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Preface

This monograph is intended to present a unifying theory of adaptive control,
providing a theoretical framework within which all adaptive methods and
iterative learning algorithms can be interpreted, understood and analyzed.
The concept of the unfalsified cost level central to this theory leads to a
simple framework for understanding the causes and cures for model mismatch
instability. The need for an encompassing theory such as this stems from
the control and stability issues of highly uncertain systems. After decades
of adaptive control development, the opinions in the research community
are still divided over what assumptions need and must be made about the
controlled plant and its environment in order to assure stable operation,
and hence resulting robustness of adaptive control algorithms. The study
presented here unifies the results obtained in the last decade in developing
a working theory of the safe adaptive control, that is, control with stability
guarantees under a minimal knowledge of the plant and operating conditions,
and as few prior assumptions as possible.

We hope that the book will prove to be a helpful means to learn and un-
derstand the parsimonious approach to the problem of the uncertain systems
control. It can be used as a reference book on adaptive control with applica-
tions for readers with a background in feedback control systems and system
theory. Given that uncertainty is one of the main features of many complex
dynamical systems, the main objective of the book is to provide a concise and
complete treatment of the robustly adaptive control for such highly uncertain
systems. A.S. Morse’s work [67] on hysteresis switching in parameter adaptive
control played an important motivational role for this work. Since the publi-
cation of that study, a number of results have been reported in the “multiple
model” switching adaptive control (also known in the literature as identifi-

cation based methods), and “multiple controller” switching adaptive control
(also known as performance based methods). The interest has been stimulated
by the fact that all real-world systems are prone to unexpected modes of be-
havior, stemming either from the variations in their structure, parameters,
disturbances, or unanticipated changes in their working environment. Control



VIII Preface

of the plant under such precarious conditions is a notable challenge, as the
majority of the control methods are based on an identified model of the plant,
with stability and performance conditions being closely tied to the modeling
assumptions. However, a fundamental difficulty related to the model based
approach is the fact that the modeling uncertainties are always present, stem-
ming from intrinsic nonlinearities, unmodeled disturbances, simplifications,
idealizations, linearizations, model parameter inaccuracies etc.

The results of the book are divided into two major entities. In the first
part, we provide theoretical foundation for the robustness stability and con-
vergence analysis in the general switching control setting, by allowing the
class of candidate controllers to be infinite so as to allow consideration of
continuously parameterized adaptive controllers, in addition to finite sets of
controllers. We show that, under some mild additional assumptions on the
cost function (chosen at the discretion of the designer, not dependent on
the plant), stability of the closed loop switched system is assured. Addi-
tionally, in the cases when the unstable plant modes are sufficiently excited,
convergence to a robustly stabilizing controller in finitely many steps is also
assured. We emphasize the importance of the property of the cost functional
and the candidate controller set called “cost detectability”. Also provided is
the treatment of the time-varying uncertain plants, and the specialization of
the general theory to the linear time-invariant plant, which provides bounds
on the size of the closed loop state.

In the second part, we provide simple but incisive examples that demon-
strate the pitfalls of disregarding cost detectability in the design of the control
system. The examples demonstrate that, when there is a mismatch between
the true plant and the assumptions on the plant (“priors”), a wrong ordering
of the controllers can in some cases give preference to destabilizing controllers.
This phenomenon is known as model mismatch instability. At the same time,
we emphasize that prior knowledge and plant models, when they can be
found, can be incorporated into the design of the candidate controllers, to be
used together with the safe switching algorithm. Other examples refer to the
applicability of the safe adaptive control theory in improving performance of
the stable closed loop system.

The book is written for the researchers in academia and research centers
interested in the treatment of achieving stability and performance robust-
ness, despite the wide uncertainties frequently present in real life systems.
Graduate students in engineering and mathematical sciences, as well as pro-
fessional engineers in the wide field of adaptive control, supervision and safety
of technical processes should find the book useful. The first two groups may
be especially interested in the fundamental issues and/or some inspirations
regarding future research directions concerning adaptive control systems. The
third group may be interested in practical implementations which we hope
can be very helpful in industrial applications of the techniques described in
this publication.
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Chapter 1

Overview of Adaptive Control

Abstract. In this chapter, we discuss the problem of the adaptive control and its

present state of the art. We concern ourselves with the limitations of the adaptive

control algorithms and discuss the tradeoff between the restrictions and benefits in-

troduced by prior assumptions. Main contributions to the adaptive control within the

last several decades are briefly reviewed to set up the stage for the current research

results. We conclude the chapter by discussing the contribution of the monograph,

which provides a solution to the long standing problem of model mismatch instabil-

ity, cast in a parsimonious theoretical framework.

1.1 Discussion of the Adaptive Control Problem

A defining notion of an adaptive system in engineering is the process of adapta-

tion, which not unexpectedly finds its place in many other diverse disciplines, such

as biology, economics, and operations research. One of the earliest is the use of

this notion in biology, in which adaptation is considered to be a characteristic of an

organism that has been favored by natural selection and increases the fitness of its

possessor [36]. This concept is central to life sciences, implying the accommodation

of a living organism to its environment, either through physiological adaptation (in-

volving the acclimatization of an organism to a sudden change in environment), or

evolutionary adaptation, occurring slowly in time and spanning entire generations.

The definition of this notion found in the Oxford Dictionary of Science, namely

“any change in the structure or functioning of an organism that makes it better suited

to its environment”, lends itself promptly not only to living organisms but also to

any entity endowed with some form of a learning ability and a means to change

its behavior. In control theory, the term was introduced by Drenick and Shahben-

der in [28] (further elaborated in [101]), which refers to a system that monitors its

own performance in face of the unforeseen and uncertain changes and adjusts its

parameters towards better performance and is called an adaptive control system. As

discussed in [76], many definitions of adaptive control systems have appeared dur-

ing the course of the last fifty years, all pointing to some property of the system

M. Stefanovic and M.G. Safonov: Safe Adaptive Control, LNCIS 405, pp. 3–12.
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4 1 Overview of Adaptive Control

considered to be vital by the proponents of the definition. An insightful discussion

in [76] reveals that the difficulties in reaching a consensus on the definition of adap-

tive control systems can be summarized by the observation that “adaptation is only

in the eyes of the beholder”.

Traditional adaptive control is concerned with the plant parameter uncertainty,

which impairs the available feedback. Parametric adaptation is defined as the case

when the parameters of the system under consideration or the parameters of the

noise signals are insufficiently known, whereas the structure of the system is well

understood. In [76], such adaptive systems are contrasted with the so-called ‘switch-

ing systems’, defined as the systems where structural changes take place because of

the modifications in the interconnection between subsystems. Based on such delin-

eation between parametric and structural adaptive systems, the theory of traditional

adaptive control proceeds along the lines of parametric adaptive systems, using con-

tinuous dynamical adjustment of the control parameters to converge to a system with

preferred performance. This process is characterized by the so-called ‘dual control’

actions [31]. As argued in [76], understanding and controlling the world are two

closely related but distinct activities. In the case of adaptive systems as defined by

Bellman and Kalaba, neither action alone is sufficient to cope with an imprecisely

known process. Thus, it requires simultaneous acquisition of the process knowledge

(through process estimation and identification) and determination of the necessary

control actions based on the acquired knowledge. The two activities hold a complex

relationship, and many diverse classes of adaptive control systems have been pro-

posed and analyzed in the past several decades assuring stability of adaptive control

systems under the dual control actions. In classical adaptive control terms, adapta-

tion is a procedure involving either an online identification of the plant parameters

or a direct tuning of the control parameters, in order to change the compensator,

prefilter and the feedback path accordingly.

Changes in the basic paradigm of adaptive control took place some time in the

late 1980s and beginning of 1990s, through more thorough consideration of the sys-

tems exhibiting vast variations in their structure or parameters, thereby rendering

the traditional continuously tuned adaptive control methods too slow and ineffec-

tive. A need was recognized for controlling such systems in a discontinuous way,

i.e., by switching among a set of different controllers, each of which is supposed

to satisfactorily control a different plant. The rationale for such a control action is

based on the assumption that at least one of these controllers is able to control the

given plant. Even though this assumption is not explicitly stated in the traditional

adaptive control paradigm, it is nevertheless present there, too [76]. Such discon-

tinuously controlled systems can be classified as ‘switching’, as described in the

traditional adaptive control terms from the previous paragraph, but their switching

nature does not necessarily stem from the changes in the interconnection between

the plant subsystems. In fact, the plant itself may have a fixed but unknown structure

and/or parameters, as in the case discussed above, but it becomes a switched system

when connected with the members of the controller pool. A new light was cast on

the the meaning of the dual control by the data-driven unfalsified control theory,

which forms the basis for the results in this book. In this viewpoint, the part of the
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dual control dealing with the acquisition of the process knowledge should be seen

as learning about the process through the behavior of its signals, rather than as iden-

tification of the mathematical model of the process and estimation of its parameters.

Of course, mathematical models of the plant do have an important role in design-

ing the controllers constituting the candidate pool from which to choose a controller

that will be closed in feedback with the plant. This choice (taking the control action)

depends on the acquired plant knowledge, i.e., the knowledge of the plant behavior

evidenced by its relevant signals. The implication of these ideas is the formulation

of a much less restrictive framework for understanding and control of uncertain

systems (with less dependence on the validity of the identified model). With this

explanation in mind, we state that the safe adaptive control based on the unfalsified

control notions is not merely another competing method in adaptive control defined

by its different assumptions. The concept of unfalsified cost levels presented in this

book yields a unifying theory of adaptive control. It provides a theoretical frame-

work within which all adaptive methods and iterative learning algorithms can be

interpreted, understood and analyzed. Most significantly, the unfalsified cost level

concept provides a simple framework for understanding the causes and cures for the

model mismatch instability. The apparent disparity between the continuously tuned

traditional adaptive systems and switching adaptive systems vanishes if one consid-

ers that the continuously tuned control parameters of the traditional theory can be

seen as a special case of the controller switching (with infinitesimally small dwell

time between the subsequent switches). This general view of an adaptive control

system, in which the control action is based on the learned characteristics of the

process (plant) is depicted in Figure 1.1.

Fig. 1.1 Adaptive control architecture consisting of an adjustable/switching controller block

and a supervisory controller block
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1.1.1 Brief History Overview

Control theory has traditionally been based on the intuitively appealing idea that

a controller for the true process is designed on the basis of a fixed plant model.

This technicality implies that one needs to acquire a reasonably good model of the

plant, which would remain to reside within an acceptable range of accuracy for the

duration of the plant operation. That an accurate, fixed model may be impossible

to obtain, for example, because of the changing plant parameters or dynamics, or

simply be difficult to verify (because of the complexity of the plant) was recognized

sometime during the 1950s, notably during the aeronautical efforts to increase air-

craft speed to higher Mach numbers in the presence of highly dynamic operating

conditions such as varying wind gusts, sudden maneuver changes etc., during the

design of autopilots and stability assist systems for high-performance aircraft, and

later on during the space exploration era. Adaptive control research thus emerged

as an important discipline. As it often happens in much of the scientific research,

the research advances in this area have followed a convoluted and sometimes erro-

neous path, and in certain cases led to severe consequences. In 1967, adaptive flight

control system contributed to the crash of the hypersonic research aircraft X-15,

causing the aircraft to oscillate and finally break apart. Though it was an isolated

incident, the failure of the adaptive flight control system cast a doubt on its practi-

cal applicability. In the many years that followed, significant advances in nonlinear

control theory were achieved, eventually bringing about the success in the onboard

adaptive flight control of the unmanned unstable tailless X-36 aircraft, tested in

flight in the 1990s. The benefits of the adaptation in the presence of component fail-

ures and aerodynamic uncertainties were clearly recognized. However, owing to the

many prior plant assumptions made in theory, the most important question related

to stability and robustness assessment is still being resolved on an ad hoc basis, by

performing the tests of the closed loop system for many different variations of un-

certainties in the Monte Carlo simulations. It is known that the cost of these heuristic

tests increases with the growing complexity of the system. The limitations inherent

in the conventional adaptive controllers have been recognized, and the need for safe

adaptive control algorithms in the face of uncertainties has been set as the current

goal.

According to the most commonly adopted view, an adaptive controller can be

characterized as a parameterized controller whose parameters are adjusted by a cer-

tain adaptive strategy (Figure 1.1). The way its parameters are adjusted gives rise

to a variety of different adaptive control strategies. The most popular ones will be

briefly reviewed in the next section.

1.2 Literature Review

Adaptive control strategies can be categorized according to whether the controller

parameters are tuned continuously in time, or switched discontinuously between

discrete values at specified instants of time (called switching instants). In the second

case, switching can even be performed among controllers of different structures,
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if appropriately designed. Also, control strategies can be distinguished based on

whether the stability results of the closed loop control system rely on an identified

plant model, or are independent of the plant identification accuracy and other prior

assumptions.

In the first category, the methods based on the continuously tuned control pa-

rameters encompass most of the adaptive schemes starting from the early MIT rule

and sensitivity methods in the 1960s and including many of today’s algorithms.

Because there is a plethora of results, we will not review them in detail here, but

briefly mention the timeline in which they appeared: the sensitivity methods and

the gradient based MIT rule in the 1960s [80, 111]; Lyapunov theory based and

passivity based design in the 1970s [62, 76]; global stability results of 1970s and

1980s [2, 6, 29, 38, 60, 71, 78]; robustness issues and instability [85], and robust

modification of the early 1980s such as dynamic normalization, leakage, dead zone

and parameters projection [51], [53], resulting in the robust adaptive control the-

ory [52, 76, 83] etc.; nonlinear adaptive control developments of the 1990s, as well

as various alternative techniques such as extended matching conditions leading to

the adaptive backstepping control [59]; neuro-adaptive control; fuzzy-adaptive con-

trol and several others. All of these modifications to the existing adaptive control

theory resulted in stability and performance guarantees in the situations when the

modeling errors are small, or when the unknown parameters enter the parametric

model in a linear way. The limitations of traditional adaptive control theory are dis-

cussed in an insightful manner in [3].

In the late 1950s, the presence of a single unknown parameter (dynamic pres-

sure) in the aircraft dynamics applications spurred research efforts resulting in the

gradient based adaptation method of Whitaker et al. [111], which became known un-

der the name “MIT rule”. It is a scalar control parameter adjustment law proposed

for adaptive control of a linear stable plant with an unknown gain. An approximate

gradient-descent method is used in order to find the minimum of an integral-squared

performance criterion.

Although practical and straightforward at first sight, the usability of the MIT

rule turned out to be questionable; the performance of the closed loop control sys-

tem proved to be unpredictable. Some explanations of the curious behavior were

reported only decades after the inception of the concept.

The schematic of the plant controlled by the MIT rule is shown in Figure 1.2.

The plant is represented by kpZp(s), where kp is the unknown gain with a known

sign, and Zp(s) is a known stable transfer function representing the plant. The output

of an adjustable positive gain kc(t) driven by a known reference input r is chosen

as the control input, and the value of the gain kc(t) is adjusted online based on the

comparison between the plant output and the output of kmZp(s) driven by the same

driving signal r. The gain km is a known, predefined constant, with the same sign as

kp. The rationale behind this idea is the notion that, if kpkc(t) = km ∀t, it will result

in a zero error e(t) = yp(t)− ym(t). If, on the other hand, the error e(t) is non zero,

then an effort to continuously adjust kc to drive it to zero is undertaken.
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Fig. 1.2 MIT rule

The MIT rule proposes the gradient descent (steepest descent) method for

adjusting kc:

k̇c = −γ ∂
∂kc

J (1.1)

where J = 1
2
e2(t) is the integral square error, and γ is a positive gain constant rep-

resenting the rate of descent. Since e(t) = yp(t)− ym(t), one can also write:

k̇c = −γ(yp(t)− ym(t))ym . (1.2)

The problems with the MIT rule, despite its apparent usefulness and appealing sim-

plicity, is that stability cannot be guaranteed, as varying levels of the gain γ can

sometimes result in satisfactory performance, and sometimes lead to instability. The

explanation that followed decades later showed that the problems can be traced to

the overlap between the time scale of the underlying closed loop dynamics and the

time scale of the adaptive loop process.

In the first half of the 1990s, the idea of adaptive switching among distinct con-

trollers has been introduced [37, 67, 75] to mitigate the drawbacks of conventional

continuous adaptive tuning which occurred when the plant was faced with sudden

or large changes in the plant parameters. It was recognized that the closed loop sys-

tem’s performance can deteriorate significantly, and even go into instability, when

the plant uncertainty is too large to be covered by a single model, or when the

changes in the plant parameters or structure are too sudden or large to be handled by

the conventional on-line tuning. The motivation for introducing adaptive switching

into the control system design was the desire to eliminate, or at least relax, the prior

assumptions needed for stability that blighted the applicability of the existing con-

trol schemes. This gave rise to the switching supervisory control methods, where

an outer loop supervisor controller decides which controller from the available pool

should be switched on in feedback with the plant. In this regard, these methods bear

similarity to the earlier gain-scheduling methods. However, unlike gain-scheduling

methods, which use a pre-computed, off-line adjustment mechanism of the con-

troller gains without any feedback to compensate for incorrect schedules, the recent

switched adaptive control schemes incorporate data based logic for choosing a con-

troller. The switching takes place at distinct time instants, depending on whether

certain logic conditions have been met. The first attempt towards truly data-driven,
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almost-plant-independent adaptive control algorithms were proposed in [67] (later

corrected in [68]) and then in [37]. In the former, it was shown that the only in-

formation required for stabilization is the order of the stabilizing linear controller

(‘universal controller’), provided that a stabilizing controller exists in a candidate

set. The stabilization is then achieved by switching through the controllers in the

candidate set until the stabilizing one has been found, and the switching logic is

based on real time output data monitoring. The prior assumptions on which stability

results are based are rather weak; however, practical applicability is limited because

of the large transients occurring before the stabilizing controller has been found.

In [37], another adaptive control strategy was proposed by Fu and Barmish, pro-

viding stricter results of stability and performance, but including additional require-

ments on the knowledge of the set of possible plants, compactness and an a priori

known upper bound on the plant order. In both of these algorithms, the control pa-

rameters are adjusted on-line, based on the measured data; however, the switching

follows a pre-routed path, without an inherent data based logic, which limits their

applicability. Nevertheless, these methods paved a path towards truly data-driven

adaptive control methods, unburdened by unnecessary prior assumptions in their

stability analysis. They have been named ‘performance based switching control al-

gorithms’ in [46] among others. In the 1990s, a notable further development in the

data-driven adaptive control research was reported in [90], where it was shown that

unfalsified adaptive control can overcome the poor transient response associated

with the earlier pre-routed schemes by doing direct validation of candidate con-

trollers very fast by using experimental data only, without making any assumptions

on the plant beyond feasibility, and thus coming closer to a practical solution to

the safe adaptive control problem. A related concept of the virtual reference signal

(similar to the fictitious reference signal) was introduced in [19].

Concurrent research in a different vein produced results in the switching super-

visory control using multiple plant models (also called ‘estimator based switching

control algorithms’), where the adaptive controller contains an estimator that iden-

tifies the unknown plant parameters on-line, and the control parameters are tuned

using the plant parameter estimates at each time instant. These methods rely on the

premise that the candidate model set contains at least one model which is suffi-

ciently close (measured by an appropriate metric) to the actual, unknown plant (see,

for example, [10], [61], [73]).

The preceding two assumptions, namely the assumption of existence of at least

one stabilizing controller in the candidate pool needed in the ‘performance based’

control methods, and the assumption of existence of at least one model in the can-

didate model pool, which sufficiently captures the actual plant model (needed in

estimator based schemes), can appear to be similarly restrictive. The important dis-

tinction between them is in the way they are put to use. The former assumption

(which we call ’feasibility of the adaptive control problem’ in this book) is the most

fundamental assumption that has to be made if one expects to control a given sys-

tem under given conditions. If it does not hold, then little can be said about future

operation of the closed loop system. If it does hold, then the algorithm based on

this assumption places no restrictions on the controller selection other than what the
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measured plant data indicate. Hence, it is a fundamental and minimal assumption.

On the other hand, the assumption of at least one model in the candidate set, which

captures the actual plant model may be deceptive. The reason is that the controllers

designed for a model that is not very close to the actual plant may very well be sta-

bilizing for the actual plant; however, they may be overlooked and discarded by an

algorithm whose logic condition is based on the plant-model matching.

The research thrust in model based switching adaptive control of the last twenty

years has produced incisive and important results, with many of them focusing on

specific topics falling in the broad area of adaptive control. In [74], detailed results

are given on the set-point adaptive control of a single-input, single-output process

admitting a linear model. In that study, it is stated that, while the non-adaptive ver-

sion for the set-point control problem is very well understood, the adaptive version

is still rudimentary because the performance theories are not developed for the adap-

tive version, and because the existing stability proofs are valid only under restrictive,

unrealistic assumptions of zero noise and/or un-modeled dynamics. In addition, one

of the factors impeding the progress of adaptive control is pointed out, which is the

seemingly innocuous assumption that the parameters of the nominal model of the

controlled plant belong to a continuum of possible values. This assumption stems

from the origins of the parameter adaptive control in the nonlinear identification the-

ory. For example, if P is a process to be controlled, admitting a linear, single-input

single output model, then the modern adaptive control typically assumes that P’s

transfer function lies in a known set M of the form:

M =
⋃

p∈Π
B(ν p,rp)

where B(ν p,rp) is the open ball of radius r centered at the nominal transfer function

ν p in a metric space, Π is a compact continuum within a finite dimensional space

and p �→ rp is at least bounded. Then, for each p ∈ Π , the controller transfer func-

tion κ p is chosen to endow the closed loop feedback system with stability and other

preferred properties for each candidate plant model τ ∈B(ν p,rp). However, sinceΠ
is a continuum and κ p is to be defined for each p ∈Π , the actual construction of κ p

is a challenging problem, especially if the construction is based on linear quadratic

Gaussian (LQG) or H∞ techniques. Also, because of the continuum, the associated

estimation of the index of the ball within which P resides will be intractable un-

less restrictive conditions are satisfied, which are the convexity of Π and the linear

dependence of the candidate process models on p. The so-called “curse of the con-

tinuum” is discussed in detail in [74], and the ideas to resolve the problems induced

by the drawbacks of the continuity assumption are proposed.

In this monograph, we adopt a different perspective of adaptive control and its

most urgent problems. Rather than providing a specialized treatise on some specific

problem in adaptive control, we postulate the problem of a safe stable adaptive

control in a general framework, considering an arbitrary plant (nonlinear in general)

under minimal prior knowledge. In addition, we tackle the continuity notion, but

in a different light: when a continuum of controllers are considered as candidates
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for the controller set, how can one switch among them so as to ensure stability and

performance specifications? This question has been a long standing problem in the

adaptive control community.

Estimator based adaptive control, both as the traditional continuous adaptive tun-

ing, and more recently proposed discontinuous switching, relies on the idea of the

Certainty Equivalence, which is a heuristic idea advocating that the feedback con-

troller applied to an imprecisely modeled process should, at each instant of time, be

designed on the basis of a current estimate of the process, with the understanding

that each such estimate is to be viewed as correct even though it may not be. As

argued in [74], the consequence of using this idea in an adaptive context is to cause

the interconnection of the controlled process, the multi-controller and the parame-

ter estimator to be detectable through the error between the output of the process

and its estimate for every frozen parameter estimate, and this holds regardless of

whether the three subsystems involved are linear or not. Even though this idea is in-

tuitively appealing and has been the basis for many known adaptive control designs,

the reliance on the plant detectability notion as described above can be forgone and

replaced with the less restrictive cost detectability notion.

The reference [44] proposes hysteresis based supervisory control algorithms for

uncertain linear systems. An extension to the nonlinear case, albeit in the absence of

noise, disturbances, and unmodeled dynamics has also been discussed. It is argued

that the robustness issues in the nonlinear case may be handled using the nonlinear

extension of the Vinnicombe metric. This reference also proposes a ‘safe multiple

model adaptive control algorithms’, similarly as in the study presented here. The

difference in these two definitions of what makes adaptive control safe is subtle but

carries important implications. In [44] and the related references, a safe adaptive

controller is stated as the one “capable of guaranteeing that one never switches to

a controller whose feedback connection with the process is unstable”. We adopt a

substantially different paradigm in this study. Since the process to be controlled,

as well as the operating conditions, are assumed to be unknown, one can never be

certain a priori whether a particular controller will be destabilizing for the plant un-

der arbitrary operating conditions. That is, one cannot be completely assured that a

controller switched into the loop with the process is destabilizing, unless and until

the data recorded from the process show that the controller is failing to stabilize

the plant. Only then can one hope that the control scheme will be able to recognize

the deteriorating behavior of the closed loop and discard the controller, in search

for a different controller (an as-yet-unfalsified one). It is precisely that ability of the

adaptive control, namely recognition of the closed loop behavior based on on-line

monitoring of the output data, and the corresponding corrective action (switching to

an alternative controller), which we seek to characterize and quantify, so that prov-

ably correct and fully usable adaptive control algorithms can be designed. Of course,

ongoing research may steer attention to newly developed cost functions which may

be more swift than the ones currently in use in recognizing the instability caused by

the currently active controller.



12 1 Overview of Adaptive Control

1.3 Monograph Overview

This book discusses hysteresis switching adaptive control systems designed using

certain types of L2e-gain type cost functions, and shows that they are robustly sta-

bilizing if and only if certain plant-independent conditions are satisfied by the can-

didate controllers. These properties ensure closed loop stability for the switched

multi-controller adaptive control system whenever stabilization is feasible. The

result is a safe adaptive control system that has the property that closing the adap-

tive loop can never induce instability, provided only that at least one of the candi-

date controllers is capable of stabilizing the plant. As reported in the early study of

Vladimir Yakubovich [114], the concept of feasibility plays a key role in ensuring

finite convergence, though the definition of feasibility in this book differs in that it

requires no assumptions about the plant or its structure.

The contribution of this monograph is the presentation of a parsimonious theo-

retical framework for examining stability and convergence of a switching adaptive

control system using an infinite class of candidate controllers (typically, a contin-

uum of controllers is considered). This property of the candidate controller class is

essential when the uncertainties in the plant and/or external disturbances are so large

that no set of finitely many controllers is likely to suffice in achieving the control

goal. We show that, under some non-restrictive assumptions on the cost function

(designer based, not plant-dependent), stability of the closed loop switched system

is assured, as well as the convergence to a stabilizing controller in finitely many

steps. The framework is not restricted by the knowledge of noise and disturbance

bounds, or any specifics of the unknown plant, other than the feasibility of the adap-

tive control problem.

This treatise presents data-driven control of highly uncertain dynamical sys-

tems under as little as possible prior knowledge, with the origins of uncertainty

ranging from the time-varying parametric changes (both slow and abrupt), hard-to-

model plant dynamics, deteriorating plant components/subsystems, system anoma-

lies (such as failures in actuators and sensors), unknown/adverse operating condi-

tions, etc. Applications are varied, such as safety critical systems area, aircraft sta-

bility systems, missile guidance systems, dynamically reconfigurable control for ad

hoc battlefield communication networks, health monitoring/autonomous fault diag-

nosis/reconfigurable control in spacecraft systems, reconnaissance and rescue op-

erations from the disaster areas etc. Those applications are affected by the time

critical issues that prevent timely characterization of the plant and surrounding con-

ditions, rendering most classical model based control strategies possibly inefficient.

The methodology presented in this text is based on switching into a feedback loop

one of the controllers in the available candidate set, where the switch logic is gov-

erned by the collected input/output data of the plant (either in open- or closed loop),

and the proper choice of the performance index (or a cost function). Such method-

ology is named Safe Adaptive Control, and is essentially realized according to the

paradigm of the Multiple Model/Controller Adaptive Control. Safety in the title

refers to the attempt to control the plant and furnish stability proofs without regard

to the assumed plant structure, noise and disturbance characteristics.
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Safe Switching Adaptive Control



Chapter 2

Safe Switching Adaptive Control: Theory

Abstract. In this chapter, we lay out the foundations of the safe switching adaptive

control theory, based on the controller falsification ideas. We study the properties

of a closed loop switched adaptive system that employs an algorithm which prunes

candidate controllers based on the information in the real-time measurement data.

The goal of this pruning is to evaluate performance levels of the candidate con-

trollers simultaneously before insertion into the closed loop. We formulate the list

of the plant-independent properties of the cost function required for the stability

guarantee. The crucial role of the cost detectability property is studied. We provide

significant generalization by allowing the class of candidate controllers to have ar-

bitrary cardinality, structure or dimensionality, and by strengthening the concept of

tunability. Specialization to the linear time-invariant plants is discussed, giving in-

sight into the bounds of the closed loop states. The extension to the time-varying

plants is considered next, where cost detectability is shown to hold under modified

conditions, and an upper bound on the number of switches over an arbitrary time

period is derived.

2.1 Background

The book Adaptive Control [7] begins in the following way: “In everyday language,

‘to adapt’ means to change a behavior to conform to new circumstances. Intuitively,

an adaptive controller is thus a controller that can modify its behavior in response to

changes in the dynamics of the plant and the character of the disturbances”.

Whether it is conventional, continuous adaptive tuning or more recent adaptive

switching, adaptive control has an inherent property that it orders controllers based

on evidence found in data. Any adaptive algorithm can thus be associated with a

cost function, dependent on available data, which it minimizes, though this may

not be explicitly present. The differences among adaptive algorithms arise in part

due to the specific algorithms employed to approximately compute cost-minimizing

controllers. Besides, major differences arise due to the extent to which additional

assumptions are tied with this cost function. The cost function needs to be chosen

M. Stefanovic and M.G. Safonov: Safe Adaptive Control, LNCIS 405, pp. 15–40.

springerlink.com c© Springer-Verlag London Limited 2011



16 2 Safe Switching Adaptive Control: Theory

to reflect control goals. The perspective we adopt hinges on the notion of feasibility

of adaptive control. An adaptive control problem is said to be feasible if the plant

is stabilizable and at least one (a priori unknown) stabilizing controller exists in

the candidate controller set, which achieves the specified control goal for the given

plant. Given feasibility, our view of a primary goal of adaptive control is to recog-

nize when the accumulated experimental data shows that a controller fails to achieve

the preferred stability and performance objectives. If a destabilizing controller hap-

pens to be the currently active one, then adaptive control should eventually switch it

out of the loop, and replace it with an optimal, stabilizing one. An optimal controller

is one that optimizes the controller ordering criterion (“cost function”) given the cur-

rently available evidence. This perspective renders the adaptive control problem in

a form of a standard constrained optimization. A concept similar to this feasibility

notion can be found in [67].

To address the emerging need for robustness for larger uncertainties or achieve

tighter performance specifications, several recent important advances have emerged,

such as [57] and multi-model controller switching formulations of the adaptive con-

trol problem, e.g., supervisory based control design in [41,46,72,77] or data-driven

unfalsified adaptive control methods of [15, 18, 90, 99] (based on criteria of falsi-

fiability [82, 112, 117]) which exploit evidence in the plant output data to switch

a controller out of the loop when the evidence proves that the controller is failing

to achieve the stated goal. In both cases, the outer supervisory loop introduced to

the baseline adaptive system allows fast ‘discontinuous’ adaptation in highly un-

certain nonlinear systems, and thus leads to improved performance and overcomes

some limitations of classical adaptive control. These formulations have led to im-

proved optimization based adaptive control theories and, most importantly, signifi-

cantly weaker assumptions of prior knowledge. Both indirect [72, 77, 118, 119] and

direct [37, 67, 90] switching methods have been proposed for the adaptive super-

visory loop. Recently, performance issues in switching adaptive control have been

addressed in Robust Multiple Model Adaptive Control schemes (RMMAC) [8]. Var-

ious extensions of the fundamental unfalsified control ideas that form the basis for

the safe switching control have been reported recently. These include, for example,

stability in the noisy environment [13], switching supervisory control [12]; unfalsi-

fied control of photovoltaic energy storage system [24]; unfalsified control experi-

ments on dual rotary fourth-order motion system with real hardware [96]; ellipsoidal

unfalsified control [103], [104], [105], [106], [107]; application of unfalsified con-

trol to a stirred tank reactor; and [27], [30], [50], [55], [66], [93]. The reference [115]

asserts that unfalsified control is possibly better alternative for “fault tolerant control

(FTC)” flight control reconfiguration.

The results of this study build on the result of Morse et al. [72,75] and Hespanha

et al. [45, 46, 47]. The theoretical ground in [95] is widened by allowing the class

of candidate controllers to be infinite so as to allow consideration of continuously

parameterized adaptive controllers, in addition to finite sets of controllers. Under

some mild additional assumptions on the cost function (designer based, not plant-

dependent), stability of the closed loop switched system is assured, as well as the

convergence to a stabilizing controller in finitely many steps. An academic example
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shows that, when there is a mismatch between the true plant and the assumptions

on the plant (‘priors’), a wrong ordering of the controllers can in some cases give

preference to destabilizing controllers. This phenomenon is called model mismatch

instability. However, prior knowledge and plant models, when they can be found,

can be incorporated into the design of the candidate controllers, which could be used

together with the safe switching algorithm.

In certain ways, the paradigm of adaptive control problem cast as a constrained

optimization problem bears similarities with the ideas found in machine learning al-

gorithms [70,97]. As a direct, data-driven switching adaptive method, it is more sim-

ilar to the reinforcement learning algorithms than supervised/unsupervised learning.

In reinforcement learning, the algorithm learns a policy of how to act given an ob-

servation of the world. Every action has some impact in the environment, and the

environment provides feedback that guides the learning algorithm.

2.2 Preliminaries

The system under consideration in this book is the adaptive system Σ : L2e −→ L2e

shown in Figure 2.1, where u and y are the plant input and output vector signals, and

L2e is the linear vector space (extended Lebesgue space) of functions x(t) whose

L2e norm, defined as ||x||τ � (
∫ τ

0 x(t)T x(t)dt)1/2, exists for any finite τ . For any

τ ∈ T = R+, a truncation operator Pτ is a linear projection operator that truncates

the signal at t = τ . The symbol xτ will be used for the truncated signal Pτx [88]. The

adaptive controller switches the currently active controller K̂t at times tk,k = 1,2, . . .
with tk < tk+1,∀k. For brevity, we also denote Kk = K̂tk the controller switched in

the loop during the time interval t ∈ [tk,tk+1). If finite, the total number of switches

is denoted by N, so that the final switching time is tN and the final controller is KN .

We define the set Z = Graph{P} ∆
=
{

z = (u,y) y = Pu
}

where P is an

unknown plant. Unknown disturbances and noises (d,n) may also affect the plant

relation P . Let zd = (yd ,ud) ∈ Z represent the output data signals measured in one

experiment, defined on the time interval [0,∞).
We consider a possibly infinite set K (e.g., a set containing a continuum) of the

candidate controllers. The finite controller set case is included as a special case. The

parametrization of K, denoted ΘK, will initially be taken to be a subset of R
n; the

treatment of the infinite dimensional spaces will be discussed in the Remark 2.5.

We now recall some familiar definitions from the stability theory. A function

φ : R+ →R+ belongs in class K (φ ∈K ) if φ is continuous, strictly increasing and

φ (0)= 0. The L2-norm of a truncated signal Pτz is given as ||z||τ =
√

∫ τ
0 z(t)T z(t)dt.

The Euclidean norm of the parameterization θK ∈ R
n of the controller K is denoted

||θK ||. A functional f : R
n → R is said to be coercive [14] if lim f (x) = ∞ when

||x|| → ∞, x ∈ R
n.
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Fig. 2.1 Switching adaptive control system Σ (K̂t ,P)

Definition 2.1. A system Σ : L2e −→ L2e with input w and output z is said to be

stable if for every such input w ∈ L2e there exist constants β ,α ≥ 0 such that

||z||τ < β ||w||τ +α,∀τ > 0 . (2.1)

Otherwise, Σ is said to be unstable. Furthermore, if (2.1) holds with a single pair

β ,α ≥ 0 for all w ∈ L2e, then the system Σ is said to be finite-gain stable, in which

case the gain of Σ is the least such β .

Remark 2.1. In general, α can depend on the initial state.

Specializing to the system in Figure 2.1, and (without loss of generality) disregard-

ing d,n,x0, stability of the closed loop system Σ means that for every r ∈ L2e, there

exist β ,α ≥ 0 such that ||[y,u]||τ ≤ β ||r||τ +α.

Definition 2.2. The system Σ is said to be incrementally stable if, for every pair of

inputs w1,w2 and outputs z1 = Σw1,z2 = Σw2, there exist constants β̃ , α̃ ≥ 0 such

that

‖z2 − z1‖τ < β̃‖w2 −w1‖τ + α̃,∀τ > 0 (2.2)

and the incremental gain of Σ , when it exists, is the least β̃ satisfying (2.2) for some

α̃ and all w1,w2 ∈ L2e.

Definition 2.3. The adaptive control problem is said to be feasible if a candidate

controller set K contains at least one controller such that the system Σ(K,P) is

stable. A controller K ∈ K is said to be a feasible controller if the system Σ(K,P)
is stable.
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Safe adaptive control problem goal is then formulated as finding an asymptotically

optimal, stabilizing controller, given the feasibility of the adaptive control prob-

lem. Under this condition, safe adaptive control should recognize a destabilizing

controller currently existing in the loop, and replace it with an as yet unfalsified

controller. Hence, we have the following (and the only) assumption on the plant that

we will use.

Assumption 2.1. The adaptive control problem is feasible.

A similar notion of the safe adaptive control appears in [4], where Anderson et al.

define the safe adaptive switching control as one that always yields stable frozen

closed loop; the solution to this problem is achieved using the ν-gap metric. Limi-

tations of the ν-gap metric are discussed in [49].

Prevention from inserting a destabilizing controller in the loop is not assured

(since the adaptive switching system cannot identify with certainty a destabilizing

controller beforehand, based on the past data), but if such a controller is selected, it

will quickly be switched out as soon as the unstable modes are excited. Under the

feasibility condition, an unfalsified controller will always be found and placed in the

loop. Whether the optimal, robustly stabilizing controller will eventually be found

and connected, depends on whether the unstable modes are sufficiently excited.

It follows from the above definition of the adaptive control goal that feasibility is

a necessary condition for the existence of a particular K ∈ K that robustly solves the

safe adaptive control problem. The results in this monograph show that feasibility is

also a sufficient condition to design a robustly stable adaptive system that converges

to a K ∈ K, even when it is not known a priori which controllers K in the set K are

stabilizing.

Definition 2.4. Stability of the system Σ : w �→ z is said to be unfalsified by the data

(w,z) if there exist β ,α ≥ 0 such that (2.1) holds; otherwise, we say that stability of

the system Σ is falsified by (w,z).

Unfalsified stability is determined from (2.1) based on the data from one experiment

for one input, while ‘stability’ requires additionally that (2.1) hold for the data from

every possible input.

Any adaptive control scheme has a cost index inherently tied to it, which orders

controllers based on evidence found in data. This index is taken here to be a cost

functional V (K,z,t), defined as a causal-in-time mapping:

V : K×Z×T → R+∪{∞} .

An example of the cost function according to the above definition, which satisfies

the desired properties introduced later in the text, is given in Section 2.4.

The switched system comprised of the plant P and the currently active controller

K̂t , where K̂t = Kk, Kk ∈ K is denoted Σ(K̂t ,P) (Figure 2.1). For the switched

system Σ(K̂t ,P) in Figure 2.1, the true cost Vtrue : K → R+ ∪{∞} is defined as

Vtrue(K) = supz∈Z,τ∈TV (K,z,τ), where Z = Graph{P}.
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Definition 2.5. Given the pair (V,K), a controller K ∈ K is said to be falsified at

time τ by the past measurement zτ if V (K,z,τ) > minK∈K V (K,z,τ)+ ε . Otherwise

it is said to be unfalsified at time τ by zτ .

Then, a robust optimal controller KRSP is one that stabilizes (in the sense of the

Definition 2.1) the given plant and minimizes the true cost Vtrue.

Therefore, KRSP = argminK∈KVtrue(K) (and is not necessarily unique). Owing to

the feasibility assumption, at least one such KRSP exists, and Vtrue(KRSP) < ∞.

Definition 2.6. [90] For every K ∈ K, a fictitious reference signal r̃K(zd ,τ) is de-

fined to be an element of the set

R̃(K,zd ,τ) � {r|K
[

r

y

]

= u, Pτzd =

[

Pτu

Pτy

]

}. (2.3)

In other words, r̃K(zd ,τ) is a hypothetical reference signal that would have exactly

reproduced the measured data zd had the controller K been in the loop for the entire

time period over which the data zd was collected.

Definition 2.7. When for each zd and τ there is a unique r̃ ∈ R̃(K,zd ,τ), then we say

K is causally left invertible (CLI) and we denote by KCLI the induced causal map

zd �→ r̃. The causal left inverse KCLI is called the fictitious reference signal generator

(FRS) for the controller K. When KCLI is incrementally stable, K is called stably

causally left invertible controller (SCLI).

Definition 2.8. Let r denote the input and zd = Σ(K̂t ,P)r denote the resulting plant

data collected with K̂t as the current controller. Consider the adaptive control system

Σ(K̂t ,P) of Figure 2.1 with input r and output zd . The pair (V,K) is said to be cost

detectable if, without any assumption on the plant P and for every K̂t ∈ K with

finitely many switching times, the following statements are equivalent:

• V (KN ,zd ,t) is bounded as t increases to infinity.

• Stability of the system Σ(K̂t ,P) is unfalsified by the input-output pair (r,zd).

Remark 2.2. With cost detectability satisfied, we can use the cost V (K,z, t) to reli-

ably detect any instability exhibited by the adaptive system, even when initially the

plant is completely unknown.

Remark 2.3. Cost detectability is different from the plant detectability. Cost de-

tectability is determined from the knowledge of the cost function and candidate

controllers, without reference to the plant. In [45], a problem similar to ours is

approached using the following assumptions: 1) the plant itself is detectable, and

2) the candidate plant models are stabilized by the corresponding candidate con-

trollers. The difference between the approach in [42, 45] and this study lies in the

definition of cost detectability introduced in this study, which is the property of the

cost function/candidate-controller-set pair, but is independent of the plant.
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In the following, we use the notation V
.
= {Vz,t : z ∈ Z,t ∈ T} : K → R+ for a

family of functionals with the common domain K, with Vz,t(K)
.
= V (K,z,t). Let

L
.
= {K ∈ K|Vz,t0(K) ≤ Vtrue(KRSP),V ∈ V } denote the level set in the controller

space corresponding to the cost at the first switching time instant. With the family

of functionals V with a common domain K, a restriction to the set L ⊆ K is asso-

ciated, defined as a family of functionals W
.
= {Wz,t(K) : z ∈ Z,t ∈ T} with a com-

mon domain L. Thus, Wz,t(K) is identical to Vz,t(K) on L, and is equal to Vtrue(KRSP

outside L.

Consider now the cost minimization hysteresis switching algorithm reported

in [75], together with the cost functional V (K,z,t). The algorithm returns, at each t,

a controller K̂t which is the active controller in the loop:

Algorithm 2.1. The ε-hysteresis switching algorithm [75]. At each time instant t,

the currently active controller is defined as:

K̂t = arg min
K∈K

{V (K,z,t)− εδKK̂t−
}

where δ i j is the Kronecker’s δ , and t− is the limit of τ from below as t → τ .

The switch occurs only when the current unfalsified cost related to the currently

active controller exceeds the minimum (over K) of the current unfalsified cost by at

least ε (Figure 2.2). The hysteresis step ε serves to limit the number of switches on

any finite time interval to a finite number, and so prevents the possibility of the limit

cycle type of instability. It also ensures a non-zero dwell time between switches

The hysteresis switching lemma of [75] implies that a switched sequence of

controllers K̂tk (k = 1,2, . . .), which minimize (over K) the current unfalsified cost

V (K,z, t) at each switch-time tk, will also stabilize the plant if the cost related to

each fixed controller K has the following properties: first, it is a monotone increas-

ing function of time and second, and it is uniformly bounded above if and only

if K is stabilizing. But, these properties were demonstrated for the cost functions

V (K,z, t) in [75] only by introducing prior assumptions on the plant, thereby also

introducing the possibility of model mismatch instability.

Definition 2.9. [110] Let S be a topological space. A family F
.
= { fα : α ∈ A} of

complex functionals with a common domain S is said to be equicontinuous at a point

x ∈ S if for every ε > 0 there exists an open neighborhood N(x) such that ∀y ∈ N(x),

∀α ∈ A, | fα (x)− fα (y)| < ε . The family is said to be equicontinuous on S if it is

equicontinuous at each x ∈ S. F is said to be uniformly equicontinuous on S if ∀ε >
0, ∃δ = δ (ε) > 0 such that ∀x,y ∈ S, ∀α ∈ A, y ∈ Nδ (x) ⇒ | fα(x)− fα(y)| < ε ,

where Nδ denotes an open neighborhood of size δ .

In a metric space S with a metric dS, uniform equicontinuity means that ∀x,y ∈ S,

∀α ∈ A, dS(x,y) < δ ⇒ | fα (x)− fα(y)| < ε .
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Fig. 2.2 Cost vs. control gain time snapshots

Lemma 2.1. If (S,d) is a compact metric space, then any family F
.
= { fα : α ∈ A}

that is equicontinuous on S is uniformly equicontinuous on S.

Proof. The proof is a simple extension of the theorem that asserts uniform continu-

ity property of a continuous mapping from a compact metric space to another metric

space [86]. Let ε > 0 be given. Since F
.
= { fα : α ∈ A} is equicontinuous on S, we

can associate to each point p ∈ S a positive number φ (p) such that q ∈ S,dS(p,q) <
φ (p)⇒ | fα (p)− fα(q)| < ε

2 , for all α ∈ A. Let J(p)
.
= {q ∈ S | dS(p,q) < 1

2φ(p)}.

Since p ∈ J(p), the collection of all sets J(p), p ∈ S is an open cover of S; and since

S is compact, there is a finite set of points p1, . . . , pn ∈ S such that S ⊆ ∪i=1,nJ(pi).
Let us set δ = 1

2 min1≤i≤n[φ (pi)]. Then δ > 0, because a minimum of a finite set

of positive numbers is positive, as opposed to the inf of an infinite set of positive

numbers which may be 0. Now let p,q ∈ S, dS(p,q) < δ . Then, p ∈ J(pm),m ∈
1, . . . ,n. Hence, dS(p, pm) < 1

2φ(pm) and dS(q, pm) < dS(q, p)+ dS(p, pm) < δ +
1
2
φ(pm) < φ (pm). Thus, | fα (p)− fα(q)| < | fα(p)− fα (pm)|+ | fα (pm)− fα(q)| <
ε
4
+ ε

2
< ε ∀α ∈ A. Since δ holds for all p,q ∈ S and all α ∈ A, F is uniformly

equicontinuous. ⊓⊔

2.3 Results

The main results on stability and finiteness of switches are developed in the sequel.

Lemma 2.2. Consider the feedback adaptive control system Σ in Figure 2.1 with

input r and output zd = (u,y), together with the hysteresis switching Algorithm 2.1

(generality is not lost if r is taken instead of the input w = [r d n x0]). Suppose there

are finitely many switches. If the adaptive control problem is feasible (Definition

2.3), candidate controllers are SCLI, and the following properties are satisfied:



2.3 Results 23

• (V,K) is cost detectable (Definition 2.8)

• V is monotone increasing in time

then the final switched controller is stabilizing. Moreover, the system response z with

the final controller satisfies the performance inequality

V (KN ,z,t) ≤Vtrue(KRSP)+ ε ∀t .

Proof. It suffices to consider the final controller KN . Denote the final switching time

instant tN . Then, by the definition of Vtrue(KN), and feasibility of the control problem

(Definition 2.3), it follows that for all t ≥ tN ,

V (KN ,zd ,t) < ε+ min
K

V (K,zd ,t)

< ε+Vtrue(KRSP) < ∞. (2.4)

Further, by monotonicity in t of V (K,z,t), it follows that (2.4) holds for all t ∈ T.

Owing to the cost detectability, stability of Σ with KN is not falsified by zd , that is,

there exist constants β ,α ≥ 0 corresponding to the given r̃KN
such that

||zd ||t < β ||r̃KN
||τ +α, ∀t > 0 . (2.5)

According to Lemma A.1 in Appendix Appendix A, there exist β 1,α1 ≥ 0 such that

||r̃KN
||t < β 1||r||t +α1,∀t > 0. This, along with (2.5) implies ||zd ||t < β 2||r||t +

α2,∀t > 0, for some β 2,α2 ≥ 0. ⊓⊔
Lemma 2.3. Let f : R

n → R be a continuous and coercive function on R
n . Then for

any scalar α ∈ R, the level set L(α)
.
= {x ∈ R

n | f (x) ≤ α} is compact.

Proof. Since L(α) ⊂ R
n, we show that L(α) is closed and bounded: Let {xm} ⊆

L(α) be a convergent sequence, and x̄
.
= limm→∞ xm. Since f is continuous, f (x̄) =

limm→∞ f (xm). Also, f (xm)≤α, ∀m∈N. Then, f (x̄)= limm→∞ f (xm)≤ limm→∞α =
α , so x̄ ∈ L(α). Hence, L(α) is closed. To show that is L(α) is bounded, proceed

by contradiction. Assume that L(α) is not bounded; then there exists a sequence

{ym} ⊆ L(α) such that limm→∞ ||ym|| = ∞. Since f is coercive, limm→∞ f (ym) = ∞;

in particular, ∃N ∈ N such that ∀k ≥ N f (yk) > α , for any fixed α ∈ R. Then,

{ym} �⊂ L(α), which contradicts the above assumption. Thus, L(α) is closed and

bounded in R
n, therefore compact. ⊓⊔

Lemma 2.4. Consider the feedback adaptive control system in Figure 2.1, together

with the switching Algorithm 2.1. If the adaptive control problem is feasible (Def-

inition 2.3), and the associated cost functional/controller set pair (V,K) is cost de-

tectable, V is monotone increasing in time and, in addition,

• For all τ ∈ T,z ∈ Z, the cost functional V (K,z, t) is coercive on K ⊆ R
n

(i.e. lim||K||→∞V (K,z,τ) = ∞), and

• The family W
.
= {Wz,t(K) : z ∈ Z, t ∈ T} of restricted cost functionals with a

common domain L
.
= {K ∈ K|Vz,t0(K) ≤ Vtrue(KRSP),V ∈ V } is equicontinuous

on L,

then the number of switches is uniformly bounded above for all z∈Z by some N̄ ∈N.
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Proof. Our proof is similar to the convergence lemmas of [46, 75]. A graphical

representation of the switching process, giving insight to the derivation presented

below, is shown in Figure 2.3.

Fig. 2.3 Derivation of the upper bound on switches in the continuum K case.

According to Lemma 2.3, the level set L is compact. Then, the family W
.
=

{Wz,t(K) : z ∈ Z, t ∈ T} is uniformly equicontinuous on L (Lemma 2.1), i.e., for a

hysteresis step ε , ∃δ > 0 such that for all z ∈ Z, t ∈ T, K1,K2 ∈ L, ||θK1
−θK2

|| <
2δ ⇒ |Wz,t(K1)−Wz,t(K2)| < ε (i.e. δ = δ (ε) is common to all K ∈ L and all

z ∈ Z,t ∈ T). Since L is compact, there exists a finite open cover CN = {Bδ (Ki)}N
i=1

, with Ki ∈ R
n, i = 1, . . . ,N such that L ⊂∪N

i=1Bδ (Ki), where N depends on the cho-

sen hysteresis step ε (this is a direct consequence of the definition of a compact

set). Let K̂t j
be the controller switched into the loop at the time t j, and the corre-

sponding minimum cost achieved is Ṽ
.
= minK∈K V (K,z,t j). Consider that at the

time t j+1 > t j a switch occurs at the same cost level Ṽ , i.e. Ṽ = minK∈K V (K,z,t j+1)
where V (K̂t j

,z,t j+1) > minK∈K V (K,z,t j+1)+ ε . Therefore, K̂t j
is falsified, and so

are all the controllers K ∈ B2δ (K̂t j
). Let I j be the index set of the as yet unfalsi-

fied δ -balls of controllers at the time t j. Since K̂t j
∈ Bδ (Ki), for some i ∈ Ī ⊂ I j

(Ī is not necessarily a singleton as K̂t j
may belong to more than one balls Bδ (Ki),

but it suffices for the proof that there is at least one such index i), also falsified are all
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the controllers K ∈ Bδ (Ki) ⊃ K̂t j
, so that I j+1 = I j \{i}. Thus, I j is updated accord-

ing to the following algorithm, in which j denotes the index of the switching time t j:

Algorithm 2.2. Unfalsified index set algorithm:

1. Initialize: Let j = 0, I0 = {1, . . . ,N}
2. j ← j + 1. If I j−1 = ∅: Set I j = {1, . . . ,N} // Optimal cost increases

Else I j = I j−1 \ {i},where i ∈ I j−1 is such that Bδ (Ki) ⊃ K̂t j−1

3. go to (2)

Therefore, the number of possible switches to a single cost level is upper-bounded

by N, the number of δ -balls in the cover of L. The next switch (the very first after

the Nth one), if any, must occur to a cost level higher than Ṽ , because of the mono-

tonicity of V . But then, according to Algorithm 2.1, |V (K̃t j+N+1
,z,t j+N+1)−Ṽ | > ε ,

with d(K̃t j+N+1
, K̃tk ) < 2δ , j ≤ k ≤ j + N and V (K̃tk ,z,tk) = Ṽ . Combining the two

bounds, the overall number of switches is upper-bounded by:

N̄
.
= N

Vtrue(KRSP)−minK∈K V (K,z,0)

ε
. ⊓⊔

Equicontinuity assures that the cost functionals in the said family have associated δ -

balls of finite, non-zero radii, which is used to upper bound the number of switches.

If ΘK ⊆ R
n holds, then the set L is compact; otherwise an additional requirement

that the set K is compact is needed. The finite controller set case is obtained as a

special case of the Lemma 2.4, with N being the number of candidate controllers

instead of the number of δ -balls in the cover of L. The main result follows.

Theorem 2.1. Consider the feedback adaptive control system Σ in Figure 2.1, to-

gether with the hysteresis switching Algorithm 2.1. Suppose that the adaptive control

problem is feasible, the associated cost functional V (K,z,t) is monotone in time, the

pair (V,K) is cost detectable, candidate controllers are SCLI, and the conditions of

Lemma 2.4 hold. Then, the switched closed loop system is stable, according to Def-

inition 2.1. In addition, for each z, the system converges after finitely many switches

to the controller KN that satisfies the performance inequality

V (KN ,z, t) ≤Vtrue(KRSP)+ ε ∀t . (2.6)

Proof. Invoking Lemma 2.4 proves that there are finitely many switches. Then,

Lemma 2.2 shows that the adaptive controller stabilizes, according to Definition

2.1, and that (3.75) holds. ⊓⊔

Remark 2.4. Note that, due to the coerciveness of V , minK∈K V (K,z,0) is bounded

below (by a non-negative number, if the range of V is a subset of R+), for all z ∈ Z.
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Remark 2.5. The parametrization of the candidate controller set can be more general

thanΘK ⊆ R
n; in fact, it can belong to an arbitrary infinite dimensional space; how-

ever, K has to be compact in that case, to ensure uniform equi-continuity property.

Note that the switching ceases after finitely many steps for all z ∈ Z. If the system

input is sufficiently rich so as to increase the cost more than ε above the level at the

time of the latest switch, then a switch to a new controller that minimizes the current

cost will eventually occur at some later time. The values of these cost minima at any

time are monotone increasing and bounded above by Vtrue(KRSP). Thus, sufficient

richness of the system input (external reference signal, disturbance or noise signals)

will affect the cost to approach Vtrue(KRSP)± ε.

Remark 2.6. The minimization of the cost functional over the infinite set K is

tractable if the compact set K can be represented as a finite union of convex sets,

i.e., the cost minimization is a convex programming problem.

2.4 Cost Function Example

An example of the cost function and the conditions under which it ensures stabil-

ity and finiteness of switches according to Theorem 1 may be constructed as fol-

lows. Consider (a not necessarily zero-input zero-output) system Σ : L2e → L2e in

Figure 2.1. Choose as a cost functional:

V (K,z,t) = max
τ≤t

||y||2τ + ||u||2τ
||r̃K ||2τ +α

+β + γ||K||2 (2.7)

where α, β , and γ are arbitrary positive numbers. The constant α is used to pre-

vent division by zero when r̃ = y = u = 0 (unless Σ has zero-input zero-output

property), β ensures V > 0 even when ||K|| ≡ 0, and γ > 0 ensures coerciveness

of V (K,z,t). Alternatively, in order to avoid the restriction to the minimum phase

(SCLI) controllers (which would assure causality and incremental stability of the

map [u,y] → r̃), the denominator of (2.7) can contain ṽK instead of r̃K [26], [65],

where ṽK is defined via the matrix fraction description (MFD) form of the controller

K, as K = D−1
K NK and ṽK(t) = (−NK)(−y(t)) + DKu(t) (Appendix Appendix B),

where the relevant signals are shown in Figure 2.4:

V (K,z,t) = max
τ≤t

||y||2τ + ||u||2τ
||ṽK ||2τ +α

+β + γ||K||2 . (2.8)

Both (2.7) and (2.8) satisfy the required properties of Theorem 1, i.e., monotonicity

in time, coerciveness on K, equicontinuity of the restricted cost family W , and cost

detectability. The first two properties are evident by inspection of (2.7) and (2.8).

The justification for the last two properties is as follows.

Since V (K,z,t) in (2.7) and (2.8) is continuous in K, then W , defined as the

family of the cost functionals V (K,z,t) restricted to the level set L
.
= {K ∈ K |

V (K,z,0) ≤Vtrue}, is equicontinuous, since for any z and t, Wz,t are either equal to

Vz,t , or clamped at Vtrue.



2.4 Cost Function Example 27

Lemma 2.5. Consider the cost functions (2.7) and (2.8) with α ,β ,γ ≥ 0. For (V,K)
to be cost detectable, it is sufficient that the candidate controllers in the set K are

SCLI, or that they admit matrix fraction description (MFD) form considered in [65].

Proof. Cost detectability of (V,K) with V in (2.7) follows from the following: 1)

the fact that V (K,z,t) is bounded as t → ∞ if and only if stability is unfalsified by

the input-output pair (r̃K(t),z); 2) SCLI property of the controllers; 3) stability of

the mapping r �→ r̃KN
(Lemma A.1 in Appendix Appendix A); and 4) unfalsified

stability by the data (r̃KN
,z) (see Appendix Appendix C). These results can be elab-

orated further using [65] for the class of non-SCLI controllers and the cost function

(2.8), which also ensure ‘internal stability’ of the adaptive system designed using

cost detectable cost-functions of the forms (2.7) or (2.8). ⊓⊔

(a)

(b)

Fig. 2.4 MFD of a controller in closed loop with the plant [65]: (a) Feedback loop with the

current controller K̂t written in MFD form, (b) Fictitious feedback loop associated with the

candidate controller K written in MFD form (in both cases, (u,y) are the actually recorded

data)

Remark 2.7. Note that the cost function in the preceding example satisfies the L2e-

gain-relatedness property as defined in a previous article by the authors [109].
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Definition 2.10. (L2e-gain-related cost). Given a cost/candidate controller-set pair

(V,K), we say that the cost V is L2e-gain-related if for each z ∈ L2e and K ∈ K,

• V (K,z,τ) is monotone in τ ,

• the fictitious reference signal r̃(K,z) ∈ L2e exists and,

• for every K ∈ K and z ∈ L2e, V (K,z,τ) is bounded as τ increases to infinity if

and only if stability is unfalsified by the input-output pair (r(K,z)),z).

The third condition in Definition 2.10 requires that the cost V (K,z,τ) be bounded

with respect to τ if and only if L2e-stability is unfalsified by (r̃(K,z),z); this is

the motivation for the choice of terminology ‘L2e-gain-related’. Clearly, cost de-

tectability implies L2e-gain-relatedness. In fact, L2e-gain-relatedness is simply cost

detectability of V for the special case where K̂t ∈ K is a constant, unswitched non-

adaptive controller.

Lemma 2.6. [109] When the candidate controllers have linear time-invariant

structure, the sufficient condition for the cost detectability in Lemma 2.5 is also

necessary.

Proof. Again, we consider cost functions of the form (2.7) or (2.8); i.e., L2e-gain-

related cost functions. Under this condition, it follows that r̃K(z,τ) is well defined

and hence the fictitious reference signal generator KCLI exists and is causal. To prove

necessity, proceed by contradiction. Suppose that KCLI is not stable. Then, the dom-

inant pole of KCLI has a non-negative real part, say σ0 ≥ 0. As cost detectability is

a plant-independent property by definition, it must hold for every plant P mapping

L2e �→L2e. Let us choose P so that Σ(K,P) has its dominant closed loop pole at σ0.

Choose bounded duration inputs r,s ∈ L2 so that the modes of KCLI and Σ(K,P) as-

sociated with the unstable dominant poles with real part σ0 are both excited. Then,

since the fictitious reference signal r̃K(z,τ) is unstable with the same growth rate

eσ0t as the unstable closed loop response z(t), there exists a constant β such that

||z||t ≤ β ||r̃K(z)||t +α holds. Hence, since the cost function satisfies cost detectabil-

ity, the cost limt→∞V (K,z, t) is finite. On the other hand, stability of Σ(K,P) is

falsified by (r,z) which contradicts cost detectability. Therefore, the LTI controller

K must be stably causally left invertible (SCLI). ⊓⊔

2.5 Specialization to the LTI Plants

It is illuminating to consider how the above results specialize to the case of an LTI

plant. In particular, one can derive an explicit bound for the state of the switched

system when the final switched controller is the robustly stabilizing and performing

controller (denoted K∗ in this section for compactness of notation). Let the unknown

plant P in Figure 2.1 be an LTI plant with the control input u and measured output

y. In addition to a piecewise continuous bounded reference signal r, it is assumed

that an unknown bounded disturbance d and noise n are acting at the plant input and
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output, respectively. A set of candidate controllers K is considered, which can be an

arbitrary infinite set of controllers (of LTI structure in this section). As before, the

existence of KRSP ∈ K is assumed, such that K∗ = KRSP robustly stabilizes P for

any bounded disturbance d and noise n at the plant input and output, respectively.

We will denote the minimal state space representation of the unknown plant P

as (Ap,Bp,Cp,Dp). Let the state-space representation of an individual candidate

controller K be denoted as (Ak,Bk,Ck,Dk). Then, the spectral radius of the closed

loop state transition matrix A∗ satisfies ρ(A∗) < 0, where

A∗ =

[

A∗1 A∗2

A∗3 A∗4

]

and

A∗1
.
= Ap −Bp(I + Dk∗Dp)

−1Dk∗Cp

A∗2
.
= Bp(I + Dk∗Dp)

−1Ck∗

and similarly for A∗3 and A∗4. As before, {ti}i∈I is an ordered sequence of the

switching time instants for some I ⊆N∪{∞}, with ti+1 > ti, ∀i∈I . The controller

switched in the loop at time ti, i ∈I is denoted Ki, whereas K̂t is the currently active

switched controller at time t:

K̂t = Ki on t ∈ [ti, ti+1) .

Denote the state space realization of K̂t by (Â(t), B̂(t),Ĉ(t),D̂(t)), such that, be-

tween the switching instants, Â(t) = Ai, ∀t ∈ [ti,ti+1) (and similarly for other state-

space matrices), where ti denotes the time instant when Ki is switched in the loop.

Let the minimal state space realization for the plant P be written as:

ẋp = Apxp + Bp(u + d)

y = Cpxp + Dp(u + d)+ n .

The dynamic equations for the switched controller K̂t can be written as:

˙̂x = Â(t)x̂ + B̂(t)(r− y),

u = Ĉ(t)x̂+ D̂(t)(r− y) .

Here, for simplicity of exposition, a one degree-of-freedom (1-DOF) linear con-

troller structure is assumed. The dynamic equations for the piecewise-LTI intercon-

nected system can be written as:

ẋ = A (t)x +B(t)ω ,

y = C (t)x +D(t)ω (2.9)
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where ω =

[

d

r−n

]

, x =

[

xp

x̂

]

, and

A (t) =

[

A (t)1 A (t)2

A (t)3 A (t)4

]

with

A (t)1
.
= Ap −Bp(I + D̂(t)Dp)

−1D̂(t)Cp,

A (t)2
.
= Bp(I + D̂(t)Dp)

−1Ĉ(t)

and

B(t) =

[

B(t)1 B(t)2

B(t)3 B(t)4

]

with

B(t)1
.
= Bp(I + D̂(t)Dp)

−1,

B(t)2
.
= Bp(I + D̂(t)Dp)

−1D̂(t)

and similarly for C (t), D(t).
Note that x̂ is differentiable, if:

• the state of the previously active controller is retained as the initial state of the

newly switched controller (due to the requirement of bumpless switching, needed

for smooth performance), and

• the states of individual controllers are differentiable in time.

When the final switched controller is the robustly stabilizing and performing con-

troller K∗, we can derive explicit bound for the state of the switched system. For

t ≥ tN , the currently active controller is the RSP controller, K̂t = KN = K∗. The be-

havior of the switched system (2.9) is then described by the constant matrices A∗,

B∗
.
=

[

Bp −BpDk∗

0 Bk∗

]

and C∗
.
=
[

Cp 0
]

(assuming Dp = 0). The state transition

matrix of the closed loop system (2.9) is Φ(t,tk∗) = eA∗(t−tk∗ ). Owing to the ex-

ponential stabilizability of P by K∗, we have ||eA∗(t−tk∗ )|| ≤ ce−λ (t−tk∗ ), for some

positive constants c,λ . Applying the variation of constants formula to the state of

the switched system x, we obtain:

||x(t)|| ≤ ||eA∗(t−tk∗ )||||x(tk∗)||+
∫ t

tk∗
||eA∗(t−τ)B∗||||ω ||∞dτ

≤ ce−λ (t−tk∗ )||x(tk∗)||+B∗
c

λ
(1− eλ(t−tk∗ ))||ω ||∞

≤ ce−λ (t−tk∗ )||x(tk∗)||+B∗
c

λ
||ω ||∞
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From the Equation C.2 in Appendix, ||C∗x(tk∗)|| < ∞, and so ||x(tk∗)|| < ∞. Thus,

||x(t)|| is bounded for all t, and

lim
t→∞

||x(t)|| ≤ B∗
c

λ
||ω ||∞ .

which provides the upper bound on the switched system’s state.

2.6 Treatment of the Time-Varying Plants

Adaptive switching scheme considered above provides guarantees of stability and

convergence for a general nonlinear plant (with arbitrary but bounded noise and/or

disturbances), whose unknown dynamics are time-invariant. In other words, the

adaptive algorithm aims toward finding (given sufficient excitation) a robust con-

troller - one that stabilizes the time-invariant plant. To have a ‘truly’ adaptive con-

trol system, one that is able to track changes in a plant whose parameters are either

slowly time-varying or subject to infrequent large jumps (e.g., component-failure-

induced), one needs to deemphasize importance of the old data, which may be not

demonstrative of the current plant behavior. For slow parameter variations, one usu-

ally endows a cost function (control selection law, in general) with data windowing,

or fading memory. For instance, the cost functional to be minimized usually has an

integral term:

J(ϕ ,t) = ||ϕ(t)||2 +
∫ t

0
e−λ (t−τ) · ||ϕ(τ)||2dτ (2.10)

where λ is a small non-negative number (’forgetting factor’), and ϕ may be a vector

of output data, identification error [77] etc. In such situations, convergence to a par-

ticular robustly stabilizing controller (given sufficient excitation) is neither achieved

nor sought after. The property of the cost function that is lost by data windowing is

its monotonicity in time. As a consequence, we do not have uniform shrinking of the

candidate controller set anymore. Recall that at each time instant, the ε-cost mini-

mization hysteresis algorithm falsifies a subset of the original candidate controller

set whose current unfalsified cost level exceeds Vtrue(KRSP); the resulting unfalsi-

fied controller sets form a nested, uniformly in time shrinking set, non-empty due to

the feasibility assumption. Discarding time monotonicity, previously falsified con-

trollers may be selected as optimal ones. Guarantees of convergence and finiteness

of switches on the time interval [0,∞) are lost, but certain stability properties are

preserved under modified conditions. The type of instability induced by infinitely

fast switching can be avoided if an arbitrary, bounded away from zero, positive

ratcheting step ε is used.

For stability analysis, the definitions pertaining to the frozen-time analysis of

stability of time-varying plants are useful, similarly as in [117].

Definition 2.11. The unknown plant P whose parameters are frozen at their values

at time t∗ is denoted Pt∗ , and the closed loop switched system Σ with the plant Pt∗

is denoted Σ t∗ . The set of all possible output signals z = [u,y] reproducible by the

switching system Σ t∗ is denoted Zt∗ .
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Definition 2.12. The adaptive control problem is said to be feasible in the frozen-

time sense if a candidate controller set K contains at least one controller such that

the system Σ t∗ (K,P) is stable. A controller K ∈ K is said to be a feasible controller

for Σ t∗ if the system Σ t∗(K,P) is stable.

Assumption 2.2. The adaptive control problem associated with the switched system

Σ is feasible.

Definition 2.13. Stability of a system Σ t∗ : w �→ z is said to be unfalsified by data

(w,z) if there exist β ,α ≥ 0 such that (2.1) holds; otherwise, it is said to be falsified.

Definition 2.14. The closed loop switched system Σ t∗ is associated with the true

cost VΣ
t∗

true : K → R+ ∪{∞}, defined as VΣ
t∗

true(K) = sup
z∈Zt∗ ,τ≥t∗ V (K,z,τ).

Definition 2.15. For Σ t∗ , a robust optimal controller KΣ
t∗

RSP is a feasible controller

that minimizes the true cost VΣ
t∗

true .

Owing to the feasibility assumption, at least one such KΣ
t∗

RSP exists ∀t∗ ∈ T, and

VΣ
t∗

true(K
Σ t∗

RSP) < ∞.

Definition 2.16. Let r denote the input and zd = Σ t∗(K̂t ,P)r denote the resulting

plant data collected with K̂t as the current controller. Consider the adaptive control

system Σ t∗(K̂t ,P) of Figure 2.1 with input r and output zd . The pair (V,K) is said

to be frozen-time cost detectable if, without any assumption on the plant P and

for every K̂t ∈ K with finitely many switching times, the following statements are

equivalent:

• V (KN ,zd ,t) is bounded as t increases to infinity.

• Stability of the system Σ t∗ (K̂t ,P) is unfalsified by the input-output pair (r,zd).

Theorem 2.2. Consider the switched zero-input zero-output system Σ : L2e → L2e

in Figure 2.1 where the unknown plant is time-varying. The input to the system is

w = [r d n x0]
T (the fictitious input corresponding to K is w̃K = [ṽK d̃K ñK x̃0K

]T ∈
W̃K(z)), where ṽK(t) = NKy(t)+DKu(t) is the corresponding MFD), and the output

is z = [u y]T . Given is a cost function of the type

V = max
w̃K∈W̃K(z)

∫ t
0 e−λ1(t−τ)||z(τ)||2dτ

∫ t
0 e−λ2(t−τ)||w̃K(τ)||2dτ

+β (2.11)

with V = β when t = 0, where λ 2 ≥ λ 1 > 0 are the weights on the past values

of input and output data, respectively (‘forgetting factors’), and β is an arbitrary

positive constant. Then, the cost function V (K,z,t) is cost detectable in the frozen

time sense, but not in general monotone in t.

Proof. If stability of the system Σ with K in the loop is falsified, then for some

w̃K ∈ W̃K(z) there do not exist β ,α ≥ 0 such that ||z||t < β ||w̃K ||t + α , where
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||z||t = ||(u,y)||t .
=
√

||u||2t + ||y||2t , and ||ζ ||t .
=
√

∫ t
0 eλτ ||ζ (τ)||2dτ is eλ t -weighted,

L2-induced norm of a signal ζ (t) (in general, norm weight for the output need not

coincide with the norm weight for the input signal). In particular, it follows that:

∞= limsup
t→∞

||z||2t
||w̃K ||2t

= limsup
t→∞

∫ t
0 eλ1τ ||z(τ)||2dτ

∫ t
0 eλ 2τ ||w̃K(τ)||2dτ

≤ limsup
t→∞

∫ t
0 e−λ1(t−τ)||z(τ)||2dτ

∫ t
0 e−λ2(t−τ)||w̃K(τ)||2dτ

< limsup
t→∞

max
w̃K ∈ W̃K(z)

∫ τ
0 e−λ1(t−τ)||z(τ)||2dτ

∫ τ
0 e−λ2(t−τ)||w̃K(τ)||2dτ

+β + γ||K||2

= limsup
t→∞

V (K,z,t) .

From the last equation, cost detectability holds. ⊓⊔

In this case, since the unknown plant is varying in time, or the operating conditions

are changing, the switching may never stop. However, the number of switches on

any finite time interval can be derived. To this end, we apply the “pigeon-hole”

lemma (similarly as in [46]), to find an upper bound on the number of switches on

an arbitrary finite time interval. Recall from the Algorithm 2.1 that a currently active

controller K̂ will be switched out of the loop at time t if its associated cost satisfies

V (K̂,z,t) ≥ ε+minK V (K,z,t). We observe that this switching criterion will not be

affected if we multiply both of its sides by some positive function of timeΘ(t):

Θ(t)V (K̂,z, t) ≥ εΘ(t)+Θ(t)min
K

V (K,z,t) .

Though we use the non-monotone in time cost function V as in (2.11) in the actual

switching algorithm, for analysis purposes we use its scaled version Vm(K,z,t)
.
=

Θ(t)V (K,z,t), where the positive function of time Θ(t) ∈ L2e is chosen so as to

make Vm(K,z,t) monotone increasing in time. The switching condition in the Al-

gorithm 2.1 will also be modified to V (K̂t ,z,τ) ≥ ε + min1≤i≤N minK∈Bi
δ

V (K,z,τ)

where Bi
δ is the ith δ -ball in the finite cover of L, and N is their number. This yields

a hierarchical hysteresis switching similar to the one proposed in [46].

Proposition 2.1. Consider the system Σ : L2e → L2e from the preceding sections,

the cost (2.11), and a general candidate controller set K. Suppose that the switching

algorithm is chosen to be the hierarchical additive hysteresis switching. Then, the

number of switchesℵ(t0,t) on any finite time interval (t0,t), 0≤ t0 < t <∞ is bounded

above as:

ℵ(t0,t) ≤ 1 + N +
N

εΘ(t)
(Vm(K,z, t)− min

K ∈ K
Vm(K,z,t0)) .
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Proof. For brevity, we will omit zd from V (K,zd ,t) in the sequel. Suppose that Ktk

is switched in the loop at time tk, and remains there until time tk+1. Then,

Vm(Ktk ,t) ≤ εΘ(t)+Vm(K,t) ∀t ∈ [tk,tk+1], ∀K ∈ K .

Since Ktk was switched at time tk, we also have Vm(Ktk ,tk) ≤ Vm(K,tk) ∀K ∈ K.

Owing to continuity of V in time, Vm(Ktk ,tk+1) = εΘ(t)+Vm(Ktk+1
,tk+1). Now con-

sider the non-trivial situation when more than one controller is switched in the loop

on the time interval (t0,t). Then, some Kq ∈ K must be active in the loop at least

ν ≥ ℵ(t0,t)−1

N
times (N is the number of δ -balls in the cover of L). Denote the time

intervals when Kq is active in the loop as [tk1
,tk1+1), [tk2

,tk2+1), ..., [tkν ,tkν+1). Ac-

cording to the properties of the switching algorithm and monotonicity of Vm we

have:

Vm(Kq,tki+1) = εΘ(t)+Vm(Ktki+1
,tki+1), i ∈ {1,2, ...,ν−1}

≥ εΘ(t)+Vm(Ktki+1
,tki

)

≥ εΘ(t)+Vm(Kq,tki
) .

Also, because the switching time intervals are nonoverlapping, Vm(Kq,tki+1
) ≥

Vm(Kq,tki+1) and so εΘ(t) + Vm(Kq,tki
) ≤ Vm(Kq,tki+1

). Since this holds ∀i ∈
{1,2, ...,ν−1}, we obtain, ∀K ∈ K:

(ν−1)εΘ(t)+Vm(Kq,tk1
) ≤Vm(Kq,tkν )

⇒ (ν−1)εΘ(t)+Vm(Kq, t0) ≤Vm(K,t) .

Therefore, sinceℵ(t0,t) ≤ νN + 1, we derive, ∀K ∈ K:

ℵ(t0,t) ≤ 1 + N +
N

εΘ(t)
(Vm(K,z,t)− min

K ∈ K
Vm(K,z,t0))

which is finite since ε > 0, Θ(t) is a positive, L2e function of time, and

minK∈K Vm(K,z,t0)) is finite due to feasibility assumption, as is Vm(K,z, t) for some

K ∈ K. ⊓⊔

2.7 Behavioral Approach to Controller Unfalsification

A parallel between the controller unfalsification ideas on the one hand and the can-

didate elimination algorithm of Mitchell [70] on the other hand has been considered

in [17], inspired by the results reported in [90]. It is noted that, as a special variant

of Mitchell’s elimination algorithm, controller falsification works by identifying hy-

pothetical controllers that are consistent with past measurement data. The interest

in this approach to understanding the essence of the unfalsification ideas that con-

stitute the basis for the safe switching control stems from the particular simplicity

and parsimony of the ensuing mathematical formulation, revealing some essential
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issues in feedback and learning from data. In addition, it is shown that system iden-

tification problems can be also tackled using the same truncated space unfalsified

control concept framework.

In [17], it is argued that truncated space unfalsified control results from working

in truncated signals spaces obtained from the application of an observation opera-

tor. Unfalsified control problems cast in this manner allows for simple falsification

conditions which in turn require a reduced number of computations.

Canonical Representation of Unfalsified Control in Truncated

Spaces

The unfalsified control concept is a precise formulation of the controller validation

problem in a hypothesis-testing framework [90]. Given the control goal (perfor-

mance specification) and a set of hypotheses (candidate controllers), it evaluates

them against experimental data. Experimental data are seen as a particular realiza-

tion of the plant, which often includes actuators and sensors, and their disturbances

and noises. For this reason, an extended plant is defined to be the plant with actua-

tors and sensors. Therefore the experimental data are a realization of the extended

plant. Another important aspect is that a priori information about the plant is used

to define the hypothesis set. Models and any other prior knowledge about the plant

are used to design the candidate controllers (hypotheses). Figure 2.5 depicts a gen-

eral representation for an unfalsified control system. It is composed of elements

that define relations between signals. The unfalsified control system has an internal

structure with three blocks: the controller architecture, the learning processor and

the controller. The controller architecture acts as the interface for the extended plant

and the controller, and provides the performance signals needed by the learning pro-

cessor, which in turn evaluates the candidate controllers and selects the best one to

be used by the controller. The engine of the unfalsified control learning process is

the evaluation of hypothesis against experimental data. In this regard, an alternative

definition of an unfalsified controller can be stated as follows.

Definition 2.17. Given measurement information (data), a controller (hypothesis) is

said to be falsified if the combined information (hypothesis and data) is sufficient to

deduce that the performance specification (goals) would be violated if that controller

were in the feedback loop. Otherwise, it is said to be unfalsified.

Truncated Space Problem Formulation. The general unfalsified control problem

consists of evaluating if the candidate controllers are falsified by the currently avail-

able experimental data. The elements needed to define and solve the problem of

evaluating if a control law is falsified are presented next. The basic components are

signals and blocks. There are two groups of signals, manifest and latent, as in the be-

havioral approach of Willems [112]. Manifest signals (Zhypotheses = ∪iZhypothesis ⊂
PτZ) are the signals that manifest the observed behavior of the extended plant. These

signals are control (u) and measurement (y) signals. Hence the manifest subspace

is the input-output space, i.e. U ×Y . Latent signals (zlatent ) are signals internal to
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Fig. 2.5 Unfalsified control system

the unfalsified controller used to define and evaluate performance and to produce the

control signal. These are controller signals (uK,yK), command signals (r) and perfor-

mance (p) signals, and controller gains (θ ). Consider the vector space formed from

stacking all signals into z = (zmani f est ,zlatent ) = (u,y,r, p,uK ,yK ,θ ). In addition, de-

fine the observation operator, Pτ , which maps input-output signals to measurement

signals. Examples of this operator are the time truncation operator or the sampling

operator introduced in Section 2.2. Now define a vector space of truncated signals

obtained from applying the observation operator to the vector space Z.

Definition 2.18. Given a space Z, and an observation operator Pτ . The observations

truncated signal space is defined as Zτ = PτZ.

The above definition provides a basis for working in the truncated signal space

which is advantageous for practical reasons. Specifically, consider the following

sets in the truncated signal space defined above:

• Goal set, Zτgoal ∈ PτZ denotes the performance specification.This could be de-

scribed in terms of an observation-dependent error functional, J(PτZ), which

evaluates the error between the actual system response and the desired one. With-

out loss of generality one can normalized it to [0, 1]. Hence,
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Zτgoal{PτZ|0 ≤ J(PτZ) ≥ 1} ⊂ PτZ (2.12)

Since the functional evaluates the error, the value of the cost is a measure of the

performance such that smaller cost indicates better performance. This cost can

be used to define a partial ordering of hypotheses.

• Controller hypothesis, Zτhypothesis(θ ) ∈ PτZ, denotes the graph of a θ -dependent

dynamical control law Kθ (PτZ) = 0, viz.,

Zτhypothesis(θ ) = {Pτz|Kθ (Pτz) = 0} ⊂ PτZ (2.13)

• Hypotheses set,

Zτhypothesis(θ ) :Θ → 2PτZ (2.14)

denotes the set of candidate controllers parameterized by a vector θ .

• Data set, Zτdata ∈ PτZ, is defined as

Zτdata = {Pτz|Pτ(zmani f est) = (u,y)measurements} ⊂ PτZ (2.15)

where (u,y)measurements represents past plant input-output observed data available

at time τ .

• The unfalsification goal:

(Zτdata ∩Zτhypothesis(θ ) ⊂ Zτgoal) (2.16)

These truncated sets are used in [17] to test falsification for purposes of controller

validation, adaptive control and system identification.

Problem 1: Truncated Space Unfalsified Control Problem

Given a performance specification (goal set, Zτgoal �= ∅), a set of candidate con-

trollers (hypotheses, Zhypotheses = ∪iZhypothesis(θ ) �= ∅), and experimental data

(Zτdata �= ∅), determine the subset of candidate controllers (hypotheses) which is

not falsified. This formulation brings out important issues, some of which are that

every element of the truncated space data set is not only consistent with the ob-

served data (u,y)measurements ∈ PZmani f est
Zτdata (where PZmani f est

denotes the projection

zmani f est = PZmani f est
z), but it is also the unique element of the set PZmani f est

Zτdata.

This means that in testing unfalsification there is no need to analyze multiplicities

of unseen future or intersample behaviors for the manifest signals (u,y). Another

advantage, as argued in [17], is that one has more flexibility in the design since

instead of working in R×Y×U, one deals with Z, which may in general be a big-

ger signal space. This flexibility is very useful in the definition of the performance

specification. For example it allows for specifications involving signals derived from

a hypothesis-dependent reference model, which is not possible when performance

goals must depend only on (r,y,u).

Results. To build up the background for a solution to the truncated space unfalsi-

fied control problem, the concept of data-hypothesis consistency is defined, which



38 2 Safe Switching Adaptive Control: Theory

considers whether a hypothesis (controller) connected to the plant in closed-loop

could have produced the measurement data.

Definition 2.19. Data-hypothesis consistency. Given a truncated space unfalsified

control problem, it is said that a hypothesis is consistent with the data if

PZmani f est
Zτdata ⊂ PZmani f est

Zτhypothesis(θ ) . (2.17)

Note that if a particular controller is not consistent with data, then irrespective of

the goal the data cannot falsify this controller.

Theorem 2.3. For a given truncated space unfalsified control problem, a candidate

control law (hypothesis, Zτhypothesis(θ )) consistent with the experimental data is un-

falsified by data PZmani f est
Zτdata if and only if Zτdata ∩Zτhypothesis(θ )∩ Z̄

τ
goal �= ∅, where

Z̄
τ
goal is the complement of Zτgoal . Otherwise, it is falsified.

Then, a solution to Problem 1 is achieved by testing each candidate controller for

unfalsification via Theorem 2.3. Applied to an adaptive control problem, the task

formulation can be stated as follows.

Adaptive Truncated Space Unfalsified Control

Given a γ-dependent goal set Zτgoal(γ) �= ∅, γ ∈ R, a set of candidate controller

hypotheses, Zτhypotheses = ∪Zτhypothesis(θ ) �= ∅, and an evolving τ-dependent experi-

mental data set (Zτdata �= ∅), then at each time τ find the least γ = γopt for which the

set of unfalsified controllers is non-empty and select a controller Kγopt
from this set.

Figure 2.6 represents a canonical representation of the above defined adaptive

control problem. The role of the learning processor is twofold: updating the unfal-

sified candidate controller subset and selecting the best controller to be put into the

loop. The role of the parameter γ in the goal set is to define a partial ordering of the

hypotheses.

Zτgoal(γ) = {Pτz|0 ≤ J(Pτz) ≤ γ} . (2.18)

The adaptive unfalsified control problem viewed from the optimization aspect can

be stated as follows:

Theorem 2.4. The solution to an adaptive truncated space unfalsified control prob-

lem is given by the following constraint optimization: At each time τ , find a con-

troller Kθ opt
(Zhypothesis(θ opt)), which solves:

γopt � argminZτ
hypothesis

(θ)(argminPτ zJ(Pτz)) (2.19)

such that

Pτz ∈ Zτdata ∩Zτhypothesis(θ ),

Zτdata ∩Zτhypothesis(θ ) ⊆ Zτgoal(γ) and

Zτhypothesis(θ ) ∈ Zτhypothesis . (2.20)
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Fig. 2.6 Adaptive Unfalsified Control System

With respect to the practical considerations of this canonical representation of the

unfalsified adaptive control in time truncated space, an important remark is that the

unfalsified control could be run just once, or it can be run iteratively on evolving past

data as each new datum is acquired. If run iteratively on evolving past data, then

it can be used for real time controller adaptation. Adaptive updates of the current

controller can be done either periodically or aperiodically, or by a mixture of both.

If run periodically, then the algorithm rate can be arbitrary. For quickly varying

systems the highest possible rate (sensor sampling rate) may be preferred, but for

slowly varying systems one would settle for a lower rate. For an aperiodical run, a

performance-dependent function should be defined to decide when to run it.

Figure 2.7 shows an algorithm for a generic unfalsified learning processor. Every

time the learning processor is called, the data available defines the observations

operator which in turn helps to define the truncated signal space (Definition 2.17)

in which to work. The “Choose the best” block identifies the best hypothesis to be

used in the adaptive (and also identification) problems.

The basic components of this algorithm are defined in the truncated signal space

obtained from the use of the observations operator.
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Fig. 2.7 Unfalsified learning processor

• Goal: A cost function measuring the error between the actual and desired perfor-

mances represents the goal. As an example, it may have the form of an inequality.

A weighted l2e norm specification of the mixed sensitivity type is a common ex-

ample. For real-time application with a time varying system, a forgetting factor

is often used to rest importance to the old measurements.

• Hypotheses: Recent research has alleviated the previous restriction of the con-

trollers’ (or models’) hypotheses to the causally left invertible form. With this

hindrance lifted, there are various forms of the hypotheses that can be used;

the unfalsification-based system identification, for example [58], uses ARX

parametrization.

• Data: The experimental data available defines the observations operator. The data

set is the projection of experimental data onto the latent variable subspace of the

truncated signal space. Typically, experimental data will be discrete signals of

finite length.



Chapter 3

Safe Switching Adaptive Control: Examples

Abstract. In this chapter, we present examples that illustrate the stability robustness

properties of the safe adaptive control algorithm in the high uncertainty setting, and

compare it with alternative control schemes. The motivating example gives insight

into the model mismatch stability failure associated with model based adaptive con-

trol schemes lacking the necessary properties of their cost function, and a solution

to the preceding problem is provided. Following this example, transient behavior

improvement of the safe adaptive schemes is discussed. For completeness, some ap-

plications of the unfalsified control concept are reproduced in the last section of this

chapter.

3.1 Benchmark Example

The Algorithm 2.1 in Section 2.5 originated as the hysteresis switching algorithm

in [75]. We emphasized that the power of the hysteresis switching lemma was

clouded in the cited study by imposing unnecessary assumptions on the plant in the

demonstrations of the algorithm functionality. One of the plant properties required

in [75] for ensuring ‘tunability’ was the minimum phase property of the plant. We

have shown in theory that the cost detectability property is assured by properly

choosing a cost function, and is not dependent on the plant or exogenous signals. In

the following, we present a MATLAB� simulation example that demonstrates these

findings is presented.

Assume that a true, unknown plant transfer function is given by P(s) = s−1
s(s+1)

.

It is desired that the output of the plant behaves as the output of the stable, min-

imum phase reference model Pre f (s) = 1
s+1 . Given is the set of three candidate

controllers: C1(s) = − s+1
s+2.6 , C2(s) = −s+1

0.3s+1
and C3(s) = − s+1

−s+2.6 , each of which

stabilizes a different possible plant model. The task of the adaptive control is to

select one of these controllers, based on the observed data. The problem is compli-

cated by the fact that in this case, as is often the case in practice, the true plant P(s)
is not in the model set, i.e., there exists a ‘model mismatch’.

M. Stefanovic and M.G. Safonov: Safe Adaptive Control, LNCIS 405, pp. 41–128.

springerlink.com c© Springer-Verlag London Limited 2011
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A simple analysis of the non-switched system (true plant in feedback with each

of the controllers separately) shows that C1 is stabilizing (yielding a non-minimum

phase but stable closed loop) while C2 and C3 are destabilizing. Next, a simulation

was performed of a switched system (see Figure 3.1), where Algorithm 2.1 was used

to select the optimal controller, and the cost function was chosen to be a combination

of the instantaneous error and a weighted accumulated error:

J j(t) = ẽ2
j(t)+

∫ t

0
e−λ(t−τ)ẽ2

j(τ)dτ, j = 1,2,3 . (3.1)

In the preceding, ẽ j is the fictitious error of the jth controller, defined as

ẽ j = ỹ j − y (3.2)

where ỹ j = Pre f r̃ j and r̃ j = y+C−1
j u, and where Pre f = 1

s+1 is the stable, minimum

phase reference model. The plant input and output signals, u and y, respectively,

constitute the closed loop system output signals. The cost function above is the same

cost function used in the multiple model switching adaptive control scheme [77], in

which ẽ j was replaced by eI j
, the identification error of the jth plant model (for

the special case of the candidate controllers designed based on the model reference

adaptive control (MRAC) method, eI j
is equivalent to the control error and to the

fictitious error (3.2)).

The simulations assume a band-limited white noise at the plant output and the

unit-magnitude square reference signal. The stabilizing controller C1 has initially

been placed in the loop, and the switching, which would normally occur as soon

as the logic condition of Algorithm 2.1 is met, is suppressed during the initial 5

seconds of the simulation. That is, the adaptive control loop is not closed until time

t = 5 s. The reason for waiting some period of time before engaging the switching

algorithm will be explained shortly. The forgetting factor λ is chosen to be 0.05.

Figures 3.2 and 3.4 show the cost dynamics and the reference and plant outputs,

respectively.

Soon after the switching was allowed (after t = 5 s), the algorithm using cost

function (3.1) discarded the stabilizing controller initially placed into the loop and

latched onto a destabilizing one, despite the evidence of instability found in data.

Even though the stabilizing controller was initially placed in the loop, and forced to

stay there for some time (5 seconds in this case), as soon as the switching according

to (3.1) was allowed, it promptly switched to a destabilizing one. This model-match

instability happens because the cost function (3.1) is not cost detectable. Note that

the initial idle period of 5 seconds is used only to emphasize that, even when the

data are accumulated with the stabilizing controller, the switching algorithm based

on (3.1) can disregard these data, and latch onto a destabilizing controller. This idle

period is not the dwell time in the same sense used in the dwell-time switching

control literature, e.g., [26], [42], [43].
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Fig. 3.1 Switching feedback control system configuration

Next, a simulation was performed of the same system, but this time using a cost

detectable cost function (i.e., one that satisfies the conditions of Theorem 1):

V (K,z,t) = max
τ∈[0,t]

||u||2τ + ||ẽK||2τ
||ṽK ||2τ +α

(3.3)

viz, an L2e-gain type cost function (factor γ||K||2 needed for coerciveness is not

necessary, since the set of candidate controllers is finite in this example). Cost de-

tectability of (V,K) follows from Lemma 2.5. The modified fictitious reference sig-

nal ṽK is used, instead of r̃K , because of the presence of the non-minimum phase

controller C2. It is calculated from the on-line data as ṽK = DKu + NKy (according

to (B.1)), where DK1
= s+2.6

s+2
and NK1

= − s+1
s+2

for C1; DK2
= 0.3s+1

s+2
and NK2

= −s+1
s+2

for C2; and DK3
= s−2.6

s+2
and NK3

= s+1
s+2

for C3. The corresponding simulation results

are shown in Figure 3.3 and Figure 3.5. The initial controller was chosen to be C3

(a destabilizing one). The constant α was chosen to be 0.01.

The destabilizing controllers are kept out of the loop because of the properties of

the cost function (cost detectability). For further comparison, the same simulation

is repeated, with the destabilizing initial controller C3, but the switching is allowed

after 5 seconds (as in the first simulation run shown in Figure 3.2). It can be seen

from Figure 3.6, that, despite the forced initial latching to a destabilizing controller,

and therefore increased deviation of the output signal from its reference value, the

algorithm quickly switches to a stabilizing controller, eventually driving the con-

trolled output to its preferred value.
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Fig. 3.2 Cost function (3.1) shows the destabilizing property of the non cost detectable opti-

mal cost-minimizing controller

The foregoing example shows that closing an adaptive loop that is designed us-

ing a non cost detectable cost function like (3.1) can destabilize, even when the

initial controller is stabilizing. In the example, this happens because there is a large

mismatch between the true plant and the plant models used to design the candidate

controllers. On the other hand, Theorem 1 implies, and the example confirms, that

such model mismatch instability cannot occur when the adaptive control loop is

designed using the cost detectable L2e-gain type cost function (3.3).

3.2 Further Comparison with the Multiple Model Based

Switching Control

The case study that served as a source of inspiration for counterexamples in this

monograph is found in the study of Narendra and Balakrishnan [9], [77]. In Chapter

3 of [9], a comparison is drawn between the indirect MRAC adaptive control using

switching among multiple models, and the indirect adaptive control using hysteresis

switching algorithm of Morse [72], [75]. It is stated that the choice of the perfor-

mance index (cost function) used throughout [9], namely:

J j(t) = αe2
j(t)+β

∫ t

0
exp(−λ (t − τ))e2

j(τ)dτ , j = 1,2,3 (3.4)



3.2 Further Comparison with the Multiple Model Based Switching Control 45

Fig. 3.3 Cost function (3.3) for the cost detectable case

Fig. 3.4 Reference and plant outputs for the non cost detectable cost function (3.1)
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Fig. 3.5 Reference and plant outputs for the cost detectable cost function (3.3)

Fig. 3.6 Reference and plant outputs using cost function (3.3) and the switching Algorithm

2.1, with the initial delay of 5 seconds
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which incorporates both instantaneous and long term measures of accuracy, cannot

be used in exactly the same form in the stability proof of the hysteresis switch-

ing lemma of [75], since the identification errors e j cannot be considered square

integrable or even bounded, implying that the cost (3.4) does not satisfy the bound-

edness condition required for a stabilizing model. In [9], a modification to the above

cost is proposed in the form of:

J̄ j(t) =

∫ t

0

e2
j(τ)

1 + ω̄T (τ)ω̄(τ)
dτ, j = 1,2,3 (3.5)

where ω̄ is the on-line estimate of the vector ω̄∗ consisting of the plant input, out-

put, and sensitivity vectors, which is familiar from the traditional MRAC theory

for a linear time-invariant single-input single-output (LTI SISO) plant [76]. Such

a modified cost function satisfies the stability and finite time switching conditions

of [75]. The problem pointed out, however, was that this choice of the cost function

is based strictly on the stability considerations, not performance, whereas the de-

sign parameters α,β , and λ in (3.4) are claimed to provide flexibility in optimizing

performance.

In [9], the superiority of the cost index choice (3.4) over (3.5) is advocated and

a simulation is furnished showing a substantially better transient response using

the cost function (3.4) rather than (3.5). Though it may seem that the former cost

index results in a superior performance, an important question was not considered:

Are the conditions under which stability of the proposed control design is assured

verifiable? We answer this question in the negative, since it is clear that one does

not know a priori whether there exists a mismatch between the true plant and the

proposed models. To provide better understanding, let us reconsider the problem

presented in [9], Chapter 3, Section 3.3.3.

The LTI SISO plant to be controlled is assumed to have the transfer function

(unknown to us) G(s) = 0.5
s2+0.05s+1

. The control objective is to track the output of

a reference model Wm(s) = 1
s2+1.4s+1

to a square wave reference input with a unit

amplitude and a period of 4 units of time. Two (fixed) candidate models are con-

sidered: WF1(s) = 1
s2+s−1.5

and WF2(s) = 2
s2+2s+1

. The model reference controllers

are designed (off-line) for each of the two models, with the following parameter

vectors: θ ∗F1 = [1, −0.4, −2.5, and −0.6] and θ ∗F2 = [0.5, 0.6, −0.3, and 0],
where

u∗Fi = θ
∗
Fi ·ω = [k∗ θ ∗1 θ

∗
0 θ

∗
2] ·

⎡

⎢

⎢

⎢

⎣

r

ω1

y

ω2

⎤

⎥

⎥

⎥

⎦

(3.6)
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is the perfect match control law for the model WFi resulting in perfect following of

the reference command. The sensitivity vectors ω1,ω2 : R+ → R
2n, (n order of the

unknown plant) are defined, as in the standard MRAC problem, as:

ω̇1 =Λω1 + lu,

ω̇2 =Λω2 + ly (3.7)

with (Λ , l) an asymptotically stable, controllable pair.

The resulting control actions for the two controllers are then calculated as:

uK1
= u∗F1

s+ 1

s+ 1.4
r− 2.5s+ 3.1

s+ 1.4
y,

uK2
= u∗F2

s+ 1

2(s+ 0.4)
r− 0.3(s+ 1)

s+ 0.4
y . (3.8)

Fig. 3.7 True plant in feedback with controller K1

A non-switched analysis is then performed, with the real plant in feedback with

each of the designed controllers separately, showing that K1 is stabilizing, whereas

K2 is not (the closed loop has a pair of the right half plane (RHP) poles close to the

imaginary axis); see Figures 3.7 and 3.8. In the next simulation, switching between

these two controllers is performed using the performance index advocated in [9],

[77]:

J j(t) = e2
j(t)+

∫ t

0
e2

j(τ)dτ . (3.9)
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The results of the simulation are shown in Figure 3.9 (cost) and Figure 3.10 (out-

put). The switching scheme of [77] using the criterion (3.9) gives preference to the

destabilizing controller K2 since the parameters of its corresponding plant model are

closer to those of the real plant G. In [77], those authors attempt to avoid this pitfall

by assuring sufficient density of the plant models, to increase the probability that the

real plant falls within the robustness bounds of at least one candidate plant model,

so that the corresponding robustly stabilizing controller of that model will also be

robustly stabilizing for the real plant. While this idea is intuitively appealing, we

should always insure that we do not deviate from a stabilizing and sufficiently well

performing controller (when there exists one) and latch onto an even destabilizing

one, as the example is this section demonstrates.

Fig. 3.8 True plant in feedback with controller K2

Now, let us consider the switching Algorithm 2.1 with the cost function from

Morse et al. [75], which satisfies the conditions of the hysteresis switching lemma

(repeated for expedited reading in (3.10)):

J̄ j(t) =
∫ t

0

e2
j(τ)

1 + ω̄T (τ)ω̄(τ)
dτ, j = 1,2,3 . (3.10)

Indeed, this type of a cost functional satisfies some of the properties required by the

Theorem 1, namely it reaches a limit (possibly infinite) as t → ∞; at least one J̄ j(t)
(in this case J̄1(t)) is bounded, and the indirect controller C1 assures stability for the

real plant. A hysteresis algorithm is employed with a hysteresis constant ε > 0 to
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Fig. 3.9 Cost function trajectory for controllers K1 and K2 (cost function (3.9))

Fig. 3.10 Reference and plant output using cost function (3.9)
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prevent chattering. This should assure that the switching stops at the model I1 for

which J̄1(t) is bounded, and so in turn assure stability. Let us look at the simula-

tion results. Figure 3.11 shows the output of the plant, together with the preferred,

reference model output. Apparently, the selector (cost) function of [75] still opted

for the destabilizing controller. The explanation is ascribed to the lack of the cost

detectability property of (3.10) - it employs a ratio of the error signal (expressed in

terms of the system output signal) and a signal composed of the the plant input and

output (in measured and filtered forms) - which are considered output signals from

the standpoint of the overall closed loop switched system. Therefore, this form of

the cost function does not detect instability. Costs of both controllers can be seen to

be growing (Figure (3.12)), but J2 is growing more slowly and is bounded above by

J1. Finally, consider the switching using the cost function:

Fig. 3.11 Reference and plant output using cost function (3.5)

V (K,z, t) = max
τ≤t

ẽ2
j(τ)+

∫ τ
0 ẽ2

j(σ)dσ
∫ τ

0 r̃2
j (σ)dσ

(3.11)

which conforms to the conditions of the Theorem 1. The simulation results are

shown in Figures 3.13 and 3.14. Although C2 is initially switched in the loop, the

switching algorithm recognizes its destabilizing property and replaces it with C1.
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Fig. 3.12 Cost function for controller C1 and C2 using cost function (3.5)

Fig. 3.13 Cost function for controller C1 (dotted line) and C2 (solid line), using cost function

(3.9)
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Fig. 3.14 Reference and plant output using cost function (3.9)

3.3 Performance Improvement

The theory of the safe switching adaptive control design excludes the possibility of

instability, i.e., growing of the signals without a bound in the closed loop system,

as long as a stabilizing controller exists in the candidate set. In this manner, it over-

comes the limitation of the model based stability results that have plagued many

of the existing adaptive control schemes. A notable remark has been raised in [26]

concerning the quality of the system’s response in between the switching instants,

i.e., closed loop system’s performance. In [22], bandpass filters were proposed to

filter the signals involved in the cost function, inspired by the results in [87], so as

to improve the ability of the cost function to more promptly recognize the instabil-

ity trend caused by the current controller in the loop. The proposed modification

in the cost function, or rather in the signals constituting the cost function, yields

better performance than the dwell time imposed in between switches in [26]. The

concern about the dwell time that the closed loop system is coerced into in between

switches is that, for highly nonlinear uncertain systems, it may lead to finite escape

time instability.

In a different vein, closed loop performance may be improved using the originally

proposed cost-detectable cost function (without signal filtering), if other techniques

are used to shape the response between the switches. In particular, neural networks

have long been known as powerful tools for approximating unknown nonlinear

functions. This fact extends their application to the control of unknown, nonlinear

dynamic systems. In [20], Cao and Stefanovic proposed a combination of the neural
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networks and safe switching control, and showed that it led to improved perfor-

mance. As an example, the candidate controller set is chosen to have a proportional

integral derivative (PID) structure, where the parameters of the PID controllers are

adaptively tuned via switching according to the hysteresis Algorithm 2.1 and a cost

detectable performance index. This ensures that the closed loop system is stable,

and that in addition, any destabilizing controller will not stay in the loop unneces-

sarily for long; as soon as the unstable modes get excited, the algorithm discards the

controller and replaces it with an as yet unfalsified one (according to the feasibility

assumption). However, there is still room for improvements in the dynamic perfor-

mance in between any two switching time instants. It has been proposed in [54],

that when a new PID controller is selected, the switching control algorithm resets

the states of the integrator term, and the approximate differentiator term to prevent

the discontinuity. To further improve the performance, the principle of radial ba-

sis function neural networks (RBFNN) can be used to update the parameters of the

selected controller.

3.3.1 Radial Basis Function Neural Networks in Safe Switching

Control

Consider the safe switching control algorithm with the PID candidate controller set.

The conventional PID controllers with fixed parameters may deteriorate the control

performance in accordance with the complexity of the plant. Hence, once the best

optimal controller is selected using Algorithm 2.1 and the cost function (3.3), a

three-layer RBFNN (Figure 3.15) is activated, to adaptively update the controller

parameters to achieve better performance.

In the RBFNN, X = [x1,x2, ...xn]
T

denotes the input vector. Assume that the radial

basis vector is H = [h1,h2, ...h j, ...hm]T , where h j is the Gaussian function:

h j = exp

(

−
∥

∥X −C j

∥

∥

2

2b2
j

)

( j = 1,2, ...,m) (3.12)

and C j =
[

c j1,c j2, ...c ji, ...,c jn

]T
is the center vector of the jth node.

Let B = [b1,b2, ...,bm]T , b j > 0 be the basis width of the jth node; let W =

[w1,w2, ...,w j, ...wm]T be the weight vector. As shown in Figure 3.15, the neural

network output is

ym =
m

∑
j=1

w jh j. (3.13)

The RBFNN identification performance index is chosen as

E =
1

2
(y(k)− ym(k))2 . (3.14)
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Fig. 3.15 RBF neural network Structure

Then, according to the gradient descent algorithm, the output weights, node centers,

and basis width parameters are calculated as follows:

∆w j =
∂E

∂w j

= (y(k)− ym(k))h j,

w j(k) = w j(k−1)+η∆w j +α(w j(k−1)−w j(k−2)),

∆b j =
∂E

∂b j

= (y(k)− ym(k))w jh j

∥

∥X −C j

∥

∥

2

b3
j

,

b j(k) = b j(k−1)+η∆b j +α(b j(k−1)−b j(k−2)),

∆c ji =
∂E

∂c j
= (y(k)− ym(k))w jh j

x− c ji

b2
j

,

c ji(k) = c ji(k−1)+η∆c ji +α(c ji(k−1)− c ji(k−2)) (3.15)

where η is the learning rate and α is the momentum factor.

The inputs of the RBFNN identification are chosen as

x1 = ∆u(k) = u(k)−u(k−1),

x2 = y(k),

x3 = y(k−1) . (3.16)
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The Jacobian algorithm, used in the sequel, is given by:

∂y(k)

∂∆u(k)
≈ ∂ym(k)

∂∆u(k)
=

k

∑
j=1

w jh j

c ji −∆u(k)

b2
j

. (3.17)

Here, we use this algorithm to update the PID controller parameters, selected via

switching using Algorithm 2.1. Define the remaining error of the unfalsified control

as

error(k) = r− y(k) . (3.18)

Hence, the inputs of the RBFNN based PID controller are

error p = error(k)− error(k−1),

error i = error(k),

error d = error(k)−2error(k−1)+ error(k−2) . (3.19)

The control algorithm is given as:

u(k) = u(k−1)+∆u(k),

∆u(k) = kp(error(k)− error(k−1))+ ki(error(k))+

+kd(error(k)−2error(k−1)+ error(k−2)) . (3.20)

Here, the neural network approximation index is

E(k) =
1

2
error(k)2 (3.21)

where kp,ki, and kd are adjusted by the gradient descent algorithm:

∆kp = −η ∂E

∂kp
= −η ∂E

∂y

∂y

∂∆u

∂∆u

∂kp
= ηerror(k)

∂y

∂∆u
error p,

∆ki = −η ∂E

∂ki

= −η ∂E

∂y

∂y

∂∆u

∂∆u

∂ki

= ηerror(k)
∂y

∂∆u
error i,

∆kd = −η ∂E

∂kd

= −η ∂E

∂y

∂y

∂∆u

∂∆u

∂kd

= ηerror(k)
∂y

∂∆u
error d (3.22)

where ∂y
∂∆u

is the plant Jacobian, which is calculated by the RBFNN.

The control structure is shown in Figure 3.16. According to [54], when a new

controller is selected, the control algorithm resets the states of the integrator term,

and the approximate differentiator term (to prevent the discontinuity). Thus, the en-

tire algorithm can be presented as follows. The data u and y are measured;
∼
ri and

∼
ei

are calculated for each candidate controller and the measured plant data; Ji is cal-

culated, and the controller arg min
1≤i≤N

Ji(t) is switched into the loop. At the switching

times, the controller states are reset, and the RBFNN is combined with the selected
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Fig. 3.16 Switching Control Using NN

controller to update the PID parameters. The combination of neural networks with

the switching adaptive control does not alter the stability of the switched system.

Once the RBFNN is combined with the selected controller, the switched controller

remains in the candidate controller set, in which all controllers are supervised by

the switching law. When the measured data start revealing instability, the currently

active controller is quickly switched out of the loop and replaced by another, as yet

unfalsified one. Hence, stability of the overall switched unfalsified control system

combined with the neural networks is preserved (under the feasibility assumption).

In the following, MATLAB� simulation results of [20] are presented, with zero

disturbance and noise, and zero initial conditions, though this can be relaxed.

To illustrate the algorithm described above and compare with the simulation

results of multiple model adaptive control in [10], the same simulation setting as

in [10] is reproduced. The transfer function of the actual plant (unknown from the

control perspective) is assumed to be:

Gp(s) =
a

s2 + bs+ c
. (3.23)

The parameters a,b, and c are assumed to lie in the compact set given as S =
{0.5 ≤ a ≤ 2,−0.6 ≤ b ≤ 3.4,−2 ≤ c ≤ 2}. The reference input is a square wave

signal with a unit amplitude and a period of 10 seconds, and the reference model,

whose output is to be tracked, is taken as Wm(s) = 1
s2+1.4s+1

. Simulations were

conducted on the three plants suggested in [10], all unstable oscillatory plants:
0.5

s2−0.35s+2
, 0.5

s2−0.5s+2
, and 0.5

s2+0.5s−2
.

Simulation 1 : Here it is demonstrated that the cost detectable cost function is “safer”

than the non cost detectable one. In this case, the controller parameter set is taken as

KP = {1,5,20,50,100}, KI = {1,5,20,30,50,100}, and KD = {0.2,0.5,1,5,15}.

The simulation results are shown in Figures 3.17, 3.19 and 3.20, where column

(a) represents the reference input r(t), the reference model output ym(t), the plant
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Fig. 3.17 Input/output (I/O) data for the unstable oscillatory plant Gp(s) = 0.5
s2−0.35s+2

with

two different cost functions
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Fig. 3.18 Controller cost with two different cost functions, with the plant Gp(s) = 0.5
s2−0.35s+2

response yp(t) and plant input u(t) with the non cost detectable cost function (Ji(t)=

−ρ +
∫ t

0 Γspec(
∼
ri(t),y(t),u(t))dt), where ρ > 0 is used to judge whether a certain

controller is falsified or not, and Γspec is chosen as

Γspec(
∼
ri(t),y(t),u(t)) = (w1 ∗ (

∼
ri(t)− y(t))2 +(w2 ∗ u(t))2 −σ2 − ∼

ri(t)
2 (3.24)
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Fig. 3.19 I/O data for the unstable oscillatory plant Gp(s) = 0.5
s2−0.5s+2

with two different cost

functions

where w1 and w2 are the weighting filters chosen by the designer, and σ is a con-

stant representing the root-mean-square (r.m.s.) effects of noise on the cost. The

column (b) shows the corresponding results with the cost detectable cost function(

Ji(t)=−ρ+ max
τ∈[0,t]

‖u‖2
τ+
∥

∥

∥

∼
ei

∥

∥

∥

2

τ
∥

∥

∥

∼
ri

∥

∥

∥

2

τ

). In Figures 3.17 (a), 3.20 (a), the outputs yp(t) are both

oscillatory divergent, and all the candidate controllers are falsified in approximately

11 seconds. In Figure 3.19 (a), yp(t) is bounded, but the tracking error is rather large.

In Figures 3.17, 3.19 and 3.20 (b), the tracking error is considerably smaller. To clar-

ify the difference between the above two cost functions, we decreased the dimension

of controller set to KP = {1,50,100}, KI = {1,50}, and KD = {0.2,5,15}. Figure

3.18 (a) shows the cost with the non cost detectable cost function with the plant

Gp(s) = 0.5
s2−0.35s+2

, while Figure 3.18 (b) represents the corresponding cost with

the cost detectable cost function. In Figure 3.18, lines Cc and Co respectively stand

for the cost of the selected (active) controller and the costs of the non-selected ones.

It is seen that the former cost function lacks the capability of selecting the “best”

controller, or they even discard the stabilizing controller. As expected, the stability

and performance with the latter cost function are preserved. Moreover, compared

with the results in [10], we can conclude that the safe switching control, under the
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Fig. 3.20 I/O data for the unstable nonoscillatory plant Gp(s) = 0.5
s2+0.5s−2

with two different

cost functions

feasibility assumption and with a properly designed cost function, can achieve sim-

ilar, or even better response results.

Simulation 2 : The effectiveness of neural networks combined with the unfalsified

control is demonstrated here. In this case, the controller set is set to be smaller

to make results more obvious, e.g. KP = {5,50,100}, KI = {20,30}, and KD =
{0.2,0.5,1}. The cost function is the chosen to be the cost detectable one. Other

simulation parameters are the same as in the previous setting. Figures 3.21, 3.23,

and 3.24 (b) show the simulation results with neural networks engaged to update

the PID parameters of the currently active controller. Figures 3.21, 3.23, and 3.24

(a) show the simulations without neural networks. By comparing Figures 3.21, 3.23,

and 3.24 (b) with Figures 3.21, 3.23, and 3.24 (a), we can find that the combination

of neural networks with the safe switching control reduces the tracking error, and

even stabilizes a divergent system, in the scenarios when the candidate controller set

is small or does not match well with the actual plant, and all controllers in the con-

troller set might be falsified. Figure 3.22 shows the PID gains, which demonstrate

the effect of neural networks.

Although the tracking error is increasing in the scenarios without neural networks

(Figures 3.21, 3.23, and 3.24 (a)), as soon as stability is falsified by the switching
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Fig. 3.21 I/O data for the unstable oscillatory plant Gp(s) = 0.5
s2−0.35s+2

(a) without neural

networks, (b) with neural networks

algorithm (guaranteed by the cost detectable cost function), the currently active

destabilizing controller will be switched out and replaced with an as yet unfalsi-

fied one. However, every new switching would require controller state resetting to

prevent adverse transients in the output, which is circumvented by the proper use of

neural networks, as demonstrated.

3.3.2 Bumpless Transfer with Slow-Fast Controller

Decomposition

An alternative way of reducing the discontinuities and abrupt transients during the

switching times has been considered in [23]. It is an extension of the bumpless

transfer methods that have been investigated since the 1980s (see, for example, [39],

[102], [116]). In adaptive control however, the plant is not precisely known at the

outset, and the goal of adaptive control is to change the controllers to improve per-

formance as the plant data begin to reveal some information about the plant. Thus,

in adaptive switching control an exact plant is generally unavailable at the time of

switching. This implies that bumpless transfer methods that may be suitable for non-

adaptive applications such like anti-windup or transfer from manual to automatic
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Fig. 3.22 PID gains for the neural network augmented system for the unstable oscillatory

plant Gp(s) = 0.5
s2−0.35s+2

control where the true plant is well-known, may not be ideal for adaptive switching

control applications. In particular, in adaptive switching applications where the true

plant model may only be poorly known at the controller switching times, it may be

preferable to employ a bumpless transfer technique for adaptive control that does

not depend on precise knowledge of the true plant model. In contrast to the model-

based bumpless transfer methods [39], [116], the continuous switching methods

of [5], conditioning methods of [40] and linear quadratic optimal bumpless transfer

of [102] do not require a plant model.

The exposition in [23] is based on a slow-fast decomposition of the controller.

Similarly to [5], it does not require precise knowledge of the plant at switching

times. This kind of decomposition approach is inspired by the adaptive PID
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Fig. 3.23 I/O data for the unstable oscillatory plant Gp(s) = 0.5
s2−0.5s+2

(a) without neural

networks, (b) with neural networks

controller proposed in [54]. PID controller is a special case of a controller with

fast modes (the differentiator) and slow modes (the integrator). Generalizing the

PID controller case, the bumpless transfer suggested in this chapter decomposes the

original controllers into the fast mode controllers and the slow mode controllers.

By appropriately re-initializing the states of the slow and fast modes at switching

times, the method in [23] can ensure not just the controller output continuity, but

also avoidance of the fast transient bumps after switching. We present these results

in the following.

Consider a switching control system shown in Figure 3.25. The system includes

a plant and a set of 2-DOF controllers

K = {K1, ...,Ki, ...,Kn} (i = 1,2, ...,n) . (3.25)

Assume that the plant output is continuous when input is continuous; a linear time

invariant plant with a proper transfer function is a good example. The input of the
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Fig. 3.24 I/O data for the unstable nonoscillatory plant Gp(s) = 0.5
s2+0.5s−2

(a) without neural

networks, (b) with neural networks

plant is u(t) and the output is y(t). The plant input is directly connected to the

controller output. Controller inputs are r(t) and y(t) where r(t) is a reference signal.

When a controller Ki is in the feedback loop, the controller is said to be on-line,

and the other controllers are said to be off-line. The ith controller Ki is supposed to

have state-space realization

ẋi = Aixi + Biz,

yKi
= Cixi + Diz,

where z =
[

rT yT
]T

is the input and yKi
is the output of Ki. Equivalently, one can

write

Ki(s) �

[

Ai Bi

Ci Di

]

.
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Fig. 3.25 Switching control system with two-degree-of-freedom controllers

When the on-line controller is switched from Ki to K j at time ts, the control input

can be written as

u =

{

yKi
, f or t < ts

yK j
, f or t ≥ ts

}

(3.26)

where the switching time (or switching instant) is denoted by ts.

Since the controller output yKi
is replaced by yK j

at the switching instant ts, the

control signal can have bumps in the neighborhood of t = ts if yKi
and yK j

have

different values. In the following, the times immediately before and after ts are de-

noted t−s and t+s , respectively. The objective of the bumpless transfer is to ensure

continuity at the switching instant, and immediately following it.

Slow-fast decomposition

Consider the following decomposition of the controllers into slow and fast parts:

K(s) = Kslow(s)+ K f ast(s) (3.27)

with respective minimal realizations

Kslow(s) �

[

As Bs

Cs Ds

]

and

K f ast(s) �

[

A f B f

C f D f

]

.
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The poles of the slow portion Kslow(s) are of smaller magnitude than the poles of

K f ast(s), i.e.,

|λ i(As)| ≤ |λ j(A f )| f or all i, j

where λ(·) denotes the ith eigenvalue.

Note that the Kslow(s) and K f ast(s) portions of the slow-fast decomposition may

be computed by various means, e.g., the MATLAB� slowfast algorithm, which

is based on the stable-antistable decomposition algorithm described in [89].

The slow-fast decomposition of the ith controller Ki in the set K is denoted with

the subscript i:

Kislow(s) �

[

Ais Bis

Cis Dis

]

(3.28)

and

Ki f ast(s) �

[

Ai f Bi f

Ci f Di f

]

. (3.29)

Now, the bumpless transfer problem is defined in [23] as follows:

Definition 3.1. A switching controller with slow-fast decomposition (3.27) is said to

perform a bumpless transfer if, whenever a controller is switched, the new controller

state is reset so as to satisfy bith of the following two conditions:

1. The control input signal u(t) is continuous at ts whenever rt ∈C0, and

2. The state of the fast part of the controller (K f ast(s) is reset to zero at ts.

The condition (1) in Definition 3.1 can be found in other bumpless transfer liter-

ature, as well. The condition 2 is concerned with the control signal after switching.

This additional requirement for the bumpless transfer is needed, as argued in [23], to

insure that there are no rapid transients immediately following controller switching.

The proposed bumpless transfer method with slow-fast decomposition is based

on the following assumption for each candidate controller:

Assumption 3.1. For each candidate controller Ki, the slow part Kislow in (3.28) has

at least m = dim(u) states.

The idea can be explained as follows. The Assumption 3.1 is sufficient to allow the

state of the slow controller Kislow to be reset at switching times to ensure both conti-

nuity and smoothness of the control signal u(t). In general, even if all the controllers

have the same order and share a common state vector, when the controller switch-

ing occurs, any or all of the slow and fast controller state-space matrices will be

switched, which can lead to bumpy transients or discontinuity in the control signal

u(t) at switching times. However, if only Ais or Bis are switched and there is a com-

mon state vector before and after the switch, then the control signal will be continu-

ous and no bumpy fast modes of the controller will be excited. Fast transient bumps
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or discontinuities, when they occur, may arise from switching the Dis matrix of the

slow controller or from switching any of the state-space matrices (Ai f ,Bi f ,Ci f ,Di f )
of the fast controller. In the case of switching the matrices Ai f or Bi f , switches do

not actually result in discontinuous jumps in u(t), but nevertheless can result in the

bumpy fast transients in the control signal which, if very fast, may appear to be

nearly discontinuous.

The goal in bumpless transfer is to avoid both discontinuity and fast transients

induced by changing fast modes. The method should work even when the order

of the controller changes at the switching times, and to allow for the possibility that

the true plant may be imprecisely known, it is preferred that the switching algorithm

does not depend on precise knowledge of the true plant. In this method, it can be

done by initializing the state of the slow part of the new controller K jslow(s) after

each switch to a value computed to ensure continuity, and setting the state of the fast

part K j f ast(s) to zero.

Theorem 3.1. Suppose that each of the candidate controllers have slow-fast decom-

position (3.28) and (3.29) satisfying Assumption 3.1, and suppose that at time ts the

online controller is switched from controller Ki to controller K j . At ts, let the states

of the slow and fast controllers be reset according to the following algorithm:

Algorithm 3.1. Slow-fast bumpless transfer algorithm

x f ast(t
+
s ) = 0, (3.30)

xslow(t+s ) = C
†
js{u(t−s )(D js + D j f )z(t

−
s )}+ ξ , (3.31)

where z =
[

rT ,yT
]T

, C
†
js is the pseudoinverse matrix of C js, and ξ is any element of

the null space of C js:

C jsξ = 0 . (3.32)

Then, bumpless transfer is achieved at the switching time ts.

Proof. The control signal immediately after switching (time t+s ) can be written,

based on state space representation model (3.28) and (3.29) of the new controller

K j(s), as

u(t+s ) = C jsxslow(t+s )+C j f x f ast(t
+
s )+ (D js + D j f )z(t

+
s ) . (3.33)

The equations 3.30 and 3.31 imply:

u(t+s ) = C js

[

C
†
js{u(t−s )− (D js + D j f )z(t

−
s )}+ ξ

]

+(D js + D j f )z(t
+
s )} (3.34)

By Assumption 3.1, C jsC
†
js = Im×m where m is larger than or equal to the number of

states of K j. This results in:

u(t+s ) = u(t−s )− (D js + D j f )z(t
−
s )+ (D js + D j f )z(t

+
s ) . (3.35)
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Since

z(t−s ) =
[

rT (t−s ) yT (t−s )
]T

=
[

rT (t+s ) yT (t+s )
]T

= z(t+s ) (3.36)

we have

u(t−s ) = u(t+s ). (3.37)

The result follows immediately from the bumpless transfer definition.

Note that since C js is a full rank matrix which consists of m linearly independent

vectors, C jsC
T
js is invertible and the following holds:

C
†
js = CT

js(C jsC
T
js)

−1 .

The slow-mode controllers that satisfy Theorem 3.1 are constructed as follows. Us-

ing observable canonical form of Kslow is a good choice since C js in (3.33) is of the

form

C js = [I 0 . . . 0] (3.38)

in which case C
†
js = CT

js.

Since (3.38) holds for all j, one uses transpose matrices rather than pseudoinverse

matrices of C js,∀ j. This reduces the complexity of the state reset procedure.

Note that the bumpless transfer in [5] is a special case of the bumpless transfer

method in [23]. The method in [5] requires that all controllers have the same number

of states and all controllers have a state-space realization sharing a common C-

matrix and D-matrix. The slowfast method in [23] does not impose these controller

restrictions, and can be used whenever the minimal realization of the slow part Kislow

has order at least equal to the dim(u). However, if the controllers have a slow part

only (i.e., Ki f ast = 0, ∀i) and each controller has C-matrices of the form of (3.38)

and a common D-matrix (e.g. Dis = 0, ∀i), then it is expected that both methods

will have the same result. The advantages of the slow-fast bumpless transfer method

of [23] arise when the controllers have both slow and fast modes, in which case

the latter method is able to exploit the additional flexibility for state re-initialization

provided by the additional fast modes to eliminate the bumpy abrupt transients that

might otherwise result.

Controllers with single type of modes

The cases when some candidate controllers have slow modes only or fast modes

only can be addressed as special cases of the slow-fast decomposition bumpless

transfer. If candidate controllers have slow modes only, then using the observable

canonical form and applying (3.31) in Theorem 3.1 solves the problem. On the other

hand, when the candidate controllers have fast modes only K = K f ast , it is neces-

sary to modify the controllers appropriately to apply Theorem 3.1 because they do

not contain any slow parts to be re-initialized. One possible solution is augment-

ing the controller states with uncontrollable slow modes that were not originally
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contained in the controller. Then, by slow-fast decomposition, an additive slow

mode controller Kslow is included in the controller so that K̃ = Kslow + K f ast where

Kslow(s) �

[

As 0

Cs 0

]

and As ∈ Rm×n has only slow modes. Note that the Kslow has zero matrices for its

Bs and Ds, so its output is determined solely by the initial state. The matrix Cs is

written in the form of (3.38) for simplicity. Now, (3.30) and (3.31) in Theorem 3.1

can be applied, similarly as was applied when there was already a Kslow part. Since

K(s) = K̃(s), the measurements for performance are not affected by adding the slow

mode controller (3.3.2), except for transients after the switching times.

Simulation results

A reduction of abrupt transients using the above slow-fast bumpless transfer method

is demonstrated through the following example in [23]. A comparison is shown be-

low, among non-bumpless, continuity-assuring bumpless, and slow-fast decomposi-

tion bumpless transfers. By way of this example, the importance of the additional

condition 2 in Definition 3.1 is shown, compared with a previously existing method

in [5]. In the following realization, a PID controller has an infinitely slow pole and

a very fast zero when ε �= 0:

K(s) = Kslow(s)+ K f ast(s) = KP + KI/s+
KDs

εs+ 1
.

Since a fast zero in the differentiator part can make a large and fast transient even

after the switch has occurred, considering only continuity of controller output as

in [5] might not be sufficient to perform bumpless transfer. The method in [23] can,

however, suppress adverse transients right after the switching, provided that fast and

slow mode controllers are properly initialized. Consider the following plant:

G(s) =
s2 + s+ 10

s3 + s2 + 98s−100
.

The simulation results [23] are shown next for the case of two controllers having the

structure as in 3.26. The controller gains are chosen as follows:

Controller 1 : KP1 = 80;KI1 = 50;KD1 = 0.5

Controller 2 : KP2 = 5;KI2 = 2;KD2 = 1.25 .

A small number ε = 0.01 and the reference input r = 1 are used in the simula-

tion. The constant ε prevents the differentiator from making an infinite peak when

a discontinuity comes into the controller. A PID controller is naturally decomposed

into a slow and a fast part. Since a proportional gain is a memoryless component, it

can be added to either part. Controller input is z =
[

rT yT
]T

for 2-DOF controllers.

Subsequently, the controllers were decomposed into
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Kslow(s) �

[

0 [KI −KI]

1 [KP −KP]

]

.

And, in the same way, K f ast can be written as

K f ast(s) �

[

−1/ε [1/ε −1/ε]

−KD/ε [KD/ε −KD/ε]

]

.

Controller 1 and Controller 2 in this particular case are, respectively,

K1(s) = K1slow + K1 f ast = 80 +
50

s
+

0.5s

0.01s+ 1
,

K2(s) = K2slow + K2 f ast = 5 +
2

s
+

1.25s

0.01s+ 1
.

Controller K1(s) was designed to stabilize the plant, while K2(s) cannot stabilize

it. In this experiment, K2(s) is the initial active controller. Thus, the plant was not

stabilized at the early stage. After 2 seconds, the on-line controller was switched to

K1(s).
The bumpless transfer method in [5] does not include any initializing or state

reset procedure at the switching instants. Instead, it works allowing only those con-

trollers for which there exist state-space realizations that share common C and D

matrices; i.e.,

Ci = C j � C and Di = D j � D∀i �= j .

Note that this is not possible in general, unless all the controllers have the same or-

der and same D-matrices. Even though the slow-fast method of [23] does not have

this restriction, the following simulation example includes this requirement to be

able to directly compare the two different methods under the same conditions. In

total, three simulation experiments were performed. First, switching without any

bumpless transfer method was performed. The second simulation used the method

of [5] and the third one used the slow-fast method of [23] based on Theorem 3.1.

The upper part of Figure 3.27 shows the controller output. The solid line [23] of

output u(t) shows a smooth transient around the switching instant, while the dashed

line [5] shows a fast transient after switching. The dotted line indicates the switching

transient without bumpless transfer, which has extremely high peak value generated

by the derivative controller. If ε → 0, the peak value goes to infinity. Figure 3.28

shows u(t) with the time axis magnified near the switching time. While the output

without bumpless transfer has a discontinuity at the switching time t = 2 s, the out-

puts with the bumpless transfer (dashed and solid lines) show continuous transients.

Note that the dashed line [5] satisfies Condition 1 in Definition 3.1, which coincides

with the definition of bumpless transfer used in [5]. However, comparing with the

solid line, the dashed line exhibits a fast bumpy transient after 2 seconds. It is ex-

cited by changing K f ast , which is a clearly different result from [23]. The resulting

plant output y(t) shown in the lower part of Figure 3.27 likewise exhibits an abrupt
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transient with the method of [5]. Both the control signal and the plant output are

significantly smoother with the slow-fast bumpless transfer method of [23].

Fig. 3.26 Slow-fast controller decomposition

3.3.3 Performance Improvement Using Bandpass Filters

Some limitations of the traditional cost functions were pointed out in [26]: the stan-

dard L2e-gain related cost function may allow a destabilizing controller to remain in

the loop for an unnecessarily long time, during which the closed loop performance

may deteriorate. To deal with this situation, an improvement by way of filtering the

signals in the cost function with a series of bandpass filters is proposed in [22]. The

performance improvement, inspired by Saeki et al. [87], is demonstrated by a faster

convergence to a final controller.

In [26], Dehghani et al. discovered that an unfalsified controller designed using

a traditional L2e-gain related cost function could, for a low or zero dwell time, re-

sult in a destabilizing controller being placed into the loop for a long time relative

to the longest time constant of the system. This produced adverse transients until

another controller was settled on. The authors of [26] suggested that this indicates

a limitation of the unfalsified adaptive control framework. Instead of focusing on

the introduction of a dwell time favored by [26], the results of [22] showed that the

original L2e-gain related cost function may be slow to detect large and fast tran-

sients in the observed data in certain cases, and thus can take a long time to respond

to evidence of unstable behavior in the data.

In [22], the following filtered cost function V is proposed, where Fj denotes a

filter and F the set of available filters:

W (Ci,(u,u),τ) = max
j

||Fju||2τ + ||Fj(r̃i − y)||2τ
||Fj r̃i||2τ +α

,

V (Ci,(u,u),τ) = max
τ∈[0,t]

W (Ci,(u,u),τ) . (3.39)

Each filter’s pass band is designed to cover a distinct frequency range with no fre-

quency overlaps among the filters. In addition, the sum of all filters should cover the

entire frequency range ω ∈ [0,∞), and the sum of the squares of the filters should
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Fig. 3.27 Controller output u(t) (upper figure); plant output y(t) (lower figure). Controller is

switched at t = 2 s.
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Fig. 3.28 Magnified u(t) around the switching instant (t = 2 s)

 

Fig. 3.29 Ideal filter design

add to 1. The frequency 0 should be in the pass band of the first filter, and the fre-

quency ω = ∞ should be in the pass band of the last filter. Also, each filter should

be equally spaced logarithmically. This design is displayed in Figure 3.29.

Lemma 3.1. [22] Let G : L2 → L2 be a linear time-invariant operator. Let v be a

signal in L2e. Let F =
{

Fj : j = 1, ...N
}

be a set of filters. Suppose that the following

conditions hold:

• The sum of the squares of all filters is equal to identity: ∑N
j=1 F∗

j Fj = I.

• No two filters include the same frequency: F∗
j ( jω)Fk( jω) = 0, ∀ j �= k, ∀ω .
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Then,

sup||v||�=0
||Gv||2
||v||2 = max j sup||Fjv||�=0

||FjGv||2
||Fjv||2 .

The proof can be furnished using Parseval’s theorem.

Lemma 3.2. [22] Suppose that Fj, G, and v satisfy the conditions of Lemma 3.1

and that ||Fjv||2 �= 0 ∀ j = 1, ...,N. Then,

max j sup||Fjx||�=0
||FjGx||2
||Fjx||2 ≥ max j

||FjGv||2
||Fjv||2 .

Lemma 3.3. [22] Suppose that Fj is defined as in Lemma 3.1 and that u ∈ L2e.

Suppose that the same conditions in that lemma hold. Then,

N

∑
j=1

||Fju||2 = ||u||2. (3.40)

Proof. One can easily show that

N

∑
j=1

||Fju||2 =
N

∑
j=1

∫ ∞

0
u∗F∗

j Fju

=
∫ ∞

0

N

∑
j=1

u∗F∗
j Fju

=

∫ ∞

0
u∗(

N

∑
j=1

F∗
j Fj)u

=

∫ ∞

0
u∗(I)u

= ||u||2 . (3.41)

Theorem 3.2. [22] Suppose that Fj is defined as in Lemma 3.1 and that x and v are

signals in L2e. Suppose that the same conditions in that lemma hold. Then,

max j,||Fjv||2
||Fjx||2
||Fjv||2 ≥ ||x||2

||v||2 �= 0.

Proof. Assume that the maximum of the filtered gain occurs with filter F1:

||F1x||2
||F1v||2 ≥ ||Fjx||2

||Fjv||2
,∀ j (3.42)

and hence

||F1x||2||F1v||2 ≥ ||Fjx||2||Fjv||2,∀ j . (3.43)
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Taking the sum over all j, we have

N

∑
j=1

||F1x||2||Fjv||2 ≥
N

∑
j=1

||Fjx||2||F1v||2, (3.44)

whence

||F1x||2
N

∑
j=1

||Fjv||2 ≥ ||F1v||2
N

∑
j=1

||Fjx||2 . (3.45)

Applying Lemma 3.3, we have

||F1x||2||v||2 ≥ ||F1v||2||x||2 (3.46)

or equivalently,

||F1x||2
||F1v||2 ≥ ||x||2

||v||2 . (3.47)

Corollary 3.1. Suppose that Fj, G, and v are defined as in Lemma 3.1. Suppose that

the same conditions in that lemma hold. Then,

max j,||Fjv||�=0
||FjGv||2
||Fjv||2 ≥ ||Gv||2

||v||2 , ||v|| �= 0.

Proof. This is a special case of Theorem 3.2 with x = Gv.

The above lemmas and a theorem provide the foundation for the main result:

Theorem 3.3. [22] Suppose that Fj, G, and v are defined as in Lemma 3.1. Suppose

that the same conditions in that lemma hold. Then,

sup||v||�=0
||Gv||2
||v||2 ≥ max j sup||Fjv||�=0

||FjGv||2
||Fjv||2

≥ ||Gv||2
||v||2 , ||v|| �= 0.

Proof. The proof follows from Lemma 3.1, Lemma 3.2, and Corollary 3.1.

The idea of Theorem 3.3 is to improve controller falsification ability of the switching

algorithm by using max j sup||Fjv||�=0
||FjGv||2
||Fjv||2 instead of the less tight bound

||Gv||2
||v||2 .

Note that, while Theorem 3.3 may not hold for a finite time and truncated signals,

it is true as the system time approaches∞. For the finite time interval, [22] provides

the following results.

Theorem 3.4. [22] Let G : L2 → L2 be a causal, linear, time-invariant operator,

and let v be a signal in L2e. Then,

||G||∞ = sup||v||�=0
||Gv||2
||v||2 ≥ ||Gv||2τ

||v||2τ
∀v, ∀τ , ||vτ ||2 �= 0.
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Proof. Since G : L2 → L2 is a causal, linear, time-invariant operator, we have,

sup
||v||�=0

||Gv||2
||v||2 ≥ sup

||vτ ||�=0

||Gvτ ||2
||vτ ||2

≥ sup
||vτ ||�=0

||Gvτ ||2τ
||vτ ||2τ

= sup
||vτ ||�=0

||Gv||2τ
||v||2τ

≥ ||Gv||2τ
||v||2τ

,∀||v||τ �= 0 . (3.48)

A comparison with the example by Dehghani et al. [26] is given next. The plant

considered is an unstable LTI plant P(s) = 1
s−1

, while the candidate controller set is

C = {C1 = 2,C2 = 0.5}. The cost function to be used is the standard, unfiltered cost

function, given by (3.3) (repeated below for convenience):

V (K,z, t) = max
τ∈[0,t]

||u||2τ + ||ẽK||2τ
||ṽK ||2τ +α

.

In this setup, C1 is a stabilizing controller, while C2 is destabilizing. The Assumption

2.1 on feasibility of the control problem is clearly satisfied. Let C1 be the initial

controller, and let the reference signal be r(t) = sin(t) for t ≥ 0, and 0 for t < 0.

The initial condition is x(0) = 0. The Hysteresis Switching Algorithm 2.1 is used,

with the hysteresis constant ε = 0.01 and the dwell time equal to 0. The simulation

was performed for T = 50 s. This setup differs from Dehghani et al.’s in that they

examine the system in several simulations using different dwell times and initial

conditions, which may be non-zero. Otherwise, it is the same. The results are shown

in Figure 3.30. The top graph shows the cost V , while the bottom graph shows the

current controller at each time.

The system is shown to take a long time (14 seconds) - to switch to the final

controller, with the total of four switching times. A more ideal scenario would occur

if the cost function were more sensitive in recognizing the instability of C2. This can

be done, for example, using bandpass filters as explained below.

A series of filters of the form:

Fi =
1

Mp,i

s

ωr,i

ω2
n,i

s2 + 2ζωn,is+ω2
n,i

, i = 2, ...,N −1 (3.49)

is used, where ωr,i is the frequency of the resonant peak of the ith filter, Mp,i is the

maximum value of the peak, ζ = 0.2, andωn,i =
ωr,i√

(1−2ζ2)
. Theωr,i are chosen to be

20 logarithmically equally spaced values between 1 Hz and 100 Hz. The simulation

was performed next, using the same setup as the one in Figure 3.30, and the results

are shown in Figure 3.31.
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Fig. 3.30 Simulation results for the unfiltered cost function

It can be seen that the system with the first order filters took less time to settle

(4 seconds) than the system without filters. However, some chattering takes place.

Increasing the order of the filters, as in:

Fi =
1

Mp,i

2s2

(s+ωr,i)2

ω2
n,i

s2 + 2ζωn,is+ω2
n,i

, i = 2, ...,N −1 (3.50)

with F1 = 1
(s+1)2 and FN = s2

(s+100)2 , removes the chattering effect (see Figure 3.32),

while slightly increasing the settling time. The hypothesis made in [22] is that the

use of higher order filters resulted in increasing the cost function faster and higher,

as the signals resonated with a particular filter’s pass band frequency. Thus, the

destabilizing or non-optimal controllers are falsified sooner.

It should be noted that using filtered cost functions can be beneficial over a lim-

ited frequency range (reducing settling time is the most conspicuous benefit). A

high frequency filter would result a prohibitively small sampling time, while using

a low frequency filter would result in a longer simulation time. Another property of

interest, such as reducing the total number of switches, could perhaps be addressed

through the use of different type of filters, such as Chebyshev.
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Fig. 3.31 Simulation results with first order filters

Fig. 3.32 Simulation Results With Second Order Filters
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3.4 Applications of Unfalsified Control

Various applications of the unfalsified concept have arisen in the last decade, both by

the authors of this monograph and their collaborators, and independently by other

researchers. To give insight into these various observed aspects of the theory, we

provide some of the representative results.

3.4.1 Automatic PID Tuning

In [54], a method based on the early version of the unfalsified control concept was

designed to adaptively tune PID parameters. With the improper derivative term ap-

proximated as in

u = (kP +
kI

s
)(r− y)− skD

εs+ 1
(3.51)

and with the control gains kP > 0, kI ,kD ≥ 0, the unfalsification PID controller

scheme can be represented as shown in Figure 3.33:

Fig. 3.33 PID controller configuration with approximated derivative term

Standard PID controllers have causally left invertible (CLI) property, hence there

is a unique fictitious reference signal r̃i(t) associated with each candidate con-

trollers, computed in real time by filtering the measurement data (u,y) via the

expression:
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r̃i = y +
s

skPi
+ kIi

(

u +
skDi
εs+1

y

)

. (3.52)

According to the definition of the fictitious reference signal, only measured output

data are used for its computation (Figure 3.34):

Fig. 3.34 Generating the ith fictitious reference signal r̃i(t)

The candidate controller set K containing the parameters kP,kI , and kD is chosen

as a finite set of parameter triples, and the performance specification (cost function)

is an integral performance inequality of the form:

J̃i(t) = −ρ+

∫ t

0
Γspec(

∼
ri(t),y(t),u(t))dt, ∀t ∈

[

0,τ
]

(3.53)

where u(t),y(t), and t ∈
[

0,τ
]

are the measured past plant data. A discretized equiv-

alent of the cost function is:

J̃i(k∆ t) = J̃i((k−1)∆ t)+

∫ k∆ t

(k−1)∆ t
Γspec(

∼
ri(t),y(t),u(t))dt

≈ J̃i((k−1)∆ t)+
1

2
∆ t{Γspec(

∼
ri(k∆ t),y(k∆ t),u(k∆ t))+

+Γspec(
∼
ri((k−1)∆ t),y((k−1)∆ t),u((k−1)∆ t))} (3.54)

when ρ = 0.

The simulation performed in [54] makes use of the following performance spec-

ification:

Γspec(
∼
ri(t),y(t),u(t)) = ‖ω1 ∗ (r̃(t)− y(t))‖2 +‖ω2 ∗u(t)‖2−σ2 −‖r̃(t)‖2 (3.55)

where σ is a constant representing the root-mean-square effects of noise on the cost,

and ω1, and ω2 are the weighting filters.

Notice that, in this early study on unfalsified control, the crucial cost detectability

property was not yet recognized. It is important to note, however, that the example

in this study demonstrated an efficient manner in which to prune “bad” controllers

and reach the “good” one, if such controller is at the designer’s disposal.
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The controller unfalsification procedure determines, at each sample instant τ =
k∆ t, which previously unfalsified controllers are now falsified based on the consis-

tency test:

J̃i(k∆ t) ≤ 0

If at a particular time instant a switching to a new controller occurs, then the al-

gorithm in [54] resets the states of the controller, thus preventing any discontinuity

in the resulting output signals. In this way, adverse overshoot in the signals u,y is

avoided.

The (unknown) plant considered in this simulation is P(s) = 2s2+2s+10
(s−1)(s2+2s+100)

. The

weighting filters are chosen as W1(s) = s+10
2(s+0.1)

and W2(s) = 0.01
1.2(s+1)3 . As a reference

input, a step is chosen r(t) = 1,∀t ≥ 0. Without loss of generality, all initial condi-

tions were set to zero. The sampling time is ∆ t = 0.05 s; the small positive constant

ε is set to 0.01; no noise is considered (σ = 0), and the candidate set of the con-

troller parameters is the union of the sets KD = {0.6,0.5}, KP = {5,10,25,80,110}
and KI = {2,50,100}, making the overall number of distinct PID controllers equal

to 30.

The simulation of the above described unfalsified switching adaptive control al-

gorithm yields the results shown in Figures 3.35, 3.36 and 3.37 below.

Fig. 3.35 Plots of signals y(t) and u(t) when the states of the controller are not reset at the

switching time. Poor transients with spikes can occur if controller states are not properly reset

at switching time.
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Fig. 3.36 Simulation results showing good transient response with correctly reset controller

states

Fig. 3.37 Simulation results showing the changes in controller gains
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3.4.2 Unfalsified Adaptive Spacecraft Attitude Control

The problem of antenna mapping control using unfalsified control theory was con-

sidered in [100]. The problem is particularly amenable to the application of the

data-driven unfalsified theory due to a plethora of uncertainties in the spacecraft dy-

namics. Instead of making attempts to provide accurate plant models that will drive

the selection of the controller, it is precisely this uncertainty in the plant, which is

used to falsify the currently active controller and switch to an alternative one from

the set of available controllers.

The plant is described in the following way. High-powered communication satel-

lites, such as the Boeing Satellite Systems 702 spacecraft illustrated in Figure 3.38,

are characterized by flexible appendages whose modal frequencies are uncertain

and whose modal masses are often significant. The presence of this large uncer-

tainty in the spacecraft dynamics motivates the control system design presented in

this section. The flexible appendage modes are characterized by 180◦ phase shifts

and typically a significant gain, whereas the modal frequency uncertainty may be

25% or greater. Familiar techniques using simple roll-off gain stabilization filters or

notch filter phase stabilization would normally provide robust stabilization where

the modal frequencies either decades higher than the desired attitude control band-

widths or simply less uncertain, for notch filter stabilization. However, these prob-

lems cannot be neglected in the spacecraft operation, where the the attitude control

laws typically require a relatively fast closed loop response. The peculiarity of this

problem stems from the fact that 0.05 Hz, which in many applications would be con-

sidered extremely low, may be considered “high” bandwidth in this context where

the first mode frequency may be 0.1 Hz or lower and other physical limitations

such as actuator capabilities may limit bandwidth in their linear range. In addition,

a common source of excitation of the flexible modes in one of those high bandwidth

modes stems from the “on-off” characteristic of the chemical propulsion Reaction

Control System (RCS) thrusters used as primary actuators.

One such high bandwidth mode of operation for geosynchronous communication

satellites is antenna mapping. This procedure occurs during spacecraft initialization

after transfer orbit operations have successfully deposited the spacecraft into its fi-

nal orbital slot. The procedure generally consists of a series of slews whose purpose

is to scan the payload antenna pattern across receivers pre-positioned on the ground

to measure received power. Each slew provides a cross-section of the antenna gain

pattern (the cross-section often referred to as a “cut”). Stable, high bandwidth atti-

tude control to accomplish the slews, coupled with precise knowledge of spacecraft

attitude obtained from Inertial Reference Unit (IRU) measurements (appropriately

calibrated before the slews commence) provides all the necessary information to in-

fer the shape of the antenna pattern along with its orientation in a spacecraft-specific

coordinate frame (also referred to as the body frame). The appropriate attitude com-

mand biases can subsequently be applied to ensure the proper antenna pattern cov-

erage on the ground.

In the simplified simulation model for the antenna mapping control problem,

there are two channels considered, the azimuth and elevation channels. The flexible
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Fig. 3.38 Boeing 702 6-panel spacecraft

mode is assumed to appear only in the elevation channel with one frequency and

zero damping ratio. The quantization and measurement noise are assumed to be

present for the position measurements. The proportional derivative (PD) control law

used is given as:

u = Cp(r− y)−Cd ẏ (3.56)

and the performance criterion (cost function) is chosen as:

‖Ter( jω)‖ < ‖W−1
1 ( jω)‖

‖Tur( jω)‖ < ‖W−1
2 ( jω)‖ (3.57)

where Ter is the transfer function from r to e = r − y, and Tur is the transfer func-

tion from r to u, whereas W1 and W2 are weighting filters specifying the error and
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control responses in frequency domain. The time domain equivalent description of

this criterion reads as:

‖ŵ1 ∗ (r− y)‖t < ‖r‖t

‖ŵ2 ∗ u‖t < ‖r‖t , ∀t,∀r (3.58)

where ŵi is the impulse response of the filter Wi, i ∈ [1,2].
From (3.56), the reference signal can be back-computed as:

r =
1

Cp

u +
Cd

Cp

ẏ+ y ≡ θTψ+ y (3.59)

where

θ =
[

1
Cp

, Cd
Cp

]T

is the controller parameter vector andψ =
[

u, ẏ
]T

consists of the plant input/output

measurements. For a particular candidate controller parameter vector θ , Equation

3.59 produces a fictitious reference signal as per Definition 2.6, denoted r̃. Hence,

falsification of this controller from a candidate set occurs when (3.58) fails to hold

at any time τ for the computed r̃. Conversely, if (3.58) holds for all times up to

present time, then the controller parameterized by that particular θ is unfalsified by

measurements.

Rearrangement of the performance criterion (3.58) and the fictitious signal (3.59)

equations leads to the following quadratic inequalities:

θT Ae
t θ −2θT Be

t +Ce
t < 0 (3.60)

θT Au
t θ −2θT Bu

t +Cu
t < 0 (3.61)

where

Ae
t =

∫ t

0
ξξ T −ψψT dτ; Be

t = −
∫ t

0
ψydτ

Ce
t =

∫ t

0
y2dτ; Au

t = −
∫ t

0
ψψT dτ

Bu
t = −

∫ t

0
ψydτ; Cu

t =

∫ t

0
(ŵ2 ∗ u)2 − y2dτ

ξ = ŵ1 ∗ψ . (3.62)

At any time t, the set of unfalsified controller parameter vectors is obtained as the

intersection
⋂

0<τ<t

(Ke
τ (θ )∩Ku

τ (θ ))

where Kx
τ (θ ) =

{

θ |θT Ax
τθ −2θT Bx

τ +Cx
τ < 0

}

. At any given time, the intersection

of the above inequalities yields an as-yet-unfalsified section in the parameter space

as shown in Figure 3.39.
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Fig. 3.39 The yellow area represents the region of unfalsified control parameter vectors

For the simulation, the following constraints on the controller parameter space are

used in [100]: θ 1 ∈ [5e−6,1e4], θ 2 ∈ [0,1e4]. Figure 3.40 shows the time history of

the switching in the controller parameters. The last switch in this experiment occurs

around t = 800 s. The set of currently unfalsified controllers is found at each time

instant as the intersection of quadratic inequalities, as shown in Figure 3.41.

In Figure 3.42, the magnitude of the achieved transfer function Ter lies below

that of the inverse of the weighting transfer function W1 used in the unfalsified al-

gorithm. Also shown is the error transfer function magnitude of the non-adaptive

nominal proportional-integral (PI) controller parameters used for comparison. Sim-

ilar observations can be drawn about the magnitude of the achieved transfer function

Tur in Figure 3.43.

Figures 3.44 and 3.45 show the azimuth channel reference signal and the azimuth

pointing error from the unfalsified algorithm. Figure 3.46 is the three wheel control

signal.
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Fig. 3.40 The last switching of unfalsified controller parameters in azimuth channel is about

800 s

Fig. 3.41 Switching of the controller parameter vector
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Fig. 3.42 The magnitude of the achieved closed loop error transfer function Ter (green) lies

below that of W−1
1 (red). The error transfer function magnitude for nominal non-adaptive pa-

rameters used for comparison is shown in black. The initial error transfer function magnitude

is shown by the broken blue line.

Fig. 3.43 The magnitude of the achieved closed loop control transfer function Tur (green)

lies below that of the inverse of the weighting transfer function W2 (red). The control transfer

function magnitude for nominal non-adaptive parameters used for comparison is shown in

black. The initial error transfer function magnitude is shown by the broken blue line.
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Fig. 3.44 The reference signal in azimuth channel

Fig. 3.45 The azimuth error of the unfalsified controller (blue) is smaller than that of the

nominal non-adaptive controller (green)
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Fig. 3.46 The wheel torques of the unfalsified controller (blue) is larger than those of the

nominal non-adaptive controller (green)

3.4.3 Switching Control of Missile Autopilot

In another example of applicability of the safe switching adaptive control paradigm,

we relate the details of [16], a study of the robust missile autopilot control design.

Owing to the highly nonlinear dynamics, wide variations in plant parameters, and

strict performance requirements related to the highly maneuverable missiles, the

missile autopilot design is known to pose significant challenges.

Specifically, the control objective in [16] is to design a longitudinal autopilot for

a tail-governed missile, i.e., use the tail deflection to track an acceleration maneuver

with a time constant of less than 0.35 s, a steady state error of less than 5 %, and

a maximum overshot of 20 % for the step response. The autopilot is supposed to

provide such performance over the operation range of +/−0.35 rad angle of attack.

The candidate controller set has been chosen so as to have enough structure to

guarantee a simple falsification procedure, and at the same time, include as a spe-

cial case the PID controller, which is commonly used in the industry because of
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its simplicity and good performance. The Figure 3.47 shows a typical PID missile

autopilot structure.

Fig. 3.47 PID missile autopilot

The controller structure for the unfalsified control that includes the PID as a spe-

cial case is shown in Figure 3.48. where
N1(s)
D1(s) , and

N2(s)
D2(s) are stable minimum phase

bi-proper transfer functions, and H is a pure gain.

Fig. 3.48 Controller structure

The set of candidate controllers is generated by allowing the coefficients of D1(s)
and D2(s) and the gain H to vary in some intervals around some nominal values. In

order to reduce the number of computation, each coefficient takes a finite number

of values in its interval. The nominal values are calculated beforehand by a classical

control technique based on simplified model. Thus, the set of candidate controller

can be represented as:

K = {(r,u,y) ∈ R×U ×Y |u =
N2(s)

Dθ2 (s)
[
N1(s)

Dθ1 (s)
(Hθ r− y1)+ y2],θ ∈Θ} .

The performance specification set in [16] has the form:

Tspec = {(r,y,u)|J(r,u,y,τ) ≥ 0, ∀τ ≥ 0}

where the cost function J(r,y,u,τ) is chosen as follows:

J(r,y,u,τ) = [−|r− y1|+ |Essr|+ | Ks

s+ N
r|]|t=τ .



92 3 Safe Switching Adaptive Control: Examples

This cost is defined to shape the time response such that it defines upper and lower

bounds for the tracking error. The value of the bound depends on the reference

signal that is being tracked. In particular, the bounds are the sum of the Ess % of the

reference signal and a term proportional to the derivative of the reference signal. The

first term signifies the steady state requirement (Ess stands for steady state error), and

the second one signifies the transient response requirement. The second term can be

written as:

Ks

s+ N
r = K(1− 1

s
N

+ 1
)r

which is proportional to the error of a first order system. Moreover, this cost can be

interpreted as the model of the worst closed loop performance acceptable, such that

the controller has to provide a performance that is at least as good as this model.

A nonlinear mathematical model described in the existing literature is used. In

particular, a pitch axis model of a missile is used, which flies at Mach 3 and at an

altitude of 20,000 f t. This mathematical model is described in [84], and owing to its

realistic representation of the dynamics, it has been extensively used as a benchmark

for missile analysis and controller design. The state equations of this model are:

α̇ = cos(α)KαMCn(α ,δ ,M)+ q

q̇ = KqM2Cm(α ,δ ,M)

and the output equation is:

η =
Kz

g
M2Cn(α,δ ,M)

where η is the acceleration in g, δ is the tail deflection in rad, α is the angle of

attack in rad, q is the pitch rate in the plane (Gx,Gz) in rad/s, M is Mach number,

and the stability derivatives are:

Cn(α,δ ,M) = anα
3 + bn|α|α+ cn(2−

M

3
)α+ dnδ ,

Cm(α,δ ,M) = anα
3 + bm|α|α+ cm(−7 +

8M

3
)α+ dmδ .

The actuator is modeled as a second order linear transfer function:

A(s) =
ω2

a

s2 + 2ζaωas+ω2
a

.

For the simulation, the parameters take the values in Figure 3.49, which correspond

to a missile flying at Mach 3 at 20,000 f t.
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Fig. 3.49 Simulation parameter values

The controller is parameterized as follows:

u =
N2(s)

Dθ2 (s)

[

N1(s)

Dθ1 (s)
(Hθ r− y1)+ y2

]

where the polynomials involved are chosen as follows:

N1(s) =
s

25
+ 1

N2(s) =
s

5
+ 1

Dθ1 (s) =
θ 1s+θ2

θ 5

Dθ2 (s) = θ 3s+θ4

Hθ =
1

θ 5
.

In this case, the candidate controller set is generated by allowing the parameters to

vary up to 20 % around a nominal value, which is calculated by a classical technique

based on a linearized missile model. In particular, each controller takes discrete

values in the intervals. For simplicity of simulation, five values for each parameter

are considered which gives 3125 controllers. The nominal controller used in the

simulations has the following values:

θ 1 = 0.4, θ2 = 0.01, θ 3 = 10.2, θ 4 = 2, θ 5 = 0.9.

Recall that the performance specification is given by:

| Ks

s+ N
r|+ |Essr|− |r− y1| ≥ 0 .
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From the missile steady state error requirement, Ess is selected to be 0.05 (5 %), and

from the transient response requirements on overshoot and time constants K and

N are chosen as 1.2 and 4 respectively. This selection allows some non-minimum

phase type behavior. According to the switching rule described in [16], when the

existing controller is falsified, it is replaced with the controller that has the smallest

average error.

Nonlinear simulation results of the unfalsified control autopilot are shown next.

Figure 3.50 shows the reference signal, the output signal, and the bounds on the

response; Figure 3.51 represents the control signal; Figure 3.52 shows the evolution

of the controller parameter set, and finally, Figure 3.53 shows the evolution of the

number of controllers.

In Figure 3.50, it can be seen that during most of the time the output signal stays

inside the bounds, but at some points it goes outside. At these points, the current

controller is falsified and replaced with the one having the smallest average tracking

error from the set of as-yet-unfalsified candidate controllers.

Fig. 3.50 Reference signal, output signal, and error bounds
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Fig. 3.51 Control signal

Fig. 3.52 Evolution of Controller parameters



96 3 Safe Switching Adaptive Control: Examples

Fig. 3.53 Evolution of the number of unfalsified controllers

In Figure 3.53, one can see the evolution of the unfalsified number of controllers.

This figure also shows that there are 198 controllers that have not been falsified,

which means they could have met the performance if put in the loop.

3.4.4 Switching Congestion Control for Satellite TCP/AQM

Networks

In [21], a congestion controller using data-driven, safe switching control theory is

used to improve the dynamic performance of the satellite TCP/AQM (Transmission

Control Protocol/Active Queue Management) networks. A Proportional-Integral-

Derivative (PID) controller whose parameters are adaptively tuned by switching

among members of a given candidate set using observed plant data is compared

with some classical AQM policy examples, such as the Random Early Detection

(RED) and fixed Proportional-Integral (PI) control. A new cost detectable switching

law with the interval cost function switching algorithm, which improves the perfor-

mance and also saves the computational cost, is developed and compared with a law

commonly used in the switching control literature. Finite-gain stability of the system

is proved. The Smith predictor and the TCP NewReno algorithm are also incorpo-

rated to further improve the performance. Simulations are presented to validate the

theory.
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To lay out the foundation of the problem, we note that satellite networks play

an important role in broadcasting data over large geographic locations, and are an

effective means for reaching remote locations lacking in communication infrastruc-

ture. Both the military and civilian applications benefit immensely from the use of

satellite networks. For example, national defense depends on satellite communica-

tions for robust, rapidly deployable and secure communications in hostile environ-

ments. Among the civilian applications, supplying rural locations with high data

rate communication services is currently feasible only through affordable satellite

communication, because of the lack of availability in fiber networks.

Congestion on the satellite networks is one of the major communication prob-

lems. TCP congestion control algorithms use packet-loss and packet-delay measure-

ments respectively to detect congestion [98]. Recently, Active Queue Management

(AQM) has been proposed to support the end-to-end congestion control in the In-

ternet, by sensing impending congestion before it occurs and providing feedback

information to senders by either dropping or marking packets, so that congestion,

causing a significant degradation in network performance, can be avoided [1]. In the

control theory, AQM can be considered as a nonlinear feedback control system with

a delay.

The study of congestion problem within time delay systems framework has been

successfully exploited using control theory. In [1], [48], [63], dynamical models

of the average TCP window size and the queue size in the bottleneck router are

derived, and linearized at some equilibrium point, and the PI congestion controllers

are designed. In [56], a delay dependent state feedback controller is proposed by

means of compensation of the delay with a memory feedback control. The latter

methodology is interesting in theory but there are indications that it is not very

suitable in practice. In [64], robust AQMs are derived using a time delay system

approach. Nevertheless, in the above cited study, only a single specific model was

considered, which means that the designed controller is either effective only near

the nominal point, or conservative, which results in sluggish responsiveness.

In [21], a new AQM algorithm for long fat networks and in particular multi-

layer satellite networks is presented, and the control theory on congestion problem

is extended by applying unfalsified Safe Switching Control(SSC) theory. The main

goal is to illustrate the potential impact of the SSC methodology on TCP/AQM

networks with dynamically varying parameters and time delays, as is the case in

long fat satellite networks. The scheme has two features: multiple controllers and

adaptive tuning to the optimal controller. Through Matlab and ns-2 simulations,

comparison of the performance of SSC with that of Random Early Detection (RED)

[34], adaptive RED [32], [33], and fixed PI controller [48] is performed. From the

simulation results, it can be shown that the SSC scheme can adaptively deal with

the change of the number of connections and heterogeneous delays.

To design congestion controllers, large scale networks are often simplified ac-

cording to a well-known dumbbell topology, shown in Figure 3.54. The network

consists of n senders, one bottleneck router and one receiver, which in a cluster

form of satellite networks correspond to normal satellite nodes, cluster-head of

one cluster and a cluster-head of another (adjacent) cluster, respectively. As we are
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interested in the backbone applications, we consider a single congested router as a

representative (similar standpoint can be found in [48, 69]). In this topology, we as-

sume that N TCP connections represent homogeneous and long lived flows. In [69],

a fluid-flow model describing the behavior of the average values of key network

variables (window size in senders, Round-Trip Time (RTT), and the queue size in

the bottleneck router) (Figure 3.54) is given by the following coupled, nonlinear

differential equations:

Ẇ (t) =
1

R(t)
− W (t)W (t −R(t))

2R(t −R(t))
p(t −R(t)), (3.63)

q̇(t) =
W (t)

R(t)
N(t)−C (3.64)

where R(t) = q(t)
C

+ Tp is the RTT, W is the average TCP window size, p is the

dropping probability of a packet, N is the number of connections or TCP sessions,

C is the transmission capacity of the router, q is the average queue length of the

router buffer, and Tp is the propagation delay. In Equation (3.63), 1
R(t) term models

additive increase of window size, and
W(t)

2 term models the multiplicative decrease

of window size in response to packet dropping p. Equation (3.64) models the bottle-

neck queue length. Considering the physical restriction of queue length and window

size, we set Ẇ (t) = 0, i f W = 0 and Ẇ (t) < 0; q̇(t) = 0, i f q = 0 and q̇(t) < 0;

q̇(t) = B, i f q = B and q̇(t) > 0, where B is the buffer size.

To allow the use of traditional control theory, small-signal linearization was car-

ried out at some equilibrium point (W0,q0, p0). Assuming N, C, and R to be con-

stants, we can find the equilibrium point defined by Ẇ (t) = 0 and q̇(t) = 0, obtaining

{

W 2
0 p0 = 2

W0 = RC
N

}

. (3.65)
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Fig. 3.55 Linearized system with delay

Linearizing (3.63) and (3.64) around the equilibrium point, one obtains

δẆ (t) = − N

R2C
(δW (t)+ δW (t −R))− R2C

2N2
δ p(t −R), (3.66)

δ q̇(t) =
N

R
δW (t)− 1

R
δq(t) (3.67)

where δW (t)=̇W (t)−W0 δq(t)=̇q(t)−q0 δ p(t)=̇p(t)− p0 Since, normally,W ≫ 1

in congestion avoidance stage, we assume W (t) = W (t −R), and simply the Equa-

tion (3.66) as

δẆ (t) = − 2N

R2C
δW (t)− R2C

2N2
δ p(t −R) . (3.68)

By means of Laplace transform, one can obtain the nominal s-domain Linear Time

Invariant (LTI) TCP model as

G(s) =

C2

2N0

(s+ 2N0

R2
0C

)(s+ 1
R0

)
. (3.69)

With the queue dynamics delay, the linearized system is shown in Figure 3.55, where

δ p and δq represent perturbed variables about the equilibrium point. This nominal

model relates how packet marking probability dynamically affects the queue length.

3.4.4.1 The AQM Control Problem

Before getting into the details of designing an AQM scheme using SSC, we first

briefly analyze and implement some popular AQM schemes currently being pub-

lished, such as RED scheme, adaptive RED scheme, and PI scheme.

RED Scheme. The RED scheme uses a low-pass filter to calculate the average

queue size, to play down the impact of the burst traffic or transient congestion on

the average queue size. Thus, the low-pass filter is designed as an Exponentially

Weighted Moving Average (EWMA):

avgq ← (1−Wq)avgq +Wqq (3.70)

where Wq is the time constant for the low-pass filter.
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p(avgq) =

⎧

⎪

⎨

⎪

⎩

0, avgq < minth

avgq−minth

maxth −minth
pmax,minth ≤ avgq < maxth

1, maxth ≤ avgq

⎫

⎪

⎬

⎪

⎭

(3.71)

where minth, maxth, and pmax are fixed parameters, which are determined in advance

by considering the desired bounds on the average queue size.

Adaptive RED Scheme. There are several types of Adaptive RED scheme cur-

rently available [32], [33]. However, the overall guidelines are the same, that is,

adaptively tuning pmax to keep the average queue size between minth and maxth.

The main difference between [33] and [32] is that [32] uses multiplicative increase

and multiplicative decrease of pmax, while [33] uses additive increase and multi-

plicative decrease of pmax.

PI Scheme. A classical PI scheme is described in [48]. A generic PI controller,

applying to AQM, is

p = (kP +
kI

s
)(q− r) (3.72)

where kP is the proportional gain, kI is the integral gain, and r is the reference queue

length. Since p represents the probability of dropping a packet, we set p ∈ [0,1].

Simulation Setup. To show the performance of above schemes, we set up a simple

bottleneck network topology with two routers for simulations both in MATLAB and

ns-2, as shown in Figure 3.56. In ns-2, the sampling frequency is set as 170 Hz. As-

sume that the transmission capacity of both routers is C = 15Mbps(3750 packets/s),
and buffer size is B = 800 packets. At the beginning, Source : 1− 60 start send-

ing data to Destination : 1; at t = 50 s, Source : 1 − 60 switch to send data to
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Fig. 3.57 Instantaneous queue length using RED scheme

Destination : 2; at t = 150s, Source : 1−60 switch back to send data to Destination :

1, and Source : 61−80 also start sending data to Destination : 1.

1. For RED scheme, the parameters are chosen as Wq = 0.1, minth = 150 packets,

maxth = 250 packets, and pmax = 0.5.

2. For adaptive RED scheme, we simulate the scheme in [32] with α = 2.0, β = 3.0.

The interval is 0.5s.

3. For PI scheme, the queue length reference r = 200 packets, KP = 0.0000182, and

KI = 0.00000964, which is designed at R0 = 0.246s [48], the linear average of

the minimum and maximum delays in our simulation setup.

The queue length performance results of RED, adaptive RED, and PI schemes

are shown in Figures 3.57, 3.58, and 3.59, respectively. Comparing Figure 3.57 with

Figure 3.58, we can find that the oscillation in adaptive RED scheme is relatively

smaller than in RED scheme in the small delay period. However, in the large delay

period, the oscillation is still quite large in both schemes. Moreover, the queue is

empty for a considerable time, which reduces the link utilization. In the PI scheme,

the actual queue length cannot track the reference queue length at the first and last

50 seconds partly because the proportional gain is too small compared with the

corresponding values at the nominal points. The ns-2 output is to simulate the real

network performance. The difference between MATLAB and ns-2 output is because

the MATLAB output is based on the simplified fluid-flow model, which assumes that

all TCP connections are homogeneous and long lived flows. Moreover, the slow start

scheme has not been modeled in the fluid-flow model.

In satellite networks, in particular multi-layer satellite networks, the number

of connections and data communication delays can be significantly changed. For

example, the round trip time RTT in the communication between LEO (Low Earth

Orbit) satellites and MEO (Medium Earth Orbit) satellites is much larger than the

delay among LEO satellites. Hence, current RED, adaptive RED, and single PI

methods, which are designed based on linearization model at one equilibrium point,
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Fig. 3.58 Instantaneous queue length using adaptive RED scheme
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Fig. 3.59 Instantaneous queue length using PI scheme

are not effective in the multi-layer satellite networks, since both N and R are dynam-

ically varying.

3.4.4.2 Safe Switching Control

The unfalsified SSC system is described below and shown in Figure 3.63, utilizing

a set of candidate PID controllers, which is one of the most widely used methods in

the industry. Fundamentals of the unfalsified control theory and subsequent exten-

sion to the SSC algorithms are described in [20], [54], [94] and references therein.

To apply this approach, we first construct a bank of PID controllers. Then, we gen-

erate the fictitious reference signal and fictitious error signal for each individual PID

controller. Given the fictitious reference signal, plant input signal, and plant output

signal sets, the “best” (optimal) controller is selected from the candidate set using a
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Fig. 3.60 Instantaneous queue length using SSC scheme

properly designed cost function. To improve the overall performance, the candidate

controller parameters can be designed off-line using Integral Squared Error (ISE)

optimization algorithms, by considering the linearized models in several general

cases [79].

Problem 1 (Candidate Controller Construction) : The first step of designing unfal-

sified SSC system is to construct candidate controllers, which are able to detect and

control the incipient as well as the current congestion proactively around the corre-

sponding nominal points by regulating the queue length around a preferred queue

length reference (r). The PID controller is one of the most important control ele-

ments in the control industry. A generic PID control equation can be expressed as

u = (kP + kI
s

+ skD)e

= (kP + kI
s
)e + skDy

(3.73)

where e = y− r is the queue length error signal, r is the queue length reference, u

is the calculated dropping packet probability, and y is the actual queue length. kP,

kI and kD are proportional gain, integral gain, and derivative gain respectively. The

control output signal u is a combination of current error, the integral of previous

errors, and the changing rate of current error. However the generic PID controller in

Equation (3.73) is an improper transfer function, and it is hard to exactly implement

the derivative part. Hence, the PID controller is written as

u = (kP +
kI

s
)e +

skD

εs+ 1
y (3.74)

where the parameter ε is a small number, which is added to approximate the deriva-

tive part.

A representative and successful design method using PID controller parameters is

to minimize the ISE performance index corresponding to the linearized model [79]:
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Fig. 3.61 Congestion window size using SSC scheme
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Fig. 3.62 Instantaneous queue length using SSC scheme with Smith Predictor
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I =

∫ ∞

0
e2(t)dt . (3.75)

Since the control performance optimization is non-convex, a local minimum might

occur. To counteract this, the stability margin based on Ziegler-Nichols rules can be

used for initial controller parameters [79]. Moreover, the parameters will be exam-

ined and adjusted online to achieve satisfied performance before they get selected

into the candidate controller set.

For a digital implementation, we need to approximate the integral and the deriva-

tive terms to forms suitable for computation by a computer, as,

de(t)

dt
≈ e(k)− e(k−1)

Ts

,

∫ t

0
e(t)dt ≈ Ts

k

∑
0

e(i)

where k =
⌊

t
Ts

⌋

, and Ts is the sampling time. Therefore, the digital PID controller

becomes

u(k) = kPe(k)+ kITs

k

∑
0

e(i)+
kD

Ts

[e(k)− e(k−1)]

where e(k) is the sampled error, and u(k) is the sampled control signal.

Problem 2 (Fictitious Re f erence Signal) : Generating fictitious reference signals is

an important part in SSC. Given measurements of plant input-output signals u and

y, there is corresponding fictitious reference signal for each candidate controller,

which is a hypothetical signal that would have exactly produced the measured data

(u,y), if the ith candidate controller had been in the loop during the entire time

period over which the measured data (u,y) was collected. From the Equation (3.74),

the fictitious reference signal for the candidate controller i can be calculated as:

∼
r i = y− s

skPi
+ kIi

(u− skDi

εs+ 1
y) . (3.76)

The fictitious error signal for the candidate controller i (defined as the error between

its fictitious reference signal and the actual plant output) can be computed as:

∼
e i = y−∼

r i . (3.77)

Problem 3 (Cost Function) : Another important step is to design a suitable cost

function to adjust controller parameters based on measured data alone. A standard

form of the cost function used in switching control literature contains some form of

the accumulated error, such as the cost considered in [11]:

Ji(t) = αe2
i (t)+β

∫ t

0
e−λ (t−τ)e2

i (τ)dτ (3.78)
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where α ≥ 0 and β > 0 can be chosen to yield a desired combination of instanta-

neous and long-term accuracy measures. The forgetting factor λ > 0 determines the

memory of the index in rapidly switching environments. In [94], it was shown that

this cost function is not cost-detectable, and therefore, it may in some cases discard

the stabilizing controller and latch onto a destabilizing one. We also compared the

performance of cost function (3.78) with (3.83) through simulation in [21].

Switched System Stability.

To briefly recall the results on stability in a multi-controller unfalsified setting, con-

sider the system Σ : L2e −→ L2e. We say that stability of the system Σ : w �→ z is

said to be unfalsified by the data (w,z) if there exist β ,α ≥ 0 such that the following

holds:

||z||τ < β ||w||τ +α,∀τ > 0 . (3.79)

Otherwise, we say that stability of the system Σ is falsified by (w,z). In general,

α can depend on the initial state. Furthermore, if (3.79) holds with a single pair

β , α ≥ 0 for all w ∈ L2e, then the system is said to be finite-gain stable, in which

case the gain of Σ is the least such β .

Lemma 1. ( [94]) Consider the switching feedback adaptive control system Σ , where

uniformly bounded reference input r, as well as the output z = [u,y] are given.

Suppose there are finitely many switches. Let tN and KN denote the final switch-

ing instant and the final switched controller, respectively. Suppose that the final

controller KN is stably causally le f t invertible (SCLI) (i.e., the fictitious reference

signal
∼
rKN

(z,t) is unique and incrementally stable). Then

∥

∥

∥

∼
rKN

∥

∥

∥

t
< ‖r‖t +α < ∞,∀t ≥ 0 (3.80)

As a switching rule, we consider the cost minimization ε-hysteresis switching algo-

rithm together with the cost functional J(K,z,t). This algorithm returns, at each t, a

controller K̂t which is the active controller in the loop:

ε-hysteresis switching algorithm A1

[75]

K̂t = argminK∈K{J(K,z, t)− εδKK̂
t−
}

where δ i j is the Kronecker’s δ , and t− is the limit of τ from below as t → τ .

The switch occurs only when the current unfalsified cost related to the currently

active controller exceeds the minimum (over the finite set of candidate controllers

K) of the current unfalsified cost by at least ε . The hysteresis step ε serves to limit

the number of switches on any finite time interval to a finite number, and so prevents

the possibility of the limit cycle type of instability. It also ensures a non-zero dwell

time between switches.

Definition 1. ( [94]) Let r denote the input and zd = Σ(K̂t ,P)r denote the resulting

plant data collected while K̂t is in the loop. Consider the adaptive control system
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Σ(K̂t ,P) with input r and output zd . The pair (J,K) is said to be cost detectable

if, without any assumption on the plant P and for every K̂t ∈ K with finitely many

switching times, the following statements are equivalent:

1. J(KN ,zd ,t) is bounded as t increases to infinity.

2. Stability of the system Σ(K̂t ,P) is unfalsified by the input-output pair (r,zd).

Theorem 1. ( [94]) Consider the feedback adaptive control system Σ , together with

the hysteresis switching algorithm A1. Suppose the following holds: the adaptive

control problem is feasible (there is at least one stabilizing controller in the can-

didate set), the associated cost functional J(K,z, t) is monotone in time, the pair

(J,K) is cost detectable, and the candidate controllers have stable causal left in-

verses. Then, the switched closed-loop system is stable. In addition, for each z, the

system converges after finitely many switches to the controller KN that satisfies the

performance inequality

J(KN ,z,τ) ≤ Jtrue(KRSP)+ ε for all τ . (3.81)

Cost-detectable Cost Function

As in [94], an example of the cost function and the conditions under which it ensures

stability and finiteness of switches according to Theorem 1 may be constructed as

follows:

Ji(t) = max
τ∈[0,t]

ε ‖u‖2
τ +
∥

∥

∥

∼
e i

∥

∥

∥

2

τ
∥

∥

∥

∼
r i

∥

∥

∥

2

τ
+α

(3.82)

where u is the dropping probability. The weighting parameter ε is some positive

constant. Constant α is used to prevent Ji(t)’s denominator to be zero when
∼
r i = 0.

‖·‖τ stands for the truncated 2-norm ‖x‖τ =
√

∫ t
0(x(τ))

2dτ .

However, in satellite TCP/AQM networks, the plant changes when N and R are

varying, and the cost function in (3.82) may not be suitable. Since the cost func-

tion in (3.82) takes all historical data with the same weight into account, and it is

also monotone non-decreasing, the best controller might take a long time to be de-

tected. Hence, the use of this cost function has limitations from the performance

standpoint. One approach is to use interval cost function, as (3.83) with detailed

description in Algorithm 3.2. Moreover, in the congestion control of TCP/AQM

networks, the input u is dropping probability, which is not needed to be penalized.

Instead, we restrict the deviations of the dropping probability by penalizing ∆u. As

a consequence, the interval cost function is given as follows:

Ji(t) = max
τ∈[tn0

,t]

ε ‖∆u‖2
τ +
∥

∥

∥

∼
e i

∥

∥

∥

2

τ
∥

∥

∥

∼
r i

∥

∥

∥

2

τ
+α

(3.83)
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where ∆u is the deviation of the dropping probability, and tn0
is the time of the

cost function being reactivated at the nth time. The truncated 2-norm ‖x‖τ =
√

∫ t
tn0

(x(τ))2dτ .

Algorithm 3.2. 1: Initialization: define a set of candidate controllers, and an initial

controller in the loop at the beginning. Set initial cost function output to be 0.

Initialize a timer T = 0s.

2: Measure ∆u and y. Run the timer.

3: Calculate
∼
r i and

∼
e i, and Ji(t).

4: Switch the controller arg min
1≤i≤N

Ji(t) into the loop if min
1≤i≤N

Ji(t) + ε <

Jcurrent controller(t).

5: Measure y, and calculate e
′
= r2 − y2.

6: If |e′ | > emax, then initialize the timer to 0, and go back to step 2.

7: If |e′ | ≤ emax, then and T ≤ tmax, go back to step 2.

8: If |e′ | ≤ emax, then and T > tmax, stop the timer, initialize the cost function output

to be 0, and go back to step 5 (shut off the cost monitor).

Remark : In Algorithm 3.2, we choose emax ≤ r2(t),∀t > 0. With Algorithm 3.2, the

cost function in (3.83) is not necessarily monotone non-decrease anymore, which

means the cost level will not have to grow up all the time. The historical data, which

usually prolong the waiting time of the new “best ” controller being switched into

the loop, are discarded, according to some designed standard. Therefore, the best

controller is detected faster, and performance is improved. Moreover, when the cost

monitor is shut off, the computational cost is also saved, which is a consideration of

even great importance in satellite networks.

Lemma 3.4. Consider the cost function in (3.83) with α > 0. If the candidate con-

trollers in the set K are in PID form, as shown in (3.74), then (J,K) is cost-detectable

Proof. First, for candidate controllers in PID form, given past values of u(t) and

y(t), there always exists a unique fictitious reference signal
∼
r i associated with each

controller Ki.

Then, assume that the controller switched in the loop at time tni
is denoted Kni

,

t00
= 0, and tnm the time of the final switch of the cost function being turned on at

the nth time.

Step 1 : Consider the time interval [t00
,t01

). During this time period, the active con-

troller in the loop is K̂t = K00

J(K00
,z,t−01

) = J(K00
,z,t01

)

= max
τ∈[t00

,t01
)

ε ‖∆u‖2
τ +
∥

∥

∥

∼
eK00

∥

∥

∥

2

τ
∥

∥

∥

∼
rK00

∥

∥

∥

2

τ
+α

= max
τ∈[t00

,t01
)

ε ‖∆u‖2
τ +‖e‖2

τ

‖r‖2
τ +α
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since
∼
rK00

.
=

∼
r(K00

,z,t) ≡ r(t),t ∈ [0,t01
). Since r is uniformly bounded, ‖r‖2

t =
∫ t

t00
(r(τ))2dτ < ∞. At t = t01

, the cost of the current controller exceeds the current

minimum by ε :

J(K00
,z,t01

) = max
τ∈[t00

,t01
)

ε ‖∆u‖2
τ +
∥

∥

∥

∼
eK00

∥

∥

∥

2

τ
∥

∥

∥

∼
rK00

∥

∥

∥

2

τ
+α

= ε+ min
K

J(K,z,t01
) . (3.84)

Hence, according to the hysteresis switching algorithm, a switch occurs to the con-

troller K01

.
= argmin

K
J(K,z, t01

). Expression in Equation (3.84) is finite since ε is

finite and

min
K

J(K,z, t01
) ≤ sup

t∈T,z∈Z

min
K

J(K,z,t)
.
= Jtrue1(KRSP)

where Jtrue1(KRSP) stands for the true cost in the period in which the cost monitor is

active at the 1st time, which is finite due to the feasibility assumption. Denoting the

sum ε+ min
K

J(K,z,t01
) by ψ01

, we have

max
τ∈[t00

,t01
)

ε ‖∆u‖2
τ +
∥

∥

∥

∼
eK00

∥

∥

∥

2

τ
∥

∥

∥

∼
rK00

∥

∥

∥

2

τ
+α

= ψ01

⇒ ε ‖∆u‖2
t01

+
∥

∥

∥

∼
eK00

∥

∥

∥

2

t01

≤ ψ01
(
∥

∥

∥

∼
rK00

∥

∥

∥

2

t01

+α)

⇒ ε ‖∆u‖2
t01

+
∥

∥

∥

∼
eK00

∥

∥

∥

2

t01

≤ ψ01
(‖r‖2

t01
+α) < ∞ .

By induction, while a final switch occurs to the controller K0m

.
= argmin

K
J(K,z,t0m),

we have

ε ‖∆u‖2
t0m

+
∥

∥

∥

∼
eK0m

∥

∥

∥

2

t0m

≤ ψ0m
(
∥

∥

∥

∼
rK0m

∥

∥

∥

2

t0m

+α) < ∞

and
∼
eK0m

= y−∼
rK0m

. Therefore, by the triangle inequality of norm and Lemma 1,

we have

‖y‖t0m
≤
∥

∥

∥

∼
eK0m

∥

∥

∥

t0m

+
∥

∥

∥

∼
rK0m

∥

∥

∥

t0m

≤
√

ψ0m
(
∥

∥

∥

∼
rK0m

∥

∥

∥

2

t0m

+α)+
∥

∥

∥

∼
rK0m

∥

∥

∥

t0m

≤
√

ψ
′
0m

(
∥

∥

∥

∼
rK0m

∥

∥

∥

2

t0m

+α
′
0m

)

≤
√

ψ
′′
0m

(‖r‖2
t0m

+α
′′
0m

) < ∞

for some ψ
′′
0m

,α
′′
0m

≥ 0.
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Step 2 : Assume that, after the final switch in the period in which the cost monitor

is active at the 1st time, the output converges to the reference signal with |e| ≤ emax

and T > tmax in Algorithm 3.2, and the cost monitor is shut off for time δ t1 before

being turned on again at t10
. Therefore, for t ∈ [t00

,t10
− δ t1), we have

max
τ∈[t00

,t10
−δ t1)

ε ‖∆u‖2
τ +
∥

∥

∥

∼
eK0m

∥

∥

∥

2

τ
∥

∥

∥

∼
rK0m

∥

∥

∥

2

τ
+α

< ε+ min
K

J(K,z,t10
− δ t1)

< ε+ Jtrue1(KRSP) < ∞

Therefore, for the same reason as in step 1, we have,

‖y‖t10
−δ t1

≤
√

ψ
′′′
0m

(‖r‖2
t10

−δt1
+α

′′′
0m

) < ∞ .

For t ∈ [t10
− δ t1,t10

), by the triangle inequality of absolute value, we have,

y2 ≤ emax + r2

⇒ ‖y‖2
(t10

−δ t1,t10
) ≤ emaxδ t1 +‖r‖2

(t10
−δ t1,t10

) .

Since emax ≤ r2(t),∀t > 0, we have

‖y‖2
(t10

−δ t1,t10
) ≤ 2‖r‖2

(t10
−δ t1,t10

)

Step 3 : Consider the time interval [t10
,t11

). During this time period, the active con-

troller in the loop is K̂t = K10
. Denoting the sum ε+min

K
J(K,z,t11

) by ψ11
. Similar

with step 1, we can conclude that

ε ‖∆u‖2
(t10

,t11
) +
∥

∥

∥

∼
eK10

∥

∥

∥

2

(t10
,t11

)
≤ ψ11

(
∥

∥

∥

∼
rK10

∥

∥

∥

2

(t10
,t11

)
+α)

⇒ ‖y‖(t10
,t11

) ≤
√

ψ
′
11

(‖r‖2
(t10

,t11
) +α

′
11

) < ∞

and so as ‖y‖(t10
,t1m ) and ‖y‖(t10

,t20
−δt2).
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Fig. 3.64 Unfalsified congestion control structure with Smith Predictor

Finally, by summing up all ‖y‖2
τ in above steps, we can conclude that

‖y‖2
t = ‖y‖2

t10
−δt1

+‖y‖2
(t10

−δ t1,t10
) +‖y‖2

(t10
,t20

−δt2) + · · ·

≤ ψ ′
(‖r‖2

t10
−δ t1

+‖r‖2
(t10

−δ t1,t10
) +

‖r‖2
(t10

,t20
−δt2) + · · ·)+α

′

= ψ
′ ‖r‖2

t +α
′
, ∀t > 0

⇒ ‖y‖t ≤ ψ
′′ ‖r‖t +α

′′
, ∀t > 0

for some ψ
′′
,α

′′ ≥ 0.

From the above, we conclude the stability of the closed-loop switched system,

and cost-detectability based on Definition 1.

Problem 4 (Restriction) : Since the controller output is the probability of dropping

the packets, and the plant output is the queue length, there are restrictions for these

two variables, shown as follows:

p = min(max(u,0),1) (3.85)

y = min(max(q,0),B) (3.86)

where B is the total buffer size.

Problem 5 (Smith Predictor) : In the simulation result(Figure 3.60), it can be found

that, though the state finally becomes stable, the overshoots are high, and the settling

times are long, when the propagation delay is large, which happens when satel-

lites on different layers are communicating with each other. The Smith Predictor,

as shown in Figure 3.64, is well known to be effective to reduce non-preferred
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Fig. 3.65 Outputs of cost-detectable cost function (3.83)
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Fig. 3.66 Instantaneous queue length using SSC scheme with TCP NewReno

overshoots and settling times. From previous statement, we know, if the queue

length is short, then propagation delay contributes to most RTT. Therefore, the nom-

inal model with RTT equal to round trip propagation delay is very close to actual

model, and so we use the round trip propagation time as nominal delay in the smith

predictor in this paper.

3.4.4.3 Simulation Results

In this section, we simulate the SSC scheme using the same simulation setup as

used in section 3 using MATLAB and ns-2 (the SSC with interval cost function

switching algorithm is implemented in matlab). The queue length reference r =
200 packets. Based on the linearized models about the nominal points N = 60,R =
0.03 and N = 60,R = 0.26, the candidate controller set is designed off-line, using



3.4 Applications of Unfalsified Control 113

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

Time (s)

C
W

N
D

 (p
ac

ke
ts

)

Fig. 3.67 Congestion window size using SSC scheme with TCP NewReno

ISE optimization algorithm [79], as follows. The parameters for the first controller

are kP = 0.000951,kI = 0.0032, and kD = 0.00004993, those for the third controller

kP = 0.000047,kI = 0.000021081,kD = 0.0000098984. We also introduce a second

controller kP = 0.000499,kI = 0.0016,kD = 0.000029914 as a linear interpolation

of the first and third controllers (the average of their parameters). In Algorithm 3.2,

we assign emax = 2000 packets2 and tmax = 5s.

Preliminary Simulations with Original TCP. The instant queue length results

are shown in Figures 3.60 and 3.62. The cost output is shown in Figure 3.73. By

comparing Figures 3.57, 3.58, and 3.59 with Figures 3.60 and 3.62, we observe

that using RED, adaptive RED, or single PI controller does not result in satisfactory

tracking the queue length reference. Instead, the proposed SSC unfalsified controller

can track the reference signal much better. Even when the number of connections

rises by 20, and there is no controller in this nominal point in the candidate set,

the proposed cost function can still choose the best controller (best according to

the switching algorithm A1), and track the reference signal, which demonstrates the

robustness of the SSC unfalsified control system. In Figure 3.73, the time intervals

when all the cost function outputs drop to 0 signify the case that |e′ | ≤ emax and T >
tmax (in MATLAB), so the cost monitor has been shut off to save the computational

cost, and the historical data are discarded to re-initialize the cost level. The change

of cost function outputs from zero to nonzero signifies the case that |e′ | > emax,

and the current candidate controller might be falsified. Hence, the cost monitoring

is reactivated to detect the optimal controller. The congestion window size of one

TCP flow is zoomed in and shown in Figure 3.61. In the original TCP scheme,

each time when a packet loss is taken as a sign of congestion. Then the threshold

value is set as half of the current window size, the congestion window size is set to

one, and slow start begins until the congestion window size reaches the threshold

value. The problem is that the original TCP has to wait for timeout to perform a

retransmission of the lost segment, which might lead to idle periods. Moreover, each

time when a packet loss is indicated, it employs the slow start algorithm to recover
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from congestion. Sometimes, it is not necessary, especially in satellite networks

with long delay. Even though the congestion window size exponentially grows in

the slow start procedure, the time it takes to reach the threshold value is still notable

because of the long delay and large congestion window size.

Simulations with TCP NewReno. To further improve the performance, TCP

NewReno, rather than original TCP, is used with the same controller designed above.

The main modification of NewReno is the introduction of Fast-Retransmit and Fast-

Recovery, which introduces two indications of a packet loss: Retransmission Time-

out (RTO) and arrival of three duplicate acknowledgements. If a packet loss is indi-

cated by a timeout, then TCP believes that the network is congested and hence enters

into the slow start procedure to recover from it. Arrival of three duplicate acknowl-

edgements means that there are data still flowing between the two ends, and conges-

tion does not happen. Hence TCP employs the Fast-Retransmit and Fast-Recovery

to avoid reducing the flow abruptly. Actually, TCP NewReno is even closer to the

fluid model in Equation (3.63), which ignores the slow start procedure. Hence, we

can see better performance about instant queue length, shown in Figure 3.66. The

congestion window size of one TCP flow is zoomed in and shown in Figure 3.67.

3.4.4.4 Simulation with Non-cost Detectable Cost Function

Finally, it is illustrative to compare the performance of the previously described

switching control algorithm with the algorithm that uses a non-cost detectable cost

function, such as the one commonly used in the literature, shown in (3.87) below.

The simulation parameters are chosen similar as those in the previous section.

The plant (satellite network) is described as having the transmission capacity of

the router of C = 15Mbps(3750packets/s) and the queue length reference r = 200

packets. At the beginning, the number of connections is N = 60 with the prop-

agation delay Tp = 0.03s; after 50 seconds, Tp rises up to 0.5 seconds with N

unchanged; after 100 seconds, Tp falls back to 0.03 with N rising to 80. Based

on the linearized models about the nominal points N = 60,R = 0.08 and N = 60,
R = 0.5, the candidate controller set is designed off-line, using integral square error

(ISE) optimization algorithm, as follows. The parameters for the first controller are

KP = 0.000951,KI = 0.0032, and KD = 0.00004993, those for the third controller

KP = 0.000014,KI = 1.6784 · 10−6, and KD = 0.00000639. Also introduced is a

second controller KP = 4.8250 ·10−4,KI = 0.0016, and KD = 2.8160 ·10−5 as a lin-

ear interpolation of the first and third controllers (the average of their parameters).

Ji(t) = −ρ+

∫ t

0
Γspec(

∼
ri(t),y(t),u(t))dt (3.87)

where ρ is an arbitrary positive number, which is used to judge whether a certain

controller is falsified or not, and Γspec is chosen as
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Γspec(
∼
ri(t),y(t),u(t)) =

(w1 ∗ (
∼
ri(t)− y(t))2 +(w2 ∗ u(t))2 − δ2 − ∼

ri(t)
2

where w1 and w2 are weighting filters chosen by the designer, and σ is a constant

representing the r.m.s. effects of noise on the cost.

The actual queue length is shown in Figure 3.68, the throughput in Figure 3.69.

From Figure 3.70, we see that all controllers are falsified.

Finally, the simulation of the safe switching adaptive algorithm with a cost-

detectable cost function is performed. The actual queue length is shown in Figure

3.71, and the throughput is shown in Figure 3.72, whereas the cost output is shown

in Figure 3.73. The round trip time time variation is shown in Figure 3.74. By com-

paring Figures 3.68, 3.69 with Figures 3.71, 3.72, we observe that using one fixed

controller or using switching unfalsified control method with the standard (non-cost

detectable) cost function does not result in satisfactory tracking the queue length

reference, and the bandwidth utility is low. Instead, the proposed safe switching

adaptive unfalsified controller can track the reference signal, stabilize the system,

and achieve high bandwidth utility in different situations. Even when the number

of connections rises by 20, and there is no controller in this nominal point in the

candidate set, the proposed cost function can still choose the best controller (best

according to the switching algorithm), and track the reference signal, demonstrat-

ing its robustness. Figure 3.71 in particular demonstrates the improvement achieved

using the cost-detectable switching controller. It shows that the queue length is kept

low which is very good from the router perspective. Figure 3.74 shows that the un-

falsified controller can keep the RTT at a relatively low level. In Figure 3.73, the

time intervals when all the cost functions drop to 0 signify the case when the queue

length error with the currently active controller has been lower than five packets for

5 seconds, and so the cost monitor has been shut off to save the computational cost.

When the cost functions become non-zero again, it signifies the case when the cur-

rent error is larger than five packets, and the current candidate controller might be

falsified. Hence, the cost monitoring is reactivated to choose the optimal controller.

3.4.5 Unfalsified Direct Adaptive Control of a Two-Link Robot

Arm

The safe switching control theory based on controller unfalsification ideas has been

successfully applied to the problem of robust adaptive control of a robot manipulator

in [99]. It is shown how a priori mathematical knowledge can be merged with data

to design a robust adaptive controller.

The dynamics model of an ideal rigid-link manipulator is given in the following

form:

H(θ ,q)q̈+C(θ ,q, q̇)q̇+ g(θ ,q) = ua (3.88)

in which q is a real n-dimensional vector representing the rotational angles of the n

links of the manipulator arm, H(θ ,q) is the inertia matrix, C(θ ,q, q̇)q̇ accounts for

the joint friction, coupling Coriolis and centripetal forces, respectively, g(θ ,q) is
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Fig. 3.68 Actual queue length with a non cost detectable cost function
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Fig. 3.69 Throughput with a non cost detectable cost function
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Fig. 3.70 Outputs of a non cost detectable cost function
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Fig. 3.71 Actual queue length using safe adaptive control algorithm
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Fig. 3.72 Throughput using safe adaptive control algorithm

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time(sec)

c
o
s
t

 

 

1st controller

2rd controller

3rd controller

Fig. 3.73 Cost-detectable cost function outputs



3.4 Applications of Unfalsified Control 119

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time(sec)

R
T

T
(s

e
c
)

 

 

1st controller

3rd controller

unfalsified controller

Fig. 3.74 Round-trip time

the torque caused by gravity, and ua is a real n-dimensional vector whose elements

are joint torques consisting of actuator outputs and external disturbances. Physical

nature of the problem ensures that the H(θ ,q) is always a positive-definite matrix.

For example, the rigid body dynamics of the planar, two-link manipulator of Slo-

tine and Li [92], shown in Figure 3.75, can be written in the form of (3.88) with

H(θ ,q) = H(θ ,q)T =

[

H11 H12

H21 H22

]

C(θ ,q, q̇) =

[

−hq̇2 −h(q̇1 + q̇2)

hq̇1 0

]

where

H11(θ ) = θ1 + 2θ3 cosq2 + 2θ4 sin q2

H12(θ ) = H21(θ ) = θ2 +θ3 cosq2 +θ4 sin q2

H22(θ ) = θ 2

h(θ) = θ 3 sinq2 −θ4 cosq2

θ = [θ 1, θ 2, θ 3, θ 4]
T (3.89)
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Fig. 3.75 A two-link robot manipulator with joint angles q̇1(t) and q̇2(t)

and

q = [q1, q2]
T , ua = [ua1, ua2]

T

θ 1 = I1 + m1l2
c1 + Ie + mel2

ce + mel2
1

θ 2 = Ie + mel2
ce

θ 3 = mel1lce cosδ e

θ 4 = mel1lce sinδ e .

(3.90)

The parameters with subscript 1 are related to link 1, while parameters with sub-

script e are related to the combination of link 2 and end-effector. It is assumed that

the manipulator moves in the horizontal plane only, so that the gravity term is zero.

Using the above equations, the manipulator dynamics can take an alternative

form:

Y (q, q̇, q̈)θ + g(θ ,q) = ua (3.91)
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in which θ = [θ 1, θ 2, θ 3, θ 4]
T and Y (·) is a 2×4 matrix with elements

Y11 = q̈1, Y12 = q̈2, Y21 = 0, Y22 = q̈1 + q̈2

Y13 = (2q̈1 + q̈2)cosq2 − (2q̇2q̇1 + q̇2
2)sinq2

Y14 = (2q̈1 + q̈2)sin q2 +(2q̇2q̇1 + q̇2
2)cosq2

Y23 = q̈1 cosq2 + q̇2
1)sinq2

Y24 = q̈1 sinq2 + q̇2
1)cosq2

(3.92)

which makes the dynamical equations linear in the controller parameter vector θ for

the above two-link example.

Fig. 3.76 Computed torque manipulator control configuration

For the manipulator trajectory control, the ‘computed torque’ control method is

commonly used to deal with the non-linearity of the dynamic equation. Figure 3.76

shows an example of a computed torque control law:

u = H(θ ,q)[ ¨̃q + 2λ ˙̃q +λ2
q̃]+ H(θ ,q)q̈+C(θ ,q, q̇)q̇ + g(θ ,q) (3.93)

= ũ+Y (q, q̇, q̈)θ + g(θ ,q) (3.94)

where

ũ = H(θ ,q)[ ¨̃q + 2λ ˙̃q +λ2
q̃] (3.95)

q̃ = qd −q (3.96)

The above computed torque control law does not actually require acceleration mea-

surements. This is seen when the control law is simplified as

u = H(θ ,q)[q̈d −2λ ˙̃q−λ2
q̃]+C(θ ,q, q̇)q̇ + g(θ ,q) (3.97)

where qd denotes the desired trajectory, q̃ is the tracking error, and λ > 0 is a design

parameter which determines the speed at which the tracking error converges to zero.

The actual joint torque is related to the control signal u by:

ua = Ga(s)u + d (3.98)
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where Ga(s) represents uncertain actuator dynamics, and d is an uncertain distur-

bance. In the case of no disturbances, no actuator dynamics (Ga(s) = 1 and no mod-

eling uncertainty, we have then u = ua, and the control law 3.93 applied to the ideal

manipulator yields:

H(θ ,q(t))[ ¨̃q + 2λ ˙̃q +λ2
q̃] = 0 (3.99)

which, combined with the fact that H(θ ,q) is strictly positive definite for all q,

implies that the tracking error q̃ exponentially converges to zero with the rate λ .

When an external disturbance is present, the closed loop dynamics become:

H(θ ,q(t))[ ¨̃q + 2λ ˙̃q +λ2
q̃] = −d(t) (3.100)

which indicates that the tracking error q̃ will converge to a region whose size is pro-

portional to the magnitude of the disturbance d. These well-known results hold for

the idealized case where the parameters are exactly known, the actuators have no

dynamics, there is no friction, and the links are completely rigid. As good perfor-

mance may still be possible when these idealized assumptions do not hold (at least

for some values of the assumed parameter vector θ ), alternative stability proofs are

needed. This is what highlights the utility of the unfalsified, safe switching control

theory, which provides a rapid and precise means for determining which, if any, of

values of θ remain suitable for control of the actual non-idealized physical system,

based on a real-time analysis of evolving real-time plant data.

In the following, the a priori mathematical knowledge and the a posteriori data

are combined in the context of unfalsified control theory to produce a robust adap-

tive controller. In the unlikely event that the manipulator conforms exactly to the

theoretical ideal so that its dynamics are exactly described by (3.88) with known

parameters, and joint torque is exactly as commanded (i.e. joint actuator transfer

function Ga(s) = 1), then the application of the control law (3.93) will yield sat-

isfactory performance. However, a real physical manipulator will have many other

factors that cannot be characterized by (3.88) such as link flexibility and the ef-

fects of actuator dynamics, saturation, friction, mechanical backlash and so forth. A

mathematical model is never able to describe every detail of a physical system, and

so there is always a gap between the model and reality. Such a gap may sometimes

be fortuitously bridged when the aforementioned factors are ‘negligible’, but unfal-

sified control theory provides a more robust methodology, which ensures that this

gap will be overcome whenever possible. In the following, the real-time data are

directly used to quickly and accurately assess the appropriateness of various control

laws of the form (3.93) on a given physical manipulator. The following scenario is

assumed:

1. Prior Knowledge: The mathematical knowledge about manipulators in general

and prior observation of the particular manipulator’s characteristics indicate that

the use of a control law of the general form (3.93) could result in the performance

described by (3.100), and that (3.88) and (3.91) should hold.
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2. Uncertainty: Parameters such as inertia, location of mass center and so forth can-

not be correctly known in advance, because of possible changes of operating

conditions or load mass, or because of other causes. Also, there may be other

sources of non-parametric uncertainty, such as time-delays, link bending modes,

noise/disturbances, actuator dynamics and so forth.

3. Data: The actuator input commands (u1,u2) and the manipulator’s output angles

(q1,q2), velocities (q̇1, q̇2), and accelerations (q̈1, q̈2) are directly measurable.

The reference signal r, measurement signal y and control input signal u are taken to

be:

r = qd , (3.101)

y = [q1,q2, q̇1, q̇2, q̈1, q̈2]
T , (3.102)

u = [u1,u2]
T (3.103)

and, at each time τ , the measurement data are

udata = Pτu (3.104)

ydata = Pτy . (3.105)

The set of admissible control laws and performance specification are selected as

follows:

K = {K(θ )|θ ∈ R
m} (3.106)

with K(θ ) = {(r,y,u)|u = Kθ (r,y)} , (3.107)

Tspec(θ ) = {(r,y,u)|Jθ (r(t),y(t),u(t)) ≤ 0 ∀t ≤ τ} (3.108)

where

Kθ (r,y) � H(θ ,q)[q̈d −2λ ˙̃q−λ2
q̃]+C(θ ,q, q̇)q̇+ g(θ ,q) (3.109)

Jθ (r(t),y(t),u(t)) � |ũ|− d̄ (3.110)

where, in (3.110), d̄(t) ≥ 0 is a given function of time, and in (3.109),

u = u(θ ,q, q̇,qd , q̇d, q̈d), ũ = ũ(θ ,q, q̃, ˙̃q, ¨̃q), and q̃ = qd − q are previously de-

fined. The inequality Jθ (r(t),y(t),u(t)) ≤ 0 means that each entry of the vec-

tor Jθ (r(t),y(t),u(t)) is ≤ 0. Based on the data condition, the measured data

(udata,ydata) consists of past values of commanded joint control torques u and sen-

sor output signals q, q̇, q̈, respectively. In this case, the measurement information set

Pdata is given in terms of the data (udata,ydata) by

Pdata � {(r,y,u)|Pτu = udata,Pτy = ydata} . (3.111)

Denoting the set of unfalsified values of θ at time τ as Θ(τ), each element θ ∈
Θ(τ) corresponds to a control law K(θ ) given by (3.109). The unfalsified controller

parameter setΘ(t) can be obtained as follows. A control law Kθ having parameter

vector θ results in the control signal u given by the computed torque control law
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3.109. Hence, the set Pdata ∩K(θ ) consists of those points (r,y,u) satisfying for all

t ≤ τ

r(t) = q̂d(θ )(t) (3.112)

y(t) = ydata(t) (3.113)

u(t) = udata(t) (3.114)

where, for each θ , q̂d(θ ) is a solution to udata = Kdata(q̂d(θ ),ydata, viz,

¨̂qd(θ )+ 2λ ˙̂qd(θ )+ (λ)2q̂d(θ ) = (3.115)

= [H(θ ,q)]−1(u + H(θ ,q)(2λ q̇+(λ)2q)−C(θ ,q, q̇)q̇−g(θ ,q)) (3.116)

Given only the measured plant input-output data and a parameter vector θ , the right-

hand side of the above equation can be determined. One may then use this fictitious

reference signal r0(θ ) � q̂d(θ ) to test each candidate control law in the feedback

loop. Then, the unfalsified controller parameter setΘ(t) at the current time τ can be

expressed as a set intersection:

Θ(t) =
⋂

0≤t≤τ
Ω(t) (3.117)

where

Ω(t) �
{

θ ||ũ(q(t), q̇(t), q̈(t),θ )| ≤ d̄(t),θ ∈Θ0

}

(3.118)

ũ(q(t), q̇(t), q̈(t),θ ) � Y (q(t), q̇(t), q̈(t))θ −u(t) . (3.119)

In 3.119, the setΘ0 ⊂R
m is an a priori estimate of the range of controller parameter

vectors that are considered to be candidates for achieving the performance specifi-

cation Tspec(θ ).

A controller parameter vector θ̂ (τ) is to be computed such that θ̂(t) ∈Θ(τ), ∀τ .

The corresponding controller Kθ̂ (r,y,u) may then be inserted in the control loop.

The strategy for choosing θ̂ (τ) is as follows: the value of θ̂ (τ) is held constant until

such time when it is falsified by the latest data. That is, θ̂(τ) remains constant as

time τ increases until such time occurs when θ̂ (τ−) �∈ Ω(τ). (Here τ− denotes the

time just an instant prior to time τ .) At the instant τ when this occurs θ̂ (τ−) �∈Θ(τ),
and θ̂(τ) must switch to a new value θ̂ (t) ∈Θ(τ).

An important theoretical point to note is that each of the sets Ω(τ) defined in

(3.119) is a convex polytope, bounded by the intersection of two pairs of hyper-

planes in R
4. Also, the intersection of finitely many convex polytopes is a convex

polytope, too. The computation of an element of a convex polytope is a linear pro-

gramming problem for which there are many good computational algorithms. Thus,

the computation of an unfalsified θ̂ (t) ∈Θ(τ) at a switching time involves using a

linear programming algorithm.
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A parameter update law for θ̂ is proposed such that it produces new controller

parameter vector that is ‘optimal’ in the sense that it is as far as possible from the

boundary of the current unfalsified setΘ(τ), i.e.

θ̂ (τ) = arg max
θ∈Θ (τ)

dist(θ ,δΘ(τ)) (3.120)

where δΘ(τ) denotes the boundary of the set Θ(τ). Specifically, one computes θ̂
as the solution to the following linear programming problem:

θ̂ (τ) = arg max
θ∈Θ (τ)

δ (3.121)

subject to ∀0 ≤ t ≤ τ

δ ≥ 0

−Y (q(t), q̇(t), q̈(t))θ + d̄(t)+ δR(t) ≥ 0

Y (q(t), q̇(t), q̈(t))θ − d̄(t)− δR(t) ≥ 0 (3.122)

where R(t) ∈ R
2 is given by

R(t) �

[

||Y1(q(t), q̇(t), q̈(t))||
||Y2(q(t), q̇(t), q̈(t))||

]

(3.123)

where Yi(·)(i = 1,2) denotes ith row of the matrix Y (·) defined by (3.91). Here the

maximal δ , say δ̂ , is the radius of the largest ball that fits inside the convex polytope

Θ(τ) and θ̂ is its center. That is, θ̂ is a point inΘ(τ) that is as far as possible from

δΘ(τ) and δ̂ is the distance of θ̂ from δΘ(τ).
Besides the batch-type approach linear programming (3.121), a recursive algo-

rithm for (3.121) is also possible because the unfalsified controller parameter set

Θ(τ) is the intersection of degenerate ellipsoids (regions between ‘parallel’ hyper-

planes), the recursive algorithm of minimal-volume outer approximation in [35] can

be useful for the calculation of the intersections

In addition to the manipulator dynamics, the following first order transfer func-

tions of different bandwidths are used to simulate the actuator dynamics:

Ga(s) =
1

τs+ 1
(3.124)

where 1
2πτ is the actuator bandwidth in Hz; the values τ = 0, τ = 1

10π and τ =
1

40π were used in the simulation and displayed in the plots. The parameters for the

manipulator dynamics are chosen as:

m1 = 1; , l + 1−1, ,me = 2,δ e = 30o (3.125)

I1 = 0.12, lc1
= 0.5, Ie = 0.25, lce = 0.6 (3.126)
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so that the exact parameter vector (in the absence of actuator) is θ ∗ �
[θ 1,θ 2,θ 3,θ 4]

T = [3.345,0.97,1.0392,0.6]T. The scenario is as follows: the end

effector mass me changes back and forth between 2 and 20 periodically with pe-

riod 0.5 s, and the inertia Ie changes between 0.25 and 2.5, so that the parameter

vector changes between [3.34, 0.97, 1.0392, 0.6] and [30.07, 9.7, 10.3923, 6] pe-

riodically with period 0.5 s accordingly. The magnitudes of parameter vectors are

unknown to the controller. The preferred trajectory used is

qd1
(t) = 30o(1− cos2πt), qd2

(t) = 45o(1− cos2πt) (3.127)

The external torque disturbance acting on the two joints are sin20πt and 2sin13πt,

respectively. At time t = 0, the system is initially at rest with joint angles q1(0) =
q2(0) = 0.4rad. The unfalsified control method is then compared with the adaptive

method of [92]. The controller in [92] is:

u = Yslot θ̂ + KD ˙̃q +Λ q̃ (3.128)

where θ̂ is the estimated parameter vector of θ , and KD and Λ are positive definite

matrices. Also, Yslot satisfies

H(θ ,q)q̈r +C(θ ,q, q̇)q̇r + g(θ ,q) = Yslot(q, q̇, q̇r, q̈r)θ (3.129)

in which q̇r = q̇d +Λ q̃. The parameter update law for θ̂ is

˙̂θ = −ΓY T
slot( ˙̃q +Λ q̃) (3.130)

in which Γ > 0. The parameters used in the simulation are KD = 100I2, Λ = 20I2,

and Γ = diag([0.03, 0.05, 0.1, 0.3]).
For the unfalsified control method Θ0 is taken as a solid square box centered at

the origin with each edge of length 200. For simplicity, the computation delay time

is taken as a constant value 10−3 s.

The parameter λ used in the control law is λ = 20. The linear programming pa-

rameter update law is used, in which constant d̄(t) = [2,4]T is the bound on the

effect of external disturbance in the performance specification Tspec. In this simula-

tion, the ‘correct’ parameter vector changes periodically every 0.5 s starting at τ = 0

and at these times the parameter update law (3.117) is reset by discarding previous

data, resetting the parameter update clock time to τ = 0 and settingΘ(0) =Θ0.

In the simulation, both control methods use θ̂ (0) = [0.5,0.5,0.5,0.5]T as initial

guess for the parameter estimate, and the results are shown in Figure 3.78. Simu-

lations in both cases were attempted for each of the three values of actuator time-

constant τ = 0, 1
40π , 1

10π . However, instabilities observed with the method in [92]

were too severe to permit the simulation to be performed with actuator bandwidths

smaller than 10 Hz (i.e. τ ≥ 2π
10

). Thus five time histories appear in each plot in

Figure 3.78, three for the unfalsified methods and two for the method in [92].

The four plots on the left of Figure 3.77 show the time histories for the joint angle

tracking errors q̃1 and q̃2. The smallest amplitude error corresponds to the unfalsified
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control approach with infinite actuator bandwidth (τ = 0). Next amplitudes are the

unfalsified-control tracking errors for τ = 1
40π and τ = 1

10π . Increasing amplitude

tracking-errors are shown for the Slotine et al. controller with τ = 0 and τ = 1
40π .

Also shown in Figure 3.78 are the actuator torques required for both the unfalsi-

fied controller and the Slotine et al. controller. The three smaller amplitude actuator

signals shown correspond to the unfalsified controller, even though these control

signals also produce smaller tracking errors as shown in the right side four plots in

Figure 3.77. The plots show that the unfalsified controller is able to achieve a more

precise and ‘sure-footed’ control over the arm’s response without any appreciable

increase in control energy. Figure 3.78 shows the estimated parameters θ̂ i(t). The

two sluggishly smooth traces in each of the four plots are for the controller in [92].

The crisp ‘square-wave’ response shown in the four plots are for the unfalsified

controller. There is no perceptible difference in unfalsified controller response due

to variations in the actuator time constant; the three chosen values of τ produce the

Fig. 3.77 Comparison of tracking errors q̃ and control signals u indicates that the unfalsi-

fied controller produces a quicker, more precise response, without increased control effort

(solid line: ideal actuator, dashed line: 20 Hz actuator dynamics, dotted line: 5 Hz actuator

dynamics).

Fig. 3.78 Simulation results for unfalsified controller (thick solid line: ideal actuator, thick

dashed line: 20 Hz actuator dynamics, thick dotted line: 5 Hz actuator dynamics) and Slo-

tine’s controller (thin solid line: ideal actuator, thin dashed line: 20 Hz actuator dynamics).
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time histories that coincide with the ‘square-wave’ plots shown in the figure. The

simulations show that the Slotine et al. controller cannot accurately track the ‘cor-

rect’ parameters. Attempts in [99] to improve this situation by adjusting Slotine’s

parameter Γ proved unsuccessful.

Finally, the number of floating point operations (flops) required for each update

of θ̂ (τ) by the unfalsified controller’s linear programming routine (solved by using

the MATLAB Optimization Toolbox function lp.m) is plotted in Figure 3.79. The

figure shows the times τ at which the controller gain θ̂(τ) was falsified and the num-

ber of flops (floating point operations) required to solve the linear program 3.121 to

3.122 to compute a new, as yet unfalsified controller at each of these times. As the

figure shows, between 6 and 18 such falsifications occurred in each 0.5 s interval

between controller resets. The average computational load during the 5 s simulation

was about 0.8 k f lops/ms. Though the computational burden of the unfalsified con-

troller may seem large, it is well within the capacity of standard microprocessors.

Fig. 3.79 Falsification times and numbers of floating point operations (flops) at each of these

times by linear program parameter update law

A recent publication [81] evaluates and confirms the above results.
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Conclusion

Motivated by the heightened interest in adaptive learning control systems and a pro-

liferation of results in nonlinear stability theory, the authors studied and presented

the safe switching adaptive control of the highly uncertain systems. Those are the

systems whose dynamics, parameters, or uncertainty models may be insufficiently

known for a variety of reasons, including, for example, difficulty in obtaining accu-

rate model estimates, changes in subsystem dynamics, component failures, external

disturbances, time variation of plant parameters (slow but consistent time variation

or infrequent large jumps) etc. Control of uncertain systems has traditionally been

attempted using, on the one hand, robust control techniques (classical H∞ robust

control and modern enhancements using linear matrix inequalities (LMI) condi-

tions and integral quadratic constraints (IQC)) [25], [91], [120], whose proofs of

robust stability and performance hinge upon the knowledge of sufficiently small un-

certainty bounds around the nominal model. On the other hand, adaptive control

techniques aim to further enhance robustness for larger uncertainties by introduc-

ing an outer adaptive loop that adjusts (tunes) controller parameters based on the

observed data. Both streams have inherent limitations: robust control methods are

valid insofar as the proposed models match the actual plant and uncertainty bounds;

and adaptation in conventional continuous adaptive tuning may be slow in compar-

ison to the swiftly changing plant dynamics/parameters or rapidly evolving envi-

ronment, thus yielding unacceptable performance or even instability in the practical

terms. The fact that a single controller (fixed or adaptive) may not be able to cope

with insufficiently known or changing plant was the primary reason that brought

forth the notion of switching in the context of adaptive control. A wide variety of

switching algorithms have been proposed in the last 20 years, with nearly all of

them basing their stability/performance proofs to some extent on prior assumptions,

which are invariably difficult to verify and may fail to hold in practice.

This mismatch between the reality and prior assumptions is the core of the prob-

lem which has been addressed in this book. In the preceding pages, a theoretical

explanation of, and a solution to, the model mismatch stability problem associated

with a majority of adaptive control design techniques has been given. The algorithm

and the methodology of adaptive switching control proposed in this monograph

M. Stefanovic and M.G. Safonov: Safe Adaptive Control, LNCIS 405, pp. 129–130.

springerlink.com c© Springer-Verlag London Limited 2011
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are based on the theory of control law unfalsification according to which a reliable

adaptive control law is synthesized.

Adaptive and learning control techniques have a significant potential to enhance

robustness of stability and performance of the systems operating under uncertain

conditions. For example, adverse operating conditions, to which aircraft control sys-

tems are often subjected, introduce impacts and risks that are difficult to anticipate,

calling for a reliable and prompt control action. The result proposed here belongs to

the class of control paradigms that fully utilize information in the accumulated ex-

perimental data, and maximize robustness by introducing as few prior assumptions

as are presently known, while at the same time converging quickly to a stabilizing

solution, often within a fraction of an unstable plants largest unstable time constant.

Thus, it forms a particularly attractive solution for the design and analysis of the fast

adaptive fail-safe recovery systems for battle-damaged aircraft control systems, mis-

sile guidance systems, reconfigurable communication networks, precision pointing

and tracking systems.

Some directions for future research in the following are listed. An important sub-

ject is the application of the proposed safe adaptive control paradigm in a variety of

real life scenarios. Computational solvability of the algorithm (e.g., polynomial-time

type) needs to be investigated, particularly for the case when the set of candidate

controllers is continuously parameterized. Tractability issues may depend to some

extent on the compactness of the candidate controller set, and on its representabil-

ity as a finite union of convex sets. Tools from the theoretical computer science

and artificial intelligence concepts (such as machine learning [70]) will be used to

characterize and enhance levels of algorithm solvability.

On the theoretical side, it is of interest to further explore efficient ways to con-

tinuously and adaptively generate new candidate controllers on the fly, enhancing

the system with an additional supervisory loop with a hypothesis generating role.

The theory presented in this book relies on the sole assumption that the adaptive

control problem, posed as optimization problem, is feasible, which means that the

solution exists in the pool of candidate controllers. To the best of our knowledge,

this assumption underlies, implicitly or explicitly, all other adaptive schemes so that

it is minimal. If it happens, however, that this assumption does not hold (e.g., when

one starts out with an initially sparse set of controllers), then it is needed to have a

certain hypothesis generator that will create new candidate controllers as the system

evolves.



Appendix A

Relation Between ||r̃KN
||t and ||r||t, ∀t ≥ 0

Lemma A.1. Consider the switching feedback adaptive control system Σ
(Figure 2.1), where uniformly bounded reference input r, as well as the output

z = [u,y] are given. Suppose there are finitely many switches. Let tN and KN denote

the final switching instant and the final switched controller, respectively. Suppose

that the final controller KN is SCLI (i.e., the fictitious reference signal r̃KN
(z, t) is

unique and incrementally stable). Then,

||r̃KN
||t < ||r||t +α < ∞, ∀t ≥ 0 . (A.1)

Proof. By the assumption there are finitely many switches. Consider the control

configuration in Figure A.1. The top branch generates the fictitious reference signal

of the controller KN . Its inputs are the measured data (y,u), and its output is r̃KN
. The

output is generated by the fictitious reference signal generator for the controller KN ,

denoted by K
N
CLI . In the middle interconnection, the signal uN , generated as the out-

put of the final controller KN excited by the actual applied signals r and y, is simply

inverted by passing through the causal left inverse K
N
CLI . Finally, the bottom inter-

connection has the identical structure as the top interconnection (series connection

of K̂t and K
N
CLI), except that it should generate the actually applied reference signal

r. To this end, another input to the bottom interconnection is added (denoted ω), as

shown in Figure A.1. This additional input ω can be thought of as a compensating

(bias) signal, that accounts for the difference between the subsystems generating r

and r̃KN
before the time of the last switch. In particular, it can be shown (as seen in

Figure A.1) that ω � PtN (uN −u) (due to the fact that uN(t) ≡ u(t), ∀t ≥ tN).

By definition, K
N
CLI is incrementally stable. Thus, according to Definition 2.2,

there exist constants β̃ , α̃ ≥ 0 such that

‖r̃KN
− r‖t ≤ β̃ · ‖u−uN‖t + α̃

≤ β̃ · ‖ω‖tN + α̃

< ∞ ∀t ≥ 0 . (A.2)
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Fig. A.1 Generators of the true and fictitious reference signals

Hence by the triangle inequality for norms, inequality (A.1) holds with

α = β̃ · ‖ω‖tN + α̃ . (A.3)
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Matrix Fraction Description of r̃

Definition B.1 [108]. The ordered pair (NK ,DK) is a left matrix fraction description

(MFD) of a controller K if NK and DK are stable, DK is invertible, and K = D−1
K NK .

Remark Appendix B.1 To avoid restricting our attention to only those controllers

that are stably causally left invertible, i.e., controllers whose fictitious reference sig-

nal (FRS) generator is stable, we can use the MFD representation of the controllers

and write a modified fictitious reference signal as

ṽK = DKu +(−NK)(−y) (B.1)

and

ṽK = NK r̃K

as in [65]. Similarly, v = NK̂t
r would represent the modified applied reference signal

r, which is related to the active controller in the loop K̂t . Thus, although r̃K may

not be stable, which is the case with the non-minimum phase controllers, ṽK is, by

construction.
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Unfalsified Stability Verification

Stability verification for the cost function (2.7) in Section 2.4 is performed below.

Recall that the controller switched in the loop at time ti is denoted Ki, and i ∈ I
.
=

{0,1, ...,N}, N ∈ N ∪{∞} are the indices of the switching instants. When t0 = 0,

we have ∀K ∈ K, V (K,z,t0) = β + γ||K||2 > 0. Let the controller switched at time ti
be denoted Ki (thus, K̂ti = Ki). Then, owing to the cost minimization property of the

switching algorithm, K0 = argminK V (K,z,0), and V (K0,z,0) = β + γ||K0||2 > 0.

Denote by t = tN the time of the final switch, and the corresponding controller

KN . Consider the time interval [0,t1). During this time period, the active controller

in the loop is K̂t = K0.

V (K0,z,t
−
1 ) = V (K0,z,t1)

= max
τ≤t1

||y||2τ + ||u||2τ
||r̃K0

||2τ +α
+β + γ||K0||2

= max
τ≤t1

||y||2τ + ||u||2τ
||r||2τ +α

+β + γ||K0||2,

since r̃K0
� r̃(K0,z, t) ≡ r(t), t ∈ [0,t1).

Since r is uniformly bounded, ||r||2t =
∫ t

0 |r(τ)|2dτ < ∞.

At t = t1, the cost of the current controller exceeds the current minimum by ε:

V (K0,z, t1) = max
τ≤t1

||y||2τ + ||u||2τ
||r̃K0

||2τ +α
+β + γ||K0||2

= ε+ min
K

V (K,z,t1), (C.1)

and so, according to the hysteresis switching algorithm, a switch to the controller

K1
.
= argminK V (K,z, t1) takes place. Expression in (C.1) is finite since ε is finite

and

min
K

V (K,z,t1) ≤ sup
t∈T,z∈Z

min
K

V (K,z,t) � Vtrue(KRSP),
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where Vtrue(KRSP) is finite because of the feasibility assumption. Denoting the sum

ε+ minK V (K,z,t1) by ψ1, we have:

max
τ≤t1

||y||2τ + ||u||2τ
||r̃K0

||2τ +α
+β + γ||K0||2 = ψ1,

⇒ ||y||2t1 + ||u||2t1 +(β + γ||K0||2)(||r̃K0
||2t1 +α)

≤ ψ1(||r̃K0
||2t1 +α),

⇒ ||y||2t1 + ||u||2t1 +(β + γ||K0||2)(||r||2t1 +α)

≤ ψ1(||r||2t1 +α) < ∞,

⇒ ||y||t1 < ∞, ||u||t1 < ∞ .

Now consider the next switching period, [t1,t2). The active controller in the loop is

K̂(t) = K1. Hence,

0 < β + γ||K1||2 ≤V (K1,z, t1) � min
K

V (K,z, t1)

= max
τ≤t1

||y||2τ + ||u||2τ
||r̃K1

||2τ +α
+β + γ||K1||2 < ∞

where the second inequality from the left follows from the monotone increasing

property of V .

Therefore, ||r̃K1
||t1 < ∞. Next,

∞> ε+ min
K

V (K,z,t2) = V (K1,z,t2)

� max
τ≤t2

||y||2τ + ||u||2τ
||r̃K1

||2τ +α
+β + γ||K1||2

≥ β + γ||K1||2 > 0 .

Thus,||r̃K1
||t2 is finite, and so are ||y||t2 , ||u||t2 . By induction, we conclude that

||y||tN ≤∞, ||u||tN ≤ ∞ (C.2)

where tN is the final switching time. Since tN is the final switching time:

0 < β + γ||KN ||2 ≤V (KN ,z,t) =

max
τ≤t

||y||2τ + ||u||2τ
||r̃KN

||2τ +α
+β + γ||KN ||2

< ε+ min
K

V (K,z,t), ∀t ≥ tN .
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Thus, ||r̃KN
||t is finite for any finite t > tN . Further,

0 < β + ||KN ||2 ≤ sup
t∈R+

V (KN ,z,t)

= sup
t∈R+

max
τ≤t

||y||2τ + ||u||2τ
||r̃KN

||2τ +α
+β + γ||KN ||2

< ε+ sup
t∈R+

min
K

V (K,z,t) ≤ ε+Vtrue(KRSP) < ∞ ∀t,

⇒ ||
[

y

u

]

||t < β 2||r̃KN
||t +α2 ∀t > 0,

for some β 2,α2 ≥ 0 .

From the above it is concluded that the stability of the closed loop switched system

with the final controller KN is unfalsified by (r̃KN
,z).
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