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Preface

Fractional Calculus has been attracting the attention of scientists and engineers
from long time ago, resulting in the development of many applications. Since the
nineties of last century fractional calculus is being rediscovered and applied in an
increasing number of fields, namely in several areas of Physics, Control Engi-
neering, and Signal Processing. However, most of the theoretical setup of Frac-
tional Calculus was done by mathematicians that directed their attention preferably
to the so-called Riemann-Liouville and/or Caputo derivatives. We must remark
that most of the articles that appear in the scientific literature, in the framework of
the fractional calculus and their applications, the authors use those derivatives but
at the end they contrast their model using a numerical approach based in a finite
number of terms from the series that define the Grünwald-Letnikov derivative.
This may be confirmed in several books that appeared recently and is one justi-
fication for the present one. It intends to present a Fractional Calculus foundation
based of the Grünwald-Letnikov derivative, because it exhibits great coherence
allowing us to deduce from it the other derivatives, which appear as a consequence
of the Grünwald-Letnikov derivative properties and not as a prescription. The
Grünwald-Letnikov derivative is a straight generalisation of the classic derivative
and leads to formulae and equations that recover the classic ones when the order
becomes integer.

On the other hand, the available literature deals mainly with the causal (anti-
causal) derivatives. In situations where no preferred direction exists it is common
to use the Riesz potentials. Alternatively we will present the two-sided fractional
derivatives that are more general than the Riesz potentials and are generalizations
of the classic symmetric derivatives. These allow us to deal comfortably with
fractional partial differential equations. Similarly, the Quantum Derivative is
presented as a useful tool for dealing with the fractional Euler-Cauchy equations
that are suitable for dealing with scale invariant systems. These derivatives are not
described in published books.

This book is directed towards Scientists and Engineers mainly interested in
applications who do not want to spend too much time and effort to access to the
main Fractional Calculus features and tools. For this reason readers can ‘‘jump’’

vii



the chapter 2 in a first reading. The book is written in a cursive way, like a
divulgation text, reducing the formalism to increase the legibility. I hope I have
been successful.
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Chapter 1

A Travel Through the World of Fractional

Calculus

I heard the designation ‘‘fractional derivative’’ for the first time in the 1980s. My
curiosity was excited and I decided that later I would learn something about the
subject. This only happened in 1994 when I decided to talk with Prof. Costa
Campos. He lent me some books and some of his papers. I read them and I was
very troubled, because there were several incompatible definitions and also
incompatible with the theory of linear systems I knew. So, I decided to look for the
derivative definition that had suitable properties for generalising to fractional
orders the linear system concept and their usual characterizations namely the
transfer function and impulse response. To do it, I decided to start from the
Laplace transform domain and arrived to the Liouville derivative. With it I could
introduce formally the fractional linear systems. I published the corresponding
paper in 2000 and the main results are presented in Chap. 2. Meanwhile, I was far
from the fractional community and the Fractional Calculus (FC) was a mere
hobby. One day a colleague informed that there was at Porto another ‘‘crazy’’
person that worked also in FC: Prof. Tenreiro Machado. He is almost permanently
involved in organization of conferences and challenged me to send papers. One of
them treated the initial condition problem. Most people were using the Riemann–
Liouville (RL) or Caputo (C) derivatives and indentified their ‘‘initial conditions’’
with those of the system. I disagreed and proposed an alternative that is also in
Chap. 4. Meanwhile I received the visit of Blas Vinagre that showed be some of
the current applications and talked also with Stephen Samko. The initial condition
problem was not the unique reason why I refused to accept the RL and C for-
mulations as correct derivative definitions. I did not accept the two-step procedure
involved if their computations. It was like desiring to go from Lisbon to New York
and instead of a flight Lisbon/New York did two flights as Lisbon/Paris and Paris/
New York. Of course and by the same reasons I reject the sequential Miller-Ross
derivative and also the Marchaud derivative. I use to say that I work under the
minimum energy principle.

M. D. Ortigueira, Fractional Calculus for Scientists and Engineers,
Lecture Notes in Electrical Engineering, 84, DOI: 10.1007/978-94-007-0747-4_1,
� Springer Science+Business Media B.V. 2011
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When looking for interesting papers on FC, I discovered the report ‘‘A long
standing conjecture failed?’’ by Virginia Kiryakova, which challenged me to try to
find a bridge between the Grünwald–Letnikov (GL) derivative and the others,
namely Cauchy, RL, and C. I discovered that bridge on reading the paper ‘‘Dif-
ferences of Fractional Order’’ by Diaz and Osler in the flight to Vienna where I
was going to present my ideas on FC at that time. There I met Peter Kremple. It
was the beginning of interesting discussions that unfortunately had to be finished. I
met also Dumitru Baleano that was also a beginner in the fractional people
community.

After the conference I discover how to pass from the GL to the generalised
Cauchy derivative and from it I deduced a regularized derivative from where I
arrived at the Liouville derivative. This approach showed clearly the difference
between the forward and backward derivative, designations more interesting than
the left and right then used. These results are presented in Chap. 3. It is important
to remark that these formulations have an intrinsic property: the causality. While
the forward derivatives are causal, the backward are anti-causal.

When applying the above derivatives to stochastic processes, mainly the frac-
tional Brownian motion, I wondered about the possibility of defining a two-sided
(centred) derivative. This was made necessary by the computation of the auto-
correlation function of fractionally derivated white noise. I started from the
symmetric integer order derivative and obtained two types of derivatives and
showed their relations with the Riesz potentials. In the way I followed I obtained
two Cauchy like derivatives. These are presented in Chap. 5.

May sound strange that I did not talk about Chap. 2. This has one reason: it was
assumed that the GL was suitable for numerical implementation but not for the-
oretical results. With the help of Juan Trujillo I decided to use GL as a base for the
foundation of FC. To do it we generalise the GL and studied its properties.
Although the work is not finished (never will be!) in Chap. 2 it is shown that we
can deduce all the other derivatives from GL. The main properties are deduced.
One of them is the group property that states the exponent law is valid for any
orders. This allows us to join in one formula the derivatives and primitives and
solve one of the main subjects of discussions I had with P. Kremple: the inte-
gration constant and the complimentary polynomials. I concluded that they are not
needed. We have a formulation valid for any order, positive or negative. In this
case I suggest to use ‘‘anti-derivative’’. Its computation does not imply we have to
insert any primitivation constant. This only appears when we are using the
derivative rules to compute the primitives.

Some time ago I read something about the Quantum Derivative and thought it
would be interesting to obtain a fractional formulation. I did it and proposed its use
in formulating the theory of the linear scale invariant systems. This is discussed in
Chap. 6. The presentation of The Fractional Quantum Derivative was done for the
first time at the symposium on Applied Fractional Calculus held at Badajoz in
2007. I would like to say that I consider the symposia are much more interesting
than other meetings since the availability people for discussions is greater.
There, I met Richard Magin and Igor Podlubny and started our discussions.

2 1 A Travel Through the World of Fractional Calculus
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Similarly the FSS in my Faculty was an important step in gaining insights into
correct formulations and I hope that it will be the first of a series that will continue
with the FSS2011.

In Chap. 7, I describe briefly some of interesting applications and give some
insights into the future. I hope that much more people will join us in a near future
with new applications and opening new horizons. The long memory character
exhibited by the fractional systems makes them suitable for the description of a
large set of Physical, Biological, Economical, … phenomena. Some of them may
currently be described by nonlinear equations. We need more efficient tools for
implementing and simulating fractional systems, mainly in discrete format. The
current discrete approximations loose the long memory characteristic. We will not
have to wait a long time for such realisations.

1 A Travel Through the World of Fractional Calculus 3
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Chapter 2

The Causal Fractional Derivatives

2.1 Introduction

2.1.1 A Brief Historical Overview

The fractional calculus is a 300 years old mathematical discipline. In fact and
some time after the publication of the studies on Differential Calculus, where he

introduced the notation dny
dxn; Leibnitz received a letter from Bernoulli putting him a

question about the meaning of a non-integer derivative order. Also he received a
similar enquiry from L’Hôpital: What if n is �? Leibnitz’s replay was prophetic: It
will lead to a paradox, a paradox from which one day useful consequences will be

drawn, because there are no useless paradoxes. It was the beginning of a dis-
cussion about the theme that involved other mathematicians like Euler and Fourier.
Euler suggested in 1730 a generalisation of the rule used for computing the
derivative of the power function. He used it to obtain derivatives of order 1/2.
Nevertheless, we can say that the XVIII century was not proficuous in which
concerns the development of Fractional Calculus. Only in the early XIX, inter-
esting developments started being published. Laplace proposed an integral for-
mulation (1812), but it was Lacroix who used for the first time the designation
‘‘derivative of arbitrary order’’ (1819). Using the gamma function he could define
the fractional derivative of the power function, but did not go ahead. In 1822,
Fourier presented the following generalization:

dvf ðtÞ
dtv

¼
1
2p

Z

þ1

�1

f ðsÞ ds
Z

þ1

�1

uv cosðut � usþ vp=2Þdu

and stated that it was valid for any m; positive or negative. However, we can
reference the beginning of the fractional calculus in the works of Liouville
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and Abel. Abel solved the integral equation that appears in the solution of the
tautochrome problem1:

Z

t

a

uðsÞ

ðt � sÞl ds
¼ f ðtÞ; t[ a; 0\l\1

that represents an operation of fractional integration of order 1� l: However, it
seems he was completely unaware of the fractional derivative or integral concept.
Liouville did several attempts in 1832. In the first he took the exponentials as
starting point for introducing the fractional derivative. With them he generalised
the usual formula for the derivative of an exponential and applied it to the
derivative computation of functions represented by series with exponentials (later
called Dirichlet series). In another attempt he presented a formula for fractional
integration similar to the above

D�puðtÞ ¼
1

ð�1ÞpCðpÞ

Z

1

0

uðt þ sÞsp�1 ds; �1\t\þ1; ReðpÞ[ 0 ð2:1Þ

where C(p) is the gamma function. To this integral, frequently with the term (-1)p

omitted, we give the name of Liouville’s fractional integral. It is important to refer
that Liouville was the first to consider the solution of differential equations. In
other papers, Liouville went ahead with the development of ideas concerning this
theme, having presented a generalization of the notion of incremental ratio to
define a fractional derivative [1]. This idea was recovered, later, by Grünwald
(1867) and Letnikov (1868). It is interesting to refer that Liouville was the first to
note the difference between forward and backward derivatives (somehow different
from the concepts of left and right). In a paper published in 1892 (after his death)
Riemann reached to an expression similar to (2.1) for the fractional integral

D�auðtÞ ¼
1

CðaÞ

Z

t

0

uðsÞ

ðt � sÞ1�a
ds; t[ 0 ð2:2Þ

that, together with (2.2), became the more important basis for the fractional
integration. It suits to refer that both Liouville and Riemann dealt with the called
‘‘complementary’’ functions that would appear when treating the differentiation of
order a as an integration of order �a: Holmgren (1865/66) and Letnikov (1868/74)
discussed that problem when looking for the solution of differential equations,
putting in a correct statement the fractional differentiation as inverse operation of
the fractional integration. Besides, Holmgren gave a rigorous proof of Leibnitz’

1 This refers to the problem of determining the shape of the curve such that the time of descent of
a frictionless point mass sliding down the curve under the action of gravity is independent of the
starting point.

6 2 The Causal Fractional Derivatives



rule for the fractional derivative of the product of two functions that was published
before by Liouville, first, and Hargrave, later (1848). In the advent of XXth
century, Hadamard proposed a fractional differentiation method by differentiating
term by term the Taylor’s series associated with the function. Weyl (1917) defined
a fractional integration suitable to periodic functions, having used the integrals.

IaþðtÞ ¼
1

CðaÞ

Z

t

�1

uðsÞ

ðt � sÞ1�a
ds; �1\t\þ1; 0\a\1 ð2:3Þ

and

Ia�ðtÞ ¼
1

CðaÞ

Z

1

t

uðsÞ

ðs� tÞ1�a
ds; �1\t\þ1; 0\a\1 ð2:4Þ

particular cases of Liouville and Riemann ones but that have been, a basis for
fractional integration in R. An interesting contribution to the fractional differen-
tiation was given by Marchaud (1927) that presented a new formulation

Da
þf ðtÞ ¼ c �

Z

1

0

D
k
sf ðtÞ

s1þa
ds; a[ 0 ð2:5Þ

where D
k
sf ðtÞ is the finite difference of order k[ a; k = 1,2,3,… and c a nor-

malization constant. This definition coincides with2

Daf ðtÞ ¼
1

Cða� nÞ

dn

dtn

Z

t

�1

f ðsÞ

ðt � sÞa�nþ1 ds; n ¼ ab c þ 1 ð2:6Þ

for enough ‘‘good’’ functions. It is important to remark that the construction (2.5)
is advantageous relatively to (2.6): it can be applied to functions with ‘‘bad’’
behaviour at infinity, as being allowed to grow up as t ! þ1:

A different approach was proposed by Heaviside (1892): the so-called opera-
tional calculus that was not readily accepted by the mathematicians till the works
of Carson, Bromwich, and Doetsch that validated his procedure with help of the
Laplace transform (LT).

Modernly, the unified formulation of integration and differentiation—called
differintegration—based on Cauchy integral3

2 ¼ ab c means ‘‘integer part’’ of a:
3 c is U-shaped integration path.
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f ðaÞðzÞ ¼
Cðaþ 1Þ

2pj

Z

c

f ðsÞ

ðs� zÞ1þa
ds ð2:7Þ

gained great popularity. This approach can be referenced for the first time to Sonin
(1869), but only with Laurent (1884) obtained a coherent formulation. In the
eighties in the XX century this approach evolved with the works of several people
as Nishimoto (published a sequence of four books), Campos, Srivastava, Kalla,
Riesz, Osler, etc. The book of Samko et al. [1] was the culminate of several step
development. However, the main part of the book is devoted, not to the Cauchy
integral formulation, but to the so-called Riemann–Liouville derivative. This
formulation appeared first in a paper by Sonin (1869) and joins the Riemann and
Liouville integral formulations together with the integer order derivative. Essen-
tially it is a multi-step procedure that does an integer order derivative after a
fractional integration. Caputo in the sixties inverted the procedure: one starts by an
integer order derivative and afterwards does a fractional integration. We must refer
also a different form of fractional differentiation that was introduced by Riesz: the
so-called Riesz and Riesz-Feller potentials.

Since the beginning of the nineties of XXth century, the Fractional Calculus
attracted the attention of an increasing number of mathematicians, physicians, and
engineers that have been supporting its development and originating several new
formulations and mainly using it to explain some natural and engineering phe-
nomena and also using it to develop new engineering applications.

2.1.2 Current Formulations

In Tables 2.1 and 2.2, the most known definitions of Fractional Integrals and
Derivatives are presented.

As seen, there are clear differences among some kinds of definitions. On the
other hand, there are definitions that impose causality and the relation

LT Daf ðtÞ½ � ¼ saFðsÞ; a 2 R ð2:8Þ

is not always valid. However, themajor inconvenient ofmost definitions is in the fact
of incorporating properties of the signal. Although we can talk about derivatives or
integrals of functions defined on a given sub-interval in R, but we do not find correct
to incorporate that property in the definition. Thismeans that only the definitionswith
R as domain may be valid definitions. This assumption brings an important conse-
quence: the integral and derivative are inverse operations and commute:

DafDbg ¼ Daþb ¼ DbfDag; a; b 2 R

Later we will return to this subject.
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2.1.3 A Signal Processing Point of View

In recent years fractional calculus has been rediscovered by scientists and engi-
neers and applied in an increasing number of fields, namely in the areas of elec-
tromagnetism, control engineering, and signal processing. The increase in the
number of physical and engineering processes that are best described by fractional
differential equations has motivated out its study. This led to an enrichment of
Fractional Calculus with new approaches that however brought contributions to a
somehow chaotic state of the art. As seen, there are several definitions that lead to
different results, making difficult the establishment of a systematic theory of

Table 2.1 Fractional integral definitions ða[ 0Þ

Designation Definition

Liouville integral D�auðtÞ ¼ 1
ð�1ÞaCðaÞ

Rþ1
0 uðt þ sÞsa�1 ds

Riemann integral D�auðtÞ ¼ 1
CðaÞ

R t

0 uðsÞ � ðt � sÞa�1 ds; t[ 0

Hadamard integral D�aðtÞ ¼ ta

CðaÞ

R 1
0 uðtsÞ � ð1� sÞa�1 ds; t[ 0

Left side Riemann–Liouville integral D�auðtÞ ¼ 1
CðaÞ

R t

a
uðsÞ � ðt � sÞa�1 ds; t[ a

Right side Riemann–Liouville integral D�auðtÞ ¼ 1
CðaÞ

R b

t
uðsÞ � ðs� tÞa�1 ds; t\b

Left side Weyl integral D�auðtÞ ¼ 1
CðaÞ

R t

�1 uðsÞ � ðt � sÞa�1 ds

Right side Weyl integral D�auðtÞ ¼ 1
CðaÞ

Rþ1
t

uðsÞ � ðs� tÞa�1 ds

Table 2.2 Fractional derivative definitions (a[ 0)

Designation Definition

Left side Riemann–Liouville derivative DauðtÞ ¼ 1
Cðn�aÞ

dn
dtn

R t

a
uðsÞ � ðt � sÞa�n�1 ds

Right side Riemann–Liouville derivative DauðtÞ ¼ ð�1Þn

Cðn�aÞ
dn

dtn
R b

t
uðsÞ � ðs� tÞa�n�1 ds

Left side Caputo derivative DauðtÞ ¼ 1
Cð�vÞ

R t

0 u
ðnÞðsÞ � ðt � sÞv�1 ds

h i

; t[ 0

Right side Caputo derivative DauðtÞ ¼ 1
Cð�vÞ

Rþ1
t

uðnÞðsÞ � ðs� tÞv�1 ds
h i

Marchaud derivative Da
þf ðtÞ ¼ c �

R1
0

D
k
s f ðtÞ
s1þa ds; a[ 0

Generalised function DauðtÞ ¼ 1
Cð�aÞ

R t

�1 uðsÞ � ðt � sÞ�a�1 ds

Left Grünwald–Letnikov
Da

�f ðtÞ ¼ limh!0þ

P1

k¼0
ð�1Þkðak Þf ðt�khÞ

ha

Right Grünwald–Letnikov
Da

þf ðtÞ ¼ limh!0þ

P1

k¼0
ð�1Þkðak Þf ðtþkhÞ

ha
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fractional linear systems in agreement with the current practice. Although from a
purely mathematical point of view it is legitimate to accept and even use one or all,
from the point of view of applications, the situation is different. We should accept
only the definitions that might lead to a fractional systems theory coherent with the
usual practice and accepted notions and concepts such as the impulse response and
transfer function. The use of the Grünwald–Letnikov forward and backward
derivatives lead to a correct generalization of the current linear systems theory.
Moreover this choice is motivated by other reasons:

• It does not need superfluous derivative computations.
• It does not insert unwanted initial conditions.
• It is more flexible.
• It allows sequential computations.
• It leads to the other definitions.

On the other hand, it does not assume any bound on the domain of the signals to
be used. In general we will assume it is the real line. If we want to use any bounded
interval we will use the Heaviside unit step function. This has as consequence that
we will use the bilateral (two-sided) Laplace transform. We will not use the one-
sided LT, for several reasons:

• It forces us to use only causal signals.
• Some of its properties lose symmetry, e.g. the translation and the derivation/
integration properties.

• It does not treat easily the case of impulses located at t = 0 [2].
• In the fractional case, it imposes on us the same set of initial conditions as the
Riemann–Liouville case that can be a constraint.

2.1.4 Overview

This chapter has three main parts corresponding to the fractional derivatives
definitions, their properties and generalisations. We present a general formula and
the forward and backward derivatives as special cases valid for real functions. We
treat the case of functions with Laplace transform and obtain integral formulae
named as Liouville differintegrations, since they were proposed first by Liouville.
These are suitable for fractional linear systems studies, since they allow a gen-
eralisation of known concepts without meaningful changes. We will show that
these derivatives impose causality: one is causal and the other anti-causal. For the
general derivative we will prove its semi-group properties and deduce some other
interesting features. We will show that it is compatible with classic derivative that
appears here as a special case. We will compute the derivatives of some useful
functions. In particular, we obtain derivatives of exponentials, causal exponentials,
causal powers and logarithms.
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2.1.5 Cautions

We deal with a multivalued expression za: As is well known, to define a function
we have to fix a branch cut line and choose a branch (Riemann surface). It is a
common procedure to choose the negative real half-axis as branch cut line. In what
follows we will assume that we adopt the principal branch and assume that the
obtained function is continuous above the branch cut line. With this, we will write
ð�1Þa ¼ ejap:

In the following and otherwise stated, we will assume to be in the context of the
generalised functions (distributions). We always assume that they are either of
exponential order or tempered distributions.

Unless stated, our domain of work will be the entireR, notR+, or, when statedC.
As referred before, ‘‘our’’ Laplace transform (LT) will be the two-sided Laplace

transform.

2.2 From the Classic Derivative to the Fractional

2.2.1 On the Grünwald–Letnikov Derivative

In the prehistory of Fractional Calculus, Liouville (1832) was the first to look for a
definition of fractional derivative through the generalization of the incremental
ratio used for integer order derivatives to the fractional case [1, 3]. However, he
did not go on with this idea. Greer (1859) treated the order � case. Grünwald
(1867) and mainly Letnikov (1868,1872) studied the fractional derivative obtained
by the referred generalization and studied its properties. Here we will present a
more general vision of the incremental ratio derivative and deduce its properties.
The most important is the semi-group property that created great difficulties in the
past. In fact, this seems to have been considered first by Peacock under the
‘‘principle of the permanence of equivalent forms’’. However, he did not convince
anybody. The same happened to Kelland (1846) and later to Heaviside in the
nineties in the XIX century. However, Heaviside got interesting results with his
operational calculus that contributed to be accepted in several scientific domains.
But in Fractional Calculus, the group property has only been accepted in the
integral case. We will show that it is valid in the general case and maintained in the
generalized functions case. The main point is in the use of the same formula for
both derivative case (positive orders) and integral case (negative orders). In this
case, we do not have to care neither about any integration constant, nor on initial
conditions.
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2.2.2 Difference Definitions

Let f(z) be a complex variable function and introduce Dd and Dr as finite ‘‘direct’’
and ‘‘reverse’’ differences defined by:

Ddf zð Þ ¼ f zð Þ � f z� hð Þ ð2:9Þ

and

Drf zð Þ ¼ f zþ hð Þ � f zð Þ ð2:10Þ

with h 2 C and, for reasons that will be apparent later, we assume that Re(h)[ 0
or Re(h) = 0 with Im(h)[ 0. The repeated use of the above definitions lead to

D
N
d f ðzÞ ¼

X

N

k¼0

ð�1Þk N
k

� �

f ðz� khÞ ð2:11Þ

and

D
N
r f ðzÞ ¼ ð�1ÞN

X

N

k¼0

ð�1ÞkðNk Þf ðzþ khÞ ð2:12Þ

where
N

k

� �

are the binomial coefficients. These definitions are readily extended

to the fractional order case [4]:

D
a
d f ðzÞ ¼

X

1

k¼0

ð�1ÞkðakÞf ðz� khÞ ð2:13Þ

and

D
a
r f ðzÞ ¼ ð�1Þa

X

1

k¼0

ð�1ÞkðakÞf ðzþ khÞ ð2:14Þ

where we assume that a 2 R: This formulation remains valid in the negative
integer case. Let a ¼ �N (N a positive integer). As it is well known from the
Z Transform theory, the following relation holds, if k� 0

ZT ½ðnþ 1ÞkuðnÞ� ¼
k!

ð1� Z�1Þkþ1 for jqj[ 1 ð2:15Þ

where u(n) is the discrete time unit step:

uðnÞ ¼
1 n� 0
0 n\0

�
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Introducing the Pochhammer symbol,

að Þk¼ a aþ 1ð Þ aþ 2ð Þ � � � aþ k � 1ð Þ

and putting k = N - 1, we obtain easily:

ð1� q�1Þ�N ¼
X

1

n¼0

ðnþ 1ÞN�1

ðN � 1Þ!
q�n for jqj[ 1 ð2:16Þ

Interpreting q-1 as a delay as it is commonly done in Digital Signal Processing,
(2.16) leads to

D
�N
d f ðzÞ ¼

X

1

n¼0

ðnþ 1ÞN�1

ðN � 1Þ!
f ðz� nhÞ ð2:17Þ

For the reverse case, we have:

D
�N
r f ðzÞ ¼ ðz� 1Þ�N

f ðzÞ ¼ ð�1ÞN
X

1

n¼0

ðnþ 1ÞN�1

ðN � 1Þ!
f ðzþ nhÞ ð2:18Þ

As

ðnþ 1ÞN�1 ¼
ðnþ N � 1Þ!

n!
¼

ðN � 1Þ!ðNÞn
n!

ð2:19Þ

and

ð�aÞn
n!

¼ ð�1Þn a
n

� �

ð2:20Þ

we have:

ðnþ 1ÞN�1 ¼ ðN � 1Þ!ð�1Þn �N
n

� �

ð2:21Þ

So, we can write:

D
�N
d f ðzÞ ¼

X

1

n¼0

ð�1Þnð�N
�nÞf ðz� nhÞ ð2:22Þ

For the anti-causal case, we have:

D
�N
r f ðzÞ ¼ ð�1ÞN

X

1

n¼0

ð�1Þn �N
n

� �

f ðzþ nhÞ ð2:23Þ

As it can be seen, these expressions are the ones we obtain by putting a ¼ �N into
(2.13) and (2.14) that emerge here as representations for the differences of any order.
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2.2.3 Integer Order Derivatives

The normal way of introducing the derivative of a continuous function is through
the limits of the incremental ratio:

f
ð1Þ
d ðzÞ ¼ lim

h!0

f ðzÞ � f ðz� hÞ

h
ð2:24Þ

and

f ð1Þr ðzÞ ¼ lim
h!0

f ðzþ hÞ � f ðzÞ

h
ð2:25Þ

These incremental ratios are very important in continuous to discrete conver-
sion of systems defined by differential equations (linear or nonlinear). It is also
well known that the first is better than the second because of stability matters. The
use of the LT into the above definitions allows us to obtain the transfer functions of
the differentiators that are equal both in analytical expression and domain (the
whole complex plane):

s ¼ lim
h!0

ð1� e�shÞ

h
¼ lim

h!0

ðesh � 1Þ
h

ð2:26Þ

This is the reason why the above derivatives give the same result, whenever
they exist and f(z) is a continuous function. We must stress also that h 2 R: Later
we will see that in the general case h is a value on a half straight line in the
complex plane.

In most books on Mathematical Analysis we are told that to compute the high
order derivatives we must proceed sequentially by repeating the application of
formulae (2.24) or (2.25). This means that, if we want to compute the fourth order
derivative, we have to compute f 0(z), f 00(z), and f (3)(z). However, we have an
alternative as we will see next. Assume that we want to compute the second order
derivative from the first. We have

f
ð2Þ
d ðzÞ ¼ lim

h!0

f ð1ÞðzÞ � f ð1Þðz� hÞ

h
¼ lim

h!0

limh!0
f ðzÞ�f ðz�hÞ

h
� limh!0

f ðz�hÞ�f ðz�2hÞ
h

h

¼ lim
h!0

limh!0
f ðzÞ�2f ðz�hÞþf ðz�2hÞ

h

h

¼ limh!0
f ðzÞ � 2f ðz� hÞ þ f ðz� 2hÞ

h2

ð2:27Þ

As seen, we obtained an expression that allows us to obtain the second order
derivative directly from the function. It is not a difficult task to repeat the pro-
cedure for successively increasing orders to obtain a general expression:
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f
ðnÞ
d ðzÞ ¼ lim

h!0

Pn
k¼0 ð�1ÞðnkÞf ðz� khÞ

hn
ð2:28Þ

that allows us to obtain the nth order derivative directly without ‘‘passing’’ by the
intermediate derivatives. To see that this is correct, assume that we want to
compute the (n ? 1)th order derivative of f(t) from the first order derivative of
(2.28). We have:

f
ðnþ1Þ
d ðzÞ ¼ lim

h!0

limh!0

Pn

k¼0
ð�1ÞkðnkÞf ðz�khÞ

hn
� limh!0

Pn

k¼0
ð�1ÞkðnkÞf ðz�kh�hÞ

hn

h

¼ lim
h!0

lim
h!0

Pn

k¼0
ð�1ÞkðnkÞf ðz�khÞ�

Pn

k¼0
ð�1ÞkðnkÞf ðz�kh�hÞ

hn

h

¼

Pn
k¼0 ð�1ÞkðnkÞf ðz� khÞ �

Pn
k¼0 ð�1ÞkðnkÞf ðz� kh� hÞ

hnþ1

¼

Pn
k¼0 ð�1ÞkðnkÞf ðz� khÞ þ

Pnþ1
k¼1 ð�1Þkðnk�1Þf ðz� khÞ

hnþ1

¼

Pnþ1
k¼0 ð�1Þk ðnkÞ

�

þ ðnk�1Þ
�

f ðz� khÞ

hnþ1

ð2:29Þ

As, (-1)! = ? and 0! = 1, we conclude easily that

ðnkÞ þ ð n
k�1Þ ¼ ðnþ1

k Þ

which, together with (2.29), confirms the validity of relation (2.28). Proceeding
similarly with (2.25) we obtain

f ðnÞr ðzÞ ¼ ð�1Þn lim
h!0

Pn
k¼0 ð�1ÞkðnkÞf ðzþ khÞ

hn
ð2:30Þ

Expressions (2.28) and (2.30) allow us to do a direct computation of the nth
order derivative of a given function. Considering (2.11) and (2.12) we see that the
above derivatives are limits of incremental ratio. As before it is a simple task to
use the LT to obtain the transfer function of the differentiator

H sð Þ ¼ sn ð2:31Þ

valid for s 2 C: From this result we conclude that the differentiator is a linear
system that does not impose causality. It is what we may nominate acausal system.
This is a very important subject that will be invalid when generalising the
derivative concept.
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2.3 Definition of Fractional Derivative

To generalize the known notion of fractional derivatives we start from the above
derivatives to introduce the general formulation of the incremental ratio valid for
any order, real or complex, obtained from the fractional order differences (2.13)
and (2.14).

Definition 2.1 We define fractional derivative of f(z) by the limit of the fractional
incremental ratio

D
a
h f ðzÞ ¼ e�jha lim

jhj!0

Pn
k¼0 ð�1ÞkðakÞf ðz� khÞ

jhja
ð2:32Þ

where h ¼ hj jejh is a complex number, with h 2 ð�p; p�: This derivative is a
general incremental ratio based derivative that expands to the whole complex
plane the classic derivatives and the Grünwald–Letnikov fractional derivatives.
We will retain this name and refer as GL derivative in the following.

To understand and give an interpretation to the above formula, assume that z is
a time and that h is real, h ¼ 0 or h ¼ p: If h ¼ 0; only the present and past values
are being used, while, if h ¼ p; only the present and future values are used. This
means that if we look at (2.32) as a linear system, the first case is causal, while the
second is anti-causal4 [5, 6].

In general, if h ¼ 0; we call (2.32) the forward Grünwald–Letnikov5 derivative.

D
a
f f ðzÞ ¼ lim

h!0þ

P1
k¼0 ð�1ÞkðakÞf ðz� khÞ

ha
ð2:33Þ

If h ¼ p; we put h ¼ �jhj to obtain the backward Grünwald–Letnikov
derivative.

D
a
b f ðzÞ ¼ lim

h!0þ
e�jpa

P1
k¼0 ð�1ÞkðakÞf ðzþ khÞ

ha
ð2:34Þ

The exponential factor in this formula makes it different from the so-called right
GL derivative found in current literature.

4 We will return to this matter later.
5 The terms forward and backward are used here in agreement to the way the time flows, from
past to future or the reverse.
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2.4 Existence

It is not a simple task to formulate the weakest conditions that ensure the existence
of the fractional derivatives (2.32), (2.33) and (2.34), although we can give some
necessary conditions for their existence. To study the existence conditions for the
fractional derivatives we must care about the behaviour of the function along the
half straight-line z ± nh with n 2 Zþ: If the function is zero for Re(z)\ a 2 R

(resp. Re(z)[ a) the forward (backward) derivative exists at every finite point of
f(z). In the general case, we must have in mind the behavior of the binomial
coefficients. They verify

jðakÞj �
A

kaþ1
ð2:35Þ

meaning that f ðzÞ: A
kaþ1 must decrease, at least as A

kjajþ1 when k goes to infinite.
For instance, we are going to consider the forward case. If a[ 0, it is enough to

ensure that f(z) is bounded in the left half plane; but if a\ 0, f(z) must decrease to
zero to obtain a convergent series. This suggests that the behaviour for Re(z)\ 0
or Re(z)[ 0 should be adopted for defining right and left functions. We say that
f(z) is a right [left] function if f ð�1Þ ¼ 0 ½f ðþ1Þ ¼ 0�: In particular, they should
be used for the functions such that f(z) = 0 for Re(z)\ 0 and f(z) = 0 for
Re(z)[ 0, respectively.6 This is very interesting, since we conclude that the
existence of the fractional derivative depends only on what happens in one half
complex plane, left or right. Consider f ðzÞ ¼ zb; with b 2 R with a suitable branch
cut line. If b[ a; we conclude immediately that Da½zb� defined for every z 2 C

does not exist, unless a is a positive integer, because the summation in (2.32) is
divergent.

2.5 Properties

We are going to present the main properties of the above presented derivative.
Linearity The linearity property of the fractional derivative is evident from the

above formulae. In fact, we have

D
a
h f ðzÞ þ gðzÞ½ � ¼ D

a
h f ðzÞ þ D

a
h gðzÞ ð2:36Þ

Causality The causality property was already referred above and can also be
obtained easily. We must be ware that it only makes sense, if we are using the
forward or backward derivatives and that t = z [ R. Assume that f(t) = 0, for

6 By breach of language we call them causal and anti-causal functions borrowing the system
terminology.
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t\ 0. We conclude immediately that D a
hf ðtÞ ¼ 0 for t\ 0. For the anti-causal

case, the situation is similar.
Scale change Let f(z) = g(az), where a is a constant. Let h ¼ hj jejh and a ¼

aj jeju: From (2.32), we have:

Da
hgðazÞ ¼ lim

h!0

P1
k¼0 ð�1ÞkðakÞgðaz� kahÞ

ha

¼ aa lim
h!0

P1
k¼0 ð�1ÞkðakÞgðaz� kahÞ

ðahÞa

¼ aaDa
hþugðsÞjs¼az

ð2:37Þ

Time reversal If z is a time and f(z) = g(-z), we obtain from the property we
just deduced that:

Da
hgð�zÞ ¼ ð�1Þa lim

h!0

P1
k¼0 ð�1ÞkðakÞgð�zþ kahÞ

ð�hÞa

¼ ð�1ÞaDa
hgðsÞjs¼�z ð2:38Þ

in agreement with (2.33) and (2.34). This means that the time reversal converts the
forward derivative into the backward and vice versa.

Shift invariance The derivative operator is shift invariant:

Da
hf ðz� aÞ ¼ Da

hgðsÞjs¼z�a ð2:39Þ

as it can be easily verified.
Derivative of a product We are going to compute the derivative of the product

of two functions—f ðtÞ ¼ uðtÞ � wðtÞ—assumed to be defined for t 2 R; by sim-
plicity, although the result we will obtain is valid for t 2 C; excepting over an
eventual branch cut line. Assume that one of them is analytic in a given region.
From (2.32) and working with increments, we can write

D
af ðzÞ ¼

P1
k¼0 ð�1ÞkðakÞuðz� khÞwðz� khÞ

ha
ð2:40Þ

But, as

D
N f ðzÞ ¼

X

N

k¼0

ð�1ÞkðNk Þf ðz� khÞ ð2:41Þ

we can obtain

f ðz� khÞ ¼
X

k

i¼0

ð�1Þiðki ÞD
if ðzÞ ð2:42Þ

that inserted in (2.40) leads to
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D
af ðzÞ ¼

P1
k¼0 ð�1ÞkðakÞuðz� khÞ

Pk
i¼0 ð�1Þiðki ÞD

iwðzÞ

ha
ð2:43Þ

that can be transformed into:

D
af ðzÞ ¼

P1
i¼0 ð�1ÞiDiwðzÞ

P1
k¼i ð�1Þkðki Þð

a
kÞuðz� khÞ

ha
ð2:44Þ

But

ð�1Þkþiðkþi
i ÞðakþiÞ ¼

ð�aÞi
i!

ð�aþ iÞk
k!

¼
ð�aÞi
i!

ð�1Þkða�i
k Þ

that substituted into the above relation gives

D
af ðzÞ ¼

P1
i¼0 ð

a
i ÞD

iwðzÞ
P1

k¼0 ð�1Þkða�i
k Þuðz� kh� ihÞ

ha
ð2:45Þ

and

D
af ðzÞ ¼

X

1

i¼0

ðai ÞD
iwðzÞ

hi

P1
k¼0 ð�1Þkða�i

k Þuðz� kh� ihÞ

ha�i
ð2:46Þ

Computing the limit as h ! 0; we obtain the derivative of the product:

Da
h½uðtÞwðtÞ� ¼

X

1

n¼0

ðanÞu
ðnÞðtÞwða�nÞðtÞ ð2:47Þ

that is the generalized Leibniz rule. This formula was obtained first by Liouville
[7]. We must realize that the above formula is commutative if both functions are
analytic. If only one of them is analytic, it is not commutative. We must remark
that the noncommutativity of this rule seems natural, since we only require ana-
lyticity to one function. It is a situation very similar to the one we find when
defining the product of generalized functions and its derivatives.

The deduction of (2.47) we presented here differs from others presented in
literature [1]. As it is clear when a ¼ N 2 Zþ we obtain the classic Leibniz rule.
When a = -1, we obtain a very interesting formula for computing the primitive of
the product of two functions, generalizing the partial primitivation:

D�1½uðtÞwðtÞ� ¼
X

1

n¼0

ð�1ÞnuðnÞðtÞwð�n�1ÞðtÞ ð2:48Þ

This formula can be useful in computing the LT of the Fourier transform (FT).
We only have to choose uðtÞ or wðtÞ equal to e-st in the LT case and equal to e�jxt

in the FT case.
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To exemplify the use of this formula let g tð Þ ¼ tn

n!
� eat: Put u tð Þ ¼ tn

n!
and w tð Þ ¼

eat: As u kð Þ tð Þ ¼ tn�k

ðn�kÞ!; while k B n and w �k�1ð Þ tð Þ ¼ a�k�1eat: Then:

D�1gðtÞ ¼ eat
X

n

k¼0

ð�1Þk
tn�k

ðn� kÞ!
a�k�1

From this formula, we can compute the LT of
tn

n!
u tð Þ: If we put u tð Þ ¼ f tð Þ and

w tð Þ ¼ 1; t 2 R; we have:

D�1½f ðtÞ� ¼
X

1

n¼0

ð�1Þnf ðnÞðtÞ
tnþ1

ðnþ 1Þ!
ð2:49Þ

similar to the McLaurin formula.
Integration by parts The so-called integration by parts relates both causal and

anti-causal derivatives and can be stated as:

Z

þ1

�1

gðtÞDa
f f ðtÞ dt ¼ ð�1Þa

Z

þ1

�1

f ðtÞDa
bgðtÞ dt ð2:50Þ

where we assume that both integrals exist. To obtain this formula, we only have to
use (2.33) inside the integral and perform a variable change

Z

þ1

�1

lim
h!0þ

P1
k¼0 ð�1ÞkðakÞf ðt � khÞgðtÞ

ha
dt

¼

Z

þ1

�1

lim
h!0þ

P1
k¼0 ð�1ÞkðakÞgðt þ khÞf ðtÞ

ha
dt

leading immediately to (2.50) if we use (2.32). This result is slightly different from
the one find in current literature due to our definition of backward derivative.

2.6 Group Structure of the Fractional Derivative

2.6.1 Additivity and Commutativity of the Orders

Additivity We are going to apply (2.32) twice for two orders. We have

Da
h½D

b
h f ðtÞ� ¼ D

b
h ½D

a
hf ðtÞ� ¼ D

aþb
h f ðtÞ ð2:51Þ

To prove this statement we start from (2.32) and write:

20 2 The Causal Fractional Derivatives



Da
h D

b
h f ðtÞ

h i

¼ lim
h!0

P1
k¼0 ð

a
kÞð�1Þk

P1
n¼0 ð

b
nÞð�1Þnf ½t � ðk þ nÞh�

h i

hahb

¼ lim
h!0

P1
n¼0 ð

b
nÞð�1Þn

P1
k¼0 ð

a
kÞð�1Þkf ½t � ðk þ nÞh�

h i

hahb

for any a;b 2 R; or even 2 C: With a change in the summation, we obtain:

Da
h Da

hf ðtÞ
� �

¼ lim
h!0

P1
m¼0

P1
n¼0 ð

a
m�nÞð

b
nÞ

h i

ð�1Þmf ½t � mh�

haþb

As Samko et al. [1]

X

m

0

ð b
m�nÞð

b
nÞ ¼ ðaþb

m Þ; ð2:52Þ

Da
h D

b
h f ðtÞ

h i

¼ lim
h!0

P1
m¼0 ð

aþb
m Þð�1Þmf ½t � mh�

haþb
¼ Daþbf ðtÞ

Associativity This property comes easily from the above results. In fact, it is
easy to show that

D
c
h D

aþb
h f ðtÞ

h i

¼ D
cþaþb
h f ðtÞ ¼ D

aþbþc
h f ðtÞ ¼ Da

h D
bþc
h f ðtÞ

h i

ð2:53Þ

Neutral element

If we put b ¼ �a in (2.51) we obtain:

Da
h D�a

h f ðtÞ
� �

¼ D0
h f ðtÞ ¼ f ðtÞ ð2:54Þ

or using it again

D�a
h Da

hf ðtÞ
� �

¼ D0
h f ðtÞ ¼ f ðtÞ ð2:55Þ

This is very important because it states the existence of inverse.
Inverse element From the last result we conclude that there is always an inverse

element: for every a order derivative, there is always a �a order derivative. This
seems to be contradictory with our knowledge from the classic calculus where the
Nth order derivative has N primitives. To understand the situation we must refer
that the inverse is given by (2.32) and it does not give any primitivation constant.
This forces us to be consistent and careful with the used language. So, when a is
positive we will speak of derivative. When a is negative, we will use the term anti-
derivative (not primitive or integral). This clarifies the situation and solves the
problem created by Liouville and Riemann when they introduced the compli-
mentary polynomials and shows how to obtain the ‘‘proper primitives’’ of Krempl
[8]. The problem can be well understood if we realize that currently we do not
have a direct way of computing integrals: we reverse the rules of differentiation.
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This fact leads us to include the primitivation constants that are inserted artifi-
cially. In fact, having autonomous rules for primitivation that do not pass by the
rules of differentiation the primitivation constant would not appear. It is what
happen when we use the GL derivative (2.32) with negative orders. Also, when
performing a numerical computation we do not have to care about such constant.
Besides, we must refer that this does not have any relation with the initial con-
ditions that appear in the solution of differential equations. Later we will return to
this problem.

2.7 Simple Examples

2.7.1 The Exponential

Let us apply the above definitions to the function f(z) = esz. The convergence of
(2.33) is dependent of s and of h. Let h[ 0, the series in (2.33) becomes

esz
X

1

k¼0

ð�1Þk
a

k

� �

e�ksh

As it is well known, the binomial series

X

1

k¼0

ð�1Þk
a

k

� �

e�ksh

is convergent to the main branch of

gðsÞ ¼ ð1� e�shÞa

provided that |e-sh|\ 1, that is if Re(s)[ 0. This means that the branch cut line of
g(s) must be in the left hand half complex plane. Then

Da
f f ðzÞ ¼ lim

h!0þ

ð1� e�shÞ

ha
esz ¼ lim

h!0þ

1� e�sh

h

� �a

esz ¼ jsjaejhaesz ð2:56Þ

iff h 2 ð�p=2; p=2Þ which corresponds to be working with the principal branch of
the power function, (�)a, and assuming a branch cut line in the left hand complex
half plane.

Now, consider the series in (2.34) with f(z) = esz. Proceeding as above, we
obtain another binomial series:

X

1

k¼0

ð�1Þk
a

k

� �

eksh

that is convergent to the main branch of
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f ðsÞ ¼ ð1� eshÞa

provided that Re(s)\ 0. This means that the branch cut line of f(s) must be in the
left hand half complex plane. We will assume to work in the principal branch and
that f(s) is continuous from above. Here we must remark that in (�)a we are again in
the principal branch but we are assuming a branch cut line in the right hand
complex half plane.

We obtain directly:

Da
f f ðzÞ ¼ jsjaejhaesz

with |h|\p/2, and

Da
bf ðzÞ ¼ jsjaejhaesz

valid iff h 2 ðp=2; 3p=2Þ:
We must be careful in using the above results. In fact, in a first glance, we could

be led to use it for computing the derivatives of functions like sin(z), cos(z),
sinh(z) and cosh(z). But if we have in mind our reasoning we can conclude
immediately that those functions do not have finite derivatives if z [ C. In fact
they use simultaneously the exponentials ez and e-z whose derivatives cannot exist
simultaneously, as we just saw.

2.7.2 The Constant Function

We start by computing the fractional derivative of the constant function. Let then
f(t) = 1 for every t [ R and a [ R\Z. From (2.32) we have:

Da
hf ðtÞ ¼ lim

h!0

P1
k¼0 ð�1Þk

a

k

� �

ha
¼

0 a[ 0
1 a\0

�

ð2:57Þ

To prove it, we are going to consider the partial sum of the series

X

n

k¼0

ð�1Þk
a

k

� �

¼ ð�1Þn
a� 1
n

� �

¼
1

Cð1� aÞ

Cð�aþ nþ 1Þ
Cðnþ 1Þ

As n ! 1 the quotient of two gamma functions has a known limiting
behaviour7 [1] that allows us to show that

1
Cð1� aÞ

Cð�aþ nþ 1Þ
Cðnþ 1Þ

!
1

Cð1� aÞ

1
na

7 See Chap. 3.
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leading to the limits shown in (2.57). So, the a order fractional derivative of 1 is the
null function. If a\ 0, the limit is infinite. So, there is no fractional ‘‘primitive’’ of a
constant. However, this does not happen if a is a negative integer. To exemplify,
consider the case a = -1. From (2.32), we have:

D�11 ¼ lim
L!1

X

L

n¼0

t=L ð2:58Þ

where L is the integer part of t/h. We have

D�11 ¼ t ð2:59Þ

It should be stressed that the ‘‘primitivation constant’’ does not appear as
expected. This means that when working in the context defined by (2.32) two
functions with the same fractional derivative are equal.

The example we just treated allows us to obtain an interesting result:
There are no fractional derivatives of the power function defined in R (or C).
In fact, suppose that there is a fractional derivative of tn, t [ R, n [ N+. We

must have:

Datþ ¼ n!DaD�n1 ¼ D�nDa1

This means that we must be careful when trying to generalise the Taylor series.
We conclude also that we cannot compute the fractional derivative of a function by
using directly its Taylor expansion. The same result could be obtained directly
from (2.32). It is enough to remark that a power function tends to infinite when the
argument tends to -?. The Taylor expansions can be used provided that we
consider the causal (right) or anti-causal (left) parts only.

2.7.3 The LT of the Fractional Derivative

The above results can be used to generalize a well known property of the Laplace
transform. If we return back to Eq. 2.33 and apply the bilateral Laplace transform

FðsÞ ¼

Z

þ1

�1

f ðtÞe�st ds ð2:60Þ

to both sides and use the result in (2.56). We conclude that:

LT Da
f f ðtÞ

h i

¼ saFðsÞ for ReðsÞ[ 0 ð2:61Þ

where in sa we assume the principal branch and a cut line in the left half plane.
With Eq. 2.34 we obtain:
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LT Da
bf ðtÞ

� �

¼ saFðsÞ for ReðsÞ\0 ð2:62Þ

where now the branch cut line is in the right half plane. These results have a
system interpretation:

There are two systems (differintegrators) with the same expression for the

transfer function H(s) = sa, but with different regions of convergence: one is

causal; the other is anti-causal.
This must be contrasted with the classic integer order case as we referred

before. We will not compute the impulse responses here. It will be done later.

2.7.4 The Complex Sinusoid

Now, we are going to see if the above results can be extended to functions with
Fourier Transform. We note that the multivalued expression H(s) = sa becomes an
analytic function (as soon as we fix a branch cut line) in the whole complex plane
excepting the branch cut line. The computation of the derivative of functions with
Fourier Transform is dependent on the way used to define (jx)a. Assume that
H(s) is a transfer function with region of convergence defined by Re(s)[ 0. This
means that we have to choose a branchcut line in the left half complex plane. To
obtain the correct definition of (jx)a we have to perform the limit as s ? jx from
the right. We have

ðjxÞa ¼ jxja �
ejap=2 if x[ 0
e�jap=2 if x\0

�

ð2:63Þ

If the region of convergence is given by Re(s)\ 0, we have to choose a
branchcut line in the right half complex plane. If we perform the limit as s ? jx

from the left we conclude that

ðjxÞa ¼ jxja �
ejap=2 if x[ 0
ej3ap=2 if x\0

�

ð2:64Þ

We are going to see which consequences impose Eqs. 2.63 and 2.64. They
mean that the forward and backward derivatives of a cisoid are given by

Da
f e

jxt ¼ ejxtjxja � ejap=2 if x[ 0
e�jap=2 if x\0

�

ð2:65Þ

and

Da
be

jxt ¼ ejxtjxja � ejap=2 if x[ 0
ej3ap=2 if x\0

�

ð2:66Þ

As the cisoid can be considered as having symmetric behavior in the sense that
the segment for t\ 0 is indistinguishable from the corresponding for t[ 0, we
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were expecting that the forward and backward derivatives were equal. This does
not happen and the result (2.66) is somehow strange. To see the consequences of
this result assume that we want to compute the derivative of a function defined by:

f ðtÞ ¼
1
2p

Z

þ1

�1

FðjxÞejxt dx ð2:67Þ

we obtain two different inverse transforms, meaning that we have different

transforms with the same domain and only one of them corresponds to the gen-
eralization of a classic property of the Fourier transform: the one obtained with the
forward derivative. To reinforce this question let us try to compute the derivative
of a real sinusoid: x(t) = cos(x0t). From (2.65) we obtain:

Da
f cosðx0tÞ ¼ jx0j

a
cosðx0t þ ap=2Þ ð2:68Þ

while, from (2.66) we have:

Da
b cosðx0tÞ ¼ jx0j

a½ejap=2 þ ej3ap=2�=2 ð2:69Þ

that is in general a complex function.
These results force us to conclude that:
To compute the fractional derivative of a sinusoid we have to use only the

forward derivative.
The Fourier transform of the fractional derivative is computed from the Laplace

transform of the forward derivative by computing the limit as s goes to jx:
We may put the question of what happens with the frequency response of a

given fractional linear system. From the conclusions we have just presented, we
can say that, having a causal fractional linear system with transfer function equal
to H(s), the frequency response must be computed from:

HðjxÞ ¼ lim
s!jx

HðsÞ ð2:70Þ

This is in agreement with other known results. For example, if the input to the
system is white noise, with unit power, the output spectrum is given by:

SðxÞ ¼ lim
s!jx

HðsÞHð�sÞ ð2:71Þ

2.8 Starting from the Transfer Function

To obtain the Grünwald–Letnikov fractional derivative we used a heuristic
approach by generalising the integer order derivative defined through the incre-
mental ratio. Here we will show that we can obtain it from the Laplace transform.
To do it, it is enough to start from the transfer function H(s) = sa and express it as
a limit as shown in Fig. 2.1
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It is not hard to see that sa can be considered as the limit when h [ R+ tends to
zero in the left hand sides of the following expressions:

ð1� e�shÞa

ha
¼

1
ha

X

1

k¼0

ð�1Þk
a

k

� �

e�shk ReðsÞ[ 0 ð2:72Þ

and

ðesh � 1Þa

ha
¼

ð�1Þa

ha

X

1

k¼0

ð�1Þk
a

k

� �

eshk ReðsÞ\0 ð2:73Þ

The right hand sides converge for Re(s)[ 0 and Re(s)\ 0. This means that the
first leads to a causal derivative while the second leads to the anti-causal. These
expressions, when inverted back into time lead, respectively, to8

d
ðaÞ
f ðtÞ ¼ lim

h!0þ

1
ha

X

1

k¼0

ð�1Þk
a

k

� �

dðt � khÞ ð2:74Þ

and

d
ðaÞ
b ðtÞ ¼ lim

h!0þ

ð�1Þa

ha

X

1

k¼0

ð�1Þk
a

k

� �

dðt þ khÞ ð2:75Þ

Let f(t) be a bounded function and a[ 0. The convolution of (2.74) and (2.75)
with f(t) leads to the Grünwald–Letnikov forward and backward derivatives.

Fig. 2.1 Obtention of the GL
derivatives from the transfer
function sa

8 We used d instead d; to avoid confusion, while the equivalence is not proved. We do not care
about the convergence of the series [9].
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2.9 The Fractional Derivative of Generalized Functions

The results there obtained are valid for analytic functions. Here we will combine
the theory there developed with the distribution theory to generalize those results
for other functions. We will consider functions defined on R and will treat the
forward derivative case, only by simplicity, omitting the subscript. However,
we will deal with functions that not only they are not analytic, but they can be
discontinuous. This leads us to the Distribution (Generalized Function) Theory.
We will use the results of the Axiomatic Theory due to its simplicity. Combining
both results we will show that the main interesting properties of the above
derivative we obtained for analytic functions remain valid in a distributional
context.

The above properties are valid provided that all the involved derivatives exist.
This may not happen in a lot of situations; for example, the derivative of the power
function causal or not. As these functions are very important we will consider them
with detail. Meanwhile let us see how we can enlarge the validity of the above
formulae. Let us consider formula (2.33), because the others can be treated
immediately from it.

Consider a function f(t) such that there exists Daf(t) but it is not continuous. In
principle, we cannot assure that we can apply (2.33) to obtain D

a+b
f(t). To solve

the problem, we will use a suitable definition of distribution. Due to its simplicity,
we adopt here the definition underlying the Axiomatic Theory of Distributions
[9–12]. It states that: a Distribution is an integer order derivative of a continuous

function.
Consider then that f(t) = Dng(t), where n is a positive integer and g(t) is con-

tinuous and with continuous fractional derivative of order a ? b. In this case, we
can write:

Daþbf ðtÞ ¼ DaþbDngðtÞ ¼ DnDaþbgðtÞ

So, we obtained the desired derivative by integer order derivative computation
of the fractional derivative. The other properties are consequence of this one.
Some examples will clarify the situation.

2.9.1 The Causal Power Function

The results obtained in the above close section allow us to obtain the derivative of
any order of the function p(t) = tbu(t), with b[ 0. It is a continuous function, thus
indefinitely (integer order) derivable. To compute the fractional derivative of p(t),
the easy way is to use the Laplace transform (LT). As well known, the LT of p(t) is

PðsÞ ¼ Cðbþ1Þ
sbþ1 ; for Re(s)[ 0. The transform of the fractional derivative of order a

is given by: saCðbþ1Þ
sbþ1 : So,
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Da
f t

buðtÞ ¼
Cðbþ 1Þ

Cðb� aþ 1Þ
tb�auðtÞ ð2:76Þ

that generalizes the integer order formula for a, b [ R+ and b[ a [1, 13, 14]. In
fact, if a = N, we obtain

DN
f t

buðtÞ ¼ ðbÞN t
b�NuðtÞ ð2:77Þ

that is the result we obtain by successive order one derivations. To obtain it, we
use the rule of the derivative of the product. The derivative of u(t) is d(t) that
appears multiplied by a power that is zero at t = 0 [9]

DtbuðtÞ ¼ btb�1uðtÞ þ tbdðtÞ ¼ btb�1uðtÞ

Equation 2.76 can be considered valid for b� a ¼ �1 provided that we write

Da
f t
a�1uðtÞ ¼ dðtÞ ð2:78Þ

If b = N [ Z+, we have:

Da
f ½t

NuðtÞ� ¼
N!

CðN þ 1� aÞ
½tN�auðtÞ� ð2:79Þ

if N[ a. This result shows that the derivative of a given causal function can be
computed from the causal McLaurin series by computing the derivatives of the
series terms. This means that we can obtain the derivative of the causal exponential
eatu(t) by computing the derivative of each term of the McLaurin series. However,
the resulting series is not easily related to the exponential. This will be done later.

Let as return to our initial objective: to enlarge the validity of (2.76). With the
assumed values for a and b, (2.76) represents a continuous function. So, we can
compute the Nth order derivative. Again products of powers and the d(t) will
appear, but now the powers assume an infinite value at t = 0. We remove this term
to obtain what is normally called finite part of the distribution. If c\ 0, we have

DtcuðtÞ ¼ ctc�1uðtÞ þ tcdðtÞ

The second term on the right is removed to give us the finite part [9, 12]

Fp½Dt
cuðtÞ� ¼ ctc�1uðtÞ

In the following, we will assume that we will be working with the finite part and
will omit the symbol Fp. With these considerations we conclude that (2.76)
remains valid provided that a [ R and b [ R - Z-. In particular, we have:

Da
f uðtÞ ¼

1
Cð1� aÞ

t�auðtÞ ð2:80Þ

To confirm the validity of the procedure, we are going to obtain this result
directly from (2.33). For t\ 0, Dau(t) is zero; for t[ 0, we have
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Da
f uðtÞ ¼ lim

h!0þ

PL
k¼0 ð�1Þk

a

k

� �

ha
ð2:81Þ

where L is the integer part of t/h: L ¼ t=hb c and a is a positive non-integer real
(otherwise it leads to d(t) and its derivatives). We are going to make some
manipulations to obtain the required result. If h is very small, L & t/h and we
have:

Da
f uðtÞ ¼ lim

h!0þ

PL
k¼0

ð�aÞk
k!

ha
¼ lim

L!1
t�aLa

X

L

k¼0

ð�aÞk
k!

ð2:82Þ

To go further we use one interesting property of the Gauss hypergeometric
function ([15]; Wolfram.com):

2F1ð�n; b;�m; zÞ ¼
X

n

0

ð�nÞkðbÞkz
k

ð�mÞkk!

where n, m [ Z+, with m C n. Putting z = 1, b = -a, and m = n, we can write:

Da
f uðtÞ ¼ lim

L!1
t�aLa2F1ð�L;�a;�L; 1Þ ð2:83Þ

But

2F1ða; b; c; 1Þ ¼
CðcÞCðc� a� bÞ

Cðc� aÞCðc� bÞ

if Re(c – a - b)[ 0. The application of this formula leads to an undetermination

2F1ð�L;�a� L; 1Þ ¼
Cð�LÞCðaÞ

Cða� LÞCð0Þ
a[ 0

However attending to the residues of the gamma function at the poles, we can
write:

Cð�LÞ

Cð0Þ
¼

ð�1ÞL

L!

and

2F1ð�L;�a� L; 1Þ ¼
ð�1ÞL

L!

CðaÞ

Cða� LÞ
¼

ð1� aÞL
L!

¼
ð�aÞLþ1

�aL!
ð2:84Þ

With this result we can write (2.83) as

Da
f uðtÞ ¼ t�a lim

L!1
La
ð�aÞLþ1

�aL!
ð2:85Þ
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In the right hand side we recognize the gamma function [16] leading to the
expected result. If a is a negative integer, -N, we know that

D�N
f uðtÞ ¼

tN

N!
uðtÞ ð2:86Þ

and attending to (2.86) we conclude that (2.76) is valid for a [ R - Z+. Equa-
tion 2.80 allows us to obtain the interesting result

Da
f dðtÞ ¼

t�a�1

Cð�aÞ
uðtÞ ð2:87Þ

valid for positive non-integer orders. In terms of linear system theory, (2.87) tells
us that the fractional forward differintegrator (a current terminology) is a linear
system with impulse response equal to the right hand side. As the output is given
by the convolution of the input and the impulse response, we obtain [6, 17]

Da
f f ðtÞ ¼

1
Cð�aÞ

Z

t

�1

f ðsÞðt � sÞ�a�1 ds ð2:88Þ

that we will call the forward Liouville derivative.
Using (2.33) and (2.87), we can obtain a very curious result

t�a�1

Cð�aÞ
uðtÞ ¼ lim

h!0þ

P1
k¼0 ð�1Þk

a

k

� �

dðt � khÞ

ha
ð2:89Þ

meaning that the power function is obtained by joining infinite impulses with
infinitesimal amplitudes modulated by the binomial coefficients.

A similar procedure would lead us to obtain the impulse response of the
backward differintegrator that is given by [6, 17]

Da
bdðtÞ ¼ �

t�a�1uð�tÞ

Cð�aÞ
ð2:90Þ

that allows us to obtain the backward Liouville derivative

Da
bf ðtÞ ¼ �

1
Cð�aÞ

Z

1

t

f ðsÞ � ðt � sÞ�a�1 ds ð2:91Þ

With a change of variable it leads to

Da
bf ðtÞ ¼ �

ð�1Þ�a

Cð�aÞ

Z

1

0

f ðt þ sÞ � s�a�1 ds ð2:92Þ
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that shows the anti-causal characteristic on depending on the future values of the
function.

These integral formulations were introduced both exactly with this format by
Liouville. Unhappily in the common literature the factor (-1)-a in (2.92) has been
removed and is called Weyl derivative [18]. Although the above results were
obtained for functions with Laplace transform their validity can be extended to
other functions.

Integrals (2.88) and (2.91) are not very useful since they are ‘‘hyper singular’’
integrals [1, 13].

2.9.2 The Causal Exponential

The derivative of the causal exponential can be obtained from the McLaurin series,
as we said above. We have:

Da½eatuðtÞ� ¼
X

1

0

ðatÞk�a

Cðk � aÞ
uðtÞ ð2:93Þ

However, this function is not very interesting, since it does not represents the
fractional generalization of the causal exponential. To obtain it, put b = na in
(2.76) and rewrite it in the format:

Da tnauðtÞ

Cðnaþ 1Þ
¼

1
Cððn� 1Þaþ 1Þ

tðn�1ÞauðtÞ ð2:94Þ

We are led to the Mittag–Leffler function:

gðtÞ ¼
X

1

n¼0

tna

Cðnaþ 1Þ
uðtÞ ð2:95Þ

It is not hard to show, using (2.94), that

DagðtÞ ¼
X

1

n¼0

tna

Cðnaþ 1Þ
� uðtÞ þ

t�a

Cð�aþ 1Þ
uðtÞ ð2:96Þ

or with (2.80)

Da½gðtÞ � uðtÞ� ¼ gðtÞ

This means that g(t) is the solution of the fractional differential equation

DagðtÞ � gðtÞ ¼ 0 ð2:97Þ

under the initial condition g(0) = 1.
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2.9.3 The Causal Logarithm

We going to study the causal logarithm kðtÞ ¼ logðtÞ � uðtÞ We could use Eq. 2.32,
but the computations are somehow involved. Instead, we start from relation (2.76)
and compute the derivative of both sides relative to b to obtain:

Da½tb logðtÞuðtÞ� ¼
Cðbþ 1Þ

Cðb� aþ 1Þ
tb�auðtÞ½logðtÞ þ wðbþ 1Þ � wðb� aþ 1Þ�

ð2:98Þ

where we represented by w the logarithmic derivative of the gamma function:

wðtÞ ¼ D½logCðtÞ� ¼ C
0ðtÞ=CðtÞ

Putting b = 0 in (2.98) we obtain the derivative of the causal logarithm

Da½logðtÞuðtÞ� ¼
1

Cð�aþ 1Þ
t�auðtÞ½logðtÞ � c� wð�aþ 1Þ� ð2:99Þ

where c ¼ �wð1Þ ¼ �C
0ð1Þ is the Euler–Mascheroni constant.

Another interesting result can be obtained by integer order derivation of both
sides in (2.99). As

DN ½logðtÞuðtÞ� ¼ ð�1ÞN�1ðN � 1Þ!t�NuðtÞ; N ¼ 1; 2; . . . ð2:100Þ

we have:

Dat�NuðtÞ ¼
DN ½logðtÞuðtÞ�

ð�1ÞN�1ðN � 1Þ!

¼
1

ð�1ÞN�1ðN � 1Þ!Cð�a� N þ 1Þ
t�a�NuðtÞ½logðtÞ � c� wð�a� N þ 1Þ�

ð2:101Þ

From the properties of the gamma functions, we have:

Cð�a� N þ 1Þ ¼ ð�1ÞN
Cð1� aÞ

ðaÞN

and using repeatedly the recurrence property of the digamma we obtain:

wð�a� N þ 1Þ ¼ wð�aþ 1Þ �
X

N

n¼1

1
1� a� n

leading to
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Dat�NuðtÞ ¼ �
ðaÞN

ðN � 1Þ!Cð�aþ 1Þ
t�a�NuðtÞ logðtÞ � c� wð�aþ 1Þ �

X

N

n¼1

1
1� a� n

" #

ð2:102Þ

If a = M is a positive integer, the gamma function C(-a ? 1) is infinite and we
have:

DMt�NuðtÞ ¼ lim
a!M

wð�aþ 1Þ
Cð�aþ 1Þ

ðaÞN

ðN � 1Þ!
t�a�NuðtÞ ð2:103Þ

But

CðxÞ � ð�1Þn
1

n!ðxþ nÞ

near the pole at x = -n. Then

lim
a!M

wð�aþ 1Þ
Cð�aþ 1Þ

¼ ð�1ÞMðM � 1Þ!

and, finally

DMt�NuðtÞ ¼ ð�1ÞMðMÞN t
�M�NuðtÞ ð2:104Þ

that is the classic result. It is not very difficult to obtain this result from (2.76)
provided that we take care about the indetermination. To conclude:

Da
f t

buðtÞ ¼

Cðbþ1Þ
Cðb�aþ1Þt

b�auðtÞ b 2 R� Z�

�
ðaÞN

ðN�1Þ!Cð�aþ1Þt
�a�NuðtÞ logðtÞ � c� wð�aþ 1Þ �

P

N

n¼1

1
1�a�n

	 


�N ¼ b 2 Z�

8

>

<

>

:

ð2:105Þ

Wemust remark that these results aremore general than those obtained by integral
derivative formulations like Riemann–Liouville or Caputo derivatives [13, 14].

2.9.4 Consequences in the Laplace Transform Domain

Consider that we are working in the context of the Laplace transform. With the
two-sided LT we use there are no problems in defining the LT of d tð Þ:

LT½dðtÞ� ¼ 1

Attending to (2.61) and (2.87) we conclude that
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LT
t�a�1

Cð�aÞ
uðtÞ

	 


¼ sa; ReðsÞ[ 0

that generalizes a well known result for any a [ R – Z -. Essentially, we pro-
longed the sequence:

. . .s�n. . .; s�2; s�1; 1; s1; s2; . . .; sn. . .

in order to include other kinds of exponents: rational, real, or even complex
numbers. In agreement with what we said before, there are two forms of obtaining
the extension, depending on the choice done for region of convergence for the LT:
the left and right half-planes. This has some implications in the study of the
fractional linear systems as we will see later.

From (2.76) we obtain easily the LT of the Mittag–Leffler function

GðsÞ ¼
X

1

n¼0

1
snaþ1

¼
sa�1

sa � 1
; ReðsÞ[ 1 ð2:106Þ

Relation (2.106) expresses a special case of the more general result known as
Hardy’s theorem [16] that states:

Let the series

FðsÞ ¼
X

þ1

0

anCðaþ nþ 1Þ � s�a�n�1 ð2:107Þ

be convergent for some Re(s)[ s0[ 0 and a[ –1. The series

f ðtÞ ¼
X

þ1

0

ant
aþn ð2:108Þ

converges for all t[ 0 and F(s) = LT[f(t)].
In agreement with the results in Sect. 2.9.1, the validity of the Hardy’s theorem

can be extended to values of a\-1, provided it is not integer.

2.10 Riemann–Liouville and Caputo Derivatives

The Riemann–Liouville and Caputo derivatives are multistep derivatives that use
several integer order derivatives and a fractional integration [1, 13, 14, 19].
Although they create some difficulties as we will see later, we are going to describe
them, since they are widely used with questionable results. To present them, we
use (2.87) and (2.90) to obtain the following distributions:

d
ð�mÞ
� ðtÞ ¼ �

tm�1

CðmÞ
uð�tÞ; 0\m\1
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and

d
ðnÞ
� ðtÞ ¼

� t�n�1

ð�n�1Þ!uð�tÞ for n\0

dðnÞðtÞ for n� 0

(

ð2:109Þ

where n [ Z. With them we define two differintegrations usually classified as left
and right sided, respectively:

f
ðaÞ
l ðtÞ ¼ ½f ðtÞuðt � aÞ� 	 d

ðnÞ
þ ðtÞ 	 d

ð�mÞ
þ ðtÞ ð2:110Þ

f ðaÞr ðtÞ ¼ ½f ðtÞuðb� tÞ� 	 d
ðnÞ
þ ð�tÞ 	 d

ð�mÞ
þ ð�tÞ ð2:111Þ

with a\ b [ R. The orders are given by a = n – m, n being the least integer
greater than a and 0\ m\ 1. In particular, if a is integer then m = 0.9

From different orders of commutability and associability in the double convolution
we can obtain distinct formulations. For example, from (2.111) we obtain the left
Riemann–Liouville and Caputo derivatives:

f
ðbÞ
RLþðtÞ ¼ d

ðnÞ
þ ðtÞ 	 ½f ðtÞuðt � aÞ� 	 d

ð�mÞ
þ ðtÞ

n o

ð2:112Þ

f
ðbÞ
CþðtÞ ¼ ½f ðtÞuðt � aÞ� 	 d

ðnÞ
þ ðtÞ

n o

	 d
ð�mÞ
þ ðtÞ ð2:113Þ

For the right side derivatives the procedure is similar.
We are going to study more carefully the characteristics of these derivatives.

Consider (2.113). Let

uð�mÞðtÞ ¼ ½f ðtÞuðt � aÞ� 	 d
ð�mÞ
þ ðtÞ

n o

:

We have:

uð�mÞðtÞ ¼
1

CðmÞ

R

t

a

f ðsÞ � ðt � sÞm�1 ds if t[ a

0 if t\a

8

<

:

So, in general when doing the second convolution in (2.113) we are computing
the integer order derivative of a function with a jump. The ‘‘jump formula’’ [9, 10]10

leads to

f
ðbÞ
RLþðtÞ ¼

1
Cð�aÞ

Z

t

a

f ðtÞ � ðt � sÞ�a�1 ds�
X

n�1

i¼0

f ða�1�iÞðaÞdðiÞðtÞ ð2:114Þ

9 All the above formulae remain valid in the case of integer integration, provided that we put
d(0)(t) = d(t).
10 It will be studied later.
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The appearance of the ‘‘initial conditions’’ f ða�1�iÞðaþÞ provoked some con-
fusions because they were used as initial conditions of linear systems. This is not
correct in general. They represent what we need to join to the Riemann–Liouville
derivative to obtain the Liouville derivative (2.88). We will return to this subject
when we study the initial condition problem in linear fractional systems. Now let
us do a similar analysis to the Caputo derivative. The expression

½f ðtÞuðt � aÞ� 	 d
ðnÞ
þ ðtÞ

n o

states the integer order derivative of the function f ðtÞ � uðt � aÞ Again the jump
formula gives

yðnÞðtÞ � uðt � aÞ ¼ ½yðtÞ � uðt � aÞ�ðnÞ �
X

n�1

i¼0

yðn�1�iÞðaÞdðiÞðtÞ ð2:115Þ

that leads to:

f
ðbÞ
CþðtÞ ¼

1
Cð�aÞ

Z

t

a

f ðsÞ � ðt � sÞ�a�1 ds�
X

n�1

i¼0

f ðn�1�iÞðaÞdði�mÞðtÞ ð2:116Þ

In this case, we can extract conclusions similar to those we did in the Riemann–
Liouville case. Relation (2.116) explains why sometimes the first n terms of the
Taylor series of f(t) are subtracted to it before doing a fractional derivative com-
putation. It is like a regularization.

2.11 The Fractional Derivative of Periodic Signals

2.11.1 Periodic Functions

Let us consider a function defined by Fourier series

f ðtÞ ¼
X

þ1

�1

Fne
j2p=Tnt ð2:117Þ

Only by simplicity we will assume for now that the series is uniformly con-
vergent almost everywhere over the real straight line. As it is well known, it
defines a almost everywhere continuous periodic function, f(t)

f ðtÞ ¼ f ðt þ TÞ; t 2 R ð2:118Þ

where T is the period and we can write
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f ðtÞ ¼
X

þ1

�1

fbðt � nTÞ ð2:119Þ

where fb(t) is an almost everywhere continuous function with bounded support. It
is a simple task to see that it can be expressed by the convolution

f ðtÞ ¼ fbðtÞ 	
X

þ1

�1

dðt � nTÞ ð2:120Þ

We obtained three different was of representing a periodic function.
The results presented in Sect. 2.7.4 show that we can obtain the derivative of a

periodic function from its Fourier series by computing the derivative term by term.
We obtain:

Da
f f ðtÞ ¼

2pj
T

� �a
X

þ1

�1

naFne
j2p=Tnt ð2:121Þ

It would be interesting to study the convergence of this series, but it is not
important here. We can use the procedure followed in study of the comb signal
[20] that was an adaptation of the theory presented in [9].

We concluded that, if a periodic function is defined by it Fourier series it can be
fractionally derivated term by term and the derivative is also periodic with the
same period.

Now we go back to (2.119). As the derivative is a linear operator, we can apply
it to each term of the series. Besides fb(t) is a function with bounded support which
implies that the summation in (2.32) is done over a finite number of parcels. So, it
is convergent for each h and has a fractional derivative. Another way of con-
cluding this is by using the Laplace transform and (2.49). This leads to

Da
f f ðtÞ ¼

X

þ1

�1

Da
f fbðt � nTÞ ð2:122Þ

However, the fractional derivative of a bounded support function does not have
bounded support. This means that the series of the derivatives has what is called in
signal processing a aliasing which may prevent its convergence. Anyway, the
fractional derivative of a periodic function defined by (2.119) exists (at least
formally) and is a periodic function with the same period.

Finally, let us consider the representation (2.120). The fractional derivative will
be given by the convolution of fb(t) and the fractional derivative of the comb
function [20]. Attending to (2.87) we conclude that the derivative of the comb is

Da
f

X

þ1

�1

dðt � nTÞ ¼
1

Cð�aÞ

X

þ1

�1

ðt � nTÞ�a�1
uðt � nTÞ ð2:123Þ
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that convolved with fb(t) leads again to (2.122).
We are going now to study the causal periodic case and show that the frac-

tional-order derivatives of a causal periodic function with a specific period cannot
be a periodic function with the same period. Consider relation (2.120) again and
assume that the support of fb(t) is the interval (0, T). It is immediate to verify that
the causal periodic function is given by

gðtÞ ¼
X

þ1

0

fbðt � nTÞ ð2:124Þ

or equivalently:

gðtÞ ¼ f ðtÞ � uðtÞ ð2:125Þ

Assume that 0\ a\ 1. We are going to use the Caputo derivative only with
illustration objective. The same result could be obtained with the GL or Liouville
derivatives. In a first step, we obtain:

g0ðtÞ ¼ f 0ðtÞ � uðtÞ þ f ð0Þ � dðtÞ ð2:126Þ

and

DagðtÞ ¼
1

Cð1� aÞ

Z

t

0

f 0ðsÞ � ðt � sÞ�a dsþ f ð0Þ � t�auðtÞ ð2:127Þ

We conclude that Dag tð Þ cannot be periodic, because the second term destroys
any hypothesis of periodicity. However, we can always remove a constant function
without affecting the periodicity. So, without loosing generality, let us assume that
f(0) = 0, for example that f ðtÞ ¼ sinðx0tÞ: We can write:

DagðtÞ ¼
x0

Cð1� aÞ

Z

t

0

cosðx0sÞ � ðt � sÞ�a ds ¼
x0

Cð1� aÞ

Z

t

0

cos½x0ðt � sÞ � s�a ds�

¼
2x0

Cð1� aÞ
Re ejx0t

Z

t

0

e�jx0s � s�a ds

8

<

:

9

=

;

ð2:128Þ

Take the above integral and write

1
Cð1� aÞ

Z

t

0

e�jx0s � s�a ds ¼
1

Cð1� aÞ

Z

1

0

e�jx0s � s�a ds

�
1

Cð1� aÞ

Z

1

t

e�jx0s � s�a ds
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The first term is the Fourier transform of t-au(t). Using the results of Sect. 2.7.4

it assumes the value ðjx0Þ
a�1: We obtain from (2.61)

DagðtÞ ¼ jx0j
a
sinðx0t þ ap=2ÞuðtÞ �

2x0

Cð1� aÞ
Re ejx0t

Z

1

t

e�jx0s � s�a ds

8

<

:

9

=

;

ð2:129Þ

We conclude that Dag(t) in not causal periodic, because there is a transient term.
We could also obtain this result by applying the generalized Leibniz rule to g(t).

2.12 Fractional Derivative Interpretations

There have been several attempts to give an interpretation (normally, geometric) to
the fractional derivative. The most interesting were proposed by Podlubny [18]
and by Machado [9, 10]. The first proposed geometric interpretations for the
integral formulations of the fractional derivative. The second gives a probabilistic
interpretation for the GL derivative. These attempts although interesting were not
widely accepted and did not give rise to new problem solving methodology.

2.13 Conclusions

We approached the fractional derivative definition through a generalized Grün-
wald–Letnikov formulation. We presented the most interesting properties it enjoys
namely the causality and the group properties. We deduced integral formulations
and obtained the called Riemann–Liouville and Caputo derivatives. We considered
the derivative of periodic signals.

References

1. Samko SG, Kilbas AA, Marichev OI (1987) Fractional integrals and derivatives—theory and
applications. Gordon and Breach Science Publishers, New York

2. Hoskins RF (1999) Delta functions. Horwood Series in Mathematics & Applications,
Chichester, England

3. Dugowson S (1994) Les différentielles métaphysiques. PhD thesis. Université Paris Nord
4. Diaz JB, Osler TJ (1974) Differences of fractional order. Math Comput 28(125):185–202
5. Ortigueira MD (2004) From differences to differintegrations. Fractional Calculus Appl Anal

7(4):459–471
6. Ortigueira MD (2006) A coherent approach to non integer order derivatives. Signal

processing special section: fractional calculus applications in signals and systems, vol 86(10).
pp 2505–2515

40 2 The Causal Fractional Derivatives



7. Oldham KB, Spanier J (1974) The fractional calculus: theory and application of
differentiation and integration to arbitrary order. Academic Press, New York

8. Krempl PW Solution of linear time invariant differential equations with ‘proper’ primitives.
IEEE 32nd Annual Conference on Industrial Electronics, IECON 2006, 6-10 Nov, Paris,
France

9. Ferreira JC (1997) Introduction to the theory of distributions. Pitman monographs and
surveys in pure and applied mathematics. Longman, Harlow

10. Hoskins RF, Pinto JS (1994) Distributions, ultradistributions, and other generalised functions.
Ellis Horwood Limited, Chichester

11. Silva JS (1989) The axiomatic theory of the distributions. Complete Works, INIC, Lisbon
12. Zemanian AH (1987) Distribution theory and transform analysis. Dover Publications, New

York
13. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional

differential equations. Elsevier, Amsterdam
14. Podlubny I (1999) Fractional differential equations: an introduction to fractional derivatives,

fractional differential equations, to methods of their solution and some of their applications.
Academic Press, San Diego

15. Chaudhry MA, Zubair SM (2002) On a class of incomplete gamma functions with
applications. Chapman & Hall, CRC, London, Boca Raton

16. Henrici P (1991) Applied and computational complex analysis, vol 2. Wiley, New York,
pp 389–391

17. Ortigueira MD (2000) Introduction to fractional signal processing. Part 1: continuous-time
systems. IEE Proc Vis Image Signal Process 1:62–70

18. Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential
equations. Wiley, New York

19. Magin RL (2006) Fractional calculus in bioengineering. Begell House, Connecticut
20. Ortigueira MD (2001) The comb signal and its Fourier transform. Signal Process

81(3):581–592
21. Podlubny I (2002) Geometric and physical interpretation of fractional integration and

fractional differentiation. J Fract Calc Appl Anal 5(4):367–386
22. Machado JAT (2003) A probabilistic interpretation of the fractional-order differentiation.

Fractional Calculus Appl Anal 6(1):73–80
23. Machado JAT (2009) Fractional derivatives: probability interpretation and frequency

response of rational approximations. Commun Nonlinear Sci Numer Simulat 14:3492–3497

References 41



Chapter 3

Integral Representations

3.1 Introduction

In the previous chapter we addressed the problem of fractional derivative definition
and proposed the use the Grünwald–Letnikov and in particular the forward and
backward derivatives. These choices were motivated by five main reasons they:

• do not need superfluous derivative computations,
• do not insert unwanted initial conditions,
• are more flexible,
• allow sequential computations,
• are more general in the sense of allowing to be applied to a large class of
functions.

We presented also the Liouville derivatives that we deduced from the convo-
lutional property of the Laplace transform.

However there are other integral representations mainly when working in a
complex setup. It is well known that the formulation in the complex plane is
represented by the generalised Cauchy derivative. So, we need a coherent math-
ematical reasoning for a connection between the GL formulation and the gener-
alised Cauchy. We are going to present it.

In facing this problem, we assume here as starting point the definitions of direct
and reverse fractional differences and present their integral representations. From
these representations and using the asymptotic properties of the Gamma function,
we will obtain the generalised Cauchy integral as a unified formulation for any
order derivative in the complex plane. As we will see

In a first reading, people more interested in applications can jump this chapter.

M. D. Ortigueira, Fractional Calculus for Scientists and Engineers,
Lecture Notes in Electrical Engineering, 84, DOI: 10.1007/978-94-007-0747-4_3,
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The generalised Cauchy derivative of analytic functions is equal to the Grünwald–Let-
nikov fractional derivative.

When trying to compute the Cauchy integral using the Hankel contour we
conclude that:

• The integral have two terms: one corresponds to a derivative and the other to a
primitive.

• The exact computation leads to a regularized integral, generalising the well
known concept of pseudo-function, but without rejecting any infinite part.

• The definition implies causality.

The forward and backward derivatives emerge again as very special cases. We
will study them for the case of functions with Laplace Transforms. This leads us to
obtain once again the causal and anti-causal fractional linear differintegrators both
with Transfer Function equal to sa, a [ R in agreement with the mathematical
development presented in Chap. 2.

3.2 Integral Representations for the Differences

In Chap. 2, we presented the general descriptions of fractional differences. These
were based on a study by Diaz and Osler [1]. They proposed an integral formulation
for the differences and conjectured about the possibility of using it for defining a
fractional derivative. This problem was also discussed in a round table held at the
International Conference on ‘‘Transform Methods & Special Functions’’, Varna’96
as stated by Kiryakova [2]. The validity of such conjecture was proved [3, 4] and
used to obtain the Cauchy integrals from the differences and simultaneously gen-
eralise it to the fractional case. Those integral formulations for the fractional dif-
ferences will be presented in the following. We will start by the integer order case.

3.2.1 Positive Integer Order

We return back to Sect. 2.2.1 and recover the formulae for the differences we
presented there. Consider first the positive integer order case (2.11) and (2.12).
Assume that f(z) is analytic inside and on a closed integration path that includes the
points t = z - kh in the direct case and t = z ? kh in the corresponding reverse
case, with k = 0, 1, …, N {see Fig. 3.1} and Re(h)[ 0.

The results stated in (2.11) and (2.12) can be interpreted in terms of the residue
theorem.1 In fact they can be considered as 1

2pj:
P

Ri where Ri i = 1, 2, … are the

1 It is important to remark that the poles are simple and that this case can be deduced without the
use of the derivative notion.
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residues in the computation of the integral of a function with poles at t = z - kh

and t = z ? kh, k = 0, 1, 2, … As it can be seen by direct verification, we have:

X

N

k¼0

ð�1Þk
N

k

� �

f ðz� khÞ ¼
N!

2pjh

Z

Cd

f ðwÞ
QN

k¼0
w�z
h

þ k
� � dw ð3:1Þ

and

X

N

k¼0

ð�1Þk
N

k

� �

f ðzþ khÞ ¼
N!

�2pjh

Z

Cr

f ðwÞ
QN

k¼0
z�w
h

þ k
� � dw ð3:2Þ

We must remark that the binomial coefficients appear naturally when com-
puting the residues. These formulations are more general than those proposed by
Diaz and Osler, because they considered only the h = 1 case.

The product in the denominator in the above formulae is called shifted factorial
and is usually represented by the Pochhammer symbol. With it we can express the
differences in the following integral formulations:

D
N
d f ðzÞ ¼

N!

2pjh

Z

Cd

f ðwÞ
w�z
h

� �

Nþ1

dw ð3:3Þ

and

D
N
r f ðzÞ ¼

ð�1ÞNþ1
N!

2pjh

Z

Cr

f ðwÞ
z�w
h

� �

Nþ1

dw ð3:4Þ

Fig. 3.1 Integration paths
and poles for the integral
representation of integer
order differences
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Attending to the relation between the Pochhammer symbol and the Gamma
function:

Cðzþ nÞ ¼ ðzÞnCðzÞ ð3:5Þ

we can write:

D
N
d f ðzÞ ¼

N!

2pjh

Z

Cd

f ðwÞ
C

w�z
h

� �

C
w�z
h

þ N þ 1
� � dw ð3:6Þ

and

D
N
r f ðzÞ ¼

ð�1ÞNþ1
N!

2pjh

Z

Cr

f ðwÞ
C

z�w
h

� �

C
z�w
h

þ N þ 1
� � dw ð3:7Þ

This is correct and is coherent with the difference definitions, because the
Gamma function C(z) has poles at the negative integers (z = -n). The corre-
sponding residues are equal to (-1)n/n!. Although both the Gamma functions have
infinite poles, outside the contour they cancel out and the integrand is analytic. We
should also remark that the direct and reverse differences are not equal.

3.2.2 Fractional Order

Consider the fractional order differences defined in (2.13) and (2.14). It is not hard
to see that we are in presence of a situation similar to the positive integer case,
excepting the fact of having infinite poles. So we have to use an integration path
that encircles all the poles. This can be done with a U shaped contour like those
shown in Fig. 3.2. We use (3.6) and (3.7) with the suitable adaptations, obtaining:

D
a
df ðzÞ ¼

Cðeþ 1Þ
2pjh

Z

Cd

f ðwÞ
C

w�z
h

� �

C
w�z
h

þ aþ 1
� � dw ð3:8Þ

and

D
a
r f ðzÞ ¼

ð�1Þaþ1
Cðaþ 1Þ

2pjh

Z

Cr

f ðwÞ
C

z�w
h

� �

C
z�w
h

þ aþ 1
� � dw ð3:9Þ

Remark that one turns into the other with the substitution h ? -h. We can use
the residue theorem to confirm the correctness of the above formulae.
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3.2.3 Two Properties

In the following, we shall be concerned with the fractional order case. We will
consider the direct case. The other is similar.

3.2.3.1 Repeated differencing

We are going to study the effect of a sequential application of the difference
operator D. We have

D
b
d ½D

a
df ðzÞ� ¼

Cðbþ 1ÞCðaþ 1Þ

ð2pjhÞ2

Z

Cd

Z

Cd

f ðwÞ
C

w�s
h

� �

C
w�s
h

þ aþ 1
� � dw

C
s�z
h

� �

C
s�z
h
þ bþ 1

� � ds

ð3:10Þ

Permuting the integrations, we obtain

D
b
d ½D

a
df ðzÞ� ¼

Cðbþ 1ÞCðaþ 1Þ

ð2pjhÞ2

Z

Cd

f ðwÞ

Z

Cd

C
w�s
h

� �

C
w�s
h

þ aþ 1
� �

C
s�z
h

� �

C
s�z
h
þ bþ 1

� � ds dw

ð3:11Þ

Fig. 3.2 Integration paths
and poles for the integral
representation of fractional
order differences
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By the residue theorem

Cðbþ 1Þ
2pjh

Z

Cd

C
w�s
h

� �

C
w�s
h

þ aþ 1
� �

C
s�z
h

� �

C
s�z
h
þ bþ 1

� � ds

¼
1
h

X

1

n¼0

ð�1Þn

n!

Cðbþ 1Þ � C w�z
h

þ n
� �

C
w�z
h

þ aþ 1þ n
� �

Cðb� nþ 1Þ

¼
1
h

C
w�z
h

� �

C w�z
h

þ aþ 1
� �

X

1

n¼0

w�z
h

� �

n
ð�bÞn

w�z
h

þ aþ 1
� �

n

¼
1
h

C
w�z
h

� �

C
w�z
h

þ aþ 1
� �2F1

w� z

h
;�b;

w� z

h
þ aþ 1; 1

� �

ð3:12Þ

where 2F1 is the Gauss hypergeometric function. If a ? b ? 1[ 0, we have:

Cðbþ 1Þ
2pjh

Z

Cd

C
w�s
h

� �

C
w�s
h

þ aþ 1
� �

C
s�z
h

� �

C
s�z
h
þ bþ 1

� � ds ¼
1
h

C
w�z
h

� �

Cðaþ bþ 1Þ

C
w�z
h

þ aþ bþ 1
� �

Cðaþ 1Þ

ð3:13Þ

leading to the conclusion that:

D
b
d ½D

a
df ðzÞ� ¼

Cðaþ bþ 1Þ
2pjh

Z

Cd

f ðwÞ
C

w�z
h

� �

C
w�z
h

þ aþ bþ 1
� � dw ð3:14Þ

and
D
b
d ½D

a
df ðzÞ� ¼ D

aþb
d f ðzÞ ð3:15Þ

provided that a ? b ? 1[ 0. It is not difficult to see that the above operation is
commutative. The condition a ? b ? 1[ 0 is restrictive, since it may happen that
we cannot have b B -a - 1. However, we must remark that (3.8) and (3.9) are
valid for every a 2 R. The same happens with (a ? b) in (3.15). This means that
we can use (3.15) with every pair (a, b) 2 R. It should be stressed that, at least in
principle, we must not mix the two differences, because they use different inte-
gration paths. If any way we decide to do it, we have to use a doubly opened
integration path. The result seem not to have any interest here. Later we will use
such a path when dealing with the centred derivatives.

3.2.3.2 Inversion

Putting a = -b into (3.15), we obtain:

D
�a
d ½Da

df ðzÞ� ¼ D
a
d½D

�a
d f ðzÞ�

¼
1
2pj

Z

Cd

f ðwÞ
1

w� z
dw ¼ f ðzÞ ð3:16Þ
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as we would expect. So the operation of differencing is invertible. This means that
we can write:

f ðzÞ ¼
Cðaþ 1Þ
2pjh

Z

Cd

D
a
df ðwÞ

C
w�z
h

� �

C
w�z
h

� aþ 1
� � dw ð3:17Þ

in the direct case. In the reverse case, we will have:

f ðzÞ ¼
Cðaþ 1Þ
2pjh

Z

Cd

D
a
r f ðwÞ

C
z�w
h

� �

C
z�w
h

� aþ 1
� � dw ð3:18Þ

according to (3.9).

3.3 Obtaining the Generalized Cauchy Formula

The ratio of two gamma functions CðsþaÞ
CðsþbÞ has an interesting expansion [5]:

Cðsþ aÞ

Cðsþ bÞ
¼ sa�b 1þ

X

N

1

Cks
�k þ Oðs�N�1Þ

" #

ð3:19Þ

as |s| ? ?, uniformly in every sector that excludes the negative real half-axis. The
coefficients in the series can be expressed in terms of Bernoulli polynomials. Their
knowledge is not important here.

Consider (3.8) and (3.9) again. Let |h|\ e 2 R, where e is a small number. This
allows us to write:

D
a
df ðzÞ ¼

Cðaþ 1Þ
2pjh

Z

Cd

f ðwÞ
1

w�z
h

� �aþ1dwþ g1ðhÞ ð3:20Þ

and

D
a
r f ðzÞ ¼

ð�1Þaþ1
Cðaþ 1Þ

2pjh

Z

Cr

f ðwÞ
1

z�w
h

� �aþ1dwþ g2ðhÞ ð3:21Þ

where Cd and Cr are the contours represented in Fig. 3.2. The g1(h) and g2(h) terms
are proportional to ha+2. So, the fractional incremental ratio are, aside terms
proportional to h, given by:

D
a
df ðzÞ

ha
¼

Cðaþ 1Þ
2pj

Z

Cd

f ðwÞ
1

ðw� zÞaþ1 dw ð3:22Þ
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and

D
a
r f ðzÞ

ha
¼

Cðaþ 1Þ
2pj

Z

Cr

f ðwÞ
1

ðw� zÞaþ1 dw ð3:23Þ

Allowing h ? 0, we obtain the direct and reverse generalised Cauchy
derivatives:

Da
df ðzÞ ¼

Cðaþ 1Þ
2pj

Z

Cd

f ðwÞ
1

ðw� zÞaþ1 dw ð3:24Þ

and

Da
r f ðzÞ ¼

Cðaþ 1Þ
2pj

Z

Cr

f ðwÞ
1

ðw� zÞaþ1 dw ð3:25Þ

If a = N, both the derivatives are equal and coincide with the usual Cauchy
definition. In the fractional case we have different solutions, since we are using a
different integration path. Remark that (3.24) and (3.25) are formally the same.
They differ only in the integration path. This means that we can use a general
procedure as we did on Chap. 2.

Definition 3.1 We define the generalised Cauchy derivative by

Da
hf ðzÞ ¼

Cðaþ 1Þ
2pj

Z

Ch

f ðwÞ
1

ðw� zÞaþ1 dw ð3:26Þ

where Ch is any U-shaped path encircling the branch cut line and making an angle
h ? p with the real positive half axis. As we will see next, the particular cases
h = 0 or h = p lead to new forms of representing the forward and backward
derivatives.

3.4 Analysis of Cauchy Formula

3.4.1 General Formulation

Consider the generalised Cauchy formula (3.26) and rewrite it in a more conve-
nient format obtained by a simple translation:

Da
hf ðzÞ ¼

Cðaþ 1Þ
2pj

Z

C

f ðwþ zÞ
1

waþ1
dw ð3:27Þ
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Here we will choose C as a special integration path: the Hankel contour rep-
resented in Fig. 3.3. It is constituted by two straight lines and a small circle. We
assume that it surrounds the selected branch cut line. This is described by x�ejh,
with x [ R+ and h [ (0,2p[. The circle has a radius equal to q small enough to
allow it to stay inside the region of analyticity of f(z). If a is a negative integer, the
integral along the circle is zero and we are led to the well known repeated inte-
gration formula [6–8] as we will see later. In the general a case we need the two
terms. Let us decompose the above integral using the Hankel contour. For reducing
steps, we will assume already that the straight lines are infinitely near. We have,
then:

Da
hf ðzÞ ¼

Cðaþ 1Þ
2pj

Z

C1

þ

Z

C2

þ

Z

C3

2

6

4

3

7

5
f ðwþ zÞ

1
waþ1

dw ð3:28Þ

Over C1 we have w = x�ej(h-p), while over C3 we have w = x�ej(h+p), with
x [ R+, over C2 we have w = qeju, with u [ ]h - p, h+p[. We can write, at last:

Da
hf ðzÞ¼

Cðaþ1Þ
2pj

Z

q

1

f ðx �ejðh�pÞþ zÞ
e�jaðh�pÞ

xaþ1
dxþ

Z

1

q

f ðx �ejðhþpÞþ zÞ
e�jaðhþpÞ

xaþ1
dx

2
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3

7

5

þ
Cðaþ1Þ

2pj
1
qa

Z

hþp

h�p

f ðq �ejuþ zÞe�jaujdu ð3:29Þ

For the first term, we have:

Fig. 3.3 The Hankel contour
used in computing the
derivative defined in Eq. 3.27
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Z

q

1

f ðx � ejðh�pÞ þ zÞ
e�jaðh�pÞ

xaþ1
dxþ

Z

1

q

f ðx � ejðhþpÞ þ zÞ
e�ja hþpð Þ

xaþ1
dx

¼ ½�e�jaðh�pÞ þ e�jaðhþpÞ�

Z

1

q

f ð�x � ejh þ zÞ
1

xaþ1
dx

¼ �e�jah � ½ejpa � e�jpa�

Z

1

q

f ð�x � ejh þ zÞ
1

xaþ1
dx

¼ �e�jah � 2j � sinðapÞ
Z

1

q

f ð�x � ejh þ zÞ
1

xaþ1
dx ð3:30Þ

where we assumed that f(-x�ej(h-p)
? z) = f(-x�ej(h+p) ? z), because f(z) is

analytic.
For the second term, we begin by noting that the analyticity of the function

f(z) allows us to write:

f ð�x � ejh þ zÞ ¼
X

1

0

f ðnÞðzÞ

n!
ð�1Þnxnejnh ð3:31Þ

for x\ r [ R+. We have, then:

j
1
qa

Z

hþp

h�p

f ðq � eju þ zÞe�jau du ¼ j
1
qa

X

1
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f ðnÞðzÞ

n!
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Z

hþp

h�p

ejðn�aÞudu ð3:32Þ

Performing the integration, we have:

j
1
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Z

hþp

h�p

f ðq � eju þ zÞe�jaudu¼ �j
X

1

0

f ðnÞðzÞ

n!
qn�aejðn�aÞh2 � sin½ðn� aÞp�

ðn� aÞ

¼ 2j � e�jahsinðapÞ
X

1

0

f ðnÞðzÞ

n!

ejnhð�1Þnqn�a

ðn� aÞ

ð3:33Þ

But the summation in the last expression can be written in another interesting
format:
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X

1

0

f ðnÞðzÞ

n!

ejnhð�1Þnqn�a

ðn� aÞ
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X

N

0

f ðnÞðzÞ

n!
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Z
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xn�a�1dxþ
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ð�1nÞejnhqn�a

ðn� aÞ

2

6

4

3

7

5

where N = bac.2 Substituting it in (3.33) and joining to (3.30) we can write:

Da
hf ðzÞ ¼ K �

Z

1

q

f ð�x � ejh þ zÞ �
PN

0
f ðnÞðzÞ
n!

ð�1Þnejnhxn
h i

xaþ1
dx

� K
X

1

Nþ1

f ðnÞðzÞ

n!
ð�1Þnejnh

qn�a

ðn� aÞ
ð3:34Þ

If a\ 0, we make the inner summation equal to zero. Using the reflection
formula of the gamma function

1
CðbÞCð1� bÞ

¼
sinðpbÞ

p

we obtain for K

K ¼ �
Cðaþ 1Þe�jha

p
sinðapÞ ¼

e�jha

Cð�aÞ
ð3:35Þ

Now let q go to zero in (3.34). The second term on the right hand side goes to
zero and we obtain:

Da
hf ðzÞ ¼

e�jha

Cð�aÞ

Z

1

0

f ð�x � ejh þ zÞ �
PN

0
f ðnÞðzÞ
n!

ð�1Þnejnhxn
h i

xaþ1
dx ð3:36Þ

that is valid for any a [ R.
It is interesting to remark that (3.36) is nothing else than a generalisation of the

‘‘pseudo-function’’ notion [9, 10], but valid for an analytic function in a non
compact region of the complex plane. On the other hand, we did not have to reject

any infinite part as Hadamard did. Relation (3.36) represents a regularised frac-
tional derivative that has some similarities with the Marchaud derivative [5]: for
0\ a\ 1, they are equal.

If one puts w = x�ejh, we can write:

2 bac means ‘‘the least integer less than or equal to a’’.

3.4 Analysis of Cauchy Formula 53



Da
hf ðzÞ ¼

1
Cð�aÞ

e�jha

Z

ch

f ðz� wÞ �
PN

0
f ðnÞðzÞð�1Þn

n!
wn

h i

waþ1
dw ð3:37Þ

where ch is a half straight line starting at w = 0 and making an angle h with the
positive real axis. As we can conclude there are infinite ways of computing the
derivative of a given function: these are defined by the chosen branch cut lines.
However, this does not mean that we have infinite different derivatives. It is not
hard to see that all the branch cut lines belonging to a given region of analyticity of
the function are equivalent and lead to the same result unless the integral may be
divergent if the function increases without bound.

3.5 Examples

3.5.1 The Exponential Function

To illustrate the previous assertions we are going to consider the case of the
exponential function.

Let f(z) = eaz, with a [ R. Inserting it into (3.36), it comes:

Da
hf ðzÞ ¼

1
Cð�aÞ

e�jhaeaz
Z

1

0

e�ax�ejh �
PN

0
an

n!
ejnhð�1Þnxn

h i

xaþ1
dx

With a variable change s = axejh, the above equation gives:

Da
hf ðzÞ ¼

1
Cð�aÞ

aaeaz
Z

1�aejh

0

e�s �
PN

0
ð�1Þn

n!
sn

h i

saþ1
ds ð3:38Þ

where the integration path is half straight line that forms an angle equal to h with
the positive real axis, in agreement with (3.36). The integral in (3.38) is almost the
generalised Gamma function definition [11, 12] and is a generalisation of Euler
integral representation for the gamma function. But this requires integration along
the positive real axis. However, the integration can be done along any ray with an
angle in the interval [0, p/2) [13]. To obtain convergence of this integral we must
have Re(aejh)[ 0. This means that a must necessarily be positive. This is coherent
with what was said in Chap. 2: the forward derivative {|h| [ [0, p/2)} of an
exponential exists only if the function behaves like ‘‘right’’ function going to zero
when z goes to -?. Returning to the above integral, we can write:

Da
hf ðzÞ ¼

1
Cð�aÞ

aaeaz
Z

1

0

e�s �
PN

0
ð�1nÞ
n!

sn
h i

saþ1ð Þ
ds ð3:39Þ
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The integral defines the value of the gamma function C(-a). In fact [11, 12] we
have

CðzÞ ¼

Z

1

0

sz�1 e�s �
X

N

0

ð�1Þn

n!
sn

" #

ds ð3:40Þ

if we maintain the convention made before: when z\ 0 the summation is zero. We
obtain then:

Da
h e

az½ � ¼ aaeaz ð3:41Þ

as expected. In the particular limiting case, a ? 0, we obtain Dh
a1 = 0 provided

that a[ 0. If a\ 0, the limit is infinite. The Grünwald–Letnikov definition
allowed us to obtain the same conclusions as seen. Now, consider the case where
a\ 0. To obtain convergence in (3.38) we must have h [ [p/2, 3p/2). This means
that the exponential must go to zero when z goes to +?. It is what we called a
‘‘left’’ function. The derivative is also expressed by (3.41) but the branch cut line
to define the power is now a half straight line in the right half complex plane: in
particular the positive real half axis. This is the same problem we found in
Sect. 2.7.3. We conclude then that (3.41) is the result given by the forward
derivative if a[ 0 and the one given by the backward derivative if a\ 0. This has
very important consequences. By these facts we must be careful in using (3.41). In
fact, in a first glance, we could be lead to use it to compute the derivatives of
functions like sin(z), cos(z), sinh(z) and cosh(z). But if we have in mind our
reasoning we can conclude immediately that those functions do not have finite
derivatives if z [ C.

In fact they use simultaneously the exponentials ez and e-z which derivatives
cannot exist simultaneously, as we just saw. However, we can conclude that
functions expressed by Dirichlet series f ðtÞ ¼

P1
0 akekk t with all the Re(kk)

positive or all negative have finite derivatives given by f ðaÞðtÞ ¼
P1

0 akðkkÞ
aekk t.

In particular functions with Laplace transform with region of convergence in the
right or left half planes have fractional derivatives.

Another interesting case is the cisoid f(t) = ejxt, x [ R+. Inserting it into (3.36)
again, it comes:

Da
hf ðtÞ ¼

1
Cð�aÞ

e�jhaejxt
Z

1

0

ejxx:e
jh

�
PN

0
ðjxÞn

n!
ejnhxn

h i

xaþ1
dx ð3:42Þ

With h = p/2, jxejh = -x and we obtain easily:

Da
f f ðtÞ ¼ ðjxÞaejxt
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It is not difficult to see that (3.42) remains valid if x\ 0 provided that we
remember that the branch cut line is the negative real half axis. We only have to
put h = -p/2

Da
f f ðtÞ ¼ ð�jxÞae�jxt

We can conclude then that:

Da
f cosðxtÞ ¼ xacosðxt þ ap=2Þ ð3:43Þ

This procedure corresponds to extend the validity of the forward derivative and
agrees with the results we presented in Sect. 2.7.4. For sin(xt), the procedure is
similar leading to

Da
f sinðxtÞ ¼ xa sinðxt þ ap=2Þ ð3:44Þ

When a = 1, we recover the usual formulae. The backward case would lead to
the results obtained in Sect. 2.7.3. We will not consider it again.

3.5.2 The Power Function

Let f(z) = zb, with b [ R. If b[ a, we will show that Da[zb] defined for every
z [ C does not exist, unless a is a positive integer, because the integral in (3.36) is
divergent for every h [ [-p, p). This has an important consequence: we cannot

compute the derivative of a given function by using its Taylor series and computing

the derivative term by term.
Let us see what happens for non integer values of a. The branch cut line needed

for the definition of the function must be chosen to be outside the integration
region. This is equivalent to say that the two branch cut lines cannot intersect. To
use (3.36) we compute the successive integer order derivatives of this function that
are given by:

Dnzb ¼ ð�1Þnð�bÞnz
b�n ð3:45Þ

Now, we have:

Da
hz

b ¼
e�jha

Cð�aÞ

Z

1

0

ð�x � ejh þ zÞb �
PN

0
ð�1Þnð�bÞnz

b�n

n!
ejnhxn

h i

xaþ1
dx ð3:46Þ

With a substitution s = x�ejh/z, we obtain:

Da
hz

b ¼
1

Cð�aÞ
zb�a

Z

1 ejh=z

0

ð1� sÞb �
PN

0
ð�1Þnð�bÞn

n!
sn

h i

saþ1
ds ð3:47Þ
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To become simpler the analysis let us assume that h = 0 and z [ R+. We
obtain:

Da
f z

b ¼
1

Cð�aÞ
zb�a

Z

1

0

ð1� sÞb �
PN

0
ð�1Þnð�bÞn

n!
sn

h i

saþ1
ds ð3:48Þ

Let us decompose the integral

Z

1

0

ð1� sÞb �
PN

0
ð�1Þnð�bÞn

n!
sn

h i

saþ1
ds ¼

Z

1

0

ð1� sÞb �
PN

0
ð�1Þnð�bÞn

n!
sn

h i

saþ1
ds

þ

Z

1

1

ð1� sÞb �
PN

0
ð�1Þnð�bÞn

n!
sn

h i

saþ1
ds

As shown in Ortigueira [14], the first integral is a generalised version of the
Beta function B(-a, b ? 1) valid for a [ R and b[-1. But the second is
divergent. We conclude that the power function defined in C does not have
fractional derivatives.

3.5.3 The Derivatives of Real Functions

As we are mainly interested in real variable functions we are going to obtain the
formulae suitable for this case. Now, we only have two hypotheses: h = 0 or
h = p.

3.5.3.1 h 5 0: Forward Derivative

This corresponds to choosing the real negative half axis as branch cut line.
Substituting h = 0 into (3.36), we have:

Da
f f ðzÞ ¼

1
Cð�aÞ

Z

1

0

f ðz� xÞ �
PN

0
f ðnÞðzÞ
n!

ð�xÞn
h i

xaþ1
dx ð3:49Þ

As this integral uses the left hand values of the function, we will call this
forward or direct derivative again in agreement with Sect. 2.3.

3.5.3.2 h 5 p: Backward Derivative

This corresponds to choosing the real positive half axis as branch cut line.
Substituting h = p into (3.36) and performing the change x ? -x, we have:
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Da
bf ðzÞ ¼

�jpa

Cð�aÞ

Z

1

0

f ðxþ zÞ �
PN

0
f ðnÞðzÞ
n!

xn
h i

xaþ1
dx ð3:50Þ

As this integral uses the right hand values of the function, we will call this
backward or reverse derivative in agreement with Sect. 2.3 again.

3.5.4 Derivatives of Some Causal Functions

We are going to study the causal power function and exponential. Although we
could do it using the LT as we will see in the next section, we are going to do it
here using the relation (3.49). Let f(t) = tbu(t). As seen above:

DntbuðtÞ ¼ ð�1Þnð�bÞnt
b�nuðtÞ

that inserted in (3.49) gives

Da
f f ðtÞ ¼ tbuðtÞ

1
Cð�aÞ

Z

t

0

ð1� x=tÞb �
PN

0
ð�1Þnð�bÞnt

�n

n!
ð�xÞn

h i

xaþ1
dx

that is converted in the next expression through the substitution s = x/t

Da
f t
b ¼ tb�auðtÞ

1
Cð�aÞ

Z

1

0

ð1� sÞb �
PN

0
ð�1Þnð�bÞn

n!
ð�sÞn

h i

saþ1
ds:

The above integral is a representation of the beta function, B(-a,b ? 1), for
b[-1 {see [14]}. But

Bð�a; bþ 1Þ ¼
Cð�aÞCðbþ 1Þ
Cðb� aþ 1Þ

and then

Da
f t
b ¼

Cðbþ 1Þ
Cðb� aþ 1Þ

tb�auðtÞ ð3:51Þ

that coincides with the result obtained in (2.76).
Now let us try the exponential function, f(t) = eatu(t). Inserting in (3.49) we

obtain

Da
f e

atuðtÞ ¼ �eatuðtÞ
1

Cð�aÞ

Z

t

0

P1
Nþ1

ð�aÞnxn

n!

h i

xaþ1
dx
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Assuming that the series converges uniformly, we get easily

Da
f e

atuðtÞ ¼ �eatuðtÞ
1

Cð�aÞ

X

1

Nþ1

ð�aÞntn�a

n!ðn� aÞ

" #

ð3:52Þ

Alternatively we can use the causal part of the McLaurin series and compute the
derivative of each term. This is not a contradiction with our affirmation because the
terms of the series are causal powers.

3.6 Derivatives of Functions with Laplace Transform

Consider now the special class of functions with Laplace Transform. Let f(t) be
such a function and F(s) its LT, with a suitable region of convergence, Rc. This
means that we can write

f ðtÞ ¼
1
2pj

Z

aþj1

a�j1

FðsÞestds ð3:53Þ

where a is a real number inside the region of convergence. Inserting (3.53) inside
(3.49) and permuting the integration symbols, we obtain:

Da
f f ðzÞ ¼

1
2pjCð�aÞ

Z

aþj1

a�j1

FðsÞesz
Z

1

0

e�sx �
PN

0
ðsxÞn

n!

h i

xaþ1
dx ds ð3:54Þ

Now we are going to use the results presented above in Sect. 3.5. If Re(s)[ 0,
the inner integral is equal to C(-a)�sa, if Re(s)\ 0 it is divergent. We conclude
that:

LT ½Da
f f ðtÞ� ¼ saFðsÞ for ReðsÞ[ 0 ð3:55Þ

a well known result.
Now, insert (3.53) inside (3.50) and permute again the integration symbols to

obtain

Da
bf ðzÞ ¼

e�jpa

2pjCð�aÞ

Z

aþj1

a�j1

FðsÞesz
Z

1

0

esx �
PN

0
ðsxÞn

n!

h i

xaþ1
dx ds ð3:56Þ

If Re(s)\ 0 and considering the result obtained in Sect. 3.5 {see Sect. 2.7 also}
the inner integral is equal to C(-a)�sa, if Re(s)[ 0 it is divergent. We conclude
that:

LT ½Da
bf ðtÞ� ¼ saFðsÞ for ReðsÞ\0 ð3:57Þ
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We confirmed the results we obtained in Chap. 2 stating the enlargement the
applicability of the well known property of the Laplace transform of the derivative.
The presence of the factor e-jpa may seem strange but is a consequence of
assuming that H(s) = sa is the common expression for the transfer function of the
causal and anti-causal differintegrator. We must be careful because in current
literature that factor has been removed and the resulting derivative is called
‘‘right’’ derivative. According to the development we did that factor must be
retained. It is interesting to refer that this was already none by Liouville.

3.7 Generalized Caputo and Riemann–Liouville Derivatives

for Analytic Functions

The most known and popular fractional derivatives are almost surely the
Riemann–Liouville (RL) and the Caputo (C) derivatives [5, 8, 15]. Without con-
sidering the reserves put before [14], we are going to face two related questions:

• Can we formulate those derivatives in the complex plane?
• Is there a coherent relation between those derivatives and the incremental ratio
based Grünwald–Letnikov (GL)?

As expected attending to what we wrote in Chap. 2 about these derivatives, the
answers for those questions are positive. We proceed by constructing formulations
in the complex plane obtained from the GL as we did in Sect. 3.5.

3.7.1 RL and C Derivatives in the Complex Plane

As we showed in Sect. 2.6, the generalised GL derivative verifies

Da
h D

b
hf ðtÞ

h i

¼ D
b
h Da

hf ðtÞ
� 	

¼ D
aþb
h f ðtÞ ð3:58Þ

provided that both derivatives (of orders a and b) exist. This is what we called
before the semi group property. This is important and not enjoyed by other
derivatives.

In particular we can put b = n [ Z+ and e = n - a[ 0 and we are led to the
following expressions

Da
hf ðzÞ ¼ Dn ejhe lim

hj j!0

X

1

k¼0

ð�1Þk k
�e

� �

f ðz� khÞ hj je
" #

ð3:59Þ

and

Da
hf ðzÞ ¼ ejhe lim

hj j!0

X

1

k¼0

ð�1Þk k
�e� �

f ðnÞðz� khÞ hj je ð3:60Þ
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that we can call mix GL-RL and GL-C.
According to what we showed in Sect. 3.3 the GL derivative leads to the

generalised Cauchy for analytic functions that obviously verify also the semi group
property. So, we can write:

Da
hf ðzÞ ¼

Cða� bþ 1Þ
2pj

Z

C

f ðbÞðwþ zÞ
1

wa�bþ1
dw ð3:61Þ

Let us choose again, b = n [ Z+ and e = n - a[ 0. We obtain:

Da
hf ðzÞ ¼

Cð�eþ 1Þ
2pj

Z

C

f ðnÞðwþ zÞwe�1dw ð3:62Þ

or

Da
hf ðzÞ ¼

Cð�eþ 1Þ
2pj

Z

Cd

f ðnÞðwÞðw� zÞe�1dw ð3:63Þ

that can be considered as a Caputo-Cauchy derivative, provided the integral exists.
The integration paths C and Cd are U-shaped lines as shown in Fig. 3.2. The
representation (3.60) is valid because f(z) is analytic and we assumed that the GL
derivative exists. So (3.61) and (3.62) too.

Consider again the integration path in Fig. 3.3. As before, we can decompose (3.61)
into three integrals along the two half-straight lines and the circle. We have, then:

Da
hf ðzÞ ¼

Cð�eþ 1Þ
2pj

Z

C1

þ

Z

C2

þ

Z

C3

2

6

4

3

7

5
f ðnÞðwþ zÞwe�1dw

We do not need to continue because we can use (3.36). This is valid because
f(z) being analytic its nth order derivative is also. However it is interesting to
pursue due to some interesting details. Thus we continue.

Over C1 we have w = x�ej(h-p), while over C3 we have w = x�ej(h+p), with
x [ R+, over C2 we have w = qeju, with u [ (h - p,h ? p). We can write, at last:

Da
hf ðzÞ ¼

Cð�eþ 1Þ
2pj

¼

Z

q

1

f ðnÞð�x � ejh þ zÞejeðh�pÞxe�1dx

þ
Cð�eþ 1Þ

2pj

Z

q

1

f ðnÞð�x � ejh þ zÞejeðhþpÞxe�1dx

þ
Cð�eþ 1Þ

2pj
¼ qe

Z

hþp

h�p

f ðnÞðq � eju þ zÞejeuj du
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For the first and second terms, we have:

Z

q

1

f ðnÞð�x � ejh þ zÞejeðh�pÞ:xe�1dxþ
Z

1

q

f ðnÞð�x � ejh þ zÞejeðhþpÞxe�1dx

¼ ejeh � 2j � sinðepÞ
Z

1

q

f ðnÞð�x � ejh þ zÞxe�1dx

For the third term, we begin by noting that the analyticity of the function
f(z) allows us to write:

f ðnÞð�x � ejh þ zÞ ¼
X

1

n

ð�1Þnð�kÞnf
ðkÞðzÞ

k!
ð�1Þkxk�nejkh ð3:64Þ

for x\ r [ R+. We have then

jqe
Z

hþp

h�p

f ðnÞðq �ejuþzÞejeudu¼ jqe
X

1

n

ð�1Þnð�kÞnf
ðkÞðzÞ

k!
ð�1Þkqk�n

Z

hþp

h�p

ejðkþeÞudu

Performing the integration, we have:

jqe
Z

hþp

h�p

f ðnÞðq � eju þ zÞejeudu ¼ 2j � ejehsinðepÞ

�
X

1

n

ð�1Þnð�kÞnf
ðkÞðzÞ

k!
ð�1Þk

ejkhqk�nþe

ðk þ eÞ

As q decreases to zero, the summation in the last expression goes to zero. This
means that when q ? 0

Da
hf ðzÞ ¼ ejeh

1
CðeÞ

Z

1

0

f ðnÞð�x � ejh þ zÞxe�1dx ð3:65Þ

This can be considered as a generalised Caputo derivative. In fact, with h = 0,
we obtain:

Da
f f ðzÞ ¼

1
CðeÞ

Z

1

0

f ðnÞðz� xÞ xe�1dx ¼
1

CðeÞ

Z

z

�1

f ðnÞðsÞ ðz� sÞe�1ds ð3:66Þ

that is the forward Caputo derivative in R.
Now, return to (3.61) and put b = 0 and a = n - e, with e[ 0, again:
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Da
hf ðzÞ ¼

Cðaþ 1Þ
2pj

Z

Cd

f ðwÞ
1

ðw� zÞn�eþ1 dw

¼
Cðaþ 1Þ

2pj

Z

C

f ðwÞðw� zÞe�n�1dw ð3:67Þ

But, as

ðw� zÞe�n�1 ¼
1

ð1� eÞn
Dn

z ðw� zÞe�1 ð3:68Þ

we obtain, by commuting the operations of derivative and integration

Da
h f ðzÞ ¼ Dn Cð�eþ 1Þ

2pj

Z

C

f ðwÞ ðw� zÞe�1dw

2

4

3

5 ð3:69Þ

We may wander about the validity of the above commutation. We remark that
the resulting integrand function has a better behaviour than the original, ensuring
that we gain something on doing such operation. The formula (3.69) is the com-
plex version of the Riemann–Liouville derivative that we can write in the format

Da
hf ðzÞ ¼ Dn Cð�eþ 1Þ

2pj

Z

C

f ðwþ zÞwe�1dw

2

4

3

5 ð3:70Þ

Using again the Hankel integration path, we obtain easily:

Da
h f ðzÞ ¼ ejehDn 1

CðeÞ

Z

1

0

f ð�x � ejh þ zÞxe�1dx

2

4

3

5 ð3:71Þ

that is a generalised RL derivative. With h = 0, we can obtain the usual ‘‘left’’
formulation of the RL in R. With h = p, we obtain aside a factor the ‘‘right’’ RL
derivative.

3.7.2 Half Plane Derivatives

Let us assume that f(z) : 0 for Re(z)\ 0. In this case, the summation in (2.32)
{see (3.59) and (3.60)} goes only to K = bRe(z)/Re(h)c and the integration path in
(3.27) is finite, closed and completely in the right half complex plane. In Fig. 3.4
we assumed that z and h are real.

Consider a sequence hn (n = 1, 2, 3, …) going to zero. The number of poles
inside the integration path is K, but in the limit, the quotient of two gamma
functions will give rise to a multivalue expression that forces us to insert a branch
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cut line that starts at z and ends at -?. Over this line the integrand is not
continuous. So, we obtain:

Da
hf ðzÞ ¼

Cðaþ 1Þ
2pj

Z

C

f ðwÞ
1

ðw� zÞaþ1 dw

þ
Cðaþ 1Þ

2pj

Z

c

f ðwÞ
1

ðw� zÞaþ1 dw ð3:72Þ

where C is an open contour that encircles the branch cut line and c is a small line
passing at w = 0 whose length we will reduce to zero {see Fig. 3.5}. However, we
prefer to use the analogue to the Hankel contour. The contour c is a short straight
line over the imaginary axis. Although the integrand is not continuous, the phase
has a 2p(a ? 1) jump, the second integral above is zero. To compute the others,
we are going to do a translation to obtain an integral similar to the used above.

As before and again for reducing steps, we will assume already that the straight
lines are infinitely near to each other. We have, then:

Fig. 3.4 The contour used in
computing the half plane
derivatives

Fig. 3.5 The Hankel contour
used in computing the
derivative defined in Eq. 3.73
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Da
hf ðzÞ ¼

Cðaþ 1Þ
2pj

Z

C1

þ

Z

C2

þ

Z

C3

2

6

4

3

7

5
f ðwþ zÞ

1
waþ1

dw ð3:73Þ

Over C1 we have w = xej(h-p), while over C3 we have w = x�ej(h+p), with
x [ R+, over C2 we have w = qeju, with u [ (h - p, h ? p).

Let f = |z|. We can write, at last:

Da
hf ðzÞ ¼

Cðaþ 1Þ
2pj

Z

q

f

f ð�x � ejh þ zÞ
e�jaðh�pÞ

xaþ1
dx

þ
Cðaþ 1Þ

2pj

Z

f

q

f ð�x � ejh þ zÞ
e�jaðhþpÞ

xaþ1
dx

þ
Cðaþ 1Þ

2pj
1
qa

Z

hþ1

h�p

f ðq � eju þ zÞe�jauj du ð3:74Þ

For the first term, we have:

Z

q

f

f ðx � ejðh�pÞ þ zÞ
e�jaðh�pÞ

xaþ1
dxþ

Z

f

q

f ð�x � ejðhþpÞ þ zÞ
e�jah

xaþ1
dx

¼ e�jah � ½ejpa � e�jpa�

Z

f

q

f ð�x � ejh þ zÞ
1

xaþ1
dx

¼ e�jah � 2j � sinðapÞ
Z

f

q

f ð�x � ejh þ zÞ
1

xaþ1
dx ð3:75Þ

For the second term, we have

j
1
qa

Z

hþp

h�p

f ðq � eju þ zÞe�jaudu ¼ j
1
qa

X

1

0

f ðnÞðzÞ

n!
qn

Z

hþp

h�p

ejðn�aÞudu ð3:76Þ

Performing the integration, we have:

j
1
qa

Z

hþp

h�p

f ðq � eju þ zÞe�jaudu ¼ �2j � e�jahsinðapÞ
X

1

0

f ðnÞðzÞ

n!

ejðn�aÞhqn�a

ðn� aÞ
ð3:77Þ
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As before:

X

1

0

f ðnÞðzÞ

n!
�
ejðn�aÞhqn�a

ðn� aÞ
¼ �

X

1

0

f ðnÞðzÞ

n!
ejnh

Z

1

q

xn�a�1dxþ
X

1

Nþ1

f ðnÞðzÞ

n!

ejnhqn�a

ðn� aÞ

2

6

4

3

7

5

Substituting it in (3.77) and joining to (3.75) we can write:

Da
hf ðzÞ ¼ K

Z

f

q

f ð�x � ejh þ zÞ �
PN

0
f ðnÞðzÞ
n!

ejnhxn
h i

xaþ1
dx

� K �
X

1

Nþ1

f ðnÞðzÞ

n!
ð�1Þn

qn�a

ðn� aÞ
þH ð3:78Þ

with

H ¼ �
X

N

0

f ðnÞðzÞ

n!
ejnh

Z

1

f

xn�a�1dx ¼ z�a
X

N

0

f ðnÞðzÞ

n!

zn

n� a

If a\ 0, we make the three summations equal to zero. Using the reflection
formula of the gamma function we obtain for K

K ¼ �
Cðaþ 1Þe�jha

p
sinðapÞ ¼

e�jha

Cð�aÞ
ð3:79Þ

Now let q go to zero. The second term on the right hand side in (3.78) goes to
zero and we obtain:

Da
hf ðzÞ ¼ K �

Z

f

0

f ð�x � ejh þ zÞ �
PN

0
f ðnÞðzÞ
n!

ejnhxn
h i

xaþ1
dxþ

X

N

0

f ðnÞðzÞ

n!

zn�a

n� a
ð3:80Þ

This result shows that in this situation and with a[ 0 we have a regularised
integral and an additional term. This means that it is somehow difficult to compute
the fractional derivative by using (3.80): a simple expression obtained from the
general GL derivative

Da
hf ðzÞ ¼ e�jha lim

hj j!0

P f=hb c
k¼0 ð�1Þk

a

k

� �

f ðz� khÞ

hj ja
ð3:81Þ

leads to a somehow complicated formation in (3.80). However, if a\ 0 we obtain:

Da
hf ðzÞ ¼ K �

Z

f

0

f ðx � ejh þ zÞ

xaþ1
dx ð3:82Þ
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So, we must avoid (3.80). To do it, remark first that, from (3.58) we have:

Da
hf ðzÞ ¼ Dn

h D�e
h f ðtÞ

� 	

¼ D�e
h Dn

hf ðtÞ
� 	

ð3:83Þ

This means that we can compute the a order derivative into two steps. As one
step is a fractional anti-derivative, we avoid (3.80) and use (3.82). The order of the
steps: computing the integer order derivative before or after the anti-derivative
leads to

Da
hf ðzÞ ¼ K �

Z

f

0

f ðnÞðx � ejh þ zÞ

xaþ1
dx ð3:84Þ

and

Da
hf ðzÞ ¼ K � Dn

Z

f

0

f ðx � ejh þ zÞ

xaþ1
dx ð3:85Þ

that are the C and RL formulations in the complex plane. However, from (3.83) we
can write also:

Da
hf ðzÞ ¼ e�jha lim

hj j!0

P f=hb c
k¼0 ð�1Þk

�e

k

� �

f ðnÞðz� khÞ

hj ja
ð3:86Þ

and

Da
hf ðzÞ ¼ e�jha lim

hj j!0

P f=hb c
k¼0 ð�1Þk

�e

k

� �

f ðz� khÞ

hj ja

2

6

6

4

3

7

7

5

ðnÞ

ð3:87Þ

These results mean that: we can easily define C-GL (3.86) and RL-GL (3.87)
derivatives. Attending to the way we followed for going from GL to C and RL,
we can conclude that, in the case of analytic functions, the existence of RL or
C derivatives ensure the existence of the corresponding GL. The reverse may
be not correct, since the commutation of limit and integration in (3.22) and
(3.23) may not be valid. It is a simple task to obtain other decompositions of a,
leading to valid definitions. One possibility is the Miller-Ross sequential dif-
ferintegration [7]:

DaxðtÞ ¼
Y

N

i¼1

Dri

" #

xðtÞ ð3:88Þ

with a = Nr. This is a special case of multi-step case proposed by Samko et al. [5]
and based on the Riemann–Liouville definition:
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DaxðtÞ ¼
Y

N

i¼1

Dri

" #

xðtÞ ð3:89Þ

with

a ¼
X

N

i¼1

ri

" #

� 1 and 0\ri � 1 ð3:90Þ

These definitions suggest us that, to compute a a derivative, we have infinite
ways, depending on the steps that we follow to go from 0 (or -m) to a, that is we
express a as a summation of N reals ri (i = 0, …, N - 1), with the ri not nec-
essarily less or equal to one.

3.8 Conclusions

We started from the Grünwald–Letnikov derivative, obtained an integral formu-
lation representing the summation. From it and by permuting the limit and the
integration we obtained the general Cauchy derivative. From this and using the
Hankel contour as integration path we arrived at a regularized derivative. This is
similar to Hadamard definition but was obtained without rejecting and infinite part.
With the presented methodology we could also obtain the Riemann–Liouville and
Caputo derivatives and showed also that they can be computed with the Grün-
wald–Letnikov definition.
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Chapter 4

Fractional Linear Shift-Invariant Systems

4.1 Introduction

The applications of Fractional Calculus to physics and engineering are not recent:
the beginning of the application to viscosity dates back to the thirties in the past
century. During the last 20 years the application domains of fractional calculus
increased significantly: seismic analysis [1], dynamics of motor and premotor
neurones of the oculomotor systems [2], viscous damping [3, 4], electric fractal
networks [5], fractional order sinusoidal oscillators [6] and, more recently, control
[7, 8, 9], and robotics [10]. One of the areas where such can be verified is the
Biomedical Engineering [11, 12]. The now classic fractional Brownian motion
(fBm) modeling is an application of the fractional calculus [13–15]. We define a
fractional noise that is obtained through a fractional derivative of white noise.
The fBm is an integral of the fractional noise.

Although the fractional linear systems have an already long history, the first
formal presentation of the Fractional Linear System Theory was done in 2000 [16].
Most of elementary books on Signals and Systems consider only the integer
derivative order case and treat the corresponding systems, studying their impulse,
step and frequency responses and their Transfer Function. It is not such as simple
matter, if one substitutes fractional derivatives for the common derivatives.
The objective of this chapter is to treat the Fractional Continuous-Time Linear
Shif-Invariant Systems as it is done with the usual systems. As we will see the
approach deals with very well known concepts. We merely generalise them to
the fractional case.

M. D. Ortigueira, Fractional Calculus for Scientists and Engineers,
Lecture Notes in Electrical Engineering, 84, DOI: 10.1007/978-94-007-0747-4_4,
� Springer Science+Business Media B.V. 2011
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4.2 Description

The most common and useful continuous-time linear systems are the lumped
parameter systems that are described by linear differential equations. The simplest
of these systems are the integrators, differenciators and constant multipliers
(amplifiers/attenuators). The referred lumped parameter linear systems are asso-
ciations (cascade, parallel or feedback) of those simple systems. Here, we will
study the systems that result from the use of fractional differintegrators or
integrators and that are described by linear fractional differential equations.
For now, we will assume that the coefficients of the equation are constant, so the
corresponding system will be a fractional linear time-invariant (FLTI) system.
With this definition, we are in conditions to define and compute the Impulse

Response and Transfer Function.
According to what we just said, we will consider FLTI systems described by a

differential equation with the general format:

X

N

n¼0

anD
mny tð Þ ¼

X

M

m¼0

bmD
mmx tð Þ ð4:1Þ

where the mn are the differintegration orders that, in the general case, are complex
numbers. Here, we will assume they are positive real numbers. Let h(t) be the
output of the system to the impulse (impulse response)

X

N

n¼o

anD
mnhðtÞ ¼

X

M

m¼0

bmD
mmdðtÞ ð4:2Þ

and convolve both members in (4.2) with x(t)

X

N

n¼0

anD
mnh tð Þ � x tð Þ ¼

X

M

m¼0

bmD
mmd tð Þ � x tð Þ

As known, x(t) * d(t) = x(t) for almost all the interesting functions, namely for
tempered distributions that we will assume to deal with. On the other hand

Dah tð Þ½ � � x tð Þ ¼ Da h tð Þ � x tð Þ½ �

and comparing with (4.1) we conclude that the output is given by y tð Þ ¼ x tð Þ � h tð Þ;
a well known result. This brings an important consequence:

The exponentials defined in R are eigenfunctions of the FLTI systems.
Let us see why. Assume that x(t) = est with t 2 R: Then

y tð Þ ¼ est
Z

þ1

�1

h sð Þe�ss ds ¼ H sð Þ � est ð4:3Þ
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where H(s) is the transfer function that is the LT of the impulse response as in the
integer order case. Inserting x(t) = est and y(t) as given by (4.3) into (4.2) we
obtain an explicit representation for the transfer function

H sð Þ ¼

PM
m¼0 bms

mm

PN
n¼0 ans

mn
ð4:4Þ

provided that Re(s)[ 0 or Re(s)\ 0. So (4.4) represents two different systems
depending on the adopted region of convergence. In the following we will assume
to deal with causal systems, Re(s)[ 0.

If we let s ! jx and use the results obtained in Sect. 2.7.4 we obtain the
Frequency Response, H(jx),

H sð Þ ¼

PM
m¼0 bm jxð Þmm

PN
n¼0 an jxð Þmn

ð4:5Þ

We must be careful about the definition of the fractional power of jx (see
Sect. 2.7.4). With (4.5) we can get the Bode diagrams as in the usual systems. It is
interesting to remark that the asymptotic amplitude Bode diagrams are constituted
by straight lines with slopes that, at least in principle, may assume any value,
contrarily to the usual case where the slopes are multiples of 20 dB/decade.

4.3 From the Transfer Function to the Impulse Response

To obtain the Impulse Response from the Transfer Function we proceed almost as
usually. However, we must be careful. Let us begin by considering the simple case
of a differintegrator:

H sð Þ ¼ sa; a 6¼ 0 ð4:6Þ

sa is a multivalued expression defining an infinite number of Riemann surfaces.
Each Riemann surface defines one function. Therefore, (4.6) can represent an
infinite number of linear systems. However, only the principal Riemann surface,
fz : �p\ arg zð Þ� pg; may lead to a real system. Constraining this function by
imposing a region of convergence, we define a transfer function. The impulse
response was computed in Chap. 2 and is given by:

Da
f d tð Þ ¼

t�a�1

C �að Þ
u tð Þ ð4:7Þ

Now return to (4.4). The general case is hard to solve because it is difficult to
find the poles of the system. For now, we will consider the simpler case where

(a) the mn are rational numbers that we will write in the form pn/qn. Let p and q be
the least common multiples of the pn and qn, then mn ¼ np=q; where n and
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q are positive integer numbers. So, mn ¼ n � m; with m ¼ 1=q (a differential
equation with m ¼ 1=2 is said semi-differential). The coefficients and orders do
not coincide necessarily with the previous ones, since some of the coefficients
can be zero1

(b) the mn are irrational numbers but multiples of a m; 0� m� 1: When comparing
with the integer order case, we performed a substitution s ? sm. This implies
that the interval½0; pÞ is transformed into the interval ½0; pmÞ; meaning that
m B 1

Then, Eqs. 4.1 and 4.4 assume the forms:

X

N

n¼0

anD
nmy tð Þ ¼

X

M

m¼0

bmD
mmx tð Þ ð4:8Þ

and

H sð Þ ¼

PM
m¼0 bms

mm

PN
n¼0 ans

nm
ð4:9Þ

With a Transfer Function as in (4.9) we can perform the inversion quite easily, by
following the steps:

Transform H(s) into H(z), by substitution of sv for z2

(1) The denominator polynomial in H(z) is the indicial polynomial or character-
istic pseudo-polynomial. Perform the expansion of H(z) in partial fractions.

(2) Substitute back sv for z, to obtain the partial fractions in the form:

F sð Þ ¼
1

sm � pð Þk
k ¼ 1; 2; . . . ð4:10Þ

(3) Invert each partial fraction.
(4) Add the different partial Impulse Responses.

Now, go a step ahead and consider the simple case corresponding to k = 1 in
the fraction (4.10). Let f(t) be the inverse Laplace transform of F sð Þ ¼ 1

sm�p
: The

k[ 1 case in (4.10) does not present great difficulties except some additional
work. We can use the convolution to solve the problem. Alternatively we can
differentiate. For example:

1

sm � pð Þ2
¼ �

1
ms
1� m

d
ds

1
sm � p

� �

ð4:11Þ

1 For example, the equation: ½aD1=3 þ bD1=2�yðtÞ ¼ xðtÞ transforms into: ½bD3:1=6 þ aD2:1=6þ
0:D1=6�yðtÞ ¼ xðtÞ:
2 We are assuming that H(z) is a proper fraction; otherwise, we have to decompose it in a sum of
a polynomial (inverted separately) and a proper fraction.
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LT�1 1

ðsm � pÞ2

" #

¼
1
m
D1�m½tm � f ðtÞ� ð4:12Þ

We do not go further, since this example shows how we can proceed in the general
case.

There is another alternative, possibly simpler. The inverse of F(s), f(t), is a
function of p. To enhance this fact, write

fp tð Þ ¼ LT�1 1
sm � pð Þ

� �

Continue by computing the first order derivative relatively to p (denoted by Dp)

Dpfp tð Þ ¼ LT�1 1

sm � pð Þ2

" #

This can be repeated and generalised.
Return to the k = 1 case and consider the denominator. The equation sm ¼ p has

infinite solutions that are on a circle of radius pj j1=m: However, in the general case,
we cannot assure the existence of one pole in the principal Riemann surface. If h0
is the argument of p in (4.10), we must have h0j j\pm: This has implications in the
inverse transform.

4.4 Partial Fraction Inversion

4.4.1 By the Inversion Integral

We are going to present the steps to inverting a transfer function of a fractional
causal system of the type (4.9),

hðtÞ ¼
1
2pj

Z

aþj1

a�j1

F sað Þest ds ð4:13Þ

where we enhanced the sa dependence of the function. We will assume that

lim
s!0

sF sað Þ ¼ 0; a[ 0 ð4:14Þ

and

lim
s!1

F sað Þ ¼ 0; a[ 0 ð4:15Þ
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in the cut plane arg sð Þj j\p and also that the function has N poles in the left half
complex plane and in the region surrounded by the integration contour. To do the
integration we used the residue theorem and the closed integration path shown in
Fig. 4.1. According to the condition (4.14), the term corresponding to the short
circle goes to zero as q ! 0 and the integral along the larger quarter circles go also
to zero as R ! 1: Reducing steps, we arrive at

h tð Þ ¼
X

N

1

Ri þ
1
2pj

Z

0

1

F rae�jap
� �

e�rt drþ
1
2pj

Z

1

0

F raejap
� �

e�rt dr

where Ri are the residues of FðsaÞest and finally

h tð Þ ¼
X

N

1

Ri �
1
2pj

Z

1

0

F raejap
� �

� F rae�jap
� �� �

e�rs dr ð4:16Þ

This formula can be used to invert s�aða[ 0Þ very easily [17].
Let us apply the above formula to invert the partial fraction 1

sa�pð Þ: Start by

stating that we will work in the principal branch of the multivalue expression sa.
We have two situations: if arg pð Þj j � pa; we have a pole in the assumed domain; if
pa\ arg pð Þj j\p; the function does not have any pole. Applying the above result
for the first case we obtain immediately:

h tð Þ ¼
p1=a�1

a
ep

1=atu tð Þ þ
1
p

Z

1

0

ra sin pað Þ

r2a � 2rap cos pað Þ þ p2
e�rt dru tð Þ ð4:17Þ

If 1
sa�pð Þ does not have any pole, the first term on the right hand side in (4.17) is

zero. The expression (4.17) is useful for numerical implementations. On the other

Fig. 4.1 Integration path for
inverting F(sa)
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hand it gives us a very interesting information. The impulse response corre-
sponding to 1

sa�pð Þ has two terms with completely different behaviour:

(a) the first expresses the short range memory
(b) the second is concerned with the long range memory

This means that we can combine all the terms belonging to all the partial
fractions of H(s) into a sum of two partial transfer functions: one is a rational
function of s and states the short time behaviour while the other is more involved
and is responsible for the long range memory of the system.

To look for the possible pole of the partial fraction we must solve the equation

sa ¼ p

To do it, write it in the format

sj jaejau ¼ pj jej arg pð Þ

As u must be inside the interval ð�p; pÞ; arg(p) must be in the interval ð�ap; apÞ;
since we considered the first branch of the power function. This means that we
must constrain a to be in the interval (0,1].

4.4.2 By Series Expansion

To invert (4.10) when a is any real or complex it is usually used the Mittag–Leffler
function. However, the so-called a-exponential function, closely related to that, is
more useful [18]. We are going to see how we can obtain it. Let us return back to
(4.10) with k = 1. As it is well known the integration path for the inverse Laplace
transform is any straight line in the region of convergence. So, consider that

Re sð Þ[ pj j1=a: So, in this region, we can write:

F sð Þ ¼ s�a
X

1

n¼0

pns�na ¼
X

1

n¼1

pn�1s�na

Before going further we must remark that the above expansion is valid for both

causal and anti-causal cases, because it converges for sj j[ pj j1=a: So we have to
decide which one to use, but this also means that we can obtain the unstable
solution. With this in mind, we are going to do the inversion, considering the
causal solution. All the terms in the series are analytic for Re sð Þ[ 0 and their
inverse LT is known from Chap. 2. Inverting term by term the above series we
obtain the a-exponential function

f tð Þ ¼ em ptð Þ ¼
X

1

n¼1

pn�1tna�1

C nað Þ
u tð Þ ð4:18Þ
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that is a generalization of the causal exponential. Expression (4.18) suggests us to
work with the step response instead of the impulse response to avoid working with
non-regular functions near the origin.

In deducing (4.18) we did not impose any constraint on a: it is valid for any real
or complex value. However, for a� 2; it does not have any interest because in this
case the partial fraction (4.10) will have at least one pole in the right half plane and
so the system is unstable. We will return to this subject later.

4.4.3 Rational Case

If a is a rational number of the type m/n with m; n 2 Zþ we can obtain a simpler
expression. We are going to proceed to the inversion of the partial fraction by
using a well known result referring the sum of the first n terms of a geometric
sequence we obtain3:

F sð Þ ¼
1

sm=n � pð Þ
¼

Pn
k¼1 p

k�1sp 1�k=nð Þ

sm � pn
ð4:19Þ

As in this case we can always decompose the above fractions into a sum of
m simpler fractions, we are going to consider only the 1/n case. We have

F sð Þ ¼
1

s1=n � pð Þ
¼

Pn
k¼1 p

k�1s1�k=n

s� pn
ð4:20Þ

That can be written as

F sð Þ ¼
1

s1=n � pð Þ
¼

pn�1

s� pn
þ

Pn�1
k¼1 p

k�1s1�k=n

s� pn
ð4:21Þ

We conclude that the LT inverse of a partial fraction as FðsÞ ¼ 1
s1=n�p

is the sum

of an exponential pq�1ep
n�t � u tð Þ and a linear combination of its n - 1 fractional

derivatives of orders 1 - k/n, k = 1, 2, …, n-1. These can be computed using the
rules for the derivatives of the causal power function presented in Chap. 1. This
result agrees with (4.17).

Caution: (4.21) must only be used when ‘‘p’’ is a pole, otherwise, we are using
derivatives of an increasing exponential function. Although we expect that the
resulting function goes to zero with increasing t, this may not happen for numerical
reasons. Even a direct implementation of (4.18) has severe convergence problems.

3 With reason r = b/x, we obtain:
Pn�1

j¼0 r j ¼ 1�rn

1�r
)

Pn�1
j¼0 b j � x�j ¼ 1�bn :x�n

1�b=x or xn � bn ¼

ðx� bÞ�
Pn

j¼1 b
j�1 � xn�j from where 1

x�b
¼

Pn

j¼1
bj�1 �xn�j

xn�bn
:
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4.5 Stability of Fractional Linear Time Invariant

Continuous-Time Systems

The study of the stability of the FLTI systems we are going to do is based on
the BIBO4 stability criterion that implies stability when the impulse response is
absolutely integrable.

The simplest FLTI system is the system with transfer function H sð Þ ¼ sm with
s belonging to the principal Riemann surface. If m[ 0; the system is definitely
unstable, since the impulse response is not absolutely integrable, even in a finite
interval. If �1\m\0; the impulse response remains a limited function when
t increases indefinitely and it is absolutely integrable in every finite interval.
Therefore, we will say that the system is wide sense stable. This case is interesting
to the study of the fractional stochastic processes. If m ¼ �1; the normal integrator,
the system is wide sense stable. The case m\� 1 corresponds to an unstable
system, since the impulse response is not a limited function when t goes to þ1:

Consider the LTI systems with transfer function H(s) a quotient of two poly-
nomials in sm. The transformation w ¼ zn; transforms the sector 0� h� 2p=nfh ¼
arg zð Þg into the entire complex plane. So, the sector p

2n� h� p
2n þ

p
n
is transformed

in the left half plane. Consider the first Riemann surface of z ¼ sm defined by
h ¼ arg sð Þ 2 ð�p; p�: This domain is transformed into u ¼ arg zð Þ 2 ð�pa; pa�:
However the poles leading to instability must be inside the sector ð�pa=2; pa=2Þ:
For each p in (4.10) we have two situations leading to stability:

• There is no pole inside the sector ð�p; p�: This happens when arg pð Þ[ pa:
• There is a pole in one of the sectors:ð�pa;�pa=2Þ and ðpa=2; paÞ:

The poles with argument equal to �pa=2 may lead to wide sense stable systems
as in the usual systems. These conclusions come from the development we did in
Sect. 4.4 and lead us to conclude that we must have 0\a� 1: However we can
enlarge the interval of stability. Consider the transfer function H sð Þ ¼ 1

sa�p
; with

1\a\2: As sa � pð Þ ¼ sa=2 � p1=2
� �

sa=2 þ p1=2
� �

: This means that 1
sa�p

can be

decomposed into two partial fractions, both stable, although only one of them has a
pole in its first Riemann sheet; the other has no pole inside. This means that 1

sa�p

can be stable for 1\a\2; but we must care when doing the LT inversion. Any
way, we avoid unwanted troubles by decomposing the denominator of the transfer
function until all the partial fractions of the type 1

sa�p
have a� 1.

We are going to exemplify the situation where a system goes from stability to
instability with increasing order.

The ‘‘single-degree-of-freedom fractional oscillator’’ consists of a mass and a
fractional Kelvin element and it is applied in viscoelasticity. The equation of
motion is

4 Bounded input, bounded output.
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mD2x tð Þ þ cDax tð Þ þ kx tð Þ ¼ f tð Þ ð4:22Þ

where m is the mass, c the damping constant, k the stiffness, x the displacement and
f the forcing function. We are going to do it. Let us introduce the parameters:

x0 ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

as the undamped natural frequency of the system and f ¼ c
2mx2�a

0
: We

rewrite the above equation in the form:

D2x tð Þ þ 2x2�a
0 fDax tð Þ þ x2

0x tð Þ ¼ f tð Þ ð4:23Þ

The transfer function is

H sð Þ ¼
1

s2 þ 2x2�a
0 fsa þ x2

0

ð4:24Þ

with indicial polynomial s4 þ 2x3=2
0 fsþ x2

0: Its roots can be found by a standard
procedure, but it is a bit difficult to get useful conclusions. However, as the
coefficients in s3 and s2 are zero, we can conclude that four roots are on two
vertical straight lines with symmetric abscissas. For example, with x0¼ 1 rad/s
and f ¼ 0:05 the roots are: s1 ¼ 0:7073þ j0:7319; s2 ¼ 0:7073� j0:7319; s3 ¼
�0:7073þ j0:6819; and s4 ¼ �0:7073� 0:6819; and have arguments: ±45.9776
and ±136.0492. This means that for a such that ap=2[ 45:9776=180 we have
instability. In Fig. 4.2 we present the step responses for a ¼ 1=4 and a ¼ 1=2: The
oscillating response corresponds to a ¼ 1=2:

4.6 Examples of Simple FLTI Systems

We are going to present two simple examples obtained by adding and subtracting
two partial fractions corresponding to conjugate poles:

H1 sð Þ ¼
2sa � p� p�

s2a � pþ p�ð Þsa þ pj j2
and H2 sð Þ ¼

p� p�

s2a � pþ p�ð Þsa þ pj j2
ð4:25Þ

Fig. 4.2 Step responses of
system defined by (4.23) for
a = 1/4 and 1/2
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In Fig. 4.3 we present the step responses corresponding to orders an ¼ n=10; with
n = 1, 2, …, 10.

The corresponding Bode plots are shown in Fig. 4.4. The upper plots refer to
the first system while the lower correspond to the second one. We see that the plots
become flatter with decreasing orders.

It is interesting to study typical electric circuits and get a comparison with well
known responses. Begin with lowpass RC circuit with a transfer function that is a
simple fraction:

Fig. 4.3 Step responses of systems defined in (4.25) for an = n/10, n = 1,2,…,10. The left

column represents responses of the system defined by H1(s) and the right one those of H2(s)
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H sð Þ ¼
1

sa þ 1
; 0\a\1 ð4:26Þ

In Figs. 4.5, 4.6, 4.7, 4.8, we can see the frequency and time responses of the
system for a ¼ 0:5; . . .; 1: In the figures 4.9, 4.10, 4.11, 4.12, we depict the results
of similar study of the L series R//C circuit (C fractional).

4.7 Initial Conditions

4.7.1 Introduction

The initial value problem is a theme that remains quite up-to-date, even in the
classic integer order case [19]. In fact, the computation of the output of a linear
system under a given set of initial conditions is an important task in daily appli-
cations. Traditionally this task has been accomplished by means of the unilateral

Fig. 4.4 Bode plots of
systems defined in (4.25) for
an = n/10, n = 1,2,…,10,
The upper plots refer to the
system defined by H1(s) and
the and the lower to H2(s)
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Fig. 4.5 Bode plots for the
fractional RC circuit for
a = 0.5, …, 1

Fig. 4.6 Impulse responses
of the fractional RC circuit
for a = 0.5, …, 1

Fig. 4.7 Step responses of
the fractional RC circuit for
a = 0.5, …, 1
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Laplace transform (ULT) and the jump formula that is a result of the distribution
(generalized function) theory [20, 21].

The problems found in concrete applications have been addressed and are
motivated by the ULT treatment of the origin as presented in the main text books
and in the fractional case by the use of derivative definitions that impose specific
initial conditions that may not be the most suitable for the problem.

In current literature we find two situations:

• People who consider the Riemann–Liouville (RL) derivative and the associated
initial conditions (e.g. [22–24])

Fig. 4.8 Sinusoidal
responses of the fractional
RC circuit for a = 0.5, …, 1

Fig. 4.9 L series R//C circuit

Fig. 4.10 Step responses for
the L series R//C circuit
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• People that use the Caputo (C) derivative that uses integer order derivatives
(e.g. [25, 26, 27].

If x(t) is a causal signal and denoting the Laplace transform by LT we have for
the RL case:

LT Dax tð Þ½ � ¼ LT Dm½D�ðm�aÞxðtÞ�
h i

¼ saX sð Þ �
X

m�1

i¼0

sm�i�1Di�mþax 0ð Þ ð4:27Þ

where m is the least integer greater than or equal to a. In the Caputo case, we have

LT Dax tð Þ½ � ¼ LT D� m�að Þ½Dmx tð Þ�
h i

¼ saX sð Þ �
X

m�1

i¼0

si�mþaDm�i�1x 0ð Þ ð4:28Þ

In the last years the second approach has been favoured relatively to the first,
because it is believed that the RL case leads to initial conditions without physical
meaning. This was contradicted by Heymans and Podlubny [28] that studied
several cases and gave physical meaning to the RL initial conditions, by

Fig. 4.11 Impulse responses
for the L series R//C circuit

Fig. 4.12 Sinusoidal
responses for the L series
R//C circuit
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introducing the concept of ‘‘inseparable twin’’. On the other hand,[29] shows that
both types of initial conditions can appear. Similar position is assumed by
Gorenflo and Mainardi [30] and Bonilla et al. [31].

In Ortigueira [32] and Ortigueira and Coito [33, 34] these positions were
criticised: the initial conditions belong to the system at hand and cannot depend on

the used derivative. The ‘‘initial conditions’’ of RL or C derivatives are needed to
compute them correctly, but may not have any direct relation with the system
initial conditions.

The problem is faced here with all the generality. The approach we are going to
describe is based on the following assumptions:

• All the involved signals are defined over the whole set of real numbers.
• If the systems are observed for t[ t0; t0 2 R; our observation window is the
Heaviside unit step function, u t � t0ð Þ:

• The initial conditions depend on the past input and output of the system, not on
the actual or future.

We will put the Riemann–Liouville and Caputo derivatives in terms of this
general frame work and discover which are the equations suitable for RL and
C derivatives.

4.7.2 The Initialization Problem

Let us assume that we have a fractional linear system described by the fractional
differential equation (4.1):

X

N

n¼0

anD
cny tð Þ ¼

X

M

m¼0

bmD
cmx tð Þ; cn\cnþ1 ð4:29Þ

where cn; n ¼ 0; 1; 2; . . . are derivative orders that we will assume to be positive
real numbers. This equation is valid for every t [ R.

As it is well known, the solution of the above equation has two terms: the
forced (or evoked) and free (or spontaneous). This second term depends only on
the state of the system at the reference instant that we will assume to be t = 0. This
state constitutes or is related to the initial conditions. These are the values at t = 0
of variables in the system and associated with stored energy. It is the structure of

the system that imposes the initial conditions, not the eventual way of computing

the derivatives. The instant where the initial conditions are taken is very important,
but it has not received much attention. In most papers, people don’t care and use
t = 0. This happens in most mathematical books and papers (see the references in
Lunberg et al.). Others use t = 0+, motivated by the requirement of continuity of
the functions for t = 0 and the initial value theorem. However and as pointed out
by Lunberg et al. (2007), we must retain the initial conditions at t = 0-, because
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the initial conditions represent the past of the system and do not have any relation
with the future inputs.

In problems with nonzero initial conditions it is a common practice to
introduce the one-sided Laplace transform. However, there is no particular
justification for such introduction. The initial conditions must appear indepen-
dently of using or not a transform. In fact, we intend to solve a given dif-
ferential equation (4.1) for values of t greater than a given initial instant, that,
without loosing generality, we can assume to be the origin. To treat the
question, it is enough to multiply both members of the equation by the unit
step Heaviside function, u(t), and rearrange the equation terms as shown next
with a simpler example. Consider the ordinary constant coefficient differential
equation:

yðNÞ tð Þ þ ay tð Þ ¼ x tð Þ; N 2 Zþ
0 ð4:30Þ

Assume that the products y
(N)(t)u(t) and x(t)u(t) can be considered as distri-

butions and that we want to solve Eq. 4.30 for t[ 0. The multiplication by
u(t) leads to

yðNÞ tð Þu tð Þ þ ay tð Þu tð Þ ¼ x tð Þu tð Þ ð4:31Þ

Thus, we have to relate y(N)(t)u(t) with [y(t) � u(t)](N). This can be done
recursively provided that we account for the properties of the distribution d(t) and
its derivatives. We obtain the well known result:

yðNÞ tð Þ � u tð Þ ¼ y tð Þ � u tð Þ½ �ðNÞ�
X

N�1

i¼0

yðN�1�iÞ 0ð Þ � d ið Þ tð Þ ð4:32Þ

that states that y(N)(t) � u(t) = [y(t) � u(t)](N) for t[ 0. They are different at t = 0.
This is the reason why we speak in initial values as being equivalent to initial
conditions. In the above equation we have

y tð Þ � u tð Þ½ �ðNÞþa y tð Þ � u tð Þ½ � ¼ x tð Þ þ
X

N�1

i¼0

y N�1�ið Þ 0ð Þ � d ið Þ tð Þ ð4:33Þ

The initial conditions appear naturally, without using any transform. It is
interesting to remark that the second term on the right in (4.33) is constituted by
the derivatives of the Heaviside functions that we are needing for making con-
tinuous the left hand function before computing the derivative. For example,
y(t)u(t) is not continuous at t ¼ 0; but yðtÞuðtÞ � yð0ÞuðtÞ is, so, its derivative is
given by ½yðtÞ � uðtÞ�0 � yð0Þ � dðtÞ: The process is repeated.

In fractional case, the problem is similar, but it is not so clear the intro-
duction of the initial conditions, because the involved functions can be infinite
at t ¼ 0:
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4.8 Some Facts

When computing a a order derivative, it is easy to deduce, that:

(a) Different steps lead to different initial values.
(b) In the differentiation steps some orders and corresponding initial values are

fixed and defined by the equation: in the left hand side in (4.29) when ‘‘going’’
from 0 to mN ; we have to ‘‘pass’’ by all the mi i ¼ 1; . . .N � 1ð Þ—with the
corresponding initial conditions. However we can compute other derivatives
of orders ciðmi\ci\miþ1Þ that introduce initial conditions too.

(c) If in (4.29) all the mn are rational numbers, the differential equation can always
be written as in (4.8):

X

N

n¼0

anD
nmy tð Þ ¼

X

M

m¼0

bmD
mmx tð Þ

leading as to conclude that the ‘‘natural’’ initial values will be Dnmy tð Þjt¼0 for
n ¼ 0; . . .;N � 1 and Dnmx tð Þjt¼0 for n ¼ 0; . . .;M � 1:

(d) Independently of the way followed to compute a given derivative, the Laplace
Transform of the derivative satisfy: LT½Daf tð Þ� ¼ saLT f tð Þ½ �: So, the different
steps in the derivative computation correspond to different decompositions of
the number a:

a ¼
X

i

ri ð4:34Þ

These considerations lead us to conclude that the initial condition problem in
the fractional case has infinite solutions.

4.9 An Example

In practical applications we can find several examples of systems with Transfer
Functions given by:

H sð Þ ¼
Q

sa

where Q is a constant and �1\a\1: They are known as ‘‘constant phase ele-
ments’’ [35, 36]. In particular, the supercapacitors are very important. The
capacitor case is well studied by Westerlund [37], where he shows that
the ‘‘natural’’ initial value is the voltage at t = 0 that influences the output of the
system through an initial function proportional to t�au tð Þ:

With this example we had in mind to remark that the structure of the problem
may lead us to decide what initial condition we should use—it is an engineering
problem, not mathematical.
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4.9.1 The Initial-Value Theorem

The Abelian initial value theorem [38] is a very important result in dealing with
the Laplace Transform. This theorem relates the asymptotic behaviour of a causal
signal, u tð Þ; as t ! 0þ to the asymptotic behaviour of its Laplace Transform,
UðrÞ ¼ LT½u tð Þ�; as r ¼ Re sð Þ ! þ1:

The initial-value theorem—assume that u(t) is a causal signal such that in some
neighbourhood of the origin is a regular distribution corresponding to an integrable

function. Also, assume that there is a real number b[ � 1 such that limt!0þ
u tð Þ
tb

exists and is a finite complex value. Then

lim
t!0þ

u tð Þ

tb
¼ lim

r!1

rbþ1
U rð Þ

C bþ 1ð Þ
ð4:35Þ

For proof see [38]. Let �1\a\b: Then

lim
t!0þ

u tð Þ

ta
¼ lim

t!0þ

u tð Þ

tb
tb

ta
¼ 0 ð4:36Þ

because the first factor has a finite limit given in (4.35) and the second zero as
limit. Similarly, if b\a;

lim
t!0þ

u tð Þ

ta
¼ 1 ð4:37Þ

This suggests us that, near t ¼ 0;u tð Þ must have the format: u tð Þ ¼ s tð Þ � tbu tð Þ;
where s(t) is regular at t = 0.

We may wander about a possible contradiction between the initial value the-
orem and the considerations we did before concerning the initial conditions of the
systems. There is no contradiction for several reasons. Remark that the initial
value theorem does not tell us how to select the initial conditions. It states a
relation between the ‘‘starting’’ value of a given causal signal and the ‘‘final’’ value
of its Laplace transform. On the other hand, the ‘‘local value’’ of a given gener-
alised function and also of a fractional derivative depends on all the history of the
function not only what happens at a given point. This means that a signal cannot
jump from a value x(0-) to a different x(0?) without any input. So unless nec-
essary, we will work with x(0).

4.10 A Solution for the Initial Value Problem

4.10.1 The Watson–Doetsch Class

Let us consider the class of functions with Laplace Transform analytic for
Re sð Þ[ c: To the subclass of functions such that
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uðtÞ 	 tb �
X

1

n¼0

an
tnmuðtÞ

Cðbþ 1þ nmÞ
ð4:38Þ

as t ! 0þ where b[ � 1 and m[ 0: The powers are defined in the principal
branch. For our applications to differential equations, we will assume that m is
greater than the maximum derivative order. The Watson–Doetsch lemma [17],
states that the LT U sð Þ of u tð Þ satisfies:

U sð Þ 	
1

sbþ1

X

1

n¼0

an
1
snm

ð4:39Þ

As s ! 1 and Re sð Þ[ 0:
As it is clear, these functions verify the initial value theorem. On the other hand,

u(t) in (4.38) has a format very common in solving the fractional differential
equations as we saw before.

For this reason, we will use ‘‘=’’ instead of ‘‘	’’ in the following. On the other
hand, as rbU rð Þ ¼ LT Dbu tð Þ

� �

;

lim
r!1

r rbU rð Þ
� �

¼ Dbu tð Þjt¼0þ ð4:40Þ

by the usual initial value theorem. So,

Dbu tð Þjt¼0þ ¼ lim
r!1

rbþ1
U rð Þ ð4:41Þ

that is a generalisation of the usual initial value theorem, obtained when b ¼ 0:

Here, we remind that the impulse response of the differintegrator, dðaÞ tð Þ ¼

LT�1½sa�; given by:

dðaÞ tð Þ ¼
t�a�1

C �að ÞuðtÞ a 2 R� Zþ

d nð Þ tð Þ a 2 Zþ

(

Because u tð Þ ¼ Db½tbu tð Þ�
C bþ1ð Þ and using (4.40) and (4.41), we obtain:

lim
t!0þ

u tð Þ

tb
¼ lim

t!0þ

Dbu tð Þ

Db½tbu tð Þ�
¼

uðbÞ 0þð Þ

C bþ 1ð Þ
ð4:42Þ

that is very similar to the usual l’Hôpital rule used to solve the 0/0 problems.
Now, let us assume that u(t) is written as:

u tð Þ ¼ tb � f tð Þ � u tð Þ ð4:43Þ

where f(t) is given by:

f tð Þ ¼
X

1

n¼0

an
tnmu tð Þ

C bþ 1þ nmð Þ
ð4:44Þ
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Attending to Eqs. 4.40 to 4.42, it is not hard to conclude that, when t ? 0?, we
have:

Dau tð Þjt¼0þ ¼
0
f 0þð ÞC bþ 1ð Þ
1

8

<

:

if a\b

if a ¼ b

if a[ b

ð4:45Þ

All the derivatives of order a\b have a zero initial value, while all the
derivatives of order greater than b are infinite at t = 0. To obtain a continuous
function we have to remove a term proportional to tb�au tð Þ: This is important in
dealing with differential equations and will be done in the following solution.
Return back to Eq. 4.29. The previous considerations lead us to state for y(t)—and
similarly for x(t)—the following format:

y tð Þ ¼
X

N

k¼0

fn tð Þtcnu tð Þ ð4:46Þ

where 0\cn\cnþ1—according to the initial value theorem, we could use �1\cn;
but in our present application it does not interest. N is a positive integer that may
be infinite, and the functions fn(t) (n = 0,…, N) and their derivatives of orders less
than or equal to cN are assumed to be regular at t = 0. We may assume them to
have the format given by (4.46) and verifying (4.45).

4.10.2 Step by Step Differentiation

It is interesting to see how the initial values appear and their meaning. Let y(t) be a
signal given by (4.46). Let us introduce a sequence bn by:

bn ¼ cn �
X

n�1

k¼0

bk; b0 ¼ c0 ð4:47Þ

Let us see what happens proceeding step by step.

(a) According to our assumptions b0 is the least real for which limt!0
y tð Þ

tb0
is

finite and nonzero. Let it be y b0ð Þð0Þ
C b0þ1ð Þ: All the derivatives DayðtÞða\b0Þ are con-

tinuous at t = 0 and assume a zero value. The b0 order derivative assumes the
value y b0ð Þ 0ð Þ and we can construct the function

u b0ð Þ tð Þ ¼ y tð Þ � u tð Þ½ � b0ð Þ�y b0ð Þ 0ð Þu tð Þ ð4:48Þ

that is continuous and assumes a zero value at t = 0.

(b) Now, b1 is the least real for which limt!0
u b0ð Þ tð Þ

tb1
is finite and nonzero. Let it

be yðb0þb1Þð0Þ
Cðb1þ1Þ : Thus b1 derivative of uðb0ÞðtÞ is given by:
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uðb0þb1ÞðtÞ ¼ ½yðtÞ � uðtÞ�ðb0þb1Þ � yðb0Þð0Þdðb1�1ÞðtÞ � yðb0þb1Þð0ÞuðtÞ ð4:49Þ

is again continuous at t = 0.

(c) Again b2 is the least real for which limt!0
uðb0þb1ÞðtÞ

tb2
is finite and nonzero. Let

it be yðb0þb1þb2Þð0Þ
Cðb2þ1Þ : Thus

f ðb0þb1þb2ÞðtÞ ¼ ½yðtÞ:uðtÞ�ðb0þb1þb2Þ � yðb0Þð0Þdðb1þb2�1ÞðtÞ

� yðb0þb1Þð0Þdðb2�1ÞðtÞ � yðb0þb1þb2Þð0ÞuðtÞ ð4:50Þ

is again continuous at t = 0.
(d) Continuing with this procedure, we obtain a function:

uðcN ÞðtÞ ¼ ½yðtÞ:uðtÞ�ðcN Þ �
X

N�1

0

yðcmÞð0ÞdðcN�ci�1ÞðtÞ ð4:51Þ

that is not continuous at t = 0, but it can be made continuous if we subtract it
yðcN Þð0ÞuðtÞ: Equation 4.51 states the general formulation of the initial value
problem solution. As we can see, the initial values prolong their action for every
t[ 0. This means that we have a memory about the initial conditions that
decreases very slowly. Using the LT, we obtain:

LT ½uðcN ÞðtÞ� ¼ scNYðsÞ � scN
X

N�1

0

yðcmÞð0Þs�ci�1 ð4:52Þ

that is a generalization of the usual formula for introducing the initial conditions.
Using this procedure in both members of Eq. 4.29 leads to the initial condition
complete equation

X

N

i¼0

ai � ½yðtÞ � uðtÞ�
ðciÞ ¼

X

M

i¼0

bi � ½xðtÞ � uðtÞ�
ðciÞ þ

X

N

i¼1

ai �
X

i�1

0

yðcmÞð0Þdðci�cm�1ÞðtÞ

�
X

M

i¼1

bi
X

i�1

0

xðcmÞð0Þdðci�cm�1ÞðtÞ ð4:53Þ

Equation 4.53 states a general formulation of the initial value problem solution.

4.10.3 Examples

Consider the system described by Eq. 4.30 with a ¼ 3=2: As in the equation we
only have two terms we are not constrained and can choose any ‘‘way’’ to go from
0 to a. We are going to consider four cases:1 � ci ¼ 3=2 � iði ¼ 0; 1Þ or b0 ¼ 0 and
b1 ¼ 3=2: From (4.52), we have
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LT½uð3=2ÞðtÞ� ¼ s3=2YðsÞ � yð0Þs1=2 ð4:54Þ

The free term is then:

Uf ðsÞ ¼ yð0Þ �
s1=2

s3=2 þ a
ð4:55Þ

2� ci ¼ 1=2 � i ði ¼ 0; 1; 2; 3Þ or b0 ¼ 0 and bi ¼ 1=2 ði ¼ 1; 2; 3Þ: We have now:

LT½uð3=2ÞðtÞ� ¼ s3=2YðsÞ �
X

2

0

yðm=2Þð0Þsð3�mÞ=2�1 ð4:56Þ

with

Uf ðsÞ ¼

P2
0 y

ðm=2Þð0Þsð3�mÞ=2�1

s3=2 þ a
ð4:57Þ

as the corresponding free term.
3� ci ¼ 1=2þ i ði ¼ 0; 1Þ or b0 ¼ 1=2 and b1 ¼ 3=2; giving the Riemann–

Liouville solution:

LT½uð3=2ÞðtÞ� ¼ s3=2YðsÞ � yð1=2Þð0Þ ð4:58Þ

The same solution can be obtained with cI ¼ �1=2þ i ði ¼ 0; 1; 2Þ: Now, the
free term is given by:

Uf ðsÞ ¼ yð1=2Þð0Þ �
1

s3=2 þ a
ð4:59Þ

4� ci ¼ i ði ¼ 0; 1Þ and c2 ¼ 2� 1=2. It comes:

LT½uð3=2ÞðtÞ� ¼ s3=2YðsÞ �
X

1

0

yðmÞð0Þs3=2�m�1 ð4:60Þ

giving the free term:

Uf ðsÞ ¼

P1
0 y

ðmÞð0Þsð3=2�m�1Þ

s3=2 þ a
ð4:61Þ

The situation is somehow different if we have an intermediary term as it is the
case of the equation:

yðaÞðtÞ þ ayð1ÞðtÞ þ byðtÞ ¼ xðtÞ ð4:62Þ

Now, when going from c ¼ 0 to c ¼ 3=2; we have to ‘‘pass’’ by c ¼ 1: Obvi-
ously, we can force the corresponding initial value to be zero.

It is interesting to see what happens when we consider an ordinary integer order
differential equation as a special case of a fractional differential equation. Consider
the simple case:
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y0ðtÞ þ ayðtÞ ¼ xðtÞ ð4:63Þ

Putting ci ¼ 1=2i ði ¼ 0; 1; 2Þ; we have

f 0ðtÞ ¼ ½yðtÞ � uðtÞ�0 �
X

1

i¼0

yð1=2:ii;Þð0Þdð�1=2:iiÞðtÞ ð4:64Þ

leading to a free term with LT given by:

Ff ðsÞ ¼
yð0Þ þ yð1=2Þð0Þs�1=2

sþ a
ð4:65Þ

Obviously different from the usual that we obtain by putting yð1=2Þð0Þ ¼ 0:

4.10.4 Special Cases

4.10.4.1 Riemann–Liouville

The left Riemann–Liouville fractional derivative as it is commonly presented can
be represented by the following double convolution as seen in Chap. 2

f
ðaÞ
RL ðtÞ ¼ d

ðnÞ
þ ðtÞ � f ðtÞ � d

ð�mÞ
þ ðtÞ

n o

where a ¼ n� m; d
ðnÞ
þ ðtÞ is the nth derivative of the Dirac impulse, and

d
ð�mÞ
þ ðtÞ ¼

tm�1

CðmÞ
uðtÞ; 0\m\1

In terms of the operator D, we can write:

f
ðaÞ
RL ðtÞ ¼ DfD½D. . .D�m�gf ðtÞ

So, we have an anti-derivative followed by a sequence of N order one deriv-
atives. This leads to b0 ¼ c ¼ �m and bi ¼ 1; and ci ¼ cþ i; for i ¼ 1; . . .;N:
Then,

uðNþcÞðtÞ ¼ ½yðtÞ � uðtÞ�ðNþcÞ �
X

N�1

0

yðmþcÞð0ÞdðN�1�mÞðtÞ ð4:66Þ

and

LT½uðNþcÞðtÞ� ¼ sNþcYðsÞ �
X

N�1

0

yðmþcÞðþÞsN�m�1 ð4:67Þ
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With a ¼ N þ c; this relation can be rewritten as:

LT½uðaÞðtÞ� ¼ saYðsÞ �
X

N�1

0

yða�1�iÞð0Þsi ð4:68Þ

that is the current Riemann–Liouville solution. With the above set of orders, we
obtain for the initial condition complete equation

X

N

n¼0

anD
cþnyðtÞ ¼

X

M

m¼0

bmD
cþmxðtÞ þ

X

N

i¼1

ai �
X

i�1

0

yðcþmÞð0Þdði�m�1ÞðtÞ

�
X

M

i¼1

bi
X

i¼1

0

xðcþmÞð0Þdði�m�1ÞðtÞ ð4:69Þ

From this result, we immediately conclude that the RL initial conditions are
suitable for solving equations of the following format:

X

N

n¼0

anD
cþnyðtÞ ¼

X

M

m¼0

bmD
cþmxðtÞ ð4:70Þ

that is a very restrict class.

4.10.4.2 Caputo

Similarly to the RL case, the left Caputo fractional derivative as it is commonly
presented can be represented by the following double convolution:

f
ðaÞ
C ðtÞ ¼ f ðtÞ � d

ðNÞ
þ ðtÞ

n o

� d
ð�mÞ
þ ðtÞ

In terms of the operator D, we can write:

f
ðaÞ
C ðtÞ ¼ D�mfD½D. . .D�gf ðtÞ

corresponding to a sequence of N order one derivatives and an integration.
The Caputo case is not in the framework considered in Sect. 4.10.2. In fact, we
considered there that the cn ðn ¼ 0; . . .;NÞ form an increasing sequence. In Caputo
differentiation, we have cn ¼ n for ðn ¼ 0; . . .;N � 1Þ and cN ¼ N � e with
0\e\1: However, the anti-derivative does not introduce nonzero initial condi-
tions, we have:

uðcN ÞðtÞ ¼ ½yðtÞ � uðtÞ�ðcN Þ �
X

N

0

yðiÞð0Þd
ðN�i�1�eÞ

ðtÞ ð4:71Þ

or, putting a ¼ N � e;
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uðaÞðtÞ ¼ ½yðtÞ � uðtÞ�ðaÞ �
X

N

0

yðiÞð0Þdða�i�1ÞðtÞ ð4:72Þ

that is the usual way of presenting the C derivative. With this result and following
a procedure similar to the one used in the RL case, we can write:

DN�eyðtÞ þ
X

N�1

n¼0

anD
nyðtÞ ¼ b0D

M�exðtÞ þ
X

M�1

m¼0

bmD
nxðtÞ

þ
X

N

i¼1

ai �
X

i�1

0

yðjÞð0ÞdðN�j�1�eÞðtÞ

�
X

M

i¼1

bi
X

i�1

0

xðjÞð0ÞdðN�j�1�eÞðtÞ ð4:73Þ

So and as in the RL case, the C derivative is suitable for dealing with equations
with the general format:

DN�eyðtÞ þ
X

N�1

n¼0

anD
nyðtÞ ¼ b0D

M�exðtÞ þ
X

M�1

m¼0

bmD
nxðtÞ ð4:74Þ

that represents again a very restrict class of systems.

4.10.4.3 The Rational Order Case

If all the orders in (4.29) are rational we can always put them as multiple of a given
rational c: ci ¼ ic; for i ¼ 0; 1; . . .;N:We have: b0 ¼ 0; bi ¼ c; for i ¼ 1; . . .;N � 1:
Then, (4.51) will be transformed into

uðncÞðtÞ ¼ ½yðtÞ � uðtÞ�ðncÞ �
X

n�1

0

yðmcÞð0Þdðn�iÞc�1ðtÞ ð4:75Þ

that inserted in (4.29), gives

X

N

i¼0

ai � ½yðtÞ � uðtÞ�
ðicÞ ¼

X

M

i¼0

bi � ½xðtÞ � uðtÞ�
ðicÞ
	

	 þ
X

N

i¼1

ai �
X

i�1

j¼0

yðicÞð0Þ � dðði�jÞc�1ÞðtÞ

�
X

M

i¼1

bi
X

i�1

j¼0

xðjcÞð0Þ � dðði�jÞc�1ÞðtÞ ð4:76Þ

This is also valid even if c is not rational. This equation can be solved using the
two-sided LT.
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4.11 State-Space Formulation

In some applications, e.g. control, the state-space formulation is very important. It
is not hard to obtain it from (4.8). It can be written for the time-variant case as:

sðmÞðtÞ ¼ AðtÞ � sðtÞ þ BðtÞ � xðtÞ ð4:77Þ

yðtÞ ¼ CðtÞ � sðtÞ þ DðtÞ � xðtÞ ð4:78Þ

To solve the dynamic equation, it is necessary to introduce the fractional state

transition operator Uðt; sÞ; which is a generalisation of the usual state transition
operator. Heuristically, we could conclude that the required operator can be rep-
resented by the usual Peano–Baker series with a substitution of an m-order inte-
gration for the usual one. In the time-invariant case, this operator is related to the
Mittag–Leffler function. However, it is very difficult to manipulate. Besides it does
not enjoy all the features of the ordinary one, namely, the semi-group property
even in the time-invariant case.5 This fact has a very important consequence: the
operator Uðt; sÞ is not the inverse operator of Uðt; sÞ: Such inverse operator will be
obtained probably with the help of the anti-causal differintegration operator. This
must be a subject of further research.

4.12 Conclusions

In this chapter, we presented a new class of linear systems: the fractional con-
tinuous-time linear systems. The results obtained in Chap. 1 allowed us to present
an approach that is very similar to the one used in the study of the ordinary linear
systems, namely we were led to the notions of fractional impulse and frequency
responses. We showed how to compute them. The initial condition problem was
treated with generality. We made also a brief study of the stability of these systems
and introduced the state-space representation.
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Chapter 5

Two-Sided Fractional Derivatives

5.1 Motivation

In previous chapters the causal and anti-causal fractional derivatives were pre-
sented. An application to shift-invariant linear systems was studied. Those
derivatives were introduced into four steps:

1. Use as starting point the Grünwald–Letnikov differences and derivatives.
2. With an integral formulation for the fractional differences and using the

asymptotic properties of the Gamma function obtain the generalised Cauchy
derivative.

3. The computation of the integral defining the generalised Cauchy derivative is
done with the Hankel path to obtain regularised fractional derivatives.

4. The application of these regularised derivatives to functions with Laplace
transform, we obtain the Liouville fractional derivative and from this the
Riemann–Liouville and Caputo, two-step derivatives.

Here we will repeat the procedures for the centred (two-sided) derivatives. As
we enhanced in Chap. 2, the GL derivative and those obtained from it impose
preferable directions of the independent variable. We said there that the forward
derivative was causal. However, there are many physical space dependent phe-
nomena without any privilegiate direction. This means that we need a derivative
suitable for these situations. To motivate the appearance of another derivative we
are going to consider the following problem: which is the autocorrelation of the
output of a fractional differintegrator when the input is white noise?

Assume that x(t) is a stationary white noise process with r2d(t) as its auto-
correlation function. The autocorrelation of the output is given by:

Ra
Xðt1; t2Þ ¼ lim

h!0þ

P1
k¼0

P1
n¼0

a

k

� �

�1ð Þk�n a

n

� �

Rf t1 � t2 � k � nð Þh½ �

h2a

M. D. Ortigueira, Fractional Calculus for Scientists and Engineers,
Lecture Notes in Electrical Engineering, 84, DOI: 10.1007/978-94-007-0747-4_5,
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With a change in the summation variable, it is not hard to show that,

Ra
Xðt1; t2Þ ¼ Ra

Xðt1 � t2Þ ¼ r2 lim
h!0þ

P1
k¼�1 RaðnÞd½t1 � t2 � nh�

h2a
ð5:1Þ

where Ra(n) is the discrete autocorrelation of the binomial coefficient sequence

RaðnÞ ¼
X

1

i¼0

hi � hiþn ð5:2Þ

with

hn ¼ ð�1Þn
a

n

� �

un ð5:3Þ

The computation of its autocorrelation function is slightly involved. Inserting
(5.3) into (5.2), we obtain

RaðnÞ ¼
X

1

i¼0

ð�1Þi
a

i

� �

ð�1Þiþk a

iþ n

� �

n� 0 ð5:4Þ

or

RaðnÞ ¼ ð�1Þk
X

1

i¼0

a

i

� �

a

iþ n

� �

n� 0 ð5:5Þ

Let us introduce the Gauss Hypergeometric function [1]

2F1ða; b; c; zÞ ¼
X

1

k¼0

ðaÞkðbÞk
ðckÞ

zk

�k!
ð5:6Þ

where c 6¼ 0;�1;�2; . . . and (a)k is the Pochhammer symbol. The series (5.6) is
convergent for zj j � 1, if c – a - b[ 0.1

As:

a

i

� �

¼
ð�1Þið�aÞi

i!
ð5:7Þ

and attending to

ðiþ kÞ! ¼ ðiþ 1Þki! ð5:8Þ

and

1 If 0\ b\ c and argð1� zÞj j\p, that function can be represented by the Euler integral:

2F1ða; b; c; zÞ ¼
CðcÞ

CðbÞ�Cðc�bÞ

R

1

0
tb�1ð1� tÞc�b�1ð1� ztÞ�adt
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ð�aÞiþk ¼ ð�aÞið�aþ iÞk ð5:9Þ

we obtain

RaðnÞ ¼ ð�1Þn �
a

n

� �

�2 F1ða;�aþ n; nþ 1; 1Þ n� 0 ð5:10Þ

Using the Gauss relation:

2F1 a; b; c; 1ð Þ ¼
CðcÞCðc� a� bÞ

Cðc� aÞCðc� bÞ
c� a� b[ 0 ð5:11Þ

we obtain after some simple manipulations:

Ra nð Þ ¼ ð�1Þk
Cð1þ 2aÞ

Cðaþ nþ 1ÞCða� nþ 1Þ
ð5:12Þ

that is an even function as expected. For n = 0, we obtain the power:

Pa ¼
Cð1þ 2aÞ

Cðaþ 1Þ½ �2
ð5:13Þ

that is positive if 1þ 2a[ 0, or a[ � 1=2. This means that, only for those
values, we may be led to a stationary stochastic process. If a ¼ �1=2, the process
has an infinite power and can be considered as wide sense stationary. With this
procedure we arrive at:

Ra
XðsÞ ¼ lim

h!0

Cð2aþ 1Þ
h2a

X

þ1

k¼�1

ð�1Þk

Cða� k þ 1ÞCðaþ k þ 1Þ
dðs� khÞ ð5:14Þ

So, the autocorrelation function of the forward a-order derivative of white noise
suggests us the introduction of a new (centred) derivative similar to the GL
derivative but that is two-sided in the sense of using past and future. We will
proceed accordingly to the following steps:

1. Introduction of the general framework for the central (two-sided) differences,
considering two cases that we will be called type 1 and type 2 differences.
These are generalisations of the usual central differences for even and odd
positive orders respectively.

2. Limit computation as in the usual Grünwald–Letnikov derivatives.
3. For those differences, suitable integral representations were introduced. From

these representations we can obtain the derivative integral formulations by
using the properties of the Gamma function. The integration is performed over
two infinite lines that ‘‘close at infinite’’ to form a closed path. Two generali-
sations of the usual Cauchy derivative definition are obtained that agree with it
when a is an even or an odd positive integer, respectively.

4. The computation of those integrals over a two straight lines path leads to
generalisations of the Riesz potentials.
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5. The most interesting feature of the obtained relations lies in the summation
formulae for the Riesz potentials.

We will test the coherence of the proposed framework by applying them to the
complex exponential. The results show that they are suitable for functions with
Fourier transform. The formulation agrees also with Okikiolu [2] studies. Special
cases are studied and some properties presented.

5.2 Integer Order Two-Sided Differences and Derivatives

We introduce Dc as finite two-sided (centred) difference defined by

Dcf ðtÞ ¼ f ðt þ h=2Þ � f ðt � h=2Þ ð5:15Þ

By repeated application, we have:

D
N
e f ðzÞ ¼

X

N=2

k¼�N=2

ð�1ÞN=2�k N!

ðN=2þ kÞ!ðN=2� kÞ!
f ðt � khÞ ð5:16Þ

when N is even, and

D
N
o f ðzÞ ¼

X

N=2�

k¼�N=2

ð�1ÞN=2�k N!

ðN=2þ kÞ!ðN=2� kÞ!
f ðt � khÞ ð5:17Þ

if N is odd and where the
PN=2�

k¼�N=2 means that the summation is done over half-

integer values. Using the Gamma function, we can rewrite the above formulae in
the format stated as follows.

Definition 5.1 Let N be a positive even integer. We define a centred difference by:

D
N
e f ðtÞ ¼ ð�1ÞN=2

X

N=2

k¼�N=2

ð�1Þk
CðN þ 1Þ

CðN=2þ k þ 1ÞCðN=2� k þ 1Þ
f ðt � khÞ ð5:18Þ

Definition 5.2 Let N be a positive odd integer. We define a two-sided difference
by:

D
N
o f ðtÞ ¼ ð�1ÞðNþ1Þ=2

X

ðNþ1Þ=2

k¼�ðN�1Þ=2

� ð�1Þk
CðN þ 1Þ

CððN þ 1Þ=2� k þ 1ÞCððN � 1Þ=2þ k þ 1Þ
f ðt � khþ h=2Þ ð5:19Þ

with these definitions we are able to define the corresponding derivatives.
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Definition 5.3 Let N be a positive even integer. We define an even order two-
sided derivative by:

DN
e f ðtÞ ¼ lim

h!0

D
N
e f ðtÞ

hN

¼ lim
h!0

ð�1ÞN=2

hN

X

N=2

k¼�N=2

ð�1Þk
CðN þ 1Þ

CðN=2þ k þ 1ÞCðN=2� k þ 1Þ
f ðt � khÞ

ð5:20Þ

Definition 5.4 Let N be a positive odd integer. We define an odd order two-sided
derivative by:

DN
o f ðtÞ ¼ lim

h!0

D
N
o f ðtÞ

hN
¼ lim

h!0

ð�1ÞðNþ1Þ=2

hN

X

ðNþ1Þ=2

k¼�ðN�1Þ=2

ð�1Þk
CðN þ 1Þ

CððN þ 1Þ=2� k þ 1ÞCððN � 1Þ=2þ k þ 1Þ
f ðt � khþ h=2Þ

ð5:21Þ

Both derivatives (5.20) and (5.21) coincide with the usual derivative Nth order
derivative.

5.3 Integral Representations for the Integer

Order Two-Sided Differences

The result stated in (5.20) can be interpreted in terms of the residue theorem
leading to an integral representation for the difference. Assume that f(z) is analytic
inside and on a closed integration path that includes the points t = z - kh, h [ C,
with k = -N/2, -N/2 ? 1, …, -1, 0, 1, …, N/2 - 1, N/2. Then

D
N
e f ðzÞ ¼

ð�1ÞN=2N!
2pih

Z

Cc

f ðzþ wÞ
C

�w
h
þ 1

� �

C
�w
h
þ N

2 þ 1
� �

C
w
h

� �

C
w
h
þ N

2 þ 1
� � dw ð5:22Þ

To prove this result, remark that Eq. 5.20 can be considered as 1=2pi
P

residues in the computation of the integral of a function with poles at t = z - kh

(Fig. 5.1).
We can make a translation and consider poles at kh. As it can be seen by direct

verification, we have
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X

N=2

k¼�N=2

N!ð�1ÞN=2�k

ðN=2þ kÞ!ðN=2� kÞ!
f ðt � khÞ

¼
N!

2pih

Z

Cc

f ðzþ wÞ
QN=2

k¼0
w
h
� k

� �
QN=2

k¼1
w
h
þ k

� �

dw ð5:23Þ

Introducing the Pochhammer symbol, we can rewrite the above formula as:

D
N
e f ðzÞ ¼

ð�1ÞN=2N!
2pih

Z

Cc

f ðzþ wÞ �w
h

� �

w
h

� �

N=2þ1
�w
h

� �

N=2þ1

dw ð5:24Þ

Attending to the relation between the Pochhammer symbol and the Gamma
function:

C zþ nð Þ ¼ zð ÞnCðzÞ ð5:25Þ

we can write (5.22).
It is easy to test the coherency of (5.22) relatively to (5.20), by noting that the

Gamma function C(z) has poles at the negative integers (z = -n, n [ Z+). The
corresponding residues are equal to (-1)n/n!. Both the Gamma functions have
infinite poles, but outside the integration path they cancel out and the integrand is
analytic.

Similarly to the above development, we have2:

D
N
o f ðzÞ ¼

ð�1ÞðNþ1Þ=2
N!

2pih

Z

Cc

f ðzþ wÞ
C � w

h
þ 1

2

� �

C �w
h
þ N

2 þ 1
� �

C
w
h
þ 1

2

� �

C w
h
þ N

2 þ 1
� � dw ð5:26Þ

To prove this, we proceed as above. By direct verification, we have

X

N=2

k¼�N=2

ð�1ÞN=2�k N

N=2� k

� �

f ðz� khÞ

¼
N!

2pih

Z

Cc

f ðzþ wÞ
QðN�1Þ=2

k¼0
w
h
� k � 1

2

� �
QðN�1Þ=2

k¼1
w
h
þ k þ 1

2

� �

dw

ð5:27Þ

and

Fig. 5.1 Integration path and
poles for the integral
representation of integer even
order differences

2 Figure 5.2 shows the integration path and corresponding poles.
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D
N
o f ðzÞ ¼

ð�1ÞðNþ1Þ=2
N!

2pih

Z

Cc

f ðzþ wÞ
w
h
þ 1

2

� �

ðNþ1Þ=2 � w
h
þ 1

2

� �

ðNþ1Þ=2

dw ð5:28Þ

that leads immediately to (5.26)

5.4 Fractional Central Differences

We are going to consider two types of fractional central differences. Let a[-1,
h [ R+ and f(t) a Fig. 5.2 complex variable function.

Definition 5.5 We define a type 1 fractional difference by:

D
a
c1
f ðtÞ ¼

X

þ1

�1

ð�1ÞkCðaþ 1Þ
Cða=2� k þ 1ÞCða=2þ k þ 1Þ

f ðt � khÞ ð5:29Þ

Definition 5.6 We define a type 2 fractional difference by3:

D
a
c2
f ðtÞ ¼

X

þ1

�1

ð�1ÞkCðaþ 1Þf ðt � khþ h=2Þ
C½ðaþ 1Þ=2� k þ 1�C½ða� 1Þ=2þ k þ 1�

ð5:30Þ

Remark that we did not insert any power of (-1). Although it may be useful in
some problems to keep it, we found better to remove it due to the relation with the
Riesz potentials that we will obtain later.

With the following relation [3]4:

X

þ1

�1

1
Cða� k þ 1ÞCðb� k þ 1ÞCðcþ k þ 1ÞCðd þ k þ 1Þ

¼
Cðaþ bþ cþ d þ 1Þ

Cðaþ cþ 1ÞCðbþ cþ 1ÞCðaþ d þ 1ÞCðbþ d þ 1Þ
ð5:31Þ

valid for a ? b ? c ? d[-1, it is not very hard to show that:

Fig. 5.2 Integration path and
poles for the integral
representation of integer odd
order differences

3 Here we assume that a is also non zero.
4 See page 123.
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D
b
c1
fDa

c1
f ðtÞg ¼ D

aþb
c1

f ðtÞ ð5:32Þ

and

D
b
c2fD

a
c2
f ðtÞg ¼ �D

aþb
c1

f ðtÞ ð5:33Þ

while

D
b
c2
fDa

c1
f ðtÞg ¼ D

aþb
c2

f ðtÞ ð5:34Þ

provided that a ? b[-1. In particular, a ? b = 0, and the relations (5.32) and
(5.33) show that when aj j\1 and bj j\1 the inverse differences exist and can be
obtained by using formulae (5.29) and (5.30). We must remark that the zero order
type 1 difference is the identity operator and is obtained from (5.29). The zero
order type 2 difference will be considered later.

5.5 Integral Representations for the Fractional

Two-Sided Differences

Let us assume that f(z) is analytic in a region of the complex plane that includes the
real axis. To obtain the integral representations for the previous differences we
follow here the procedure used in Chap. 3. We only have to give interpretations to
(5.29) and (5.30) in terms of the residue theorem. For the first case, we must
remark that the poles must lie at nh, n [ Z. This leads easily to

D
a
C1
f ðtÞ ¼

Cðaþ 1Þ
2pijh

Z

Cc

f ðzþ wÞ
C

�w
h
þ 1

� �

C
�w
h
þ a

2 þ 1
� �

C
w
h

� �

C
w
h
þ a

2 þ 1
� � dw ð5:35Þ

The integrand function has infinite poles at every nh, with n [ Z. The inte-
gration path must consist of infinite lines above and below the real axis closing at
the infinite. The easiest situation is obtained by considering two straight lines near
the real axis, one above and the other below (see Fig. 5.3).

Regarding to the second case, the poles are located now at the half integer
multiples of h, which leads to

Fig. 5.3 Path and poles for
the integral representation of
type 1 differences
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D
a
C2
f ðtÞ ¼

Cðaþ 1Þ
2pijh

Z

Cc

f ðzþ wÞ
C � w

h
þ 1

2

� �

C
�w
h
þ a

2 þ 1
� �

C
w
h
þ 1

2

� �

C
w
h
þ a

2 þ 1
� � dw ð5:36Þ

These integral formulations will be used in the following section to obtain the
integral formulae for the central derivatives generalising the Cauchy derivative for
the two-sided case. We could consider the poles as lying over any straight line as
we did with the forward and backward cases in Chap. 3. However, this may not be
very important. So we will work over the real axis.

5.6 The Fractional Two-Sided Derivatives

To obtain fractional central derivatives we proceed as usually [4–8]: divide the
fractional differences by h

a (h [ R
+) and let h ? 0. For the first case and assuming

again that a[-1, we obtain:

Da
c1
f ðtÞ ¼ lim

h!0

D
a
c1
f ðtÞ

ha

¼ lim
h!0

Cðaþ 1Þ
ha

X

þ1

�1

ð�1Þk

Cða=2� k þ 1ÞCða=2þ k þ 1Þ
f ðt � khÞ ð5:37Þ

that we will call type 1 two-sided fractional derivative.
For the second case and assuming also that a 6¼ 0, we obtain the type 2 two-

sided fractional derivative given by

Da
c2
f ðtÞ ¼ lim

h!0

D
a
c2
f ðtÞ

ha

¼ lim
h!0

Cðaþ 1Þ
ha

X

þ1

�1

ð�1Þkf ðt � khþ h=2Þ
C½ðaþ 1Þ=2� k þ 1�C½ða� 1Þ=2þ k þ 1�

ð5:38Þ

Formulae (5.37) and (5.38) generalise the positive integer order central deriv-
atives to the fractional case, although there should be an extra factor (-1)a/2 in the
first case and (-1)(a+1)/2 in the second case that we removed, as referred before.

Fig. 5.4 Path and poles for
the integral representation of
type 2 differences
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5.7 Integral Formulae

To obtain the integral formulae for the derivatives we must substitute the integral
formulae (5.35) and (5.36) into (5.37) and (5.38) respectively and permute there
the limit and integral operations. With this permutation we must compute the limit
of two quotients of Gamma functions. As it is well known, the quotient of two

gamma functions CðsþaÞ
CðsþbÞ has the expansion

Cðsþ aÞ

Cðsþ bÞ
¼ sa�b 1þ

X

N

1

cks
�k þ Oðs�N�1Þ

" #

ð5:39Þ

as sj j ! 1, uniformly in every sector that excludes the negative real half-axis.
When h is very small

Cðw=hþ aÞ

Cðw=hþ bÞ
	 ðw=hÞa�b 1þ h � uðw=hÞ½ � ð5:40Þ

where u is regular near the origin. Accordingly to the above statement, the branch
cut line used to define a function on the right hand side in (5.40) is the negative
real half axis. Similarly, we

Cð�w=hþ aÞ

Cð�w=hþ bÞ
	 ðw=hÞa�b 1þ h � uð�w=hÞ½ � ð5:41Þ

but now, the branch cut line is the positive real axis. With these results, we obtain
generalisations of the Cauchy integral formulation for the type 1 derivative given
by

Da
C1
f ðtÞ ¼

Cðaþ 1Þ
2pi

Z

Cc

f ðzþ wÞ
1

ðwÞ
a=2þ1
l ð�wÞa=2r

dw ð5:42Þ

while for the type 2 derivative is

Da
C2
f ðtÞ ¼

Cðaþ 1Þ
2pi

Z

Cc

f ðzþ wÞ
1

ðwÞ
ðaþ1Þ=2
l ð�wÞðaþ1Þ=2

r

dw ð5:43Þ

The subscripts ‘‘l’’ and ‘‘r’’ mean respectively that the power functions have the
left and right half real axis as branch cut lines.

Now, we are going to compute the above integrals for the special case of
straight line paths. Let us assume that the distance between the horizontal straight
lines in Figs. 5.3 and 5.4 is 2e(h) that decreases to zero with h. In Fig. 5.5 we show
the different segments used for the computation of the above integrals. If we
assume that the two straight lines are infinitely near, we have for the type 1
derivative:
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Z

1

¼ �
Cðaþ 1Þ

2pi

Z

1

0

f ðz� xÞ
1

xaþ1e�iap=2e�ip
e�ip dx

Z

2

¼
Cðaþ 1Þ

2pi

Z

1

0

f ðzþ xÞ
1

xaþ1eiap=2
dx

Z

3

¼ �
Cðaþ 1Þe�iap=2

2pi

Z

1

0

f ðzþ xÞ
1

xaþ1e�iap=2
dx

Z

4

¼
Cðaþ 1Þ

2pi

Z

1

0

f ðz� xÞ
1

xaþ1eiap=2
eipdx

where the integer numbers refer the straight-line segment used in the computation.
Joining the four integrals, we obtain:

Da
C1
f ðtÞ ¼ �

Cðaþ 1Þsinðap=2Þ
p

Z

1

0

f ðz� xÞ
1

xaþ1
dx

�
Cðaþ 1Þsinðap=2Þ

p

Z

1

0

f ðzþ xÞ
1

xaþ1
dx

or

Da
C1
f ðtÞ ¼ �

Cðaþ 1Þsinðap=2Þ
p

Z

1

�1

f ðz� xÞ
1

xj jaþ1 dx ð5:44Þ

As a is not an odd integer and using the reflection formula of the gamma
function we obtain

Da
C1
f ðtÞ ¼ �

1
2Cð�aÞcosðap=2Þ

Z

1

�1

f ðz� xÞ
1

xj jaþ1 dx ð5:45Þ

When -1\ a\ 0, it is the so called Riesz potential [8], for 0\ a\ 1, it is the
corresponding inverse operator.

Fig. 5.5 Segments for the
computation of the integrals
(5.42) and (5.43)
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For the type 2 case, we compute again the integrals corresponding to the four
segments to obtain:

Z

1

¼ �
Cðaþ 1Þ

2pi

Z

1

0

f ðz� xÞ
1

xaþ1e�iðaþ1Þp=2
eipdx;

Z

2

¼
Cðaþ 1Þ

2pi

Z

1

0

f ðzþ xÞ
1

xaþ1eiðaþ1Þp=2
dx

Z

3

¼ �
Cðaþ 1Þe�iap=2

2pi

Z

1

0

f ðzþ xÞ
1

xaþ1e�iðaþ1Þp=2
dx

Z

4

¼
Cðaþ 1Þ

2pi

Z

1

0

f ðz� xÞ
1

xaþ1e�iðaþ1Þp=2
eipdx

Joining the four integrals, we obtain:

Da
c2
f ðtÞ ¼

Cðaþ 1Þsin½ðaþ 1Þp=2�
p

Z

1

0

f ðz� xÞ
1

xaþ1
dx

�
Cðaþ 1Þsin½ðaþ 1Þp=2�

p

Z

1

0

f ðzþ xÞ
1

xaþ1
dx

As the last integral can be rewritten as:

Z

1

0

f ðzþ xÞ
1

xaþ1
dx ¼

Z

0

�1

f ðz� xÞ
1

ð�xÞaþ1 dx

we obtain

Da
c2
f ðtÞ ¼ �

1
2Cð�aÞ sinðap=2Þ

Z

1

�1

f ðz� xÞ
sgnðxÞ

xj jaþ1 dx ð5:46Þ

that is the modified Riesz potential [8], when -1\ a\ 0, when 0\ a\1, it is the
corresponding inverse operator. Both potentials (5.45) and (5.46) were studied also
by Okikiolu [2]. These are essentially convolutions of a given function with two
acausal (neither causal nor anti-causal) operators.

Letting F(x) be the Fourier transform of f(t) and, as the Fourier transform of
1

2Cð�aÞcosðap=2Þ tj j
�a�1 is given by xj ja we conclude that:
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F½Da
c1
f ðtÞ� ¼ xj jaFðxÞ ð5:47Þ

Similarly, as the Fourier transform of �sgnðtÞ
ðaþ1Þ2Cð�a�1Þcos½ðaþ1Þp=2� tj j

�a�1 is given by

�j xj jasgnðxÞ [2], we conclude that:

F½Da
c2
f ðtÞ� ¼ �j xj jasgnðxÞFðxÞ ð5:48Þ

It is interesting to use the type 1 derivative with a = 2M ? 1 and the type 2
with a = 2M. This will be done later.

Relations (5.47) and (5.48) generalise a well known property of the Fourier
transform.

5.8 Coherence of the Definitions

5.8.1 Type 1 Derivative

We want to test the coherence of the results by considering functions with Fourier
transform. To perform this study, we only have to find the behaviour of the defined
derivatives for f(t) = e-jxt, t,x [ R. In the following we will consider non integer
orders greater than -1. We start by considering the type 1 derivative. From (5.29)
we obtain

D
a
c1
ejxt ¼ e�jxt

X

þ1

�1

ð�1ÞnCðaþ 1Þ
Cða=2� nþ 1ÞCða=2þ nþ 1Þ

ejxnh ð5:49Þ

where we recognize the discrete-time Fourier transform of Rb(n),
5 given by:

RbðnÞ ¼
ð�1ÞnCðaþ 1Þ

Cða=2� nþ 1ÞCða=2þ nþ 1Þ
ð5:50Þ

As before, this function is the discrete autocorrelation of

hn ¼
ð�a=2Þn

n!
un ð5:51Þ

where un is the discrete unit step Heaviside function. As the binomial series is
convergent over the unit circle excepting the point z = 1, the discrete-time Fourier
transform of hn is:

HðejxÞ ¼ FT ½hn� ¼ ð1� e�jxhÞa=2 ð5:52Þ

and the discrete-time Fourier transform of Rb(n)

5 In purely mathematical terms it is a Fourier series with Rb(n) as coefficients.
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SðejxÞ ¼ lim
z!ejxh

ð1� z�1Þa=2ð1� zÞa=2 ¼ ð1� e�jxhÞa=2ð1� ejxhÞa=2

¼ ejxh=2 � e�jxh=2
�

�

�

�

a
¼ 2 sinðxh=2Þj ja ð5:53Þ

So,

2 sinðxh=2Þj ja¼
X

þ1

�1

ð�1ÞnCðaþ 1Þ
Cða=2� nþ 1ÞCða=2þ nþ 1Þ

ejxnh ð5:54Þ

We write, then:

D
a
c1
e�jxt ¼ e�jxt 2 sinðxh=2Þj ja ð5:55Þ

So, there is a linear system with frequency response given by:

HD1ðxÞ ¼ 2 sinðxh=2Þj ja ð5:56Þ

that acts on a signal giving its type 1 central fractional difference. Dividing (5.56)
by haðh 2 RþÞ and computing the limit as h ? 0, it comes:

HD1ðxÞ ¼ xj ja ð5:57Þ

As a is not an even integer:

xj ja¼ lim
h!0

1
ha

X

þ1

�1

ð�1ÞnCðaþ 1Þ
Cða=2� nþ 1ÞCða=2þ nþ 1Þ

ejxnh ð5:58Þ

valid for a[-1. The inverse Fourier Transform of xj ja is given by Okikiolu [2]:

FT�1½ xj ja� ¼
1

2Cð�aÞcosðap=2Þ
tj j�a�1 ð5:59Þ

and we obtain the impulse response:

hD1 tð Þ ¼
1

2Cð�aÞcosðap=2Þ
tj j�a�1 ð5:60Þ

leading to

Da
C1
f ðtÞ ¼

1
2Cð�aÞcosðap=2Þ

Z

þ1

�1

f ðsÞ t � sj j�a�1ds ð5:61Þ

that is coincides with (5.45). Relations (5.52) and (5.53) allow us to conclude that
the type 1 central derivative is equivalent to the application of the a/2 order
forward (or backward) derivative twice: one with increasing time and the other
with reverse time.
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5.8.2 Type 2 Derivative

A similar procedure allows us to obtain

D
a
c2
e�jxt ¼ e�jxte�jxh=2

X

þ1

�1

ð�1ÞkCðaþ 1Þ
C½ðaþ 1Þ=2� k þ 1�C½ða� 1Þ=2þ k þ 1�

ejxkh

ð5:62Þ

In order to maintain the coherence with the usual definition of discrete-time
Fourier transform, we change the summation variable, obtaining

D
a
c2
e�jxt ¼ e�jxte�jxh=2

X

þ1

�1

ð�1ÞkCðaþ 1Þ
C½ðaþ 1Þ=2þ k þ 1�C½ða� 1Þ=2� k þ 1�

e�jxkh

ð5:63Þ

Now, the coefficients of the above Fourier series are the cross-correlation,
Rbc(k), between

hn ¼
ð�aÞn
n!

un ð5:64Þ

and

gn ¼
ð�bÞn
n!

un ð5:65Þ

with a = (a ? 1)/2 and b = (a - 1)/2. Let Sbc(e
jx) be the discrete-time Fourier

transform of the cross-correlation, Rbc(k):

Sbcðe
jxÞ ¼ FT RbcðkÞ½ � ð5:66Þ

Rbc(k) being a correlation, we conclude easily that Sbc(e
jx) is given by:

Sbcðe
jxÞ ¼ lim

z!ejxh
ð1� z�1Þðaþ1Þ=2ð1� zÞða�1Þ=2 ð5:67Þ

¼ ð1� e�jxhÞ aþ1ð Þ=2ð1� ejxhÞ aþ1ð Þ=2ð1� ejxhÞ�1 ð5:68Þ

We write, then:

D
a
c2
e�jxt ¼ ejxt 2 sinðxh=2Þj jaþ1 2j sinðxh=2Þ½ ��1

So, there is a linear system with frequency response given by:

HD2ðxÞ ¼ 2 sinðxh=2Þj jaþ1 2j sinðxh=2Þ½ ��1 ð5:69Þ

that acts on a signal giving its fractional central difference. We can write also
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2 sinðxh=2Þj jaþ1 2j sinðxh=2Þ½ ��1

¼
X

þ1

�1

ð�1ÞkCðaþ 1Þ
C½ðaþ 1Þ=2þ k þ 1�C½ða� 1Þ=2� k þ 1�

e�jxkh
ð5:70Þ

Dividing (5.69) by ha (h [ R+) and computing the limit as h ? 0, it gives:

HD2ðxÞ ¼ �j xj jasgnðxÞ ð5:71Þ

As

j
d xj jaþ1

dx
¼ jðaþ 1Þ xj jasgnðxÞ

and using a well known property of the Fourier transform we obtain from (5.59):

hD2 tð Þ¼
�sgnðtÞ

ðaþ 1Þ2Cð�a� 1Þcos½ðaþ 1Þp=2�
tj j�a�1 ð5:72Þ

or, using the properties of the gamma function

hD2 tð Þ ¼ �
sgnðtÞ

2Cð�aÞsinðap=2Þ
tj j�a�1 ð5:73Þ

and as previously:

Da
C2
f ðtÞ ¼ �

1
2Cð�aÞsinðap=2Þ

Z

þ1

�1

f ðsÞ t � sj j�a�1sgnðt � sÞds ð5:74Þ

Relations (5.64), to (5.68) allow us to conclude that the type 2 central derivative
is equivalent to the application of the forward (or backward) derivative twice: one
with increasing time and order (a ? 1)/2, and the other with reverse time and order
(a - 1)/2.

It is interesting to remark that combining (5.57) with (5.71) as

HDðxÞ ¼ HD1ðxÞ þ jHD2ðxÞ ð5:75Þ

We obtain a function that is null for x\ 0. This means that the operator
defined by (5.74) is the Hilbert transform of that defined in (5.61) and the corre-
sponding ‘‘analytic’’ derivative is given by the convolution of the function at hand
with the operator:

hDðtÞ ¼
tj j�a�1

2Cð�aÞ cosðap=2Þ
� j

tj j�a�1sgnðtÞ
2Cð�aÞsinðap=2Þ

ð5:76Þ

This is formally similar to the Riesz–Feller potential definitions [8].
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5.8.3 The Integer Order Cases

Let a = 2 N, N [ Z?, in the type 1 difference. We obtain:

D
2N
c1
f ðtÞ ¼

X

þN

�N

ð�1Þkð2NÞ!
ðN � kÞ!ðN þ kÞ!

f ðt � khÞ ð5:77Þ

that can be written as

D
2N
c1
f ðtÞ ¼

X

þN

�N

ð�1Þk
2N

N � K

� �

f ðt � khÞ ð5:78Þ

A close look into (5.78) shows that aside a factor (-1)N it is the current
2N order central difference, as already known. With N = 0, we obtain f(t). Sim-
ilarly, if a is odd (a = 2N ? 1), the type 2 difference is equal to current central
difference, aside the factor (-1)N+1. In fact, we have:

D
2Nþ1
c2

f ðtÞ ¼
X

Nþ1

�N

ð�1Þkð2N þ 1Þ!f ðt � khþ h=2Þ
ðN þ 1� kÞ!ðN þ kÞ!

ð5:79Þ

and

D
2Nþ1
c2

f ðtÞ ¼
X

Nþ1

�N

ð�1Þk N � k
2Nþ1

� �

f ðt � khþ h=2Þ ð5:80Þ

In particular, with N = 0, we obtain

D
1
c2
f ðtÞ ¼ f ðt þ h=2Þ � f ðt � h=2Þ:

It is interesting to use the central type 1 difference (or, derivative) with
a = 2M ? 1 and the type 2 with a = 2M. For the first, a/2 is not integer and we
can use formulae (5.49) to (5.57). However, they are difficult to manipulate. We
found better to use (5.59), but we must avoid the product C(-a)�cos(ap/2),
because the first factor is 1 and the second is zero. We solve the problem by
noting that

1
2Cð�aÞcosðap=2Þ

¼ �
Cðaþ 1Þ � sinðapÞ
2p cosðap=2Þ

¼ �
Cðaþ 1Þ sinðap=2Þ

p

assuming the value �ð2Mþ1Þ!ð�1ÞM

p
. We obtain finally [9]

FT�1 xj j2Mþ1
h i

¼ �
ð2M þ 1Þ!ð�1ÞM

p
tj j�2M�2 ð5:81Þ

and the corresponding impulse response:
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hD1 tð Þ ¼ �
ð2M þ 1Þ!ð�1ÞM

p
tj j�2M�2 ð5:82Þ

Relatively to the second case, a ¼ 2M, we can use formula (5.73), provided that
we use the relation:

�
1

2Cð�aÞsinðap=2Þ
¼

Cðaþ 1Þ � sinðapÞ
2p sinðap=2Þ

¼
Cðaþ 1Þcosðap=2Þ

p

to get a factor ð2MÞ!ð�1ÞM

p
. We obtain then [9]:

FT�1 xj j2MsgnðxÞ
h i

¼
sgnðtÞð2MÞ!ð�1ÞM

p
tj j�2M�1 ð5:83Þ

and

hD2 tð Þ ¼
sgnðtÞð2MÞ!ð�1ÞM

p
tj j�2M�1 ð5:84Þ

As we can see, the formulae (5.82) and (5.84) allow us to generalize the Riesz
potentials for positive integer orders. However, they do not have inverse.

It is interesting to study the situation defined by a = 0 with the type 2 deriv-
ative. From (5.74) and (5.84) and noting that t = |t|�sgn(t), we obtain:

D0
C2
f ðtÞ ¼

1
p

Z

1

�1

f ðz� xÞ
1
x
dx ð5:85Þ

that is the Hilbert transform of f(t).
These results allow us to conclude that:

1. Both type 1 (5.37) and type 2 (5.38) derivatives are defined and meaningful for
real orders greater than -1.

2. When the order is an even (odd) integer, type 1 (type 2) derivative is aside a
sign equal to the common derivative with the same order.

3. For the same orders, these derivatives cannot be expressed by the Riesz
potentials (5.61) and (5.74), because the factors before the integrals are zero.

5.8.4 Other Properties of the Central Derivatives

From the relations (5.32), (5.33), and (5.34) we obtain easily:

Db
c1
fDa

c1
f ðtÞg ¼ Daþb

c1
f ðtÞ ð5:86Þ

and

Db
c2
fDa

c2
f ðtÞg ¼ �D

aþb
c2 f ðtÞ ð5:87Þ
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while

Db
c3
fDa

c3
f ðtÞg ¼ Daþb

c3
f ðtÞ ð5:88Þ

again with a ? b[-1. We conclude:

• If aj j\1 and bj j\1 the fractional derivative has always an inverse.
• We can generate the Hilbert transform of a given function with derivations of
different types and symmetric orders.

5.9 On the Existence of a Inverse Riesz Potential

In current literature [8] the Riesz potentials are only defined for negative orders
verifying -1\ a\ 0. However, our formulation is valid for every a[-1. This
means that we can define those potentials even for positive orders. However, we
cannot guaranty that there is always an inverse for a given potential. The theory
presented in Sect. 5.2 allows us to state that:

• The inverse of a given potential, when existing, is of the same type: the inverse
of the type k (k = 1,2) potential is a type k potential.

• The inverse of a given potential exists iff its order a verifies aj j\1.
• The order of the inverse of an a order potential is a -a order potential.
• The inverse can be computed both by (5.37) [respectively (5.38)] and by (5.61)
[respectively (5.74)].

This is in contradiction with the results stated in Samko et al. [8] about this
subject and will have implications in the solution of differential equations
involving two-sided derivatives.

5.9.1 Some Computational Issues

In practical applications, we may need to compute a two-sided derivative of a
function for which a closed form is not available and we are obliged to truncate the
summation or the integral. This leads to an error. We can obtain a bound for such
error, by considering a bounded function—|f(t)|\M—known inside an interval
that we will assume to be symmetric relatively to the origin, [-L, L], only by
simplicity. We are going to consider the type 1 case. The other is similar. From
(5.61), we conclude that the error is bounded:

E\
M

Cð�aÞcosðap=2Þj j

Z

1

L

1
xaþ1

dx ¼
ML�a

Cð�aÞ cosðap=2Þj j
¼

Cðaþ 1Þj j

p
ML�a

ð5:89Þ
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This result is similar to the one stated by Podlubny [10] in connection with the
called there ‘‘short-memory’’ principle. A similar result can be obtained for the
summation in (5.37). However, here we have an error bound that is function of
h. From the properties of the gamma functions, we obtain easily:

ð�1Þk

Cða=2� k þ 1Þ
¼ �

sinðap=2Þ
p

Cð�a=2þ kÞ ð5:90Þ

ð�1Þk

Cða=2� k þ 1ÞCða=2þ k þ 1Þ
¼ �

sinðap=2Þ
p

Cð�a=2þ kj jÞ

Cða=2þ kj j þ 1Þ
ð5:91Þ

When kj j\1 is high enough, we can use (5.39) again, to obtain

ð�1Þk

Cða=2� k þ 1ÞCða=2þ k þ 1Þ

�

�

�

�

�

�

�

�

�

�



1
p
kj j�a�1 ð5:92Þ

This leads to an error:

EðhÞ

Cðaþ 1Þj j

p

X

þ1

Lþ1

k=hj j�a�1
h ð5:93Þ

and leads to (5.89) again.

5.10 Conclusions

We introduced a general framework for defining the fractional central differences
and consider two cases that are generalisations of the usual central differences.
These new differences led to central derivatives similar to the usual Grünwald–
Letnikov ones. For those differences, we presented integral representations from
where we obtained the derivative integrals, similar to Cauchy, by using the
properties of the Gamma function. The computation of those integrals led to
generalisations of the Riesz potentials. The most interesting feature lies in the
summation formulae for the Riesz potentials. To test the coherence of the proposed
definitions we applied them to the complex exponential. The results show that they
are suitable for functions with Fourier transform. Some properties of these
derivatives were presented.
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Chapter 6

The Fractional Quantum Derivative

and the Fractional Linear Scale Invariant

Systems

6.1 Introduction

The normal way of introducing the notion of derivative is by means of the limit of
an incremental ratio that can assume three forms, depending the used translations
as we saw in Chaps. 2 and 5. On the other hand, in those derivatives the limit
operation is done over a set of points uniformly spaced: a linear scale was used.
Here we present an alternative derivative, that is valid only for t[ 0 or t\ 0 and
uses an exponential scale. We are going to introduce the so-called Quantum
Derivative [1, 2]. We proceed as in Chap. 2. Let. Dq be the following incremental
ratio:

Dqf tð Þ ¼
f tð Þ � f qtð Þ

1� qð Þt
ð6:1Þ

where q is a positive real number less than 1 and f(t) is assumed to be a causal type
signal. The corresponding derivative is obtained by computing the limit as q goes
to 1 (to be more precise, we should state q?1-)

Dqf tð Þ ¼ lim
q!1

f tð Þ � f qtð Þ

1� qð Þt
ð6:2Þ

This derivative uses values of the variable below t. We can introduce another
one that uses values above t. It is defined by

Dq�1 f tð Þ ¼ lim
q!1

f q�1tð Þ � f tð Þ

q�1 � 1ð Þt
ð6:3Þ

We will generalize these derivatives, first for integer orders, and afterwards for
real ones as we did before. We will present the two formulations that come
naturally from (6.2) and (6.3) and using values below and above the independent
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variable. We can define also ‘‘two-sided’’ derivatives as we did in Chap. 5, but we
will not do it here.

From the Mellin transform of both derivatives we will obtain two integral
formulae similar to the Liouville derivatives presented in Chap. 2. Although we
will not study here the properties of these derivatives, it may be advanced that they
can be used in scale variation problems and to deal with systems defined by Euler–
Cauchy type differential equations as we will see later. For now, we will present
the steps leading to the fractional quantum derivative and its relation with the
Mellin transform (MT).

6.2 The Summation Formulations

6.2.1 The ‘‘Below t’’ Case

We begin by generalizing formula (6.1) for any positive integer order. The for-
mula can be obtained by its repeated application, but we prefer to work in the
context of the Mellin Transform due to its simplicity. Let us introduce the Mellin
transform by

H sð Þ ¼

Z

1

0

h uð Þu�s�1du ð6:4Þ

with s 2 C. This transform is slightly different from the one presented by Bertrand
et al. [3] and in current literature, but this one is more convenient since leads to
results similar to those obtained with the Laplace transform in the study of shift
invariant systems.

Consider that our domain is R+. We introduce the multiplicative convolution
defined by

f ðtÞ m gðtÞ ¼

Z

1

0

f ðt=vÞgðvÞ
dv
v

ð6:5Þ

It is easy to see that the neutral element of this convolution is g tð Þ ¼ d t � 1ð Þ:
With this, we can show that

Dqf ðtÞ ¼
dðt � 1Þ � dðt � q�1Þ

ð1� qÞ

� �

m½t�1f ðtÞ� ð6:6Þ

As it is known, the Mellin Transform of the multiplicative convolution is equal
to the product of the transforms of both functions. So we obtain:

M½Dqf ðtÞ� ¼
1� qsþ1

1� q
Fðsþ 1Þ ð6:7Þ
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The repeated application of the operator (6.7) leads to:

M½DN
q f ðtÞ� ¼ P

N

i¼1

1� qsþi

1� q
Fðsþ NÞ ð6:8Þ

We are going to manipulate the first factor and use the q-binomial formula [1]

½1� qsþ1�Nq ¼ P
N�1

i¼0
ð1� q1þsqiÞ

We have first

P
N

i¼1

1� qsþi

1� q
¼

P
N
i¼1ð1� qsqiÞ

ð1� qÞN
¼

P
N�1
i¼0 ð1� q1þsqiÞ

ð1� qÞN
¼

1� qsþ1½ �
N

q

ð1� qÞN

The Gauss binomial formula

½aþ b�Nq ¼
X

N

j¼0

N
j

h i

q
ð�1Þ jqj j�1ð Þ=2b jaN�j

allows us to obtain a different way of expressing the formula on the right. Intro-
ducing the q-binomial coefficients

a
i

� �

q
¼

½a�q!

½j�q!ða� iÞq!
ð6:9Þ

with ½a�q given by

½a�q ¼
1� qa

1� q
ð6:10Þ

the expression on the right can be written as [1, 2]

½1� qsþ1�Nq

ð1� qÞN
¼

PN
j¼0 ½

N
j �qð�1Þ jqjðjþ1Þ=2qjs

ð1� qÞN
ð6:11Þ

that inserted into (6.8) gives:

M D
N
q f ðtÞ

h i

¼

PN
j¼0

N
j

h i

q
ð�1Þ jqjðjþ1Þ=2qjs

ð1� qÞN
Fðsþ NÞ ð6:12Þ

From the properties of the Mellin transform [4]

M
�1½qjsFðsþ NÞ� ¼ q�jN t�N f ðq jtÞ ð6:13Þ
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We conclude that:

D
N
q f ðtÞ ¼ t�N

PN
j¼0

N
j

h i

q
�1ð Þ jqjðjþ1Þ=2q�jN f ðq jtÞ

ð1� qÞN
ð6:14Þ

To obtain the corresponding derivatives we only have to perform the limit
computation [1, 2, 5]

DN
q f ðtÞ ¼ t�N limq!1

PN
j¼0

N
j

h i

q
ð�1Þ jqjðjþ1Þ=2q�jN f ðq jtÞ

ð1� qÞN
ð6:15Þ

To test the behaviour of the above formula, let us compute the second deriv-
ative of the function f tð Þ ¼ t3u tð Þ, where u(t) is the Heaviside unit step. We have:

D2
qf ðtÞ ¼ t lim

q!1

P2
j¼0

2
j

h i

q
ð�1Þ jqjðjþ1Þ=2q j

ð1� qÞ2

and, from (6.11),

D2
qf ðtÞ ¼ t lim

q!1

P
1
i¼0ð1� q2qiÞ

ð1� qÞ2
¼ t lim

q!1

ð1� q2Þð1� q3Þ

ð1� qÞ2

¼ t lim
q!1

ð1þ qÞð1þ qþ q2Þ ¼ 6t

as expected.
From (6.8) and (6.12), we conclude that:

M t�N

PN
j¼0

N
j

h i

q
ð�1Þ jqjðjþ1Þ=2q�jN f ðq jtÞ

ð1� qÞN

2

6

4

3

7

5
¼ P

N

i¼1

1� qsþi

1� q
Fðsþ NÞ ð6:16Þ

and, performing the limit computation in the right hand side,

M t�N lim
q!1

PN
j¼0 q

N
j

h i

q
ð�1Þ jqjðjþ1Þ=2q�jN f ðq jtÞ

ð1� qÞN

2

6

4

3

7

5
¼ ð1þ sÞNFðsþ NÞ ð6:17Þ

where we represented by að Þn¼ a aþ 1ð Þ � � � aþ N � 1ð Þ the Pochhammer sym-
bol. From well known properties of the Gamma function, we can write

M t�N lim
q!1

PN
j¼0 q

N
j

h i

ð�1Þ jqjðjþ1Þ=2q�jN f ðq jtÞ

ð1� qÞN

2

4

3

5 ¼
Cð1þ sþ NÞ

Cð1þ sÞ
Fðsþ NÞ ð6:18Þ
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¼ ð�1ÞN
Cð�sÞ

Cð�s� NÞ
Fðsþ NÞ ð6:19Þ

The right hand side in (6.18) or (6.19) is the well known Mellin transform of the
Nth order derivative. The left side is a new way of expressing such derivative. This
expression suggests that we may work with the ‘‘derivative’’tnDN

q f ðtÞ, also called
scale derivative.

We are going to generalise the previous results for the case of a real order, a.
So, let us return to (6.11) and substitute a for N in the left hand expression. In the
numerator we obtain the fractional q-binomial ½1� qsþ1�aq. The generalised Gauss
binomial formula [1]

1þ a½ �aq¼
X

1

j¼0

a
j

h i

q
ð�1Þ jqjðj�1Þ=2a j

allows us to write:

1� qsþ1
� �a

q
¼

X

1

j¼0

a
j

h i

q
ð�1Þ jqjðjþ1Þ=2qjs ð6:20Þ

From the properties of the Mellin transform

M
�1½qjsFðsþ aÞ� ¼ q�jat�af ðq jtÞ ð6:21Þ

This leads us to a Grunwald–Letnikov like fractional quantum derivative:

Da
qf ðtÞ ¼ t�a lim

q!1

P1
j¼0

a
j

h i

q
ð�1Þ jqjðjþ1Þ=2q�jaf ðq jtÞ

ð1� qÞa
ð6:22Þ

that is similar to the formulation proposed by Al-Salam [6]. In (6.22) the
q-binomial coefficients are given by

a
j

h i

q

1� qa½ � jq
½j�q

ð6:23Þ

Let us introduce the q-gamma function by

CqðtÞ
1� q½ �1q

1� qt½ �1q ð1� qÞt�1 ð6:24Þ

where Re(t)[ 0. With this function,

Cqðnþ 1Þ ¼
½1� q�nq
1� qð Þn

¼ P
n

i¼1

1� qi

1� q
¼ ½n�q! ð6:25Þ
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the binomial coefficients can be written as:

a
j

h i

q
¼

Cqðaþ 1Þ
Cqða� jþ 1ÞCqðjþ 1Þ

ð6:26Þ

On the other hand, the fractional q-binomial in (6.20) is given by

1� qsþ1
� �a

q
¼

1� qsþ1½ �
1
q

1� qsþaþ1½ �1q
ð6:27Þ

With (6.24), we can write

1� qsþ1
� �a

q
¼

Cqð1þ sþ aÞ

Cqð1þ sÞ
� ð1� qÞa ð6:28Þ

valid for Re sð Þ [ �minð0; aÞ � 1: As the limit of Cq tð Þ when q ! 1 is C tð Þ, it
is a simple task to obtain:

M Da
qf ðtÞ

h i

¼
Cð1þ sþ aÞ

Cð1þ sÞ
Fðsþ aÞ ð6:29Þ

for Re sð Þ [ �minð0; aÞ � 1. This relation is the fractional generalisation of the
integer order property [3] and allows us to obtain an integral representation of the
fractional quantum derivative. We will return to this subject later.

To maintain the coherence we will consider (6.18) as the correct solution in the
integer order case, for the ‘‘below t’’ situation.

6.2.2 The ‘‘Above t’’ Case

We are going to study the derivative using a grid of values above t. We proceed as
in the last section. Let Dq�1 be the following incremental ratio:

Dq�1 f ðtÞ ¼
f ðq�1tÞ � f ðtÞ

ðq�1 � 1Þt
ð6:30Þ

With the convolution (6.5), we can show that

Dq�1 f ðtÞ ¼
dðt � qÞ � dðt � 1Þ

ðq�1 � 1Þ

� �

m½t�1f ðtÞ� ð6:31Þ

Using the Mellin Transform we obtain:

M Dq�1 f ðtÞ
� �

¼
q�ðsþ1Þ � 1
q�1 � 1

Fðsþ 1Þ ð6:32Þ
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The repeated application of the operator (6.32) leads to:

M D
N
q�1 f ðtÞ

h i

¼ P
N

i¼1

q�ðsþiÞ

q�1 � 1
Fðsþ NÞ ð6:33Þ

We are going to transform the first factor

P
N

i¼1

q�ðsþiÞ � 1
q�1 � 1

¼
P

N�1
i¼0 1� q�s�Nqið Þ

ð1� q�1ÞN
¼

1� q�s�N½ �
N

q

ð1� q�1ÞN
ð6:34Þ

and use the q-binomial formula leading to

M D
N
q�1 f ðtÞ

h i

¼

PN
j¼0

N
j

h i

q
ð�1Þ jqjðj�1Þ=2q�jðsþNÞ

ð1� q�1ÞN
Fðsþ NÞ ð6:35Þ

and with (6.16),

D
N
q�1 f ðtÞ ¼ t�N

PN
j¼0

N
j

h i

q
ð�1Þ jqjðj�1Þ=2f ðq�jtÞ

ð1� q�1ÞN
ð6:36Þ

allowing us to obtain to the derivative:

DN
q�1 f ðtÞ ¼ t�N lim

q!1

PN
j¼0

N
j

h i

q
ð�1Þ jqðj�1Þ=2f ðq�jtÞ

ð1� q�1ÞN
ð6:37Þ

With the left hand side in (6.35) we conclude that:

M DN
q�1 f ðtÞ

h i

¼ ð1þ sÞNFðsþ NÞ ð6:38Þ

that coincides with (6.17) as expected.
To generalize the above results for any order, we substitute a for N in the above

expressions. We have from (6.35):

M D
a
q�1 f ðtÞ

h i

¼

P1
j¼0

a
j

h i

q
ð�1Þ jqjðj�1Þ=2q�jðsþaÞ

ð1� q�1Þa
Fðsþ aÞ ð6:39Þ

and then

Da
q�1 f ðtÞ ¼ t�a lim

q!1

P1
j¼0

a
j

h i

q
ð�1Þ jqjðj�1Þ=2f ðq�jtÞ

ð1� q�1Þa
ð6:40Þ

Using the q-binomial theorem, we have:

X

1

j¼0

a
j

h i

q
ð�1Þ jqjðj�1Þ=2q�jðsþaÞ ¼ 1� q�s�a½ �aq
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and

1� q�s�a½ �aq¼
1� q�s�a½ �1q
1� q�s½ �1q

ð6:41Þ

So, with (6.24)

1� q�s�a½ �aq¼
Cqð�sÞ

Cqð�s� aÞ
� ð1� qÞa

and finally

M Da
q�1 f ðtÞ

h i

¼ ð�1Þa �
Cð�sÞ

Cð�s� aÞ
Fðsþ aÞ ð6:42Þ

valid for Re sð Þ\�max ð0; aÞ and in agreement with (6.38) and (6.19).

6.3 Integral Formulations

The two Mellin transforms in (6.29) and (6.42) lead to different integral repre-
sentation of fractional derivatives by computing the corresponding inverse func-
tions. To do it, we will use well known results of the Beta function. To start, we are

going to obtain the inverse hb tð Þ of Cð�sÞ
Cð�s�aÞ.

As known The Euler Beta function is defined for Re pð Þ[ 0 and Re qð Þ[ 0 by

Bðp; qÞ ¼

Z

1

0

sp�1ð1� sÞq�1ds ð6:43Þ

and it can be shown that [7]

Bðp; qÞ ¼
CðpÞCðqÞ

Cðpþ qÞ
ð6:44Þ

This allows us to write:

Cð�sÞCð�aÞ

Cð�s� aÞ
¼

Z

1

0

s�s�1ð1� sÞ�a�1ds ð6:45Þ

Provided that Re sð Þ\0 and ReðaÞ\ 0: This gives immediately

hbðtÞ ¼
ð�1Þa

Cð�aÞ
ð1� tÞ�a�1

uð1� tÞ ð6:46Þ
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A similar procedure to obtain the inverse ha tð Þ of Cð1þsþaÞ
Cð1þsÞ gives

Cð1þ sþ aÞCð�aÞ

Cð1þ sÞ
¼

Z

1

0

s1þsþað1� sÞ�a�1ds ð6:47Þ

With a variable change inside the integral, we obtain:

Cð1þ sþ aÞCð�aÞ

Cð1þ sÞ
¼

Z

1

1

s�sð1� sÞ�a�1ds ð6:48Þ

and

haðtÞ ¼
1

Cð�aÞ
ðt � 1Þ�a�1

uðt � 1Þ ð6:49Þ

To compute in integral formulations of the derivatives corresponding to (6.29)
and (6.42) we remark that the inverse Mellin transform of Fðsþ aÞ is given by:

M
�1½Fðsþ aÞ� ¼ t�af ðtÞ ð6:50Þ

and use the convolution (6.5). With (6.46) and (6.49) we obtain the following
integral formulations, valid for ReðaÞ\ 0.

Da
bf ðtÞ ¼ �

t�a

Cð�aÞ

Z

1

0

f ðt=sÞð1� s�1Þ�a�1ds ð6:51Þ

and

Da
af ðtÞ ¼

t�a

Cð�aÞ

Z

1

1

f ðt=sÞðs�1 � 1Þ�a�1ds ð6:52Þ

Attending to the fact that the convolution (6.5) is commutative, we can obtain
another set of integral formulations for the derivatives. In fact, from (6.46) and
(6.49), we obtain:

Da
af ðtÞ ¼ �

1
Cð�aÞ

Z

t

0

ðt=s� 1Þ�a�1
s�af ðsÞds=t

and

Da
af ðtÞ ¼

1
Cð�aÞ

Z

t

0

ðt � sÞ�a�1
f ðsÞds ð6:53Þ
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that coincides with the Liouville derivative particularized for causal functions.
Relatively to the other case, we have:

Da
b f ðtÞ ¼ �

1
Cð�aÞ

Z

1

t

ðt � sÞ�a�1
f ðsÞds ð6:54Þ

that is the backward Liouville derivative for causal signals. Although we obtained

these results for a\ 0, they remain valid for other values of a, since Cð�sÞ
Cð�s�aÞ and

Cð1þsþaÞ
Cð1þsÞ are analytical in the regions of convergence and we can fix an integration

path independent of a. This can be confirmed by expanding (6.46) and (6.49) and
transforming each term of the series.

6.4 On the Fractional Linear Scale Invariant Systems

6.4.1 Introduction

Braccini and Gambardella [8] introduced the concept of ‘‘form-invariant’’ filters.
These are systems such that a scaling of the input gives rise to the same scaling of
the output. This is important in detection and estimation of signals with unknown
size requiring some type of pre-processing: for example edge sharpening in image
processing or in radar signals. However in their attempt to define such systems,
they did not give any formulation in terms of a differential equation. The Linear
Scale Invariant Systems (LScIS) were really introduced by Yazici and Kashyap
[9, 10] for analysis and modelling 1/f phenomena and in general the self-similar
processes, namely the scale stationary processes. Their approach was based on an
integer order Euler–Cauchy differential equation. However, they solved only a
particular case corresponding to the all pole case. To insert a fractional behaviour,
they proposed the concept of pseudo-impulse response. Here we avoid this pro-
cedure by presenting a fractional derivative based general formulation of the
LScIS. These are described by fractional Euler–Cauchy equations. The fractional
quantum derivatives are suitable for dealing with these systems. The use of the
Mellin transform allowed us to define the multiplicative convolution and, from it,
it is shown that the power function is the eigenfunction of the LScIS and the
eigenvalue is the transfer function.

The computation of the impulse response from the transfer function is done
following a procedure very similar to the used in the shift-invariant systems in
Chap. 4. We will follow a two step procedure. In the first we solve a par-
ticular case with integer differentiation orders. Later we solve for the frac-
tional case.
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6.4.2 The General Formulation

We are going to consider a general formulation for the LScIS. The integer order
case was studied in Yazici and Kashyap [9, 10]. To do it, we need the two
fractional quantum derivatives that we presented in Sect. 6.2: the ‘‘below t’’
(analogue to anti-causal) and ‘‘above t’’ (analogue to causal) derivatives. If t were
a time, we would talk on anti-causal and causal. We saw that working in the
context of the Mellin transform we obtain two different regions of convergence:
left and right relatively to a vertical straight line. This is not needed when dealing
with integer order systems because we only have one Mellin transform for tnf ðnÞ tð Þ
if n is integer. We rewrite here the two fractional quantum derivatives we are
going to use

Da
qf ðtÞ ¼ lim

q!1

P1
j¼0

a
j

h i

q
ð�1Þ jqjðjþ1Þ=2q�jaf ðq jtÞ

ð1� qÞata
ð6:55Þ

and

Da
q�1 f ðtÞ ¼ lim

q!1

P1
j¼0

a
j

h i

q
ð�1Þ jqjðj�1Þ=2f ðq�jtÞ

ð1� q�1Þata
ð6:56Þ

where 0\ q\ 1. When a is a positive integer, these derivatives lead to the results
obtained by Yazici and Kashyap [9, 10]. We must give a special emphasis on an
interesting fact: these derivatives are not local (unless a is positive integer),
because they use infinite values on the left or on the right. So, the whole left or
right history of the signal is needed. This is important in systems based on these
derivatives: they exhibit long-range memory. With the adopted Mellin transform
(6.4) we are led to results similar to those obtained with the Laplace transform in
the study of shift invariant systems. The Mellin transforms of the above derivatives
are given by (6.29) and (6.42):

M Da
qf ðtÞ

h i

¼
Cð1þ sþ aÞ

Cð1þ sÞ
Fðsþ aÞ

valid for Re sð Þ[ �minð0; aÞ � 1, in the first case and by

M Da
q�1 f ðtÞ

h i

¼ ð�1Þa �
Cqð�sÞ

Cqð�s� aÞ
Fðsþ aÞ

valid for Re sð Þ\� max ð0; aÞ in the second case. It is worth remarking that the
first corresponds to the causal case when working in the Laplace transform con-
text, while the second corresponds to the anti-causal one.
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6.4.3 The Eigenfunctions and Frequency Response

We assume that the fractional LScIS is described by the general Euler–Cauchy
differential equation

X

N

i¼0

ait
ai � yðaiÞðtÞ ¼

X

M

i¼0

bi � t
bi � xðbiÞðtÞ ð6:57Þ

with t 2 Rþ. The response of the system is obtained by using the multiplicative
convolution defined by (6.5). As said before the neutral element of this convo-
lution is g tð Þ ¼ d t � 1ð Þ. We must call the attention to the fact the point of
application of the impulse is t = 1 and not t = 0, as it is the case of the shift-
invariant systems. d t � 1ð Þ is the inverse of D sð Þ ¼ 1. On the other hand, using
the derivative definitions presented above, it is easy to show that:

½tayðaÞðtÞ� m gðtÞ ¼ ta½yðaÞf ðtÞ m gðtÞ�

Let h(t) be the impulse response of the system,

X

N

i¼0

ait
ai � hðaiÞðtÞ ¼

X

M

i¼0

bi � t
bi � dðbiÞðt � 1Þ ð6:58Þ

and convolve both sides of (6.58) with x(t). We conclude immediately that

yðtÞ ¼

Z

1

0

hðt=uÞxðuÞ
du
u

ð6:59Þ

If xðtÞ ¼ tr, then

yðtÞ ¼ HðrÞ � tr ð6:60Þ

meaning that the power function is the eigenfunction of the system described by
(6.58) or (6.59) and HðrÞ is the eigenvalue, that we will call Transfer Function as
in the shift-invariant systems and that is given by

H sð Þ ¼

Z

1

0

h uð Þu�s�1du ð6:61Þ

that is the Mellin transform of the impulse response. In (6.59) put x(t) = g(at). It is
a simple task to show that the output is y(at) showing that the system is really scale
invariant.
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6.5 Impulse Response Computations

6.5.1 The Uniform Orders Case

Equation (6.57) is difficult to solve for any derivative orders. However, when the
derivative orders have the format

ai ¼ aþ i i ¼ 0; 1; 2; . . .;N

and

bi ¼ bþ i i ¼ 0; 1; 2; . . .;N

we obtain a simpler equation

X

N

i¼0

ai t
aþ1yðaþiÞðtÞ ¼

X

M

i¼0

bi t
bþ1xðbþiÞðtÞ ð6:62Þ

that we will solve with the help of the Mellin transform and using the fractional
quantum derivatives. As we will show, the above equation allows us to obtain two
transfer functions. Each of them has two terms that lead to two inverse functions.
Before going into the general solution, we will consider the special integer order
case with a ¼ b ¼ 0

6.5.2 The Integer Order System with a ¼ b ¼ 0

Consider a linear system represented by the differential equation

X

N

i¼0

ai t
i � yðiÞðtÞ ¼

X

M

i¼0

bi � t
ixðiÞðtÞ ð6:63Þ

where x(t) is the input, y(t) the output, and N and M are positive integers ðM�NÞ.
Usually aN is chosen to be 1. We will assume that this equation is valid for every
t 2 Rþ. The system defined by (6.62) with M = 0 was already studied [see 9, 10].
However, it is interesting to repeat the computations here to acquire some back-
ground into the general case.

Applying the Mellin transform to both sides of (6.63) we obtain

X

N

i¼0

aið�1Þið�sÞi YðsÞ ¼
X

M

i¼0

bi�ð�1Þið�sÞi XðsÞ; ð6:64Þ

from where a transfer function is deduced

HðsÞ ¼
YðsÞ

XðsÞ
¼

PM
i¼0 bi�ð�1Þið�sÞi

PN
i¼0 ai�ð�1Þið�sÞi

ð6:65Þ

6.5 Impulse Response Computations 135



In this expression we need to transform both numerator and denominator into
polynomials in the variable s. To do it we use the well known relation [11]

ðxÞk ¼
X

k

i¼0

ð�1Þk�i
vðk; iÞxi ð6:66Þ

where v(,) represent the Stirling numbers of first kind that verify the recursion

v nþ 1;mð Þ ¼ v n;m� 1ð Þ � nv n;mð Þ ð6:67Þ

for 1�m� n and with

vðn; 0Þ ¼ dn and vðn; 1Þ ¼ ð�1Þn�1ðn� 1Þ!
With some manipulation, we obtain:

X

N

i¼0

aið�1Þið�xÞi ¼
X

N

i¼0

X

N

k¼i

akð�1Þkvðk; iÞ ð�xÞi ¼
X

N

i¼0

Aix
i ð6:68Þ

with the Ai coefficients given by

Ai ¼ ð�1Þi
X

N

i¼k

akð�1Þkvðk; iÞ ð6:69Þ

or in a matricial format

A ¼ V � a ð6:70Þ

where

A ¼ A0 A1. . . . . .AN½ �T ð6:71Þ

V ¼ v i; jð Þ; i; j ¼ 0; 1; . . .;N½ � ð6:72Þ

and

a ¼ a0 a1. . . . . . aN½ �T ð6:73Þ

With this formulation, the transfer function is given by:

HðsÞ ¼

PM
i¼0 Bi s

i

PN
i¼0 Ai si

M�N ð6:74Þ

that is the quotient of two polynomials in s. In the integer order case, it is indif-
ferent which derivative we use, because they lead to the same result (6.17). This is
a consequence of two facts:

(a) The derivatives (6.55) and (6.56) coincide with the classic when a ¼ N 2 Zþ;
(b) The transforms defined in (6.29) and (6.42) are equal and the region of con-

vergence is the whole complex plane
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In general H(s) has the following partial fraction decomposition

HðsÞ ¼
BM

AN

þ
X

N

i¼1

X

mi

j¼1

aij

ðs� piÞ
j

ð6:75Þ

The constant term only exists when M = N and its inversion gives a delta at
t = 1:

M
�1 BM

AN

� �

¼
BM

AN

dðt � 1Þ ð6:76Þ

For inversion of a given partial fraction, we must fix the region of convergence
Re sð Þ [ Re pið Þ or Re sð Þ [ Re pið Þ similar to identical situation found in the usual
shift invariant systems with the Laplace transform. Let us assume that the poles are
simple. From the inversion Mellin integral, we obtain [3]

M
�1 1

s� pð Þ

� �

¼ w tð Þ � tp ð6:77Þ

where w(t) is equal to u 1� tð Þ or to u t � 1ð Þ in agreement with the adopted the
region of convergence. By successive derivation in order to p we obtain the
solution for higher order poles

M
1 1

s� pð Þk

" #

¼ w tð Þ
�1ð Þk�1

log tð Þ½ �k�1

k � 1ð Þ!
tp ð6:78Þ

We conclude that the response corresponding to an input d t � 1ð Þ is given by:

h tð Þ ¼
BM

AN

d t � 1ð Þ þ
X

N

i¼1

X

mi

k¼1

aik �
�1ð Þk�1

log tð Þ½ �k�1

k � 1ð Þ!
tpiw tð Þ ð6:79Þ

To compute the output to any function x(t) we only have to use the multipli-
cative convolution. As in the shift-invariant systems, we have several ways of
choosing the region of convergence. We can have all right signals, all left signals
or, mixed right and left signals. In [9, 10] the first term does not appear, since only
the all-pole case was discussed.

It is interesting to make here an important remark. Verify that (6.79) behaviours
like the usual responses of the anti-causal and causal systems. When Re pið Þ [ 0
and t [ 1; it increases without bound as t ! 1, while it decreases as t ! 0: if
Re pið Þ\ 0; (6.79) increases without bound as t ! 0, while it decreases as t ! 1.
This means that we can use the well known Routh–Hurwitz test to study the
stability of LScIS.
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6.5.3 The Fractional Order System

Consider now a linear system represented by the fractional differential equation

X

N

i¼0

ai t
aþi � yðaþiÞðtÞ ¼

X

M

i¼0

bi � tbþixðbþiÞðtÞ ð6:80Þ

where a and b are positive real numbers. With the Mellin transform we obtain two
different transfer functions depending on the derivative we use, (6.55) or (6.56).
Using derivative (6.55) and its Mellin transform we have:

H sð Þ ¼

PM
i¼0 bi �1ð Þi s� bð Þi

PN
i¼0 ai �1ð Þi s� að Þi

�
C 1þ s� að Þ

C 1þ sð Þ

C 1þ sð Þ

C 1þ s� bð Þ
ð6:81Þ

Proceeding as in (6.5.2) we have

H sð Þ ¼

P

M

i¼0
Bi s� bð Þi

P

N

i¼0
Ai s� að Þi

�
C 1þ s� að Þ

C 1þ s� bð Þ
ð6:82Þ

So, the transfer function in (6.82) has two parts, the first is similar to (6.74)
aside translations on the pole and zero positions. Its inverse has the format:

h tð Þ ¼
BM

AN

d t � 1ð Þ þ ta
X

N

i¼1

X

mi

k¼1

cik �
�1ð Þk�1

log tð Þ½ �k�1

k � 1ð Þ!
tpiw tð Þ ð6:83Þ

where aþ pi; i ¼ 1; 2; . . .; N are the poles. We must remark that it does not
depend explicitly on b: The second factor in (6.82) leads to a new convolutional
factor needed to compute its complete inversion. So, we have to compute the
inverse Mellin transform of

Ha sð Þ ¼
C 1þ s� að Þ

C 1þ s� bð Þ
ð6:84Þ

For taking account with the stability of the system, we can consider the region of
convergence the half plane defined by Re sð Þ[ 0: This function has infinite poles
at s ¼ a� 1� n; with n a non negative integer. To invert it we can always choose
an integration path on the right of all the poles similarly to the path shown in
Fig. 6.1, but with the most left segment infinitely far. The residues are given by

Rn ¼
�1ð Þnta�1�n

C a� b� nð Þ!
u t � 1ð Þ

according to the properties of the Gamma function [7]. Adding the residues, we
obtain
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ha tð Þ ¼
ta�1

C a� bð Þ

X

1

n¼0

C a� bð Þ �1ð Þnt�n

C a� b� nð Þn!
u t � 1ð Þ

where we can identify the binomial series. Summing it, we obtain

ha tð Þ ¼
1

C a� bð Þ
tb t � 1ð Þa�b�1

u t � 1ð Þ ð6:85Þ

So, the impulse response corresponding to (6.82) is the multiplicative convo-
lution of (6.83) and (6.85). However, we can obtain an alternative approach to
invert (6.82). It consists in expanding its first term in N partial fractions and invert

N transforms with the format C 1þs�að Þ
s�a�pð ÞC 1þs�bð Þ. By simplicity, we assumed that all the

poles are simple. We proceed as above to compute the residues. Collecting them
the impulse response is given by

h tð Þ ¼
BM1

ANC a� bð Þ
tb t� 1ð Þa�b�1

u t� 1ð Þ þ ta
X

N

i¼1

Ci �
C 1þ pið Þ

C a� bþ pi þ 1ð Þ
tpiu t� 1ð Þ

�
�1ð Þb�aþ1

C a� bð Þ
tb
X

1

0

a� b� 1

n

� �

�1ð Þn
tn

b� a� pi þ n
u t� 1ð Þ ð6:86Þ

Choosing the other derivative (6.56) and its Mellin transform (6.45), we have

H sð Þ ¼

PM
i¼0 Bi s� bð Þi

PN
i¼0 Ai s� að Þi

� �1ð Þb�aC �sþ bð Þ

C �sþ að Þ
ð6:87Þ

Thefirst factor has as inverse the expression given by (6.83) forw tð Þ ¼ �u 1� tð Þ.
For the second we proceed as before. Now the integration path is in the right half
complex plane as in Fig. 6.2 but with the most right segment infinitely far.

We proceed as above to obtain

ha tð Þ ¼
1

C a� bð Þ
tb t � 1ð Þa�b�1

u 1� tð Þ ð6:88Þ

To compute the final impulse response we only have to proceed as in the other
case. We obtain, for the simple pole case

h tð Þ¼
BM1

ANC a�bð Þ
tb t�1ð Þa�b�1

u 1�tð Þþ �1ð Þb�aþ1
ta
X

N

i¼1

Ci �
C b�aþpið Þ

C pið Þ
tpi �u 1�tð Þ

þ
�1ð Þ b�aþ1ð Þ

C a�bð Þ
tb
X

1

0

a�b�1

n

� �

�1ð Þn
tn

b�a�piþn
u t�1ð Þ ð6:89Þ

We must remark that the above results are valid even if a and b are positive
integers. Of course, we could obtain other solutions by choosing other integration
paths such that there were poles on the left and on the right of it. In these cases we
would obtain ‘‘two-sided’’ responses. It is interesting to remark that:
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If a ¼ b, the second terms in (6.82) and (6.87) are equal to 1, implying that the
complete impulse response is given by (6.83).

When a ¼ 0 and b 6¼ 0 in (6.86) we obtain a situation very similar to the one
treated by Yazici and Kashyap [9, 10].

If a ¼ bþ 1, (6.85) and (6.88) become merely power functions and so self-
similar.

6.5.4 A Simple Example

We are going to consider a simple system described by the differential equation:

taþ1y aþ1ð Þ tð Þ þ a tay að Þ tð Þ ¼ x tð Þ

If a ¼ 0, the impulse response comes from (6.83) and it is given by:

hs tð Þ ¼ t�aw tð Þ

Fig. 6.1 Integration path for
the inverse Mellin transform

of C 1þs�að Þ
C 1þs�bð Þ with Re sð Þ[ 0
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where w(t) is equal to -u(1-t) or to u(t-1), in agreement with the adopted region
of convergence. The analogue shift invariant corresponding system

y0 tð Þ þ a y tð Þ ¼ x tð Þ

has the causal and anti-causal impulse responses:

htðtÞ ¼ �e�atuð�tÞ

As seen, we made a substitution t ! et:
Now, let a 6¼ 0. We have, from (6.86)

h tð Þ ¼
C 1� að Þ

C a� aþ 1ð Þ
ta�au t � 1ð Þ

þ
1

C að Þ
ta�1

X

1

0

a� 1
n

� �

�1ð Þn
t�n

�aþ nþ 1
u t � 1ð Þ ð6:90Þ

and, from (6.89)

h tð Þ ¼ �1ð Þ�aþ1C �a� að Þ

C �að Þ
ta�au 1� tð Þ

þ
�1ð Þ�aþ1

C að Þ

X

1

0

a� 1
n

� �

�1ð Þn
tn

a� aþ n
u 1� tð Þ

The shift invariant corresponding system

y aþ1ð Þ tð Þ þ a y að Þ tð Þ ¼ x tð Þ

Fig. 6.2 Integration path for
the inverse Mellin transform

of �1ð Þb�aC �sþbð Þ
C �sþað Þ with

hRe sð Þ\0
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has the following transfer function

H sð Þ ¼
s�a

sþ a

and its causal impulse response is (see Chap. 4):

hs tð Þ ¼
X

1

0

�að Þn
tnþa

C nþ aþ 1ð Þ
u tð Þ ð6:91Þ

As seen the above referred substitution seems not to be valid here. The anti-
causal response is very similar, but it does not have any special interest. In Fig. 6.3,
we present the results obtained for these systems, for several values of
a 0; 0:33; 0:66; 0:99ð Þ. The upper strip shows the results obtained with (6.90).
The results in the middle strip were obtained with (6.91). The third strip shows the
result of a transformation t ! log tð Þ in (6.91). Although it is not very clear in
the picture, we can see the similarity between the curves corresponding to a ¼ 0
and a ¼ 0:99 with the equivalent in the upper strip.

6.5.5 Additional Comments

The impulse responses stated (6.86) and (6.89) depend directly on the differential
equation (6.62) not on the way we followed to obtain them. This means that we are
not obliged to use the quantum derivative. In fact we could also use another
derivative like Grunwald–Letnikov, Riemann–Liouville or Caputo, but it would be
very difficult to arrive at the results we obtained. The quantum derivative allows us
to obtain such impulse responses more easily. On the other hand, those derivatives
are suitable for dealing with shift-invariant systems defined over R, not Rþ:

Fig. 6.3 Impulse responses
obtained with (6.90) and
(6.91) for a ¼ 0; 0:33; 0:66;
and 0.99 (strips uppermost
and middle). In the last it is
shown the result of a
log(t) transformation applied
to the functions in the middle
strip

142 6 Fractional Quantum Derivative

http://dx.doi.org/10.1007/978-94-007-0747-4_4


In the integer order case, we can switch from the LScIS to the corresponding
linear shift-invariant systems: we only have to perform a logarithmic transfor-
mation. However, this is not evident neither correct in the fractional case, due to
the first term (6.86) and (6.89), as the example presented above shows. This fact
may come from the difficulty in defining fractional derivative of a composite
function. The lack of emphasis on this fact is due to the desire of presenting a
linear system that exists by itself and not because can be the transformation of
another one. It is more or less the same situation that we find when introducing
difference equations. They exist and do not need to be presented as transformations
of the ordinary differential equations (with bilinear or other mapping). It is curious
to refer that we can obtain the corresponding shift invariant system, by considering
that the transfer function in (6.62) is now a transfer function of a shift invariant
system and use the Laplace transform to go back into a new differential equation.

The LScIS, being scale invariant, but not shift invariant, can be useful in
detection problems and in image processing. Their conjunction with the Wavelet
transform can be interesting [9, 10].

6.6 Conclusions

We presented the quantum fractional derivative as an alternative to the common
Grünwald–Letnikov and Liouville derivatives. It was described in two formu-
lations: summation and integral. Its Mellin transform was also presented and use
to establish the relation between the two formulations. The summation formu-
lations are similar to the Grünwald–Letnikov fractional derivatives. The main
difference lies in the use of an exponential scale for the independent variable.
The Grünwald–Letnikov derivatives use a linear scale. The integral formulations
are similar to the Liouville derivatives. This derivative is useful to solve frac-
tional Euler–Cauchy differential equations and can be useful in dealing with
scale problems.

We introduced the general formulation of the linear scale invariant systems
through the fractional Euler–Cauchy equation. To solve this equation we used the
fractional quantum derivative concept and the help of the Mellin transform. As in
the linear time invariant systems we obtained two solutions corresponding to the
use of two different regions of convergence. We presented other interesting fea-
tures of the LScIS, namely the frequency response. We made also a brief study of
the stability.

There is another way of introducing two-sided quantum derivatives. To do it,
we can start from the two-sided quantum derivative

Dq0 f tð Þ ¼ lim
q!1

f q�1=2t
� 	

� f q1=2t
� 	

q�1=2 � q1=2ð Þt
ð6:92Þ

and proceed as in Chap. 5. It will not be done here.
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Chapter 7

Where are We Going To?

7.1 Some Considerations

The non-integer order systems can describe dynamical behavior of materials and
processes over vast time and frequency scales with very concise and computable
models. Nowadays well known concepts are being extended to the development of
fractional robust control systems, signal filtering, identification and modelling. Of
particular interest is the fact that the fractional systems exhibit both short and long
term memory (in some areas the designation ‘‘long range processes’’ is firmly
established). While the short term memory corresponds to the ‘‘distribution of time
constants’’ associated with the distribution of isolated poles and zeroes in the
complex plane, the long term memory corresponds to infinitely many interlaced
close to each other poles and zeros that in the limit originate a branch cut line as
we saw in Chap. 3. This translates to a lack of specific time scale and, therefore, no
new resonance or other instability effects appear and incorporates the power law
behavior found in natural systems that show the greatest robustness to variation of
environmental parameters. These characteristics have great influence on the
development and application of fractional systems that is dependent on satisfactory
solutions for the traditional tasks: modelling, identification, and implementation.
In the fractional case, they are slightly more involved due to the fact of having, at
least, one extra degree of freedom: the fractional order. However, this difficult
increments the possibilities of obtaining more reliable and robust systems. This is
challenging and people working in the area has been giving different interesting
answers. We can refer the following approaches:

• Circuit implementations with fractional elements—it consists of using the
classic circuit theory, but with fractional capacitors and coils.

• Trans-finite circuits—the infinite transmission lines are circuits with fractional
behaviour, but there are other interesting circuits with similar characteristics like

M. D. Ortigueira, Fractional Calculus for Scientists and Engineers,
Lecture Notes in Electrical Engineering, 84, DOI: 10.1007/978-94-007-0747-4_7,
� Springer Science+Business Media B.V. 2011
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the tree fractance (a tree of RC circuits) and chain fractance (a series of parallel
RC) circuits.

• Band-limited approximations—it is an engineer approach. There are several
ways of doing the design and implementation we can refer (a) the CRONE that
uses the Bode diagrams band (b) the continued fraction approaches. Both
construct pole-zero systems with interlaced poles and zeros.

• Identification from frequency data—it consists on a least-squares approach in
the frequency domain. The more interesting algorithm uses a generalized Levy
method.

• Discrete-time implementations—there are several algorithms that start from an
s to z conversion and design an ARMA model.

• Weighted summation of exponentials—it consists in approximating the impulse
response of the system through a weighted summation of exponentials by which
as the number of elements increases toward infinity describes fractional
behaviour.

7.2 Some Application Examples

7.2.1 The Age of the Earth Problem

Normally the solution of the tautochrone problem by Abel is considered the first
application of the fractional derivative, although Abel was unaware of this fact.
This is described in a lot of books, papers and Internet sites. So, we will not
describe it. Alternatively we will offer a brief description of a curious application
by Heaviside [1].

In the last 35 years of the XIXth century the Earth Age controversy involved
several great scientists, including Lord Kelvin that put the upper bound in 98
million years. Heaviside assumed that the Earth could be considered as a semi-
infinite mass filling all the space for x C 0 at an initial zero temperature. Suddenly
a step elevated the temperature at surface to a given value H0: The temperature
gradient is infinite at t = 0, but will decrease to zero as the Earth will heat. He
looked for the time interval needed to reach the observed gradient (aside a sign
change). He started from the one-dimensional heat equation

dh
dt

¼
k

c

o
2h

ox2
ð7:1Þ

hðx; tÞ is the temperature at the distance x inside the Earth, c is the heat capacity
and k is the thermal conductivity of the Earth. Applying the LT to (7.1) we obtain:

o
2
H

ox2
¼ sH

c

k
ð7:2Þ
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where Hðx; sÞ is the LT of hðx; tÞ relatively to t. As the Earth is semi-infinite,
suitable evident boundary conditions lead to the solution of the above equation:

Hðx; sÞ ¼ H0 � e�
ffiffiffiffiffiffiffiffi

cs=kx
p

ð7:3Þ

We must refer that Heaviside did not use the LT, but his operator p that he
treated as a number. The LT of temperature gradient, G(0, s), at the surface is

Gð0; sÞ ¼ oH

ox

� �

x¼0

¼ H0

ffiffiffiffiffi

cs

k

r

ð7:4Þ

He considered that this was an operator acting on the input, a step, with LT
1/s. Computing the inverse LT, we obtain

gð0; tÞ ¼ H0

ffiffiffi

c

k

r

t�1=2

kCð1=2Þ uðtÞ ¼ T0

ffiffiffiffiffi

c

pk

r

t�1=2uðtÞ ð7:5Þ

Heaviside admitted that if the earth could cool from the state back toward zero
it would take the same time to reach the observed surface gradient (aside a sign).
Then the age of the Earth should be given by:

T ¼ H
2
0

c

pkg2ð0; TÞ ð7:6Þ

With H0 ¼ 3; 900�C; g(0, T) = 1�C per 2,743 cm, and k/c = 0.01178 cm2/s,
he obtained Kelvin’s result. This approach was modified by Perry in order to
become more realistic, but maintaining the essential of Heaviside mathematical
formulation. With it, Perry obtained the value T = 315 million years.

7.3 Biomedical Applications

7.3.1 General Considerations

The first applications of fractional calculus to biomedical problems were done in
the areas of membrane biophysics and polymer viscoelasticity, where the exper-
imentally observed power law dynamics for current–voltage and stress–strain
relationships were concisely captured by fractional order differential equations. On
the other hand, there is evidence that biological signals (ECG, EMG, and EEG)
have spectra that do not increase or decrease by multiples of 20 dB. Hence,
fractional system models are often proposed for both analytical and empirical
reasons. Here, we consider examples of biomedical applications of fractional
calculus taken from the fields of bioinstrumentation, mechanobiology and bio-
medical imaging.

Physiological models based on linear differential equations are highly suc-
cessful in describing a wide range of complex phenomena (e.g., action potential
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propagation, blood oxygenation and filtration, and feedback control of insulin
secretion). Such models, also serve as the basis for understanding normal
physiological homeostatis, as well as the changes that arise as a consequence of
disease. Physiological models connect events at the molecular level (ion trans-
port, gas diffusion, vesicle formation) to those at the organ level (blood clearance,
oxygen uptake/gram tissue, muscle tension). Much current work in biophysics
and physiology is directed toward linking molecular processes with whole organ
(brain, heart, and muscle) function by developing multiscale models that span the
intermediate levels of structure (e.g., from the centimeter dimensions of gross
anatomy down to the submicron resolution of histology). In building multiscale
models one can either try to use as much of the available anatomical and his-
tological knowledge as possible—building highly complex structures with hun-
dreds of components (organelles, membranes, cells, extracellular matrix, etc.)—
or try to deal empirically with the complexity by developing whole system
descriptions (e.g., linear, non-linear, deterministic, or stochastic models) with
embedded chaotic or fractal measures (fractal dimensions, Lyapunov exponents,
non-Gaussian probability distributions) that capture important features of the
observed behavior.

7.3.2 Fractional Dynamics Model

A fractional order model is commonly used to describe the behavior of neural
systems (sensory and motor). A simple example is the vestibular–oculomotor
system modeled by Anastasio in the Laplace domain as sa; where �1\a\1: The
occurrence of sa behavior in the transfer functions for the neural components of
vestibulo-oculomotor systems suggests its need to control or monitor the
underlying biological, physical, or chemical mechanisms. The sa behavior follows
directly from observed power law transient and dynamic behavior unique to the
anatomical structure or neurological connections of living systems. Thus, the
subthreshold behavior of axons, which mimic at their most basic level lossy (RC)
transmission lines with fractional impedance relationships, could play a role in
understanding synapse complexity, dendritic convergence and generator potential
initiation.

For example, the encoding of head motion by the inner ear arises via conver-
gence of unmyelinated afferent and efferent nerve fibers in the vestibular neuro-
epithelium. This has been suggested as an anatomical site where summation of
excitatory and inhibitory postsynaptic potentials can occur. In a paper on dis-
tributed relaxation processes in sensory adaptation, John Thorson and Marguerite
Biederman-Thorson reviewed earlier interpretations for fractional dynamics (non-
linear spring, transmission line, and Gaussian distribution of exponential rate
constants), which they found for the most part, to provide an incomplete expla-
nation for the wide dynamic range of sensory adaptations. These considerations
led to a fractional order model.
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7.3.3 Fractional Impedance Model

Distributed relaxation processes appear to be common in cells and tissues.
Therefore, it should not be surprising to see that fractional calculus can play an
important role in describing the input–output behavior of biological systems. The
physical foundations for this behavior may be sought in the fractal or porous
structure of the system components or in the physical characteristics of its surfaces
and interfaces. Much work is ongoing to develop a direct link between fractal
models of molecules, surfaces, and materials and the fractional kinetics or
dynamics of the resulting behavior (polymerization electrochemical reactions,
viscoelastic relaxation).

Fractional order circuit elements, such as the impedance: Z = Z0/(s)a or
Z = Z0/(j x)a; where 0\a\1; provide a useful model for describing the fre-
quency response of dielectrics and biological tissues. Such circuit elements can
also be used to develop an electrical circuit model of the electrode–cardiac tissue
interface of a pacemaker electrode [2]. Accurate impedance models are essential
for designing cardiac pacemakers. Fractional calculus appears in the model
through a fractional order (or constant phase, Z ¼ Z0x

�a expðj tan�1ðpa=2ÞÞ)
circuit element that governs diffusion limited electrochemical reactions at the
surface of the electrode.

We can use the correspondence between RC electric circuits and viscoelastic
networks of springs and dashpots to construct similar fractional order dynamic
models for the biomechanical properties of tissues. For example, Craiem and
Armentano have modelled the elastic properties of the aorta, in vivo in a Merino
sheep, using a fractional order generalization of the relationship between stress
rðtÞand strain eðtÞ: Their generalized Voigt model consists of a spring in parallel
with two ‘‘springpots’’ of fractional order.

Fractional order models have also been used by [3] to fit magnetic resonance
elastography (MRE) data from breast tumors. In this technique, MRI is used to
image low frequency (50–1,500 Hz) shear wave oscillations in the breast. The
wavelength and attenuation of the vibrations directly reflect the elastic shear
modulus and the viscosity of the tissue through a complex wave vector: kðxÞ ¼
bðxÞ þ jaðxÞ: In MRE these tissue properties are mapped into an elastogram
image through an assumed model of the tissue’s mechanical properties—usually a
purely elastic spring with zero loss, or a Voigt spring/dashpot model. In his study,
Sinkus assumed a power law increase in attenuation with excitation frequency,
aðxÞ ¼ a0x

y (where 0\ y\ 1).
In the three examples considered here, fractional order models were found to

provide better fits to electrical and mechanical measurements made on living tissue.
Such studies need replication, but these findings provide useful examples of cases
where an extension of the ‘‘standard’’ integer order dynamic models of circuits and
mechanical systems is warranted. Fractional order dynamic models of complex,
multiscale systems account for anomalous dynamic behavior through a simple
extension of the order of the operations from integer to fractional. In the time
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domain this extension is manifest through incorporation to a variable degree of
system memory through convolution with a power law kernel exhibiting fading
memory of the past. Perhaps, in the future, the development of integrated space and
time domain fractional order models will become a more standard component of
linear systems analysis, at least when such models are applied to living systems.
Clearly, when the structure in living systems is fractal, or when the measured
signals exhibit anomalous properties, one should suspect that such dynamics might
best be expressed by fractional order models.

7.3.4 Additional Comments

Fractional calculus models provide a relatively simple way to describe the physical
and electrical properties of complex, heterogeneous, and composite biomaterials.
There is a multi-scale generalization inherent in the definition of the fractional
derivative that accurately represents interactions occurring over a wide range of
space or time. Thus, we can avoid excessive segmentation or compartmentaliza-
tion of tissues into subsystems or subunits—a system reduction that often creates
more computational and compositional complexity than can be experimentally
evaluated. Finally, fractional calculus models suggest new experiments and
measurements that can shed light on the meaning of biological system structure
and dynamics. Thus, by applying fractional calculus to model the behavior of cells
and tissues, we can begin to unravel the inherent complexity of individual mol-
ecules and membranes in a way that leads to an improved understanding of the
overall biological function and behavior of living systems.

7.4 The Fractional Brownian Motion

Fractional Brownian motion was introduced first by [4]. Later, Mandelbrot and
Van Ness proposed it as a model for non-stationary signals, with stationary
increments, that are useful in understanding phenomena with long range
dependence and with a frequency dependence of the form 1/f a, with a non-integer.
To introduce it in the context of the fractional derivative we can proceed as
follows [5, 6].

Assume that we are computing the fractional derivative of the white noise, w(t),
with power equal to r2. We define a fractional noise by:

raðtÞ ¼ DawðtÞ ð7:7Þ

If w(t) is Gaussian, we will call ra(t) fractional Gaussian noise. In the interval
�1=2\a\1=2 we obtain a stationary process, in the anti-derivative case (a\0),
and non-stationary, in the derivative case (a[ 0). This fractional noise will be
used next to define the fractional Brownian motion. Let raðtÞ be a fractional noise.
Define a process vaðtÞ; t� 0; by:
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vaðtÞ ¼
Z

t

0

raðsÞ ds ð7:8Þ

We will call this process a fractional Brownian motion (or generalised Wiener–
Lévy process). We can show that it enjoys all the properties normally required for
the fBm. When a = 1, we recover the usual Brownian motion.

7.5 Future Travels

In the previous sections we made brief descriptions of systems and situations
where the fractional behaviour is clear and its use very beneficial. As said frac-
tional derivatives are suitable for understanding an increasing number of physical,
biological, economical and social phenomena. This may lead us to infer that it will
invade other areas of human activity. Much remains to be done, and we look the
philosopher Henri Bergson to provide inspiration, for, as he noted in his 1911 work
Creative Evolution: ‘‘the present contains nothing more than the past, and what is
found in the effect was already in the cause’’. Prof. Nishimoto produced the
prophetical affirmation: ‘‘The Fractional Calculus will be the XXIth century cal-
culus’’. In the same line of reasoning we can say that ‘‘the fractional systems will
be the systems of the XXIth century systems’’ and the recent developments and
applications reinforce this assertion. Even today it would be almost impossible to
give a complete picture of the present state of the art concerning the application
areas. Surely these will be enlarged to include others. The technological and
scientific achievements will determine the speed of introduction of fractional
calculus in other areas.

We believe that the fractional calculus is ready for use in all aspects of Signals
and Systems. What is necessary for researchers is to have access to the important
tools of the theory. This was one objective of this text: to introduce the fractional
linear systems and offer some insights into how the somehow involved mathe-
matics is applied to very practical problems.

And what about the fractional calculus itself? A lot of developments were
introduced in the last 20 years, but we need much more, e.g.

(a) Continuous-time to discrete-time conversion preserving the long memory of
the systems.

(b) Study of the interaction between the fractional systems and the stochastic
processes.

(c) Establishment of a bridge between the fractional signals obtained from frac-
tional systems and the alpha stable processes.

(d) Study of distributed systems involving the causal and acausal (two-sided)
derivatives.

(e) Continuation of the study of the initial condition problem.
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(f) Study of the quantum derivative its applications as well as the scale invariant
systems.

(g) Physical and/or geometrical meaning of a fractional derivative.
(h) …

GOOD TRAVEL!
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