1

ηj1ℓ(zj , xjℓ)ζj1ℓ(‖(zj , xℓ1)‖)

+ |xj1|αj1(zj , xj1)(‖zj‖ + ‖xj1‖)

≤ dWj

dVj0

∂Vj0

∂zj

(fj00 + fj1xj1) + xj1(xj2 + xj1αj1(zj , xj1))

+ 1

2
x2
j1

∣∣∣∣
dWj

dVj0

∣∣∣∣
2∥∥∥∥

∂Vj0

∂zj

∥∥∥∥
2 N∑

ℓ=1

βj0ℓη
2
j0ℓ(zj , xj1)

+ 1

2

N∑

ℓ=1

β−1
j0ℓ(ζj0ℓ(‖(zℓ, xℓ1)‖))2

+ 1

2
x2
i1

N∑

l=1

βi1lη
2
i1l(zj , xi1) + 1

2

N∑

l=1

β−1
i1l (ζj1ℓ(‖(zℓ, xℓ1)‖))2

+ 1

4
x2
j1α

2
j1(zj , xj1) + ‖zj‖2

= dWj

dVj0

∂Vj0

∂zj

fj00 + xj1(xj2 + Mj1(zj , xj1))

+ ‖zj‖2 + 1

2

N∑

ℓ=1

δj1ℓ(‖(zℓ, xℓ1)‖), (2.64)

where δj1ℓ is given in (2.61) and

Mj1(zj , xj1) = dWj

dVj0

∂Vj0

∂zj

fj1 + 1

2
xj1

∣∣∣∣
dWj

dVj0

∣∣∣∣
2∥∥∥∥

∂Vj0

∂zj

∥∥∥∥
2

×
N∑

ℓ=1

βj0ℓη
2
j0ℓ(zj , xj1) + 1

2

N∑

ℓ=1

βj1ℓη
2
j1ℓ(zj , xj1)

+ xj1αj1(zj , xj1) + 1

4
xj1α

2
j1(zj , xj1). (2.65)
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Now, select

xj2 = x∗
j2 = −Mj1 − bj (zj , xj1)xj1 − rxj1, (2.66)

where bj (·, ·) is a smooth function to counteract the effect of the interconnections
and is to be determined. Then, (2.58) is obtained and the proof of Lemma 2.4 is now
completed. �

Remark 2.14 For the case when r = 1, that is, xj2 = vj in (2.57) is the actual con-
trol input, it can be shown, refer to the proof of Theorem 2.5, that the design func-
tions bj (·, ·) and Wj (·), j = 1,2, . . . ,N can be chosen such that the decentralized
state feedback control vj = x∗

j2(zj , xj1) solves the robust decentralized stabilization
problem.

2.3.2 Recursive Design

Next, we proceed toward the systematic recursive design methodology for construct-
ing robust decentralized control laws for the system (2.6) when r ≥ 2. A preliminary
result is provided.

Lemma 2.5 Consider the first ρ + 1 state equations of system (2.6):

żj = fj0(zj , xj1) + φj0(zj , xj1,Zj ,Xj1; θ)xj1,

ẋj1 = xj2 + φj1(zj , xj1,Zj ,Xj1; θ),

ẋj2 = xj3 + φj2(zj , x̄j2,Zj ,Xj1; θ),

...

ẋj,ρ−1 = xj,ρ + φj,ρ−1(zj , x̄j,ρ−1,Zj ,Xj1; θ),

ẋj,ρ = xj,ρ+1 + φj,ρ(zj , x̄jρ,Zj ,Xj1; θ),

(2.67)

satisfying Assumptions 2.1 and 2.2. Suppose that for any given index ρ = m (1 ≤
m ≤ r − 1), there exist smooth functions

x∗
j2(zj , xj1), x∗

i3(zj , x̄j2), . . . , x∗
j,m+1(zj , x̄jm);

x∗
jk(0,0) = 0, 2 ≤ k ≤ m + 1

such that system (2.67) with the control xj,m+1 = x∗
j,m+1(zj , x̄j,m) in the new coor-

dinates

zj = zj , x̃j1 = xj1,

x̃j2 = xj2 − x∗
j2(zj , xj1), . . . , x̃jm = xjm − x∗

j,m(zj , x̄j,m−1),
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satisfies

V̇jm ≤ dWj

dVj0

∂Vj0

∂zj

fj00 − bj (zj , xj1)x
2
j1 − (r − m + 1)

m∑

k=1

x̃2
jk + m‖zj‖2

+ 1

2

N∑

ℓ=1

δjm ell(‖(zℓ, xℓ1)‖), (2.68)

where

Vim = Wj (Vj0) + 1

2

m∑

k=1

x̃2
jk,

with Vj0 as given in Assumption 2.1 and

δj0ℓ(‖(zℓ, xℓ1)‖) ≡ 0,

δjkℓ(‖(zℓ, xℓ1)‖) = δj,k−1,ℓ(‖(zℓ, xℓ1)‖)
(2.69)

+
k∑

ι=0

β−1
ℓιℓ (ζℓιℓ(‖(zℓ, xℓ1)‖))2, 1 ≤ k ≤ r.

Then for system (2.67) with ρ = m + 1, there exists a smooth decentralized state

feedback control law

xj,m+2 = x∗
j,m+2(zj , x̄j,m+1); x∗

j,m+2(0,0) = 0 (2.70)

such that system (2.67) with (2.70) in the new coordinates

zj = zj , x̃jk, 1 ≤ k ≤ m,

x̃j,m+1 = xj,m+1 − x∗
j,m+1(zj , x̄j,m),

satisfies

V̇j,m+1 ≤ dWj

dVj0

∂Vj0

∂zj

fj00 − bj (zj , xj1)x
2
j1 − (r − m)

m+1∑

k=1

x̃2
jk

+ (m + 1)‖zj‖2 + 1

2

N∑

ℓ=1

δℓ,m+1,ℓ(‖(zℓ, xℓ1)‖), (2.71)

where

Vj,m+1 = Vjm + 1

2
x̃2
j,m+1.
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Proof Initially, the derivative of x̃j,m+1 = xj,m+1 − x∗
j,m+1 is given by

˙̃xj,m+1 = xj,m+2 + aj,m+1(zj , x̄j,m+1)

+
m+1∑

ι=0

ψ ι
j,m+1(zj , x̄j,m)φj ι(zj , x̄j ι,Zj ,Xj1; θ),

where

aj,m+1(zj , x̄j,m+1) = −
∂x∗

j,m+1

∂zj

fj0(zj , xj1) −
m∑

ι=1

∂x∗
j,m+1

∂xj , ι
xj,ι+1,

ψ0
j,m+1(zj , x̄j,m) = −

∂x∗
j,m+1

∂zj

xj1,

ψ ι
j,m+1(zj , x̄j,m) = −

∂x∗
j,m+1

∂xj,ι

, 1 ≤ ι ≤ m,

ψm+1
j,m+1(zj , x̄j,m) = 1.

The time derivative of Vj,m+1 is given by

V̇j,m+1 = V̇j,m + x̃j,m+1

[
xj,m+2 + aj,m+1

+
m+1∑

ι=0

ψ ι
j,m+1(zj , x̄i,m)φj ι(zj , x̄j ι,Zj ,Xj1; θ)

]

= V̇jm + x̃j,m+1(xj,m+2 + aj,m+1) + x̃j,m+1

m+1∑

ι=0

ψ ι
j,m+1φiι(zj , x̄iι,0,0; θ)

+ x̃j,m+1

m+1∑

ι=0

ψ ι
j,m+1[φj ι(zj , x̄j ι,Zj ,Xj1; θ)

− φj ι(zj , x̄j ι,0,0; θ)]. (2.72)

Define

φ̃j ι(zj , ¯̃xj ι; θ) = φj ι(zj , x̄j ι,0,0; θ)

= φj ι(zj , ¯̃xj ι + x̄∗
j ι,0,0; θ), 2 ≤ ι ≤ m + 1 (2.73)

where ¯̃xj ι = (x̃j1, . . . , x̃j ι) and x̄∗
j ι = (x∗

j1, x
∗
j2, . . . , x

∗
j ι) with ¯̃xj0 = x̃j1 and

x̄∗
j0 = x∗

j1.
Now since φj ι(0,0,0,0; θ) = 0,∀θ ∈ Ω,0 ≤ ι ≤ m + 1, it is easy to verify that

φ̃j ι(0,0; θ) = 0, ∀θ ∈ Ω . Thus, there exist smooth bounding functions αj ι(zj , ¯̃xj,ι),
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ι = 0,1, . . . ,m + 1 such that

|φj0(zj , xj1,0,0; θ)| = |φ̃j0(zj , x̃j1; θ) ≤ αj0(zj , x̃j1)(‖zj‖ + ‖x̃j1‖),

|φj ι(zj , x̄j ι,0,0; θ)| = |φ̃iι(zj , ¯̃xj ι; θ) ≤ αj ι(zj , ¯̃xj,ℓ)

[
‖zj‖ +

ℓ∑

k=1

|x̃jk|
]
, (2.74)

1 ≤ ℓ ≤ m + 1.

Hence, the second last term of (2.72) satisfies

x̃j,m+1

m+1∑

ℓ=0

ψ
j ι

j,m+1φj ι(zj , x̄j ι,0,0; θ)

≤ |x̃j,m+1|
[
ψ0

j,m+1|αj0(‖zj‖ + |x̃j1|) +
m+1∑

ℓ=1

|ψℓ
j,m+1|αj ι

(
‖zj‖ +

ℓ∑

k=1

|x̃jk|
)]

= |x̃j,m+1|
[
|ψ0

j,m+1|αj0(‖zj‖ + |x̃j1|) +
m∑

ℓ=1

|ψℓ
j,m+1|αiι

(
‖zj‖ +

ℓ∑

k=1

|x̃jk|
)]

+ |x̃j,m+1|αj,m+1

(
‖zj‖ +

m∑

k=1

|x̃jk|
)

+ αj,m+1x̃
2
j,m+1

≤ x̃2
ij,m+1

m∑

ℓ=0

(ψℓ
j,m+1)

2α2
j ι(m + 1)(ℓ + 1)

+ 1

4(m + 1)

[
(‖zj‖ + |x̃j1|)2 +

m∑

ℓ=1

1

(ℓ + 1)

(
‖zj‖ +

ℓ∑

k=1

|x̃jk|
)2]

+ 1

2
(m + 1)x̃2

j,m+1α
2
j,m+1 + 1

2(m + 1)

(
‖zj‖ +

m∑

k=1

|x̃jk|
)2

+ αj,m+1x̃
2
j,m+1

≤ x̃2
j,m+1

m∑

ℓ=0

(ψℓ
j,m+1)

2α2
iι(m + 1)(ℓ + 1) + 1

2
‖zj‖2 + 1

2

m∑

k=1

|x̃jk|2

+ 1

2
(m + 1)x̃2

j,m+1α
2
j,m+1 + 1

2

(
‖zj‖2 +

m∑

k=1

|x̃jk|2
)

+ αj,m+1x̃
∗
j,m+1

=
[

m∑

ℓ=0

(ψℓ
j,m+1)

2α2
iι(m + 1)(ℓ + 1) + 1

2
(m + 1)α2

j,m+1 + αj,m+1

]
x̃2
j,m+1

+ ‖zjk‖2 +
m∑

k=1

|x̃jk|2

≤ x̃2
j,m+1Ej,m+1(zj , ¯̃xj,m+1) + ‖zj‖2 +

m∑

k=1

|x̃jk|2. (2.75)
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Invoking Assumption 2.2 and (2.75), it follows that (2.72) can be written as

V̇j,m+1 ≤ V̇jm + x̃j,m+1(xj,m+2 + aj,m+1)

+ |x̃j,m+1|
m+1∑

ℓ=0

|ψℓ
j,m+1|

N∑

ℓ=1

ηj ιℓ(zj , x̄j ι)ζjℓℓ(‖(zℓ, xℓ1)‖)

+ x̃2
j,m+1Ej,m+1 + ‖zj‖2 +

m∑

k=1

|x̃jk|2

≤ V̇jm + x̃j,m+1(xj,m+2 + aj,m+1) + x̃2
j,m+1Ej,m+1

+ ‖zj‖2 +
m∑

k=1

|x̃jk|2

+ 1

2
x̃2
j,m+1

m+1∑

ℓ=0

N∑

ℓ=1

(ψℓ
j,m+1)

2(ηj ιℓ(zj , x̄j ι))
2βj ιℓ

+ 1

2

m+1∑

ℓ=0

N∑

ℓ=1

(ζjℓℓ(‖(zℓ, xℓ1)‖))2β−1
j ιℓ

≤ dWj

dVj0

∂Vj0

∂zj

fj00 − bj (zj , xj1)x
2
j1 − (r − m + 1)

m∑

k=1

x̃2
jk

+ m‖zj‖2 + 1

2

N∑

ℓ=1

δjmℓ(‖(zℓ, xℓ1)‖) + x̃jmx̃j,m+1

+ x̃j,m+1(xj,m+2 + Mj,m+1) + ‖zj‖2 +
m∑

k=1

x̃2
jk

+ 1

2

m+1∑

ι=0

N∑

ℓ=1

(ζj ιℓ(‖(zℓ, xℓ1)‖))2β−1
ℓℓl , (2.76)

where

Mi,m+1(zj , ¯̃xj,m+1) = aj,m+1 + x̃j,m+1Ej,m+1

+ 1

2
x̃j,m+1

m+1∑

ι=0

N∑

ℓ=1

(ψℓ
j,m+1)

2(ηj ιℓ(zj , x̄j ι))
2βj ιℓ. (2.77)

Select

xj,m+2 = x∗
j,m+2(zj , xj1, . . . , xj,m+1) = −Mj,m+1 − x̃jm − (r −m)x̃j,m+1. (2.78)

This makes (2.71) in Lemma 2.5 is valid, which completes the proof. �
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By combining Lemmas 2.4 and 2.5 the construction of robust decentralized con-
trol law stabilizing the uncertain interconnected nonlinear systems (2.6) can be com-
pleted. This is demonstrated below.

Theorem 2.5 Consider the uncertain interconnected system (2.6) satisfying As-

sumptions 2.1 and 2.2. Then there exists a decentralized control law, vj =
vj (zj , xj ), j = 1,2, . . . ,N , such that the overall system with the decentralized con-

troller is globally asymptotically stable for all admissible uncertainties and inter-

connections. Indeed; a suitable decentralized controller is given by

vj := x∗
j,r+1(zj , x̄j,r) = −Mjr − x̃j,r−1 − x̃jr , (2.79)

where Mjr is given in (2.35) with m + 1 = r .

Proof By Lemma 2.4, it is not difficult to show that the induction hypotheses of
Lemma 2.5 is satisfied. This motivates us to build a Lyapunov-based recursive de-
centralized control law by applying Lemma 2.5 repeatedly until the r th step. There-
fore, we can construct x∗

j2(zj , xj1), . . . , x
∗
j,r+1(zj , x̄jr) such that under the new co-

ordinates

zj , x̃j1 = xj1, x̃j2 = xj2 − x∗
j2(zj , xj1), . . . , x̃jr = xjr − x∗

j,r(zj , x̄j,r−1)

system (2.2) with control law (2.79) satisfies

V̇jr ≤ dWj

dVj0

∂Vj0

∂zj

fij00 − bj (zj , xj1)x
2
j1 −

r∑

k=1

x̃2
jk + r‖zj‖2

+ 1

2

N∑

ℓ=1

δjrℓ(‖(zℓ, xℓ1)‖), (2.80)

where Vjr = Wj (Vj0) + 1
2

∑r
k=1 x̃2

jk and

δjrℓ(‖(zℓ, xℓ1)‖) = rβ−1
j0ℓ(ζj0ℓ(‖(zℓ, xℓ1)‖))2

+
r∑

ι=1

(r − ι + 1)β−1
j ιℓ(ζj ιℓ(‖(zℓ, xℓ1)‖))2. (2.81)

By Assumption 2.2, we have

δjrℓ(‖(zℓ, xℓ1)‖) = rβ−1
j0ℓ(ζ

0
j0ℓ(‖zℓ‖)‖zℓ‖ + ζ 1

j0ℓ(zℓ, xℓ1)|xℓ1|)2

+
r∑

ℓ=1

(r − ℓ + 1)β−1
j ιℓ(ζ

0
j ιℓ(‖zℓ‖)‖zℓ‖ + ζ 1

jℓℓ(zℓ, xℓ1)|xℓ1|)2

≤ 2rβ−1
j0ℓ((ζ

0
j0ℓ(‖zℓ‖))2‖zℓ‖2 + (ζ 1

j0ℓ(zℓ, xℓ1))
2x2

ℓ1)
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+ 2
r∑

ℓ=1

(r − ℓ + 1)β−1
j ιℓ

× ((ζ 0
jℓℓ(‖zℓ‖))2‖zℓ‖2 + (ζ 1

j ιℓ(zℓ, xℓ1))
2x2

ℓ1)

≤ 2Δjℓ(‖zℓ‖)‖zℓ‖2 + 2Djℓ(zℓ, xℓ1)x
2
ℓ1, (2.82)

where

Δjℓ(‖zℓ‖) = rβ−1
j0ℓ(ζ

0
j0ℓ(‖zℓ‖))2 +

r∑

ι=1

(r − ι + 1)β−1
j ιℓ(ζ

0
j ιℓ(‖zℓ‖))2, (2.83)

Djℓ(zℓ, xℓ1) = rβ−1
j0ℓ(ζ

1
j0ℓ(zℓ, xℓ1))

2 +
r∑

ι=1

(r − ι + 1)β−1
j ιℓ(ζ

1
j ιℓ(zℓ, xℓ1))

2. (2.84)

Define

V =
N∑

i=1

Vj r.

Observing the interconnection structural constraint

N∑

j=1

N∑

ℓ=1

[Δjℓ(‖zℓ‖)‖zℓ‖2 + Djℓ(zℓ, xℓ)x
2
ℓ1]

=
N∑

j=1

N∑

ℓ=1

[Δℓj (‖zj‖)‖zj‖2 + Dℓj (zj , xj )x
2
j1]

and Assumption 2.1 and by noting that Wj (Vj0) is a K∞ function of Vj0, we have

V̇jr ≤
N∑

j=1

{
dWj

dVj0

∂Vj0

∂zj

fj00 − bj (zj , xj1)x
2
j1 −

r∑

k=1

x̃2
jk + r‖zj‖2

+
N∑

ℓ=1

[Δℓj (‖zj‖)‖zj‖2 + Dℓj (zj , xj )x
2
j1]
}

≤
N∑

j=1

{
− dWj

dVj0
νj‖zj‖2 +

[
r +

N∑

ℓ=1

Δℓj (‖zj‖)
]
‖zj‖2

−
r∑

k=1

x̃2
jk −

[
bj (zj , xjℓ)x

2
jℓ −

N∑

ℓ=1

Dℓj (zj , xjℓ)

]
x2
jℓ

}
. (2.85)
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Since Vj0(zj ) in Assumption 2.1 is radially unbounded and positive definite, there
exists a K∞ function κℓj such that

Δℓj (‖zj‖) ≤ Δℓj (0) + κℓj (Vj0). (2.86)

Now select

bj (zj , xj1) =
N∑

ℓ=1

Dℓj (zj , xj1) (2.87)

and

dWj

dVj0
= kj + 1

νj

[
r +

N∑

ℓ=1

(Δℓj (0) + κℓj (Vj0))

]
, Wj (0) = 0, (2.88)

where kj > 0 is a constant. It is obvious that Wj (·) is a smooth K∞-function. Then
it follows that

V̇ ≤
N∑

j=1

{(
−kjνj‖zj‖2 −

r∑

k=1

x̃2
jk

)}
. (2.89)

Therefore, due to the onto-relation between (zj , xj ) and (zj , x̃j ), where x̃j =
(x̃j1, . . . , x̃ir), the closed-loop interconnected system of (2.2) with the decentral-
ized controller (2.79) is globally asymptotically stable for all admissible uncertain-
ties and interconnections. �

Remark 2.15 Observe from Theorem 2.5 that the functions bj (zj , xi1) and Wj (Vi0),
i = 1,2, . . . ,N , can be chosen before we start the recursive design of the robust
decentralized stabilization controller.

Remark 2.16 Theorem 2.5 presents a decentralized global stabilization result for
uncertain interconnected minimum-phase nonlinear systems with parametric uncer-
tainty and interconnections bounded by general nonlinear functions. This result ex-
tends centralized results in [35, 39] to decentralized control of large-scale intercon-
nected systems.

2.3.3 Simulation Example 2.5

Consider the following large-scale system which is composed of two subsystems:

Subsystem 1: ż1 = −2z1 + z1x11,

ẋ11 = x12 + x11z1 sin θ1 + x2
21z2 cos θ2

1 ,

ẋ12 = u1 + x2
12(x11z1 + z2

1) sin θ1 + x21z2 cos(θ1z1);
(2.90)
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Subsystem 2: ż2 = −z2 + x2
21,

ẋ21 = x22 + (x2
11z1 + x2

21z2) sin(z2θ2),

ẋ22 = u2 + x2
22(x11z

2
1 + x21z

2
2) sin θ2 + x2

22z
3
2 cos(θ2

2 z2
2),

(2.91)

where θ1, θ2 ∈ [−2,2].
It is easy to verify that the interconnections in the above interconnected system

satisfy Assumption 2.2. Choose βjkm = 1, j, k,m = 1,2. It follows from (2.83) and
(2.84) that

Δ11 = Δ12 = Δ21 = Δ22 = 0

D11 = 0, D12 = 2x2
21z

2
2 + z2

2, D21 = 2x2
11z

2
1 + z4

1, D22 = 0.

1. Let V10 = 1
2z2

1 and V20 = 1
2z2

2. Then,

∂V10

∂z1
f10(z1,0) = −2z2

1;
∂V20

∂z2
f20(z2,0) = z2

2.

Obviously, Assumption 2.1 is satisfied with ν1 = 2 and ν2 = 1.
It also follows from (2.86) that

κ11(V10) = κ21(V10) = κ12(V20) = κ22(V20) = 0.

By choosing k1 = k2 = 3, according to (2.87) and (2.88), we have

dW1

dV10
= 4,

dW2

dV20
= 5

and

b1 = D11 + D21, b2 = D12 + D22.

It follows from (2.18) and (2.20) that

α11 = x2
11 + 0 : 25, α21 = x2

21

and

M11 = dW1

dV10
z2

1 + 0.5x11 + x11α11 + 0.25α2
11,

M21 = dW2

dV20
z2x21 + 0.5x21 + x21α21 + 0.25α2

21.

Hence, we can compute the virtual control

x∗
12 = −M11 − b1x11 − 2x11,

x∗
22 = −M21 − b2x21 − 2x21.
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2. Letting x̃i2 = xi2 − x∗
i2, i = 1,2, we have

ψ0
12 = −

∂x∗
12

∂z1
x11, ψ0

22 = −
∂x∗

22

∂z2
x21,

ψ1
12 = −

∂x∗
12

∂x11
, ψ1

22 = −
∂x∗

22

∂x21
, ψ2

21 = ψ2
22 = 1,

a12 = −
∂x∗

12

∂z1
(−2z1 + x11z1) −

∂x∗
12

∂x11
x12,

a22 = −
∂x∗

22

∂z2
(−z2 + x2

21) −
∂x∗

22

∂x21
x22.

According to (2.74), we can choose

α12 = x2
12(z

2
1 + 0.25), α22 = x2

22z
2
2.

Hence, it follows from (2.77) that

M12 = a12 + x̃12(4(ψ1
12)

2α2
11 + α2

12 + α12) + 0.5x̃12((ψ
1
12)

2 + (ψ2
12)

2),

M22 = a22 + x̃22(4(ψ1
22)

2α2
21 + α2

22 + α22) + 0.5x̃22((ψ
1
22)

2 + (ψ2
22)

2x4
22).

The control law can be obtained from (2.78) as follows:

u1 = −x11 − M12 − x̃12, (2.92)

u2 = −x21 − M22 − x̃22. (2.93)

Systems (2.90)–(2.91) were simulated with the controller (2.92) and (2.93) to
demonstrate the effectiveness of the decentralized robust control design procedure.
The initial conditions are set to be

z1 = 1.0, x11 = −1.0, x12 = 1.5,

z2 = 1.0, x21 = −1.0, x22 = 1.5

and the uncertainties θ1 and θ2 are given by θ1 = 2 sin t and θ2 = 2 cos t2. Obviously,
the uncertainties are time-varying ones and belong to the set [−2,2]. The closed-
loop responses for the two subsystems are plotted in Figs. 2.1 and 2.2 from which
the stability is clearly seen.

2.4 Decentralized Tracking: Class III

In this section, we attend to the problem of class III that was presented in Sect. 2.1.3.
In the problem description there, attention was given to a class of large-scale nonlin-
ear systems which is comprised of N interconnected subsystems with time-varying
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Fig. 2.1 Closed-loop
responses of subsystem 1

Fig. 2.2 Closed-loop
responses of subsystem 2

unknown parameters and/or disturbances entering nonlinearly into the state equation
as modeled by (2.9) and (2.10).

In what follows, we focus on studying the problem of decentralized output-
feedback tracking with disturbance attenuation. Thus, with reference to the model
(2.9) and (2.10), for every 1 ≤ j ≤ N and a given time-varying signal yir(t) whose
derivatives up to order nj are bounded over [0,∞), our objective hereafter is to
design a smooth, decentralized, dynamic, output-feedback controller of the form

ẋj = νj (xj , yj , t), uj = μj (xj , yj , t), xj ∈ ℜn̄j (2.94)

such that the following properties hold for the resulting closed-loop large-scale non-
linear system (2.11), (2.94):
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1. When the signal wj ≡ 0 for all 1 ≤ j ≤ N , the tracking error signal yj − yir

goes to zero asymptotically and all other closed-loop signals remain bounded

over [0,∞).
2. When wj 
= 0 for all 1 ≤ j ≤ N , the closed-loop system is bounded-input

bounded-state BIBS stable and, in appropriate coordinates, is integral-input-

to-state stable iISS with respect to the disturbance input w [63]. In particular,
there exists a class-K function γd (that is, γd is continuous, strictly increasing

and vanishes at the origin) such that, for any ρ > 0, the controller (2.94) can be

tuned to satisfy the inequality

∫ t

t0

|y(τ) − yr(t)|2dτ ≤ ρ

∫ t

0
γd(|w(τ)|)dτ + η0(z(0), x(0), x(0))

∀t ≥ 0, (2.95)

where η0 is a nonnegative C0 function, and

z(0) = [zt
1(0), . . . , zt

N (0)]t , x(0) = [xt
1(0), . . . , xt

N (0)]t ,
x(0) = [xt

1(0), . . . , xt
N (0)]t .

Remark 2.17 Property (1) above means that decentralized asymptotic tracking is
achieved for each local j th subsystem (2.11) in the absence of disturbance in-
puts. Property (2) with (2.95) in implies that, in the presence of disturbances,
the decentralized output-feedback controller (2.94) has the ability to attenu-
ate the effect of the disturbances on the tracking error arbitrarily for a fixed
class-K gain-function γd . As we shall see later, γd(s) = s2 + s4 + s8 in our
case.

In the sequel, sufficient conditions are provided to yield the standard L2-
gain disturbance rejection property—that is, γd(s) = s2 in (2.95). It is inter-
esting to note that a similar problem has been studied in [41] in the frame-
work of centralized output-feedback tracking with almost disturbance decou-
pling.

The control problem formulated above will be solved in two steps demonstrated
in the following sections. We first introduce a (partially) decentralized observer in
order to obtain an augmented decentralized system with partial-state information.
Then, we base the decentralized controller design on this enlarged dynamic sys-
tem.

2.4.1 Partially Decentralized Observer

Owing to the structure in every local system of (2.11), for each 1 ≤ j ≤ N , we
introduce the following state estimator for the (zj , xj )-subsystem:
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˙̂zj = Qj ẑj + fj0(y1r , . . . , yNr),

˙̂xj1 = x̂j2 + Lj1(yj − xj1) + fj1(y1r , . . . , yNr)

+ gj1(y1r , . . . , yNr)ẑj ,

...

x̂jnj
= uj + Ljnj

(yj − x̂j1) + fjnj
(y1r , . . . , yNr)

+ gjnj
(y1r , . . . , yNr)ẑj ,

(2.96)

Aj =

⎡
⎢⎢⎢⎣

−Lj1

−Lj2 Inj −1
...

−Ljnj
0 . . .0

⎤
⎥⎥⎥⎦ . (2.97)

Notice that the eigenvalues of Aj can be assigned to any desired location in the open
left-half plane via the choice of appropriate constants {Ljm}nm

m=1, provided complex
conjugate eigenvalues appear in pair. In (2.97), Inj −1 is the unit matrix of order
nj − 1.

Introducing the new variables

z̃j = zj − ẑj , x̃jk = xjk − x̂jk, 1 ≤ k ≤ nj , 1 ≤ j ≤ N. (2.98)

Then from (2.11) and (2.96), it follows that:

˙̃zj = Qj z̃j + fj0(y1, . . . , yN ) − fj0(y1r , . . . , yNr)

+ pj0(y1, . . . , yN )wj , (2.99)

˙̃xj = Aj x̃j + fj (y1, . . . , yN ) − fj (y1r , . . . , yNr)

+ gj (y1, . . . , yN )zj − gj (y1r , . . . , yNr)ẑj

+ pj (y1, . . . , yN )wj , (2.100)

where

x̃j = (x̃j1, . . . , x̃jnj
)t , fj = (fj1, . . . , fjnj

)t ,

gj = (gi1, . . . , gjnj
)t , pj = (pj1, . . . , pjnj

)t .

Since every fjk is a smooth function and every yjr is a bounded signal, there exist
a finite number of nonnegative smooth functions {ϕj0k}Nk=1, {ϕjk}Nk=1 such that

|fj0(y1, . . . , yN ) − fj0(y1r , . . . , yNr)| ≤
N∑

k=1

|x̃k1|ϕj0k(x̃k1), (2.101)

|fj (y1, . . . , yN ) − fj (y1r , . . . , yNr)| ≤
N∑

k=1

|x̃k1|ϕjk(x̃k1). (2.102)
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In a similar way, we can obtain a functional bound for gj (y1, . . . , yN )zj −
gj (y1r , . . . , yNr)ẑj . Indeed, we have

gj (y1, . . . , yN )zj − gj (y1r , . . . , yNr)ẑj

= gj (y1, . . . , yN )z̃j + (gj (y1, . . . , yN ) − gj (y1r , . . . , yNr))ẑj . (2.103)

Using the Mean-Value Theorem [29], there exist nonnegative smooth functions φik

(1 ≤ k ≤ N) such that

|gj (y1, . . . , yN )zj − gj (y1r , . . . , yNr)ẑj |

≤ |gj (y1, . . . , yN )||z̃j | +
N∑

k=1

|x̃k1|φik(x̃k1)|ẑj |. (2.104)

It must be noted that, by means of these inequalities (2.101)–(2.104), it is easy to
show that, in the absence of disturbance inputs, the solutions (z̃j (t), x̃j (t)) of the
cascade system (2.99)–(2.100) go to zero, if yj (t) − yir(t) → 0 for all 1 ≤ j ≤ N .
The latter property will be guaranteed with the help of the decentralized controller
to be designed next.

Remark 2.18 It should be mentioned that the observer (2.96) is not asymptotic and
is totally decentralized only if the reference signals yjr = 0 for all 1 ≤ j ≤ N . Pro-
ceeding further, we select a partially decentralized observer so that; in appropriate
coordinates; the system (2.105) has an equilibrium point and therefore there is a
solution to decentralized asymptotic tracking. In general, when yjr(t) are general
time-varying signals, the system augmented with a totally decentralized observer
does not have a fixed equilibrium. Thus, only practical tracking can be achieved by
means of high-gain feedback [60].

2.4.2 Design Procedure

From the forgoing development of partially decentralized observers, we derive the
following controller-observer combined system for the purpose of feedback design:

˙̃zj = Qj z̃j + fj0(y1, . . . , yN ) − fi0(y1r , . . . , yNr)

+ pj0(y1, . . . , yN )wj ,

˙̃xj = Aj x̃j + fj (y1, . . . , yN ) − fj (y1r , . . . , yNr)

+ gj (y1, . . . , yN )zj − gj (y1r , . . . , yNr)ẑj

+ pj (y1, . . . , yN )wj ,

ẏj = x̂j2 + x̃i2 + fj1(y1, . . . , yN ) + gj1(y1, . . . , yN )zj
(2.105)
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+ pi1(y1, . . . , yN )wj ,

˙̂xj2 = x̂j3 + Li2(yj − x̂i1) + fj2(y1r , . . . , yNr)

+ gj2(y1r , . . . , yNr)ẑj ,

...

˙̂xinj
= uj + Ljnj

(yj − x̂i1) + fjnj
(y1r , . . . , yNr)

+ gjnj
(y1r , . . . , yNr)ẑj .

Notice that the state variables (yj , x̂j1, x̂j2, . . . , x̂jnj
), and then x̃j1, are available

for feedback design. Also note that the states (z̃j , x̃j ) are unmeasured and that the
outputs yj , with j 
= i, of other subsystems are unavailable for the design of the
regional input uj .

We now direct attention to the j th local system (2.105) with uj as the control
input. For the sake of clarity, the arguments of a function are often omitted in case
no possible confusion arises. For notational simplicity, denote

f̃j0 = fj0(y1, . . . , yN ) − fj0(y1r , . . . , yNr), (2.106)

f̃j = fj (y1, . . . , yN ) − fj (y1r , . . . , yNr), (2.107)

g̃j = gj (y1, . . . , yN )zj − gj (y1r , . . . , yNr)ẑj . (2.108)

A step-by-step constructive controller design procedure is now developed, leading to
an improved solution to the decentralized problem under consideration with desired
tracking controllers.

Step J.1: Starting with the first (z̃j , x̃j , yj )-subsystem of (2.105). Introduce the new
variable ξj1 = yj − yjr (= x̃j1) and consider the Lyapunov function

Vj1 = λj1z̃
t
jPj1z̃j + λj2(z̃

t
jPj1z̃j1)

2 + x̃t
jPj2x̃j + 1

2
ξ2
i1, (2.109)

where λj1, λj2 > 0 are design parameters, Pj1 = P t
j1 > 0 and Pi2 = P t

i2 > 0 satisfy

Pi1Qj + Qt
jPi1 = −2Inzj

, (2.110)

Pi2Aj + At
jPi2 = −2Inj

. (2.111)

This guarantees that Vj1 > 0. Then by evaluating the time derivative of Vi1 along
the solutions of (2.105), we obtain

V̇j1 = (λj1 + 2λj2z̃
t
jPj1z̃j )(−2|z̃j |2 + 2z̃t

jPj1(f̃j0 + pj0wj ))

− 2|x̃j |2 + 2x̃t
jPj2(f̃j + g̃j + pjwj ) + ξj1(x̂j2 + x̃j2

+ fj1(y1, . . . , yN ) + gj1(y1, . . . , yN )zj

+ pj1(y1, . . . , yN )wj − ẏir). (2.112)
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We first examine the term 2z̃t
jPj1(f̃j0 + pi0wj ). Using (2.106) and (2.101), with

the help of Young’s inequality (see Chap. 9) and some algebraic manipulations, it
follows that:

2(λj1 + 2λj2z̃
t
jPj1z̃j )z̃

t
jPj1(f̃j0 + pj0wj )

≤ λj1|z̃j |2 + 3λi2

λmax(Pi1)
(z̃t

jPj1z̃j )
2 +

N∑

k=1

ξ2
k1ψik1(ξk1)

+ cj2|wj |2 + cj3|wj |4 + |wj |8, (2.113)

where cj1, cj2, cj3 > 0 and ψjk1 is a nonnegative smooth function.
In a similar way, there exist positive constants κj1, cj4 and a nonnegative smooth

function ψjk2 such that

2x̃t
jPj2(f̃j + g̃j + pjwj )

≤ |x̃j |2 + κj1|z̃j |2 + |z̃j |4 +
N∑

k=1

ξ2
k1ψjk2(ξk1) + cj4|wj |2 + |wj |4, (2.114)

where we have used the fact that ẑj is bounded.
By substituting (2.113) and (2.114) into (2.112), we readily obtain

V̇i1 ≤ −(λj1 + λj2z̃
t
jPj1z̃j )|z̃j |2 − |x̃j |2 +

N∑

k=1

ξ2
k1(ψik1 + ψjk2)

+ κj1|z̃j |2 + |z̃j |4 + (cj2 + cj4)|wj |2 + (cj3 + 1)|wj |4

+ |wj |8 + ξj1(x̂i2 + x̃j2 + fj1(y1, . . . , yN )

+ gj1(y1, . . . , yN )zj + pj1(y1, . . . , yN )wj − ẏjr). (2.115)

It is significant to note that κj1 does not depend on λj1 and λj2 while cjk’s may
depend on λj1 and λj2.

Proceeding further, using (2.102) and (2.104), we have

ξj1(x̃j2 + f̃j1 + g̃j1 + pj1wj )

≤ 1

2
|x̃j |2 +

N∑

k=1

ξ2
k1ψjk3(ξk1) + |z̃j |2 + |wj |2, (2.116)

where ψjk3 is a nonnegative smooth function.
Taking into consideration the decomposition in (2.107) and (2.108) and letting

ψ̂jk1 = ψjk1 + ψjk2 + ψjk3, the following holds true:
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V̇j1 ≤ −(λj1 + λj2z̃
t
jPj1z̃j − κj1 − 1 − |z̃j |2)|z̃j |2

− 1

2
|x̃j |2 + (cj2 + cj4 + 1)|wj |2 + (cj3 + 1)|wj |4

+ |wj |8 + ξj1(x̂j2 + fj1(y1r , . . . , yNr)

+ gj1(y1r , . . . , yNr)ẑj − ẏjr) +
N∑

k=1

ξ2
k1ψ̂ik1. (2.117)

This motivates us to choose a control function ξ⋆

j1 and a new variable ξj2 in the form

ξ⋆

j1 = −kj1ξj1 − ξj1Kj (ξj1) − fj1(y1r , . . . , yNr)

− gj1(y1r , . . . , yN r)ẑj + ẏjr , (2.118)

ξj2 = x̂j2 − ξ⋆

j1(yj , y1r , . . . , yNr , ẏjr , ẑj ), (2.119)

where kj1 > 0 is a design parameter and Kj is a nonnegative, smooth function such
that

Kj1(ξj1) ≥
N∑

k=1

ψ̂kj1(ξj1). (2.120)

This leads us to

V̇j1 ≤ −(λj1 + λj2z̃
t
jPj1z̃j − κj1 − 1 − |z̃j |2)|z̃j |2

− 1

2
|x̃j |2 + (cj2 + cj4 + 1)|wj |2

+ (cj3 + 1)|wj |4 + |wj |8 − ki1ξ
2
j1 − ξ2

j1Kj (ξi1)

+
N∑

k=1

ξ2
k1ψ̂jk1(ξk1) + ξj1ξi2. (2.121)

Step J.k (2 ≤ k ≤ nk): Consider the (z̃j , x̃j , yj , x̂i2, . . . , x̂jk)-subsystem of (2.105)
with x̂j,jk+1 as the virtual control. For notational simplicity, we define x̂j,nk+1 :=
uk .

Rolling over from Step J.1 to Step J.k − 1, we assume that we have designed
intermediate control functions {ξ⋆

jℓ}
k−1
ℓ=1 , and that we have introduced new variables

ξj,ℓ+1 = x̂j,ℓ+1 − ξ⋆

jℓ(yj , x̂j2, . . . , x̂jℓ, yℓr , . . . , yNr , ẏjr , . . . , y
(ℓ)
jr , ẑj )

∀1 ≤ ℓ ≤ k − 1 (2.122)

and a positive-definite and proper function

Vj,k−1(z̃j , x̃j , ξjℓ, . . . , ξj,k−1) = Vjℓ(z̃j , x̃j , ξjℓ +
k−1∑

ℓ=2

1

2
ξ2
jℓ. (2.123)



60 2 Decentralized Control of Nonlinear Systems I

It is further assumed that the time derivative of Vj,k−1 along the solutions of (2.105)
satisfies

V̇j,k−1 ≤ −(λj1 + λj2z̃
t
jPj1z̃j − κj1 − k + 1 − |z̃j |2)|z̃j |2

− 1

2k−1
|x̃j |2 + (k − 1 + ck2 + ck4)|wj |2

+ (cj3 + 1)|wj |4 + |wj |8 −
k−1∑

ℓ=1

kjℓξ
2
jℓ − ξ2

jℓKj (ξjℓ)

+
N∑

m=1

ξ2
m1ψ̂jm(k−1)(ξm1) + ξj,k−1ξjk (2.124)

with kjℓ (1 ≤ ℓ ≤ k − 1) positive design parameters and ψ̂jm(k−1) a nonnegative
smooth function being independent of Kj .

The objective is to prove that a similar property to the above also holds for the
subsystem

(z̃j , x̃j , yj , x̂j2, . . . , x̂jk)

of (2.105) when x̂j,k+1 is considered as the (virtual) input.
Toward this end, consider the positive-definite and proper function

Vjk = Vj,k−1(z̃j , x̃j , ξj1, . . . , ξj,k−1) + 1

2
ξ2
jk. (2.125)

Evaluating the time-derivative of Vjk along the solutions of (2.105) yields

V̇jk = V̇j,k−1ξjk

[
x̂j,k+1 + Ljk(yj − x̂j1)

+ fjk(y1r , . . . , yNr) + gjk(y1r , . . . , yN r)ẑj

−
k−1∑

m=2

∂ξ⋆

j,k−1

∂x̂jm

(x̂j,m+1 + Ljm(yj − x̂j1)

+ fjm(y1r , . . . , yNr) + gjm(y1r , . . . , yNr)ẑj )

−
N∑

m=1

∂ξ⋆

j,k−1

∂ymr

ẏmr −
k−1∑

m=1

∂ξ⋆

j,k−1

∂y
(m+1)
jr

y
(m+1)
jr

−
∂ξ⋆

j,k−1

∂ẑj

(Qj ẑj + fk0(y1r , . . . , yNr))

−
∂ξ⋆

j,k−1

∂yj

(x̂i2 + x̂k2 + fk1 + gk1zj + pk1wj )

]
. (2.126)
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Adopting similar arguments to Step J.1, after algebraic routine manipulations, it
follows the existence of nonnegative smooth functions {ψjmk}Nm=1 and κjk such
that:

−ξjk

∂ξ⋆

j,k−1

∂yj

(x̃j2 + f̃j1 + g̃j1 + pj1wj )

≤ 1

2j
x̃2
j + ξ2

jkκjk +
N∑

m=1

ξ2
m1ψjmk(ξm1) + |z̃j |2 + |wj |2. (2.127)

Observe that κjk is a function of

(yj , x̂j2, . . . , x̂jk, y1r , . . . , yNr , ẏjr , . . . , y
(ℓ)
jr , ẑj )

and that every ψjmk does not depend on Kj .
This motivates us to select the following control function:

ξ⋆

jk = −kjkξjk − ξj,k−1 − ξjkκjk − Ljk(yj − x̂j1)

− fjk(y1r , . . . , yNr) − gjk(y1r , . . . , yNr)ẑj

+
∂ξ⋆

j,k−1

∂yj

(x̂j2 + fj1(y1r , . . . , yNr) + gj1(y1r , . . . , yNr)ẑj )

+
k−1∑

m=2

∂ξ⋆

j,k−1

∂x̂jm

(x̂j,m+1 + Ljm(yj − x̂j1)

+ fjm(y1r , . . . , yNr) + gjm(y1r , . . . , yNr)ẑj )

+
N∑

m=1

∂ξ⋆

j,k−1

∂ymr

ẏmr +
j−1∑

m=1

∂ξ⋆

j,k−1

∂y
(m)
jr

y
(m+1)
jr

+
∂ξ⋆

j,k−1

∂ẑj

(Qj ẑj + fj0(y1r , . . . , yNr)), (2.128)

where kjk > 0 is a design parameter.
Denoting ξj,k+1 = x̂j,k+1 − ξ⋆

jk and combining (2.124) with (2.126)–(2.128), we
obtain

V̇jk ≤ −(λj1 + λj2z̃
t
jPj1z̃j − κj1 − j − |z̃j |2)|z̃j |2

− 1

2j
|x̃j |2 + (j + cj2 + cj4)|wj |2 + (cj3 + 1)|wj |4

+ |wj |8 −
j∑

ℓ=1

kj lξ
2
j l − ξ2

j1Kj (ξj1)

+
N∑

m=1

ξ2
m1(ψ̂jm(k−1)(ξm1) + ψjmk(ξm1)) + ξjkξj,k+1. (2.129)
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That is, property (2.124) holds for the (z̃j , x̃j , yj , x̂j2, . . . , x̂jk)-subsystem with

ψ̂jmk = ψ̂ik(j−1) + ψikj .

By induction, at Step nj , setting the control law

uj = ξ⋆

jnj
(yj , x̂j2, . . . , x̂jnj

, y1r , . . . , yNr , ẏir , . . . , y
(nj )

jr , ẑj ) (2.130)

leads us to

V̇jnj
≤ −(λj1 + λj2z̃

t
jPj1z̃j − κj1 − nj − |z̃j |2)|z̃j |2

− 1

2nj
|x̃j |2 + (nj + ci2 + ci4)|wj |2

+ (cj3 + 1)|wj |4 + |wj |8 −
nj∑

ℓ=1

kjℓξ
2
jℓ − ξ2

j1Kj (ξj1)

+
N∑

m=1

ξ2
m1ψ̂jmnj

(ξm1), (2.131)

where by construction, ψ̂jmnj
is independent of the design function Kj .

Consider now the positive-definite and proper Lyapunov function for the entire
closed-loop interconnected system

V (z̃, x̃, ξ) =
N∑

j=1

Vjnj
(z̃j , x̃j , ξj1, . . . , ξjnj

), (2.132)

where

z̃ = (z̃t
1, . . . , z̃

t
N )t , x̃ = (x̃t

1, . . . , x̃
t
N )t , ξ = ξ t

1, . . . , ξ
t
N )t .

Notice that the positive definiteness and properness of V in (2.132) follows from
the foregoing recursive construction.

To eliminate the positive sum of the last term of (2.131), which also appears in
the time derivative of V , we pick a set of appropriate smooth functions {Kj }Nj=1 to
check on the inequalities (1 ≤ j ≤ N)

Kj (ξj1) ≥
N∑

m=1

ψ̂mjnmξj1. (2.133)

Obviously, such a design function Kj always exists.

2.4.3 Design Results

When applying the above-described control design to the uncertain large-scale sys-
tem (2.11), we establish the following result.
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Theorem 2.6 The problem of decentralized output-feedback tracking with distur-

bance attenuation is solvable for the minimum-phase large-scale system (2.11) sub-

ject to Condition A.

Proof By differentiating V defined by (2.132), along the solutions of the closed-
loop system (2.11) and (2.130), it yields

V̇ ≤ −
N∑

j=1

(λj1 + λj2z̃
t
jPj1z̃j − κj1 − nj − |z̃j |2)|z̃j |2

−
N∑

j=1

(
1

2nj
|x̃j |2 +

nj∑

ℓ=1

kjℓξ
2
jℓ

)

+
N∑

j=1

[(nj + cj2 + cj4)|wj |2 + (cj3 + 1)|wj |4 + |wj |8]. (2.134)

By selecting sufficiently large design parameters λ1 and λ2 such that

(λj1 + λj2z̃
t
jPj1z̃j − κj1 − nj − |z̃j |2)|z̃j |2

≥ λj1

2
z̃jPj1z̃j + λj2

2
(z̃jPj1z̃j )

2 (2.135)

it follows from (2.134) and (2.132) that

V̇ ≤ −λV +
N∑

j=1

[(nj + cj2 + cj4)|wj |2

+ (cj3 + 1)|wj |4 + |wj |8], (2.136)

where

λ = min

{
1

2
,1/2nj λmax(Pj2), kjℓ | 1 ≤ j ≤ N, 1 ≤ ℓ ≤ nj

}
.

The BIBS and iISS property (2) follows readily for the (transformed) closed-loop
system (2.11), (2.130) by either applying the technique in [64] or the Gronwall-
Bellman lemma [32] to (2.136). When wj = 0 for all 1 ≤ j ≤ N , the null solution
is uniformly globally asymptotically stable (UGAS), leading to the asymptotic con-
vergence of the tracking error y − yr because ξ1 = y − yr .

Now from (2.134), for any pair of instants 0 ≤ t0 ≤ t , we obtain

∫ t

t0

|ξ1(τ )|2dτ ≤ V (z(t0), x(t0), ξ(t0)) + ρ

∫ t

t0

(|w(τ)|2

+ |w(τ)|4 + |w(τ)|8)dτ (2.137)
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where ρ > 0 is defined by

ρ = max

{
max{nj + cj2 + cj3|1 ≤ j ≤ N}

min{kj1|1 ≤ j ≤ N} ,

max{cj3 + 1|1 ≤ j ≤ N}
min{kj1|1 ≤ i ≤ N} ,

1

min{kj1|1 ≤ j ≤ N}

}
.

It must be noted that ρ can be made as small as possible by selecting sufficiently
large values of the constants kj1. In the present case, (2.95) is met with γd(s) =
s2 + s4 + s8. The proof of Theorem 2.6 is now completed. �

Remark 2.19 It is of interest to observe that, in the absence of disturbance inputs
w, (2.136) yields that V converges to zero at an exponential rate and; therefore; the
tracking error y(t) − yr(t) goes to zero exponentially.

Remark 2.20 By similarity to the centralized output-feedback tracking with al-
most disturbance decoupling [41], Condition A can be weakened and the zj -system
in (2.11) can be broadened as follows:

żj = Γj (y1, . . . , yN )zj + fi0(y1, . . . , yN ) + pi0(y1, . . . , yN )wj . (2.138)

Assume that, for each 1 ≤ j ≤ N , there are a pair of constant matrices (0 < Pj =
P t

j ,0 < Mj = M t
j ) such that

Γ t
j (y1, . . . , yN )Pj + PjΓj (y1, . . . , yN ) ≤ −Mj . (2.139)

Under this hypothesis, the ẑj -system in the decentralized observer (2.96) is replaced
by

˙̂zj = Γj (y1r , . . . , yNr)ẑj + fj0(y1r , . . . , yNr). (2.140)

Using the same techniques as in Sect. 2.4.2, Theorem 2.6 can be extended to this
situation.

To proceed further, we examine the situation when the developed controller de-
sign procedure yields a decentralized output-feedback law guaranteeing the standard
L2-gain disturbance attenuation property (2.95) holds with γd(s) = s2. The follow-
ing additional sufficient condition is recalled.

Condition B For all 1 ≤ j ≤ N and 1 ≤ k ≤ nk , the function pjk is bounded by a
constant. Furthermore, pj0 = 0 for each 1 ≤ j ≤ N .

The following lemma provides the desired result:

Lemma 2.6 Under Condition A and Condition B, the problem of decentralized

output-feedback tracking with L2-gain disturbance attenuation is solvable for the

class of minimum-phase large-scale systems (2.11).
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Proof We initially note that the only place where |wj |4 and |wj |8 occur is Step J.1
during the controller development in Sect. 2.4.2. More precisely, they are brought up
in the inequalities (2.113) and (2.114). Under Condition B, the function Vj1 satisfies
the following inequality, instead of (2.121):

V̇j1 ≤ −(λj1 + λj2z̃
t
jPj1z̃j − κj1 − 1 − |z̃j |2)|z̃j |2

− 1

2
|x̃j |2 + (cj2 + cj4 + 1)|wj |2 − kj1)ξ

2
j1

− ξ2
i1Kj (ξi1) +

N∑

m=1

ξ2
m1ψ̂jm1(ξm1) + ξj1ξj2. (2.141)

The above Lyapunov function V satisfies

V̇ ≤ −λV +
N∑

j=1

[(nj + cj2 + cj4)|wj |2]. (2.142)

From (2.142), the standard L2-gain property from w to ξ1 = y − yr follows readily.
The proof of Lemma 2.6 is thus completed. �

Remark 2.21 As an immediate corollary of Theorem 2.6, the standard L2-gain prop-
erty from w to ξ1 = y − yr can also be established when all functions fjk, gjk in
the decentralized system (2.11) are bounded by linear functions and the functions
pjk (1 ≤ j ≤ N,0 ≤ k ≤ nk) are bounded by some constants (in this case, pj0 
= 0).
The derived decentralized output-feedback controllers are linear.

Remark 2.22 The main features are four-fold:

(i) identifying a wide class of large-scale nonlinear systems in disturbed decen-
tralized output-feedback form;

(ii) proposing an effective systematic output-feedback controller design procedure
for decentralized systems in the presence of strong nonlinearities appearing in
the subsystems and interactions and

(iii) guaranteeing decentralized asymptotic tracking when the disturbance inputs
disappear and achieving desirable external stability properties when the distur-
bance inputs are present;

(iv) extending further the earlier results of [23, 29, 32, 40] to uncertain large com-
plex systems.

2.5 Decentralized Guaranteed Cost Control

In recent years, the problem of the decentralized robust control of large-scale sys-
tems with parameter uncertainties has been widely studied. Although there have
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been numerous studies on the decentralized robust control of large-scale uncertain
systems, much effort has been made toward finding a controller that guarantees ro-
bust stability. However, when controlling such systems, it is also desirable to design
control systems that guarantee not only robust stability but also an adequate level of
performance. One approach to this problem is the so-called guaranteed cost control
approach [47]. This approach has the advantage of providing an upper bound on a
given performance index.

Recent advances in the LMI theory have allowed a revisiting of the guaran-
teed cost control approach [82]. In [82], the guaranteed cost control technique
for interconnected systems by means of the LMI approach has been discussed.
In the literature, the guaranteed cost control for nonlinear uncertain large-scale
systems under gain perturbations has been considered. However, the time de-
lays have not been considered in those reports. If the system does not have de-
lays, the theoretical behavior would usually be more tractable. However, if de-
lays are present, they may result in instability or serious deterioration in the per-
formance of the resulting control systems. Therefore, the study of the control,
considering these time delays on the guaranteed cost stability, is very impor-
tant.

In what follows, the guaranteed cost control problem of the decentralized robust
control for uncertain nonlinear large-scale systems that have delay in both state and
control input is considered. It should be noted that although the robust control de-
sign method for parameter uncertain ordinary dynamic systems that have delay in
both state and control input has been considered, the guaranteed cost control for
nonlinear uncertain large-scale systems that have delay in both state and control
input has never been discussed. A sufficient condition for the existence of the de-
centralized robust feedback controllers is derived in terms of the LMI. The main
result shows that the guaranteed cost controllers can be constructed by solving the
LMI. The crucial difference between the existing results [82] and that of the present
study is that the controller that guarantees the stability and the adequate level of
performance of the large-scale delay systems is given. Thus, the applicability of the
resulting controllers can be extended to more practical large-scale systems. More-
over, since the construction of the guaranteed cost controller consists of an LMI-
based control design, the proposed method is computationally attractive and use-
ful.

2.5.1 Analysis of Robust Performance

To demonstrate ideas, we consider in the sequel a class of continuous-time au-
tonomous uncertain nonlinear large-scale interconnected delay systems, which con-
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sist of N subsystems of the form:

ẋj (t) = [Āj + ΔĀj (t)]xj (t) + [Ad
j + ΔAd

j (t)]xi(t − τj )

+ [H d
j + ΔH d

j (t)]xj (t − hj )

+
N∑

j=1,j 
=k

[Gkj + ΔGkj (t)]gkj (xj , xk), (2.143)

xj (t) = φj (t), t ∈ [−dj ,0],
dj = max{τj , hj }, j = 1, . . . ,N,

(2.144)

where xj (t) ∈ ℜnj are the states. τj > 0 and hj > 0 are the delay constants, and
φj (t) are the given continuous vector valued initial functions. Āj , Ad

j , and H d
j are

the constant matrices of appropriate dimensions. Gij ∈ ℜnj ×lj are the interconnec-
tion matrices between the ith subsystems and other subsystems. gkj (xj , xk) ∈ ℜℓj

are unknown nonlinear vector functions that represent nonlinearity. The parameter
uncertainties considered here are assumed to be of the following form:

[ΔĀj (t)ΔAd
j (t)ΔH d

j (t)] = DjFj (t)[Ē1
j E1d

j Ē
dh

j ], (2.145)

ΔGjk(t) = DjkFjk(t)Ejk, (2.146)

where Dj , Ē1
j , E1d

j , Ēdh

j , Dij , and Eij are known constant real matrices of appropri-

ate dimensions. Fj (t) ∈ ℜpj ×qj and Fij (t) ∈ ℜrij ×sjk are unknown matrix functions
with Lebesgue measurable elements and satisfy

F t
j (t)Fj (t) ≤ Iqi, F t

ij (t)Fij (t) ≤ Isij . (2.147)

We make the following assumptions concerning the unknown nonlinear vector
functions.

(A1) There exist known constant matrices Vj and Wjk such that for all j, k, t ≥
0, xj ∈ ℜnj and xj ∈ ℜnj

‖gjk(xj , xk)‖ ≤ ‖Vjxj‖ + ‖Wjkxj‖.

(A2) For all j, k

Uj := 2
N∑

j=1,j 
=k

(V t
j Vj + W t

jkWjk) > 0.

The cost function of the associated system (2.143) is given as

J =
N∑

j=1

∫ ∞

0
xt
j (t)Q̄jxj (t)dt, 0 < Q̄j = Q̄t

j . (2.148)
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The following definition of the cost matrix for the uncertain large-scale intercon-
nected delay systems is given in [47]:

Definition 2.1 The set of matrices 0 < Pj = P t
j is said to be the quadratic cost

matrix for the uncertain nonlinear large-scale interconnected delay systems (2.143)
if the following inequality holds

N∑

i=1

(
d

dt
xt
j (t)Pjxj (t) + xt

j (t)Q̄jxj (t)

)
< 0, (2.149)

for all nonzero xj ∈ ℜnj and all uncertainties (2.145).

Theorem 2.7 Under assumptions (A1) and (A2), suppose there exist matrices 0 <

Pj = P t
j ∈ ℜnj ×nj ,0 < Sj = St

j ∈ ℜnj ×nj ,0 < Tj = T t
j ∈ ℜnj ×nj such that for all

admissible uncertainties satisfying (2.145) the following matrix inequality holds:

Λj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ξj Pj Ã
d
j Pj H̃

d
j Pj G̃j1 . . . Pj G̃jN

• −Sj 0 0 . . . 0
• • −Tj 0 . . . 0
• • • −Il1 . . . 0
...

...
...

...
. . .

...

• • • • . . . −IlN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (2.150)

where

Λj ∈ ℜN̄×N̄ , N̄ = 3nj +
N∑

m=1,j 
=m

ℓm,

Ξj := Ãt
jPj + Pj Ãj + Uj + Q̄j + Sj + Tj , Ãj := Āj + ΔAj (t),

Ãd
j := Ad

j + ΔAd
j (t), H̃ d

j := H d
j + ΔH d

j (t),

G̃jk := Gjk + ΔGjk(t).

Then the free uncertain nonlinear large-scale interconnected systems (2.143) are

quadratically stable, and the corresponding value of the cost function (2.148) satis-
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fies the following inequality:

J <

N∑

i=1

[
φt

j (0)Pjφj (0) +
∫ 0

−τj

φt
j (s)Sjφj (s)ds

+
∫ 0

−hj

φt
j (s)Tjφj (s)ds

]
. (2.151)

Proof Based on the definitions Ãj , Ã
d
j , H̃ d

j and G̃jk , we can change the form
(2.143) to

ẋj (t) = Ãjxj (t) + Ãd
j xj (t − τj ) + H̃ d

j xj (t − hj )

+
N∑

k=1,j 
=k

G̃jkgjk(xj , xk). (2.152)

There exist matrices 0 < Pj = P t
j ∈ ℜnj ×nj ,0 < Sj = St

j ∈ ℜnj ×nj ,0 < Tj = T t
j ∈

ℜnj ×nj , j = 1, . . . ,N such that the matrix inequality (2.150) holds for all admis-
sible uncertainties (2.145). To prove the asymptotic stability of the interconnected
delay systems (2.152), we introduce the following Lyapunov function candidate

V
(
x(t)

)
=

N∑

i=1

[
xt
j (t)Pjxj (t) +

∫ t

t−τj

xt
j (s)Sjxj (s)ds

+
∫ t

t−hj

xt
j (s)Tjxj (s)ds

]
, (2.153)

where x(t) = [xt
1(t) . . . xt

N (t)]t . Note by default that V (x(t)) > 0 whenever x(t) 
=
0. The time derivative of V (x(t)) along any trajectory of the interconnected delay
systems (2.152) is given by

d

dt
V (x(t)) =

N∑

i=1

zt
j (t)Λjzj (t) −

N∑

i=1

xt
j (t)Q̄jxj (t)

−
N∑

i=1

N∑

k=1,j 
=k

(2xt
jV

t
j Vjxj + 2xt

jW
t
jkWjkxj − gt

jkgjk),

where

zj = [xt
j (t) xt

j (t − τj ) xt
j (t − hj ) gt

j1 . . . gt
jN ]t ∈ ℜN̄

and Ξj and Λj are given in (2.151).
Under assumption (A1), it is easy to verify that the following inequality holds

2xt
jV

t
j Vjxj + 2xt

jW
t
jkWjkxj ≥ gt

jkgjk. (2.154)
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With inequalities (2.150) and (2.154) hold, it immediately follows that

d

dt
V (x(t)) < −

N∑

j=1

xt
j (t)Q̄jxj (t) < 0, (2.155)

which assures that V (x(t)) is a Lyapunov function for the interconnected delay
system (2.152). Therefore, system (2.152) is asymptotically stable. Furthermore, by
integrating both sides of the inequality (2.155) from 0 to T and using the initial
conditions, we obtain

V (x(T )) − V (x(0)) < −
N∑

j=1

∫ t

0
xt
j (t)Q̄jxj (t)dt. (2.156)

Since system (2.152) is asymptotically stable, that is, x(T ) → 0 when T → ∞, we
obtain V (x(T )) → 0. Thus we obtain

J =
N∑

j=1

∫ t

0
xt
m(t)Q̄jxj (t)dt < V (x(0))

=
N∑

j=1

[
φt

j (0)Pjφj (0) +
∫ 0

−τj

φt
j (s)Sjφj (s)ds +

∫ 0

−hj

φt
j (s)Tjφj (s)ds

]
.

This completes the proof of Theorem 2.7. �

2.5.2 Including Input Delays

In what follows, we consider the problem of decentralized guaranteed cost control
via the state feedback to the class of nonlinear uncertain interconnected systems
with input delays. The class of system under consideration is described by

ẋj (t) = [Aj + ΔAj (t)]xj (t) + [Bj + ΔBj (t)]uj (t)

+ [Adj + ΔAdj (t)]xj (t − τj ) + [Bdj + ΔBdj (t)]uj (t − hj )

+
N∑

k=1,j 
=k

[Gjk + ΔGjk]gjk(xj , xk), (2.157)

xj (t) = φj (t), t ∈ [−dj ,0], dj = max{τj , hj }, j = 1, . . . ,N, (2.158)

where uj (t) ∈ ℜmj are the control inputs of the j th subsystems. The parameter
uncertainties satisfy

[ΔAj (t) ΔBj (t) ΔAdj (t) ΔBdj (t)] = DjFj (t)[E1j E2j E1dj E2dj ]. (2.159)
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Aj ,Bj ,E1j ,E2j ,Ed1j ,Ed2j are constant matrices of appropriate dimensions. The
remaining constant real matrices and parameter uncertainties are the same as those
in system (2.143). Moreover, it is assumed that Assumptions (A1) and (A2) hold for
the unknown nonlinear vector functions gjk(xj , xk) ∈ ℜℓj .

Associated with system (2.157) is the cost function

J =
N∑

j=1

∫ ∞

0
[xt

j (t)Qjxj (t) + ut
j (t)Rjuj (t)]dt,

0 < Qj = Qt
j , 0 < Rj = Rt

j . (2.160)

In view of the results of [47], the definition of the guaranteed cost control for the
class of uncertain interconnected systems (2.157) is now provided:

Definition 2.2 A decentralized control law uj (t) = Kjxj (t) is said to be a quadratic
guaranteed cost control related to the set of matrices 0 < Pj = P t

j for the uncertain
interconnected system (2.157) and cost function (2.160) if the closed-loop system is
quadratically stable and the closed-loop value of the cost function (2.160) satisfies
the bound J ≤ J ∗ for all admissible uncertainties, that is,

N∑

j=1

(
d

dt
xt
j (t)Pjxj (t) + xt

j (t)[Qj + K t
jRjKj ]xj (t)

)
< 0, (2.161)

for all nonzero xj ∈ ℜnj .
The objective now is to design a decentralized guaranteed cost controller

uj (t) = Kjxj (t), j = 1, . . . ,N,

for the uncertain large-scale interconnected delay system (2.157).

2.5.3 Decentralized Design Results

We now present the LMI design approach to the construction of a guaranteed cost
controller.

Theorem 2.8 Under assumptions (A1) and (A2), suppose there exist scalar pa-

rameters μj > 0, εj > 0 and matrices 0 < Xj = Xt
j ∈ ℜnj ×nj ,0 < S̄j = S̄t

j ∈
ℜnj ×nj ,0 < Xj = Xt

j ∈ ℜnj ×nj , Yj =∈ ℜmj ×nj , such that for all j = 1, . . . ,N the
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following LMI

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φj Adj S̄j BdjYj (E1jXj + E2jYj )
t Gj1 0 . . .

• −S̄j 0 S̄jE
t
1dj 0 0 . . .

• • −Zj Y t
jE

t
2dj 0 0 . . .

• • • −μj Iqj 0 0 . . .

• • • • −Iℓ1 Et
1j . . .

• • • • • −εj Isjℓ
. . .

...
...

...
...

...
...

. . .

• • • • • • . . .

• • • • • • . . .

• • • • • • . . .

• • • • • • . . .

• • • • • • . . .

• • • • • • . . .

GjN 0 Xj Y t
j Xj Xj

0 0 0 0 0 0
Y t

jB
t
dj 0 −Zj Y t

jE
t
2dj 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
...

...
...

...
...

...

−IℓN
Et

jN 0 0 0 0
EjN −εj IsjN

0 0 0 0
• • −Q−1

j 0 0 0

• • • −R−1
j 0 0

• • • • −S̄j 0
• • • • • −U−1

j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (2.162)

has a feasible solution, where

Φj := AjXj + BjYj + (AjXj + BjYj )
t + Zj + μjDjD

t
j + Hj ,

Hj :=
N∑

j=1,j 
=k

DjkD
t
jk.

Moreover, the decentralized linear state feedback control laws

uj (t) = Kjxj (t) = YjX
−1
j xj (t), j = 1, . . . ,N (2.163)
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are the guaranteed cost controllers and

J <

N∑

i=1

[
φt

j (0)X−1
j φj (0) +

∫ 0

−τj

φt
j (s)S̄

−1
j (s)ds

+
∫ 0

−hj

φt
j (s)X

−1
j ZjX

−1
j φj (s)ds

]
(2.164)

is the associated guaranteed cost.

Proof Introducing the matrices Xj := P −1
j , Yj := KjP

−1
j , S̄j := S−1

j and Zj :=
P −1

j TjP
−1
j . Pre-and post-multiplying both sides of the inequality (2.162) by

blockdiag[Pj Sj Pj Iqj Il1 Isi1 . . . IlN IsiN Inj
Imj

Inj
Inj

]

yields
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψj Pj Adj Pj Bdj Kj Ēt
j Pj Gj1 0 Pj GjN 0 Inj

K t
j Inj

Inj

• −Sj 0 Et
1dj 0 0 0 0 0 0 0 0

• • −Tj K t
j Et

2dj 0 0 0 0 0 0 0 0

• • • −μj Iqi 0 0 0 0 0 0 0 0
• • • • −Iℓ1 Et

j1 0 0 0 0 0 0

• • • • • −εj Isi1 0 0 0 0 0 0
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• • • • • . . . −IℓN
Et

jN 0 0 0 0

• • • • • . . . EjN −εj IsjN
0 0 0 0

• • • • • . . . 0 0 −Q−1
j 0 0 0

• • • • • . . . 0 0 0 −R−1
j 0 0

• • • • • . . . 0 0 0 0 −S−1
j 0

• • • • • . . . 0 0 0 0 0 −U−1
j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (2.165)

where

Ψj := Āt
jPj + Pj Āj + Tj + μjPjDjD

t
jPj + PjHjPj ,

Āj := Aj + BjKj , Ēj := E1
j + E2jKj .

Using Schur complement, the matrix inequality (2.165) holds if and only if, the
following inequality holds:

Fj :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γj PjAdj + μ−1
j Ēt

jE1dj PjBdjKj + μ−1
j Ēt

jE2djKj PjGj1 . . . PjGjN

• μ−1
j Et

1djE1dj − Sj μ−1
j Et

1djE
2djKj 0 . . . 0

• • μ−1
j K t

jE
t
2djE2djKj − Tj 0 . . . 0

• • 0 Θ1 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

• • 0 0 . . . ΘN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (2.166)
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where

Γj := Āt
jPj + Pj Āj + Uj + R̄j + Sj + Tj + μjPjDjD

t
jPj + PjHjPj

+ μ−1
j Ēt

j Ēj ,

R̄j := Qj + K t
jRjKj , Θj := ε−1

j Et
jkEjk − Iℓj

.

Using a standard matrix inequality [30] for all admissible uncertainties (2.145)

and (2.159), the following matrix inequality holds:

0 > Fj

≥

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Āt
jPj + Pj Āj + Uj + R̄j + Sj + Tj PjAdj PjBdjKj PjGj1 . . . PjGjN

• −Sj 0 0 . . . 0
• • −Tj 0 . . . 0
• • • −Iℓ1 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

• • • • . . . −IℓN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

PjDj

0
0
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Fj (t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ēt
j

Et
1dj

K t
jE

t
2dj

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

t

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ēt
j

Et
1dt

K t
jE

t
2dj

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

F t
j (t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

PjDj

0
0
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

t

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 PjDj1 . . . PjDjN

0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 Fj1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . FjN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 Ej1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . EjN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 Ej1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . EjN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

t ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 Fj1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . FjN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

t

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 PjDj1 . . . PjDjN

0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

t

= Lj . (2.167)

Taking into consideration

Ādj = Adj + DjFj (t)E1dj , G̃jk = Gjk + DjkFjk(t)Ejk,

Ãj = Āj + DjFj (t)Ēj = Āj + ΔĀj (t),

BdjKj = Hdj , ΔBdj (t)Kj = ΔHdj (t),

Qj + K t
jRjKj = R̄j = Q̄j

we readily obtain Lj = Λj . Hence, the individual closed-loop systems are asymp-
totically stable under Theorem 2.8. The results of the cost bound (2.164) can be
proved by using similar arguments for the proof of Theorem 2.7. �

Remark 2.23 Since LMI (2.162) consists of a solution set of (μj , εjXj , Yj , S̄j ,Zj ),
various efficient convex optimization algorithms can be applied. Moreover, its solu-
tions represent the set of guaranteed cost controllers. This parameterized represen-
tation can be exploited to design the guaranteed cost controllers, which minimizes
the value of the guaranteed cost for the closed-loop uncertain interconnected delay
systems.

Consequently, to determine the optimal cost bound we solve the following opti-
mization problem:

D0: min
Xj

N∑

i=1

J̄j = J ∗,

(2.168)
J̄j := αj + TrMj + c2

j‖NjN
t
j‖2 TrZj ,

Xj ∈ (μj , εjXj , Yj , S̄j ,Zj , αj ,Mj ),
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such that (2.162) is satisfied and

[−αj φt
j (0)

• −Xj

]
< 0, (2.169)

[−Mj M t
j

• −S̄j

]
< 0, (2.170)

[
−cj Inj

Inj

• −Xj

]
< 0, (2.171)

where cj > 0 are prescribed constants and

MjM
t
j :=

∫ 0

−τj

φj (s)φ
t
j (s)ds, NjN

t
j :=

∫ 0

−hj

φj (s)φ
t
j (s)ds.

The main design result is summarized by the following theorem:

Theorem 2.9 If the foregoing optimization problem has the solution

μj , εj ,Xj , Yj , S̄j ,Zj , , αj ,Mj ,

then the control laws of the form (2.163) are the decentralized linear state feedback

control laws, which ensure the minimization of the guaranteed cost (2.164) for the

uncertain interconnected delay systems.

Proof By Theorem 2.8, the control laws (2.163) constructed from the feasible solu-
tions

μj , εj ,Xj , Yj , S̄j ,Zj , αj ,Mj

are the guaranteed cost controllers of the uncertain interconnected delay systems
(2.157). Applying the Schur complement to the LMI (2.169) and using the following
inequality [12]:

TrXY ≤ ‖X‖2 TrY, Y = Y t ≥ 0, X = Xt ,

we have the following

1.

φt
j (0)X−1

j φj (0) < αj ,

2.

∫ 0

−τj

φt
j (s)S̄

−1
j φj (s)ds =

∫ 0

τj

Tr[φt
j (s)S̄

−1
j φj (s)]ds

= Tr[M t
j S̄

−1
j Mj ] < Tr[Mj ],
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3.
∫ 0

−hj

φt
j (s)X

−1
j ZjX

−1
j φj (s)ds

=
∫ 0

−hj

Tr[φt
j (s)X

−1
j ZjX

−1
j φj (s)]ds

= Tr[N t
jX

−1
j ZjX

−1
j Nj ] ≤ ‖NjN

t
j‖2‖X−1

j ‖2
2 TrZj

< c2
j‖NjN

t
j‖2 TrZj .

It follows that

J <

N∑

j=1

[
φt

j (0)X−1
j φj (0) +

∫ 0

−τj

φt
j (s)S̄

−1
j φj (s)ds

+
∫ 0

−hj

φt
j (s)X

−1
j ZjX

−1
j φj (s)ds

]

<

N∑

i=1

(αj + Tr[Mj ] + c2
j‖NjN

t
j‖2 · Tr[Zj ])

≤ min
Xj

N∑

j=1

J̄j = J ∗. (2.172)

Thus, the minimization of
∑N

i=1 J̄j implies the minimum value J ∗ of the guaranteed
cost for the interconnected uncertain delay systems (2.157). The optimality of the
solution of the optimization problem follows from the convexity of the objective
function under the LMI constraints. This is the required result. �

Remark 2.24 It must be noted that the original optimization problem for the guar-
anteed cost (2.168) can be appropriately decomposed into the following reduced
optimization problems (2.173) since each optimization problem (2.173) is indepen-
dent of each other. Hence, we only have to solve the optimization problems (2.173)
for each independent subsystem:

min
Xj

N∑

j=1

J̄j =
N∑

j=1

min
Xj

J̄j ,

(2.173)
Xj ∈ (μj , εjXj , Yj , S̄j ,Zj , αj ,Mj ), Dj : min

Xj

J̄j , j = 1, . . . ,N,

J̄j := αj + Tr[Mj ] + c2
j‖NjN

t
j‖2 · Tr[Zj ].

Remark 2.25 The constant parameter cj , which is included in the inequality (2.171),
needs to be optimized as the LMI constraints. In this case, it is hard to obtain the
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optimum guaranteed cost, because the resulting problem is nonconvex optimization
problem. As an alternative, the above suboptimal guaranteed cost control is solved
instead of solving the non convex optimization problem. Consequently, the decen-
tralized robust suboptimal guaranteed cost controller, which minimizes the value of
the guaranteed cost for the closed-loop uncertain delay systems, can be easily solved
by using the LMI. The selected constant parameter cj needs to be as small as since
the matrix Xj is constrained by the inequality (2.169).

2.6 Global Robust Stabilization

2.6.1 Introduction

The decentralized control schemes, different from the classical centralized infor-
mation structures, have been considered with significant interests for the control of
interconnected systems in recent years. The main objectives of decentralized con-
trol are to find some feedback laws for adapting the interactions from the other
subsystems where no state information is transferred. The advantage of decentral-
ized control design is to reduce complexity and this therefore allows the control
implementation to be more feasible.

Unlike centralized control design, decentralized control cannot have access to
the entire state information. Therefore, interconnections between subsystems need
to be analyzed, so that their influence on the system performance can be properly
addressed by the control. As far as asymptotic stability of interconnected systems is
concerned, there are two main approaches for the treatment of the interconnections
in the literature. The first is to assume that the interconnections satisfy the matching
conditions bounded by first-order polynomials of states [3] or higher-order polyno-
mials [38, 56]. The second is to require that the interconnections meet a triangular
structure bounded by first-order polynomials of states [79] or higher-order polyno-
mials [25]. The matching condition guarantees that Lyapunov redesign is applicable,
which begins with Lyapunov functions for nominal subsystems and then attempts
to use these Lyapunov functions to design decentralized feedback laws. Most of
the work in the literature falls into this category. On the other hand, the triangular
structure makes it possible to apply backstepping technique to design the decentral-
ized controllers. The backstepping design idea, which was initially introduced in
[28] for nonlinear adaptive control and in [8] for nonlinear robust control, was ap-
plied to construct decentralized robust controllers in [79] and used in decentralized
adaptive control by [25]. In the latter, we note that decentralized adaptive control
design is addressed for a class of large-scale interconnected nonlinear systems with
decentralized strict feedback form and single input subsystems. In the literature,
the interconnections are assumed to be bounded by higher order polynomials of the
states in the first integrator of every subsystem, whose coefficients admit a lower
triangular structure.
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One of the important problems in decentralized control is to relax restrictions
on the interconnections and uncertainties. There exist two kinds of restrictions,
such as matching conditions and strict feedback conditions in the literature. Many
physical systems, such as power systems in [62], do not satisfy these conditions,
so the study of relaxing these restrictions is of theoretical and practical impor-
tance.

Hereafter, the main objective is to investigate the problem of decentralized robust
stabilization for a class of large-scale nonlinear systems with parameter uncertain-
ties and nonlinear interconnections. Each system of the interconnected system is as-
sumed to be controlled by multiple inputs and to be in a nested structure, which was
first introduced by [37]. The uncertain parameters and/or disturbances are allowed
to be time-varying and enter the system nonlinearly. The nonlinear interconnections
are bounded by higher-order polynomials in the decentralized strict feedback form.
Inspired by the recent work of centralized nonlinear control [36], it is proved that
the global decentralized robust asymptotic stabilization problem can be solved for
the uncertain interconnected nonlinear systems by applying a recursive design pro-
cedure.

2.6.2 Problem Formulation and Assumptions

Consider a large-scale nonlinear system composed of N interconnected subsystems
with m inputs. The ith subsystem is given as

ẋi = f i(xi, ξ i
11) +

m∑

n=1

Φ in
n0(x̄

N , ξ̄N
1 , . . . , ξ̄N

n , θ)ξ i
n1,

ξ i
j1 = ξ i

j2 + Ψ i
j1(x̄

N , ξ̄N
1 , . . . , ξ̄N

j , θ)

+
m∑

n=j+1

Φ in
j1(x̄

N , ξ̄N
1 , . . . , ξ̄N

n , θ)ξ i
n1,

...
(2.174)

ξ i
j,rj−1

= ξ i
jrj

+ Ψ i
j,rj−1

(x̄N , ξ̄N
1 , . . . , ξ̄N

j , θ),

+
m∑

n=j+1

Φ in
j,rj−1

(x̄N , ξ̄N
1 , . . . , ξ̄N

n , θ)ξ i
n1,

ξ i
jrj

= ui
j + Ψ i

jrj
(x̄N , ξ̄N

1 , . . . , ξ̄N
j , θ)

+
m∑

n=j+1

Φ in
jrj

(x̄N , ξ̄N
1 , . . . , ξ̄N

n , θ)ξ i
n1,
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where

xj ∈ ℜnj , x̄N = [(x1)t , . . . , (xN )t ]t , ξ̄
j

jd = [ξ j

j1, . . . , ξ
j

jd ]t ,
ξ̄N
j = [(ξ̄1

jrj
)′, . . . , (ξ̄N

jrj
)t ]t , i = 1, . . . ,N, j = 1, . . . ,m, d = 1, . . . , rj .

The vector θ ∈ ℜq is a time-varying uncertain parameters. All functions are smooth
and vanishing at the origin for any θ .

Remark 2.26 Every subsystem in (2.174) possesses a nested structure, that is, the
(xj , ξ̄

j

1r1
, . . . , ξ̄

j

jrj
)-blocks are nested in the ξ̄

j

j+1,rj+1
-block through feedback con-

nections between these blocks. Moreover, each block has a strict feedback structure
with unmatched interconnections. Such a structure can be easily seen from (5).

Our objective is to design decentralized robust controllers

u
j

1 = u
j

1(x
j , ξ̄

j

1r1
), . . . , u

j
m = u

j
m(xj , ξ̄

j

1r1
, . . . , ξ

j
mrm

), j = 1, . . . ,N

such that the origin of the corresponding closed-loop system is globally asymptoti-
cally stable for any θ . The recursive design technique, that is, back stepping with the
aid of augmentation, developed in [36], will be applied to construct decentralized
robust controllers for the system (2.174).

To this end, we impose the following assumptions:

Assumption 2.4 There exist positive definite and proper smooth functions

V j (xj ), j = 1, . . . ,N, p
j t

0 > 0

such that
N∑

j=1

∂V j

∂xj
f j (xj ,0) ≤ −

N∑

j=1

ρ∑

t=1

p
j t

0 ‖xj‖2t · (2.175)

Assumption 2.5 There exist a series of non-negative smooth functions

Ψ ikt
jd0(x

j , ξ̄
j

1r1
, . . . , ξ̄

j

j−1,rj−1
, ξ̄

j

jd), Ψ iit
jdls(x

j , ξ̄
j

1r1
, . . . , ξ̄

j

j−1,rj−1
, ξ̄

j

jd),

Ψ iit
jdjs(x

j , ξ̄
j

1r1
, . . . , ξ̄

j

j−1,rj−1
, ξ̄

j

jd), Ψ ikt
jdl1(x

j , ξ̄
j

1r1
, . . . , ξ̄

j

j−1,rj−1
, ξ̄

j

jd)

such that

‖Ψ j

jd(x̄N , ξ̄N
1 , . . . , ξ̄N

j , θ)‖

≤
N∑

k=1

ρ∑

t=1

Ψ ikt
jd0‖xk‖t +

j−1∑

l=1

r1∑

s=2

ρ∑

t=1

Ψ iit
jdls |ξ

j

ls |t

+
d∑

s=2

ρ∑

t=1

Ψ iit
jdjs |ξ

j

js |t +
N∑

k=1

j∑

l=1

ρ∑

t=1

Ψ ikt
jdl1|ξ k

l1|t (2.176)

for j = 1, . . . ,N , k = 1, . . . ,m and d = 1, . . . , rj .
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Assumption 2.6 There exist a series of non-negative smooth functions

Φ inkt
jd0 (xj , ξ̄

j

1r1
, . . . , ξ̄

j

n−1,rn−1
), Φ init

jdls(x
j , ξ̄

j

1r1
, . . . , ξ̄

j

n−1,rn−1
),

Φ inkt
jdl1(x

j , ξ̄
j

1r1
, . . . , ξ̄

j

n−1,rn−1
),

such that

‖Φ in
jd(x̄N , ξ̄N

1 , . . . , ξ̄N
n , θ)‖

≤
N∑

k=1

ρ∑

t=1

Φ inkt
jd0 ‖xk‖t +

n−1∑

l=1

r1∑

s=2

ρ∑

t=1

Φ init
jdls |ξ

j
ls |t

+
N∑

k=1

n∑

l=1

ρ∑

t=1

Φ inkt
jdl1|ξ k

l1|t (2.177)

for j = 1, . . . ,N , k = 1, . . . ,m, n = j + 1, . . . ,m and d = 0, . . . , rj .

Remark 2.27 It must be noted that Assumptions 2.5 and 2.6 imply that the intercon-
nections are bounded by polynomial-type nonlinearities with the decentralized strict
feedback form. In particular, the interconnections in the ith subsystem are bounded
by polynomial-type nonlinearities which are composed of two parts: higher-order
polynomials of its own states, i.e. the second and the third terms on the right-hand
side of (2.176) and the second terms on the right-hand side of (2.177); higher-order
polynomials of the states from other subsystems, that is. the first terms on the right-
hand side of (2.176) and (2.177) which are comprised of all the zero-dynamic con-
sidered in [25], the last terms in (2.176) and (2.177) which are comprised of the first
states of each subsystem.

Remark 2.28 Note also that the restrictions on the interconnections imposed in As-
sumptions 2.5 and 2.6 are very general which include many types of interconnec-
tions considered in the existing literature as special cases, for example, the intercon-
nections bounded by first-order polynomials [3], higher-order polynomials [25, 38].
Compared with the work in [3, 56], no matching conditions are imposed in Assump-
tions 2.5 and 2.6. Furthermore, the kth subsystem’s state variables xk are allowed to
appear in the higher-order polynomials in Assumptions 2.5 and 2.6.

Remark 2.29 In the literature, the decentralized robust stabilization problem has
been addressed for a class of large-scale nonlinear systems of the form (2.178). In
what follows, we consider the same problem for a wider class of large-scale systems
with more than one input and less restrictions on interconnections.
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2.6.3 Robust Control Design

We now look for designing decentralized robust controllers for the large-scale sys-
tem (2.174). The design will be carried out step by step.

1. Consider system (2.174) with m = 1, that is

ẋj = f j (xj , ξ
j

11) + Ψ i1
10 (x̄N , ξ̄N

1 , θ)ξ
j

11,

ξ
j

11 = ξ
j

12 + Ψ
j

11(x̄
N , ξ̄N

1 , θ),

... (2.178)

ξ
j

1,r1−1 = ξ
j

1r1
+ Ψ

j

1,r1−1(x̄
N , ξ̄N

1 , θ),

ξ
j

1r1
= u

j

1 + Ψ
j

1r1
(x̄N , ξ̄N

1 , θ),

where Φ i1
10 and Ψ

j

1d satisfy the following conditions:

‖Φ i1
10(x̄

N , ξ̄N
1 , θ)‖ ≤

N∑

k=1

ρ∑

t=1

Φ i1kt
100 (xj , ξ

j

11)‖x
k‖t

+
N∑

k=1

ρ∑

t=1

Φ i1kt
1011(x

j , ξ
j

11)|ξ
k
11|t , (2.179)

‖Ψ j

1d(x̄N , ξ̄N
1 , θ)‖ ≤

N∑

k=1

ρ∑

t=1

Ψ ikt
1d0(x

j , ξ̄
j

1d)‖xk‖t

+
d∑

s=2

ρ∑

t=1

Ψ iit
1d1s(x

j , ξ̄
j

1d)|ξ j

1s |
t

+
N∑

k=1

ρ∑

t=1

Ψ ikt
1d11(x

j , ξ̄
j

1d)|ξ k
11|t , (2.180)

which follows from Assumptions 2.5 and 2.6. It is readily seen that system (2.178) is
quite general. Furthermore, conditions (2.179) and (2.180) are less restrictive due to
the presence of the higher polynomial terms |ξ j

1s |t in (2.180) and the interconnection
terms ‖xk‖t in (2.179) and (2.180). With Assumption 2.4, (2.179) and (2.180), an
appropriate design procedure can be applied to system (2.178), the result can be
summarized by the following lemma:

Lemma 2.7 Consider system (2.178) with Assumption 2.4 and (2.179) and (2.180).
There exist a change of coordinates z

j

1d = ξ
j

1d − α
j

1,d−1(x
j , ξ̄

j

1,d−1) with α
j

10 = 0
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and decentralized feedback laws u
j

1 = u
j

1(x
j , ξ̄

j

1r1
) such that the Lyapunov function

W1 =
N∑

i=1

V j +
N∑

i=1

r1∑

d=1

1

2
(z

j

1d)2 (2.181)

satisfies

Ẇ1 ≤ −
N∑

i=1

ρ∑

t=1

pit
1 ‖xj‖2t −

N∑

i=1

r1∑

d=1

ρ∑

t=1

cit
1d1(z

j

1d)2t ,

pit
1 > 0, cit

1d2 > 0 (2.182)

along the solutions to system (2.178) with u
j

1 = u
j

1(x
j , ξ̄

j

1r1
).

Remark 2.30 Note that Lemma 2.7 is an extension of the results given in the liter-
ature. The proof presented there can be modified to verify Lemma 2.7. However, a
major modification should be made, that is, the terms like |ξ j

1s | should be expressed

in terms of xj and z
j

1d for d = 1, . . . , s. Observe that α
j

1,s−1 can be put into the form

α
j

1,s−1 = ᾱ
j

1,s−1,0(x
j )xj +

s−1∑

d=1

ᾱ
j

1,s−1,d(xj , ξ
j

11, . . . , ξ1d)z
j

1d

due to the smoothness of α
j

1,s−1 and α
j

1,s−1(0) = 0. It follows from

ξ
j

1s = z
j

1s + α
j

1,s−1(x
j , ξ

j

11, . . . , ξ
j

1,s−1)

that

ξ
j

1s = z
j

1s + ᾱ
j

1,s−1,0(x
j )xj +

s−1∑

d=1

ᾱ
j

1,s−1,d(xj , ξ
j

11, . . . , ξ1d)z
j

1d

which implies, according to Lemma 2.8 in Sect. 2.6.5, that

|ξ j

1s |
t ≤ (s + 1)t−1[|zj

1s |
t + ‖ᾱj

1,s−1,0(x
j )‖t‖xj‖t ]

+ (s + 1)t−1
s−1∑

d=1

|ᾱj

1,s−1,d(xj , ξ
j

11, . . . , ξ1d)|t |zj

1d |t .

Step T : Consider system (2.174) with m = T ,T ≥ 2, that is,

ẋj = f j (xj , ξ
j

11) +
t∑

n=1

Φ in
n0(x̄

N , ξ̄N
1 , . . . , ξ̄N

n , θ)ξ
j

n1,

ξ
j

j1 = ξ
j

j2 + Ψ
j

j1(x̄
N , ξ̄N

1 , . . . , ξ̄N
j , θ)
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+
t∑

n=j+1

Φ in
j1(x̄

N , ξ̄N
1 , . . . , ξ̄N

n , θ)ξ
j

n1,

...
(2.183)

ξ
j

j,rj −1 = ξ
j

jrj
+ Ψ

j

j,rj −1(x̄
N , ξ̄N

1 , . . . , ξ̄N
j , θ)

+
t∑

n=j+1

Φ in
j,rj −1(x̄

N , ξ̄N
1 , . . . , ξ̄N

n , θ)ξ
j

n1,

ξ
j

jrj
= u

j

j + Ψ
j

jrj
(x̄N , ξ̄N

1 , . . . , ξ̄N
j , θ)

+
t∑

n=j+1

Φ in
jrj

(x̄N , ξ̄N
1 , . . . , ξ̄N

n , θ)ξ
j

n1,

where u
j

1 = u
j

1(x
j , ξ̄

j

1r1
), u

j

2 = u
j

2(X
j

1 , ξ̄
j

2r2
), . . . , u

j

T −1 = u
j

T −1(X
j

T −2, ξ̄
j

T −1,rT −1
)

are determined in the first T − 1 steps with

X
j

1 = [(xj )′, (ξ̄ j

1r1
)′]′,

XN
1 = [(X1

1)
′, . . . , (XN

1 )′]′,

F
j

1 = [(f j

0 + Φ
j

10ξ
j

11)
′, ξ j

12 + Ψ
j

11, . . . , ξ
j

1r1

+ Ψ
j

1,r1−1, u
j

1(X
j

1) + Ψ
j

1r1
]′,

Φ̄ i2
1 = [(Φ i2

20)
′,Φ i2

11, . . . ,Φ
i2
1,r1−1,Φ

i2
1r1

]′,
...

X
j

T −2 = [(Xj

T −3)
′, ξ j

T −2,1, . . . , ξ
j

T −2,rT −2
]′,

XN
T −2 = [(X1

T −2)
′, . . . , (XN

T −2)
′]′,

F
j

T −2 = [(F j

T −3 + Φ̄
i,T −2
T −3 ξ

j

T −2,1)
′, ξ j

T −2,2 + Ψ
j

T −2,1, . . . ,

ξ
j

T −2,rT −2
+ Ψ

j

T −2,rT −2−1, u
j

T −1(X
j

T −2) + Ψ
j

T −2,rT −2
]′,

Φ̄
i,T −1
T −2 = [(Φ i,T −1

T −1,0)
′,Φ i,T −1

11 , . . . ,Φ
i,T −1
1r1

, . . . ,

Φ
i,T −1
T −1,1, . . . ,Φ

i,T −1
T −2,rT −2−1,Φ

i,T −1
T −2,rT −2

]′.

Such a system can be alternatively put into the following form:

Ẋ
j

T −1 = F
j

T −1(X̄
N
T −1, θ) + Φ̄ iT

T −1(X̄
N
T −1, ξ̄

N
T , θ)ξ

j

T 1,

ξ
j

T 1 = ξ
j

T 2 + Ψ
j

T 1(X̄
N
T −1, ξ̄

N
T , θ),
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... (2.184)

ξ
j

T 2 = ξ
j

T 3 + Ψ
j

T 2(X̄
N
T −1, ξ̄

N
T , θ),

ξ
j
T rT

= u
j
T + Ψ

j
T rT

(X̄N
T −1, ξ̄

N
T , θ),

where

X
j

T −1 = [(Xj

T −2)
′, ξ j

T −1,1, . . . , ξ
j

T −1,rT −1
]′,

XN
T −1 = [(X1

T −1)
′, . . . , (XN

T −1)
′]′,

F
j

T −1 = [(F j

T −2 + Φ̄
i,T −1
T −2 ξ

j

T −1,1)
′, ξ j

T −1,2 + Ψ
j

T −1,1, . . . ,

ξ
j

T −1,rT −1
+ Ψ

j

T −1,rT −1
, u

j

T −1(X
j

T −1) + Ψ
j

T −1,rT −1
]′,

Φ̄ iT
T −1 = [(Φ iT

T 0)
′,Φ iT

11 , . . . ,Φ iT
1r1

, . . . ,Φ iT
T −1,1, . . . ,

Φ iT
T −1,rT −1−1,Φ

iT
T −1,rT −1

]′.

According to Step T − 1,F
j

T −1 satisfies the following inequality:

N∑

i=1

∂WT −1

∂X
j

T −1

F
j

T −1(X
N
T −1, θ)

≤ −
N∑

i=1

ρ∑

t=1

pit
T −1‖xj‖2t −

N∑

i=1

T −1∑

j=1

rj∑

d=1

ρ∑

t=1

cit
jd,T −1(z

j
jd)2t · (2.185)

It follows from Assumptions 2.5 and 2.6 that Φ iT
T −1 and Ψ

j

T d satisfy the following
inequalities:

‖Φ iT
T −1(X̄

N
T −1, ξ̄

N
T , θ)‖ ≤ ‖Φ iT

T 0‖ +
T −1∑

j=1

rj∑

d=1

‖Φ iT
jd ‖

≤
N∑

k=1

ρ∑

t=1

Φ̄ iT kt
T −1,0(X

j

T −1, ξ
j

T 1)‖x
k‖t

+
N∑

k=1

T −1∑

l=1

rj∑

s=2

ρ∑

t=1

Φ̄ iT it
T −1,ls(X

j

T −1, ξ
j

T 1)|ξ
j
ls |t

+
N∑

k=1

T −1∑

l=1

ρ∑

t=1

Φ̄ iT kt
T −1,l1(X

j

T −1, ξ
j

T 1)|ξ
j

l1|
t , (2.186)
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‖Ψ j
T d(X̄N

k−1, ξ̄
N
T , θ)‖ ≤

N∑

k=1

ρ∑

t=1

Ψ ikt
T d0(X

j

T −1, ξ̄
j
T d)‖xk‖t

+
T −1∑

l=1

r1∑

s=2

ρ∑

t=1

Ψ iit
T dls(X

j

T −1, ξ̄
j

T d)|ξ j

ls |t

+
d∑

s=2

ρ∑

t=1

Ψ iit
T dT s(X

j

T −1, ξ̄
j

T d)|ξ j

T s |t

+
N∑

k=1

T −1∑

l=1

ρ∑

t=1

Ψ ikt
T dl1(X

j

T −1, ξ̄
j

T d)|ξ k
l1|t . (2.187)

With (2.185)–(2.187), it follows from Lemma 2.7 that there exits a change of coordi-
nates z

j

T d = ξ
j

T d − α
j

T ,d−1(X
j

T −1, ξ̄
j

T ,d−1) with α
j

T 0 = 0 and decentralized feedback

laws u
j

T = u
j

k(X
j

T −1, ξ̄
j

T rT
) so that the Lyapunov function

WT = WT −1 +
N∑

i=1

rT∑

d=1

1

2
(z

j
T d)2t (2.188)

satisfies

ẆT ≤ −
N∑

i=1

ρ∑

t=1

pit
T ‖xj‖ −

N∑

i=1

t∑

j=1

rj∑

d=1

ρ∑

t=1

cit
jdT (z

j

jd)2t (2.189)

along the solution of (2.183) with

u
j

1 = u
j

1(x
j , ξ̄

j

1r1
), u

j

2 = u
j

2(X
j

1 , ξ̄
j

2r2
), . . . , u

j
T = u

j

2(X
j

T −1, ξ̄
j
T rT

).

From the foregoing analysis, we have the following result for system (2.174):

Theorem 2.10 Suppose that Assumptions 2.4–2.6 are satisfied. Then, system

(2.174) can be globally asymptotically stabilized by decentralized robust control

laws u
j

1 = u1(x
j , ξ̄

j

1r1
), . . . , u

j
m = um(xj , ξ̄

j

1r1
, . . . , ξ̄

j
mrm

).

2.6.4 Simulation Example 2.7

To illustrate the theoretical developments, we consider the large-scale nonlinear sys-
tem

ẋj = −x1 − (x1)3 + ξ1
11(x

1)2θ sin t

+ 1

Δ
ξ1

21[(ξ2
11)

2 + (ξ2
21)

2],
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ξ1
11 = ξ1

12 + ξ1
21(ξ

2
11)

2θ cos t,

ξ1
12 = u1

1,

ξ1
21 = ξ1

22 + 1

Δ
[x1 sin t + (ξ2

21)
2θ cos t],

(2.190)
ξ1

22 = u1
2,

ξ2
11 = ξ2

12 + ξ2
21ξ

1
11ξ

2
11θ cos t,

ξ2
12 = u2

1,

ξ2
21 = ξ2

22 + 1

Δ
[x1 sin t + (ξ1

21)
2θ cos t],

ξ2
22 = u2

2,

where Δ = 1 + (x1)2 +
∑2

i=1
∑2

j=1(ξ
j

1j )
2 +

∑2
i=1

∑2
j=1(ξ

j

2j )
2 and |θ | < 1.

For this purpose we choose V = 1
2p(x1)2, p > 0. Then, a simple calculation

shows that

∂V

∂x1
[−x1 − (x1)3] ≤ −p(x1)2 − p

2
(x1)4

which implies that Assumption 2.4 is satisfied. In addition, it is not difficult to prove
that Assumptions 2.5 and 2.6 are satisfied as well. Therefore, the design procedure
developed in Sect. 2.6.3 is applicable. Note that the approach in [81] cannot be used
to solve the problem for (2.190) because there exist interconnected terms, that is, the
last terms in the first equation, the second equation, the fourth equation, the sixth
equation, and the eighth equation of system (2.190).

First, consider the following system:

ẋ1 = −x1 − (x1)3 + ξ1
11(x

1)2θ sin t,

ξ1
11 = ξ1

12,

ξ1
12 = u1

1, (2.191)

ξ2
11 = ξ2

12,

ξ2
12 = u2

1.

It follows from Step 1 in Sect. 2.6.3 that the following controllers can be con-
structed:

u1
1 = −c11

121z
1
12 − ξ1

11 −
∂α1

11

∂x1
[x1 + (x1)3]

− 1

2
z1

12

(
∂α1

11

∂x1
z1

11

)2

+
∂α1

11

∂z1
11

(z1
12 + α1

11),

u2
1 = −c21

121z
2
12 − z2

11 +
∂α2

11

∂z2
11

(z2
12 + α2

11),



88 2 Decentralized Control of Nonlinear Systems I

so that the Lyapunov function

W1 = V +
2∑

i=1

2∑

d=1

(z
j

1d)2

satisfies

Ẇ1 ≤ −p(x1)2
(

p

2
− 1

2

)
(x1)4 − c11

111(z
1
11)

2

− c21
111(z

2
11)

2 − c22
111(z

2
11)

4 − c11
121(z

1
12)

2 − c21
121(z

2
12)

2,

where z1
11 = ξ1

11, z2
11 = ξ2

11, z1
12 = ξ1

12 − α1
11, z2

12 = ξ2
12 − α2

11, α1
11 = −c11

111ξ
1
11 −

1
2pξ1

11(x
1)2 and α2

11 = −c21
111ξ

2
11 − c22

111(ξ
2
11)

3.
Second, consider (2.190) and carry out Step 2 in Sect. 2.6.3. We obtain the fol-

lowing controllers:

u1
2 = −z1

22 − z1
21 − ψ1

22 − δ1
22z

1
22,

u2
2 = −z2

22 − z2
21 − ψ2

22 − δ2
22z

2
22,

where z1
21 = ξ1

21, z2
21 = ξ2

21, z1
22 = ξ1

22 − α1
21, z2

22 = ξ2
22 − α2

21, and

α1
21 = −2z1

21 − (z1
21)

3 − z1
21

[(
px1 − z1

12
∂α1

11

∂x1

)2

+ 1

2

(
z1

11 − z1
12

∂α1
11

∂z1
11

)2]
,

α2
21 = −2z2

21 − 2(z2
21)

3 − z2
21

[
1

2

(
z2

11 −
∂α2

11

∂z2
11

)2

(z2
11)

2 + 1

2
(z2

21)
2
]
,

ψ1
22 =

∂α1
21

∂x1
[x1 + (x1)3] −

∂α1
21

∂z1
11

(z1
12 + α1

11)

−
∂α1

21

∂z1
12

u1
1 −

∂α1
21

∂z1
21

(z1
22 + α1

21),

δ1
22 = 1

2

(
∂α1

21

∂x1
z1

11

)2

+
(

∂α1
21

∂x1
z1

21

)2

+ 1

2

(
∂α1

21

∂z1
11

z1
21

)2

+
(

∂α1
21

∂z1
21

)2

,

ψ2
22 =

∂α2
21

∂z2
11

(z2
12 + α2

11) −
∂α2

21

∂z2
12

u2
1 −

∂α2
21

∂z2
21

(z2
22 + α2

21),

δ2
22 = 1

2

(
∂α2

21

∂z2
21

z2
21z

2
11

)2

+ 1

2

(
∂α2

12

∂ξ2
21

)2

+
(

∂α2
21

∂z2
21

)2

.
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The derived controllers stabilize the system (2.190) because they render the Lya-
punov function

W2 = W1 +
2∑

i=1

2∑

d=1

(z
j

2d)2

satisfy

Ẇ2 ≤ −(p − 2)(x1)2 −
(

p

2
− 1

)
(x1)4 − (c11

111 − 1)(z1
11)

2 − c21
111(z

2
11)

2

− (c22
111 − 2)(z2

11)
4 − c11

121(z
1
12)

2 − c21
121(z

2
12)

2 −
2∑

i=1

2∑

j=1

ci1
2j2(z

j

2j )
2.

For the purpose of demonstration, simulation is carried out for the initial conditions
x1 = 0.9, ξ1

11 = −0.9, ξ2
11 = 0.5, ξ1

12 = 0.5, ξ2
12 = −0.7, ξ1

21 = 0.7, ξ2
21 = 0.8, ξ1

22 =
−0.8, ξ2

22 = 0.9 and the parameters p = 3, c11
111 = 2, c21

111 = 1, c22
111 = 2, c11

121 = 1,
c21

121 = 1, ci1
2j2 = 1 for i, j = 1,2. The responses for the closed-loop system are

plotted in Fig. 2.3.

Fig. 2.3 Trajectories of the closed-loop system
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2.6.5 Proof of Lemma 2.8

Lemma 2.8

(a1 + · · · + an)
t ≤ nt−1(|a1|t + · · · + |an|t ).

Proof It is obvious that

(a1 + · · · + an)
t ≤ (|a1| + · · · + |an|)t .

Set ā = (|a1| + · · · + |an|)/n and f (x) = xt for t ≥ 1 and x ≥ 0. Because f (x)

is c∞ function, by Taylor expansion, there exists a real value ξ between x and ā,
satisfying

f (x) = f (ā) + ḟ (ā)(x − ā) + 1

2
f̈ (ξ)(x − ā)2

which implies that

f (x) ≥ f (ā) + ḟ (ā)(x − ā)

because f̈ (ξ)(x − ā)2 ≥ 0. Therefore

f (|an|) ≥ f (ā) + ḟ (ā)(|a1| − ā),

...

f (|an|) ≥ f (ā) + ḟ (ā)(|an| − ā).

Adding all these equations together gives

|a1|t + · · · + |an|t ≥ nf (ā) = n(ā)t = (|a1| + · · · + |an|)t
nt−1

which implies that

(a1 + · · · + an)
t ≤ (|a1|t + · · · + |an|)t

≤ nt−1(|a1| + · · · + |an|t ). �

2.7 Notes and References

This chapter provided a critical overview of decentralized control techniques for
classes of nonlinear interconnected continuous-time systems. The area of nonlinear
control is so wide to accommodate new and research directions along the productive
ideas [9, 19, 22, 23, 29, 40, 42, 43, 45, 46]. In particular, the topic of nonlinear
interconnected discrete-time systems has not been fully investigated in the literature.
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Chapter 3

Decentralized Control of Nonlinear Systems II

In this chapter, we start our examination of the development of decentralized control
techniques for interconnected systems where we focus on the classes of nonlinear
continuous-time systems. We focus on interconnected minimum-phase nonlinear
systems with parameter uncertainty and bounded and/or strong nonlinear intercon-
nections. The objective is to design a robust decentralized controller such that the
closed-loop large-scale interconnected nonlinear system is globally asymptotically
stable for all admissible uncertain parameters and interconnections. The design is
recursive in nature. By employing H∞ performance, the solution of the decentral-
ized control problem is attained via the Hamilton-Jacobi-Isaacs (HJI) inequalities.
Finally, a decentralized output-feedback tracking problem with disturbance atten-
uation is addressed for a new class of large-scale and minimum-phase nonlinear
systems. Application of decentralized stabilization and excitation controls of multi-
machine power systems are demonstrated.

3.1 Introduction

Large-scale systems consisting of a set of small-interconnected subsystems can be
found in many applications such as electric power systems, industrial manipulators,
computer networks, etc. The centralized control of large-scale systems is usually
infeasible due to the requirement of a formidable amount of information exchange.
Hence, decentralized control, a control law based only on local information, is often
preferable [46]. Certainly, because of the interconnections among subsystems the
design of a decentralized control is in general, more difficult than that of a central-
ized control.

On the other hand, exact modeling is usually impossible for physical systems,
not to mention large-scale systems due to their complexity. Therefore, a decentral-
ized control design which takes into account possible modeling uncertainties is of
practical significance. Usually, the uncertainties for large-scale interconnected sys-
tems appear not only in local subsystems but also in interconnections. Decentral-
ized robust control for interconnected linear systems with uncertainties satisfying
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the so-called strict matching conditions has been investigated in [6, 11, 12, 44,
45] and references cited therein. The interconnections among subsystems treated
in these papers are mostly bounded by first-order polynomials. It was pointed out
in [44, 45] that interconnected systems with a decentralized control based on the
first-order bounded interconnections may become unstable when the interconnec-
tions are of higher order. In [15], decentralized robust stabilization was considered
for large-scale systems with interconnections bounded by some nonlinear functions
and uncertainties satisfying the so-called matching conditions. Very recently, fol-
lowing the development of centralized control of nonlinear systems [17, 27, 32],
a decentralized adaptive control for a class of large-scale interconnected nonlinear
systems was proposed in [21] where the strict matching condition was relaxed and
higher-order interconnections among subsystems were introduced. Notice that the
system under consideration in [21] is assumed to be exactly linearizable and have a
linear parameterization of uncertain parameters and/or disturbances.

In this section, we investigate the problem of decentralized robust control for a
wider class of large-scale nonlinear systems with parametric uncertainty and non-
linear interconnections. Each subsystem of the interconnected system is assumed
to be partially feedback linearizable and minimum phase. The uncertain parameters
and/or disturbances are allowed to be time-varying and enter the system nonlinearly.
The nonlinear interconnections are bounded by general nonlinear functions of the
zero-dynamics and outputs of other subsystems. Inspired by the recent work of cen-
tralized nonlinear control [7, 17, 29, 32, 42], we show that decentralized global
robust stabilization can be achieved for the uncertain interconnected large-scale
systems by employing a recursive controller design method. Our result relies on
a proper construction of Lyapunov function for the interconnected systems. A nu-
merical example is presented to demonstrate the effectiveness of the proposed robust
decentralized control technique.

3.1.1 System Description

Consider a large-scale nonlinear system comprised of N interconnected subsystems
with time-varying unknown parameters and/or disturbances entering nonlinearly
into the state equation. The ith subsystem is given as

żj = fj0(zj , xj1) + φj0(zj , x̄j0,Zj , Yj ; θ)xj1,

ẋj1 = xj2 + φj1(zj , x̄j1,Zj , Yj ; θ),

ẋj2 = xj3 + φj2(zj , x̄j2,Zj , Yj ; θ),

... (3.1)

ẋj,rj −1 = xj,rj + φj,rj −1(zj , x̄j,rj −1,Zj , Yj ; θ),

ẋj,rj = vj + φj,rj (zj , x̄j,rj ,Zj , Yj ; θ),

yj = xj1,



3.1 Introduction 97

where

x̄j,k = [xj1 xj2 . . . xjk]t , x̄j0 = xj1, xj = x̄jrj ,

(zj , xj ) is the state vector of the j th subsystem with

zj ∈ ℜnj −rj , Zj = [zt
1 zt

2 . . . zt
j−1 zt

j+1 . . . zt
N ]t ,

Yj = [y1 y2 . . . yj−1 yj+1 . . . yN ]t ,

and vj ∈ ℜ is the control input, yj ∈ ℜ is the output, θ is a vector of unknown,
time-varying piecewise continuous parameters and/or disturbances which belong to
a known compact set Ω . The vector fields fj0 and φjk are smooth with fj0(0,0) = 0
and φjk(0,0,0,0; θ) = 0, ∀θ ∈ Ω , 1 ≤ j ≤ N , 0 ≤ k ≤ rj . Observe that the vector
(φjk), k = 0,1,2, . . . , rj , represents the interconnections of the j th subsystem with
the other subsystems.

In what follows, we consider the decentralized robust control problem for a
wider class of interconnected systems with partially feedback linearizable subsys-
tems and nonlinear parameterization of time-varying parametric uncertainty. Ob-
serve from (3.1) that the interconnections involve the zero-dynamics and outputs of
other subsystems.

Remark 3.1 Similar to the centralized case discussed in [29, 34], the zero dynamics
of each subsystem in (3.1) are independent of the uncertain parameter vector θ . For
notional simplicity, in the sequel, we assume that nj = n, rj = r , 1 ≤ j ≤ N . Then,
by considering yj = xj1, system (3.1) becomes

żj = fj0(zj , xj1) + φj0(zj , x̄i0,Zj ,Xj1; θ)xj1,

ẋj1 = xj2 + φj1(zj , x̄j1,Zj ,Xj1; θ),

ẋj2 = xj3 + φj2(zj , x̄j2,Zj ,Xj1; θ),

...

ẋj,r−1 = xj,r + φj,r−1(zj , x̄j,r−1,Zj ,Xj1; θ),

ẋj,r = vj + φj,r(zj , x̄j,r ,Zj ,Xj1; θ),

(3.2)

where Xj1 = Yj = [x11 x21 . . . xj−1,1 xj+1,1 . . . xN1]
t .

We make the following assumptions for system (3.2).

Assumption 3.1 There exist some smooth real-valued functions

Vj0(zj ), j = 1,2, . . . ,N

which are positive definite and proper (radially unbounded), such that

∂Vj0

∂zj

fj0(zj ,0) ≤ −νj‖zj‖
2, 1 ≤ j ≤ N (3.3)

for some positive real numbers νj > 0.
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Assumption 3.2 The nonlinear interconnections φjk in (3.2) satisfy

|φjk(zj , x̄jk,Zj ,Xj1; θ) − φjk(zj , x̄jk,0,0, θ)|

≤
N

∑

ℓ=1

ηjkℓ(zj , x̄jk)[ζ 0
jkℓ(‖zl‖)‖zl‖ + ζ 1

jkℓ(zℓ, xℓ1)|xℓ1|]

≤

N
∑

ℓ=1

ηjkℓ(zj , x̄jk)ζjkℓ(‖(zℓ, xℓ1)‖), (3.4)

for any θ ∈ Ω , ηjkℓ(·), ζ 0
jkℓ(·) and ζ 1

jkℓ(·), ℓ = 1,2, . . . ,N , 0 ≤ k ≤ r , 1 ≤ j ≤ N

are nonnegative smooth functions with ζ 0
jkℓ(·) = ζ 1

jkℓ(·) ≡ 0.

Remark 3.2 Note that by the well-known converse Lyapunov theorem, the zero dy-
namics of each subsystem are globally asymptotically stable if and only if there
exists a positive definite and proper Lyapunov function Vj0 such that

(∂Vj0/∂zj )fj0(zj ,0) < 0, ∀zj 	= 0.

Indeed, the requirement (3.3) is more restrictive than this. However, a globally expo-
nentially minimum-phase nonlinear system (that is, the zero-dynamics of the system
are globally exponentially stable) always satisfies condition (3.3).

Remark 3.3 The interconnections in Assumption 3.2 are very general, including
many types of interconnections considered in existing literature as special cases, for
example, interconnections bounded by linear (first-order) polynomials [6, 11] and
higher-order polynomials [45]. Furthermore, unlike the work in [6, 11, 15, 45], no
matching conditions are imposed for system (3.2).

In the sequel, we deal with the decentralized global robust stabilization prob-
lem for system (3.2) satisfying Assumptions 3.1 and 3.2. More precisely, we are
concerned with the design of decentralized robust control laws vj = vj (zj , xj ),
j = 1, . . . ,N , such that the overall closed-loop interconnected system (3.2) with
the control laws is globally asymptotically stable for all admissible uncertainties
and interconnections.

3.1.2 Robust Control Design

In this section, we shall show that the interconnected system of (3.2) is globally
asymptotically stabilizable by decentralized state feedback controllers. It is demon-
strated that the decentralized robust controllers can be constructed effectively by
employing a Lyapunov-based recursive design procedure.

To establish the main result, we shall first present the following lemma which
provides the first step of the induction in the construction of robust decentralized
state feedback control laws of system (3.2).
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Lemma 3.1 Consider the first two state equations of system (3.2):

żj = fj0(zj , xj1) + φj0(zj , xj1,Zj ,Xj1; θ)xj1,

ẋj1 = xj2 + φj1(zj , xj1,Zj ,Xj1, θ), (3.5)

yj = xj1,

satisfying Assumptions 3.1 and 3.2. Then, there exists a smooth function x∗
j2(zj , xj1)

with x∗
j2(0,0) = 0 such that system (3.5) with the control xj2 = x∗

j2(zj , xj1) in the

coordinates

zj = zj , x̃j1 = xj1

having

Vj1 = Wj (Vj0) +
1

2
x̃2
j1, (3.6)

V̇j1 ≤
dWj (Vj0)

dVj0

∂Vj0

∂zj

fj00 − bj (zj , xj1)x
2
j1 − rx̃2

j1 + ‖zj‖
2

+
1

2

N
∑

ℓ=1

δj1ℓ(‖(zℓ, xℓ1)‖) (3.7)

with Vj0 being given in Assumption 3.1 and Wj (·) and bj (., .) are, respectively,
a smooth K∞-function and a smooth function to be chosen. Moreover,

fj00(zj ) = fj0(zj ,0), (3.8)

δj1ℓ(‖(zℓ, xℓ1)‖) = β−1
j0ℓ(ζj0ℓ(‖(zℓ, xℓ1)‖))

2 + β−1
j1ℓ(ζj1ℓ(‖(zℓ, xℓ1)‖))

2 (3.9)

with βj0ℓ and βj1ℓ being positive scaling constants.

Proof Since fj0(zj , xj1) of (3.5) is a smooth vector with fj0(0,0) = 0, there exists
a smooth vector fj1(zj , xj1) such that

fj0(zj , xj1) = fj00(zj ) + fj1(zj , xj1)xj1,

where fj00(zj ) is given by (3.8). In view of Assumption 3.2 and along the state
trajectory of system (3.5), we have

V̇j1 =
dWj

dVj0

∂Vj0

∂zj

(fj0 + φj0xj1) + xj1[xj2 + φj1(zj , xj1,Zj ,Xj1; θ)]

=
dWj

dVj0

∂Vj0

∂zj

(fj00 + fj1xj1) + xj1xj2 + xj1

1
∑

j=0

ψ1
j1(zj )φj l(zj , xj1,0,0; θ)

+ xj1

1
∑

j=0

ψ1
j1(zj )(φj l(zj , xj1,Zj ,Xi1; θ) − φj l(zj , xj1,0,0, θ)), (3.10)
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where

ψ0
j1(zj ) = dWj

dVj0

∂Vj0

∂zj

, ψ1
j1(zj ) = 1.

Since φj0(0,0,0,0; θ) = φj1(0,0,0,0; θ) = 0, ∀θ , there exists some function
αj1(zj , xj1) such that

∣

∣

∣

∣

∣

xj1

1
∑

ℓ=0

ψℓ
j1(zj )φjℓ(zj , xj1,0,0; θ)

∣

∣

∣

∣

∣

≤ |xj1|αj1(zj , xj1)(‖zj‖ + ‖xj1‖). (3.11)

Recalling Assumption 3.2, it follows from (2.17) that

V̇j1 ≤
dWj

dVj0

∂Vj0

∂zj

(fj00 + fj1xj1) + xj1xj2

+ |xj1|

∣

∣

∣

∣

dWj

dVj0

∣

∣

∣

∣

∥

∥

∥

∥

∂Vj0

∂zj

∥

∥

∥

∥

N
∑

ℓ=1

ηj0ℓ(zj , xj1)ζj0ℓ(‖(zℓ, xℓ1)‖)

+ |xj1|

N
∑

ℓ=1

ηj1ℓ(zj , xj1)ζj1ℓ(‖(zj , xℓ1)‖)

+ |xj1|αj1(zj , xj1)(‖zj‖ + ‖xj1‖)

≤
dWj

dVj0

∂Vj0

∂zj

(fj00 + fj1xj1) + xj1(xj2 + xj1αj1(zj , xj1))

+
1

2
x2
j1

∣

∣

∣

∣

dWj

dVj0

∣

∣

∣

∣

2∥
∥

∥

∥

∂Vj0

∂zj

∥

∥

∥

∥

2 N
∑

ℓ=1

βj0ℓη
2
j0ℓ(zj , xj1)

+
1

2

N
∑

ℓ=1

β−1
j0ℓ(ζj0ℓ(‖(zℓ, xℓ1)‖))

2

+
1

2
x2
j1

N
∑

ℓ=1

βj1ℓη
2
j1ℓ(zj , xj1) +

1

2

N
∑

ℓ=1

β−1
j1ℓ(ζj1ℓ(‖(zℓ, xℓ1)‖))

2

+
1

4
x2
j1α

2
j1(zj , xj1) + ‖zj‖

2

=
dWj

dVj0

∂Vj0

∂zj

fj00 + xj1(xj2 + Mj1(zj , xj1))

+ ‖zj‖
2 +

1

2

N
∑

ℓ=1

δj1ℓ(‖(zℓ, xℓ1)‖), (3.12)
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where δj1ℓ is given in (3.9) and

Mj1(zj , xj1) = dWj

dVj0

∂Vj0

∂zj

fj1 + 1

2
xj1

∣

∣

∣

∣

dWj

dVj0

∣

∣

∣

∣

2∥
∥

∥

∥

∂Vj0

∂zj

∥

∥

∥

∥

2 N
∑

ℓ=1

βj0ℓη
2
j0ℓ(zj , xj1)

+ 1

2

N
∑

ℓ=1

βj1ℓη
2
j1ℓ(zj , xj1) + xj1αj1(zj , xj1)

+ 1

4
xj1α

2
j1(zj , xj1). (3.13)

Choosing

xj2 = x∗
j2 = −Mj1 − bj (zj , xj1)xj1 − rxj1, (3.14)

where bj (., .) is a smooth function to counteract the effect of the interconnections
and yet to be determined. Then, (3.7) is obtained and the proof of Lemma 3.1 is
completed. �

Remark 3.4 Considering the case when r = 1, that is, xj2 = vj in (3.5) is the ac-
tual control input. Then it can be easily shown that the design functions bj (., .)

and Wj (·), j = 1,2, . . . ,N can be chosen such that the decentralized state feedback
control vj = x∗

j2(zj , xj1) solves the robust decentralized stabilization problem.

3.1.3 Recursive Method

Next, we proceed to establish the systematic recursive design methodology for con-
structing robust decentralized control laws for the system (3.2) when r ≥ 2. We need
this technical result.

Lemma 3.2 Consider the first ρ + 1 state equations of system (3.2):

żj = fj0(zj , xj1) + φj0(zj , xj1,Zj ,Xj1; θ)xi1,

ẋj1 = xj2 + φj1(zj , xi1,Zj ,Xj1; θ),

ẋj2 = xj3 + φj2(zj , x̄i2,Zj ,Xj1; θ),
(3.15)

...

ẋj,ρ−1 = xj,ρ + φj,ρ−1(zj , x̄i,ρ−1,Zj ,Xj1; θ),

ẋj,ρ = xj,ρ+1 + φj,ρ(zj , x̄iρ,Zj ,Xj1; θ),

satisfying Assumptions 3.1 and 3.2. Suppose that for any given index ρ = m (1 ≤

m ≤ r − 1), there exist smooth functions
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x∗
j2(zj , xj1), x∗

i3(zj , x̄j2), . . . , x∗
j,m+1(zj , x̄im),

x∗
jk(0,0) = 0, 2 ≤ k ≤ m + 1

such that system (3.15) with the control xj,m+1 = x∗
j,m+1(zj , x̄j,m) in the new coor-

dinates

zj = zj , x̃j1 = xj1,

x̃j2 = xj2 − x∗
j2(zj , xj1), . . . , x̃jm = xjm − x∗

j,m(zj , x̄j,m−1),

having

Vjm = Wj (Vj0) +
1

2

m
∑

k=1

x̃2
jk,

(3.16)

V̇jm ≤
dWj

dVj0

∂Vi0

∂zj

fj00 − bj (zj , xj1)x
2
j1 − (r − m + 1)

m
∑

k=1

x̃2
jk + m‖zj‖

2

with Vj0 as given in Assumption 3.1 and

δj0ℓ(‖(zℓ, xℓ1)‖) ≡ 0,

δjkℓ(‖(zℓ, xℓ1)‖) = δj,k−1,ℓ(‖(zℓ, xℓ1)‖) (3.17)

+

k
∑

k=0

β−1
jkℓ(ζjkℓ(‖(zℓ, xℓ1)‖))

2, 1 ≤ k ≤ r.

Then for system (3.15) with ρ = m + 1, there exists a smooth decentralized state

feedback control law

xj,m+2 = x∗
i,m+2(zj , x̄j,m+1); x∗

j,m+2(0,0) = 0 (3.18)

such that system (3.15) with (3.18) in the new coordinates

zj = zj , x̃jk, 1 ≤ k ≤ m,

x̃j,m+1 = xj,m+1 − x∗
j,m+1(zj , x̄j,m)

satisfies

V̇j,m+1 ≤
dWj

dVj0

∂Vj0

∂zj

fj00 − bj (zj , xj1)x
2
j1 − (r − m)

m+1
∑

k=1

x̃2
jk

+ (m + 1)‖zj‖
2 +

1

2

N
∑

ℓ=1

δj,m+1,ℓ(‖(zℓ, xℓ1)‖), (3.19)
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where

Vj,m+1 = Vjm + 1

2
x̃2
j,m+1.

Proof By evaluating the derivative of x̃j,m+1 = xj,m+1 − x∗
j,m+1, we obtain

˙̃xj,m+1 = xj,m+2 + aj,m+1(zj , x̄j,m+1)

+

m+1
∑

ℓ=0

ψℓ
j,m+1(zj , x̄j,m)φjℓ(zj , x̄jℓ,Zj ,Xj1; θ),

where

aj,m+1(zj , x̄j,m+1) = −
∂x∗

j,m+1

∂zj

fj0(zj , xj1) −

m
∑

ℓ=1

∂x∗
j,m+1

∂xj , ℓ
xi,ℓ+1,

ψ0
j,m+1(zj , x̄j,m) = −

∂x∗
j,m+1

∂zj

xj1,

ψℓ
j,m+1(zj , x̄j,m) = −

∂x∗
j,m+1

∂xj,ℓ

, 1 ≤ ℓ ≤ m,

ψm+1
j,m+1(zj , x̄j,m) = 1.

Then, the time derivative of Vj,m+1 is given by

V̇j,m+1 = V̇j,m + x̃j,m+1

[

xj,m+2 + aj,m+1

+

m+1
∑

ℓ=0

ψℓ
j,m+1(zj , x̄j,m)φjℓ(zj , x̄jℓ,Zj ,Xj1; θ)

]

= V̇jm + x̃j,m+1(xj,m+2 + aj,m+1)

+ x̃j,m+1

m+1
∑

ℓ=0

ψℓ
j,m+1φjℓ(zj , x̄jℓ,0,0; θ)

+ x̃j,m+1

m+1
∑

ℓ=0

ψℓ
j,m+1[φjℓ(zj , x̄jℓ,Zj ,Xj1; θ) − φjℓ(zj , x̄jℓ,0,0; θ)].

(3.20)

Define

φ̃iι(zj , ¯̃xjℓ; θ) = φjℓ(zj , x̄jℓ,0,0; θ)

= φjℓ(zj , ¯̃xjℓ + x̄∗
jℓ,0,0; θ), 2 ≤ ℓ ≤ m + 1, (3.21)
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where

¯̃xjℓ = (x̃j1, . . . , x̃j ι), x̄∗
jℓ = (x∗

j1, x
∗
j2, . . . , x

∗
jℓ),

¯̃xj0 = x̃j1, x̄∗
j0 = x∗

i1.

Since φjℓ(0,0,0,0; θ) = 0, ∀θ ∈ Ω , 0 ≤ ℓ ≤ m + 1, it is easy to verify that
φ̃jℓ(0,0; θ) = 0, ∀θ ∈ Ω . Thus, there exist smooth bounding functions αiι(zj , ¯̃xj,ℓ),
ℓ = 0,1, . . . ,m + 1 such that

|φi0(zj , xj1,0,0; θ)| = |φ̃j0(zj , x̃j1; θ) ≤ αj0(zj , x̃j1)(‖zj‖ + ‖x̃j1‖),

|φjℓ(zj , x̄jℓ,0,0; θ)| = |φ̃jℓ(zj , ¯̃xjℓ; θ) ≤ αiι(zj , ¯̃xj,ℓ)

[

‖zj‖ +

ι
∑

k=1

|x̃jk|

]

, (3.22)

1 ≤ ℓ ≤ m + 1.

In view of this, the second last term of (3.20) satisfies

x̃j,m+1

m+1
∑

ι=0

ψ ι
j,m+1φiι(zj , x̄jℓ,0,0; θ)

≤ |x̃j,m+1|

[

ψ0
j,m+1|αj0(‖zj‖ + |x̃j1|) +

m+1
∑

ℓ=1

|ψ ι
j,m+1|αjℓ

(

‖zj‖ +

ι
∑

k=1

|x̃jk|

)]

= |x̃j,m+1|

[

|ψ0
j,m+1|αj0(‖zj‖ + |x̃j1|)

+

m
∑

ℓ=1

|ψ ι
j,m+1|αiι

(

‖zj‖ +

ι
∑

k=1

|x̃jk|

)]

+ |x̃j,m+1|αj,m+1

(

‖zj‖ +

m
∑

k=1

|x̃jk|

)

+ αj,m+1x̃
2
j,m+1

≤ x̃2
j,m+1

m
∑

ℓ=0

(ψ ι
j,m+1)

2α2
jℓ(m + 1)(ℓ + 1)

+
1

4(m + 1)

[

(‖zj‖ + |x̃j1|)
2 +

m
∑

ℓ=1

1

(ℓ + 1)

(

‖zj‖ +

ℓ
∑

k=1

|x̃jk|

)2]

+
1

2
(m + 1)x̃2

i,m+1α
2
j,m+1 +

1

2(m + 1)

(

‖zj‖ +

m
∑

k=1

|x̃jk|

)2

+ αj,m+1x̃
2
j,m+1

≤ x̃2
j,m+1

m
∑

ℓ=0

(ψ ι
j,m+1)

2α2
jℓ(m + 1)(ℓ + 1) +

1

2
‖zj‖

2 +
1

2

m
∑

k=1

|x̃jk|
2
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+ 1

2
(m + 1)x̃2

j,m+1α
2
j,m+1 + 1

2

(

‖zj‖
2 +

m
∑

k=1

|x̃jk|
2

)

+ αj,m+1x̃
∗
j,m+1

=

[

m
∑

ℓ=0

(ψℓ
j,m+1)

2α2
jℓ(m + 1)(ℓ + 1) +

1

2
(m + 1)α2

j,m+1 + αj,m+1

]

x̃2
j,m+1

+ ‖zjk‖
2 +

m
∑

k=1

|x̃jk|
2

≤ x̃2
j,m+1Ej,m+1(zj , ¯̃xj,m+1) + ‖zj‖

2 +

m
∑

k=1

|x̃jk|
2. (3.23)

In view of Assumption 3.2 and (3.23), it follows that (3.20) can be written as

V̇j,m+1 ≤ V̇jm + x̃j,m+1(xj,m+2 + aj,m+1)

+ |x̃j,m+1|

m+1
∑

ℓ=0

|ψℓ
j,m+1|

N
∑

s=1

ηjℓs(zj , x̄jℓ)ζjℓs(‖(zs, xs1)‖)

+ x̃2
j,m+1Ej,m+1 + ‖zj‖

2 +

m
∑

k=1

|x̃jk|
2

≤ V̇jm + x̃j,m+1(xj,m+2 + aj,m+1) + x̃2
j,m+1Ej,m+1

+ ‖zj‖
2 +

m
∑

k=1

|x̃ik|
2

+
1

2
x̃2
j,m+1

m+1
∑

ℓ=0

N
∑

s=1

(ψℓ
j,m+1)

2(ηjℓs(zj , x̄jℓ))
2βjℓs

+
1

2

m+1
∑

ℓ=0

N
∑

s=1

(ζjℓs(‖(zs, xs1)‖))
2β−1

jℓs

≤
dWj

dVj0

∂Vj0

∂zj

fj00 − bj (zj , xj1)x
2
j1 − (r − m + 1)

m
∑

k=1

x̃2
jk

+ m‖zj‖
2 +

1

2

N
∑

ℓ=1

δjmℓ(‖(zℓ, xℓ1)‖) + x̃jmx̃j,m+1

+ x̃j,m+1(xj,m+2 + Mj,m+1) + ‖zj‖
2 +

m
∑

k=1

x̃2
jk

+
1

2

m+1
∑

ℓ=0

N
∑

s=1

(ζjℓs(‖(zs, xs1)‖))
2β−1

jℓs, (3.24)
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where

Mj,m+1(zj , ¯̃xj,m+1) = aj,m+1 + x̃j,m+1Ej,m+1

+ 1

2
x̃j,m+1

m+1
∑

ℓ=0

N
∑

s=1

(ψℓ
j,m+1)

2(ηjℓs(zj , x̄jℓ))
2βjℓs . (3.25)

Choosing

xj,m+2 = x∗
j,m+2(zj , xj1, . . . , xj,m+1) = −Mj,m+1 − x̃jm − (r − m)x̃j,m+1 (3.26)

assures that (3.19) in Lemma 3.2 holds and hence the proof is completed. �

By applying Lemmas 3.1 and 3.2, the construction of robust decentralized control
law which stabilizes the uncertain interconnected nonlinear systems (3.2) can be
readily completed. This is seen by the following theorem:

Theorem 3.1 Consider the uncertain interconnected system (3.2) satisfying As-

sumptions 3.1 and 3.2. There exists a decentralized control law, vj = vj (zj , xj ),
j = 1,2, . . . ,N , such that the overall system under the decentralized controller is

globally asymptotically stable for all admissible uncertainties and interconnections.
A suitable decentralized controller is given by

vj = x∗
j,r+1(zj , x̄j,r) = −Mjr − x̃j,r−1 − x̃jr , (3.27)

where Mjr is given in (3.25) with m + 1 = r .

Proof Based on Lemma 3.1, it follows that Lemma 3.2 is satisfied. Extending on
this and applying Lemma 3.2 repeatedly until the rth step, we readily obtain a
Lyapunov-based recursive decentralized control law. Therefore, we can construct
x∗
j2(zj , xj1), . . . , x

∗
j,r+1(zj , x̄jr) such that under the new coordinates

zj , x̃j1 = xj1, x̃j2 = xj2 − x∗
j2(zj , xj1), . . . , x̃jr = xjr − x∗

j,r(zj , x̄j,r−1),

system (3.2) with control law (3.27) and

Vjr = Wj (Vj0) +
1

2

r
∑

k=1

x̃2
jk (3.28)

satisfies

V̇jr ≤
dWj

dVj0

∂Vj0

∂zj

fj00 − bj (zj , xj1)x
2
i1 −

r
∑

k=1

x̃2
jk + r‖zj‖

2

+
1

2

N
∑

ℓ=1

δjrℓ(‖(zℓ, xℓ1)‖), (3.29)
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where

δjrℓ(‖(zℓ, xℓ1)‖) = rβ−1
j0ℓ(ζj0ℓ(‖(zℓ, xℓ1)‖))

2

+

r
∑

s=1

(r − s + 1)β−1
jsℓ(ζjsℓl(‖(zs, xs1)‖))

2. (3.30)

By virtue of Assumption 3.2, we get

δjrℓ(‖(zℓ, xℓ1)‖)

= rβ−1
j0ℓ(ζ

0
j0ℓ(‖zℓ‖)‖zℓ‖ + ζ 1

j0ℓ(zℓ, xℓ1)|xℓ1|)
2

+

r
∑

s=1

(r − s + 1)β−1
jsℓ(ζ

0
jsℓ(‖zℓ‖)‖zℓ‖ + ζ 1

jsℓ(zℓ, xℓ1)|xℓ1|)
2

≤ 2rβ−1
j0ℓ((ζ

0
j0ℓ(‖zℓ‖))

2‖zℓ‖
2 + (ζ 1

j0ℓ(zℓ, xℓ1))
2x2

ℓ1)

+ 2
r

∑

s=1

(r − s + 1)β−1
jsℓ((ζ

0
jsℓ(‖zℓ‖))

2‖zℓ‖
2 + (ζ 1

jsℓ(zℓ, xℓ1))
2x2

ℓ1)

≤ 2Δjℓ(‖zℓ‖)‖zℓ‖
2 + 2Djℓ(zℓ, xℓ1)x

2
ℓ1, (3.31)

where

Δj l(‖zℓ‖) = rβ−1
j0ℓ(ζ

0
j0ℓ(‖zℓ‖))

2 +

r
∑

s=1

(r − s + 1)β−1
jsℓ(ζ

0
jsℓ(‖zℓ‖))

2, (3.32)

Djℓ(zℓ, xℓ1) = rβ−1
j0ℓ(ζ

1
j0ℓ(zℓ, xℓ1))

2 +

r
∑

s=1

(r − s + 1)β−1
jsℓ(ζ

1
jsℓ(zℓ, xℓ1))

2. (3.33)

Proceeding further, we define

V =

N
∑

j=1

Vjr

and invoking the structural identity

N
∑

j=1

N
∑

ℓ=1

[Δj l(‖zℓ‖)‖zℓ‖
2 + Dj l(zℓ, xℓ)x

2
ℓ1]

=

N
∑

j=1

N
∑

ℓ=1

[Δℓj (‖zj‖)‖zj‖
2 + Dℓj (zj , xj )x

2
j1]
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in view of Assumption 3.1 and by noting that Wj (Vj0) is a K∞ function of Vj0, we
arrive at

V̇jr ≤
N

∑

j=1

{

dWj

dVij0

∂Vj0

∂zj

fj00 − bj (zj , xj1)x
2
j1 −

r
∑

k=1

x̃2
jk + r‖zj‖

2

+

N
∑

ℓ=1

[Δℓj (‖zj‖)‖zj‖
2 + Dℓj (zj , xj )x

2
j1]

}

≤

N
∑

j=1

{

−
dWj

dVj0
νj‖zj‖

2 +

[

r +

N
∑

ℓ=1

Δℓj (‖zj‖)

]

‖zj‖
2

−

r
∑

k=1

x̃2
jk −

[

bj (zj , xj1)x
2
j1 −

N
∑

ℓ=1

Dℓj (zj , xj1)

]

x2
j1

}

. (3.34)

According to Assumption 3.1 Vj0(zj ) is radially unbounded and positive definite
and therefore there exists a K∞ function κℓj such that

Δℓj (‖zj‖) ≤ Δℓj (0) + κℓj (Vj0). (3.35)

On selecting

bj (zj , xj1) =

N
∑

ℓ=1

Dℓj (zj , xj1), (3.36)

dWj

dVj0
= kj +

1

νj

[

r +

N
∑

ℓ=1

(Δℓj (0) + κℓj (Vj0))

]

, Wj (0) = 0, (3.37)

where kj > 0 is a constant, it is readily evident that Wj (·) is a smooth K∞-function.
Then it follows that

V̇ ≤

N
∑

j=1

{(

−kjνj‖zj‖
2 −

r
∑

k=1

x̃2
jk

)}

. (3.38)

Due to the onto-relation between (zj , xj ) and (zj , x̃j ), where x̃j = (x̃j1, . . . , x̃jr),
the closed-loop interconnected system of (3.2) under the decentralized controller
(3.27) is globally asymptotically stable for all admissible uncertainties and inter-
connections. �

Remark 3.5 It is interesting to observe from Theorem 3.1 that the functions

bj (zj , xj1), Wj (Vj0), j = 1,2, . . . ,N
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can be selected a priori before the recursive design of the robust decentralized sta-
bilization controller. Moreover, Theorem 3.1 provides a decentralized global stabi-
lization result for uncertain interconnected minimum-phase nonlinear systems with
parametric uncertainty and interconnections bounded by general nonlinear func-
tions. This result essentially extends existing centralized results in [29, 32] to de-
centralized control of interconnected systems.

3.1.4 Simulation Example 3.1

Consider an interconnected system composed of two subsystems:

• subsystem 1:

ż1 = −2z1 + z1x11,

ẋ11 = x12 + x11z1 sin θ1 + x2
21z2 cos θ2

1 ,

ẋ12 = u1 + x2
12(x11z1 + z2

1) sin θ1 + x21z2 cos(θ1z1),

• subsystem 2:

ż2 = −z2 + x2
21,

ẋ21 = x22 + (x2
11z1 + x2

21z2) sin(z2θ2),

ẋ22 = u2 + x2
22(x11z

2
1 + x21z

2
2) sin θ2 + x2

22z
3
2 cos(θ2

2 z2
2),

where θ1, θ2 ∈ [−2,2].

It is easy to verify that the interconnections in the system under consideration
satisfy Assumption 3.2. Initially, set βjkm = 1, j, k,m = 1,2. It follows from (3.32)
and (3.33) that

Δ11 = Δ12 = Δ21 = Δ22 = 0,

D11 = 0, D12 = 2x2
21z

2
2 + z2

2, D21 = 2x2
11z

2
1 + z4

1, D22 = 0.

Letting V10 = 1
2z2

1 and V20 = 1
2z2

2. Then,

∂V10

∂z1
f10(z1,0) = −2z2

1;
∂V20

∂z2
f20(z2,0) = z2

2.

It is readily evident that Assumption 3.1 is satisfied with ν1 = 2 and ν2 = 1.
From (3.35), it follows that

κ11(V10) = κ21(V10) = κ12(V20) = κ22(V20) = 0.
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By selecting k1 = k2 = 3, then we have from (3.36) and (3.37):

dW1

dV10
= 4,

dW2

dV20
= 5,

b1 = D11 + D21, b2 = D12 + D22.

It follows from (3.11) and (3.13) that

α11 = x2
11 + 0.25, α21 = x2

21

and

M11 = dW1

dV10
z2

1 + 0.5x11 + x11α11 + 0.25α2
11,

M21 = dW2

dV20
z2x21 + 0.5x21 + x21α21 + 0.25α2

21.

Using (3.10), the virtual control is now computed as

x∗
12 = −M11 − b1x11 − 2x11,

x∗
22 = −M21 − b2x21 − 2x21.

Next, letting x̃j2 = xj2 − x∗
j2, j = 1,2, we obtain

ψ0
12 = −

∂x∗
12

∂z1
x11, ψ0

22 = −
∂x∗

22

∂z2
x21,

ψ1
12 = −

∂x∗
12

∂x11
, ψ1

22 = −
∂x∗

22

∂x21
, ψ2

21 = ψ2
22 = 1,

a12 = −
∂x∗

12

∂z1
(−2z1 + x11z1) −

∂x∗
12

∂x11
x12,

a22 = −
∂x∗

22

∂z2
(−z2 + x2

21) −
∂x∗

22

∂x21
x22.

According to (3.22), we can select

α12 = x2
12(z

2
1 + 0.25), α22 = x2

22z
2
2.

It then follows from (3.25) that

M12 = a12 + x̃12(4(ψ1
12)

2α2
11 + α2

12 + α12) + 0.5x̃12((ψ
1
12)

2 + (ψ2
12)

2),

M22 = a22 + x̃22(4(ψ1
22)

2α2
21 + α2

22 + α22) + 0.5x̃22((ψ
1
22)

2 + (ψ2
22)

2x4
22).

The decentralized control law can be obtained from (3.26) as follows:

u1 = −x11 − M12 − x̃12,

u2 = −x21 − M22 − x̃22.
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The interconnected system under consideration was simulated with the developed
decentralized controller in order to demonstrate the effectiveness of the decentral-
ized robust control design procedure. The initial conditions were set to be

z1 = 1.0, x11 = −1.0, x12 = 1.5,

z2 = 1.0, x21 = −1.0, x22 = 1.5

and the uncertainties θ1 and θ2 are given by θ1 = 2 sin t and θ2 = 2 cos t2. It is quite
evident that the uncertainties are time-varying ones and belong to the set [−2,2].
The closed-loop responses for the two subsystems are plotted in Figs. 3.1 and 3.2
from which the stability is clearly assured.

Fig. 3.1 Closed-loop
responses of subsystem 1

Fig. 3.2 Closed-loop
responses of subsystem 2
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3.2 Global Almost Disturbance Decoupling

We have learned before that the decentralized stabilization problem for intercon-
nected linear systems with uncertainties satisfying the so-called strict matching con-
ditions has been investigated in [6, 11, 45, 46], and references therein. It has been
customary to treat the interconnections among subsystems to be bounded by first-
order polynomials of state. In [15], decentralized robust stabilization was considered
for interconnected systems bounded by some nonlinear functions with matching un-
certainties.

3.2.1 Introduction

The decentralized H∞ control problem for linear systems has been considered in
[37] where it was shown that the design of each local H∞ control law depends on
the solution of a higher-order algebraic Riccati equation associated with the overall
interconnected system. In [55] a design approach was provided for composite lin-
ear systems. In spite of significant advance in centralized H∞ control for nonlinear
systems [2, 19, 52] and references therein—few results on decentralized H∞ con-
trol of interconnected nonlinear systems are available in the literature. Note that all
these results on H∞ control of nonlinear systems require solution of the Hamilton-

Jacobi-Isaacs (HJI) partial differential equations, which imposes an intricate dif-
ficulty and especially in practical applications. On the other hand, the problems
of global disturbance attenuation and almost disturbance decoupling for a class of
nonlinear systems with lower triangular structure [19, 33]. An interesting feature of
these results is that a solution of the HJI equations or inequalities is not required.
However, their basic limitation is that there was no penalty on control efforts which
in turn represents a serious drawback as it would result in a poor dynamic perfor-
mance and large control effort. This issue has been addressed in [20], where a global
L2-gain design methodology was developed for minimum-phase nonlinear systems
in the lower triangular form. In the light of the results in [30, 52], the relationship
between an L2-gain of a nonlinear system and that of its linearized system has be-
come quite transparent. Accordingly, if the H∞ control problem for the linearized
system is solvable, one can find a local solution to the H∞ control problem of the
original nonlinear system. The pioneering results of [20] suggest that for lineariz-

able systems or minimum-phase nonlinear systems with triangular structure, the

solution to the problem of disturbance attenuation for the linearized system suffices

to determine a feedback law that solves the global disturbance attenuation problem

with internal stability for the corresponding nonlinear system. Note that in [20],
a weighting function is fixed a posteriori and only the problem of inverse global
L2-gain analysis is addressed, that is, determine a weighting function r(x) and a
globally stabilizing feedback law α(x) (constructed by starting from the solution of
a strict Riccati inequality) that solve the problem of global H∞ disturbance attenu-
ation.
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In what follows, a global decentralized H∞ control problem via state feedback
control for a class of interconnected nonlinear systems is investigated. First, we con-
sider a rather general interconnected nonlinear system with strong nonlinear inter-
connections. The global decentralized H∞ control problem of the system is shown
to be converted into the centralized H∞ control problems for a set of auxiliary non-
linear systems without interconnections. It is well known that solutions to the latter
problems are related to the HJI equations. This result extends the decentralized H∞
control problem for linear interconnected systems to the nonlinear case.

Bearing in mind the difficulty of solving HJI equations globally, a global decen-
tralized almost disturbance decoupling problem (DADDP) is considered for a class
of interconnected systems which are transformable to interconnected systems with
lower triangular structure. It is then shown that a solution to the DADDP can be
obtained via recursive design technique. We focus next on the H∞ control prob-
lem. Specifically, a set of decentralized state feedback control laws as well as state-
dependent weights of the control inputs are sought such that the associated global
H∞ control problem is solvable.

3.3 Decentralized H∞ Control

Consider a large-scale nonlinear system composed of N interconnected subsystems
of the form

ẋj = Aj (xj ) + Bj (xj )uj + pj (xj )ωj + hj (xj ),

yj = Cj (xj ), (3.39)

zj = (yt
jyj + ut

jRj (xj )uj )
1
2 , j = 1,2, . . . ,N,

where xj ∈ ℜnj is the state of j th subsystem, j = 1,2, . . . ,N , x = [xt
1 . . . xt

N ]t
is the state of the overall interconnected system, uj ∈ ℜmj , ωj ∈ ℜqj and zj ∈ ℜ
are the control input, the disturbance input and the penalty output, respectively. The
functions

Aj (xj ), Bj (xj ), Cj (xj ), pj (xj ), Rj (xj )

are smooth with appropriate dimensions and satisfy

Aj (0) = 0, Cj (0) = 0, hj (0) = 0, ℜj (xj ) ≥ 0, ∀xj ∈ ℜnj .

Assumption 3.3 The nonlinear interconnections

hj (x) = [hj1(x) hj2(x) . . . hjnj
(x)]t

are bounded by

|hjk(x)| ≤ ηjk(xj )

N
∑

ℓ=1

ζjkℓ(xℓ), (3.40)
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where ηjk(xj ), ζjkℓ(xℓ), 1 ≤ k ≤ nj , 1 ≤ j, ℓ ≤ N , are nonnegative continuous
functions with ζjkℓ(0) = 0.

Remark 3.6 It is interesting to note that the interconnections hj (xj ), j = 1,2, . . . ,N

in Assumption 3.3 are quite general and include, as special cases the interconnec-
tions bounded by linear first-order polynomials [6, 11, 15] and higher-order poly-
nomials [15]. In addition, no matching conditions are imposed.

We direct attention to the global decentralized H∞ control problem for the
system (3.39) satisfying Assumption 3.3. Formally, given scalars γj > 0, j =
1,2, . . . ,N , we are interested in the design of local decentralized control laws,
uj = uj (xj ), j = 1,2, . . . ,N , at the subsystem level such that the overall closed-
loop interconnected system (3.39) is globally asymptotically stable and the L2-gain
from the disturbance ω = [ωt

1 . . . ωt
N ]t to the controlled output z = [zt

1 . . . zt
N ]t is

less than γ = [γ1 . . . γN ]t in the following sense

N
∑

j=1

∫ ∞

0
zt
jzj dt <

N
∑

j=1

γ 2
j

∫ ∞

0
ωt

jωj dt + δ(x0) (3.41)

for all ωj ∈ L2[0,∞), where δ(x0) is a real-valued function of the initial state x0 =
[xt

1(0) . . . xt
N (0)]t satisfying δ(0) = 0.

Remark 3.7 In stating the foregoing problem, γj , j = 1,2, . . . ,N , can be regarded
as the prespecified level of H∞disturbance attenuation for each sub-system. When
γj = γ0, ∀j , (3.41) becomes

‖z‖2
2 ≤ γ 2

0 ‖ω‖2
2 + δ(x0) (3.42)

for all ωj ∈ L2[0,∞), where z = [z1 z2 . . . zN ]t and ω = [ωt
1 . . . ωt

N ]t .

In this case, a standard decentralized H∞ control problem is recovered.
To pave the way toward a result on decentralized nonlinear H∞ control, it is cru-

cial to recall the definition of global disturbance attenuation for nonlinear systems.
For this purpose, consider a nonlinear system of the form

ẋ = A(x) + B(x)u + p(x)ω,

y = C(x), (3.43)

z = (yty + utR(x)u)
1
2 ,

where ω ∈ ℜq , u ∈ ℜm and z ∈ ℜ are the disturbance input, the control input and the
penalty output, respectively, with A(0) = 0, C(0) = 0 and R(x) ≥ 0 for all x ∈ ℜn

and pose the following
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Definition 3.1 Given a real number γ > 0, system (3.43) is said to have global
H∞ disturbance attenuation γ if there exists a feedback control laws u = α(x) with
α(0) = 0 such that, for some proper function V (x) > 0, the HJI matrix inequality

⎡

⎢

⎢

⎢

⎢

⎣

∂V (x)
∂x

(A(x) + B(x)α(x)) + 1
4γ 2

(

∂V (x)
∂x

p(x)
)2

Ct (x) αt (x)R(x)

• −I 0

• • −R(x)

⎤

⎥

⎥

⎥

⎥

⎦

< 0

(3.44)

is satisfied for all nonzero x.

Remark 3.8 It is well known that if (3.44) holds, then the feedback law u = α(x)

globally asymptotically stabilizes the equilibrium x = 0 of the system (3.43) when
ω = 0, and render the L2-gain from ω to z less than or equal to γ [52].

Associated with the interconnected system (3.39), we introduce the following
auxiliary systems:

ẋj = Aj (xj ) + Bj (xj )uj +
[

pj (xj ) β
1
2 γjηj (xj )

]

ω̃j ,

ỹj =
[

Cj (xj )

β
− 1

2
j (dj (xj ))

1
2

]

, (3.45)

z̃j = (ỹt
j ỹj + ut

jRj (xj )uj )
1
2 , j = 1,2, . . . ,N,

where xj is the state, ω̃j is the disturbance input, uj is the control input, z̃j is
the penalty output, Aj (xj ), Bj (xj ), Cj (xj ), pj (xj ) and Rj (xj ) are the same as in
the system (3.39), βj , j = 1,2, . . . ,N , are some positive scalars and β =

∑N
l=1 βl .

Moreover,

ηj (xj ) = diag{ηi1(xj ), . . . , ηinj
(xj )},

ζil(xl) = [ζil1(xl), . . . , ζinj l(xl)]t , dj (xj ) =
N

∑

l=1

ζ t
liζli .

The following theorem establishes that to solve the global decentralized H∞ control
problem for the system (3.39), it suffices to solve the H∞ control problem for the
auxiliary system (3.45).

Theorem 3.2 Consider the interconnected system (3.39) satisfying Assumption 3.3.
Given γj > 0, j = 1,2, . . . ,N , suppose that there exist state feedback control laws

uj = αj (xj ) with αj (0) = 0 such that the system (3.45) has global H∞ disturbance
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attenuation γj from the disturbance ω̃j to the penalty output z̃j . Then the decentral-

ized control laws uj = αj (xj ) render the system (3.39) globally asymptotically sta-

ble with the L2-gain from the disturbance ω = [ωt
1 . . . ωt

N ]t to the controlled output

z = [zt
1 . . . zt

N ]t less than γ = [γ1 . . . γN ]t for all ωj ∈ L2[0,∞), j = 1,2, . . . ,N .

Proof Suppose that system (3.45) has global H∞ disturbance attenuation γj . By
Definition 3.1, there exist feedback control laws uj = αj (xj ) with αj (0) = 0 such
that, for some proper function Vj (xj ) > 0, the HJI inequalities

∂Vj (xj )

∂xj

(Aj (xj ) + Bj (xj )α(xj )) + 1

4γ 2
j

(

∂Vj (xj )

∂xj

pj (xj )

)2

+ 1

4
β

∂Vj (xj )

∂xj

ηj (xj )η
t
j (xj )

(

∂Vj (xj )

∂xj

)t

+ Ct
j (xj )Cj (xj ) + β−1

j dj (xj ) + αt
j (xj )Rj (xj )αj (xj ) < 0,

j = 1,2, . . . ,N (3.46)

are satisfied ∀xj 	= 0.
By defining V =

∑N
i=1 Vj and evaluating the derivative along the state trajectory

of the interconnected system (3.39), we obtain

V̇ =

N
∑

j=1

V̇j

=

N
∑

j=1

∂Vj (xj )

∂xj

[Aj (xj ) + Bj (xj )uj + pj (xj )ωj + hj (x)]

=

N
∑

j=1

∂Vj (xj )

∂xj

[Aj (xj ) + Bj (xj )uj + pj (xj )ωj ] +

N
∑

j=1

nj
∑

k=1

∂Vj (xj )

∂xjk

hjk(x)

≤

N
∑

j=1

∂Vj (xj )

∂xj

[Aj (xj ) + Bj (xj )uj + pj (xj )ωj ]

+

N
∑

j=1

nj
∑

k=1

∣

∣

∣

∣

∂Vj (xj )

∂xjk

∣

∣

∣

∣

ηjk(xj )

N
∑

ℓ=1

ζjkℓ(xℓ)

≤

N
∑

j=1

∂Vj (xj )

∂xj

[Aj (xj ) + Bj (xj )uj + pj (xj )ωj ]

+

N
∑

j=1

nj
∑

k=1

N
∑

ℓ=1

1

4
βl

(

∂Vj (xj )

∂xjk

ηjk(xj )

)2

+

N
∑

j=1

nj
∑

k=1

N
∑

ℓ=1

β−1
l (ζjkℓ(xℓ))

2



3.3 Decentralized H∞ Control 117

=
N

∑

j=1

∂Vj (xj )

∂xj

[Aj (xj ) + Bj (xj )uj + pj (xj )ωj ]

+
N

∑

j=1

1

4
βℓ

∂Vj (xj )

∂xj

ηj (xj )η
t
j (xj )

(

∂Vj (xj )

∂xj

)t

+
N

∑

j=1

β−1
j dj (xj ). (3.47)

In view of (3.46), and letting uj = αj (xj ) in (3.47) while invoking Schur comple-
ments, we have

H :=
N

∑

i=1

(V̇j − γ 2
j ωt

jωj + zt
jzj )

≤
N

∑

i=1

{

∂Vj (xj )

∂xj

[Aj (xj ) + Bj (xj )αj (xj )]

+ 1

4γ 2
j

(

∂Vj (xj )

∂xj

pj (xj )

)2

Ct
j (xj )Cj (xj ) + αt

j (xj )Rj (xj )αj (xj )

+ 1

4
β

∂Vj (xj )

∂xj

ηj (xj )η
t
j (xj )

(

∂Vj (xj )

∂xj

pj (xj )

)t

+ β−1
j dj (xj )

}

< 0 (3.48)

for all nonzero x = [xt
1 . . . xt

N ]t .
On setting ω = 0, it follows from (3.48) that the overall closed-loop intercon-

nected system is globally asymptotically stable. Alternatively by integrating (3.48)
over [0,∞), we have

N
∑

j=1

∫ ∞

0
zt
jzj dt <

N
∑

j=1

γ 2
j

∫ ∞

0
ωt

jωj t + δ(x0),

where δ(x0) =
∑N

j=1 Vj (xj (0)). This completes the proof. �

It must be noted that Theorem 3.2 established that the decentralized H∞ con-
trol problem for interconnected nonlinear systems can be cast into the associated
centralized H∞ control problems whose solutions are related to the HJI equations.
This result naturally extends the decentralized H∞ control of interconnected linear
systems [55] to the nonlinear case.

3.3.1 The Local Disturbance Problem

Next we will look at the local disturbance problem. In particular, we examine the
possibility that the local solution of the decentralized H∞ control problem of the



118 3 Decentralized Control of Nonlinear Systems II

system (3.39) can be obtained by solving the H∞ control problem for the linearized
system of (3.39).

Toward our goal, consider the linear interconnected system given by

ẋj = Ajxj + Pjωj + Bjuj + Γj

N
∑

ℓ=1

ζjℓxℓ,

yj = Cjxj , (3.49)

zj = (yt
jyj + ut

jRjuj )
1
2 ,

where xj ∈ ℜnj and uj ∈ ℜmj are the state and the control input, respectively,
ωj ∈ ℜqj is the disturbance input, zj is the controlled output, with Rj > 0 and
the matrices

Aj , Bj , Cj , Pj , Γj , ζjℓ

are constants with appropriate dimensions.
Following the earlier development, we associate with the system (3.49) an auxil-

iary linear systems of the form:

ẋj = Ajxj + [Pjβ
1
2 γjΓj ]ω̃j + Bjuj ,

ỹj =
[

Cjxj

β
− 1

2
j (d1

j )
1
2 xj

]

, (3.50)

z̃j = (ỹt
j ỹj + ut

jRjuj )
1
2 ,

where βj > 0, β =
∑N

ℓ=1 βℓ and dℓ
j =

∑N
ℓ=1 ζ t

ℓj ζℓj .
The following theorem provides a solution to the decentralized H∞ control prob-

lem of the linear interconnected system (3.49).

Theorem 3.3 Given some real numbers γj > 0 and matrices Rj > 0, i = 1,2,

. . . ,N , consider the interconnected linear system (3.49). Suppose that, for each i,
there exist some constants βℓ, ℓ = 1,2, . . . ,N , and a feedback control law uj =
Kjxj with Kj ∈ ℜpj ×nj , such that the resulting closed-loop system of (3.50) is

asymptotically stable and the L2-gain from ω̃j to z̃j is less than γj . Then, the decen-

tralized control laws uj = Kjxj , 1 ≤ j ≤ N , asymptotically stabilize the intercon-

nected linear system (3.49) and render its L2-gain from the disturbance input ω =
[ωt

1 . . . ωt
N ]t to the controlled output z = [z1 . . . zN ]t less than γ = [γ1 . . . γN ]t

in the sense that

N
∑

j=1

∫ ∞

0
zt
jzj dt <

N
∑

j=1

γ 2
j

∫ ∞

0
ωt

jωj dt + δ(x0)

for all ωj ∈ L2[0,∞), where δ(x0) is a function of the initial state

x0 = [xt
1(0) . . . xt

N (0)]t

satisfying δ(0) = 0.
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Proof In light of the assumption of the theorem, there exist matrices 0 < Yj = Y t
j ∈

ℜnj ×nj such that
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Yj (Aj + BjKj )

+(Aj + BjKj )
tYj + β−1

j d1
j

Ct
j YjPj βYjΓj K t

jRj

• −I 0 0 0
• • −γ 2

j I 0 0
• • • −βI 0
• • • • −Rj

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0. (3.51)

Let Vj = xt
jYjxj and V =

∑N
j=1 Vj and following the same line of reasoning as in

the proof of Theorem 3.2, we reach the desired result. �

Remark 3.9 It is a simple task to prove, based on the first assumptions of Theo-
rem 3.3, that the solution to the decentralized H∞ control problem of the linear
interconnected system (3.49), namely Vj = xt

jYjxj and uj = Kjxj , actually satis-
fies the HJI inequality (3.46) for all x in a neighborhood of x = 0, see [30, 52]. In
turn, the solution of the H∞ control problem for the linearized system of (3.39)
also yields a local solution of the H∞ control problem for the non-linear sys-
tem (3.39).

3.3.2 Results for Non-minimum Phase Systems

Consider a class of interconnected nonlinear systems which are transformable to
interconnected nonlinear systems extended form [21]:

χ̇j = fj0(χj , ξj1) + Pj0(χj , ξj1)ωj + φj0(χj , ξj1;Xj1),

ξ̇j1 = ξj2 + pj1(χj , ξj1)ωj + φj1(χj , ξj1;Xj1),

ξ̇ij2 = ξj3 + pj2(χj , ξ̄j2)ωj + φj2(χj , ξ̄j2;Xj1),

... (3.52)

ξ̇j,τj −1 = ξj,τj
+ pj,τj −1(χj , ξ̄j,τj −1)ωj + φj,τj −1(χj , ξ̄j,τj −1;Xj1),

ξj,τj
= uj + pj,τj

(χj , ξ̄j,τj
)ωj + φj,τj

(χj , ξ̄j,τj
;Xj1),

yj = Cj (χj , ξj1),

where

χj ∈ ℜnj −τj , ξ̄jk = [ξj1 ξj2 . . . ξjk]t , i = 1,2, . . . ,N, j = 1,2, . . . , τj ,

Xj1 = [ξ11 ξ21 . . . ξj−1,1 ξj+1,1 . . . ξN1]t ,

uj ∈ ℜ is the local control input, pi0(χj , ξj1), . . . , pjτj
(χj , ξ̄jτj

),

φj0(χj , ξj1,Xj1), . . . , φjτj
(χj , ξ̄j,τj

,Xj1)
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and Cj (χj , ξj1) are smooth with

φjk(0;0) = 0, Cj (0,0) = 0, k = 0, . . . , τj , j = 1, . . . ,N.

The following assumptions about (3.52) are made [18, 49]:

Assumption 3.4 The χj -subsystem of the ith subsystem in (3.52) can be decom-
posed into two cascade-subsystems as follows:

χ̇j1 = fj01(χj , ξj1) + pj01(χj , ξj1)ωj + φj01(χj , ξj1;Xj1),
(3.53)

χ̇j2 = fj02(χj2, ξj1),

where χj = [χ t
j1 χ t

j2]t with χi1 ∈ ℜnj1 , χj2 ∈ ℜnj2 and nj1 + nj2 = nj − τj .

Assumption 3.5 There exists a smooth real-valued positive definite and proper
function Vi01(χi1) such that

∂Vj01

∂χj1
{fj01(χj , ξj1) + φj01(χj , ξj1;0) + [pj01(χj , ξj1) β

1
2 γjηj0Inj1]ω̃j }

≤ −αj01‖χj1‖
2 + γ 2

i0‖ω̃j‖
2 + kj1(χj2, ξj1) (3.54)

for some definite function kj1(χj2, ξj1), some positive real numbers αj01, β and
γj0 and ω̃j ∈ L2[0,∞), where Inj1 is the identity matrix of dimensions nj1 × nj1,
j = 1,2, . . . ,N .

Assumption 3.6 There exist a smooth real-valued function νj02(χj2) with
νj02(0) = 0, and a smooth real-valued proper function νj02(χj2) > 0, such that

∂Vj02

∂χj2
fj02(χj2, νj02(χj2)) ≤ −αj02(χj2),

(3.55)
αj02‖χj2‖

2 ≤ Vj02(χj2)

for some real numbers αj02 > 0 and αj03 > 0.

Assumption 3.7 The control output yj of the system (3.52) can be expressed in the
form

yj = Cj0(χj2, ξj1), (3.56)

where Cj0(χj2, ξj1) is a smooth real function with Cj0(0,0) = 0.

Assumption 3.8 The nonlinear interconnections in (3.52) are bounded by strong
nonlinearities in Xj1

‖φj01(χj , ξ̄jk;xj1) − φj01(χj , ξ̄jk;0)‖ ≤

N
∑

ℓ=1,ℓ 	=j

|ηj0(χj , ξ̄jk)||ζj0l(ξℓ1)|, (3.57)
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|φjk(χj , ξ̄jk;Xj1)| − φjk(χj , ξ̄ij ;0)| ≤
N

∑

ℓ=1,ℓ 	=j

|ηjk(χj , ξ̄jk)||ζjkℓ(ξℓ1)|, (3.58)

where ηjk(χ, ξ̄jk) and ζjkℓ(ξℓ1), 0 ≤ k ≤ τj , 1 ≤ j, ℓ ≤ N , are smooth functions
with ζjkℓ(0) = 0.

Remark 3.10 It is noted that Assumption 3.5 amounts to the input-state stability
with respect to the disturbance input ωj and bounded-input bounded-state stability
with respect to χj2 and ξj1, whereas Assumption 3.6 implies that the subsystem χj2

is asymptotically stabilized by the feedback ξj1 = νj02(χj1). Interestingly enough,
these assumptions are similar to those in centralized H∞ control [18].

In what follows, we proceed to deal with the global DADDP for the intercon-
nected nonlinear system (3.52) phrased as follows:

Given any real numbers γj > 0, j = 1,2, . . . ,N , it is desired to find decentralized
feedback laws uj = αj (xj ), αj (0) = 0, such that the overall closed-loop system
is internally asymptotically stable with the L2-gain between the disturbance input
ω = [ωt

1 ωt
2 . . . ωt

N ]t and the output y = [y1 y2 . . . yN ]t less than γ = [γ1 . . . γN ]t

in the following sense

N
∑

j=1

∫ ∞

0
yt
jyj dt <

N
∑

j=1

γ 2
j

∫ ∞

0
ωt

jωj dt + δ(x0)

for all ωj ∈ L2[0,∞) and all admissible nonlinear interconnections, where δ(x0) is
a function of the initial state x0 satisfying δ(0) = 0.

Taking into account Assumption 3.8 and noting that ζjkℓ(ξℓ1), j = 1,2, . . . ,N ,
k = 0,1,2, . . . , τj , ℓ = 1,2, . . . ,N , are smooth with ζjkℓ(0) = 0, there exist smooth
functions ζ̃jkℓ(ξℓ1) such that

ζjkℓ(ξℓ1) = ζ̃jkℓ(ξℓ1)ξℓ1.

Now, turning to Theorem 3.2 and introducing an auxiliary systems associated
with (3.52) satisfying Assumptions 3.4–3.8 of the form:

ẋj = fj (xj ) + Bjuj + [Pj (xj ) β
1
2 γjηj (xj )]ω̃j ,

(3.59)

ỹj =

[

Cj0(χj2, ξj1)

β
− 1

2
j (d̃j (ξj1))

1
2 ξj1

]

,

where xj = [χ t
j ξj1 . . . ξjτj

]t , j = 1,2, . . . ,N , is the state, ω̃j is the disturbance
input, uj is the control input, and βj , j = 1,2, . . . ,N are some positive scalars,
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β =
∑N

ℓ=1 βℓ and

fj (xj ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

fj01(χj , ξj1) + φj01(χj , ξj1;0)

fj02(χj2, ξj1)

ξj2 + φj1(χj , ξj1;0)

ξj3 + φj2(χj , ξ̄j2;0)
...

ξjτj
+ φj,τj −1(χj , ξ̄j,τj −1;0)

φj,τj
(χj , ξ̄j,τj

;0)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

; Bj =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
0
...

0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

pj (xj ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pj01(χj , ξj1)

0
pj1(χj , ξj1)

pj2(χj , ξ̄j2)
...

pj,τj −1(χj , ξ̄j,τj −1)

pj,τj
(χj , ξ̄j,τj

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

ηj (xj ) = diag{ηj0(χj , ξj1)Inj1 ,0nj2×nj2, ηj1(χj , ξj1), . . . , ηjτj
(χj , ξ̄jτj

)},

ζ̃jℓ(ξℓ1) =
{

[

[ζ̃j0lξℓ1 ζ̃jℓl(ξℓ1) ζ̃j2ℓ(ξℓ1) . . . ζ̃jτj ℓ(ξℓ1)
]t

if ℓ 	= j,
[

0 0 . . . 0
]t

if ℓ = j,

d̃j (ξj1) =

N
∑

ℓ=1,ℓ 	=j

ζ̃ t
ℓj (ξjℓ)ζ̃ℓj (ξj1) =

N
∑

ℓ=1

ζ̃ t
ℓj (ξj1)ζ̃ℓj (ξj1).

In view of Theorem 3.2, the following theorem is easily established:

Theorem 3.4 Consider the interconnected system (3.52) satisfying Assump-

tions 3.4–3.8. Given any γj > 0, j = 1,2, . . . ,N , suppose that, for some βj > 0, the

control law uj = uj (xj ) with uj (0) = 0 solves the almost disturbance decoupling

problem for the system (3.59), that is, uj globally asymptotically stabilizes the sys-

tem (3.59) and render the L2-gain from the disturbance ω̃j to the penalty output ỹj

less than γj in the sense that

∫ ∞

0
ỹt
j ỹj dt < γ t

j

∫ ∞

0
ωt

jωjdt + δ(xi0)

for all ωj ∈ L2[0,∞), j = 1,2, . . . ,N , where δ(xj 0) is a function of the initial state

xj0 satisfying δ(0) = 0. Then given γ = [γ1 . . . γN ] with γj > 0, the same control

laws uj = uj (xj ) will solve the global DADDP for the interconnected system (3.52).

Remark 3.11 It is quite evident from Theorem 3.4 that the global decentralized
almost disturbance decoupling for interconnected non-minimum phase nonlinear
system (3.52) is converted into the global almost disturbance decoupling problem



3.4 Global Inverse Control of Nonlinear Systems 123

for the system (3.59) without interconnections. The latter problem can be solved
by a recursive Lyapunov-based design approach [18, 49], which does not involve
solving HJI equations (inequalities). In this way, the developed design procedure is
systematic and applicable to wide class of interconnected systems.

3.4 Global Inverse Control of Nonlinear Systems

In Sect. 3.3, it has been shown in principle that a global solution to the problem
of decentralized H∞ nonlinear control can be obtained from the global solutions
of the HJI inequalities (3.46). The HJI inequalities are generally difficult to solve
and for technical reasons it is usually impossible to solve the HJI inequality of the
form (3.46) globally.

An alternative way is to study the problem of global inverse H∞ control rather
than the regular global H∞ control problem. In this way, the aim is to seek not
only a set of decentralized feedback control laws but also weighting functions for
control inputs such that the associated H∞ problem is solvable globally for a class
of interconnected nonlinear systems.

To put the main issues in proper perspectives, we consider a class of intercon-
nected non-linear systems which are transformable to interconnected nonlinear sys-
tems of the form:

ẋj1 = xj2 + pj1(xj1)ωj + φj1(xj1;Xj1),

ẋj2 = xj3 + pj2(x̄j2)ωj + φj2(x̄j2;Xj1),

... (3.60)

ẋj,nj −1 = xj,nj
+ pj,nj −1(x̄j,nj −1)ωj + φj,nj −1(x̄j,nj −1;Xj1),

ẋj,nj
= uj + pj,nj

(x̄j,nj
)ωj + φj,nj

(x̄j,nj
;Xj1),

yj = xj1,

where uj ∈ ℜ is the local control input,

x̄jk = [xj1 xj2 . . . xjk]t , j = 1,2, . . . ,N, j = 1,2, . . . , nj ,

Xj1 = [x11 x21 . . . xj−1,1 xj+1,1 . . . xN1]t ,

Pi1(xi1), . . . ,Pinj
(x̄inj

) and φj1(xj1;Xj1), . . . , φjnj
(x̄j,n1

;Xj1) are smooth with
φjk(0;0) = 0, j = 1, . . . ,N , k = 1, . . . , nj .

For simplicity in exposition, we consider nj = n, 1 ≤ j ≤ N , and express the
system in the following form:

ẋj = Ajxj + fj (xj ) + pj (xj )ωj + Bjuj + hj (xj ;Xj1),
(3.61)

yj = Cjxj ,
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where xj = [xj1 xj2 . . . xjn]t = x̄jn and

Aj =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℜn×n; Bj =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
0
...

0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℜn,

Cj =
[

1 0 . . . 0
]

∈ ℜ1×n,

fj (xj ) =

⎡

⎢

⎢

⎢

⎣

φj1(xj1;0)

φj2(x̄j2;0)
...

φjn(x̄jn;0)

⎤

⎥

⎥

⎥

⎦

∈ ℜn; pj (xj ) =

⎡

⎢

⎢

⎢

⎣

pj1(xj1)

pj2(x̄j2)
...

pjn(x̄jn)

⎤

⎥

⎥

⎥

⎦

∈ ℜn,

hj (xj ,Xj1) =

⎡

⎢

⎢

⎢

⎣

φj1(xj1;Xj1) − φj1(xj1;0)

φj2(x̄j2;Xj1) − φj2(x̄j2;0)
...

φjn(x̄jn;Xj1) − φjn(x̄jn;0)

⎤

⎥

⎥

⎥

⎦

∈ ℜn.

The following assumption is made:

Assumption 3.9 The nonlinear interconnections hj (xj ;Xj1), j = 1,2, . . . ,N ,
in (3.61) are bounded by nonlinearities in Xj1:

|φjk(x̄jk;Xj1) − φjk(x̄jk;0)| ≤
N

∑

ℓ=1;ℓ	=i

|ηjk(x̄jk)||ζjkℓ(xℓ1)|, (3.62)

where ηjk(x̄jk) and ζjkℓ(xℓ1), 1 ≤ k ≤ n, 1 ≤ j, ℓ ≤ N , are smooth functions with
ζjkℓ(0) = 0.

It must be emphasized that Assumption 3.9 represents a fairly general form of
interconnections which includes those in [6, 11, 45, 46] as special cases.

In the sequel, we shall focus on the global decentralized inverse control problem
of nonlinear systems, phrased as follows:

Given some real numbers γj > 0, j = 1,2, . . . ,N , it is desired to find decen-
tralized feedback laws uj = αj (xj ), αj (0) = 0, and some continuous functions
0 ≤ rj (xj ) such that the overall closed-loop system is internally asymptotically
stable with the L2-gain between the disturbance input ω = [ωt

1 ωt
2 . . . ωt

N ]t and

the controlled output z = [z1 z2 . . . zN ]t , where zj = (y2
j + rj (xj )u

2
j )

1
2 , less than

γ = [γ1 . . . γN ]t in the following sense

N
∑

j=1

∫ ∞

0
zt
jzjdt <

N
∑

j=1

γ 2
j

∫ ∞

0
ωt

jωjdt + δ(x0)
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∀ωj ∈ L2[0,∞) and all admissible nonlinear interconnections, where δ(x0) is a
function of the initial state x0 satisfying δ(0) = 0.

In view of Assumption 3.9 and observing that

ζjkℓ(xℓ1), j = 1,2, . . . ,N, k = 1,2, . . . , n, ℓ = 1,2, . . . ,N, ζjkℓ(0) = 0,

are smooth, there exist smooth functions ζ̃jkℓ(xℓ1) such that ζjkℓ(xℓ1) =

ζ̃jkℓ(xℓ1)xℓ1.
Extending on Theorem 3.2, we introduce the following auxiliary systems associ-

ated with (3.61) satisfying Assumption 3.9:

ẋj = Aj (xj ) + fj (xj ) + Bjuj + [Pj (xj ) β
1
2 γjηj (xj )]ω̃j ,

ỹj =

[

Cjxj

β
− 1

2
j (d̃j (xi1))

1
2 Cjxj

]

,
(3.63)

where xj , j = 1,2, . . . ,N , is the state ω̃j is the disturbance input, uj is the control
input, Aj (xj ), Bj (xj ), Cj (xj ), fj (xj ) and pj (xj ) are the same as in system (3.61)
and 0 < βj , j = 1,2, . . . ,N , are some scalars, β =

∑N
ℓ=1 βℓ, j = 1,2, . . . ,N and

ηj = diag{ηj1(xj1), ηj2(x̄j2), . . . , ηjn(x̄jn)},

ζ̃j l(xℓ1) =

{

[ζ̃j1ℓ(xj1) ζ̃j2ℓ(xℓ1) . . . ζ̃jnℓ(xℓ1)]
t if ℓ 	= j,

[

0 0 . . . 0
]t

if ℓ = j,

d̃j (xj1) =

N
∑

ℓ=1,ℓ 	=j

ζ̃ t
ℓj (xj1)ζ̃ℓj (xj1) =

N
∑

ℓ=1

ζ̃ t
ℓj (xj1)ζ̃ℓj (xj1).

Let Pj denote the value of pj (xj = 0). Since fj (xj ), fj (0) = 0 is smooth, it can be
rewritten as

fj (xj ) =

⎡

⎢

⎢

⎢

⎣

fj1(xj1)

fj2(x̄j2)
...

fjn(x̄jn)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

φj11(xj1) 0 . . . 0
φj21(x̄j2) φj22(x̄i2) . . . 0

...
...

. . .
...

φjn1(x̄jn) φjn2(x̄in) . . . φjnn(x̄jn)

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

xi1

xi2
...

xin

⎤

⎥

⎥

⎥

⎦

= Φjf (xj )xj ,
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where all the involved functions are smooth. It is readily seen that

Fj = Φif (0) = ∂fj

∂xj

∣

∣

∣

∣

xj =0

and is a lower triangular matrix. The linearized system of (3.63) at xj = 0 is

ẋj = Ãj (xj ) + Bjuj + [Pj β
1
2 γjΓj ]ω̃j ,

(3.64)
ỹj =

[

Cjxj

β
− 1

2
j (dj0)

1
2 Cjxj

]

,

where Āj = Aj + Fj ,Γj = ηj (0) and dj0 = d̃j (0).
A solution to the global decentralized inverse control problem for the intercon-

nected nonlinear system (3.61) is summarized in the following theorem:

Theorem 3.5 Consider the interconnected system (3.61) satisfying Assumption 3.9
and given r̄j > 0, j = 1,2, . . . ,N be constant weighting factors. Suppose that,
for each j , there exists a linear feedback law uj = Kjxj for (3.64) which in-

ternally stabilizes the system and render its L2-gain, between the disturbance in-

put ω̃j and the penalty output z̃j = (ỹt
j ỹj + r̄ju

2
j )

1
2 , less than a prescribed num-

ber γj > 0. There exist weighting factors rj (xj ), continuously depending on xj

and satisfying rj (0) = r̄j and 0 ≤ rj (xj ) ≤ r̄j , and smooth decentralized feed-

back control laws αj (xj ), i = 1,2, . . . ,N , for (3.61) which globally stabilize the

interconnected system (3.61) and render its L2-gain, between the disturbance in-

put ω = [ωt
1 ωt

2 . . . ωt
N ]t and the penalty output z = [z1 z2 . . . zN ]t , where

zj = (y2
j + rj (xj )u

2
j )

1
2 , less than γ = [γ1 . . . γN ]t for all ωj ∈ L2[0,∞) and all

admissible non-linear interconnections.

Proof Using Theorem 3.2 and extending the result of [20, 60] backward and for-
ward to system (3.64) and (3.63) with lower triangular structures, Theorem 3.5 can
be readily established. Details are given in [20]. �

Remark 3.12 Theorem 3.5 presents a constructive solution to the global decentral-
ized inverse control problem based on an explicit use of the weighting factors, the
proper, positive definite Lyapunov functions and the decentralized control laws sat-
isfying the HJI inequalities (3.46). The key point lies in overcoming the strong non-
linear interconnections by casting the decentralized H∞ control problem into an
associated centralized H∞ control. The latter is then solved by extending the result
in [20].

Remark 3.13 It is significant to assure that at the equilibrium point xj = 0, j =
1,2, . . . ,N , the constructed Lyapunov functions, the decentralized nonlinear con-
trol laws and the control weighting factors reduce to those associated with the de-
centralized H∞ control of the linearized interconnected system. Looked at in this
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light, Theorem 3.5 provides an important link between the linear (local) decentral-
ized H∞ control of linearized interconnected system (the interconnected nonlinear
system) and the global H∞ control of the interconnected nonlinear system.

3.4.1 Disturbance Attenuating Trackers

In what follows, we continue our study to interconnected nonlinear systems with
output measurements. This problem, usually referred to as decentralized output-
feedback control, is technically challenging because of the lack of a general theory
for nonlinear observer design and the nonlinear version of the well-known Separa-

tion Principle. The central focus is three-fold:

(i) identifying a wide class of large-scale nonlinear systems in disturbed decen-
tralized output-feedback form;

(ii) proposing an improved systematic output-feedback controller design proce-
dure for decentralized systems in the presence of strong nonlinearities appear-
ing in the subsystems and interactions;

(iii) guaranteeing decentralized asymptotic tracking when the disturbance inputs
disappear and achieving desirable external stability properties when the distur-
bance inputs are present.

In this regard, we record that constructive control design methods for classes of
highly nonlinear systems were developed in [17, 24, 27, 34]). In a related work on
decentralized adaptive control, the work of [23] presents a systematic method for
a class of interconnected systems under matching conditions and weakly nonlinear
disturbances. The results of [23] have been generalized in various ways in [11, 15,
45, 59]). In most of the available results, the trend has been to restrict the location
of uncertainties [11, 15, 45] and impose growth conditions on the subsystem and
interacting nonlinearities [11, 13, 22, 43, 45, 59].

In this section, we proceed to extend recent developments in nonlinear L2-gain
feedback control [17, 23, 33, 35, 51] to the important problem of asymptotic track-
ing with disturbance attenuation property within the context of interconnected non-
linear systems with output measurements. In the sequel, we assume that the unmea-
sured states appear linearly. To reconstruct the unmeasured states, an effective full-
order decentralized observer is introduced. On the basis of an enlarged decentral-
ized system comprising the observer, an output-feedback decentralized controller is
designed via the recursive backstepping technique. In order to achieve the desired
control objective of asymptotic tracking with disturbance attenuation for the decen-
tralized system in question, a non quadratic Lyapunov function is used and turns out
to be necessary.
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3.4.2 System Description

Consider a large-scale nonlinear system comprised of N interconnected subsystems
with time-varying unknown parameters and/or disturbances entering nonlinearly
into the state equation. The ith subsystem is given as

Ẋj = Fj (Xj ) + Gj (Xj )uj + Λj1(y1, . . . , yN )Xj + Λj2(y1, . . . , yN )wj , (3.65)

yj = hj (Xj ), (3.66)

where 1 ≤ j ≤ N , Xj ∈ ℜNj , uj ∈ ℜ and yj ∈ ℜ represent the state, the control in-
put and the output of the local ith subsystem, respectively, and wj ∈ ℜnwj is the dis-
turbance input. The functions Fj , Gj , hj , Λj1, Λj2 are sufficiently smooth. In the
absence of the interacting terms Λj1 and Λi2, the system (3.65)–(3.66) reduces to
an isolated SISO system. From the literature, we found various constructive control
algorithms developed for wide classes of centralized nonlinear systems in special
normal forms. It is quite naturally to seek similar results in the decentralized con-
text, that is, in the presence of strong interactions among local systems of the form
(3.65)–(3.66). For the simplicity in exposition, we will examine the following class
of interconnected dynamic systems of the type (3.65)–(3.66) which is transformable
to

żj = Qjzj + fj0(y1, . . . , yN ) + pj0(y1, . . . , yN )wj ,

ẋj1 = xj2 + fj1(y1, . . . , yN ) + gj1(y1, . . . , yN )zj + pj1(y1, . . . , yN )wj ,

... (3.67)

ẋjnj
= uj + fjnj

(y1, . . . , yN ) + ginj
(y1, . . . , yN )zj + pjnj

(y1, . . . , yN )wj ,

yj = xj1,

where for each 1 ≤ j ≤ N,zj ∈ ℜnzj and xj = (xj1, . . . , xjnj
) ∈ ℜnj are the states

of the j th transformed subsystem. For every j,Qj is a constant matrix with appro-
priate dimension, fjk, gjk and pjk are known and smooth functions. The following
minimum-phase condition is recalled.

Assumption 3.10 For every 1 ≤ j ≤ N,Qj is a Hurwitz matrix.

Remark 3.14 We assert that the structure of (3.67) is commonly seen in the literature
in both centralized and decentralized control [11, 15, 17, 22, 27, 34, 40, 45, 59]. Em-
ploying elements of geometric nonlinear control [17, 24, 27, 34], necessary and suf-
ficient conditions were derived under which the nonlinear system (3.65)–(3.66) can
be transformed into (3.67), the so-called “disturbed decentralized output-feedback
form”. The nonlinearities in (3.65) depend only on the output y = (y1, . . . , yN ) and
that the unmeasured states Xj or (zj , xj2, . . . , xjnj

) in (3.67) appear linearly. This
feature is quite standard in recent studies on global output-feedback control for both
centralized and decentralized nonlinear systems. Simple counterexamples in [36]
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revealed the fundamental limitation of global output-feedback control for systems
with strong nonlinearities due to unmeasured states.

We now address the following control problem:

For every 1 ≤ j ≤ N and a given time-varying signal yjr(t) whose derivatives up to

order nj are bounded over [0,∞), it is desired to design a smooth, decentralized,
dynamic, output-feedback controller of the form

ẋj = νj (xj , yj , t), uj = μj (xj , yj , t), xj ∈ ℜn̄j (3.68)

such that the following properties hold for the closed-loop large-scale nonlinear

system (3.67)–(3.68):

1. When wj = 0 for all 1 ≤ j ≤ N , the tracking error yj − yir goes to zero asymp-

totically and all other closed-loop signals remain bounded over [0,∞).
2. When wj 	= 0 for all 1 ≤ j ≤ N , the closed-loop system is bounded-input

bounded-state (BIBS) stable and, in appropriate coordinates, is integral-input-

to-state stable (iISS) with respect to the disturbance input w [47]. In particular,
there exists a class-K function γd (that is, γd is continuous, strictly increasing

and vanishes at the origin) such that, for any ρ > 0, the controller (3.68) can be

tuned to satisfy the inequality

∫ t

t0

|y(τ) − yr(t)|
2 dτ ≤ ρ

∫ t

0
γd(|w(τ)|) dτ + η0(z(0), x(0), x(0)) ∀t ≥ 0,

(3.69)
where η0 is a nonnegative C0 function, and z(0) = (zt

1(0), . . . , zt
N (0))t , x(0) =

(xt
1(0), . . . , xt

N (0))t and x(0) = (xt
1(0), . . . , xt

N (0))t .
Property 1 means that decentralized asymptotic tracking is achieved for each

local j th subsystem (3.67) in the absence of disturbance inputs. Note in Property 2
that (3.69) implies, in the presence of disturbances, that the decentralized output-
feedback controller (3.68) has the ability to attenuate the effect of the disturbances
on the tracking error arbitrarily for a fixed class-K gain-function γd , later on we
have γd(s) = s2 + s4 + s8.

3.4.3 Output Feedback Tracking

The control problem addressed before will be solved in the sequel in two steps.
We first introduce a “partially” decentralized observer to produce an augmented
decentralized system with partial-state information. Then, we base the decentralized
controller design on this enlarged dynamic system.
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3.4.4 Partially Decentralized Observer

Owing to the structure in every local system of (3.67), for each 1 ≤ j ≤ N , we
introduce the following state estimator for the (zj , xj )-subsystem:

˙̂zj = Qj ẑj + fj0(y1r , . . . , yNr),

˙̂xj1 = x̂j2 + Lj1(yj − xj1) + fj1(y1r , . . . , yNr) + gj1(y1r , . . . , yNr)ẑj ,

...

x̂jnj
= uj + Ljnj

(yj − x̂j1) + fjnj
(y1r , . . . , yNr) + gjnj

(y1r , . . . , yNr)ẑj ,

(3.70)

Aj =

⎡

⎢

⎢

⎢

⎣

−Lj1

−Lj2 Inj −1
...

−Ljnj
0 . . . 0

⎤

⎥

⎥

⎥

⎦

. (3.71)

Notice that the eigenvalues of Aj can be assigned to any desired location in the open
left-half plane via the choice of appropriate constants {Ljk}

nj

k=1, provided complex
conjugate eigenvalues appear in pair. In (3.71), Inj −1 is the unit matrix of order
nj − 1.

Introducing the new variables

z̃j = zj − ẑj , x̃ijk = xjk − x̂jk, 1 ≤ k ≤ nj , 1 ≤ i ≤ N. (3.72)

From (3.67) and (3.70), it follows that:

˙̃zj = Qj z̃j + fj0(y1, . . . , yN ) − fj0(y1r , . . . , yNr) + pj0(y1, . . . , yN )wj , (3.73)

˙̃xj = Aj x̃j + fj (y1, . . . , yN ) − fj (y1r , . . . , yNr)

+ gj (y1, . . . , yN )zj − gj (y1r , . . . , yNr)ẑj + pj (y1, . . . , yN )wj , (3.74)

where

x̃j = (x̃j1, . . . , x̃jnj
)t , fj = (fj1, . . . , fjnj

)t ,

gj = (gj1, . . . , gjnj
)t , pj = (pi1, . . . , pjnj

)t .

Since every fjk is a smooth function and every yjr is a bounded signal, there exist
a finite number of nonnegative smooth functions {ϕj0k}Nk=1, {ϕjk}Nk=1 such that

|fj0(y1, . . . , yN ) − fj0(y1r , . . . , yNr)| ≤
N

∑

k=1

|x̃k1|ϕj0k(x̃k1), (3.75)

|fj (y1, . . . , yN ) − fj (y1r , . . . , yNr)| ≤
N

∑

k=1

|x̃k1|ϕjk(x̃k1). (3.76)
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In a similar way, we can obtain a functional bound for

gj (y1, . . . , yN )zj − gj (y1r , . . . , yNr)ẑj .

Indeed, we have

gj (y1, . . . , yN )zj − gj (y1r , . . . , yNr)ẑj

= gj (y1, . . . , yN )z̃j + (gj (y1, . . . , yN ) − gj (y1r , . . . , yNr))ẑj . (3.77)

By the Mean Value Theorem, there exist nonnegative smooth functions φjk (1 ≤
k ≤ N) such that

|gj (y1, . . . , yN )zj − gj (y1r , . . . , yNr)ẑj |

≤ |gj (y1, . . . , yN )||z̃j | +
N

∑

k=1

|x̃k1|φjk(x̃k1)|ẑj |. (3.78)

Combining these inequalities (3.75), (3.76) and (3.78), it is easy to show, in the
absence of disturbance inputs, that the solutions (z̃j (t), x̃j (t)) of the cascade sys-
tem (3.73)–(3.74) go to zero, if yj (t) − yjr(t) → 0 for all 1 ≤ j ≤ N . The latter
property will be shown to be guaranteed with the help of the decentralized con-
troller to be designed shortly.

Remark 3.15 It must be emphasized that the observer (3.70) is not asymptotic and is
totally decentralized only if the reference signals yjr = 0 for all 1 ≤ j ≤ N . There-
fore, we select a partially decentralized observer so that; in appropriate coordinates;
system (3.79) has an equilibrium point and consequently, there is a solution to de-
centralized asymptotic tracking. When yjr(t) are general time-varying signals, the
augmented system with a totally decentralized observer does not have a fixed equi-
librium. In effect, only practical tracking can be achieved by means of high-gain
feedback [46].

3.4.5 Controller Design Procedure

From the development of partially decentralized observers, we derive the following
controller-observer combined system for feedback design:

˙̃zj = Qj z̃j + fj0(y1, . . . , yN ) − fj0(y1r , . . . , yNr) + pj0(y1, . . . , yN )wj ,

˙̃xj = Aj x̃j + fj (y1, . . . , yN ) − fj (y1r , . . . , yNr)

+ gj (y1, . . . , yN )zj − gj (y1r , . . . , yNr)ẑj + pj (y1, . . . , yN )wj ,

ẏj = x̂j2 + x̃j2 + fj1(y1, . . . , yN ) + gi1(y1, . . . , yN )zj

(3.79)+ pj1(y1, . . . , yN )wj ,
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˙̂xj2 = x̂j3 + Lj2(yj − x̂j1) + fj2(y1r , . . . , yNr) + gj2(y1r , . . . , yNr)ẑj ,

...

˙̂xjnj
= uj + Ljnj

(yj − x̂j1) + fjnj
(y1r , . . . , yNr) + gjnj

(y1r , . . . , yNr)ẑj .

Notice that the state variables (yj , x̂j1, x̂i2, . . . , x̂jnj
), and then x̃j1, are available for

feedback design. The states (z̃j , x̃j ) are unmeasured and the outputs yj , with k 	= j ,
of other subsystems are unavailable for the design of the regional input uj .

We now direct attention to the j th local system (3.79) with uj being the control
input. For the simplicity in exposition, denote

f̃j0 = fj0(y1, . . . , yN ) − fj0(y1r , . . . , yNr), (3.80)

f̃j = fj (y1, . . . , yN ) − fj (y1r , . . . , yNr), (3.81)

g̃j = gj (y1, . . . , yN )zj − gj (y1r , . . . , yNr)ẑj . (3.82)

In the sequel, we develop a step-by-step constructive controller design procedure,
leading to an effective solution to the desired decentralized problem and tracking
controllers.

Step j.1. Start with the first (z̃j , x̃j , yj )-subsystem of (3.79). Introduce the new
variable ξj1 = yj − yjr (= x̃j1) and consider the proper function

Vi1 = λj1z̃
t
jPj1z̃j + λj2(z̃

t
jPj1z̃j1)

2 + x̃t
jPj2x̃j +

1

2
ξ2
j1 > 0, (3.83)

where λj1, λj2 > 0 are design parameters and Pj1 = P t
j1 > 0 and Pj2 = P t

j2 > 0
satisfy the local Lyapunov equations

Pj1Qj + Qt
jPj1 = −2Inzj

, (3.84)

Pj2Aj + At
jPj2 = −2Inj

. (3.85)

Evaluating the time derivative of Vj1 along the solutions of (3.79) it yields

V̇j1 = (λj1 + 2λj2z̃
t
jPj1z̃j )(−2|z̃j |

2 + 2z̃t
jPj1(f̃j0 + pj0wj ))

− 2|x̃j |
2 + 2x̃t

jPj2(f̃j + g̃j + pjwj ) + ξj1(x̂j2 + x̃j2)

+ fj1(y1, . . . , yN ) + gj1(y1, . . . , yN )zj

+ pj1(y1, . . . , yN )wj − ẏjr . (3.86)

Focusing on the term 2z̃t
jPj1(f̃j0 + pj0wj ) and using (3.80) and (3.75), with the

help of Young’s inequality (see Chap. 10) and after some tedious calculations, it
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follows that:

2(λj1 + 2λj2z̃
t
jPj1z̃j )z̃

t
jPj1(f̃j0 + pj0wj )

≤ λj1|z̃j |2 + 3λj2

λmax(Pj1)
(z̃t

jPj1z̃j )
2

+
N

∑

k=1

ξ2
k1ψik1(ξk1) + cj2|wj |2 + cj3|wj |4 + |wj |8, (3.87)

where cj1, cj2, cj3 > 0 and ψjk1 is a nonnegative smooth function.
In a similar way, there exist positive constants κj1, cj4 and a smooth function

0 ≤ ψjk2 such that

2x̃t
jPj2(f̃j + g̃j + pjwj ) ≤ |x̃j |2 + κj1|z̃j |2 + |z̃j |4 +

N
∑

k=1

ξ2
k1ψjk2(ξk1)

+ cj4|wj |2 + |wj |4, (3.88)

where we have used the fact that ẑj is bounded because of Assumption 3.10.
By substituting (3.87) and (3.88) into (3.86), we obtain

V̇j1 ≤ −(λj1 + λj2z̃
t
jPj1z̃j )|z̃j |2 − |x̃j |2 +

N
∑

k=1

ξ2
k1(ψjk1 + ψjk2)

+ κj1|z̃j |2 + |z̃j |4 + (cj2 + cj4)|wj |2 + (cj3 + 1)|wj |4

+ |wj |8 + ξj1(x̂j2 + x̃j2 + fj1(y1, . . . , yN )

+ gj1(y1, . . . , yN )zj + pj1(y1, . . . , yN )wj − ẏjr). (3.89)

It must be noted that κj1 does not depend on λj1 and λj2 while cjk’s may depend
on λj1 and λj2. Proceeding further, using (3.76) and (3.78), we have

ξj1(x̃j2 + f̃j1 + g̃j1 + pj1wj )

≤ 1

2
|x̃j |2 +

N
∑

k=1

ξ2
k1ψik3(ξk1) + |z̃j |2 + |wj |2, (3.90)

where ψjk3 ≤ 0 is a smooth function.
Keeping in mind the decomposition in (3.81) and (3.82) and letting

ψ̂jk1 = ψjk1 + ψjk2 + ψjk3

it follows that
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V̇j1 ≤ − (λj1 + λj2z̃
t
jPj1z̃j − κj1 − 1 − |z̃j |2)|z̃j |2

− 1

2
|x̃j |2 + (cj2 + cj4 + 1)|wj |2 + (cj3 + 1)|wj |4

+ |wj |8 + ξj1(x̂j2 + fj1(y1r , . . . , yNr)

+ gj1(y1r , . . . , yNr)ẑj − ẏjr) +
N

∑

k=1

ξ2
k1ψ̂jk1. (3.91)

This motivates choosing a control function ξ∗
j1 and a new variable ξj2 as

ξ∗
j1 = −kj1ξj1 − ξj1Kj (ξj1) − fj1(y1r , . . . , yNr) − gj1(y1r , . . . , yN r)ẑj

+ ẏjr , (3.92)

ξi2 = x̂i2 − ξ∗
i1(yj , y1r , . . . , yNr , ẏir , ẑj ), (3.93)

where kj1 > 0 is a design parameter and Kj ≤ 0 is a smooth function such that

Kj1(ξj1) ≥

N
∑

k=1

ψ̂kj1(ξj1). (3.94)

Consequently, we get

V̇j1 ≤ −(λj1 + λj2z̃
t
jPj1z̃j − κj1 − 1 − |z̃j |

2)|z̃j |
2

−
1

2
|x̃j |

2 + (cj2 + cj4 + 1)|wj |
2

+ (cj3 + 1)|wj |
4 + |wj |

8 − kj1ξ
2
j1 − ξ2

j1Kj (ξj1)

+

N
∑

k=1

ξ2
k1ψ̂jk1(ξk1) + ξj1ξj2. (3.95)

Step j.k (2 ≤ k ≤ nj ). Consider the (z̃j , x̃j , yj , x̂i2, . . . , x̂jk)-subsystem of (3.79)
with x̂j,k+1 as the virtual control. For notational simplicity, we define x̂j,nj +1 := uj .

Assume that, from Step j.1 to Step j.(k − 1), we have designed intermediate
control functions {ξ∗

jℓ}
k−1
ℓ=1 , and that we have introduced new variables

ξj,ℓ+1 = x̂j,ℓ+1 − ξ∗
j l(yj , x̂j2, . . . , x̂ij l, y1r , . . . , yNr , ẏjr , . . . , y

(l)
ir , ẑj )

∀1 ≤ ℓ ≤ k − 1 (3.96)

and a proper function

Vj,k−1(z̃j , x̃j , ξj1, . . . , ξj,k−1) = Vj1(z̃j , x̃j , ξj1) +

k−1
∑

ℓ=2

1

2
ξ2
jℓ > 0. (3.97)
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It is further assumed that the time derivative of Vj,k−1 along the solutions of (3.79)
satisfies

V̇j,k−1 ≤ −(λj1 + λj2z̃
t
jPj1z̃j − κj1 − k + 1 − |z̃j |2)|z̃j |2

− 1

2k−1
|x̃j |2 + (k − 1 + cj2 + cj4)|wj |2

+ (cj3 + 1)|wj |4 + |wj |8 −
k−1
∑

ℓ=1

kjℓξ
2
jℓ − ξ2

j1Kj (ξj1)

+
N

∑

m=1

ξ2
m1ψ̂jm(k−1)(ξm1) + ξj,k−1ξjk (3.98)

with kjℓ (1 ≤ ℓ ≤ k − 1) being positive design parameters and ψ̂jm(k−1) a nonneg-
ative smooth function being independent of Kj .

To proceed further, it is desired to establish that a similar property also holds for
the

(z̃j , x̃j , yj , x̂i2, . . . , x̂ij )-subsystem

of (3.79) when x̂j,k+1 is considered as the (virtual) input. For this purpose, consider
the proper function

Vjk = Vj,k−1(z̃j , x̃j , ξj1, . . . , ξj,k−1) + 1

2
ξ2
jk > 0. (3.99)

Differentiating Vjk along the solutions of (3.79) gives

V̇jk = V̇j,k−1ξjk

[

x̂j,k+1 + Ljk(yj − x̂j1) + fjk(y1r , . . . , yNr)

+ gjk(y1r , . . . , yN r)ẑj −
k−1
∑

m=2

∂ξ∗
j,k−1

∂x̂jm

(x̂j,m+1 + Ljm(yj − x̂j1)

+ fjm(y1r , . . . , yNr) + gjm(y1r , . . . , yNr)ẑj )

−

N
∑

m=1

∂ξ∗
j,k−1

∂ymr

ẏmr −

k−1
∑

m=1

∂ξ∗
j,k−1

∂y
(m+1)
jr

y
(m+1)
jr

−
∂ξ∗

j,k−1

∂ẑj

(Qj ẑj + fj0(y1r , . . . , yNr))

−
∂ξ∗

j,k−1

∂yj

(x̂j2 + x̂j2 + fj1 + gj1zj + pj1wj )

]

. (3.100)

With the help of similar arguments as in Step j.1, after lengthy but routine manipu-
lation, it follows the existence of nonnegative smooth functions {ψjmk}

N
m=1 and κjk
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such that:

−ξjk

∂ξ∗
j,k−1

∂yj

(x̃j2 + f̃j1 + g̃j1 + pj1wj )

≤
1

2j
x̃2
j + ξ2

jkκjk +

N
∑

m=1

ξ2
m1ψjmk(ξm1) + |z̃j |

2 + |wj |
2. (3.101)

It must be noted that κjk is a function of (yj , x̂j2, . . . , x̂jk, y1r , . . . , yNr , ẏjr , . . . ,

y
(l)
jr , ẑj ) and that every ψjmk does not depend on Kj .

We are now motivated to choose the following control function:

ξ∗
jk = −kjkξjk − ξj,k−1 − ξjkκjk − Ljk(yj − x̂j1)

− fjk(y1r , . . . , yNr) − gjk(y1r , . . . , yNr)ẑj

+
∂ξ∗

j,k−1

∂yj

(x̂j2 + fj1(y1r , . . . , yNr) + gj1(y1r , . . . , yNr)ẑj )

+

k−1
∑

m=2

∂ξ∗
j,k−1

∂x̂jmk

(x̂j,m+1 + Ljm(yj − x̂j1)

+ fjm(y1r , . . . , yNr) + gjm(y1r , . . . , yNr)ẑj )

+

N
∑

m=1

∂ξ∗
j,k−1

∂ymr

ẏmr +

k−1
∑

m=1

∂ξ∗
j,k−1

∂y
(m)
jr

y
(m+1)
jr

+
∂ξ∗

j,k−1

∂ẑj

(Qj ẑj + fj0(y1r , . . . , yNr)), (3.102)

where kjk > 0 is a design parameter.
In terms of the deviation vector ξj,k+1 = x̂j,k+1 − ξ∗

jk and combining (3.98),
(3.100), (3.101) and (3.102) together, we obtain

V̇jk ≤ −(λj1 + λj2z̃
t
jPj1z̃j − κj1 − j − |z̃j |

2)|z̃j |
2

−
1

2j
|x̃j |

2 + (j + cj2 + cj4)|wj |
2 + (cj3 + 1)|wj |

4

+ |wj |
8 −

k
∑

ℓ=1

kjℓξ
2
jℓ − ξ2

j1Kj (ξj1)

+

N
∑

m=1

ξ2
m1(ψ̂jm(k−1)(ξm1) + ψjmk(ξm1)) + ξjkξj,k+1. (3.103)

This implies that inequality (3.98) holds for the (z̃j , x̃j , yj , x̂j2, . . . , x̂jk)-subsystem
with ψ̂jmk = ψ̂jm(k−1) + ψjmk .
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Now by induction, at Step nj and setting the control law

uj = ξ∗
jnj

(yj , x̂j2, . . . , x̂jnj
, y1r , . . . , yNr , ẏjr , . . . , y

(nj )

jr , ẑj ). (3.104)

It turn, it leads to

V̇jnj
≤ −(λj1 + λj2z̃

t
jPj1z̃j − κj1 − nj − |z̃j |

2)|z̃j |
2

−
1

2nj
|x̃j |

2 + (nj + cj2 + cj4)|wj |
2

+ (cj3 + 1)|wj |
4 + |wj |

8 −

nj
∑

ℓ=1

kjℓξ
2
jℓ − ξ2

j1Kj (ξj1)

+

N
∑

m=1

ξ2
m1ψ̂jmnj

(ξm1), (3.105)

where we recall by construction that ψ̂ijmnj
is independent of the design function

Kj .
By considering the overall proper Lyapunov function for the entire closed-loop

interconnected system

V (z̃, x̃, ξ) =

N
∑

j=1

Vjnj
(z̃j , x̃j , ξj1, . . . , ξjnj

) > 0, (3.106)

where

z̃ = (z̃
j

1, . . . , z̃
j
N )j , x̃ = (x̃

j

1 , . . . , x̃
j
N )j , ξ = ξ

j

1 , . . . , ξ
j
N )j

and the positive definiteness and properness of V in (3.106) follows from the fore-
going recursive construction.

Finally, to eliminate the last positive term of (3.105), which also appears in the
time derivative of V , we select an appropriate set of smooth functions {Kj }

N
j=1

satisfying the inequalities (1 ≤ j ≤ N)

Kj (ξj1) ≥

N
∑

m=1

ψ̂mjnm(ξj1). (3.107)

It is evident that such a design function Kj always exists.

3.4.6 Control Design Results

By applying the foregoing design procedure to the uncertain interconnected sys-
tem (3.67), we establish the following result.
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Theorem 3.6 The problem of decentralized output-feedback tracking with distur-

bance attenuation is solvable for the minimum-phase interconnected system (3.67)
subject to Assumption 3.10.

Proof By differentiating V of (3.106) along the solutions of the closed-loop sys-
tem (3.67) with (3.104), it yields

V̇ ≤ −
N

∑

j=1

(λj1 + λj2z̃
t
jPj1z̃j − κj1 − nj − |z̃j |2)|z̃j |2

−
N

∑

j=1

(

1

2nj
|x̃j |2 +

nj
∑

ℓ=1

kjℓξ
2
jℓ

)

+
N

∑

j=1

[(nj + cj2 + cj4)|wj |2 + (cj3 + 1)|wj |4 + |wj |8]. (3.108)

Selecting sufficiently large design parameters λ1 and λ2 such that

(λj1 + λj2z̃
t
jPj1z̃j − κj1 − nj − |z̃j |2)|z̃j |2

≥ λj1

2
z̃jPj1z̃j + λj2

2
(z̃jPj1z̃j )

2. (3.109)

It follows from (3.106) and (3.108) that

V̇ ≤ −λV +
N

∑

j=1

[(nj + cj2 + cj4)|wj |2 + (cj3 + 1)|wj |4 + |wj |8], (3.110)

where

λa = 1

2
, λc = λMPj2

2nj
, λ = min{λa, λc, kjℓ}, 1 ≤ j ≤ N, 1 ≤ ℓ ≤ nj .

Applying the Gronwall Lemma [27] to (3.110), the BIBS condition and iISS
property 2 follow immediately for the transformed closed-loop system (3.67) with
(3.104). Moreover, when wj ≡ 0, ∀1 ≤ j ≤ N , the null solution is uniformly glob-
ally asymptotically stable, leading to the asymptotic convergence of the tracking
error y −yr because ξ1 = y −yr . It must be emphasized that same result could have
been attained by following parallel procedure to [48].

Finally from (3.108), for any pair of instants 0 ≤ t0 ≤ t , we obtain

∫ t

t0

|ξ1(τ )|2 dτ ≤ V (z(t0), x(t0), ξ(t0)) + ρ

∫ t

t0

(|w(τ)|2

+ |w(τ)|4 + |w(τ)|8) dτ, (3.111)
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where ρ > 0 defined by

ρ = max

{

max{nj + cj2 + cj3|1 ≤ j ≤ N}
min{kj1|1 ≤ j ≤ N} ,

max{cj3 + 1|1 ≤ j ≤ N}
min{kj1|1 ≤ j ≤ N} ,

1

min{kj1|1 ≤ j ≤ N}

}

and observe that ρ can be made as small as possible by selecting sufficiently large
values of the constants kj1. In the present case, (3.69) is met with γd(s) = s2 +
s4 + s8 which completes the proof of Theorem 3.6. �

The following remarks stand out:

Remark 3.16 It is of interest to note that, in the absence of disturbance inputs w,
(3.110) eventually yields that V converges to zero at an exponential rate and; there-
fore; the tracking error y(t) − yr(t) goes to zero exponentially.

Remark 3.17 In centralized output-feedback tracking with almost disturbance de-
coupling [35], Assumption 3.10 can be weakened and the zj -system in (3.67) can
be broadened as follows:

żj = Γj (y1, . . . , yN )zj + fj0(y1, . . . , yN ) + pj0(y1, . . . , yN )wj . (3.112)

Considering that, for each 1 ≤ j ≤ N , there are a pair of constant, matrices (0 <

P t
j = Pj , 0 < M t

j = Mj ) such that

Γ t
j (y1, . . . , yN )Pj + PjΓj (y1, . . . , yN ) ≤ −Mj . (3.113)

Under this condition, the ẑj -system in the decentralized observer (3.70) is replaced
by

˙̂zj = Γj (y1r , . . . , yNr)ẑj + fj0(y1r , . . . , yNr). (3.114)

By using the same techniques as in Sect. 3.4.5, Theorem 3.6 can be extended to this
situation.

3.4.7 L2-Gain Disturbance Attenuation

In what follows, we examine whether the controller design procedure yields a de-
centralized output-feedback law guaranteeing the standard L2-gain disturbance at-
tenuation property, that is, (3.69) holds with γd(s) = s2. In this case, the following
additional sufficient condition is needed.

Assumption 3.11 For all 1 ≤ j ≤ N and 1 ≤ k ≤ nj , the function pjk is bounded

by a constant. Furthermore, pj0 = 0 for each 1 ≤ j ≤ N .
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Proposition 3.1 Under Assumptions 3.10 and 3.11, the problem of decentralized

output-feedback tracking with standard L2-gain disturbance attenuation is solvable

for the class of minimum-phase interconnected systems (3.67).

Proof It suffices to note that the only place where |wj |4 and |wj |8 occur are Step j.1
during the controller development in Sect. 3.4.5. These terms are entered into the
inequalities (3.87) and (3.88). Under Assumption 3.11, the function Vj1 satisfies the
following inequality, in replace of (3.95):

V̇j1 ≤ −(λj1 + λj2z̃
t
jPj1z̃j − κj1 − 1 − |z̃j |2)|z̃j |2

− 1

2
|x̃j |2 + (cj2 + cj4 + 1)|wj |2 − kj1ξ

2
j1

− ξ2
j1Kj (ξj1) +

N
∑

m=1

ξ2
m1ψ̂jm1(ξm1) + ξj1ξj2. (3.115)

Consequently, in replace of (3.110), this Lyapunov function V satisfies

V̇ ≤ −λV +
N

∑

j=1

[(nj + cj2 + cj4)|wj |2]. (3.116)

Finally, from (3.116), the standard L2-gain property from w to ξ1 = y − yr follows
readily. This concludes the proof of Proposition 3.1. �

Remark 3.18 As a corollary of Theorem 3.6, the standard L2-gain property from w

to ξ1 = y − yr can similarly be proven when all functions fjk , gjk in decentral-
ized system (3.67) are bounded by linear functions and the functions pjk (1 ≤ j ≤
N, 0 ≤ k ≤ nj , pi0 	= 0) are bounded by some constants. The resulting decentral-
ized output-feedback controllers would be linear.

3.5 Application to Power Systems

Power systems are increasingly called upon to operate transmission lines at high
transmission level due to economic considerations. In a lot of cases, transient stabil-
ity transfer limits are more constraining than steady-state limits under contingency.
On the other hand, operating conditions of modern large scale power systems are
always varying to satisfy different load demands. The control systems are therefore
required to have the ability to damp the system oscillations that might threaten the
system stability as load demands increase or after a major fault occurs, and maintain
the system stability under a diversity of operating conditions and different system
configurations.

In the design of conventional control systems, approximately linearized power
system models are employed. Normally, the system is simplified as single-machine
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to infinite bus model and approximately linearized at one operating point. Then con-
ventional controllers are designed based on the simplified linear model. It is obvious
that when a major fault occurs, the behavior of the power system may change signif-
icantly. Conventional linear controllers do not guarantee the system stability under
such circumstances.

In recent years, a great deal of attention has been given to the control of power
systems using the recent developed nonlinear control theory, particularly to improve
system transient stability [1, 40, 47, 48]. Rather than using an approximately lin-
earized model as in the design of the usual power system stabilizer, nonlinear models
are used and nonlinear feedback linearization techniques are employed to linearize
the power system models, thereby alleviating the operating point dependent nature
of the linear designs. Using nonlinear controllers, power system transient stability
can be improved significantly. However, nonlinear controllers are of more com-
plicated structure and harder to be implemented in practice compared with linear
controllers. In addition, feedback linearization schemes need exact plant parame-
ters to cancel the inherent system nonlinearities and make the stability analysis a
formidable task. The design of decentralized linear controllers to enhance the sta-
bility of interconnected nonlinear power systems within the whole operating region
is still a challenging task [41].

In this section, we will consider the linear controller design problem of an
N -machine nonlinear power system. Unlike the approximately linearized model
normally used, a nonlinear fourth order classical model, including the gover-
nor/turbine dynamics of multi-machine power systems, will be considered. Robust
control technique [53, 55, 56, 62, 63], will be employed to develop a linear control
scheme for power system transient stability enhancement. Nonlinear interconnec-
tions are treated similar to parametric uncertainties [57] and the control of each
generator is derived separately by solving an algebraic Riccati equation. Although
the proposed scheme is a decentralized linear controller, it can guarantee the stabil-
ity of the nonlinear power system model in the whole operating region. The design
of the controller only requires local measurements and can be easily implemented.

3.5.1 Power System Model

An N -machine power system with steam valve control can be described by the
interconnection of N subsystems as follows [3, 28]:

ẋj (t) = Ajxj (t) + Bjuj (t) +
N

∑

j=1,j 	=1

pijGijgij (xj , xj ), (3.117)

where i 	= N ; we define the N th machine as the slack machine,

xt
j (t) = [Δδj (t) ωj (t) ΔPMj

(t) ΔXEj
(t)],

Δδj (t) = δj (t) − δi0, ΔPMj
(t) = PMj

(t) − PMj0 ,

ΔXEj
(t) = XEj

(t) − XEj 0
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with

Aj =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0

0 − Dj

2Hj

ω0
2Hj

(1 − FIPj
)

ω0
2Hj

FIPj

0 0 − 1
TMj

kMj

TMj

0 −
kEj

TEj
Rj ω0

0 − 1
TEj

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

Bj =

⎡

⎢

⎢

⎣

0
0
0
1

TEj

⎤

⎥

⎥

⎦

; Gij =

⎡

⎢

⎢

⎣

0

−ω0EqiEqj Bij

2Hj

0
0

⎤

⎥

⎥

⎦

,

gij (xj , xj ) = sin(ωj − ωj ) − sin(ωi0 − ωj0),

where

pij constant of either 1 or 0 (pij = 0 means that j th machine has no connection
with ith machine);

Hj inertia constant for j th machine, in seconds;
Dj damping coefficient for j th machine, in p.u.;
FIPj

fraction of the turbine power generated by the intermediate pressure (IP) sec-
tion;

TMj
time constant of j th machine’s turbine with typical numerical valve of 0.2 to
2.0 s;

KMj
gain of j th machine’s turbine;

TEj
time constant of j th machine’s speed governor, typically around 0.2 s;

KEj
gain of j th machine’s speed governor; KMj

KEj
= 1;

Rj regulation constant of j th machine in p.u., typically 0.05;
Bij ith row and j th column element of nodal susceptance matrix at the internal

nodes after eliminated all physical buses, in p.u.;
PMj

mechanical power for j th machine, in p.u.;
XEj

steam valve opening for j th machine, in p.u.;
PCj

power control input of j th machine;
uj PCj

− PMj0 ;
ωj relative speed for j th machine, in radian/s;
ω0 the synchronous machine speed; ω0 = 2Πf0;
δj rotor angle for j th machine, in radian;
Eqi internal transient voltage for ith machine, in p.u., which is assumed to be

constant;
Eqj internal transient voltage for j th machine, in p.u., which is assumed to be

constant

and δj0,PMj0 , and XEj 0 are the initial values of δj (t), PMj
(t) and XEj

(t), respec-
tively.

From the model shown in (3.117), we can see that system parameters

Dj , Hj , TMj
, KMj

, TEj
, KEj

, Rj
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may be unknown and when a major fault occurs at the transmission line between ith
generator and j th generator, the parameter bij will change. Thus, the model contains
parameter uncertainties. Also the power system model contains nonlinearities and
interconnections gij (xj , xj ). The problem addressed hereafter is phrased as follows:

Design decentralized linear time-invariant feedback control laws

Pcj
(t) = −Kjxj (t), j = 1,2, . . . ,N − 1,

for multimachine power system (3.117) such that the resulting closed-loop system is

transiently stable when a major fault occurs in the system.

3.5.2 Robust Stabilization

Consider the parameter uncertainties in multimachine power systems, the plant
model (3.117) can be generalized as follows:

ẋj (t) = [Aj + ΔAj (t)]xj (t) + [Bj + ΔBj (t)]uj (t)

+
N

∑

m=1,m 	=1

{pjm[Gjm + ΔGjm(t)]gjm(xj , xj )}, j = 1,2, . . . ,N − 1,

(3.118)

where for the j th subsystem we have that: xj ∈ ℜnj is the state, uj ∈ ℜmj is the
input, the matrices Aj ,Bj and Gjm are known real constant matrices of appropriate
dimensions that describe the nominal model, ΔAj (·), ΔBj (·), and ΔGjm(·) are real
time varying parameter uncertainties, and gjm(xj , xj ) ∈ ℜlj is unknown nonlinear
vector functions that represent nonlinearities in the ith subsystem and the interac-
tions with other subsystems.

The uncertain matrices ΔAj (t), ΔBj (t), and ΔGjm(t) are assumed to be of the
following structure:

[ΔAj (t)ΔBj (t)] = LjFj (t)[E1j
,E2j

], (3.119)

ΔGjm(t) = LjmFjm(t)Ejm (3.120)

with Fj (t) ∈ ℜjm×mm and Fjm(t) ∈ ℜjGj ×mGj (for all j,m) being unknown matrix
functions with Lebesgue measurable elements and satisfying

F t
j (t)Fj (t) ≤ Ij ; Fjm(t)F t

jm(t) ≤ Ijm, (3.121)

where Lj ,E1j
,E2j

,Ljm, and Ejm are known real constant matrices with appropri-
ate dimensions.
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Remark 3.19 The parameter uncertainty structure in (3.119) has been widely used
in the problem of robust stabilization of uncertain systems [25], and can represent
parameter uncertainties in many physical systems. The decomposition of parameter
uncertainties in the case of a three machine power system will be discussed later on.

The following assumptions concerning the unknown nonlinear vector functions
and the matrix E2j

are made:

Assumption 3.12 There exist known constant matrices W j and Wjm such that for
all xj ∈ ℜnj and xj ∈ ℜnj

‖gjm(xj , xm)‖ ≤ ‖W jxj (t)‖ + ‖Wjmxm(t)‖

for all j,m and for all t ≥ 0.

Remark 3.20 If the nonlinear functions gjm(xj , xm) satisfy Assumption 3.12,
they are Lipschitz bounded nonlinearities. In the power system model (3.117),
gjm(xj , xm) satisfy Assumption 3.12. A three machine example system will be pre-
sented in Sect. 3.5.3 and the detailed analysis will be given.

Assumption 3.13 For all j = 1,2, . . . ,N − 1

Rj = Et
2j

E2j
≥ 0.

Remark 3.21 Assumption 3.13 is made only for simplification of presentation. If
Assumption 3.13 does not hold, the results of this section can be easily generalized
using the technique similar to that in [25].

The robust stabilization problem for interconnected system (3.118) is now stated
as follows:

Robust Stabilization Problem: Design decentralized linear time-invariant feedback
control laws uj (t) = −Kjxj (t), j = 1,2, . . . ,N − 1, for system (2.2) with uncer-
tainties (3.119)–(3.121) such that the resulting closed-loop system is globally uni-
formly asymptotically stable about the origin for all admissible uncertainties. In
this case, the system (3.118) is said to be robustly stabilizable via the decentralized
controllers Kj and the closed-loop system is said to be robustly stable.

A solution to the robust decentralized stabilization of interconnected system (2.2)
depends on the following algebraic Riccati equations

At
jPj + PjAj + PjBjB

t

jPj − ν−2
j B t

Pj
R−1

j BPj
+ ν2

j Et
1j

E1j

+

N
∑

m=1,m 	=1

pjm(W
t

mWm + W t
jmWjm) + Q̃j = 0, (3.122)
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where j = 1,2, . . . ,N − 1,BPj
= B t

jPj + ν2
j Et

2j
E1j

,

BjB
t

j = ν−2
j LjL

t
j

+
N

∑

j=1,j 	=1

pjm[Gjm(I − λ2
jmEt

jmEjm)−1Gt
jm + λ−2

jmLjmLt
jm] (3.123)

and νj > 0, λjm > 0, j = 1,2, . . . ,N − 1 and m = 1,2, . . . ,N , are scaling param-
eters to be chosen, with λjm satisfying λ2

jmEt
jmEjm < I , ∀j = 1,2, . . . ,N − 1 and

m = 1,2, . . . ,N − 1. Q̃j are positive definite matrices.
A main result on the problem of decentralized robust stabilization is stated as

follows:

Theorem 3.7 Consider the multimachine power system (3.117) satisfying Assump-

tions 3.12 and 3.13. Then, this system is robustly stabilizable via decentralized

linear feedback control if there exist positive scaling parameters νj and λjm,
∀j,m ∈ {1,2, . . . ,N} such that for any j = 1,2, . . . ,N − 1:

1. λ2
jmEt

jmEjm < I , ∀m ∈ {1,2, . . . ,N}; and

2. there exist positive definite solutions Pj to (3.122).

Moreover, a suitable decentralized feedback linear controller is given as follows:

uj (t) = −KjXj (t), (3.124)

where Kj = ν−2
j R−1

j (B t
jPj + ν2

j Et
2j

E1j
).

Proof Combining (3.124) with (3.118) gives a closed-loop system of the form

ẋj = (Aj + LjFjEj )xj +

N
∑

j=1,j 	=1

pjm(Gij + LjmFjmEjm)gjm(xj , xj )

= ÃjXj +

N
∑

m=1,m 	=1

G̃jmgjm(xj , xm), (3.125)

where Aj = Aj − BjKj , Ej = E1j
− E2j

Kj ,

Ãj = Aj + LjFjEj , G̃jm = pjm[Gjm + LjmFjmEjm].

From (3.122) and the bounding inequality A from Sect. 9.3.1, it follows that

A
t

jPj + PjAj + PjBjB
t

jPj

+

N
∑

m=1,m 	=1

pjm(W
t

mWm + W t
jmWjm) + ν2

j E
t

jEj < 0, (3.126)
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where Bj is as defined in (3.123) and Pj is the positive definite solution
to (3.122).

In view of (3.123), we obtain that

A
t

jPj + PjAj + ν−2
j PjLjL

t
jPj

+ Pj

[

N
∑

m=1,m 	=1

pjm[Gjm(I − λ2
jmEt

jmEjm)−1Gt
jmλ−2

jmLjmLt
jm]

]

Pj

+

N
∑

m=1,m 	=1

pjm(W
t

mWm + W t
jmWjm) + ν2

j E
t

jEj < 0.

Applying the bounding inequality B from Sect. 9.3.2 to the above inequality gives
that

A
t

jPj + PjAj + ν−2
j PjLjL

t
jPj + ν2

j E
t

jEj +

N
∑

m=1,m 	=1

pjm(W
t

mWm + W t
jmWjm)

+ Pj

(

N
∑

m=1,m 	=1

G̃jmG̃t
jm

)

Pj < 0

and it follows that, by applying the bounding inequality A from Sect. 9.3.1

A
t

jPj + PjAj + E
t

jF
t
j (t)L

t
jPj + PjLjFj (t)Ej

+

N
∑

m=1,m 	=1

pij (W
t

mWm + W t
jmWjm) + Pj

(

N
∑

m=1,m 	=1

G̃jmG̃t
jm

)

Pj < 0.

Then, we have

Ãt
jPj + Pj Ãj +

N
∑

m=1,m 	=1

pjm(W
t

jW j + W t
j iWji)

+ Pj

(

N
∑

m=1,m 	=1

G̃jmG̃t
jm

)

Pj < 0.

It follows immediately that there exist positive definite matrices Q̃j such that

Ãt
jPj + Pj Ãj +

N
∑

m=1,m 	=1

pjm(W
t

mWm + W t
jmWjm)

+ Pj

(

N
∑

m=1,m 	=1

G̃jmG̃t
jm

)

Pj + Q̃j = 0. (3.127)
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Now, in order to prove the asymptotic stability of the closed loop system (3.125),
let the Lyapunov function candidate

V (x) =
N−1
∑

j=1

xt
jPjxj ,

where x = [xt
1, x

t
2, . . . , x

t
N−1]t . Note that V (x) > 0 whenever x 	= 0. Then, by us-

ing (3.125), we have

d

dt
V (x) =

N−1
∑

j=1

(

xt
j (Ã

t
jPj + Pj Ãj )xj +

[

N
∑

m=1,m 	=1

G̃jmgjm(xj , xm)

]t

Pjxj

+ xt
jPj

[

N
∑

m=1,m 	=1

G̃jmgjm(xj , xm)

])

.

Since

N−1
∑

j=1

N
∑

m=1,m 	=1

pjm[xt
jW

t

jW jxj + xt
jW

t
jmWjmxj − gt

jmgjm]

=

N−1
∑

j=1

N
∑

m=1,m 	=1

pjm[xt
jW

t

jW jxj + xt
jW

t
jmWjmxj − gt

jmgjm]

it follows that

d

dt
V (x) =

N−1
∑

m=1

(

xt
j (Ã

t
jPj + Pj Ãj )xj +

[

N
∑

m=1,m 	=1

G̃jmgjm(xj , xj )

]t

Pjxj

+ xt
jPj

[

N
∑

m=1,m 	=1

G̃jmgjm(xj , xj )

])

+

N−1
∑

m=1

N
∑

j=1,j 	=1

pjm[xt
jW

t

jW jxj + xt
jW

t
jmWjmxj − gjmgjm]

−

N−1
∑

j=1

N
∑

m=1,m 	=1

pjm[xt
jW

t

jW jxj + xt
jW

t
jmWjmxj − gt

jmgjm].

Introducing xj = [xt
jgj1 . . . gjN−1]

t , we have

d

dt
V (x) =

N−1
∑

j=1

{xt
j Λ̃jxj }

−

N−1
∑

j=1

N
∑

m=1,m 	=1

pjm[xt
jW

t

jW jxj + xt
jW

t
jmWjmxj − gt

jmgjm],
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where

Λ̃j =

⎡

⎢

⎢

⎢

⎢

⎣

Sj Pj G̃j1 . . . Pj G̃jN−1

G̃t
j1Pj −I . . . 0
...

...
. . .

...

G̃t
jN−1Pj 0 . . . −I

⎤

⎥

⎥

⎥

⎥

⎦

,

Sj = Pj Ãj + Ãt
jPj +

n
∑

m=1,m 	=1

pjm(W
t

jW j + W t
jmWjm).

Next, taking into account (3.127), the Schur inequality and the fact that

N−1
∑

j=1

N
∑

m=1,m 	=1

pij [x
t
jW

t

jW jxj + xt
jW

t
jmWjmxj − gt

jmgjm] ≥ 0

it follows that

d

dt
V (x) < 0

whenever x 	= 0. Hence, V (x) is a Lyapunov function for system (3.125) and thus,
this system is globally uniformly asymptotically stable for all admissible uncertain-
ties. Therefore, the multimachine power system (3.117) is robustly stabilizable via
the decentralized controller (3.124) which concludes the desired result. �

Remark 3.22 The result shown above can be easily extended to the case where
dynamic output feedback controls are used [58]. From the result obtained, it is
clear that the linear feedback controller (3.124) can ensure the stability of the mul-
timachine power system. The design procedure for the decentralized linear con-
troller (3.124) can be summarized as follows.

1. Formulate the system model (3.117) or (3.118). Find the respective matrices Aj ,
ΔAj , Bj , ΔBj , Gj , and ΔGj .

2. Find the structure of the parametric uncertainties defined in (3.119)–(3.121).
3. Construct algebraic Riccati equations as given in (3.122) for all j .
4. Select the scaling parameters νj > 0 and λj > 0 and find positive definite solu-

tion Pj to (3.122). If there exist such kind of Pj , we declare that the algorithm
“succeeds” and a robust decentralized controller is found as given in (3.124).

5. If no positive definite solution Pj to (3.122) is found, go back to Step 2 and
reformulate the structure of the parametric uncertainties. Repeat Steps 3 and 4. If
no “success” is declared after several trials, we declare that the algorithm “fails”
and abandon the method.

Remark 3.23 The decentralized controller (3.124) is a linear controller. Compared
with nonlinear controllers, linear controllers are of simpler structure and easier to
be implemented.



3.5 Application to Power Systems 149

Fig. 3.3 Three-machine
example system

3.5.3 Simulation Results

To demonstrate the effectiveness of the developed decentralized control method, a
three-machine example system (3.3) is chosen. The system parameters used in the
simulation are as follows:

xd1 = 1.863, x′
d1 = 0.257, xT 1 = 0.129,

T ′
d01 = 6.9 s, H1 = 4 s, D1 = 5, kcl = 1,

xd2 = 2.36, x′
d2 = 0.319, xT 2 = 0.11,

FIP1 = FIP2 = 0.3, T ′
d02 = 7.96 s,

H2 = 5.1 s, D2 = 3, kc2 = 1;

TM1 = 0.35 s, TE1 = 0.1 s, TM2 = 0.35 s,

TE2 = 0.1 s, R1 = R2 = 0.05,

KM1 = KE1 = 1.0, KM2 = KE2 = 1.0 rad/s,

x12 = 0.55, x13 = 0.53, x23 = 0.6,

ω0 = 314.159, xad1 = xad2 = 1.712.

Since generator #3 is an infinite bus, we have E′
q3 = 1∠0◦.

To simplify the analysis, we only consider the parametric perturbations in Gjm

and in TMi . The matrices Gij represent the interconnections and nonlinearities be-
tween generators i and j , and uncertainties in parameters TMj

are used to emulate
the time constant uncertainties in the high-pressure (HP) and low-pressure (LP) sec-
tions. The power system model (3.117) can be rewritten as

ẋ1(t) = (A1 + ΔA1)x1(t) + B1u1(t)

+ [G12 + ΔG12(t)]g12(x1, x2) + [G13 + ΔG13(t)]g13(x1, x3),
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ẋ2(t) = (A2 + ΔA2)x2(t) + B2u2(t)

+ [G21 + ΔG21(t)]g21(x2, x1) + [G23 + ΔG23(t)]g23(x2, x3),

where δ12(t) = δ1(t) − δ2(t), δ21(t) = δ2(t) − δ1(t), A1, A2, B1, and B2 are as
in (3.117), and for convenience, we define that for i = 1,2, and j = 1,2,3, j 	= 1

ΔAj =

⎡

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 −μj (t) μj (t)

0 0 0 0

⎤

⎥

⎥

⎦

;

μj (t) =
1

TMj

−
1

TMj
− ΔTMj

,

Gij (t) =
[

0 αij 0 0
]t

,

gij (xj , xj ) = sin[δj (t) − δj (t)] − sin(δi0 − δj0),

ΔGij (t) =
[

0 Δαij 0 0
]t

.

It follows that

G12(t) =
[

0 α12 0 0
]t

,

G13(t) =
[

0 α13 0 0
]t

,

g12(x1, x2) = sin[δ1(t) − δ2(t)] − sin(δ10 − δ20),

g13(x1, x3) = sin[δ1(t) − δ3(t)] − sin(δ10 − δ30),

G21(t) =
[

0 α21 0 0
]t

,

G23(t) =
[

0 α23 0 0
]t

,

g21(x2, x1) = sin[δ2(t) − δ1(t)] − sin(δ20 − δ10),

g23(x2, x3) = sin[δ2(t) − δ3(t)] − sin(δ20 − δ30),

ΔG12(t) =
[

0 Δα12 0 0
]t

,

ΔG13(t) =
[

0 Δα13 0 0
]t

,

ΔG21(t) =
[

0 Δα21 0 0
]t

,

ΔG23(t) =
[

0 Δα23 0 0
]t

,

where αjm can be defined as the midpoints of E′
qi(t)E

′
qj (t)Bijω0/2Hj , and Δαij

by variations in E′
qi(t)E

′
qj (t)Bjmω0/2Hj from their midpoints. In order to estimate

the bounds of the parameters, α12, α13, α21, and α23 and their perturbations, Δα12,



3.5 Application to Power Systems 151

Δα13, Δα21, Δα23, we use the following equation on the electric power

ΔPei(t) =
3

∑

j=1,j 	=1

E′
qiE

′
qjBij sin[δj (t) − δj (t)]

−

3
∑

j=1,j 	=1

E′
qiE

′
qjBij sin(δi0 − δj0).

Since there are bounds on the electric power for each generator and on the electric
power flow through each transmission line, we have

E′
qiE

′
qjBij ≤ |ΔPei(t)|max.

In this example, |ΔPe1(t)|max = 1.4 and |ΔPe2(t)|max = 1.5. It follows that

α12 = α13 = −0.5
|ΔPe1(t)|maxω0

2H1
= −27.49,

α21 = α23 = −0.5
|ΔPe2(t)|maxω0

2H2
= −23.10,

|Δαij | ≤ 0.5
|ΔPei(t)|maxω0

2Hj

.

For j = 1,2 and m = 1,2,3, m 	= j , we have |Δα12| ≤ 27.49, |Δα13| ≤ 27.49,
|Δα21| ≤ 23.10, and |Δα23| ≤ 23.10.

The structure of parametric uncertainties can be expressed as follows.

• For generator #1:

L1 =
[

0 0 1.41/|μ1(t)|max 0
]t

,

F1(t) =

[

0 0
−0.707|μ1(t)|

μ1(t)|max

0.707|μ1(t)|

μ1(t)|max

]

,

E11 = diag{1 1 1 1}, E21 = [1 1 0 0]t

L12 = [0 |Δα12(t)|max 0 0]t ,

F12(t) =
Δα12(t)

|Δα12(t)|max
, E12 = 1,

L13 = [0 |Δα13(t)|max 0 0]t ,

F13(t) =
Δα13(t)

|Δα13(t)|max
, E13 = 1,

W 1 = W12 = [1 0 0 0], W13 = [0 0 0 0].

• For generator #2, the decomposition is similar. It is clear that robust decentralized
controllers for generators #1 and #2 considering the prescribed uncertainties can
be found by using the design procedure described in Remark 3.20.
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In this example, the Riccati equation (3.122) then becomes

At
jPj + PjAj + PjBjB

t

jPj − ν−2
j PjBjB

t
jPj

+
N

∑

m=1

pjm(W
t

jW j + W t
jmWjm) + Q̃j = 0, (3.128)

where j = 1,2,

Bjb
t

j =
N

∑

j=1

pjm[Gjm(I − λ2
jmEt

jmEjm)−1Gt
jm + λ−2

jmLjmLt
jm].

For generator #1 in the example system, we have

A1 =

⎡

⎢

⎢

⎣

0 1 0 0
0 −0.625 27.48 11.781
0 0 −2.857 2.857
0 −0.637 0 −10

⎤

⎥

⎥

⎦

; B1 =

⎡

⎢

⎢

⎣

0
0
0
10

⎤

⎥

⎥

⎦

,

ΔA1 =

⎡

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 −0.635r1(t) 0.635r1(t)

0 0 0 0

⎤

⎥

⎥

⎦

,

where |r1(t)| ≤ 1. Let ν1 = 0.02, λ12 = λ13 = 0.71, Q̃1 = diag{0.001,0.001,

0.01,0.01}. Solving the Riccati equation (3.128) gives

K1 =
[

kδ1 kω1 kp1 kX1

]

=
[

191.86 15.16 15.30 6.50
]

.

Similarly, for generator #2, we have

A2 =

⎡

⎢

⎢

⎣

0 1 0 0
0 −0.392 20.560 9.240
0 0 −2.857 2.857
0 −0.637 0 −10

⎤

⎥

⎥

⎦

; B1 =

⎡

⎢

⎢

⎣

0
0
0
10

⎤

⎥

⎥

⎦

,

ΔA2 =

⎡

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 −0.635r2(t) 0.635r2(t)

0 0 0 0

⎤

⎥

⎥

⎦

,

where |r2(t)| ≤ 1. Let ν2 = 0.02, λ21 = λ23 = 0.71, Q̃2 = diag{0.001,0.001,

0.01,0.01}. Solving the Riccati equation (3.128) gives

K2 =
[

kδ2 kω2 kp2 kX2

]

=
[

262.86 21.43 17.33 7.43
]

.
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The control laws are as follows:

u1 = −kδ1[δ1(t) − δ10] − kω1ω1(t)

− kp1[Pm1(t) − Pm10] − kX1[XE1(t) − XE10]
= −191.86[δ1(t) − δ10] − 15.16ω1(t)

− 15.30[Pm1(t) − Pm10] − 6.50[XE1(t) − XE10]

and

u2 = −kδ2[δ2(t) − δ20] − kω2ω2(t)

− kp2 [Pm2(t) − Pm20] − kX2[XE2(t) − XE20]
= −262.86[δ2(t) − δ20] − 21.43ω2(t)

− 17.33[Pm2(t) − Pm20] − 7.43[XE2(t) − XE20].

The fault we consider in the simulation is a symmetrical three-phase short circuit
fault which occurs on one of the transmission lines between generator #1 and gen-
erator #2 with λ being the fraction of the transmission line to the left of the fault.
If λ = 0, the fault is on the bus bar of generator #1, λ = 0.5 puts the fault in the
center point of the transmission line between generator #1 and generator #2, and so
on. The fault sequence is as follows.

1. The system is in pre-fault steady-state.
2. A fault occurs at t = 0.1 s.
3. The fault is removed by opening the breakers of the faulted line at t = 0.25 s.
4. The transmission lines are restored with the fault cleared at t = 1.0 s.
5. The system is in post fault-state.

Three different cases are considered in the simulation. In the first two cases, the fault
location is λ = 0.05.

• Case 1. The operating points are

δ10 = 67.6°, Pm10 = 1.2, Vt1 = 1.0,

δ20 = 67.7°, Pm20 = 1.1, Vt2 = 1.0.

The power angles, the real power, and the terminal voltages of the generators #1
and #2 are shown in Figs. 3.4, 3.5 and 3.6, respectively.

• Case 2. The operating points are

δ10 = 24.6°, Pm10 = 0.3, Vt1 = 0.95,

δ20 = 48.6°, Pm20 = 0.9, Vt2 = 0.95.

The power angles of the generators #1 and #2 are shown in Fig. 3.7.
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Fig. 3.4 Power angle
responses (λ = 0.05)

Fig. 3.5 Electrical power
responses (λ = 0.05)

Fig. 3.6 Terminal voltage
responses (λ = 0.05)
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Fig. 3.7 Power angle
responses

Fig. 3.8 Power angle
responses for generator #1

• Case 3. We will consider different fault locations. The operating points are

δ10 = 67.6°, Pm10 = 1.2, Vt1 = 1.0,

δ20 = 67.7°, Pm20 = 1.1, Vt2 = 1.0.

The power angles of the generators #1 and #2 are shown in Figs. 3.8 and 3.9,
respectively (λ = 0.01,0.5,0.99).

From the simulation results shown above, it can be seen that despite the inter-
connections between different generators, nonlinearities in the system, different op-
erating points and different fault locations, under all situations the proposed robust
decentralized controller can rapidly damp the oscillation of the system and greatly
enhance transient stability of the multimachine power system.



156 3 Decentralized Control of Nonlinear Systems II

Fig. 3.9 Power angle
responses for generator #2

3.6 Decentralized Control with Guaranteed Performance

In what follows, the decentralized excitation control of multimachine power sys-
tems is considered. The power system can be modeled as a interconnected system
with parameter uncertainty and nonlinear interconnections. The main focus is on
the design of a robust decentralized state feedback controller that not only stabilizes
the power system but also achieves suboptimal guaranteed cost performance for all
admissible variations of generator parameters. Following the results of [38, 39] and
references therein, a robust performance analysis result is developed for intercon-
nected systems in terms of a set of linear matrix inequalities (LMIs). The decentral-
ized guaranteed cost control has been solved using an LMI approach. The results
shown in this section are given in terms of LMIs which can be solved efficiently
using the available LMI tool [9]. Furthermore, a procedure is given to minimize an
upper bound of the cost.

3.6.1 Introduction

Power systems are modeled as large-scale nonlinear systems composed of a set of
small interconnected subsystems. It is generally impossible to incorporate many
feedback loops into the controller design for large-scale interconnected systems and
is also too costly even if they can be implemented. These difficulties motivate the
development of decentralized control theory where each subsystem is controlled
independently on its locally available information.

On the other hand, the operating conditions of power systems are always varying
to satisfy different load demands. Control systems are therefore required to have the
ability to suppress potential instability and damp the system oscillations that might
threaten the system stability as the load demand increases. However, as power sys-
tems are large-scale nonlinear systems in nature, the applications of conventional
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linear control approaches are limited because they can only deal with small dis-
turbances about an operating point and cannot guarantee the system stability when
faults or significant changes of operating conditions occur. Since the introduction
of differential geometric tools to nonlinear control system design, various nonlin-
ear feedback controllers have been designed to enhance power system stability, see
e.g. [5, 57]. Naturally, the robustness issue arises in order to deal with uncertainties
which mainly come from the varying transmission line parameters and/or faults.
There are some results on decentralized robust control of multimachine power sys-
tems, e.g. [5–8, 10–24, 26–40, 42–52, 54]. In particular, in [5–8, 10–24, 26–40,
42–52, 54], the multimachine power system is first compensated via a decentral-
ized nonlinear direct feedback linearization, then a robust decentralized control is
applied which guarantees the overall stability of the multimachine power system is
the whole working region. Note that the design approach in [54, 57] involves solv-
ing a set of parameterized Riccati equations, which is in general a difficult task.
Furthermore, only a stabilization problem is addressed in [54, 57].

In any control design, a controller is sought not only to stabilize the system hut
also to ensure satisfactory performance of the system. When a quadratic cost is
considered for hear systems, the traditional linear quadratic (LQ) design offers an
optimal solution. Very recently, [25, 38–57, 59–61], was applied this performance
measure in for systems with parameter uncertainty and addressed the problem of
guaranteed cost control. The guaranteed cost control is concerned with the design
of a state feedback controller so that, for all admissible uncertainties, the closed-
loop system is asymptotically stable and an upper bound of the quadratic cost is
minimized. The result of the guaranteed cost control is given in terms of a parame-
terized game-type algebraic Riccati equation which may be difficult to solve in [16,
60] the LQ design has been extended to the decentralized control of large-scale sys-
tems without uncertainties. On the other hand, where the subsystems arc treated as if
they were decoupled, and, under certain conditions placed on the interconnections,
the locally optimal LQ control is obtained and is suboptimal for the overall system.
Note that, when uncertainties arise in both the subsystems and interconnections,
this passive analysis may have difficulty in guaranteeing the closed-loop stability
and may be overly conservative.

3.6.2 Dynamical Model of Multimachine Power System

In the sequel, we refer to the following model parameters:

δj = power angle of the j th generator, in rad δij = δi − δj ;
ωj = relative speed of the j th generator, in rad/s;
Pmi0 = mechanical input power, in p.u., which is a constant;
Pei = electrical power, in p.u.;
ω0 = synchronous machine speed, in rad/s;
Di = per unit damping constant;
Hi = inertia constant, in seconds;
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E′
qi = transient EMF in the quadrature axis of the ith generator, in p.u.;

Eqi = EMF in the quadrature axis, in p.u.;
Ef i = equivalent EMF in the excitation coil, in p.u.;
T ′

d0i = direct axis transient short circuit time constant, in seconds;
xdi = direct axis reactance of the ith generator, in p.u.;
x′
di = direct axis transient reactance of the ith generator, in p.u.;

Bij = ith row and j th column element of nodal susceptance matrix at the internal
nodes after eliminating all physical buses; in p.u.;

Qei = reactive power, in p.u.;
If i = excitation current, in p.u.;
Idi = direct axis current, in p.u.;
Iqi = quadrature axis current, in p.u.;
kci = gain of the excitation amplifier, in p.u.;
uf i = input of’ the SCR amplifier of the ith generator, in p.u.;
xadi = mutual reactance between the excitation coil and the stator coil of the ith

generator, in p.u.;
xT i = transformer reactance, in p.u.;
xij = transmission line reactance between the ith generator and the j th generator,

in p.u.;
Vt i = terminal voltage of the ith generator, in p.u.

A power system consisting of N synchronous generators interconnected through
a transmission network can be described by a classical dynamic model (see [3] and
[28]). The dynamic model of the ith generator with excitation control is given by
the following sets of equations.

• Mechanical equations:

δ̇i = ωi, (3.129)

ω̇i = −
Di

2Hi

ωi +
ω0

2Hi

(Pmi0 − Pei); (3.130)

• Generator electrical dynamics:

Ė′
qi =

1

T ′
d0i

(Ef i − Eqi); (3.131)

• Electrical equations:

Eqi = E′
qi − (xdi − x′

di)Idi, (3.132)

Ef i = kciuf i, (3.133)

Pei =

N
∑

j=1

E′
qiE

′
qjBij sin(δij ), (3.134)



3.6 Decentralized Control with Guaranteed Performance 159

Qei = −
N

∑

j=1

E′
qiE

′
qjBij cos(δij ), (3.135)

Idi =

N
∑

j=1

E′
qjBij cos(δij ), (3.136)

Iqi =

N
∑

j=1

E′
qjBij sin(δij ), (3.137)

Eqi = xadiIf i . (3.138)

By using direct feedback linearization (DFL) compensation (3.129)–(3.131), and
considering the parametric uncertainties in T ′

d0i as ΔT ′
d0i the following can be ob-

tained:

ẋi = (Ai + ΔAi)xi + (Bi + ΔBi)νf i +

N
∑

j=1

p1ij (G1ij + ΔG1ij )g1ij (xi, xj )

+

N
∑

j=1

p2ij (G2ij + ΔG2ij )g2ij (xi, xj ), (3.139)

where

νf i = Iqikciuf i(xdi − x′
di)IqiIdi − Pmi0 − T ′

d0iQeiωi,

Ai =

⎡

⎢

⎣

0 1 0
0 − Di

2Hi
− ω0

2Hi

0 0 − 1
T ′

d0i

⎤

⎥

⎦
, Bi =

⎡

⎢

⎣

0
0
1

T ′
d0i

⎤

⎥

⎦
,

G1ij = G2ij =

⎡

⎣

0
0
0

⎤

⎦ , g1ij = sin(δi − δj ), g2ij = ωj ,

(3.140)
ΔAi =

⎡

⎣

0 0 0
0 0 0
0 0 μi

⎤

⎦ , ΔBi =

⎡

⎣

0
0

−μi

⎤

⎦ ,

ΔG1ij =

⎡

⎣

0
0

r1ij

⎤

⎦ , ΔG2ij =

⎡

⎣

0
0

r2ij

⎤

⎦ ,

μi =
1

T ′
d0i

−
1

T ′
d0i + ΔT ′

d0i

, r1ij = E′
qiE

′
qjBij ,

r2ij = E′
qiE

′
qjBij cos(δij ),
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and the parameters plij , and p2ij , are constants of either 1 or 0 (if they are 0, this
means that the j th subsystem has no connection with the ith subsystem).

Remark 3.24 In (3.139), the parametric uncertainties were considered in generator
parameters T ′

d0i, i = 1,2, . . . ,N , because they vary with load change and changing
network topology.

Remark 3.25 Note that E′
qi , E′

qj , δij and Bij , will change when the network param-
eters and load are changed. For example, Bij will vary when a major fault occurs at
the transmission line between the ith and j th generators. Hence, nonlinear uncer-
tain interconnections exist in multimachine power systems. To estimate the bounds
of the uncertainties in the interconnections, note that the electrical power Pei of each
generator and the electrical power flow through each transmission line are bounded,
and the excitation voltage Ef i may raise by up to 5 times of the Eqi when there is
no load in the system. Thus, by considering (3.134) and (3.131), the following may
be obtained:

|E′
qi,E

′
qjBij | ≤ |Pei |max,

|Ė′
qj | ≤

∣

∣

∣

∣

1

T ′
d0i

[Ef i − Eqj ]

∣

∣

∣

∣

max
≤ 4|Eqj |max

1

|T ′
d0i |min

.

It also follows that

r1ij ≤ 4

|T ′
d0i |min

|Pei |max, r2ij ≤ |Pei |max.

It is obvious that the bounds of r1ij and r2ij only depend on generator parameters
|T ′

d0i |min and |Pei |max.
In this section, the authors are concerned with the design of a decentralized non-

linear feedback controller that will not only enhance the transient stability but also
ensure a certain level of performance of the power system in the presence of operat-
ing point variations, faults in different locations and changing network parameters.
Specifically, the authors will design a robust decentralized controller for the sys-
tem (3.139) so that, for all admissible uncertainties, the closed-loop interconnected
system is asymptotically stable and an upper bound of a specified quadratic cost is
minimized. This problem is referred to as a decentralized guaranteed cost control.

Remark 3.26 In [54, 77], a robust stabilization controller has been proposed for the
multimachine power system (3.129)–(3.138) and the result involves solving a set
of parameterized game-type Riccati equations, which imposes a major difficulty.
Furthermore, no performance has been taken into consideration for the controller
design.
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3.6.3 Guaranteed Cost Controller Design

In this section, the authors present an LMI approach to solve the decentralized guar-
anteed cost control problem for a class of interconnected nonlinear systems. Be-
fore proceeding to address the decentralized controller design, a robust performance
analysis, is first presented.

3.6.4 Robust Performance Analysis

Consider the following interconnected large-scale system which consists of N sub-
systems:

ẋi = (Ai + ΔAi)xi +
N

∑

j=1

p1ij (G1ij + ΔG1ij )g1ij (xi, xj )

+
N

∑

j=1

p2ij (G2ij + ΔG2ij )g2ij (xi, xj ), (3.141)

where xi ∈ ℜni is the state of the ith subsystem, Ai,G1ij , and G2ij are real constant
matrices of appropriate dimensions, ΔAi,ΔG1ij and ΔG2ij , are uncertain matrices,
g1ij (xi, xj ) ∈ ℜrij and g2ij (xi, xj ) ∈ ℜsij are unknown nonlinear vector functions
representing the interconnection between the ith subsystem and the j th subsystem,
and the parameters p1ij and p2ij are constants of either 1 or 0 (if they are 0, it means
that the j th subsystem has no connection with the ith subsystem).

In this section, the authors consider the following cost performance for the sys-
tem (3.141):

J =
N

∑

i=1

∫ ∞

0
xt
i Qixidt, (3.142)

where Qi = Qt
i > 0, i = 1,2, . . . ,N , are the given weighting matrices of the state.

The authors will make the following assumptions on parameter uncertainties and
interconnections:

Assumption 3.14

ΔAi = H1iFjE1i,

where Fj ∈ ℜhj ×ej is an unknown matrix function satisfying

F t
jFj ≤ Iej

and H1i and E1i are known real constant matrices that structure the uncertainty.
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Assumption 3.15

1. Let

ΔG1ij = L1ijF1ijN1ij , ΔG2ij = L2ijF2ijN2ij ,

where F1ij ∈ ℜα1ij ×β1ij and F2ij ∈ ℜα2ij ×β2ij are unknown matrix functions sat-
isfying

F t
1ijF1ij ≤ Iβ1ij

, F t
2ijF1ij ≤ Iβ2ij

and L1ij ,L2ij ,N1ij and N2ij are known real constant matrices with appropriate
dimensions.

2. There exist known real constant matrices W1i , W1ij , W2i , and W2ij , such that,
for all xi ∈ ℜni , xj ∈ ℜnj , i, j = 1,2, . . . ,N :

‖g1ij (xi, xj )‖ ≤ ‖W1ixi‖ + ‖W1ijxj‖,

‖g2ij (xi, xj )‖ ≤ ‖W2ixi‖ + ‖W2ijxj‖.

Introduce the following definition.

Definition 3.1 A set of positive definite real matrices Pi , i = 1,2, . . . ,N , is said to
be a quadratic cost matrix set for the system (3.141) and the cost function (3.142),
if

N
∑

i=1

{

xt
i [(Ai + ΔAi)

tPi + Pi(Ai + ΔAi)]xi

+

N
∑

j=1

2xt
i Pip1ij (G1ij + ΔG1ij )g1ij (xi, xj )

+

N
∑

j=1

2xt
i Pip2ij (G2ij + ΔG2ij )g2ij (xi, xj ) + xt

i Qixi

}

< 0 (3.143)

for any nonzero (x1, x2, . . . , xN ) and all admissible uncertainties.

The following result shows that the notion of quadratic cost matrix set defines an
upper bound on the cost function (see (3.142)).

Theorem 3.8 Consider the system (3.141) and the cost function (3.142). Suppose

that Pi > 0, i = 1,2, . . . ,N , is a quadratic cost matrix set for the system. Then, the

uncertain system is quadratically stable and the cost function satisfies the bound

J ≤

N
∑

i=1

xt
i (0)Pixi(0) (3.144)

for all admissible uncertainties, where xi(0) is the initial state of the ith subsystem,
i = 1,2, . . . ,N .
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Proof Define V =
∑N

i=1 Vi =
∑N

i=1 xt
i Pixi . Then by taking into account (2.22), we

have that along the state trajectory of (3.141),

V̇ =
N

∑

i=1

{

xt
i [(Ai + ΔAi)

tPi + Pi(Ai + ΔAi)]xi

+
N

∑

j=1

2xt
i Pip1ij (G1ij + ΔG1ij )g1ij (xi, xj )

+
N

∑

j=1

2xt
i Pip2ij (G2ij + ΔG2ij )g2ij (xi, xj ) + xt

i Qixi

}

< −
N

∑

i=1

xt
i Qixi (3.145)

for all nonzero x = [xt
1 . . . xt

N ]t and all admissible uncertainties. Hence, the sys-
tem (3.141) is quadratically stable.

By integrating the inequality (3.145) over [0,∞) and considering that
V (x(∞)) = 0,

J =
N

∑

i=1

∫ ∞

0
xt
i Qixidt ≤ V (x(0)) =

N
∑

i=1

xt
i (0)Pixi(0). (3.146)

This completes the proof of the theorem. �

Note that the bound obtained in Theorem 3.8 depends on the initial condition
xi(0). To remove this dependence on the initial condition, there are two approaches,
one is the deterministic method [39] and the other is the stochastic approach [38]. In
this section, we will adopt the deterministic approach. Suppose that the initial state
of the system (3.141) is arbitrary but belongs to the set Si ≤ {xi(0) ∈ ℜni : xi(0) =
Πi0νi, ν

t
i νi ≤ 1}. Then, it follows from (3.146) that

J ≤
N

∑

i=1

λmax(Π
t
i0PiΠi0), (3.147)

where λmax(·) denotes the maximum eigenvalue. Hence, in this section, the measure
of robust performance considered is as follows:

J ∗ ≤ inf

{

N
∑

i=1

λmax(Π
t
i0PiΠi0) : Pi > 0 is a quadratic

cost matrix for (2.20) and (2.21)

}

. (3.148)
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Before proceeding to obtain the main results, the following key lemma will be
introduced.

Lemma 3.3 Given real matrices Y , H and E of appropriate dimensions with Y

symmetrical. Then

Y + HFE + EtF tH t < 0

for all F = diag{F1,F2, . . . ,Fk} with Fj ∈ ℜαj ×βj satisfying F tF ≤ I , if there exist

some positive scalars γj , j = 1,2, . . . , k, such that

Y + HΓαH t + EtΓ −1
β E < 0,

where Γα = diag{γ1Iα1 , γ2Iα2 , γkIαk
} and Γβ = diag{γ1Iβ1 , γ2Iβ2 , . . . , γkIβk

}.

Proof Note that HFE = HΓ
1/2
α FΓ

−1/2
β E. The desired result then follows by ob-

serving that F tF ≤ I and

(

FΓ
−1/2
β E − Γ 1/2

α H t
)t(

FΓ
−1/2
β E − Γ −1/2

α H t
)t ≥ 0.

The following result provides two sufficient conditions for the existence of quadratic
cost matrices satisfying the inequality (3.143). �

Theorem 3.9 Consider the system (3.141) and the cost function (3.142). Suppose

that there exist a set of matrices Pi > 0, i = 1,2, . . . ,N , such that

Pi(Ai + ΔAi) + (Ai + ΔAi)
tPi

+
N

∑

j=1

p1ijPi(G1ij + ΔG1ij )(G1ij + ΔG1ij )
tPi

+
N

∑

j=1

p2ijPi(G2ij + ΔG2ij )(G2ij + ΔG2ij )
tPi

+
N

∑

j=1

p1ij (W
t
1i + W1i + W t

1jiW1ji)

+
N

∑

j=1

p2ij (W
t
2iW2i + W t

2jiW2ji) + Qi < 0 (3.149)

for all admissible uncertainties ΔAi,ΔG1ij and ΔG2ij .
Then the set of matrices Pi is a quadratic cost matrix set for the system (3.141)

and the cost function (3.142).
Furthermore, (3.149) holds if there exist some scalars εi, γ1ij and γ2ij , i, j =

1,2, . . . ,N , such that
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⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

At
i + PiAi + Q̃i + εiE

t
1iE1i PiH1i PiL1i

H t
1iPi −εiI 0

Lt
jPi 0 −Γ1αi

Gt
1iPi 0 0

Lt
2iPi 0 0

Gt
2iPi 0 0

PiG1i PiL2i PiG2i

0 0 0
0 0 0

−I + N t
1iΓ1βiN1i 0 0
0 −Γ2αi 0
0 0 −I + N t

2iΓ2βiN2i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (3.150)

where

Q̃i =
N

∑

j=1

[p1ij (W
t
1iW1i + W t

1jiW1ji)

+ p2ij (W
t
2iW2i + W t

2jiW2ji)] + Qi, (3.151)

G1i = [p1i1G1il . . . p1iNG1iN ],
G2i = [p2i1G2il . . . p2iNG2iN ],

(3.152)

L1i = [p1ilL1il . . . p1iNL1iN ],
L2i = [p2ilG2il . . . p2iNL2iN ],

(3.153)

N1i = [p1ilN1il . . . p1iNN1iN ],
N2i = [p2ilN2il . . . p2iNN2iN ],

(3.154)

Γ1αi = diag{γ1ilIα1i
. . . γ1iN Iα1iN

},
Γ1βi = diag{γ1ilIβ1i

. . . γ1iN Iβ1iN
},

(3.155)

Γ2αi = diag{γ2ilIα2i
. . . γ2iN Iα2iN

},
Γ2βi = diag{γ2ilIβ2i

. . . γ2iN Iβ2iN
}.

(3.156)

Proof In the light of Assumption 3.15, if (3.149) holds,

N
∑

i=1

{

xt
i [(Ai + ΔAi)

tPi + Pi(Ai + ΔAi)]xi

+
N

∑

j=1

2xt
i Pip1ij (G1ij + ΔG1ij )g1ij (xi, xj )
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+
N

∑

j=1

2xt
i Pip2ij (G2ij + ΔG2ij )g2ij (xi, xj ) + xt

i Qixi

}

≤
N

∑

i=1

xt
j

[

(Ai + ΔAi)
tPi + Pi(Ai + ΔAi)

+
N

∑

j=1

Pip1ij (G1ij + ΔG1ij )(G1ij + ΔG1ij )
tPi

+
N

∑

j=1

Pip2ij (G2ij + ΔG2ij )(G2ij + ΔG2ij )
tPi

+
N

∑

j=1

p1ij (W
t
1iW1i + W t

1jiW1ji)

+
N

∑

j=1

p2ij (W
t
2iW2i + W t

2jiW2ji) + Qi

]

xi < 0

for all nonzero x = [xt
1 . . . xt

N ]t and all admissible uncertainties. Hence, Pi > 0,
i = 1,2, . . . ,N , is a set of quadratic cost matrices for the system (3.141) and the
cost function (3.142).

Using the Schur complements, (3.149) holds if, and only if,

⎡

⎣

(Ai + ΔAi)
tPi + Pi(Ai + ΔAi) + Q̃i Pi(G1i + ΔG1i) Pi(G2i + ΔG2i)

(G1i + ΔG1i)
tPi −I 0

(G2i + ΔG2i)
tPi 0 −I

⎤

⎦

< 0, (3.157)

where

ΔG1i = [p1i1ΔG1i1 . . . p1iNΔG1iN ],
ΔG2i = [p2i1ΔG2i1 . . . p2iNΔG2iN ].

That is,

⎡

⎣

At
iPi + PiAi + Q̃i PiG1i PiG2i

Gt
1iPi −I 0

Gt
2iPi 0 −I

⎤

⎦

+

⎡

⎣

PiH1i PiL1i PiL2i

0 0 0
0 0 0

⎤

⎦

⎡

⎣

Fi 0 0
0 F1id 0
0 0 F2id

⎤

⎦

⎡

⎣

E1i 0 0
0 N1i 0
0 0 N2i

⎤

⎦
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+

⎡

⎣

E1i 0 0
0 N1i 0
0 0 N2i

⎤

⎦

t ⎡

⎣

Fi 0 0
0 F1id 0
0 0 F2id

⎤

⎦

t ⎡

⎣

PiH1i PiL1i PiL2i

0 0 0
0 0 0

⎤

⎦

t

< 0, (3.158)

where F1id = diag{F1i1, . . . ,F1iN }, F2id = diag{F2i1, . . . ,F2iN }. Using Lem-
ma 3.3, (3.158) holds if there exist some εi > 0, γ1ij > 0 and γ2ij > 0 such that

⎡

⎣

Mi PiG1i PiG2i

Gt
1iPi −I + N t

1iΓ1βiN1i 0
Gt

2iPi 0 −I + N t
2iΓ2βiN2i

⎤

⎦ < 0, (3.159)

where

Mi = At
iPi + PiAi + Q̃i + ε−1

i PiH1iH
t
1iPi

+ PiL1iΓ
−1

1αiL
t
1iPi + PiL2iΓ

−1
2αiL

t
2iPi + εiE

t
1iE1i

and Γ1αj
,Γ1βj

,Γ2αj
and Γ2βj

are given by (2.37) and (3.156).
By applying the Schur complements again, (3.159) holds if, and only if, (3.150)

holds. �

Remark 3.27 Theorem 3.9 provides a sufficient condition for the existence of a set
of guaranteed quadratic cost matrices. It gives a suboptimal method for computing
the robust performance measure defined in (3.148). In fact, it follows from Theo-
rem 3.9 that

J∗ = inf

{

N
∑

i=1

λmax(Π
t
i0PiΠi0) |Pi > 0, εi > 0,

γ1ij > 0 and γ2ij > 0 satisfy (2.29)

}

.

Obviously, J ≤ J ∗ ≤ J∗. Hence, J∗ provides a suboptimal upper bound for the sys-
tem (2.20) and the cost function (2.21). Note that (2.29) is linear in εi, γ1ij and
γ2ij , i, j = 1,2, . . . ,N , and hence the problem of computing J∗ is a standard LMI
problem [4].

3.6.5 Guaranteed Cost Controller Design

An LMI approach is presented here to solve the decentralized quadratic guaranteed
cost control problem for a class of interconnected nonlinear systems. Consider the
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following interconnected large-scale system which consists of N subsystems:

ẋi = (Ai + ΔAi)(Bi + ΔBi)ui

N
∑

j=1

P1ij (G1ij + ΔG1ij )g1ij (xi, xj )

+
N

∑

j=1

P2ij (G2ij + ΔG2ij )g2ij (xi, xj ), (3.160)

where xi ∈ ℜni is the state of the ith subsystem, ui ∈ ℜmi is the control of the ith
subsystem, Ai , Bi , G1ij and G2ij are real constant matrices with appropriate di-
mensions, ΔAi , ΔBi , ΔG1ij and ΔG2ij are uncertain matrices, g1ij (xi, xj ) ∈ ℜnij

and g2ij (xi, xj ) ∈ ℜsij are unknown nonlinear vector functions representing the in-
terconnection between the ith subsystem and the j th subsystem, and the parameters
p1ij and p2ij are constants of either 1 or 0 (if they are 0, it means that the j th
subsystem has no connection with the ith subsystem). ΔG1ij , ΔG2ij , g1ij (xi, xj )

and g2ij (xi, xj ) satisfy Assumption 3.15 and ΔAi and ΔBi , satisfy the following
assumption.

Assumption 3.16

[ΔAi ΔBi] = H1iFj [E1i E2i],

where Fj ∈ ℜhj ×ej is an unknown matrix function satisfying

F t
jFj ≤ Iej

and H1i,E1i and E2i are known real constant matrices with appropriate dimensions.

Remark 3.28 Obviously, the parameter uncertainties and interconnections in the
power system (3.139) satisfy Assumptions 3.15 and 3.16.

In what follows, the following cost performance is defined:

J =
N

∑

j=1

∫ ∞

0
(xt

jQjxj + ut
jRjuj )dt, (3.161)

where Qj = Qt
j > 0 and Rj = Rt

j > 0, j = l,2, . . . ,N , are given real constant
matrices.

Similar to Definition 3.1, we give the following definition of decentralized state
feedback guaranteed cost control.

Definition 3.2 A decentralized controller uj = Kjxj is said to be a decentral-
ized state feedback quadratic guaranteed cost controller with a set of cost matrices
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Pi > 0 for the system (3.160) and (3.161), if

N
∑

i=1

xt
i {[Ai + ΔAi + (Bi + ΔBi)Ki]tPi

+ Pi[Ai + ΔAi + (Bi + ΔBi)Ki]}xi

+
N

∑

i=1

N
∑

j=1

2xt
i Pi[p1ij (G1ij + ΔG1ij )g1ij (xi, xj )

+ p2ij (G2ij + ΔG2ij )g2ij (xi, xj )]

+
N

∑

i=1

xt
i (Qi + K t

i RiKi)xi < 0 (3.162)

for all admissible uncertainties.

The following theorem provides the main result of this section.

Theorem 3.10 Consider the system (3.160) satisfying Assumptions 3.15 and 3.16.
Suppose that there exist some real positive scalars εi, γ1ij , γ2ij and some real con-

stant matrices Xi = Xt
i > 0 and Yi , i, j = 1,2, . . . ,N , such that the following set of

linear matrix inequalities (LMIs) holds:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Φi XiQ̃
1/2
i Y t

i XiE
t
1i G1i 0 G2i 0

Q̃
1
2
i Xi −I 0 0 0 0 0 0
Yi 0 −R−1

i 0 0 0 0 0
E1iXi + E2iYi 0 0 −εiI 0 0 0 0

Gt
1i 0 0 0 −I N t

1i 0 0
0 0 0 0 N1i −Γ1βi 0 0

Gt
2i 0 0 0 0 0 −I N t

i

0 0 0 0 0 0 N2i −Γ2βi

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (3.163)

where

Φi = AiXi + XiA
t
i + BiYi + Y t

i B
t
i + εiH1iH

t
1i + L1iΓ1αiL

t
1i + L2iΓ2αiL

t
2i

and Q̃i , N1i , N2i , Γ1αi , Γ2αi , Γ1βi and Γ2βi are as in (3.151) and (3.154)–(3.156),
respectively. If the above condition is met, there exists a decentralized guaranteed

cost controller given by ui = Kixi with Ki = YiX
−1
i , i = 1,2, . . . ,N , that asymp-

totically stabilizes the overall closed-loop system and render the performance cost
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J satisfying

J ≤
N

∑

i=1

xt
i (0)X−1

i xi(0),

where xi(0), i = 1,2, . . . ,N is the initial state of the ith subsystem.

Proof The closed-loop system of (3.160) with ui = Kixi is

ẋi = [(Ai + BiKi) + (ΔAi + ΔBiKi)]xi +
N

∑

j=1

p1ij (G1ij + ΔG1ij )g1ij (xi, xj )

+
N

∑

j=1

p1ij (G2ij + ΔG2ij )g2ij (xi, xj ) (3.164)

and the corresponding closed-loop cost function is

J =
N

∑

i=1

∫ ∞

0
xt
i (Qi + K t

i RiKi)xidt. (3.165)

On the other hand, premultiply and postmultiply (3.163) by diag{X−1
i , I . . . , I }, and

let Pi = X−1
i > 0, and Ki = YiX

−1
i . Then using the Schur complements, (3.163)

holds if, and only if,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ψi PiH1i PiL1i PiG1i PiL2i PiG2i

H t
1iPi −ε−1

i I 0 0 0 0
Lt

1iPi 0 −Γ −1
1αi 0 0 0

Gt
1iPi 0 0 −I + N t

1iΓ
−1

1βiN1i 0 0

Lt
2iPi 0 0 0 −Γ −1

2αi 0
Gt

2iPi 0 0 0 0 −I + N t
2iΓ

−1
2βiN2i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (3.166)

where

Ψi = Pi(Ai + BiKi) + (Ai + BiKi)
tPi

+ Q̃i + K t
i RiKi + ε−1

i (E1i + E2iKi)
t (E1i + E2iKi)

and Q̃i is as in (3.151).
By applying Theorem 3.9 to the closed-loop system (3.164) and the correspond-

ing cost function (3.165), the theorem is established. �

Remark 3.29 Note that (3.163) is linear in Xi, Yi, εi, γ1ij and γ2ij , and can be solved
efficiently using the LMI tool [12]. Also, it follows from Theorem 3.10 that, if
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the LMI (3.163) holds, then the corresponding cost function (3.161) is bounded
by

∑N
i=1 λM(Π t

i0X
−1
i Πi0). For some given constant λi > 0, λM(Π t

i0X
−1
i Πi0) < λi

if, and only if,

λiI − Π t
i0X

−1
i Πi0 > 0

which is equivalent to
[

−λiI Π t
i0

Πi0 −Xi

]

< 0. (3.167)

Therefore, the problem of minimizing the bound
∑N

i=1 λM(Π t
i0X

−1
i Πi0) becomes

the minimization of
∑N

i=1 λi under the LMI constraints of (3.163) and (3.167). This
is a parametric LMI problem and can be solved effectively by employing the LMI
tool [9].

Remark 3.30 From Theorem 3.10 and the feedback linearized system (3.139), the
excitation control input uf i of the power system (3.129)–(3.131) can be obtained
by an inverse transform of (3.140):

uf i = 1

kciIqi

{νf i + Pmi0 − (xdi − x′
di)IqiIdi + T ′

d0iQciωi}, (3.168)

where νf i = Kixi with Ki = YiX
−1
i . Note that Iqi = 0 is not in the normal work-

ing region for a generator, so uf i is well defined. On the other hand, in power sys-
tems, Pei,Qei and If i are readily measurable variables, thus it follows from (3.132),
(3.136) and (3.137) that Idi and Iqi can be calculated by using these available vari-
ables. As δi and ωi , i = 1,2, . . . ,N , are also measurable variables, the excitation
control (3.168) is practically realizable by only using the local measurements.

3.6.6 Simulation Results

The decentralized guaranteed cost control design proposed in the preceding section
is now applied to a three-machine power system as shown in Fig. 3.10. Generator 3
is an infinite bus bar used as the reference (E′

q3 = constant = 1∠0◦). The system
parameters used in the simulation are given in Table 3.1.

For the purpose of illustration, the authors consider the parametric perturbation
as ΔT ′

d0i = 0.1T ′
d0i , i = 1,2, and choose |Pe1|M = 1.4 and |Pe2|M = 1.5. Thus, the

DFL compensated power system model (2.18) can be rewritten as follows:

ẋ1 = (A1 + ΔA1)x1 + (B1 + ΔB1)νf 1

+ ΔG112 sin(δ1 − δ2) + ΔG211ω1 + ΔG212ω2, (3.169)

ẋ2 = (A2 + ΔA2)x2 + (B2 + ΔB2)νf 2

+ ΔG121 sin(δ2 − δ1) + ΔG221ω1 + ΔG222ω2, (3.170)



172 3 Decentralized Control of Nonlinear Systems II

Fig. 3.10 Three-machine
power system

Table 3.1 System
parameters Generator 1 Generator 2

xd , p.u. 1.863 2.36

xd , p.u. 0.257 0.319

xT , p.u. 0.129 0.11 x12, p.u. 0.55

xad , p.u. 1.712 1.712 x13, p.u. 0.53

T ′
d0, p.u. 6.9 7.96 x23, p.u. 0.6

H, s 4 5.1

D, p.u. 5 3

kc 1 1

where

A1 =

⎡

⎣

0 1 0
0 −0.625 −39.27
0 0 −0.1449

⎤

⎦ , B1 =

⎡

⎣

0
0

0.1449

⎤

⎦ ,

A2 =

⎡

⎣

0 1 0
0 −0.2941 −30.8
0 0 −0.1256

⎤

⎦ , B2 =

⎡

⎣

0
0

0.1256

⎤

⎦ ,

|μ1| ≤ 0.0132, |T ′
d02|min = 7.164 s,

|r112| ≤ 0.7817, |r211| ≤ 1.4, |r212| ≤ 1.4,

|μ2| ≤ 0.0111, |T ′
d01|min = 6.21 s,

|r121| ≤ 0.9662, |r221| ≤ 1.5, |r222| ≤ 1.5.

In the performance index (3.161), the authors set Q1 = Q2 = 0.05I , R1 = 0.002
and R2 = 0.001. In the light of Remark 3.29, by solving the corresponding LMIs
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(see (3.163)), the decentralized guaranteed cost controller is obtained as

νf 1 = 46.6023(δ1 − δ10) + 48.7572ω1 − 245.4968(Pe1 − Pm10), (3.171)

νf 2 = 59.6959(δ2 − δ20) + 65.0159ω2 − 244.7198(Pe2 − Pm20) (3.172)

and the minimal upper bound of the cost is 1.7676. Thus, the original excitation
control laws for the three-machine power system are as follows:

uf 1 = 1

Iq1
{νf 1 + Pm10 − (xd1 − x′

d1)Iq1Id1 + T ′
d01Qe1ω1}, (3.173)

uf 2 =
1

Iq2
{νf 2 + Pm20 − (xd2 − x′

d2)Iq2Id2 + T ′
d02Qe2ω2}. (3.174)

In the simulation, saturation of synchronous machines is also considered, and so
(3.131) becomes

Ė′
qi =

1

T ′
d01

[Ef i − Eqi − (1 − kf i)E
′
qi], (3.175)

where

kf i = 1 +
bj

aj

(E′
qi)

(nj −1)

with

a1 = 0.95, b1 = 0.051, n1 = 8.727, (3.176)

a2 = 0.935, b2 = 0.064, n2 = 10.878. (3.177)

The excitation control input limitations are

−6 ≤ Ef i = kciuf i ≤ 6, i = 1,2.

This example shows the effectiveness of the proposed decentralized control un-
der different operating points, fault locations and transmission-line parameters. The
fault under consideration is a symmetrical three-phase short-circuit fault that occurs
on one of the transmission lines between generators 1 and 2. The fault location is
indexed by a constant λ, which is the fraction of the line to the left of the fault.
For example, λ = 0 means that the fault is on the bus bar of generator 1, whereas
λ = 0.5 indicates that the fault happens midway between generators 1 and 2. The
fault sequence under consideration is as follows:

1. The system is in pre-fault steady state;
2. A fault occurs at t0 = 0.1s;
3. The fault is removed by opening the circuit breakers of the faulted line at t1 =

0.25 s;
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Fig. 3.11 Power angle
response of power system:
Case 1

Fig. 3.12 Relative speed
response of power system:
Case 1

4. The transmission line is restored with the fault clear at t2 = 1.0 s;
5. The system is in post fault state.

The system dynamic responses can be tested under the following cases of different
operating points, fault locations and network parameters.

1. The operating points are

δ10 = 60.78°, Pm10 = 1.1 p.u., Vt1 = 1.0 p.u., (3.178)

δ20 = 60.64°, Pm20 = 1.0 p.u., Vt2 = 1.0 p.u. (3.179)

The fault location is λ = 0.07. The corresponding closed loop system responses
of power angles, relative speeds, real powers and excitation control signals of
generators 1 and 2 are shown in Figs. 3.11–3.14.

In particular, the responses of power angles are given in Figs. 3.15 and 3.16
for comparison: in Fig. 3.15, where the fault location is A = 0.07, the open-
loop system without controller is unstable; in Fig. 3.16, where the fault location
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Fig. 3.13 Pe response of
power system: Case 1

Fig. 3.14 Ef response of
power system: Case 1

Fig. 3.15 Responses of
power angles, controller
against no controller:
λ = 0.07
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Fig. 3.16 Responses of power angles, controller compared with no controller: λ = 0.09

Fig. 3.17 Responses of power system: Case 2

is λ = 0.09. The open-loop system without controller is stable, but it exhibits
significant oscillations. From Figs. 3.15 and 3.16, it is obvious that the proposed
controller can enhance the system transient stability and damp out the power
angle oscillations.

2. The operating points are

δ10 = 18.51°, Pm10 = 0.3 p.u., Vt1 = 0.95 p.u. (3.180)

δ20 = 23.68°, Pm20 = 0.4 p.u., Vt2 = 0.95 p.u. (3.181)

The fault locations is λ = 0.1. The corresponding closed loop system responses
of power angles and relative speeds of generators 1 and 2 are shown in Fig. 3.17.

3. The operating points are the same as in Case 1. The corresponding closed-loop
system responses of power angles are compared with different fault locations
(λ = 0.07, 0.5, 0.95) in Fig. 3.18.

4. The transmission-line parameters are defined by the following:

x12 = X13 = X23 = 0.7. (3.182)
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Fig. 3.18 Responses of power angles of the generators 1 and 2: Case 3. (i) λ = 0.07; (ii) λ = 0.5;
(iii) λ = 0.95

Fig. 3.19 Responses of power system: Case 4. (i) Power angle response; (ii) Pe response

The operating points are as follows:

δ10 = 64.08°, Pm10 = 0.95 p.u., Vt1 = 10 p.u., (3.183)

δ20 = 65.33°, Pm20 = 0.95 p.u., Vt2 = 1.0 p.u. (3.184)

The fault location is λ = 0.1. The corresponding closed loop system responses
of power angles and real powers of the generators 1 and 2 are shown in Fig. 3.19.

The simulation results shown here clearly indicate that the proposed controller
can enhance the system transient stability and damp out the power angle oscillations
in the face of different conditions of operating points, fault locations and transmis-
sion parameters.
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3.7 Notes and References

In this chapter, a new robust decentralized controller has been proposed to enhance
multimachine power system transient stability. The proposed controller is a linear
controller that can guarantee system stability over the whole operating region. The
controller design procedure is derived. In the design of the controller, the fault loca-
tion and exact network parameters do not need to be available. The proposed con-
troller uses local measurements through a simple implementation. A three-machine
power system is considered as an application example of the theory developed in
this chapter. Simulation results show that despite the nonlinear interconnections be-
tween generators and significant operating condition variations following the faults,
the proposed controller can rapidly damp the system oscillation and greatly enhance
the power system transient stability.

Moreover, an LMI-based robust decentralized guaranteed cost control approach
has been proposed for multimachine power systems. Our results are given in terms
of a set of LMIs which can be solved efficiently by using the available LMI tool.
A procedure has been given for the optimization of an upper bound of the per-
formance index. The proposed robust control scheme is demonstrated on a three-
machine example power system. Simulation results have shown that the transient
stability is greatly enhanced regardless of different operating points, faults in vari-
ous locations and changing network parameters.

There are several directions of extending the results reported in this chapter. Chief
among these is the class of interconnected discrete-time systems, for which there is
virtually no results available.
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Chapter 4

Decentralized Systems with Multi-controllers

This chapter looks at particular classes of decentralized systems that incorporate
multiple controllers in their basic operation. Three distinct types of these systems
are identified: multi-channel time-delay systems, interconnected networked systems
and discrete-systems with saturating controllers. In the first two types, the mathe-
matical analysis treats initially with interconnected time-delay systems to develop
general delay-dependent stability and stabilization results. Then, several interest-
ing cases are derived. The subsystems are subjected to convex-bounded parametric
uncertainties and/or additive feedback gain perturbations. The third type is con-
cerned with stabilization decentralized linear saturating plants. The basic tool is the
construction use of appropriate Lyapunov-Krasovskii functionals. We characterize
decentralized linear matrix inequalities (LMIs)-based conditions. Resilient decen-
tralized dynamic output-feedback stabilization schemes are designed such that the
family of closed-loop feedback subsystems enjoys the delay-dependent asymptotic
stability with a prescribed γ -level L2 gain for each subsystem.

4.1 Introduction

There are many real world systems consisting of coupled units or subsystems which
directly interact with each other in a simple and predictable fashion to serve a com-
mon pool of objectives. When viewed as a whole, the resulting overall system often
displays rich and complex behavior. Typical examples are found in electric power
systems with strong interactions, water networks which are widely distributed in
space, traffic systems with many external signal or large-space flexible structures,
to name a few, which are often termed large-scale or interconnected systems. It be-
comes increasingly evidently that the underlying notions of interconnected systems
manifest the complexity as an essential and dominating problem in systems theory
and practice and that several associated problems cannot be tackled using one-shot
approaches. Recent research investigations have revealed [3, 22] that the crucial
need for improved methodologies relies on:
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(1) dividing the analysis and synthesis of the overall system into independent or
almost independent subproblems,

(2) searching for new ideas of coping with the incomplete information about the
system, and

(3) seeking appropriate methods of handling the uncertainties and for dealing with
delays.

System complexity frequently leads to severe difficulties that are encountered in
the tasks of analyzing, designing, and implementing appropriate control methods.
These difficulties arise mainly from the following well-known reasons: dimension-

ality; information structure constraints; uncertainty; delays. Pertinent results can
be found in [2, 25, 26, 41, 43, 49–51, 72].

4.2 Decentralized Stabilization of Multi-channel Systems

In this section, we direct attention to a type of decentralized systems described by a
class of linear multi-channel time-delay systems with norm-bounded uncertainties
and time-varying delays is examined. The objective is to design a class of decentral-
ized dynamic output-feedback controllers to render the closed-loop multi-channel
system delay-dependent asymptotically stable with a prescribed disturbance attenu-
ation level.

4.2.1 Introduction

The basic concepts of large scale or interconnected systems have been introduced
to deal with the real control problems that cannot be solved using one-shot (cen-
tralized) approaches [43, 56–61, 72]. Typical problems arise in the control of water
systems which are widely distributed in space, interconnected power systems with
strong interactions, traffic systems with different external signals, or large-scale flex-
ible structures. The structures of such systems have led to the development of new
ideas for dividing the analysis and synthesis of the overall system into indepen-
dent (or almost independent) subproblems and for dealing with limited information,
uncertainties and time-delays. Therefore in the past few decades, the analysis and
design problems of decentralized control for large scale or interconnected systems
have been intensively studied [27, 79]. In particular, the linear matrix inequalities
(LMIs) framework [8] has appeared to be very attractive to tackle the control and
filtering problems of handling interconnected systems [3].

This section develops new results for the problems of decentralized analysis and
control synthesis for a class of linear interconnected multi-channel systems. This
class includes linear time-delay systems subject to input disturbance and several
control agents where the system matrices are allowed to undergo bounded para-
metric uncertainties. The design objective is to construct robust dynamic output-
feedback controllers and derive easily-computable formula for determining the
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gains. Previous related results are reported in [10, 15, 80] where the main focus
has been on delay-free systems using state-feedback. It turns out that the results of
[10, 15, 80] are essentially a special case of the approach developed hereafter. We
employ a Lyapunov-Krasovskii functional (LKF) approach to developed the closed-
loop stabilization conditions and with the aid of a convex optimization framework,
LMI-based conditions are obtained.

4.2.2 Problem Statement

We consider a class of linear uncertain systems Σ with N channels and represented
by the state-space model:

ẋ(t) = [A + ΔA]x(t) + [Ad + ΔAd ]x(t − τ(t)) +
N

∑

j=1

Bjuj (t) + Γ w(t), (4.1)

z(t) = Gx(t) + Gdx(t − τ(t)) + Φw(t), (4.2)

yj (t) = [Cj + ΔCj ]xj (t), j ∈ {1, . . . ,N}, (4.3)

where x(t) ∈ ℜn is the state vector, w(t) ∈ ℜr is the disturbance input which belongs
to L2[0,∞), z(t) ∈ ℜp is the controlled output, uj (t) ∈ ℜmj and yj (t) ∈ ℜqj are
the control input and the measurement output of channel j ∈ {1, . . . ,N} and τ is an
unknown time-delay factor satisfying

0 ≤ τ(t) ≤ ̺, τ̇ (t) ≤ μ, (4.4)

where the bounds ̺, μ are known constants in order to guarantee smooth growth of
the state trajectories. The matrices A ∈ ℜn×n, Bj ∈ ℜn×mj , G ∈ ℜp×n, Gd ∈ ℜp×n,
Ad ∈ ℜn×n, Φ ∈ ℜp×r , Γ ∈ ℜn×r , Cj ∈ ℜqj ×nj are real and constants.

Without loss of generality, the following assumptions are made:

Assumption 4.1 There is no unstable fixed modes with respect the triplet A,
Bj , Cj .

Assumption 4.2 For every j ∈ {1, . . . ,N}, the matrices Bj , Cj have full column
rank and full row rank, respectively.

The uncertain matrices ΔA, ΔAd , ΔCj are represented by

[ΔA ΔAd ] = EΔ[M N ],

⎡
⎢⎢⎢⎣

ΔC1

ΔC2
...

ΔCN

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

H1

H2
...

HN

⎤
⎥⎥⎥⎦ΔF, (4.5)
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where E,F,M,N,H1, . . . ,HN are known constant matrices with appropriate di-
mensions and Δ is an unknown matrix satisfying ΔtΔ ≤ I . The class of systems
described by (4.1)–(4.3) subject to delay-pattern (4.4) is frequently encountered
in modeling several physical systems and engineering applications including large
space structures, multi-machine power systems, cold mills, transportation systems,
water pollution management, to name a few [48, 72].

In what follows, we consider the feasible set C as the set of all linear time-
invariant controllers with state-space realization of the form:

˙̂xj (t) = Âj x̂j (t) + B̂jyj (t),
(4.6)

uj (t) = Ĉj x̂j (t) + D̂jyj (t), j = 1,2, . . . ,N

where x̂j (t) ∈ ℜsj is the state of the local controller with the order sj ≤ n and the
matrices Âj ∈ ℜsj ×sj , B̂j ∈ ℜsj ×qj , Ĉj ∈ ℜmj ×sj , D̂j ∈ ℜmj ×qj and are the design
parameters. Connecting the controller (4.6) to the system (4.1)–(4.3), we obtain the
closed-loop system

ẋ(t) =

[
A + ΔA +

N∑

j=1

Bj D̂j [Cj + ΔCj ]

]
x(t) + [Ad + ΔAd ]x(t − τ(t))

+

N∑

j=1

Bj Ĉj x̂j (t) + Γ w(t), (4.7)

˙̂xj (t) = B̂j [Cj + ΔCj ]x(t) + Âj x̂j (t), j ∈ {1, . . . ,N}, (4.8)

z(t) = Gx(t) + Gdx(t − τ(t)) + Φw(t). (4.9)

For simplicity in exposition, we introduce the following notations

x̂(t) = col
[
x̂1(t) x̂2(t) . . . x̂N (t)

]
, w(t) = col

[
w1(t) w2(t) . . . wN (t)

]
,

Â = diag
[
Â1 Â2 . . . ÂN

]
, B̂ = diag

[
B̂1 B̂2 . . . B̂N

]
, (4.10)

Ĉ = diag
[
Ĉ1 Ĉ2 . . . ĈN

]
, D̂ = diag

[
D̂1 D̂2 . . . D̂N

]

along with the matrices

B =
[
B1 B2 . . . BN

]
, C = diag

[
Ct

1 Ct
2 . . . Ct

N

]t
,

(4.11)
H = diag

[
H1 H2 . . . HN

]
, ΔC = diag

[
ΔC1 ΔC2 . . . ΔCN

]
.

This paves the way to express the closed-loop system (4.7)–(4.9) into the form

ẋ(t) =
[
A + ΔA + BD̂[C + ΔC]

]
x(t) + [Ad + ΔAd ]x(t − τ(t))

+ BĈx̂j (t) + Γ w(t), (4.12)

˙̂x(t) = B̂[C + ΔC]x(t) + Âx̂(t), (4.13)

z(t) = Gx(t) + Gdx(t − τ(t)) + Φw(t). (4.14)
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By grouping the unknown controller matrices into one block matrix

K =
[

Â B̂

Ĉ D̂

]
(4.15)

and introducing the block matrices

Ã + ΔÃ =
[
A + ΔA 0

0 0

]
, Γ̂ =

[
Γ

0

]
, B̃ =

[
0 B

I 0

]
,

C̃ + ΔC̃ =
[

0 I

C + ΔC 0

]
, G̃ =

[
G 0

]
, Φ̂ =

[
Φ t 0

]t
, (4.16)

Ãd =
[
Ad 0
0 0

]
, ΔÃd =

[
ΔAd 0

0 0

]
, ΔC̃ =

[
0 0

ΔC 0

]
.

We finally write the closed-loop system in the compact-form

ξ̇ (t) = Aξ(t) + Adξ(t − τ(t)) + Γ̂ w(t),
(4.17)

z(t) = G̃ξ(t) + G̃dξ(t − τ(t)) + Φ̂w(t),

where

ξ(t) =
[
x(t)

x̂(t)

]
, Ê =

[
E

0

]
, Ĥ =

[
0
H

]
,

(4.18)
M̂ = [M 0 ], N̂ = [N 0 ], F̂ = [F 0 ]

and

A = Ã + ÊΔM̂ + B̃K[C̃ + ĤΔF̂ ], Ad = Ãd + ÊΔN̂,
(4.19)

G̃d =
[
Gd 0

]
.

It must be observed in (4.17) that all the matrices are known except the controller
coefficient matrix K.

The problem of interest in this section is to design the decentralized dynamic
output-feedback controller (4.6) such that the closed-loop system (4.17) is internally
asymptotically stable with w(t) ≡ 0 and under zero initial condition, the following
condition is satisfied

‖z(t)‖2 ≤ γ ‖w(t)‖2, ∀w(t) ∈ L2[0,∞). (4.20)
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4.2.3 Decentralized Stabilization

We adopt a Lyapunov-based approach to design the decentralized controller (4.6).
For this purpose, we introduce the Lyapunov-Krasovskii functional (LKF):

V (t) = ξ t (t)Pξ(t) +
∫ t

t−̺

ξ t (s)Sξ(s) ds +
∫ t

t−τ(t)

ξ t (s)Wξ(s) ds

+ ̺

∫ 0

−̺

∫ t

t+s

ξ̇ t (α)Rξ̇ (α)dα ds, (4.21)

where 0 < P, 0 ≤ W, 0 < R, 0 < S are matrices of appropriate dimensions. The
main decentralized stabilization result is established by the following theorem:

Theorem 4.1 The uncertain nonlinear system (4.17) is robust asymptotically stable

and satisfy (4.20), if there exist positive definite matrices S̄, R̄, W̄ , real matrices X,
Y , and real constants ε1 > 0, ε2 > 0, such that the following LMI holds.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ̌11 Σ̄12 Σ̃13 Σ̂14 [ÃX + Y ]t XG̃t Ê

• Σ̄22 0 0 0 0 0

• • Σ̃33 0 XĀd
t

XG̃t
d 0

• • • Σ̂44 Γ̃ t Φ̃ t 0
• • • • −2X + R̄ 0 Ê

• • • • • −I 0
• • • • • • −ε1I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (4.22)

Σ̌11 = ÃX + Y + [ÃX + Y ]t + S̄ + W̄ + R̄ + ε1M̂
tM̂ + +ε2F̂

t F̂ , Σ̄12 = R̄,

Σ̂14 = Γ̃ , Σ̄22 = −R̄ − S̄, Σ̃33 = −(1 − μ)W̄ + ε1N̂
t N̂, (4.23)

Σ̂44 = −γ 2I, Ād = Ãd , Σ̃13 = ĀdX + ε1M̂
t N̂ .

Proof A straightforward computation along the solutions of (4.17) with the help of
Lemma 9.9 yields:

J = V̇ (t) + zt (t)z(t) − γ 2w(t)w(t)

= 2ξ t
Pξ̇ + ̺2ξ̇ t

Rξ̇ − ̺

∫ t

t−̺

ξ̇ t (s)Rξ̇ (s) ds

+ ξ t (t)[S + W]ξ(t) − ξ t (t − ̺)Sξ(t − ̺) − (1 − μ)ξ t (t − τ(t))Wξ(t − τ(t))

+ [G̃ξ(t) + G̃dξ(t − τ(t)) + Φ̃w(t)]t [G̃ξ(t) + G̃dξ(t − τ(t)) + Φ̃w(t)]

− γ 2w(t)w(t)

≤ 2ξ t
P[Aξ(t) + Adξ(t − τ(t)) + Γ̃ w(t)]

+ ̺2ξ̇ t
Rξ̇ − [ξ(t) − ξ(t − ̺)]tR[ξ(t) − ξ(t − ̺)]
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+ ξ t (t)[S + W]ξ(t) − ξ t (t − ̺)Sξ(t − ̺) − (1 − μ)ξ t (t − τ(t))Wξ(t − τ(t))

+ [G̃ξ(t) + G̃dξ(t − τ(t)) + Φ̃w(t)]t [G̃ξ(t) + G̃dξ(t − τ(t)) + Φ̂w(t)]
− γ 2w(t)w(t). (4.24)

Manipulating (4.24), it yields

J ≤ ηt (t)Ση(t), (4.25)

where η(t) = col{ξ(t)ξ(t − ̺)ξ(t − τ(t))w(t)}, if the matrix inequality

Σ =

⎡
⎢⎢⎣

Σ11 Σ12 Σ13 Σ14

• Σ22 0 0
• • Σ33 0
• • • Σ44

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

A

0
Ad

Γ̃

⎤
⎥⎥⎦

t

R

⎡
⎢⎢⎣

A

0
Ad

Γ̃

⎤
⎥⎥⎦< 0, (4.26)

where

Σ11 = P A + AtP + S + W − R + G̃tG̃, Σ12 = R, Σ13 = P Ad + G̃tG̃d ,

Σ14 = P Γ̃ + G̃t Φ̃, Σ22 = −R − S, Σ33 = −(1 − μ)W + G̃t
dG̃d , (4.27)

Σ44 = −γ 2I + Φ̂ t Φ̂,

is feasible. Applying Lemma 9.10, Σ can be changed to Σ1 as follows:

Σ1 =

⎡
⎢⎢⎢⎢⎣

Σ11 Σ12 Σ13 Σ14 AR

• Σ22 0 0 0
• • Σ33 0 AdR

• • • Σ44 Γ̃ R

• • • • −R

⎤
⎥⎥⎥⎥⎦

< 0, (4.28)

where

Σ11 = P A + AtP + S + W − R + G̃tG̃, Σ12 = R, Σ13 = P Ad + G̃tG̃d ,

Σ14 = P Γ̃ + G̃t Φ̂, Σ22 = −R − S, Σ33 = −(1 − μ)W + G̃t
dG̃d , (4.29)

Σ44 = −γ 2I + Φ̂ t Φ̂.

On pre-multiplying and post-multiplying Σ1 by the diagonal matrix

diag{P −1,P −1,P −1, I,R−1}

and letting

P −1 = X, XSX = P̄j , XWX = Q̄, XRX = R̄, R−1 = XR̄−1X,

it follows from the algebraic inequality

XR̄−1X − 2X + R̄ = (X − R̄)R̄−1(X − R̄) ≥ 0,
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that

−2X + R̄ ≥ −XR̄−1X,

then, the inequality Σ1 is equivalent to Σ2 as follows:

Σ2 =

⎡
⎢⎢⎢⎢⎣

Σ̄11 Σ̄12 Σ̄13 Σ̄14 XAt

• Σ̄22 0 0 0
• • Σ̄33 0 XAt

d

• • • Σ44 Γ̃ t

• • • • −2X + R̄

⎤
⎥⎥⎥⎥⎦

< 0, (4.30)

where

Σ̄11 = AX + XAt + S̄ + W̄ + R̄ + XG̃tG̃X, Σ̄12 = R̄,

Σ̄13 = AdX + XG̃tG̃dX, Σ̄14 = Γ̂ + XG̃t Φ̂,
(4.31)

Σ̄22 = −R̄ − S̄, Σ̄33 = −(1 − μ)W̄ + XG̃t
dG̃dX,

Σ44 = −γ 2I + Φ̂ t Φ̂.

Applying Lemma 9.10 again, Σ2 can be changed to Σ3 as follows:

Σ2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

Σ̂11 Σ12 Σ̂13 Σ̂14 XAt XG̃t

• Σ̄22 0 0 0 0
• • Σ̂33 0 XAt

d XG̃t
d

• • • Σ̂44 Γ̃ t Φ̃ t

• • • • −2X + R̄ 0
• • • • • −I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0, (4.32)

where

Σ̂11 = AX + XAt + S̄ + W̄ + R̄, Σ̄12 = R̄, Σ̂13 = AdX,

Σ̂14 = Γ̂ , Σ̄22 = −R̄ − S̄, Σ̂33 = −(1 − μ)W̄ , (4.33)

Σ̂44 = −γ 2I.

Proceeding further, using the bounding inequality A from Sect. 9.3.1 and consider-
ing (4.32), Σ3 can be manipulated into the form

Σ3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ̃11 Σ̄12 Σ̃13 Σ̂14 XĀt XG̃t Ê

• Σ̄22 0 0 0 0 0

• • Σ̃33 0 XĀd
t

XG̃t
d 0

• • • Σ̂44 Γ̃ t Φ̃ t 0
• • • • −2X + R̄ 0 Ê

• • • • • −I 0
• • • • • • −ε1I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,
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where

Σ̃11 = ĀX + XĀt + S̄ + W̄ + R̄ + ε1M̂
tM̂ + +ε2F̂

t F̂ , Σ̄12 = R̄,

Σ̂14 = Γ̃ , Σ̄22 = −R̄ − S̄, Σ̃33 = −(1 − μ)W̄ + ε1N̂
t N̂, (4.34)

Σ̂44 = −γ 2I, Ā = Ã + B̃KC̃, Ād = Ãd , Σ̃13 = ĀdX + ε1M̂
t N̂ .

Finally, we denote ĀX = ÃX + B̃KC̃X = ÃX + Y , thus K = B̃−1YX−1C̃−1. So
we can get Σ3 can be changed to formula (4.22) as desired. �

We now demonstrate the results by numerical simulation.

4.2.4 Simulation Example 4.1

Consider a two-channel linear uncertain systems Σ :

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0 −1.1 −2.1 −1.0 1.9 2.1 0.3 −2.1
2.0 −4.9 −1.1 0 1.2 1.1 0.2 −0.6
1.9 −1.1 −3.1 −1.0 1.9 2.1 0.1 −2.0
6.8 −8.9 −6.9 −1.0 6.9 7.1 0.3 −5.9
2.1 −3.9 −1.1 0 0.3 1.1 0.3 0.2

−2.0 6.8 3.1 0.2 −6.9 −2.1 −0.8 1.1
2.5 4.7 −0.1 −1.0 −3.9 2.1 −2.9 −2.0

−1.10 5.9 2.1 0.3 −5.9 −0.1 −1.1 0.1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ad =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1 −0.1 −0.3 0 0.4 0.1 0 −0.1
0.1 −0.5 −0.1 0 −0.2 0.1 0.2 −0.2
0.1 −0.1 −0.1 −1.0 −0.5 0.1 0.1 −0.1
0.2 −0.7 0.9 −1.0 −0.3 0.1 0.3 −0.4
0.1 −0.8 0.1 0 0.3 0.1 0.3 0.1

−0.1 0.38 0.1 0.2 −0.9 −0.1 −0.8 0.1
0.2 0.7 0.1 −1.0 −0.9 0.1 −0.9 −1.0

−0.1 0.6 −0.1 0.3 −0.8 −0.1 −1.1 0.1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B t
1 =

[
−1 0 −1 1 0 0 −1 0

]
,

B t
2 =

[
0 0 1.9 0 1 0.9 1 0

]
,

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2.8 0 0
0 −4.0 0 0
0 3.1 1.1 0
0 −3.0 0 1.9
0 −3.9 0 0

0.9 1.0 1.1 −1
0.8 2.9 0 0
0.9 0 2.1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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G =

⎡
⎢⎢⎣

−2 0 0 0 1 0 0 0
−1 1 0 0 −1 0 1 0
0 −2 −1 1 1 1 0 −1

−1 0 2 0 0 0 −1 0

⎤
⎥⎥⎦ ,

C1 =
[
−2 1 3 0 −1 0 −1 4

]
,

C2 =
[

1 0 −1 0 1 1 0 −1
]
,

Φ = diag
[

0.1 0.3 0.1 0.4
]
, F = 0.6,

Gd =

⎡
⎢⎢⎣

0 0.1 0 0.2 0 0 0 0
−0.1 0.1 0 0 −0.2 0 0.3 0
−0.4 0 −0.1 0.2 0.3 0.4 0 −0.1
−0.1 0 1 0 0 0 −0.5 0

⎤
⎥⎥⎦ ,

E =
[

0.5 0 −0.3 0.2 0 0 0 0.4
]
,

M t =
[

0 0.3 −0.1 0 0.2 0 0 0.4
]
,

N t =
[

0.2 0 −0.1 0.1 0 0.2 0 0.3
]
,

H1 =
[

0.3 0.4 −0.1 0.1 0 0.2 0 0.1
]
,

H2 =
[

0.5 0 −0.3 0.2 0.3 0 0.1 −0.2
]
,

μ = 0.8, ̺ = 2.3.

In implementation, we take the dimensions of the local controllers as s1 = 3, s2 = 2.
Taking the advantage of the Matlab LMI Control Toolbox to solve the LMIs (4.22),
we obtain a feasible solution as follows:

γ = 2.28,

Â1 =

⎡
⎣

−16.21 −19.45 −6.11
−3.77 −15.13 8.78
0.86 −0.93 0.59

⎤
⎦ , B̂1 =

⎡
⎣

−0.23
0.12

−0.09

⎤
⎦ ,

Ĉ1 =
[

4.11 7.89 −1.39
]
, D̂1 = 0.47,

Â2 =
[

2.21 3.65
−6.07 −5.79

]
, B̂2 =

[
1.12

−0.13

]
,

Ĉ2 =
[

6.94 8.77
]
, D̂2 = 0.56.

4.3 Resilient Stabilization of Interconnected Networked Systems

Networked control systems (NCS) are feedback control systems with network chan-
nels in the feedback loop. Two main changes in the control system research direc-
tions are the explicit considerations of the interconnections and a renewed emphasis
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on distributed control systems being closely related to decentralized control of com-
plex large scale systems. Though a variety of structures and models in this frame-
work have been analyzed, a gap remains between decentralized control and control
over networks. Decentralized NCS (DNCS) are the control systems with multiple
control stations while transmitting control signals through a network, i.e. date sig-
nals are transmitted to multiple controllers in the feedback loop. DNCS combine
the advantages of the centralized NCS and the decentralized control systems. Such
a combination enables to cut unnecessary wiring, reduces the complexity and the
overall system cost when designing and implementing control systems. Symmet-
ric composite systems arises in very different real world systems such as industrial
manipulators, parallel processes, flexible structure, electric power systems, homo-
geneous interconnected systems such as seismic cables or in the design of reliable
control systems. In practice, controllers are implemented imprecisely because of
various reasons determined by digital controller properties or the need for addi-
tional tuning of parameters. The need to have a certain degree of freedom in the
choice of the controller parameters, i.e. the robustness of stability against perturba-
tions in controller parameters, leads to the requirement to include also uncertainties
of the controllers in the control design.

4.3.1 Introduction

Recently, the results dealing with the DNCS design methods are rare. Relevant prob-
lems are introduced in [4, 6, 7, 9, 36]. Decentralized stabilization of NCS using pe-
riodically time varying local controller is presented in [63], while the reference [73]
deals with the synchronization within the DNCS design. Stability of the DNCS is
analyzed in [35].

It has been customary to confront with several important issues when dealing
with the control of interconnected systems. The first issue is concerned with the
practical limitations in the number and the structure of the feedback loops, which
motivates decentralized control schemes [72]. The second issue regards the presence
of uncertainties both in the subsystems and in the interconnections. The third issue
is the impact of time-delays among the subsystems and across the coupling links.
The fourth issue has to do with the reliability of the control systems against com-
ponent failures and/or perturbations in the feedback gain matrices. In this section,
we study the robust stability and feedback stabilization problems of a class of linear
interconnected continuous time-delay systems, which are frequently encountered to
describe propagation, transport phenomena and population dynamics in various en-
gineering and physical applications. Large-scale interconnected system appear in a
variety of engineering applications including power systems, large structures and
manufacturing systems and for those applications, decentralized control schemes
present a practical and effective means for designing control algorithms based on
the individual subsystems [72]. Relevant research results on decentralized control
of relevance to the present work can be found in [37, 63, 73].
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It appears from the existing results that general results pertaining to intercon-
nected time-delay systems are few and restricted, see [36, 46–48, 62] where most
of the efforts were centered on matching conditions and were virtually delay-
independent. A recent effort was reported recently in [20] where a class of uncertain
systems with interconnected and feedback delays has been considered. However,
the internal time-delay within the subsystems have not been considered and several
bounding inequalities have been included.

It has been recently reported in [3] that the theory of large-scale (interconnected)
systems is devoted to the problems due to dimensionality, information structure con-
straints, uncertainty and delays. Resilient (non-fragile) control methods [28] and
[52–55] have added new tools to the task of designing appropriate control algo-
rithms to cope with gain parameter perturbations and controller implementations
issues and it is interesting to view these tools as robust re-design algorithms [53].
It is crucial to realize that when dealing with several practical problems arising in
power systems, manufacturing systems and irrigation systems, the changes in con-
troller structure and settings might degrade the overall system performance. Thus
the important role of resilient (non-fragile) controllers with information structure
constraints is underlined when considering large-scale systems [3].

This section develops a resilient decentralized H∞ observer-based setting using
the reduced-order control design when considering the delay-dependent approach
within the framework of the LMIs. An a technical outcome, we develop robust
decentralized delay-dependent stability and resilient feedback stabilization meth-
ods for a class of linear interconnected continuous-time systems. The subsystems
are subjected to convex-bounded parametric uncertainties while time-varying de-
lays occur within the local subsystems and across the interconnections and additive
feedback gain perturbations are allowed. In this way, our control design offers de-
centralized structure and possesses robustness with respect to both parametric un-
certainties and gain perturbations. For related results on resilient control, the reader
is referred to [53, 54] where it is shown to provide a framework of extended robust-
ness properties.

4.3.2 Problem Formulation

We consider a class of linear systems with unknown nonlinearities S of the form:

ẋ(t) = AΔx(t) + Bou(t) + ΓΔw(t) + c(t, x)

= [Ao + ΔA]x(t) + Bou(t) + [Γo + ΔΓ ]w(t) + c(t, x(t)), (4.35)

z(t) = [Go + ΔG]x(t) + [Φo + ΔΦ]w(t)

= GΔx(t) + ΦΔw(t),

y(t) = Cox(t),

(4.36)

where x(t) ∈ ℜn is the state vector, u(t) ∈ ℜm is the control input, y(t) ∈ ℜp is
the measured output, w(t) ∈ ℜq is the disturbance input which belongs to L2[0,∞)



4.3 Resilient Stabilization of Interconnected Networked Systems 195

and z(t) ∈ ℜq is the performance output. The unknown nonlinearities c(t, x(t)) are
piecewise continuous functions to be specified at the subsystem level. In what fol-
lows, we view S as structurally composed of ns coupled subsystems Sj and modeled
by:

ẋj (t) = AjΔxj (t) + Bjouj (t) + ΓjΔwj (t) +

ns∑

k=1

FjkΔxk(t) + cj (t, x), (4.37)

zj (t) = GjΔxj (t) + ΦjΔwj (t),

yj (t) = Cjoxj (t), j = 1, . . . , ns,

n =

ns∑

j=1

nj , m =

ns∑

j=1

mj , p =

ns∑

j=1

pj , q =

ns∑

j=1

nj ,

(4.38)

where the unknown nonlinearities cj (t, x(t)) are piecewise continuous functions
satisfying the global Lipschitz conditions for all cj (0, x(0)) as follows

‖cj (t, x1(t)) − cj (t, x2(t))‖ ≤ ‖Ej (x1(t) − x2(t))‖, ∀t ≥ 0, (4.39)

where Ej is a prescribed constant. We further suppose that the structure of the non-
linearities cj (t, x(t)) is in the form

cj (t, x(t)) = e(t, xj )Exj (t), e(t, xj ) : ℜn+1 → [−1,1].

The link between the overall system S and the collection of subsystems Sj is pro-
vided by

Ao =

⎡
⎢⎣

A1o F12o . . . F1nso

...
...

...
...

Fns1o Fns2o . . . Anso

⎤
⎥⎦ , Bo = diag

[
B1o B2o . . . Bnso

]
,

ΔA =

⎡
⎢⎣

ΔA1 ΔF12 . . . ΔF1ns

...
...

...
...

ΔFns1 ΔFns2 . . . ΔAns

⎤
⎥⎦ , Co = diag

[
C1o C2o . . . Cnso

]
,

Φo = diag
[
Φ1o Φ2o . . . Φnso

]
, Γo = diag

[
Γ1o Γ2o . . . Γnso

]
,

ΔΦ = diag
[
ΔΦ1 ΔΦ2 . . . ΔΦns

]
, ΔΓ = diag

[
ΔΓ1 ΔΓ2 . . . ΔΓns

]
,

Go = diag
[
G1o G2o . . . Gnso

]
, ΔG = diag

[
ΔG1 ΔG2 . . . ΔGns

]
.

(4.40)

At the subsystem level, the associated matrices contain parametric uncertainties of
the form

[
AjΔ ΓjΔ

GjΔ ΦjΔ

]
=

[
Ajo Γjo

Gdj Φjo

]
+

[
Hjo

Hja

]
Δjo(t)

[
Eja Ejc

]
, (4.41)

FjkΔ = Fjko + HjcΔja(t)Ejs, (4.42)
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where the unknown nonlinearities are bounded in the form

ct
j (t)cj (t) ≤ αjx

t
j (t)E

t
jEjxj (t), j = 1, . . . , ns, (4.43)

where αj are adjustable parameters and the matrices Fj ∈ ℜnj ×nj are real and
constant. For j = 1, . . . , ns , Hoj , . . . ,Esj are known real constant matrices and
Δjo, Δja are unknown time-varying real matrices of appropriate dimensions with
Lebesgue measurable elements satisfying Δt

joΔjo ≤ I , Δt
jaΔja ≤ I .

The matrices Ajo ∈ ℜnj ×nj , Bjo ∈ ℜnj ×mj , Φjo ∈ ℜqj ×qj , Γjo ∈ ℜnj ×qj , Cjo ∈

ℜpj ×nj , Gjo ∈ ℜqj ×nj , Fjko ∈ ℜnj ×nk are real and constants. The initial condition
xj (0) = φjo ∈ L2[−τ ∗

j ,0], j ∈ {1, . . . , ns}. The constant matrices Ajo, . . . ,Fjko

define the nominal state-space model

ẋj (t) = Ajoxj (t) + Bjouj (t) + Γjowj (t) +

ns∑

k=1

Fjkoxk(t) + cj , (4.44)

zj (t) = Gjoxj (t) + Φjowj (t),

yj (t) = Cjoxj (t), j = 1, . . . , ns,
(4.45)

where in uncertain system (4.37)–(4.38) and nominal system (4.44)–(4.45), xj (t) ∈

ℜnj is the state vector, uj (t) ∈ ℜmj is the control input, yj (t) ∈ ℜpj is the measured
output, wj (t) ∈ ℜqj is the disturbance input which belongs to L2[0,∞) and zj (t) ∈

ℜqj is the performance output.
The class of systems described by (4.45) is frequently encountered in modeling

several physical systems and engineering applications including large space struc-
tures, multi-machine power systems, cold mills, transportation systems, water pol-
lution management, to name a few [48, 72].

4.3.3 Resilient Observer-Based Control

In most of the cases, not all subsystem states are available for measurements, we
seek a decentralized dynamic output-feedback control using subsystem observers
within the network feedback. Consider that one controller-actuator node with a
buffer storing the latest sensor signal at the subsystem level. It is customary that new
sensor data are compared with the latest data. If a new signal reaches the controller-
actuator node, then it is used to compute the control signal, else it is discarded. This
yields in a networked resilient observer controller in the form

˙̂xj (t) = Ajox̂j (t) + Bjouj (t) + LjΔ(ȳj (tk) − Cjox̄j (tk)),

uj (t) = KjΔx̂j (t), t ∈ [tk, tk+1), k = 1,2, . . . , (4.46)

LjΔ = Ljo + ΔLj , KjΔ = Kjo + ΔKj ,
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where x̂j (t) ∈ ℜnj is the observer state of subsystem and the matrices Ljo, Kjo are
the nominal observer gain and the controller feedback gain matrices, respectively. In
addition ΔLj , ΔKj are additive observer and controller gain matrix uncertainties
given by

ΔLj = NjoΔtj (t)Mjo, ΔKj = NjcΔzj (t)Mjc, (4.47)

where for j = 1, . . . , ns , Njo, . . . , Mjc are known real constant matrices and
Δtj , Δzj are unknown time-varying real matrices of appropriate dimensions with
Lebesgue measurable elements satisfying Δt

tjΔtj ≤ I , Δt
zjΔzj ≤ I .

We note in (4.46) that tk = kΔ, k > 0 denotes a sampling instant, Δ is the sam-
pling period and k is an integer. The sampler is equipped with a standard zero order
hold in the feedback. The sampled value yj (tk) of the output yj (t) is transmitted
through a network channel and the successfully transmitted value is registered in a
buffer with ȳj (tk) being the output from the buffer and simultaneously represents
the input to the observer. Also, x̄j (tk) is the observer state copying the whole set
of dropped packets appearing in the transmission of ȳj (tk). Note that tk+1 ≥ tk + 1,
k = 1,2, . . . which corresponds to data packet dropout registered by a buffer and
ȳj (tk) = yj (tk − τkΔ − τc) where τkΔ indicates the data packet dropout and τc

is the network-induced delay. This motivates defining the new time-varying delay
θ(t) = t − tk − τkΔ − τc where 1 ≤ τk ≤ (tk−1 − τcj )/Δ. In the sequel, we consider
the number of data packet dropouts to be bounded so that, including the network-
induced delays for each subsystem, it satisfies the constraint

θm ≤ θ(t) ≤ θM , (4.48)

where θm > 0, θM > 0 are given constants. Therefore, controller (4.46) can be
rewritten as

˙̂xj (t) = Ajox̂j (t) + Bjouj (t) + LjΔ(yj (t − θ(t)) − Cjox̂j (t − θ(t))),

uj (t) = KjΔx̂j (t), (4.49)

x̂j (t) = 0, t ∈ [−θM ,0],

while the overall decentralized observer-based controller can be expressed as

˙̂x(t) = Acx̂(t) + Bou(t) + (Lo + ΔLo)(y(t − θ(t)) − Cox̂(t − θ(t))),

u(t) = (Ko + ΔKo)x̂(t), (4.50)

x̂(t) = 0, t ∈ [−θM ,0]

with

Ko = diag
[
K1o K2o . . . Knso

]
, Lo = diag

[
L1o L2o . . . Lnso

]
,

ΔKo = diag
[
ΔK1o ΔK2o . . . ΔKnso

]
, (4.51)

ΔLo = diag
[
ΔL1o ΔL2o . . . ΔLnso

]
.
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Remark 4.1 From the published results on networked-control systems, we note that
a single packet transmission is supposed in the feedback loop. It means that in each
transmission every control station receives only one packet through the network.
It can be understood as multiple data packets simultaneous transmission through
parallel network channels, where each channel generally corresponds with a local
feedback loop in the DNCS with individual time-varying delays. The availability
of Acknowledgement (ACK) about data losses to the sender as well as the commu-
nication logics considering dropouts in all local channels if the dropout appears in
any local channel. Then, only a single identical time-varying delay can be applied
for any channel. It can be considered as a single communication channel with data
packet dropouts and communication delays connected within a block diagonal struc-
ture of the gain matrix, that is, the sensor-actuator pair structure in the NCS. Such a
network feedback architecture enables essential simplification of the DNCS design
for the considered class of composite systems. The information structure constraints
on only sensor-actuator pairs in the gain matrices is sufficiently justified for sym-
metric composite systems. Much higher reliability of subsystems than that of the
interconnections, an essential simplification of the DNCS design using LMIs, and
the design requirement to keep the symmetry in the closed-loop system lead to the
preference of decentralized control.

4.3.4 Augmented Closed-Loop System

Define the subsystem error vector ej (t) = xj (t) − x̂j (t) and the corresponding aug-
mented vector ξj (t) = [xt

j (t) et
j (t)]t . Using (4.37) and (4.46) with some manipula-

tions, we obtain the augmented model as

ξ̇j (t) = AjΔξj (t) + DjΔξj (t − θ(t)) + Γ̂jΔwj (t) +
ns∑

k=1

FjkΔξk(t) + Cj , (4.52)

zj (t) = GjΔξj (t) + ΦjΔwj (t),

yj (t) = Coξj (t),
(4.53)

AjΔ = Ajo + ΔAj , DjΔ = Djo + ΔDj , ΦjΔ = Φjo + ΔΦj ,

Γ̂jΔ = Γ̂j + ΔΓ̂j , GjΔ = Gjo + ΔGj , FjkΔ = Fjko + ΔFjk,
(4.54)

where

Ajo =
[

Ajo + BjoKjo −BjoKjo

0 Ajo

]
, Djo =

[
0 0
0 −LjoCjo

]
,

Γ̂j =
[

Γjo

Γjo

]
,

(4.55)

ΔAj =
[

ΔAj + BjoΔKj −BjoΔKj

ΔAj 0

]
=
[
Hjo

Hjo

]
Δjo(t)

[
Eja 0

]
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+
[
BjoNjc

0

]
Δzj (t)

[
Mjc 0

]
= ĤjoΔjo(t)Êja + N̂jcΔzj (t)M̂jc,

ΔΓ̂j =
[
ΔΓj

ΔΓj

]
=
[
Hjo

Hjo

]
Δjo(t)Ejc = ĤjoΔjo(t)Ejc, Cjo =

[
Cjo 0

]
,

ΔDj =
[

0 0
0 −ΔLjCjo

]
=
[

0
−Njo

]
Δtj (t)

[
0 MjoCjo

]
= N̂joΔtj (t)M̂jo,

Gjo =
[
Gjo 0

]
, ΔGj =

[
ΔGj 0

]
=
[
Hja 0

]
Δjo(t)Eja = H̃jaΔjo(t)Eja,

(4.56)

Fjko =
[
Fjko 0
Fjko 0

]
, Cj =

[
cj

cj

]
,

ΔFjk =
[
Hjc

Hjc

]
Δja(t)

[
Ejs 0

]
= H̃jkΔja(t)Ẽjk.

Our objective in this section is to study two main problems: the first problem is the
decentralized delay-dependent asymptotic stability by deriving a feasibility testing
at the subsystem level so as to guarantee the overall system asymptotic stability. The
second problem deals with the resilient decentralized stabilization by developing
state-feedback controllers that takes into consideration additive gain perturbations
while ensuring that the overall closed-loop system is delay-dependent asymptoti-
cally stable.

4.3.5 Delay-Dependent Subsystem Stability

In what follows, we develop new criteria for LMI-based characterization of delay-
dependent asymptotic stability and L2 gain analysis which requires only subsystem
information thereby assuring decentralization. The criteria includes some parameter
matrices aims at expanding the range of applicability of the developed conditions.
We consider the Lyapunov-Krasovskii functional (LKF):

V (t) =
ns∑

j=1

Vj (t),

Vj (t) = ξ t
j (t)Pj ξj (t) +

∫ 0

−θM

ξ t
j (α)Wj ξj (α)dα +

∫ 0

−θ

ξ t
j (α)Sj ξj (α)dα (4.57)

+ θM

∫ 0

−θM

∫ t

t+σ

ξ̇ t
j (s)Rj ξ̇j (s) ds dσ,

where 0 < Pj = P t
j , 0 < Wj = W t

j , 0 < Sj = S t
j , 0 < Rj = Rt

j , j ∈ {1, . . . , ns}

are weighting matrices of appropriate dimensions. Introducing the matrices and vec-
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tor quantities

Q̂j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Pj + Θj )Ĥjo (Pj + Θj )N̂jc Θj N̂jo 0 0 0 φ 0
Υj Ĥjo Υj N̂jc Υj N̂jo 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 H 0 0 0 0
0 0 0 0 H 0 0 0
0 0 0 0 0 H 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where H =
∑ns

k=1,k �=j H̃kj , φ = (Pj + Θj + Υj )Ĥjo,

T̂j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1Ê
t
jo σ1M̂

t
jc 0 σ3Ê

t
kj σ3Ê

t
kj σ3Ê

t
kj 0 σ5E

t
ja

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 σ2M̂

t
jo 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Λj = col[(Pj + Θj + Υj )Γ̂j , 0, 0, 0, 0, 0, 0, 0],

Ĝ
t
jo = [Gjo, 0, 0, 0, 0, 0, 0, 0]t .

for some scalars σ1 > 0, . . . , σ6 > 0 and free-weighting matrices Θj , Υj , j =

1, . . . , ns . The following theorems establishes the main design result for subsys-
tem Sj .

Theorem 4.2 Given the bounds θm > 0, θM > 0, the family of subsystems de-

scribed by (4.52)–(4.56) is robustly delay-dependent asymptotically stable with L2-

performance bound γj if there exist positive-definite matrices Pj , Wj , Sj , Rj , free-

weighting matrices Θj , Υj and scalars σ1 > 0, . . . , σ6 > 0 satisfying the following

LMIs for j, k = 1, . . . , ns

Πj =

⎡
⎢⎢⎢⎢⎣

Ψjo Λj Ĝ
t
jo Q̂j T̂j

• −γ 2
j Ij Φ t

jo 0 0
• • −Ij 0 0
• • • −Σj 0
• • • • −Σj

⎤
⎥⎥⎥⎥⎦

< 0, (4.58)
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where

Ψjo =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ψajo Ψ1jo 0 Ψ2jo Ψ3j Ψsjo

• −Ψcj 0 Ψ4jo Ψ5j 0
• • −Ψmj Ψ6j 0 0
• • • −Ψnj 0 0
• • • • −Ij 0
• • • • • −Ψ7j

⎤
⎥⎥⎥⎥⎥⎥⎦

, (4.59)

Ψajo = (Pj + Θj )Ajo + A
t
jo(Pj + Θj ) + Wj + Sj − Rj

+ (ns − 1)(Pj + Θj + Υj ),

Ψ1jo = −Θj + A
t
joΥj , Ψ5j = Υj , Ψ2jo = Θj Djo + Rj ,

Ψ3j = Pj + Θj , Ψcj = −θ2
M Rj + Υj + Υ t

j , (4.60)

Ψ7j = diag
[

P −1
k Θ−1

k Υ −1
k

]
,

Ψ4jo = Υj Djo, Ψmj = Rj + Wj , Π6j = Rj , Ψnj = 2Rj + Sj ,

Ψsjo =
[ ns∑

k=1,k �=j

F
t
kjo

ns∑

k=1,k �=j

F
t
kjo

ns∑

k=1,k �=j

F
t
kjo

]
.

Proof A straightforward computation gives the time-derivative of Vj (t) along the
solutions of (4.53) with w(t) ≡ 0 as:

V̇j (t) = 2ξ t
j (t)Pj ξ̇j (t) + θ2

M ξ̇ t
j (t)Rj ξ̇j (t)

− θM

∫ t

t−θM

ξ̇ t
j (s)Rj ξ̇j (s)ds + ξ t

j (t)(Wj + Sj )ξj (t)

− ξ t
j (t − θM)Wj ξj (t − θM) − ξ t

j (t − θ)Sj ξj (t − θ). (4.61)

Initially, we use the identity

−θM

∫ 0

−θM

ξ̇ t
j (s)Rj ξ̇j (s)ds = −θM

∫ t−θ

t−θM

ξ̇ t
j (s)Rj ξ̇j (s)ds

− θM

∫ t

t−θ

ξ̇ t
j (s)Rj ξ̇j (s)ds. (4.62)

Then apply Jensen’s inequality

∫ t

t−θ

ξ̇ t
j (s)Rj ξ̇j (s)ds ≥

∫ t

t−θ

ξ̇ t
j (s)dsRj

∫ t

t−θ

ξ̇j (s)ds, (4.63)

∫ t−θ

t−θM

ξ̇ t
j (s)Rj ẋj (s)ds ≥

∫ t−θ

t−θM

ξ̇ t
j (s)dsRj

∫ t−θ

t−θM

ξ̇j (s)ds. (4.64)
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By the structural identity

ns∑

k=1,k �=j

ns∑

j=1

ξ t
k(t)FjkΔξk(t) =

ns∑

k=1,k �=j

ns∑

j=1

ξ t
j (t)FkjΔξj (t) (4.65)

while invoking the algebraic inequality XtZ + ZtX ≤ XtYX + ZtY−1Z, Y > 0,
such that

2ξ t
j (t)Pj

ns∑

k=1,k �=j

FjkΔξk(t)

≤ (ns − 1)ξ t
j (t)Pj ξj (t) +

ns∑

k=1,k �=j

ξ t
k(t)F

t
jkΔPj FjkΔξk(t)

≤ (ns − 1)ξ t
j (t)Pj ξj (t)

+

(
ns∑

k=1,k �=j

ξ t
k(t)F

t
jkΔPj

)
P −1

j

(
Pj

ns∑

k=1,k �=j

FjkΔξk(t)

)
, (4.66)

it follows finally that

V̇ (t) ≤

ns∑

j=1

[
2ξ t

j (t)Pj

(
[Ajo + ΔAj ]ξj (t) + [Djo + ΔDj ]ξj (t − θ) + Cj

)

+ θ2
M ξ̇ t

j (t)Rj ξ̇j (t) − (ξj (t) − ξj (t − θ))t Rj (ξj (t) − ξj (t − θ))

− (ξj (t − θ) − ξj (t − θM))t Rj (ξj (t − θ) − ξj (t − θM))

+ ξ t
j (t)(Wj + Sj )ξj (t) − ξ t

j (t − θM)Wjxj (t − θM)

− ξ t
j (t − θ)Sjxj (t − θ) + (ns − 1)ξ t

j (t)Pj ξj (t)

+

(
ns∑

k=1,k �=j

ξ t
k(t)F

t
jkΔPj

)
P −1

j

(
Pj

ns∑

k=1,k �=j

FjkΔξk(t)

)]
. (4.67)

Now by adding the zero-value expression

0 ≡ 2[ξ t
j (t)Θj + ξ̇ t

j (t)Υj ]

[
−ξ̇j (t) + [Ajo + ΔAj ]ξj (t) + [Djo + ΔDj ]ξj (t − θ)

+

ns∑

k=1

FjkΔξk(t) + Cj

]
(4.68)

to the right-hand side of (4.67) and setting

ζj (t) = col{ξj (t), ξ̇j (t), ξj (t − θM), ξj (t − θ), Cj }
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while invoking

2ξ t
j (t)Θj

ns∑

k=1,k �=j

FjkΔξk(t)

≤ (ns − 1)ξ t
j (t)Θj ξj (t) +

ns∑

k=1,k �=j

ξ t
k(t)F

t
jkΔΘj FjkΔξk(t)

≤ (ns − 1)ξ t
j (t)Θj ξj (t)

+

(
ns∑

k=1,k �=j

ξ t
k(t)F

t
jkΔΘj

)
Θ−1

j

(
Θj

ns∑

k=1,k �=j

FjkΔξk(t)

)
, (4.69)

2ξ t
j (t)Υj

ns∑

k=1,k �=j

FjkΔξk(t)

≤ (ns − 1)ξ t
j (t)Υj ξj (t) +

ns∑

k=1,k �=j

ξ t
k(t)F

t
jkΔΥj FjkΔξk(t)

≤ (ns − 1)ξ t
j (t)Υj ξj (t)

+

(
ns∑

k=1,k �=j

ξ t
k(t)F

t
jkΔΥj

)
Υ −1

j

(
Υj

ns∑

k=1,k �=j

FjkΔξk(t)

)
(4.70)

it follows finally that

V̇ (t) ≤

ns∑

j=1

ζ t
j (t)ΨjΔζj (t) ≤ 0 (4.71)

if the matrix Ψj is feasible, where ΨjΔ = Ψjo + ΔΨj with Ψjo is the nominal part
of ΨjΔ by setting Δoj ≡ 0, Δaj ≡ 0, Δtj ≡ 0 and Δzj ≡ 0 as given by (4.59) and
ΔΨj is given by

ΔΨj =

⎡
⎢⎢⎢⎢⎢⎢⎣

ΔΨaj ΔΨ1j 0 ΔΨ2j 0 ΔΨsj

• 0 0 ΔΨ4j 0 0
• • 0 0 0 0
• • • 0 0 0
• • • • 0 0
• • • • • 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (4.72)



204 4 Decentralized Systems with Multi-controllers

ΔΨaj = (Pj + Θj )(ĤjoΔjo(t)Êjo + N̂jcΔzj (t)M̂jc)

+ (Êt
joΔ

t
jo(t)Ĥ

t
jo + M̂ t

jcΔ
t
zj (t)N̂

t
jc)(Pj + Θj ),

ΔΨ1j = Êt
joΔ

t
jo(t)Ĥ

t
joΥj + M̂ t

jcΔ
t
zj (t)N̂

t
jcΥj ,

ΔΨ2j = Θj N̂joΔtj (t)M̂jo,

ΔΨ4j = Υj N̂
t
joΔ

t
tj (t)M̂

t
jo,

ΔΨsj =
[ ns∑

k=1,k �=j

Ẽt
kjΔ

t
ka(t)H̃

t
kj

ns∑

k=1,k �=j

Ẽt
kjΔ

t
ka(t)H̃

t
kj

ns∑

k=1,k �=j

Ẽt
kjΔ

t
ka(t)H̃

t
kj

]
.

(4.73)

Robust asymptotic stability requirement V̇j (t)|(4.52) ≤ 0 implies that ΨjΔ < 0 for all
admissible uncertainties satisfying (4.40) and (4.47). Next, considering the L2-gain

performance measure J =
∑ns

j=1 Jj for any wj (t) ∈ L2(0,∞) �= 0 with zero initial
condition xj (0) = 0 hence V (0) = 0, we have

Jj =

∫ ∞

0

(
zt
j (s)zj (s) − γ 2

j wt
j (s)wj (s)

)
ds

≤

∫ ∞

0

(
zt
j (s)zj (s) − γ 2

j wt
j (s)wj (s) + V̇j (s)|(4.52)

)
ds. (4.74)

Using (4.52) and (4.53), we obtain:

zt
j (s)zj (s) − γ 2

j wt
j (s)wj (s) + V̇j (s)|(4.52)

≤ [ζ t
j (s) wt

j (s)]Ψ̂jΔ[ζ t
j (s) wt

j (s)]
t

=

[
ζj (s)

wj (s)

]t
[

ΨjΔ + Ĝ
t
jΔĜjΔ Ĝ

t
jΔΦjΔ + (Pj + Θj + Υj )

̂̂
Γ jΔ

• −γ 2
j Ij + Φ t

jΔΦjΔ

][
ζj (s)

wj (s)

]
.

(4.75)

That Jj < 0 for arbitrary s ∈ [t,∞) implies for any wj (t) ∈ L2(0,∞) �= 0 that

zt
j (s)zj (s) − γ 2

j wt
j (s)wj (s) + V̇j (s)|(4.52) < 0.

This leads to ‖zj (t)‖2 <
∑ns

j=1 γj‖w(t)j‖2, which assures the desired perfor-

mance. In terms of (4.58) and considering Ψ̂jΔ while invoking bounding inequal-
ity A from Sect. 9.3.1 with some algebraic manipulations and Schur complements,
we obtain LMI (4.58) for some scalars σ1 > 0, . . . , σ6 > 0 and hence the proof is
completed. �

Theorem 4.3 Given the bounds θm > 0, θM > 0, the family of subsystems described

by (4.52)–(4.53) is delay-dependent asymptotically stabilizable by decentralized

output-feedback controller with L2-performance bound γj , j = 1, . . . , ns , if there
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exist positive-definite matrices Yj , Mwj , Mrj , Msj , any matrices Gj , and scalars

σ1 > 0, . . . , σ6 > 0, λΘ , λΥ satisfying the following LMIs for j = 1, . . . , ns

Π̃j =

⎡
⎢⎢⎢⎢⎣

Ψ̃jo Λ̃j G̃
t
jo Q̃j T̃j

• −γ 2
j Ij Φ t

jo 0 O1

• • −Ij O2 0
• • • −Σj 0
• • • • −Σj

⎤
⎥⎥⎥⎥⎦

< 0, (4.76)

where

Λ̃j = [(1 + λΘ + λΥ )Γ̂j ,0,0,0,0,0]t , G̃
t
jo = [Yj G

t
jo,0,0,0,0,0]t ,

Q̃j = Yj Q̂j , T̃j = Yj T̂j .

Moreover, the gain matrices are given by Kj = Gj Y −1
j , Lj = Vj Y −1

j C
†
jo.

Proof Considering LMI (4.58), Letting Θj = λΘ Pj , Υj = λΥ Pj (λΘ , λΥ are any
scalars), and applying the congruent transformation

T = diag[Yj , Yj , Yj , Yj , Yj , Ij , Ij , Ij , Ij , Ij ], Yj = P −1
j

we obtain that

Πj =

⎡
⎢⎢⎢⎢⎣

Ψ̃jo YjΛj Yj Ĝ
t
jo Yj Q̂j Yj T̂j

• −γ 2
j Ij Φ t

jo 0 O1

• • −Ij O2 0
• • • −Σj 0
• • • • −Σj

⎤
⎥⎥⎥⎥⎦

< 0, (4.77)

where

Ψ̃jo =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ψ̃ajo Ψ̃1jo 0 λΘDjoYj + Mrj (1 + λΘ)Yj Ψ̃sjo

• −Ψ̃cj 0 λΥ DjoYj λΥ Yj 0
• • −Ψ̃mj Mrj 0 0
• • • −Ψ̃nj 0 0
• • • • −Ij 0
• • • • • −Ψ̃7j

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(4.78)

Ψ̃ajo = (1 + λΘ)AjoYj + (1 + λΘ)Yj A
t
jo + Mwj + Msj − Mrj

+ (ns − 1)(1 + λΘ + λΥ )Yj ,

Ψ̃1jo = −λΘ Yj + λΥ Yj A
t
jo, Ψ̃cj = −θ2

M Mrj + λΥ Yj + λΥ Y t
j ,

Ψ̃mj = Mwj + Mrj , Ψ̃nj = 2Mrj + Msj , Ψ̃7j = diag
[

Yk λ−1
Θ Yk λ−1

Υ Yk

]
,

Ψ̃sjo =
[ ns∑

k=1,k �=j

YkF
t
kjo

ns∑

k=1,k �=j

YkF
t
kjo

ns∑

k=1,k �=j

YkF
t
kjo

]
,
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Mwj = Yj Wj Yj , Msj = Xj Sj Xj , Mrj = Yj Rj Yj , (4.79)

Q̂j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Pj + Θj )Ĥjo (Pj + Θj )N̂jc Θj N̂jo 0 0 0 φ 0
Υj Ĥjo Υj N̂jc Υj N̂jo 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 H 0 0 0 0
0 0 0 0 H 0 0 0
0 0 0 0 0 H 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with H =
∑ns

k=1,k �=j H̃kj , φ = (Pj + Θj + Υj )Ĥjo,

T̂j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1Ê
t
jo σ1M̂

t
jc 0 σ3Ê

t
kj σ3Ê

t
kj σ3Ê

t
kj 0 σ5E

t
ja

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 σ2M̂

t
jo 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

O1 = [0, 0, 0, 0, 0, 0, σ4E
t
jc, σ5E

t
jc], O2 = [0, 0, 0, 0, 0, 0, 0, Hja],

Λj = col[(Pj + Θj + Υj )Γ̂j , 0, 0, 0, 0, 0, 0, 0],

Ĝ
t
jo = [Gjo, 0, 0, 0, 0, 0, 0, 0]t ,

Σj = diag[σ1Ij , σ1Ij , σ2Ij , σ3Ij , σ3Ij , σ3Ij , σ4Ij , σ5Ij ].

Next, let Yj =
[Y1j 0

0 Y1j

]
, Gj = Kj Y1j , Vj = LjCjoY1j , we can get LMI (4.76)

with (4.79) and therefore the proof is completed. �

4.3.6 Simulation Example 4.2

To illustrate the design procedures developed in Theorem 4.3, we consider a rep-
resentative water pollution model of two consecutive reaches of the River Nile.
This linearized model forms an interconnected system of the type (4.37)–(4.38) for
ns = 2 and the following information.

Nominal subsystem matrices

A1o =

[
1.05 −0.42
1.1 0

]
, A2o =

[
1 −0.5

1.1 0.3

]
, B1o =

[
0
1

]
, B2o =

[
1
0

]
,

C1o = [−1 1 ], C2o =
[

0.7 1
]
, G1o =

[
−1 1

]
, G2o =

[
1 0.8

]
.
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Delay and disturbance parameters

Γ1o =
[

0.2
1

]
, Γ2o =

[
0.5
0.8

]
, Φ1o = 0.02, Φ2o = 0.03,

M1o = 0.2, M2o = 0.3, N1o = 0.2, N2o = 0.4,

M1c = 0.5, M2c = 0.1, N1c = 0.03, N2c = 0.01,

H1o =
[

0.03
0.03

]
, H1o =

[
0.02
0.02

]
, H1a = 0.1, H2a = 0.2,

H21 = 0.3, H12 = 0.4,

E1a =
[

0.1
0.1

]
, E2a =

[
0.1
0.1

]
, E1c = 0.01, E2c = 0.01,

E1o = 0.2, E2o = 0.2, E12 = 0.1, E21 = 0.1.

Coupling matrices

F12o =
[
−1 0
−1 −0.5

]
, F21o =

[
−0.6 0
0.2 1

]
.

By selecting

λΘ = 0.01, λΥ = 0.02,

σ1 = 1.3, σ2 = 1.4, σ3 = 0.9, σ4 = 1.5, σ5 = 1.1,

while using the foregoing nominal data and invoking the MATLAB software, we
obtain

Y1 =
[

0.0313 0.0135
0.0135 0.0868

]
, Y2 =

[
0.0266 0.0150
0.0150 0.1150

]
,

Mw1 =
[

0.0001 0.0002
0.0002 0.0013

]
, Mw2 = 10−3 ×

[
0.0913 0.0312
0.0312 0.6294

]
,

Ms1 =
[

0.0001 0.0002
0.0002 0.0013

]
, Ms2 = 10−3 ×

[
0.0911 0.0312
0.0312 0.6276

]
,

Mr1 =
[

0.1210 0.0509
0.0509 0.3198

]
, Mr2 = 10−3 ×

[
0.0991 0.0548
0.0548 0.4285

]
,

G1 =
[

0.0298 −0.0978
]
, G2 =

[
−0.0233 −0.0297

]
,

as feasible solution of the matrix inequalities. These give the following gain matri-
ces:

K1 =
[

1.5403 −1.3657
]
, K2 =

[
−0.7909 −0.1549

]
,

L1 =
[
−194.0815
181.7862

]
, L2 =

[
174.8047
248.3807

]
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along with the L2 gain γ = 0.7 and the maximum of the network-induced delays
is 0.1.

4.4 Control of Discrete-Time Systems with Input Saturation

We study decentralized stabilization of discrete time linear time invariant (LTI)
systems subject to actuator saturation, using LTI controllers. The requirement of
stabilization under both saturation constraints and decentralization impose obvious
necessary conditions on the open-loop plant, namely that its eigenvalues are in the
closed unit disk and further that the eigenvalues on the unit circle are not decen-
tralized fixed modes. The key contribution of this work is to provide a broad suf-
ficient condition for decentralized stabilization under saturation. Specifically, we
show through an iterative argument that stabilization is possible whenever: (1) the
open loop eigenvalues are in the closed unit disk, (2) the eigenvalues on the unit
circle are not decentralized fixed modes, and (3) these eigenvalues on the unit circle
have algebraic multiplicity 1.

4.4.1 Introduction

The result presented here contributes to our ongoing study of the stabilization of de-
centralized systems subject to actuator saturation. The eventual goal of this study is
the design of controllers for saturating decentralized systems that achieve not only
stabilization but also high performance. As a first step toward this design goal, we
are currently looking for tight conditions on a decentralized plant with input satura-
tion, for the existence of stabilizing controllers. Even this check for the existence of
stabilizing controllers turns out to be extremely intricate: we have yet to obtain nec-
essary and sufficient conditions for stabilization, but have obtained a broad sufficient
condition, see the results in [29–34, 38–40, 64–77]. This section further contributes
to the study of the existence of stabilizing controllers, by describing a analogous
sufficient condition for discrete-time decentralized plants.

To motivate and introduce the main result in the section, let us briefly review
foundational studies on both decentralized control and saturating control systems.
We recall that a necessary and sufficient condition for stabilization of a decen-
tralized system using LTI state-space controllers is given in Wang and Davison’s
classical work [78]. They obtain that stabilization is possible if and only if all de-
centralized fixed modes of a plant are in the open left half plane, and give spec-
ifications of and methods for finding these decentralized fixed modes. Numerous
further characterizations of decentralized stabilization (and fixed modes) have been
given, see for instance the work of Corfmat and Morse [12]. In complement, for
centralized control systems subject to actuator saturation, not only conditions for
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stabilization but also practical designs have been obtained, using the low gain and
low-high-gain methodology. For a background on the results for centralized sys-
tems subject to input saturation we refer to two special issues [5, 69]. Of impor-
tance here, we recall that a necessary and sufficient condition for semi global sta-
bilization of LTI plants with actuator saturation is that their open-loop poles are in
the closed left half plane. Combining this observation with Wang and Davison’s
result, one might postulate that stabilization of a saturating linear decentralized
control system is possible if and only of (1) the open-loop plant poles are in the
closed left half plane (respectively, closed unit disk, for discrete-time systems),
and (2) the poles on the imaginary axis (respectively, unit circle) are not decen-
tralized fixed modes. The necessity of the two requirements is immediate, but we
have not yet been able to determine whether the requirements are also sufficient. As
a first step for continuous-time plants, we showed in [75] that decentralized stabi-
lization under saturation is possible when (1) the plant’s open-loop poles are in the
CLHP with imaginary axis poles non-repeated, and (2) the imaginary axis poles are
not decentralized fixed modes. Here, we develop an analogous result for discrete-
time plants, in particular showing that decentralized stabilization under saturation
is possible if (1) the plant’s open-loop poles are in the closed unit disk with unit-
circle poles non-repeated, and (2) the unit circle poles are not decentralized fixed
modes.

4.4.2 Problem Formulation

Consider the LTI discrete-time systems subject to actuator saturation,

Σ :
{

x(k + 1) = Ax(k) +
∑ν

j=1 Bj sat(uj (k)),

yj (k) = Cjx(k), j = 1, . . . , ν,
(4.80)

where x ∈ ℜn is state, uj ∈ ℜmj , j = 1, . . . , ν are control inputs, yj ∈ ℜpj , j =

1, . . . , ν are measured outputs, and ‘sat’ denotes the standard saturation element.
Here we are looking for ν controllers of the form,

Σ :

{
zj (k + 1) = Kjzi(k) + Ljyi(k), zj ∈ ℜsi ,

uj (k + 1) = Mjzj (k) + Njyj (k).
(4.81)

Let the system (4.80) be given. The semi-global stabilization problem via decen-
tralized control is said to be solvable if for all compact sets W and S1, . . . , Sν there
exists ν controllers of the form (4.81) such that the closed loop system is asymptot-
ically stable with the set

W × S1 × · · · × Sν

contained in the domain of attraction.
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The main objective is to develop necessary and sufficient conditions such that the
semi-global stabilization problem via decentralized control is solvable. This objec-
tive has not yet been achieved. However, we obtain necessary conditions as well as
sufficient conditions which are quite close.

4.4.3 Review Results

Before we tackle the problem introduced in Sect. 4.4.2, let us first review the nec-
essary and sufficient conditions for the decentralized stabilization of the linearized
model of the given system Σ ,

Σ̄ :
{

x(k + 1) = Ax(k) +
∑ν

j=1 Biui(k),

yj (k) = Cjx(k), j = 1, . . . , ν.
(4.82)

The decentralized stabilization problem for Σ̄ is to find LTI dynamic controllers
Σj , j = 1, . . . , ν, of the form (4.81) such that the poles of the closed loop system
are in the desired locations in the open unit disc.

Given system Σ̄ and controllers Σi , defined by (4.82) and (4.81) respectively, let
us first define the following matrices in order to provide an easier bookkeeping:

B = [B1 . . . Bν], C = [C′
1 . . . C′

ν]
′,

K = diag[K1, . . . ,Kν], L = diag[L1, . . . ,Lν],

M = diag[M1, . . . ,Mν], N = diag[N1, . . . ,Nν].

Definition 4.1 Consider system Σ̄ , λ ∈ C is called a decentralized fixed mode if
for all block diagonal matrices H we have

det(λI − A − BHC) = 0.

We look at eigenvalues that can be moved by static decentralized controllers. How-
ever, it is known that if we cannot move an eigenvalue by static decentralized con-
trollers then we cannot move the eigenvalue by dynamic decentralized controllers
either.

Lemma 4.1 Necessary and sufficient condition for the existence of a decentralized

feedback control law for the system Σ̄ such that the closed loop system is asymptot-

ically stable is that all the fixed modes of the system be asymptotically stable (in the

unit disc).

Proof We first establish necessity.
Assume local controllers Σi together stabilize Σ̄ then for any |λ| ≥ 1 there exists

a δ such that (λ+ δ)I −K is invertible and the closed loop system replacing K with
K − δI is still asymptotically stable. This choice is possible because if λI − K
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is invertible obviously we can choose δ = 0. If λI − K is not invertible, by small
enough choice of δ we can make sure that (λ + δ)I − K is invertible and the closed
loop system replacing K with K − δI is still asymptotically stable. But the closed
loop system when K − δI is in the loop is asymptotically stable. In particular, it can
not have a pole in λ. So

det(λI − A − B[M(λI − (K − δI ))−1L + N ]C) �= 0.

Hence the block diagonal matrix

S = M(λI − (K − δI ))−1L + N

has the property that

det(λI − A − BSC) �= 0

thus λ is not a fixed mode. Since this argument is true for any λ on or outside the unit
disc, this implies that all the fixed modes must be inside the unit disc. This proves
the necessity of the Lemma 4.1.

Next, we establish sufficiency. The papers [12, 78] showed that if the decentral-
ized fixed modes of a strongly connected system are stable, we can find a stabiliz-
ing controller for the system. However, these papers are based on continuous-time
results. For completeness we present the proof for discrete time which is a straight-
forward modification of [78]. We first claim that decentralized fixed modes are in-
variant under preliminary output injection. But this is obvious from our necessity
proof since a trivial modification shows that no dynamic controller can move a fixed
mode. To prove that we can actually stabilize the system, we use a recursive argu-
ment. Assume the system has an unstable eigenvalue in μ. Since μ is not a fixed
mode there exists Ni such that

A +

ν∑

j=1

BjNjCj

no longer has an eigenvalue in μ. Let k be the smallest integer such that an unstable
eigenvalue of A is no longer an eigenvalue of

A +

k∑

j=1

BjNjCj

while Nj can be chosen small enough not to introduce additional unstable eigenval-
ues. Then for the system

(
A +

k−1∑

j=1

BjNjCj ,Bk,Ck

)

an unstable eigenvalue is both observable and controllable. But this implies that
there exists a dynamic controller which moves this eigenvalue in the open unit
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disc without introducing new unstable eigenvalues. Through a recursion, we can
move all eigenvalues one-by-one in the open unit disc and in this way find a de-
centralized controller which stabilizes the system. This proves the sufficiency of the
Lemma 4.1. �

4.4.4 Main Results

Here, we present the main results of Sect. 4.4.

Theorem 4.4 Consider the system Σ . There exists nonnegative integers s1, . . . , sν
such that for any given collection of compact sets W ⊂ ℜn and Si ⊂ ℜsi , i =
1, . . . , ν, there exists ν controllers of the form (4.81) such that the origin of the

resulting closed loop system is asymptotically stable and the domain of attraction

includes W × S1 × · · · × Sν only if

• All fixed modes are in the open unit disc.
• All eigenvalues of A are in the closed unit disc.

Proof There exists an open neighborhood containing the origin for the closed loop
system of Σ with the controllers Σi is identical to the closed loop system of Γ̄

with the controllers Σi . Hence asymptotic stability of one closed loop system is
equivalent to asymptotic stability of the other closed loop system. But then it is
obvious from Lemma 4.1 that the first item of Theorem 4.4 is necessary for the
existence of controllers of the form (4.81) for Σ̄ such that the origin of the resulting
closed loop system is asymptotically stable.

To prove the necessity of the second item of Theorem 4.4, assume that λ is an
eigenvalue of A outside the unit disc with associated left eigenvector p. We obtain:

px(k + 1) = λpx(k) + v(k),

where

v(k) :=

ν∑

j=1

pBi sat(uj (k)).

Because of the saturation elements, there exists an M̃ > 0 such that |v(k)| ≤ M̃ for
all k ≥ 0. But then we have

px(k) = λkpx(0) +

k−1∑

j=0

λk−1−jv(j) = λk(px(0) + Sk), (4.83)

where Sk =
∑k−1

j=0 v(j)
v(j)

λi+1 . We find that

|Sk| ≤ M̃

k∑

j=1

1

|λ|j
= M̃

1 − 1
|λ|k

|λ| − 1
<

M̃

|λ| − 1
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and then from (4.83) we find

|px(k)| > |λ|k
(

|px(0)| − M̃

|λ| − 1

)
∀k ≥ 1.

Hence |px(k)| does not converge to zero independent of our choice for a controller

if we choose the initial condition x(0) such that |px(0)| > M̃
|λ|−1 because of the fact

that |λ| > 1. However, the system was semi-globally stabilizable and hence there
exists a controller which contains this initial condition in its domain of attraction
and hence |px(k)| → 0 which yields a contradiction. This proves the second item
of Theorem 4.4.

We now proceed to the next theorem which gives a sufficient condition for semi-
global stabilizability of (4.80) when the set of controllers given by (4.81) are uti-
lized. �

Theorem 4.5 Consider the system Σ . There exists nonnegative integers s1, . . . , sν
such that for any given collection of compact sets W ⊂ ℜn and Sj ⊂ ℜsj , j =

1, . . . , ν, there exists ν controllers of the form (4.81) such that the origin of the

resulting closed loop system is asymptotically stable and the domain of attraction

includes W × S1 × · · · × Sν if

• All fixed modes are in the open unit disc.
• All eigenvalues of A are in the closed unit disc with those eigenvalues on the unit

circle having algebraic multiplicity equal to one.

To prove this theorem we will exploit the following lemma which follows directly

from classical results of eigenvalues and eigenvectors and the results of perturba-

tions of the matrix on those eigenvalues and eigenvectors.

Lemma 4.2 Let Aδ ∈ ℜn×n be a sequence of matrices parametrized by δ and a

matrix A ∈ ℜn×n such that Aδ → A as δ → 0. Let A be a matrix with all eigenvalues

in the closed unit disc and with p eigenvalues on the unit disc with all of them having

multiplicity 1. Also assume that Aδ has all its eigenvalues in the closed unit disc. Let

matrix P > 0 be such that A′PA − P ≤ 0 is satisfied. Then for small δ > 0 there

exists a family of matrices Pδ > 0 such that

A′
δPδAδ − Pδ ≤ 0

and Pδ → P as δ → 0.

Proof We first observe that there exists a matrix S such that

S−1
δ AδSδ =

(
A11 0

0 A22

)
,

where all eigenvalues of A11 are on the unit circle while the eigenvalues of A22 are
in the open unit disc. Since Aδ → A and the eigenvalues of A11 and A22 are distinct,
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there exists a parametrized matrix Sδ such that for sufficiently small δ

S−1
δ AδSδ =

(
A11,δ 0

0 A22,δ

)
,

where Sδ → S, A11,δ → A11 and A22,δ → A22 as δ → 0.
Given a matrix P > 0 such that A′PA − P ≤ 0. Let us define

P̄ = S′PS =

(
P̄11 P̄12

P̄ ′
12 P̄22

)
,

with this definition we have
(

A′
11 0
0 A′

22

)
P̄

(
A11 0

0 A22

)
− P̄ ≤ 0. (4.84)

Next given an eigenvector x1 of A11, i.e. A11x1 = λx1 with |λ| = 1, we have

(
x1

0

)∗
[(

A′
11 0
0 A′

22

)
P̄

(
A11 0

0 A22

)
− P̄

](
x1

0

)
= 0.

Using (4.84), the above implies that
[(

A′
11 0
0 A′

22

)
P̄

(
A11 0

0 A22

)
− P̄

](
x1

0

)
= 0.

Since all the eigenvalues on the unit disc of A11 ∈ ℜp×p are distinct we find that the
eigenvectors of A11 span ℜp and hence

[(
A′

11 0
0 A′

22

)
P̄

(
A11 0

0 A22

)
− P̄

](
I

0

)
= 0.

This results in
[(

A′
11 0
0 A′

22

)
P̄

(
A11 0

0 A22

)
− P̄

](
0 0
0 V

)
≤ 0.

This implies that A′
11P̄12A22 − P̄12 = 0 and since eigenvalues of A11 are on the unit

disc and eigenvalues of A22 are inside the unit disc, we find that P̄12 = 0 because

A′
11P̄12A22 = P̄12 ⇒ (A′

11)
kP̄12A

k
22 = P̄12,

where k is an arbitrary positive integer. Note that (A′
11)

k remains bounded while
Ak

22 → 0 as k → ∞. This means that for k → ∞, P̄12 → 0 and because P̄12 is
independent of k, we find that P̄12 = 0. Next, since A22 has all its eigenvalues in the
open unit disc, there exists a parametrized matrix Pδ,22 such that for δ small enough

A′
δ,22Pδ,22Aδ,22 − Pδ,22 = V ≤ 0
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while Pδ,22 → P22 as δ → 0.
Let A11 = WΛAW−1 with ΛA a diagonal matrix. Because the eigenvectors of

A11 are distinct and A11,δ → A11, the eigenvectors of A11,δ depend continuously
on δ for δ small enough and hence there exists a parametrized matrix Wδ such that
Wδ → W while A11,δ = WδΛAδW

−1
δ with ΛAδ diagonal. The matrix P̄11 satisfies

A′
11P̄11A11 − P̄11 = 0.

This implies that ΛP = W ∗P̄11W satisfies

Λ∗
AΛP ΛA − ΛP = 0.

The above equation then shows that ΛP is a diagonal matrix. We know that

Λ∗
Aδ

→ ΛA.

We know that ΛAδ is a diagonal matrix the diagonal elements of which have mag-
nitude less or equal to one while ΛP is a positive definite diagonal matrix.

Using this, it can be verified that we have

Λ∗
Aδ

ΛP ΛAδ − ΛP ≤ 0.

We choose P̄11,δ as

P̄11,δ = (W ∗
δ )−1ΛP (Wδ)

−1.

We can see that this choice of P̄11,δ satisfies

A′
11,δP̄11,δA11,δ − P̄11,δ ≤ 0.

It is easy to see that P̄11,δ → P̄11 as δ → 0. Then

Pδ = (S−1
δ )′

(
P̄11,δ 0

0 P̄22,δ

)
S−1

δ

satisfies the condition of the lemma. This completes the proof of Lemma 4.2. �

We now show a recursive algorithm that at each step moves at least one eigen-
value on the unit circle in a decentralized fashion while preserving the stability of
other modes in the open unit disc in a way that the magnitude of each decentralized
feedback control is assured never to exceed 1/n. The algorithm will consist of at
most n steps, and therefore the overall decentralized inputs will not saturate for an
appropriate choice of the initial state.

Algorithm

• Step 0: We initialize algorithm at this step. Let A0 := A,B0,ij := Bj ,C0,i :=

Cj , nj,0 := 0,N0
j,δ := 0, j = 1, . . . , ν and x0 := x. Also let us define P ε

0 := εP ,
where P > 0 and satisfies A′PA − P ≤ 0.
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• Step m: For the system Σ , we want to design ν parametrized decentralized feed-
back control laws,

Σ
m,ε
j :

{
pm

j (k + 1) = Km
i,εp

m
j (k) + Lm

j,εyj (k),

uj (k) = Mj,εp
m
j (k) + Nm

j,εyj (k) + vm
j (k),

where pm
j ∈ ℜnj,m and if nj,m = 0:

Σ
m,ε
j : uj (k) = Nm

i,εyj (k) + vm
j (k).

The closed loop system consisting of the decentralized controller and the system
Σ can be written as

Σ
m,ε
cl :

{
xm(k + 1) = Aε

mxm(k) +
∑ν

i=1 Bm,iv
m
i (k),

yj (k) = Cm,jxm(k), j = 1, . . . , ν,

where xm ∈ ℜnm with nm = n +
∑ν

i=1 ni,m is given by

xm =

⎛
⎜⎜⎜⎝

x

pm
1
...

pm
ν

⎞
⎟⎟⎟⎠

we can rewrite ui as

ui = Fm
i,εxm + vm

i

for some appropriate matrix Fm
j,ε .

Our objective here is to design the decentralized stabilizers in such a way that
they satisfy the following properties:

1. Matrix Aε
m has all its eigenvalues in the closed unit disc, and eigenvalues on

unit circle are distinct.
2. Aε

m has less eigenvalues on the unit circle than Aε
m−1.

3. There exists a family of matrices P ε
m such that P ε

m → 0 as ε → 0 and

(Aε
m)′P ε

mAε
m − P ε

m ≤ 0.

Furthermore, there exists an ε∗ such that for ε ∈ (0, ε∗] and νm
i = 0 we have

‖ui(k)‖ ≤ m
n

for all states with x′
m(k)P ε

mxm(k) ≤ n − m + 1.

• Terminal Step: There exists a value for m, say l ≤ n, such that Aε
11 has all its

eigenvalues in the open unit disc, and also property 3 above is satisfied, which
means that for ε small enough, ‖ui‖ ≤ 1 for all states with x′

lP
ε
l xl ≤ 1. The de-

centralized control laws Σ
l,ε
j , i = 1, . . . , l together construct our decentralized

feedback law for system Σ .
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Finally, we show that for an appropriate choice of ε, this recursive algorithm
provides a set of decentralized feedbacks which satisfy the requirements of Theo-
rem 4.5. We will first prove properties 1, 2 and 3 listed above by induction. It is easy
to see that the initialization step satisfies these properties. We assume that the design
in the step m can be done, and then we must show that the design in the step m + 1
can be done.

Now assume that we are in step m + 1. The closed loop system Σ
m,ε
cl has prop-

erties (4.80), (4.81) and (4.82). Let λ be an eigenvalue on the unit disc of Aε
m. We

know that λ is not a fixed mode of the closed loop system. Thus there exist K̄i such
that

Aε
m +

ν∑

i=1

Bm,iK̄iCm,i

has no eigenvalue at λ. Therefore the determinant of the matrix λI − Aε
m −

δ
∑ν

i=1 Bm,iK̄iCm,i , seen as a polynomial in δ, is non-zero for δ = 1, which im-
plies that it is non-zero for almost all δ > 0. This means that for almost all δ > 0

Aε
m + δ

ν∑

i=1

Bm,iK̄iCm,i

has no eigenvalue at λ. Let j be the largest integer such that

Aε,δ
m = Aε

m + δ

j∑

i=1

Bm,iK̄iCm,i

has λ as an eigenvalue and the same number of eigenvalues on the unit disc as Aε
m

for small enough δ. This implies that A
ε,δ
m still has all its eigenvalues in the closed

unit disc.
Using Lemma 4.2, we know that there exists a P̄

ε,δ
m such that

(Aε,δ
m )′P̄ ε,δ

m Aε,δ
m − P̄ ε,δ

m ≤ 0

while P̄
ε,δ
m → P ε

m as δ → 0. Hence for small enough δ

x′
m(k)P ε,δ

m xm(k) ≤ n − m +
1

2
⇒ x′

m(k)P ε
mxm(k) ≤ n − m + 1

and also for small enough δ we have

‖δK̄ixm‖ ≤
1

2n
∀xm such that x′

mP ε,δ
m xm ≤ n − m +

1

2
.

We choose δ = δε small enough such that the above two properties hold. Define
Kε

i = δεK̄i , P̄ ε
m = P̄

ε,δε
m and

Āε
m := Aε

m +

j∑

i=1

Bm,iK
ε
i Cm,i .
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By the definition of j , we know that

Aε
m +

j+1∑

i=1

Bm,iK
ε
i Cm,i

either does not have λ as an eigenvalue or has less eigenvalues on the unit circle.
This means that

(Āε
m,Bm,j+1,Cm,j+1)

has a stabilizable and detectable eigenvalue on the unit circle. Let V be such that

V V ′ = I and kerV = ker〈Cm,j+1|Ā
ε
m〉.

Since we might not be able to find a stable observer for the state xm we actually
construct an observer for the observable part of the state V xm. Because our triplet
has a stabilizable and detectable eigenvalue on the unit disc, the observable part of
the state V xm must contain at least one eigenvalue on the unit circle that can be
stabilized. This motivates the following decentralized feedback law:

vm
i (k) = Kε

i xm(k) + vm+1
j (k), i = 1, . . . , j,

p(k + 1) = Aε
sp(k) + V Bm,j+1v

m
j+1(k) + K(Cm,j+1V

′p(k) − yj+1(k)),

vm
j+1(k) = Fρp(k) + vm+1

j+1 (k),

vm
i (k) = vm+1

j (k), i = j + 2, . . . , ν.

Here p ∈ ℜs and Aε
s is such that Aε

sV = V Āε
m and K is chosen such that Aε

s +

KCm,j+1V
′ has all its eigenvalues in the open unit disc and does not have any

eigenvalues in common with Āε
k . Furthermore Fρ is chosen in a way that Āε

m +

Bm,j+1FρV has at least one less eigenvalue on the unit disc than Aε
m and still all of

its eigenvalues are in the closed unit disc and also Fρ → 0 as ρ → 0. Defining

x̄m+1 =

(
xm

p − V xm

)
,

we have

x̄m+1(k + 1) =

(
Āε

m + Bm,j+1FρV Bm,j+1Fρ

0 Aε
s + KCm,j+1V

′

)
x̄m+1(k)

+

ν∑

i=1

B̄m+1,iv
m+1
j (k), (4.85)

yi(k) = C̄m+1,i x̄m+1(k), i = 1, . . . , ν,
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where

B̄m+1,i =
(

Bm,i

−V Bm,i

)
, C̄m+1,i = (Cm,i 0)

for i �= j + 1 and

B̄m+1,j+1 =

(
Bm,j+1

0

)
, C̄m+1,j+1 =

(
Cm,j+1 0

V I

)
.

It is easy to check that the above feedback laws satisfy the properties 1 and 2. What
remains is to show that they satisfy property 3. Also we need to show that the control
laws can be written in the form mentioned in step m for step m + 1.

For any ε there exists a ℜε
m > 0 with

(Aε
s + KCm,j+1V

′)′ℜε
m(Aε

s + KCm,j+1V
′) − ℜε

m < 0

such that ℜε
m → 0 as ε → 0. Because Fρ → 0 as ρ → 0, for each ε, for small

enough ρ we have

‖Fρe‖ <
1

2n
∀e such that e′ℜε

me ≤ n − m +
1

2
.

Note that Āε
m +Bm,j+1FρV has at least one less eigenvalue on the unit disc than Āε

m

and has all its eigenvalues in the close unit disc. Applying Lemma (4.2), for small ρ

we have

(Āε
m + Bm,j+1FρV )′P̄ ε

ρ (Āε
m + Bm,j+1FρV ) − P̄ ε

ρ ≤ 0

with P̄ ε
ρ → P̄ ε

m as ρ → 0.
Now note that Aε

m and Aε
s + KCm,j+1V

′ have disjoint eigenvalues we find that
for small ρ, the matrices Aε

m + Bm,j+1F̺V and Aε
s + KCm,j+1V

′ have disjoint
eigenvalues since Fρ → 0 as ρ → 0. But then there exists a Wε,ρ such that

Bm,j+1Fρ + (Āε
m + Bm,j+1FρV )Wε,ρ − Wε,ρ(Aε

s + KCm,j+1V
′) = 0

while Wε,ρ → 0 as ρ → 0. Now if we define P̄
ε,ρ
m+1 to be

P̄
ε,ρ
m+1 =

(
I 0

−W ′
ε,ρ I

)(
P̄ ε

ρ 0
0 ℜε

m

)(
I −Wε,ρ

0 I

)
.

We define

Ā
ε,ρ
m+1 =

(
Āε

m + Bm,j+1FρV Bm,j+1Fρ

0 Aε
s + KCm,j+1V

′

)
.

We will have the following properties

(Ā
ε,ρ
m+1)

′P̄
ε,ρ
m+1Ā

ε,ρ
m+1 − P̄

ε,ρ
m+1 ≤ 0
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and

lim
ρ→0

P̄
ε,ρ
m+1 =

(
P̄ ε

m 0
0 ℜε

m

)
.

Now consider x̄m+1 such that

x̄′
m+1P̄

ε,ρ
m+1x̄m+1 ≤ n − m.

Then with small enough choice of ρ we can have

x̄′
mP̄ ε

mxm ≤ n − m +
1

2
and

(p − V xm)′ℜε
m(p − V xm) ≤ n − m +

1

2
.

Next for each ε we choose ρ = ρε such that the above holds and we have

‖FρV xm‖ <
1

2n
∀xm such that x′

mP̄ ε
mxm ≤ n − m +

1

2
.

Next we must check the bounds on the inputs in step m + 1. For i = 1, . . . , j , we
have

‖ui‖ = ‖Fm
i,εxm + Kε

i xm‖ ≤
m

n
+

1

2n
≤

m + 1

n
.

For i = j + 1, we have:

‖ui‖ = ‖Fm
i,εxm + Fρεp‖

= ‖Fm
i,εxm + FρεV xm + Fρε(p − V xm)‖

≤
m

n
+

1

2n
=

m + 1

n
.

Finally, for i = j + 2, . . . , ν, we have:

‖ui‖ = ‖Fm
i,εxm‖ ≤

m

n
≤

m + 1

n
.

Now for i �= j + 1 we set ni,m+1 = ni,m and for i = j + 1 we set ni,m+1 = ni,m + s.
If ni,m > 0 we choose

pm+1
j =

(
pm

i

p

)

and if nj,m = 0 we choose pm+1
j = p. Now we are able to the system in terms

of xm+1. We introduce a basis transformation Tm+1 such that x̄m+1 = Tm+1xm+1.
Next, we define

pε
m+1 = T ′

m+1P̄
ε,ρ
m+1Tm+1.
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Now for i = 1, . . . , ν depending on the value of ni,m+1 we can rewrite the control
laws in the desired form and subsequently the properties 1–3 are obtained.

We know that there exists a value of m, say l ≤ n, such that Aε
l has all its eigenval-

ues in the open unit disc. We set νl
j = 0 for j = 1,2,3, . . . , l. Then the decentralized

control laws Σ
l,ε
j , i = 1,2,3, . . . , l together represent a decentralized semi global

feedback law for the system Σ . In other words, we claim that for any given compact
sets W ⊂ ℜn and Si ⊂ ℜnj ,l for j = 1,2,3, . . . , l, there exists an ε∗. such that the
origin of the closed loop system is exponentially stable for any 0 < ε < ε∗. and the
compact set W × S1 × · · · × Sν is within the domain of attraction. Furthermore for
all initial conditions within W × S1 × · · · × Sν , the closed loop system behaves like
a linear system, that is the saturation is not activated.

We know that for ε small enough, the set

Ωε
1 := {xl ∈ ℜnl |x′

lP
ε
l xl ≤ 1}

is inside the domain of attraction of the equilibrium point of the closed loop
system comprising the given system Σ and the decentralized control laws Σ

l,ε
j ,

i = 1,2,3, . . . , l because for all initial conditions within Ωε
1 , it is obvious that

‖ui‖ ≤ 1, i = 1,2,3, . . . , l which means that the closed loop system behaves like
a linear system, that is the saturation is not activated. Furthermore since all of
the eigenvalues of Aε

l are in the open unit disc, this linear system is asymptoti-
cally stable. In addition because of the fact that P ε

l → 0 as ε → 0, we find that
W × S1 × · · · × Sν is inside Ωε

1 for ε sufficiently small. This concludes that the
decentralized control laws Σ l,εi, i = 1,2,3, . . . , l are semi-globally stabilizing.

4.5 Notes and References

This chapter has investigated classes of decentralized systems that deploy incorpo-
rate multiple controllers in their basic operation. The systems include multi-channel
time-delay systems, interconnected networked systems and discrete-systems with
saturating controllers. In the first two-types, decentralized delay-dependent stabil-
ity and stabilization methods were developed for a class of linear interconnection
of time-delay plants subjected to convex-bounded parametric uncertainties and cou-
pled with time-delay interconnections. The developed results provide initial step
toward further developments around the deployment of multi-controller structures
for resolving several issues for decentralized systems. Applications of the foregoing
concepts to practical systems can be pursued further following the ideas in [21, 23,
24, 42, 44, 45]. Extensions to time-delay systems offer possibilities along the ideas
of [11–19].
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Chapter 5

Decentralized Quantized Control

In this chapter, we address the problem of designing decentralized H∞ feedback

control for a class of linear interconnected systems with quantized signals in the

subsystem control channels. Both continuous- and discrete-time systems are teated.

The systems have unknown-but-bounded couplings and interval delays. A decentral-

ized static output-feedback controller is designed at the subsystem level to render the

closed-loop system delay-dependent asymptotically stable with guaranteed γ -level.

When the local output measurements are quantized, a local output-dependent proce-

dure is developed for updating the quantizer parameters to attain similar asymptotic

stability and guaranteed performance of the closed-loop quantized system.

Then, the interesting problem of decentralized feedback control design for a class

of linear interconnected discrete-time systems subject to overflow nonlinearities

and unknown-but-bounded couplings is subsequently addressed. A decentralized

state feedback quantized controller is designed at the subsystem level to render the

closed-loop system asymptotically stable. When the local output measurements are

available, a decentralized output-feedback quantized controller is developed attain

similar asymptotic stability and guaranteed performance of the closed-loop quan-

tized system.

Several special cases of interest are derived and simulation results are provided.

5.1 Decentralized Quantized Control I: Continuous Systems

In conventional feedback control theory, most of data and/or signals are directly

processed. In emerging control systems including networks, all signals are trans-

ferred through network which eventually gives rise to packet dropouts or data trans-

fer rate limitations [17]. Alternatively, signal processing and signal quantization al-

ways exist in computer-based control systems [22], in nanoscale servo control [16]

and therefore recent research studies have been reported on the analysis and de-

sign problems for control systems involving various quantization methods [5, 8,

19, 29]. In [5], a quantizer taking value in a finite set is defined and then quantized
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feedback stabilization for linear systems is considered. The problem of stabilizing

an unstable linear system by means of quantized state feedback, where the quan-

tizer takes value in a countable set, is addressed in [8]. It should be noted that the

approach in [5] relies on the possibility of making discrete online adjustments of

quantizer parameters which was extended in [21] for more general nonlinear sys-

tems with general types of quantizers involving the states of the system, the mea-

sured outputs, and the control inputs. Based on [21], stabilization of discrete-time

LTI systems with quantized measurement outputs is reported in [29]. Further related

results are reported in [33, 34]. In terms of control design, it turns out that the use of

output-feedback schemes [7] provides great flexibility in accommodating systems

uncertainties. A decentralized H∞ feedback control systems with two quantizers

was considered in [6].

On another research front, decentralized stability and feedback stabilization of

interconnected systems have been the topic of recurring interests and recent rel-

evant results have been reported in [2, 24–28, 31]. In this chapter, we study the

problem of decentralized H∞ feedback control for a class of linear interconnected

continuous-time systems with quantized signals in the subsystem control channel.

The system has unknown-but-bounded couplings and interval time-delays. A de-

centralized static output-feedback controller is designed at the subsystem level us-

ing only local variables to render the overall closed-loop system is delay-dependent

asymptotically stable with guaranteed γ -level. When the local output measurements

are quantized before passing to the controller, we consider the local channel quan-

tizer in a generalized form with a zoom parameter that can be adjusted on-line. We

develop a local output-dependent procedure for updating the quantizer parameters

to retain the delay-dependent asymptotic stability and guaranteed performance of

the closed-loop quantized system.

5.1.1 Problem Statement

We consider a class of linear systems S structurally composed of ns coupled sub-

systems Sj and the model of the j th subsystem is described by the state-space rep-

resentation:

Sj : ẋj (t) = Ajxj (t) + Adjxj (t − τj (t))+Bjuj (t)+ Γjwj (t)

+
ns∑

k=1,k �=j

Fjkxk(t)+

ns∑

k=1,k �=j

Ejkxk(t − ηjk(t)), (5.1)

zj (t)=Gjxj (t)+Gdjxj (t − τj (t))+Φjwj (t), (5.2)

yj (t)= Cjxj (t)+Cdjxj (t − τj (t))+Λjwj (t), (5.3)

where for j ∈ {1, . . . , ns}, xj (t) ∈ ℜnj is the state vector, uj (t) ∈ ℜmj is the con-

trol input, yj (t) ∈ ℜpj is the measured output, wj (t) ∈ ℜqj is the disturbance in-

put which belongs to L2[0,∞), zj (t) ∈ ℜqj is the performance output. The matri-

ces Aj ∈ ℜnj×nj , Bj ∈ ℜnj×mj , Adj ∈ ℜnj×nj , Φj ∈ ℜqj×qj , Γj ∈ ℜnj×qj , Cj ∈
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ℜpj ×nj , Cdj ∈ ℜpj ×nj , Gj ∈ ℜqj ×nj , Gdj ∈ ℜqj ×nj , Λj ∈ ℜpj×qj , Fjk ∈ ℜpj×qj

and Ejk ∈ ℜpj×qj are real and constants. The initial condition κj ∈ L2[−̺j ,0],

j ∈ {1, . . . , ns}. The factors τj , ηjk , j, k ∈ {1, . . . , ns} are unknown time-varying

delay factors satisfying

0 ≤ τj (t)≤ ̺j , τ̇j (t)≤ μj ,
(5.4)

0 ≤ ηjk(t)≤ ̺jk, η̇jk(t)≤ μjk,

where the bounds ̺j , ̺jk ,μj ,μjk are known constants in order to guarantee smooth

growth of the state trajectories. Note in (5.3) that the delay within each subsystem

(local delay) and among the subsystems (coupling delay), respectively, are empha-

sized. The class of systems described by (5.1)–(5.3) subject to delay-pattern (5.4) is

frequently encountered in modeling several physical systems and engineering appli-

cations including large space structures, multi-machine power systems, cold mills,

transportation systems, water pollution management, to name a few [25, 30]. In

what follows, we study the problem of decentralized H∞ feedback control for a

class of linear interconnected continuous-time systems with quantized signals in the

subsystem control channel.

5.1.2 Local Quantizer Description

A block-diagram representation of the subsystem model (5.3) under consideration

is depicted in Fig. 5.1. In the sequel, we adopt the definition of a local (subsystem)

quantizer with general form as introduced in [21]. Let fj ∈ ℜs , j = 1, . . . , ns be

the variable being quantized. A local quantizer is defined as a piecewise constant

function Qj : ℜs → Dj , where Dj is a finite subset of ℜs . This leads to a partition

of ℜs into a finite number of quantization regions of the form {fj ∈ ℜs : Q(fj ) =

dj , dj ∈ Dj }. These quantization regions are not assumed to have any particular

shape. We assume that there exist positive real numbers Mj and Δj such that the

following conditions hold:

Fig. 5.1 Subsystem model

with quantizer
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1. If |fj | ≤ Mj then |Qj (fj ) − fj | ≤Δj . (5.5)

2. If |fj |>Mj then |Qj (fj )|>Mj −Δj . (5.6)

We note that condition (5.5) provides a bound on the quantization error when the

quantizer does not saturate. Condition (5.6) gives a way to detect the possibility of

saturation. In the sequel, Mj and Δj will be referred to as the range of Qj and

the quantization error, respectively. Henceforth, we assume that Q(x) = 0 for x

in some neighborhood of the origin. The foregoing requirements are met by the

quantizer with rectangular quantization regions [5, 19].

In the control strategy to be developed below, we will use local quantized mea-

surements of the form

Qμj (fj )= μjQj

(
fj

μj

)
, (5.7)

where μj > 0 is the subsystem parameter. Observe, at the subsystem level, the ex-

treme case μj = 0 is regarded as setting the output of the local quantizer as zero.

This local quantizer has the range Mjμj and the quantization error Δjμj . We can

view μj as a local zoom variable: increasing μj corresponds to zooming out and es-

sentially generating a new local quantizer with larger range and larger quantization

error, whilst decreasing μj implies zooming in and obtaining a local quantizer with

smaller range and smaller quantization error. We will update μj later on depending

on the subsystem state (or the subsystem output). In some sense, it can regarded as

additional state of the resultant closed-loop subsystem.

5.1.3 Static Output-Feedback Design

In this section, we develop new criteria for LMI-based characterization of decen-

tralized stabilization by local static output-feedback. Initially without quantization

(meaning that the switch in Fig. 5.1 is closed), we let the local decentralized static

output-feedback has the form

uj (t)=Kojyj (t), j = 1, . . . , ns, (5.8)

where the gain matrices Koj , j = 1, . . . ,N have been selected to guarantee the

closed-loop system, composed of (5.1), (5.3) and (5.8), given by

ẋj (t)= Ajxj (t)+ Adjxj (t − τj (t))+Ωjwj (t)

+
ns∑

k=1,k �=j

Fjkxk(t)+

ns∑

k=1,k �=j

Ejkxk(t − ηjk(t)), (5.9)

zj (t) = Gjxj (t)+Gdjxj (t − τj (t))+Φjwj (t),

Aj = Aj +BjKojCj , Adj =Adj +BjKojCdj ,

Ωj = Γj +BjKojΛj

(5.10)
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is asymptotically stable with disturbance attenuation level γj to facilitate further de-

velopment, we consider the case where the set of output matrices Cj , j = 1, . . . , ns

are assumed to be of full row rank and C
†
j represents the right-inverse. We consider

the Lyapunov-Krasovskii functional (LKF):

V (t) =
ns∑

j=1

Vj (t),

Vj (t) = xtj (t)Pjxj (t)+
∫ 0

−̺j
xtj (α)Wjxj (α)dα

+
∫ 0

−τj
xtj (α)Sjxj (α)dα

+ ̺j

∫ 0

−̺j

∫ t

t+θ
ẋtj (s)Rj ẋj (s) ds dθ

+
ns∑

k=1,k �=j

∫ t

t−ηjk(t)

xtk(s)Zjkxk(s) ds

(5.11)

where 0 < Pj = P t
j , 0 < Wj = W t

j , 0 < Sj = S t
j , 0 < Rj = Rt

j , 0 < Zjk = Z t
jk ,

j, k ∈ {1, . . . , ns} are weighting matrices of appropriate dimensions.

The following theorems establishes the main design result for subsystem Sj .

Theorem 5.1 Given the bounds ̺j > 0, μj > 0, ̺jk > 0, μjk > 0, tuning param-

eters βj , σj , j, k = 1, . . . , ns and let the gain matrices Koj be specified, then the

family of subsystems described by (5.9)–(5.10) is delay-dependent asymptotically

stable with L2-performance bound γj if there exist positive-definite matrices Pj ,

Wj , Sj , Rj , Zjk and free-weighting matrices Θj , Υj , satisfying the following LMIs

for j, k = 1, . . . , ns

Π̂j =

⎡
⎣
Πj Πvj Πwj

• −γ 2
j Ij Φ t

j

• • −Ij

⎤
⎦< 0, (5.12)

where

Πj =

⎡
⎢⎢⎢⎢⎣

Πoj Π1j 0 Π2j Π3j

• Πaj 0 Π4j Π5j

• • Πcj Π6j 0

• • • Πmj 0

• • • • Πnj

⎤
⎥⎥⎥⎥⎦
, (5.13)

Πoj = (1 + σj )Pj

(
Aj +

ns∑

k=1,k �=j

Fkj

)

+

(
Aj +

ns∑

k=1,k �=j

Fkj

)t
(1 + σj )Pj

+ Wj + Sj − Rj + (ns − 1)Pj +

ns∑

k=1,k �=j

Zkj ,
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Π1j = −σj Pj + Υj

(

Aj +
ns∑

k=1,k �=j

Fkj

)t
,

Π2j = (1 + σj )PjAdj + Rj ,

Π3j = σj Pj

ns∑

k=1,k �=j

Ekj , Πaj = ̺2
j Rj − 2βj Pj , (5.14)

Π4j = βj PjAdj , Π5j = βj Pj

ns∑

k=1,k �=j

Ekj ,

Πcj = −Rj − Wj , Π6j = Rj ,

Πmj = −2Rj − (1 −μj )Sj ,

Πnj = −(1 −μkj )Zkj −

ns∑

k=1,k �=j

Et
kj PkEkj ,

Πvj =
[
Ω t
j Pj 0 0 0 0

]t
, Πwj =

[
Gt
j 0 0 Gt

dj 0
]t
.

Proof A straightforward computation gives the time-derivative of Vj (t) along the

solutions of (5.10) with w(t)≡ 0 as:

V̇j (t)= 2xtj (t)Pj ẋj (t)+ ̺2
j ẋ

t
j (t)Rj ẋj (t)

− ̺j

∫ t

t−̺j

ẋtj (s)Rj ẋj (s)ds + xtj (t)(Wj + Sj )xj (t)

− xtj (t − ̺j (t))Wjxj (t − ̺j (t))

− (1 − τ̇ (t))xtj (t − τj (t))Sjxj (t − τj (t))

+

ns∑

k=1,k �=j

[
xtk(t)Zjkxk(t)− (1 − η̇jk(t))x

t
k(t − ηjk(t))Zjkxk(t − ηjk(t))

]
.

(5.15)

Using the identity

−̺j

∫ 0

−̺j

ẋtj (s)Rj ẋj (s)ds

= −̺j

∫ t−τj (t)

t−̺j

ẋtj (s)Rj ẋj (s)ds − ̺j

∫ t

t−τj (t)

ẋtj (s)Rj ẋj (s)ds (5.16)

then applying Jensen’s inequality

∫ t

t−τj (t)

ẋtj (s)Rj ẋj (s)ds ≥

∫ t

t−τj (t)

ẋtj (s)dsRj

∫ t

t−τj (t)

ẋtj (s)ẋj (s)ds, (5.17)

∫ t−τj (t)

t−̺j

ẋtj (s)Rj ẋj (s)ds ≥

∫ t−τj (t)

t−̺j

ẋtj (s)dsRj

∫ t−τj (t)

t−̺j

ẋtj (s)ẋj (s)ds (5.18)
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and making use of the following structural identity

ns∑

k=1,k �=j

ns∑

j=1

xt
k(t)Zjkxk(t) =

ns∑

k=1,k �=j

ns∑

j=1

xt
j (t)Zkjxj (t), (5.19)

while invoking the algebraic inequality XtZ + ZtX ≤ XtYX + ZtY−1Z, Y > 0,

such that

2xt
j (t)

ns∑

k=1,k �=j

Ejkxk(t − ηjk(t))

≤ (ns − 1)xtj (t)Pjxj (t)+

ns∑

k=1,k �=j

xtk(t − ηjk(t))E
t
jkPjEjkxk(t − ηjk(t))

(5.20)

it follows that

V̇ (t)≤

ns∑

j=1

[
2xtj (t)Pj

(
Ajxj (t)+ Adjxj (t − τj (t))+

ns∑

k=1,k �=j

Fkjxj (t)

)

+ ̺2
j ẋ

t
j (t)Rj ẋj (t)

− (xj (t)− xj (t − τj (t)))
t Rj (xj (t)− xj (t − τj (t)))

− (xj (t − τj (t))− xj (t − ̺j (t)))
t Rj (xj (t − τj (t))− xj (t − ̺j (t)))

+ xtj (t)(Wj + Sj )xj (t)− xtj (t − ̺j )Wjxj (t − ̺j )

− (1 −μj )x
t
j (t − τj (t))Sjxj (t − τj (t))

+ xtj (t)

(
ns∑

k=1,k �=j

Zkj

)
xj (t)

+ (ns − 1)xtj (t)Pjxj (t)

+

ns∑

k=1,k �=j

xtk(t − ηkj (t))E
t
kj PkEkjxj (t − ηkj (t))

− (1 −μkj )x
t
j (t − ηkj (t))Zkjxj (t − ηkj (t))

]
. (5.21)

Adding the zero-value expression with βj and σj are tunning parameters

0 ≡ 2[σjx
t
j (t)Pj + βj ẋ

t
j (t)Pj ]

[
−ẋj (t)+ Ajxj (t)+ Adjxj (t − τj (t))

+

ns∑

k=1,k �=j

Fjkxk(t)+

ns∑

k=1,k �=j

Ejkxk(t − ηjk(t))

]
(5.22)

to the right-hand side of (5.21) and setting

ζj (t)= col{xj (t), ẋj (t), xj (t − ̺j ), xj (t − τj (t)), xj (t − ηkj (t))}
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it follows that

V̇ (t) ≤
ns∑

j=1

ζ tj (t)Πj ζj (t)≤ 0 (5.23)

if the matrixΠj given by (5.13) is feasible. Internal asymptotic stability requirement

V̇j (t)|(5.9) < 0 implies that Πj < 0. Next, considering the L2-gain performance

measure J =
∑ns

j=1 Jj for any wj (t) ∈ L2(0,∞) �= 0 with zero initial condition

xj (0)= 0 hence V (0)= 0, we have

Jj =

∫ ∞

0

(
ztj (s)zj (s)− γ 2

j w
t
j (s)wj (s)

)
ds

≤

∫ ∞

0

(
ztj (s)zj (s)− γ 2

j w
t
j (s)wj (s)+ V̇j (s)|(5.9)

)
ds. (5.24)

Using (5.10), we obtain:

ztj (s)zj (s)− γ 2
j w

t
j (s)wj (s)+ V̇j (s)|(5.9) ≤ [ζ tj (s) w

t
j (s)]Π̂j [ζ

t
j (s) w

t
j (s)]

t , (5.25)

where Π̂j is given by (5.26). It is readily seen that

(ztj (s)zj (s)− γ 2
j w

t
j (s)wj (s)+ V̇j (s)|(5.9) < 0

for arbitrary s ∈ [t,∞), which implies for any wj (t) ∈ L2(0,∞) �= 0 that Jj < 0

leading to ‖zj (t)‖2 <
∑ns

j=1 γj‖w(t)j‖2, which assures the desired performance. �

Theorem 5.2 Given the bounds ̺j > 0, μj > 0, ̺jk > 0, μjk > 0 and tuning

parameters βj , σj , j, k = 1, . . . , ns . The family of subsystems described by (5.9)–

(5.10) is delay-dependent asymptotically stabilizable by decentralized static output-

feedback controller uj (t) = Kojyj (t), j = 1, . . . , ns with L2-performance bound

γj , j = 1, . . . , ns if there exist positive-definite matrices Yj , Gj , Ψ1j , Ψ2j , Ψ3j ,

Ψ4j , Ψ1kj , Ψ2kj satisfying the following LMIs for j = 1, . . . , ns

Ξ̂j =

⎡
⎣
Ξj Ξvj Ξwj

• −γ 2
j Ij Φ t

j

• • −Ij

⎤
⎦< 0, (5.26)

where
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ξj =

⎡
⎢⎢⎢⎢⎣

Ξej Ξ1j 0 Ξ2j Ξ3j

• Ξaj 0 Ξ4j Ξ5j

• • Ξcj Ξ6j 0

• • • Ξmj 0

• • • • Ξnj

⎤
⎥⎥⎥⎥⎦
,

Ξej = (1 + σj )

[(
Aj +

ns∑

k=1,k �=j

Fkj

)
Yj +Bj Gj

]

= (1 + σj )

[
Yj

(
Aj +

ns∑

k=1,k �=j

Fkj

)t
+ Gt

jB
t
j

]

+Ψ1j +Ψ2j −Ψ3j + (ns − 1)Yj +

ns∑

k=1,k �=j

Ψ1kj ,

Ξ1j = −σj Yj + βj

[(
Aj +

ns∑

k=1,k �=j

Fkj

)t
Yj + Gt

jB
t
j

]
,

Ξ2j = (1 + σj )Adj Yj +Ψ3j ,

Ξ3j = σj

ns∑

k=1,k �=j

Ekj Yj , Ξaj = ̺2
jΨ3j − 2βj Yj ,

Ξ4j = βjAdj Yj , Ξ5j = βj

ns∑

k=1,k �=j

Ekj Yj ,

Ξcj = −Ψ1j −Ψ3j , Ξ6j = Ψ3j ,

Ξmj = −2Ψ3j − (1 −μj )Ψ2j ,

Ξnj = −(1 −μkj )Ψ1kj −

ns∑

k=1,k �=j

Ψ2kj ,

Ξvj =
[
Γ t
j +Ψ t

4j 0 0 0 0
]t
, Ξwj =

[
Gt
j Yj 0 0 Gt

dj Yj 0
]t
.

(5.27)

Moreover, the local gain matrix is given by Kj = Gj Y −1
j C

†
j .

Proof Applying the congruent transformation

T = diag[Yj , Yj , Yj , Yj , Yj , Ij , Ij ], Yj = P −1
j

to LMI (5.12) with (5.13)–(5.14) and using the linearizations

Gj =KojCj Yj , Ψ1j = Yj Wj Yj , Ψ2j = Xj Sj Xj ,

Ψ3j = Yj Rj Yj , Ψ1kj = Yj Zkj Yj , Ψ4j = BjKojΛj ,

Ψ2kj = YjE
t
kj WkEkj Yj

we readily obtain LMI (5.26) with (5.27) and therefore the proof is completed. �
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Remark 5.1 We note that the case of decentralized state feedback control uj (t) =
Kjxj (t), j = 1, . . . , ns can be readily from Theorem 5.1 by setting Cj ≡ Ij ,

Cdj ≡ 0, Edj ≡ 0, Λj ≡ 0 so that the resulting closed-loop system is asymptoti-

cally stable with guaranteed H∞ performance.

5.1.4 Quantized Output-Feedback Design

Focusing on the availability of quantized local output information (meaning that the

switch in Fig. 5.1 is open), we modify the static output feedback (5.8) using the

quantized information of yj as

uj (t)= μjKojQj

(
yj (t)

μj

)
, j = 1, . . . , ns . (5.28)

For any fixed scalar μj > 0, the closed-loop system, composed of (5.1), (5.3) and

(5.28) is given by

ẋj (t)= Ajxj (t)+ Adjxj (t − τj (t))+ cj (t)+Ωjwj (t)+Hj (μj , yj ),

zj (t)=Gjxj (t)+Gdjxj (t − τj (t))+Φjwj (t),

Aj =Aj +BjKojCj , Adj =Adj +BjKojCdj ,
(5.29)

Ωj = Γj +BjKojΨj ,

Hj (μj , yj )= μjBjKoj

(
Qj

yj (t)

μj
−
yj (t)

μj

)
.

Next, we move to examine the stability and desired disturbance attenuation level of

the closed-loop system (5.29) in the presence of the quantization error. We employ

the LKF (5.11) and consider that the gains Koj are obtained from application of

Theorem 5.1. The following theorem establishes the main design result for subsys-

tem Sj .

Theorem 5.3 Given the bounds ̺j > 0, μj > 0, ̺jk > 0, μjk > 0 and tuning pa-

rameters βj , σj , j, k = 1, . . . , ns . If the local quantizer Mj is selected large enough

with respect to Δj while adjusting the local scalar αj so as to satisfy the inequality

Mj > 4Δj

‖PjBjKoj‖

λm(Λj )
‖Cj + αjCdj‖. (5.30)

Then, the family of subsystems {Sj } where {Sj } is described by (5.1)–(5.3) is delay-

dependent asymptotically stabilizable with L2-performance bound γj by decentral-

ized quantized output-feedback controller (5.28).

Proof Since

yj (t)

μj
=
Cjxj (t)+Cdjxj (t − τj (t))

μj
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is quantized before being passed to the feedback, we obtain by using the properties

of local quantizer (5.5) and (5.6) that whenever |yj (t)| ≤ Mjμj , the inequality

∣∣∣∣
yj (t)

μj

− Qj

(
yj (t)

μj

)∣∣∣∣≤Δj (5.31)

holds true. Extending on Theorem 5.1, it follows that

Jj ≤
∫ ∞

0

(
[ζ tj (s) wt

j (s)]Π̂j [ζ tj (s) wt
j (s)]t

+ 2xtj PjHj (μj , yj )− xtjΛjxj
)
ds, (5.32)

where Π̂j corresponds to Π̂j except that Πoj → Πoj +Λj with Λj > 0 being an

arbitrary matrix. Proceeding as before, we focus on the integrand in (5.32) while

letting ‖xj (t − τj )‖ ≤ αj‖xj (t)‖, αj > 0 and manipulating to get

[ζ tj (s) w
t
j (s)]Π̂j [ζ

t
j (s) w

t
j (s)]

t + 2xtj PjHj (μj , yj )− xtjΛjxj

≤ [ζ tj (s) w
t
j (s)]Π̂j [ζ

t
j (s) w

t
j (s)]

t −
1

2
λm(Λj )

(
|xj | − 4Δj

‖PjBjKoj‖

λm(Λj )
μj

)

≤ [ζ tj (s) w
t
j (s)]Π̂j [ζ

t
j (s) w

t
j (s)]

t

−
1

2
λm(Λj )

|xj |

‖Cj + αjCdj‖

(
|yj | − 4Δj

‖PjBjKoj‖

λm(Λj )
‖Cj + αjCdj‖μj

)
.

(5.33)

It follows from (5.30), we can always find a scalar βj ∈ (0,1) such that

Mj > 4Δj

‖PjBjKoj‖

λm(Λj )
‖Cj + αjCdj‖

1

1 − βj
. (5.34)

This is equivalent to

1

1 − βj
4Δj

‖PjBjKoj‖

λm(Λj )
‖Cj + αjCdj‖μj <Mjμj . (5.35)

Therefore, for any μj �= 0, we can find a scalar μj > 0 such that

1

1 − βj
· 4Δj

‖PjBjKoj‖

λm(Λj )
‖Cj + αjCdj‖μj ≤ |yj | ≤ Mjμj . (5.36)

At the extreme case |yj | = 0, we set μj = 0 so that the output of the local quantizer

is considered zero and therefore (5.36) holds true. This, in turn, implies that we can

always select μj so that (5.36) is satisfied, (5.33) holds and hence

Jj ≤ χ tj (t, s)Π̂jχj (t, s)−
1

2
βjλm(Λj )

|xj |

‖Cj + αjCdj‖
|yj | (5.37)

where Π̂j is given by (5.26) for some vector χj (t, s). The rest of the proof follows

from Theorem 5.1. �
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Remark 5.2 For the case of decentralized state feedback control uj (t) = Kjxj (t),

j = 1, . . . , ns , then Theorem 5.3 specializes to the following corollary.

Corollary 5.1 Given the bounds ̺j > 0, μj > 0. If the local quantizer Mj is se-

lected large enough with respect to Δj while adjusting the local scalar αj so as to

satisfy the inequality

Mj > 4Δj

‖PjBjKoj‖

λm(Λj )
. (5.38)

Then, the family of subsystems {Sj } where Sj is described by (5.1)–(5.3) is delay-

dependent asymptotically stabilizable with L2-performance bound γj by decentral-

ized quantized state-feedback controller

uj (t)= μjKjQj

(
xj (t)

μj

)
, j = 1, . . . , ns .

Remark 5.3 By the mean-value theorem and following [14], it can be shown that

λm(Pj )‖xj‖
2 ≤ Vj ≤ ϑj‖κj‖

2 where

ϑj =
[
λM(Pj )+ ̺j [λM(Zj )+ λM(Wj )] + 3̺2

j [λM(A
t
jAj )+ (λM (A

t
djAdj )]

]
.

Based on the results of [21], we define the local ellipsoids

Boj (μj ) := {xj : xtj Pjxj ≤ λm(PjM
2
jμ

2
j },

Bsj (μj ) := {xj : xtj Pjxj ≤ λM(Pj D2
jΔ

2
j (1 + σj )

2μ2
j },

Dj := 2
‖PjBjKoj‖

λm(Λj )
‖Cj + αjCdj‖.

In the “zooming-in” stage, it can be inferred that Bsj (μj ) ⊂ Boj (μj ) are invariant

regions for system (5.29) given σj > 0. Moreover, all solutions of (5.29) that start

in Boj (μj ) enter Bsj (μj ) in finite time.

Remark 5.4 The introduction of the local scalar αj stems from stability considera-

tion of system (5.29) in the light of Razumikhin theory [26]. It is crucial to recognize

that it plays a basic role in steering the trajectories of (5.29) towards the final ellip-

soid Bsj (μj ). This is a distinct feature of quantized time-delay systems.

Remark 5.5 We note in Theorem 5.3 and Corollary 5.1 there are several degrees of

freedom to achieve the desired stability with guaranteed performance, particularly

since both the off-line gain computation and the on-line quantized feedback are

decentralized. This is a salient feature of the developed results of this chapter, which

is not shared by several published results [2, 28, 30, 31].
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5.1.5 Simulation Example 5.1

To illustrate the theoretical developments, we consider a plant comprised of three

chemical reactors. By linearization and time scaling the model matrices in the form

of (5.1)–(5.3) have the values:

Aj =

⎡
⎢⎢⎣

−a1j −1.01 0 0

−3.2 −a2j −12.8 0

6.4 0.347 −a3j −1.04

0 0.833 11.0 −a4j

⎤
⎥⎥⎦ , Γj =

⎡
⎢⎢⎣

0.5

0.5

0.5

0.5

⎤
⎥⎥⎦ ,

Adj =

⎡
⎢⎢⎣

b1j 0 0 0

0 b2j 0 0

0 0 b3j 0

0 0 0 b4j

⎤
⎥⎥⎦ , Φj = 0.1,

Gj = [0.1 0.2 0.4 0.3], Gdj = [0.01 0 0.01 0], Λj = 0.1,

B t
j =

[
1 0 0 0

0 1 0 0

]
,

Cj = [10 0 0 0], Cdj = [1 0 0 0],
where the values of the parameters are given in Table 5.1. The coupling matrices

Fjk , Ejk are generated randomly. The feasible solution of Theorem 5.3 is found to

be

μ1 = 2, ̺1 = 0.775, γ1 = 0.561, ̺12 = 0.819, ̺13 = 0.831,

μ12 = 1.311, μ13 = 1.176, K t
o1 =

[
7.535 −3.962

]
,

μ2 = 2, ̺2 = 0.775, γ2 = 0.477, ̺21 = 0.921, ̺23 = 0.976,

μ21 = 1.421, μ23 = 1.324, K t
o2 =

[
1.741 −10.124

]
,

μ3 = 2, ̺3 = 0.775, γ3 = 0.601, ̺31 = 0.819, ̺32 = 0.831,

μ31 = 1.311, μ32 = 1.176, K t
o3 =

[
3.966 −4.524

]
.

Typical simulation results are plotted in Figs. 5.2, 5.3 and 5.4.

Table 5.1 Model parameters
Parameter S1 S2 S3

a1j 4.931 4.886 4.902

a2j 5.301 5.174 5.464

a3j 32.511 30.645 31.773

a4j 3.961 3.878 3.932

b1j 1.921 1.915 1.908

b2j 1.921 1.914 1.907

b3j 1.878 1.866 1.869

b4j 0.724 0.715 0.706



240 5 Decentralized Quantized Control

Fig. 5.2 Closed-loop

state-trajectories: subsystem 1

Fig. 5.3 Closed-loop

state-trajectories: subsystem 2

5.1.6 Polytopic Systems

When the local subsystems undergo polytopic uncertainties, the model matrices will

belong to a real convex bounded polytope of the type⎡
⎣

Aj Adj Bj Γj

Gj Gdj Λj Φj

Cj Cdj Ejk Fjk

⎤
⎦

∈Πλ :=

⎧
⎨
⎩

⎡
⎣
Ajλ Adjλ Bjλ Γjλ
Gjλ Gdjλ λjλ Φjλ

Cjλ Cdjλ Ejkλ Fjkλ

⎤
⎦

=

ns∑

s=1

λs

⎡
⎣
Ajs Adjs Bjs Γjs
Gjs Gdjs Djs Φjs

Cjs Cdjs Ejks Fjks

⎤
⎦ , λs ∈Λ

⎫
⎬
⎭ , (5.39)
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Fig. 5.4 Closed-loop

state-trajectories: subsystem 3

where Λ is the unit simplex

Λ :=
{
(λ1, . . . , λns ) :

ns∑

j=1

λj = 1, λj ≥ 0

}
. (5.40)

Theorem 5.4 Given the bounds ̺j > 0, μj > 0, ̺jk > 0, μjk > 0 and tun-

ing parameters βj , σj , j, k = 1, . . . , ns . The family of subsystems described by

(5.9)–(5.10) with polytopic representation (5.39)–(5.40) is delay-dependent asymp-

totically stabilizable by decentralized static output-feedback controller uj (t) =

Kojyj (t), j = 1, . . . , ns with L2-performance bound γj , j = 1, . . . , ns if there ex-

ist positive-definite matrices Yj , Gj , Ψ1j , Ψ2j , Ψ3j , Ψ4j , Ψ1kj , Ψ2kj satisfying the

following LMIs for s, j = 1, . . . , ns

Ξ̂sj =

⎡
⎣
Ξsj Ξvsj Ξwsj

• −γ 2
j Ij Φ t

sj

• • −Ij

⎤
⎦< 0, (5.41)

where

Ξsj =

⎡
⎢⎢⎢⎢⎣

Ξesj Ξ1sj 0 Ξ2sj Ξ3sj

• Ξasj 0 Ξ4sj Ξ5sj

• • Ξcj Ξ6sj 0

• • • Ξmsj 0

• • • • Ξnsj

⎤
⎥⎥⎥⎥⎦
,

Ξesj = (1 + σj )

[(
Asj +

ns∑

k=1,k �=j

Fkjs

)
Yj +Bsj Gj

]

= (1 + σj )

[
Yj

(
Asj +

ns∑

k=1,k �=j

Fkjs

)t
+ Gt

jB
t
sj

]



242 5 Decentralized Quantized Control

+Ψ1sj +Ψ2sj −Ψ3sj + (ns − 1)Yj +
ns∑

k=1,k �=j

Ψ1ksj ,

Ξ1sj = −σj Yj + βj

[(
Asj +

ns∑

k=1,k �=j

Fkjs

)t
Yj + Gt

jB
t
js

]
,

(5.42)
Ξ2sj = (1 + σj )Adsj Yj +Ψ3sj ,

Ξ3sj = σj

ns∑

k=1,k �=j

Ekj Yj , Ξasj = ̺2
jΨ3sj − 2βj Yj ,

Ξ4sj = βjAdsj Yj , Ξ5sj = βj

ns∑

k=1,k �=j

EkjsYj ,

Ξcsj = −Ψ1j −Ψ3j , Ξ6sj = Ψ3sj ,

Ξmsj = −2Ψ3j − (1 −μj )Ψ2sj ,

Ξnsj = −(1 −μkj )Ψ1kj −

ns∑

k=1,k �=j

Ψ2ksj ,

Ξvsj =
[
Γ t
sj +Ψ t

4sj 0 0 0 0
]t
,

Ξwsj =
[
Gt
sj Yj 0 0 Gt

dsj Yj 0
]t
.

Moreover, the local gain matrix is given by Kj = Gj Y −1
j C

†
j .

5.1.7 Delay-Free Systems

In case of delay-free decentralized systems

Pj ẋj (t)=Ajxj (t)+

ns∑

k=1,k �=j

Fjkxk(t)+Bjuj (t)+ Γjwj (t), (5.43)

zj (t)=Gjxj (t)+Φjwj (t), (5.44)

yj (t)= Cjxj (t)+Λjwj (t) (5.45)

the following result holds:

Theorem 5.5 Given tuning parameters βj , σj , j, k = 1, . . . , ns . The family of

subsystems described by (5.43)–(5.45) is asymptotically stabilizable by decentral-

ized static output-feedback controller uj (t) = Kojyj (t), j = 1, . . . , ns with L2-

performance bound γj , j = 1, . . . , ns if there exist positive-definite matrices

Yj , Gj , Ψ1j , Ψ2j , Ψ3j , Ψ4j , Ψ1kj , Ψ2kj
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satisfying the following LMIs for j = 1, . . . , ns

Ξ̂j =

⎡
⎣
Ξj Ξvj Ξwj

• −γ 2
j Ij Φ t

j

• • −Ij

⎤
⎦ , (5.46)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ξj =
[
Ξej Ξ1j

• Ξaj

]
,

Ξej = (1 + σj )

[(
Aj +

∑ns
k=1,k �=j Fkj

)
Yj +Bj Gj

]

= (1 + σj )

[
Yj

(
Aj +

∑ns
k=1,k �=j Fkj

)t
+ Gt

jB
t
j

]

+ (ns − 1)Yj +
∑ns

k=1,k �=j Ψ1kj ,

Ξ1j = −σj Yj + βj

[(
Aj +

∑ns
k=1,k �=j Fkj

)t
Yj + Gt

jB
t
j

]
,

Ξaj = −2βj Yj , Ξwj =
[
Gt
j Yj 0 0 0 0

]t
,

Ξvj =
[
Γ t
j +Ψ t

4j 0 0 0 0
]t
.

(5.47)

The local gain matrix is given by Kj = Gj Y −1
j C

†
j . Moreover, if the local quantizer

Mj is selected large enough with respect to Δj so as to satisfy the inequality

Mj > 4Δj

‖Y −1
j BjKoj‖

λm(Λj )
‖Cj‖. (5.48)

Then, the family of subsystems {Pj } described by (5.43)–(5.45) is asymptotically

stabilizable with L2-performance bound γj by decentralized quantized output-

feedback controller (5.28).

Remark 5.6 It is significant to note that Theorem 5.5 provides an improved nominal

result over [6] and gives an explicit expression for the quantized output feedback

gain. In addition, the result is valid for arbitrary number of subsystems and not

restricted to ns = 2 as in [6].

5.2 Decentralized Quantized Control II: Continuous Systems

Quantization in control systems has been an active research topic in recent years,

see [11, 13]. Control problems under different types of quantizations in both, linear
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and nonlinear cases have been examined. The need for quantization arises when dig-

ital networks are part of the feedback loop and this eventually gives rise to packet

dropouts or data transfer rate limitations [17]. On the other hand, signal process-

ing and signal quantization always exist in computer-based control systems [22]

and therefore recent research studies have been reported on the analysis and design

problems for control systems involving various quantization methods, see [5, 8, 19,

21, 33, 34] and the references cited therein.

In [5], a quantizer taking value in a finite set is defined and then quantized feed-

back stabilization for linear systems is considered. In [8], the problem of stabilizing

an unstable linear system by means of quantized state feedback, where the quan-

tizer takes value in a countable set is addressed. It should be noted that the approach

in [5] relies on the possibility of making discrete on line adjustments of quantizer

parameters which was extended in [21] for more general nonlinear systems with

general types of quantizers involving the states of the system, the measured out-

puts, and the control inputs. Recently in [11], a study of quantized and delayed

state-feedback control systems under constant bounds on the quantization error

and the time-varying delay was reported. Based on [21], stabilization of discrete-

time LTI systems with quantized measurement outputs is reported in [29]. Further

related results are reported in [33, 34]. On another research front, decentralized

stability and feedback stabilization of interconnected systems have been the topic

of recurring interests and recent relevant results have been reported in [2, 24–28,

31].

In this section, we develop an approach to the problem of quantized feedback

stabilization from a generalized setting by designing a decentralized H∞ feedback

control for a class of linear interconnected continuous-time systems with unknown-

but-bounded couplings and interval delays and where the quantizer has arbitrary

form that satisfies a quadratic inequality constraint. An LMI-based method using

a decentralized quantized output-feedback controller is designed at the subsystem

level to render the closed-loop system delay-dependent asymptotically stable with

guaranteed γ -level. It is established that this setting encompasses several special

cases of interest including interconnected delay-free systems, single time-delay sys-

tems and single systems.

5.2.1 Problem Statement

We consider a class of linear systems S structurally composed of ns coupled sub-

systems Sj and the model of the j th subsystem is described by the state-space rep-

resentation:

Sj : ẋj (t)=Ajxj (t)+Adjxj (t − τj (t))+Bjuj (t)+ cj (t)+ Γjwj (t), (5.49)

zj (t)=Gjxj (t)+Gdjxj (t − τj (t))+Φjwj (t),
(5.50)

yj (t)= Cjxj (t)+Cdjxj (t − τj (t))+Ψjwj (t),
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where for j ∈ {1, . . . , ns}, xj (t) ∈ ℜnj is the state vector, uj (t) ∈ ℜmj is the con-

trol input, yj (t) ∈ ℜpj is the measured output, wj (t) ∈ ℜqj is the disturbance in-

put which belongs to L2[0,∞), zj (t) ∈ ℜqj is the performance output. The ma-

trices Aj ∈ ℜnj ×nj , Bj ∈ ℜnj ×mj , Adj ∈ ℜnj ×nj , Φj ∈ ℜqj×qj , Γj ∈ ℜnj×qj ,

Cj ∈ ℜpj×nj , Cdj ∈ ℜpj×nj , Gj ∈ ℜqj×nj , Gdj ∈ ℜqj×nj , Ψj ∈ ℜpj×qj are real

and constants. The initial condition κj ∈ L2[−̺j ,0], j ∈ {1, . . . , ns}. In the sequel,

we treat the interaction term cj (t) as a piecewise-continuous vector function in its

arguments and satisfies the quadratic inequality

ctj (t)cj (t)≤ φjx
t
j (t)E

t
jEjxj (t)+ψjx

t
j (t − τj (t))E

t
djEdjxj (t − τj (t)), (5.51)

where φj > 0, ψj > 0 are adjustable bounding parameters. The factors τj , j, k ∈

{1, . . . , ns} are unknown time-delay factors satisfying

0< ϕj ≤ τj (t)≤ ̺j , τ̇j (t)≤ ηj , (5.52)

where the bounds τ−
j , τ+

j , ηj are known constants in order to guarantee smooth

growth of the state trajectories. Note in (5.50) and (5.51) that the delay within each

subsystem (local delay) and among the subsystems (coupling delay), respectively,

are emphasized. A block-diagram representation of the subsystem model (5.50) is

depicted in Fig. 5.2.

The class of systems described by (5.49)–(5.50) subject to delay-pattern (5.52) is

frequently encountered in modeling several physical systems and engineering appli-

cations including large space structures, multi-machine power systems, cold mills,

transportation systems, water pollution management, to name a few [25]. In the

course of feedback control design, it is often considered that the process output

is passed directly to the controller. A control input signal is generated and in turn

passes it directly back to the process. In many applications, it turns out that the in-

terface between the controller and the process features some additional information-

processing devices. Of interest in this chapter is the issue of signal quantization.

Our objective in this section is to address a generalized approach to examine

the problem of quantized feedback stabilization for a class of linear interconnected

continuous-time systems. In this approach, we think of a quantizer as a device that

converts a real-valued signal into a piecewise constant one taking on a finite set of

values and wherein it is possible to vary some parameters of the quantizer in real

time, on the basis of collected data. We seek to design a decentralized H∞ feedback

control for a class of linear interconnected continuous-time systems with unknown-

but-bounded couplings and interval delays

Remark 5.7 In general, the vector c(t) =
∑ns

j cj (t) represents the interaction pat-

tern among the subsystems wherein the component vector cj (t) depends on the

current and delayed states of the form cj (t)=
∑ns

ℓ�=j Ajℓxℓ(t)+Adjℓxℓ(t − τℓ(t)).
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Under the interconnected structural identity

ns∑

j

ns∑

ℓ�=j

Ajℓxℓ(t)+Adjℓxℓ(t − τℓ(t))=

ns∑

j

ns∑

j �=ℓ

Aℓjxj (t)+Adℓjxj (t − τj (t))

it has been a common practice [24] to rearrange the terms in a convenient way

so as to reflect within the j th-subsystem the appropriate components leading to

the bounding inequality (5.51) with adjustable bounding parameters φj , ψj . Note

in (5.49) and (5.51) that the subsystem delay with local and coupling patterns are

emphasized and in numerical simulations, all the subsystems have to be treated si-

multaneously. An overall feasible solution of system S is only guaranteed if the

feasible solutions of subsystems Sj are attained. Thus the rationale behind inequal-

ity (5.51) is to help in inducing decentralized computations.

The quantizer can be thought of as a coder that generates an encoded signal

taking values in a given finite set. By changing the size and relative position of

the quantization regions, that is, by modifying the coding mechanism we can learn

more about the behavior of the system, without violating the restriction on the type

of information that can be communicated to the controller.

5.2.2 A Class of Local Quantizers

In the sequel, we treat a quantizer as a device in the control loop that converts

a real-valued signal into a piecewise constant one. We adopt the definition of a

local (subsystem) quantizer with general form as introduced in [21]. Let fj ∈ ℜs ,

j = 1, . . . , ns be the variable being quantized. A local quantizer is defined as a

piecewise constant function Qj : ℜs → Dj , where Dj is a finite subset of ℜs . This

leads to a partition of ℜs into a finite number of quantization regions of the form

{fj ∈ ℜs : Q(fj ) = dj , dj ∈ Dj }. These quantization regions are not assumed to

have any particular shape.

In the quantized control strategy to be developed below, we will use the local

quantization error ∆j (y) = Qj (yj ) − yj (see Fig. 5.5) based on output measure-

ments such that the following quadratic bounding relation is satisfied:

Δt
j (.)Δj (.)≤ αjx

t
j (t)F

t
jFjxj (t)+ βjx

t
j (t − τj (t))F

t
djFdjxj (t − τj (t)), (5.53)

where αj > 0, βj > 0 are adjustable subsystem parameters and the matrices Ej , Fj
are arbitrary but constants.

Remark 5.8 It is crucial to recognize that the quadratic bounding relation (5.53) is

independent of the structure of the quantizer employed. In fact, it is satisfied by wide

class of practically-used quantizers. For example, in case of uniform quantizer [5,

21] for delay-free systems τj ≡ 0, we assume that given positive integer Mj (satu-

ration value) and nonnegative real number Σj (sensitivity), the quantizer Q(fj ) is
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Fig. 5.5 Time-delayed

subsystem model with

quantizer

defined by:

Q(fj ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Mj if fj > (Mj + 1
2
)Σj ,

−Mj if fj ≤ −(Mj + 1
2
)Σj ,

[ fj
Σj

+ 1
2

]
Mj if −(Mj + 1

2
)Σj < fj ≤ (Mj + 1

2
)Σj .

Typical simulation would certainly shows that the uniform quantizer satisfies the

quadratic bounding relation (5.53) with fj (t)= Cjxj (t). Alternatively, in the case

of static logarithmic quantizer [13] for delay-free systems, we assume that given

real numbers εj , ̺j ∈ (0,1), the quantizer Q(εj ) is defined by:

Q(εj )=

⎧
⎪⎨
⎪⎩

̺kjμ0 if 1
1+δj

̺kjμ0 < εj ≤ 1
1−δj ̺

k
jμ0, k = 0,±1,±2, . . . ,

0 if εj = 0,

−Q(εj ) if εj < 0,

where ̺j represents the quantization density at subsystem j and δj = (1 − ̺j )/

(1 + ̺j ). Observe that a small ̺j corresponds to large δj and this implies coarse

quantization. Alternatively, a large ̺j means small δj which leads to coarse quanti-

zation. From consideration of the behavior of the static logarithmic quantizer, we

reach the conclusion that it satisfies a quadratic bounding relation with εj (t) =
Cjxj (t). Since extension to time-delay systems is quite straightforward hence, we

will employ the bounding inequality (5.53) in the subsequent analysis.

5.2.3 Quantized Output-Feedback Design

We develop in this section new criteria for LMI-based characterization of decentral-

ized stabilization by local quantized feedback of the form

uj (t)=KojQj (yj ), j = 1, . . . , ns, (5.54)
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where the gain matrices Koj , j = 1, . . . ,N will be selected to guarantee that the

closed-loop system, composed of (5.49)–(5.50), (5.53) and (5.54), given by

ẋj (t) = Ajxj (t) + Adjxj (t − τj (t))+ cj (t)+BjKojΔj (yj )+Ωjwj (t),

zj (t)=Gjxj (t)+Gdjxj (t − τj (t))+Φjwj (t),
(5.55)

Aj =Aj +BjKojCj , Adj =Adj +BjKojCdj ,

Ωj = Γj +BjKojΨj

is asymptotically stable with disturbance attenuation level γj . To facilitate fur-

ther development, we consider the case where the set of output matrices Cj ,

j = 1, . . . , ns are assumed to be of full row rank and C
†
j represents the right-inverse.

Introduce the local Lyapunov-Krasovskii functional (LKF):

Vj (t)= Vjo(t)+ Vja(t)+ Vjc(t)+ Vje(t)+ Vjm(t)+ Vjn(t),

Vjo(t)= xtj (t)Pjx(t), Vja(t)=
∫ t

t−ϕj
xtj (s)Qjxj (s) ds,

Vjm(t)= ϕj

∫ 0

−ϕj

∫ t

t+s
ẋtj (α)Wj ẋj (α)dα ds,

(5.56)

Vjn(t)= (̺j − ϕj )

∫ −ϕj

−̺j

∫ t

t+s
ẋtj (α)Sj ẋj (α)dα ds,

Vjc(t)=
∫ t

t−τj (t)
xtj (s)Zjxj (s) ds,

Vje(t)=
∫ t

t−̺j
xtj (s)Rjxj (s) ds,

where 0 < Pj = P t
j , 0 < Wj = W t

j , 0 < Qj = Qt
j , 0 < Rj = Rt

j , 0 < Sj = S t
j ,

0 < Zj = Z t
j are weighting matrices of appropriate dimensions. The main design

result is established by the following theorem.

Theorem 5.6 Given the bounds ϕj > 0, ̺j > 0 and ηj > 0. System (5.49)–(5.50) is

delay-dependent asymptotically stable with L2-performance bound γ if there exist

weighting matrices 0 < Xj , Yj , 0 <Λmj ; m= 1, . . . ,7, and scalars πj > 0, μj >

0, σj > 0, νj > 0, γj > 0 satisfying the following LMI

Π̃j =

⎡
⎣
Π1j Π2j Π4j

• Π3j 0

• • Π5j

⎤
⎦< 0, (5.57)

Π1j =

⎡
⎢⎢⎢⎢⎢⎢⎣

Πjo 0 Πja Λ2j Ij Λ6j

• −Πjc Λ3j 0 0 0

• • −Πjm Λ3j 0 0

• • • −Πjn 0 0

• • • • −Ij 0

• • • • • −Ij

⎤
⎥⎥⎥⎥⎥⎥⎦
,
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Π2j =

⎡
⎢⎢⎢⎢⎢⎢⎣

ϕjΠjs (̺j − ϕj )Πjs Λ7j

0 0 0

ϕjΠj t (̺j − ϕj )Πj t XjG
t
djΦj

0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

Π3j =

⎡
⎣

−Πjv 0 0

• −Πjw 0

• • −γ 2
j Ij +Φ t

jΦj

⎤
⎦ ,

(5.58)Π4j =
[
Π41j Π42j Π43j

]
,

Π41j =
[
Ej Xj 0 0 0 0 0

0 Edj Xj 0 0 0 0

]t
,

Π42j =
[
Fj Xj 0 0 0 0 0

0 Fdj Xj 0 0 0 0

]t
,

Π43j =
[
Gj Xj 0 0 0 0 0

0 Gdj Xj 0 0 0 0

]t
,

Π5j = diag
[
πj Ij μj Ij σj Ij νj Ij Ij Ij

]
,

Πjo = Aj Xj + Xj At
j +Λ1j +Λ4j +Λ5j −Λ2j ,

Πjc =Λ1j +Λ3j , Πjs = XjA
t
j + Y t

jB
t
j ,

Πja = Adj Xj , Πjn =Λ2j +Λ3j +Λ5j ,

Πjm = (1 −μj )Λ4j + 2Λ3j , Πjw = 2Xj −Λ3j ,

Πjv = 2Xj −Λ2j , Υtj = Υrj + XjA
t
dj .

Moreover, the local gain matrix is given by Koj = Yj X −1
j C

†
j .

Proof A straightforward computation gives the time-derivative of Vj along the so-

lutions of (5.49) with ωj (t)≡ 0 as:

V̇j (t)= 2xtj (t)Pj ẋj (t)+ xtj (t)[Qj + Rj + Zj ]x(t)

− xtj (t − ϕj )Qjxj (t − ϕj )

− (1 − τ̇j )x
t (t − τj (t))Zx(t − τ(t))− xt (t − ̺)Rx(t − ̺)

+ ẋtj (t)[ϕ
2
j Wj + (̺j − ϕj )

2 Sj ]ẋj (t)

−

∫ t

t−ϕj

ẋtj (α)Wj ẋj (α)dα

−

∫ t−ϕj

t−̺

ẋt (α)S ẋ(α)dα

≤ 2xtj (t)Pj ẋj (t)+ xtj (t)[Qj + Rj + Zj ]xj (t)

− xt (t − ϕj )Qjx(t − ϕj )
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− (1 − μj )x
t (t − τj )Zjxj (t − τj )− xtj (t − ̺j )Rjxj (t − ̺j )

+ ẋtj (t)[ϕj Wj + (̺j − ϕj )Sj ]ẋj (t)

− ϕj

∫ t

t−̺j
ẋtj (α)Wj ẋj (α)dα

− (̺j − ϕj )

∫ t−ϕj

t−̺j
ẋtj (α)Sj ẋj (α)dα. (5.59)

Applying the Jenkins’s inequality (see Chap. 9), we get

−ϕj
∫ t

t−ϕj
ẋtj (α)Wj ẋj (α)dα

≤
[

xj (t)

xj (t − ϕj )

]t [−Wj Wj

• −Wj

][
xj (t)

xj (t − ϕj )

]
. (5.60)

Similarly,

−(̺j − ϕj )

∫ t−ϕj

t−̺j
ẋtj (α)Sj ẋj (α)dα

= −(̺j − ϕj )

[∫ t−ϕ

t−τ
ẋt (α)S ẋ(α)dα +

∫ t−τj

t−̺j
ẋtj (α)Sj ẋj (α)dα

]

≤ −(τj − ϕj )

[∫ t−ϕj

t−τj
ẋtj (α)Sj ẋj (α)dα

]

− (̺j − τj )

[∫ t−τj

t−̺j
ẋtj (α)Sj ẋj (α)dα

]

≤ −
(∫ t−ϕj

t−τj
ẋtj (α)dα

)
Sj

(∫ t−ϕj

t−τj
ẋj (α)dα

)

−
(∫ t−τj

t−̺j
ẋtj (α)dα

)
Sj

(∫ t−τj

t−̺j
ẋj (α)dα

)

= −[x(t − ϕj )− x(t − τj )]t Sj [x(t − ϕj )− x(t − τj )]
− [x(t − τj )− x(t − ̺j )]t Sj [x(t − τj )− x(t − ̺j )]. (5.61)

From (5.56)–(5.61) with Schur complements and incorporating (5.51) and (5.53)

via the S-procedure, we have

V̇j (t)≤ ξ tj (t)Ξj ξj (t),

ξj (t)=
[
ξ t1j (t) ξ

t
2j (t)

]t
,

(5.62)
ξ1j (t)=

[
xtj (t) x

t
j (t − ϕj ) x

t
j (t − τj )

]t
,

ξ2j (t)=
[
xtj (t − ̺j ) c

t
j (t) Δ

t
j (yj )

]t
,
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where Ξj corresponds to Π̃j in (5.57) with Gj ≡ 0, Gdj ≡ 0, Φj ≡ 0 and Schur

complement operations. If Π̃j < 0 so is Ξj < 0, leading to V̇j (t) ≤ −ωj‖ξj‖
2.

This establishes the internal asymptotic stability.

Next, we consider the performance measure

Jj =

∫ ∞

0

(
ztj (s)zj (s)− γ 2

j w
t
j (s)wj (s)

)
ds.

For any ωj (t) ∈ L2(0,∞) �= 0 and zero initial condition x(0) = 0 (hence Vj (0) =

0), we have

Jj ≤

∫ ∞

0

(
ztj (s)zj (s)− γ 2

j w
t
j (s)wj (s)+ V̇j (x)|(5.49)

)
ds,

where V̇j (x)|(5.49) is the Lyapunov derivative along the state trajectories of system

(5.49). Proceeding, we get

ztj (s)zj (s)− γ 2
j w

t
j (s)wj (s)+ V̇j (s)|(5.49) = ηtj (s)Ξ̂jηj (s),

ηj (s)=
[
ξ tj (s) w

t
j (s)

]t
, (5.63)

where Ξ̂j corresponds to Π̃j given by (5.57) by Schur complements. If Π̂j < 0, it

is readily seen from (5.63) by Schur complements that

ztj (s)zj (s)− γ 2
j w

t
j (s)wj (s)+ V̇j (s)|(5.49) < 0

for arbitrary s ∈ [t,∞), which implies for any ωj (t) ∈ L2(0,∞) �= 0 that Jj < 0 or

equivalently J =
∑ns

j=1 Jj < 0. This in turn leads to ‖zj (t)‖2 < γj‖ωj (t)‖2 for all

j = 1, . . . , ns .

To compute that the feedback gains, we apply Schur complements and rewrite Ξ̂

as

Π̂j =

⎡
⎣
Π̂oj Π̂cj Π̂vj

• −Π̂sj 0

• • −Π̂wj

⎤
⎦< 0, (5.64)

Π̂oj =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ξ̃os 0 PjAdj Wj Pj PjBjKoj

• −Ξcj Sj 0 0 0

• • −Ξ̃mj Sj 0 0

• • • −Ξnj 0 0

• • • • −Ij 0

• • • • • −Ij

⎤
⎥⎥⎥⎥⎥⎥⎦
,

Π̂cj =

⎡
⎢⎢⎢⎢⎢⎢⎣

ϕjA
t
s (̺j − ϕj )A

t
s Gt

jΦj + PjΩj

0 0 0

ϕjA
t
do (̺j − ϕj )A

t
do Gt

djΦj

0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,
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Π̂sj =

⎡
⎢⎣

−W −1
j 0 0

• −S −1
j 0

• • −γ 2 + jI +Φ t
jΦj

⎤
⎥⎦ , (5.65)

Π̂vj =
[
Πv1j Πv2j Πv3j

]
,

Πv1j =
[
Ej 0 0 0 0 0

0 Edj 0 0 0 0

]t
,

Πv2j =
[
Fj 0 0 0 0 0

0 Fdj 0 0 0 0

]t
,

Πv3j =
[
Gj 0 0 0 0 0

0 Gdj 0 0 0 0

]t
,

Ξ̃os = Pj Aj + At
j Pj + Qj + Rj + Zj − Wj ,

Ξ̃jm = (1 −μj )Zj + 2Sj .

Then we define Xj = P −1
j , πj = φ−1

j , μj = ψ−1
j , σj = α−1

j , νj = β−1
j and apply

the congruent transformation

Tj = diag
[

Xj Xj Xj Xj Ij Ij Ij Ij Ij
]

along with the linearizations

Λ1j = Xj Qj Xj , Λ2j = Xj Wj Xj , Λ3j = Xj Sj Xj ,

Λ4j = Xj Zj Xj , Λ5j = Xj Rj Xj , Λ6j = BjKoj ,

Λ7j = XjG
t
jΦj + Γj +BjKoj , Πjr = X t

jC
t
djK

t
ojB

t
j .

Using the algebraic matrix inequalities −W −1
j ≤ −2Xj +Λ2j , −S −1

j ≤ −2Xj +
Λ3j in addition to the matrix definitions (5.58), we obtain LMI (5.57) by Schur

complements. This concludes the proof. �

5.2.4 Special Cases

In the sequel, some special cases are derived to emphasize the generality of our

approach. These include nominal delay-free systems, single time-delay systems and

single dynamical systems.

5.2.4.1 Delay-Free Systems

First, we consider the class of nominally-linear systems S structurally composed of

ns coupled subsystems Sj and the model of the j th subsystem is described by the

state-space representation:
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Sj : ẋj (t) = Ajxj (t) + Bjuj (t) + cj (t) + Γjwj (t), (5.66)

zj (t) = Gjxj (t) +Φjwj (t),

yj (t) = Cjxj (t)+Ψjwj (t),
(5.67)

where for j ∈ {1, . . . , ns}, the coupling vector cj (k) is a piecewise-continuous vec-

tor function in its arguments and satisfies the quadratic inequality

ctj (k, ., .)cj (k, ., .)≤ φjx
t
j (k)E

t
jEjxj (k), (5.68)

where φj > 0 are adjustable bounding parameters and Mj ∈ ℜnj×nj are constant

matrices. We will use local quantized output measurements such that the following

quadratic bounding relation is satisfied:

Δt
j (.)Δj (.)≤ αjx

t
j (k)F

t
jFjxj (k), (5.69)

where αj > 0 are adjustable subsystem parameters. The following corollary stands

out:

Corollary 5.2 System (5.66)–(5.67) is asymptotically stable with L2-performance

bound γ if there exist weighting matrices 0 < Xj , Yj , Λmj ; m= 1,2, and scalars

πj > 0, σj > 0, γj > 0 satisfying the following LMI

Π j =

[

Π1j Π2j

• Π3j

]

< 0, (5.70)

Π1j =

⎡
⎢⎢⎣

Π jo Ij Λ1j Λ2j

• −Ij 0 0

• • −Ij XjG
t
djΦj

• • • −γ 2
j Ij +Φ t

jΦj

⎤
⎥⎥⎦ ,

Π2j =
[
Π21j Π22j Π23j

]
, (5.71)

Π21j =
[
Ej Xj 0 0 0

]t
, Π22j =

[
Fj Xj 0 0 0

]t
,

Π23j =
[
Gj Xj 0 0 0

]t
, Π3j = diag

[
ηj Ij σj Ij Ij

]
,

Π jo = Aj Xj + Xj At
j .

Moreover, the local gain matrix is given by Koj = Yj X −1
j C

†
j .

5.2.4.2 Single Time-Delay Systems

In what follows, we consider the single linear time-delay system

ẋ(t)=Ax(t)+Adx(t − τ(t))+Bu(t)+ Γw(t), (5.72)

zj (t)=Gx(t)+Gdx(t − τ(t))+Φw(t),
(5.73)

yj (t)= Cx(t)+Cdxj (t − τ(t))+Ψw(t),
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where 0 < ϕ ≤ τ(t)≤ ̺, τ̇ (t)≤ η. Like before, we will use quantized output mea-

surements such that the following quadratic bounding relation is satisfied:

Δt (.)Δ(.)≤ αxt (t)F tFx(t)+ βxt (k − τ(t))F t
dFdx(k − τ(t)), (5.74)

where α > 0, β > 0 are adjustable parameters. The following corollary establishes

the corresponding design result:

Corollary 5.3 Given the bounds the bounds ϕ > 0, ̺ > 0 and η > 0 then system

(5.72)–(5.73) is delay-dependent asymptotically stabilizable by quantized feedback

controller u(t) = Koy(t) with L2-performance bound γ if there exist weighting

matrices 0 < X , Y , Θm; m= 1, . . . ,7, and a scalar γ > 0 satisfying the following

LMI

Υ̃ =

⎡
⎣
Υ1 Υ2 Υ4

• Υ3 0

• • Υ5

⎤
⎦< 0, (5.75)

Υ1 =

⎡
⎢⎢⎢⎢⎣

Υo 0 Υa Θ2 Θ6

• −Πc Θ3 0 0

• • −Υm Θ3 0

• • • −Υn 0

• • • • −I

⎤
⎥⎥⎥⎥⎦
,

Υ2 =

⎡
⎢⎢⎣

ϕΠs (̺− ϕ)Υs Θ7

0 0 0

ϕΥt (̺− ϕ)Υt XGt
dΦ

0 0 0

⎤
⎥⎥⎦ ,

Υ3 =

⎡
⎣

−Πv 0 0

• −Πw 0

• • −γ 2I +Φ tΦ

⎤
⎦

(5.76)Υ4 =
[
Υ41 Υ42

]

Υ41 =
[
FX 0 0 0

0 FdX 0 0

]t

Υ42 =
[
GX 0 0 0

0 GdX 0 0

]t

Υ5 = diag
[
σI νI I I

]
,

Υo = A X + X At +Θ1 +Θ4 +Θ5 −Θ2,

Υc =Θ1 +Θ3, Υs = XAt + Y tB t

Υa = AdX , Υn =Θ2 +Θ3 +Θ5,

Υm = (1 −μ)Θ4 + 2Θ3, Υt = XAt
d +Υr ,

Υv = 2X −Θ2, Υw = 2X −Θ3.

Moreover, the local gain matrix is given by Ko = Y X −1C†.
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5.2.4.3 Single Systems

Finally, we consider the single linear system

ẋ(t) = Ax(t) + Bu(t) + Γ w(t), (5.77)

zj (t) = Gx(t) +Φw(t),

yj (t) = Cx(t)+Ψw(t)
(5.78)

for which we will use quantized output measurements such that the following

quadratic bounding relation is satisfied:

Δt (.)Δ(.)≤ αxt (t)F tFx(t), (5.79)

where α > 0 is an adjustable parameter. The following corollary establishes the

corresponding design result:

Corollary 5.4 System (5.77)–(5.78) is asymptotically stabilizable by quantized

feedback controller u(t) = Koy(t) with L2-performance bound γ if there exist

weighting matrices 0 < X , Y , Θm; m = 1,2, and scalar σ > 0, γ > 0 satisfying

the following LMI

Ω̃ =
[

Ω1 Ω2

• Ω3

]

< 0, (5.80)

Ω1 =

⎡
⎣
Ωo Θ1 Θ2

• −I 0

• • −γ 2I +Φ tΦ

⎤
⎦ ,

(5.81)Ω2 =
[
Υ41 Υ42

]
, Ω3 = diag

[
σI I I

]
,

Ω21 =
[
FX 0 0

]t
, Ω22 =

[
GX 0 0

]t
,

Ωo = A X + X At .

Moreover, the local gain matrix is given by Ko = Y X −1C†.

5.2.5 Simulation Example 5.2

For the purpose of illustration, we consider an interconnected system composed of

two subsystems having uniform quantizers with the following data:

A1 =
[
−2.0000 0

0 −32.5

]
, Ad1 =

[
1.92 1.0

0 2.87

]
,

B1 =
[

1

0

]
, G1 =

[
0.7 0.4

]
, Gd1 =

[
0.1 0.1

]
,

E1 =
[
−2.01 1.0

1.347 −1.04

]
, Ed1 =

[
−0.02 −0.01

−0.01 −0.02

]
,
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F1 =
[

1 0

0 1

]

, Fd1 =
[

1 0

0 1

]

, Γ1 =
[

0.1

0.2

]

,

C1 =
[

10 1
]
, Cd1 =

[
1 0.1

]

A2 =
[
−4.3 0

1.0 −4.0

]
, Ad2 =

[
2.0 0

0 1.5

]
,

B2 =
[

1

0

]
, G2 =

[
0.5 0.6

]
, Gd2 =

[
0.2 0.2

]
,

E2 =
[
−3.2 1.0

0.5 0

]
, Ed2 =

[
−0.01 −0.02

−0.02 −0.01

]
,

F2 =
[

0.8 −1.8

0 11.0

]
, Fd2 =

[
0.8 0

0 0.9

]
, Γ2 =

[
0.2

0.1

]
,

C2 =
[

0.5 2
]
, Cd2 =

[
0.8 0.3

]
.

It is found that the feasible solution of LMI (5.57) is attained at

ϕ1 = 0.3, ̺1 = 3.89, ϕ2 = 0.4, ̺2 = 3.77,

K1 = −0.6729, K2 = −2.8345, η1 = 1.56, η2 = 1.47.

Typical simulation results are shown in Figs. 5.6 and 5.7 for the open-loop response

and closed-loop response of both subsystems. Next, by considering the class of in-

terconnected linear systems S given by (5.66)–(5.67) and implementing the LMI

(5.75), the feasible solution is found to yield the gains

Fig. 5.6 Open-loop response of subsystems 1 and 2
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Fig. 5.7 Closed-loop response of subsystems 1 and 2

Fig. 5.8 Closed-loop

response of decoupled

subsystem 1

K1 = −0.7832, K2 = −5.9173.

The simulation of the closed-loop response of both subsystems are depicted in

Figs. 5.8 and 5.9. On implementing the LMI (5.80) for the decoupled subsystem 1,

the feasible solution is given by

ϕ = 0.5, ̺= 2.35, η= 1.2, K1 = −0.7832.
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Fig. 5.9 Closed-loop

response of decoupled

subsystem 2

Fig. 5.10 Closed-loop

response of single system

The ensuing closed-loop response is plotted in Fig. 5.10. From the ensuing results,

it is quite evident that the quantized feedback control system is asymptotically sta-

ble for the class of quantizers satisfying the quadratic inequality. This holds true for

interconnected time-delay and delay-free systems, single time-delay systems and

single systems. The crucial point to record is that the type of quantizer is irrelevant

so long as its structure complies with a quadratic inequality. We have observed that

the presence of bounding inequalities (5.51) and (5.53) helps in curbing the magni-

tude of the feedback gains.
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5.3 Decentralized Quantized Control I: Discrete Systems

In what follows, we build upon [5, 21] and extend them further to the class of lin-

ear interconnected discrete-time systems with unknown-but-bounded couplings and

interval time-delays. Specifically, we study the problem of decentralized H∞ feed-

back control for this class of systems where quantized signals exist in the subsystem

control channel.

5.3.1 Introduction

It is well known that most of data and/or signals in conventional feedback con-

trol theory are processed in a direct manner. In emerging control systems including

networks, all signals are transferred through network and this eventually gives rise

to packet dropouts or data transfer rate limitations [17]. On the other hand, sig-

nal processing and signal quantization always exist in computer-based control sys-

tems [22] and therefore recent research studies have been reported on the analysis

and design problems for control systems involving various quantization methods

[5, 8, 11, 21, 29]. In [5], a quantizer taking value in a finite set is defined and then

quantized feedback stabilization for linear systems is considered. The problem of

stabilizing an unstable linear system by means of quantized state feedback, where

the quantizer takes value in a countable set, is addressed in [8]. It should be noted

that the approach in [5] relies on the possibility of making discrete on line adjust-

ments of quantizer parameters which was extended in [21] for more general nonlin-

ear systems with general types of quantizers involving the states of the system, the

measured outputs, and the control inputs. In [11], study of quantized and delayed

state-feedback control systems under constant bounds on the quantization error and

the time-varying delay was reported. Based on [20], stabilization of discrete-time

LTI systems with quantized measurement outputs is reported in [29]. Further re-

lated results are reported in [33, 34].

On another research front, decentralized stability and feedback stabilization of

interconnected systems have been the topic of recurring interests and recent relevant

results have been reported in [2, 24–28, 31].

A block-diagram representation of the subsystem model is depicted in Fig. 5.11.

In this regard, an LMI-based decentralized static output-feedback controller

(when the switch in Fig. 5.1 is closed) is designed at the subsystem level using

only local variables to render the overall closed-loop system is delay-dependent

asymptotically stable with guaranteed γ -level and this results provides an important

contribution for interconnected discrete systems [2]. When the local output mea-

surements are quantized before passing to the controller (corresponding to open-

ing the switch in Fig. 5.1), we consider the local channel quantizer in a gener-

alized form with a zoom parameter that can be adjusted on-line. We develop a

local output-dependent procedure for updating the quantizer parameters to retain
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Fig. 5.11 A subsystem

quantized model with

quantizer

the delay-dependent asymptotic stability and guaranteed performance of the closed-

loop quantized system. Several special cases of interest are derived and are shown

to provide improved results over the existing literature.

5.3.2 Problem Description

We consider a class of linear systems S structurally composed of ns coupled sub-

systems Sj and the model of the j th subsystem is described by the state-space rep-

resentation:

xj (k + 1) = Ajxj (k) + Djxj (k − dj (k)) + Bjuj (k) + cj (k) + Γjwj (k), (5.82)

zj (k) = Gjxj (k) + Ljxj (k − dj (k)) +Φjwj (k),

yj (k) = Cjxj (k)+Ejxj (k − dj (k))+Ψjwj (k),
(5.83)

where for j ∈ {1, . . . , ns}, xj (k) ∈ ℜnj is the state vector, uj (k) ∈ ℜmj is the control

input, yj (k) ∈ ℜpj is the control output, wj (k) ∈ ℜqj is the disturbance input which

belongs to ℓ2[0,∞), zj (k) ∈ ℜqj is the performance output and cj (k) ∈ ℜnj is the

coupling vector. The matrices Aj ∈ ℜnj×nj , Bj ∈ ℜnj×mj , Dj ∈ ℜqj×nj , Φj ∈

ℜqj×qj , Ψj ∈ ℜpj×qj , Γj ∈ ℜnj×qj , Lj ∈ ℜqj×nj , Gj ∈ ℜqj×nj , Cj ∈ ℜpj×nj ,

Ej ∈ ℜpj×nj are real and constants. The initial condition κj ∈ L2[−̺j ,0], j ∈

{1, . . . , ns}. In the sequel, we treat cj (k) as a piecewise-continuous vector function

in its arguments and satisfies the quadratic inequality

ctj (k, ., .)cj (k, ., .)

≤ φjx
t
j (k)M

t
jMjxj (k)+ψjx

t
j (k − dj (k))N

t
jNjxj (k − dj (k)), (5.84)

where φj > 0, ψj > 0 are adjustable bounding parameters and Mj ∈ ℜnj×nj , Nj ∈

ℜnj×nj are constant matrices. The factors dj (k), j ∈ {1, . . . , ns} are unknown time-

delay factors satisfying

0< d−
j ≤ dj (k)≤ d+

j , (5.85)

where the bounds d−
j , d

+
j are known constants in order to guarantee smooth growth

of the state trajectories. Note in (5.82) and (5.84) that the delay within each subsys-

tem (local delay) and among the subsystems (coupling delay) are emphasized.
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Assumption 5.1 For all θ ∈ [−d+
j ,0], there exists a scalar αj > 0 such that

‖xj (k − dj (k))‖ ≤ αj‖xj (k)‖. (5.86)

It should be emphasized [23] that (5.86) is not restrictive since we treat αj as an

adjustable parameter at the disposal of the designer who will have the freedom to

change it to produce satisfactory system performance.

The class of systems described by (5.82)–(5.83) subject to delay-pattern (5.85) is

frequently encountered in modeling several physical systems and engineering appli-

cations including large space structures, multi-machine power systems, cold mills,

transportation systems, water pollution management, to name a few [25, 27, 28, 30].

5.3.3 Local Quantizers

In the sequel, we adopt the definition of a local (subsystem) quantizer with general

form as introduced in [21]. Let fj ∈ ℜs , j = 1, . . . , ns be the variable being quan-

tized. A local quantizer is defined as a piecewise constant function Qj : ℜs → Dj ,

where Dj is a finite subset of ℜs . This leads to a partition of ℜs into a finite number

of quantization regions of the form {fj ∈ ℜs :Q(fj )= dj , dj ∈ Dj }. These quan-

tization regions are not assumed to have any particular shape. We assume that there

exist positive real numbers Mj and Δj such that the following conditions hold:

1. If |fj | ≤ Mj then |Qj (fj )− fj | ≤Δj . (5.87)

2. If |fj |>Mj then |Qj (fj )|>Mj −Δj . (5.88)

We note that condition (5.87) provides a bound on the quantization error when the

quantizer does not saturate. Condition (5.88) gives a way to detect the possibility

of saturation. In the sequel, Mj and Δj will be referred to as the range of Qj and

the quantization error, respectively. Henceforth, we assume that Q(x) = 0 for x

in some neighborhood of the origin. The foregoing requirements are met by the

quantizer with rectangular quantization regions [5, 19].

In the control strategy to be developed below, we will use local quantized mea-

surements of the form

Qμj (fj )= μjQj

(
fj

μj

)
, (5.89)

where μj > 0 is an adjustable subsystem parameter.

Remark 5.9 Observe that, at the subsystem level, the extreme case μj = 0 is re-

garded as setting the output of the local quantizer as zero. This local quantizer has

the range Mjμj and the quantization error Δjμj . Thus, we can view μj as a local

zoom variable: increasing μj corresponds to zooming out and essentially generating

a new local quantizer with larger range and larger quantization error, whilst decreas-

ing μj implies zooming in and obtaining a local quantizer with smaller range and
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smaller quantization error. We will update μj later on depending on the subsystem

state (or the subsystem output). In some sense, it can regarded as additional state of

the resultant closed-loop subsystem.

Next, we examine the output-feedback control design.

5.3.4 Static Output-Feedback Design

In this section, we develop new criteria for LMI-based characterization of decen-

tralized stabilization by local static output-feedback. Initially, without quantization,

we let the local decentralized static output-feedback has the form

uj (k) = Kojyj (k), j = 1, . . . , ns, (5.90)

where the gain matrices Koj , j = 1, . . . ,N have been selected to guarantee the

closed-loop system, composed of (5.82)–(5.84) and (5.90), given by

xj (k + 1) = Ajxj (k) + Djxj (k − dj (k)) + cj (k) +Ωjwj (k), (5.91)

zj (k) = Gjxj (k)+Ljxj (k − dj (k))+Φjwj (k),

yj (k) = Cjxj (k)+Ejxj (k − dj (k))+Ψjwj (k),
(5.92)

Aj = Aj +BjKojCj , Dj =Dj +BjKojEj ,

Ωj = Γj +BjKojΨj
(5.93)

is asymptotically stable with disturbance attenuation level γj . To facilitate fur-

ther development, we consider the case where the set of output matrices Cj , j =
1, . . . , ns are assumed to be of full row rank and C

†
j represents the right-inverse.

Introduce the local Lyapunov-Krasovskii functional (LKF):

Vj (k)= xtj (k)Pjxj (k)+
k−1∑

m=k−dj (k)
xtj (m)Qjxj (m)

+
1−d−

j∑

s=2−d+
j

k−1∑

m=k+s−1

xtj (m)Qjxj (m), (5.94)

where 0< Pj ,0< Qj are weighting matrices of appropriate dimensions.

The following theorem establishes the main design result, without quantization,

for subsystem Sj .

Theorem 5.7 Given the bounds d−
j > 0, d+

j > 0, j = 1, . . . , ns , then the family of

subsystems {Sj } where Sj is described by (5.82)–(5.83) is delay-dependent asymp-

totically stabilizable by decentralized static output-feedback controller uj (t) =
Kojyj (t) with L2-performance bound γj if there exist matrices

Xj > 0, Gj , Πcj , Πsj , Πvj
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and scalars ηj > 0, μj > 0, γj > 0 satisfying the following LMIs for j = 1, . . . , ns

Πj =
[

Π1j Π2j

• Π3j

]

< 0, (5.95)

Π1j =

⎡
⎢⎢⎣

Πoj 0 0 0

• −Πcj 0 0

• • −Ij 0

• • • −γ 2
j Ij

⎤
⎥⎥⎦ ,

Π2j =

⎡
⎢⎢⎣

XjGj Πaj XjM
t
j 0

XjLj Πej 0 XjN
t
j

0 Xj 0 0

Φj Πwj 0 0

⎤
⎥⎥⎦ ,

(5.96)

Π3j =

⎡
⎢⎢⎣

−Ij 0 0 0

• −Xj 0 0

• • −ηj Ij 0

• • • −μj Ij

⎤
⎥⎥⎦ ,

Πoj = −Xj + d∗
jΠcj , Πaj = XjA

t
j + GjB

t
j ,

Πej = XjD
t
j +ΠsjB

t
j , Πwj = XjΓ

t
j +ΠvjB

t
j .

Moreover, the local gain matrix is given by Koj = Gj X −1
j C

†
j .

Proof Let d∗
j = d+

j − d−
j + 1. A straightforward computation gives the first-

difference of ΔVj (k)= Vj (k + 1)− Vj (k) along the solutions of (5.82) as:

ΔVj (k)= [Ajxj (k)+ Djxj (k − dj (k))+ cj (k)+Ωjwj (k)]t

× Pj [Ajxj (k)+ Djxj (k − dj (k))+ cj (k)+Ωjwj (k)]

− xtj (k)Pjxj (k)+ xtj (k)Qjxj (k)− xtj (k − dj (k))Qjxj (k − dj (k))

+
k−1∑

m=k+1−dj (k+1)

xtj (m)Qjxj (m)−
k−1∑

m=k+1−dj (k)
xtj (m)Qjxj (m)

+ (d+
j − d−

j )x
t
j (k)Qjxj (k)−

k−d∗
j∑

m=k+1−d+
j

xtj (m)Qjxj (m). (5.97)

In order to cast ΔVj (k) into a quadratic form, we recall
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k−1∑

m=k+1−dj (k+1)

xt
j (m)Qjxj (m)

=
k−1∑

m=k+1−d−
j

xt
j (m)Qjxj (m) +

k−d−
j∑

m=k+1−dj (k+1)

xt
j (m)Qjxj (m)

≤
k−1∑

m=k+1−dj (k)

xt
j (m)Qjxj (m) +

k−d−
j∑

m=k+1−d+
j

xt
j (m)Qjxj (m). (5.98)

Then using (5.98) into (5.97) and manipulating, we reach

ΔVj (k)≤ [Ajxj (k)+ Djxj (k − dj (k))+ cj (k)+Ωjwj (k)]t

× Pj [Ajxj (k)+ Djxj (k − dj (k))+ cj (k)+Ωjwj (k)]
+ xtj (k)[d∗

j Qj − Pj ]xj (k)− xtj (k − dj (k))Qjxj (k − dj (k)). (5.99)

In terms of the vectors

ξj (k)= [xtj (k) xtj (k − dj (k)) c
t
j (k) w

t
j (k)]t

we combine (5.97)–(5.99) with algebraic manipulations using inequalities (5.84)

and Schur complements [4] to arrive at:

ΔVj (k)=
ns∑

j=1

ξ tj (k)Ξj ξj (k),

Ξj =

⎡
⎢⎢⎢⎢⎣

Ξaj 0 0 0 At
j Pj

• −Πcj 0 0 Dt
j Pj

• • −Ij 0 Pj

• • • 0 Ω t
j Pj

• • • • −Pj

⎤
⎥⎥⎥⎥⎦
, (5.100)

Ξaj = −Pj + d∗
j Qj + φjM

t
jMj ,

Ξcj = Qj −ψjN
t
jNj .

It is known that the sufficient condition of subsystem internal stability isΔVj (k) < 0

when ωj (k) ≡ 0 which corresponds to deleting the fourth column and row in Ξj .

This implies that Ξj < 0 under same requirements.

Next, consider the local performance measure

Jj =

∞∑

k=0

(
ztj (k)zj (k)− γ 2ωtj (k)ωj (k)

)
.

For any ωj (k) ∈ ℓ2(0,∞) �= 0 and zero initial condition xjo = 0, (hence Vj (0)= 0),

we have

Jj ≤

∞∑

k=0

[
ztj (k)zj (k)− γ 2ωtj (k)ωj (k)+ΔVj (k)|(5.91)

]
, (5.101)
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where ΔVj (k)|(5.91) defines the Lyapunov difference along the solutions of system

(5.91). On considering (5.93), (5.100) and (5.101), it can easily shown by algebraic

manipulations that

ztj (k)zj (k)− γ 2ωtj (k)ωj (k)+ΔVj (k)|(5.82) = χ tj (k)Ξ̂jχj (k), (5.102)

Ξ̂j =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ξaj 0 0 0 Gj At
j Pj

• −Ξcj 0 0 Hj Dt
j Pj

• • −Ij 0 0 Pj

• • • −γ 2
j Ij Φj Ω t

j Pj

• • • • −Ij 0

• • • • • −Pj

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.103)

for some vector χj (k). It is readily seen that

ztj (k)zj (k)− γ 2ωtj (k)ωj (k)+ΔVj (k)|(5.82) < 0

for arbitrary j ∈ [0,∞), which implies for any ωj (k) ∈ ℓ2(0,∞) �= 0 that Jj < 0.

Applying the congruent transformation

T = diag[Xj ,Xj , Ij , Ij , Ij ,Xj ], Xj = P −1
j

to (5.103) with Schur complements and using the change of variables

Gj =KojCj Yj , Πcj = Xj Qj Xj , Πsj = XjE
t
jK

t
oj

Πvj = XjΨ
t
jK

t
oj , ηj = φ−1

j , μj =ψ−1
j

we readily obtain LMI (5.95) with (5.96) and hence the proof is completed. �

Remark 5.10 It should be emphasized that the LMI variables Πcj , Πsj , Πvj are

independent since the matrices Ej , Ψj might be singular and thus a unique value

of Koj will be produced.

Remark 5.11 We note that the case of decentralized state feedback control uj (t)=

Kjxj (t), j = 1, . . . , ns can be readily obtained from Theorem 5.7 by setting

Cj ≡ Ij , Ej ≡ 0, Ψj ≡ 0 so that the resulting closed-loop system is asymptotically

stable with guaranteed H∞ performance.

5.3.5 Quantized Output-Feedback Design

Focusing on the availability of quantized local output information, we modify the

static output feedback (5.90) using the quantized information of yj as

uj (k)= μjKojQj

(
yj (k)

μj

)
, j = 1, . . . , ns . (5.104)

For any fixed scalar μj > 0, the closed-loop system, composed of (5.82), (5.84) and

(5.104) is given by
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xj (k + 1) = Ajxj (k) + Djxj (k − dj (k)) + cj (k)

+Ωjwj (k)+Hj (μj , yj ), (5.105)

zj (k)=Gjxj (k)+Ljxj (k − dj (k))+Φjwj (k), (5.106)

Hj (μj , yj )= μjBjKoj

(
Qj

yj (k)

μj
− yj (k)

μj

)
, (5.107)

where Aj , Dj , Ωj are given by (5.93). Next, we move to examine the stability

and desired disturbance attenuation level of the closed-loop system (5.105) in the

presence of the quantization error. We employ the LKF (5.94) and consider that the

gains Koj are obtained from application of Theorem 5.7. The following theorem

establishes the main design result for subsystem Sj .

Theorem 5.8 Given the bounds d−
j > 0, d+

j > 0, j = 1, . . . , ns . If the local quan-

tizer Mj is selected large enough with respect to Δj while adjusting the local scalar

αj so as to satisfy the inequality

Mj >Δj

‖(Pj + Ij )BjKoj‖

λm(Λj )
‖Cj + αjEj‖. (5.108)

Then, the family of subsystems {Sj } where Sj is described by (5.105)–(5.107) is

delay-dependent asymptotically stabilizable with L2-performance bound γj by de-

centralized quantized output-feedback controller (5.104).

Proof Since

yj (k)

μj
=
Cjxj (k)+Ejxj (k − dj (k))

μj

is quantized before being passed to the feedback channel, we obtain by using the

properties of local quantizer (5.87) and (5.88) that whenever |yj (k)| ≤ Mjμj , the

inequality
∣∣∣∣
yj (k)

μj
−Qj

(
yj (k)

μj

)∣∣∣∣≤Δj (5.109)

holds true. Extending on Theorem 5.7, it follows by considering (5.105) and (5.106)

that

Jj ≤
∞∑

k=0

{
χ tj (k)Ξ̃jχj (k)− xtj (k)Λjxj (k)

+ 2H t
j (μj , yj )

[
(Pj Aj +Gj )xj (k)+ Pj cj (k)

+ (Pj Dj +Lj )xj (k − dj (k))+ (PjΩj +Φj )wj (k)
]

+H t
j (μj , yj )(Pj + Ij )Hj (μj , yj )

}

≤
∞∑

k=0

{
χ tj (k)Ξ̃jχj (k)− xtj (k)Λjxj (k)+ π tj (k)Ξ̌jπj (k)

}
, (5.110)
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where

Ξ̌j =

⎡
⎢⎢⎢⎢⎣

Pj + Ij Pj Aj +Gj Pj Dj +Lj Pj PjΩj +Φj

• 0 0 0 0

• 0 0 0 0

• 0 0 0 0

• 0 0 0 0

⎤
⎥⎥⎥⎥⎦
,

(5.111)

πj (k)= [H t
j , x

t
j , x

t
j (k − dj ), c

t
j ,ω

t
j ]t ,

where Ξ̃j corresponds to Ξ̂j except that Ξaj → Ξaj +Λj with Λj > 0 being an

arbitrary matrix. In view of (5.111), we can express (5.110) for some βj > 1 in the

form

Jj ≤

∞∑

k=0

{
χ tj (k)Ξ̃jχj (k)− xtj (k)Λjxj (k)

+ β2
jH

t
j (μj , yj )(Pj + Ij )Hj (μj , yj )

}

≤

∞∑

k=0

{
χ tj (k)Ξ̃jχj (k)− xtj (k)Λjxj (k)

+ β2
jμ

2
jΔ

2
j‖K

t
ojB

t
j (Pj + Ij )BjKoj‖

}

≤

∞∑

k=0

{
χ tj (k)Ξ̃jχj (k)−

λm(Λj )

2

[
|xj |

2

−

(
βjΔjμj

√
‖K t

ojB
t
j (Pj + Ij )BjKoj‖

λm(Λj )

)2]}
. (5.112)

Since the output measurements information are used, we invoke Assumption 5.1 to

write

|yj | = ‖Cjxj (k)+Ejxj (k − dj (k))‖ ≤ ‖Cj + αjEj‖|xj |

and used this inequality into (5.112) to arrive at

Jj ≤

∞∑

k=0

{
χ tj (k)Ξ̃jχj (k)−

λm(Λj )

2‖Cj + αjEj‖2

[
|yj |

2

−

(
βjΔjμj‖Cj + αjEj‖

√
‖K t

ojB
t
j (Pj + Ij )BjKoj‖

λm(Λj )

)2]}
. (5.113)

By virtue of (5.113), we can always find a scalar εj ∈ (0,1) such that

Mj > βjΔj‖Cj + αjEj‖

√
‖K t

ojB
t
j (Pj + Ij )BjKoj‖

λm(Λj )

1√
1 − εj

. (5.114)

This is equivalent to
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1√
1 − εj

βjΔj‖Cj + αjEj‖

√
‖K t

ojB
t
j (Pj + Ij )BjKoj‖

λm(Λj )
μj <Mj . (5.115)

Therefore, for any nonzero |yj |, we can find a scalar μj > 0 such that

1√
1 − εj

βjΔj‖Cj + αjEj‖

√
‖K t

ojB
t
j (Pj + Ij )BjKoj‖

λm(Λj )
μj ≤ |yj | ≤ Mjμj .

(5.116)

At the extreme case |yj | = 0, we set μj = 0 so that the output of the local quantizer

is considered zero and therefore (5.116) holds true. This, in turn, implies that we

can always select μj so that (5.116) is satisfied, (5.113) holds and hence

Jj ≤
∞∑

k=0

{
χ tj (k)Ξ̃jχj (k)− 1

2
εjλm(Λj )

|yj |2
‖Cj + αjCdj‖2

}
. (5.117)

The rest of the proof follows from Theorem 5.7. �

Remark 5.12 For the case of decentralized state feedback control uj (t)=Kjxj (t),

j = 1, . . . , ns , then Theorem 5.8 specializes to the following corollary:

Corollary 5.5 Given the bounds d−
j > 0, d+

j > 0, j = 1, . . . , ns . If the local quan-

tizer Mj is selected large enough with respect to Δj while adjusting the local

scalar αj so as to satisfy the inequality

Mj >Δj

‖(Pj + Ij )BjKoj‖

λm(Λj )
. (5.118)

Then, the family of subsystems {Sj } where Sj is described by (5.82)–(5.84) is delay-

dependent asymptotically stabilizable with L2-performance bound γj by decentral-

ized quantized state-feedback controller

uj (t)= μjKjQj

(
xj (t)

μj

)
, j = 1, . . . , ns .

Remark 5.13 By the mean-value theorem and following [15], it can be shown that

λm(Pj )‖xj‖
2 ≤ Vj ≤ ϑj‖κj‖

2, where

ϑj =
[
λM(Pj )+ d+

j λM(Qj )
]
.

Based on the results of [21], we define the local ellipsoids

Boj (μj ) := {xj : xtj Pjxj ≤ λm(PjM
2
jμ

2
j },

Bsj (μj ) := {xj : xtj Pjxj ≤ λM(Pj D2
jΔ

2
j (1 + σj )

2μ2
j },

Dj := ‖(Pj + Ij )BjKoj‖

λm(Λj )
‖Cj + αjEj‖.

In the “zooming-in” stage, it can be inferred that Bsj (μj ) ⊂ Boj (μj ) are invariant

regions for system (5.107) given σj > 0. Moreover, all solutions of (5.107) that start

in Boj (μj ) enter Bsj (μj ) in finite time.
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Remark 5.14 It is crucial to recognize that the local scalar αj plays a basic role in

steering the trajectories of (5.107) toward the final ellipsoid Bsj (μj ). This is a dis-

tinct feature of quantized time-delay systems. It should be noted that the parameters

βj , j = 1, . . . , ns are introduced in (5.112) to reach the desired estimates and to

handle the interdependence between Hj and (xj , xj (k − dj ), cj ,ωj ). In addition,

the parameters βj , j = 1, . . . , ns can be adjusted to help satisfying (5.108).

Remark 5.15 We note in Theorem 5.8 and Corollary 5.5 there are several degrees of

freedom to achieve the desired stability with guaranteed performance, particularly

since both the off-line gain computation and the on-line quantized feedback are

decentralized. This is a salient feature of the developed results of this chapter, which

is not shared by several published results [2, 28, 30, 31].

5.3.6 Special Cases

In the sequel, some special cases are derived to emphasize the generality of our

approach. First, we consider the single nominally-linear time-delay system

x(k + 1)=Ax(k)+Dx(k − d(k))+Bu(k)+ Γw(k), (5.119)

z(k) = Gxj (k)+Lx(k − d(k))+Φw(k),

y(k) = Cxj (k)+Ex(k − d(k))+Ψw(k).
(5.120)

The factor d(k) is an unknown time-delay satisfying 0 < d− ≤ d(k) ≤ d+ where

the bounds d−, d+ are known constants in order to guarantee smooth growth of the

state trajectories. It will be assumed that for all θ ∈ [−d+,0], there exists a scalar

α > 0 such that ‖x(k − d(k))‖ ≤ α‖x(k)‖. The following corollary establishes the

corresponding design result:

Corollary 5.6 Given the bounds d− > 0, d+ > 0. Suppose that there exist matrices

X > 0, G , Πc , Πs , Πw and scalar γj > 0 satisfying the following LMI

Σ =

[

Σ1 Σ2

• Σ3

]

< 0, (5.121)

Σ2 =

⎡
⎢⎢⎣

XG XAt + GB t

XL XDt +ΠsB
t

0 X

Φ Πw

⎤
⎥⎥⎦ , Σ3 =

[
−I 0

• −X

]
,

(5.122)

Σ1 =

⎡
⎢⎢⎣

−X + d∗Πc 0 0 0

• −Πc 0 0

• • −I 0

• • • −γ 2I

⎤
⎥⎥⎦
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with the gain matrix Ko = G X −1C†. Moreover, if the quantizer M is selected large

enough with respect to Δ so as to satisfy the inequality

M>Δ
‖(X −1 + I )BKo‖

λm(Λ)
‖C + αE‖

then system (5.119)–(5.120) is delay-dependent asymptotically stabilizable by quan-

tized output-feedback controller

u(k)= μKoQ

(
y(k)

μ

)

with L2-performance bound γj .

Next, we consider a class of nominally-linear systems S structurally composed

of ns coupled subsystems Sj and the model of the j th subsystem is described by

the state-space representation:

xj (k + 1)=Ajxj (k)+Bjuj (k)+ cj (k)+ Γjwj (k), (5.123)

zj (k) = Gjxj (k)+Φjwj (k),

yj (k) = Cjxj (k)+Ψjwj (k).
(5.124)

Similarly, we treat cj (k) as a piecewise-continuous vector function in its arguments

and satisfies the quadratic inequality

ctj (k, ., .)cj (k, ., .)≤ φjx
t
j (k)M

t
jMjxj (k), (5.125)

where φj > 0 are adjustable bounding parameters and Mj ∈ ℜnj×nj are constant

matrices. The factors dj (k), j ∈ {1, . . . , ns} are unknown time-delay factors satisfy-

ing (5.85). The following corollary stands out:

Corollary 5.7 Given the bounds d−
j > 0, d+

j > 0, j = 1, . . . , ns . If there exist ma-

trices Xj > 0, Gj , Πcj , Πsj , Πvj , Πwj and scalars ηj > 0, γj > 0 satisfying the

following LMIs for j = 1, . . . , ns

Π̂j =

[
Π̂1j Π̂2j

• Π̂3j

]
< 0, (5.126)

Π̂1j =

⎡
⎢⎢⎣

Π̂oj 0 0 0

• −Πcj 0 0

• • −Ij 0

• • • −γ 2
j Ij

⎤
⎥⎥⎦ ,

Π̂2j =

⎡
⎢⎢⎣

XjGj Π̂aj XjM
t
j

XjLj ΠsjB
t
j 0

0 Xj 0

Φj Πwj 0

⎤
⎥⎥⎦ , (5.127)
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Π̂3j =

⎡
⎣

−Ij 0 0

• −Xj 0

• • −ηj Ij

⎤
⎦ ,

Π̂oj = −Xj + d∗
jΠcj , Π̂aj = XjA

t
j + GjB

t
j

with the local gain matrix Koj = Gj X −1
j C

†
j . Moreover, if the quantizer Mj is se-

lected large enough with respect to Δj so as to satisfy the inequality

Mj >Δj

‖(X −1
j + I )BjKoj‖

λm(Λj )
‖C‖

then the family of subsystems {Sj } where Sj is described by (5.123)–(5.124)

is asymptotically stabilizable by decentralized static output-feedback controller

uj (t)=Kojyj (t) with L2-performance bound γj .

Finally, we consider the single nominally-linear system

x(k + 1)=Ax(k)+Bu(k)+ Γw(k), (5.128)

z(k) = Gx(k)+Φw(k),

y(k) = Cx(k)+Ψw(k).
(5.129)

The following corollary establishes the corresponding design result:

Corollary 5.8 Suppose that there exist matrices X > 0, G , Πc , Πs , Πw and scalar

γ > 0 satisfying the following LMI

Σ̂ =

[
Σ̂1 Σ̂2

• Σ̂3

]
< 0, (5.130)

Σ̂2 =

⎡
⎢⎢⎣

XG XAt + GB t

0 ΠsB
t

0 X

Φ Πw

⎤
⎥⎥⎦ , Σ̂3 =

[
−I 0

• −X

]
,

Σ̂1 =

⎡
⎢⎢⎣

−X + d∗Πc 0 0 0

• −Πc 0 0

• • −I 0

• • • −γ 2I

⎤
⎥⎥⎦

(5.131)

with the gain matrix Ko = G X −1C†. Moreover, if the quantizer M is selected large

enough with respect to Δ while adjusting the scalar α so as to satisfy the inequality

M>Δ
‖(X −1 + I )BKo‖

λm(Λ)
‖C‖

then system (5.128)–(5.129) is asymptotically stabilizable by quantized output-

feedback controller
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u(k) = μKoQ

(
y(k)

μ

)

with L2-performance bound γj .

Remark 5.16 It is significant to note that the results of Corollaries 5.6 through 5.8

establish new designs for quantized output-feedback control. It provides efficient

LMI-based results in comparison with [5, 11, 21, 29].

5.3.7 Simulation Example 5.3

For the purpose of illustration, we consider an interconnected system composed of

two subsystems having uniform quantizers with the following data:

A1 =
[

0.8 0

0.05 0.9

]
, D1 =

[
−0.1 0

−0.2 −0.1

]
,

B1 =
[

1

0.5

]
, Gt

1 =
[

1

0.5

]
, Lt1 =

[
0.1

0.2

]
,

E1 =
[

0.1 0.01

−0.1 0.02

]
, F1 =

[
−0.02 −0.01

−0.01 −0.02

]
,

M1 =
[

1 0

0 1

]
, N1 =

[
1 0

0 1

]
,

A2 =

⎡
⎣

0.9 0.1 0

0 0.5 −0.1

0.1 0 0.4

⎤
⎦ , Gt

2 =

⎡
⎣

1

0.2

0.7

⎤
⎦ ,

B2 =

⎡
⎣

0.5

1.5

0.4

⎤
⎦ , D2 =

⎡
⎣

−0.2 0.04 0.2

−0.4 −0.15 0

0.1 0 0.3

⎤
⎦ ,

E2 =

⎡
⎣

−0.02 0.01 0

0 0.1 0

−0.02 0 0.05

⎤
⎦ , N2 =

⎡
⎣

1 0 0

0 1 0

0 0 1

⎤
⎦ ,

M2 =

⎡
⎣

1 0 0

0 1 0

0 0 1

⎤
⎦ , F2 =

⎡
⎣

0.03 0 0.02

0.1 0.2 0

−0.01 0 0.01

⎤
⎦ ,

L2 =

⎡
⎣

0.1

0.2

0.1

⎤
⎦ .

It is found that the feasible solution of LMI (5.95) is attained at
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Fig. 5.12 Closed-loop response: subsystem 1 (left), subsystem 2 (right)

Fig. 5.13 Closed-loop response of decoupled subsystem 1 (left), decoupled subsystem 2 (right)

d−
1 = 10, d+

1 = 30, d−
2 = 10, d+

2 = 30,

K1 = −0.4023, K2 = −0.0916.

Typical simulation results are shown in Fig. 5.12 for the closed-loop response of

both subsystems. Next, by dropping the time-delay factors and considering LMI

(5.126) the feasible solution is found to yield the gains

K1 = −0.6653, K2 = −1.0915.

The simulation of the closed-loop response of both subsystems are depicted in

Fig. 5.13.

On implementing the LMI (5.121) for subsystem 2, the feasible solution is given

by

d− = 20, d+
2 = 60, K2 = −1.3391.

Finally, the feasible solution of LMI (5.130) for subsystem 1 without delay terms is

K1 = −0.3039 and the corresponding closed-loop response is plotted in Fig. 5.14.

From the ensuing results, it is quite evident that the quantized feedback control

system is asymptotically stable for the class of quantizers satisfying the quadratic
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Fig. 5.14 Closed-loop response of single system: time-delay (left), delay-free (right)

inequality. This is equally true for interconnected time-delay and delay-free systems,

single time-delay systems and single systems. The crucial point to record is that the

type of quantizer so long as it is satisfies its structure complies with a quadratic

inequality. We have observed that the presence of bounding inequalities (5.84) and

(5.89) helps in curbing the magnitude of the feedback gains.

5.3.8 Simulation Example 5.4

For the purpose of illustration, we consider an interconnected system composed of

two subsystems having uniform quantizers with the following data:

A1 =
[

0.75 −0.20

0.1 0.67

]

, D1 =
[

0.21 0.14

0.2 0.13

]

,

B1 =
[

0.2

0.4

]

, Gt
1 =

[

0.4

1.0

]

, Lt
1 =

[

0.1

0.2

]

,

E1 =
[

0.3 0 0.1

−0.1 −0.2 0.02

]

, F1 =
[

0.2 −0.02 −0.1

0.1 0 −0.2

]

,

M1 =
[

1 0

0 1

]

, N1 =
[

1 0

0 1

]

,

A2 =

⎡
⎣

0.83 0 0.22

−0.1 0.56 −0.12

0.23 −0.20 0.4

⎤
⎦ , Gt

2 =

⎡
⎣

−1

0.15

0.57

⎤
⎦ ,

B2 =

⎡
⎣

1

−0.5

0.4

⎤
⎦ , D2 =

⎡
⎣

−0.32 0.14 −0.1

0.56 −0.2 0.3

0.1 −0.4 0.24

⎤
⎦ ,
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Fig. 5.15 Open-loop response: subsystem 1 (left), subsystem 2 (right)

E2 =

⎡
⎣

−0.42 0.1

0 0.1

−0.2 0.5

⎤
⎦ , N2 =

⎡
⎣

1 0 0

0 1 0

0 0 1

⎤
⎦ ,

M2 =

⎡
⎣

1 0 0

0 1 0

0 0 1

⎤
⎦ , F2 =

⎡
⎣

0.43 0.02

0.1 0.0

−0.1 0.01

⎤
⎦ ,

L2 =

⎡
⎣

0.1

0.2

0.1

⎤
⎦ .

As shown in Fig. 5.15, both subsystems are unstable. It is found that the feasible

solution of LMI (5.95) is attained at

d−
1 = 20, d+

1 = 30, d−
2 = 50, d+

2 = 60,

K1 = −1.6627, K2 = 0.3214.

The closed-loop response is depicted in Fig. 5.16.

5.4 Decentralized Quantized Control II: Discrete Systems

In conventional feedback control theory, most of data and/or signals are processed in

a direct manner. With the emerging control systems including networks, all signals

are transferred through network and this eventually gives rise to packet dropouts or

data transfer rate limitations [17]. On the other hand, signal processing and signal

quantization always exist in computer-based control systems [22] and therefore re-

cent research studies have been reported on the analysis and design problems for

control systems involving various quantization methods, see [5, 8, 11, 21, 29] and

the references cited therein. In [5], a quantizer taking value in a finite set is defined

and then quantized feedback stabilization for linear systems is considered. In [8],

the problem of stabilizing an unstable linear system by means of quantized state

feedback, where the quantizer takes value in a countable set is addressed. It should
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Fig. 5.16 Closed-loop response of decoupled subsystem 1 (left), decoupled subsystem 2 (right)

be noted that the approach in [5] relies on the possibility of making discrete on

line adjustments of quantizer parameters which was extended in [21] for more gen-

eral nonlinear systems with general types of quantizers involving the states of the

system, the measured outputs, and the control inputs. Recently in [11], a study of

quantized and delayed state-feedback control systems under constant bounds on the

quantization error and the time-varying delay was reported. Based on [21], stabiliza-

tion of discrete-time LTI systems with quantized measurement outputs is reported

in [29]. Further related results are reported in [33, 34]. On another research front,

decentralized stability and feedback stabilization of interconnected systems have

been the topic of recurring interests and recent relevant results have been reported

in [2, 24–28, 31].

5.4.1 Introduction

In this section, we investigate a generalized approach to quantized feedback con-

trol in linear discrete-time system. We cast the problem under consideration as the

problem of designing a decentralized H∞ feedback control for a class of linear

interconnected discrete-time systems with quantized signals in the subsystem con-

trol channel. The system has unknown-but-bounded couplings and interval time-

delays. Within our formulation, we take the quantizer of arbitrary form that satisfies

a quadratic inequality constraint in the state and the delayed state. We illustrated

the generality of this quantizer structure. Based on quantized output measurements,

a decentralized quantized output-feedback controller is designed at the subsystem

level to render the overall closed-loop system delay-dependent asymptotically sta-

ble with guaranteed γ -level. To further illustrate the generality of the developed

approach, it is established that several classes of quantized feedback control sys-

tems of interest are readily derived as special cases. These include the classes of

interconnected time-delay and delay-free systems, single time-delay systems and

single systems.
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5.4.2 Problem Statement

We consider a class of nominally-linear time-delay systems S structurally composed

of ns coupled subsystems Sj and the model of the j th subsystem is described by

the state-space representation:

xj (k + 1) = Ajxj (k) + Djxj (k − dj (k)) + Bjuj (k) + cj (k) + Γjwj (k), (5.132)

zj (k) = Gjxj (k) + Ljxj (k − dj (k)) +Φjwj (k),

yj (k) = Cjxj (k)+Hjxj (k − dj (k)),
(5.133)

where for j ∈ {1, . . . , ns}, xj (k) ∈ ℜnj is the state vector, uj (k) ∈ ℜmj is the control

input, yj (k) ∈ ℜpj is the control output, wj (k) ∈ ℜqj is the disturbance input which

belongs to ℓ2[0,∞), zj (k) ∈ ℜqj is the performance output and cj (k) ∈ ℜnj is

the coupling vector. The matrices Aj ∈ ℜnj×nj , Bj ∈ ℜnj×mj , Dj ∈ ℜqj×nj , Φj ∈

ℜqj×qj , Γj ∈ ℜnj×qj , Lj ∈ ℜqj×nj , Gj ∈ ℜqj×nj , Cj ∈ ℜpj×nj , Ej ∈ ℜpj×nj are

real and constants. The initial condition κj ∈ L2[−̺j ,0], j ∈ {1, . . . , ns}. In the se-

quel, we treat cj (k) as a piecewise-continuous vector function in its arguments and

satisfies the quadratic inequality

ctj (k, ., .)cj (k, ., .)

≤ φjx
t
j (k)M

t
jMjxj (k)+ψjx

t
j (k − dj (k))N

t
jNjxj (k − dj (k)), (5.134)

where φj > 0, ψj > 0 are adjustable bounding parameters and Mj ∈ ℜnj×nj , Nj ∈

ℜnj×nj are constant matrices. The factors dj (k), j ∈ {1, . . . , ns} are unknown time-

delay factors satisfying

0< d−
j ≤ dj (k)≤ d+

j , (5.135)

where the bounds d−
j , d+

j are known constants in order to guarantee smooth growth

of the state trajectories. Note in (5.132) and (5.134) that the subsystem delay with

local and coupling patterns are emphasized. The class of systems described by

(5.132)–(5.133) subject to delay-pattern (5.135) is frequently encountered in mod-

eling several physical systems and engineering applications including large space

structures, multi-machine power systems, cold mills, transportation systems, water

pollution management, to name a few [25, 30].

5.4.3 A Class of Local Quantizers

In the sequel, we treat a quantizer as a device in the control loop that converts

a real-valued signal into a piecewise constant one. We adopt the definition of a

local (subsystem) quantizer with general form as introduced in [21]. Let fj ∈ ℜs ,

j = 1, . . . , ns be the variable being quantized. A local quantizer is defined as a

piecewise constant function Qj : ℜs → Dj , where Dj is a finite subset of ℜs . This

leads to a partition of ℜs into a finite number of quantization regions of the form
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Fig. 5.17 A description of

quantized subsystem model

{fj ∈ ℜs : Q(fj ) = dj , dj ∈ Dj }. These quantization regions are not assumed to

have any particular shape.

In the quantized control strategy to be developed below, we will use the local

quantization error Δj (y)=Qj (yj )− yj (see Fig. 5.17) based on output measure-

ments such that the following quadratic bounding relation is satisfied:

Δt
j (.)Δj (.)≤ αjx

t
j (k)E

t
jEjxj (k)

+ βjx
t
j (k − dj (k))F

t
jFjxj (k − dj (k)), (5.136)

where αj > 0, βj > 0 are adjustable subsystem parameters and the matrices Ej ,Fj
are arbitrary but constants.

It is crucial to recognize that the quadratic bounding relation (5.136) is indepen-

dent of the structure of the quantizer employed. In fact, it is satisfied by wide class

of practically-used quantizers, see Remark 5.8 for further details.

In what follows we seek to design quantized feedback controllers which guaran-

tee the asymptotic stability of the family of subsystems Sj subject to the structural

constraints (5.134)–(5.136).

5.4.4 Quantized Feedback Design

In this section, we develop new criteria for LMI-based characterization of decen-

tralized stabilization by local quantized feedback of the form

uj (k)=KojQj (yj ), j = 1, . . . , ns, (5.137)

where the gain matrices Koj , j = 1, . . . ,N will be selected to guarantee that the

closed-loop system, composed of (5.132)–(5.134), (5.136) and (5.137), given by

xj (k + 1)= Ajxj (k)+ Djxj (k − dj (k))+ cj (k)+BjKojΔj (yj )+ Γjwj (k),

Aj =Aj +BjKojCj , Dj =Dj +BjKojHj , (5.138)

zj (k)=Gjxj (k)+Ljxj (k − dj (k))+Φjwj (k) (5.139)

is asymptotically stable with disturbance attenuation level γj . To facilitate fur-

ther development, we consider the case where the set of output matrices Cj , j =
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1, . . . , ns are assumed to be of full row rank and C
†
j represents the right-inverse. Let

d∗
j = d+

j − d−
j + 1. Introduce the local Lyapunov-Krasovskii functional (LKF):

Vj (k) = xt
j (k)Pjxj (k) +

k−1∑

m=k−dj (k)

xt
j (m)Rjxj (m)

+
1−d−

j∑

s=2−d+
j

k−1∑

m=k+s−1

xt
j (m)Rjxj (m), (5.140)

where 0 < Pj , 0 < Qj are weighting matrices of appropriate dimensions.

The following theorem establishes the main design result for subsystem Sj .

Theorem 5.9 Given the bounds d−
j > 0, d+

j > 0, j = 1, . . . , ns , then the family

of subsystems {Sj } where Sj is described by (5.132)–(5.133) is delay-dependent

asymptotically stabilizable by decentralized quantized feedback controller uj (k) =
KojQj (yj ) with L2-performance bound γj if there exist positive-definite matrices

Xj , Gj , Πcj , Πsj and scalars ηj > 0, μj > 0, σj > 0, νj > 0, γj > 0 satisfying

the following LMIs for j = 1, . . . , ns

Πj =
[

Π1j Π2j

• Π3j

]

< 0, (5.141)

Π1j =

⎡
⎢⎢⎢⎢⎣

Πoj 0 0 0 0

• −Πcj 0 0 0

• • −Ij 0 0

• • • −Ij 0

• • • • −γ 2
j Ij

⎤
⎥⎥⎥⎥⎦
,

Π2j =

⎡
⎢⎢⎢⎢⎣

XjG
t
j Πaj XjM

t
j 0 XjE

t
j 0

XjL
t
j Πej 0 XjN

t
j 0 XjF

t
j

0 Xj 0 0 0 0

0 Πvj 0 0 0 0

Φ t
j 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
,

(5.142)

Π3j =

⎡
⎢⎢⎢⎢⎢⎢⎣

−Ij Πwj 0 0 0 0

• −Xj 0 0 0 0

• • −ηj Ij 0 0 0

• • • −μj Ij 0 0

• • • • −σj Ij 0

• • • • • −νj Ij

⎤
⎥⎥⎥⎥⎥⎥⎦
,

Πoj = −Xj + d∗
jΠcj , Πaj = XjA

t
j + Gt

jB
t
j , Πvj = Gt

jB
t
j ,

Πej = XjD
t
j +ΠsjB

t
j , Πwj = XjΓ

t
j .

Moreover, the local gain matrix is given by Koj = Gj X −1
j C

†
j .
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Proof Recall that d∗
j = d+

j − d−
j + 1. A straightforward computation gives the

first-difference of ΔVj (k)= Vj (k + 1)− Vj (k) along the solutions of (5.138) with

wj (k)≡ 0 as:

ΔVj (k)= [Ajxj (k)+ Djxj (k − dj (k))+ cj (k)+BjKojΔj (yj )]
t Pj

× [Ajxj (k)+ Djxj (k − dj (k))+ cj (k)+BjKojΔj (yj )]

− xtj (k)Pjxj (k)+ xtj (k)Rjxj (k)− xtj (k − dj (k))Rjxj (k − dj (k))

+

k−1∑

m=k+1−dj (k+1)

xtj (m)Rjxj (m)−

k−1∑

m=k+1−dj (k)

xtj (m)Rjxj (m)

+ (d+
j − d−

j )x
t
j (k)Rjxj (k)−

k−d∗
j∑

m=k+1−d+
j

xtj (m)Rjxj (m) (5.143)

since

k−1∑

m=k+1−dj (k+1)

xtj (m)Rjxj (m)

=

k−1∑

m=k+1−d−
j

xtj (m)Rjxj (m)+

k−d−
j∑

m=k+1−dj (k+1)

xtj (m)Rjxj (m)

≤

k−1∑

m=k+1−dj (k)

xtj (m)Rjxj (m)+

k−d−
j∑

m=k+1−d+
j

xtj (m)Rjxj (m). (5.144)

Then using (5.144) into (5.143) and manipulating, we reach

ΔVj (k)≤ [Ajxj (k)+ Djxj (k − dj (k))+ cj (k)+BjKojΔj (yj )]
t Pj

× [Ajxj (k)+ Djxj (k − dj (k))+ cj (k)+BjKojΔj (yj )]

+ xtj (k)[d
∗
j Rj − Pj ]xj (k)− xtj (k − dj (k))Rjxj (k − dj (k)). (5.145)

In terms of the vectors

ξj (k)= [xtj (k), x
t
j (k − dj (k)), c

t
j (k), Δ

t
j (yj )]

t

we combine (5.143)–(5.145) with algebraic manipulations using inequalities (5.134)

and (5.136) along with Schur complements [4] to arrive at:
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ΔVj (k) = ξ tj (k)Ξj ξj (k),

Ξj =

⎡
⎢⎢⎢⎢⎣

Ξaj 0 0 0 At
j Pj

• −Πcj 0 0 Dt
j Pj

• • −Ij 0 Pj

• • • −Ij K t
ojB

t
j Pj

• • • • −Pj

⎤
⎥⎥⎥⎥⎦
,

Ξaj = −Pj + d∗
j Rj + φjM

t
jMj + αjE

t
jEj ,

Ξcj = Rj −ψjN
t
jNj − βjF

t
jFj .

(5.146)

It is known that the sufficient condition of subsystem internal stability is ΔVj (k) <

0, hence ΔV (k) =
∑ns

j=1ΔVj (k) < 0 guaranteeing the internal stability of sys-

tem S.

Next, consider the local performance measure

Jj =
∞∑

k=0

(
ztj (k)zj (k)− γ 2ωtj (k)ωj (k)

)
.

For any ωj (k) ∈ ℓ2(0,∞) �= 0 and zero initial condition xjo = 0 (hence Vj (0)= 0),

we have

Jj =

∞∑

k=0

(
ztj (k)zj (k)− γ 2ωtj (k)ωj (k)+ΔVj (k)|(5.138)

)
−

∞∑

k=0

ΔVj (k)|(5.138)

≤

∞∑

k=0

(
ztj (k)zj (k)− γ 2ωtj (k)ωj (k)+ΔVj (k)|(5.138)

)
, (5.147)

where ΔVj (k)|(5.138) defines the Lyapunov difference along the solutions of system

(5.138). On considering (5.139), (5.146) and (5.147), it can easily shown by alge-

braic manipulations that

ztj (k)zj (k)− γ 2ωtj (k)ωj (k)+ΔVj (k)|(5.138) = χ tj (k)Ξ̂jχj (k), (5.148)

Ξ̂j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξaj 0 0 0 0 Gt
j At

j Pj

• −Πcj 0 0 0 Ltj Dt
j Pj

• • −Ij 0 0 0 Pj

• • • −Ij 0 0 K t
ojB

t
j Pj

• • • • −γ 2
j Ij Φ t

j Γ t
j Pj

• • • • • −Ij 0

• • • • • • −Pj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.149)

for some vector χj (k). It is readily seen that

ztj (k)zj (k)− γ 2ωtj (k)ωj (k)+ΔVj (k)|(5.138) < 0

for arbitrary j ∈ [0,∞), which implies for any ωj (k) ∈ ℓ2(0,∞) �= 0 that Jj < 0

leading J =
∑ns

j=1 Jj < 0 for the overall system S. On applying the congruent trans-
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formation

T = diag[Xj , Xj , Xj , Xj , Ij , Ij , Xj ], Xj = P −1
j

to (5.149) with Schur complements and using the change of variables

Gj = Koj Xj , Πcj = Xj Qj Xj ,

ηj = φ−1
j , μj =ψ−1

j , σj = α−1
j , νj = β−1

j

we readily obtain LMI (5.141) with (5.142) and hence the proof is completed. �

5.4.5 Special Cases

In the sequel, some special cases are derived to emphasize the generality of our

approach. First, we consider the single nominally-linear time-delay system

x(k + 1)=Ax(k)+Dx(k − d(k))+Bu(k)+ Γw(k), (5.150)

z(k) = Gxj (k)+Lx(k − d(k))+Φw(k),

y(k) = Cxj (k)+Ex(k − d(k)),
(5.151)

where 0 < d− ≤ d(k) ≤ d+. Let d∗ = d+ − d− + 1. We will use local quantized

output measurements such that the following quadratic bounding relation is satis-

fied:

Δt (.)Δ(.)≤ αxt (k)EtEx(k)+ βxt (k − d(k))F tFx(k − d(k)), (5.152)

where α > 0, β > 0 are adjustable subsystem parameters. The following corollary

establishes the corresponding design result:

Corollary 5.9 Given the bounds d− > 0, d+ > 0, then system (5.150)–(5.151)

is delay-dependent asymptotically stabilizable by quantized feedback controller

u(t)=Koy(t) with L2-performance bound γ if there exist positive-definite matrices

X , G , Υc , Υs and scalars σ > 0, ν > 0, γ > 0 satisfying the following LMI

Υ =
[

Υ1 Υ2

• Υ3

]

< 0, (5.153)

Υ1 =

⎡
⎢⎢⎣

Υo 0 0 0

• −Υc 0 0

• • −I 0

• • • −γ 2I

⎤
⎥⎥⎦ ,

(5.154)
Υ2 =

⎡
⎢⎢⎣

XGt XAt + Gt
jB

t
j XEt 0

XLt XDt +Υ t
s B

t 0 XF t

0 GtB t 0 0

Φ t 0 0 0

⎤
⎥⎥⎦ ,
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Υ3 =

⎡
⎢⎢⎣

−I XΓ t 0 0

• −X 0 0

• • −σI 0

• • • −νI

⎤
⎥⎥⎦ ,

Υo = −X + d∗Υc.

Moreover, the local gain matrix is given by Ko = G X −1C†.

Next, we consider a class of nominally-linear systems S structurally composed

of ns coupled subsystems Sj and the model of the j th subsystem is described by

the state-space representation:

xj (k + 1)=Ajxj (k)+Bjuj (k)+ cj (k)+ Γjwj (k), (5.155)

zj (k) = Gjxj (k)+Φjwj (k),

yj (k) = Cjxj (k),
(5.156)

where for j ∈ {1, . . . , ns}, the coupling vector cj (k) is a piecewise-continuous vec-

tor function in its arguments and satisfies the quadratic inequality

ctj (k, ., .)cj (k, ., .)≤ φjx
t
j (k)M

t
jMjxj (k) (5.157)

where φj > 0 are adjustable bounding parameters and Mj ∈ ℜnj×nj are constant

matrices. We will use local quantized output measurements such that the following

quadratic bounding relation is satisfied:

Δt
j (.)Δj (.)≤ αjx

t
j (k)E

t
jEjxj (k), (5.158)

where αj > 0 are adjustable subsystem parameters. The following corollary stands

out:

Corollary 5.10 The family of subsystems {Sj } where Sj is described by (5.155)–

(5.156) is asymptotically stabilizable by decentralized quantized feedback controller

uj (k) = KojQj (yj ) with L2-performance bound γj if there exist positive-definite

matrices Xj , Gj and scalars ηj > 0, σj > 0, γj > 0 satisfying the following LMIs

for j = 1, . . . , ns

Θj =

[
Θ1j Θ2j

• Θ3j

]
< 0, (5.159)

Θ1j =

⎡
⎢⎢⎣

−Xj 0 0 0

• −Ij 0 0

• • −Ij 0

• • • −γ 2
j Ij

⎤
⎥⎥⎦ ,

Θ2j =

⎡
⎢⎢⎣

XjG
t
j XjA

t
j + Gt

jB
t
j XjM

t
j XjE

t
j

0 Xj 0 0

0 Gt
jB

t
j 0 0

Φ t
j 0 0 0

⎤
⎥⎥⎦ , (5.160)
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Θ3j =

⎡
⎢⎢⎣

−Ij XjΓ
t
j 0 0

• −Xj 0 0

• • −ηj Ij 0

• • • −σj Ij

⎤
⎥⎥⎦ .

Moreover, the local gain matrix is given by Koj = Gj X −1
j C

†
j .

Finally, we consider the single nominally-linear system

x(k + 1)=Ax(k)+Bu(k)+ Γw(k), (5.161)

z(k) = Gx(k)+Φw(k),

y(k) = Cx(k).
(5.162)

We will use local quantized output measurements such that the following quadratic

bounding relation is satisfied:

Δt (.)Δ(.)≤ αxt (k)EtEx(k), (5.163)

where α > 0, β > 0 are adjustable subsystem parameters. The following corollary

establishes the corresponding design result:

Corollary 5.11 System (5.161)–(5.162) is asymptotically stabilizable by decentral-

ized quantized feedback controller u(k)=KoQ(y) with L2-performance bound γj
if there exist positive-definite matrices X , G and scalars η > 0, σ > 0, γ > 0 satis-

fying the following LMI

Σ =
[
Σ1 Σ2

• Σ3

]
< 0, (5.164)

Σ1 =

⎡
⎣

−X 0 0

• −I 0

• • −γ 2
j Ij

⎤
⎦ ,

Σ2 =

⎡
⎣

XGt XAt + GtB t XEt

0 GtB t 0

Φ t 0 0

⎤
⎦ , (5.165)

Σ3 =

⎡
⎣

−I XΓ t 0

• −X 0

• • −ηI

⎤
⎦ .

Moreover, the local gain matrix is given by Ko = G X −1C†.

5.4.6 Simulation Example 5.5

For the purpose of illustration, we consider an interconnected system composed of

two subsystems having uniform quantizers with the following data:
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A1 =
[

0.8 0

0.05 0.9

]

, D1 =
[

−0.1 0

−0.2 −0.1

]

,

B1 =
[

1

0.5

]

, Gt
1 =

[

1

0.5

]

, Lt
1 =

[

0.1

0.2

]

,

E1 =
[

0.1 0.01

−0.1 0.02

]

, F1 =
[

−0.02 −0.01

−0.01 −0.02

]

,

M1 =
[

1 0

0 1

]

, N1 =
[

1 0

0 1

]

,

A2 =

⎡
⎣

0.9 0.1 0

0 0.5 −0.1

0.1 0 0.4

⎤
⎦ , Gt

2 =

⎡
⎣

1

0.2

0.7

⎤
⎦ ,

B2 =

⎡
⎣

0.5

1.5

0.4

⎤
⎦ , D2 =

⎡
⎣

−0.2 0.04 0.2

−0.4 −0.15 0

0.1 0 0.3

⎤
⎦ ,

E2 =

⎡
⎣

−0.02 0.01 0

0 0.1 0

−0.02 0 0.05

⎤
⎦ , N2 =

⎡
⎣

1 0 0

0 1 0

0 0 1

⎤
⎦ ,

M2 =

⎡
⎣

1 0 0

0 1 0

0 0 1

⎤
⎦ , F2 =

⎡
⎣

0.03 0 0.02

0.1 0.2 0

−0.01 0 0.01

⎤
⎦ ,

L2 =

⎡
⎣

0.1

0.2

0.1

⎤
⎦ .

It is found that the feasible solution of LMI (5.141) is attained at

d−
1 = 10, d+

1 = 30, d−
2 = 10, d+

2 = 30,

K1 = −0.4023, K2 = −0.0916.

Typical simulation results are shown in Figs. 5.18, 5.19, 5.20 and 5.21 for the open-

loop response and closed-loop response of both subsystems. Next, by dropping the

time-delay factors (within the subsystems and across the couplings) and considering

LMI (5.141) the feasible solution is found to yield the gains

K1 = −0.6653, K2 = −1.0915.

The simulation of the closed-loop response of both subsystems are depicted in

Figs. 5.22 and 5.23. On implementing the LMI (5.153) for subsystem 2, the feasible

solution is given by

d− = 20, d+
2 = 60, K2 = −1.3391.

The ensuing closed-loop response is plotted in Fig. 5.24. Finally, the feasible solu-

tion of LMI (5.153) for subsystem 1 without delay terms is K1 = −0.3039 and the

corresponding closed-loop response is plotted in Fig. 5.25. From the ensuing re-
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Fig. 5.18 Open-loop

response of subsystem 1

Fig. 5.19 Open-loop

response of subsystem 2

sults, it is quite evident that the quantized feedback control system is asymptotically

stable for the class of quantizers satisfying the quadratic inequality. This is equally

true for interconnected time-delay and delay-free systems, single time-delay sys-

tems and single systems. The crucial point to record is that the type of quantizer

so long as it is satisfies its structure complies with a quadratic inequality. We have

observed that the presence of bounding inequalities (5.134) and (5.136) helps in

curbing the magnitude of the feedback gains.
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Fig. 5.20 Closed-loop

response of subsystem 1

Fig. 5.21 Closed-loop

response of subsystem 2

5.5 Interconnected Discrete Systems with Overflow

Nonlinearities

In this section, we build upon [3, 10, 18] and extend them further to the class of

linear interconnected discrete-time systems with unknown-but-bounded couplings

and overflow nonlinearities.

5.5.1 Introduction

In the implementation of discrete-time systems using computer or special-purpose

hardware with fixed-point arithmetic, one frequently encounters several kinds of
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Fig. 5.22 Closed-loop

response of decoupled

subsystem 1

Fig. 5.23 Closed-loop

response of decoupled

subsystem 2

overflow nonlinearities [1, 3]. On the other hand, quantization effects are present in

most control systems, as they heavily rely on digital components, and research on

quantized feedback control where a quantizer is regarded as an information coder.

The fundamental question of interest is how much information needs to be commu-

nicated by the quantizer in order to achieve a certain control objective [5, 8, 9, 11,

12, 32].

When a digital network is present in a feedback system, quantization levels deter-

mine the data rate for the transmission of control-related signals and hence the cost

for communication [18, 21]. In effect, such overflow nonlinearities and/or quanti-

zation may lead to instability in the realized system. An important objective in the

design of a discrete-time system is, therefore, to find the values of the system param-
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Fig. 5.24 Closed-loop

response of single time-delay

system

Fig. 5.25 Closed-loop

response of single system

eters in the parameter space so that the designed system is globally asymptotically

stable. Robust stability analysis of discrete-time systems that include nonlinearities

and parameter uncertainties in their physical models is an important problem. So

far, very little attention has been paid for the investigation of this problem [3, 10].

On another research front, decentralized stability and feedback stabilization of

interconnected systems have been the topic of recurring interests and recent relevant

results have been reported in [2, 22, 31].

In what follows, LMI-based decentralized feedback controller is designed at the

subsystem level using only local state variables to render the overall closed-loop

system asymptotically stable. When the local output measurements are processed to

the controller, we develop a set of local observer-based output-feedback controller to
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guarantee the asymptotic stability of the closed-loop quantized system. Numerical

simulations are performed to illustrate the theoretical developments.

5.5.2 Problem Statement

We consider a class of discrete-time systems S described by:

x(k + 1) = Ax(k) + Bu(k), (5.166)

where x(k) ∈ ℜn is the overall state vector, u(k) ∈ ℜm is the control input,

A ∈ ℜn×n, B ∈ ℜn×m are real and constant matrices and the initial condition

ϕ ∈ ℓ2[−dM ,0]. In what follows, we consider S to be structurally composed of

ns coupled subsystems Sj with the j th subsystem being described by:

xj (k + 1)=Ajxj (k)+Bjuj (k)+ cj (k), (5.167)

where for j ∈ {1, . . . , ns}, xj (k) ∈ ℜnj is the local state vector, uj (k) ∈ ℜmj

is the local control input and cj (k) ∈ ℜnj is the coupling vector. The matrices

Aj ∈ ℜnj×nj , Bj ∈ ℜnj×mj are real and constants such that

A= blockdiag[A1, A2, . . . , Ans ],

B = blockdiag[B1, B2, . . . , Bns ].

In the sequel, we treat cj (k) as a piecewise-continuous vector function in its argu-

ments and satisfies the quadratic inequality

ctj (k, ., .)cj (k, ., .)≤

ns∑

m=1,m �=j

xtj (k)Emjxj (k), (5.168)

where the matrices Emj ∈ ℜnj×nj are constants. The rationale behind the quadratic

inequality (5.168) is to preserve the decentralized information structure constraints

and it has global nature as the right-hand side depends on all local states.

The class of systems described by (5.166) subject to delay-pattern is frequently

encountered in modeling several physical systems and engineering applications in-

cluding large space structures, multi-machine power systems, cold mills, transporta-

tion systems, water pollution management, to name a few [22, 30]. Our objective in

this work is to design appropriate control signals at the subsystem level to stabilize

the overall system (5.166).

5.5.3 Local Static Control Function

In order to cope with the effects of quantization and/or overflow nonlinearities, we

consider that the controller generates the signal

uj (k)=Kjfj (xj (k)), (5.169)
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where fj (xj (k)) is the controller function at time k such that the deviation from the

nominal linear case

ej (xj (k)) = fj (xj (k)) − xj (k)

is assumed to satisfy the bounding inequality

σox
t
j (k)xj (k)≤ etj (xj (k))ej (xj (k))≤ σqx

t
j (k)xj (k). (5.170)

Remark 5.17 It should be noted that in the event of either magnitude truncation or

roundoff, fj (xj (k)) turns out to have the form

σq =
{

1, for magnitude truncation,

2, for roundoff,
(5.171)

σo =

⎧
⎪⎨
⎪⎩

0, for zeroing or saturation,

−1/3, for triangle,

−1, for two’s complement.

(5.172)

Note that the overall control function, to be applied to the overall system (5.166)

is given by

u(k)=Kf (x(k))= [ut1(k), . . . , utns (k)]
t ,

(5.173)
f (x(k))= [f t1 (x1(k)), . . . , f

t
ns
(xns (k))]t .

5.5.4 Closed-Loop Stabilization

The closed loop subsystem of (5.167) and (5.169) is given by

xj (k + 1)= [Aj +BjKj ]xj (k)+BjKj ej (k)+ cj (k)

=Acjxj (k)+BjKj ej (k)+ cj (k). (5.174)

To examine the stability of (5.174), we consider the following quadratic Lyapunov

function

V (k)=
ns∑

j=1

Vj (k)=
ns∑

j=1

xtj (k)Pjxj (k), Pj > 0.

The following theorem summarizes the main stabilization result.

Theorem 5.10 Given scalars βj , δj , j = 1, . . . , ns , the overall system (5.166)

is asymptotically stable if there exist matrices Xj > 0, Yj and scalars αj , j =
1, . . . , ns satisfying the following LMI
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Ωj =

⎡
⎢⎢⎢⎢⎢⎢⎣

−Xj 0 0 0 Πaj Xj

• −(δj − βj )Ij Yj 0 0 0

• • −2Xj 0 B t
j 0

• • • −αj Ij Ij 0

• • • • −Xj

• • • • • −Πcj

⎤
⎥⎥⎥⎥⎥⎥⎦
< 0, (5.175)

Πaj = XjA
t
j + Y t

jB
t
j ,

Πcj =
[
αj

ns∑

m=1,m �=j

Emj + δjσq − βjσo

]−1

.
(5.176)

Moreover the gain matrix is given by Kj = Yj X −1
j .

Proof Evaluating the first difference ΔV (k) =
∑ns

j=1ΔVj (k),ΔVj (k) = Vj (k +

1)− Vj (k) along the solutions of (5.174) to yield

ΔVj (k)= xtj (k + 1)Pjxj (k + 1)− xtj (k)Pjxj (k)

=
[
xtj (k)A

t
cj + etj (k)K

t
jB

t
j + ctj (k)

]
Pj

[
Acjxj (k)+BjKj ej (k)+ cj (k)

]

− xtj (k)Pjxj (k). (5.177)

In terms of

ξj (k)= col[xj (k), ej (k), ejKj , cj (k)],

gj (k)= col[At
j Pj +K t

jB
t
j Pj ,0,PjB

t
j Pj ,Pj ],

Υj =

⎡
⎢⎢⎣

−P 0 0 0

• 0 0 0

• • 0 0

• • • 0

⎤
⎥⎥⎦

we employ Schur complements to express (5.177) in the form

ΔVj (k)= ξ tj (k)Υj ξj (k)+ gj (k)P −1
j gtj (k)

= ζ tj (k)Υ̂j ζj (k),

Υ̂j =

⎡
⎢⎢⎢⎢⎣

−Pj 0 0 0 At
j Pj +K t

jB
t
j Pj

• 0 0 0 0

• • 0 0 PjB
t
j Pj

• • • 0 Pj

• • • • −Pj

⎤
⎥⎥⎥⎥⎦

(5.178)

for some ζj (k). On invoking the structural identity

ns∑

j=1

ns∑

m=1,m �=j

xtm(k)Emjxm(k)=

ns∑

j=1

ns∑

m=1,m �=j

xtj (k)Ejmxj (k) (5.179)
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and considering the constraints (5.168) for some scalars αj with (5.178), the inter-

nal stability requirement ΔV (k)=
∑ns

j=1ΔVj (k) < 0 with some algebraic manipu-

lations implies that

Υ̃j =

⎡
⎢⎢⎢⎢⎣

−Pj + Naj 0 0 0 At
j Pj +K t

jB
t
j Pj

• 0 0 0 0

• • 0 0 B t
j Pj

• • • −αj Ij Pj

• • • • −Pj

⎤
⎥⎥⎥⎥⎦
< 0,

Naj = αj

ns∑

m=1,m �=j

Emj . (5.180)

Under the congruent transformation

T = diag[Pj , Ij , Ij , Ij ,Pj ], Xj = P −1
j

and the change of variable Yj =Kj Xj , the condition Υ̃j < 0 is equivalent to

Υ̃j =

⎡
⎢⎢⎢⎢⎣

−Xj + Xj Naj Xj 0 0 0 XjA
t
j + Y t

jB
t
j

• 0 0 0 0

• • 0 0 B t
j

• • • −αj Ij Ij
• • • • −Xj

⎤
⎥⎥⎥⎥⎦
< 0. (5.181)

Now the bounding constraints (5.170) with (5.172) for some scalars βj , δj can be

written as

βj
[
−σox

t
j (k)xj (k)+ etj (xj (k))ej (xj (k))

]
≤ 0,

(5.182)
δj
[
σqx

t
j (k)xj (k)− etj (xj (k))ej (xj (k))

]
≤ 0.

Equivalently stated

βj
[
−σox

t
j (k)Pj Xj Xj Pjxj (k)+ etj (xj (k))ej (xj (k))

]
≤ 0,

(5.183)
δj
[
σqx

t
j (k)Pj Xj Xj Pjxj (k)− etj (xj (k))ej (xj (k))

]
≤ 0.

It follows from (5.181) and (5.183) that the stability requirement becomes
⎡
⎢⎢⎢⎢⎣

−Πoj 0 0 0 Πaj

• 0 0 0 0

• • 0 0 B t
j

• • • −αj Ij Ij
• • • • −Xj

⎤
⎥⎥⎥⎥⎦
< 0,

(5.184)

Πj = Xj − Xj Naj Xj − Xj (δjσq − βjσo)Xj ,

Πaj = XjA
t
j + Y t

jB
t
j .

By taking into consideration

etj (k)K
t
j XjKj ej (k)= etj (k)Y t

jKj ej (k)
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the result can be cast into the form

ΔV (k)=
ns∑

j=1

ηtj (k)Ωjηj (k) (5.185)

for some vector ηj (k) and Ωj is given by (5.175). Subject to the condition of the

theorem, it follows that ΔV (k) < 0 and hence we conclude that system (5.166) is

asymptotically stable. �

5.5.5 Local Dynamic Control Function

An alternative method to handle the effects of quantization and/or overflow nonlin-

earities, we consider a class of discrete-time systems S described by:

x(k + 1) = Ax(k)+Bu(k),

y(k) = Cx(k),
(5.186)

where y(k) = col[y1(k), . . . , yns (k)] ∈ ℜn is the overall output vector and C =

blockdiag[C1, C2, . . . , Cns ]. The j th subsystem Sj is described by:

xj (k + 1) = Ajxj (k)+Bjuj (k)+ cj (k),

yj (k) = Cjxj (k).
(5.187)

Let the j th controller generates the signal using the observer-based scheme

xcj (k + 1) = Ajxcj (k)+Lj [yj (k)−Cjxcj (k)],

uj (k) = Kjfj (xcj (k)),
(5.188)

where Lj , Kj are the controller gain matrices and fj (xj (k)) is the controller func-

tion at time k such that the deviation from the nominal case

gj (xcj (k))= fj (xcj (k))− xcj (k)

is assumed to satisfy the bounding inequality

σox
t
cj (k)xcj (k)≤ gtj (xcj (k))gj (xcj (k))≤ σqx

t
cj (k)xcj (k). (5.189)

Define the signal x̂j = xj − xcj , then from (5.187) and (5.188), we obtain

zj (k + 1)= Zjzj (k)+ Bjgj (zj (k))+ Cj (k),

zj (k)=

[

xj (k)

x̂j

]

, Bj =

[

BjKj

0

]

, Cj =

[

cj (k)

cj (k)

]

,

(5.190)

Zj =

[

Acj −BjKj

0 Âj

]

,

Âj =Aj −LjCj , Acj =Aj +BjKj .

Invoking the separation principle paves the way to determine the unknown gain

matrices in two independent and consecutive stages. In the first stage, we determine
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the controller gain Kj by applying Theorem 5.10. During the second stage, we

proceed to determine the observer gain Lj by selecting the quadratic Lyapunov

function

Vc(k) =
ns∑

j=1

Vcj (k) =
ns∑

j=1

x̂t
j (k)Sj x̂j (k), Sj > 0

and evaluating the first difference ΔVc(k) =
∑ns

j=1ΔVcj (k),ΔVcj (k) = Vcj (k +
1)− Vcj (k) along the solutions of (5.190) to yield

ΔVcj (k)=
[
x̂tj (k)Â

t
j + ctj (k)

]
Sj

[
Âj x̂j (k)+ cj (k)

]

− x̂tj (k)Sj x̂j (k). (5.191)

By parallel development to the foregoing section, the following theorem summarizes

the main stabilization result.

Theorem 5.11 Given the matrices Pj , Kj and scalars βj , δj , j = 1, . . . , ns , the

overall system (5.186) is asymptotically stable if there exist matrices Sj > 0, Rj

and scalars αj , j = 1, . . . , ns satisfying the following LMI

Λj =
[
Λ1j Λ2j

• Λ3j

]
< 0, (5.192)

Λ1j =

⎡
⎣
Λoj 0 0

• −(δj − βj )Ij 0

• • Λcj

⎤
⎦ ,

Λ2j =

⎡
⎣

0 Λaj 0

0 K t
jB

t
j Pj 0

Λej K t
jB

t
j Pj Ct

j Rt
j

⎤
⎦ ,

Λ3j =

⎡
⎣

−αj Ij + Sj Pj 0

• −Pj 0

• • −Ij

⎤
⎦ , (5.193)

Λoj = P −1
j + Naj + (δjσq − βjσo)Ij ,

Λaj =At
j Pj +K t

jB
t
j Pj ,

Λcj =At
j SjAj +Ct

j Rt
jAj +At

j RjCj ,

Λej = Ct
j Rt

j + RjCj , Naj = αj

ns∑

m=1,m �=j

Emj .

Moreover the gain matrix is given by Lj = S −1
j Rj .

5.5.6 Simulation Example 5.6

To illustrate the theoretical developments, we consider a plant comprised of three

reactors connected in tandem. By linearization and time scaling, the model matrices

in the form of (5.187) have the values:
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Table 5.2 Model parameters
Parameter S1 S2 S3

a1j 4.931 4.886 4.902

a2j 5.301 5.174 5.464

a3j 32.511 30.645 31.773

a4j 3.961 3.878 3.932

b1j 1.219 1.345 1.297

b2j 1.453 1.362 1.245

b3j 0.764 0.805 0.696

b4j 0.524 0.615 0.603

Aj =

⎡
⎢⎢⎣

−a1j −1.01 0 0

−3.2 −a2j −12.8 0

6.4 0.347 −a3j −1.04

0 0.833 11.0 −a4j

⎤
⎥⎥⎦ , Bj =

⎡
⎢⎢⎣

b1j

0

b2j

b3j

⎤
⎥⎥⎦ ,

Cj = [b4j 0 0 0],
where the values of the parameters are given in Table 5.2.

The coupling matrices Emj ∈ ℜnj ×nj , m = 1, . . . ,3 are generated randomly and

classified into two distinct cases:

1. The elements of Emj have values in the range [0.01, 0.7) corresponding to weak

coupling.

2. The elements of Emj have values in the range [0.7, 1.9) corresponding to strong

coupling.

The feasible solution of Theorem 5.10 for the case of weak coupling is found to be

K1 =
[

7.535 −3.962 −0.935 0.007
]
,

K2 =
[

1.741 −10.124 −1.045 0.015
]
,

K3 =
[

3.966 −4.524 −1.104 0.021
]

and the associated trajectories are plotted in Fig. 5.26. On the other hand, the feasible

solution of Theorem 5.11 for the case of weak coupling is found to be

Lt
1 =

[
0.535 −0.223 −0.035 0.007

]
,

Lt
2 =

[
1.034 −0.145 −0.045 0.005

]
,

Lt
3 =

[
0.911 −1.105 −0.804 0.019

]

and the associated trajectories are plotted in Fig. 5.27. Turning to the case of strong

coupling, the corresponding results are summarized below

K1 =
[

7.535 −3.962 −0.935 0.007
]
,

K2 =
[

1.741 −10.124 −1.045 0.015
]
,

K3 =
[

3.966 −4.524 −1.104 0.021
]
,

Lt
1 =

[
0.535 −0.223 −0.035 0.007

]
,
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Fig. 5.26 Closed-loop state-trajectories—weak coupling

Fig. 5.27 Closed-loop observer-based state-trajectories—weak coupling
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Fig. 5.28 Closed-loop state-trajectories—strong coupling

Fig. 5.29 Closed-loop observer-based state-trajectories—strong coupling
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Fig. 5.30 Closed-loop control input trajectories—strong coupling

Lt
2 =

[
1.034 −0.145 −0.045 0.005

]
,

Lt
3 =

[
0.911 −1.105 −0.804 0.019

]

and the associated trajectories are plotted in Figs. 5.28 and 5.29. It is readily seen,

as expected, the observer-based feedback control is more effective that the state

feedback control. The observer-based feedback control trajectories are depicted in

Fig. 5.30.

5.6 Notes and References

This chapter has fully examined the problem of designing decentralized H∞ feed-

back control for a class of linear interconnected continuous-time and discrete-time

systems with quantized signals in the subsystem control channels. The system under

consideration has unknown-but-bounded couplings with adjustable local parameters

and interval time-delays. Complete design of a decentralized output-feedback con-

troller using local information (either continuous or quantized) is attained to render

the closed-loop system is delay-dependent asymptotically stable with guaranteed

γ -level.

Next, a general approach to quantized decentralized H∞ feedback control of

linear continuous-time or discrete-time systems where the quantizer has arbitrary

form that satisfies a quadratic inequality constraint is developed and an LMI-based

method is designed at the subsystem level to render the closed-loop system delay-

dependent asymptotically stable with guaranteed γ -level.
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Finally, for a class of linear interconnected discrete-time systems with quantized

signals in the subsystem control channels, the problem of designing decentralized

feedback control with overflow nonlinearities is treated. The system under consid-

eration has unknown-but-bounded couplings with adjustable local parameters.

There are ample of extensions to the results of this chapter. This includes, but

limited to, quantized filtering and quantized dynamic output-feedback within the

decentralized framework. Indeed, dealing with nonlinear interconnected systems is

an attractive area that calls for serious work. Promising results can be derived along

the methods of Chaps. 2 and 3.
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Chapter 6

Decentralized Control of Traffic Networks

In this chapter, we direct our attention to the development of decentralized-control

methods for large-scale traffic networks systems. Loosely speaking, large-scale traf-

fic networks including computer and communication networks, freeway systems can

be modeled as graphs in which a set of nodes (with storing capacities) are connected

through a set of links (where traffic delays and transport costs may be incurred) that

cannot be loaded above their traffic capacities. Traffic flows may vary over time.

Then the nodes, that is, the decision makers acting at the nodes) may be requested

to modify the traffic flows to be sent to their neighboring nodes.

6.1 Introduction

Traffic networks are engineering systems characterized by advanced technological

importance. The following are typical applications:

• computer networks extending over large geographical areas;

• store-and-forward packet switching communication networks;

• large-scale freeway systems;

• reservoir networks in multi reservoir systems;

• queuing networks in manufacturing systems.

A fundamental challenge to communication networking has been the increased

complexity to meet the explosive demand of applications, which brings about more

technical issues to be solved. By increasing the number of nodes in a network, they

may in general have fewer links to communicate to each other, directly. Therefore

the routing problem, which deals with determining a route for packets from source

nodes to destination nodes through other nodes emerges as one of the main challeng-

ing problems. This problem becomes more compounded with the presence of other

issues such as delays patterns, packet losses, and bandwidth limitations that are cru-

cial in selecting the intermediate nodes for routing. Early routing algorithms, such as

those implemented in ARPANET, were based on finding the shortest path from the

M.S. Mahmoud, Decentralized Systems with Design Constraints,
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source node to the destination node [1–7]. When the network becomes crowded, link

congestion arises thereby leading to poor performance of these algorithms. This in

turn alleviates the issue of link congestion for routing decisions, that is the message

flow rate on a link is related to the capacity of that link and optimal routing can be

achieved by minimizing the total delay [7, 35]. The relevance of optimal networks

for a class of mobile networks was reported in [9, 10]. In [3], a dynamic model of

the network was proposed and a centralized routing controller was developed based

on minimization of the total queuing delay. The queuing delay is a primary source

of delay in routing and is defined as the total time that messages have to spend in the

queue. This delay is obtained by integration of the queue length during the routing

period. In [1], robust centralized as well as decentralized routing control strategies

were introduced for networks with a fixed topology based on the minimization of

the worst-case queuing length, which is related to the queuing delays. In deriving

the queuing dynamics, the fluid flow conservation principle is frequently employed,

wherein each state of the subsystem (node) represents a queue corresponding to a

given destination node.

Maximizing the utility is another issue in routing. In [29], the shortest path rout-

ing algorithm for TCP/AQM networks was investigated which also maximizes the

link utility. The problem of delay-constrained routing was addressed in recent years

in [17] where a routing-based admission control mechanism considering an end-to-

end delay for IP traffic flows was introduced.

By increasing size of networks makes the number of different possible paths

from one node to another increase significantly. Therefore, it is virtually impossible

to implement a centralized controller. Centralized controllers are also vulnerable to

failures in the network and introduce a large communication overhead on the net-

work. Specially, when the nodes are distributed in a large area, the communication

between each node and the centralized controller enforces a costly communication

overhead with noticeable delays. Thus, decentralized controllers which can be im-

plemented locally at individual nodes are desirable for reasons of practical imple-

mentation. In [15], other types of delays, namely transmission delay, propagation

delay, and processing delay were also considered in dynamic model of the network

flow and a decentralized controller was proposed that guarantees the boundedness

of the queue length and the delays.

Extending on the results of [1, 5], the objective of this chapter is to develop

improved routing strategies based on minimization of the worst-case queuing length

which is also minimizes the congestion and packet loss [15].

Based on continuous-time version of the queuing model presented in [5], we

adopt the H∞ performance criterion to form an optimal control scheme so as to

maintain the robust performance of the routing strategy in the presence of multiple

unknown time-varying delays. The resulting optimization problem is then reformu-

lated as a linear objective minimization problem involving Linear Matrix Inequality

(LMI) constraints. In the present work, both centralized and decentralized solution

strategies are developed. In the centralized case, a refined LMI specifications facili-

tated the inclusion of several physical constraints imposed on the queuing model.
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6.2 A Model of Communication Networks

In what follows, we consider a communication network (CN) as a directed graph

(N,L), consisting of N, a set of n nodes and L, a set of ℓ oriented links. Each node re-

ceives messages from both from outside the network and the upstream nodes within

the network. Each message has a destination node d ∈ N which is absorbed as soon

as it arrives at that node. Messages can arrive to a node as their final destination.

Alternatively, arrive as transition in which case, are put into a queue to be sent out

to a downstream node. It is assumed that the network is “connected”, that is, each

node of the network must be reachable from all other nodes. When all the nodes are

source as well as destination, at each node j ∈ N there will be n−1 queues in which

messages are stored for all destinations, 1,2, j − 1, j + 1, . . . , n. Based on the fluid

flow conservation principle, The dynamics of CN can be expressed by the following

model:

q̇d
j (t) =

∑

k∈Σu(j),k �=d

f d
kj (t − τ d

kj (t)) + rd
j (t) −

∑

k∈Σd (j)

f d
jk(t), (6.1)

where

qd
j : message queue length at node j destined to node d

Σu(j): set of upstream neighbors of node j

Σd(j): set of downstream neighbors of node j

f d
kj (t): input traffic flow routed from node k ∈ Σu(j) to node j destined to node d

f d
jm(t): output traffic flow routed from node j to node m ∈ Σd(j) destined to

node d

rd
j (t): external input flow entering node j destined to node d

τ d
kj (t): total unknown time-varying and bounded delay in transmitting, propagat-

ing, and processing of messages (including identifying the destination, in-

serting in the queue and routing computation) with destination d routed

from node k to node j .

It must be emphasized that the delays defined in (6.1) are assumed to be unknown

and time-varying and this is clearly more realistic for traffic network applications.

When dealing the routing problem, some physical characteristics impose constraints

on a traffic network model. A typical set of constraints can be given as

f d
jk ≥ 0, (6.2)

0 ≤ qd
j (t) < qd

maxj
, (6.3)

∑

d∈Nj

≤ cjk, j ∈ N, k ∈ Σd(j), (6.4)

where N
j = N \ {j}. The first two constraints (6.2) and (6.3 are frequently termed

non-negativity constraints based on physical reasons. Constraint (6.3) implies that
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the queuing length cannot exceed the buffer size qd
max. Finally, the capacity con-

straint (6.4) states that the total flow in each link cannot exceed the capacity of that

link denoted by cjk .

6.3 Problem Formulation

Routing problem in CN is concerned with adjusting the output flow of each queue,

f d
jk(t), according to the network traffic information, such that certain objective func-

tions are minimized. To formulate the routing problem, we introduce

x(t) = col{qd
j (t)} ∈ ℜn(n−1),

w(t) = col{rd
j (t)} ∈ ℜn(n−1), (6.5)

u(t) = col{f d
j (t)} ∈ ℜn(n−1), j, d = 1,2, . . . , n.

Since the input flows for these queue are due to its upstream neighbors, they are

in turn the output flows of these nodes after some delays. The time-varying delay

functions associated with these nodes are not known a priori and are different from

one another due to differences in the traffic load in each link and other network

uncertainties. Define

u(t − τ(t)) = col{f d
kj (t − τ d

kj (t))} ∈ ℜℓ(n−1),

(6.6)

τ(t) = col{τ d
kj (t)|}, k, j, d = 1,2, . . . , n.

Thus (6.1) can be rewritten compactly as

ẋ(t) = Bu(t) + Du(t − τ(t)) + Γ w(t), (6.7)

z(t) = Cx(t), (6.8)

where z(t) is the regulated output, C is a weight matrix that can be defined accord-

ing to the queues priorities, B ∈ ℜn(n−1)×ℓ(n−1) and D ∈ ℜn(n−1)×ℓ(n−1) represent

the network connectivity (downstream and upstream nodes, respectively). Actually,

{Bjk (Djk)} is equal to −1 (1), if the flow uj is a downstream (upstream) flow of

node j and is zero otherwise. Moreover, Γ = In(n−1)×n(n−1). For several techni-

cal reasons, we consider that the delay τ(t) is an unknown differentiable function

satisfying

0 ≤ τ(t) ≤ ̺, 0 < τ̇ ≤ μ, ∀t ≥ 0. (6.9)

Inequality (6.9) ensures smooth flow across the traffic network.
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6.3.1 A Network Example

For the purpose of illustration, we consider the network shown in Fig. 6.1 which

consists of 4 nodes. All messages are routed to one destination, namely node 4,

thereby leading to one queue at each node. In terms of

u(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

f 4
12(t)

f 4
13(t)

f 4
14(t)

f 4
23(t)

f 4
34(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

, u(t − τ(t)) =

⎡
⎢⎢⎢⎢⎢⎢⎣

f 4
12(t − τ 4

12(t))

f 4
13(t − τ 4

13(t))

f 4
14(t − τ 4

14(t))

f 4
23(t − τ 4

23(t))

f 4
34(t − τ 4

34(t))

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Corresponding to this example, Γ = I3×3 and the matrices B and D are given by

B =

⎡
⎣

−1 −1 −1 0 0

0 0 0 −1 0

0 0 0 0 −1

⎤
⎦ ,

D =

⎡
⎣

0 0 0 0 0

0 0 0 0 1

0 1 0 1 0

⎤
⎦ .

Remark 6.1 It should be emphasized that the time-delays are indeed a major source

of instability for the entire network. Classical control theory have failed to suffi-

ciently address stability and performance issues of time-delayed systems. Compli-

cations do arise in practical situations when there is no a priori knowledge about

transmitting, propagating, and processing delays. Furthermore, the time delay func-

tions vary according to the traffic flow and other stimuli and disturbances in the net-

work. Based on a given traffic flow characteristics the amount of delay may increase

substantially, Stabilizing a time delayed system having multiple fast time-varying

delay functions is still an open area of research.

In what follows, we adopt the H∞ criterion in addressing the H∞ routing algo-

rithm based on state feedback controller of the form u(t) = Kx(t), that simultane-

ously guarantees stability of the network model (6.7) in presence of time-varying

delays and minimizes the worst-case queuing length due to the external inputs.

Fig. 6.1 A sample network

topology



308 6 Decentralized Control of Traffic Networks

Specifically, the routing problem can be cast into the following optimization prob-

lem

min
γ>0

J (w) =
∫ ∞

0

(zt (s)z(s) − γ 2wt (s)w(s)) ds < 0. (6.10)

Using the objective function (6.10), the messages are routed such that the network

is simultaneously stabilized subject to unknown transmitting, propagating, and pro-

cessing delays τ(t), and the queuing length, x, is minimized subject to presence of

the external input w. Note that by minimizing the worst case queuing length one can

actually accomplish a measure of minimum queuing delay.

6.4 Centralized Routing Controller

In what follows, we seek to design a centralized H∞ state feedback controller for

the network model (6.7)–(6.8) subject to the constraints (6.2)–(6.4). We adopt a

Lyapunov-based approach to establish the stability conditions of the time-delayed

closed-loop network without physical constraints and with prescribed performance

criteria. The resulting conditions will be cast into the framework of LMIs. Then we

impose the physical constraints (6.2)–(6.4) to refine the LMI feasibility conditions.

6.4.1 Delay-Dependent H∞ Unconstrained Control Design

Since the traffic network routing model (6.7)–(6.8) represents a time-delayed sys-

tem with unknown time-varying parameters (delays), we proceed to construct an

appropriate Lyapunov-Krasovskii functional (LKF) to derive delay-dependent sta-

bility and stabilization conditions. It must be noted that despite the fact that the total

delay of messages are not known in advance, nevertheless without loss of generality

the delays can be assumed to satisfy the bounding inequalities (6.9). Under the state

feedback u = Kx, the closed-loop traffic model becomes

ẋ(t) = BKx(t) + DKx(t − τ) + Γ w(t),

(6.11)

z(t) = Cx(t).

The following theorem establishes a basis for an H∞ state feedback design in the

unconstrained case.

Theorem 6.1 Consider the traffic network model (6.7)–(6.8) with the delay pat-

tern (6.9) and w ∈ L2[0,∞). Given the bounds ̺, μ, γ , there exists a central-

ized state-feedback controller of the form u = Kx, such that the closed-loop sys-

tem (6.11) is asymptotically stable with L2-gain less than γ , if there exist matrices
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X > 0, Y, Ψ1, Ψ2, Ψ3 satisfying the LMI

⎡
⎢⎢⎢⎢⎢⎢⎣

Π1 0 Ψ1 Γ XCt ̺Y tB t

• −Π2 −Ψ1 0 0 0

• • −Π3 0 0 ̺Y tDt

• • • −γ 2I 0 ̺Γ t

• • • • −I 0

• • • • • −2X + Ψ1

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0, (6.12)

where

Π1 = BY + Y
tB t − Ψ1 + Ψ2 + Ψ3,

(6.13)

Π2 = Ψ1 + Ψ2, Π3 = 2Ψ1 + (1 − μ)Ψ2.

The state feedback gain is given by K = YX
−1.

The proof is provided in Sect. 6.7.

Remark 6.2 The success of the centralized routing controller hinges upon the valid-

ity that the external input flows to nodes w ∈ L2. In principle, one can employ an

appropriate shaping filter, decoding or interpolation techniques to ensure the satis-

faction of this condition without removing some information from the input signal.

By this way, the queuing length is guaranteed to remain in L2 thereby assuring

that the boundedness of the queuing length of the proposed routing methodology is

supported for a bounded input flow w.

Remark 6.3 It must be noted that Theorem 6.1 yields delay-dependent stability con-

dition that is less-conservative and has wider operational range than the one devel-

oped in [1]. The main reason for this is the controller gain requires the feasibility of

a single strict LMI (6.12) as opposed to three non-strict LMIs in [1]. Moreover, the

number of LMI variables are fewer thereby reducing the computational burden.

6.4.2 Delay-Dependent H∞ Design

In what follows, we impose the physical constraints of the network and recast the

solution of the routing problem as LMI feasibility conditions. By including the con-

straints, we proceed for determining a complete solution to the robust dynamic rout-

ing problem. For this purpose, we invoke the following result established in [13]:

Lemma 6.1 The linear time-delay system

ẋ(t) = Ax(t) + Dx(t − τ(t)), A ∈ ℜn×n, D ∈ ℜn×n

is non-negative if and only if the off-diagonal elements of A are non-negative and

all of the elements of D are non-negative.
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The main result is summarized by the following theorem:

Theorem 6.2 Consider the dynamical queuing model (6.11). A constrained cen-

tralized routing controller with H∞ performance is obtained by solving the mini-

mization problem

min
0<X,Y,Ψ1,Ψ2,Ψ3

γ (6.14)

subject to inequalities I1, I2k, I3, I4, I5, I6. (6.15)

The proof is provided in Sect. 6.7.

Next, we generalize our results to the case of large-scale traffic networks.

6.5 Decentralized Traffic Routing Control

An appealing methodology for dealing with large-scale systems including traffic

networks is the decentralized control approach [19], whereby all the analysis and

design tasks are performed at the subsystem level. In the sequel, we appropriately

modify the robust centralized routing control strategy and develop it in the form of

a decentralized control scheme. Specifically, the traffic routing problem is reformu-

lated such that each node in the network is treated as a subsystem requiring only its

own local information to route the received messages while ensuring that a global

performance index is optimized and desired specifications are satisfied.

In this regard, robust control of large scale time-delay systems has witnessed an

intense research activity in the past few years to develop decentralized stabilizing

controllers for constant time-delay systems. Stabilization of a class of time-varying

large-scale systems subject to time-varying delays was investigated in [20, 22, 23].

In this section the dynamic model of the traffic flow is modified for design and

implementation of an improved robust decentralized routing control strategy for un-

known and fast time-varying delays. The properties of the developed decentralized

robust control scheme and a brief discussion on its complexity and scalability are

also provided.

6.5.1 Decentralized Dynamic Model

As mentioned previously, in routing problem, each node of the traffic network is

considered as a subsystem that includes all its queues corresponding to different

destinations. Consequently, the decentralized dynamic model of the traffic flow at

each node, or subsystem is given by

ẋ(t) = Bjuj (t) +
∑

m∈Σ(j)

Ddjm
um(t − τjm(t)) + Γjwj (t), (6.16)

where
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• xj = col{qd
j (t)} ∈ ℜn for d = 1, . . . , n denotes the queue length in node j for

different destinations,

• uj (t) = col{f d
jm(t)} ∈ ℜℓ, denotes the flows sent from node j ,

• τjm(t) denotes the unknown but bounded time-varying total-delay in transmis-

sion, propagation, and processing,

• wj (t) ∈ ℜn denotes the external input flow for node j .

The matrices Bj , Ddjm
and Γj are defined for the node j similar to that in Sect. 6.5.

Assumption 6.1 The delays τjm(t) are unknown differentiable functions that for

all t ≥ 0 satisfy

0 ≤ ϕjm ≤ max{τjm(t)} ≤ ̺jm,

(6.17)

max{|τ̇jm(t)|} ≤ μjm, μjm > 0.

For simplicity, we consider that the delay between two nodes in both directions are

the same, that is τmj = τjm.

At each node (subsystem) the traffic routing problem is to determine an H∞ state

feedback controller uj = Kjxj such that the following global objective function is

minimized:

J (w) =
∫ ∞

0

[zt (j)z(t) − γ 2wt (t)w(t)]ds < 0, γ > 0, (6.18)

where the vectors z and w are defined previously.

6.5.2 Decentralized Robust Routing Controller: Unconstrained

Case

Under the state feedback controller uj = Kjxj , the closed-loop node model be-

comes:

ẋj (t) = BjKjxj (t) +
∑

m∈Σ(j)

Ddjm
Kmxm(t − τjm(t)) + Γjwj (t),

(6.19)

zj (t) = Cjxj (t)

with the delay pattern (6.17). Toward our goal, we select the following Lyapunov-

Krasovskii Functional:

Vj t = xt
j (t)Pjxj (t)

+
∑

m∈Σ(j)

∫ t

t−̺jm

eaj (s−t)xt
j (s)S1jmxj (s)ds
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+
∑

m∈Σ(j)

∫ t

t−̺jm

eaj (s−t)xt
j (s)S2jmxj (s)ds

+
∑

m∈Σ(j)

∫ t

t−τjm

eaj (s−t)xt
j (s)Ejmxj (s)ds

+
∑

m∈Σ(j)

̺jm

∫ 0

−̺jm

∫ t

t+θ

eaj (s−t)ẋt
j (s)R1jmẋj (s)dsdθ

+
∑

m∈Σ(j)

δjm

∫ −̺jm

−ϕjm

∫ t

t+θ

eaj (s−t)ẋt
j (s)R2jmẋj (s)dsdθ, (6.20)

where 0 < Pj , S1jm, S21jm, Ejm, R1jm, R2jm are weighting matrices with appro-

priate dimensions. The following theorem establishes LMI-based delay-dependent

sufficient stability conditions for the decentralized time-delay system (6.19) and

provides control design conditions for constructing an H∞ state feedback routing

controller.

Theorem 6.3 The traffic network model (6.16) with wj ∈ L2[0,∞) is exponentially

stabilizable by the decentralized state feedback controllers of the form uj = Kjxj ,

with an L2-gain less than γj , if given scalars 0 < aj , there exist matrices 0 < Xj ,

Yj , S1rj , S2rj , Erj , Najr , Ncjr , Sajr , Scjr for j = 1, . . . , n such that the following

LMI is satisfied

Πj =

⎡
⎢⎢⎢⎢⎢⎢⎣

Πj11 Πj12 Πj13 Πj14 Πj15 Πj16

• Πj22 Πj23 Πj24 Πj25 Πj26

• • Πj33 0 0 0

• • • Πj44 0 0

• • • • Πj55 0

• • • • • Πj66

⎤
⎥⎥⎥⎥⎥⎥⎦

, (6.21)

where

Πj11 = BjYj + Y t
jB

t
j +

∑

r∈Σd (j)

(S1rj + S2rj + Erj + ajXj )

+
∑

r∈Σd (j)

(Najr + N
t

ajr ),

Πj12 = [Π12i Π12r . . .], r ∈ Σd(j),

Πj12i =
∑

r∈Σd (j)

(−2Najr − 2Sajr + N
t

cjr),

Πj12r = PBjYj ,

Πj13 =
∑

r∈Σd (j)

(Najr + Sajr ),
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Πj14 =
∑

r∈Σd (j)

Sajr ,

Πj15 =
[ ∑

r∈Σd (j)

Najr

∑

r∈Σd (j)

Sajr

]
,

Πj16 =
[
PΓj Ct

j Y t
jB

t
j

∑

r∈Σd (j)

(̺2
rjR1rj + δ2

rjR2rj )

]
,

Πj22 = diag[Πj22j Πj22r ], r ∈ Σd(j),

Πj22j =
∑

r∈Σd (j)

(−2Ncij − 2N
t

cjr − 2Scir − 2S
t

cir),

Πj22r = −(1 − μjm)Ejm − 2Ncjm − 2N
t

cjm − 2Scjm − 2S
t

cjm, (6.22)

Πj23 =

⎡
⎢⎢⎢⎣

∑
r∈Σd (j)(Ncjr + Scjr)

0
...

0

⎤
⎥⎥⎥⎦ ,

Πj24 =

⎡
⎢⎢⎢⎣

∑
r∈Σd (j) Scjr

0
...

0

⎤
⎥⎥⎥⎦ ,

Πj25 =

⎡
⎢⎢⎢⎣

∑
r∈Σd (j) Ncjr

∑
r∈Σd (j) Scjr

0 0
...

...

0 0

⎤
⎥⎥⎥⎦ ,

Πj26 =

⎡
⎢⎢⎢⎣

0 0 Πj261

0 0 0
...

...
...

0 0 0

⎤
⎥⎥⎥⎦ ,

Πj261 = Y t
jB

t
j

∑

r∈Σd (j)

(h2
irR1jr + δjrR2jr), (6.23)

Πj33 =
∑

r∈Σd (j)

S1rj , Πj44 = −
∑

r∈Σd (j)

S2rj ,

Πj55 = diag

[
−

∑

r∈Σd (j)

e
−arhjr R1jr −

∑

r∈Σd (j)

e−ar δjr R2jr

]
, (6.24)
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Πj66 =

⎡
⎣

−γ 2
j 0 Γ t

j

• −I 0

• • Πj661

⎤
⎦ ,

Πj661 =
∑

r∈Σd (j)

(̺2
irR1jr + δ2

jrR2jr ) − 2Xj . (6.25)

Moreover, the robust decentralized state feedback controller gain is given by

Kij = X−1
j Yj .

The details of the proof are given in Sect. 6.7.

Remark 6.4 It must be emphasized that Theorem 6.3 provides new results in the

context of decentralized control of large-scale systems with time-varying delays in

comparison to the available literature. In part, it builds upon the parametrization

technique developed in [24]. Considering the case aj ≡ 0, the results reduce to de-

centralized asymptotic stabilization which out performs the results reported in [8,

15, 22, 23].

6.5.3 Decentralized Robust Routing Controller: Constrained Case

Extending on the centralized case, we can similarly deal with the physical con-

straints imposed at each node to arrive at the constrained decentralized routing

problem. The additional LMI conditions are now derived by parallel development

to (6.38) through (6.51). The main result is summarized by the following theorem:

Theorem 6.4 Consider the dynamical queuing model (6.19). A constrained decen-

tralized routing controller with H∞ performance is obtained by solving the mini-

mization problem

for j = 1, . . . , n min
0<Xj ,Yj ,S1rj ,S2rj ,Erj ,Najr ,Ncjr ,Sajr ,Scjr

γ (6.26)

subject to inequalities Ij1, Ij2k, Ij3, Ij4, Ij5, Ij6. (6.27)

The proof is provided in Sect. 6.7.

Remark 6.5 It must be noticed that by increasing the number of nodes in a traffic

network, the number of possible paths from a given source node to a given desti-

nation will significantly increase. It is therefore expected that a centralized routing

controller algorithm will be vulnerable to failures and introduces a huge communi-

cation overhead on the network. On the other hand, decentralized controllers that

can be constructed locally at individual nodes are highly desirable for practical pur-

poses and implementation.
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Given n is the number of nodes, k is the number of destination nodes, and ℓ is the

number of links, the developed routing method requires five (n−1)k × (n−1)k and

(l − 1)k × (n − 1)k unknown matrices should be determined for the feasibility of

LMI conditions in (6.12). Alternatively, the developed decentralized routing method

for each node there are nine unknown matrices to be determined so as to satisfy the

LMI conditions in (6.21). Therefore, there would be a total 8(n−k) unknown matri-

ces with dimension k × k, 8k unknown matrices with dimension (k − 1) × (k − 1),

n − k unknown matrices with dimension mik × k, and k unknown matrices with

dimension mi(k − 1) × (k − 1) are required. Even though the number of the un-

known matrices in the decentralized control scheme is higher than the centralized

controller method, given that the dimensions of matrices are lower than the cen-

tralized case, the LMI technique can attain a solution to the decentralized scheme

much faster and more efficiently. Moreover, the implementation of our decentral-

ized controller is computationally less expensive when compared to our centralized

method. In effect, for non crowded networks, the centralized method is more desir-

able due to their optimality (vis-à-vis use of the full information set) and accuracy.

However, by increasing the number of nodes in the network it becomes difficult and

sometimes even impossible (due to ill-conditioning and curse of dimensionality)

to design and implement the centralized controller. Consequently, the decentralized

method is more suitable and appropriate for these large-scale traffic networks.

6.6 Simulation Results

To evaluate the performance of our proposed traffic network routing control strate-

gies, simulations are conducted in this section on two examples, The results obtained

by applying our proposed decentralized routing strategy is compared with that of the

centralized scheme as well as another conventional optimal control scheme, namely

Model Predictive Control (MPC) method. All simulations are done on a MATLAB

Simulink 7.0 platform.

6.6.1 Simulation Example 6.1

Consider the network shown in Fig. 6.2. The capacity of each link is also indicated

in the figure, the unit of which is kbit/sec. All the nodes are assumed to be sources as

well as destinations. From Fig. 6.2 it follows that there are 6 queues (the states of the

system) and 8 output flows for these queues (the input signals). The initial values of

all the states are set to 0. The external input is considered to be the following pulse

function:

w(t) =
{

1 kbit/sec, 0 < t < 50,

0, otherwise

and the delay is assumed to be 5 sec for each input flow.
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Fig. 6.2 Network topology

of Example 1

Fig. 6.3 The response of the

queueing lengths:

(1)—centralized H∞
controller, (2)—the

decentralized H∞ controller

The results obtained by using our proposed decentralized and centralized H∞
controllers for the queue lengths are shown in Fig. 6.3 (where xd

i denotes the queue

length of node i destined to node d) and for the flow links in Fig. 6.4, respectively.

These figures clearly demonstrate the smooth behavior of the H∞ controller, where

no a priori knowledge about the delays, except their upper bound, was assumed. It

can be stated that overall the decentralized control performance is comparable with

that of the centralized method, However, since there are only few (3) nodes in the

network, the difference is not quite significant.

We are also interested in investigating the effects of jitter on the performance of

our proposed centralized and decentralized routing strategies. Therefore, the follow-
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Fig. 6.4 The response of

output flows: (1)—centralized

H∞ controller, (2)—the

decentralized H∞ controller

Fig. 6.5 (a) and (b): Queuing

lengths of node 3: centralized

H∞ controller (solid) and

decentralized H∞ controller

(dashed), (c) and (d): Link

flows for node 3: centralized

H∞ controller (solid) and the

decentralized H∞ controller

(dashed)

ing input signal is added to the above signal w for node 3:

ẃ1
3(t) =

{
pp, 20k < t < 23k,

0, otherwise,

(6.28)

ẃ2
3(t) =

{
pp, 40k < t < 43k,

0, otherwise,

where pp is a random signal with a Poisson distribution and rate of 2.5. Fig-

ures 6.5(a) and (b) illustrate the queuing length of node 3 and Figs. 6.5(c) and (d)

show their corresponding flow link, for the centralized and decentralized methods,

respectively. By considering the results obtained in Fig. 6.5, it can be concluded that

the effects of the jitter do not deteriorate the stability of our routing strategies and

the additional disturbances are attenuated after a short transient time.
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6.6.2 Simulation Example 6.2

Consider the network that is shown in Fig. 6.6 which is adopted from [18]. The

capacity of each link, with unit of k bit/sec, is also depicted in the figure. The desti-

nation nodes are 7 and 10 and overall there are 17 queues (the states of the system)

and 35 output flows for these queues (the input signals). The initial values of all the

states are set to 0. The external input is considered as a poison distribution with the

flow rate λ for 70 sec. For each input flow the delay is taken as a fast time-varying

function 3 + 5| sin(100t)| sec which is considered to be unknown to the controllers.

Each simulation is run for 100 sec. For λ = 0.2, the results obtained by using

our proposed decentralized and centralized H∞ controllers for the queue lengths

of nodes 1–3 are shown in Fig. 6.7. As can be seen from this figure our proposed

Fig. 6.6 The network

topology of Example 2

Fig. 6.7 Queuing lengths of

nodes 1–3: centralized H∞
controller (solid) and the

decentralized H∞ controller

(dashed)



6.6 Simulation Results 319

Table 6.1 Queuing length

for different external flow

rates

λ (kbits/sec) 0.1 0.2 0.3 0.4

External input 187 289 425 561

Queuing delay for the H∞
centralized method

211.18 438.26 644.07 847.02

Queuing delay for the H∞
decentralized method

220.05 615.02 720.89 955.81

Fig. 6.8 Throughput

comparison between the

centralized and decentralized

controllers

control schemes satisfy the physical constraints and the closed-loop system behaves

robustly in presence of fast time-varying delays. Similar results are also obtained

for nodes 4–9, but these results are omitted due to space limitations. Note that the

time derivative upper bound of the delay is taken as d = 200 and the upper bound

of the delay is h = 8. Table 6.1 shows the resulting queuing delays for different in-

put flow rates. It should be noted that our proposed routing algorithms can provide

acceptable performance for higher values of the transmission, propagation and pro-

cessing delays. By invoking the stability results obtained in Theorems 4.1 and 5.1,

the maximum delay upper bound for which the routing controller can maintain its

acceptable performance is found to be h = 10 for the decentralized controller, and

is found to be h = 8 for the centralized controller.

When the network traffic is heavy, congestion occurs and packets are dropped in

the network, which can cause a decrease in the throughput performance. Figure 6.8

depicts the performance of our proposed algorithms under different traffic loads.

Indeed, by increasing λ to 0.3 the decentralized method loses 3% of its packets

while for λ = 0.4 this loss increased to 11%.

Generally, it can be concluded that the decentralized control strategy could fairly

compete with the performance of the centralized method. However, as the number

of nodes increases, one may not be able to easily solve the corresponding high di-

mensional LMI conditions associated with the centralized control strategy due to

ill-conditioning and/or reductions in the size of the feasibility regions. On the other
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hand, the decentralized strategy is scalable and would provide an acceptable perfor-

mance even in crowded networks.

6.7 Proofs

6.7.1 Proof of Theorem 6.1

Proof Introduce the Lyapunov-Krasovskii functional (LKF):

V (t) = xt (t)P x(t) +
∫ t

t−̺

xt (α)W x(α)dα

+
∫ t

t−τ

xt (α)Sx(α)dα

+ ̺

∫ t

t−̺

∫ t

t+σ

ẋt (s)Rẋ(s) ds dθ, (6.29)

where 0 < P , 0 < W , 0 < S , 0 < R are weighting matrices of appropriate dimen-

sions. A straightforward computation gives the time-derivative of V (t) along the

solutions of (6.11) yields:

J = V̇ (t) + zt (t)z(t) − γ 2wt (t)w(t)

= 2xt (t)P ẋ(t) + ̺2ẋt (t)Rẋ(t)

− ̺

∫ t

t−̺

ẋt (s)Rẋ(s)ds + xt (t)(W + S)x(t)

− xt (t − ̺)W x(t − ̺) − (1 − τ̇ )xt (t − τ)Sx(t − τ)

+ xt (t)CtCx(t) − γ 2wt (t)w(t). (6.30)

Using the identity

−̺

∫ t

t−̺

ẋt (s)Rẋ(s)ds = −̺

∫ t−τ

t−̺

ẋt (s)Rẋ(s)ds − ̺

∫ t

t−τ

ẋt (s)Rẋ(s)ds,

(6.31)

then applying Jensen’s inequality

∫ t

t−τ

ẋt (s)Rẋ(s)ds ≥
∫ t

t−τ

ẋt (s)dsR

∫ t

t−τ

ẋ(s)ds

+
∫ t−τ

t−̺

ẋt (s)Rẋ(s)ds (6.32)

≥
∫ t−τ

t−̺

ẋ(s)dsR

∫ t−τ

t−̺

ẋ(s)ds. (6.33)
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Then it follows that

J ≤ 2xt (t)P
[
BKx(t) + DKx(t − τ) + Γ w(t)

]

− (x(t) − x(t − τ))t R(x(t) − x(t − τ))

− (x(t − τ) − x(t − ̺))t R(x(t − τ) − x(t − ̺))

+ xt (t)(W + S)x(t) − xt (t − ̺)W x(t − ̺)

− (1 − μ)xt (t − τ)Sx(t − τ) + ̺2 ẋt (t)Rẋ(t)

+ xt (t)CtCx(t) − γ 2wt (t)w(t). (6.34)

Setting

ζ(t) = col{x(t), x(t − ̺), ξj (t − τ),w(t)}

while expanding ẋ(t) and using Schur complements, it follows that

J ≤ ζ t (t)Ψ ζ(t) ≤ 0 (6.35)

if the matrix inequality

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ψo 0 R P Γ Ct ̺K tB t

• −R − W R 0 0 0

• • −Ψa 0 0 ̺K tDt

• • • −γ 2I 0 ̺K tΓ t

• • • • −I 0

• • • • • −̺R−1

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (6.36)

is feasible, where

Ψo = P BK + K tB t P + W + S − R,

(6.37)

Ψa = 2R + (1 − μ)S.

Applying the congruent transformation

T = diag{X, X, X, I, I, I }, P
−1 = X.

Then using the change of variables

XRX = Ψ1, XSX = Ψ2, WRX = Ψ3, KX = Y

along with the algebraic inequality (Ψ1 −X)Ψ −1
1 (Ψ1 −X) ≥ 0, we obtain LMI (6.12)

as desired. Setting w ≡ 0, one gets the LMI condition implying V̇ < 0 which in

turn guarantees the asymptotic stability of the closed-loop system (6.11). Thus, we

conclude that the closed-loop system is asymptotically stable with L2-gain less than

γ and this completes the proof. �
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6.7.2 Proof of Theorem 6.2

Proof Considering the capacity constraint (6.4), it can be readily expressed in view

of (6.5) as

Gku < ck, k = 1,2, . . . , ℓ (6.38)

which depends on the control input u for some weighting matrix Gk . By considering

the following ellipsoid for a selected ω > 0

Ξ = {x(t)|xt (t)X−1x(t) ≤ ω, X = X
t > 0}. (6.39)

When the LMI (6.21) is feasible, it follows from V (t) of (6.29) that

xt (t)X−1xj (t) ≤ V (t).

By integrating J in (6.30) over the period 0 → t with V (0) = 0 subject to Theo-

rem 6.1, it is not difficult to show that J < 0 corresponds to

V (t) ≤ −
∫ t

0

zt (t)z(t) dt +
∫ t

0

γwt (t)w(t) dt

≤ γ

∫ ∞

0

wt (t)w(t) dt := γW, (6.40)

where W is the upper bound energy of the external input w(t). This shows that x(t)

belongs to an invariant set Ξ for all t > 0, if

γW < ω. (6.41)

By using the controller gain K = YX
−1, we write the state-feedback controller

u = YX
−1x, which leads to express (6.38) as

GkYX
−1x < ck. (6.42)

Equivalently

xt (GkYX
−1)t (GkYX

−1)x < c2
k . (6.43)

Combining (6.39) and (6.43), we have

(GkYX
−1)t (ω/c2

k)(GkYX
−1) < X

−1. (6.44)

By applying the Schur complement, the capacity constraints can be cast into the

following LMI conditions

I1 := γ < ω/W, (6.45)

I2k :=
[

X Y
tGt

k

• c2
k/ω

]
≥ 0, k = 1, . . . , ℓ. (6.46)
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Following parallel development, the constraint on the queue buffer size in (6.3) can

be written as

Qdjx < xmaxdj
, (6.47)

where xmaxdj
= qd

maxj
. Using (6.39) and (6.47), we have

Qt
dj (ω/x2

maxdj
)Qdj < X

−1 (6.48)

which is equivalent by the Schur complements to the LMI

I3 :=
[

X Qdj

• c2
k/xmaxdj

/ω

]
≥ 0. (6.49)

It remains to look at the non-negativity constraint (6.2). Applying Lemma 6.1 to

the closed-loop system (6.11) requires that the off-diagonal entries of BK and all

entries of DK to be non-negative. For simplicity in exposition, we take 0 < X in

Theorem 6.1 to be diagonal. Considering K = YX
−1, this requirement is translated

to

I4 := (BY)jm ≥ 0, j �= m,

(6.50)

I5 := (DY)jm ≥ 0, j,m = 1, . . . , n.

Observe that meeting the non-negativity condition x ≥ 0 implies that the second

non-negativity condition u ≥ 0 can be easily satisfied by imposing Kjm > 0. Conse-

quently, by using K = YX
−1 with 0 < X being diagonal matrix, the constraint (6.2)

is satisfied if the following LMI condition holds

I6 := Yjm > 0, j,m = 1, . . . , ℓ(n − 1). (6.51)

The result of Theorem 6.1 in light of inequalities (6.45), (6.46) and (6.49)–(6.51)

leads to the desired result. �

6.7.3 Proof of Theorem 6.3

Proof In the sequel, we introduce the following

• Σu(j) ≡ the set whose elements are the upstream nodes of the node j ,

• Σd(j) ≡ the set whose elements are the downstream nodes of the node j

and the zero-value equations∑

r∈Σd (j)

[
xt
j (t)2N t

ajr + xt
j (t − τrm)2N t

cjr

]

×
[
xj (t) − xj (t − τrm) −

∫ t

t−τrm

ẋ(s)ds

]
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=
∑

r∈Σd (j)

[
xt
j (t)(−N t

ajr ) + xt
j (t − ̺rm)(−N t

cjr )
]

×
[
xj (t) − xj (t − τrm) −

∫ t

t−̺rm

ẋ(s)ds

]

=
∑

r∈Σd (j)

[
xt
j (t − ϕrm)2St

ajr + xt
j (t − τrm)2St

cjr

]

×
[
xj (t − ϕrm) − xj (t − τrm) −

∫ t−ϕrm

t−τrm

ẋ(s)ds

]

=
∑

r∈Σd (j)

[
xt
j (t − ϕrm)(−St

ajr) + xt
j (t − τrm)(−St

cjr )
]

×
[
xj (t − ϕrm) − xj (t − τrm) −

∫ t−ϕrm

t−τrm

ẋ(s)ds

]
(6.52)

for some free weighting matrices Najr , Ncjr , Sajr and Scjr . Now to ensure an ex-

ponential stability, the following inequality should be preserved

Wj := d

dt
Vj (t) + ajVj (t) − bwt

j (t)wj (t) ≤ 0 (6.53)

for some scalars aj > 0, bj > 0. A straightforward mathematical manipulation com-

putation using Schur complements yields

Wj ≤ 2xt
j (t)Pj ẋj (t) + aix

t
i (t)P xi(t) − bwt (t)w(t)

+
∑

m∈Σu(j)

̺2
jmẋt

j (t)R1jmẋj (t)

+
∑

m∈Σu(j)

δ2
jmẋt

j (t)R2jmẋj (t)

−
∑

m∈Σu(j)

̺jme−ai̺jm

∫ t

t−̺jm

ẋt
j (s)R1jmẋj (s)ds

−
∑

m∈Σu(j)

δije
−aiδjm

∫ t

t−ϕjm

ẋt
j (s)R2jmẋj (s)ds

+
∑

m∈Σu(j)

xt
j (t)[S1jm + S2jm + Ejm]xj (t)

−
∑

m∈Σu(j)

xt
j (t − ̺jm)S1jmxj (t − ̺jm)

−
∑

m∈Σu(j)

xt
j (t − ϕjm)S2jmxj (t − ϕjm)
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−
∑

m∈Σu(j)

(1 − μjm)xt
j (t − τjm)Ejmxj (t − τjm)

= χj (t)Πjχj (t) (6.54)

for some vector χj and

Πj =

⎡
⎢⎢⎢⎢⎢⎢⎣

πj11 πj12 πj13 πj14 πj15 πj16

• πj22 πj23 πj24 πj25 πj26

• • πj33 πj34 πj35 πj36

• • • πj44 πj45 πj46

• • • • πj55 πj56

• • • • • πj66

⎤
⎥⎥⎥⎥⎥⎥⎦

, (6.55)

where

πj11 = PjBjKj + K t
jB

t
jPj +

∑

r∈Σd (j)

(S1rj + S2rj + Erj + ajP)

+
∑

r∈Σd (j)

(Najr + N t
ajr),

πj12 = [πj12s πj12r ], r ∈ Σd(j),

πj12s =
∑

r∈Σd (j)

(−2Nair − 2Sajr + N t
cjr),

πj12r = PBjKj ,

πj13 =
∑

r∈Σd (j)

(Najr + Sajr),

(6.56)
πj14 =

∑

r∈Σd (j)

Sajr ,

πj15 =
[ ∑

r∈Σd (j)

Najr

∑

r∈Σd (j)

Sajr

]
,

πj16 =
[
PΓj Ct

j K t
jB

t
j

∑

r∈Σd (j)

(h2
rjR1rj + δ2

rjR2rj )

]
,

πj22 = diag[πj22s πj22r ], r ∈ Σd(j),

πj22s =
∑

r∈Q(i),i

(−2Ncjr − 2N t
cjr − 2Scjr − 2St

cjr),

πj22r = (1 − μjm)Ejm − 2Ncjm − 2N t
cij − 2Scjm − 2St

cjm.
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Also,

πj23 =

⎡
⎢⎢⎢⎣

∑
r∈Σd (j)(Ncjr + Scjr)

0
...

0

⎤
⎥⎥⎥⎦ ,

πj24 =

⎡
⎢⎢⎢⎣

∑
r∈Σd (j) Scjr

0
...

0

⎤
⎥⎥⎥⎦ ,

(6.57)

πj25 =

⎡
⎢⎢⎢⎣

∑
r∈Σd (j) Ncjr

∑
r∈Σd (j) Scjr

0 0
...

...

0 0

⎤
⎥⎥⎥⎦ ,

πj26 =

⎡
⎢⎢⎢⎣

0 0 πj261

0 0 0
...

...
...

0 0 0

⎤
⎥⎥⎥⎦ ,

πj261 = K t
jB

t
j

∑

r∈Σd (j)

(̺jrR1jr + δjrR2jr)

and

πj33 = −
∑

r∈Σd (j)

S1rj , πj34 = π35 = π36 = 0,

πj44 = −
∑

r∈Σd (j)

S2rj , πj45 = π46 = 0,

πj55 = diag

[
−

∑

r∈Σd (j)

e−arhir R1jr −
∑

rΣd (j)

e−ar δjr R2jr

]
,

πj56 = [0 0 0], (6.58)

πj66 =

⎡
⎣

−bj 0 πj661

• −I 0

• • πj662

⎤
⎦ ,

πj661 = Γ t
j

( ∑

r∈Σd (j)

̺2
jrR1jr + δ2

jrR2jr

)
,

πj662 = −
∑

r∈Σd (j)

(̺2
irR1jr + δ2

jrR2jr). (6.59)



6.7 Proofs 327

To determine the controller gains Kj , j = 1,2, . . . ,m, we per- and post-multiply

the LMI (6.55) with diag[I, I, I, . . . ,Λj ], where

Λj =
[ ∑

r∈Σd (j)

(̺2
jrR1jr + δ2

jrR2jr)

]−1

.

Then pre- and post-multiply the resulting LMI by diag[Xj ,Xj ,Xj , . . . , I, I,Xj ],
Xj = P −1

j with XjKj = Yj and invoking the inequality −ZFZ ≤ F−1 − 2Z, the

LMI (6.21) is obtained. Setting γ 2
j = bj and subject to the theorem, the network

model (6.19) is exponentially stabilizable by the decentralized state feedback con-

trollers of the form uj = Kjxj , with an L2-gain less than γj and the proof is com-

pleted. �

6.7.4 Proof of Theorem 6.4

Proof The capacity constraint for each subsystem can be defined as

Gkjuj < ckj , kj = 1, . . . , ℓj, j = 1, . . . , n. (6.60)

By considering the following ellipsoid for a selected ωj > 0

Ξj = {xj (t)|xt
j (t)X

−1xj (t) ≤ ωj , Xj = Xt
j > 0}. (6.61)

When the LMI (6.12) is feasible and proceeding in line with Theorem 6.2, it follows

that the capacity constraints can be cast into the following LMI conditions

Ij1 := γj < ωj/Wj , (6.62)

I2jk :=
[

Xj Y tGt
jk

• c2
kj/ωj

]
≥ 0, k = 1, . . . , ℓ. (6.63)

In a similar way, the constraint on the queue buffer size in (6.3) at the node j can be

cast into the LMI format

Ij3 :=
[
Xj Qdjj

• c2
kj/xmaxdj

/ωj

]
≥ 0. (6.64)

The non-negativity constraint (6.2) can be stated as

Ij4 := (BjYj )pq ≥ 0, p �= q, (6.65)

Ij5 := (DjYj )pq ≥ 0, p, q = 1, . . . , n, (6.66)

Ij6 := Yjpq > 0, p, q = 1, . . . , ℓ(n − 1), j = 1, . . . , n. (6.67)

The result of Theorem 6.2 in light of inequalities (6.62)–(6.67) leads to the desired

result. �
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6.8 Discrete-Time Dynamic Routing

In this section, we direct attention to the presentation of decentralized controller

for dynamic routing in multi-destination large-scale data communication networks

using discrete-time format. Although this section is the discrete counterpart of the

previous one, the analysis and topics are treated in a distinct way.

An important problem in the operation of data communication networks is the

routing of messages. Typically, a data communication network consists of many

nodes which are connected through a number of links. The routing problem is to

direct messages from one node to another, through such links. until they reach their

desired destination.

Generally speaking, the amount of messages entering a network at various nodes

may vary from time to time, a dynamic routing strategy, which can adopt to such

variations, is required. In addition, it is often the case that the number of nodes in a

network is large; in this case the vast number of different possible paths from one

node to another, makes it virtually impossible to implement a centralized controller.

As we noted before, centralized controllers are vulnerable to failures in the network

and introduce a large communication overhead on the network. Decentralized con-

trollers, which can be implemented locally at individual nodes, and which require a

minimum amount of information from the other nodes, are desirable to implement

in practice.

Early routing algorithms, such as those implemented in the ARPANET [25] and

TYMNET [34], were based on finding the shortest path from the initial node to the

destination node [7, 16]. In these algorithms, the length of a path is usually taken

to be proportional to the message flow rate on that path. Most of these algorithms

could be implemented in a decentralized way in the sense that the computations can

be done locally; however, for dynamic routing, they require excessive information

transfer inside the network (all the nodes must be informed about the changing link

lengths). Other algorithms have been proposed to improve the network performance

by minimizing a cost function related to the link congestion (message flow rate on a

link relative to the capacity of that link) [11, 26, 35]. For dynamic routing, however,

these algorithms also require excessive information exchange.

6.8.1 Routing Algorithms

A routing algorithm which uses distributed computation has been introduced in [12];

this algorithm considers an optimal routing problem to minimize a generic measure

of link flows (that is, a more general definition of link congestion which is also

related to the total delay, is minimized) and produces a solution which converges

to the optimal solution under certain assumptions. Various computational and prac-

tical aspects of similar algorithms have also been extensively discussed [6]. A key

assumption of these algorithms is the so-called quasi-static assumption which states

that the external traffic arrival rates for each origin-destination pair is stationary over
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time. Therefore, although these algorithms may be successful when the external traf-

fic arrival rates remain approximately constant over time, they may fail to produce

satisfactory results when the rates change appreciably within a relatively short time.

Furthermore, in general,this class of algorithms (i.e. the shortest path algorithms

and the algorithms based on link congestion minimization) are suitable only when

the total traffic arrival rate into a network is small compared to its total capacity;

i.e. such algorithms usually require separate flow control algorithms to deal with

situations where congestion occur [33].

The problem of determining a routing controller which minimizes a measure of

the total queue length of the network was studied by [27]; it may be argued that

such a measure reflects the overall performance better than a measure based on link

congestion. Furthermore, algorithms based on minimizing such measures can also

work well under congestion. A conceptual algorithm is presented in [27] to com-

pute the optimal control for minimizing a measure of the queue length of a network;

however, it was stated that the implementation of such an algorithm may not be

possible to achieve in the most general case due to the computational complexity

required and a number of other problems. A number of decentralized routing al-

gorithms based on minimizing a measure of the queue length were reported by a

number of researchers for certain special cases. In [30] a decentralized routing al-

gorithm is presented based on minimizing a measure of the queue length and the

total travel time (transportation networks rather than communication networks were

considered). The algorithm, however, is valid only for single destination networks.

Multi-destination networks were considered within the same context by [30]; how-

ever, in this case it was assumed that the total flow rate entering a node is constant.

A decentralized controller for the general case was proposed by [4, 14]; the structure

of this controller was motivated by the structure of an optimal controller which min-

imizes a measure of the total queue length. Although this controller may not produce

optimal performance in general. it is easy to design and simple to implement.

A different approach for designing a routing controller was later undertaken

in [14]; an off-line optimization approach was proposed to determine a decentral-

ized controller for a network whose dynamics can be modeled as a continuous-time

system. In the present book, this approach is extended to the discrete-time case. This

case is important from a practical point of view, since the implementation of rout-

ing control strategies is done generally in discrete-time. The dynamic model used

in this book (which is a discrete-time version of the model developed by [14, 15])

can incorporate processing delays. The basic aim of the introduced approach is to

maximize the magnitude of each external message arrival rate which may occur in

the system, without violating any constraints on the system. It is shown that this

problem can be formulated as a linear programming problem, and can be solved

off-line. The proposed controller is decentralized in the sense that all the on-line

computations are done locally at the nodes without any information transfer from

the other nodes. This controller guarantees stability and clears the queues of the

network in the absence of external message arrivals. It also keeps the queue lengths

bounded in the presence of external message arrival rates, which do not exceed

a certain maximum rate. The controller also avoids looping of messages. Further-
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more, it can cope with congestion, that is, no separate flow control algorithms are

needed.

6.8.2 Network Dynamics and Assumptions

Consider a data communication network consisting of N nodes. The nodes are con-

nected through directed links on which messages can be transmitted. Each node

receives messages from both upstream nodes inside the network and from outside

the network. The node on which a message enters the network is said to be the

source node of this message. Each message also has another node, called the desti-

nation node, associated with it. Messages are absorbed as soon as they arrive at their

destination. Messages arriving at a node other than their destination are put into a

queue (or buffer) and eventually are sent out to a down-stream node.

Assumption 6.2 For simplicity in exposition, it is assumed that

1. The rate of messages being sent out from one node to another (the control sig-

nals) are updated at discrete periodic instants, which is the usual case in practice.

Without loss of generality this period is taken to be unity.

2. A processing delay occurs at each node before an arriving message can be put

into a queue and then sent out. Such a delay necessarily occurs in practical sys-

tems. This delay is the total time needed for tasks such as receiving a message

from an upstream node or from outside the network, identifying its destination,

placing it into the appropriate queue, and performing necessary calculations for

routing. Some of these tasks may eventually be handled in parallel. Note that

each type of message, associated with a particular origin-destination pair at the

node. may have a different processing delay.

3. For technical ease, initially the processing delay times are considered fixed; how-

ever, it will be later shown that the main results remain valid even if these delay

times are time-varying, but bounded. It is to be noted that the delay due to wait-

ing at the input to a transmission link (that is, the queuing delay) is separately

considered in the model. In the following formulation, the processing delay for a

particular message is the time it spends in the pℓk
i queue, and the queuing delay

is the time it spends in the mlki queue.

4. The propagation delay along a link (that is, the transport time of a signal on

any link) may be included in the processing delay of the node at the receiving

end. The transmission delay (that is, the time between starting and ending the

transmission of an individual message), on the other hand, is taken care of in two

different ways in our model. If the message can be sent out from the present node

immediately after it is processed, then this delay is included in the processing

delay of the transmitting node. If, on the other hand, the message (or at least

a part of it) has to wait in the mℓkj queue (possibly due to congestion in the

out-going links) then at least a part of the transmission delay is included in the

queuing delay. The transmission delay is, of course, dependent on the message

length; but it is bounded as long as the message lengths are bounded.
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5. The control signals are updated synchronously throughout the network.

In view of the forgoing assumptions, the queue dynamics at node j for messages

with source ℓ and destination k can be described as follows:

qℓk(t + 1) = qℓk
j (t) + δjℓf

k
j (t) +

∑

m∈U (j)

uℓk
mj (t) −

∑

j∈D(j)

ulk
jm(t), (6.68)

mlk
j (t + 1) = mℓk

j (t) + δjℓf
k
i (t − rℓk

j )

+
∑

m∈U (j)

ulk
mj (t − rℓk

j ) −
∑

m∈D(j)

ulk
jm(t), (6.69)

where

• mℓk
j (t) is the volume of processed messages with source i and destination k,

waiting at node j at time t , j ∈ N̄k , ℓ ∈ N̄k , where N̄ ≤ {1,2, . . . ,N}, N̄k ≤
N̄\{k} (the queuing delay is the time a message spends in this queue).

• qℓk
j (t) ≤ pℓk

j (t) + mℓk
j (t) is the total volume of messages with source j and des-

tination k, either being processed or waiting at node j at time t , j ∈ N̄k , ℓ ∈ N̄k ,

k ∈ N̄ .

• f k
j (t) is the arrival rate of messages with destination k, entering the network at

node i at time t , j ∈ N̄k , k ∈ N̄ .

• uℓk
jm(t) is the flow rate of messages with source ℓ and destination k, sent out from

node j to the downstream node m along the link i to j at time t , j ∈ D(i), i ∈ N̄k ,

l ∈ N̄k , k ∈ N̄ .

• rℓk
j is the processing delay at node j for messages with source ℓ and destination

k, j ∈ N̄k , ℓ ∈ N̄k , k ∈ N̄ .

• V (j) and D(j) are respectively the sets of adjacent upstream and downstream

nodes of node j , j ∈ N̄ ; that is,

Vj := {m | there exists a link from m to j},
Dj := {m | there exists a link from j to m}

and

δjℓ ≤
{

1 if j = l,

0 if i �= l.

Instead of either (6.68) or (6.69), we could also use:

plk
j (t + 1) = pℓk

j (t) + δjℓ[f k
j (t) − f k

j (t − rℓk
j )]

+
∑

m∈U (j)

[uℓk
mj (t) − uℓk

mj (t − rℓk
j )], (6.70)

where
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• pℓk
j (t) is the volume of messages with source ℓ and destination k, being processed

at node j at time t , j ∈ N̄k , ℓ ∈ N̄k , k ∈ N̄ (the processing delay is the time a

message spends in this queue).

In the sequel, we let q ≤ {qℓk
j } be the N(Nℓ)2 dimensional vector of total vol-

ume of messages, m ≤ {mℓk
j } be the N(N − ℓ)2 dimensional vector of volume of

processed messages, p ≤ {pℓk
j } be the N(Nℓ)2 dimensional vector of volume of

messages presently being processed, where m,p, and q have the same index struc-

ture. Let f ≤ {f k
j } be the N(Nℓ) dimensional vector of external message arrival

rates, u ≤ {uℓk
jm} be the L(Nℓ)2 dimensional vector of message flow rates along the

links, where L is the total number of links of the network, and let

f̃ (t) ≤ {f̃ ℓk
j } ≤ Ff (t) + Gju(t) (6.71)

be an N(N −ℓ)2 dimensional vector which has the same index structure as q , where

F is a matrix consisting of a 1 corresponding to f̃ ℓk
j on the column corresponding

to f k
j (j ∈ N̄k , k ∈ N̄), and 0’s elsewhere, and Gj , is a matrix consisting of 1’s

corresponding to uℓk
mj ’s with m ∈ U (j) on the row corresponding to f̃ ℓk

j (j ∈ N̄k ,

l ∈ N̄k , k ∈ N̄ ), and 0’s elsewhere. Then model (6.68)–(6.70) can be compactly

written as:

q(t + 1) = q(t) + Ff (t) + Gu(t), (6.72)

m(t + 1) = m(t) +
rmax∑

r=1

Dr f̃ (t − r) − Gou(t), (6.73)

p(t + 1) = p(t) + f̃ (t) −
rmax∑

r=1

Dr f̃ (t − r), (6.74)

where Go is a matrix consisting of 1’s corresponding to uℓk
jm’s with j ∈ D(j) on

the row corresponding to mℓk
j (j ∈ N̄k , ℓ ∈ N̄k , k ∈ N̄ ), and 0’s elsewhere, G ≤

Gj − Bo, rmax ≤ maxj∈N̄k,ℓ∈N̄k,k∈N̄ {rℓk
j } and Dr (r = 1,2, . . . , rmax) are diagonal

matrices containing a l at the diagonal position corresponding to mℓk
j if rℓk

j = r and

containing a 0 otherwise (j ∈ N̄k , ℓ ∈ N̄k , k ∈ N̄ ).

The objective of the routing control is to determine a suitable controller for u

(that is to control the flow rates along the links) to regulate the queue lengths q and

m in the presence of f . To reflect practical issues, certain routing control constraints

must be recalled:

1. The message arrival rates into the network must be non-negative:

f k
j (t) ≥ 0, ∀t ≥ t0, ∀k ∈ N̄ .

2. The queue length of messages being processed at a node cannot be negative:

pℓk
j (t) ≥ 0, ∀t ≥ t0, ∀j ∈ N̄k, ∀ℓ ∈ N̄k, ∀k ∈ N̄ .
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3. The queue length of processed messages cannot be negative:

mℓk
j (t) ≥ 0, ∀t ≥ t0, ∀j ∈ N̄k, ∀ℓ ∈ N̄k, ∀k ∈ N̄ .

4. The message flow rates cannot be negative:

uℓk
jm(t) ≥ 0 ∀m ∈ D(j), ∀t ≥ t0, ∀j ∈ N̄k, ∀ℓ ∈ N̄k, ∀k ∈ N̄ .

5. The total message flow rate along a link cannot exceed the capacity cjm > 0 of

that link:

∑

k∈N̄

∑

ℓ∈N̄k

uℓk
jm(t) ≤ cjm, ∀t ≥ t0, ∀m ∈ D(j), ∀i ∈ N̄,

where t0 denotes the initial time.

Remark 6.6 It is interesting to note that forgoing constraint 1 is satisfied naturally

since no one can insert a negative amount of message volume into the network. Con-

straint 2 is also automatically satisfied as long as constraints 1 and 4 are satisfied,

since

pℓk
j (t) =

t−1∑

τ=t−rℓk
j

f̃ ℓk
j (τ ). (6.75)

Note that constraints 2 and 3 imply qℓk
j ≥ 0, ∀t > t0, ∀j ∈ N̄k , ∀ℓ ∈ N̄k , ∀k ∈ N̄ .

A control strategy must therefore be chosen such that constraints 3–5 are satisfied

at all times.

Remark 6.7 It must be noted that, in a practical situation, there may also be con-

straints imposed on the volume of messages that can be processed or buffered, that

is, upper constraints on pℓk
j and mℓk

j . We assume that such limits are sufficiently

high so that such constraints are not violated. This assumption is justified, since

in view of the available computing power, storage restrictions, that is, constraints

on pℓk
j and mℓk

j in our case are usually less important than transmission capacity

constraints, that is, constraints on uℓk
jm in our case.

By dropping out that processing delays, the queue dynamics can be described as:

q(t + 1) = q(t) + Ff (t) + Gu(t), (6.76)

m(t) = q(t), (6.77)

p(t) = 0. (6.78)

Definition 6.1 A network with N nodes is said to be connected if ∀k ∈ N̄ and

∀ℓ ∈ N̄k , there exists a set {j1, j2, . . . , jm} ⊂ N̄k such that j1 = 1, j2 ∈ D(j1), j3 ∈
D(j2), . . . , jm ∈ D(jm).
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6.8.3 Routing Control Algorithm

First we consider a decentralized controller of the form:

u(t) = û(t), t ≥ t0, (6.79)

where

û(t) = Θ

[
m(t) +

rmax∑

r=1

Dr f̃ (t − r)

]
, t ≥ t0 (6.80)

and Θ is an L(N − 1)2 × N(N − 1)2 dimensional matrix which has the following

properties:

1. All elements of Θ are non-negative;

2. GoΘ = I where I denotes the identity matrix;

3. For any N(N − ℓ)2 × N(Nℓ)2 dimensional diagonal matrix D̂, all eigenvalues

of GjΘD̂ are contained in the interior of the disk centered at the origin with a

radius equal to the maximum singular value of D̂;

4. Θ is a decentralized feedback matrix in the sense that u = Θq implies uℓk
jm =

hℓk
jmqℓk

j (where hℓk
jm ≥ 0 indicates the appropriate element of Θ) ∀m ∈ D(j),

∀j ∈ N̄k , ∀ℓ ∈ N̄k , ∀k ∈ N̄ .

Remark 6.8 We observe that property 1 is needed to ensure that the calculated link

flows are non-negative. Property 2 is required to ensure that all the messages re-

ceived at a node (except those whose destination is the present node) are eventually

sent to at down-stream node and that the calculated downstream link flows are not

larger than the volume of the processed messages present at that node. Property 3

is a sufficient condition to guarantee system stability; and property 4 is required to

achieve decentralization.

Necessary and sufficient conditions for the existence of a matrix Θ satisfying the

above properties are given by the following lemma:

Lemma 6.2 Consider a network described by (6.72)–(6.74); then there exists a

matrix Θ satisfying properties 1–4 if and only if the network is connected.

Proof To prove the if part, we will construct a specific Θ and show that it satisfies

properties 1–4. Assuming that the network is connected and define a non-cyclic path

j = j0, j1, j2, . . . , jm = k (6.81)

from each node j to each other node k in the network. These paths are defined such

that there exists a link with positive capacity from each node jm to the next node
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jm+1 on the path, and such that if the path from j to k is defined as above, then the

path from jm to k for any jm on the above path is

jm, jm+1, jm+2, . . . , jmm = k.

Introduce

hℓk
jm ≤

⎧
⎪⎨
⎪⎩

1 if m is the first node on the path from j to k,

∀m ∈ D(j), ∀j ∈ N̄k, ∀ℓ ∈ N̄k, ∀k ∈ N̄,

0 otherwise

and let hℓk
jm be the element of Θ which relates qℓk

j to uℓk
jm in the equation u = Θq

(m ∈ D(j), j ∈ N̄k , ℓ ∈ N̄k , k ∈ N̄ ); let all other elements of Θ be zero.

Clearly Θ satisfies the foregoing properties 1 and 4. To show that Θ satisfies

property 2, consider the relation q̂ = Gou, where q̂ has the same index structure as

q , and let u = Θq . Then, for each j ∈ N̄k , ℓ ∈ N̄k , k ∈ N̄ , we obtain:

q̂ℓk
j =

∑

m∈D(j)

ulk
jm =

∑

m∈D(j)

hℓk
jmq lk

j = qℓk
j

since for each triple (j, ℓ, k), there exists exactly m ∈ D(j) such that hℓk
jm = 1 and

hℓk
jm = 0 for all other m ∈ D(j). The above relation therefore implies that GoΘ = I.

Next to show that Θ satisfies property 3, consider the equations q̂ = Gju,

u = Θq̄ , q̄ = D̂q , where D̂ is a diagonal matrix and q̂ and q̄ have the same index

structure as q . Then, for each j ∈ N̄k , ℓ ∈ N̄k , k ∈ N̄ , we obtain:

q̄ℓk
j =

∑

m∈V (j)

uℓk
mj = V (j)hℓk

mjd
ℓk
m qℓk

m ,

where dℓk
j the diagonal element of D̂ corresponding to qℓk

i in q̄ = D̂q (j ∈ N̄k, ℓ ∈
N̄k, k ∈ N̄). Observe that j /∈ U (i); it follows from the above equation that GjΘD̂

consists of 0’s on the diagonal. Furthermore, if the following condition (called con-

dition A): k ∈ D(j) and hℓk
jk = 1, for some (j, ℓ, k) holds, then all non-diagonal el-

ements on the column of GjΘD̂ which corresponds to qℓk
j are zero; if condition A

does not hold, there exists exactly one m ∈ D(j), (m �= k) for which hℓk
jm = 1, and

in this case the sum of the absolute values of the non-diagonal elements on the col-

umn of GjΘD̂ which corresponds to qℓk
j is equal to |dℓk

j | (j ∈ N̄k, ℓ ∈ N̄k, k ∈ N̄).

Therefore, by Gershgorin’s theorem, the eigenvalues of GjΘD̂ are contained in a

closed disk of radius equal to the maximum singular value of D̂, centered at the

origin on the complex plane. To complete the proof, it needs to show that the eigen-

values of GjΘD̂ cannot be on the boundary of this disk. We do this by contradiction.

Without loss of generality assume that the maximum singular value of D̂ is one, and

that GjΘD̂ has an eigenvalue at exp(jθ) for some θ ∈ [0,2π), where j =
√

−1.
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Then this implies that there must exist scalars alk
i (i ∈ N̄k, ℓ ∈ N̄k, k ∈ N̄) at least

one being non-zero, such that

∑

k∈N̄

∑

ℓ∈N̄k

∑

j∈N̄k

aℓk
j βℓk

j = 0,

where βℓk
j denotes the row of exp(mθ)I−GjΘD̂ which corresponds to q̂ℓk

j (j ∈ N̄k ,

ℓ ∈ N̄k , k ∈ N̄ ). Note that βℓk
j contains exp(mθ) at the position corresponding to

qℓk
j . If k ∈ D(j) and hℓk

jm = 1, then all the other rows contain a zero at the same

position and hence we must have aℓk
j = 0. If k /∈ D(j) or hℓk

jk = 0, then there exists

a path

j = j0, j1, j2, . . . , jm−1, jm = k

from j to k, as constructed in (6.80), such that βℓk
jm+1

contains dℓk
j at the position

corresponding to qℓk
jm

; at this position βℓk
jm

contains exp(mθ ), and all other βℓk
j ’s

contain a zero at this same position, which gives

aℓk
jm

= aℓk
jm+1

dℓk
j exp(−mθ).

Since, by the above argument, aℓk
jm−1

= 0, by extending the above procedure, we

conclude that

aℓk
j ≤ aℓk

j0
= aℓk

j1
= aℓk

j2
= · · · = aℓk

jm−1
= 0.

On repeating the above argument for all j, ℓ, k, we conclude that aℓk
j = 0,∀j ∈

N̄k,∀ℓ ∈ N̄k,∀k ∈ N̄ , which is a contradiction. Hence, the eigenvalues of GjΘD̂

are contained in the interior of the above considered disk, which completes the

proof.

To prove the only if part, we will show that if the given network is not connected

then it is not possible to satisfy both properties 2 and 3 at the same time. If the given

network is not connected, then there exists at least one pair (s, r) for which there

exists no path from s to r . Let q̂ = {q̂ lk
i } be such that

q̂ lk
i =

{
1 if ℓ = s and k = r and s ∼ j,

0 otherwise,

where s ∼ j means that either j = s or there exists a path from r to j or from j to s.

Note that q̂sr
s = 1 and hence q̂ �= 0. On noting that the equation u = Gtq gives

ûℓk
jm =

{
qℓk
m − qℓk

j if m �= k,

−qℓk
j if m = k

it is seen that Gtq = 0. Therefore, rank(G) < N(Nℓ)2, which means that I + GΘ

must have at least one eigenvalue at one for any Θ . Assuming that Θ satisfies prop-

erty 2, this implies that GjΘ must have at least one eigenvalue at one, which implies
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that property 3 is not satisfied for D̂ = I. Therefore, if the given network is not con-

nected, there can exist no Θ which will satisfy properties 2 and 3 which concludes

the proof. �

Remark 6.9 It is important to note that the quantity inside the square brackets

in (7) is the vector of total message volume which can be sent out at time t ; i.e.

the messages are sent out as they become available. Therefore, a knowledge of

the processing delays r lk
i is not needed for the actual implementation of the con-

troller. Furthermore, since the only information required to compute the control

ulk
ij (j ∈ D, l ∈ N̄, k ∈ N̄ i) is related to the queue lengths at node i (i ∈ N̄), the

controller can be implemented in a decentralized way at each node, that is, no infor-

mation transfer between the nodes is needed and the calculations can be carried out

at individual nodes.

In order to calculate the controls and to direct messages accordingly, the con-

troller at a particular node needs to know the destination and the source of each

message that is present at that node. Therefore, as a message enters the network,

two marks, one indicating its source and the other indicating its destination, must be

added to this message.

Definition 6.2 Given a connected network with N nodes described by (6.72)–(6.74),

let

wr(t) = f̃ (t − r), r = 1,2, . . . , rmax,

x =
[
mt wt

1 . . . wt
rmax

]t
,

where N∗ ≤ (rmax + 1)N(N − 1)2, and assume that f (t) = 0 for all t ≥ t0, and that

a feedback controller (possibly nonlinear, time-varying) is applied. Then the closed

loop system is said to be globally asymptotically stable if for all t0 ∈ Z and for all

x(t0) ∈ ℜN∗
+ ,

lim
t→∞

x(t) = 0,

where Z denotes the set of integers and ℜn
+ denotes the set of n-dimensional real

vectors with non-negative entries.

The following two theorems present some important properties of the con-

troller (6.79). The first result shows that routing control constraints (b), (c), and (d)

are always satisfied for any external message arrival rates into the network, and that

the queue length m of the processed messages is driven immediately to zero using

controller (6.79).

Theorem 6.5 Consider a connected network with N nodes described by (6.72)–

(6.74). Assume that the controller described by (6.79) is applied where the matrix Θ

satisfies the properties 1–4. Then for all t0 ∈ Z, for all x(t0) ∈ ℜN∗
+ , and for all

f (t) ∈ ℜN(N−1)
+ ;



338 6 Decentralized Control of Traffic Networks

(i) mlk
i (t) ≥ 0, ∀t ≥ t0, ∀i ∈ N̄k , ∀l ∈ N̄k , ∀k ∈ N̄ ; in particular, m(t) = 0, ∀t ≥

t0 + 1;

(ii) plk
i (t) ≥ 0, ∀t ≥ t0, ∀i ∈ N̄k , ∀l ∈ N̄k , ∀k ∈ N̄ ; and

(iii) ulk
ij (t) ≥ 0, ∀t ≥ t0, ∀j ∈ D(i), ∀i ∈ N̄k , ∀l ∈ N̄k , ∀k ∈ N̄ .

Proof To prove this theorem, we will use the system (6.72)–(6.74), the controller

(6.79) and (6.80) and the properties 1–4 of the controller. Substituting (6.79) and

(6.80) into (6.72) and using property 2, gives m(t + l) = 0, which implies that

m(t) = 0, ∀t ≥ t0 + 1. Hence, given m(t0) ≥ 0, this implies that (i) holds.

Note that (6.79) and (6.80) implies

u(t) = Θ

[
m(t) +

rmax∑

r=1

Drwr(t)

]
.

Therefore, since Θ satisfies (P1) and x(t0) ∈ ℜN∗
+ this implies that ulk

ij (t0) ≥ 0, ∀j ∈
D(i), ∀i ∈ N̄k , ∀l ∈ N̄k , ∀k ∈ N̄ . This, together with f (t0) ∈ ℜN(N−1)

+ , implies that

w1(t0 + 1) = f̃ (t0) ∈ ℜN(N−1)2

+ . On noting now that

wr(t + 1) = wr−1(t), r = 2,3, . . . , rmax,

it follows that x(t0 + l) ∈ ℜN∗
+ . On repeating this argument, it is concluded that (iii)

holds.

Given that f̃ (t0 − r) = wr(t0) ∈ ℜN(N−1)2

+ (r = 1,2, . . . , rmax, f (t) ∈ ℜN(N−1)
+

∀t ≥ t0), and that (iii) holds, (ii) now directly follows from property 4. �

The following result shows that the system (6.72)–(6.74) controlled by controller

(6.79) is stable, that the queue length m of messages is immediately driven to zero,

and that the queue lengths p and q asymptotically become equal to a constant for

the case when the external message arrival rates are constant.

Theorem 6.6 Given a connected network with N nodes described by (6.72) and

(6.74), assume that, for some t0 ∈ Z, f (t) = f∞ ∈ ℜN(N−1)
+ is a constant vector,

∀t ≥ t0, and that controller (6.79) is applied, where the matrix Θ satisfies proper-

ties 1–4; then

(a) the closed-loop system is globally asymptotically stable, and

(b) for all t0 ∈ Z, for all x(t0) ∈ ℜN∗
+ , and for all f∞ ∈ ℜN(N−1)

+ :

m(∞) ≤ lim
t→∞

m(t) = 0; in particular, m(t) = 0, ∀t ≥ t0 + 1,

p(∞) ≤ lim
t→∞

p(t) = −(R)(BΘ)−1Ef∞,

q(∞) ≤ lim
t→∞

q(t) = −(R)(BΘ)−1Ef∞,

u(∞) ≤ lim
t→∞

m(t) = −(Θ)(BΘ)−1Ef∞,
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where R is a diagonal matrix containing r lk
i at the diagonal position corre-

sponding to q lk
i (i ∈ N̄k, l ∈ N̄k, k ∈ N̄).

Proof To prove part (a), we will show that the eigenvalues of the (linear time in-

variant) closed-loop system (6.72) and (6.74) under the controller (6.79) and (6.80)

are contained in the interior of the unit disk. The closed-loop system under the con-

troller (6.79) and (6.80) is described as

x(t + 1) = Fx(t) + Gf (t),

where

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · · · · 0

BiΘ BiΘD1 BiΘD2 · · · · · · BiΘDrmax

0 I 0 · · · · · · 0
...

. . .

...
. . .

0 0 0 0 I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and G ≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

F

0
...
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that the non-zero eigenvalues λ of F must satisfy

det[λrmax I − BiΘD̂λ] = 0, (6.82)

where

D̂λ ≤
rmax∑

r=1

λr−1Dr

is a diagonal matrix with diagonal elements d lk
i = λr lk

i −1. Assume now that |λ| ≥ 1;

then, by (P3), the eigenvalues of BiΘD̂λ are contained in the interior of the disk

with a radius |λ|rmax−1. However, since |λ|rmax ≥ |λ|rmax−1 for |λ| ≥ 1 this comes in

contradiction to the foregoing analysis. It is therefore concluded that the eigenvalues

of F are contained in the interior of the unit disk, which proves global asymptotic

stability.

To prove part (b), we will use part (i) if Theorem 6.5 above, and the system

dynamics and the controller. Recall that from the proof of Theorem 6.5 that

m(t) = 0 ∀t ≥ t0 + 1,

from which the desired result for m(∞) also follows.

Since the closed-loop system is globally asymptotically stable and f (t) is con-

stant,

wrmax(∞) = wrmax−1(∞) = · · · = w2(∞) = w1(∞)

= Biu(∞) + Ff∞ ≤ w∞
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and

u(∞) = Θ

[
m(∞) +

rmax∑

r−1

Drwr(∞)

]
= Θw∞.

Hence,

w∞ = BiΘw∞ + Ef∞

or

w∞ = (I − BiΘ)−1Ef∞ := −(BΘ)−1Ef∞,

where the invertibility of BΘ = BiΘ − I is guaranteed by property 3. Therefore, we

obtain

u(∞) = Θw∞ = −Θ(BΘ)−1Ef∞.

Note that q(t) = m(t) + p(t), and from (6.75)

p(t) =
rmax∑

r=1

D̄rwr(t), (6.83)

where D̄r is a diagonal matrix whose diagonal element corresponding to plk
i is given

by

d lk
i,r =

{
1 if r ≤ r lk

i ,

0 otherwise
∀i ∈ N̄k, ∀l ∈ N̄k, ∀k ∈ N̄ .

Therefore, we obtain

q(∞) = p(∞) =
rmax∑

r=1

D̄rw∞ = −R(BΘ)−1Ef∞

which is the desired result. �

To summarize, the controller given by (6.79) guarantees the non-negativity con-

straints (routing control constraints (b)–(d)), and stabilizes the network dynamics

assuming that the link capacity constraints (routing control constraint (e)) are not

violated. In particular, it drives the queue length m of the processed messages im-

mediately to zero. It will not guarantee, in general, that the routing control constraint

(e) is satisfied. In order to satisfy this constraint, we modify the controller as follows:

u(t) = Γ̃ (t)û(t), t ≥ t0, (6.84)

where û(t) is defined as in (6.80), and Γ̃ (t) is a diagonal matrix with the diagonal

entry

γij =

⎧
⎨
⎩

1, if
∑

k∈N̄ i

∑
l∈N̄k ūlk

ij (t) ≤ cij ,

cij∑
k∈N̄i

∑
l∈N̄k ūlk

ij (t)
, if

∑
k∈N̄ i

∑
l∈N̄k ūlk

ij (t) > cij
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corresponding to ulk
ij (j ∈ D(i), i ∈ N̄k, l ∈ N̄k, k ∈ N̄).

Remark 6.10 It is important to stress that controller (6.84) will guarantee both the

link capacity and the non-negativity constraints hold. Furthermore, a knowledge

of processing delays r lk
i will not be needed for the actual implementation of the

controller. In addition, the controller (6.84) can be implemented in a decentralized

way at each node, and it will be shown in the sequel, that it will also recover the

steady-state properties achieved by the previous controller (6.79), if the external

message arrival rates are sufficiently small. The maximum magnitude of the external

message arrival rates for which the steady-state properties of controller (6.79) can

generally be recovered.

6.8.4 Selection of the Feedback Matrix

In what follows, we consider the problem of choosing an appropriate feedback ma-

trix Θ for controller (6.84), so that it can recover the steady-state properties of con-

troller (6.79), for as large as possible external message arrival rates. To achieve this.

let us consider the condensed system corresponding to

z(t + 1) = z(t) + f (t) + B̂v(t), (6.85)

where f is defined in the paragraph following equation (6.68), z = {zk
i } is the

N(N − l) dimensional vector of condensed system states which has the same in-

dex structure as f , v = {vk
ij } is the L(N − l) dimensional condensed control input

vector, B̂ is a matrix consisting of 1’s corresponding to vk
ji elements with j ∈ U (i),

−1’s corresponding to vk
ij elements with j ∈ D(i) on the row corresponding to zk

i

(i ∈ N̄k , k ∈ N̄ ), and zeros elsewhere. Also consider the following constraints

∑

k∈N̄ i

vk
ij ≤ cij , ∀j ∈ D(i), ∀i ∈ N̄

which can be written compactly as

Mv ≤ c,

where c ≤ {cij } is the L dimensional vector of link capacities and M is an L ×
L(N − 1) dimensional matrix consisting of 1’s corresponding to the vk

ij elements

on the row corresponding to cij (j ∈ D(i), i ∈ N̄k, k ∈ N̄), and zeros elsewhere.

Here, and in the sequel, ‘≤’ (respectively ‘≥’) means that each component of the

vector on the left is less than or equal to (respectively greater than or equal to) the

corresponding component of the vector on the right.

A search for an L(N − l)×N(N − l) dimensional matrix H is needed, such that

the steady-state flow

v̄ = Hf̂ (6.86)
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will satisfy the non-negativity and link-capacity constraints, and such that the mag-

nitude of the external message arrival rate is maximized for any

f̂ ∈ {f̂ik|f̂ik = (0, . . . ,0, f̃ k
i ,0, . . . ,0)t , i ∈ N̄k, k ∈ N̄}. (6.87)

Observe that, in case of multiple solutions to the above problem, we select one of

the solutions which minimizes the total rate of link flows inside the network.

This problem can be stated in two stages as follows.

(a) Initial stage: Find v̄ik ∈ ℜL(N−1)
+ to maximize f̃ k

i > 0 subject to:

f̂ik + B̂v̄ik = 0 (6.88)

and

Mv̄ik ≤ c (6.89)

for i ∈ N̄k , k ∈ N̄ .

(b) Final stage: If multiple solutions exists to the primary stage, choose the solution

which minimizes ‖v̄ik‖1, where ‖(·)‖1 denotes the one-norm of (·), defined as

the sum of the absolute values of all the elements of (·).
Then the column of H which corresponds to f̃ k

i in (6.86) is given by:

1

(f̃ k
i )max

v̄ik,

where (f̃ k
i )max is the maximum value of f̃ k

i .

Remark 6.11 Note that the above optimization problem must be repeated for all

origin-destination pairs i–k. The primary stage effectively minimizes a global cost

function by maximizing the magnitude of maximum possible external traffic arrival

rates. In the ease of multiple solutions to the primary stage, the secondary stage,

on the other hand, minimizes a user cost function by routing messages through a

minimum number of nodes, and in doing so this also avoids any looping problems

(see Lemma 6.3 below). The second stage may also have multiple solutions; in this

case any one of these solutions can be chosen without effecting either the global

objective (that is, maximizing the maximum possible external arrival rates) or the

user objective (that is, minimizing the number of nodes a message passes through).

The above two-stage optimization problem can be formulated as a single-stage

linear programming (LP) problem as follows:

Let b̂ik denote the row of B̂ which corresponds to zk
i in (6.85), let B̂∗

ik denote the

matrix B̂ with b̂ik removed, and let ǫ be a positive scalar. Then the LP problem can

be stated as follows:

max
y

Jik(y),
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where

Jik ≤ −b̂iky − ǫ‖y‖1 = −(b̂ik +
[
ǫ ǫ . . . ǫ

]
)y

subject to

y ∈ ℜL(N−1)
+ , (6.90)

B̂∗
iky = 0 (6.91)

and

My ≤ c. (6.92)

The following result shows that a solution to the original two-stage optimization

problem may be obtained by solving the above one-stage LP problem.

Lemma 6.3 Let ǫ∗ ≤ 1/Lik
M, where Lik

M is the maximum number of links in any non-

cyclic path from node i to node k. Then, if ǫ < ǫ∗, any solution y∗ to the above LP

problem is also a solution to the primary stage of the optimization problem. Further-

more, if ǫ < ǫ∗, if y is any other solution to the primary stage of the optimization

problem, then ‖y∗‖1 ≤ ‖y‖1; i.e. y∗ is also a solution the secondary stage of the

optimization problem.

Proof In what follows and for simplicity in exposition, we will use a different no-

tation to denote the links; we will number the links as 1,2, . . . ,L and refer to them

by their number (i.e. we will use vk
l instead of vk

ij , where l is the number of the link

from node i to node j ). We will also denote the objective function of the primary

stage of the original optimization problem by J 0
ik . Note that, by using the notation

of the LP problem, Jik(y) = −b̂iky.

Next note that any solution to the original optimization problem and any solution

to the LP problem has the property that yκ
l = 0, ∀l, ∀κ �= k and the property that

yk
l = 0 unless link l is on a non-cyclic path from node i to node k. Let p1,p2, . . . , pm

be all possible paths from node i to node k. Let lj (j = 1,2, . . . ,m) be a link on path

pj , but not on any other path p1, . . . , pj−1,pj+1, . . . , pm (if the original network

does not allow this, one can always replace a single link i − −j with a number of

parallel links such that each link belongs to a different path). Then, by using con-

straints (16b) the objective function of the primary stage of the original optimization

problem can be written as:

J 0
ik =

m∑

j−1

yk
lj

and the objective function of the LP problem can be written as

Jik(y) =
m∑

j=0

(1 − ǫLik
j )yk

lj
,
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where Lik
j denotes the number of links on path pj , where only active constraints are

(6.90) and (6.92). Therefore, if ǫ < 1/max(Lik
M), then any y which maximizes Jik

also maximizes J 0
ik . Furthermore, since the weight in Jil of a path which involves

more links is greater than the weight of a path which involves less links, the LP

problem will also minimize ‖y‖1 among all solutions to the primary stage of the

original problem. �

It is quite clear that Lik
M ≤ L, the number of links of the network. Therefore, we

can solve the above LP problem for any ǫ ∈ (0,1/L) (or for any ǫ ∈ (0,1/Lik
M), if

Lik
M is known) to find a solution to the original two-stage optimization problem.

Now denote the optimal solution to this LP problem by y∗
ik and the optimal value

of Jik(y) by J ∗
ik . Then the column H which corresponds f̃ k

i (i ∈ N̄, k ∈ N̄) in (6.86)

is given by:

1

J ∗
ik

y∗
ik

and

(f̃ k
i )max = J ∗

ik.

Lemma 6.4 Consider a network with N nodes described by (6.72)–(6.74) which

has the associated equation (6.85). Then:

1. There exists a matrix H such that

(a) All elements of H are non-negative, and

(b) I + B̂H = 0, where B̂ is given in (6.72)–(6.74),

if and only if the given network is connected.

2. If all link capacities cij , j ∈ D(i), i ∈ N̄ , then all elements of H and (f̃ k
i )max,

i ∈ N̄k , k ∈ N̄ , are bounded.

Remark 6.12 The forgoing lemma, whose proof is straightforward, ensures that:

(a) there exists a solution to the above optimization problem (and thus to the LP

problem) if and only if the given network is connected, and (b) the solution is

bounded if the link capacities are finite.

Given that matrix H is constructed as above, we obtain a feedback matrix Θ as

follows:

Algorithm 1 Let h̄lk
ij be the element of H which relates f k

l to vk
ij in v = Hf (j ∈

D(i), i ∈ N̄k, l ∈ N̄k, k ∈ N̄), and let

hlk
ij ≤

⎧
⎨
⎩

h̄lk

s̄lk
i

if s̄lk
i > 0,

1
n̄i

if s̄lk
i = 0,
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where s̄lk
i ≤

∑
j∈D(i) h̄

lk
ij and n̄i is the number of elements of D(i). To construct Θ ,

let hlk
ij be the element of Θ which relates q lk

i to ulk
ij in u = Θq (j ∈ D(i), i ∈ N̄k ,

l ∈ N̄k , k ∈ N̄), and let all other elements of Θ be zero.

Observe that, any feedback matrix Θ must satisfy properties 1–4 in order to ob-

tain a valid controller. To show that Θ as constructed above satisfies these properties,

we have the following

Lemma 6.5 Given a connected network with N nodes described by (6.72)–(6.74),

let Θ be constructed by Algorithm 1. Then Θ satisfies properties 1–4.

Proof The fact that Θ satisfies properties 1 and 4 is readily obvious from the con-

struction of Θ . Now to show that Θ satisfies property 2, consider q̂ = Bou, u = Θq

which gives:

q̂ lk
i =

∑

j∈D(i)

ulk
ij =

∑

j∈D(i)

hlk
ij q

lk
i = q lk

i ,

since
∑

j∈D(i) h
lk
ij = 1, ∀i ∈ N̄k , ∀l ∈ N̄k , ∀k ∈ N̄ by construction.

Next to show that Θ satisfies property 3, we first establish that for each l ∈ N̄ ,

Θ defines a path

i = i0, ii, i2, . . . , im−1, im = k

from each i ∈ N̄ to each k ∈ N̄\{i, l}, in the sense that ij+1 ∈ D(ij ) and hlk
ij ij+1

>

0 for each successive pair ij , ij+1 on the path. Note that in order to satisfy the

constraint (6.88) of the optimization problem, H must define at least one such path

from each l ∈ N̄ to each k ∈ N̄ l . Thus, for each l ∈ N̄ , Θ defines at least one path

from l to each k ∈ N̄ l . If i /∈ {l, k} is on such a path, then Θ also defines a path

from i to k for l; if i is not on such a path, then hlk
ij = 1/n̄i > 0, ∀j ∈ D(i). Thus

if k ∈ D(i) or if there exists a j ∈ D(i) which is on a path from l to k, then a path

is established from i to k for l; if neither of these two conditions are satisfied, then

hlk
j1j2

= l/n̄j1
> 0, ∀j2 ∈ D(j1), ∀j1 ∈ D(i). On continuing this procedure (since

the network is connected and has a finite number of nodes), we eventually reach

either node k, or a node which is on a path from l to k, and hence the desired

result is established. The rest of the proof is now directly obtained by the foregoing

lemmas. �

6.8.5 Some Properties

Now consider the controller described by (6.88), where the feedback matrix Θ

is given by Algorithm 1. Given that routing control constraint (a) is satisfied,

the following theorem shows that this controller satisfies routing control con-

straints (b)–(e):
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Theorem 6.7 Consider a connected network with N nodes described by (6.72)–

(6.74). Assume that the controller described by (6.79) is applied where the matrix

Θ is constructed by Algorithm 1. Then for all t0 ∈ Z, for all x(t0) ∈ ℜN∗
+ , and for

all f (t) ∈ ℜN(N−1)
+ ,

1. Non-negativity constraints (routing control constraints (b), (c), and (d)) are sat-

isfied for all t ≥ t0,

2. Link capacity constraints (routing control constraint (e)) are satisfied for all

t ≥ t0.

Proof 1. Given x(t0) ∈ ℜN∗
+ and that Θ satisfies property 1, (6.80) implies that

û(t0) ≥ 0. By (6.84) then implies that 0 ≤ u(t0) ≤ û(t0). Using this result in (6.73)

we obtain m(t0 + 1) ≥ 0. Since we also have f (t0) ≥ 0, we also obtain x(t0 +
1) ≥ 0. By repeating this argument, we obtain m(t) ≥ 0 and u(t) ≥ 0 for all t ≥ t0.

Routing control constraints (e) and (d) are thus satisfied. Given that x(t) ≥ 0, ∀t ≥ t0
(as established above), the desired result for routing control constraint (b) follows

from (6.83).

2. Immediately follows from (6.84). �

Before proceeding further, we need to introduce the following definition:

Definition 6.3 Consider a connected network with N nodes described by (6.72)–

(6.74) and assume that a controller is applied to this network. We say that the mes-

sages are directed around a loop if for some k ∈ N̄ , and for some set of nodes

{i1, i2, . . . , im} ⊂ N̄k such that ij+1 ∈ D(ij ), j = l,2, . . . ,m − 1, i1 ∈ D(im), and

ij �= il , for j �= l, we have:

ulk
i1i2

(t1) > 0, ulk
i2i3

> 0, . . . , ulk
im−1im

(tm−1) > 0 (6.93)

for some l ∈ N̄k , t1 ≥ t0, t2 ≥ t0, . . . , and tm−1 ≥ t0, and:

ulk
imi1

(t) > 0 (6.94)

for some t ≥ t0. If the above condition never happens, then we say that the messages

are not directed around a loop.

Remark 6.13 Note that the above definition is more general than the usual message

looping criteria, which considers looping of individual messages alone. According

to the above definition, a loop is formed when messages belonging to a particular

origin-destination pair are transmitted around a loop (whether they are the same

messages or not). Therefore, avoiding the above defined looping is stronger than

avoiding individual message looping.

That the proposed controller (6.84) does not direct messages around a loop, is

shown by the following theorem:
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Theorem 6.8 Consider a connected network with N nodes described by (6.72)–

(6.74). Assume that the controller described by (6.84) is applied where the matrix Θ

is constructed by Algorithm 1. Furthermore, assume that x(t0) = 0, and that f (t) ∈
ℜN(N−1)

+ , ∀t ≥ t0, for some t0 ∈ Z. Then the messages are not directed around a

loop.

Proof We will use contradiction to prove this theorem. Given (6.93), assume that

(6.94) also holds. This, however. can happen only if

hlk
i1i2

> 0, hlk
i2i3

> 0, . . . , hlk
imi1

> 0, (6.95)

hlk
imi1

> 0, (6.96)

where hlk
ij denotes appropriate element of Θ .

If hlk
ij ij+1

> 0, for any j ∈ 1,2, . . . ,m − 1, then either h̄lk
ij ij+1

> 0 or s̄lk
ij

= 0,

where h̄lk
ij and s̄lk

i are defined in Algorithm 1. Similarly, at hlk
imi1

> 0, then ei-

ther h̄lk
imi1

> 0 or s̄lk
ij

= 0. If s̄lk
ij

= 0, for any j ∈ {1,2, . . . ,m}, then no messages

with source l and destination k can reach node ij under controller (6.84); thus

ulk
ij s = 0, ∀s ∈ D(i), which contradicts (6.95)–(6.96). On the other hand, if h̄lk

i1i2
> 0,

h̄lk
i2i3

> 0, . . . , h̄lk
im−1im

> 0, and h̄lk
imi1

> 0 results from a solution of the initial stage of

the optimization problem, then there must exist another solution of the same stage,

where all the elements of H remains the same, except that h̄lk
i1i2

, h̄lk
i2i3

, . . . , h̄lk
im−1im

,

and h̄lk
imi1

are reduced by min(minj (h̄
lk
ij ij+1

), h̄lk
imi1

), in which h̄lk
ij ij+1

becomes zero

for at least one j ∈ {1,2, . . . ,m − 1} or h̄lk
imi1

becomes zero. By the final stage, we

then choose the latter solution over the former one; hence situation (6.95)–(6.96)

will never arise. �

Remark 6.14 It is evident from the above proof that, if x(t0) �= 0, x(t0) ∈ ℜN∗
+ , then

only messages which are present at a node, which is not on a path defined by the

matrix H from their source node to their destination node at time t0 may be routed

around a loop. In particular, since the source node is always on a path defined by

the matrix H, messages which enter the network at time t ≥ t0, are never directed

around a loop.

That the controller (6.84) can recover the steady-state properties of the controller

described by (6.79) is established by the following theorem provided that the mes-

sage arrival rates do not exceed the maximum rates given by the optimization prob-

lem.

Theorem 6.9 Consider a connected network with N nodes described by (6.72)–

(6.74). Assume that the controller described by (6.84) is applied where the matrix Θ

is constructed by Algorithm 1. Then

1. The closed-loop system is globally asymptotically stable.
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2. Assume that x(t0) = 0 for some t0 ∈ Z and that

f (t) = f∞ = (0, . . . ,0, f k
i ,0, . . . ,0)t ∀t ≥ t0 (6.97)

for some i ∈ N̄k , k ∈ N̄ ; then for all constant f k
i ∈ [0, (f̃ k

i )max],

m(t) = 0, ∀t ≥ t0

and p(t), q(t), and u(t) remain bounded for all t ≥ t0.

3. Assume that x(t0) = 0 for some t0 ∈ Z and that f (t) is given by (6.97); then

p(∞) = q(∞) = −R(BΘ)−1Ef∞ (6.98)

and

u(∞) = −Θ(BΘ)−1Ef∞ (6.99)

for all constant f k
i ∈ [0, (f̄ k

i )max].

Proof To prove part 1, we need to establish that, under the hypothesis,
∑

i,l,k |q lk
i |

cannot increase, where
∑

i,l,k(·) ≤
∑

k∈N̄

∑
l∈N̄k

∑
i∈N̄k (·). Then we will show that

the desired result holds if q(t) converges to zero. Finally, we will use contradiction

to show that under the hypothesis, q(t) must indeed converge to zero.

Now assume that f (t) = 0, ∀t ≥ t0; then from (6.68) we have:

∑

i∈N̄k

q lk
i (t + 1) =

∑

i∈N̄k

q lk
i +

∑

i∈N̄k

[ ∑

j∈U (i)

ulk
j i(t) −

∑

j∈D(i)

ulk
ij (t)

]

=
∑

i∈N̄k

q lk
i (t) +

∑

i∈N̄k

∑

j∈D(i)\k

ulk
ij (t) −

∑

i∈N̄k

∑

j∈D(i)

ulk
ij (t)

=
∑

i∈N̄k

q lk
i (t) −

∑

i∈U k

ulk
ik(t), ∀l ∈ N̄k,∀k ∈ N̄ .

This means that

∑

i,l,k

q lk
i (t + 1) =

∑

i,l,k

q lk
i (t) −

∑

k∈N̄

∑

l∈N̄k

∑

i∈U (k)

ulk
ik(t)

=
∑

i,l,k

q lk
i (t) −

∑

i∈N̄

∑

l∈N̄

∑

k∈D(i)\l

ulk
ik(t).

Taking into account that the controller (6.84) satisfies the non-negativity constraints,

this implies that
∑

i,l,k q lk
i (or equivalently

∑
i,l,k |q lk

i |) not increase. Assume now

that q(t) converges to zero. Then, since 0 ≤ m(t) ≤ q(t),m(t) also converges

to zero. Furthermore, since wr(t) ∈ ℜN(N−1)
+ ∀t ≥ t0 (follows from the fact that

x(t) ≥ 0, ∀t ≥ t0, which was shown earlier) and q(t) = m(t) + p(t), where p(t) is



6.8 Discrete-Time Dynamic Routing 349

given by (6.68), this implies that wr(t) (t = l,2, . . . , rmax) also converge to zero.

Therefore, we obtain that limt→∞ x(t) = 0, which is the desired result.

Assume now that q(t) does not converge to zero. Then there exists k ∈ N̄ ,

ℓ ∈ N̄k , and a set S ⊂ N̄k such that

lim
t→∞

∑

i∈S

q lk
i (t) > 0,

lim
t→∞

∑

i∈S

∑

j∈D(i)\S
ulk

ij = 0.

This, however, can only be true if there exists i ∈ S such that there exists no path

from i to k for l which is a contradiction. It was established in before that Θ defines

a path from each i ∈ N̄k to each k ∈ N̄ for each ℓ ∈ N̄k . Thus, the desired result is

attained.

To prove part 2, we will refer to (6.68)–(6.69). Assume that x(t0) = 0, and

f (t) = (0, . . . ,0, f k
l ,0, . . . ,0)t , ∀t ≥ t0

where f k
l ∈ [0, (f̃ k

l )max].
An immediate result of Theorem 6.8 is that ulk

il (t) = 0,∀t ≥ t0,∀i ∈ U (l), which

implies that

q lk
l (t + 1) = q lk

l + f k
l (t) −

∑

j∈D(i)

ulk
ij (t).

Now since x(t0) = 0, and ulk
il (t) = 0, ∀t ≥ t0, ∀i ∈ U (l), this implies that

ulk
lj (t) = hlk

lj f (t − r lk
l ) =

{
hlk

lj f k
l , ∀t ≥ t0 + r lk

l ,

0, ∀t ∈ [t0, t0 + r lk
l )

(6.100)

provided that
∑

s,r usr
lj (t) ≤ clj , ∀j ∈ D(l). However, since f r

s (t) = 0, ∀(s, r) �=
(l, k), usr

lj = 0, ∀(s, r) �= (l, k) and since f k
l ≤ (f̃ k

l )max, ulk
lj ≤ clj , this implies that

mlk
l (t) = 0, ∀t ≥ t0, ∀t ≥ t0 (6.101)

and

q lk
l (t + 1) =

{
q lk
l (t), ∀t ≥ t0 + r lk

l ,

q lk
l (t) + f k

l , ∀t ∈ [t0, t0 + r lk
l ).

(6.102)

Now consider a node i, i �= k, which is on a path from l to k for l. Then

q lk
i (t + 1) = q lk

i (t) +
∑

j∈U (i)

ulk
j i(t) −

∑

j∈D(i)

ulk
ij .
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Since x(t0) = 0, this implies that ulk
ij (t) = hlk

ij

∑
s∈U (i) u

lk
si(t −r lk

i ), ∀t ≥ t0, provided

that
∑

s,r usr
ij (t) = ulk

ij ≤ cij , ∀j ∈ D(i). Note that, by Theorem 4, ulk
j i does not

depend on q lk
i , ∀j ∈ U (i). Furthermore, since f k

l ≤ (f̃ l
l )max, then ulk

ij (t), j ∈ D(i)

is structured such that

0 ≤
∑

j∈D(i)

ulk
ij (t) ≤ q lk

i (t)

from which we obtain

q lk
i (t + 1) = λq lk

i +
∑

j∈U (i)

ulk
j i,

where λ ∈ [0,1]. Therefore, the overall system is described by a set of first order

linear time-invariant systems, with non-negative real eigenvalues none of which ex-

ceed one, cascaded together. This implies that no overshoot in the system’s response

occurs, that is

ulk
ij (t) ≤ ulk

ij (∞) ≤ cij , ∀j ∈ D(i).

It is concluded therefore that:

q lk
i (t) ≤ q lk

i (∞) = r lk
i

∑

j∈U

ulk
j i(∞), ∀t ≥ t0, (6.103)

mlk(t) = 0, ∀t ≥ t0 (6.104)

and

ulk
ij (t) ≤ ulk

ij (∞) = hlk
ij

∑

s∈U (i)

ulk
si(∞), ∀t ≥ t0. (6.105)

Combining equations (6.100)–(6.102) with (6.103)–(6.105), and on noting that:

qsi
i (t) = 0, ∀t ≥ t0,∀i ∈ N̄ r ,∀(s, r) �= (l, k), (6.106)

msr
i (t) = 0, ∀t ≥ t0,∀i ∈ N̄ r ,∀(s, r) �= (l, k) (6.107)

and

usr
ij (t) = 0, ∀t ≥ t0, ∀j ∈ D(i), ∀i ∈ N̄ r , ∀(s, r) �= (l, k) (6.108)

we conclude that

m(t) = 0, ∀t ≥ t0

and that q(t),p(t)(≤ q(t) − m(t)), u(t) remain bounded.

To prove part 3, we extend on the proof of part 2 and the assumption that r lk
i is

constant for all i ∈ N̄k , l ∈ N̄k , k ∈ N̄ . From (6.100)–(6.102), we obtain

q lk
l (∞) = r lk

l f k
l , (6.109)
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mlk
l (∞) = 0 (6.110)

and

ulk
ij (∞) = hlk

lj f k
l , ∀j ∈ D(l). (6.111)

Combining (6.100)–(6.111) and on noting that p(t) = q(t) − m(t), we obtain

(6.100)–(6.102), which is the desired result. �

Remark 6.15 If f k
i > (f̃ k

i )max, then there exists no controller which can keep the

queue lengths bounded.

Remark 6.16 So far we have assumed that the control signals are updated syn-

chronously throughout the network and that the processing delay times remain fixed.

However, note that the proofs of Theorems 6.7–6.9 remain valid whether not the

control Signals are updated synchronously at different nodes. In fact, the control

signals may be updated using different periods at different nodes. Furthermore, the

proofs of Theorems 6.7–6.8 and the proof of part 1 of Theorem 6.9 remain valid

as long as the processing delay times are non-negative and bounded (not neces-

sarily fixed). For part 2 of Theorem 6.9, if the processing delay decreases from

one sampling instant to the next, then the queue of length of processed messages

may become positive, The rest of this part (that m(t), p(t), q(t), and u(t) remain

bounded), however, also remains valid for the case of time varying but non-negative

and bounded processing delay times.

The following result is obtained, which summarizes the results obtained for the

more general case of asynchronous operation with possibly time varying processing

delay times.

Corollary 6.1 Consider a connected network with N nodes whose dynamics at

each node is described by (1a) and (1b), where the time-scale for each node may

be different, that is, the unit of t (the sampling period in the actual time scale) in

(6.68) and (6.69) may be different from each node. The processing delay times may

be time-varying, but are assumed to be bounded, i.e. we assume that there exists

(r lk
i )max ≥ 0, such that 0 ≤ (r lk

i )max, ∀t ≥ t0, ∀i ∈ N̄k , ∀ℓ ∈ N̄k , ∀k ∈ N̄ . Assume

that the following controller is applied at each node:

ulk = γij (t)û
lk, ∀t ≥ t0, (6.112)

where γij (t) is given following (6.84) and

ûlk
ij (t) = hlk

ij g
lk
i (t), ∀t ≥ t0, (6.113)

where glk
i (t) is the of total volume of messages with source l and destination k which

can be sent out from node i at time t and hlk
ij is the appropriate element of Θ , where

the matrix Θ is constructed by Algorithm 1. Moreover, assume that x(t0) ∈ ℜN∗
+ and

that f (t) ∈ ℜN(N−1)
+ , ∀t ≥ t0, for some t0 ∈ Z. Then
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1. Routing control constraints (a)–(e) are satisfied.

2. Assume that x(t0); then the messages are not directed around a loop. If x(t0) �= 0,

then only messages which are present at a node, which is not on a path defined

by the matrix H from their source node to their destination node at time t0 may

be routed around a loop. In particular, messages which enter the network at time

t ≥ t0 are never directed around a loop.

3. The closed-loop system is globally asymptotically stable.

4. Assume that x(t0) = 0 and that f (t) is given by (6.97), then for all constant

f k
i ∈ [0, (f̃ k

i )max], m(t), p(t), q(t), and u(t) remain bounded for all t ≥ t0.

5. Assume that x(t0) = 0, that f (t) is given by (6.97), and that r lk
i is constant,

∀t ≥ t0, ∀i ∈ N̄k , ∀ℓ ∈ N̄k , ∀k ∈ N̄ ; then m(t) = 0, ∀t ≥ t0 + 1, and p(t), q(t)

and u(t) converge to the steady state values given in (6.98)–(6.99).

Remark 6.17 If the control signals are updated synchronously throughout the net-

work, then controller (6.112)–(6.113) is equivalent to controller (6.84). However,

controller (6.112)–(6.113) can also be used in the case of asynchronous operation.

Furthermore, (6.112)–(6.113) are more suitable from an implementation point of

view, since the implementation of the proposed controller will be done locally at

individual nodes.

Remark 6.18 Assume that f (t) belongs to the class used for the optimization;

then Θ , constructed by Algorithm 1, allows the maximum possible magnitudes on

each individual component of f (t) to occur, such that all of the above properties

(given by Theorems 6.7–6.9) hold.

The actual external message arrival rates into a network may, of course, not

belong to the class (14) used for the optimization; they may in fact be time-

varying. In addition, the initial conditions may be non-zero. For a constant vector

f̂ = {f̂ k
i } ∈ ℜN(N−1)

+ and for a scalar φ > 0, let us define:

Ω
f̂
φ = {f (t) = {f k

i (t)} ∈ ℜN(N−1)
+ | 0 ≤ f k

i (t) ≤ φf̂ k
i , ∀t ≥ t0,∀i ∈ N̄k,∀k ∈ N̄}.

The following corollary, stated without proof, ensures that the proposed controller

(6.112)–(6.113) can keep the queue lengths bounded. without violating the con-

straints (b)–(e), for all non-negative initial conditions and for all (possibly time-

varying) non-negative external message arrival rates, provided only that the magni-

tude of these rates is not too large. This property is true whether or not these arrival

rates belong to the class used for the optimization.

Corollary 6.2 Consider a connected network with N nodes whose dynamics at

each node is described by (6.68)–(6.69), where the time-scale for each node may be

different. The processing delay times may be time-varying, but are assumed to be

bounded. Assume that the controller described by (6.112)–(6.113) is applied where

the matrix Θ is constructed by Algorithm 1. Then for all constant f̂ ∈ ℜN(N−1)
+ , for
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all t0 ∈ Z and for all constant x0 ∈ ℜN∗
+ , there exists a scalar φ > 0, such that for

all f (t) ∈ Ω
f̂
φ , m(t), p(t), q(t), and u(t) remain bounded ∀t ≥ t0.

It can also be shown that if, in addition to the external message arrival rates,

the magnitude of the initial conditions is also sufficiently small, then the controller

(6.112)–(6.113) also drives the queue length m of the processed messages immedi-

ately to zero.

Corollary 6.3 Consider a connected network with N nodes whose dynamics at each

node is described by (6.68)–(6.69), where the time-scale for each node may be

different. The processing delay times may be time-varying, but are assumed to be

bounded. Assume that the controller described by (6.112)–(6.113) is applied where

the matrix Θ is constructed by Algorithm 1. Then for all constant f̄ ∈ ℜN(N−1)
+ , for

all constant x̂0 ∈ ℜN∗
+ , and for all t0 ∈ Z, there exist scalars φx > 0 and φf > 0,

such that for all initial conditions x(t0) ≤ φx x̂0, x(t0) ≥ 0 and for all f (t) ∈ Ω
f̂
φf

,

mlk
i (t0 + 1) = 0, ∀i ∈ N̄k , ∀l ∈ N̄k , ∀k ∈ N̄ , and m(t), p(t), q(t), and u(t) re-

main bounded for all t ≥ t0. Furthermore, if processing delay time r lk
i is constant,

∀t ≥ t0, ∀i ∈ N̄k , ∀l ∈ N̄k , ∀k ∈ N̄ , then m(t) = 0, ∀t ≥ t0 + 1, and p(t), q(t) and

u(t) converge to the steady-state values given in (6.98)–(6.99).

Remark 6.19 In the foregoing analysis, the following assumptions were made:

(i) the rate of messages being sent out from one node to another (the control sig-

nals) are updated at discrete periodic instants;

(ii) processing delay times are fixed;

(iii) the control signals are updated synchronously throughout the network;

(iv) upper constraints on the volume of messages that can be processed or buffered

are not violated.

It was shown that (iii) can be removed; in fact control signals may be updated

with different periods at different nodes. We have also shown that (ii) is not a nec-

essary assumption, as long as processing delay times remain bounded. This latter

assumption can be justified as long as the arrival rate of messages remain bounded

since any message can be processed in a finite time. Assumption (i) represents

the usual case in a practical implementation [14, 15] for the case when the con-

trol signals are updated continuously. Finally, (iv) can be justified, since for today‘s

computers, storage restrictions are usually less important than transmission capacity

constraints.

6.8.6 Simulation Examples

In this section we consider the network shown in Fig. 6.9. The capacity of each link

is indicated by a number associated with each link in the figure. The processing

delays are assumed to be r lk
i = 5 (i ∈ N̄k , ℓ ∈ N̄k , k ∈ N̄ , N = 3).
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Fig. 6.9 Example network

Routing Controller Obtained. The maximum external message arrival rates are

obtained by solving the LP problem and are given as follows:

(f̃ 2
1 )max = (f̃ 3

1 )max = 2, (f̃ 1
2 )max = (f̃ 3

2 )max = 3,

(f̃ 1
3 )max = 5, (f̃ 2

3 )max = 6

and the non-zero elements of the feedback matrix Θ obtained from Algorithm 1 are

therefore given by:

h12
12 = h13

12 = h23
12 = h32

12 = h13
23 = h21

23 = h23
23

= h31
23 = h21

31 = h31
31 = 1,

h12
31 = h12

32 = 1

2
, h32

31 = 1

3
, h32

32 = 2

3
,

where f̄ is defined by (6.70). The controller (6.79) (equivalently (6.112)–(6.113)),

with the choice of Θ as above, then produces the following controls:

1. For link 1 to 2:
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u12
12(t) = γ12(t)φ

12
1 (t),

u13
12(t) = γ12(t)φ

13
1 (t),

u23
12(t) = γ12(t)φ

23
1 (t),

u32
12(t) = γ12(t)φ

32
1 (t),

where

γ12(t) =
{

1 if Û12(t) ≤ 2,

2

Û12
if Û12(t) > 2

and

Û12(t) = φ12
1 (t) + φ13

1 (t) + φ23
1 (t) + φ32

1 (t).
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2. For link 2 to 3:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u13
23(t) = γ23(t)φ

13
2 (t),

u21
23(t) = γ23(t)φ

21
2 (t),

u23
23(t) = γ23(t)φ

23
2 (t),

u31
23(t) = γ23(t)φ

31
2 (t),

where

γ23(t) =
{

1 if Û23(t) ≤ 3,

3

Û23
if Û23(t) > 3

and

Û23(t) = φ13
2 (t) + φ21

2 (t) + φ23
2 (t) + φ31

2 (t).

3. For link 3 to 1:
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u12
31(t) = γ31(t)φ

31
3 (t),

u21
31(t) = γ31(t)φ

13
3 (t),

u31
31(t) = γ31(t)φ

31
3 (t),

u32
31(t) = γ31(t)φ

32
3 (t),

where

γ31(t) =
{

1 if Û31(t) ≤ 5,

5

Û31
if Û31(t) > 5

and

Û31(t) = 1

2
φ12

3 (t) + φ21
3 (t) + φ31

3 (t) + 1

3
φ32

3 (t).

4. For link 3 to 2:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u12
32(t) = γ32(t)φ

12
3 (t),

u21
32(t) = γ32(t)φ

13
3 (t),

u31
32(t) = γ32(t)φ

23
3 (t),

u32
32(t) = γ32(o)φ32

3 (t),

where

γ32(t) =
{

1 if Û32(t) ≤ 4,

4

Û32
if Û32(t) > 4
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Fig. 6.10 mlk
i versus time for

case 1

Fig. 6.11 q lk
i versus time for

case 1

and

Û32(t) = 1

2
φ12

3 (t) + 2

3
φ32

3 (t).

This controller is now applied to the simulation example for the following cases:

Case 6.1 f k
i (t) = 2, ∀t ≥ 0, ∀i ∈ N̄k, x(0) = 0. In this case, certain components of

m and q are unbounded as shown in Figs. 6.10 and 6.11. The components which are

not shown in the figures remain at zero ∀t ≥ 0. The total message flow rates along

the links:

ut
ij ≤

∑

k∈N̄ i

∑

l∈N̄k

ulk
ij , j ∈ D(i), i ∈ N̄

are shown in Fig. 6.12. The capacities of the links l-to-2 and 2-to-3 are saturated. In

fact, in this case, there is no solution to the routing problem which keeps the queue

lengths bounded.
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Fig. 6.12 ut
ij versus time for

case 1

Fig. 6.13 mlk
i versus time for

case 2

Case 6.2 x(0) = 0,

f k
i (t) =

{
2, 0 ≤ t < 50,

0, t ≥ 50
∀i ∈ N̄k, ∀k ∈ N̄ .

Certain components of m and q build-up during the first 50 sampling periods. How-

ever, they start decreasing immediately after the external message arrivals are shut-

off, as shown in Figs. 6.13 and 6.14.

All the queues are cleared within 76 sampling periods after shut-off. The total

message flow rates along the links are shown in Fig. 6.15.

Case 6.3 f k
i (t) = 1

2
, ∀t ≥ 0, ∀i ∈ N̄k , ∀k ∈ N̄ , x(0) = 0. In this case m(t) remains

at zero ∀t > 0; q(t) converges to a constant steady-state value as shown in Fig. 6.16.

The total message flow rates are shown in Fig. 6.17.
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Fig. 6.14 q lk
i versus time for

case 2

Fig. 6.15 ut
ij versus time for

case 2

Fig. 6.16 q lk
i versus time for

case 3
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Fig. 6.17 ut
ij versus time for

case 3

Fig. 6.18 q lk
i versus time for

case 4

Case 6.4 f 2
3 (t) = 6 = (f̃ 2

3 )max, f k
i (t) = 0, ∀(i, k) �= (3,2), ∀t ≥ 0, x(0) = 0. In this

case m(t) remains at zero ∀t ≥ 0; and q(t) converges to a constant steady state value

as shown in Fig. 6.18. The individual message flow rates are shown in Fig. 6.19.

Note that the steady-state values of u32
12 and u32

32 are equal to the link capacities cl2

and c32 respectively.

Case 6.5 f 2
3 (t) = 10 > (f̃ 2

3 )max, f k
i (t) = 0, ∀(i, k) �= (3,2), ∀t ≥ 0, x(0) = 0. In

this case, m and q are unbounded as shown in Figs. 6.20 and 6.21, and the link ca-

pacities of the links l-to-2, 3-to-1, and 3-to-2 are saturated, as shown in Fig. 6.22. In

this example, since f 2
3 (t) = 10 > ((̃f )2

3)max = 6, there is no solution to the routing

problem which keeps the queue lengths bounded.

Case 6.6 f 2
1 (t) = (f̃ 2

1 )max = 2, f 3
2 (t) = (f̃ 3

2 )max = 3, f 1
3 (t) = (f̃ 1

3 )max = 5,

f 3
1 (t) = f 1

2 (t) = f 2
3 t = f k

i (t) = 0, ∀t ≥ 0, x(0) = 0. In this case, m(t) remains

at zero ∀t ≥ 0, and q(t) converges to a constant steady-state value as shown in
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Fig. 6.19 ulk
ij versus time for

case 4

Fig. 6.20 mlk
i versus time for

case 5

Fig. 6.23. The message flow rates u12
12(t), u23

23(t), and u31
31 converge to the link ca-

pacities c12, c23, and c31 respectively as shown in Fig. 6.24. Other message flow

rates remain at zero.

Case 6.7 f (t) = 0, ∀t ≥ 0, mlk
i (0) = 1, ∀i ∈ N̄k , ∀l ∈ N̄k , ∀k ∈ N̄ , w1(0) =

w2(0) = · · · = w5(0). In this case, all the queues of the processed messages are

cleared within 2 sampling periods as shown in Table 6.2, and the total queue lengths

are cleared within 7 sampling periods as shown in Table 6.3. The total message flow

rates along the links are shown in Table 6.4. Between t = 2 and t = 5 there is no flow

of messages along the links; the messages are processed at different nodes during

this period.
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Fig. 6.21 q lk
i versus time for

case 5

Fig. 6.22 ulk
ij versus time for

case 5

Fig. 6.23 q lk
i versus time for

case 6
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Fig. 6.24 ulk
ij versus time for

case 6

Table 6.2 mlk
i versus time for case 7

m12
1 = m13

1 = m23
1 = m32

1 m13
2 = m21

2 = m23
2 = m31

2 m12
3 = m21

3 = m31
3 = m32

3

t = 0 1.0000 1.0000 1.0000

t = 1 0.5000 0.2500 0.0000

t ≥ 2 0.0000 0.0000 0.0000

Table 6.3 q lk
i versus time for case 7

q12
1 q13

1 = q23
1 q32

1 q13
2 = q23

2 q21
2 = q31

2 q12
3 = q32

3 q21
3 = q31

3

t = 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

t = 1 1.0000 0.5000 0.8333 0.7500 0.2500 0.0000 0.7500

t = 2,3,4,5 0.5000 0.0000 0.3333 1.0000 0.0000 0.0000 1.0000

t = 6 0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 0.2500

t ≥ 7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6.4 ut
ij versus time for

case 7
ut

12 ut
23 ut

31 ut
32

t = 0 2.0000 3.0000 2.8333 1.1667

t = 1 2.0000 1.0000 0.0000 0.0000

t = 2,3,4 0.0000 0.0000 0.0000 0.0000

t = 5 0.8333 1.0000 1.5000 0.0000

t = 6 0.0000 1.0000 0.5000 0.0000

t ≥ 7 0.0000 0.0000 0.0000 0.0000
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6.9 Notes and References

The main contribution of this chapter lies is the methodology of solving the cen-

tralized and decentralized routing problems by incorporating queuing dynamics and

physical constraints that exist in the traffic network. The transmitting, propagating,

and processing delays considered in the dynamics of the network were assumed to

be unknown and fast time-varying. By employing the H∞ robust control strategy,

the developed routing schemes will guarantee the desired routing performance in

the presence of unknown fast time-varying delays and other network uncertainties

through the minimization of the worst-case queuing length. It is worth noting that

since the proposed decentralized routing controller can be implemented locally at

each individual node, it is therefore scalable to large and crowded traffic networks.

For routing in multi-destination data communication networks, a decentralized

controller were presented where the dynamic model developed to describe the net-

work dynamics incorporates processing delays. The controller design involves an

optimization problem, which can be conveniently solved off-line. The developed

controller has the property that it allows the maximum possible magnitude on each

external message arrival rate of the system to occur, without violating any con-

straints on the system. Further interesting results and applications can been devel-

oped by applying the ideas of [16, 28, 31, 32, 36].
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Chapter 7

Decentralized Control of Markovian Jump

Systems

This chapter deals with systems having Markovian jump parameters. There are ba-

sically two types of models. The first type describes interconnected systems with

Markovian jump parameters for which the problems of stochastic stability and sta-

bilization are examined and a set of feedback controls is conveniently developed. In

the second type, we deal with systems with Markov chains exhibiting slow-fast sep-

aration. An appropriate averaging and aggregation technique is developed for this

purpose. Under state feedback policies, the H∞ control design for large scale jump

linear systems where the form process admits strong and weak interactions. Through

an analysis that covers both finite and infinite horizon cases and using averaging and

aggregation techniques, an aggregate jump linear system of considerably smaller or-

der has been obtained, along with a corresponding (compatible) cost function. This

reduced-order (aggregate) problem is another piecewise-deterministic H∞ control

problem, and based on the solution of this problem, we obtain the asymptotic limit

of the optimal performance level for the full-order system, as well as an approxi-

mate controller that can asymptotically achieve any desired performance level for

the full-order system.

7.1 Control for Markovian Jump Systems

In this section, we examine the problems of stochastic stability and stabilization for a

class of interconnected systems with Markovian jump parameters. The jumping pa-

rameters are treated as continuous-time, discrete-state Markov process. The purpose

is to design decentralized state feedback controller such that stochastic quadratic

stability and a prescribed H∞-performance are guaranteed. Next, the robust H∞-

control problem for linear interconnected systems with Markovian jump parameters

and parametric uncertainties is studied. The parametric uncertainties are assumed to

be real, time-varying and norm-bounded that appear in the state matrix. Both cases

of finite-horizon and infinite-horizon are analyzed. We establish that the decentral-

ized control problem for interconnected Markovian jump systems with and without

M.S. Mahmoud, Decentralized Systems with Design Constraints,
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uncertain parameters can be essentially solved in terms of the solutions of a finite set

of coupled differential (or algebraic) Riccati equations. Extension of the developed

results to the case of uncertain jumping rates is provided. Further interesting results

and applications can been developed by applying the ideas of [26, 29–31, 60].

7.1.1 Introduction

Dynamical systems subject to frequent unpredictable structural changes can be con-

veniently modeled as piecewise deterministic systems, where the underlying dy-

namics are represented by different forms depending on the value of an associated

Markov chain process. An important class of such systems is the jump linear sys-

tems. Research into class of systems and their applications span several decades. For

some representative prior work on this general topic, we refer the reader to [1–4,

6–12, 14–21, 32–48] and the references therein.

When the plant modeling uncertainty or external disturbance uncertainty is of

major concern in control systems, robust control theory provides tractable design

tools using the time domain and the frequency domain; see [9] and the references

cited therein.

On the other hand, problems of decentralized control and stabilization of inter-

connected systems are receiving considerable interests [11–18] where most of the

effort are focused on dealing with the interaction patterns and performing the control

analysis and design on the subsystem level.

The purpose of this section is to develop criteria of stochastic stability and sta-

bilization of a class of linear interconnected systems with Markovian jump pa-

rameters. The jumping parameters are treated as continuous-time, discrete-state

Markov process. First, the notion of stochastic decentralized stability is introduced

and an appropriate LMI-based criterion is developed. Based thereon, the purpose

is to design decentralized state feedback controller such that stochastic quadratic

stability and a prescribed H∞-performance are guaranteed. Next, the robust H∞-

control problem for linear interconnected systems with Markovian jump parame-

ters and parametric uncertainties is studied. The parametric uncertainties are as-

sumed to be real, time-varying and norm-bounded that appear in the state ma-

trix. Both cases of finite-horizon and infinite-horizon are analyzed. We establish

that the decentralized control problem for interconnected Markovian jump sys-

tems with and without uncertain parameters can be essentially solved in terms

of the solutions of a finite set of coupled differential (or algebraic) Riccati equa-

tions.

7.1.2 Problem Statement

Given a probability space (Ω,F ,P) where Ω is the sample space, F is the algebra

of events and P is the probability measure defined on F . We consider a class of
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uncertain systems with Markovian jump parameters described by:

ẋ(t) = A(t, ηt )x(t)+B(t, ηt )u(t)+ Γ (t, ηt )w(t),

xo = φ, ηo = i, t ∈ [0,T ], (7.1)

z(t) = G(t, ηt )x(t)+ F(t, ηt )u(t) (7.2)

which we will recognize in the sequel as an interconnection of ns coupled uncertain

subsystems and modeled in state-space form by:

ẋj (t) = Aj (t, ηt )xj (t)+Bj (t, ηt )uj (t)+ Γj (t, ηt )wj (t)+ gj (t),

xo = φ, ηo = i, t ∈ [0,T ], j ∈ {1, . . . , ns}, (7.3)

gj (t) =
ns∑

k=1,j �=k
Ajk(t, ηt )xk(t), (7.4)

yj (t) = xj (t), (7.5)

zj (t) = Gj (t, ηt )xj (t)+ Fj (t, ηt )uj (t), (7.6)

where for (7.1)–(7.2) x,u,w satisfy

x = (xt1, . . . , x
t
ns
)t , u= (ut1, . . . , u

t
ns
)t ,

w = (wt
1, . . . ,w

t
ns
)t , z= (zt1, . . . , z

t
ns
)t .

For (7.3)–(7.6) with j ∈ {1, . . . , ns}, xj (t) ∈ ℜnj is the state vector; uj (t) ∈ ℜmj is

the control input, wj (t) ∈ ℜqj is the disturbance input which belongs to L2[0,T ];
yj (t) ∈ ℜpj is the measured output and zj (t) ∈ ℜrj is the controlled output which

belongs to L2[(Ω,F ,P), [0,T ]]. From now onwards, the notations Lss and Css

refer, respectively, to the original large-scale system (7.1)–(7.2) and composite sub-

system representation (7.3)–(7.6). An important identity that links both representa-

tions is expressed as [22]:

ns∑

j=1

{
ns∑

k=1

Ajk(t, ηt )xk(t)

}
=

ns∑

k=1

{
ns∑

j=1

Akj (t, ηt )xj (t)

}
. (7.7)

The main difference in the underlying treatment of both representations is the ex-

plicit modeling of interconnections among subsystems as represented by the vector

gj (t) ∈ ℜnj which in effect designates an interaction input to the j th subsystem.

For various technical and operational factors, it is considered convenient to deal

with Css instead of Lss and hence, in the remaining part of this work, we will base

the analysis and design on the subsystem level. This implies that we will closely

examine the role of interactions on the system behavior.

With reference to either Css or Lss, the random form process {ηt , t ∈ [0,T ]} is a

homogeneous, finite-state Markovian process with right continuous trajectories and

taking values in a finite set S = {1,2, . . . , s} with transition probability from mode i
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at time t to mode r at time t + δ, i, r ∈ S :

pir = Pr(ηt+δ = r | ηt = i)

=
{
αij δ + o(δ), if i �= r,

1 + αij δ + o(δ), if i = r
(7.8)

with transition probability rates αij ≥ 0 for i, r ∈ S , i �= r and

αii = −
s∑

m=1,m �=i
αim, (7.9)

where δ > 0 and limδ↓0 o(δ)/δ = 0. The set S comprises the various operation

modes of system (7.3)–(7.6) and for each possible value ηt = i, i ∈ S , we will

denote the matrices of subsystem j associated with mode i by Aj (t, ηt ) :=Aj (t, i),

Bj (t, ηt ) := Bj (t, i), Γj (t, ηt ) := Γj (t, i), Ajk(t, ηt ) := Ajk(t, i), Gj (t, ηt ) :=
Gj (t, i), Fj (t, ηt ) := Fj (t, i) where Aj (t, i), Bj (t, i), Γj (t, i), Ajk(t, i), Gj (t, i),

Fj (t, i) are known, real, time-varying, piecewise-continuous between each jump,

bounded matrices of appropriate dimensions describing the nominal system.

Distinct from (7.3)–(7.6) is the free nominal jump subsystem:

ẋj (t) = Aj (t, ηt )xj (t)+ gj (t),

xo = φ, ηo = i, i ∈ S, ∈ {1, . . . , ns} (7.10)

and the nominal jump subsystem

ẋj (t) = Aj (t, ηt )xj (t)+Bj (t, ηt )uj (t)+ gj (t),

xo = φ, ηo = i, i ∈ S, j ∈ {1, . . . , ns} (7.11)

for which we have the following

Definition 7.1 The free nominal jump subsystem (7.10) is said to be stochasti-

cally decentrally stable if for all finite initial state φ ∈ ℜn, for all interaction inputs

gj (t) ∈ ℜn, j ∈ {1, . . . , ns} and initial mode ηo ∈ S
∫ ∞

0

E {||xj (t, gj , φ)||2}dt <+∞, j ∈ {1, . . . , ns}. (7.12)

Lemma 7.1 Consider the free nominal jump subsystem (7.10). For any matrix

Qj (i) = Qt
j (i) > 0, i ∈ S , if there exist matrices Pj (i) = P t

j (i) > 0, i ∈ S ,

j ∈ {1, . . . , ns}, satisfying

Pj (i)Aj (i)+At
j (i)Pj (i)+

ns∑

m=1,i �=m
αimPj (m)

+ Pj (i)

{
ns∑

m=1,j �=m
Ajm(i)A

t
jm

}
Pj (i)+ (ns − 1)I +Qj (i)= 0 (7.13)
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then the subsystem (7.10) is stochastically decentrally stable.

Proof Let ℑx[.] and ℑxj [.] be the infinitesimal operators, respectively, of the pro-

cesses {x(t), ηt } and {xj (t), ηt } associated with the Lss and Css representations at

the point {t, x, ηt } [21] and let Vj = Vj (t, x, ηt ). Then,

ℑxj [Vj ] =
∂Vj

∂t
+ ẋt (t)

∂Vj

∂x

∣∣∣∣
ηt=i

+
ns∑

k=1

αikVj (t, x, k, i) (7.14)

and

V (t, x, ηt ) :=
ns∑

j=1

Vj (t, x, ηt ), ℑx[V (t, x, ηt )] :=
ns∑

j=1

ℑxj [Vj (t, x, ηt )]. (7.15)

For ηt = i, i ∈ S , and Vj (t, x, ηt )= xtj (t)Pj (t, i)xj (t), we get from (7.14)–(7.15):

ℑx[V ] :=
ns∑

j=1

ℑxj [Vj ]

=
ns∑

j=1

{
ẋtj (t)Pj (t, i)xj (t)+ xtj (t)Ṗj (t, i)xj (t)+ xtj (t)Pj (t, i)ẋj (t)

+
ns∑

m=1

αimx
t
j (t)Pj (t,m)xj (t)

}

=
ns∑

j=1

{
xtj (t)[Ṗj (t, i)+At

j (t, i)Pj (t, i)+ Pj (t, i)Aj (t, i)]xj (t)

+ xtj (t)Pj (t, i)

ns∑

m=1,j �=m
Ajm(t, ηt )xm(t)

+
ns∑

m=1,j �=m
xtm(t)A

t
jm(t, ηt )Pj (t, i)x

t
j (t)

+
ns∑

m=1

αimx
t
j (t)Pj (t,m)xj (t)

}
. (7.16)

Making use of identity (7.7), applying the inequality

Σ1Σ3Σ2 +Σ t
2Σ

t
3Σ

t
1 ≤ α−1Σ1Σ

t
1 + αΣ t

2Σ2, ∀α > 0 (7.17)
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for any real matrices Σ1, Σ2 and Σ3 with appropriate dimensions and Σ t
3Σ3 ≤ I ,

and using the equality
∑ns

k=1,j �=k I = (ns − 1)I , it follows from (7.16) that

ℑx[V ] ≤
ns∑

j=1

{
xtj (t)

[
Ṗj (t, i)+At

j (t, i)Pj (t, i)+ Pj (t, i)Aj (t, i)

+
ns∑

m=1

αimPj (t,m)

]
xj (t)+ xtj (t)Pj (t, i)

×
[

ns∑

k=1,j �=k
Ajk(t, ηt )A

t
jk(t, ηt )

]
Pj (t, i)xj (t)+

ns∑

k=1,j �=k
xtk(t)xk(t)

}

≤
ns∑

j=1

{
xtj (t)

[
Ṗj (t, i)+At

j (t, i)Pj (t, i)+ Pj (t, i)Aj (t, i)

+
ns∑

m=1

αimPj (t,m)

]
xj (t)+ xtj (t)Pj (t, i)

[
ns∑

k=1,j �=k
Ajk(t, ηt )A

t
jk(t, ηt )

]

× Pj (t, i)xj (t)+ xtj (t)[(ns − 1)I ]xj (t)− xtj (t)xj (t)

}

:=
ns∑

j=1

ℑxj [Vj ]. (7.18)

As t → ∞, it follows that Pj (t, i) → Pj (i), Ṗj (t, i) → 0. By using (2.13), in-

equality (2.17) reduces to:

ℑxj [Vj ] ≤ −xtj (t)Qj (i)xj (t)− xtj (t)xj (t) (7.19)

and therefore

E
{
ℑxj [Vj ]

}
< 0 (7.20)

which in the light of Definition 7.1 completes the proof. �

Remark 7.1 In [18], it has been established that, for subsystem (7.10) with j = 1,

the terms “stochastically stable”, “exponentially mean-square stable”, and “asymp-

totically mean-square stable”, are equivalent, and any of them can imply “almost

surely asymptotically stable”. Extending on these results, we have introduced Def-

inition 7.1 to suit Lss and Css representations. In the sequel, we will use for sub-

system (7.10) with j ∈ {1, . . . , ns}, the equivalent terms “stochastically decentrally

stable”, “exponentially mean-square decentrally stable”, and “asymptotically mean-

square decentrally stable”, interchangeably.
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Definition 7.2 The nominal jump subsystem (7.11) is said to be stochastically de-

centrally stabilizable if for all finite initial state φ ∈ ℜn, for all interaction inputs

gj (t) ∈ ℜn, j ∈ {1, . . . , ns} and initial mode ηo ∈ S there exists a linear constant

feedback gain K∗
j (t, ηt ), j ∈ {1, . . . , ns}, such that the decentralized control law

uj (t)= −K∗
j (t, ηt )xj (t), j ∈ {1, . . . , ns}, ‖K∗

j (t, ηt )‖<∞ (7.21)

ensures that the resulting closed-loop subsystem is stochastically decentrally stable.

By similarity to Lemma 7.1, we have the following result for the stochastic de-

centralized stabilizability of subsystem (7.11).

Lemma 7.2 Consider the nominal jump subsystem (7.11). For any matrix Qj (i)=
Qt
j (i)

t > 0, i ∈ S , if there exist matrices Pj (i)= P t
j (i)

t > 0, i ∈ S , j ∈ {1, . . . , ns},
satisfying

Pj (i)Āj (i)+ Āt
j (i)Pj (i)+

ns∑

m=1

αimPj (m)

+ Pj (i)

{
ns∑

k=1,j �=k
Ajk(i)A

t
ij

}
Pj (i)+ (ns − 1)I +Qj (i)= 0, ∀i ∈ S, (7.22)

where

Āj (i)=Aj (i)−Bj (i)K
∗
j (i) (7.23)

then the subsystem (7.11) is stochastically decentrally stabilizable.

Remark 7.2 Both Lemma 7.1 and Lemma 7.2 show that the stochastic stabilizabil-

ity of the nominal jump subsystem is related to the existence of positive-definite

solutions to a set of s coupled algebraic Riccati equations. Equivalently stated, the

stochastic stabilizability of the interconnected nominal jump system amounts to the

existence of positive-definite solutions to a coupled set of ns × s algebraic Riccati

equations.

In the sequel, associated with Css (7.3)–(7.6) such that j ∈ {1, . . . , ns}, we con-

sider the stabilization problem of Lss (7.1)–(7.2) with H∞ performance using de-

centralized state-feedback controllers of the type (7.21) under the assumption of

perfect state information. The objective is to design a decentralized feedback con-

troller Gj (t, ηt ) such that, for all nonzero w(t) ∈ L2

‖zj (t)‖E2
:= E

[∫ T

0

ztj (t)zj (t)dt

]1/2

< γ ‖wj (t)‖2, j ∈ {1, . . . , ns}, (7.24)
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where γ > 0 is a prescribed level of disturbance attenuation. When system (7.3)–

(7.6) under the action of the controller Gj (t, ηt ) satisfies condition (2.23), the in-

terconnected controlled system is said to have H∞-performance over the horizon

[0,T ].
Two distinct cases arise:

(1) The finite-horizon case in which the system (7.3)–(7.6) with j ∈ {1, . . . , ns}
under the decentralized feedback controller Gj (t, ηt ) has performance (7.24)

over a given horizon [0,T ];
(2) The infinite-horizon case in which the system (7.3)–(7.6) with j ∈ {1, . . . , ns}

under the decentralized feedback controller Gj (t, ηt ) is stochastically decen-

trally stable and has performance (7.24) over a given horizon [0,∞].

Under perfect state-information, we consider the following system description

for ηt = i, i ∈ S

ẋj (t) = Aj (t, i)xj (t)+Bj (t, i)uj (t)+ Γj (t, i)wj (t)+ gj (t)

+
ns∑

k=1,j �=k
Ajk(t, i)xk(t), xo = φ, t ∈ [0,T ], (7.25)

gj (t) =
ns∑

k=1,j �=k
Ajk(t, ηt )xk(t), (7.26)

yj (t) = xj (t), (7.27)

zj (t) = Gj (t, i)xj (t)+ Fj (t, i)uj (t) (7.28)

and make the following assumptions:

Assumption 7.1 For all i ∈ S on [0,T ] and for all j ∈ {1, . . . , ns},

F t
j (t, i)Fj (t, i)=R(t, i), Rj (t, i)=Rt (t, i) > 0.

Assumption 7.2 For all i ∈ S and for all j ∈ {1, . . . , ns},

(1) {Aj (i),Bj (i)} is stochastically decentrally stabilizable,

(2) {Cj (i),Aj (i)} is decentrally observable.

Remark 7.3 Assumption 7.1 ensures that the H∞-control problem for system

(7.25)–(7.28) is nonsingular and corresponds to the standard assumption in H∞-

control theory fr linear systems without jump parameters. Assumption 7.2 guaran-

tees the existence of a decentralized stabilizing controller for system (7.25)–(7.28)

subject to (7.8)–(7.9). The term “decentrally” is used to emphasize that the underly-

ing condition is satisfied on the subsystem level.
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7.1.3 H∞-State Feedback Controller

In this section, we consider the design of a decentralized H∞-state feedback con-

troller for system (7.25)–(7.28) subject to (7.8)–(7.9). First we treat the design prob-

lem on a finite horizon.

Theorem 7.1 Consider the system (7.25)–(7.28) subject to (7.8)–(7.9) and j ∈
{1, . . . , ns}. Then, for a given γ > 0, there exists a decentralized state-feedback

controller uj (t) of the type (7.21) such that

‖zj (t)‖E2
< γ ‖wj (t)‖2

for all nonzero w(t) ∈ L2[0,T ], if the following set of ns × s coupled differential

Riccati equations:

Ṗj (t, i)+ Pj (t, i)Aj (t, i)+At
j (t, i)Pj (t, i)+ (ns − 1)I +Gt

j (t, i)Gj (t, i)

+
ns∑

m=1,i �=m
αimPj (t,m)

+ Pj (t, i)

{
ns∑

k=1,j �=k
Ajk(t, i)A

t
t,jk + γ−2Γj (i)Γ

t
j (t, i)

−Bj (t, i)R
−1
j (t, i)B t

j (t, i)

}
Pj (t, i)= 0,

Pj (T )= 0, i ∈ S, t ∈ [0,T ], j ∈ {1, . . . , ns} (7.29)

has a solution Pj (t, i), i ∈ S , j ∈ {1, . . . , ns} on [0,T ]. Moreover, the decentralized

controller is given by:

uj (t) = −K∗
j (t, ηt )xj (t),

K∗(t, ηt ) = R−1
j (t, ηt )[B t

j (t, ηt )Pj (t, ηt )+ F t
j (t, ηt )Gj (t, ηt )], (7.30)

t ∈ [0,T ], ηt = i ∈ S, j ∈ {1, . . . , ns}.

Proof Let

J (xj ) := E

{∫ T

0

ztj (t)zj (t)− γ 2wt
j (t)wj (t) dt

}
(7.31)

and let ℑx[.] be the infinitesimal operator of the process {xj (t), ηt } for system

(7.25)–(7.28) at the point {t, x, ηt } as given by (7.11). For ηt = i, i ∈ S , and
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Vj (t, x, ηt )= xtj (t)Pj (t, i)xj (t), we obtain:

ℑx[V ] :=
ns∑

j=1

ℑxj [Vj ]

=
ns∑

j=1

{
ẋtj (t)Pj (t, i)xj (t)+ xtj (t)Ṗj (t, i)xj (t)+ xtj (t)Pj (t, i)ẋj (t)

+
ns∑

m=1

αimx
t
j (t)Pj (t,m)xj (t)

}

=
ns∑

j=1

{
xtj (t)

{
Ṗj (t, i)+At

j (t, i)Pj (t, i)+ Pj (t, i)Aj (t, i)
}
xj (t)

+
{
xtj (t)Pj (t, i)Bj (t, i)uj (t)+ utj (t)B

t
j (t, i)Pj (t, i)xj (t)

}

+
{
xtj (t)Pj (t, i)Γj (t, i)wj (t)+wt

j (t)Γ
t
j (t, i)Pj (t, i)xj (t)

}

+ xtj (t)Pj (t, i)

ns∑

k=1,j �=k
Ajk(t, ηt )xk(t)

+
ns∑

k=1,j �=k
xtk(t)A

t
jk(t, ηt )Pj (t, i)x

t
j (t)

+
ns∑

m=1

αimx
t
j (t)Pj (t,m)xj (t)

}
. (7.32)

It follows from (7.3)–(7.4) that

J (x) :=
ns∑

j=1

J (xj )

=
ns∑

j=1

{
E

[{∫ T

0

ztj (t)zj (t)

+ xtj (t)
{
Ṗj (t, i)+At

j (t, i)Pj (t, i)+ Pj (t, i)Aj (t, i)
}
xj (t)

+
{
xtj (t)Pj (t, i)Γj (t, i)wj (t)+wt

j (t)Γ
t
j (t, i)Pj (t, i)xj (t)

}

+
{
xtj (t)Pj (t, i)Bj (t, i)uj (t)+ utj (t)B

t
j (t, i)Pj (t, i)xj (t)

}

+ xtj (t)Pj (t, i)

ns∑

k=1,j �=k
Ajk(t, ηt )xk(t)
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+
ns∑

k=1,j �=k
xtk(t)A

t
jk(t, ηt )Pj (t, i)x

t
j (t)

+
ns∑

m=1

αimx
t
j (t)Pj (t,m)xj (t)− γ 2wt

j (t)wj (t)

}
dt

]

− E

[∫ T

0

ℑx[xtj (t)Pj (t, i)xj (t)]dt
]}

. (7.33)

The substitution of (7.28) into (7.5) with standard manipulations yields:

J (x) :=
ns∑

j=1

{
E

{∫ T

0

[
xtj (t)[Ṗj (t, i)+At

j (t, i)Pj (t, i)+ Pj (t, i)Aj (t, i)

+
ns∑

m=1

αimPj (t,m)

+ Pj (t, i)
[
γ−2Γj (t, i)Γ

t
j (t, i)−Bj (t, i)R

−1
j (t, i)B t

j (t, i)
]
Pj (t, i)

+Gt
j (t, i)Gj (t, i)xj (t)

+
{
utj (t)+ xtj (t)[F

t
j (t, i)Gj (t, i)+ Pj (t, i)Bj (t, i)]R−1

j (t, i)
}
Rj (t, i)

×
{
uj (t)+ xtj (t)[G

t
j (t, i)Fj (t, i)+B t

j (t, i)Pj (t, i)]R
−1
j (t, i)

}

− γ 2
{
wt
j (t)− γ−2xtj (t)Pj (t, i)Γ

t
j (t, i)

}

×
{
wj (t)− Γ t

j (t, i)Pj (t, i)xj (t, i)
}

+ xtj (t)Pj (t, i)

ns∑

k=1,j �=k
Ajk(t, ηt )xk(t)

+
ns∑

k=1,j �=k
xtk(t)A

t
jk(t, ηt )Pj (t, i)x

t
j (t)

]
dt

}

− E

{∫ T

0

ℑx[xtj (t)Pj (t, i)xj (t)]dt
}}

. (7.34)

Using inequality (7.17), (7.34) reduces to

J (x) ≤
ns∑

j=1

{
E

{∫ T

0

[
xtj (t)[Ṗj (t, i)+At

j (t, i)Pj (t, i)+ Pj (t, i)Aj (t, i)

+
ns∑

m=1

αimPj (t,m)+Gt
j (t, i)Gj (t, i)
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+ Pj (t, i)
[
γ−2Γj (t, i)Γ

t
j (t, i)−Bj (t, i)R

−1
j (t, i)B t

j (t, i)
]
Pj (t, i)

+ Pj (t, i)

{
ns∑

k=1,j �=k
Ajk(t, ηt )A

t
jk(t, ηt )

}
Pj (t, i)+ (ns − 1)Ixj (t)

+
{
utj (t)+ xtj (t)[F

t
j (t, i)Gj (t, i)+ Pj (t, i)Bj (t, i)]R−1

j (t, i)
}
Rj (t, i)

×
{
uj (t)+ xtj (t)[G

t
j (t, i)Fj (t, i)+B t

j (t, i)Pj (t, i)]R
−1
j (t, i)

}

− γ 2
{
wt
j (t)− γ−2xtj (t)Pj (t, i)Γ

t
j (t, i)

}{
wj (t)− Γ t

j (t, i)Pj (t, i)xj (t, i)
}

− xtj (t)xj (t)

]
dt

}
− E

{∫ T

0

ℑx[xtj (t)Pj (t, i)xj (t)]dt
}}

. (7.35)

On using the Dynkin formula [31]

ns∑

j=1

{
E

{∫ T

0

ℑx[xtj (t)Pj (t, i)xj (t)]dt
}}

=
ns∑

j=1

{
E [xtj (T )Pj (T , i)xj (T )] − E [xtj (0)Pj (0, i)xj (0)]

}

together with the facts that xj (0)= 0 and Pj (T , i)= 0, we choose the decentralized

controller uj (t) as that of (3.2) with Pj (t, i) satisfying (7.30) and hence we get from

(7.35) the inequality:

J (x) ≤
ns∑

j=1

{
−γ 2 E

{∫ T

0

[wt
j (t)− γ−2xtj (t)Pj (t, i)Γ

t
j (t, i)][wj (t)

− Γ t
j (t, i)Pj (t, i)xj (t, i)] + γ−2xtj (t)xj (t)dt

}}

:=
ns∑

j=1

J (xj ) < 0 (7.36)

and the proof is completed. �

For the infinite-horizon case, the main result is established by the following the-

orem.

Theorem 7.2 Consider the system (7.25)–(7.28) subject to (7.8)–(7.9) and j ∈
{1, . . . , ns}. Then, for a given γ > 0, there exists a decentralized state-feedback

controller uj (t) such that the interconnected closed-loop system is stochastically

decentrally stable and

‖zj (t)‖E2
< γ ‖wj (t)‖2
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for all nonzero w(t) ∈ L2[0,∞], if the following set of ns × s coupled algebraic

Riccati equations:

Pj (i)Aj (i)+At
j (i)Pj (i)+

ns∑

m=1,i �=m
αimPj (m)+ (ns − 1)I +Gt

j (i)Gj (i)

+ Pj (i)

{
ns∑

k=1,j �=k
Ajk(i)A

t
jk + γ−2Γj (i)Γ

t
j (i)−Bj (i)R

−1
j (i)B t

j (i)

}
Pj (i)= 0,

i ∈ S, t ∈ [0,T ], j ∈ {1, . . . , ns} (7.37)

has a solution Pj (i) = P t
j (i), i ∈ S , j ∈ {1, . . . , ns}. Moreover, the decentralized

controller is given by:

uj (t) = −K∗
j (ηt )xj (t),

K∗(ηt ) = R−1
j (ηt )[B t

j (ηt )Pj (ηt )+ F t
j (ηt )Gj (ηt )],

t ∈ [0,∞], ηt = i ∈ S, j ∈ {1, . . . , ns}. (7.38)

Proof In terms of the closed-loop system matrix

Āj (i) = Aj (i)−Bj (i)K
∗
j (i)

= Aj (i)−Bj (i)R
−1
j (i)[B t

j (i)Pj (i)+ F t
j (i)Gj (i)] (7.39)

we rewrite (7.36) as

Pj (i)Āj (i)+ Āt
j (i)Pj (i)+ (ns − 1)I +Gt

j (i)Gj (i)+
ns∑

m=1,i �=m
αimPj (m)

+ Pj (i)

{
ns∑

k=1,j �=k
Ajk(i)A

t
jk + γ−2Γj (i)Γ

t
j (i)−Bj (i)R

−1
j (i)B t

j (i)

}
Pj (i)

+ Pj (i)B
t
j (i)R

−1
j (i)F t

j (i)Gj (i)+Gt
j (i)Fj (i)R

−1
j (i)B t

j (i)Pj (i)= 0,

i ∈ S, j ∈ {1, . . . , ns}. (7.40)

Since Pj (i) = P t
j (i) > 0, i ∈ S , j ∈ {1, . . . , ns} and the ns -pairs {Cj (i),Aj (i)},

i ∈ S , j ∈ {1, . . . , ns} are decentrally observable, the stochastic stability of the

interconnected closed-loop systems follows from the results of [31]. The H∞-

performance ‖zj (t)‖E2
< γ ‖wj (t)‖2 for all nonzero wj (t) ∈ L2[0,∞], can be

readily obtained in the manner of Theorem 7.1. �

Remark 7.4 Theorem 7.1 and Theorem 7.2 establish sufficient solvability condi-

tions for the H∞-control problem of the interconnected system (2.1)–(2.3) over

the finite-horizon and infinite-horizon cases, respectively. The resulting conditions
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are expressed in terms ns × s coupled differential and algebraic Riccati equations,

respectively. It should be noted that when ηt = 1 and Ajk ≡ 0, Theorem 7.1 and

Theorem 7.2 recover the standard results of H∞-control problems of single linear

systems.

7.1.4 Robust H∞-Control Results

In this section, we consider the design of a decentralized robust H∞ feedback con-

troller for the interconnected system (7.3)–(7.6) with uncertain parameters. In this

case, the state-space model is given by:

Sj : ẋj (t) = [Aj (t, ηt )+ΔAj (t, ηt )]xj (t)+Bj (t, ηt )uj (t)+ Γj (t, ηt )wj (t)

+
ns∑

k=1,j �=k
Ajk(t, ηt )xk(t), xo = φ, ηo = i, t ∈ [0,T ], (7.41)

yj (t) = xj (t), (7.42)

zj (t) = Gj (t, ηt )xj (t)+ Fj (t, ηt )uj (t), (7.43)

where for j ∈ {1, . . . , ns}, xj (t), uj (t), wj (t), yj (t), zj (t) and Aj (t, ηt ), Bj (t, ηt ),

Γj (t, ηt ), Gj (t, ηt ), Fj (t, ηt ) are the same as in (7.3)–(7.6) and ΔAj (t, ηt ) is a real,

time-varying matrix function representing the norm-bounded parameter uncertainty.

The admissible parameter uncertainties are assumed to be modeled in the form:

ΔAj (t, ηt )=Mj (t, ηt )Δj (t, ηt )Nj (t, ηt ), (7.44)

where for ηt = i and j ∈ {1, . . . , ns}, Mj (t, ηt ) ∈ ℜnj×βj and Nj (t, ηt ) ∈ ℜβj×nj

are known real, time-varying, piecewise-continuous matrices between each jump,

which designates the way the uncertain parameters in Δj (t, ηt ) affects the nominal

matrix Aj (t, ηt ) with Δj (t, ηt ), ηt = i ∈ S being an unknown, time-varying matrix

function satisfying

‖Δj (t, ηt )‖2 ≤ 1, ηt = i ∈ S, (7.45)

where the elements of Δj (t, ηt ) are Lebesgue measurable for any ηt = i ∈ S . In

the infinite-horizon case, t → ∞, the matrices Mj (t, ηt ), Δj (t, ηt ), Nj (t, ηt ) are

constants with ηt = i ∈ S and will be denoted by Mj (i), Δj (i), Nj (i), respec-

tively.

In the sequel, we consider the problem of robust state-feedback control of the

uncertain, interconnected Markovian jumping system (7.41)–(7.43). Our purpose is

to design a decentralized feedback controller Gj (t, ηt )

uj (t)= −Kj (t, ηt )xj (t), j ∈ {1, . . . , ns}, (7.46)
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where ‖Kj (t, ηt )‖ < ∞ such that, for all nonzero wj (t) ∈ L2[0,∞) and for all

parametric uncertainties satisfying (7.45)–(7.46)

‖zj (t)‖E2
< γ ‖wj (t)‖2, j ∈ {1, . . . , ns}, (7.47)

where γ > 0 is a prescribed level of disturbance attenuation.

When system (7.41)–(7.43) under the action of the controller (7.45) satisfies con-

dition (7.47), the interconnected controlled system is said to have H∞-performance

over the horizon [0,T ]. We now establish some stochastic stability properties.

Distinct from (7.41)–(7.43) is the free uncertain nominal jump subsystem:

Sjo: ẋj (t) = [Aj (t, ηt )+ΔAj (t, ηt )]xj (t)+
ns∑

k=1,j �=k
Ajk(t, ηt )xk(t),

xo = φ, ηo = i, i ∈ S, j ∈ {1, . . . , ns} (7.48)

and the uncertain nominal jump subsystem

Sju: ẋj (t) = [Aj (t, ηt )+ΔAj (t, ηt )]xj (t)+Bj (t, ηt )uj (t)

+
ns∑

k=1,j �=k
Ajk(t, ηt )xk(t),

xo = φ, ηo = i, i ∈ S, j ∈ {1, . . . , ns} (7.49)

for which we have the following

Definition 7.3 The free nominal jump subsystem (7.48) is said to be robustly

stochastically decentrally stable if for all finite initial state φ ∈ ℜn, for all j, k ∈
{1, . . . , ns}, initial mode ηo ∈ S , and for all admissible uncertainties satisfying

(7.44)–(7.45)
∫ ∞

0

E {‖xj (t, φ)‖2}dt <+∞, j ∈ {1, . . . , ns}.

Lemma 7.3 Consider the free uncertain nominal jump subsystem (7.48). Then, the

following statements are equivalent:

(a) subsystem (7.48) is robustly stochastically decentrally stable;

(b) for any matrix Φj (i) = Φ t
j (i)

t > 0, i ∈ S and a scalar μj (i) > 0, i ∈ S there

exist matrices Πj (i)=Π t
j (i)

t > 0, i ∈ S for all j ∈ {1, . . . , ns}, satisfying

Πj (i)Aj (i)+At
j (i)Πj (i)+Πj (i)

{
ns∑

m=1,j �=m
Ajm(i)A

t
jm

}
Πj (i)

+ (ns − 1)I +Φj (i)+
ns∑

m=1,i �=m
αimΠj (m)

+μ−1
j (i)Πj (i)Mj (t, ηt )M

t
j (t, ηt )Πj (i)+μj (i)N

t
j (t, ηt )Nj (t, ηt )= 0.

(7.50)
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Proof Let (7.50) have a solution Πj (i)=Π t
j (i)

t > 0, i ∈ S and j ∈ {1, . . . , ns}. For

the class of admissible uncertainties Δj (t, ηt ) satisfying (7.45) and for ηt = i ∈ S ,

we get from inequality (7.17)

μ−1
j (i)Πj (i)Mj (i)M

t
j (i)Πj (i)+μj (i)N

t
j (i)Nj (i)

≥N t
j (i)Δ

t
j (i)M

t
j (i)Πj (i)+Πj (i)Mj (i)Δj (i)Nj (i). (7.51)

It follows from (7.50)–(7.51) that

Πj (i)[Aj (i)+Mj (i)Δj (i)Nj (i)] + [Aj (i)+Mj (i)Δj (i)Nj (i)]tΠj (i)

+Πj (i)

{
ns∑

m=1,j �=m
Ajm(i)A

t
jm

}
Πj (i)

+ (ns − 1)I +Φj (i)+
ns∑

m=1,i �=m
αimΠj (m)≤ 0 (7.52)

holds for all admissible uncertainties Δj (t, ηt ) satisfying (7.45). The equality con-

dition (7.50) is readily obtained from application of Lemma 7.1. �

Extending on Definition 7.3, we introduce the following

Definition 7.4 The nominal jump subsystem (7.49) is said to be stochastically de-

centrally stabilizable if for all finite initial state φ ∈ ℜn, initial mode ηo ∈ S , and

for all admissible uncertainties satisfying (4.4)–(4.5) there exists a linear feedback

gain K∗
j (t, ηt ), j ∈ {1, . . . , ns} that is constant for each value of ηt ∈ S such that the

decentralized control law

uj (t)= −Kj (t, ηt )xj (t), j ∈ {1, . . . , ns}, (7.53)

where ‖Kj (t, ηt )‖<∞, ensure that the resulting closed-loop subsystem is robustly

stochastically decentrally stable.

By similarity to Lemma 7.3, we have the following result for the stochastic de-

centralized stabilizability of subsystem (7.49).

Lemma 7.4 Consider the uncertain nominal jump subsystem (7.49). Then, the fol-

lowing statements are equivalent:

(a) the subsystem (7.49) is robustly stochastically decentrally stabilizable by a de-

centralized control law

uj (t)= −Kj (t, i)xj (t), i ∈ S, j ∈ {1, . . . , ns};
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(b) for any matrix Φj (i)=Φ t
j (i)

t > 0, i ∈ S and a scalar μj (i) > 0, i ∈ S , there

exist matrices Πj (i)=Π t
j (i)

t > 0, i ∈ S for all j ∈ {1, . . . , ns}, satisfying

Πj (i)Ãj (i)+ Ãt
j (i)Πj (i)+

ns∑

m=1

αimΠj (m)

+Πj (i)

{
ns∑

k=1,j �=k
Ajk(i)A

t
ij

}
Πj (i)+ (ns − 1)I +Φj (i)

+μ−1
j (i)Πj (i)Mj (i)M

t
j (i)Πj (i)+μj (i)N

t
j (i)Nj (i)= 0, ∀i ∈ S, (7.54)

where

Ãj (i)=Aj (i)−Bj (i)Kj (i). (7.55)

Proof Follows by parallel development to Lemma 7.3 and using Lemma 7.2. �

We now focus attention on the controller design. More specifically, the objective

is to design a robust decentralized state-feedback controller Gj (t, ηt ) such that:

(1) In the finite-horizon case , the system (7.41)–(7.45) with j ∈ {1, . . . , ns} under

the decentralized feedback controller Gj (t, ηt ) has performance (7.47) over a

given horizon [0,T ]; or

(2) In the infinite-horizon case in which the system (7.41)–(7.45) with j ∈
{1, . . . , ns} under the decentralized feedback controller Gj (t, ηt ) is stochasti-

cally decentrally stable and has performance (7.47) over a given horizon [0,∞].
The main results are established by the following theorems for the cases of finite-

horizon and infinite-horizon cases, respectively.

Theorem 7.3 Consider system (7.41)–(7.43) subject to (7.4)–(7.6) and j ∈
{1, . . . , ns}. Then, for a given γ > 0, there exists a decentralized state-feedback

controller uj (t) such that

‖zj (t)‖E2
< γ ‖wj (t)‖2

for all nonzero w(t) ∈ L2[0,T ], and for all admissible uncertainties satisfying

(7.45)–(7.46) if for a given scalar μj (i) > 0, i ∈ S , the following set of ns × s

coupled differential Riccati equations:

Π̇j (t, i)+Πj (t, i)Aj (t, i)+At
j (t, i)Πj (t, i)+ (ns − 1)I +Gt

j (t, i)Gj (t, i)

+
ns∑

m=1,i �=m
αimΠj (t,m)+Πj (t, i)

{
ns∑

k=1,j �=k
Ajk(t, i)A

t
t,jk

+ γ−2Γj (i)Γ
t
j (t, i)−Bj (t, i)R

−1
j (t, i)B t

j (t, i)

}
Πj (t, i)
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+μ−1
j (i)Πj (t, i)Mj (t, i)M

t
j (t, i)Πj (t, i)+μj (i)N

t
j (t, i)Nj (t, i)= 0,

Πj (T )= 0, i ∈ S, t ∈ [0,T ], j ∈ {1, . . . , ns} (7.56)

has a solution Pj (t, i), i ∈ S , j ∈ {1, . . . , ns} on [0,T ]. Moreover, the decentralized

controller is given by:

uj (t) = −Kj (t, ηt )xj (t),

K(t, ηt ) = R−1
j (t, ηt )[B t

j (t, ηt )Πj (t, ηt )+ F t
j (t, ηt )Gj (t, ηt )],

t ∈ [0,T ], ηt = i ∈ S, j ∈ {1, . . . , ns}. (7.57)

Proof Let (7.16) have a solution Πj (i)=Π t
j (i)

t > 0, i ∈ S and j ∈ {1, . . . , ns}. For

the class of admissible uncertainties Δj (t, ηt ) satisfying (4.5) and for ηt = i ∈ S ,

and proceeding like Lemma 7.3, we have:

Π̇j (t, i)+Πj (t, i)[Aj (t, i)+ΔAj (t, i)] + [Aj (t, i)+ΔAj (t, i)]tΠj (t, i)

+ (ns − 1)I +Gt
j (t, i)Gj (t, i)+

ns∑

m=1,i �=m
αimΠj (t,m)

+Πj (t, i)

{
ns∑

k=1,j �=k
Ajk(t, i)A

t
t,jk

+ γ−2Γj (i)Γ
t
j (t, i)−Bj (t, i)R

−1
j (t, i)B t

j (t, i)

}
Πj (t, i)= 0,

Πj (T )= 0, i ∈ S, t ∈ [0,T ], j ∈ {1, . . . , ns} (7.58)

for all admissible uncertainties Δj (t, ηt ), ηt = i ∈ S satisfying (7.45)–(7.46). It fol-

lows from Theorem 7.1 that

‖zj (t)‖E2
< γ ‖wj (t)‖2

and the proof is completed. �

Theorem 7.4 Consider system (7.41)–(7.43) subject to (7.4)–(7.6) and j ∈
{1, . . . , ns}. Then, for a given γ > 0, there exists a decentralized state-feedback

controller uj (t) such that the interconnected closed-loop system is stochastically

decentrally stable and

‖zj (t)‖E2
< γ ‖wj (t)‖2

for all nonzero w(t) ∈ L2[0,∞], and for all admissible uncertainties satisfying

(7.45)–(7.46) if for a given scalar μj (i) > 0, i ∈ S , if the following set of ns × s

coupled algebraic Riccati equations:

Πj (i)Aj (i)+At
j (i)Πj (i)+

ns∑

m=1,i �=m
αimΠj (m)+ (ns − 1)I +Gt

j (i)Gj (i)

+Πj (i)

{
ns∑

k=1,j �=k
Ajk(i)A

t
jk + γ−2Γj (i)Γ

t
j (i)−Bj (i)R

−1
j (i)B t

j (i)

}
Πj (i)
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+μ−1
j (i)Πj (i)Mj (i)M

t
j (i)Πj (i)+μj (i)N

t
j (i)Nj (i)= 0,

i ∈ S, t ∈ [0,T ], j ∈ {1, . . . , ns} (7.59)

has a solution Πj (i)=Π t
j (i) > 0, i ∈ S , j ∈ {1, . . . , ns}. Moreover, the decentral-

ized controller is given by:

uj (t) = −Kj (ηt )xj (t),

K(ηt ) = R−1
j (ηt )[B t

j (ηt )Πj (ηt )+ F t
j (ηt )Gj (ηt )],

t ∈ [0,∞], ηt = i ∈ S, j ∈ {1, . . . , ns}. (7.60)

Proof It can easily established following similar procedure to Theorem 7.4 with the

help of Theorem 7.2. �

Remark 7.5 Using the convex optimization techniques over linear matrix inequali-

ties [5], the existence of scaling parameters μj (i) > 0, i ∈ S , j ∈ {1, . . . , ns} can be

conveniently checked out.

Remark 7.6 It can easily shown from Theorem 7.3 and Theorem 7.4 that the ns ×
s differential Riccati equations (7.56) and the ns × s algebraic Riccati equations

(7.59) are the sufficient stochastic stability conditions for the following H∞-control

problem without parametric uncertainties over the finite-horizon and the infinite-

horizon, respectively:

S̃j : ẋj (t) = Aj (t, ηt )xj (t)+Bj (t, ηt )uj (t)

+
[
Γj (t, ηt ),

γ√
μj (ηt )

Mj (t, ηt )

]
w̃j (t)

+
ns∑

k=1,j �=k
Ajk(t, ηt )xk(t), x0 = 0, η0 = i, t ∈ [0,T ], (7.61)

z̃(t) =
[√

μj (ηt )Nj (t, ηt )

Gj (t, ηt )

]
xj (t)+

[
0

Fj (t, ηt )

]
uj (t), ηj = i ∈ S,

(7.62)

where

w̃j (t) =
[

wj (t)

γ−1
√
μj (ηt )Δ(t, ηt )N(t, ηt )

]
, z̃j (t)=

[√
μj (ηt )N(t, ηt )xj (t)

zj (t)

]
.

(7.63)

It is readily seen that

‖z̃j (t)‖E2
< ‖zj (t)‖E2
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and hence we conclude that if we solve the H∞-control problem for system (7.61)–

(7.63) with (7.4)–(7.6), then we can also solve the robust H∞-control problem for

system (7.41)–(7.43) with (7.4)–(7.6) using the same controller.

Remark 7.7 Extension of the developed robustness results to the case where the

jumping rates are subject to uncertainties. Specifically, we consider the transition

probability from mode i at time t to mode j at time t + δ, i, j ∈ S to be:

pij = Pr(ηt+δ = j | ηt = i)

=
{
(αij +Δαij )δ + o(δ), if i �= j,

1 + (αij +Δαij )δ + o(δ), if i = j
(7.64)

with transition probability rates (αij +Δαij )≥ 0 for i, j ∈ S, i �= j and

αii +Δαii = −
s∑

m=1,m �=i
(αim +Δαim). (7.65)

We assume that the uncertainties Δαij satisfies

‖Δαij‖ ≤ βij , ∀i, j ∈ S, (7.66)

where βij are known scalars ∀i, j ∈ S .

In line of Theorem 7.3 and Theorem 7.4, we have the following robustness re-

sults:

Theorem 7.5 Consider system (7.41)–(7.43) subject to (7.64)–(7.65) and j ∈
{1, . . . , ns}. Then, for a given γ > 0, there exists a decentralized state-feedback

controller uj (t) such that

‖zj (t)‖E2
< γ ‖wj (t)‖2

for all nonzero w(t) ∈ L2[0,T ], and for all admissible uncertainties satisfying

(4.4)–(4.5) and (4.26) if for a given scalar μj (i) > 0, i ∈ S , the following set of

ns × s coupled differential Riccati equations:

Π̇j (t, i)+Πj (t, i)Aj (t, i)+At
j (t, i)Πj (t, i)+ (ns − 1)I +Gt

j (t, i)Gj (t, i)

+Πj (t, i)

{
ns∑

k=1,j �=k
Ajk(t, i)A

t
t,jk + γ−2Γj (i)Γ

t
j (t, i)

−Bj (t, i)R
−1
j (t, i)B t

j (t, i)

}
Πj (t, i)

+μ−1
j (i)Πj (t, i)Mj (t, i)M

t
j (t, i)Πj (t, i)+μj (i)N

t
j (t, i)Nj (t, i)
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+
ns∑

m=1,i �=m
(αim + βim)Πj (t,m)= 0,

Πj (T )= 0, i ∈ S, t ∈ [0,T ], j ∈ {1, . . . , ns} (7.67)

has a solution Pj (t, i), i ∈ S , j ∈ {1, . . . , ns} on [0,T ]. Moreover, the decentralized

controller is given by:

uj (t) = −Kj (t, ηt )xj (t),

K(t, ηt ) = R−1
j (t, ηt )[B t

j (t, ηt )Πj (t, ηt )+ F t
j (t, ηt )Gj (t, ηt )],

t ∈ [0,T ], ηt = i ∈ S, j ∈ {1, . . . , ns}. (7.68)

Proof It can be derived using similar arguments to Theorem 7.3. �

Theorem 7.6 Consider system (7.41)–(7.43) subject to (7.64)–(7.65) and j ∈
{1, . . . , ns}. Then, for a given γ > 0, there exists a decentralized state-feedback

controller uj (t) such that the interconnected closed-loop system is stochastically

decentrally stable and

‖zj (t)‖E2
< γ ‖wj (t)‖2

for all nonzero w(t) ∈ L2[0,∞], and for all admissible uncertainties satisfying

(4.4)–(4.5) and (4.26) if for a given scalar μj (i) > 0, i ∈ S , if the following set

of ns × s coupled algebraic Riccati equations:

Πj (i)Aj (i)+At
j (i)Πj (i)

+
ns∑

m=1,i �=m
(αim + βim)Πj (m)+ (ns − 1)I +Gt

j (i)Gj (i)

+Πj (i)

{
ns∑

k=1,j �=k
Ajk(i)A

t
jk + γ−2Γj (i)Γ

t
j (i)−Bj (i)R

−1
j (i)B t

j (i)

}
Πj (i)

+μ−1
j (i)Πj (i)Mj (i)M

t
j (i)Πj (i)+μj (i)N

t
j (i)Nj (i)= 0,

i ∈ S, t ∈ [0,T ], j ∈ {1, . . . , ns} (7.69)

has a solution Πj (i)=Π t
j (i) > 0, i ∈ S , j ∈ {1, . . . , ns}. Moreover, the decentral-

ized controller is given by:

uj (t) = −Kj (ηt )xj (t),

K(ηt ) = R−1
j (ηt )[B t

j (ηt )Πj (ηt )+ F t
j (ηt )Gj (ηt )],

t ∈ [0,∞], ηt = i ∈ S, j ∈ {1, . . . , ns}. (7.70)

Proof It can be carried out by parallel development to Theorem 7.4. �
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7.2 Mode-Dependent Decentralized Stability and Stabilization

7.2.1 Introduction

Problems of decentralized stability and stabilization of interconnected systems are

receiving considerable interests [13, 24, 26, 27, 52], where most of the effort are

focused on dealing with the interaction patterns. When the interconnected system

involves delays, related studies are reported in [23, 49–51]. In [23], the stability

and stabilization of interconnected systems are considered where uncertainties are

assumed to satisfy the matching conditions.

In this section, we consider a wide class of continuous-time, interconnected

jumping time-delay systems with mode-dependent interval delays. This class of sys-

tems has not been fully investigated in the literature. The importance of these sys-

tems stems from the fact it encompasses other numerous classes of interests [31].

In particular, we consider hereafter uncertain interconnected systems in which full

state-measurements are not available and the delays occur both within the subsys-

tems and in the interaction patterns. In the present work, the objective is to de-

sign decentralized linear feedback controllers based on state and dynamic-output

schemes to guarantee the robust stabilization and robust H∞ performance. Since

Lyapunov theory is the main vehicle in stability analysis, the resulting conditions

are only sufficient. In our work, we construct an appropriate Lyapunov-Krasovskii

functional and introduce some parameters as manipulative factors to reduce the de-

gree of conservativeness. The main contributions of this chapter are the constructive

use of linear matrix inequalities as a vehicle to solve both the mode-dependent de-

centralized stochastic stability and stabilization problems with H∞ performance.

7.2.2 Problem Statement

Given a probability space (Ω,F ,P) where Ω is the sample space, F is the alge-

bra of events and P is the probability measure defined on F . Let the random form

process {ηt , t ∈ [0,T ]} be a homogeneous, finite-state Markovian process with right

continuous trajectories and taking values in a finite set S = {1,2, . . . , s} with gen-

erator ℑ =
(
αij
)

and transition probability from mode i at time t to mode j at time

t + δ, i, j ∈ S :

pij = Pr(ηt+δ = j | ηt = i)

=
{
αij δ + o(δ), if i �= j,

1 + αij δ + o(δ), if i = j
(7.71)

with transition probability rates αij ≥ 0 for i, j ∈ S , i �= j and αii =
−
∑s

m=1,m �=i αim where δ > 0 and limδ↓0 o(δ)/δ = 0. The set S comprises the vari-

ous operational modes of the system under study.
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We consider a class S of nonlinear time-delay systems with Markovian jump

parameters and bounded-uncertainties composed of ns coupled subsystems Sj de-

scribed over the space (Ω,F ,P) by:

Sj : ẋj (t) = Aj (ηt )xj (t)+Ej (ηt )xj (t − τj (ηt ))+ Γj (ηt )wj (t)

+Bj (ηt )uj (t)+ gj (ηt ), (7.72)

yj (t) = Cj (ηt )xj (t)+Dj (ηt )xj (t − τj (ηt ))+Φj (ηt )wj (t), (7.73)

zj (t) = Gj (ηt )xj (t)+Lj (ηt )xj (t − τj (ηt ))+Ψj (ηt )wj (t),

xj (t) = κj (t), t ∈ [τMj ,0], (7.74)

where j ∈ {1, . . . , ns}, xj (t) ∈ ℜnj is the state vector uj (t) ∈ ℜmj is the con-

trol input wj (t) ∈ ℜqj is the disturbance input yj (t) ∈ ℜpj is the measured out-

put zj (t) ∈ ℜrj is the controlled output and τj (ηt ) are unknown mode-dependent

time-delays within known ranges in order to guarantee smooth growth of the

state trajectories. The time-varying delay τj (ηt ) is unknown mode-dependent and

satisfies τmj ≤ τj (ηt ) ≤ τMj with the bounds τmj , τMj being known for every

j ∈ {1, . . . , ns}. The initial condition is κj (.) ∈ L2[−τMj ,0], j ∈ {1, . . . , ns}. The

function gj : Z+ ×ℜn×ℜn → ℜnj is a piecewise-continuous mode-dependent vec-

tor function in its arguments and represents the interaction of other subsystems to

subsystem j . In this chapter, it is assumed that gj satisfies the quadratic inequality

gtj (ηt )g
t
j (ηt ) ≤ φ2

j (ηt )x
t
j (t)F

t
jFjxj (t)

+ψ2
j (ηt )x

t
j (t − τj (ηt ))H

t
jHjxj (t − τj (ηt )), (7.75)

where φj (ηt ) > 0, ψj (ηt ) > 0 are mode-dependent bounding parameters and G̃j ,

G̃dj are appropriate constant matrices. In the sequel, we let ξj (k) = [xtj (k) x
t
j (t −

τj (ηt )) g
t
j (ηt )]t . Then (7.75) can be conveniently written as

ξ tj

⎡
⎣

−φ2
j (i) F

t
jFj 0 0

• −ψ2
j (i)H

t
djHj 0

• • Ij

⎤
⎦ ξj ≤ 0. (7.76)

For each possible value ηt = i, i ∈ S , we will denote the system matrices of (Sj )

associated with mode i by

Aj (ηt ) := Aj (i), Ej (ηt ) :=Ej (i), Γj (ηt ) := Γj (i),

Bj (ηt ) := Bj (i), Cj (ηt ) = Cj (i),
(7.77)

Dj (ηt ) := Dj (i), Φ(ηt ) :=Φ(i), Gj (ηt ) :=Gj (i),

Lj (t, ηt ) := Lj (i),

where Aj (i), Ej (i), Cj (i), Dj (i), Gj (i), Lj (i), Bj (i), Φj (i), Γj (i) are known real

constant matrices of appropriate dimensions representing the nominal subsystem
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(without uncertainties and interactions):

Snj : ẋj (t) = Aoj (i)xj (t)+Eoj (i)xj (t − τj (i))+ Γj (i)wj (t)

+Boj (i)uj (t)+ gj (i),
(7.78)

yj (t) = Coj (i)xj (t)+Doj (i)xj (t − τj (i))+Φj (i)wj (t),

zj (t) = Goj (i)xj (t)+Loj (i)xj (t − τj (i))+Ψj (i)wj (t).

In the sequel, we assume ∀j ∈ {l, . . . , ns} that the ns -pairs (Aoj (i),Boj (i)) and

(Aoj (i),Coj (i)) are stabilizable and detectable, respectively. Let X(t, κ) denotes the

state trajectory of the interconnected system (7.72)–(7.74) from the initial condition

κ ≡ [κ t1, . . . , κ tns ]
t . We have the following

Definition 7.5 System (7.78) with uj ≡ 0 is said to be stochastically stable if there

exists a constant G(ηo, κj ) > 0 such that for all finite initial vector function κj ∈ ℜn

defined on the interval [−τMj ,0], j ∈ {1, . . . , ns} and initial mode ηo = i ∈ S .

E

[∫ ∞

0

{‖X(t, κj )‖2}dt
∣∣∣ηo, κ(s), s ∈ [−τMj ,0]

]
≤ G(ηo, κj ).

Definition 7.6 (7.78) is said to be stochastically stable with a disturbance attenu-

ation γj if for zero initial vector function κj ≡ 0 and initial mode ηo = i ∈ S the

following inequality holds

‖z(t)‖E2

Δ= E

[∫ ∞

0

ztj (t)zj (t)dt

]1/2

< γj‖wj (t)‖2

for all 0 �= w(t) ∈ L2[0,∞), where γj > 0 is a prescribed level of disturbance at-

tenuation and ‖.‖E2
denotes the norm in L2((Ω,F ,P), [0,∞)).

7.2.3 Local Subsystem Stability

In the sequel, we introduce

τaj =
1

2
(τMj + τmj ), δj =

1

2
(τMj − τmj )= τMj − τaj = τaj − τmj .

Remark 7.8 It is readily evident that the case δj = 0 leads to τMj = τmj which

corresponds to constant delay. The case τmj = 0 yields δj = τaj = 1
2
τMj .

Theorem 7.7 Given the delay bounds τmj , τMj . If there exist positive-definite matri-

ces Pj (i),Qj (i), Rj , Zj , Wj , Xj and scalars γj > 0, εj (i) > 0, λj (i) > 0, i ∈ S

satisfying

Σj (i) =
[
Σaj (i) Σcj (i)

• Σoj (i)

]
+ σj (τ

2
aj Zj + 2δj Wj )σ

t
j < 0, (7.79)
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ns∑

m=1

αimQj (m) < Rj , (7.80)

Σaj (i) =

⎡
⎢⎢⎣

Σ1j (i) Pj (i)Eoj (i) Zj Pj (i)

• −Σ2j
1
δj

Wj 0

• • −Σ3j 0

• • • −Ij

⎤
⎥⎥⎦ ,

Σcj (i) =

⎡
⎢⎢⎣

Pj (i)Γj (i) Gt
oj (i) F t

j 0

0 Ltoj (i) 0 H t
j

0 0 0 0

0 0 0 0

⎤
⎥⎥⎦ ,

σj = col
[
At
oj (i) E

t
oj (i) 0 0 Γ t

j (i) 0 0 0
]
,

(7.81)

Σaj (i) =

⎡
⎢⎢⎣

−γ 2
j I Ψ t

j (i) 0 0

• −I 0 0

• • −λj (i)I 0

• • • −εj (i)I

⎤
⎥⎥⎦ ,

Σ1j (i) = Pj (i)Aoj (i)+At
oj (i)Pj (i)+

ns∑

m=1

αimPj (m)+ Qj (i)+ Xj

+ τaj Rj − Zj ,

Σ3j = Qj (i)+ 1

δj
Wj + Zj , Σ2j = Xj + 1

δj
Wj

then the free nominal jump subsystem (7.78) is stochastically stable with a distur-

bance attenuation γj .

Proof For each ηj = i ∈ S, j ∈ {1, . . . , ns} we construct a stochastic Lyapunov-

Krasovskii functional as follows

Vj (xj , ηt , t) = V1j (xj , ηt , t)+ V2j (xj , ηt , t)+ V3j (xj , ηt , t)

+ V4j (xj , ηt , t), (7.82)

V1j (xj , ηt , t) = xtj (t)Pj (i)xj (t),

V2j (xj , ηt , t) =
∫ t

t−τaj
xtj (s)Qj (i)xj (s)ds +

∫ t

t−τj (t)
xtj (s)Xjxj (s)ds

+
∫ 0

τaj

∫ t

t−βj
xtj (s)Rjxj (s)dsdβj ,

(7.83)

V3j (xj , ηt , t) = 2δj

∫ t

t−τaj+δj
xtj (s)Wjxj (s)ds
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+
∫ t−τaj+δj

t−τaj−δj

∫ t−τaj+δj

s

xtj (s)Wjxj (s)ds,

V4j (xj , ηt , t) = τaj

∫ t

t−τaj

∫ t

s

ẋtj (α)Zj ẋj (α)dαds.

In terms of the weak infinitesimal operator ℑxj [.] of the process {xj (t), ηt , t ≥ 0}
for system (7.78) with wj (.)≡ 0 at the point and {xj (t), ηt } is given by [21]:

ℑxj [Vj ] ≤ xtj (t)Pj (i)ẋj (t)+ ẋtj (t)Pj (i)xj (t)+
ns∑

m=1

αimx
t
j (t)Pj (m)xj (t)

+ xtj (t)(Qj (i)+ Xj )xj (t)

− xtj (t − τaj )Qj (i)xj (t − τaj )− xtj (t − τj )Xjxj (t − τj )

+
∫ t

t−τaj
xtj (s)

ns∑

m=1

αimQj (m)xj (s)ds

+ τajx
t
j (t)Rjxj (t)−

∫ t

t−τaj
xtj (s)Rjxj (s)ds + 2δj ẋ

t
j (t)Wj ẋ

t
j (t)

−
∫ t−τaj+δj

t−τaj−δj
ẋtj (s)Wj ẋ

t
j (s)ds + τ 2

aj ẋ
t
j (t)Zj ẋj (t)

−
∫ t

t−τaj
ẋtj (α)Zj ẋj (α)dα. (7.84)

During the range τaj < τj (t), the following inequality holds

−
∫ t−τaj+δj

t−τaj−δj
ẋtj (s)Wj ẋ

t
j (s)ds ≤ −

∫ t−τaj

t−τj (t)
ẋtj (s)Wj ẋj (s)ds

−
1

τj (t)− τaj

[∫ t−τaj

t−τj
ẋj (s)ds

]t
Wj

[∫ t−τaj

t−τj
ẋj (s)ds

]

−
1

τaj − τmj

[
xj (t − τj (t))− xj (t − τaj )

]t

× Wj

[
xj (t − τj )− xj (t − τaj )

]
. (7.85)

When τaj > τj (t), we get

−
∫ t−τaj+δj

t−τaj−δj
ẋtj (s)Wj ẋ

t
j (s)ds ≤ −

∫ t−τj (t)

t−τaj
ẋtj (s)Wj ẋj (s)ds

−
1

τaj − τmj

[∫ t−τj (t)

t−τaj
ẋj (s)ds

]t
Wj

[∫ t−τj (t)

t−τaj
ẋj (s)ds

]
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− 1

τaj − τmj

[
xj (t − τj (t))− xj (t − τaj )

]t

× Wj

[
xj (t − τj (t))− xj (t − τaj )

]
. (7.86)

After some algebraic manipulations, it can be shown that

−
∫ t−τaj+δj

t−τaj−δj
ẋtj (s)Sj ẋ

t
j (s)ds ≤ −

1

δj
xtj (t − τaj )Sjxj (t − τaj )

+
2

δj
xtj (t − τaj )Sjxj (t − τj )−

1

δj
xtj (t − τj (t))Sjxj (t − τj ). (7.87)

According to Lemma 9.12 in Chap. 9, we have for any i ∈ S that

ℑxj [Vj (t, x, ηt )] ≤ ξ tj (t)Ξj (i)ξj (t)

+
∫ t

t−τaj
xtj (s)

[
ns∑

m=1

αimQj (m)− Rj

]
xtj (s)ds < 0, (7.88)

Ξj (i) =

⎡
⎢⎢⎣

Ξ1j (i) Ξ2j (i) Zj Pj (i)

• Ξ3j
1
δj

Sj 0

• • Ξ4j 0

• • • 0

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

At
oj (i)

Et
oj (i)

0

0

⎤
⎥⎥⎦ (τ

2
aj Zj + 2δj Sj )

⎡
⎢⎢⎣

At
oj (i)

Et
oj (i)

0

0

⎤
⎥⎥⎦

t

, (7.89)

ξ tj (t) =
[
xtj (t) x

t
j (t − τj (t)) x

t
j (t − τaj ) g

t
j

]t
, (7.90)

where

Ξ1j (i) = Pj (i)Aoj (i)+At
oj (i)Pj (i)

+
ns∑

m=1

αimPj (m)+ Qj (i)+ Xj + τaj Rj ,

Ξ2j (i) = Pj (i)Eoj (i),

Ξ3j = −Xj −
1

δj
Wj , Ξ4j = −Qj (i)−

1

δj
Wj − Zj .

(7.91)

By resorting to the S-procedure, Lemma 9.13, inequalities (7.76) and (7.88) can be

rewritten together as
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ℑxj [Vj (t, x, ηt )] ≤ ξ tj (t)Ξ̂j (i)ξj (t)

+
∫ t

t−τaj
xtj (s)

[
ns∑

m=1

αimQj (m)− Rj

]
xj (s)ds < 0, (7.92)

Ξ̂j (i) =

⎡
⎢⎢⎣

Ξ̂1j (i) Ξ2j (i) Zj Pj (i)

• Ξ̂3j
1
δj

Wj 0

• • Ξ4j 0

• • • −Ij

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

At
oj (i)

Et
oj (i)

0

0

⎤
⎥⎥⎦ (τ

2
aj Zj + 2δj Wj )

⎡
⎢⎢⎣

At
oj (i)

Et
oj (i)

0

0

⎤
⎥⎥⎦

t

, (7.93)

Ξ̂1j (i) = Ξ1j (i)+ φ2F t
jFj , Ξ̂3j (i)=Ξ3j (i)+ψ2H t

jHj . (7.94)

We can show that Ξ̂j (i) < 0. By
∑ns

m=1 αimQj (m) < Rj , we have ℑxj [Vj ] < 0

for all ξj �= 0 and ℑxj [Vj ] ≤ 0 for all ξj . Following [38], we reach ℑxj [Vj ] ≤
−ωjVj (t, x, i), ωj > 0 and by Dynkin’s formula [21], one has

E

[∫ ∞

0

ℑxj [Vj ]dt
]

= E[Vj (xj , i, t)|t=∞] − Vj (xj , i, t)|t=0 ≥ 0.

Consequently there exists a scalar νj such that E[Vj (t, x, i)] ≤ νj‖κj‖2
τMj

and this

leads to

lim
T→∞

{∫ T

0

‖xj (t)‖2dt |ηo , xj (s)= κj (s), s ∈ [τMj ,0]
}

≤ νjE‖κj‖2
τMj

.

On considering this and Definition 7.5, system (7.78) with is stochastically stable for

any time delay τj (t). With some manipulations using (7.83) and (7.94), we obtain:

J (xj ) = E

{∫ ∞

0

[
zt (t)z(t)− γ 2wt (t)w(t)+ ℑxj [Vj ] − ℑxj [Vj ]

]
dt

}

≤ E

{∫ ∞

0

[
zt (t)z(t)− γ 2wt (t)w(t)+ ℑxj [Vj ]

]
dt

}

≤ E

{∫ ∞

0

ζ tjΣj (i)ζjdt

}
, (7.95)

where Σj (i) is given by (7.79) and ζ tj = [ξ tj wt
j ]. Hence, by Schur complement

with λj = 1/φj and εj = 1/ψj , we conclude the results of Theorem 7.7 for all

t ≥ 0, J (xj ) < 0. This completes the proof. �
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7.2.4 H∞ State-Feedback Synthesis

The problem of H∞ state-feedback control could be phrased as follows: Given sub-

system (7.78), determine a local state-feedback control law

uj (t)=Kj (ηt )xj (t), ηt = i ∈ S (7.96)

which guarantees that H∞ performance measure is bounded by γj for all w(t) ∈
L2[0,∞].

Applying the controller (7.96) to system (7.72), we obtain the closed-loop sub-

system

Snj : ẋj (t) = Asj (i)xj (t)+Eoj (i)xj (t − τj (i))+ Γj (i)wj (t)+ gj (i),

zj (t) = Goj (i)xj (t)+Loj (i)xj (t − τj (i))+Ψj (i)wj (t). (7.97)

Asj (i) = Aj +Boj (i)Kj (i).

Extending on Theorem 7.7, the main design result is summarized by the following

theorem.

Theorem 7.8 Given the delay bounds τmj , τMj . If there exist positive-definite ma-

trices Yj (i), Gj (i), Λ1j (i), Λ2j (i), Λ3j (i), Λ4j (i), Λ5j (i) and scalars γj > 0,

εj (i) > 0, λj (i) > 0, i ∈ S satisfying

Πj (i) =
[
Πaj (i) Πcj (i)

• Πoj (i)

]
< 0,

ns∑

m=1

αimΛ1j (m) <Λ4j (i), (7.98)

Πaj (i) =

⎡
⎢⎢⎢⎢⎢⎣

Π1j (i) Π t
5j (i) Λ3j (i) Ij Γj (i)

• −Π2j
1
δj
Λ2j 0 0

• • −Π3j 0 0

• • • −Ij 0

• • • • −γ 2
j I

⎤
⎥⎥⎥⎥⎥⎦
,

Πcj (i) =

⎡
⎢⎢⎢⎢⎣

Yj (i)G
t
oj (i) Yj (i)F

t
j 0 Π4(i) Π4(i)

Yj (i)G
t
oj (i) 0 Yj (i)H

t
j Π5j (i) Π5j (i)

0 0 0 0 0

0 0 0 0 0

Ψj (i) 0 0 Γ t
j (i) 0

⎤
⎥⎥⎥⎥⎦
,

Πoj (i) =

⎡
⎢⎢⎢⎢⎣

−I 0 0 0 0

• −λj (i)I 0 0 0

• • −εj (i)I 0 0

• • • −Π6j (i) 0

• • • • −Π7j (i)

⎤
⎥⎥⎥⎥⎦
,

(7.99)

Π1j (i) = Aoj (i)Yj (i)+ Yj (i)A
t
oj (i)+Boj (i)Gj (i)+ Gt

j (i)B
t
oj (i)
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+
ns∑

m=1

αimYj (m)+Λ1j (i)+Λ5j (i)+ τajΛ4j (i),

Π3j = Λ1j (i)+ 1

δj
Λ2j (i)+Λ3j (i),

Π2j = Λ5j (i)+ 1

δj
Λ2j (i), Π4j = Yj (i)A

t
oj (i)+ Gt

j (i)B
t
oj (i),

Π5j (i) = Yj (i)E
t
oj (i),

Π6j (i) = τ 2
aj [Y t

j (i)+ Yj (i)−Λ3j (i)],

Π7j (i) = 1/2δ−1
j [Y t

j (i)+ Yj (i)−Λ2j (i)]

then the jump subsystem (7.97) is stochastically stable with a disturbance attenua-

tion γj . Moreover, the controller gain is given by Kj (i)= Gj (i)Y −1
j (i).

Proof Using Asj (i) instead of Aoj (i) with Schur complements, we rewrite LMI

(7.79) into the form:

Σ̂j (i) =
[
Σ̂aj (i) Σ̂cj (i)

• Σ̂oj (i)

]
< 0,

ns∑

m=1

αimQj (m) < Rj , (7.100)

Σ̂aj (i) =

⎡
⎢⎢⎢⎢⎣

Σsj (i) Pj (i)Eoj (i) Zj Pj (i) Pj (i)Γj (i)

• −Σ2j
1
δj

Wj 0 0

• • −Σ3j 0 0

• • • −Ij 0

• • • • −γ 2
j I

⎤
⎥⎥⎥⎥⎦
,

Σ̂cj (i) =

⎡
⎢⎢⎢⎢⎣

Gt
oj (i) F t

j 0 At
sj (i) At

sj (i)

0 Ltoj (i) H t
j Et

oj (i) Et
oj (i)

0 0 0 0 0

0 0 0 0 0

Ψj (i) 0 0 Γ t
j (i) Γ t

j (i)

⎤
⎥⎥⎥⎥⎦
,

(7.101)

Σ̂oj (i) =

⎡
⎢⎢⎢⎢⎣

−I 0 0 0 0

• −λj (i)I 0 0 0

• • −εj (i)I 0 0

• • • −τ−2
aj Z −1

j 0

• • • • −1/2δ−1
j W −1

j

⎤
⎥⎥⎥⎥⎦
,

Σsj (i) = Pj (i)Asj (i)+At
sj (i)Pj (i)+

ns∑

m=1

αimPj (m)

+ Qj (i)+ Xj + τaj Rj .
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Recall that the algebraic inequality

(I −MZ)Z−1(I −ZM t )= Z−1 −M t −M −MZM t > 0

⇒ −Z−1 <MZM t −M t −M

holds for any matrices M , Z > 0. Applying the congruent transformation

T = diag[Yj (i),Yj (i),Yj (i), Ij , Ij , Ij , Ij , Ij , Ij , Ij , Ij ], Yj (i)= P −1
j (i)

to Σ̂j (i) along with the change of variables

Gj (i) = Kj (i)Yj (i), Λ1j (i)= Yj (i)Qj (i)Yj (i), Λ2j (i)= Yj (i)Wj Yj (i),

Λ3j (i) = Yj (i)Zj Yj (i),

Λ4j (i) = Yj (i)Rj Yj (i), Λ5j (i)= Yj (i)Xj Yj (i)

with some mathematical manipulations, we finally reach LMI (7.98). �

7.2.5 Dynamic Output-Feedback Control

Consider the dynamic output-feedback control

˙̂xj (t) = Aoj (i)x̂j (t)+Boj (i)uj (t)+Koj (i)[yj (t)−Coj (i)x̂j (t)],
(7.102)

uj (t) = Kcj (i)x̂j (t),

where Koj (i), Kcj (i) are the unknown mode-dependent observer and control gain

matrices. Applying the dynamic controller (7.102) to the linear system (7.78), we

obtain the closed-loop system and associated matrices

ej (t) =
[
xtj (t) x

t
j (t)− x̂tj (t)

]t
, (7.103)

ėj (t) = Aj (i)ej (t)+ Êoj (i)ej (t − τj (t))+ ĉj (t)+ Γ̂j (i)wj (t),
(7.104)

zj (t) = Ĝoj (i)ej (t)+ L̂oj (i)e(t − τj (t))+Ψj (i)wj (t),

where

Aj (i) =
[
Aoj (i)+Boj (i)Kcj (i) −Boj (i)Kcj (i)

0 Aoj (i)−Koj (i)Coj (i)

]
,

Γ̂j (i) =
[

Γj (i)

Γj (i)−Koj (i)Φj (i)

]
,

(7.105)

Ĝoj (i) =
[
Goj (i) 0

]
, L̂oj (i)=

[
Loj (i) 0

]
,

ĉj (t)(i) =
[
cj (t)(i)

cj (t)(i)

]
, Êoj (i)=

[
Eoj (i) 0

0 Eoj (i)−Koj (i)Doj (i)

]
.
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It follows from Theorem 7.7 and (7.100) that the closed-loop system (7.104) is

asymptotically stable with γj disturbance attenuation level if there exist matrices

P̃j (i), Q̃j (i), R̃j , Z̃j , W̃j , X̃j , i ∈ S and scalars γ̂j > 0, ε̂j > 0, λ̂j > 0 satisfying

the LMI

Σ̃j (i) =
[
Σ̃j1(i) Σ̃j2(i)

• Σ̃j3(i)

]
< 0,

ns∑

m=1

αimQ̃j (m) < R̃j , (7.106)

Σ̃j1(i) =

⎡
⎢⎢⎢⎢⎢⎣

Σ̃sj (i) P̃j (i)Êoj (i) Z̃j P̃j (i) P̃j (i)Γ̂j (i)

• −Σ̃2j
1
δj

W̃j 0 0

• • −Σ̃3j 0 0

• • • −Ij 0

• • • • −γ̂ 2
j I

⎤
⎥⎥⎥⎥⎥⎦
,

Σ̃j2(i) =

⎡
⎢⎢⎢⎢⎢⎣

Ĝt
oj (i) F̂ t

j 0 At
sj (i) At

sj (i)

0 L̂toj (i) Ĥ t
j Ẽt

oj (i) Ẽt
oj (i)

0 0 0 0 0

0 0 0 0 0

Ψj (i) 0 0 Γ̂ t
j (i) Γ̂ t

j (i)

⎤
⎥⎥⎥⎥⎥⎦
, (7.107)

Σ̃j3(i) =

⎡
⎢⎢⎢⎢⎢⎣

−I 0 0 0 0

• −λ̂j I 0 0 0

• • −εj I 0 0

• • • −τ−2
aj Z̃ −1

j 0

• • • • −1/2δ−1
j W̃ −1

j

⎤
⎥⎥⎥⎥⎥⎦
,

Σ̃sj (i) = P̃j (i)Ãj (i)+ Ãt
sj (i)P̃j (i)

+
ns∑

m=1

αimP̃j (m)+ P̃j (i)+ Q̃j (i)+ X̃j + τaj R̃j , (7.108)

Σ̃3j = Q̃j (i)+ 1

δj
W̃j + Z̃j , Σ̃2j = X̃j + 1

δj
W̃j ,

where

P̃j (i) =
[

Pjo(i) Pjc(i)

0 Pjc(i)

]
, Q̃j (i)=

[
Qjo(i) Qjc(i)

0 Qjc(i)

]
,

X̃j =
[

Xjo Xjc

0 Xjc

]
, (7.109)

R̃j =
[

Rjo Rjc

0 Rjc

]
, Z̃j =

[
Zjo Zjc

0 Zjc

]
, W̃j =

[
Wjo Wjc

0 Wjc

]
.

The main design result is summarized by the following theorem.
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Theorem 7.9 Given the delay bounds τmj , τMj . If there exist positive-definite matri-

ces Yjo(i), Yjc(i), Gja(i), Gjo(i), Gjc(i), Gjs(i), Υ11j (i), Υ12j (i), Υ21j (i), Υ22j (i),

Υ31j (i), Υ32j (i), Υ41j (i), Υ42j (i), Υ51j (i), Υ52j (i) and scalars γj > 0, εj (i) > 0,

λj (i) > 0, i ∈ S satisfying

Θj (i) =
[
Θaj (i) Θcj (i)

• Θoj (i)

]
< 0,

ns∑

m=1

αimΥ1j (m) < Υ4j (i), (7.110)

Θaj (i) =

⎡
⎢⎢⎢⎢⎢⎣

Θ1j (i) Θ5j (i) Υ3j (i) Ij Γ̂j (i)

• −Θ2j (i)
1
δj
Υ2j 0 0

• • −Θ3j 0 0

• • • −Ij 0

• • • • −γ 2
j I

⎤
⎥⎥⎥⎥⎥⎦
,

Θcj (i) =

⎡
⎢⎢⎢⎢⎣

Yj (i)G
t
oj (i) Yj (i)F

t
j 0 Θ4(i) Θ4(i)

Yj (i)G
t
oj (i) 0 Yj (i)H

t
j Θ5j (i) Θ5j (i)

0 0 0 0 0

0 0 0 0 0

Ψj (i) 0 0 Γ t
j (i) 0

⎤
⎥⎥⎥⎥⎦
,

Θoj (i) =

⎡
⎢⎢⎢⎢⎣

−I 0 0 0 0

• −λj (i)I 0 0 0

• • −εj (i)I 0 0

• • • −Θ6j (i) 0

• • • • −Θ7j (i)

⎤
⎥⎥⎥⎥⎦
,

Θ1j (i) =
[
Θ11j (i) Θ12j (i)

0 Θ13j (i)

]
,

Θ5j (i) =
[
Eoj (i)Yjo(i) Eoj (i)Yjc(i)

0 Eoj (i)Yjc(i)− Gja(i)

]
,

Θ11j (i) = Aoj (i)Yjo(i)+ Yjo(i)A
t
oj (i)+Boj (i)Gjo(i)+ Gt

jo(i)B
t
oj (i)

+
ns∑

m=1

αimYjo(m)+Υ11j (i)+Υ51j (i)+ τajΥ41j (i),

(7.111)

Θ12j (i) = Aoj (i)Yjo(i)+Boj (i)Gjo(i)− Gjs(i)+
ns∑

m=1

αimYjc(m)

+Υ12j (i)+Υ52j (i)+ τajΥ42j (i),

Θ13j (i) = Aoj (i)Yjc(i)− Gjc(i)+
ns∑

m=1

αimYjc(m)

+Υ12j (i)+Υ52j (i)+ τajΥ42j (i),



398 7 Decentralized Control of Markovian Jump Systems

Θ2j (i) =
[
Υ51j (i)+ 1

δj
Υ21j (i) Υ52j (i)+ 1

δj
Υ22j (i)

0 Υ52j (i)+ 1
δj
Υ22j (i)

]
,

Θ4j (i) =
[
Θ41j (i) Θ42j (i)

0 Θ43j (i)

]
,

Θ3j (i) =
[
Υ11j (i)+ 1

δj
Υ21j (i)Υ31j (i) Υ122j (i)+ 1

δj
Υ22j (i)Υ32j (i)

0 Υ12j (i)+ 1
δj
Υ22j (i)Υ32j (i)

]
,

Θ41j (i) = Yjo(i)A
t
oj (i)+ Gt

jo(i)B
t
oj (i),

Θ22j (i) = Aoj (i)Yjo(i)+Boj (i)Gjo(i)− Gjs(i),

Θ43j (i) = Aoj (i)Yjc(i)− Gjc(i),

Θ6j (i) =
[
Θ61j (i) Θ62j (i)

0 Θ62j (i)

]
, Θ7j (i)=

[
Θ71j (i) Θ72j (i)

0 Θ72j (i)

]
,

Θ61j (i) = τ 2
aj [Y t

jo(i)+ Yjo(i)−Υ31j (i)],

Θ62j (i) = τ 2
aj [Y t

jc(i)+ Yjc(i)− Υ32j (i)],

Θ71j (i) = 1/2δ−1
j [Y t

jo(i)+ Yjo(i)− Υ21j (i)],

Θ72j (i) = 1/2δ−1
j [Y t

jc(i)+ Yjc(i)−Υ22j (i)]

then the jump subsystem (7.104) is stochastically stable with a disturbance at-

tenuation γj . Moreover, the controller gains are given by Kcj (i) = Gjo(i)Y −1
jo (i),

Koj (i)= Gjc(i)Y −1
jc (i)C

†
oj (i).

Proof Following parallel development to Theorem 7.8 and applying the congruent

transformation

T̃ = diag[Ỹj (i), Ỹj (i), Ỹj (i), Ij , Ij , Ij , Ij , Ij , Ij , Ij , Ij ],

Ỹj (i)= P̃ −1
j (i)=

[
Yjo(i) Yjc(i)

0 Yjc(i)

]

to Σ̃j (i) along with the change of variables

Gjo(i) = Kcj (i)Yjo(i), Gjs(i)= Boj (i)Kcj (i)Yjc(i),

Gjc(i) = Koj (i)Coj (i)Yjc(i),

Υ1j (i) = Ỹj (i)Q̃j (i)Ỹj (i)=
[
Υ11j Υ12j

0 Υ12j

]
,

Υ2j (i) = Yj (i)Wj Yj (i)

[
Υ21j Υ22j

0 Υ22j

]
,
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Υ3j (i) = Yj (i)Zj Yj (i)=
[
Υ31j Υ32j

0 Υ32j

]
,

Υ4j (i) = Yj (i)Rj Yj (i)=
[
Υ41j Υ42j

0 Υ42j

]
,

Υ5j (i) = Yj (i)Xj Yj (i)=
[
Υ51j Υ52j

0 Υ52j

]
, Gja(i)=Koj (i)Doj (i)Yjc(i)

with some mathematical manipulations, we finally reach LMI (7.98). �

7.2.6 Simulation Example 7.1

To illustrate the design procedures developed in Theorems 7.7–7.9, we consider

a representative model composed of three subsystems (ns = 2) and two-operating

conditions S = 1, 2. This model has a mode-switching generator

ℑ =
[
−1 1

1 −1

]

and the following data:

A1(1) =

⎡
⎣

−3 1 0

0.3 −2.5 −4

−0.1 0.3 −3.8

⎤
⎦ , E1(1)=

⎡
⎣

0.1669 0.0802 1.6820

−0.8162 −0.9373 0.5936

2.0941 0.6357 0.7902

⎤
⎦ ,

L1(1) =
[

0.01 0.02 0.01
]
, Ψ1(1)= 0.2, Γ1(1)=

⎡
⎣

1

0

1

⎤
⎦ ,

G1(1) =
[

0.5 −0.1 1
]
, F1(1)= 0.04 × I3, H1(1)= 0.01 × I3,

A2(1) =

⎡
⎣

−5 0 0

0.3 −3.5 2

−1.0 0.1 −8

⎤
⎦ , E2(1)=

⎡
⎣

−1.1 0.1 1

−0.5 −2.0 0.8

2.1 0 0.4

⎤
⎦ ,

G2(1) =
[

0 0.2 1
]
,

L2(1) =
[

0.01 0.01 0.01
]
, Ψ2(1)= 0.1, Γ2(1)=

⎡
⎣

−1

0

2

⎤
⎦ ,

F2(1) = 0.04 × I3, H2(1)= 0.01 × I3,

A1(2) =

⎡
⎣

−2.5 0.5 −0.1

0.1 −3.5 0.3

−0.1 1 −2

⎤
⎦ , E1(2)=

⎡
⎣

0.1053 −0.1948 −0.6855

−0.1586 0.0.0755 −0.2684

0.8709 −0.5266 −1.1883

⎤
⎦ ,

L1(2) =
[

0.02 0.01 0.01
]
, Ψ1(2)= 0.5, Γ1(2)=

⎡
⎣

−0.5

0.6

0

⎤
⎦ ,
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G1(2) =
[

0 1 0.6
]
, F1(2)= 0.09 × I3, H1(2)= 0.025 × I3,

A2(2) =

⎡
⎣

−2.0 0 −0.1

0.1 −5 0.7

0.1 1.2 −2.4

⎤
⎦ , E2(2)=

⎡
⎣

0.1 −1 −0.5

−1.5 0.02 −0.3

−0.4 0.6 −1.2

⎤
⎦ ,

G2(2) =
[

0.1 0.1 1.75
]
,

L2(2) =
[

0.01 0.04 0.02
]
, Ψ2(2)= 0.3, Γ2(2)=

⎡
⎣

0.4

0.5

−1.2

⎤
⎦ ,

F2(2) = 0.09 × I3, H2(2)= 0.025 × I3.

Initial simulation of the open-loop trajectories, depicted in Fig. 7.1, shows that both

subsystems are unstable. For the purpose of stabilization, we employ the Matlab

LMI-solver for numerical solution with the input matrices

B1(1) =

⎡
⎣

1 1

0 1

1 0

⎤
⎦ , B1(2)=

⎡
⎣

0 1

0 1

1 0

⎤
⎦ ,

B2(1) =

⎡
⎣

1 0

0 1

0 0

⎤
⎦ , B2(2)=

⎡
⎣

0 0

1 0

0 1

⎤
⎦ .

It is found that the feasible solution of the LMIs (7.79)–(7.81) is attained at

Subsystem 1: τm1 = 0.1, τM1 = 0.7,

γ1 = 0.8336, ε1(1)= 7.9588, ε1(2)= 7.9588,

λ1(1) = 7.9588, λ1(2)= 7.9588,

K1(1) =
[
−1.2242 −0.0048 −2.0974

−0.4566 −1.5360 2.5571

]
,

Fig. 7.1 Plots of open-loop trajectories: subsystem 1 (left) and subsystem 2 (right)
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Fig. 7.2 Plots of subsystem 1: switching signal (left) and state trajectories (right)

Fig. 7.3 Plots of subsystem 2: switching signal (left) and state trajectories (right)

K1(2) =
[
−0.0701 −0.9263 −3.4063

−1.9252 −0.9824 −0.4140

]
,

Subsystem 2: τm2 = 0.2, τM2 = 0.8,

γ2 = 0.8423, ε2(1)= 1.6782, ε2(2)= 1.6782,

λ2(1) = 1.6782, λ2(2)= 1.6782,

K2(1) =
[
−4.9939 −2.6350 0.9172

−2.2851 −7.8264 −1.0395

]
,

K2(2) =
[

6.7707 −3.5949 −7.9858

−3.8214 2.0099 −2.7224

]
.

The corresponding closed-loop subsystem trajectories under state-feedback clarify

that the subsystems are asymptotically stable under abrupt changes between modes.

The ensuing plots are given in Figs. 7.2 and 7.3. In Fig. 7.4, the behavior of the

switching signal is presented. Turning attention to the dynamic output-feedback case
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Fig. 7.4 Pattern of switching

behavior

and using the Matlab LMI-solver with the output matrices

C1(1) =
[

1 0.5 1

0 1 1.5

]
, C1(2)=

[
0 1 2

1 0 1

]
,

Φ1(1) =
[

0.1

0.5

]
, Φ1(2)=

[
0

0.3

]
,

C2(1) =
[

0.4 0 1

1 0.5 0.5

]
, C2(2)=

[
0.5 1.5 0

1 0 0.5

]
,

Φ2(1) =
[

0.5

0

]
, Φ2(2)=

[
0.3

0.2

]
,

D1(1) =
[

0.1 0.2 0

0.4 0.5 0.5

]
, D1(2)=

[
0.2 0.4 0.3

0.1 0 0.3

]
,

D2(1) =
[

0.2 0.1 0.1

0.2 0.3 0.4

]
, D2(2)=

[
0 0.5 0.3

0.2 0.2 0.1

]

the results of numerical simulation yield the feasible solution of the LMIs (7.79)–

(7.81), (7.110)–(7.111) as

Subsystem 1: τm1 = 0.1, τM1 = 0.7,

γ1 = 0.8336, ε1(1)= 7.9588, ε1(2)= 7.9588,

λ1(1) = 7.9588, λ1(2)= 7.9588,

Kc1(1) =
[
−1.2242 −0.0048 −2.0974

−0.4566 −1.5360 2.5571

]
,

Kc1(2) =
[
−0.0701 −0.9263 −3.4063

−1.9252 −0.9824 −0.4140

]
,

Kt
o1(1) =

[
0.0488 0.1996 0.0318

−0.2248 0.6650 0.0433

]
,
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Fig. 7.5 Plots of output-feedback trajectories: subsystem 1 (left) and subsystem 2 (right)

Kt
o1(2) =

[
0.8419 0.4566 0.9497

0.6341 0.3460 0.6976

]
,

Subsystem 2: τm2 = 0.2, τM2 = 0.8,

γ2 = 0.8423, ε2(1)= 1.6782, ε2(2)= 1.6782,

λ2(1) = 1.6782, λ2(2)= 1.6782,

Kc2(1) =
[
−4.9939 −2.6350 0.9172

−2.2851 −7.8264 −1.0395

]
,

Kc2(2) =
[

6.7707 −3.5949 −7.9858

−3.8214 2.0099 −2.7224

]
,

Kt
o2(1) =

[
0.1312 −0.1555 0.0246

−0.4663 0.5364 −0.0383

]
,

Kt
o2(2) =

[
0.4195 −0.5346 0.4667

−0.2311 0.1960 −0.3335

]
.

The corresponding closed-loop subsystem trajectories under dynamic output-

feedback illustrate that the jump subsystems are asymptotically stable under abrupt

changes between modes. The ensuing plots are given in Fig. 7.5.

7.3 H∞ Control by Averaging and Aggregation

In this section, we follow a different route to provide a complete study of the H∞
optimal control problem for linear interconnected systems with Markovian jump

parameters. We consider that the form process admits strong and weak interactions.

Under perfect state measurements, for both finite and infinite horizon cases, we pro-

ceed to construct an aggregate jump linear system from the original jump linear sys-

tem, which has a considerably smaller state space for the Markov chain process and
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eventually is independent of the singular perturbation parameter ε > 0. Taking into

account the nature of this smaller order aggregate jump linear system, a threshold

level γ̄ will be defined, which is shown to constitute an upper bound for the optimal

performance level of the overall system, γ ∗(ε), as the parameter ε approaches 0.

In particular, this bound is shown to be exact in the infinite horizon case. In both

cases, an approximate controller is constructed from the solution to the aggregate

problem that can achieve any desired level of performance for the full-order system

for sufficiently small values of ε.

7.3.1 Introduction

In control theory, systems subject to frequent unpredictable structural changes can

be adequately modeled as piecewise deterministic systems, where the system dy-

namics take on different forms depending on the value of an associated Markov

chain process, which is known as form or indicant process associated with the con-

trolled system. In the linear case, these systems are also known as jump linear sys-

tems. Such a system model is useful particularly since it allows the decision maker

to cope adequately with the discrete events that disrupt and/or change significantly

the normal operation of a system by using the knowledge of their occurrence and

the statistical information on the rate at which these events take place. Research into

this class of systems and their applications into manufacturing management span

several decades, with some representative books and papers in this area being [1, 6,

10–12, 14, 18, 20, 21, 55–58].

Research into the control of piecewise-deterministic systems in the presence of

unknown (continuous) disturbances has been initiated, in [53] and [8] for jump lin-

ear systems, and in [4] for nonlinear systems. This is the paradigm of H∞ opti-

mal control [2, 9, 60], where there is an additional (discrete) element, which is

the stochastic (piecewise constant) Markov process disturbance, that causes struc-

tural changes. A complete set of solutions for this class of problems, under perfect

state and imperfect state measurements, and in both finite and infinite horizon cases

has been presented in [53] based on properties of zero-sum differential games with

piecewise deterministic dynamics [3]. This hybrid H∞ control formulation, like its

deterministic counterpart, leads to design of a robust controller which, by the small

gain theorem, stabilizes a class of systems centered around the nominal system. It

is particularly useful for systems whose parameters are either difficult to identify, or

even simply time-varying within a significant bounded set. Compared with a single

robust controller design intended to stabilize the overall jump linear system, this

approach removes unnecessary conservatism by utilizing the statistical information

about the disrupting discrete events. It is noted that a limited version of this problem

was studied in the perfect state measurements case in [8].

In real applications, a formulation of the foregoing type eventually leads to a very

high dimensional state for the Markov chain, which makes it computationally infea-

sible or extremely sensitive to small inaccuracies. One way of coping with (and alle-

viating) this difficulty, would be to group different Markov chain states into several
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separate sets, based on some temporal decomposition, and define a new (approxi-

mate) problem on these individual sets. More precisely, we consider the situation

where the form process exhibits a two-time-scale behavior, thus admitting strong

and weak interactions among its states, with the separation quantified in terms of a

(small) singular perturbation parameter, ε > 0. Modeling of such Markov chain pro-

cesses as well as their optimal control was conducted earlier by [7, 54], upon which

the material of this section is built around. The derivation hereafter is based on aver-

aging and essentially leads to an aggregate jump linear system. In effect, this system

has a considerably smaller state space for its form process and is also independent

of ε > 0. Using this smaller-order aggregate jump linear system, a threshold level is

defined which asymptotically upper bounds the achievable performance level of the

overall system as the parameter ε decreases to 0.

7.3.2 Problem Formulation

The class of jump linear systems under consideration is described by:

ẋ =A(θ(t))x +B(θ(t))u+D(θ(t))w; x(0)= x0, (7.112)

where x ∈ ℜn is the system state vector; u ∈ ℜp is the control input; w ∈ ℜq is the

disturbance input; θ(t) is a finite-state Markov process defined on the state space

S = {1, . . . , σ } with the infinitesimal generator matrix

Λ= (λij )σ×σ

and an initial distribution π: = [π01, . . . , π0σ ]. The underlying probability space is

the triple (Ω,F,P ). The initial condition x0 is available to the controller, but it is

not fixed a priori and is determined as part of the disturbance policy. In what follows,

θ(t) defines the so-called form or indicant process, which determines the form of

the system at time t. The system state x, inputs u and w, each belong to appropriate

L2-Hilbert spaces Hx,Hu and Hw respectively, defined on the time interval [0,∞].
Let E denote the expectation with respect to the underlying probability space.

When the form process is large-scale, it is quite natural to think of the large num-

ber of states to be grouped into different collections of states, based on whether

the interaction between any two states is weak or strong. Occurrence of such a

phenomenon is expressed mathematically by taking the probability transition rate

matrix Λ in an appropriate singularly perturbed form [7, 54]:

Λ=Λs + (1/ε)Λf , (7.113)

where Λs := (λ
(s)
ij )σ×σ , and Λf := (λ

(f )
ij )σ×σ are probability transition rate matri-

ces corresponding to, respectively, weak interactions and strong interactions within

the form process. The scalar ε is a small positive number, whose inverse provides

a measure of the order separation between the weak and strong interactions. The
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states of the form process can always be properly arranged so that the generator

matrix Λf takes the following structure:

Λf =

⎡
⎢⎢⎢⎣

Λ(f 1) . . . 0σ1×σσ̄ 0σ1×σt
...

. . .
...

...

0σσ̄×σ1
. . . Λ(f σ̄ ) 0σσ̄×σt

Λ(f t1) . . . Λ(f tσ̄ ) Λ(f t)

⎤
⎥⎥⎥⎦ , (7.114)

where the matrices Λ(f i), i = 1, . . . , σ̄ are infinitesimal generators, with the ith one

corresponding to a positive recurrent Markov chain with σi states; the matrix Λ(f t)

is of dimensions σt × σt and is Hurwitz; and the dimensions of the matrices Λ(f ti),

i = 1, . . . , σ̄ are defined accordingly. Clearly, σ =
∑σ̄

i=1 σi + σt . This effectively

partitions the set S into σ̄ recurrent (or ergodic) sets,

Si :=
{
i−1∑

j=1

σj + 1, . . . ,

i∑

j=1

σj

}
, i = 1, . . . , σ̄

and a transient set,

St :=
{

σ̄∑

j=1

σj + 1, . . . , σ

}
.

From now onwards, each recurrent set and their associated form systems will be

called (collectively) a recurrent group; the transient set and its associated form sys-

tems will be called the transient group. Compatible with this structure, the generator

matrix Λs is partitioned as:

Λs =

⎡
⎢⎢⎢⎣

Λ(s11) . . . Λ(s1σ̄ ) Λ(s1t)

...
. . .

...
...

Λ(sσ̄1) . . . Λ(sσ̄ σ̄ ) Λ(sσ̄ t)

Λ(st1) . . . Λ(st σ̄ ) Λ(stt)

⎤
⎥⎥⎥⎦ , (7.115)

where the superscript of the subblock matrices indicates the transitions between the

indexed recurrent sets or the transient set.

The control input u is generated by a control policy μ according to

u(t)= μ(t, x[0,t], θ[0,t]) (7.116)

where μ :Hx ×Ω →Hu is piecewise continuous in t and Lipschitz continuous in x

and measurable in θ , further satisfying the given causality condition. Let us denote

the class of all admissible controllers by M .

The initial condition x0 and the input w are determined by the disturbance policy

δ := (δ0, ν), according to:

x0 = δ0(θ(0)), (7.117)

w(t) = ν(t, x[0,t], θ[0,t]), (7.118)
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where δ0 : S → ℜn, and ν : Hx ×Ω → Hw is piecewise continuous in t and Lip-

schitz continuous in x and measurable in θ , further satisfying the given causality

condition. Let us denote the class of all admissible disturbance policies δ by D.

Following [3], we focus on the upper value of an associated zero-sum game,

where the disturbance is allowed to act after the controller policy has been selected,

the disturbance policy can in fact be restricted (without any loss of generality) to

one that only depends on state history of the form process, θ[0,t], but not on the state

trajectory of the continuous system, x[0,t]. Observe that the causal dependence of the

disturbance on the form process is a crucial assumption, which cannot be dispensed

with.

We adopt for this system the infinite-horizon quadratic performance index:

L(μ, δ)= E

{∫ ∞

0

(|x(t)|2Q(θ(t)) + |u(t)|2)dt
}
; Q(·)≥ 0, (7.119)

in which context the H∞ optimal control problem is to find the infimum over all

admissible controllers (belonging to M) of the following “squared” worst-case L2

gain:

J (μ, δ) := sup
δ∈D

L(μ, δ)

E{
∫∞

0 |w(t)|2dt + |x0|2Q0(θ(0))
}
.

Let us denote the optimal performance level by γ ∗(ε), that is:

inf
μ∈M

sup
δ∈D

L(μ, δ)1/2

(E{
∫∞

0 |w(t)|2dt + |x0|2Q0(θ(0))
})1/2

:= γ ∗(ε). (7.120)

The objective of the controller design is then to find control policies that guarantee

a performance level within a given neighborhood of the optimal one.

This H∞ optimal control problem is known to be closely related to a class of

zero-sum differential games for the jump linear system (7.112), with the following

γ -parametrized cost function:

Jγ (μ, δ)= L(μ, δ)− γ 2
E

{∫ ∞

0

(|w(t)|2)dt + |x0|2Q0(θ(0))

}
, (7.121)

where the control μ is the minimizer and the disturbance δ is the maximizer [53].

The threshold γ ∗(ε) is then the “smallest” value of γ > 0 such that the above game

admits a finite upper value, which is necessarily zero.

Remark 7.9 It is significant to note that for each fixed ε > 0, the complete solu-

tion to the above stochastic H∞ control problem has been obtained in [53], the

computation of the quantity γ ∗(ε) and that of a corresponding H∞-optimal or sub-

optimal controller for small values of ε presents serious difficulties due to numerical

ill-conditioning and high dimensionality. To remedy this, an averaging and aggre-

gation technique is proposed, following the results of [7, 54], which leads to an
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aggregated jump linear system that is independent of ε > 0. The solution to the H∞

control problem for the aggregated jump linear system will then be used to construct

near-optimal solutions to the original stochastic H∞ control problem.

To proceed with the study, three basic assumptions are recalled and are quite

natural in the present context.

Assumption 7.3 Matrix functions Q0(i) are positive definite for all i ∈ S.

Assumption 7.4 The initial probability distribution of the form process satisfies

πoi > 0 for all i ∈ S.

Assumption 7.5 The pairs (A(i),Q(i)) are observable for each i ∈ S.

Remark 7.10 Assumption 7.3 guarantees a strictly concave cost term for the initial

state of the form system, which is to be selected by the disturbance. Assumption 7.4

then says that any state of the form process has a positive probability of being visited

at any time t ∈ [0,∞). Depending on whether the form process is recurrent or not,

the probability of visiting some states may diminish to zero as t → ∞.

Remark 7.11 Looking at the solution to the full-order problem in the infinite-

horizon case, for a fixed ε > 0, we let the pair (A(θ),B(θ)) be stochastically sta-

bilizable and Assumptions 7.3–7.5 hold. In view of the results of [53], the opti-

mal performance level γ ∗(ε) for the full-order problem is finite. For every γ larger

than this quantity, the associated zero-sum differential game has a zero upper value.

A control policy that guarantees this zero upper value, which is then a control policy

that guarantees an H∞ performance level of γ , is given by

μ∗
γ (x(t), θ(t))= −B ′(θ(t))Z̄(θ(t); ε)x(t), (7.122)

where Z(i; ε), i = 1, . . . , σ are positive-definite solutions to the following set of

coupled generalized algebraic Riccati inequalities (GARI’s):

A′(i)Z̄(i)+ Z̄(i)A(i)− Z̄(i)(B(i)B ′(i)(1/γ 2)D(i)D′(i))Z̄(i)+Q(i)

+
σ∑

j=1

λij Z̄(j)≤ 0; i = 1, . . . , σ. (7.123)

Furthermore, these solutions satisfy the spectral radius condition:

Z̄(i; ε) < γ 2Q0(i); i = 1, . . . , σ. (7.124)

On the other hand, for any γ less than the threshold γ ∗(ε), either the set of coupled

GARI’s (7.123) does not admit any nonnegative definite solutions, and in particular,

the following set of coupled generalized algebraic Riccati equations (GARE’s) does
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not admit any nonnegative definite solutions:

A′(i)Z(i)+Z(i)A(i)−Z(i)(B(i)B ′(i)− (1/γ 2)D(i)D′(i))Z(i)+Q(i)

+
σ∑

j=1

λijZ(j)≤ 0; i = 1, . . . , σ, (7.125)

or the solution to the above sets of coupled GARI’s and GARE’s do not satisfy the

spectral radius condition (7.124). Hence, for these values of γ , the upper value of

the associated zero-sum differential game is infinity.

Now turning attention to the finite-horizon time-varying problem, we take the

time interval of interest to be [0, tf ], and the system matrices A, B , D, Q, Λs ,

Λf to be possibly time dependent, in addition to them being dependent on the form

process θ(t). The cost function associated with this system, (7.119), is then replaced

by the following finite-horizon quadratic function:

L(μ, δ) = E

{∫ tf

0

(|x(t)|2Q(t,θ(t)) + |u(t)|2)dt + |x(tf )|
2
Qf (θ(tf ))

}
,

Q(., .)≥ 0, Qf (·)≥ 0. (7.126)

The H∞ optimal control problem is again the minimization of the worst-case L2

gain, for which the optimal performance level is again denoted by γ ∗(ε) as defined

in (7.120), with L replaced by its expression given by (7.126) above.

By similarity to the infinite-horizon case, this finite-horizon H∞ control prob-

lem is closely related to a class of zero-sum differential game problems indexed by

γ > 0, with the game kernel defined as in (7.121), where the function L(μ, δ) is

as defined in (7.126), and with the norm on w now defined on [0, tf ]. The optimal

performance level γ ∗(ε) is again the “smallest” value of γ such that the associ-

ated zero-sum differential game admits a finite upper value, which is necessarily

zero.

In this case, in addition to Assumptions 7.3 and 7.4, we need the following

one:

Assumption 7.6 The matrices A(t, i), B(t, i), D(t, i), Q(t, i) are piecewise con-

tinuous in t , and the generator matrices Λs(t), Λf (t) are piecewise continuously

differentiable in t , for each i ∈ S.

It follows from [53], under Assumptions 7.3, 7.4 and 7.6, for each fixed ε > 0

and γ > γ ∗(ε), there exists a controller that guarantees the H∞ performance level

γ for the full-order problem. The controller is then given by

μ∗
γ (t, x(t), θ(t))= −B ′(t, θ(t))Z(t, θ(t); ε)x(t), (7.127)

where Z(t, i; ε), i = 1, . . . , σ are nonnegative definite solutions to the following set

of coupled generalized Riccati differential equations (GRDE’s):
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Ż(t, i)+A′(t, i)Z(t, i)+Z(t, i)A(t, i)−Z(t, i)(B(t, i)B ′(t, i)

− (1/γ 2)D(t, i)D′(t, i))Z(t, i)+Q(t, i)+
σ∑

j=1

λijZ(t, j)= 0, (7.128)

Z(tf , i)=Qf (i), i = 1, . . . , σ.

These solutions satisfy a spectral radius condition at time 0:

Z(0, i; ε) < γ 2Q0(i); i = 1, . . . , σ. (7.129)

For any γ less than the threshold γ ∗(ε), however, either the set of coupled GRDE’s

(7.128) has a conjugate point on the interval [0, tf ], or the spectral radius condition

(7.129) is violated. In either case, the upper value of the associated differential game

is unbounded.

For both the finite and infinite horizon cases, we seek to use averaging and aggre-

gation techniques to obtain an ε-independent aggregate jump linear system, so as to

obtain ε-independent suboptimal controllers that guarantee any achievable perfor-

mance level for the full-order problem for sufficiently small values of ε.

7.3.3 Results in the Infinite-Horizon Case

In this section, we study the problem formulated in the previous section in the

infinite-horizon case, under the working Assumptions 7.3–7.5. The aggregation of

the form process with the transition rate matrix given as (7.113) has already been

studied extensively in [7, 54]. The aggregated Markov chain process, θA(t), of the

form process, θ(t), constitutes the form process of the aggregate jump linear system

and can be constructed as follows:

Let π (f i) be a σi -dimensional probability row vector that constitutes the in-

variant distribution corresponding to the probability transition rate matrix Λ(f i),

i = 1, . . . , σ̄ , that is,

π (f i)Λ(f i) = 01×σi ; π (f i)1σi×1 = 1; i = 1, . . . , σ̄ .

Define a (
∑σ̄

i=1 σi)-dimensional row vector π (f ) by lining up all the π (f i)’s:

π (f ) :=
[
π (f 1) . . . π (f σ̄ )

]

where the j th element of π (f ) is denoted by π
(f )

j . Define a (σt × σ̄ )-dimensional

matrix PT :

PT =
(
P
(T )
ij

)
σt×σ̄ := −Λ(f t)−1[

Λ(f t1)1σ1×1 . . . Λ(f tσ̄ )1σσ̄×1

]
, (7.130)

where each element P
(T )
ij is the conditional probability of ending up in the j th

recurrent set given that the process has started in ith state of the transient set. Thus,
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the aggregated process θA takes values in the aggregate set:

SA := {1, . . . , σ̄ }.

The infinitesimal generator for θA is given by

ΛA = (λ
(A)
ij )σ̄×σ̄ :=

⎡
⎢⎣
π (f 1)Λ(s11)1σ1×1 . . . π (f 1)Λ(s1σ̄ )1σσ̄×1

...
. . .

...

π (f σ̄ )Λ(sσ̄1)1σ1×1 . . . π (f σ̄ )Λ(sσ̄ σ̄ )1σσ̄×1

⎤
⎥⎦

+

⎡
⎢⎣
π (f 1)Λ(s1t)

...

π (f σ̄ )Λ(sσ̄ t)

⎤
⎥⎦PT , (7.131)

where the ij th element of the first matrix is the transition rate from ith recurrent set

to j th recurrent set directly, i �= j ; and the ij th element of the second matrix is the

transition rate from ith recurrent set to j th recurrent set via the transient set, i �= j .

The initial distribution for the aggregated process θA is

πA0 =
[∑

l∈S1

π0l . . .
∑

l∈Sσ̄

π0l

]
+ [π0σ−σ t+1

. . . π0σ ]PT , (7.132)

where the ith element of the first vector is the probability of the process θ starting

in the ith recurrent set; and the ith element of the second vector is the probability

of the process θ to start in the transient set and land in the ith recurrent set the first

instant θ leaves the transient set.

The underlying probability space for this aggregate Markov chain is denoted by

the triple (ΩA,FA,PA), and the expectation under this probability space by EA.

To arrive at the form systems associated with each state of the aggregated Markov

chain, we now make the following observation. As ε approaches zero, jumps of the

form process within any recurrent set occur at much higher frequency than any of

the time constants of any individual form system. Thus, within a short time interval

of length O(
√
ε), the form process may visit every state within a recurrent set many

times while the state of the form system moves a very short distance. The average

time spent in the states among a recurrent group is proportional with the corre-

sponding elements of the invariant distribution π (f ). Thus, it should be intuitively

expected that the value function for the zero-sum differential game, if it exists, is

asymptotically identical on every recurrent set as ε → 0. By formally setting ε = 0,

the solution to the set of coupled GARI’s (2.18) are such that

Z(j1)=Z(j2); for all j1, j2 ∈ Si, i = 1, . . . , σ̄ .

We will prove shortly that this is indeed the case as ε → 0. Given this structure of the

solution to the GARI’s (7.123), the corresponding control policy and the worst-case

disturbance input will be of the form

M(θ(t))Z(θ(t))x(t),
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where M(·) is a matrix function of appropriate dimensions that is generally different

for each value of the form process.

The above observation leads to the following form of the aggregated system:

ẋA =AA(θA(t))xA +BA(θA(t))uA +DA(θA(t))wA; xA(0)= x0, (7.133)

where

AA(i) :=
∑

l∈Si
π
(f )

l A(l); i = 1, . . . , σ̄ , (7.134)

BA(i) :=
(∑

l∈Si
π
(f )
l B(l)B ′(l)

)−1/2

; i = 1, . . . , σ̄ , (7.135)

DA(i) :=
(∑

l∈Si
π
(f )

l D(l)D′(l)
)−1/2

; i = 1, . . . , σ̄ . (7.136)

The form of averaging for the matrices BA and DA is also intuitive from the fact

that the control and the disturbance policies are generally switching policies whose

second moments are penalized in the cost function. A direct consequence of this

formulation is that the inputs into the aggregate system do not in general correspond

to those for the original system. The control input and the disturbance input are

generated by the following causal mappings:

uA(t) = μA(t, xA[0,t], θA[0,t]), (7.137)

(x0,wA(t)) = (δA0(θA(0)), νA(t, xA[0,t], θA[0,t])). (7.138)

The general cost function associated with this system is defined to be:

JAγ (μA, δA)

=EA

{
(x′
AQA(θA(t))xA + u′

AuA − γ 2w′
AwA)dt − γ 2|x0|2QA0(θA(0))

}
, (7.139)

where

QA(i) :=
∑

l∈Si
π
(f )
l Q(l); i = 1, . . . , σ̄ , (7.140)

QA0(i) :=
∑

l∈Si
π
(f )

l Q0(l); i = 1, . . . , σ̄ . (7.141)

This class of zero-sum differential games for the aggregate jump linear system

(7.133) and (7.131) is obviously closely related to the H∞ optimal control prob-

lem:

inf
μA

sup
νA

(
EA{

∫∞
0 (x′

AQA(θA(t))xA + u′
AuA)dt}

EA{
∫∞

0
w′
AwAdt + |x0|2QA0(θA(0))

}

)1/2

.
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Remark 7.12 The aggregate problem above provides a fairly good approximation

to the original full-order problem for t > 0. At the initial time t = 0, however, there

is an information loss for the disturbance through the aggregation process since

the disturbance can choose the initial state x0 depending only on θA(0), and not

on θ(0). Thus, the spectral radius condition associated with the aggregate problem

is not directly relevant to the solution of the original problem except in some special

cases, as it will be shown in the sequel.

For this reduced, average H∞ control problem, we introduce two regularity con-

ditions:

Assumption 7.7 The pair (AA(θA),BA(θA)) is stochastically stabilizable.

Assumption 7.8 The pair (AA(i),QA(i)) are observable for each i ∈ SA.

A related set of coupled GARE’s is also introduced:

A′
A(i)ZA(i)+ZA(i)AA(i)−ZA(i)(BA(i)B

′
A(i)− (1/γ 2)DA(i)D

′
A(i))ZA(i)

+QA(i)+
σ̄∑

j=1

λ
(A)
ij ZA(j)= 0; i = 1, . . . , σ̄ . (7.142)

By the results of [53], the optimal performance level for the aggregate H∞ control

problem is given by the following infimum:

γ ∗
A := inf{γ > 0 : There exists a set of nonnegative definite solutions ZA(i),

i ∈ SA, to the set of coupled GARE’s (7.142), such that

ZA(i) < γ 2QA0(i) for all i ∈ SA}.

This threshold level is finite under the working Assumption 7.7.

Next we introduce a set of spectral radius conditions:

ZA(i) < γ 2Q0(j); ∀j ∈ Si, i = 1, . . . , σ̄ , (7.143)

σ̄∑

i=1

P
(T )

l̃i
ZA(i) < γ 2Q0(l); ∀l ∈ St , l̃ = l − σ + σt . (7.144)

Define the quantity γ̄ > 0:

γ̄ := inf{γ > 0 : There exists a set of nonnegative definite solutions ZA(i),

i ∈ SA, to the set of coupled GARE’s (7.142) that further satisfies

the set of spectral radius conditions (7.143)–(7.144)}. (7.145)

This quantity will be shown to be the asymptotic limit of γ ∗(ε) as ε → 0. Under

Assumption 7.7, γ̄ is finite.
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Remark 7.13 The quantities γ̄ and γ ∗
A are generally different. They are equal if

Q0()̇ remains constant on each recurrent set Si , i = 1, . . . , σ̄ ; and

σ̄∑

i=1

P
(T )

l̃i
QA0(i) <Q0(l); ∀l ∈ St , l̃ = l − σ + σt .

In this special case, the optimal performance level for the aggregate problem is the

asymptotic limit of the optimal performance level for the full-order system as ε → 0.

For every γ > γ̄ , under Assumptions 7.7 and 7.8, it can be shown, by following

lines of reasoning similar to that of [53], that there exists a set of positive definite

solutions Z̄A(i), i ∈ SA to the following set of coupled GARI’s:

A′
A(i)Z̄A(i)+ Z̄A(i)AA(i)− Z̄A(i)(BA(i)B

′
A(i)− (1/γ 2DA(i)D

′
A(i))Z̄A(i)

+QA(i)+
σ̄∑

j=1

λ
(A)
ij Z̄A(j)≤ 0; i = 1, . . . , σ̄ (7.146)

which also satisfy the spectral radius conditions (2.37). Furthermore, the following

jump linear system is mean-square stable:

ẋ = (AA(θA)− (BA(θA)B
′
A(θA)− (1/γ 2)DA(θA)D

′
A(θA))Z̄A(θA))x

=: AFA(θA)x. (7.147)

Let us define ΔA(i) to be the residue to the set of coupled GARI’s (7.146):

ΔA(i) := −A′
A(i)Z̄A(i)− Z̄A(i)AA(i)+ Z̄A(i)(BA(i)B

′
A(i)

− (1/γ 2)DA(i)D
′
A(i))Z̄A(i)

−QA(i)−
σ̄∑

j=1

λ
(A)
ij Z̄A(j)≥ 0; i = 1, . . . , σ̄ .

In terms of the matrices Z̄A(i), i ∈ SA, the following approximate control policy is

introduced for the full-order system:

μ∗
a(t, x(t), θ(t))=

{
−B ′(i)Z̄A(j)x(t); θ(t)= i ∈ Sj ,

K(i)x(t); θ(t)= i ∈ St ,
(7.148)

where the p-by-n dimensional matrix function K(·) can be fixed arbitrarily, and

its specific choice does not affect the overall performance of the full-order prob-

lem.

Now in order to relate the solution of the set of coupled GARI’s (7.123) for

the full-order problem to the solution of (7.146) for the aggregate problem, let us
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consider the following reparametrization of the former. Define

Z̄a(i) :=
∑

l∈Si
π
(f )
l Z̄(l); i = 1, . . . , σ̄ , (7.149)

Z̄d(l) := (1/ε)(Z̄(l)− Z̄a(i)); l ∈ Si, i = 1, . . . , σ̄ , (7.150)

Z̄d(l) := (1/ε)

(
Z̄(l)−

σ̄∑

i=1

P
(T )

l̃i
Z̄a(i)

)
; l ∈ St , l̃ = l − σ + σb. (7.151)

Obviously, the matrices Z̄a(i) correspond to the quadratic kernel for the average

value function for the ith recurrent group; the matrices Z̄d(l), l ∈ Si for some i ∈ SA,

then correspond to the quadratic kernel for the O(ε) deviation between the value

function associated with the form process state l and the average value function of

the recurrent group where the state l lies in. For any state l within the transient set

St , the quadratic kernel of the value function at ε = 0 will be shown shortly to be∑σ̄
i=1P

(T )

l̃i
Z̄a(i). Thus, the matrix Z̄d(l) corresponds to the quadratic kernel for the

O(ε) deviation from this asymptotic value.

An independent parametrization can be formed by using a subset of the above

matrices:

Z̄a(i), i ∈ SA; Z̄d(l), l ∈ Si

{
i∑

j=1

σj

}
, i ∈ SA; Z̄d(l), l ∈ St

(7.152)

since we have the obvious linear dependence, for each i = 1, . . . , σ̄ :

∑

l∈Si
π
(f )
l Z̄d(l)= 0n×n. (7.153)

Now introduce the following matrices, for i = 1, . . . , σ̄ :

Λ̄(f i) = (λ̄
(f i)

lk )(σi−1)×(σi−1) :=
(
λ
(f i)

lk −
π
(f i)
k

π
(f i)
σi

λ
(f i)

lσi

)

(σi−1)×(σi−1)

. (7.154)

Clearly, these matrices are, respectively, the transition rate matrices Λ(f i), i =
1, . . . , σ̄ , deflated of the zero eigenvalue. They are Hurwitz by the following lemma:

Lemma 7.5 Let Λ= (λij )p×p be the probability transition rate matrix correspond-

ing to a continuous-time positive recurrent finite state Markov chain. Let π be the

stationary probability distribution with respect to this Markov chain. Then, the ma-

trix

Λ̄= (λ̄lk)(p−1)×(p−1) :=
(
λlk − πk

πp
λlp

)

(p−1)×(p−1)

is Hurwitz.
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Proof It is well known that the matrix Λ has one and only one zero eigenvalue, and

its remaining eigenvalues are in the open left half of the complex plane. Define a

matrix

T =

⎡
⎢⎢⎢⎣

1 . . . 0 0
...

. . .
...

...

0 . . . 1 0

− π1
πp

. . . −πp−1

πp
1

⎤
⎥⎥⎥⎦ .

It is easy to verify that

T −1ΛT =
[

Λ̄ ∗
01×(p−1) 0

]
,

where ∗ denotes some constant matrix. This implies that the eigenvalues of Λ̄ are

precisely the eigenvalues of Λ except the zero eigenvalue. Hence, the lemma is

proven. �

Using the solution to the aggregate GARI’s (7.146), we now attempt to solve the

full-order GARI’s (7.123) in the following special case:

A′(l)Z̄(l)+ Z̄(l)A(l)− Z̄(l)(B(l)B ′(l)− (1/γ 2)D(l)D′(l))Z̄(l)+Q(l)

+
σ∑

j=1

λlj Z̄(j)+ΔA(i)= 0; l ∈ Si, i = 1, . . . , σ̄ , (7.155)

A′(l)Z̄(l)+ Z̄(l)A(l)− Z̄(l)(B(l)B ′(l)− (1/γ 2)D(l)D′(l))Z̄(l)+Q(l)

+
σ∑

j=1

λlj Z̄(j)= 0; l ∈ St . (7.156)

In terms of the parametrization (7.152), the set of coupled GARE’s (7.155)–

(7.156) can be equivalently written with some algebraic manipulations, as

A′
A(i)Z̄a(i)+ Z̄a(i)AA(i)− Z̄a(i)(BA(i)B

′
A(i)− (1/γ 2)DA(i)D

′
A(i))Z̄a(i)

+QA(i)+
σ̄∑

j=1

λ
(A)
ij Z̄a(j)+ΛA(i)+ εηa(ε, i)= 0; i = 1, . . . , σ̄ , (7.157)

A′(l)Z̄a(i)+ Z̄a(i)A(l)− Z̄a(i)(B(l)B
′(l)− (1/γ 2)D(l)D′(l))Z̄a(i)+Q(l)

+
σ̄∑

j=1

∑

k∈Sj
λ
(s)
lk Z̄a(j)+

∑

k∈St
λ
(s)
lk

σ̄∑

j=1

P
(T )
(k−σ+σt )j Z̄a(j)

+
σi−1∑

j=1

λ̄
(f i)

l̃j
Z̄d

(
j +

i−1∑

l=1

σl

)
+ΔA(i)+ εηd(ε, l)= 0;

l ∈ Si

{
i∑

j=1

σj

}
, i = 1, . . . , σ̄ , l̃ = l −

i−1∑

j=1

σj , (7.158)
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A′(l)
σ̄∑

i=1

P
(T )

l̃i
Z̄a(i)+

σ̄∑

i=1

P
(T )

l̃i
Z̄a(i)A(l)−

(
σ̄∑

i=1

P
(T )

l̃i
Z̄a(i)

)
(B(l)B ′(l)

− (1/γ 2)D(l)D′(l))

(
σ̄∑

i=1

P
(T )

l̃i
Z̄a(i)

)
+Q(l)+

σ̄∑

i=1

∑

j∈Si
λ
(s)
lj Z̄a(i)

+
∑

j∈St
λ
(s)
lj

σ̄∑

i=1

P
(T )
(j−σ×σt )iZ̄a(i)+

σ̄∑

i=1

∑

j∈Si
λ
(s)
lj Z̄d(i)

+
∑

j∈St
λ
(f )
li Z̄d(j)+ εηd(ε, l)= 0; l ∈ St , l̃ = l − σ + σt , (7.159)

where the terms ηa’s and ηd ’s are bounded and analytic functions of the parametriza-

tion (7.152). The first set above, that is (7.157), is obtained by taking the weighted

average of each recurrent group of GARE’s (7.155)–(7.156) with respect to the

invariant distribution for that recurrent group. The second and third sets, (7.158)

and (7.159), are obtained by direct substitution of relationships (7.150), (7.151) and

(7.153) into the corresponding equations of (7.155)–(7.156).

The following theorem establishes that γ̄ as the asymptotic limit of γ ∗(ε) and

the suboptimality of the control policy μ∗
a , given by (7.148).

Theorem 7.10 Consider the infinite-horizon H∞ control problem for jump lin-

ear system (7.112), (7.121) formulated in Sect. 7.3.2. Let Assumptions 7.3–7.5, 7.7

and 7.8 hold. Then,

1. The optimal performance level γ ∗(ε) asymptotically converges to γ̄ as ε → 0+,

that is,

lim
ε→0+

γ ∗(ε)= γ̄ ,

where the quantity γ̄ defined by (7.145) is finite.

2. For each γ > γ̄ , there exists an εγ > 0 such that the set of coupled GARI’s

(2.18) admits a set of positive definite solutions for ε ∈ (0, εγ ], which can further

be approximated by

Z̄(l; ε) = Z̄A(i)+O(ε); l ∈ Si, i = 1, . . . , σ̄ , (7.160)

Z̄(l; ε) =
σ̄∑

i=1

P
(T )

l̃i
Z̄A(i)+O(ε); l ∈ St , l̃ = l − σ + σb, (7.161)

where Z̄A(i), i = 1, . . . , σ̄ are solutions to the set of coupled GARI’s (7.146).

3. For each γ > γ̄ , there exists an ε̃γ > 0 such that the approximate controller, μ∗
a ,

achieves the performance level γ for the full-order system, for ε ∈ (0, ε̃γ ].

Proof Under the working Assumptions 7.7 and 7.8, the quantity γ̄ is finite by results

of [53]. Now fix any γ > γ̄ . At ε = 0, the set of coupled GARE’s (7.157)–(7.158)
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admit a triangular structure such that a set of solutions can be obtained as follows.

First, the matrices Za(i), i ∈ SA can be solved from the set of coupled GARE’s

(7.157) independently of the rest of the equations as

Z̄a(i)= Z̄A(i); i = 1, . . . , σ̄ . (7.162)

Then, the matrices Z̄d(l), l ∈ Si{
∑i

j=1 σj }, i ∈ SA, can be solved from the set of

coupled GARE’s (7.158) by the fact that the matrices Λ̄(f i), i ∈ SA are Hurwitz.

Let us denote these solutions by

Z̄d(l)= Z̄d0(l); l ∈ Si

{
i∑

j=1

σj

}
, i ∈ SA. (7.163)

Last, the matrices Z̄d(l), l ∈ St , can be solved from the set of coupled GARE’s

(7.159) by the fact that the matrix Λ(f t) is Hurwitz. Let us denote the solutions here

by

Z̄d(l)= Z̄d0(l); l ∈ St . (7.164)

For any symmetric matrix M , let vec(M) denote the vector whose elements are

the lower triangular elements of M . In simple mathematical terms:

vec(M) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m11

m21

m22

m31

...

mnm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, M =

⎡
⎢⎢⎢⎣

m11 m12 . . . m1n

m21 m22 . . . m2n

...
...

. . .
...

mn1 mn2 . . . mnm

⎤
⎥⎥⎥⎦ .

For any matrix M , let
−→
M denote the stacked up vector of column vectors of M . In

simple mathematical terms:

−→
M :=

[
m′

1 m
′
2 . . . m′

n

]′[m1 m2 . . . mn].

In terms of this notation, we can view the set of coupled GARE’s (7.157)–(7.159)

as a multidimensional nonlinear algebraic equation:

χ(ε, ξ)= 0,

where

ξ :=
[
ξ ′
a ξ

′
d1 . . . ξ ′

dσ̄ ξ
′
dt

]′
,

ξa :=
[
vec(Z̄a(1)) . . . vec(Z̄a(σ̄ ))

′]′,
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ξdi :=

⎡
⎢⎣

−−−−−−−−−−−→

Z̄d

(
i=1∑

j=1

σj + 1

)′

. . .

−−−−−−−−−−−→

Z̄d

(
i∑

j=1

σj − 1

)′⎤
⎥⎦

′

; i = 1, . . . , σ̄ ,

ξdt :=
[−−−−−−−−−−→
Z̄d(σ − σt + 1)

′
. . .

−−−→
Z̄d(σ )

′ ]′
.

This equation admits a solution at ε = 0, which is denoted by ξ0.

It is easy to see that the Jacobian of χ with respect to ξ at (0, ξ0) is:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F(AAF (1), . . . ,AAF (σ̄ ),ΛA) 0
(σ̄

n(n+1)
2 )×(σ1n

2)
. . . 0

(σ̄
n(n+1)

2 )×(σσ̄ n2)
0
(σ̄

n(n+1)
2 )×(σtn2)

∗ Λ̄(f 1) ⊗ In2 . . . 0σn2×(σσ̄ n2) 0σ1n
2×(σtn2)

.

..
.
..

. . .
.
..

.

..

∗ ∗ . . . Λ̄(f σ̄ ) ⊗ In2 0σσ̄ n2×(σtn2)

∗ ∗ . . . ∗ Λ̄(f t) ⊗ In2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where the operator ⊗ denotes the Kronecker product, ∗ denotes any constant

matrix term not of any relevance to the analysis to follow, and the matrix

F(AAF (1), . . . ,AAF (σ̄ ),ΛA) is the Jacobian matrix of the left-hand-side (LHS)

of (7.146) with respect to

[
vec(Z̄a(1))

′ . . . vec(Z̄a(σ̄ ))
′]′,

evaluated at Z̄a(i) = Z̄A(i), i ∈ Si . By the mean-square stability of the sys-

tem (7.147), this matrix is Hurwitz (see Lemma 7.5 of [53]). Hence, the Jacobian

matrix
∂χ
∂ξ
(0, ξ) is Hurwitz.

This establishes the conditions for the application of a standard Implicit Function

Theorem, which then implies that the set of coupled GARE’s (7.157) admits a set

of solutions for sufficiently small ε > 0, which can be approximated by

Z̄a(i) = Z̄A(i)+O(ε); i = 1, . . . , σ̄ ,

Z̄d(l) = Z̄d0(l)+O(ε); l ∈ Si

{
i∑

j=1

σj ,

}
i ∈ SA,

Z̄d(l) = Z̄d0(l)+O(ε); l ∈ St .

Furthermore, we conclude that the set of coupled GARI’s (7.123) admits a set of

positive definite solutions, which can be approximated as (7.160). These matrices

satisfy the spectral radius condition (7.124) for sufficiently small ε > 0, since the

matrices Z̄A(i), i ∈ SA, satisfy the spectral radius condition (7.143)–(7.144). This

then establishes statement 2 of the theorem.

For statement 3, we first substitute the control policy μ∗
a into the full-order sys-

tem (7.112), as well as the cost function (7.121), which results in a single-person

maximization problem with respect to the disturbance δ. For any fixed γ > γ̄ , the
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maximum value is zero if the following set of coupled GARE’s admits positive def-

inite solutions that further satisfy the spectral radius condition (7.124):

A′
c(l)Z̄(l)+ Z̄(l)Ac(l)+ (1/γ 2)Z̄(l)D(l)D′(l)Z̄(l)+ Z̄A(i)B(l)B

′(l)Z̄A(i)

+Q(l)+
σ∑

j=1

λlj Z̄(j)+ΔA(i)= 0; l ∈ Si, i = 1, . . . , σ̄ , (7.165)

A′
c(l)Z̄(l)+ Z̄(l)Ac(l)+ (1/γ 2)Z̄(l)D(l)D′(l)Z̄(l)+Q(l)+K ′(l)K(l)

+
σ∑

j=1

λlj Z̄(j)= 0; l ∈ St , (7.166)

where

Ac(l)=
{
A(l)−B(ℓ)B ′(ℓ)Z̄A(i); ℓ ∈ Si, i = 1, . . . , σ̄ ,

A(l)+B(ℓ)K(ℓ); ℓ ∈ St .

Following a line of reasoning that is similar to that used in proving statement 2,

we can again apply the Implicit Function Theorem to show that the above holds

for ε ∈ (0, ε̃], for some ε̃ > 0. This then establishes statement 3 of the theorem.

Statements 2 and 3 together imply that γ̄ is no smaller than the lim sup of the optimal

performance level γ ∗(ε) as ε → 0+. In order to show statement 1, it is then sufficient

to prove that the upper value of differential game with kernel Jγ , as defined in

(7.121), is strictly larger than 0 for any γ < γ̄ . This proof is much easier to carry

out by utilizing the counterpart of this theorem in the finite horizon case; hence,

we relegate this part of the proof to Sect. 7.3.6. This completes the proof of this

theorem. �

A byproduct of Theorem 7.10 and its proof, which would also be of independent

interest, is the result given in the following corollary to Theorem 7.10.

Corollary 7.1 The full-order jump linear system (7.112) is stochastically stabi-

lizable for sufficiently small ε > 0, if the aggregate jump linear system (7.133) is

stochastically stabilizable.

7.3.4 Results in the Finite Horizon Case

In what follows, we present the counterpart of the results in the previous section in

the finite horizon case. First, we define the aggregate Markov chain process θA(t)

with state space SA, whose probability transition rate matrix ΛA(t) is exactly as de-

fined in (7.131), but is now time varying, where the probability vectors π (f i), i ∈ SA
and the matrix PT are time dependent as well. The aggregate jump linear system is

then the same as (7.133), with the system matrices AA, BA and DA being possibly



7.3 H∞ Control by Averaging and Aggregation 421

time-dependent. The control input, initial state and the disturbance input are again

generated by the causal mapping (7.137)–(7.138). Motivated by the solution struc-

ture to the infinite horizon case, we make the following assumption on the terminal

cost function:

Assumption 7.9 The terminal weighting matrices Qf (i), i ∈ S are of the following

structure:

Qf (i) = QAf (j)+ εQf d(i); ∀i ∈ Sj , j = 1, . . . , σ̄ ,

Qf (i) =
σ∑

j=1

P
(T )

ĩj
(tf )QAf (j); ∀i ∈ St , ĩ = i − σ + σt ,

where QAf (·)≥ 0, and Qf d(·) are symmetric.

The finite-horizon cost function associated with this aggregate system is:

JAγ (μA, δA) = EA

{∫ tf

0

(x′
AQA(t, θA(t))xA + u′

AuA − γ 2w′
AwA)dt

+ |x(tf )|2QAf (θA(tf ))
− γ 2|x0|2QA0(θA(0))

}
, (7.167)

where QA and QA0 are as defined in (7.140)–(7.141).

For this finite-horizon aggregate H∞ control problem, we introduce the set of

coupled GRDE’s:

ŻA(t, i)+A′
A(t, i)ZA(t, i)+ZA(i)AA(t, i)−ZA(t, i)(BA(t, i)B

′A(t, i)

− (1/γ 2DA(t, i)D
′
A(t, i))ZA(t, i)+QA(t, i)+

σ̄∑

j=1

λ
(A)
ij (t)ZA(t, j)= 0;

(7.168)

ZA(tf , i)=QAf (i), i = 1, . . . , σ̄ .

The counterpart of the spectral radius condition (7.143)–(7.144) is:

ZA(0, i) < γ 2Q0(j); ∀j ∈ Si, i = 1, . . . , σ̄ , (7.169)

σ̄∑

i=1

P
(T )

l̃i
(0)ZA(0, i) < γ 2Q0(l); ∀l ∈ St , l̃ = l − σ + σt . (7.170)

The counterpart of (7.145), which we again denote by γ̄ , is defined as:

γ̄ := inf{γ > 0 : There exists a set of nonnegative definite solutions ZA(t, i),

i ∈ SA, on the interval [0, tf ] to the set of coupled GRDE’s (7.168) that

further satisfies the set of spectral radius conditions (7.169)–(7.170)}.
(7.171)
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This quantity is different in general from the optimal performance level for the ag-

gregate problem. But, in the special case delineated in Remark 7.13, it is exactly the

H∞ performance level of the aggregate problem.

For a fixed γ > γ̄ , we introduce the approximate control policy for the full-order

system, which is the counterpart of (7.148)

μ∗
a(t, x(t), θ(t))=

{
−B ′(t, i)ZA(t, j)x(t); θ(t)= i ∈ Sj ,

K(t, i)x(t); θ(t)= i ∈ St ,
(7.172)

where the p-by-n dimensional matrix functionK(., .) can be fixed arbitrarily, and its

specific selection does not affect the overall performance of the full-order problem.

By similarity to the infinite horizon case, let us consider the following indepen-

dent reparametrization of the set of coupled GRDE’s (7.128):

Za(t, i) :=
∑

l∈Si
π
(f )

l (t)Z(t, l); i = 1, . . . , σ̄ , (7.173)

Zd(t, l) := (1/ε)(Z(t, l)−Za(t, i)); l ∈ Si

{
i∑

j=1

σj

}
, i = 1, . . . , σ̄ , (7.174)

Zd(t, l) := (1/ε)

(
Z(t, l)−

σ̄∑

i=1

P
(T )

l̃i
(t)Za(t, i)

)
; l ∈ St , l̃ = l − σ + σ̄ .(7.175)

Define the matrices Λ̄(f i)(t), i = 1, . . . , σ̄ , as in (7.154). They are Hurwitz for each

fixed t ∈ [0, tf ].
In terms of the parametrization (7.173)–(7.175), the set of coupled GRDE’s

(7.128) can be equivalently written, after lengthy but straightforward algebraic ma-

nipulations, as

Ża(i)+A′
A(i)Za(i)+Za(i)AA(i)−Za(i)(BA(i)B

′
A(i)

− (1/γ 2)DA(i)D
′
A(i))Za(i)+QA(i)

(7.176)

+
σ̄∑

j=1

λ
(A)
ij Za(j)+ εη̃a(ε, i)= 0;

Za(tf , i)=QAf (i)+ εQ̄Adf (i), i = 1, . . . , σ̄ ,

εŻd(l)+ Ża(i)+A′(l)Za(i)+Za(i)A(l)−Za(i)(B(l)B
′(l)

− (1/γ 2)D(l)D′(l))Za(i)+
σ̄∑

j=1

∑

k∈Sj
λ
(s)
lk Za(j)
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+
∑

k∈St
λ
(s)
lk

σ̄∑

j=1

P
(T )
(k−σ+σt )jZa(j)+

σi−1∑

j=1

λ̄
(f i)

l̃j
Zd

(
j +

i−1∑

l=1

σl

)
(7.177)

+Q(l)+ εη̃d(ε, l)= 0;

Zd(tf , l)= Q̄f d(l), l ∈ Si

{
i∑

j=1

σj

}
, i = 1, . . . , σ̄ , l̃ = l −

i−1∑

j=1

σj ,

εŻd(l)+ d

dt

(
σ̄∑

i=1

P
(T )

l̃i
(t)Za(t, i)

)
+A′(l)

σ̄∑

i=1

P
(T )

l̃i
Za(i)+

σ̄∑

j=1

P
(T )

l̃i
Za(i)A(l)

+Q(l)−
(

σ̄∑

i=1

P
(T )

l̃i
Za(i)

)
(B(l)B ′(l)− (1/γ 2)D(l)D′(l))

(
σ̄∑

i=1

P
(T )

l̃i
Za(i)

)

+
σ̄∑

i=1

∑

j∈Si
λ
(s)
lj Za(i)+

∑

j∈St
λ
(s)
lj

σ̄∑

i=1

P
(T )
(j−σ+σt )iZa(i)+

σ̄∑

i=1

∑

j∈Si
λ
(f )

lj Zd(j)

+
∑

i∈St
λ
(f )
li Zd(i)+ εη̃d(ε, l)= 0; (7.178)

Zd(tf , l)= Q̄f d(l), l ∈ St , l̃ = l − σ + σt , (7.179)

where the dependence on time t has been suppressed for the sake of simplicity,

the terms η̃a’s and η̃d ’s are bounded and analytic functions of the parametrization

(7.173)–(7.175), and the terminal values are defined as:

Q̄Adf (i) :=
∑

j∈Si
π
(f )

j (tf )Qf d(j), i = 1, . . . , σ̄ , (7.180)

Q̄f d(l) :=Qf d(l)− Q̄Af d(i),

l ∈ Si

{
i∑

j=1

σj

}
, i = 1, . . . , σ̄ , l̃ = l −

i−1∑

j=1

σj , (7.181)

Q̄f d(l) :=Qf d(l)−
σ̄∑

i=1

P
(T )

l̃i
(tf )Q̄Adf (i), l ∈ St , l̃ = l − σ + σt . (7.182)

The following theorem, which is the counterpart of Theorem 7.10, is now stated:

Theorem 7.11 Consider the finite-horizon H∞ control problem for jump linear

system (7.112)–(7.118) and (7.126) formulated in Sect. 7.3.2. Let Assumptions 7.3,

7.4, 7.6 and 7.9 hold. Then:
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1. The optimal performance level γ ∗(ε) is asymptotically bounded above by γ̄ as

ε → 0+, that is,

lim sup
ε→0+

γ ∗(ε)≤ γ̄ ,

where the quantity γ̄ defined by (7.171) is finite.

2. For each γ > γ̄ , there exists an εγ > 0 such that set of coupled GRDE’s

(7.128) admits a set of nonnegative definite solutions on the interval [0, tf ] for

ε ∈ (0, εγ ], which can be approximated by

Z(t, l; ε)= ZA(t, i)+O(ε); t ∈ [0, tf ], l ∈ Si, i = 1, . . . , σ̄ , (7.183)

Z(t, l; ε)=
σ̄∑

i=1

P
(T )

l̃i
(t)ZA(t, i)+O(ε);

t ∈ [0, tf ], l ∈ St , l̃ = l − σ + σb, (7.184)

where ZA(t, i), i = 1, . . . , σ̄ are solutions to the set of coupled GRDE’s (7.168).

Furthermore, these matrices satisfy the spectral radius condition (7.129).

3. For each γ > γ̄ , there exists an ε̃ > 0 such that the approximate controller, μ∗
a ,

defined by (7.172), achieves the performance level γ for the full-order system,

for ε ∈ (0, ε̃γ ].

Proof The quantity γ is finite since at γ = ∞, the solution to GRDE’s (7.128) is

always bounded on any finite interval. Now fix any γ > γ̄ , and set ε = 0. The set of

coupled GRDE’s (7.176)–(7.178) again admits a triangular structure such that a set

of solutions can be obtained as described below. First, the matrix functions Za(t, i),

i ∈ SA can be solved from the set of coupled GRDE’s (7.176)–(7.178) independently

of the rest of the equations, as

Za(t, i)= ZA(t, i); t ∈ [0, tf ], i = 1, . . . , σ̄ . (7.185)

Then, the matrix functions Zd(t, l), l ∈ Si{
∑i

j=1 σj } and i ∈ SA can be solved from

the set of coupled GARE’s (7.176)–(7.178) by the fact that the matrices Λ̄(f i)(t), i ∈
SA, are Hurwitz for each fixed t ∈ [0, tf ]. Last, the matrix functions Zd(t, l), l ∈ St ,

can be solved from the set of coupled GARE’s (7.176)–(7.178) by the fact that the

matrix Λ(f t)(t) is Hurwitz for each fixed t ∈ [0, tf ].
The Jacobian matrix of the LHS of (7.176)–(7.178) with respect to ξ (f ) evaluated

at ε = 0 is
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
σ̄
n(n+1)

2 ×(σ1n
2)

. . . 0
(σ̄

n(n+1)
2 )×(σσ̄ n2)

0
(σ̄

n(n+1)
2 )×(σtn2)

Λ̄(f 1) ⊗ In2 . . . 0(σ1n
2)×(σσ̄ n2) 0(σ1n

2)×(σtn2)
...

. . .
...

...

∗ . . . Λ̄(f σ̄ ) ⊗ In2 0(σσ̄ n2)×(σtn2)

∗ . . . ∗ Λ̄(f t) ⊗ In2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,
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where

ξ (f ) :=
[
ξ ′
d1 . . . ξ ′

dσ̄ ξ
′
dt

]′
,

ξdi :=

⎡
⎢⎣

−−−−−−−−−−−−→

Zd

(
t,

i=1∑

j=1

σj + 1

)′

. . .

−−−−−−−−−−−→

Zd

(
i∑

j=1

σj − 1

)⎤
⎥⎦

′

; i = 1, . . . , σ̄ ,

ξdt :=
[−−−−−−−−−−−→
Z̄d(t, σ − σt + 1)

′
. . .

−−−−−→
Z̄d(t, σ )

]′
.

Obviously, this Jacobian matrix is Hurwitz for any t ∈ [0, tf ]. This sets up the con-

ditions for the application of the Implicit Function Theorem [19], which then im-

plies that the set of coupled GRDE’s (7.176)–(7.178) admits a set of solutions on

[0, tf ] for sufficiently small ε > 0. Furthermore, we conclude that the set of coupled

GRDE’s (7.128) admits a set of nonnegative definite solutions on [0, tf ], which can

be approximated as (7.183)–(7.184). These matrices satisfy the spectral radius con-

dition (7.129) for sufficiently small ε > 0, since the matrices ZA(0, i), i ∈ SA, sat-

isfy the spectral radius condition (7.169)–(7.170). This then establishes statement 2

of the theorem.

For statement 3, we first substitute the control policy μ∗
a into the full-order sys-

tem (7.112), as well as the cost function (7.121), which results in a single-person

maximization problem with respect to the disturbance δ. A similar application of

the Implicit Function Theorem then establishes the result. Statements 2 and 3 to-

gether imply statement 1. This completes the proof of the theorem. �

7.3.5 Simulation Example 7.2

In what follows, we consider a numerical example in the infinite-horizon case to

illustrate the results of Sect. 2.2.1.

Consider the H∞ optimal control problem for a jump linear system where the

form process is defined on a state space of S = {1,2,3,4,5}, and the system matri-

ces are specified as follows:

A(1) =
[

0 1

0 0

]
; B(1)=

[
0

1

]
; D(1)=

[
1 0

0 1

]
;

Q(1) =
[

1 0

0 1

]
; Q0(1)=

[
20 0

0 20

]
;

A(2) =
[

1 −1

2 0

]
; B(2)=

[
1

−1

]
; D(2)=

[
1 1

−1 2

]
;

Q(2) =
[

2 1

1 2

]
; Q0(2)=

[
20 0

0 20

]
;
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A(2) =
[

1 −1

2 0

]
; B(2)=

[
1

−1

]
; D(2)=

[
1 1

−1 2

]
;

Q(2) =
[

2 1

1 2

]
; Q0(2)=

[
20 0

0 20

]
;

A(3) =
[

0 1

1 0

]
; B(3)=

[
0

1

]
; D(3)=

[
0 0

1 0

]
;

Q(3) =
[

1 0

0 0

]
; Q0(3)=

[
20 0

0 20

]
;

A(4) =
[
−1 1

0 1

]
; B(4)=

[
1

0

]
; D(4)=

[
1 0

1 0

]
;

Q(4) =
[

1 1

1 1

]
; Q0(4)=

[
20 0

0 20

]
;

A(5) =
[

1 −1

−1 −1

]
; B(5)=

[
1

2

]
; D(5)=

[
1 2

−1 1

]
;

Q(5) =
[

2 1

1 1/2

]
; Q0(5)=

[
20 0

0 20

]
.

The infinitesimal generator of the Markov chain is of the standard singularly per-

turbed form:

Λ= λs + (1/ε)λf ,

where

λf =

⎡
⎢⎢⎢⎢⎣

−2 2 0 0 0

1 −1 0 0 0

0 0 −1 1 0

0 0 1 −1 0

1 0 1 1 −3

⎤
⎥⎥⎥⎥⎦

; λs =

⎡
⎢⎢⎢⎢⎣

−3 0 1 0 2

0 −1 1 0 0

0 1 −1 0 0

1 0 0 −2 1

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
.

Thus the state space S of the form process can be decomposed into two recurrent

sets: S1 := {1,2} and S2 := {3,4}, and a transient set: St := {5}.
Using a particular search algorithm, we can compute the optimal performance

level γ ∗(ε) for different values of ε > 0, which are listed in Table 7.1. As ε → 0+,

we observe that the complexity of the computation increases from 14 million flops

in the case of ε = 0.1 to 744 million flops in the case of ε = 0.001. The aggregate

form process takes values in the set SA := {1,2}. The parameter matrices of the

Table 7.1 Optimal

performance levels for the

full-order system for different

values of ε

ε 0.1 0.05 0.01 0.001

γ ∗(ε) 3.467 3.498 3.584 2.622
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aggregate jump linear system are obtained as follows:

AA(1) =
[

0.6667 −0.3333

1.333 0

]
; BA(1)=

[
0.7045 −0.4127

−0.4127 0.9109

]
;

DA(1) =
[

1.274 0.2098

0.2098 1.903

]
; QA(1)=

[
1.667 0.6667

0.6667 1.667

]
;

QA0(1) =
[

20 0

0 20

]
; AA(2)=

[
−0.5 1

0.5 0.5

]
; BA(2)=

[
0.7071 0

0 0.7071

]
;

DA(2) =
[

0.6325 0.3162

0.3162 0.9487

]
; QA(2)=

[
1 0.5

0.5 0.5

]
; QA0(2)=

[
20 0

0 20

]
.

Again using a particular search algorithm, we can compute the threshold level γ̄ to

be

γ̄ = 3.630,

where the computational complexity is 0.893 million flops. For this problem, the

specification of the initial cost term falls into the special case described in Re-

mark 7.13. Hence, the quantity γ̄ is actually equal to the H∞ optimal performance

level for the aggregate problem. Subsequently, we conclude that the optimal perfor-

mance γ ∗(ε) for the full-order system converges to the optimal performance for the

aggregate problem as ε → 0+, which corroborates the results of Theorem 7.10 and

the observation made in Remark 7.13.

Selecting a desired performance level γ = 3.65, we can compute the positive-

definite solutions to the set of coupled GARI’s for the aggregate problem, which are

given as

Z1 =
[

16.71 6.627

6.627 3.996

]
; Z1 =

[
4.719 3.162

3.162 4.102

]
.

The approximate controller that asymptotically guarantees the performance level

3.65 is given by

μ∗
a(x(t), θ(t))=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[−6.627 − 3.996]x(t); θ(t)= 1,

[−10.08 − 2.632]x(t); θ(t)= 2,

[−3.162 − 4.102]x(t); θ(t)= 3,

[−4.719 − 3.162]x(t); θ(t)= 4,

0; θ(t)= 5.

The performance levels achieved by this controller, when applied to the full-order

system with different values of ε, are listed in Table 7.2. We see that as ε decreases

to zero, this approximate controller achieves the desired performance level 3.65 for

the overall system.

This example clearly illustrates the effectiveness of the aggregation and aver-

aging design procedure. For the ε = 0.001case, this procedure effectively reduces
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Table 7.2 Performance

levels attained by μ∗
a for the

full-order system for different

values of ε

ε 0.1 0.05 0.01 0.001

γ ∗(ε) 3.751 3.673 3.637 3.631

the computational complexity 800 fold. Even for a not-so-small value of ε, such as

ε = 0.1, the procedure still achieves a 15 fold reduction in computational complex-

ity.

7.3.6 Appendix

In this appendix, we continue with the proof of Theorem 7.10, and complete the

verification of the fact that γ̄ is asymptotically less than or equal to the optimal

performance of the full-order system. Let us fix a γ < γ̄ . Then, either (a) the set

of coupled GARE’s (2.36) does not admit any nonnegative definite solutions; or (b)

the set of coupled GARE’s (2.36) admits a set of minimal positive definite solutions

ZA(i), i ∈ SA, but the set of spectral radius conditions (7.143)–(7.144) is violated.

In either of these two cases, we can find a t1 > 0 such that the following set of

coupled GRDE’s:

ŻA(t, i; t1)+A′
A(i)ZA(t, i; t1)+ZA(t, i; t1)AA(i)−ZA(t, i; t1)(BA(i)B ′A(i)

− (1/γ 2DA(i)D
′
A(i))ZA(t, i; t1)+QA(i)+

σ̄∑

j=1

λ
(A)
ij (t)ZA(t, j ; t1)= 0;

ZA(t1, i; t1)= 0n×n, i = 1, . . . , σ̄

admits a set of nonnegative definite solutions ZA(t, i; t1), i ∈ SA, on [0, t1] and the

spectral radius condition (7.169)–(7.170) is violated. Since γ is strictly less than

γ̄ , we can choose t1 such that, either a matrix γ 2Q0(j0)− ZA(0, i0; t1), for some

j0 ∈ Si0 and some i0 ∈ SA; or a matrix γ 2Q0(j0)−
∑σ̄

i=1P
(T )

j̃0i
(0)ZA(0, i; t1), for

some j0 ∈ St and j̃0 = j0 − σ + σt , has at least one negative eigenvalue. Then, by

an application of the Implicit Function Theorem, as in the proof of Theorem 2.2, it

can be shown that the following set of coupled GRDE’s admits a set of nonnegative

definite solutions on [0, t1] for sufficiently small ε > 0:

Ż(t, i; t1)+A′(i)Z(t, i; t1)+Z(t, i; t1)A(i)−Z(t, i; t1)(B(i)B ′(i)

− (1/γ 2DA(i)D
′(i))Z(t, i; t1)+Q(i)+

σ̄∑

j=1

λijZ(t, j ; t1)= 0;

Z(t1, i; t1)= 0n×n, i = 1, . . . , σ̄ .

Furthermore, there exists an i0 ∈ S such that the matrix γ 2Q0(i0) − Z(0, i0; t1)
has at least one negative eigenvalue for sufficiently small values of ε. Let x̄0 be
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the nonzero vector associated with this negative eigenvalue. Introduce a particular

disturbance policy δ̄ = (δ̄0, ν̄) given by

x0 = δ̄(θ(0))=
{

0n×1; θ(0) ∈ S{i0},
x̄0; θ(0)= i0,

w(t) = ν̄(t, x(t), θ(t))=
{

0n×1; t ∈ (t1,∞),

−B ′(θ(t))Z(t, θ(t); t1)x(t); t ∈ [0, t1].

Finally, note the following series of inequalities:

inf
μ∈M

sup
δ∈D

Jγ (μ, δ)

≥ inf
μ∈M

sup
δ∈D

E

{∫ t1

0

(|x|2Q(θ(t)) + |u|2 − γ 2|w|2)dt − γ 2|x0|2Q(θ(0))
}

≥ sup
δ=δ̄

inf
μ∈M

E

{∫ t1

0

(|x|2Q(θ(t)) + |u|2 − γ 2|w|2)dt − γ 2|x0|2Q(θ(0))
}

≥ −π0i0 |x̄0|2γ 2Q0(i0)−Z(0,i0;t1) > 0.

This implies that the upper value of the game is strictly positive. Hence, γ < γ ∗(ε)
for sufficiently small values of ε. This completes the proof of Theorem 7.10.

7.4 Notes and References

In this chapter, we have investigated the problems of mode-dependent decentralized

stochastic stability and stabilization with H∞ performance for a class of continuous-

time interconnected jumping time-delay systems. The jumping parameters are gov-

erned by a finite state Markov process and the delays are unknown time-varying

and mode-dependent within interval. The interactions among subsystems satisfy

quadratic bounding constraints. We have established mode-dependent local stability

behavior by employing an improved Lyapunov-Krasovskii functional at the sub-

system level and express the stability conditions in terms of linear matrix inequal-

ities (LMIs). We have developed a class of local decentralized state-feedback and

a class of dynamic observer-based controllers to render the closed-loop intercon-

nected jumping system stochastically stable.

Next we looked at deterministic systems with slow-fast Mark chains and devel-

oped decentralized polices based on averaging and aggregation. Results presented

here could be extended in several directions. The first, conceptually simple exten-

sion would be to go from a single singular perturbation parameter (as in this chap-

ter) to multiple parameters, representing multiple temporal decompositions. Though

conceptually easy, this extension requires cumbersome notation for a precise de-

scription of the underlying decomposition, which we have therefore refrained from
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doing in this chapter. Another parallel study would be the investigation of time-

scale decomposition for jump linear systems whose form systems (and not the form

process) exhibit a two-time-scale behavior. A more challenging problem would be

the one where both the form process and the form systems are singularly perturbed.

This is a topic that is currently under study.
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Chapter 8

Decentralized Adaptive Control

Decentralized adaptive control design for a class of large-scale interconnected non-

linear systems with unknown interconnections is considered in the sequel. The mo-

tivation behind this work is to develop decentralized control for a class of large-

scale systems which do not satisfy the matching condition requirement. To this

end, large-scale nonlinear systems transformable to the decentralized strict feedback

form are considered. Coordinate-free geometric conditions under which any gen-

eral interconnected nonlinear system can be transformed to this form are obtained.

The interconnections are assumed to be bounded by polynomial-type nonlineari-

ties. However, the magnitudes of the nonlinearities are unknown. Global stability

and asymptotic regulation are established using classical Lyapunov techniques. The

controller is shown to maintain robustness for a wide class of systems obtained

by perturbations in the dynamics of the original system. Furthermore, appending

additional subsystems does not require controller redesign for the original sub-

systems. Finally, the scheme is extended to the model reference tracking problem

where global uniform boundedness of the tracking error to a compact set is estab-

lished.

A digital redesign of the analogue model-reference-based decentralized adap-

tive tracker is proposed for the sampled-data large scale system consisting of N

interconnected linear subsystems, so that the system output will follow any tra-

jectory specified at sampling instants. This may not be presented by the analytic

reference initially. It will be shown in the sequel that the proposed decentralized

controller induces a good robustness on the decoupling of the closed loop con-

trolled system. The adaptation of the analogue controller gain is derived by us-

ing the model-reference adaptive control theory based on Lyapunov’s method. In

this chapter, it is shown that using the sampled-data decentralized adaptive con-

trol system it is theoretically possible to asymptotically track the desired output

with a desired performance. It is assumed that all the controllers share their prior

information and the principal result is derived when they cooperate implicitly.

Based on the prediction-based digital redesign methodology, the optimal digital

redesigned tracker for the sampled-data decentralized adaptive control systems is

proposed.
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8.1 Introduction

The decentralized control schemes, different from the classic centralized informa-

tion structure, have been considered with significant interests for the control of inter-

connected systems in recent years. The main objectives of decentralized control are

to find some feedback laws for adapting the intersections from the other subsystems

where no state information is transferred. The advantage of decentralized control

design is to reduce the complexity and therefore allows the control implementation

to be more feasible.

In the last two decades, the decentralized stabilization of large-scale intercon-

nected systems has received considerable attention [5, 22]. But in the above-

mentioned studies the interconnected patterns are free of time delays. As we know,

time delays are frequently encountered in various engineerings and can be a cause of

instability [20]. There are instances where delays in the interconnections for many

physical systems must be included in the model to account for transmission or infor-

mation delays. However, few results on the decentralized stabilization of large-scale

interconnected systems with delays in the interconnection patterns have been re-

ported in the literature. In [23], the control problem of interconnected time-delay

systems is considered and the controller is designed based on the knowledge of

the uncertainties bounds. Further elaboration and extensions are found in [23, 24,

26]. The problem of decentralized adaptive control for nonlinear interconnected un-

certain systems with time-delays is important and challenging in both theory and

practice.

In this section, we will consider a class of time-varying nonlinear large-scale sys-

tems subject to multiple time-varying delays in the interconnections. The intercon-

nections satisfy the so-called matching condition, and the uncertainties are bounded

by nonlinear functions that are partly known. Adaptive state feedback control strat-

egy is proposed and controllers obtained are independent of time delays. Based on

Lyapunov stability theorem, it has been shown that the proposed controllers can

render the closed-loop system globally uniformly ultimately bounded stable. The

result is also applied to stabilize a class of interconnected time delay systems whose

nominal systems are linear. Finally, several examples are included to illustrate the

theoretic results developed in the sequel.

8.2 System Formulation

Consider the nonlinear time-varying composite system S with multiple delays in

interconnections defined by N interconnected subsystems Si , i = 1,2, . . . ,N :

Si : ẋi = fi(xi, t)+ gi(xi, t)ui

+
N∑

j=1

Hij (xi, xj , xi[t − dij (t)], xj [t − dij (t)], t), (8.1)
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where xi ∈ ℜni and ui ∈ ℜmi represent the state and control vectors, respectively,

of the subsystem Si , fi(xi, t) and gi(xi, t) are assumed to be known functions with

appropriate dimensions, Hij (xi, xj , xi[t − dij (t)], xj [t − dij (t)], t) is an uncertain

nonlinear interconnection, which indicates the interconnections among the current

states and the delayed states of system Si and Sj , while dij (t) is the bounded time-

varying delay and differentiable satisfying

0 ≤ dij (t)≤ d̄ij ≤ ∞, ḋij (t)≤ d∗
ij < 1,

where d̄ij , d∗
ij are positive scalars, and the initial condition is given as follows

xi(t)=Ωi(t), t ∈ [t0 − d̄ij , t0], i = 1,2, . . . ,N, (8.2)

whereΩi(t) is a continuous initial function. The following assumptions are imposed

on system (8.1).

Assumption 8.1 Interconnection Hij (xi, xj , xi[t − dij (t)], xj [t − dij (t)], t) satis-

fies the so-called matching condition, that is,

Hij (xi, xj , xi[t − dij (t)], xj [t − dij (t)], t)

= gi(xi, t)H̃ij (xi, xj , xi[t − dij (t)], xj [t − dij (t)], t),

where uncertain part H̃ij (xi, xj , xi[t − dij (t)], xj [t − dij (t)], t) is bounded by

∥

∥

∥

∥

∥

N
∑

j=1

H̃ij (xi, xj , xi[t − dij (t)], xj [t − dij (t)], t)

∥

∥

∥

∥

∥

≤

N
∑

j=1

pij
∑

s=1

αijsUijs(xj ) +

N
∑

j=1

qij
∑

l=1

βij lWij l(xj [t − dij (t)])

=

N
∑

j=1

αt
ijUij (xj )+

N
∑

j=1

β t
ijWij (xj [t − dij (t)]) (8.3)

in which functions Uijs(·) and Wij l(·) are known, pij and qij are proper known

scalars, αijs and βij l are unknown scalars, and

αij = (αij1, αij2, . . . , αijpij
)t , Uij (·) = [Uij1(·),Uij2(·), . . . ,Uijpij

(·)]t ,
(8.4)

βij = (βij1, βij2, . . . , βijqij )
t , Wij (·) = [Wij1(·),Wij2(·), . . . ,Wijqij (·)]

t .

Remark 8.1 The scalars pij , qij and functions Uijs(·),Wij l(·) are chosen according

to the structure of functions H̃ij . In the existing literature investigating the decentral-

ized control problem of an interconnected system, matching conditions were often

assumed and many practical systems satisfy Assumption 8.1. In the matching parts

condition (8.3) is imposed, in which the interconnections Uij (·) and Wij (·) can be

nonlinear functions. In the existing papers investigating the time delay intercon-

nected systems, the interconnections are often assumed to be bounded by a known

or unknown first-order polynomial. Therefore our assumption on the interconnec-

tions is less conservative.
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Assumption 8.2 There exist continuous function ki(xi), positive function Vi(xi, t)

and functions γi1, γi2, and γi3 of class κ (zero at zero, positive, and increasing) such

that for all xi and t , the following inequalities hold

(1) γi1(‖xi‖) ≤ Vi(xi, t)γi2(‖xi‖),

(2)
∂Vi(xi, t)

∂t
+

∂Vi(xi, t)

∂xi
[fi(xi, t)− gi(xi, t)ki(xi)] ≤ −γi3(‖xi‖).

(8.5)

Remark 8.2 Assumption 8.2 guarantees that the nominal subsystems of system (8.1)

are stabilizable using state feedback. If the nominal subsystems are exponentially

stabilizable using state feedback, Assumption 8.2 is also satisfied.

For the purpose of illustration, we introduce an example of system (8.1) as fol-

lows

ẋ1 = −x1 + x3
1e

4|x1| + u1 + δ11x
2
1 + δ12x1 + δ13x1x2 + δ14x2x1e

|x1|,

ẋ2 = −x2 + u2 + δ21x
2
1 + δ22x2(t − 2)+ δ23x1x2 + δ24x2x1(t − 0.5),

where δ1j and δ2j (j = 1,2,3,4) are bounded parameters that may be time varying,

and the bounds are not known. We will show how to obtain pij , qij and Uijs , Wij l .

For this system the interconnections satisfy the matching condition, and

2∑

j=1

H̃1j (xi, xj , xi[t − dij (t)], xj [t − dij (t)], t)

= δ11x
2
1 + δ12x1 + δ13x1x2 + δ14x2x1e

|x1|

≤ |δ11|x
2
1 + |δ12||x1| + |δ131|x

2
1 + |δ132|x

2
2 + |δ141|x

2
2 + |δ142|x

2
1e

2|x1|

≤ α111|x1| + α112x
2
1 + α113x

2
1e

2|x1| + α121x
2
2 ,

where α111, α112, α113 and α121 are unknown positive scalars. From Assumption 8.4

we can see p11 = 3, p12 = 1, q11 = q12 = 0, and select

U11(·) = [|x1| x
2
1 x2

1e
2|x1|], U12(·) = x2

2 ,

W11(·) = 0, W12(·) = 0.

In the same way the following bounds can also be obtained as

U21(·) = x2
1 , U22(·) = x2

2 ,

W21(·) = x2
1(t − 0.5), W22(·) = |x2(t − 2)|.

We see that the example satisfies Assumption 8.1. Assumption 8.2 also holds since

the two nominal subsystems are completely controllable and can be easily stabilized

with Lyapunov function V1 = x2
1 and V2 = x2

2 . In what follows a decentralized adap-

tive feedback controller will be constructed to stabilize this class of interconnected

systems.
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8.2.1 Decentralized Feedback Control for Nonlinear Systems

In this section, we will propose a decentralized state feedback controller that can

render the closed-loop system stable in the sense of uniform ultimate boundedness.

Theorem 8.1 For system (8.1) satisfying Assumptions 8.1 and 8.2, if the following

inequality

N∑

i=1

{

−γi3(‖xi‖) +

N∑

j=1

ǫij‖Uij (xj )‖
2 +

N∑

j=1

νij‖Wij (xj )‖
2

}

≤ −γ (‖x‖) (8.6)

is satisfied, where ǫij and νij are positive scalars, γ (·) is a class κ function, then

the feedback control law

ui = −ki(xi)− θigi(xi, t)
t ∂Vi(xi, t)

t

∂xi
(8.7)

with adaptive law

θ̇i =
1

2
Γi

∥

∥

∥

∥

gi(xi, t)
t ∂Vi(xi, t)

t

∂xi

∥

∥

∥

∥

2

− Γiηiθi, (8.8)

where Vi(xi, t) satisfies Assumption 8.5, Γi and ηi are positive scalars, will render

the closed-loop system uniformly ultimately bounded stable.

Proof Define a Lyapunov function candidate for the closed-loop system as follows

Ṽ (x, θ, t) =

N
∑

i=1

V̄i(x, θ, t)

=

N
∑

i=1

[

Vi(xi, t)+

N
∑

j=1

νij

∫ t

t−dij (t)

‖Wij [xj (ξ)]‖
2dξ + Γ −1

i (θi − θ̃i)
2

]

.

(8.9)

θ̃i is defined as follows

θ̃i =

N
∑

j=1

‖αij‖
2

4ǫij
+

N
∑

j=1

‖βij‖
2

4νij (1 − d∗
ij )

, (8.10)

where adaptive scalar θi is used to estimate θ̃i . Then by taking the derivative of V (·)
along the trajectories of the closed-loop system, we obtain

dṼi(x, θ, t)

dt
=

N
∑

i=1

dV̄ (x, θ, t)

dt

≤

N
∑

i=1

{

∂Vi(xi, t)

∂t
+

∂Vi(xi, t)

∂xi
ẋi +

N
∑

j=1

[νij‖Wij [xj (t)]‖
2

− νij (1 − d∗
ij )‖Wij (xj [t − dij (t)])‖

2] + 2Γ −1
i (θi − θ̃i)

dθi

dt

}

.
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Applying (8.3), (8.5), and (8.7), we obtain

dV̄ (x, θ, t)

dt
≤

N∑

i=1

{

∂Vi(xi, t)

∂t
+

∂Vi(xi, t)

∂xi
[fi(xi, t)− gi(xi, t)ki(xi)]

− θi

∥

∥

∥

∥

∥

gi(xi, t)
t ∂Vi(xi, t)

t

∂xi

∥

∥

∥

∥

∥

2

+ 2Γ −1
i (θi − θ̃i)

dθi

dt

+

N
∑

j=1

[νij‖Wij (xj )(t)]‖
2 − νij (1 − d∗

ij )‖Wij (xj [t − dij (t)])‖
2

+

N
∑

j=1

∥

∥

∥

∥

∥

gi(xi, t)
t ∂Vi(xi, t)

t

∂xi

∥

∥

∥

∥

∥

αt
ijUij [xj (t)]

+

N
∑

j=1

∥

∥

∥

∥

∥

gi(xi, t)
t ∂Vi(xi, t)

t

∂xi

∥

∥

∥

∥

∥

β t
ijWij [xj (t − dij (t))]

}

≤

N
∑

i=1

{

−γi3(‖xi‖)− θi

∥

∥

∥

∥

∥

gi(xi, t)
t ∂Vi(xi, t)

t

∂xi

∥

∥

∥

∥

∥

2

+ 2Γ −1
i (θi − θ̃i)

dθi

dt

+

N
∑

j=1

[νij‖Wij [xj (t)]‖
2 − νij (1 − d∗

ij )‖Wij (xj [t − dij (t)])‖
2]

+

N
∑

j=1

∥

∥

∥

∥

∥

gi(xi, t)
t ∂Vi(xi, t)

t

∂xi

∥

∥

∥

∥

∥

αt
ijUij [xj (t)]

+

N
∑

j=1

∥

∥

∥

∥

∥

gi(xi, t)
t ∂Vi(xi, t)

t

∂xi

∥

∥

∥

∥

∥

β t
ijWij [xj (t − dij (t))]

}

. (8.11)

Since

N
∑

i=1

N
∑

j=1

∥

∥

∥

∥

gi(xi, t)
t ∂Vi(xi, t)

t

∂xi

∥

∥

∥

∥

αt
ijUij [xj (t)]

≤

N
∑

i=1

N
∑

j=1

ǫij‖Uij [xj (t)]‖
2 +

N
∑

i=1

N
∑

j=1

‖αij‖
2

4ǫij

∥

∥

∥

∥

gi(xi, t)
t ∂Vi(xi, t)

t

∂xi

∥

∥

∥

∥

2
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and

N∑

i=1

N∑

j=1

∥

∥

∥

∥

gi(xi, t)
t ∂V (xi, t)

t

∂xi

∥

∥

∥

∥

β t
ijWij (xj [t − dij (t)])

≤

N
∑

i=1

N
∑

j=1

‖βij‖
2

4νij (1 − d∗
ij )

∥

∥

∥

∥

gi(xi, t)
t ∂V (xi, t)

t

∂xi

∥

∥

∥

∥

2

+

N
∑

i=1

N
∑

j=1

νij (1 − d∗
ij )‖Wij (xj [t − dij (t)])‖

2

so we further obtain

dV̄ (x, θ, t)

dt
≤

N
∑

i=1

{

−γi3(‖xi‖)+ 2Γ −1
i (θi − θ̃i)

dθi

dt

+

N
∑

i=1

ǫij‖Uij [xj (t)]‖
2 +

N
∑

i=1

νij‖Wij [xj (t)]‖
2

+

N
∑

j=1

‖αij‖
2

4ǫij

∥

∥

∥

∥

gi(xi, t)
t ∂Vi(xi, t)

t

∂xi

∥

∥

∥

∥

2

+

N
∑

j=1

‖βij‖
2

4νij (1 − d∗
ij )

∥

∥

∥

∥

gi(xi, t)
t ∂Vi(xi, t)

t

∂xi

∥

∥

∥

∥

2

− θi

∥

∥

∥

∥

gi(xi, t)
t ∂Vi(xi, t)

t

∂xi

∥

∥

∥

∥

2
}

. (8.12)

By using (8.10), we can get

dV̄ (x, θ, t)

dt
≤

N
∑

i=1

{

−γi3(‖xi‖)+

N
∑

i=1

ǫij‖Uij [xj (t)]‖
2

+

N
∑

i=1

νij‖Wij [xj (t)]‖
2 + 2Γ −1

i (θi − θ̃i)
dθi

dt

+ θ̃

∥

∥

∥

∥

gi(xi, t)
t ∂Vi(xi, t)

t

∂xi

∥

∥

∥

∥

2

− θi

∥

∥

∥

∥

gi(xi, t)
t ∂Vi(xi, t)

t

∂xi

∥

∥

∥

∥

2}

.

Applying (8.6) and (8.8), one obtains

dV̄ (x, θ, t)

dt
≤ −γ (‖x‖)−

N
∑

i=1

2ηi(θi − θ̃i)θi

≤ −γ (‖x‖)−

N
∑

i=1

{2ηiθ
2
i − 2ηi |θi ||θ̃i |} − γ (‖x‖)

−

N
∑

i=1

ηiθ
2
i +

N
∑

i=1

ηi θ̃
2
i . (8.13)
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From (8.10), we know that θ̃i is bounded, so the closed-loop system is uniformly

ultimately bounded stable based on Lyapunov stability theory. �

Remark 8.3 From (8.13), we know that one can obtain the upper bound on the

steady state as small as desired by decreasing the value of ηi . So the system de-

signers can turn the size of the residual set by adjusting properly parameter ηi . To

obtain good transient performance, we should choose the function ki(xi) properly.

In practical systems, the function ki(xi) should be selected to render function γi3(xi)

positive enough, so that function γ (‖x‖) is sufficiently positive. The good transient

performance will be obtained based on (8.13).

Remark 8.4 In Theorem 8.1, the key problem is how to get positive function

Vi(xi, t) and ki(xi) to obtain −γi3(xi) satisfying inequality (8.6). We should con-

firm the class of −γi3(xi) according to the given functions Uij (·) and Wij (·) first,

then select proper Vi(xi, t) and ki(x) to satisfy inequality (8.5). Particularly, if

Uij (xj ) = Uj (xj ) and Wij (xj ) = Wj (xj ) for all i ∈ [1,N], we can select ǫj = ǫij ,

νj = νij , then if the following inequality

−γi3(‖xi‖)+Nǫi‖Ui(xi)‖
2 +Nνi‖Wi(xi)‖

2 < 0

is satisfied, inequality (8.6) will hold.

8.3 Application to Decentralized Control

Let us consider the following class of interconnected systems with time delays

Si : ẋi = Ai(t)xi +Bi(t)ui(t)+Bi(t)

N∑

j=1

H̃ij (xj , xj [t − dij (t)], t), (8.14)

where Ai(t) and Bi(t) are linear time-varying matrices, while the interconnections

satisfy the following inequalities

∥

∥

∥

∥

∥

N
∑

j=1

H̃ij (xj , xj [t − dij (t)], t)

∥

∥

∥

∥

∥

≤

N
∑

j=1

pij
∑

s=1

αijs‖xj‖
s +

N
∑

j=1

qij
∑

l=1

βij l‖xj [t − dij (t)]‖
l

=

N
∑

j=1

αt
ijUij (‖xj‖)+

N
∑

j=1

β t
ijWij (‖xj [t − dij (t)]‖)

in which pij and qij are known scalars representing the highest order of ‖xj‖ and

‖xj (t −dij (t))‖, respectively, the parameters αijs and βij l are unknown scalars sim-

ilar to those of system (8.1). Based on Theorem 8.1, we will propose decentralized

feedback controllers for system (8.14) to render the closed-loop system stable in the

sense of uniform ultimate boundedness.

Now, we introduce the following standard assumption:
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Assumption 8.3 There exists a positive parameter matrix σi(t) satisfying the fol-

lowing Riccati inequality holds

Ṗi(t)+Ai(t)
tPi(t)+ Pi(t)Ai(t)− Pi(t)Bi(t)σi(t)Bi(t)

tPi ≤ −Qi(t), (8.15)

where Pi(t) and Qi(t) are positive matrices satisfying

λmin[Pi(t)] > ai, λmin[Qi(t)] > ai,

where ai is a sufficiently small positive scalar.

Corollary 8.1 When system (8.14) satisfies the above two inequalities, the following

adaptive feedback controller will render the closed-loop system stable in the sense

of uniform ultimate boundedness.

ui = −
1

2
σi(t)Bi(t)

tPi(t)xi(t)− θiB
t
i

∂Vi(xi)
t

∂xi
, (8.16)

where σi(t) and Pi(t) satisfy Assumption 8.3, Vi(xi) =
∑hi

k=1(1/k)(x
t
iPixi)

k, hi =

max{pji, qji} (j ∈ [1..N]), and θi is an adaptive parameter whose adaptive law is

θ̇i = −
1

2
Γi

∥

∥

∥

∥

Bi(t)
t ∂Vi(xi)

t

∂xi

∥

∥

∥

∥

2

−Γiηiθi (8.17)

in which Γi and ηi are positive scalars.

Proof Based on Theorem 8.1, define Lyapunov function for system (8.14) as fol-

lows

Ṽ (x, θ, t) =

N
∑

i=1

V̄i(x, θ, t)

=

N
∑

i=1

{

hi
∑

k=1

1

k
(xtiPixi)

k

+

N
∑

i=1

qij
∑

k=1

νij

∫ t

t−dij (t)

‖xj (ξ)‖
2kdξ + Γ −1

i (θi − θ̃i)
2

}

,

where

θ̃i =

N
∑

i=1

(

‖αij‖
2

4ǫij
+

‖βij‖
2

4(1 − d∗
ij )νij

)

.

Then by taking the derivative of Ṽ (·) along the trajectories of the closed-loop sys-

tem, similar to the proof of Theorem 2.1, we have

˙̃
V (x, θ, t) =

N
∑

i=1

V̄i(x, θ, t)

≤

N
∑

i=1

[

hi
∑

k=1

(xtiPixi)
k−1[−xtiQixi − (θi − θ̃i)‖2B t

iPixi‖
2]
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+
N∑

i=1

( qij
∑

k=1

νij‖xj‖
2k +

pij
∑

k=1

ǫij‖xj‖
2k

)

+ 2Γ −1
i (θi − θ̃i)θ̇i

]

.

By applying (8.17), we can obtain

˙̃
V (x, θ, t) ≤

N
∑

i=1

[

−

hi
∑

k=1

(xtiPixi)
k−1(xtiQixi)

+

N
∑

i=1

( qij
∑

k=1

νij‖xj‖
2k +

pij
∑

k=1

ǫij‖xj‖
2k

)

− ηiθ
2
i + ηi‖θ̃i‖

2

]

.

On selecting the parameters

νj = maxνij , ǫj = max ǫij , for i ∈ [1..N ]

the following inequality holds

N
∑

i=1

{

−

hi
∑

k=1

(xtiPixi)
k−1(xtiQixi)+

N
∑

j=1

( qij
∑

k=1

νij‖xj‖
2k +

pij
∑

k=1

ǫij‖xj‖
2k

)}

≤

N
∑

i=1

{

−

hi
∑

k=1

(xtiPixi)
k−1(xtiQixi)+

N
∑

j=1

( hj
∑

k=1

νj‖xj‖
2k +

hj
∑

k=1

ǫj‖xj‖
2k

)}

=

N
∑

i=1

hi
∑

k=1

[

−(xtiPixi)
k−1(xtiQixi)+Nνi‖xi‖

2k +Nǫi‖xi‖
2k
]

.

Then we have that

˙̃
V (x, θ, t) ≤

N
∑

i=1

hi
∑

k=1

{−λmin(Pi)
k−1λmin(Qi)‖xi‖

2k +Nνi‖xi‖
2k

+Nǫi‖xi‖
2k} −

N
∑

i=1

(ηiθ
2
i − ηi‖θ̃i‖

2).

Based on Assumption 8.3, there exist νj and ǫj small enough to render the following

inequality satisfied

−λk−1
min (Pi)λmin(Qi)+Nνi +Nǫi ≤ −aki +Nνi +Nǫi = −Πi < 0,

where the scalar Πi > 0. Further we can obtain

˙̃
V (x, θ, t) ≤ −

N
∑

i=1

hiΠi‖xi‖
2k −

N
∑

i=1

(ηiθ
2
i − ηi‖θ̃i‖

2).

In view of the Lyapunov stability theorem, the proposed feedback controller (8.39)

with adaptive law (8.40) can render the closed-loop system uniformly ultimately

bounded stable. �

For the case of interconnected systems, we have the following corollary.
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Corollary 8.2 For system (8.14) with Ai and Bi being a constant matrix, the adap-

tive feedback controller

ui = −1

2
σiB

t
iPixi − θiB

t
i

∂V (xi)
t

∂xi
(8.18)

with adaptive law

θ̇i = 1

2
Γi

∥

∥

∥

∥

B t
i

∂V (xi)
t

∂xi

∥

∥

∥

∥

2

− Γiηiθi (8.19)

will render the closed-loop system uniformly ultimately bounded stable. In (8.41)

and (8.42) , Γi > 0 and ηi > 0 and

V (xi) =
hi
∑

k=1

1

k
(xtiPixi)

k, hi = max{pji, qji} (j ∈ [1..N ]).

σi and Pi are the positive scalar and the positive matrix, respectively, satisfying the

following inequality

At
iPi + PiAi − σiPiBiB

t
iPi = −Qi < 0. (8.20)

It is known that if (8.20) holds there always exists scalar ai satisfying λmin(Pi) > ai
and λmin(Qi) > ai , which means Assumption 8.3 is satisfied. The proof is quite

similar to that of Corollary 8.1.

Remark 8.5 In the existing literature, system (8.14) were considered based on Ric-

cati inequalities and linear matrix inequalities with the interconnections known or

bounded by a known linear function. However, in the present set-up, the intercon-

nections may be bounded by high-order polynomial. Furthermore, we adopt adap-

tive method, and do not have to know the bounds.

In what follows, we will present two examples to demonstrate the validity of the

foregoing results.

8.3.1 Simulation Example 8.1

Consider the following nonlinear interconnected system with time delays

ẋ1 =

(

ẋ11

ẋ12

)

=

(

−x11

2x3
12

)

+

(

0

x12

)

u1

+

⎛

⎝

0

δ11x
2
12x21 + δ12x122|x22|

1/2

+δ13x12|x11(t − 0.5| sin(t)|)|1/2x21(t − 0.25| sin(t)|)

⎞

⎠ ,

(8.21)

ẋ2 =

(

ẋ21

ẋ22

)

=

(

−x21

ẋ2
22

)

+

(

0

1

)

u2

+

(

0

δ21|x11|
1/2x21 + δ22x12|x22|

1/2 + δ23x12(t − 2)|x22(t − 1)|1/2

)

,
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where δij (i = 1, 2; j = 1, 2, 3) are bounded unknown parameters. The intercon-

nections satisfy matching condition with the following bounds

U11(x1) = x2
12, W11(x1[t − d11(t)]) = |x11[t − 0.5| sin(t)|]|,

U12(x2) = [x2
21 |x22|]t , W12(x1[t − d12(t)]) = x2

21[t − 0.25| sin(t)|].
U21(x1) = [|x11| x2

12]t , W21(x1[t − d21(t)]) = x2
12(t − 2),

U22(x2) = [x2
21 |x22|]t , W22(x2[t − d22(t)]) = x22(t − 1).

Taking

V1(x1, t) = x2
11 + x2

12, V2(x2, t) = x4
21 + x2

22, k1(x1) = 3x2
12,

k2(x2) = x2
22 + 2x22, (8.22)

it follows that

∂V t
1 (x1)

∂t
+

∂V t
1 (x1)

∂x1
[f1(x1, t)− g1(x1, t)k1(x1)]

= −2x2
11 + 4x4

12 − 6x4
12 = −2x2

11 + 4x4
12

= γ13(x1)
∂V2(x2)

t

∂t
+ ∂V2(x2)

t

∂x2
[f2(x2, t)− g1(x2, t)k2(x2)]

= −4x2
21 + 2x3

22 − 2x3
22 − 4x2

22 = −4x4
21 − 4x2

22 = γ23(xi)

is satisfied. For inequality (8.6), we have

N∑

i=1

{

−γi3(‖xi‖)+

N∑

j=1

ǫij‖Uij (xj )‖
2 +

N∑

j=1

νij‖Wij (xj )‖
2

}

=

N
∑

i=1

−2x2
11 − 4x4

12 − 4x4
21 − 4x2

22 + ǫ11x
4
12

+ ǫ12(x
4
21 + x2

22)+ ǫ21(x
2
11 + x4

12)+ ǫ22(x
4
21 + x2

22)+ ν11x
2
11

+ ν12x
4
21 + ν21x

4
12 + ν22x

4
22.

On selecting ǫij = νij = 0.1 (i = 1, 2, j = 1, 2), it is easy to see that (8.6) is satisfied.

Based on Theorem 8.1, the feedback controllers are found to be

u1 = −3x2
12 − 2θ1x

2
12,

u2 = −x2
22 − 2x22 − 2θ2x22

with the adaptive law

θ̇1 = Γ1

∥

∥

∥

∥

g1(x1, t)
∂V t

1 (x1, t)

∂x1

∥

∥

∥

∥

2

− Γ1η1θ1 = 2x4
12 − 0.01θ1,

θ̇2 = Γ2

∥

∥

∥

∥

g2(x2, t)
∂V t

2 (x2, t)

∂x2

∥

∥

∥

∥

2

− Γ2η2θ2 = 2x2
22 − 0.01θ2.

For simulation we give the following initial conditions:
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θ1(0) = 1, θ2(0) = 1,

x1(t) = [3 2]t , x2(t) = [1 −1]t , t ∈ [t0 − 2, t0].

The simulations are done via the Simulink toolbox in MATLAB 6.5. We use the

fixed step size 0.01 and ode4 (Runge Kutta). When the unknown parameters δij = 1

(i = 1, 2; j = 1, 2, 3), the simulation result is shown in Fig. 8.1.

From the figure, we can see that the adaptive controllers render the closed-loop

system uniformly ultimately bounded stable. Based on Theorem 2.1, the controllers

are obtained without the knowledge of the bounds of the interconnections, which

means that the bounds of interconnections can be arbitrary. Further, let us make

simulations when the controller and initial conditions are the same, but δij = 5 and

δij = 10. The state response trajectories are shown in Figs. 8.2 and 8.3, respectively.

From the figures we can see the controllers render the corresponding system stable,

which further shows that the proposed controllers are valid and the conclusions are

feasible.

Fig. 8.1 State response

curves of system (8.21) with

δij = 1

Fig. 8.2 The states response

curves of system (8.21) with

δij = 5
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Fig. 8.3 The states response

curves of system (8.21) with

δij = 10

8.3.2 Simulation Example 8.2

Consider the following interconnected time delay system

ẋ1 =
[

−1 0

3 1

][

x11

x12

]

+
[

0

1

]

u

+

⎡

⎣

0

δ11x11 + δ12x
2
22 + δ13x12x21(t − 0.5)

+δ14x
2
11[t − 0.25| sin(t)|]

⎤

⎦ ,

ẋ2 =
[

−2 0

−3 3

][

x21

x22

]

+
[

0

1

]

u

+

⎡

⎣

0

δ21x21 + δ22x
2
12

+δ23x12x22[t − 0.5| sin(t)|] + δ24x
2
12(t − 1)

⎤

⎦ , (8.23)

where δij (i = 1, 2; j = 1, 2, 3, 4) are unknown scalars. The interconnections satisfy

matching conditions, and the bounds are given by

U11(x1) = [|x11| x2
12]t , W11(x1[t − d11(t)]) = x2

11[t − 0.25| sin(t)|],
U12(x2) = x2

22, W12(x1[t − d12(t)]) = x2
21(t − 0.5),

U21(x1) = x2
12, W21(x1[t − d21(t)]) = x2

12(t − 1),

U22(x2) = |x21|, W22(x2[t − d22(t)]) = x22[t − 0.25| sin(t)|].

For Assumption 8.3, if we select

Q1 =
[

2 −3

−3 10

]

, σ1 = 12I, Q2 =
[

4 3

3 8

]

, σ2 = 14I

then it is easy to see that P1 = P2 = I is a feasible solution. Based on Corollary 8.1

or Corollary 8.2, we have the following feedback controller
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u1 = −6x12(t)− 2θ1[x12 + x12(x
2
11 + x2

12)],
u2 = −7x22(t)− 2θ2[x22 + x22(x

2
21 + x2

22)]
with adaptive law

θ̇1 = 4[x12 + x12(x
2
11 + x2

12)]2 − 0.1θ1,

θ̇2 = 4[x22 + x22(x
2
21 + x2

22)]2 − 0.1θ2

The initial conditions are selected as follows:

θ1(0) = 10, θ2(0) = −5,

x1(t) = [8 5]t , x2(t) = [3 1]t , t ∈ [t0 − h, t0].

The simulation circumstance is the same of Example 8.1. When the unknown pa-

rameters δij = 1, 5, 10 (i = 1, 2; j = 1, 2, 3, 4); respectively, the simulation re-

sults are shown in Figs. 8.4, 8.5 and 8.6. From the ensuing results, we see that the

Fig. 8.4 The states response

curves of system (8.23) with

δij = 1

Fig. 8.5 The states response

curves of system (8.23) with

δij = 5
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Fig. 8.6 The states response

curves of system (8.23) with

δij = 10

controllers render the closed-loop systems stable in the sense of uniform ultimate

boundedness, which further verifies that Corollaries 8.1 and 8.2 are feasible.

8.4 Adaptive Techniques for Interconnected Nonlinear Systems

Many physical systems are composed of interconnections of lower-dimensional sub-

systems. Furthermore, information transfer among the subsystems may have a high

cost associated with it, if it is not at all impossible. Much effort has been focused

on the application of decentralized control for large-scale interconnected systems.

A decentralized control structure naturally alleviates the computational burden asso-

ciated with a centralized control scheme. Furthermore, the extension problem (i.e.,

inclusion of additional subsystems to the system) is more easily handled through

decentralization. Earlier works on decentralized control were focused on control of

large-scale linear systems. However, most physical systems are inherently nonlin-

ear. For most practical applications, the linear control design is nicely applicable to

linearized models of interconnected systems. However, this only guarantees stabil-

ity in a region about the operating point and possibly degradation in performance

and instability over a large domain of operation.

Most of the literature on decentralized and adaptive control of interconnected

nonlinear systems [10, 15–19, 25, 27, 43] is focused on systems with first-order

bounded interconnections. These results cannot guarantee stability when the inter-

connections between the subsystems are of higher orders [38]. In [6], decentral-

ized adaptive controllers for robotic manipulators are designed under the assump-

tion that the nonlinear interconnection terms due to Coriolis and centrifugal effects

are slowly time varying. This assumption fails to hold, however, for high-speed tra-

jectory tracking and could possibly result in instability. The first result on global de-

centralized stabilization of large-scale systems with higher-order interconnections

is by Shi and Singh [38, 39]. The interconnections are assumed to be bounded by a

pth order polynomial in states. Adaptation of control gains is utilized to relax the

requirement of explicit knowledge of the polynomial.
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A major structural restriction imposed on the system in all these schemes is that

the uncertainties and interconnections are in the range space of the input matrix,

which is basically the strict matching condition. Global stabilization for systems

with mismatched uncertainties is not possible using these schemes. Recent advances

in the area of centralized adaptive nonlinear control have resulted in the recursive

design of control laws for systems which do not satisfy the strict matching require-

ment [20, 21]. Motivated by these advancements in the area of centralized nonlinear

control, we seek to investigate the possible extension of the class of large-scale non-

linear systems for which decentralized control laws can be developed.

In this section, we extend the strict matching requirement to a class of large-

scale nonlinear systems with parametric and nonparametric uncertainties. These

are termed as systems of the decentralized strict feedback form. In Sect. 8.4.2, we

characterize this class of large-scale systems. Geometric conditions are stated under

which any interconnected large scale nonlinear system can be transformed into this

form via a parameter independent decentralized diffeomorphism. The interconnec-

tions are assumed to be bounded by an unknown pth-order polynomial in states.

In Sect. 8.4.3, an adaptive decentralized control is developed using a stepwise de-

sign procedure. The design is motivated by the decentralized design in [38, 39] and

integrator backstepping along with the tuning function design for centralized con-

trol [20, 21]. The scheme is proven to guarantee global stabilization and regulation

properties. The developed control is robust to perturbations in the system dynam-

ics. Furthermore, no redesign is required for controllers of the original subsystems

if additional subsystems are appended to the system. In Sect. 8.4.4, the scheme is

extended to a model reference tracking problem, where uniform boundedness of the

tracking error is guaranteed.

8.4.1 A Class of Interconnected Nonlinear Systems

We consider a large-scale nonlinear system comprised of N interconnected sub-

systems with the interconnections being linear in the unknown parameters. The ith

subsystem is given as

ζ̇i = fi0(ζi)+
pi∑

j=1

θijfij (ζ )+ gi0(ζi)ui, 1 ≤ i ≤ N (8.24)

where ζi ∈ ℜni is the state vector for the ith subsystem, ζ ∈ ℜn1+···+nN is the state

vector for the overall system, ui(t) ∈ ℜ is the control input, and θi = [θi1, . . . , θipi
]t

is a vector of unknown constant parameters for the ith subsystem. The vector fields

fi0, fij , and gi0 are assumed to be smooth with fi0(0) = 0, fij (0) = 0 and gi0 �= 0.

We make the following assumption for the isolated subsystems.

Assumption 8.4 Assume that the isolated subsystems

ζ̇i = fi0(ζi)+ gi0(ζi)ui (8.25)
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are globally input-to-state linearizable. Equivalently, there exists an output function

hi(ζi) such that the isolated subsystem has a relative degree ni with respect to hi .

Sufficient conditions under which this assumption is satisfied are stated in [11].

In what follows, we define the notion of the degree of mismatch for intercon-

nected systems.

Definition 8.1 Assume that the isolated subsystems are exactly externally feedback

linearizable. Let κi denote the smallest integer such that:

1. Lk
fij

hi(ζi) ≡ 0, 1 ≤ k ≤ κi − 1, ∀j ∈ [1..pi];

2. L
ki
fij

hi(ζi) �= 0, for at least one j ∈ [1..pi], where fij (ζ ) are the vector fields

in (8.24) for the ith subsystem corresponding to the interconnections. Then, the

degree of mismatch (ρi) for the ith subsystem is defined as ρi = ni − κi .

The decentralized scheme proposed in the sequel is applicable to interconnected

nonlinear systems which are transformable using a global parameter independent,

decentralized transformation wi = [wi1, . . . ,wi,ni ]
t = φi(ζi) to the following de-

centralized strict feedback form:

ẇi1 = wi2,

...

ẇi,κi−1 = wi,κi ,

ẇi,κi = wi,κi+1 + θ ti γi0(wj1, . . . ,wj,κj |1 ≤ j ≤ N),

ẇi,κi+1 = wi,κi+2 + θ ti γi1(wj1, . . . ,wj,κj ,wi,κi+1|1 ≤ j ≤ N), (8.26)

...

ẇi,ni−1 = wi,ni + θ ti γi,ni−κi−1(wj1, . . . ,wj,κj ,wi,κi+1, . . . ,wi,ni−1|1 ≤ j ≤ N),

ẇi,ni = vi(wi)+ θ ti γi,ni−κi (wj1, . . . ,wj,κj ,wi,κi+1, . . . ,wi,ni |1 ≤ j ≤ N)

+ δi(wi)ui, 1 ≤ i ≤ N

with vi(0) = 0; γij (0) = 0, δi(wi) �= 0 ∀wi ∈ ℜni , 1 ≤ i ≤ N , 0 ≤ j ≤ ni − κi .

Remark 8.6 A primary objective is decentralized control, it is desirable for the trans-

formation for each subsystem to utilize the states local to that subsystem. Assuming

that all the states of a subsystem are available for feedback to the controller cor-

responding to that subsystem, a decentralized control designed in the transformed

coordinates still maintains its decentralized structure in the original coordinates.

Thus, the terminology decentralized transformation is justified. The degree of mis-

match defines the separation of the interconnections from the control. The mismatch

between the interconnections (and hence uncertainties) and the control is larger for

larger ρi , resulting in increased complexity in the control design.



8.4 Adaptive Techniques for Interconnected Nonlinear Systems 451

Remark 8.7 The class of systems (8.26) illustrates a tradeoff between the degree of

mismatch and the complexity of the interconnections. The larger the degree of mis-

match ρi for the j th subsystem, the fewer are the number of states of that subsystem

appearing in the interconnections.

Given that the isolated subsystem (8.25) is input-state linearizable, the degree

of mismatch ρi of each subsystem stays the same irrespective of the choice of the

feedback linearizing coordinate transformation for the isolated subsystem. This is

made precise in the following theorem, the proof of which is relegated to Sect. 8.5.

Theorem 8.2 The degree of mismatch for each subsystem of a large-scale intercon-

nected system given by (8.24) is invariant with respect to the choice of the input-state

linearizing transformation for the isolated system.

To proceed further, the following distributions and codistributions for the i sub-

system:

gik = span{gi0, adfi0
gi0, . . . , adk

fi0
gi0}, 1 ≤ i ≤ N, 0 ≤ k ≤ ni − 1, (8.27)

Ω ij = span{dL
ni−1
fi0

hi, . . . , dL
ni−j
fi0

hi}, 1 ≤ j ≤ ni, (8.28)

W ij = {v ∈ ℜni : 〈wi, v〉 = 0, ∀wi ∈Ω ij }, (8.29)

where hi(ζi)is the output function for which (8.25) has relative degree ni .

The necessary and sufficient conditions for the existence of a decentralized dif-

feomorphism transforming (8.24) into (8.26) are now stated in the following propo-

sition.

Proposition 8.1 Under Assumption 8.4, a global decentralized diffeomorphism

wi = φi(ζi); 1 ≤ i ≤ N , transforming (8.24) into (8.26), exists if and only if the

following two conditions hold globally.

1. [X, fil] ∈ gij , ∀X ∈ gij , 1 ≤ l ≤ pi , 0 ≤ j ≤ ρi , where ρi is the degree of mis-

match for the ith subsystem.

2. [Y, fiρi ] ∈ giρi , ∀Y ∈ W kρk , 1 ≤ l ≤ pi , 1 ≤ i, k ≤ N .

A proof of this proposition is given in Sect. 8.5.

8.4.2 Decentralized Adaptive Design

In what follows, the decentralized control is designed for system (8.26), which ob-

tained from (8.24) through a decentralized transformation. For notational simplic-

ity, we assume uniform degree of mismatch (n− κ) and same number of states (n)

for each subsystem. Denoting the first κ = n − ρ states of the ith subsystem by

yi,1 ≤ i ≤ N and the remaining ρ states by xi , the transformed system is rewritten

in terms of (yti , x
t
i )

t = wi as
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ẏi =

⎡
⎢

⎢

⎢

⎣

ẏi1
...

ẏi,κ−1

ẏiκ

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0 1 0

. . .

0 0 1

0 0 . . . 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

ẏi1
...

ẏi,κ−1

ẏiκ

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

0
...

0

1

⎤

⎥

⎥

⎥

⎦

{xi1 + θ ti γi0(y1, . . . , yN )}

= Aiyi +Bi[xi1 + θ ti γi0(y1, . . . , yN )], (8.30)

ẋi1 = xi2 + θ ti γi1(y1, . . . , yN , xi1),

ẋi2 = xi3 + θ ti γi2(y1, . . . , yN , xi1, xi2),

...
(8.31)

ẋi,n−κ−1 = ẋi,n−κ + θ ti γi,n−κ−1(y1, . . . , yN , xi1, . . . , xi,n−κ−1),

ẋi,n−κ = vi(yi, xi)+ θ ti γi,n−κ (y1, . . . , yN , xi1, . . . , xi,n−κ)

+ δi(yi, xi)ui, 1 ≤ i ≤ N.

A further assumption is needed for the unstructured uncertainties in the intercon-

nections γij in (8.30) and (8.31).

Assumption 8.5 The nonlinear interconnection terms in γij in (8.30) and (8.31) are

bounded by polynomial-type nonlinearities in yl, 1 ≤ l ≤ N , that is,

‖θ ti γij (y1, . . . , yN , xi1, . . . , xij )− θ ti γij (0, . . . ,0, xi1, . . . , xij )‖

≤

pij
∑

k=1

N
∑

l=1

ηkij (xi1, . . . , xij )ζ
k
ilj‖yl‖

k, 0 ≤ j ≤ n− κ, 1 ≤ i ≤ N (8.32)

with ηki0 being a prescribed functional term. Note that the parametric uncertainty θi

can be lumped with the unknown coefficients ζ kilj .

Remark 8.8 When the subsystems have an unequal number of states and a degree

of mismatch is notationally more cumbersome than insightful and can be handled,

as shown in the sequel. Moreover, in several practical situations, including power

systems, the system is generally comprised of dynamically similar interconnected

subsystems.

Motivated by the decentralized design in [39] and integrator backstepping along

with the tuning function design for centralized control [20, 21] a systematic design

procedure is developed. Consider initially the problem of regulating the states to a

desired set-point. The extension to the state tracking problem is considered subse-

quently.
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Step 0: Define

p = max
1≤i≤N;0≤j≤n−κ

{pij } (8.33)

and consider the ith subsystem given above. Start with the zeroth sub-subsystem,

given by (8.30), with xi1 as the virtual control input. Since (Ai,Bi) is a controllable

pair, there exists a solution 0 <P t
i = Pi to the algebraic Riccati equation (ARE)

At
iPi + PiAi − 2αiPiBiB

t
iPi +Qi = 0 (8.34)

with αi > 0 and 0 < Qi = Qi . Now, choose appropriate Qi and αi to solve

(8.34) for Pi . Following [39], the decentralized control law xi1 for the zeroth sub-

subsystem of the ith subsystem is given by

xi1 = −αiB
t
iPiyi − β̂iB

t
iPiyi{1 + (yti yi)

p−1} = ri1(yi, β̂i), (8.35)

where p is given by (8.33) and β̂i is a time-varying adaptation gain. Since xi1 is not

the control, we define

zi1 = xi1 − ri1(yi, β̂i)

and consequently

ẏi = Aiyi +Bi{zi1 + ri1(yi, β̂i)+ θ ti γi0(y1, . . . , yN )}, 1 ≤ i ≤ N. (8.36)

Let β∗
i be the desired value of the control gain β̂i to counteract the effect of the

interconnections.

Now introduce the following composite Lyapunov function for the zeroth sub-

subsystems of the overall system:

V0 =

N∑

i=1

{

p∑

k=1

(yti Piyi)
k + Γ −1

i (β̂i − β∗
i )

2

}

(8.37)

where Γi > 0 is a weighting factor. By differentiating V0 along the trajectories of

system (8.36), we obtain

V0 =

N
∑

i=1

[

p
∑

k=1

k(ytiPiyi)
k−1 +

(

yti (AiPi + PiAi − 2αiPiBiB
t
iPi)yi

+ 2ytiPiBizi1 + 2(B t
iPiyi)

{

−β̂iβ
t
iPiyi[1 + (yti yi)

p−1]

+ θ ti γi0(y1, . . . , yN )
}

)

+ 2Γ −1
i (β̂i − β∗

i )
˙̂
βi

]

.

Using (8.34) and bounds from (8.32), we get

V̇0 ≤

N
∑

i=1

[

p
∑

k=1

{2k(yti Piyi)
k−1ytiPiBizi1 − kλk−1

min (Pi)λmin(Qi)‖yi‖
2k}

− 2β∗
i ‖B t

iPiyi‖
2[1 + ‖yi‖

2(p−1)]

p
∑

k=1

kλk−1
min (Pi)‖yi‖

2(k−1)
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+ 2(β̂i − β∗
i )

(

Γ −1
i

˙̂
βi − ‖B t

iPiyi‖
2[1 + ‖yi‖

2(p−1)]

p
∑

k=1

k(ytiPiyi)
(k−1)

)

+ 2

p
∑

k=1

kλk−1
min (Pi)‖yi‖

2(k−1)‖B t
iPiyi‖

pi0
∑

k1=1

N
∑

j=1

ς
1/2
j ς

−(1/2)
j ζ

k1

ij0‖yj‖
k1

]

,

(8.38)

where ςj > 0 is introduced as a degree of freedom [39].

Utilizing the standard algebraic inequalities

2ab ≤ a2 + b2, (8.39)
(

p
∑

k=1

akbk

)2

≤

(

p
∑

k=1

a2
k

)(

p
∑

k=1

b2
k

)

(8.40)

the last term of (8.38) can be written as

N
∑

i=1

{

2

p
∑

k=1

kλk−1
max(Pi)‖yi‖

2(k−1)‖B t
iPiyi‖

pi0
∑

k1=1

N
∑

j=1

ς
1/2
j ς

−(1/2)
j ζ

k1

ij0‖yj‖
k1

}

≤

N
∑

i=1

{

ς∗d2‖B
t
iPiyi‖

2

p
∑

k=1

λ2(k−1)
max (Pi)‖yi‖

4(k−1) + ς−1
i

pi0
∑

k=1

dik0‖yi‖
2k

}

,

(8.41)

where

d2 = pi0

p
∑

k=1

k2 =
1

6
pi0p(p + 1)(2p + 1), (8.42)

ς∗ =

N
∑

j=1

ςj , (8.43)

dik0 =

N
∑

j=1

(ζ kji0)
2. (8.44)

Since dik0 > 0, then

pi0
∑

k=1

dik0‖yi‖
2k ≤

p
∑

k=1

dik0‖yi‖
2k,

where the last p − pi0 terms can be taken as zero. The following adaptation for β̂i

is appropriately used:

˙̂
βi = Γi‖B

t
iPiyi‖

2[1 + ‖yi‖
2(p−1)]

p
∑

k=1

k(ytiPiyi)
(k−1) = τi0(yi). (8.45)

Using (8.41) and (8.45), V̇0 can be written as
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V̇0 ≤

N∑

i=1

p∑

k=1

2k(yti Piyi)
k−1ytiPiBizi1

+

N∑

i=1

[

−

p
∑

k=1

{kλk−1
min (Pi)λmin(Qi)− ς−1

i dik0}‖yi‖
2k

+ 2β∗
i ‖B t

iPiyi‖
2[1 + ‖yi‖

2(p−1)]

p
∑

k=1

kλk−1
min (Pi)‖yi‖

2(k−1)

+ ς∗d2‖B
t
iPiyi‖

2

p
∑

k=1

λ2(k−1)
max (Pi)‖yi‖

4(k−1)

]

=

N
∑

i=1

[

p
∑

k=1

2k(yti Piyi)
k−1ytiPiBizi1

− {kλk−1
min (Pi)λmin(Qi)− ς−1

i dik0}‖yi‖
2k + V̇i0(yi)

]

. (8.46)

The actual gains β∗
i and ςi are obtained in the final step. The state equations for yi

and zi1 are given as

ẏi = Aiyi +Bi{zi1 + ri1(yi, β̂i)+ θ ti γi0(y1, . . . , yN )},

żi1 = xi2 −
∂ri1

∂yi
ẏi −

∂ri1

∂β̂i

τi0(yi)+ θ ti γi0(y1, . . . , yN , xi1), (8.47)

= xi2 + νi1(yi, zi1, β̂i)+

1
∑

ι=0

ϕι
i1(yi, β̂i)θ

t
i γiι(y1, . . . , yN , xi1).

Step 1: Consider xi2 as the virtual control for the (yi, zi1) subsystem. Let θ̂i be the

estimate of θi . Since ς∗ is a function of the bounds on the interconnections, and

hence unknown, it needs to be estimated. Likewise, define ς̂ i as an estimate for ς∗.

Consider the following composite Lyapunov function:

Vc = V0 +

N
∑

i=1

{z2
i1 + (θ̂i − θi)

t (θ̂i − θi)+ (ς̂ i − ς∗)2}. (8.48)

In the sequel, with a slight abuse of notation, we refer to γiι as

γiι(y1, . . . , yN , xi1, . . . , xiι)

with the understanding that γi0 is γi0(y1, . . . , yN ).

By differentiating V̇c along the trajectories of (8.47) and combining the term

p
∑

k=1

k(ytiPiyi)
(k−1)ytiPiBizi1

with coefficients of zi1, we obtain
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V̇c ≤

N∑

i=1

[

ν̇i0(yi)−

p
∑

k=1

(

kλk−1
min (Pi)λmin(Qi)− ς−1

i dik0

)

‖yi‖
2k

+ 2zi1

(

xi2 +

p
∑

k=1

k(ytiPiyi)
(k−1)ytiPiBi + νi1(yi, zi1, β̂i)

+

1
∑

ι=0

ϕι
i1(yi, β̂i)θ

t
i γiι(y1, . . . , yN , xi1)

)

+ 2(θ̂i − θi)
t ˙̂θ i + 2(ς̂ i − ς∗) ˙̂ς

i

]

≤

N
∑

i=1

[

ν̇i0(yi)−

p
∑

k=1

(

kλk−1
min (Pi)λmin(Qi)− ς−1

i dik0

)

‖yi‖
2k

+ 2zi1

(

xi2 +

p
∑

k=1

k(ytiPiyi)
(k−1)ytiPiBi + νi1(yi, zi1, β̂i)

+

1
∑

ι=0

ϕι
i1(yi, β̂i)θ

t
i γiι(0, . . . ,0, xi1)

)

+ 2(θ̂i − θi)
t ˙̂θ i + 2(ς̂ i − ς∗) ˙̂ς

i

]

+

N
∑

i=1

1
∑

ι=0

2‖zi1ϕ
ι
i1‖

(

‖θ ti γiι(y1, . . . , yN , xi1)− θ ti γiι(0, . . . ,0, xi1)‖
)

. (8.49)

Using bounds from (8.32) and (8.39), the last term in (8.49) can be written as

+

N
∑

i=1

1
∑

ι=0

2‖zi1ϕ
ι
i1‖‖θ

t
i γiι(y1, . . . , yN , xi1)− θ ti γiι(0, . . . ,0, xi1)‖

≤

N
∑

i=1

N
∑

l=0

1
∑

ι=0

piι
∑

k=0

2‖zi1ϕ
ι
i1η

k
iι‖ς

1/2
l ς

−(1/2)
l ζ kilι‖yl‖

k

≤ ς∗
N
∑

i=1

1
∑

ι=0

̟iιz
2
i1‖ϕ

ι
i1‖

2 +

N
∑

i=1

p
∑

k=1

1
∑

ι=0

ς−1
i dikι‖yi‖

2k, (8.50)

where

dikι =

N
∑

l=1

(ζ kliι)
2, (8.51)

̟iι(xi1, . . . , xiι) =

piι
∑

k=1

(ηkiι)
2 (8.52)

and ς∗ is given by (8.43) . Using (8.50), V̇c is written as
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V̇c ≤

N∑

i=1

[

ν̇i0(yi)−

p
∑

k=1

{kλk−1
min (Pi)λmin(Qi)− (2dik0 + dik1)ς

−1
i }‖yi‖

2k

+ 2zi1

[

xi2 +

p
∑

k=1

k(ytiPiyi)
(k−1)ytiPiBi + νi1(yi, zi1, β̂i)

+
ς∗

2
zi1

1
∑

ι=0

̟iι‖ϕ
ι
i1‖

2 +

1
∑

ι=0

ϕι
i1(yi, β̂i)θ

t
i γiι(0, . . . ,0, xi1)

]

+ 2(θ̂i − θi)
t ˙̂θ i + 2(ς̂ i − ς∗) ˙̂ς

i

]

. (8.53)

With xi2 as the virtual control, we choose

ci1 = ri2(yi, zi1, β̂i, θ̂i, ˙̂ς
i
), (8.54)

where ci1 > 0. Define

zi2 = xi2 − ri2(yi, zi1, β̂i, θ̂i, ˙̂ς
i
).

In terms of (yi, zi1, zi2), V̇1 is given as

V̇1 ≤

N
∑

i=1

[

ν̇i0(yi)−

p
∑

k=1

{kλk−1
min (Pi)λmin(Qi)− (2dik0 + dik1)ς

−1
i }‖yi‖

2k

− 2ci1z
2
i1 + −2zi1zi2 + 2(θ̂i − θi)

t

{

˙̂
θ i − zi1

1
∑

ι=0

̟ ι
i1(yi, β̂i)γiι(0, . . . ,0, xi1)

}

+ 2(ς̂ i − ς∗)

{

˙̂ς
i
−

z2
i1

2
̟i1‖ϕ

ι
i1(yi, β̂i)‖

2

}

]

. (8.55)

Proceeding to avoid overparameterization, the adaptation laws for θ̂i and ς̂ i are

obtained in the final step. Inspired by [21], we define the following tuning functions:

τi2(yi, zi1, β̂i) = zi1

1
∑

ι=0

̟ ι
i1(yi, β̂i)γiι(0, . . . ,0, xi1), (8.56)

ǫi1(yi, zi1, β̂i) =
z2
i1

2
̟i1‖ϕ

ι
i1(yi, β̂i)‖

2. (8.57)

Retaining the relevant terms, the (zi1, zi2) sub-subsystem can then be written as

żi1 = zi2νi1(yi, zi1, β̂i)+ ri2(yi, zi1, β̂i, θ̂i, ς̂
i)

+

1
∑

ι=0

̟ ι
i1(yi, β̂i)θ

t
i γiι(y1, . . . , yN , xi1),

żi2 = xi3 −
∂ri2

∂yi
ẏi −

∂ri2

∂zi1
żi1 −

∂ri2

∂β̂i

˙̂
βi −

∂ri2

∂θ̂i

˙̂
θ i
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− ∂ri2

∂ς̂ i
˙̂ς i + θ ti γi2(yi, . . . , yN , xi1, xi2) (8.58)

= xi3 + νi2(yi, zi1, zi2, β̂i, θ̂i, ς̂
i)

+ ˙̂
θ
t

iψi2(yi, zi1, β̂i, ς̂
i)+ ˙̂ς i

ξi2(yi, zi1, β̂i, θ̂
i)

+
2∑

ι=0

ϕι
i2(yi, zi1, β̂i, θ̂i, ς̂

i)θ ti γiι(y1, . . . , yN , xi1, xi2).

Step 2: From now on, the following notation is used unless specified explicitly:

νik(yi, zi1, . . . , zik, β̂i, θ̂i, ς̂
i) = νik,

γik(yi, . . . , yN , xi1, . . . , xik) = γik,

ϕik(yi, zi1, . . . , zi,k−1, β̂i, θ̂i, ς̂
i) = ϕik,

ψik(yi, zi1, . . . , zi,k−1, β̂i, ς̂
i) = ψik, (8.59)

ξik(yi, zi1, . . . , zi,k−1, β̂i, θ̂i) = ξik,

τik(yi, zi1, . . . , zik, β̂i, θ̂i, ς̂
i) = τik,

ǫik(yi, zi1, . . . , zik, β̂i, θ̂i, ς̂
i) = ǫik.

Consider as xi3 the virtual control for the (yi, zi1, . . . , zi2) subsystem. Consider the

Lyapunov function:

Ve = Vc +
N∑

i=1

z2
i2. (8.60)

On differentiating V2 along the trajectories of (8.58), we obtain

V̇2 ≤

N∑

i=1

[

ν̇i0(yi)−

p
∑

k=1

{kλk−1
min (Pi)λmin(Qi)− (2dik0 + dik1)ς

−1
i }‖yi‖

2k

− 2ci1z
2
i1 + 2zi2

(

zi1 + xi3 + νi2 + ˙̂ς
i
ξi2 +

˙̂
θ
t

iψi2 +

2
∑

ι=0

ϕι
i2θ

t
i γiι

)

+ 2(θ̂i − θi)
t {

˙̂
θ i − τi1} + 2(ς̂ i − ς∗){ ˙̂ς

i
− ǫi1}

]

. (8.61)

By similarity to (8.50) , we obtain using (8.32) and (8.39), bounds for

+

N
∑

i=1

2
∑

ι=0

2‖zi2ϕ
ι
i2‖‖θ

t
i γiι(y1, . . . , yN , xi1 . . . xiι)− θ ti γiι(0, . . . ,0, xi1 . . . xiι)‖

with dikι and ̟iι given by (8.51) and (8.52), respectively. On using these bounds,

relation (8.61) can be expressed as
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V̇e ≤

N∑

i=1

[

ν̇i0(yi)−

p
∑

k=1

{kλk−1
min (Pi)λmin(Qi)− (3dik0 + 2dik1 + dik2)ς

−1
i }‖yi‖

2k

− 2ci1z
2
i1 + 2zi2

{

zi1 + xi3 + νi2 +
ς∗

2
zi2

2
∑

ι=0

̟iι‖ϕ
ι
i2‖

2

+ θ ti

2
∑

ι=0

ϕι
i2γiι(0, . . . ,0, xi1, xi2)+

˙̂
θ
t

iψi2 + ˙̂ς
i
ξi2

}

+ 2(θ̂i − θi)
t {

˙̂
θ i − τi1} + 2(ς̂ i − ς∗){ ˙̂ς

i
− ǫi1}

]

. (8.62)

Selecting

xi3 = −

[

zi1 + ci2zi2 + νi2 + τi2ψi2 + ǫi2ξi2 +
ς̂ i

2

2
∑

ι=0

̟iι‖ϕ
ι
i2‖

2

+ θ ti

2
∑

ι=0

ϕι
i2γiι(0, . . . ,0, xi1, xi2)

]

= ri3(yi, zi1, zi2, β̂i, θ̂i, ς̂
i), (8.63)

where τi2 and ǫi2 are tuning functions defined as

τi2 = τi1 + zi2

2
∑

ι=0

ϕι
i2γiι(0, . . . ,0, xi1, xi2),

ǫi2 = ǫi1 +
1

2
z2
i2

2
∑

ι=0

̟iι‖ϕ
ι
i2‖

2.

Recall that xi3 is not the control. Thus we define

zi3 = xi3 − ri3(yi, zi1, zi2, β̂i, θ̂i, ς̂
i).

Then, V̇e is given by

V̇e ≤

N
∑

i=1

[

ν̇i0(yi)−

p
∑

k=1

{kλk−1
min (Pi)λmin(Qi)− (3dik0 + 2dik1 + dik2)ς

−1
i }‖yi‖

2k

− 2ci1z
2
i1 − 2ci2z

2
i2 + 2zi2zi3 + 2zi2{

˙̂
θ i − τi1}

tψi2

+ 2zi2{ ˙̂ς
i
− ǫi2}ξi2 + 2(θ̂i − θi)

t {
˙̂
θ i − τi2} + 2(ς̂ i − ς∗){ ˙̂ς

i
− ǫi2}

]

. (8.64)

If the control ui appears in the state equation for xi3, the adaptation laws for θ̂i and

ς̂ i would be
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˙̂
θ i = τi3

= τi2 + zi3

3∑

ι=0

ϕι
i3γiι(0, . . . ,0, xi1, xi2, xi3), (8.65)

˙̂ς i = ǫi3

= ǫi2 + 1

2
z2
i3

3∑

ι=0

̟iι‖ϕ
ι
i3‖

2. (8.66)

In the time derivative of the Lyapunov function V3 = V2 +
∑N

i=1 z
3
i2, the term

2zi2{
˙̂
θ i − τi2}

tψi2 + 2zi2{ ˙̂ς
i
− ǫi2}ξi2 (8.67)

can be expressed as zi3λi3(zi1, zi2, zi3, θ̂i, ς̂
i) and can be countered using the con-

trol −λi3. However, if ui does not appear in ẋi3, (8.67) needs to be upgraded using

tuning functions [21].

This is illustrated in Step m (3 ≤ m ≤ n− κ − 1), where the design procedure is

now made recursive.

Step m (3 ≤ m ≤ n − κ − 1): Consider xi,m+1 as the virtual control for the

(yi, zi1, . . . , zim) subsystem, where zim is given by

zim = xim − rim(yi, zi1, . . . , zi,m−1, β̂i, θ̂i, ς̂
i) (8.68)

and

żim = xi,m+1 + νim +
˙̂
θ
t

iψim + ˙̂ς
i
ξim +

m−1
∑

ι=0

ϕι
imθ

t
i γiι. (8.69)

Consider the following Lyapunov function for the (yi, zi1, . . . , zim) subsystems:

Vm = Vm−1 +

N
∑

i=1

z2
im. (8.70)

By differentiating Vm along the trajectories of the (yi, zi1, . . . , zim) subsystem, we

obtain

V̇m ≤

N
∑

i=1

[

ν̇i0(yi)−

p
∑

k=1

{

kλk−1
min (Pi)λmin(Qi)

−
[

mdik0 + (m− 1)dik1 + · · · + dik,m−1

]

ς−1
i

}

‖yi‖
2k

− 2ci1z
2
i1 − · · · − 2ci,m−1z

2
i,m−1

+ 2{
˙̂
θ i − τi,m−1}

t
m−1
∑

j=2

zijψij + 2{ ˙̂ς
i
− ǫi,m−1}

m−1
∑

j=2

zij ξij
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+ 2zim

(

zi,m−1 + xi,m+1 + νim + ˙̂
θ
t

iψim + ˙̂ς i
ξim +

m
∑

ι=0

ϕι
imθ

t
i γiι

)

+ 2(θ̂i − θi)
t { ˙̂θ i − τi,m−1} + 2(ς̂ i − ς∗){ ˙̂ς

i
− ǫi,m−1}

]

. (8.71)

Using (8.32) and (8.39), we obtain the associated bounds

+

N
∑

i=1

m
∑

ι=0

2‖zimϕ
ι
im‖‖θ ti γiι(y1, . . . , yN , xi1, . . . , xiι)

− θ ti γiι(0, . . . ,0, xi1, . . . , xiι)‖.

On applying these bounds to V̇m, we obtain

V̇m ≤

N
∑

i=1

[

ν̇i0(yi)−

p
∑

k=1

{

kλk−1
min (Pi)λmin(Qi)

−
[

(m+ 1)dik0 +mdik1 + · · · + dikm
]

ς−1
i

}

‖yi‖
2k

− 2ci1z
2
i1 − · · · − 2ci,m−1z

2
i,m−1

+ 2{
˙̂
θ i − τi,m−1}

t
m−1
∑

j=2

zijψij + 2{ ˙̂ς
i
− ǫi,m−1}

m−1
∑

j=2

zij ξij

+ 2zim

(

zi,m−1 + xi,m+1 + νim +
ς∗

2
zim

2
∑

ι=0

̟iι‖ϕ
ι
im‖2

+
˙̂
θ
t

i

m
∑

ι=0

ϕι
imγiι(0, . . . ,0, xi1, . . . , xim)+

˙̂
θ
t

iψim + ˙̂ς
i
ξim

)

+ 2(θ̂i − θi)
t {

˙̂
θ i − τi,m−1 + 2(ς̂ i − ς∗){ ˙̂ς

i
− ǫi,m−1}

]

. (8.72)

Similarly define the tuning functions

τim = τi,m−1 + zim

m
∑

ι=0

ϕι
imγiι(0, . . . ,0, xi1, . . . , xim), (8.73)

ǫim = ǫi,m−1 +
1

2
z2
im

m
∑

ι=0

̟iι‖ϕ
ι
im‖2. (8.74)

We get

2{
˙̂
θ i − τi,m−1}

t
m−1
∑

j=2

zijψij + 2{ ˙̂ς
i
− ǫi,m−1}

m−1
∑

j=2

zij ξij

= 2{
˙̂
θ i − τi,m}t

m−1
∑

j=2

zijψij + 2{ ˙̂ς
i
− ǫi,m}

m−1
∑

j=2

zij ξij
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+ 2zim

{

m∑

ι=0

ϕι
imγiι(0, . . . ,0, xi1, xi2, . . . , xim)

m−1∑

j=2

zijψij

+ 1

2
zim

m∑

ι=0

̟iι‖ϕ
ι
im‖2

m−1∑

j=2

zij ξij

}

. (8.75)

Applying (8.75) to (8.72), we have

V̇m ≤

N
∑

i=1

[

ν̇i0(yi)−

p
∑

k=1

{

kλk−1
min (Pi)λmin(Qi)

−
[

(m+ 1)dik0 +mdik1 + · · · + dikm
]

ς−1
i

}

‖yi‖
2k

− 2ci1z
2
i1 − · · · − 2ci,m−1z

2
i,m−1

+ 2{
˙̂
θ i − τi,m}t

m−1
∑

j=2

zijψij + 2{ ˙̂ς
i
− ǫi,m}

m−1
∑

j=2

zij ξij

+ 2zim

(

zi,m−1 + xi,m+1 + νim

+

m
∑

ι=0

ϕι
imγiι(0, . . . ,0, xi1, xi2, . . . , xim)

m−1
∑

j=2

zijψij

+
1

2
zim

m
∑

ι=0

̟iι‖ϕ
ι
im‖2

m−1
∑

j=2

zij ξij +
ς∗

2
zim

2
∑

ι=0

̟iι‖ϕ
ι
im‖2

+ θ ti

m
∑

ι=0

ϕι
imγiι(0, . . . ,0, xi1, xi2, . . . , xim)+

˙̂
θ
t

iψim + ˙̂ς
i
ξim

)

+ 2(θ̂i − θi)
t {

˙̂
θ i − τi,m−1} + 2(ς̂ i − ς∗){ ˙̂ς

i
− ǫi,m−1}

]

. (8.76)

Choose the following virtual control for xi,m+1:

xi,m+1 = −

[

zi,m−1 + cimzim + νim

+

m
∑

ι=0

ϕι
imγiι(0, . . . ,0, xi1, xi2, . . . , xim)

m−1
∑

j=2

zijψij

+
1

2
zim

m
∑

ι=0

̟iι‖ϕ
ι
im‖2

m−1
∑

j=2

zij ξij

+
ς̂ i

2
zim

m
∑

ι=0

̟iι‖ϕ
ι
im‖2
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+ θ̂ ti

m∑

ι=0

ϕι
im(yi, zi1, . . . , zi,m−1)γiι(0, . . . ,0, xi1, . . . , xim)

+ τimψim + ǫimξim

]

= ri,m+1(yi, zi1, . . . , zim, β̂i, θ̂i, ς̂
i) (8.77)

and define

zi,m+1 = xi,m+1 − ri,m+1(yi, zi1, . . . , zim, β̂i, θ̂i, ς̂
i).

Then it is not difficult to see that V̇im is given by

V̇m ≤

N
∑

i=1

[

ν̇i0(yi)−

p
∑

k=1

{

kλk−1
min (Pi)λmin(Qi)

−
[

(m+ 1)dik0 +mdik1 + · · · + dikm
]

ς−1
i

}

‖yi‖
2k

− 2ci1z
2
i1 − · · · − 2ci,mz

2
i,m + 2zi,m+1zim

+ 2{
˙̂
θ i − τi,m}t

m
∑

j=2

zijψij

+ 2{ ˙̂ς
i
− ǫim}

m
∑

j=2

zij ξij + 2(θ̂i − θi)
t {

˙̂
θ i − τim}

+ 2(ς̂ i − ς∗){ ˙̂ς
i
− ǫim}

]

. (8.78)

Step n− κ : In the (n− κ − 1)th step, xi,n−κ is obtained as a virtual control input [=

ri,n−κ (yi, zi1, . . . , zi,n−κ−1, θ̂i, ς̂i)] for the (yi, zi1, . . . , zn−κ−1) subsystem. Define

zi,n−κ = xi,n−κ − ri,n−κ (yi, zi1, . . . , zi,n−κ−1, θ̂i, ς̂i). Denoting n − κ = ρ as the

degree of mismatch, we obtain

żiρ = vi(xi)+ νi,ρ +
˙̂
θ
t

iψi,ρ + ˙̂ς
i
ξi,ρ +

ρ
∑

ι=0

ϕi,ρθ
t
i γi,ρ + δi(yi, xi)ui . (8.79)

Consider the following Lyapunov function:

Vρ = Vρ−1 + z2
iρ (8.80)

and differentiating (8.80) along the trajectories of the overall system, V̇ρ is given by

V̇ρ ≤

N
∑

i=1

[

ν̇i0(yi)−

p
∑

k=1

{

kλk−1
min (Pi)λmin(Qi)

−
[

ρdik0 + (ρ − 1)dik1 + · · · + dik,ρ−1

]

ς−1
i

}

‖yi‖
2k

− 2ci1z
2
i1 − · · · − 2ci,ρ−1z

2
i,ρ−1



464 8 Decentralized Adaptive Control

+ 2{ ˙̂θ i − τi,ρ−1}t
ρ−1∑

j=2

zijψij + 2{ ˙̂ς i − ǫi,ρ−1}
ρ−1∑

j=2

zij ξij

+ 2ziρ

(

zi,ρ−1 + δi(yi, xi)ui + vi(xi)+ νi,ρ
˙̂
θ
t

iψiρ + ˙̂ς i
ξiρ +

ρ
∑

ι=0

διiρθ
t
i γiι

)

+ 2(θ̂i − θi)
t { ˙̂θ i − τi,ρ−1} + 2(ς̂ i − ς∗){ ˙̂ς

i
− ǫi,ρ−1}

]

. (8.81)

As in (8.49), (8.53), we apply the associated bounds for

+

N
∑

i=1

ρ
∑

ι=0

2‖zi1ϕ
ι
iρ‖ ‖θ ti γiι(y1, . . . , yN , xi1, . . . , xiι)

− θ ti γiι(0, . . . ,0, xi1, . . . , xiι)‖

to V̇ρ to obtain

V̇ρ ≤

N
∑

i=1

[

ν̇i0(yi)−

p
∑

k=1

{

kλk−1
min (Pi)λmin(Qi)

−
[

(ρ + 1)dik0 + ρdik1 + · · · + dik,ρ
]

ς−1
i

}

‖yi‖
2k

− 2ci1z
2
i1 − · · · − 2ci,ρ−1z

2
i,ρ−1

+ 2{
˙̂
θ i − τi,ρ−1}

t

ρ−1
∑

j=2

zijψij + 2{ ˙̂ς
i
− ǫi,ρ−1}

ρ−1
∑

j=2

zij ξij

+ 2ziρ

(

zi,ρ−1 + δi(yi, xi)ui + vi(xi)+ νiρ + θ ti

ρ
∑

ι=0

ϕι
iργiι(0, . . . ,0, xi)

+
ς∗

2
ziρ

ρ
∑

ι=0

̟iι‖ϕ
ι
iρ‖2 +

˙̂
θ
t

iψiρ + ˙̂ς
i
ξiρ

)

+ 2(θ̂i − θi)
t {

˙̂
θ i − τi,ρ−1} + 2(ς̂ i − ς∗){ ˙̂ς

i
− ǫi,ρ−1}

]

. (8.82)

The following decentralized control input ui is applied for the ith subsystem:

ui =
1

δi(yi, xi)

(

− vi(xi)− zi,ρ−1 − ciρziρ − νi,ρ

−
ς∗

2
ziρ

ρ
∑

ι=0

̟iι‖ϕ
ι
iρ‖2 − θ̂ ti

ρ
∑

ι=0

ϕι
iργiι(0, . . . ,0, xi1)

− τiρψiρ − ǫiρξiρ −

ρ
∑

ι=0

ϕι
iργiι(0, . . . ,0, xi1)

ρ−1
∑

j=2

zijψij

−
1

2
ziρ

ρ
∑

ι=0

̟iι‖ϕ
ι
iρ‖2

ρ−1
∑

j=2

zij ξij

)

(8.83)
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with the adaptation laws

˙̂
θ
t

i = τiρ

= τi,ρ−1 + ziρ

ρ∑

ι=0

ϕι
iργiι(0, . . . ,0, xi),

τij = τi,j−1 + zij

j∑

ι=0

ϕι
ijγiι(0, . . . ,0, xi1, . . . , xij ), 2 ≤ j ≤ ρ,

τi1 = zi1

1∑

ι=0

ϕι
i1(yi)γiι(0, . . . ,0, xi1). (8.84)

˙̂ς
i
= ǫiρ

= ǫi,ρ−1 +
1

2
z2
iρ

ρ∑

ι=0

̟iι‖ϕ
ι
iρ‖2,

ǫij = ǫi,j−1 +
1

2
z2
ij

j∑

ι=0

̟iι‖ϕ
ι
ij‖

2, 2 ≤ j ≤ ρ,

ǫi1(yi, zi) =
z2
i1

2

1∑

ι=0

̟iι‖ϕ
ι
i1(yi)‖

2. (8.85)

The stability properties of the above designed decentralized adaptive control are

stated in the following theorem.

Theorem 8.3 Suppose that (8.24), with ni = n and uniform degree of mismatch

for each subsystem, satisfies the conditions of Proposition 8.1. The control input

(8.83) along with the adaptation laws (8.45), (8.84), and (8.85), obtained from the

above systematic design procedure, results in the global uniform stability of the

equilibrium

zi = 0, θ̂i = θi, β̂i = β∗
i , ς̂ i = ς∗, 1 ≤ i ≤ N.

Furthermore, regulation of the state ζ(t) is achieved,

lim
t↔∞

ζ(t) = 0

for all initial conditions in Ω = ℜn1+···+nN .

Proof Applying (8.83) with adaptation laws (8.84) and (8.85), (8.82) becomes

V̇ρ ≤

N∑

i=1

[

−2β∗
i ‖B t

iPiyi‖
2[1 + ‖yi‖

2(p−1)]

p
∑

k=1

kλk−1
min (Pi)‖yi‖

2(k−1)

+ ς∗d2‖B
t
iPiyi‖

2

p
∑

k=1

λ2(k−1)
max (Pi)‖yi‖

4(k−1)
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−
p∑

k=1

{
kλk−1

min (Pi)λmin(Qi)−
[
(ρ + 1)dik0 + ρdik1

+ (ρ − 1)dik2 + · · · + 2dik,ρ−1 + dik,ρ
]
ς−1
i

}

‖yi‖
2k

− 2ci1z
2
i1 − · · · − 2ci,ρz

2
iρ

]

. (8.86)

The degree of freedom ςi is chosen as

ςi ≥ max
k∈1,...i,ρ

{

(ρ + 1)dik0 + ρdik1 + · · · + 2dik,ρ−1 + dik,ρ

kλmin(Qi)λ
k−1
min (Pi)

}

. (8.87)

We need to establish the existence of the gain β∗
i as a function of the interconnection

measure ς∗, such that V̇ρ is negative. The first two terms of V̇ρ can be made negative

by an appropriate choice of β∗. This can be seen as follows. The coefficients of terms

‖yi‖
2(k−1) for k = 2,4,6, . . . ≤ p are negative and are given by

−2kβ∗
i λ

k−1
min (Pi)‖B

t
iPiyi‖

2.

The coefficients of terms ‖yi‖
2(k−1) for k = 1,3,5, . . . ≤ p are

Δi1 = −[2kβ∗
i λ

k−1
min (Pi)− ς∗d2λ

k−1
max(Pi)]‖B

t
iPiyi‖

2

and the coefficients of terms ‖yi‖
4(k−1) for k = 1 + ⌊p/2⌋,2 + ⌊p/2⌋, . . . , p are

given by

Δi2 = −[2β∗
i (2k − p)λ

2k−p−1
min (Pi)− ς∗d2λ

2(k−1)
max (Pi)]‖B

t
iPiyi‖

2.

Therefore, choosing

β∗
i = (max{Λi1,Λi2})ς

∗, (8.88)

where

Λi1 = max
k=1,3,5,...≤p

[

d2λ
k−1
max(Pi)

2kλk−1
min (Pi)

]

,

Λi2 = max
k=1+⌊p/2⌋,...,p

[

d2λ
2(k−1)
max (Pi)

2(2k − p)λ
2k−p−1
min (Pi)

]

we have

V̇ρ ≤ −

N
∑

i=1

{

ci0

p
∑

k=1

‖yi‖
2k +

ρ
∑

j=1

cijz
2
ij

}

,

cij > 0, 0 ≤ j ≤ ρ; 1 ≤ i ≤ N. (8.89)

Thus, the solutions yi , zi1, . . . , zi,ρ , β̂i , ς̂
i , θ̂i , ∀1 ≤ i ≤ N are bounded for all initial

conditions and for all t . Thus, ẏi, żij are bounded, ∀0 ≤ j ≤ ρ;≤ i ≤ N , implying

uniform continuity of yi and zij . Moreover, since Vρ(t) is a positive, monotonically

decreasing function, its limit Vρ(∞) is well defined and
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−
∫ ∞

0

V̇ρdt =

∫ ∞

0

N
∑

i=1

{

ci0

p
∑

k=1

‖yi(τ )‖
2k +

ρ
∑

j=1

cijz
2
ij (τ )

}

dτ

= Vρ(0)− Vρ(∞) < ∞.

Thus, yi, zij ∈ L2. Invoking Barbalat’s lemma [35], we have

lim
t→∞

yi(t) = 0,

lim
t→∞

zij (t) = 0; 0 ≤ j ≤ ρ, 1 ≤ i ≤ N.

Furthermore ẏi , żij ,
˙̂
θ i , ˙̂ς

i
and

˙̂
βi are uniformly continuous. Also

lim
t→∞

∫ t

0

˙(.)(τ )dτ < ∞,

where (.) ∈ {yi, zij , θ̂i, ς̂
i, β̂i}. Therefore

lim
t→∞

ẏi(t) = 0, lim
t→∞

zij (t) = 0, lim
t→∞

˙̂
θ i(t) = 0,

lim
t→∞

˙̂ς
i
(t) = 0, lim

t→∞

˙̂
βi = 0, ∀0 ≤ j ≤ ρ, 1 ≤ i ≤ N.

Since xi1, . . . , xiρ can be expressed as smooth functions of yi , zi1, . . . , zi,ρ , θ̂i ,

ς̂ i , β̂i , using (8.68), and from the uniqueness of 0 as an equilibrium of (8.30),

and (8.31), we obtain

lim
t→∞

yi(t) = 0,

lim
t→∞

ẋij (t) = 0, ∀0 ≤ j ≤ ρ; 1 ≤ i ≤ N.

It now follows from (8.30) and (8.31) that limt→∞ xij (t) = 0. Finally, since

(yti , x
t
i )

t = φi(ςi), i = 1, . . . ,N

is a diffeomorphism with φi(0) = 0, regulation is achieved in the original coordi-

nates, that is,

lim
t→∞

ςi(t) = 0, i ∈ {1, . . . ,N}. �

The above design procedure proceeds independently for each subsystem after

Step 0, where the virtual control xi1 for the yi subsystem is obtained. Therefore, as

alluded to in Remark 8.8, the degree of mismatch and the number of states for each

subsystem need not be the same. Thus, the results of the above theorem are true for

the general case of different degrees of mismatch and number of states among the

subsystems. Furthermore, for each subsystem, three parameters (β̂i, θ̂i, ς̂
i) need to

be adapted. However, if γij (0, . . . ,0, xi1, . . . , xij ) = 0, ∀1 ≤ j ≤ ρ, only the param-

eters β̂i and ς̂ i need to be updated for the ith subsystem. These points are illustrated

in the example below.
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Remark 8.9 The class of large-scale nonlinear systems can be further extended to

systems transformable to the following decentralized pure feedback form:

ẇi1 =wi2,

...

ẇi,κi−1 = wi,κi ,

ẇi,κi = wi,κi+1 + θ ti γi0(wj1, . . . ,wj,κj ,wi,κi+1|1 ≤ j ≤ N),

ẇi,κi+1 = wi,κi+2 + θ ti γi1(wj1, . . . ,wj,κj ,wi,κi+1,wi,κi+2|1 ≤ j ≤ N),

...

ẇi,ni−1 = win + θ ti γi,ni−κi−1(wj1, . . . ,wj,κj ,wi,κi+1, . . . ,wi,ni |1 ≤ j ≤ N)

+ {δi0(wi)+ θ ti δi(wj1, . . . ,wj,κj ,wi,κi+1, . . . ,wi,ni |1 ≤ j ≤ N)}ui,

1 ≤ i ≤ N. (8.90)

The decentralized design can be carried out in similar steps as above. However, as

discussed in [20], the region of attraction in this case is not global, but asymptotic

regulation and tracking are guaranteed in regions for which a priori estimates are

given.

8.4.3 Simulation Example 8.3

We consider a system comprised of two subsystems with degrees of mismatch ρi =

1, i = 1,2.

Subsystem 1: ẏ11 = y12,

ẏ12 = x11 + θ1(ζ11y11y12 + ζ12y
2
21), (8.91)

ẋ11 = u1 + θ1x11y
2
21.

Subsystem 2: ẏ21 = x21 + θ2(ζ21y
2
11 + ζ22y12y21), (8.92)

ẋ21 = u2 + θ2x21y
2
11.

The system is already in the decentralized strict feedback form and hence satisfies

the conditions of Theorem 8.3. Identifying with (8.30) and (8.31)

γ10 = ζ11y11y21 + ζ12y
2
21,

γ11 = x11y
2
21,

γ20 = ζ21y
2
11 + ζ22y12y21,

γ21 = x21y
2
11.

We design a decentralized adaptive control law for the above system following the

steps outlined earlier.
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Step 0: Since the interconnections are bounded by quadratic polynomials in the

states, from (8.33) we have p = 2.

We choose

Q1 = diag(10,10), Q2 = 10, α1 = α2 = 10.

Solving the ARE (8.34), we obtain

P1 =
[

10.9545 1

1 1.0954

]

, P2 = 1.

The virtual controls obtained from (8.45) are given by

r11 = −(y11 + 1.0954y12){10 + β̂1(1 + y2
11 + y2

12)},
r21 = −y21{10 + β̂2(1 + y2

21)}
with adaptation laws obtained from (8.45) with Γ1 = Γ2 = 1

˙̂
β1 = (y11 + 1.0954y12)

2(1 + y2
11 + y2

12)

× {1 + 2(10.9545y2
11 + 1.0954y2

12 + 2y11y12)}
= τ10(y11, y12), (8.93)

˙̂
β2 = y2

21(1 + y2
21)(1 + 2y2

21)

= τ20(y21).

Define zi1 = xi1 − ri1. The terms νi1(yi, zi1, β̂i) and ϕι
i1(yi, β̂i) in (8.47) are given

by

ν11(y1, z11, β̂1) = − ∂r11

∂y11
y12 − ∂r11

∂y12
(z11 + r11)− ∂r11

∂β̂1

r10(y11, y12),

ν21(y2, z21, β̂2) = − ∂r21

∂y21
(z21 + r21)− ∂r21

∂β̂2

r20(y21),

ϕ0
11(y11, y12, β̂1) = ∂r11

∂y12
,

ϕ0
21(y21β̂2) = ∂r21

∂y21
,

ϕ1
11 = ϕ1

21 = 1.

Since γi1(0,0, xi1) = 0, i = 1, 2, the unknown parameter θi can be lumped with

the coefficients of the polynomial interconnections, which are also unknown. Thus,

only adaptation in ς̂ i is required.

Step 1: From the bounds in (8.50), we obtain

̟10 = ̟20 = 2,

̟11 = x2
11,

̟21 = x2
21.
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Since the degree of mismatch is one, the input appears in this step and is obtained

from (8.54), that is,

u1 = −z11

2
− (y11 + 1.0954y12){1 + 2(10.9545y2

11 + 1.0954y2
12 + 2y11y12)}

+ y12
∂r11

∂y11
+ (z11 + r11)

∂r11

∂y12
+ r10

∂r11

∂β̂1

− ς̂1z11

{(

∂r11

∂y12

)2

+
x2

11

2

}

, (8.94)

u2 = −z21

2
− y21(1 + 2y2

21)+ (z21 + r21)
∂r21

∂y21
+ r20

∂r21

∂β̂2

− ς̂2z21

{(

∂r21

∂y21

)2

+
x2

21

2

}

(8.95)

with adaptation for ς̂ i given by (8.57) as

˙̂ς1 = z2
11

{(

∂r11

∂y12

)2

+ 1

2
x2

11

}

,

(8.96)

˙̂ς2 = z2
21

{(

∂r21

∂y21

)2

+ 1

2
x2

21

}

.

The closed-loop system was simulated for the following initial conditions:

y11(0) = 2.0, y12(0) = −2.0, y21(0) = 2.0,

x11(0) = 1.0, x21(0) = −2.0,
(8.97)

β̂1(0) = β̂2(0) = ς̂1(0) = ς̂2(0) = 0. (8.98)

The nominal values for θi, ςij , 1 ≤ i, j ≤ 2, were chosen as 1.0. The closed-loop

responses for the two subsystems are plotted in Figs. 8.7 and 8.8, respectively.

The adaptation of parameters β̂i , ς̂
i for the two subsystems is shown in Figs. 8.9

and 8.10, respectively.

Fig. 8.7 Subsystem 1

closed-loop response
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Fig. 8.8 Subsystem 2

closed-loop response

Fig. 8.9 Adaptation of β̂1

and β̂2

Remark 8.10 It is interesting to note that (8.94) and (8.95) maintain a robust per-

formance to a wide class of perturbations in the system dynamics, as long as the

interconnections are bounded by a quadratic polynomial in yi . In this sense, the

controller guarantees robustness to inaccurately modeled dynamics.

8.4.4 Simulation Example 8.4

Consider the when the system of (8.91) and (8.92) is modified to the following:

Subsystem 1: ẏ11 = y12,

ẏ12 = x11 + θ1[(ζ11y11y12 + ζ12y
2
21 + ζ13y12y21)

(8.99)+ ζ14y12 + ζ15y11 sin(y21)],
ẋ11 = u1 + θ1x11(y

2
21 + y21y11).
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Fig. 8.10 Adaptation of ζ̂1

and ζ̂2

Subsystem 2: ẏ21 = x21 + θ2[ζ21y
2
11 + ζ22y12y21 + ζ23y11y12

+ ζ24y
2
12 + ζ25 cos(y11) sin(y12)], (8.100)

ẋ21 = u2 + θ2x21(y
2
11 + y2

12).

It is a straightforward task to show that the controller developed above will still

maintain a robust performance. The adaptation parameters self-adjust to new (pos-

sibly higher) values to incorporate the additional perturbations.

Remark 8.11 An important issue in decentralized control design is redesigning de-

centralized controllers for the original subsystems if more subsystems are appended

to the large-scale system. The design methodology proposed here obviates any need

for controller redesign for the original subsystems if the order of the nonlinearities

in the interconnections, due to the appended subsystem, is less than or equal to that

of original system. This is generally true for most practical applications, where the

interconnected subsystems are dynamically similar. In any case, defining p in (8.33)

as the maximum possible order of all current and future interconnections will ensure

that the same decentralized controller works for the modified subsystems.

8.4.5 Simulation Example 8.5

For the simulation examples considered above, we append a third subsystem to the

original system given by (8.91) and (8.92). The new system is given by

Subsystem 1: ẏ11 = y12,

ẏ12 = x11 + θ1(ζ11y11y21 + ζ12y
2
21 + ζ13y

2
31 + ζ14y21y31), (8.101)

ẋ11 = u1 + θ1x11(y
2
21 + y2

31).
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Subsystem 2: ẏ21 = x21 + θ2(ζ21y
2
11 + ζ22y12y21 + ζ23y11y31),

(8.102)
ẋ21 = u2 + θ2x21(y

2
11 + y11y31).

Subsystem 3: ẏ31 = x31 + θ3(ζ31y
2
11 + ζ32y21y31),

(8.103)
ẋ31 = u3 + θ3x31y

2
21.

The decentralized control laws for the first and second subsystems are given by

(8.94), (8.95) with adaptation laws (8.93) and (8.96). For the third subsystem

r31 = −y31{10 + β̂3(1 + y2
31)}.

Defining z31 = x31 − r31, the control law for u3 is given by

u3 = −z31

2
− y31(1 + 2y2

31)+ (z31 + r31)
∂r31

∂y31

+ r30
∂r31

∂β̂3

− ς̂3z31

{(

∂r31

∂y31

)2

+
x2

31

2

}

(8.104)

with adaptation laws

˙̂
β3 = y2

31(1 + y2
31)(1 + 2y2

31) = r30(y31),
(8.105)

˙̂ς3 = z2
31

{(

∂r31

∂y31

)2

+ 1

2
x2

31

}

.

The initial conditions used for simulations are given by (8.97) along with

y31(0) = −2.0, x31(0) = 1.0.

The closed-loop responses are plotted in Figs. 8.11, 8.12 and 8.13. The plots validate

the fact that the same control laws maintain a robust performance even when more

subsystems are appended to the original system.

Fig. 8.11 Subsystem 1

closed-loop response
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Fig. 8.12 Subsystem 2

closed-loop response

Fig. 8.13 Subsystem 3

closed-loop response

8.4.6 Tracking Behavior

The objective of the decentralized state tracking problem is to track a given reference

model. To avoid notational complexity, we consider the case of uniform degrees of

mismatch and number of states among the subsystems. Since the isolated subsys-

tems are in the Brunovsky form, we choose a similar model for each subsystem of

the interconnected system given by (8.30) and (8.31), that is,

ẏmi =Aiymi +Bixmi1,

ẋmi1 = xmi2,

... (8.106)

ẋmi,n−κ−1 = xmi,n−κ ,

ẋmi,n−κ = Ki[ytmix
t
mi]t + bmiri, 1 ≤ i ≤ N,
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where ri is an external (reference) input to the ith subsystem model. We first define

the state tracking errors ỹi = yi − ymi and x̃i = xi − x̃mi . The design procedure in

the previous section is applied to tracking error system

˙̃yi =Ai ỹi +Bi x̃i1 +Biθ
t
i γi0(y1, . . . , yN ),

˙̃xi1 = x̃i2 + θ ti γi1(y1, . . . , yN , xi1),

...
(8.107)

˙̃xi,n−κ−1 = x̃i,n−κ + θ ti γi,n−κ−1(y1, . . . , yN , xi1, . . . , xi,n−κ−1),

˙̃xi,n−κ = vi(yi, xi)+ θ ti γi,n−κ (y1, . . . , yN , xi1, . . . , xi,n−κ)

+ δi(yi, xi)ui −Ki[ytmix
t
mi]t + bmiri, 1 ≤ i ≤ N

with certain distinctions which are outlined below.

Step 0: View x̃i1 as the virtual control for the ỹi subsystem in (8.108). Therefore,

we have

x̃i1 = −αiB
t
iPi ỹi − β̂iB

t
iPi ỹi{1 + (ỹti ỹi)

(p−1)}

= ri1(ỹi, β̂i) (8.108)

with adaptation law for β̂i given by

˙̂
βi = Γi‖B

t
iPi ỹi‖

2[1 + ‖ỹi‖
2(p−1)]

p∑

k=1

k(ỹtiPi ỹi)
(k−1) − Γi1σi1β̂i

= τi0(ỹi), (8.109)

where σi1 > 0 incorporates the “σ -modification” to avoid parameter drift as orig-

inally proposed in [14]. The properties of the virtual control law (8.108) can be

analyzed using the following Lyapunov function:

V0 =

N∑

i=1

{

p∑

k=1

(ỹtiPi ỹi)
k + Γ −1

i1 (β̂i − β∗
i )

2

}

(8.110)

with Γi a positive constant. In this case, the interconnection terms can be bounded

using the inequality [36]

(|a1| + |a2|)
k ≤ 2k−1(|a1|

k + |a2|
k) (8.111)

as follows:

‖θ ti γiι(y1, . . . , yN , xi1 . . . xiι)− θ ti γiι(0, . . . ,0, xi1 . . . xiι)‖

≤

piι
∑

k=1

N
∑

l=1

ηkiιζ
k
ilι(‖yml‖ + ‖ỹl‖)

k

≤

piι
∑

k=1

N
∑

l=1

2piι−1ηkiιζ
k
ilι‖yml‖

k +

N
∑

l=1

piι
∑

k=1

2piι−1ηkiιζ
k
ilι‖ỹl‖

k



476 8 Decentralized Adaptive Control

≤ Nζ ιmaxymη̂iι(xi1 . . . xiι)

≤

N∑

l=1

piι∑

k=1

2piι−1ηkiιζ
k
ilι‖ỹl‖

k, (8.112)

where

ζ ιmax = max
i,j∈{1,...,N};k∈{1,...,p}

{ζ kij ι}2
piι−1,

ym = max
k∈{1,...,p},l∈{1,...,N},t

‖yml(t)‖
k,

η̂iι(xi1 . . . xiι) =

piι∑

j=1

η
j
iι,

η̂i0 = pi0.

V̇0 is now obtained following manipulations parallel to Step 0 in the regulation case

with an additional term due to ζ ιmax.

Since, x̃i1 is only the virtual control, define the error z̃i1 = x̃i1 − r̃i1(ỹi, β̂i). In

Step 1, the dynamics for the error term z̃i1 are formulated, and the virtual control

for x̃i2 is obtained. In this case, due to the additional first term in (8.112), we also

need

max
ι∈{1...n−κ}

(Nζ ιmaxym)
2 = ζmax.

We denote this estimate by ζ̂max.

The following Lyapunov function is used to analyze the properties of the virtual

control designed in Step 1:

Vc = V0 +

N∑

i=1

{z̃2
i1 + (θ̂i − θi)

tΓ −1
i2 (θ̂i − θi)

+ Γ −1
i3 (ς̂i − ς∗)2 + Γ −1

i4 (ζ̂max − ζmax)
2} (8.113)

with Γik > 0, k = 2, 3, 4. At each step m (2 ≤ m ≤ n− κ − 1) of the design proce-

dure, virtual control laws for x̃i,m+1 are designed, and the error z̃i,m+1 is defined as

the difference between x̃i,m+1 and the virtual control. The Lyapunov function at the

mth step is given by Vm = Vm−1 +
∑N

i=1 z̃
2
im. As with θ̂i and ς̂ i , tuning functions

are designed at each step to avoid overparameterization in designing the adaptation

law for ζ̂max. The tuning functions at step m (2 ≤ m ≤ n− κ) are given by

τim = τi,m−1 + z̃im

m
∑

ι=0

ϕι
imγiι(0, . . . ,0, xi1, . . . , xim), (8.114)

ǫim = ǫi,m−1 +
1

2
z̃2
im

m
∑

ι=0

̟iι‖ϕ
ι
im‖2, (8.115)

ωim = ωi,m−1 +
z̃2
im

2̺m

(

m
∑

ι=0

‖η̂iιϕ
ι
im‖

)2

(8.116)
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with

τi1(ỹi, z̃i1, β̂i) = z̃i1

1∑

ι=0

ϕι
i1(ỹi, β̂i) · γiι(0, . . . ,0, xi1), (8.117)

ǫi1(ỹi, z̃i1, β̂i) =
z̃2
i1

2

1∑

ι=0

̟iι‖ϕ
ι
i1(ỹi, β̂i)‖

2, (8.118)

ωi1(ỹi, z̃i1, β̂i) =
z̃2
im

2̺1

(

1
∑

ι=0

‖η̂iιϕ
ι
i1(ỹi, β̂i)‖

)2

. (8.119)

The virtual control for x̃i,m+1 at the mth step is given by

x̃i,m+1 = −

[

z̃i,m−1 + cimz̃im + νim

+

m
∑

ι=0

ϕι
imγiι(0, . . . ,0, xi1, xi2, . . . , xim)

m−1
∑

j=2

z̃ijψij

+
1

2
z̃im

m
∑

ι=0

̟iι‖ϕ
ι
im‖2

m−1
∑

j=2

z̃ij ξij

+
z̃im

2̺m

(

m
∑

ι=0

‖η̂iιϕ
ι
im‖

)2 m−1
∑

j=2

z̃ijϑij +
ς̂ i

2
z̃im

m
∑

ι=0

̟iι‖ϕ
ι
im‖2

+ θ̂ ti

m
∑

ι=0

ϕι
im(ỹi, z̃i1, . . . , z̃i,m−1)γiι(0, . . . ,0, xi1, . . . , xim)

+ ζ̂max
z̃im

2̺m

(

m
∑

ι=0

η̂iι‖ϕ
ι
im‖

)2

+ τimψim + ǫimξim +ωimϑim

]

= ri,m+1(ỹi, z̃i1, . . . , z̃im, β̂i, θ̂i, ς̂
i, ζ̂max), (8.120)

where the notation used is defined analogously to the regulation case, see (8.59) for

example, with the arguments replaced by the error terms.

In (8.120), ϑim is the coefficient of
˙̂
ζmax in the dynamics of z̃im, and cim and ̺

are positive design parameters effecting the magnitude of the tracking error.

The actual control input ui appears in the n− κ (= ρ)th step. The decentralized

tracking control law is given by

ui =
1

δi(yi, xi)

[

−vi(xi)+Ki[y
t
mix

t
mi]

t + bmiri − z̃i,ρ−1 − ciρ z̃iρ − νi,ρ

−
ς̂ i

2
z̃iρ

ρ
∑

ι=0

̟iι‖ϕ
ι
iρ‖2 − θ̂ ti

ρ
∑

ι=0

ϕι
iργiι(0, . . . ,0, xi)
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− ζ̂max
z̃iρ

2̺ρ

(

ρ
∑

ι=0

‖η̂iιϕ
ι
iρ‖

)2

− τiρψiρ − ǫiρξiρ −ωiρϑiρ

−

ρ
∑

ι=0

ϕι
iργiι(0, . . . ,0, xi)

ρ−1
∑

j=2

z̃ijψij −
1

2
z̃iρ

ρ
∑

ι=0

̟iι‖ϕ
ι
iρ‖2

ρ−1
∑

j=2

z̃ij ξij

−
z̃iρ

2̺ρ

(

ρ
∑

ι=0

‖η̂iιϕ
ι
im‖

)2 ρ−1
∑

j=2

z̃ijϑij

]

(8.121)

with the following adaptation laws:

˙̂
θ i = Γi2τiρ − σi2Γi2θ̂i

= Γi2τi,ρ−1 + Γi2z̃iρ

ρ
∑

ι=0

ϕι
iργiι(0, . . . ,0, xi)− σi2Γi2θ̂i, (8.122)

˙̂ς
i
= Γi3ǫiρ − σi3Γi3ς̂

i

= Γi3ǫi,ρ−1 +
1

2
Γi3z̃

2
iρ

ρ
∑

ι=0

̟iι‖ϕ
ι
iρ‖2 − σi3Γi3ς̂

i, (8.123)

˙̂
ζmax = Γi4ωiρ − σi4Γi4ζ̂i

= Γi4ωi,ρ−1 +
Γi4z̃iρ

2σρ

(

ρ
∑

ι=0

‖η̂iιϕ
ι
iρ‖

)2

− σi4Γi4ζ̂i, (8.124)

where the tuning functions τij , ǫij , and ωij , 2 ≤ j ≤ ρ are given by (8.114), (8.115),

and (8.116), respectively. In (8.122)–(8.124), σik’s are the σ -modification parame-

ters.

The following theorem states the stability and tracking properties of the proposed

decentralized tracking control, the proof of which is left as an exercise.

Theorem 8.4 The control input (8.121) along with the adaptation laws (8.109)

and (8.122)–(8.124) results in the global uniform boundedness of the error system

[ỹi, x̃i, β̂i, θ̂i, ς̂
i, ζ̂max], 1 ≤ i ≤ N , with respect to a compact set around the ori-

gin. Furthermore, the error ỹi can be made arbitrarily small by choosing the design

parameters appropriately.

Remark 8.12 The control effort at each step (k) is a function of 1/σk and cik . Thus,

the choice of σk , cik illustrates a tradeoff between the magnitude of the tracking error

and the control effort applied. It holds that the conclusions of the above theorem are

true for the case of nonuniform degrees of mismatch and number of states among

the subsystems. In the sequel, this will be apparent.
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8.4.7 Simulation Example 8.6

We consider the example system given by (8.91) and (8.92). The parameters of the

reference model (8.106) are given as

K1 = [−27 −27 −9], K2 = [−9 −6],
bm1 = [0 0 20]t , bm2 = [0 20]t .

The reference signals to be tracked are r1(t)= r2(t)= sin(3t).

Step 0: Using the same αi,Pi , and Qi as in simulation example 8.3, the virtual

controls in this step are designed using (8.108) as

r11 = −(ỹ11 + 1.0954ỹ12){10 + β̂1(1 + ỹ2
11 + ỹ2

12)},
(8.125)

r21 = −ỹ21{10 + β̂2(1 + ỹ2
21)}.

For adaptation, we choose the adaptation gains Γij = 2, σij = 0.5. The adaptation

for β̂i given by (8.109), i.e.,

˙̂
β1 = 2(ỹ11 + 1.0954ỹ12)

2(1 + ỹ2
11 + ỹ2

12)

× {1 + 2(10.9545ỹ2
11 + 1.0954ỹ2

12 + 2̃y11ỹ12)} − β̂1

= τ10(ỹ11, ỹ12), (8.126)

˙̂
β2 = 2ỹ2

21(1 + ỹ2
21)(1 + 2ỹ2

21)− β̂2

= τ20(ỹ21).

Step 1: Define z̃i1 = x̃i1 − ri1; νi1, ϕι
i1, and ̟iι are the same as in (8.91) and (8.92)

with yi and zi replaced by ỹi and z̃i , respectively. Since the degree of mismatch

is one, the control input for each subsystem appears in this step and is obtained

from (8.121) (using ρj = 1.0), i.e.,

u2 = − z̃11

2
− (ỹ11 + 1.0954ỹ12)

× {1 + 2(10.9545ỹ2
11 + 1.0954ỹ2

12 + 2̃y11ỹ12)}

+ ỹ12
∂r11

∂ỹ11
+ (z11 + r11)

∂r11

∂ỹ12

+ r10
∂r11

∂β̂1

− ς̂1z̃11

{(

∂r11

∂ỹ12

)2

+
x2

11

2

}

− ζ̂ 1
max

z̃11

2

(

x11 − ∂r11

∂ỹ12

)2

+ 27ym11

(8.127)
+ 27ym12 + 9xm11 − 20.0 sin(3t),

u2 = − z̃21

2
− ỹ21(1 + 2ỹ2

21)+ (z̃21 + r21)
∂r21

∂ỹ21
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+ r20
∂r21

∂β̂2

− ς̂2z̃21

{(

∂r21

∂ỹ21

)2

+
x2

21

2

}

− ζ̂ 2
max

z̃21

2

(

x21 − ∂r21

∂ỹ21

)2

+ 9ym21

+ 6xm21 − 20.0 sin(3t)

with adaptation given by (8.123) and (8.124), i.e.,

˙̂ς1 = 2z̃2
11

{(

∂r11

∂ỹ12

)2

+ 1

2
x2

11

}

− ς̂1,

˙̂ς2 = 2z̃2
21

{(

∂r21

∂ỹ21

)2

+ 1

2
x2

21

}

− ς̂2,

(8.128)

˙̂
ζ

1

max = z̃2
11

(

x11 − ∂r11

∂ỹ12

)2

− ζ̂ 1
max,

˙̂
ζ

2

max = z̃2
21

(

x21 − ∂r21

∂ỹ21

)2

− ζ̂ 2
max.

The initial conditions used are given by (8.97), along with ζ̂ 1
max(0) =

ζ̂ 2
max(0) = 0. The closed-loop responses along with the reference model states are

plotted in Figs. 8.14–8.18. From the plots, we see that the tracking error stays

bounded.

The adaptation of parameters β̂i , ς̂
i , and ζ imax are shown in Figs. 8.19, 8.20, and

8.21, respectively.

Remark 8.13 As before, it can be shown that the decentralized tracking control law

maintains robustness to perturbations in the system dynamics as long as the order

of the interconnections remains the same. Also, the same control law can be used if

additional subsystems are appended to the original system.

Fig. 8.14 States y11 and

ym11
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Fig. 8.15 States y12 and

ym12

Fig. 8.16 States x11 and

xm11

Fig. 8.17 States y21 and

ym21
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Fig. 8.18 States x21 and

xm21

Fig. 8.19 Adaptation of β̂1

and β̂2

Fig. 8.20 Adaptation of ζ 1

and ζ 2
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Fig. 8.21 Adaptation of ζ̂ 1

and ζ̂ 2

8.5 Proofs

To prove Theorem 2.1, we recall first the following result:

Lemma 8.1 If β(x) is a real valued function, f (x) is a vector field, and ω(x) is a

vector field, then

Lr
f βω =

r∑

i=0

(

r

i

)

(Li
f β)(L

r−i
f ω), for r = 1,2,3 . . . . (8.129)

8.5.1 Proof of Theorem 2.1

Proof Let ϕi(ζi) and ψi(ζi) be two outputs for which the isolated subsystem has

relative degree ni . Let the degrees of mismatch with respect to the coordinate trans-

formation corresponding to these two outputs be different. More precisely, ∃κi,μi

(without loss of generality κi < μi , so that the degrees of mismatch as defined in

Definition 8.1 are different, i.e., ni − κi > ni −μi ) such that

L
j
fil
ϕi ≡ 0, 0 ≤ j ≤ κi − 1, ∀ℓ ∈ [1..pi],

L
κi
fil
ϕi �= 0, for at least one ℓ ∈ [1..pi],

(8.130)

L
j
fim

ψi ≡ 0, j ∈ {0, . . . , κi, . . . ,μi − 1}, ∀m ∈ [1..pi],

L
μi

fim
ψi �= 0, for at least one m ∈ [1..pi].

(8.131)

By construction, ϕi(ζi) and ψi(ζi) are obtained such that the codistributions gener-

ated by their gradients are annihilators of the following distribution:
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span{gi0, adfi0, gi0, . . . , ad
ni−2
fi0

gi0}.

By virtue of feedback linearizability of the isolated subsystem, the above distribu-

tion is involutive and has dimension ni − 1. Correspondingly, its annihilating codis-

tribution is of dimension one. Thus ∃πi(ζi) �= 0 such that

dψi + πi(ζi)dϕi = 0. (8.132)

Let 〈., .〉 denote the inner product. Consider L
κi
fil
ψi + πi(ζi)L

κi
fil
ϕi , where l is the

index for all the vector fields for which (8.130) is satisfied. Then

L
κi
fil
ψi + πi(ζi)L

κi
fil
ϕi = 〈L

κi−1
fil

dψi, fil〉 + 〈πiL
κi−1
Fil

dϕi, fil〉

= 〈L
κi−1
fil

dψi, fil〉 + 〈L
κi−1
fil

(πidϕi), fil〉

−

κi−1∑

j=1

(

κi − 1

κi − 1 − j

)

(L
j
fil
πi)〈L

κi−j−1
fil

dϕi, fil〉

[using (8.129)]

= 〈L
κi−1
fil

(dψi + πidϕi), fil〉

−

κi−1
∑

j=1

(

κi − 1

κi − 1 − j

)

(L
j
fil
πi)(L

κi−j
fil

ϕi). (8.133)

The last term in (8.133) is zero, since L
κi−j
Fil

ϕi = 0, 1 ≤ j ≤ κi − 1. Also from

(8.132), the first term is zero. Therefore

L
κi
fil
ψi + πi(ζi)L

κi
Fil

ϕi = 0. (8.134)

But, L
κi
fil
ψi = 0, and since πi(ζi) �= 0, (8.134) implies that L

κi
fil
ϕi = 0, which con-

tradicts (8.130). Thus, necessarily

κi = μi ⇐⇒ ni − κi = ni −μi .

Equivalently, the degree of mismatch is the same for both transformations. �

8.5.2 Proof of Proposition 8.1

Proof Sufficiency. From Assumption 8.4, there exists a global diffeomorphism wi =

φi(ζi),φi(0) = 0, transforming the ith isolated subsystem (8.25) into

ẇij = wi,j+1, 1 ≤ j ≤ ni − 1,

ẇi,ni = vi(wi)+ δi(wi)ui (8.135)

with vi(0) = 0, δi(wi) �= 0 ∀wi ∈ ℜni . For the ith subsystem, the representation of

fi0, gi0, and gik in the transformed coordinates is
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fi0 =wi2
∂

∂wi1
+ · · · +wi,ni

∂

∂wi,ni−1
+ vi(wi)

∂

∂wi,ni

,

gi0 = δi(wi)
∂

∂wi,ni

, (8.136)

gik = span

{

∂

∂wi,ni

, . . . ,
∂

∂wi,ni−k

}

, 0 ≤ k ≤ ni − 1,

where ∂/∂wi1, . . . , ∂/∂wini are the coordinate vector fields associated with wi the

coordinates. Thus, condition (i) can be written as
[

∂

∂wij

, fil

]

∈ span

{

∂

∂wi,ni

, . . . ,
∂

∂wij

}

,

1 ≤ i ≤ N, 1 ≤ l ≤ pi, ni − ρi ≤ j ≤ ni . (8.137)

Furthermore, in the transformed coordinates

Ω ij = span{dwi,ni , . . . , dwi,ni−j+1}, 1 ≤ j ≤ ni .

Therefore, in transformed coordinates

W ij = span

{

∂

∂wi1
, . . . ,

∂

∂wi,ni−j

}

,

and condition (ii) can be written as
[

∂

∂wkj

, fil

]

∈ span

{

∂

∂wi,ni

, . . . ,
∂

∂wi,κi

}

,

1 ≤ j ≤ κk, 1 ≤ l ≤ pi, 1 ≤ i, k ≤ N,

κi = ni − ρi, (8.138)

where ρi is the degree of mismatch for the ith subsystem.

Hence, the representation of fil in the transformed coordinates is given by

fil = γi0l(wj1, . . . ,wj,κj |1 ≤ j ≤ N)
∂

∂wi,κi

+ γi1l(wj1, . . . ,wj,κj ,wi,ki+1|1 ≤ j ≤ N)
∂

∂wi,κi+1
+ · · ·

+ γi,ni−κi−1,l(wj1, . . . ,wj,κj ,wi,κi+1, . . . ,wi,ni−1|1 ≤ j ≤ N)
∂

∂wi,ni−1

+ γi,ni−κi ,l(wj1, . . . ,wj,κj ,wi,κi+1, . . . ,wi,ni |1 ≤ j ≤ N)
∂

∂wi,ni

,

1 ≤ i ≤ N, 1 ≤ l ≤ pi (8.139)

which is the same as given in (8.26). This completes the proof of sufficiency.

Necessity. Given a diffeomorphism wi = φi(ζi) that transforms the original sys-

tem (8.24)–(8.26), it is easy to verify that the coordinate-free conditions (i) and (ii)

are satisfied for (8.26) and hence for (8.24). �
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8.6 Decentralized Adaptive Tracker

8.6.1 Introduction

In recent years, the decentralized control of interconnected systems has been a pop-

ular research topic in control theory. Large-scale systems, such as transportation

systems, power systems, communications systems, to name a few, are the essential

features of our modern life. One of the early decentralized adaptive control methods

was proposed in [17], which focused on the vital role of interconnections. It showed

that interconnections, even if they are weak, can make a decentralized adaptive con-

troller unstable. Decentralized adaptive controllers were essentially developed to

guarantee boundedness and exponential convergence of the tracking and parame-

ter errors to bounded residual sets. Several decentralized adaptive techniques have

been developed in [2–4, 7, 12, 13, 38] and [30–41]. Mos of these works are confined

to strictly decentralized adaptive control systems where no explicit communication

exists between subsystems.

A particular class of these techniques is the model reference adaptive control

(MRAC), where the objective of the theory is to give the performance specifica-

tions in terms of a model. The model represents the ideal response of the process

to a command signal. MRAC has been extensively developed for continuous time

systems [17] and discrete-time systems [8].

One of the main disadvantages of the known model reference decentralized adap-

tive control laws is that the convergence of local tracking errors only to a bounded

residual set. Besides, the bounds of this set are unknown a priori and the size de-

pends upon the bound for the strength of the unmodelled interconnections, so such

adaptive schemes may be unsuitable for some applications. The need to develop new

methods which would allow one to avoid this basic disadvantage is therefore appar-

ent. In this regard, a modified local adaptive control scheme was proposed in [28]

which improves the transient performance by utilizing an appropriate time-delay ac-

tion in the centralized adaptive control. A further improvement was reported in [45]

based on backstepping adaptive tracking. A more general class of interconnected

systems with unmodelled dynamics was considered in [42, 44].

With the rapid advances in digital technology and computers, more and more

control engineers would like to replace analogue controllers with digital controllers

for the purpose of better reliability, lower cost, and more flexibility [9]. In the sequel,

we focus attention on the digital redesign approach [1, 9] to construct the digital

tracker for the sampled-data system. Based on the ideas contained in [28, 31] and

the digital redesign method, a novel sampled-data decentralized adaptive approach

is provided to the solution of the decentralized adaptive tracking problem in this

article, so that the system output will follow any trajectory specified at sampling

instant which may not be presented by the analytic reference model initially.

Based on the given plant, a well-designed reference model is proposed to fit

the desired trajectory at discrete-time sampling instant first. Then, by invoking

the digital redesign technique, we develop an acceptable digital tracker for the

sampled-data decentralized adaptive system which closely matches the response of
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the continuous-time well-designed system with the same inputs and initial condi-

tions, rather than designing a new controller using the digital control theory.

8.6.2 The Decentralized Adaptive Control Design

The decentralized adaptive control for linear time-invariant system has been stud-

ied since the 1980s. In [31], the author introduced a new and numerically efficient

approach to the design of the decentralized adaptive controller for linear large-scale

systems. The digital model-reference-based decentralized adaptive controller for the

decentralized adaptive control system proposed in this chapter is mainly derived

from the analogue adaptive controller proposed for the analogue system in [28, 31].

8.6.3 The Decentralized Adaptive Problem

Most available techniques focus on the design of centralized controllers, in which

every input affects all controller outputs. The design method has received a great

deal of attention in the control literature. We used the decentralized controller to re-

alize the complicated centralized controller for the desired performance. The struc-

ture of the decentralized control system is shown in Fig. 8.22. Although this con-

straint on the controller structure may lead to performance deterioration when com-

pared to a system with a single centralized controller, the decentralized control is

used in most industrial control system designs. The advantages of decentralized

control are summarized below:

Fig. 8.22 The structure of decentralized control system
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1. Control hardware simplicity: the cost of implementation of a decentralized con-

trol system is clearly less than that of a centralized controller.

2. Control design and tuning simplicity: the decentralized controllers include far

fewer parameters to result in great reduction in the time and cost of tuning.

Consider a linear time-invariant system Σp consisting of N interconnected subsys-

tems Σp1,Σp2,Σp3, . . . ,ΣpN , which is described by [31] as follows:

Σpi : ẋpi(t)=Apixpi(t)+ bpi

[

upi(t)+
N
∑

j=1,j �=1

l∗tij xpj (t)

]

, (8.140)

ypi(t)= cpixpi(t), (8.141)

where i = 1,2, . . . ,N , upi(t) ∈ ℜ is the input, ypi(t) ∈ ℜ is the output, xpj (t) ∈

ℜnj×1 is the state vector of the j th subsystem and xpi ∈ ℜni×1 is the state vector of

the ith subsystem at time t . The matrices Api ∈ ℜni×ni , and the vectors bpi ∈ ℜni×1,

cpi ∈ ℜ1×ni are assumed to be known. Assume that all subsystems in (8.140) are

completely controllable and the overall system is decentrally stabilized.

The corresponding N designed inner-loop reference models Σmi , not arbitrary

assigned, are described as

Σmi : ẋmi(t)=Amixmi(t)bmiumi(t), (8.142)

ymi(t)= cmixmi(t), (8.143)

where i = 1,2, . . . ,N , umi(t) ∈ ℜ is the bounded control input, ymi(t) ∈ ℜ is the

bounded output, and xmi(t) ∈ ℜni×1, which is the tracking target of the state xpi(t)

of the subsystem Σpi , is the corresponding state of the ith model Σmi at time t . The

matrices Ami ∈ ℜni×ni are asymptotically stable constant matrices of appropriate

dimensions, and the constant vectors bmi ∈ ℜni×1, cmi ∈ ℜ1×ni are identical to bpi ,

cpi in Σpi and Σmi , respectively, i.e. bmi = bpi and cmi = cpi .

The terms l∗tij xpj (t) (j �= i), as shown in (8.140), corresponding to the perturba-

tions on the subsystem Σpi due to subsystems Σpj,j �=i , j = 1,2, . . . ,N . To com-

pensate for all the interconnections for achieving the decoupling close-loop system,

eliminating l∗tij xpj (t) is the first control objective, and the second control objective is

to estimate the parameters lpi(t) in (8.140), so that xpi(t) can asymptotically track

xmi(t) with zero error.

As long as the given (Api, bpi) pairs are controllable, one can have the inner-loop

feedback gain Kmi in (8.144)

Ami =Api − bpiKmi, (8.144)

based on the linear quadratic regulator (LQR) design, without any restriction, to

form the desired Ami shown in (8.142). The optimal state-feedback control law is to

minimize the following performance index:

Ji =

∫ ∞

0

{xtmi(t)Qixmi(t)u
t
mi(t)Riumi(t)}dt, (8.145)
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with Qi ≥ 0 and Ri > 0 for the plant subsystem Σpi . This inner-loop optimal con-

trol is given by

umi(t)= −Kmixmi(t), (8.146)

where Kmi =R−1
i btpiOi [31], and Oi is the positive definite and symmetric solution

of the following Riccati equation:

At
piOi +OiApi −OibpiR

−1
i btpiOi +Qi = 0.

Then, the resulting system (8.142) becomes

ẋmi(t)= (Api − bpiKmi)xmi(t)+ bpiumi(t), (8.147)

where the outer-loop control input umi(t) is to be further designed in Sect. 8.7.1 so

that ymi(t) will track the reference input ri(t) well.

For N subsystems Σpi and N reference submodels Σmi , there exists N con-

trollers Σci to compensate Σpi . At every instant t , the controller Σci accesses only

the state xpi(t) of the subsystem
∑

pi and the complete knowledge of the desired

states xmi(t) of all the reference models Σmi . It is desired to determine controllers

Σci to generate bounded inputs upi(t) such that xpi(t) are bounded, and

lim
t→∞

‖eci(t)‖ = lim
t→∞

‖xpi(t)− xmi(t)‖ = 0.

Remark 8.14 The structure of the interconnections shown in (8.140) is identical to

that of [7]. The structure assures the existence of a bounded control input upi(t)

which can compensate for all the interconnections, provided the vectors lij and the

states xpj (t) are known to controller Σci . It is assumed that each controller Σci is

aware only of the input upi(t) and the states xpj (t) of the subsystem Σpi at every

time instant t . It can also be restated that the adaptive control has to be carried out

using only inputs and outputs (rather than the state vectors) of the subsystems, and

the interconnections between them assume special forms [29].

8.6.3.1 A Model-Reference Adaptive Controller

The digital decentralized adaptive controller for the sampled-data large-scale in-

terconnected system proposed in this chapter is mainly derived from the analogue

decentralized adaptive controller proposed for the analogue system in [31]. Here,

we briefly introduce the derivation of analogue decentralized adaptive controller in

this section, and the complete proof is given in [31].

Consider the model-reference-based decentralized adaptive control (MRDAC)

problem, as shown in Fig. 8.23, where all controllers access only to the input upc(t)

and the state xpc(t) of the subsystem. The linear controllable continue-time sys-

tem and the reference model, described by (8.140)–(8.143), are restated globally,

respectively, as
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Fig. 8.23 The decentralized adaptive control system with the MRDAC

ẋpc(t)=Apxpc(t)Bpupc(t), (8.148)

ypc(t)= Cpxpc(t), (8.149)

ẋmc(t)=Amxmc(t)Bmumc(t), (8.150)

ymc(t)= Cmxmc(t), (8.151)

upc(t)= Fcumc(t)−Ltpcxpc(t)−Ltcxmc(t), (8.152)

where xpc(t) ∈ ℜn×1, n = n1 + n2 + · · · + nN , xmc(t) ∈ ℜn×1, upc(t) ∈ ℜN×1,

umc(t) ∈ ℜN×1, ypc(t) ∈ ℜN×1, ymc(t) ∈ ℜN×1, Ap ∈ ℜn×n, Am ∈ ℜn×n, Bp ∈

ℜn×N , Bm ∈ ℜn×N , Cp ∈ ℜN×n, Cm ∈ ℜN×n and

xpc(t)=

⎡
⎢

⎣

xp1(t)
...

xpN (t)

⎤

⎥

⎦
, upc(t)=

⎡

⎢

⎣

up1(t)
...

upN (t)

⎤

⎥

⎦
,

ypc(t)=

⎡

⎢

⎣

yp1(t)
...

ypN (t)

⎤

⎥

⎦
, (8.153)

Ap =

⎡

⎢

⎢

⎢

⎣

Ap1 bp1l
∗t
12 . . . bp1l

∗t
1N

bp2l
∗t
21 Ap2 bp2l

∗t
2N

...
. . .

...

bpN l
∗t
N1 bpN l

∗t
N2 . . . ApN

⎤

⎥

⎥

⎥

⎦

,

Bp = blockdiag[bp1 bp2 . . . bpN ],

Cp = blockdiag[cp1 cp2 . . . cpN ],

xmc(t)=

⎡

⎢

⎣

xm1(t)
...

xmN (t)

⎤

⎥

⎦
,

⎡

⎢

⎣

um1(t)
...

umN (t)

⎤

⎥

⎦
,

(8.154)

ymc(t)=

⎡

⎢

⎣

ym1(t)
...

ymN (t)

⎤

⎥

⎦
,
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Am = blockdiag[Am1 Am2 . . . AmN ],
Fc = blockdiag[fc1 fc2 . . . fcN ],
Bm = blockdiag[bm1 bm2 . . . bmN ],
Cm = blockdiag[cm1 cm2 . . . cmN ],

Lpc(t)= blockdiag[lp1 lp2 . . . lpN ],

Lc(t)=

⎡
⎢

⎢

⎢

⎣

0 l12(t) . . . l1N (t)

l21(t) 0 l2N (t)
...

. . .
...

lN1(t) lN2(t) . . . 0

⎤

⎥

⎥

⎥

⎦

. (8.155)

The decentralized adaptive control problem is that while the controller Σci is

aware of the form of the interconnections (that is, l∗tij xpj (t)), it has no knowledge

of either l∗tij or xpj (t). As stated previously, the desired state xmj (t), in place of the

state xpj (t), of the other subsystem Σpj is used as a part of its control input by the

controller Σci [31].

Proceeding further, we let the control input upi(t) of the subsystem Σpi be

upi(t)= fciumi(t)− ltpi(t)xpi(t)− γcie
t
ci(t)Pibpi

−

N
∑

j=1,j �=i

ltij (t)xmj (t) for i = 1,2, . . . ,N, (8.156)

where the second term is introduced to match the reference model, the third term

attempts to help stabilize the overall system and the last term is used to cancel

the effect of perturbations due to the other subsystems Σpj and γci is the extra

compensating gain. The state-feedback gain (lpi(t), lij (t)) are adjusted using the

following adaptive laws from [31] as follows:

dlpi(t)

dt
= et

ci(t)Pibpixpi(t), for i = 1,2, . . . ,N, (8.157)

dlij (t)

dt
= et

ci(t)Pibmixmj (t), for i, j = 1,2, . . . ,N and j �= i. (8.158)

The controlled subsystem is described by

Σpi : ẋpi(t) = Apixpi(t) + Bpiupi(t) + bpi

N
∑

j=1,j �=i

l∗t
ij xpj (t)

=
[

Api − bpi l
t
pi(t)

]

xpi(t) + bpifciumi(t) − γcibpie
t
ci(t)Pibpi

− bpi

N
∑

j=1,j �=i

[

ltij (t)xmj (t) − l∗t
ij xpj (t)

]

, (8.159)

and the tracking error eci(t) of Σpi is described by the differential equation
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ėci(t)= ẋpi(t)− ẋmi(t)

=Amieci(t)− bpi l̃
t
pi(t)xpi(t)− γcibpie

t
ci(t)Pibpi

− bpi

N∑

j=1,j �=i

[
l̃tij (t)xmj (t) − l̃∗t

ij ecj (t)
]
, (8.160)

where eci(t) = xpi(t) − xmi(t), Pi = P t
i > 0 is the solution of the Lyapunov equa-

tion

At
miPi + PiAmi = −Qi,

Qi = Qt
i > 0, Qi ∈ ℜni×ni . (8.161)

Choosing the same Lyapunov function candidate as before

V (eci(t), l̃pi(t), l̃ij (t))

=

N∑

i=1

[
et
ci(t)Pieci(t) + l̃tpi(t)l̃pi(t)

]
+

N∑

i=1

N∑

j=1,j �=i

l̃tij (t)l̃ij (t), (8.162)

the time derivative along any trajectory is given by

V̇
(

eci(t), l̃pi(t), l̃ij (t)
)

=

N∑

i=1

et
ci(t)

[
At

miPi + PiAmi

]
eci(t)

−

N∑

i=1

2γci[e
t
ci(t)Pibpie

t
ci(t)Pibpi]

+

N∑

i=1

2l̃tpi(t)
[˙̃
lpi(t) − et

ci(t)Pibpixpi(t)
]

+

N∑

i=1

N∑

j=1,j �=i

2l̃tij (t)
[˙̃
lij (t) − et

ci(t)Pibpixmj (t)
]

+

N∑

i=1

N∑

j=1,j �=i

2et
ci(t)Pibpi l̃

∗t
ij ecj (t)

+

N∑

i=1

[
2l̃tpi(t)

˙̃
lpi(t)

]
+

N∑

i=1

N∑

j=1,j �=i

2l̃tij (t)
˙̃
lij (t). (8.163)

Substituting (8.161) and the adaptive laws (8.157) and (8.158) into (8.163), it yields

that

V̇
(

eci(t), l̃pi(t), l̃ij (t)
)

=

N∑

i=1

[
−et

ci(t)Qieci(t) − 2γci(e
t
ci(t)Pibpi)

2
]

+

N∑

i=1

N∑

j=1,j �=i

2et
ci(t)Pibpi l̃

∗t
ij ecj (t). (8.164)
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It follows that

V̇
(

eci(t), l̃pi(t), l̃ij (t)
)

≤

N∑

i=1

[
−λmin(Qi)‖eci(t)‖

2 − 2γci(e
t
ci(t)Pibpi)

2
]

+

N∑

i=1

N∑

j=1,j �=i

2etci(t)Pibpi l̃
∗t
ij ecj (t), (8.165)

where λmin(Qi) is the smallest eigenvalue of Qi .

It is therefore concluded that a sufficient condition for V̇ to be negative-

semidefinite along any trajectory is that

γci >
1

2
(N − 1)max

j

(

‖l∗ij‖
2

λmin(Qj )

)

, (8.166)

and some γ̄ci exists such that whenever γci ≥ γ̄ci, V̇ is negative-semi definite, thus

V is a Lyapunov function for all systems. Choosing such a γci for each subsystem,

it is followed that eci(t), l̃pi(t) and l̃ij (t) are bounded for all i, which implies that

ėci(t) is bounded and limt→∞ ec(t) = 0.

8.7 The Digital Redesign of the Decentralized Adaptive Control

System

The digital redesign is desired to find the digital controller from the available ana-

logue controller Σci , so that the digitally redesigned sampled-data states are able

to closely match those of the original analogously controlled system. The afore-

mentioned prediction based digital redesign method [9], developed for the digital

redesign of a state-feedback system, is utilized to find the state-matching digital

controller for the analogue control system. The detailed derivation and properties of

the prediction based digital controller ud(kT ) can be found in [9].

Here, the digital redesign approach is introduced which leads to the novel dig-

itally redesigned model reference- based adaptive controller for the sampled data

decentralized adaptive control system by digitizing the analogue decentralized adap-

tive controller.

8.7.1 The Digital Redesign Methodology

For ymi(t) to track the reference input ri(t) well, consider the linear controllable

continuous-time reference model described previously in (8.142) and (8.143), as

shown in Fig. 8.24, the tracker design of linear continuous-time reference model is

given by

umc(t) = −Kcxmc(t)+Ecr(t), (8.167)
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Fig. 8.24 The continuous-time control of a reference model

Fig. 8.25 The digital redesign sampled-data control of a reference model

where Kc ∈ ℜN×n is the state-feedback gain, Ec ∈ ℜN×N is the feed-forward gain,

and r(t) = [r1(t) r2(t) . . . rN (t)]
t ∈ ℜN is the piecewise-constant reference input

vector r(t) = r(kT ) for kT ≤ t ≤ (k + 1)T . The controlled closed-loop reference

model becomes

ẋmc(t)= (Am −BmKc)xmc(t)+BmEcr(t). (8.168)

By linear quadratic optimal tracker algorithm [1], let the performance index be

J =

∫ ∞

0

{(Cmxmc(t)− r(t))tQc(Cmxmc(t)− r(t))+ utmc(t)Rcumc(t)}dt, (8.169)

with Qc ≥ 0 and Rc > 0, which yields Kc = R−1
c BmZ and Ec = −R−1

c B t
m[(Am −

BmKc)
−1]tCmZ. Here Z is the positive definite and symmetric solution of the fol-

lowing Ricatti equation

At
mZ +ZAm −ZBmR

−1
c B t

mZ +Ct
mQcCm = 0. (8.170)

The prediction-based digital redesign method is utilized to realize a digitally re-

designed controller. Thus, the digitally redesigned sampled-data state in Fig. 8.25 is

able to closely match that of the original analogously controlled system in Fig. 8.24.

The digitally redesigned controller umd(kT ) achieved from the analogue controller

umc(t) in (8.167) can be described as

umd(kT )= −Kdxmd(kT )+Edr
∗(kT ), (8.171)

where Kd ∈ ℜm×n is the digital state feedback gain, Ed ∈ ℜm×m is the digital feed-

forward gain and T > 0 is the sampling period. The discrete-time state xmd(kT ) can

be decided from the discrete-time model of the analogue model (8.150) as

xmd(kT + T )=Gmxmd(kT )+Hmumd(kT ), (8.172)

where
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Gm = eAmT ,

(8.173)
Hm =

∫ t

0

eAmτdτBm =
{
[

InT +Am
T 2

2! +A2
m

T 3

3! + · · ·
]

Bm,

[Gm − In]A−1
m Bm, if Am is invertible.

The digital gains (Kd ,Ed) in (8.171) can be determined from the analogue gains

(Kc,Ec) in (8.167) as

Kd = (Im +KcHm)
−1KcGm, (8.174)

Ed = (Im +KcHm)
−1Ec, (8.175)

and r∗(kT ) in (8.171), the alternative form of the original reference input r(t) at

time step t = kT with one-step ahead amplitude r(kT + T ) for tracking purpose is

set to be

r∗(kT ) = r(kT + T ).

A zero-order holder (Z.O.H.) is utilized here.

8.7.2 An Improved Redesign Adaptive Controller

Consider the linear controllable continuous-time system, shown in Fig. 8.23 and

described in (8.148) and (8.149), controlled adaptively by the continuous-time state-

feedback controller which is described as

upc = Fcumc(t)−Lt
pcxpc(t)− γce

t
cPBp −Lt

c(t)xmc(t)

= Fcumc(t)−Lt
pc(t)xpc(t)− γcB

t
p(t)P ec(t)−Lt

c(t)xmc(t), (8.176)

where the second term is introduced to match the reference model, the third term

attempts to help stabilize the overall system and the last term is used to cancel the

effect of the interconnections.

The state feed-forward gain Fc ∈ ℜN×N is set to be unity and (Lpc(t),Lc(t)) is

the state feedback gain, the extra compensating gain γc can be optimized by EP

(evolution programming) or GA (genetic algorithm) method under performance

consideration, umc(t) = umc(kT ) for kT ≤ t < (k + 1)t is the piecewise-constant

reference input vector, and the controlled closed-loop system thus becomes

ẋpc(t) = Apc(t)xpc(t)−Bpγce
t
c(t)PBp −BpL

t
c(t)xmc(t)+BpFcumc(t), (8.177)

where Apc(t) = Ap −BpL
t
pc(t).

The extra compensating input signal gains (Fc, γc) are compounded as

γc = blockdiag[γc1 γc2 . . . γcN ],

Fc = blockdiag[fc1 fc2 . . . fcN ],

where the components of upc(t) in (8.154) and (8.155) are adjusted adaptively by

(8.157) and (8.158), respectively.
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Let the corresponding hybrid system be described by the state equation

ẋpd(t)=Apxpd(t)Bpupd(t), (8.178)

where upd(t) ∈ ℜN×1 is the piecewise-constant input vector, satisfying

upd(t)= upd(kT ) for kT ≤ t ≤ (k + 1)t (8.179)

and the sampling period T > 0. The discrete-time state feedback controller shown

in Fig. 8.26 is assumed to be

upd(kT )= Fd(kT )umd(kT )−Ltpd(kT )xpd(kT )

− γd(kT )et
d(kT )PBp − Lt

d(kT )xmd(kT ), (8.180)

where Fd(kT ) ∈ ℜN×N is the digital state feed-forward gain, Lpd(kT ),Lmd(kT ) ∈

ℜN×n are the digital state feedback gains, and u∗
md(kT ) ∈ ℜN×1 is the piecewise

constant reference input vector which is determined in terms of umd(t) for tracking

purpose. The digitally controlled closed-loop system is then

ẋpd(t) = Apxpd(t) + Bp[Fd(kT )umd(kT ) − Lt
pd(kT )xpd(kT )

− γd(kT )et
d(kT )PBp − Lt

md(kT )xmd(kT )]

for kT ≤ t ≤ (k + 1)T . (8.181)

Notice that the notation A in Fig. 8.26 is defined as A ≡ diag[Ap1 Ap2 . . . ApN ].

The digital redesign is desired to find the digital gains (Fd(kT ), Lpd(kT ),

Lmd(kT )) in (8.180) from the analogue gains (Fc,Lpc(t),Lc(t)) in (8.176), with

the zero-order-hold device utilized for (8.176), so that the digital closed-loop state

in (8.181) is able to closely match the analogue one in (8.177) at all the sampling

instants, for the given umc(t) = umc(kT ) for kT ≤ t ≤ (k + 1)t .

The continuous-time state stated in (8.148), at t = tv = kT + vT for 0 ≤ v ≤ 1

where v is the tuning parameter, is obtained as

xpc(tv) = eAp(tv−kT )xpc(kT ) +

∫ kT +vT

kT

eAp(tv−τ)Bpupc(τ )dτ

≈ eAp(tv−kT )xpc(kT )+

∫ kT+vT

kT

eAp(tv−τ)Bpdτupc(tv)

= G(v)
p xpc(kT )+H (v)

p upc(tv), (8.182)

where upc(tv) is assumed to be the piecewise-continuous input, and

G(v)
p = eAp(tv−kT ) = eApvT = (eApT )v = Gv

p,

H (v)
p =

∫ kT+vT

kT

eAp(tv−τ)Bpdτ =

∫ t

0

eApτBpdτ

=

⎧

⎨

⎩

[

InT +Ap
T 2

2! +A2
p
T3

3! + · · ·
]

Bp,

[G
(v)
p − In]A

−1
p Bp, if Ap is invertible.
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It must be noted that (G
(v)
p − In)A

−1
p is a short-hand notation, which is well defined

and can be verified by the cancellation of A−1
p in the series expansion of the term

(G
(v)
p − In). Therefore, the invertibility of matrix Ap is no longer required.

Likewise, the discrete-time state stated in (8.178), at t = tv = kT + vT for 0 ≤

v ≤ 1, is found to be

xpd(tv)= eAp(tv−kT )xpd(kT )+

∫ kT+vT

kT

eAp(tv−τ)Bpupd(τ )dτ

≈ eAp(tv−kT )xpd(kT )+

∫ kT+vT

kT

eAp(tv−τ)Bpdτupd(kT )

= G(v)
p xpd(kT )+H (v)

p upd(kT ). (8.183)

Thus, under the assumption of xpc(kT ) = xpd(kT ), it results from (8.182) and

(8.183) that to obtain the state xpc(tv) = xpd(tv), it is necessary to have upc(tv) =

upd(KT ) which leads to the digital prediction-based controller

upd(kT ) = upc(tv)

= Fcumc(tv)−Lt
pc(tv)xpc(tv)− γce

t
c(tv)PBp −Lt

c(tv)xmc(tv)

= Fcumc(tv)−Lt
pc(tv)xpd(tv)− γce

t
c(tv)PBp −Lt

c(tv)xmd(tv)

= Fcumc(tv)−Lt
pc(tv)[G

(v)
p xpd(kT )+H (v)

p upd(kT )]

− γc
(

G(v)
p xpd(kT )+H (v)

p upd(kT )

−G(v)
m xmc(kT )+H (v)

m umc(tv)
)t
PBp

−Lt
c(tv)(G

(v)
m xmc(kT )+H (v)

m umc(tv)), (8.184)

where the future state xpd(tv), with the substitution described in (8.177), needs to

be predicted by basing on the available causal signals, xpd(kT ) and upd(kT ). For

practical applications, v can be considered as a tuning parameter for the desired

closeness between the predicted digital and analogue states. If v = 1, then the pre-

requisite xpc(kT +T ) = xpd(kT +T ) is ensured. Thus, for k = 0,1,2, . . . , solving

for upd(kT ) from (8.178), the desired prediction based digital controller results in

upd(kT ) = Fdumd(kT )−Lpd(kT )xpd(kT )−Ld(kT )xmd(kT )

− γded(kT )tPBp

= Fdumd(kT )−Lpd(kT )xpd(kT )−Ld(kT )xmd(kT )

− γdB
t
pPed(kT ), (8.185)

where

umd(kT ) = umc(kT + T ) = −Kdxmd(kT )+Edr
∗(kT ),

ed(kT ) = Gpxpd(kT )−Gmxmd(kT ),

and
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Fd(kT )=
(

I +Lpc(kT + T )Hp + γcB
t
pPHp

)−1

×
(

Fc − Lc(kT + T )Hm + γcB
t
pPHm

)

, (8.186)

Lpd(kT ) =
(

I + Lpc(kT + T )Hp + γcB
t
pPHp

)−1
Lpc(kT + T )Gp, (8.187)

Ld(kT ) =
(

I + Lpc(kT + T )Hp + γcB
t
pPHp

)−1
Lc(kT + T )Gm, (8.188)

γd =
(

I + Lpc(kT + T )Hp + γcB
t
pPHp

)−1
γc, (8.189)

in which

Lpc(kT + T ) ∼=
T

2
B t

pP [(xpc(kT + T ) − xmc(kT + T ))xpc(kT + T )(xpc(kT )

− xmc(kT ))xt
pc(kT )]

∼=
T

2
B t

pP {[Gpxpd(kT ) + Hpupd(kT )

− Gmxmd(kT ) − Hmumd(kT )][xt
pd(kT )Gt

p + ut
pd(kT )H t

p]
+ xpd(kT )xt

pd(kT ) − xmd(kT )xt
pd(kT )},

Lc(kT + T ) ∼=
T

2
B t

pP [(xpc(kT + T ) − xmc(kT + T ))xt
md(kT + T )

+ (xpc(kT ) − xmc(kT ))xt
md(kT )]

∼=
T

2
B t

pP
{

[Gpxpd(kT ) + Hpupd(kT )

− Gmxmd(kT ) − Hmumd(kT )][xt
md(kT )Gt

m + ut
md(kT )H t

m]
+ xpd(kT )xt

md(kT ) − xmd(kT )xt
md(kT )

}

,

Gp = eApT , Hp = (Gp − I )A−1
p Bp,

P = diag[P1 P2 . . . PN ].

8.7.3 Incorporating Optimal Tracker

As shown in Fig. 8.26, combining the interconnected system in Fig. 8.22 and the

reference model with optimal tracker in Fig. 8.23 results in the MRDAC with opti-

mal tracker, where the MRDAC ensures that the state of the system exactly tracks

the one of reference model, while the latter is regulated by the tracker to follow the

reference input as close as possible.

The main advantage of this structure is that the design procedure of overall con-

trol can be separated into two parts, therefore, the controller design of the two parts

can be considered individually so that the complexity of the overall controller design

is simplified considerably. Here, we would like to point out the proposed methodol-

ogy can be easily extended from SISO subsystem to the MIMO subsystems.

The overall control methodology is summarized in the sequence of analogue and

digital control block diagrams as Figs. 8.27 and 8.28.
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Fig. 8.26 The digitally redesigned sampled-data control

Fig. 8.27 The optimal tracker for MRDAC adaptive control system

Fig. 8.28 The digitally redesigned tracker for MRDAC adaptive control system
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8.7.4 Simulation Example 8.7

Consider a two-input two-output system Σp consisting of two subsystems

(Σp1,Σp2) described by

Σp1: ẋp1(t)=Ap1xp1(t)+ bp1[up1(t)+ l∗t12xp2(t)],

Σp2: ẋp2(t)=Ap2xp2(t)+ bp2[up2(t)+ l∗t21xp1(t)],

and stable reference model described by

Σm1: ẋm1(t)=Am1xm1(t)+Bm1um1(t),

Σm2: ẋm2(t)=Am2xm2(t)+Bm2um2(t),

where

xp1(t)=

[

xp11(t)

xp12(t)

]

, xp2(t)

[

xp21(t)

xp22(t)

]

∈ ℜ2,

xm1(t)=

[

xm11(t)

xm12(t)

]

, xm2(t)

[

xm21(t)

xm22(t)

]

∈ ℜ2,

Ap1 =

[

2 −2

−7 −2

]

, Ap2 =

[

0 4

13 2

]

, bp1 =

[

1

−1

]

,

bp2 =

[

1

3

]

, cp1 =
[

1 2
]

, cp2 =
[

2 1
]

,

Am1 =

[

−6 2

1 −6

]

, Am2 =

[

−4 2

1 −4

]

,

bm1 = bp1, bm2 = bp2, cm1 = cp1, cm2 = cp2,

up1(t), up2(t), um1(t), um2(t), yp1(t), yp2(t), ym1(t), ym2(t) ∈R.

The interconnections between the two subsystems, are represented by

l∗t12 = [1 1], l∗t21[1 1]

and the desired linear feedback gains, as defined by (8.144), are given as Km1 =

[−8 4],Km2[−4 −2]. Both the controllersΣc1,Σc2 are aware of the desired outputs

(xm1(t), xm2(t)).

The symmetric positive-definite matrices P1,P2, solutions of the Lyapunov equa-

tions described in (8.158), are

P1 =

[

0.087 0.0221

0.0221 0.0907

]

and P2 =

[

0.1384 0.0536

0.0536 0.1518

]

respectively. The continuous-time decentralized adaptive controller for the intercon-

nected system is designed as

up1(t)= F1um1(t)− ltp1(t)xp1(t)− γ1e
t
1(t)P1bp1 − lt12(t)xm2(t),

up2(t) = F2um2(t) − ltp2(t)xp2(t) − γ2e
t
2(t)P2bp2 − lt21(t)xm1(t),
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where the parameters are adjusted adaptively according to the control laws stated

in (8.157) and (8.158). And the reference model is regulated by the tracker described

in (8.167) where

kc =
[

988.95 497.88 0 0

0 0 499.71 999.14

]

,

Ec =
[

999.74 0

0 1000

]

.

Applying the digital redesign method proposed in Sect. 8.7, the interconnected sys-

tem and the reference model are controlled by (8.171) and (8.180), respectively,

where the sampling period is T = 0.1 (s) and

Gp =

⎡

⎢

⎢

⎣

1.3234 −0.1792 0.2168 0.1720

−0.7479 0.8577 −0.2245 −0.1784

0.1431 0.1505 1.2904 0.4819

0.3482 0.3676 1.5662 1.5310

⎤

⎥

⎥

⎦

,

Hp =

⎡

⎢

⎢

⎣

0.1233 0.0302

−0.1284 −0.0310

−0.0002 0.1764

−0.0006 0.4342

⎤

⎥

⎥

⎦

,

Gm =

⎡

⎢

⎢

⎣

0.5543 0.1101 0 0

0.0551 0.5543 0 0

0 0 0.6770 0.1345

0 0 0.0673 0.6770

⎤

⎥

⎥

⎦

,

Hm =

⎡

⎢

⎢

⎣

0.0686 0

−0.0720 0

0 0.1058

0 0.2519

⎤

⎥

⎥

⎦

.

The digital gains (Kd ,Ed) in (8.171), determined from the analogue gains

(Kc,Ec) in (8.167), are thus

kd =
[

17.4354 11.6587 0 0

0 0 1.3274 2.4342

]

and

Ed =
[

30.2831 0

0 3.2733

]

.

Finally, the trajectories generated by the aforementioned digital controller are as

close as possible to the original continuous-time state trajectories. The trajectories

of the controller inputs with signal responses and states are shown in Figs. 8.29–

8.38. To show the robustness of the proposed, let the tracker have good performance

in the beginning, but the first subsystem input is artificially reduced to 5 of the deter-

mined input by external factor in 13 sec. Figs. 8.39 and 8.40 show that the proposed

decentralized controller induces a good robustness on the decoupling of the closed-

loop controlled system. When the inputs of parts of the system are broken, the others



502 8 Decentralized Adaptive Control

Fig. 8.29 First output

responses using analogue

controller

Fig. 8.30 Second output

responses using analogue

controller

Fig. 8.31 Output responses

for the first output by digital

controller (T = 0.1 s)
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Fig. 8.32 Output responses

for the second output by

digital controller (T = 0.1 s)

Fig. 8.33 The first-output

comparisons of various

output responses for

t = 0 ∼ 8 s (T = 0.1 s)

Fig. 8.34 The second-output

comparisons of various

output responses for

t = 0 ∼ 8 s (T = 0.1 s)
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Fig. 8.35 Comparisons of various state x11 between plant and reference model (T = 0.1 s)

Fig. 8.36 Comparisons of

various state x12 between

plant and reference model

(T = 0.1 s)

are not influenced entirely, so that the other digitally controlled systems still follow

the reference inputs rapidly.

8.8 Notes and References

In this chapter we considered the control problem for a class of time varying nonlin-

ear large-scale systems with time delays in the interconnections, and the intercon-

nections can be nonlinear. An adaptive state feedback controller is proposed that is

independent of time delays, and render the closed-loop system uniformly ultimately

bounded stable. The result is also applied to control a class of interconnected sys-

tems whose nominal system is linear, and the corresponding state feedback con-

troller and adaptive laws are obtained. Finally, numerical examples are given to
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Fig. 8.37 Comparisons of

various state x21 between

plant and reference model

(T = 0.1 s)

Fig. 8.38 Comparisons of

various state x22 between

plant and reference model

(T = 0.1 s)

demonstrate the validity of the results developed in this chapter. It is shown from

the example that the results obtained are effective and feasible. Therefore our re-

sults can be expected to have some applications to practical control problems of

uncertain dynamic interconnected systems with time delay.

This chapter further extends the class of large-scale nonlinear systems for which

decentralized controllers can be designed. This class is identified by systems trans-

formable to a decentralized strict feedback form for which the matching condition is

not satisfied. Geometric conditions for the existence of a parameter independent, de-

centralized diffeomorphism are presented. Higher order interconnections bounded

by unknown pth order polynomials are considered. A constructive, stepwise pro-

cedure for decentralized control design is presented. Adaptation laws are obtained

to update the control gains to counter uncertainties in the interconnections. Global

regulation is proved, and its effectiveness is shown using a simulation example. Ro-

bustness of the developed control laws to perturbations in the system dynamics is
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Fig. 8.39 Response of the

first subsystem by analogue

controller with 5% reduced

input

Fig. 8.40 Response of the

second subsystem by

analogue controller with 5%

reduced input

established through simulations. Furthermore, it is shown that no redesign of de-

centralized controllers is required for the original subsystems if new subsystems are

appended to the system. Finally, an adaptive model reference decentralized tracking

control design is outlined for the same class of large-scale systems. Global uniform

boundedness of the tracking error to a compact set is obtained in this case.

Finally, it is shown that the exact tracking of individual subsystem outputs is

theoretically possible by the strictly decentralized control, where the controller of

each subsystem has no knowledge of the inputs or states of the other subsystems. To

achieve the exact tracking, the desired states or outputs of the other subsystems Σmj

must be accessible to each controller Σci of subsystem #pi and be used in place of

the corresponding inaccessible states or outputs to compensate for the perturbation

signals from them.

The awareness of the desired states of the other subsystems implies that there

is implicit cooperation among the subsystems, and communication between subsys-
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tems becomes necessary when some of the subsystems change their desired trajecto-

ries. From a theoretical point of view, the problem reduces to that of demonstrating

overall system stability. By using the high gain controller, the individual subsystems

are made sufficiently stable so that the overall stability is assured in spite of inter-

connections. This is accomplished by using appropriate feedback and proving the

existence of a Lyapunov function for the overall system.

With the utilization of the reference model representing the desired states, the

design procedure of the controller is separated into two parts, one ensures that the

state of the reference model is exactly tracked by the one of the systems and the

other makes the reference model follow the reference input as closely as possible.

Thus, the controller design of the two parts can be considered individually so that

the complexity of the overall controller design is considerably simplified. Since the

perfect model following is possible in the ideal case, it is believable intuitively that

the bounds on the errors obtained will also be smaller.

The control methodology is further applied to a class of large-scale sampled-

data systems with interconnected strengths. It is shown that in the sampled data

decentralized adaptive control, it is theoretically possible to asymptotically track

desired outputs with a desired performance and shows that the proposed decen-

tralized controller induces a good robustness on the decoupling of the closed-loop

controlled system. The prediction-based digital redesign methodology is utilized to

find the new digital controllers for effective digital control of the analogue plant. An

illustrative example of interconnected linear system is presented to demonstrate the

effectiveness of the proposed design methodology.
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Chapter 9

Mathematical Tools

9.1 Finite Dimensional Spaces

In what follows, we will introduce some of the fundamental notions in linear alge-

bra. The treatment is essentially meant to be as assembly of analytical tools with

references given at the end of the chapter. We provide few proofs so as to encourage

the reader to gain practice with the machinery and results.

9.1.1 Vector Spaces

The structure introduced hereafter is the corner-stone of system theory, that of a vec-

tor space, also called a linear space. Let xj , yj ∈ ℜ (or C ), j = 1,2, . . . , n. Then the

n-dimensional vectors x, y are defined by x = [x1 x2 . . . xn]
t , y = [y1 y2 . . . yn]

t

∈ ℜn, respectively, where ℜn = ℜ×· · ·×ℜ. A nonempty set X of elements x, y, . . .

is called the real (or complex) vector space (or real (complex) linear space) by

defining two algebraic operations, vector additions, and scalar multiplication, in

x = [x1 x2 . . . xn]
t .

Given two vector spaces X1 and X2 with the same associated scalar field, we use

X1 × X2 to denote the vector space formed by their Cartesian product. Thus every

element of X1 × X2 is of the form

(x1, x2) where x1 ∈ X1 and x2 ∈ X2.

A nonempty subset G ⊂ ℜn is called a linear subspace of ℜn if x+y and αx are in G

whenever x and y are in G for any scalar α. A set of elements X = {x1, x2, . . . , xn}

is said to be a spanning set for a linear subspace G of ℜn if every elements g ∈ G

can be written as a linear combination of the {xj }. That is, we have

G = {g ∈ ℜ : g = α1x1 + α2x2 + · · · + αnxn for some scalars α1, α2, . . . , αn}.
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Sometimes the shorthand notation

span{x1, x2, . . . , xn}

is used. A spanning set X is said to be a basis for G if no element xj of the span-

ning set X of G can written as a linear combination of the remaining elements

x1, x2, . . . , xj−1, xj+1, . . . , xn, that is, xj , 1 ≤ j ≤ n form a linearly independent

set. It is frequent to use xj = [0 0 . . . 0 1 0 . . . 0]t the j th unit vector. The geomet-

ric ideas of linear vector spaces had led to the concepts of “spanning a space” and

a “basis for a space”.

The n-dimensional Euclidean space, denoted throughout this book by ℜn, is a

linear vector space equipped by the inner product

〈x, y〉 = xty =

n∑

j=1

xjyj .

Let X be a linear space over the field F (typically F is the field of real numbers ℜ

or complex numbers C ). Then a function

‖.‖ : X → ℜ

that maps X into the real numbers ℜ is a norm on X iff

1. ‖x‖ ≥ 0, ∀x ∈ X (non-negativity)

2. ‖x‖ = 0 ⇔ x = 0 (positive definiteness)

3. ‖αx‖ = |α|‖x‖ ∀x ∈ X (homogeneity with respect to |α|)

4. ‖x + y‖ ≤ ‖x‖ + ‖y‖, ∀x, y ∈ X (triangle inequality)

Given a linear space X , there are many possible norms on it. For a given norm

‖.‖ on X , the pair (X , ‖.‖) is used to indicate X endowed with the norm ‖.‖.

9.1.2 Norms of Vectors

The class of Lp-norms is defined by

‖x‖p =

(
n∑

j=1

|xj |
p

)1/p

, for 1 ≤ p < ∞,

‖x‖∞ = max
1≤j≤n

|xj |.

The three most commonly used norms are ‖x‖1, ‖x‖2 and ‖x‖∞. All p-norms

are equivalent in the sense that if ‖x‖p1 and ‖x‖p2 are two different p-norms, then

there exist positive constants c1 and cs such that

c1‖x‖p1 ≤ ‖x‖p2c2 ‖x‖p1, ∀x ∈ ℜn.
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Induced norms of matrices For a matrix A ∈ ℜn×n, the induced p-norm of A is

defined by

‖A‖p � sup
x �=0

‖Ax‖p

‖x‖p
= sup

‖x‖p=1

‖Ax‖p.

Obviously, for matricesA ∈ ℜm×n and B ∈ ℜn×r , we have the triangle inequality

‖A+B‖p ≤ ‖A‖|p + ‖B‖p.

It is easy to show that the induced norms are also equivalent in the same sense as

for the vector norms, and satisfying

‖AB‖p ≤ ‖Ax‖p‖B‖p, ∀A ∈ ℜn×m,∀B ∈ ℜm×r

which is known as the submultiplicative property. For p = 1,2,∞, we have the

corresponding induced norms as follows

‖A‖1 = max
j

n∑

s=1

|asj | (column sum),

‖A‖2 = max
j

√
λj (AtA),

‖A‖∞ = max
s

n∑

j=1

|asj | (row sum).

9.1.3 Some Basic Topology

We start by defining the notion of neighborhood of a point in the vector space V .

To do this, we first define the unit ball with respect to a basis. Suppose that

{u1, u2, . . . , un} is a basis for the vector space V . The open unit ball B in this basis

is defined by

B(u1, . . . , un) = {α1u1 + · · · + αnun ∈ V : αj ∈ ℜ, α2
1 + · · · + α2

n < 1}.

This set contains all the points that can be expressed, in the basis, with the vector of

coefficients α inside the unit sphere of ℜn and clearly it is basis-dependent.

Next we define the notion of neighborhood of a point, which intuitively means

any set that totally surrounds the given point in the vector space.

A subset N(0) of the vector space V is a neighborhood of the zero element if there

exists a basis u1, u2, . . . , un for V such that

B(u1, . . . , un) ⊂ N(0).

Further, a subset N(w) ⊂ V is a neighborhood of the point w ∈ V if the set

N = {v ∈ V : v + wN(w)}

is a neighborhood of the zero element. Alternatively, this implies that a set is a

neighborhood of zero provided that one of its subsets is the unit ball in some basis

element.
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9.1.4 Convex Sets

A set M ⊂ ℜn is said to be open if every vector x ∈ M, there is an ε-neighborhood

of x

N (x, ε) = {z ∈ ℜn| ‖z − x‖ < ε}

such that N (x, ε) ⊂ M.

A set is closed iff its complement in ℜn is open; bounded if there r > 0 such

that ‖x‖ < r , ∀x ∈ S; and compact if it is closed and bounded; convex if for every

x, y ∈ S, and every real number α, 0 < α < 1, the point α x + (1 − α) x ∈ S.

Let us now define the line segment that joins two points in V . Suppose that

v1, v2 ∈ V , then we define the line segment L(v1, v2) between them as the set of

points

L(v1, v2) = {v ∈ V : v = μv1 + (1 − μ)v2, for some μ ∈ [0,1]}.

Clearly the end points of the line segment are v1 and v2, which occur in the

parametrization when μ = 1 and μ = 0, respectively. We can now turn to the idea

of convexity. Suppose that K is a nonempty subset of the vector space V . Then K is

defined to be convex set if for any v1, v2 ∈ K, the line segment L(v1, v2) is a subset

of K, see Fig. 9.1. This simply means that given two points in a convex set, the line

segment between them is also in the set. Note in particular that subspaces and linear

varieties (a linear variety is a translation of linear subspaces) are convex. Also the

empty set is considered convex. Clearly any vector space is convex, as is any subset

{ν} of a vector space containing only a single element. Consider the expression

v = μ1v1 + · · · + μnvn, μ1 + · · · + μn = 1

which provides a clear generalization to an average of n points v1, . . . , vn. Extending

this further, the generalization of the line segment between two points to n points

yields a point inside the perimeter defined by the points v1, . . . , vn. This is illustrated

in Fig. 9.2. Building on this intuition from ℜ2, we extend the idea to an arbitrary

vector space V . Given v1, . . . , vn we define the convex hull of these points by

con({v1, . . . , vn}) =

{
v ∈ V : v =

n∑

k=1

μkvk, μk ∈ [0,1],

n∑

k=1

μk = 1

}
.

With reference to Fig. 9.2 this set is made of the points inside the perimeter, that is,

the convex hull of the points v1, . . . , vn is simply the set composed of all weighted

averages of these points. In particular, we have that for two points

L(v1, v2) = con({v1, vn}).

Fig. 9.1 Convex (left) and

nonconvex (right) sets
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Fig. 9.2 Convex hull of finite

number of points in ℜ2

Fig. 9.3 Convex hull of a

set R

It is not difficult to show that if R is convex, then it necessarily contains any convex

hull formed from a collection of its points. Generalizing this to an arbitrary set.

Given a set R, we define its convex hull con(R) by

con(R)= {v ∈ V : there exist n and {v1, . . . , vn} ∈ R

such that v ∈ con({v1, . . . , vn})}.

In brief, the convex hull of R is the collection of all possible weighted averages of

points in R.

The following facts provide important properties for convex sets and convex

hull.

1. Let Cj , j = 1, . . . ,m be a family of m convex sets in ℜn. Then the intersection

C1 ∩ C2 ∩ · · · ∩ Cm is convex.

2. Let C be a convex set in ℜn and x0 ∈ ℜn. Then the set {x0 + x : x ∈ C} is convex.

3. A set K ⊂ ℜn is said to be convex cone with vertex x0 if K is convex and x ∈ K

implies that x0 + λx ∈ K for any λ ≥ 0.

4. The subset condition R ⊂ con(R) is satisfied.

5. The convex hull con(R) is convex.

6. The relationship con(R) = con(con(R)) holds.

7. A set R is convex if and only if con(R) = R is satisfied, see Fig. 9.3.

An important class of convex cones is the one defined by the positive semidefinite

ordering of matrices, that is, A1 ≥ A2 ≥ A3. Let P ∈ ℜn×n be a positive semidefinite

matrix. The set of matrices X ∈ ℜn×n such that X ≥ P is a convex cone in ℜn×n.
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9.1.5 Continuous Functions

A function f : ℜn → ℜm is said to be continuous at a point x if f (x + δx)→ f (x)

whenever δx → 0. Equivalently, f is continuous at x if, given ε > 0, there is δ > 0

such that

‖x − y‖ < ε �⇒ ‖f () − f (y)‖ < ε.

A function f is continuous on a set of S if it is a continuous at every point of S,

and it is uniformly continuous on S if given ε > 0, there is δ(ε) > 0 (dependent only

on ε), such that the inequality holds for all x, y ∈ S

A function f : ℜ → ℜ is said to be differentiable at a point x if the limit

ḟ (x) = lim
δx→0

f (x + δx) − f (x)

δx

exists. A function f : ℜn → ℜm is continuously differentiable at a point x (a set S)

if the partial derivatives ∂fj/∂xs exist and continuous at x (at every point of S) for

1 ≤ j ≤ m, 1 ≤ s ≤ n and the Jacobian matrix is defined as

J =

[
∂f

∂x

]
=

⎡
⎢⎣

∂f1/∂x1 . . . ∂f1/∂xn

...
. . .

...

∂fm/∂x1 . . . ∂fm/∂xn

⎤
⎥⎦ ∈ ℜm×n.

9.1.6 Function Norms

Let f (t) : ℜ+ → ℜ be a continuous function or piecewise continuous function. The

p-norm of f is defined by

‖f ‖p =

(∫ ∞

0

|f (t)|pdt

)1/p

, for p ∈ [1,∞),

‖f ‖∞ = sup
t∈[0,∞)

|f (t)|, for p = ∞.

By letting p = 1,2,∞, the corresponding normed spaces are called L1, L2, L∞,

respectively. More precisely, let f (t) be a function on [0,∞) of the signal spaces,

they are defined as

L1 �

{
f (t) : ℜ+ −→ ℜ

∣∣ ‖f ‖1 =

∫ ∞

0

|f (t)|dt < ∞, convolution kernel

}
,

L2 �

{
f (t) : ℜ+ −→ ℜ

∣∣ ‖f ‖2 =

∫ ∞

0

|f (t)|2dt < ∞, finite energy

}
,

L∞ �

{
f (t) : ℜ+ −→ ℜ

∣∣ ‖f ‖∞ = sup
t∈[0,∞)

|f (t)| < ∞, bounded signal
}
.

From a signal point of view, the 1-norm, ‖x‖1 of the signal x(t) is the integral

of its absolute value, the square ‖x‖2
2 of the 2-norm is often called the energy of
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the signal x(t), and the ∞-norm is its absolute maximum amplitude or peak value.

It must be emphasized that the definitions of the norms for vector functions are not

unique.

In the case of f (t) : ℜ+ → ℜn, f (t) = [f1(t) f2(t) . . . fn(t)]
t which denote

a continuous function or piecewise continuous vector function, the corresponding

p-norm spaces are defined as

Lnp �

{
f (t) : ℜ+ −→ ℜn

∣∣ ‖f ‖p =

∫ ∞

0

‖f (t)‖pdt <∞, for p ∈ [1,∞)

}
,

Ln
∞ �

{
f (t) : ℜ+ −→ ℜn

∣∣ ‖f ‖∞ = sup
t∈[0,∞)

‖f (t)‖<∞
}
.

9.1.7 Mean Value Theorem

Assume that f : ℜn → ℜ is continuously differentiable at each point x of an open

set S ⊂ ℜn. Let x and y be two points of S such that

L(x, y)= {z | z= θx + (1 − θ)y,0 < θ < 1} ⊂ S,

where L(x, y) is a line segment connecting x and y. Then there exists a point z of

L(x, y) such that

f (y) − f (x) =
∂f

∂x

∣∣∣∣
x=z

(y − x).

9.1.8 Implicit Function Theorem

Assume that f : ℜn × ℜm → ℜn is continuously differentiable at each point (x, y)

of an open set S ⊂ ℜn × ℜm. Let (x0, y0) be a point in S for which f (x0, y0) = 0

and for which the Jacobian matrix [∂f/∂x](x0, y0) is nonsingular. Then there exist

neighborhoods U ⊂ ℜn of x0 and V ⊂ ℜm of y0 such that for each y ∈ V the equa-

tion f (x, y) = 0 has a unique solution x ∈ U . Moreover, this solution can be given

as x = g(y), where g is continuously differentiable at y = y0.

For a detailed account of the foregoing two theorems, the reader is referred to [1].

9.2 Matrix Theory

In this section, we focus on matrix theory and solicit some basic facts and useful

relations from linear algebra and calculus of matrices. The material are stated along

with some hints whenever needed but without proofs unless we see the benefit of

providing a proof. We start by introducing the concept of a linear mapping between
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vector spaces. The mapping M : V → W is linear if

M(αv1 + βv2) = αMv1 + βMv2

for all v1, v2 ∈ V and all scalars α and β . Here V and W are vector spaces with the

same associated filed F. The space V is called the domain of the mapping, and W

its codomain.

Given bases {v1, v2, . . . , vn} and {w1,w2, . . . ,wn} for V and W , respectively, we

associate scalars mjk with the mapping M , defining them such that they satisfy

Mvk = m1kw1 + m2kw2 + · · · + mmkwm

for each 1 ≤ k ≤ n. Namely, given any basis vector vk , the coefficients are the coor-

dinates of Mvk in the selected basis of W . It turns out that these mn numbers mjk

completely specify the linear mapping M . To see this is true, consider any vector

v ∈ V , and let w = Mv. We can express both vectors in their respective bases as

v = α1v1 + α2v2 + · · · + αnvn, w = β1w1 + β2w2 + · · · + βmwm.

Now we have

w = Mv = M(α1v1 + α2v2 + · · · + αnvn)

= α1Mv1 + α2Mv2 + · · · + αnMvn

=

n∑

k=1

m∑

j=1

αkmjkwj

=

m∑

j=1

(
n∑

k=1

αkmjk

)
wj

and therefore by uniqueness of the coordinates we must have

βj =

n∑

k=1

αkmjk, j = 1, . . . ,m.

To express this relationship in a more convenient form, can write the set of numbers

mjk as the m × n matrix

[M] =

⎡
⎢⎣

m11 . . . m1n

...
. . .

...

mm1 . . . mmn

⎤
⎥⎦ .

Then via the standard matrix product, we have
⎡
⎢⎣

β1

...

βm

⎤
⎥⎦=

⎡
⎢⎣

m11 . . . m1n

...
. . . . . .

mm1 . . . mmn

⎤
⎥⎦

⎡
⎢⎣

α1

...

αn

⎤
⎥⎦ .

In summary any linear mapping M between vector spaces can be regarded as a ma-

trix M mapping ℜn to ℜm via matrix multiplication. It should be noted that the
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numbers mjk depend intimately on the bases {v1, v2, . . . , vn} and {w1,w2, . . . ,wn}.
Frequently we use only one basis for V and one for W and thus there is need to

distinguish between the map M and the basis dependent matrix [A]. We will hence-

forth write M to denote either the map or the matrix, making which is meant context

dependent.

When reference is made to matrix function M(t), we have the form:

M(t)=

⎡
⎢⎣
m11(t) . . . m1n(t)

...
. . .

...

mm1(t) . . . mmn(t)

⎤
⎥⎦ .

9.2.1 Fundamental Subspaces

Building upon the foregoing section, the idea now is to introduce four important

subspaces which are useful. The entire linear vector space of a specific problem can

be decomposed into the sum of these subspaces.

The column space of a matrix A ∈ ℜn×m is the space spanned by the columns of

A, is also called the range space of A, denoted by R[A]. Similarly, the row space

of A is the space spanned by the rows of A. Since the column rank of a matrix is the

dimension of the space spanned by the columns and the row rank is the dimension

of the space spanned by the rows, it is clear that the spaces R[A] and R[At ] have

the same dimension r = rank(A).

The right null space of A ∈ ℜn×m is the space spanned by all vectors x that

satisfy Ax = 0, and is denoted N [A]. The right null space of A is also called the

kernel of A. The left null space of A is the space spanned by all vectors y that satisfy

ytA= 0. This space is denoted N [At ], since it is also characterized by all vectors y

such that Aty = 0.

The dimensions of the four spaces R[A], R[At ], N [A] and N [At ] are to be

determined in the sequel. Since A ∈ ℜn×m, we have the following

r � rank(A)= dimension of column space R[A],

dim N [A] � dimension of right null space N [A],

n� total number of columns of A.

Hence the dimension of the null space dim N [A] = n − r . Using the fact that

rank(A)= rank(At ), we have

r � rank(At )= dimension of row space R[At ],

dim N [At ] � dimension of left null space N [At ],

m� total number of rows of A.
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Hence the dimension of the null space dim N [At ] =m− r . These facts are sum-

marized below

R[At ] � row space of A: dimension r,

N [A] � right null space of A: dimension n− r,

R[A] � column space of A: dimension r,

N [At ] � left null space of A: dimension n− r.

Note from these facts that the entire n-dimensional space can be decomposed

into the sum of the two subspaces R[At ] and N [A]. Alternatively, the entire

m-dimensional space can be decomposed into the sum of the two subspaces R[A]
and N [At ].

An important property is that N [A] and R[At ] are orthogonal subspaces, that

is, R[At ]⊥ = N [A]. This has the meaning that every vector in N [A] is orthogonal

to every vector in R[At ]. In the same manner, R[A] and N [At ] are orthogonal

subspaces, that is, R[A]⊥ = N [At ]. The construction of the fundamental subspaces

is appropriately attained by the singular value decomposition.

9.2.2 Change of Basis and Invariance

Suppose that {v1, v2, . . . , vn} is chosen as a basis for V . Then any vector x ∈ V ,

there are unique scalars xv = {α1, α2, . . . , αn} ∈ ℜn such that x = α1v1 + α2v2 +

· · · + αnvn. In turn, this raises the question: how can we effectively move between

this basis and another basis {u1, u2, . . . , un} for V ? That is, given x ∈ V , how are the

coordinate vectors xv, xu ∈ ℜn related? To answer this question, suppose that each

vector uk is expressed by

uk = t1kv1 + t2kv2 + · · · + tmkvm

in the basis {v1, v2, . . . , vn}. Then the coefficients tjk define the matrix

T =

⎡
⎢⎣

t11 . . . t1n

...
. . .

...

tn1 . . . tnn

⎤
⎥⎦

which is obviously nonsingular since it represents the identity mapping IV in the

bases {v1, v2, . . . , vn} and {u1, u2, . . . , un}. Then the relationship between the two

coordinate vectors is

T xu = xv.

Now suppose that M : V → V and that Mv : ℜn → ℜn is the representation of

M on the basis {v1, v2, . . . , vn} and Mu is the representation of M on the basis

{u1, u2, . . . , un}. How is Mu related to Mv?
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To examine this, take any x ∈ V and let xv , xu be its coordinates in the respective

bases, and zv , zu be the coordinates of Ax. Then we have

zu = T −1zv = T −1Avxv = T −1AvT xu.

Since the above identity and

zu =Auxu

both hold for every xu, we conclude that

Au = T −1AvT

which is frequently called a similarity transformation.

Now the notion of invariance of a subspace to a mapping is presented. We say

that a subspace S ⊂ V is M-invariant if M : V → V and

MS ⊂ S.

It is readily seen that every map has at least two invariant subspaces, the zero sub-

space and entire domain V . For subspaces S of intermediate dimension, the invari-

ance property is expressed most clearly by saying the associate matrix has the form

[M] =

[
M1 M2

0 M4

]
,

where we assumed that our basis for V is obtained by extending a basis for S .

9.2.3 Calculus of Vector-Matrix Functions of a Scalar

The differentiation and integration of time functions involving vectors and matrices

arises in solving state equations, optimal control and so on. This section summa-

rizes the basic definitions of differentiation and integration on vectors and matrices.

A number of formulas for the derivative of vector-matrix products are also included.

The derivative of a matrix function M(t) of a scalar is the matrix of the deriva-

tives of each element in the matrix

dM(t)

dt
=

⎡
⎢⎣

dM11(t)
dt

. . .
dM1n(t)

dt
...

. . .
...

dMm1(t)
dt

. . .
dMmn(t)

dt

⎤
⎥⎦ .

The integral of a matrix function M(t) of a scalar is the matrix of the integral of

each element in the matrix

∫ b

a

M(t)dt =

⎡
⎢⎣

∫ b
a
M11(t)dt . . .

∫ b
a
M1n(t)dt

...
. . .

...∫ b
a
Mm1(t)dt . . .

∫ b
a
Mmn(t)dt

⎤
⎥⎦ .

The Laplace transform of a matrix function M(t) of a scalar is the matrix of the

Laplace transform of each element in the matrix
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∫ b

a

M(t)e−stdt =

⎡
⎢⎣

∫ b
a
M11(t)e

−stdt . . .
∫ b
a
M1n(t)e

−stdt
...

. . .
...∫ b

a
Mm1(t)e

−stdt . . .
∫ b
a
Mmn(t)e

−stdt

⎤
⎥⎦ .

The scalar derivative of the product of two matrix time-functions is

d(A(t)B(t))

dt
= A(t)

dt
B(t)+A(t)

B(t)

dt
.

This result is analogous to the derivative of a product of two scalar functions of a

scalar, except caution must be used in reserving the order of the product. An impor-

tant special case follows:

The scalar derivative of the inverse of a matrix time-function is

dA−1(t)

dt
= −A−1A(t)

dt
A(t).

9.2.4 Derivatives of Vector-Matrix Products

The derivative of a real scalar-valued function f (x) of a real vector x =
[x1, . . . , xn]t ∈ ℜn is defined by

∂f (x)

∂x
=

⎡
⎢⎢⎢⎢⎣

∂f (x)
∂x1

∂f (x)
∂x2

...
∂f (x)
∂xn

⎤
⎥⎥⎥⎥⎦
,

where the partial derivative is defined by

∂f (x)

∂xj
� lim

Δxj →0

f (x + Δx) − f (x)

Δxj

, Δx = [0 . . . Δxj . . . 0]t .

An important application arises in the Taylor’s series expansion of f (x) about x0

in terms of δx � x − x0. The first three terms are

f (x) = f (x0) +

(
∂f (x)

∂x

)t

δx +
1

2
δxt

[
∂2f (x)

∂x2

]
δx,

where

∂f (x)

∂x
=

⎡
⎢⎢⎢⎢⎣

∂f (x)
∂x1

...

∂f (x)
∂xn

⎤
⎥⎥⎥⎥⎦

,
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∂2f (x)

∂x2
= ∂

∂x

(
∂f (x)

∂x

)t

=

⎡
⎢⎢⎢⎣

∂2f (x)

∂x2
1

. . .
∂2f (x)
∂x1∂xn

...
. . .

...
∂2f (x)
∂xn∂x1

. . .
∂2f (x)

∂x2
n

⎤
⎥⎥⎥⎦ .

The derivative of a real scalar-valued function f (A) with respect to a matrix

A =

⎡
⎢⎣
A11 . . . A1n

...
. . .

...

An1 . . . Ann

⎤
⎥⎦ ∈ ℜn×n

is given by

∂f (A)

∂A
=

⎡
⎢⎢⎣

∂f (A)
∂A11

. . .
∂f (A)
∂A1n

...
. . .

...
∂f (A)
∂An1

. . .
∂f (A)
∂Ann

⎤
⎥⎥⎦ .

A vector function of a vector is given by

v(u) =

⎡
⎢⎣
v1(u)

...

vn(u)

⎤
⎥⎦ ,

where vj (u) is a function of the vector u. The derivative of a vector function of a

vector (the Jacobian) is defined as follows

∂v(u)

∂u
=

⎡
⎢⎢⎣

∂v1(u)
∂u1

. . .
∂v1(u)
∂um

...
. . .

...
∂vn(u)
∂u1

. . .
∂vn(u)
∂um

⎤
⎥⎥⎦ .

Note that the Jacobian is sometimes defined as the transpose of the foregoing

matrix. A special case is given by

∂(Su)

∂u
= S,

∂(utRu)

∂u
= 2utR

for arbitrary matrix S and symmetric matrix R.

The following section include useful relations and results from linear algebra.

9.2.5 Positive Definite and Positive Semidefinite Matrices

A matrix P is positive definite if P is real, symmetric and xtPx > 0, ∀x �= 0. Equiv-

alently, if all the eigenvalues of P have positive real parts. A matrix S is positive

semidefinite if S is real, symmetric and xtPx ≥ 0, ∀x �= 0.

Since the definiteness of the scalar xtPx is a property only of the matrix P , we

need a test for determining definiteness of a constant matrix P . Define a principal
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submatrix of a square matrix P as any square submatrix sharing some diagonal ele-

ments of P . Thus the constant, real, symmetric matrix P ∈ ℜn×n is positive definite

(P > 0) if either of these equivalent conditions holds:

• All eigenvalues of P are positive

• The determinant of P is positive

• All successive principal submatrices of P (minors of successively increasing size)

have positive determinants

9.2.6 Matrix Ellipsoid

Given three matrices Xt = X ∈ ℜm×m, Y ∈ ℜm×p and 0 < Zt = Z ∈ ℜp×p , con-

sider the following set
{
K ∈ ℜm×p : [I K]

[
X Y

• Z

][
I

K

]
≤ 0

}
.

This set is called a matrix ellipsoid. Some of the relevant properties are

• The matrix ellipsoid can be written as

(K −Ko)Z(K −Ko)
t ≤R,

where R is the radius and Ko = −YZ−1 is the center of the ellipsoid.

• A matrix ellipsoid is nonempty if and only if the radius R = YZ−1Y t −X ≥ 0.

• If X = YZ−1Y t the matrix ellipsoid is a singleton.

• A matrix ellipsoid is a compact convex set.

9.2.7 Power of a Square Matrix

For positive m, Am for a square matrix A is defined as AA · · ·A, with m terms in the

product. For negative m, let m= −n, where n is positive; Am = (A1−)n. It follows

that ApAq =Ap+q , for any integers p and q , positive or negative, and likewise that

(Ap)q =Apq .

A polynomial in A is a matrix p(A) =
∑m

j=1 αjA
j , where the αj are scalars.

Any two polynomials is the same matrix commute—that is,

p(A)q(A) = q(A)p(A),

where p and q are polynomials. It follows that

p(A)q−1(A) = q−1(A)p(A)

and that such rational functions of A also commute.
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9.2.8 Exponential of a Square Matrix

Let A be a square matrix. Then it can shown that the series

I +A+ 1

2!A
2 + 1

3!A
3 + · · ·

converges, in the sense that the (j − k)th entry of the partial sums of the series

converges for all j and k. The sum is defined as eA. It follows that

eAt = I +At + 1

2!A
2t2 + 1

3!A
3t3 + · · · .

Moreover,

p(A)eAt = eAtp(A)

for any polynomial A, and e−At = [eAt ]−1.

9.2.9 Eigenvalues and Eigenvectors of a Square Matrix

Let A be an n× n matrix. The polynomial det[sI −A] is termed the characteristic

polynomial of A and the zeros of this polynomial are the eigenvalues of matrix A.

If λj is an eigenvalue of A, there always exists a least one vector x satisfying

Ax = λjx.

The vector x is termed an eigenvector of matrix A. If λj is not a repeated eigenvalue-

that is, if it is a simple zero of the characteristic polynomial, to within a scalar

multiple x is unique. If not, there may be more than one eigenvector associated

with λj . If λj is real, the entries of x are real, whereas if λj is complex, the entries

of x are complex.

If A has zero entries everywhere off the main diagonal—that is, if ajk for all

j , k, j �= k, the A is termed diagonal. It follows trivially from the definition of an

eigenvalue that the diagonal entries of the diagonal A are precisely the eigenvalues

of A.

It is also true that for a general matrix A,

det(A) =

n∏

j=1

λj .

If A is singular, A possesses at least one zero eigenvalue.

The eigenvalues of a rational function r(A) of A are the numbers r(λj ), where

λj are the eigenvalues of A. For example, the eigenvalues of eAt are eλj t .
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9.2.10 The Cayley-Hamiltonian Theorem

A formal definition of the Cayley-Hamiltonian theorem is that Every square matrix

satisfies its own characteristic equation. Let A be a square matrix, and let

det[sI −A] = sn + α1s
n−1 + · · · + αn

then

An + α1A
n−1 + · · · + αnI = 0.

From the Cayley-Hamiltonian theorem, it follows that any analytic function f (A)

of A are expressible as a linear combination of {I,A,An−1}—that is, Am for any

m ≥ n and eA.

9.2.11 Trace Properties

The trace of a square matrix P , trace(P ), equals the sum of its diagonal elements

or equivalently the sum of its eigenvalues. A basic property of the trace is invariant

under cyclic perturbations, that is,

trace(AB) = trace(BA),

where AB is square. Successive applications of the above results yield

trace(ABC) = trace(BCA) = trace(CAB),

where ABC is square. In general,

trace(AB) = trace(B tAt ).

Another result is that

trace(AtBA) =

p∑

k=1

at
kBak,

where A ∈ ℜn×p , B ∈ ℜn×n and {ak} are the columns of A. The following identities

on trace derivatives are noted

∂(trace(AB))

∂A
=

∂(trace(AtB t ))

∂A
=

∂(trace(B tAt ))

∂A
,

=
∂(trace(BA))

∂A
= B t ,

∂(trace(AB))

∂B
=

∂(trace(AtB t ))

∂B
=

∂(trace(B tAt ))

∂B
,

=
∂(trace(BA))

∂B
= At ,

∂(trace(BAC))

∂A
=

∂(trace(B tCtAt ))

∂A
=

∂(trace(CtAtB t ))

∂A
,
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= ∂(trace(ACB))

∂A
= ∂(trace(CBA))

∂A
,

= ∂(trace(AtB tCt ))

∂A
= B t Ct ,

∂(trace(AtBA))

∂A
= ∂(trace(BAAt ))

∂A
= ∂(trace(AAtB))

∂A
,

= (B +B t )A.

Using these basic ideas, a list of matrix calculus results are given below

∂(trace(AXt ))

∂X
= A,

∂(trace(AXB))

∂X
= AtB t ,

∂(trace(AXtB))

∂X
= BA,

∂(trace(AX))

∂Xt
= A,

∂(trace(AXt ))

∂Xt
= At ,

∂(trace(AXB))

∂Xt
= BA,

∂(trace(AXtB))

∂Xt
= AtB t ,

∂(trace(XX))

∂X
= 2Xt ,

∂(trace(XXt ))

∂X
= 2X,

∂(trace(AXn))

∂X
=
(

n−1∑

j=0

Xj AXn−j−1

)t

,

∂(trace(AXBX))

∂X
= AtXtB t +B tXtAt ,

∂(trace(AXBXt ))

∂X
= AtXB t +AXB,

∂(trace(X−1))

∂X
= −

(
X−2

)t
,

∂(trace(AX−1B))

∂X
= −

(
X−1BAX−1

)t
,

∂(trace(AB))

∂A
= B t +B − diag(B).

9.2.12 Kronecker Product and vec

Let A ∈ ℜm×n, B ∈ ℜp×r . The product C ∈ ℜmp×nr defined as

C =

⎡
⎢⎢⎢⎣

a11B . . . a1nB

a21B · · · a2nB
...

...

am1B . . . amnB

⎤
⎥⎥⎥⎦
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and written C = A⊗ B is termed the Kronecker product of matrices A and B . In

case A and B are square, the set of eigenvalues of C is given by λj (A)λk(B), ∀j, k.

The Kronecker product is associative-that is,

(A ⊗ B)(C ⊗ D) = AC ⊗ BD, (A ⊗ B)t = At ⊗ B t .

Let A ∈ ℜm×n. The column mn-vector, obtained by stacking column 2 of A after

column 1, column 3 of A after column 2, and so forth, is termed vecA.

If M,N are matrices for which the product MN can be formed, then

vec(MN) = [I ⊗ M]vecN

= [N t ⊗ I ]vecM.

9.2.13 Partitioned Matrices

Given a partitioned matrix (matrix of matrices) of the form

M =

[
A B

C D

]

where A, B , C and D are of compatible dimensions. Then:

(1) if A−1 exists, a Schur complement of M is defined as D − CA−1B , and

(2) if D−1 exists, a Schur complement of M is defined as A − BD−1C.

When A, B , C and D are all n × n matrices, then:

(a) det

[
A B

C D

]
= det(A)det(D − CA−1B), det(A) �= 0;

(b) det

[
A B

C D

]
= det(D)det(A − BD−1C), det(D) �= 0.

In the special case, we have

det

[
A B

C 0

]
= det(A)det(C),

where A and C are square. Since the determinant is invariant under row, it follows

det

[
A B

C D

]
= det

[
A B

C − CA−1A D − CA−1B

]

= det

[
A B

0 D − CA−1B

]
= det(A)det(D − CA−1B)

which justifies the forgoing result.

Given matrices A ∈ ℜm×n and B ∈ ℜn×m, then

det(Im − AB) = det(In − BA).

In case that A is invertible, then det(A−1) = det(A)−1.



9.2 Matrix Theory 529

9.2.14 The Matrix Inversion Lemma

Suppose that A ∈ ℜn×n, B ∈ ℜn×p , C ∈ ℜp×p , and D ∈ ℜp×n. Assume that A−1

and C−1 both exist. Then

(A+BCD)−1 =A−1 −A−1B(DA−1B +C−1)−1DA−1.

In the case of partitioned matrices, we have the following result

[
A B

C D

]−1

=

[
A−1 +A−1BΞ−1CA−1 −A−1BΞ−1

−Ξ−1CA−1 Ξ−1

]

Ξ = (D − CA−1B)

provided that A−1 exists. Alternatively,

[
A B

C D

]−1

=

[
Ξ−1 −Ξ−1BD−1

−D−1CΞ−1 D−1 + D−1CΞ−1BD−1

]
,

Ξ = (D − CA−1B)

provided that D−1 exists.

For a square matrix Y , the matrices Y and (I +Y)−1 commute, that is, given that

the inverse exists

Y(I + Y)−1 = (I + Y)−1Y.

Two additional inversion formulas are given below

Y(I + XY)−1 = (I + YX)−1Y,

(I + YX)−1 = I − YX(I + YX)−1.

The following result provides conditions for the positive definiteness of a parti-

tioned matrix in terms of its submatrices. The following three statements are equiv-

alent:

(1)

[
Ao Aa

At
a Ac

]
> 0,

(2) Ac > 0, Ao − AaA
−1
c At

a > 0,

(3) Aa > 0, Ac − At
aA

−1
o Aa > 0.

9.2.15 Strengthened Version of Lemma of Lyapunov

The basic lemma of Lyapunov states that for positive definite C, there exists a unique

positive definite P such that

PA + AtP + C = 0
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if and only if Reλj (A) < 0. The first strengthening states that if [A,D] is com-

pletely observable, there exists a unique positive definite P such that

PA + AtP = −DDt

if and only if Reλj (A) < 0. The second strengthening states that if [A,D] is com-

pletely detectable, there exists a unique nonnegative definite P such that

PA + AtP = −DDt

if and only if Reλj (A) < 0.

In all cases where P exists,

P =
∫ ∞

0

eAt tDDteAtdt.

9.2.16 The Singular Value Decomposition

The singular value decomposition (SVD) is a matrix factorization that has found a

number of applications to engineering problems. The SVD of a matrix M ∈ ℜn×m

is

M = USV † =

p∑

j=1

σjUjV
†
j ,

where U ∈ ℜα×α and V ∈ ℜβ×β are unitary matrices (U†U = UU† = I and

V †V = V V †I ); S ∈ ℜα×β is a real, diagonal (but not necessarily square); and

p = min(α,β). The singular values {σ1, σ2, . . . , σβ} of M are defined as the posi-

tive square roots of the diagonal elements of StS, and are ordered from largest to

smallest.

To proceed further, we recall a result on unitary matrices. If U is a unitary matrix

(U†U = I ), then the transformation U preserves length, that is:

‖Ux‖ =
√

(Ux)†(Ux) =
√

x†U†Ux,

=
√

x†x = ‖x‖.

As a consequence, we have

‖Mx‖ =
√

x†M†Mx =
√

x†V StU†USV †x,

=
√

x†V StSV †x.

To evaluate the maximum gain of matrix M , we calculate the maximum norm of the

above equation to yield

max
‖x‖=1

‖Mx‖ = max
‖x‖=1

√
x†V StSV †x = max

‖x̃‖=1

√
x̃†V StSx̃.



9.3 Some Bounding Inequalities 531

Note that maximization over x̃ = V x is equivalent to maximizing over x since

V is invertible and preserves the norm (equals 1 in this case). Expanding the norm

yield

max
‖x‖=1

‖Mx‖ = max
‖x̃‖=1

√
x̃†V StSx̃,

= max
‖x̃‖=1

√
σ 2

1 |x̃1|2 + σ 2
2 |x̃2|2 + · · · + σ 2

β |x̃β |2.

The foregoing expression is maximized, given the constraint ‖x̃‖ = 1, when x̃ is

concentrated at the largest singular value; that is |x̃| = [1 0 . . . 0]t . The maximum

gain is then

max
‖x‖=1

‖Mx‖ =
√

σ 2
1 |1|2 + σ 2

2 |0|2 + · · · + σ 2
β |0|2 = σ1 = σM .

In words, this reads The maximum gain of a matrix is given be the maximum

singular value σM . Following similar lines of development, it is easy to show that

min
‖x‖=1

‖Mx‖ = σβ = σm,

=
{

σp, α ≥ β,

0, α < β.

A property of the singular values is expressed by

σM(M−1) =
1

σm(M)
.

9.3 Some Bounding Inequalities

In the sequel, all mathematical inequalities are proved for completeness. They are

termed facts afterwards due to their high frequency of usage in the analytical devel-

opments.

9.3.1 Bounding Inequality A

For any real matrices Σ1, Σ2 and Σ3 with appropriate dimensions and Σ t
3 Σ3 ≤ I ,

it follows that

Σ1Σ3Σ2 + Σ t
2Σ

t
3Σ

t
1 ≤ αΣ1Σ

t
1 + α−1Σ t

2Σ2, ∀α > 0.

Proof This inequality can be proved as follows. Since Φ tΦ ≥ 0 holds for any matrix

Φ , then take Φ as

Φ = [α1/2Σ1 − α−1/2Σ2].
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Expansion of Φ tΦ ≥ 0 gives ∀α > 0

αΣ1Σ
t
1 + α−1Σ t

2Σ2 − Σ t
1Σ2 − Σ t

2Σ1 ≥ 0

which by simple arrangement yields the desired result. �

9.3.2 Bounding Inequality B

Let Σ1, Σ2, Σ3 and 0 < R = Rt be real constant matrices of compatible dimensions

and H(t) be a real matrix function satisfying H t (t)H(t) ≤ I . Then for any ρ > 0

satisfying ρΣ t
2Σ2 < R, the following matrix inequality holds:

(Σ3 + Σ1H(t)Σ2)R
−1(Σ t

3 + Σ t
2H

t (t)Σ t
1) ≤ ρ−1Σ1Σ

t
1 + Σ3

(
R − ρΣ t

2Σ2

)−1
Σ t

3.

Proof The proof of this inequality proceeds like the previous one by considering

that

Φ = [(ρ−1Σ2Σ
t
2)

−1/2Σ2R
−1Σ t

3 − (ρ−1Σ2Σ
t
2)

−1/2H t (t)Σ t
1].

Recall the following results

ρΣ t
2Σ2 < R,

[R − ρΣ t
2Σ2]

−1 = [R−1 + R−1Σ t
2[ρ

−1I − Σ2R
−1Σ t

2]
−1Σ2R

−1Σ2

and

H t (t)H(t) ≤ I �⇒ H(t)H t (t) ≤ I.

Expansion of Φ tΦ ≥ 0 under the condition ρΣ t
2Σ2 < R with standard matrix ma-

nipulations gives

Σ3R
−1Σ t

2H
t (t)Σ t

1 + Σ1H(t)Σ2R
−1Σ t

3 + Σ1H(t)Σ2Σ
t
2H

t (t)Σ t
1

≤ ρ−1Σ1H(t)H t (t)Σ t
1 + Σ t

3R
−1Σ2[ρ

−1IΣ2Σ
t
2]

−1Σ2R
−1Σ t

3 �⇒

(Σ3 + Σ1H(t)Σ2)R
−1(Σ t

3 + Σ t
2H

t (t)Σ t
1) − Σ3R

−1Σ t
3

≤ ρ−1Σ1H(t)H t (t)Σ t
1 + Σ t

3R
−1Σ2[ρ

−1I − Σ2Σ
t
2]

−1Σ2R
−1Σ t

3 �⇒

(Σ3 + Σ1H(t)Σ2)R
−1(Σ t

3 + Σ t
2H

t (t)Σ t
1)

≤ Σ3[R
−1 + Σ2[ρ

−1I − Σ2Σ
t
2]

−1Σ2R
−1]Σ t

3 + ρ−1Σ1H(t)H t (t)Σ t
1

= ρ−1Σ1H(t)H t (t)Σ t
1 + Σ3

(
R − ρΣ t

2Σ2

)−1
Σ t

3

which completes the proof. �
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9.3.3 Bounding Inequality C

For any real vectors β , ρ and any matrix Qt = Q > 0 with appropriate dimensions,

it follows that

−2ρtβ ≤ ρtQρ + β tQ−1β.

Proof Starting from the fact that

[ρ + Q−1β]tQ[ρ + Q−1β] ≥ 0, Q > 0

which when expanded and arranged yields the desired result. �

9.3.4 Bounding Inequality D

For any quantities u and v of equal dimensions and for all ηt = i ∈ S , it follows that

the following inequality holds

‖u + v‖2 ≤ [1 + β−1]‖u‖2 + [1 + β]‖v‖2 (9.1)

for any scalar β > 0, i ∈ S .

Proof Since

[u + v]t [u + v] = utu + vtv + 2utv, (9.2)

it follows by taking norm of both sides of (9.2) for all i ∈ S that

‖u + v‖2 ≤ ‖u‖2 + ‖v‖2 + 2‖utv‖. (9.3)

We know from the triangle inequality that

2‖utv‖ ≤ β−1‖u‖2 + β‖v‖2. (9.4)

On substituting (9.4) into (9.3), it yields (9.1). �

9.3.5 Young’s Inequality

For any scalars ε > 0, p > 1, q = (1 − p−1)−1 > 1 and vectors a ∈ ℜn and b ∈ ℜn,

it follows that

atb ≤ ε|a|p/p + |b|q/(qεq−1

).
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9.4 Gronwall-Bellman Inequality

Gronwall-Bellman Inequality Let σ : [a, b] → ℜ be continuous and β :

[a, b] → ℜ be continuous and nonnegative. If a continuous function z : [a, b] → ℜ

satisfies

z(t) ≤ σ(t) +

∫ b

a

β(s)z(s)ds

for a ≤ t ≤ b, then on the same interval

z(t) ≤ σ(t) +

∫ b

a

σ(s)β(s) exp

[∫ t

s

β(s)ds

]
.

In particular, if σ(t) ≡ σ is a constant, then

z(t) ≤ σ exp

[∫ t

s

β(s)ds

]
.

If, in addition, β(t) ≡ β ≥ 0 is a constant, then

z(t) ≤ σ exp[β(t − a)].

Proof Let y(t) =
∫ b

a
β(s)z(s)ds and w(t) = y(t) + σ(t) − z(t) ≥ 0. Then, z is

differentiable and

(̇z) = β(t)z(t) = β(t)y(t) + β(t)σ (t) − β(t)w(t)

which describes a linear state equation with an associated state transition function

φ(t, s) = exp

[∫ t

s

β(τ)dτ

]
.

Since y(a) = 0, we have

y(t) =

∫ t

a

φ(t, s)[β(s)σ (s) − β(s)w(s)]ds.

Observe that ∫ t

a

φ(t, s)β(s)w(s)ds ≥ 0.

Therefore,

y(t) ≤

∫ t

a

exp

[∫ t

s

β(τ)dτ

]
β(s)σ (s)ds.

Since z(t) ≤ σ(t) + y(t), the proof is completed in the general case.

When σ(t) ≡ σ , we have
∫ t

a

exp

[∫ t

s

β(τ)dτ

]
ds = −

∫ t

a

d

ds

{
exp

[∫ t

s

β(τ)dτ

]}
ds

= −

{
exp

[∫ t

s

β(τ)dτ

]}∣∣∣∣
s=t

s=a

= −1 + exp

[∫ t

a

β(τ)dτ

]
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which establishes the part of the lemma when σ is constant. The remaining part

when both σ and β are constants follows by integration. �

9.5 Schur Complements

Schur complements Given a matrix Ω composed of constant matrices Ω1,Ω2,Ω3,

where Ω1 = Ω t
1 and 0 < Ω2 = Ω t

2 as follows

Ω =
[
Ω1 Ω3

Ω t
3 Ω2

]
.

We have the following results:

(A) Ω ≥ 0 if and only if either
⎧
⎪⎨
⎪⎩

Ω2 ≥ 0,

Π = Υ Ω2,

Ω1 − Υ Ω2Υ
t ≥ 0

(9.5)

or
⎧
⎪⎨
⎪⎩

Ω1 ≥ 0,

Π = Ω1Λ,

Ω2 − ΛtΩ1Λ ≥ 0

(9.6)

hold where Λ, Υ are some matrices of compatible dimensions.

(B) Ω > 0 if and only if either
{

Ω2 > 0,

Ω1 − Ω3Ω
−1
2 Ω t

3 > 0

or
{

Ω1 ≥ 0,

Ω2 − Ω t
3Ω

−1
1 Ω3 > 0

hold where Λ, Υ are some matrices of compatible dimensions.

In this regard, matrix Ω1 − Ω3Ω
−1
2 Ω t

3 (Ω2 − Ω t
3Ω

−1
1 Ω3) is often called the

Schur complement of Ω2 (of Ω1) in Ω .

Proof (A) To prove (9.5), we first note that Ω2 ≥ 0 is necessary. Let zt = [zt
1 zt

2] be

a vector partitioned in accordance with Ω . Thus we have

ztΩz = zt
1Ω1z1 + 2zt

1Ω3z2 + zt
2Ω2z2. (9.7)

Select z2 such that Ω2z2 = 0. If Ω3z2 �= 0, let z1 = −πΩ3z2, π > 0. Then it follows

that

ztΩz = π2zt
2Ω

t
3Ω1Ω3z2 − 2πzt

2Ω
t
3Ω3z2
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which is negative for a sufficiently small π > 0. We thus conclude Ω1z2 = 0 which

then leads to Ω3z2 = 0, ∀z2 and consequently

Ω3 = Υ Ω2 (9.8)

for some Υ .

Since Ω ≥ 0, the quadratic term ztΩz possesses a minimum over z2 for any z1.

By differentiating ztΩz from (9.7) wrt zt
2, we get

∂(ztΩz)

∂zt
2

= 2Ω t
3z1 + 2Ω2z2 = 2Ω2Υ

tz1 + 2Ω2z2.

Setting the derivative to zero yields

Ω2Υ z1 = −Ω2z2 (9.9)

Using (9.8) and (9.9) in (9.7), it follows that the minimum of ztΩz over z2 for any

z1 is given by

min
z2

ztΩz = zt
1[Ω1 − Υ Ω2Υ

t ]z1

which proves the necessity of Ω1 − Υ Ω2Υ
t ≥ 0.

On the other hand, we note that the conditions (9.5) are necessary for Ω ≥ 0 and

since together they imply that the minimum of ztΩz over z2 for any z1 is nonnega-

tive, they are also sufficient.

Using similar argument, conditions (9.6) can be derived as those of (9.5) by start-

ing with Ω1.

The proof of (B) follows as direct corollary of (A). �

9.6 Lemmas

The basic tools and standard results that are utilized in robustness analysis and re-

silience design in the different chapters are collected hereafter.

Lemma 9.1 The matrix inequality

−Λ + SΩ−1St < 0 (9.10)

holds for some 0 < Ω = Ω t ∈ ℜn×n, if and only if
[
−Λ SX

• −X − X t + Z

]
< 0 (9.11)

holds for some matrices X ∈ ℜn×n and Z ∈ ℜn×n.

Proof (⇒) By Schur complements, inequality (9.10) is equivalent to
[
−Λ SΩ−1

• −Ω−1

]
< 0. (9.12)
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Setting X = X t = Z = Ω−1, we readily obtain inequality (9.11).

(⇐) Since the matrix [I S] is of full rank, we obtain
[

I

St

]t [−Λ SX

• −X − X t + Z

][
I

St

]
< 0

⇐⇒ −Λ + SZSt < 0

⇐⇒ −Λ + SΩ−1St < 0, Z = Ω−1 (9.13)

which completes the proof. �

Lemma 9.2 The matrix inequality

AP + PAt + DtR−1D + M < 0 (9.14)

holds for some 0 < P = P t ∈ ℜn×n, if and only if
⎡
⎣

AV + V tAt + M P + AW − V DtR

• −W − W t 0

• • −R

⎤
⎦< 0 (9.15)

holds for some V ∈ ℜn×n and W ∈ ℜn×n.

Proof (⇒) By Schur complements, inequality (9.14) is equivalent to
[
AP + PAt + M DtR

• −R

]
< 0. (9.16)

Setting V = V t = P , W = W t = R, it follows from Lemma 9.1 with Schur comple-

ments that there exists P > 0, V , W such that inequality (9.15) holds.

(⇐) In a similar way, Schur complements to inequality (9.15) imply that:
⎡
⎣

AV + V tAt + M P + AW − V DtR

• −W − W t 0

• • −R

⎤
⎦< 0

⇐⇒

[
I

A

][
AV + V tAt + M + DtR−1D P + AW − V

• −W − W t

][
I

A

]t

< 0

⇐⇒ AP + PAt + DtR−1D + M < 0, V = V t (9.17)

which completes the proof. �

The following lemmas are found in [10].

Lemma 9.3 Given any x ∈ ℜn:

max{[xtRHΔGx]2 : Δ ∈ ℜ} = xtRHH tRxxtGtGx.

Lemma 9.4 Given matrices 0 ≤ X = Xt ∈ ℜp×p , Y = Y t < 0 ∈ ℜp×p , 0 ≤ Z =

Zt ∈ ℜp×p , such that

[ξ t Y ξ ]2 − 4[ξ t X ξ ξ t Z ξ ]2 > 0
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for all 0 �= ξ ∈ ℜp is satisfied. Then there exists a constant α > 0 such that

α2X + αY + Z < 0.

The following lemma can be found in [3].

Lemma 9.5 For a given two vectors α ∈ ℜn, β ∈ ℜm and matrix N ∈ ℜn×m defined

over a prescribed interval Ω , it follows for any matrices X ∈ ℜn×n, Y ∈ ℜn×m, and

Z ∈ ℜm×m, the following inequality holds

−2

∫

Ω

αt (s)Nβ(s)ds ≤

∫

Ω

[
α(s)

β(s)

]t [
X Y − N

Y t − N t Z

][
α(s)

β(s)

]
ds,

where
[

X Y

Y t Z

]
≥ 0.

An algebraic version of Lemma 9.5 is stated below.

Lemma 9.6 For a given two vectors α ∈ ℜn, β ∈ ℜm and matrix N ∈ ℜn×m defined

over a prescribed interval Ω , it follows for any matrices X ∈ ℜn×n, Y ∈ ℜn×m, and

Z ∈ ℜm×m, the following inequality holds

−2αtNβ ≤

[
α

β

]t [
X Y − N

Y t − N t Z

][
α

β

]

= αtXα + β t (Y t − N t )α + αt (Y − N)β + β tZβ

subject to

[
X Y

Y t Z

]
≥ 0.

The following lemma can be found in [9].

Lemma 9.7 Let 0 < Y = Y t and M , N be given matrices with appropriate dimen-

sions. Then it follows that

Y + MΔN + N tΔtM t < 0, ∀ΔtΔ ≤ I

holds if and only if there exists a scalar ε > 0 such that

Y + εMM t + ε−1N tN < 0.

In the following lemma, we let X(z) ∈ ℜn×p be a matrix function of the

variable z. A matrix X∗(z) is called the orthogonal complement of X(z) if

Xt (z)X∗(z) = 0 and X(z)X∗(z) is nonsingular (of maximum rank).
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Lemma 9.8 Let 0 < L = Lt and X, Y be given matrices with appropriate dimen-

sions. Then it follows that the inequality

L(z)+X(z)PY (z)+ Y t (z)P tXt (z) > 0 (9.18)

holds for some P and z= z0 if and only if the following inequalities

Xt
∗(z)L(z)X∗(z) > 0, Y t∗(z)L(z)Y∗(z) > 0 (9.19)

hold with z= z0.

It is significant to observe that feasibility of matrix inequality (9.18) with vari-

ables P and z is equivalent to the feasibility of (9.19) with variable z and thus the

matrix variable P has been eliminated from (9.18) to form (9.19). Using Finsler’s

lemma [2], we can express (9.19) in the form

L(z)− βX(z)Xt (z) > 0, L(z) − βY(z)Y t (z) > 0 (9.20)

for some β ∈ ℜ.

Lemma 9.9 For any constant matrix 0 < Σ ∈ ℜn×n, scalar σ < τ(t) < ̺ and vec-

tor function ẋ : [−̺,−σ ] → ℜn such that the following integration is well-defined,

then it holds that

−(̺ − σ)

∫ t−σ

t−̺

ẋt (s)Σẋ(s)ds ≤ −[x(t − σ) − x(t − ̺)]tΣ[x(t − σ) − x(t − ̺)].

Lemma 9.10 Given constant matrices Ω1,Ω2,Ω3, where Ω1 = ΩT
1 and Ω2 =

ΩT
2 , then Ω1 + ΩT

3 Ω−1
2 Ω3 < 0 if and only if

[
Ω1 ΩT

3

Ω3 −Ω2

]
< 0 or

[
−Ω2 ΩT

3

Ω3 Ω1

]
< 0.

The following is a statement of the reciprocal projection lemma.

Lemma 9.11 Let P > 0 be a given matrix. The following statements are equiva-

lent:

(i) M + Z + Zt < 0;

(ii) the LMI problem
[
M + P − (V + V t ) V t + Zt

V + Z −P

]
< 0

is feasible with respect to the general matrix V .

Lemma 9.12 For any constant matrix 0 < M t = M ∈ ℜn×n, scalar φ > 0, if there

exists a vector function r(s) : [0, φ] → ℜn such that the following integrations are

well-defined then

−φ

∫ 0

φ

r t (s)Mr(s)ds ≥

[∫ φ

0

r(s)ds

]t

M

[∫ φ

0

r(s)ds

]
.
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Lemma 9.13 (The S Procedure) Denote the set Z = {z} and let F(z), Y1(z),

Y2(z), . . . ,Yk(z) be some functionals or functions. Define domain D as

D = {z ∈ Z : Y1(z)≥ 0, Y2(z)≥ 0, . . . , Yk(z)≥ 0}

and the two following conditions:

(I) F(z) > 0, ∀z ∈ D,

(II) ∃ε1 ≥ 0, ε2 ≥ 0, . . . , εk ≥ 0 such that S(ε, z) = F (z) −
∑k

j=1 εj Yj (z) > 0

∀z ∈ Z. Then (II) implies (I).

9.7 Stability Theorems

9.7.1 Lyapunov-Razumikhin Theorem

Here the idea is based on the following argument: because the future states of the

system depend on the current and past states’ values the Lyapunov function should

become functional—more details in Lyapunov Krasovskii method—which may

complicate the condition formulation and the analysis. To avoid using functional;

Razumakhin made his theorem which is based on formulating Lyapunov functions

not functionals. First one should build a Lyapunov function V (x(t)) which is zero

when x(t) = 0 and positive otherwise, then the theorem does not require V̇ < 0 al-

ways but only when the V (x(t)) for the current state becomes equals to V̄ which is

given by

V̄ = max
θ∈[−τ,0]

V (x(t + θ)) (9.21)

the theorem statement is given by ([4]):

Lyapunov-Razumikhin Theorem Suppose f is a functional that takes time t and

initial values xt and gives a vector of n states ẋ and u,v,w are class K functions

u(s) and v(s) are positive for s > 0 and u(0) = v(0) = 0, v is strictly increasing. If

there exists a continuously differentiable function V : ℜ × ℜn → ℜ such that

u(‖x‖) ≤ V (t, x) ≤ v(‖x‖) (9.22)

and the time derivative of V along the solution x(t) satisfies V̇ (t, x) ≤ −w(‖x‖)

whenever V (t + θ, x(t + θ)) ≤ V (t, x(t))θ ∈ [−τ,0], then the system is uniformly

stable.

If in addition w(s) > 0 for s > 0 and there exists a continuous non-decreasing

function p(s) > s for s > 0 such that V̇ (t, x) ≤ −w(‖x‖) whenever V (t + θ, x(t +

θ)) ≤ p(V (t, x(t))) for θ ∈ [−τ,0], then the system is uniformly asymptotically

stable. If in addition limu(s)s→∞ = ∞ then the system is globally asymptotically

stable.
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The argument behind the theorem is like this: V̄ is serving as a measure for the

V in the interval t − τ to t then if V (x(t)) is less than V̄ then it’s not necessary that

V̇ < 0, but if V (x(t)) becomes equals to V̄ then V̇ should be < 0 such that V will

not grow.

The procedure can be explained more by the following discussion: consider sys-

tem and a selected Lyapunov function V (x) which is positive semi-definite. By

taking the time derivative of this Lyapunov function we get V̇ . According to Razu-

mikhin theorem this term does not always need to be negative, but if we added the

following term a(V (x) − V (xt )), a > 0 to V̇ then the term

V̇ + a(V (x) − V (xt )) (9.23)

should always be negative. Then by looking at this term we find that this condi-

tion is satisfied if V̇ < 0 and V (x) ≤ V (xt ) meaning that the system states are not

growing in magnitude and it is approaching the origin (stable system). Or whenever

a(V (x) < V (xt )) and V̇ > 0 but V̇ < |a(V (x)−V (xt ))| then although V̇ is positive

and states are increasing but the Lyapunov function is limited by an upper bound and

it will not grow without limit. The third case is that both of them are negative and

it’s clear that it is stable. This condition insures uniformly stability meaning that the

states may not reach the origin but it is contained is a domain say ε which obey the

primary definition of the stability. To extends this theorem for asymptotic stability

we can consider adding the term p(V (x(t))) − V (xt ) where p(.) is a function that

has the following characteristics

p(s) > s

and then the condition becomes

V̇ + a(p(V (x(t))) − V (xt )) < 0, a > 0. (9.24)

By this when the system reaches some value which make p(V (x(t))) = V (xt ) re-

quires V̇ to be negative but at this instant V (x(t) < V (xt ) then in the coming τ

interval the V (x) will never reaches V (xt ) and the maximum value in this interval

is the new V (xt ) which is less than the previous value and with the time the function

keeps decreasing until the states reach the origin.

9.7.2 Lyapunov-Krasovskii Theorem

The Razumikhin theorem attempts to construct Lyapunov function while Lyapunov-

Krasovskii uses functionals because V which can be considered as an indicator for

the internal power in the system is function of xt , then it’s logically to consider V

which is a function of function and hence a functional. The terms of V (xt ) should

contains terms for the x in the interval (t − τ) to t and V̇ should be < 0 to ensure

asymptotic stability. This method will be covered in more detail in a next section.

In many cases, Lyapunov-Razumikhin can be found as a special case of

Lyapunov-Krasovskii which make the former more conservative. Lyapunov-Kra-

sovskii method tries to build a Lyapunov functional which is function in xt and
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the time derivative of this Lyapunov function should be negative for the system

to be stable. Previously there were criticism on Lyapunov-Krasovskii that it can

be used for system with the third category of delay mentioned in Sect. 2.2.2 only

when τ̇ ≤ μ ≤ 1, but the recent results resolve this problem as we see next chapter.

Another criticism is that the Krasovskii methods can not deal with delay in the sec-

ond category but also the recent results in this method succeed to include this case

[3]. The remaining advantage of the Razumikhin method is its simplicity, but the

Krasovskii method proved to give less conservative results, the thing that gives it the

interest of most of the researchers in the recent years. Before going to the theorem

we have to define the following notations

φ = xt ,
(9.25)‖φ‖c = max

θ∈[−τ,0]
x(t + θ).

Lyapunov-Krasovskii Theorem ([4]) Suppose f is a functional that takes time t

and initial values xt and gives a vector of n states ẋ and u,v,w are class K functions

u(s) and v(s) are positive for s > 0 and u(0) = v(0) = 0, v is strictly increasing. If

there exists a continuously differentiable function V : ℜ × ℜn → ℜ such that

u(‖φ‖) ≤ V (t, x) ≤ v(‖φ‖c) (9.26)

and the time derivative of V along the solution x(t) satisfies

V̇ (t, x) ≤ −w(‖φ‖) for θ ∈ [−τ,0]

then the system is uniformly stable. If in addition w(s) > 0 for s > 0 then the system

is uniformly asymptotically stable. If in addition lim u(s)s→∞ = ∞ then the system

is globally asymptotically stable.

It’s clear that V is a functional and V̇ should always be negative.

When considering a special class of systems which consider the case of linear

time invariant system with multiple discrete time delay which is given by [4]

ẋ(t) = Aox(t) +

m∑

j=1

Ajx(t − hj ), (9.27)

hj , j = 1,2, . . . ,m are constants then this case is a simplified case and in spite

of that the Lyapunov-Krasovskii functional that gives a necessary and sufficient

condition for the system stability is given by

V (xt ) = x′(t)U(0)x(t)

+

m∑

k=1

m∑

k=1

x′(t + θ2)A
′
k

∫ −hk

0

U(θ1 + θ2 + hk − hj )Ajx(t + θ1)dθ1dθ2

+

k=1∑

m

∫ −hk

0

x′(t + θ)[(hk + θ)Rk + Wk]x(t + θ)dθ, (9.28)
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where W0,W1, . . . ,Wm, R1,R2, . . . ,Rm are positive definite matrices and U is

given by

d

dτ
U(τ) = U(τ)A0 +

m∑

k=1

U(τ − hk)Ak, τ ∈
[
0,max

k
(hk)

]
. (9.29)

This theorem were found by trying to imitate the situation of delay free systems by

finding the state transition matrix and then use it to find P that make

x′(t)(PA + A′P)x(t) = −Q, Q > 0, P > 0.

This Lyapunov functional gives a necessary and sufficient condition for the sys-

tem stability; but finding the U for this equation is very difficult “and involves solv-

ing algebraic ordinary and partial differential equations with appropriate boundary

conditions which is obviously unpromising” [4]. And even if we can find this U ;

the resulting functional leads to a complicated system of partial differential equa-

tions yielding infinite dimension LMI. That is why many authors considered special

forms of it and thus derived simpler but more conservative, sufficient conditions

which can be represented by appropriate set of LMIs.

This is the case for LTI system with fixed time delay then considering time vary-

ing delay or generally nonlinear system make it more difficult. But looking at these

terms one can have idea about the possible terms which can be used in the simplified

functional.

9.7.3 Halany Theorem

The following fundamental result plays an important role in the stability analysis of

time-delay systems. Suppose that constant scalars k1 and k2 satisfy k1 > k2 > 0 and

y(t) is a non-negative continuous function on [to − τ, to] satisfying

dy(t)

dt
≤ −k1y(t) + k2ȳ(t) (9.30)

for t ≥ t0, where τ ≥ 0 and

ȳ(t) = sup
t−τ≤s≤t

{y(s)}.

Then, for t ≥ t0, we have

y(t) ≤ ȳ(t0) exp(−σ(t − t0)),

where σ > 0 is the unique solution of the following equation

σ = k1 − k2 exp(στ).

It must be emphasized that Lyapunov-Krasovskii theorem, Lyapunov-Razumi-

khin theorem and Halanay theorem can be effectively used to derive stability con-

ditions when the time-delay is time-varying, continuous but not necessarily differ-

entiable. Experience and the available literature show that the Lyapunov-Krasovskii

theorem is more usable particularly for obtaining delay-dependent stability and sta-

bilization conditions.
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9.7.4 Types of Continuous Lyapunov-Krasovskii Functionals

In this section, we provide some Lyapunov-Krasovskii functionals and their time-

derivatives which are of common use in stability studies throughout the text.

V1(x)= xtPx +
∫ 0

−τ

xt (t + θ)Qx(t + θ)dθ, (9.31)

V2(x) =
∫ 0

−τ

[∫ t

t+θ

xt (α)Rx(α)dα

]
dθ, (9.32)

V3(x) =
∫ 0

−τ

[∫ t

t+θ

ẋt (α)Wẋ(α)dα

]
dθ, (9.33)

where x is the state vector, τ is a constant delay factor and the matrices 0 < P t = P ,

0 < Qt = Q, 0 < Rt = R, 0 < W t = W are appropriate weighting factors.

Standard matrix manipulations lead to

V̇1(x) = ẋtPx + xtP ẋ + xt (t)Qx(t) − xt (t − τ)Qx(t − τ), (9.34)

V̇2(x) =
∫ 0

−τ

[
xt (t)Rx(t) − xt (t + α)Rx(t + α)

]
dθ

= τxt (t)Rx(t) −
∫ 0

−τ

xt (t + θ)Rx(t + θ)dθ, (9.35)

V̇3(x) = τ ẋt (t)Wx(t) −
∫ t

t−τ

ẋt (α)Wẋ(α)dα. (9.36)

9.7.5 Some Discrete Lyapunov-Krasovskii Functionals

In this section, we provide some a general-form of discrete Lyapunov-Krasovskii

functionals and their first-difference which can be used in stability studies of

discrete-time throughout the text.

V (k) = Vo(k) + Va(k) + Vc(k) + Vm(k) + Vn(k),

Vo(k) = xt (k)Pσ x(k),Va(k) =
k−1∑

j=k−d(k)

xt (j)Qσ x(j),

Vc(k) =
k−1∑

j=k−dm

xt (j)Zσ x(j) +
k−1∑

j=k−dM

xt (j)Sσ x(j),

Vm(k) =
−dm∑

j=−dM+1

k−1∑

m=k+j

xt (m)Qσ x(m),
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Vn(k)=
−dm−1∑

j=−dM

k−1∑

m=k+j
δxt (m)Raσ δx(m)

+
−1∑

j=−dM

k−1∑

m=k+j

δxt (m)Rcσ δx(m), (9.37)

where

0 < Pσ =
N∑

j=1

λj Pj , 0 < Qσ =
N∑

j=1

λj Qj , 0 < Sσ =
N∑

j=1

λj Sj ,

(9.38)

0 < Zσ =
N∑

j=1

λj Zj , 0 < Raσ =
N∑

j=1

λj Raj , 0 < Rcσ =
N∑

j=1

λj Rcj

are weighting matrices of appropriate dimensions. Consider now a class of discrete-

time systems with interval-like time-delays can be described by:

x(k + 1) = Aσ x(k) + Dσ x(k − dk) + Γσ ω(k),
(9.39)

z(k) = Cσ x(k) + Gσ x(k − dk) + Σσ ω(k),

where x(k) ∈ ℜn is the state, z(k) ∈ ℜq is the controlled output and ω(k) ∈ ℜp is

the external disturbance which is assumed to belong to ℓ2[0,∞). In the sequel, it is

assumed that dk is time-varying and satisfying

dm ≤ dk ≤ dM , (9.40)

where the bounds dm > 0 and dM > 0 are constant scalars. The system matrices

containing uncertainties which belong to a real convex bounded polytopic model of

the type

[Aσ ,Dσ , . . . ,Σσ ]

∈ Ξ̂λ :=

{
[Aλ,Dλ, . . . ,Σλ] =

N∑

j=1

λj [Aj , Dj , . . . ,Σj ], λ ∈ Λ

}
,

(9.41)

where Λ is the unit simplex

Λ �

{
(λ1, . . . , λN ) :

N∑

j=1

λj = 1, λj ≥ 0

}
. (9.42)

Define the vertex set N = {1, . . . ,N}. We use {A, . . . ,Σ} to imply generic system

matrices and {Aj , . . . ,Σj , j ∈ N } to represent the respective values at the vertices.

In what follows, we provide a definition of exponential stability of system (9.39):

A straightforward computation gives the first-difference of ΔV (k) = V (k + 1)−

V (k) along the solutions of (9.39) with ω(k) ≡ 0 as:
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ΔVo(k) = xt (k + 1)Pσ x(k + 1) − xt (k)Pσ x(k)

= [Aσ x(k) + Dσ x(k − dk)]t Pσ [Aσ x(k) + Dσ x(k − dk)] − xt (k)Pσ x(k),

ΔVa(k) ≤ xt (k)Qx(k) − xt (k − d(k))Qx(k − d(k)) +

k−dm∑

j=k−dM+1

xt (j)Qx(j),

ΔVc(k) = xt (k)Zx(k) − xt (k − dm)Zx(k − dm) + xt (k)Sx(k)

− xt (k − dM)Sx(k − dM),

ΔVm(k) = (dM − dm)xt (k)Qx(k) −

k−dm∑

j=k−dM+1

xt (k)Qx(k),

ΔVn(k) = (dM − dm)δxt (k)Raδx(k) + dMδxt (k)Rcδx(k)

−

k−dm−1∑

j=k−dM

δxt (j)Raδx(j) −

k−1∑

j=k−dM

δxt (j)Rcδx(j).

(9.43)

9.8 Notes and References

The topics covered in this chapter is meant to provide the reader with general plat-

form containing the basic mathematical information needed for further examination

of switched time-delay systems. These topics are properly selected from standard

books and monographs on mathematical analysis. For further details, the reader is

referred to the standard texts [1, 5–8] where fundamentals are provided.
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