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Preface

Interactive systems, such as personal navigation devices, cell phones, home
entertainment and automotive dashboards systems, are part of our everyday
lives. Offering more and more features to their users, these systems however
increase in their complexity. In addition, the diversity of the users is constantly
growing, for instance with older people using interactive systems. One solution
for solving the problem of an increasing user diversity and a growing num-
ber of features are systems that adapt themselves to individual users. Such
an adaptation comprises different steps and relies on an observation of the
user’s behavior and conclusions drawn from these observations. This process
is called user modeling. Adaptations are thereafter selected based on the user
modeling information. This book introduces a general framework for adapting
multimodal interactive system, comprising a detailed discussion of each of the
steps required for such an adaptation.

The observation of user behavior is a prerequisite for performing adapta-
tions. Based on an observation of basic events, such as button presses, speech
input, or internal state changes, user preferences are derived. Different algo-
rithms extract information from these basic events, such as preferences of the
user or a prediction of the most likely following user action. Additional mod-
els support the user modeling process. An interaction model describes user
actions. We introduce the use of a task model for describing higher-level user-
system interactions and for deriving adaptation triggers, such as predicting
user actions and detecting user problems.

In this book, adaptations are presented as a set of adaptation patterns,
which are similar to patterns known from software or usability engineering.
Patterns describe recurring problems and present proven solutions for these
problems. Each of these patterns includes a discussion of the context of use.
The patterns provide guidance to the system designer for integrating adap-
tive features into interactive systems. We introduce a novel set of adaptation
patterns. These address both graphical interfaces as well as speech-based and
multimodal interactive systems. In addition, we describe an adaptation frame-
work that provides tool-support for creating adaptive interactive systems. For
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this purpose, the framework introduces an abstraction layer that uses semantic
web technology. The adaptations are implemented on top of this abstraction
layer by creating an abstract representation of the adaptation patterns, in-
cluding a system-independent and reusable part and a system-specific part.

In summary, a generic approach for adapting multimodal interactive sys-
tems is presented. This approach comprises algorithms for user modeling and
a set of adaptation patterns. A reference implementation proves the feasibility
of the approach as well as the viability of the user modeling algorithms and
adaptation patterns. The evaluation demonstrates that adaptations present
a means for improving the usability of interactive systems for an individual
user. The conceptual adaptation framework provides a sound foundation for
the implementation of adaptations in interactive systems.
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1

Introduction

The reasonable man adapts himself to the world:

the unreasonable one persists in trying to adapt the world to himself.

Therefore all progress depends on the unreasonable man.

–George Bernard Shaw (1856–1950), Maxims for Revolutionists

John commutes to work every day with his car. When he enters the car,
he first selects a radio station in the infotainment system to listen to his
favorite morning show. Since other family members also use the same car,
John’s station is often not selected in the morning. “This is annoying,” he
thinks. “The car could select the station automatically.” Next, he enters the
address of his workplace into the navigation system to avoid traffic jams. The
system provides a list of favorite destinations, but John still has to enter
the navigation menu, open the list of favorites, select an entry, and start the
route guidance. “This should be possible with a single action,” he mumbles.
Sometimes, John uses his wife’s car, which has a different dashboard interface.
Since John is not familiar with that interface, he would prefer a simplified
interface in his wife’s car that only offers basic features, whereas he favors the
full-fledged interface in his car.

Sometimes, John dreams of entering the car, putting his coffee in the cup
holder – and hearing a soft voice: “Good morning, John, I have already tuned

M. Bezold and W. Minker, Adaptive Multimodal Interactive Systems, 1
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2 1 Introduction

in your favorite radio station and entered your work place in the navigation
system. No congestion today!” He continues to think: “This could be applied
to other devices as well. For instance, the TV system might recommend shows
or the video recorder might provide help for programming shows.” The vision
John is imagining is called adaptation. The adaptation of technical systems to
user behavior has been a subject of research for many years. Adaptation starts
with an observation of user behavior. For example, the interactive system
may recognize John’s favorite radio station and observe that John always
performs the same actions to program the navigation system. Based on these
observations, the adaptive interactive system may provide shortcuts, offer
adaptive help, or execute actions automatically.

Today’s interactive systems face two major challenges. First, with each
new interactive system, new features are being added (cf. Thompson et al.,
2005). Second, the diversity of the users increases at the same time, with
young and older people using these systems. On the one hand, “digital na-
tives” (see Prensky, 2001) grow up with ever changing interactive systems and
do not have problems to adjust to new interfaces. On the other hand, “digital
immigrants” are reluctant or unable to embrace new devices. Thus, a single
interface cannot support the different requirements and abilities of all users.
Adaptation has been recognized as a solution for supporting such require-
ments that are drifting apart (see Broy, 2006 and Jameson, 2003). In doing
so, adaptation may open up an interactive system to a larger user base and
therefore increase the success of a product. Adaptation also helps to address
further requirements. Laws have been passed that enforce usability and ac-
cessibility in interactive systems. For example, the German law of equality for
handicapped people (“Behindertengleichstellungsgesetz”) from the year 2002
regulates accessibility in government websites. Adaptation may offer specific
interfaces for the capabilities of individual people, for instance by changing
the font size and colors.

Höök (2000) discusses four challenges that have to be met before adap-
tive user interfaces become real: usability, useful adaptations, development
methods, and maintainability. In this work, we present solutions for these
challenges for adaptive interactive systems. We present usability principles
and discuss their implications on adaptive interactive systems (usability). We
devised a set of adaptations and documented them as adaptation patterns,
thus sharing best practice of adaptive interactive systems (useful adaptations).
We created an adaptation framework that allows a developer to integrate
adaptive features into interactive systems (development methods). We imple-
mented interactive systems and tooling that is available at design time and
runtime (maintainability). In addition to the challenges presented by Höök,
a description of user behavior poses another topic of adaptive interfaces. For
this purpose, we also present approaches for user modeling in adaptive interac-
tive systems. Adaptation of interactive systems therefore may be divided into
two areas of work: Modeling user behavior and improving the user interface
based on these observations. In this work, we present a conceptual framework
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both for user modeling and adaptations in interactive systems. Thereafter, we
introduce an adaptation framework for multimodal interactive systems. A ref-
erence implementation of the framework serves as a test bed for an evaluation.
In the remainder of this chapter, we introduce the constituents of this work,
discuss the general structure of adaptive interactive systems, present adapta-
tion causes other than user behavior, and provide an outline of this work.

1.1 Adaptive Multimodal Interactive Systems

Adaptation represents an intriguing idea for improving the usability of inter-
active systems. Different models of adaptive interactive systems have been
investigated in the past decades. This chapter introduces the constituents of
adaptive interactive systems and discusses the components common to all
adaptive interfaces. Langley (1997) defines adaptive user interfaces as follows:

An adaptive user interface is an interactive software system that im-
proves its ability to interact with a user based on partial experience
with that user. (Langley, 1997, page 56)

This definition establishes two areas of work, user modeling and adapta-
tion. In order to perform adaptations, an adaptive interactive system observes
the user-system interaction and represents the user by a model. Such a user
model is constructed automatically from an observation of the user or inter-
actively by asking the user during the interaction. The view of the interactive
system on the user is limited to the information in the user model. However,
this view is always partial, since information beyond the observations is not
available to the interactive system. The user model serves as a basis for de-
ciding whether to apply adaptations at all and, if so, which adaptations to
select. The purpose of adaptations is to improve the user-system interaction,
for example by supporting expert users with repetitive tasks or introducing
novice users to the interactive system. In the following, we discuss the main
constituents of adaptive interactive systems in more detail, namely interactive
systems, user behavior, and adaptations.

1.1.1 Multimodal Interactive Systems

Interactive systems refer to computer-based systems with an interface that
enables users to interact with these systems. Examples of interactive systems
include personal navigation devices in the car, interactive TV systems in the
living room, or mobile phones that people carry with them. Interactive systems
enable the user to accomplish goals with a device. For this purpose, the user
controls functions provided by the device through the interface.

The nature of user-system interactions is manifold. It includes speech inter-
action, touch screen-based interaction, and input by a remote control. Input
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and output channels, such as speech or touch-based interaction, are called
modalities. Multimodal interactive systems refer to systems with more than
one communication channel. Multimodal interaction has found widespread use
in the domain of automotive dashboard systems. These systems offer access to
functions such as a navigation services, radio, or climate settings by means of a
graphical screen, which the driver controls by a rotary push switch or a touch
screen. In addition, many dashboard systems support speech-based interac-
tion to allow the driver to keep the hands on the steering wheel while on the
road. Speech input and output are used to interact with the system. Gestures,
eye gaze, and body movement are further examples of input modalities.

One of the earliest multimodal interactive systems, which is called “put-
that-there” (Bolt, 1980), allows a user to interact with a geometrical world
by means of spoken deictic commands and gestures, such as “put this cube
over there”. Twenty years after Bolt, Oviatt (1999) disproves ten myths of
multimodal interaction by presenting empirical findings for multimodal inter-
active systems. For instance, user input from different modalities does not
occur concurrently, but with a gap of several seconds. In addition, users do
not provide data redundantly, but the inputs from the different modalities
complement each other. An example of an interactive system that supports a
wide range of modalities, such as speech, gestures, and facial expressions, is
the SmartKom prototype (Wahlster, 2003).

In multimodal interactive systems, multimodal fusion combines the signals
of the individual modalities. In addition to combining modalities, the fusion
extracts semantics and converts the different channels into a common rep-
resentation. For instance, both speech and haptic input may open the route
guidance screen in a navigation device by triggering a specific event. Whereas
multimodal fusion is beyond the scope of this work, our approach supports
multimodal interaction by considering different modalities in user modeling
and adaptation.

1.1.2 User Behavior

Adaptations may be triggered by different adaptation causes, such as the con-
text of the interaction, the culture of the user, or user behavior. In this work,
we discuss the adaptation of interactive systems to user behavior. From a
philosophical point of view, Dretske (1988) defines behavior as an internally
produced movement and contrasts behavior with other movements that are
produced externally. For instance, raising an arm is behavior, whereas having
an arm raised by someone else is not. Reflexive and other involuntary move-
ments are considered as behavior. Thus, behavior does not necessarily have
to be voluntary and intentional.

From the perspective of an interactive system, human behavior is limited
to actions the system observes, such as clicks of a mouse button, finger presses
on a touch screen, or speech utterances. Additional sensors monitor further
behavior, such as movements in a room. However, the adaptive interactive
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system does not differentiate between involuntary and voluntary behavior.
Therefore, the system observes user behavior by monitoring input modalities
and additional sensors. An adaptive interactive system not only takes into
account past user behavior, but also predicts future behavior. This allows
the interactive system to anticipate user actions and describe preferences. For
this purpose, a user modeling component processes observed user behavior,
creates a model from the collected data, and applies user modeling algorithms
to this data. Finally, the information in the user model serves as a trigger for
adaptations.

1.1.3 Adaptations

Adaptation of interactive systems describes changes of the interface that are
performed to improve the usability or the user satisfaction. For example, an
adaptation may enable a novice user to accomplish an otherwise unsolvable
task by offering context-sensitive help or by highlighting interface elements
related to the current task. In addition, adaptations decrease the task com-
pletion time or improve the satisfaction of the user, without necessarily im-
proving other objective measures.

Adaptations may be performed at different levels of abstraction. At the
lowest level, an adaptation changes individual interface elements. For instance,
an adaptation may highlight a list entry by changing its color. More complex
adaptations add components to the interface or rearrange components, such as
graphical buttons or speech output prompts in a voice user interface. Finally,
adaptations may alter the dialog flow of the interactive system. For example,
an adaptation may select different approaches for specific tasks for beginners
and experts. The aim of adaptations is an improvement of the user-system
interaction.

1.2 Structure of Adaptive Interactive Systems

All adaptive interactive systems share a common structure and include a
number of components that are necessary for performing adaptations. In this
section, we present these components and discuss their contribution to the
process of adapting interactive systems to user behavior. Adaptation to an
individual user is either initiated by the user or by the interactive system
(Oppermann, 1994; Jameson, 2003). Therefore, it seems to be important to
differentiate between adaptable, i.e., manually adapted, and adaptive, i.e., au-
tomatically adapting, interactive systems. Adaptable systems are also referred
to as customizable or personalizable interactive systems. Most PC software of-
fers settings for customizing software according to individual preferences. For
example, the Microsoft Office productivity suite allows the user to arrange the
menu items freely. An adaptation component takes the adaptation decision
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in automatically adaptive interactive systems. For this purpose, the interactive
system creates an abstract representation of the user and an adaptation com-
ponent improves the interactive system to better reflect the user’s character-
istics. In this book, we focus on interactive systems that automatically adapt
to a user.

We now introduce the general structure of adaptive interactive systems
and discuss different models that adaptive interfaces employ, such as the user
model and the system model. Finally, different adaptation triggers, such as
user behavior or context, are introduced.

1.2.1 General Structure of Adaptive Interactive Systems

Research has produced a number of different abstract models to describe
adaptive interactive systems. These models address the structure of interactive
systems as well as the adaptation process. Jameson (2003) regards the user
model as the central component of user-adaptive interactive systems. First,
information about the user is acquired and stored. Second, the user model
is applied to the interactive system and the outcomes of the user modeling
process serve as a basis of decision-making for adaptations. Jameson’s model
however does not include the individual adaptations of a user interface. The
ISATINE framework (Lopez-Jaquero et al., 2007) combines the taxonomy of
adaptive systems by Dieterich et al. (1993) with Norman’s mental theory
of action (Norman, 1986). The framework proposes the following stages for
adapting interactive systems:

1. Goals for user interface adaptation
2. Initiative for adaptation (user, system or both)
3. Specification of adaptation
4. Application of adaptation
5. Transition with adaptation (between before and after the adaptation)
6. Interpretation of adaptation
7. Evaluation of adaptation

An agent-based implementation of the framework reproduces the indi-
vidual steps of the framework. However, some of the steps of the ISATINE
framework are not necessary for system-initiated adaptive interactive systems,
such as “initiative for adaptation”.

Brusilovsky et al. (2001) and Paramythis and Weibelzahl (2005) present
models of system-initiated adaptive interactive systems. Both models have
been created for the purpose of evaluation in the domain of adaptive hyper-
text systems and share a process-oriented view on adaptation. The process is
segmented into the following steps:

1. Monitoring the user-system interaction and collecting input data
2. Assessing or interpreting the input data
3. Modeling the current state of the world (omitted in Brusilovsky’s model)
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4. Deciding about the adaptation
5. Executing the adaptation

The model presented by Paramythis and Weibelzahl furthermore comprises a
number of sub-models. These are divided into static models that do not change
at runtime (e.g. system model and action model) and dynamic models, which
are updated by the user-system interaction (e.g. user model and interaction
history).

Based on these models for adaptive hypertext systems, we created a model
for adaptive interactive systems. It is shown in Figure 1.1 and serves as a
foundation for the description of adaptive systems in this work. The model
builds on the previously presented models and extends them. It describes an
iterative process that starts with the user-system interaction and closes with
the application of adaptations. On the outside, the processes involved in the
adaptation procedure are shown. Inside of the processes, a number of models
required for the adaptation are depicted. We separate adaptation into two
phases: modeling user behavior and performing adaptations. The first two
steps of the model describe user modeling. This phase consists of collecting
data by observing the user-system interaction and performing computations
with the collected data. For this purpose, a number of user modeling algo-
rithms are presented in Chapter 3. The outcome of user modeling may for
instance be a forecast of a future user action, a prediction of a value the user
will select, or a statement about the user’s proficiency. The final two steps of
the adaptation process prepare and execute adaptations. First, once meaning-
ful information has been extracted from the observation of the user-system
interaction, the adaptive system employs the user modeling results to decide
about adaptations. For this purpose, an adaptation component investigates
which adaptations to apply in order to improve the user-system interaction,
for instance by supporting the user with repetitive tasks or assisting non-
experienced users. The adaptation decision also deliberates whether or not
to apply adaptations. Moreover, other currently active adaptations have to
be taken into account when deciding about the application of adaptations.
Once the adaptation component has identified a possible adaptation and ex-
pects an improvement of the user-system interaction from this adaptation, the
adaptation is applied to the interactive system. Adaptation is not a one-time
change of the interactive system. Instead, the adaptation model represents
an iterative process. Once an adaptation was performed, the user continues
to work with the interactive system and more interaction data is collected.
Based on these new observations, the adaptive system identifies additional
adaptations or disables adaptations that are not considered helpful any more.
Therefore, we consider adaptation as a continuous process of evaluation and
improvement.

The adaptation process relies on a number of models, which are abstract
representations of concepts. The view of the system on the respective parts
of the system is limited to these models. Figure 1.1 includes four models:
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Fig. 1.1. A model of adaptive interactive systems.

the system model, the interaction model, the user model, and the adaptation
model. In the following, we introduce the individual models and their role in
the adaptation process.

1.2.2 Models in Adaptive Interactive Systems

In this section, we introduce a number of models that describe different aspects
of adaptive interactive systems. These models are, in one form or another,
part of most adaptive interactive systems or adaptation frameworks. Some
models of other frameworks are not needed when adapting an interactive
system to user behavior, such as the context model. Other models found in the
literature use different names, but describe the same concepts. For instance,
the task model is a separate model in some frameworks (e.g. Paramythis
and Weibelzahl, 2005), but part of the interaction model in this work. The
individual models used in this work are system model, interaction model, user
model, and adaptation model.

The System Model

The system model describes different aspects of the interactive system that
is the subject of adaptation. This model is mostly static, but reflects changes
caused by the adaptations. The dialog flow defines the execution sequence of
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the application. The reference implementation of the framework presented in
this work uses a statechart-based formalism for defining interactive systems.
These diagrams consist of states and transitions between these states. Tran-
sitions are triggered by events, which are for example caused by user actions.

Different user interface (UI) components define contingent parts of the in-
terface in different modalities, e.g. graphical screens or speech contexts. These
components consist of interface elements, such as graphical buttons or speech
output prompts. UI components are attached to states and the interactive
system activates them when entering the respective state. For instance, the
dialog manager displays a graphical screen or plays back the speech output
prompts of a speech component. Graphical user interfaces (GUI) interact with
the user by means of a graphical display, which depicts one screen at a time.
A screen consists of a hierarchy of interface elements. These elements include
text labels, buttons, lists, and images. User input is performed by means of
touch-based interaction or other control devices, such as a remote control or
a push rotary device. Voice user interfaces (VUI) communicate with the user
by means of speech output and speech input commands. Loudspeakers play
back speech output, which is either pre-recorded or synthesized. The interac-
tive system records utterances by the user with a microphone and performs
automatic speech recognition (ASR) to extract the meaning of the utterance.
Grammars and statistical language models, which enable natural language un-
derstanding, define valid user input. Other modalities, such as gesture input,
are defined analogously. All UI components are organized in a hierarchical
structure and consist of a main component with a number of children. For
instance, a graphical component has a special element type called container
that holds other components. Speech components consist of speech input com-
mands and output prompts.

The user-system interaction is bidirectional, i.e., the interactive system
communicates with the user and the other way round. User input, such as a
button press on the input device or a speech utterance, triggers events that
are processed by the dialog manager. For instance, a state change in a state
transition diagram initiates the loading of new components. State transition
diagrams serve as an example formalism, but others may be integrated as well.
Adaptations read information about the interactive system from the system
model and write updates to it.

The Interaction Model

The interaction model describes actions a user performs as well as the possible
relations between these actions. A user action is a logical step and represents
the atomic unit of meaningful user interactions. User actions may be described
either by a single basic observation or a sequence of these observations. The
interaction model comprises a list of user actions that are available in an
interactive system. These actions correspond to the functionality of such a
system.
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An interactive system has to identify user actions at runtime to facilitate a
description of user behavior. This information is either emitted by the interac-
tive system, for instance based on annotation at design time, or machine learn-
ing techniques identify user actions from an observation of the user-system
interaction. The same action may be performed in different modalities and
with different input devices, such as speech input, input by haptic devices
(e.g. mouse, remote control, or push rotary device), or gesture input. For ex-
ample, a user may lower the volume of a TV system with a button on the
remote control or a speech utterance “lower the volume”. Therefore, actions
also represent a conceptual abstraction from modalities.

User actions serve as building blocks for a higher-level description of user
behavior. Several approaches are available for this description. Plan recogni-
tion (Carberry, 2001) refers to the approach of inferring plans from an obser-
vation of the user-system interaction. A plan describes possible combinations
of user actions that are performed to achieve a goal. Plans often include un-
certainty, for instance about the order of actions and the user’s goal. Task
modeling (Paternò, 2001) presents a similar approach, which explicitly mod-
els all possible interactions between the user and the interactive system by
means of a task model. Tasks define all actions that may be performed in
an interactive system by means of a hierarchical structure composed of based
user actions. The higher-level description computes different types of infor-
mation about the user, such as a list of possible actions or a prediction of the
next action. This information finally serves as an adaptation trigger.

The User Model

The user model creates a representation of the user that serves as an ab-
straction of relevant user characteristics. This information in turn triggers
adaptations. For this purpose, a user modeling component performs “learn-
ing, inference, and decision making” (Jameson, 2003, page 2) and stores the
outcome of these computations in a user model. The contents of the user
model depend on the specific requirements of an adaptive interactive system.
This model comprises information such as user preferences, an interaction his-
tory (based on information from the interaction model), goals, or predictions.
Kobsa (2001) presents a list of “services” offered by a user model, which in-
cludes for example assumptions about user characteristics, a classification of
users belonging to specific subgroups, recording of user behavior, and draw-
ing additional inferences. A user model for instance stores information like a
classification of the user as beginner or expert or a prediction of the next user
action. User models support different data types, ranging from simple flags
to complex data structures for sophisticated user modeling algorithms. These
algorithms, such as neural networks, Bayesian networks or Markov chains (see
Witten and Frank, 2005), derive new information from the data stored in the
user model.
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The input for a user model is either explicit user input or an implicit
observation of the user. The user enters explicit information by means of a
questionnaire or a form. These questions include for instance a self-assessment
of the user as a beginner or an expert and information about capabilities, such
as hearing or sight impairments. An implicit data collection is based on an
observation of the user-system interaction. For this purpose, the interactive
system collects data from external sensors (e.g. physiological data) or records
internal events (e.g. user input or system reactions, such as loading a different
screen). The user model is connected to these observations, stores the collected
data, and processes it with different user modeling algorithms.

However, the user’s characteristics are not constant, but change over time
when the user is working with an interactive system. This phenomenon is
called concept drift. For example, the user may become an expert user or the
preferences of the user change over time. Therefore, user modeling has to be
performed perpetually to address these changes. For example, Koychev and
Schwab (2000) address drifting interests by means of gradual forgetting.

The Adaptation Model

The adaptation model specifies a set of adaptations. In addition, it defines
the context in which to apply these adaptations. The adaptation model also
comprises a strategy that defines when adaptations should be applied. For
instance, an adaptation may improve the interaction for a beginner, but dis-
tract or annoy an expert user. The adaptation decision also considers the list
of currently active adaptations.

Adaptation descriptions comprise a declarative and a functional part. The
former one defines the prerequisites, effects, and improvements of the adap-
tations. In addition, it connects the adaptation to user modeling information
that is used as a trigger. The functional description defines the application
of an adaptation to a specific part of the interface. This work includes a set
of adaptations that comprise both a declarative and a functional description.
For example, the “List Element Selection” adaptation (see Section 4.3.2) high-
lights interesting items in a list based on a prediction by the user modeling
component (declarative description) by changing the background color of the
respective item (functional description).

The Domain Model

In addition to the previously discussed models, the domain model describes
knowledge from the domain of the interactive system. In an interactive TV
system, the domain model may for instance describe channels. In a personal
navigation device, the domain model may describe cities, streets, and traffic
information.
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1.3 Causes of Adaptation

In this work, we discuss the adaptation of interactive systems to user behav-
ior. However, adaptive interactive systems may also adapt to other causes
of adaptation, such as the context of the interaction and the device. When
adapting to an individual user, an interactive system may consider differ-
ent user characteristics. These characteristics include user behavior, invariant
characteristics of the user, and emotions. The interactive system observes the
user-system interaction to determine user behavior. For this purpose, the in-
teractive system monitors basic events. User behavior includes a list of past
interactions or preferences, such as the most frequently selected names in an
address book, and predictions about future user behavior.

An interactive system may adapt to other user characteristics than be-
havior, such as age and hearing or vision impairments. However, these kinds
of characteristics cannot be extracted from the user-system interaction and
require a manual personalization of the adaptive system by means of explicit
user modeling. For instance, Schneider et al. (2007) describe a decrease of
the performance of simple sensory, motor and cognitive activities after the
age of 65 and propose adaptivity as a solution. Different kinds of motor im-
pairments hamper the operation of regular input devices, such as a mouse.
Some impaired users have problems to click, whereas others have difficulties
in moving the mouse. Gajos et al. (2008) present an adaptive user interface
that limits the required number of mouse clicks or distance a mouse has to
be moved according to individual capabilities. User characteristics may be
represented in a user model as static facts and the adaptations are executed
in a similar fashion as in interactive systems that adapt to user behavior.
Another facet of the user is the culture, which has implications for the inter-
action style and appearance of the interactive system. Reinecke and Bernstein
(2009) present an interactive system that adapts to the different countries a
user has lived in.

Emotions represent another user characteristic that an adaptive interac-
tive system may consider. The current emotional state of the user, which may
change quickly, is extracted from speech (Kwon et al., 2003) or from facial ex-
pressions (Cohen et al., 2003). Negative emotions, such as anger or frustration,
are more relevant for adaptive interactive systems, since positive emotions in-
dicate that the dialog is working well. If the user is angry, the interactive
system may adapt the strategy. For instance, the ultimate adaptation in a
telephony system is to switch from an automatic dialog to a human operator.
Pittermann et al. (2007) and Gnjatović and Rösner (2008) present examples
of emotion-aware adaptive dialog systems.

User interfaces do not only adapt to user characteristics, but also to
other factors, such as the context of use or the device. Context-aware user
interfaces (Harter et al., 1999) consider the current context of use. For in-
stance, a context-aware museum guide (Chou et al., 2005) not only considers
the knowledge of the user, but also incorporates the currently visited room.



1.4 Outline 13

Different devices have significantly different capabilities, such as screen sizes
or computing resources. A device-adaptive application automatically exploits
the resources of a device optimally. The diversity of screen sizes is most notable
with mobile devices, ranging from small mobile phones to tablet devices. For
example, Eisenstein et al. (2001) present a model-based framework for devel-
oping mobile applications that adapt to the characteristics of a specific device.
Thus, a wide range of adaptation causes exists. Our work however addresses
the adaptation of interactive systems to user behavior. Since the user model
represents the adaptation cause, it may be extended to support other causes
as well.

1.4 Outline

This work is structured as follows. In Chapter 2, we present on overview of
related work. First, we address different adaptive interactive systems, namely
adaptive hypertext systems, adaptive user interfaces, and adaptive speech dia-
log systems. Thereafter, different using modeling algorithms and architectures
are presented. We introduce the concept of design patterns and adaptation
patterns as well as the formalization of patterns. Finally, we discuss how in-
teractive systems employ semantic technologies for dialog management and
in adaptation architectures.

In Chapter 3, we introduce an approach for modeling user behavior from
basic events. We regard user behavior as a combination of actions and data.
An approach for recognizing user actions with probabilistic automata is pre-
sented. Based on these actions, a description of higher-level user actions be-
comes feasible. Task models provide a description of user actions. We derive
information such as a list of possible actions or detecting user problems from
these models. In addition, a prediction of user actions triggers different adap-
tations. We present two algorithms for predicting one action and an algorithm
for predicting a sequence of actions.

In Chapter 4, we present a number of usability principles for interactive
systems and discuss their implications for adaptive interfaces. We introduce
design patterns as a method for sharing best practice in a domain. In order to
define adaptation patterns for interactive systems, we created a specific pat-
tern format. Thereafter, we present a set of multimodal adaptation patterns
for interactive systems. These patterns address both graphical and speech user
interfaces.

In order to support the implementation of adaptations in interactive sys-
tems, we present an adaptation architecture in Chapter 5. This framework
creates an abstraction of the interactive system by means of semantic tech-
nologies. It includes a user modeling component and an adaptation compo-
nent. A reference implementation shows the practicability of the framework
and serves as a test bed for an evaluation. In Chapter 6, we present an evalu-
ation of the adaptation approach. We tested the action prediction algorithms
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with recorded user sessions. In order to investigate the adaptations, we created
different test systems and performed user tests with these systems. For the
evaluation, objective measures were collected by means of log files and subjec-
tive measures were collected with a questionnaire. In Chapter 7, we summarize
this work and present future research.



2

Related Work

All intelligent thoughts have already been thought;

what is necessary is only to try to think them again.

–Johann Wolfgang von Goethe (1749–1832)

Adaptive user interfaces and adaptive dialog systems have been a topic of
research for decades and a significant number of prototypes and approaches
have been developed. In this chapter, we present adaptive systems and adap-
tation approaches and discuss their relation to this work. Adaptation may
be regarded as the application of artificial intelligence techniques to user in-
terfaces. The aim of artificial intelligence is to create intelligent computer
systems by imitating – and possibly surpassing – human intelligence. In doing
so, artificial intelligence enables a computer to become a worthy opponent in
playing games such as chess, to understand human speech, or to become an
intelligent agent for tasks like planning appointments. When applied to user
interfaces, artificial intelligence techniques are used to observe the user-system
interaction and to perform improvements of the interface. Interactive systems
that use artificial intelligence to anticipate user behavior and improve the
user interface are called intelligent or adaptive interfaces. Adaptations enable
a user to work with interactive systems more easily and conveniently.

M. Bezold and W. Minker, Adaptive Multimodal Interactive Systems, 15
DOI 10.1007/978-1-4419-9710-4 2, c© Springer Science+Business Media, LLC 2011
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Research on the adaptation of interactive systems to abilities, traits, and
preferences of individual users started with in investigation of user modeling.
For instance, user modeling determines user preferences or assigns users to dif-
ferent groups. One example of an early user modeling system is the Grundy
system (Rich, 1979), which describes the user by means of stereotypes. Based
on these stereotypes, novels are recommended to the user. Subsequently, user
modeling was applied to enable the adaptation of the interface to an indi-
vidual user. One of the earliest investigations of the viability of adaptive in-
terfaces is presented by Greenberg and Witten (1985). A user test with an
adaptive menu-driven telephone book showed promising results and led to the
development of further adaptive interactive systems. In the following decades,
adaptivity has been applied to different kinds of interactive systems, such as
office suites, hypertext systems, or speech dialog systems.

In this work, we address the adaptation of multimodal interactive systems
in general. We present approaches for user modeling and adaptation that are
applicable to a wide range of interactive systems. However, some of the adap-
tive interactive systems discussed in literature deal with very specific aspects
of user interfaces or employ application-specific user modeling algorithms. Ex-
amples of such interfaces are an adaptive navigation engine (Bachfischer et al.,
2007) or an adaptive restaurant guide (Langley, 1999). The user modeling al-
gorithms and adaptations used in these interactive systems are not applicable
to user interfaces in other domains. Instead, we discuss generic approaches
that may be applied to different interactive systems. Adaptive systems also
include recommender systems, for instance for online shops or movies based
on films the user has watched before. An overview of recommender systems
is given by Adomavicius and Tuzhilin (2005). A special case of recommender
systems are collaborative filtering systems (Breese et al., 1998), which gener-
ate recommendations from preferences of other users. However, recommender
systems are not the focus of this work. In the following, we provide an overview
of different research areas in the domain of adaptive interactive systems and
introduce examples.

This chapter is structured as follows. First, we give an overview of adap-
tivity in different kinds of interactive systems. Next, we describe different
approaches for user modeling and introduce the concept of design patterns.
Finally, a review of the use of ontologies and semantic technologies in inter-
active systems concludes the chapter.

2.1 Adaptive Interactive Systems

Adaptivity has been applied to a wide range of interactive systems, such as
adaptive hypertext systems, adaptive user interfaces, or adaptive speech dialog
systems. This section gives an overview of these different types of adaptive
interactive systems.
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2.1.1 Adaptive Hypertext and Adaptive Websites

The adaptation of hypermedia systems and websites has been investigated
extensively. Hypermedia systems provide interconnected content nodes to the
user and the user moves between these nodes by means of hyperlinks. The
content is composed of text fragments, graphics, and movies. Examples of
hypermedia systems include learning systems, museum guides, or websites on
the internet. Adaptive hypermedia systems generate custom versions of hy-
permedia pages for an individual user, for instance by adjusting content nodes
to the knowledge level of the user or by sorting links according to the user’s
interests. A user modeling component constructs a user model from an obser-
vation of visited nodes and time spent at each node. Based on this information,
the user model identifies other content nodes the user might be interested in,
for instance by recommending unknown nodes for relevant topics. Thereafter,
different adaptation techniques generate a custom presentation for the user.
Adaptive websites, a special case of adaptive hypertext systems, apply adap-
tation techniques to websites (Perkowitz and Etzioni, 1997). User modeling
in adaptive websites is usually based on mining log files produced by a web
server and employs algorithms such as cluster mining (Perkowitz and Etzioni,
1999). Since hypermedia systems are focused on content, user modeling algo-
rithms primarily are concerned with the documents a user accesses and the
adaptations alter the presentations of the content. The user interaction in in-
teractive systems is richer and allows extracting more extensive information.
For instance, hypermedia systems are usually limited to log data, whereas
interactive systems observe the interaction of the user with each interface
element, such as scrolling in a list or speech interaction.

Adaptations in adaptive hypermedia systems have been categorized into
two groups, adaptive presentation techniques and adaptive navigation sup-
port (cf. De Bra et al., 1999a). Adaptive presentation performs adaptations
of content nodes, such as showing or hiding nodes or selecting among dif-
ferent versions of a node. For instance, longer or additional text fragments
are selected for starters, whereas only a short text is presented to experts.
In addition, the adaptation may gray out known content fragments. Adap-
tive navigation support adapts the link structure between content nodes to
reflect the knowledge and preferences of a user. For instance, links between
content nodes are emphasized by reordering them to show important ones
on the top or by annotating links with text or graphics. Links to nodes that
are not interesting for the user are hidden by showing them as regular text
or removed by not showing the link text at all. A comprehensive discussion
of adaptive hypermedia technologies is presented by Brusilovsky (2001). It
includes the taxonomy of adaptive hypertext technology given in Figure 2.1.
The taxonomy includes adaptive presentation techniques and adaptive navi-
gation support and divides these technologies into more specific adaptations.
However, adaptations for hypertext systems may not be transferred directly
to interactive systems. Adaptations can be applied to a wide range of different
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Fig. 2.1. A taxonomy of adaptive hypermedia techniques (based on Brusilovsky,
2001, page 100). The lowest layers have been omitted for reasons of clarity.

interface elements rather than content nodes and links. User interfaces consist
of components, such as buttons or speech input and output elements, which
require different adaptations. Therefore, we present specific adaptations for
interactive systems in this book. However, the advent of client-side dynamic
web pages, which enable a web page to communicate with the server and up-
date the page dynamically, blurs the differences between user interfaces and
hypermedia systems. For instance, Schmidt et al. (2008) present an adaptation
architecture for dynamic semantic web pages.

Different reference models have been defined in the domain of hyperme-
dia, such as the Dexter reference model (Halasz and Schwartz, 1994). A ref-
erence model is an abstract definition of a domain and the concepts therein.
It facilitates a general discussion of a domain, without restricting the va-
lidity to a single system. Different approaches extend the Dexter reference
model for adaptive hypertext systems. The Adaptive Hypermedia Applica-
tion Model (AHAM; De Bra et al., 1999b) adds three sub-models to the stor-
age layer of the Dexter reference model. First, the domain model describes
the content of the hypermedia system and comprises a list of text and mul-
timedia fragments and links between these nodes. Second, the user model
stores information about the knowledge level of different users, such as a list
of visited content fragments. Third, the teaching model consists of a set of
“pedagogical rules” and defines how adaptations are performed. The Munich
reference model (Koch and Wirsing, 2002) is similar to AHAM, but uses the
Unified Modeling Language (UML) as a formal foundation. This model also
extends the storage layer of the Dexter reference model and introduces a do-
main model, a user model, and an adaptation model, which correspond to the



2.1 Adaptive Interactive Systems 19

respective models in AHAM. Based on these models, different operations, such
as authoring, retrieval, or adaptation, specify the functionality of adaptive hy-
permedia systems. Other domains of adaptive systems may benefit from this
research, which has produced sophisticated models for adaptive hypertext sys-
tems. In this work, we use an ontology for information representation, which
may serve as a foundation for a reference model.

In the following, we present examples of adaptive hypermedia systems.
ELM-ART (Weber and Brusilovsky, 2001) is an intelligent tutoring system
for the LISP programming language. A traffic light metaphor provides adap-
tive navigation support: a green bullet in front of a link recommends a page
for a user, whereas a red bullet indicates that the user’s level of knowledge
is deemed insufficient for that page. The AVANTI project (Fink et al., 1996;
Stephanidis et al., 1997) provides multimodal access to a tourist information
system and considers the different needs of individual users. For instance, the
AVANTI system provides laypersons with an explanation of technical terms,
which is not necessary for expert users. One special focus group of the sys-
tem are handicapped and elderly people. For instance, the tourist information
contains more information on accessibility of sites when used by wheelchair
users. A specific version of the text is served to blind people on a Braille key-
board. The AVANTI system supports adaptability, i.e., a manual adaptation
by the user, as well as adaptivity, i.e., an automatic adaptation by the system.
Adaptations are performed by means of adaptation rules.

Adaptive hypermedia techniques may also be applied to the semantic web,
which extends regular hypertext with semantic annotations. These encode the
meaning of the respective text sections and facilitate information extraction
and reasoning. For example, the annotations clearly identify names of people
or time designations in hypertext documents. Adaptive hypertext techniques
have been applied to semantic websites. For instance, Dolog et al. (2003)
present SIMPLE, an adaptation framework that is based on semantic web
technologies and rule-based reasoning. For this purpose, a rule-based language
called TRIPLE, which is presented in more detail in Section 2.4, defines adap-
tation rules. The approach presented in this work also relies on semantic web
technology. However, instead of rules, we use a more abstract representation
of adaptations. At the same time, the adaptations may be reused and tailored
to the requirements of a specific interactive system.

2.1.2 Adaptive Graphical Interfaces

Graphical interfaces enable users to control a wide range of devices, such as
personal computers, mobile phones, or personal navigation devices. Due to
the high degree of deployment, significant research on adaptive user interfaces
has been conducted in the domain of office suites, such as Microsoft Office.
Since a lot may be learned from an investigation of unsuccessful approaches,
we start this section with a discussion of unsuccessful adaptations and expose
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their shortcomings. Thereafter, we introduce those adaptive interfaces that
have proven successful.

One well-known use of adaptive technology is the Office Assistant, a car-
toon style animated help agent introduced in Microsoft Office 2000 and re-
moved again in Microsoft Office 2007. The agent observes user actions and
provides help to the user. The technology is based on the Lumière research
project (Horvitz et al., 1998), which employs explicitly modeled Bayesian net-
works to infer interesting help topics. However, different reasons caused the
help agent to fail, such as a high degree of distraction and the selection of
irrelevant help topics. Swartz (2003) presents a discussion on peoples’ atti-
tudes towards anthropomorphic interface agents and identifies some of the
problems related to the Office Assistant. For example, agents are not able to
comply with human rules of etiquette. In general, interface agents are active
and personalized collaborators that assist the user in an intelligent way with
various tasks. Maes (1994) presents interface agents, which support the user
with tasks such as handling incoming mail in an e-mail application, planning
appointments in a calendar application, or filtering news in a news reader.
However, Shneiderman (see Shneiderman and Maes, 1997) argues that direct
manipulation interfaces correspond to how humans perceive and think better
than intelligent agents. Direct manipulation describes interfaces in which ele-
ments on the screen are directly manipulated, e.g. with a mouse. The use of
visualization techniques allows the user to deal with huge amounts of data.

Adaptive menus (see Figure 2.2) are a feature that was added to Microsoft
Office and removed later. The menu hides rarely used menu entries and the
user expands the full menu by clicking on small arrows at the bottom of the
menu. However, if an item is not in the short menu, the user has to read both
the short and the full menu, making the selection of items that are not on the
short list very time-consuming. In addition, this kind of adaptive menu breaks
with the usability principles of learnability, predictability and consistency by
not leaving items in a place in which users always find them. Mitchell and
Shneiderman (1989) obtained similar results in a comparison between static
menus and dynamic menus. Dynamic menus placed frequently used items to
the top of the list. An evaluation showed that dynamic menus did not im-
prove the interaction and users preferred static menus. Therefore, if elements
are removed from a list, the list element is more difficult to find, for instance
because the user cannot remember positions in a list. These examples show
a reluctance of users to adopt adaptive interfaces that do not adhere to us-
ability principles. However, other research projects demonstrate that adaptive
interfaces improve both performance and user satisfaction. In this work, we
discuss usability principles for adaptive systems and present adaptations that
comply with them.

Extensive research has been performed on adaptive menu selection. Two
kinds of adaptations for list items were identified: changing the position by
moving or duplicating menu items (spatial), and changing the appearance of
menu items (graphical). One successful spatial adaptation of menus are split



2.1 Adaptive Interactive Systems 21

menus, which place frequently used items into a separate section on top of
the list. For example, Microsoft Word uses split menus in the font selection
box. Frequently used fonts are shown in a separate section on top of the list.
A study by Sears and Shneiderman (1994) shows that split menus, which move
elements into the split area instead of copying them (see Figure2.3(a)), ac-
celerate list selections and users prefer split menus over non-adaptive menus.
Findlater and McGrenere (2004) compared a static split menu, an automati-
cally adaptive split menu, and an adaptable split menu, which lets users put
items into the top section by hand. An evaluation revealed that the adaptable
version was faster than the adaptive version and users preferred the former
one. This suggests that users prefer customizable menus to adaptive menus.
However, a study by Mackay (1991) showed that users do not perform manual
customization unless the advantage of doing so is obvious. Moreover, many
input devices limit the possibilities of complex customization, such as small
mobile phone keypads or push rotary switches in the car. Gajos et al. (2006)
investigated different adaptive versions of toolbars, which are common ele-
ments of graphical interfaces. For this purpose, three different adaptations
were compared to a non-adaptive baseline. First, a split interface puts fre-
quently used items into a separate toolbar. This corresponds to a split menu,
which copies elements instead of moving them (see Figure 2.3(b)). Second, a
moving interface moves frequently used elements from a popup menu into a
list. Third, a visual pop-out interface highlights frequently used elements. An
evaluation revealed that the split interface performed best, both yielding an
improvement of the user performance and achieving the best ratings in the
user satisfaction. The findings of Gajos et al. reveal that duplicating items
rather than moving them improves the user performance.

Graphical adaptive menus sustain spatial consistency and only alter the
appearance of menu entries. An adaptive emphasis is for instance accom-
plished by highlighting items that were predicted by a user modeling com-
ponent. Figure 2.3(c) presents an example of an adaptation that highlights

Fig. 2.2. Adaptive menu with manual expansion. Only frequently used items are
visible when the menu opens and the expands the full menu by clicking on the arrows
at the bottom.
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menu entries. Tsandilas and schraefel (2005) present an evaluation that com-
pares a list with highlighting to a list with highlighting and shrinking of text.
Selection times are lower for the adaptive version with a constant font size
and the authors reason based on a worst-case estimate that the adaptive ver-
sions should be faster than a non-adaptive baseline. Another comparison of
different adaptive menus is presented by Park et al. (2007). They compared a
traditional menu to an adaptable menu, which lets users change the sort order
of the list, an adaptive split menu, and an adaptive menu that highlights the
most frequently selected elements. Again, adaptable menus were most efficient
and the users preferred them. While the adaptive highlight menu did not re-
duce the selection time, users preferred it to the traditional menu. Instead of
highlighting menu entries, ephemeral adaptation (Findlater et al., 2009; see
Figure 2.4) reduces the visibility of items that are not selected frequently and
fades these items in quickly less than one second after the menu appeared.
In doing so, it includes the temporal dimension. An evaluation revealed that
menus with ephemeral adaptation reduce the selection time and users prefer
them to other versions. Menu selection is an important task for any kind of
interactive system. Therefore, the adaptations presented in this section are
incorporated into a set of patterns we introduce in Section 4.3. Two of the
systems created for the evaluation of the patterns use menu selection as their
task.

Mixed initiative adaptation (Horvitz, 1999) represents a compromise be-
tween user-initiated customization and system-initiated adaptation. This ap-
proach reflects the user’s preferences by letting the user decide when to employ
adaptations. Users prefer being in control, but do not personalize the system
unless they see a clear advantage in doing so (cf. Mackay, 1991). MICA (Bunt
et al., 2007) is a mixed-initiative adaptation framework that employs online
GOMS analysis. This framework recommends frequently used interface ele-
ments and the user may place them into a personalized interface. The user

(a) Split menu, items are
moved.

(b) Split menu, items are
copied.

(c) Menu with high-
lighted item.

Fig. 2.3. Three kinds of adaptive menus.
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decides if the recommended changes should be performed. A user evaluation
showed that users prefer the mixed-initiative to a customizable interface, as
long as the user modeling is accurate.

The adaptations presented in this section so far alter an existing inter-
face. However, some adaptive systems generate the user interface according
to the preferences or capabilities of an individual user. The SUPPLE system
(Weld et al., 2003) adapts graphical interfaces to different requirements, for
instance for desktop computers and mobile phones or pointer-based and touch
panel-based devices (Gajos and Weld, 2004). In addition, a storyboard exam-
ple is presented in which a printing dialog is adapted by adding frequently
used options from sub-dialogs to the main dialog. An extended version, called
SUPPLE++, supports users with motor impairments (Gajos et al., 2008).
Some users have difficulties in moving the pointing device, whereas others
have problems to click. Therefore, SUPPLE++ generates an interface that
is tailored to the capabilities of an individual user by reducing either the
distance the pointing device has to be moved or the number of clicks. An
evaluation showed that the users strongly prefer the adaptive version. The
most serious issue of generated interfaces is however the aesthetical appear-
ance of the interface, which is less appealing than an interface designed by
a human. In addition, safety requirements cannot be ensured with generated
interfaces. Our approach does not employ generated interfaces, but improves
interfaces created by a human designer. However, the “Alternative Elements”
adaptation presented in Section 4.3.3 allows an interactive system to select
among different alternatives provided by the developer.

2.1.3 Adaptive Speech Interfaces

Two human partners in a speech dialog adjust to each other, for instance by
asking clarifying questions or raising their voices when they think the dialog
partner does not understand them because their voice is too soft. Therefore, a

Fig. 2.4. Adaptive menu with ephemeral adaptation. Only the item that should
be recommended to the user is visible at the beginning. Other items appear quickly
thereafter.
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natural and intuitive dialog between a machine and a person needs to be able
to adapt to the user, rather than having a fixed dialog script. Consequently,
adaptation in speech dialog systems is an important research topic. Different
methods exist for implementing dialog control in speech-based interfaces. In
this section, we introduce these methods, explain how adaptation is imple-
mented within the individual approaches, and discuss the relation of these
concepts to this work.

A first kind of dialog specification is based on a rigid dialog definition,
which is followed closely by a dialog manager, such as state-based and form-
based dialog systems (cf. McTear, 2004). State-based dialog systems define
the dialog logic by means of state transition networks. These consist of states
and transitions. Speech output by the dialog system is connected to states.
Actions, such as speech input by the user, trigger transitions to other states.
In doing so, the network defines all possible dialog paths. One example of an
adaptive state-based dialog system is the TOOT system (Litman and Pan,
2002), a train information system that automatically adapts itself to the cur-
rent user. For this purpose, it changes the dialog initiative and the confir-
mation style. The dialog system starts with a “user initiative”, in which the
system asks open questions and leaves the initiative to the user, and “no con-
firmation” strategy, which does not confirm user input. Once problems are
detected based on low speech recognition scores, the TOOT system switches
to more conservative dialog strategies, such as “system initiative”, in which
the dialog manager asks the user specific questions, and “explicit confirma-
tion”, in which the dialog system confirms user input before advancing to the
next question. User evaluations showed that an adaptive version of the TOOT
system achieved a higher task success rate than a non-adaptive version. Hassel
and Hagen (2006) follow a similar approach and present an adaptive voice-
controlled infotainment system deployed in an automobile dashboard system.
Speech output prompts are adapted to the expertise level of the current user.
For instance, novice users receive a list of available commands, whereas the di-
alog system only plays short feedback tone for expert users. Table 2.1 presents
an example of speech interactions with a novice and an expert user. In gen-
eral, expert prompts are shorter than prompts for beginners. Rather than
considering only speech input confidence scores, the dialog system by Hassel
and Hagen uses more information to model the user’s experience, such as the
number of help requests or timeouts. An evaluation showed that the adaptive
prototype reduces the number of turns and the interaction time. The ap-
proach of selecting speech output prompts and input grammars depending on
characteristics of the user-system interaction matches well with the framework
presented in this work. A user modeling component derives information about
the user from the user-system interaction, such as speech recognition errors.
The adaptations presented in Chapter 4 include adaptations that select the
appropriate speech input and output components for a user. Whereas state
transition networks are rigid compared to other approaches, they are well
suited for defining multimodal interactive systems and facilitate a uniform
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Novice Expert

user: Entertainment. user: Entertainment.
system: Entertainment. You can system: Entertainment.

say AM, FM, or CD.

user: Choose CD. user: Choose CD.
system: Say a CD number. system: Number?

user: Unintelligible. user: Unintelligible.

system: I could not understand system: Pardon me?
you, repeat.

Table 2.1. An example of a speech interaction that is adapted to the experience of
the user. (Source: Hassel and Hagen, 2006, page 2.)

definition of different modalities, such as speech and graphics. The reference
implementation presented in this book employs a statechart formalism. It al-
lows the development of graphical and speech-based interfaces with a common
specification.

Form-based dialog systems also employ a rigid formalism. Forms define a
number of slots that have to be filled by the user. The system directs the dia-
log, enabling the user to provide data for each of these slots. Form-based dialog
systems offer more flexibility by letting the user decide whether to fill all slots
with a single utterance or one slot at a time. Adaptation in form-based dia-
log systems is achieved by selecting among predefined components for speech
input and speech output. Veldhuijzen van Zanten (1998) presents an exam-
ple of an adaptive form-based dialog system, which extends the form-filling
paradigm with hierarchical slots. Different kinds of questions are defined, such
as high-level and low-level or open and closed questions. If speech recognition
problems are discovered, the system moves to lower levels in the slot hierarchy,
for instance by asking for values of individual slots instead of open questions.
If the user provides more data in an utterance than is anticipated by the
current hierarchy level (over-information), a higher level in the hierarchy is
selected. The user model (Veldhuijzen van Zanten, 1999) consists of a set of
flags for each slot that indicate the knowledge level of the user. VoiceXML1

is a form-based standard for defining voice interfaces. Niklfeld et al. (2001)
present an adaptive architecture for multimodal dialog systems that is based
on VoiceXML. Whereas the framework implemented within this work does
not support the form-based approach, it may be integrated in addition to
state-based dialogs. For this purpose, forms have to be attached to specific
states in the dialog system.

Other approaches for the specification of dialog systems provide a higher
degree of flexibility, for example the Information State Update (ISU; Larsson
and Traum, 2000) approach. An information state “represents the informa-
tion necessary to distinguish it from other dialogs” (Larsson and Traum, 2000,
page 1) and a set of dialog moves trigger updates to the information state,

1 VoiceXML: http://www.w3.org/Voice/

http://www.w3.org/Voice/


26 2 Related Work

for instance by means of update rules. In the TRINDI toolkit, a dialog move
engine computes the next action based on the current information state. In or-
der to enable adaptivity in the ISU non-adaptive approach, the TALK project
proposes an extension of an ISU-based dialog manager (Georgila and Lemon,
2004; Lemon et al., 2006) with reinforcement learning techniques to enable
the system to learn an optimized dialog strategy. Since the ISU approach is a
formalism for speech-based dialog systems and does not support multimodal
interaction, our framework does not support this approach.

Statistical dialog systems regard dialog design as an optimization prob-
lem by handling the dialog flow as a sequential decision process. For this
purpose, statistical algorithms, such as Markov decision processes (MDP),
learn optimal dialog strategies. Levin et al. (2000) and Scheffler and Young
(2002) first estimate the parameters of a simulated user from a dialog corpus
and then employ reinforcement learning to find the optimal dialog strategy
based on interactions of the simulated user with the dialog system. Different
techniques exist for collecting the dialog corpus of training sessions, for exam-
ple Wizard-of-Oz experiments (Rieser and Lemon, 2008) or training sessions
with a preliminary dialog system (e.g. in the NJFun dialog system, Singh
et al., 2002). An evaluation showed that the trained dialog strategy outper-
forms fixed strategies proposed in the literature. All possible states, i.e., all
possible values of the variables, form a state space and the dialog strategy
defines which action (e.g. which question to ask) should be taken in the cur-
rent state. A as a result, the dialog moves on to another state. The result
of the MDP training is a single optimized, yet non-adaptive dialog strategy.
When applying the learning algorithm at runtime, the dialog system adapts
to an individual user. For example, the CLASSiC project (Janarthanam and
Lemon, 2008; Rieser and Lemon, 2009) employs online learning of a statis-
tical dialog system. Partially observable MDPs (POMDP) extend MDPs in
a way that they can handle both unobservable states and uncertainty (e.g.
the user’s beliefs) and enable the dialog manager to track all possible dialog
paths rather than just the most likely path. An application of POMDPs in
dialog systems was shown to create dialog strategies that perform better than
the ones created by regular MDPs (Young et al., 2010). Paek (2006) presents
a discussion of statistical dialog systems. The main advantage of statistical
dialog systems is the theoretical foundation, which most other dialog speci-
fications lack. In addition, the statistical approach handles uncertainty well.
On the other hand, Paek mentions the reluctance of application developers to
give up control over their application as the main disadvantage. Moreover, if
the results of statistical dialog systems are not always superior to handcrafted
systems, the handcrafted approach is likely to be followed. In addition, statis-
tical approaches are not suited for graphical or multimodal interactive systems
and thus aggravate the development of multimodal interactive systems by im-
peding a uniform approach. Since this book addresses multimodal interactive
systems, we do not include statistical dialog systems in the framework.
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Agent-based software architectures employ autonomous software compo-
nents, called agents, to solve complex problems through collaboration. Each of
these intelligent agents implements a strategy or competence and contributes
autonomously to solving specific tasks. The Interact project (Jokinen et al.,
2002) is an example of agent-based dialog systems. It employs an architec-
ture called Jaspis. The system consists of managers, agents, and evaluators.
Managers take care of specific components, for instance a dialog manager
or a presentation manager. Agents handle (possibly very specific) situations,
such as speech recognition errors. Different agents implement different strate-
gies for the same situation and evaluators select among the available agents.
The advantages of the agent-based approach are a high degree of flexibility
and the possibility to implement different strategies and select among them
at runtime. The Jaspis architecture is cross-platform and distributed. How-
ever, agent-based architectures bring along a software overhead, which is not
feasible with the limited computing resources of many interactive systems.
Moreover, the behavior of agent-based systems is less predictable than the
behavior of more rigidly defined dialog systems.

In addition to user behavior and traits like expertise, the modality of
speech offers emotion as an additional channel. If a dialog system recognizes
emotional cues, such as anger or impatience, in the user’s voice, the dialog
strategy may be adapted accordingly. Examples of such systems are NIMITEK
(Gnjatović and Rösner, 2008), which adapts spoken help messages to the cur-
rent emotional state of the user, and PROBLEMO (Pittermann et al., 2007),
an emotion-aware intelligent architecture for dialog systems. Emotions may be
integrated into this framework by loading the results from the emotion recog-
nition algorithms into the user model and using them as adaptation triggers.
However, we focus on user behavior rather than other adaptation triggers in
this book. Thus, we have presented different approaches for adapting speech
dialog systems. The approaches that support multimodal interaction integrate
well with our framework, whereas other may be added separately from other
modalities. We present a set of adaptation patterns in Section 4.3 that include
a discussion of speech dialog systems.

2.2 User Modeling for Adaptive Interactive Systems

An adaptive interactive system observes the user to find characteristics and
preferences in the user-system interaction. These characteristics trigger adap-
tations, such as shortcuts for repeated actions or adaptive help. The process
of observing a user and drawing conclusions is called user modeling. Adap-
tive interactive systems represent the user by means of a user model. In this
section, we give an overview of user modeling approaches in the literature.

The user model obtains information about a user either explicitly by ask-
ing the user questions or implicitly by observing the user without interference
(“loophole observation”). User-supplied information is for instance collected
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by means of on-screen dialogs or questionnaires. However, user-supplied infor-
mation is not reliable and users may be reluctant to provide information about
them. In the remainder of this section, we address automatic user modeling
that derives information from an observation of the user-system interaction.
The information that a user model stores depends on the requirements of the
adaptive interactive system and includes goals, knowledge, interests, traits,
experience, and preferences.

One of the earliest user modeling systems is the Grundy system (Rich,
1979), which offers novel recommendations to a user. The system regards
a user model as a “collection of good guesses about the user” (Rich, 1983,
page 200) and includes information such as age and level of education. Based
on this information, the current user is assigned to a predefined stereotype.
Many user modeling approaches deal with specific domains and problems,
such as modeling a user’s favorite TV program to be able to recommend
interesting shows (e.g. Ardissono et al., 2004 or Bachfischer et al., 2007). In
this section, we instead discuss reusable and generic user modeling algorithms
and architectures.

2.2.1 User Modeling Algorithms

User modeling algorithms serve different purposes in user modeling systems,
such as predicting user actions or modeling user preferences. The selection of
these algorithms depends on the requirements of the interactive system and
the adaptations. This section presents different kinds of algorithms that are
suitable for adaptive interactive systems.

Sequence prediction algorithms (SPA) predict a future item based on past
items. For instance, SPAs enable an adaptive interface to anticipate a user
action based on previously observed actions and offer support accordingly.
Davison and Hirsh (1998) present an SPA called Incremental Probabilistic
Action Modeling (IPAM), which employs first-order Markov chains and re-
duces the influence of older data. In an evaluation with UNIX command line
actions, a prediction accuracy of 40% was achieved. However, unlike many in-
teractive systems, UNIX commands do not have a context, i.e., the user may
enter all commands at all times. Hartmann and Schreiber (2007) present an
SPA algorithm called FxL and compare it to different other SPAs, including
IPAM. Different test sets are used, including the UNIX test set by Davison
and Hirsh and an office suite test set. Prediction accuracy was limited to
a range of 40% to 60 %, but Hartmann and Schreiber reason that domain
knowledge could improve the prediction accuracy. In this work, we present a
sequence prediction algorithm for user actions with a similar background as
IPAM. However, we employ domain knowledge in the form of a task model
to filter out predictions that are not valid in the current context. For this
purpose, we adapted a Markov chain-based algorithm for predicting link in
websites presented by Sarukkai (2000) to user action prediction. We combined
it with a task model to add domain information for better prediction results.
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In doing so, the algorithm is optimized for the use in adaptive interactive
systems.

Whereas SPAs predict a single item, sequence mining algorithms identify
frequently occurring sequences. Adaptive interfaces use sequence mining for
example for offering shortcuts for frequent action sequences. Mannila et al.
(1997) present a sequence mining algorithm that retrieves frequent episodes
from a sequence of events, for instance in user log files. However, the algorithm
does not make a statement about the meaning of the discovered episodes. Liu
et al. (2003) present an application of Mannila’s algorithm to adaptive user
interfaces. The algorithm automatically detects repeated action sequences in
a word processing software, such as repeatedly applying a certain combination
of formatting options, and offers shortcuts to the user for this formatting. In
Section 3.4.2, we present an adaptation of Mannila’s algorithm for predicting
action sequences in adaptive interactive systems. This algorithm was used for
the evaluation of an adaptive system (see Section 6.4.6).

In addition to user action prediction, the user’s goals and needs serve as
adaptation triggers. One approach for modeling goals and needs are Bayesian
networks, a graph-based model for probabilistic relationships between random
variables. Horvitz et al. (1998) present an agent-based adaptive help system
called Lumière that employs Bayesian networks to describe the user’s experi-
ence and derive help messages for the current situation. Bayesian networks are
explicit representations of a domain and a user’s knowledge. They facilitate
probabilistic inference for determining the user’s needs and goals. Dynamic
Bayesian networks allow incorporating temporal aspects by integrating the
user’s interaction history. However, Bayesian networks have to be modeling
largely by hand and thus add a considerable development effort in more com-
plex domains. Bayesian networks may be integrated into the user model of
our framework.

Different machine learning algorithms (see Witten and Frank, 2005) may
be used for user modeling. Algorithms may be divided into supervised or un-
supervised ones. Webb et al. (2001) discuss general requirements of machine
learning algorithms for user modeling. For instance, these algorithms require
a large collection of training data and labeled datasets that have been anno-
tated before. Supervised machine learning algorithms, such as Markov mod-
els or neural networks (Mitchell, 1997), train models from labeled data and
employ these models to classify unknown individuals by assigning them to a
known class. In adaptive interactive systems, classification is for instance used
for identifying users or assigning them to a group, such as beginner or expert.
For example, Galassi et al. (2005) present an approach that uses Hierarchical
Hidden Markov Models (HHMM) to train user profiles from recorded sessions
and employ these models to identify users. Unsupervised machine learning
algorithms do not rely on labeled data. Clustering algorithms divide a group
of elements into a set of clusters. However, the properties shared by different
elements in a group are not known. Clustering algorithms have for instance
been used in adaptive web systems (Hamilton et al., 2001) to compute page



30 2 Related Work

recommendations for new users based on interaction patterns of other users.
However, this approach does not work for interactive systems, because inter-
action data from other users is usually not available. Zukerman and Albrecht
(2001) provide an overview of predictive statistical models, such as Markov
models and Bayesian networks. These algorithms may be implemented within
the user modeling framework presented in this work. The selection of the al-
gorithms depends on the requirements of a specific interactive system. We
present a number of user modeling algorithms that we developed or adapted
for adaptive interactive systems in Chapter 3.

2.2.2 Plan Recognition and Task Models

Plan recognition is the process of observing user actions and determining the
goal a user tries to accomplish. A plan represents the order of actions re-
quired to reach that goal. Plans include uncertainty, since the actual behavior
of users is to some degree unpredictable. Moreover, information such as the
planner’s intent cannot be observed and may therefore only be inferred with
a certain probability. Plans are very complex, especially when they describe
“real world” problems, such as cooking. Many plan recognition systems rely on
a plan library, which is created by hand with a significant effort. An early ex-
ample of plan recognition systems called BELIEVER is presented by Schmidt
et al. (1978). Carberry (2001) describes a number of problems that need to be
addressed in conjunction with plan recognition. First, the input data is often
noisy, i.e., the individual observations that are used to infer the user’s goal
are uncertain. Second, the plan recognizer has to decide among competing
hypotheses, e.g. when certain observations are part of different plans. More-
over, users tend to work on different tasks in parallel. Third, plan recognition
algorithms have to scale up in large domains with plan libraries that contain
numerous plans a user possibly works on.

In this work, we introduce an approach for adaptive interactive systems
that employs a technique called task modeling (Paternò, 2001). It describes the
user-system interaction by means of tasks, which define possible user actions
without speculation about the user’s intentions. Task modeling is used in
software engineering for design and evaluation. A detailed introduction to task
modeling is given in Section 3.3. Instead, we employ task models at runtime
to derive information about the user-system interaction, such as predicting
future actions or identifying situations in which a user requires assistance. We
present task models as a viable means for describing higher-level user behavior
in adaptive interactive systems and deriving adaptation triggers from it.

Klug and Kangasharju (2005) employ task knowledge for supporting a
user. Their interactive system observes the user’s activity by instantiating a
task model at runtime and generates an improved user interface to better sup-
port the current task. In a similar approach, an intelligent classroom (Franklin
et al., 2002) recognizes user actions by means of a plan-based action descrip-
tion and supports users in performing these actions, e.g. by advancing slides
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during presentations. Mitrović et al. (2008) present an agent-based adaptive
user interface that employs a task model notation based on ConcurTaskTrees
(Paternò et al., 1997), similar to the approach presented in Section 3.3. Our
approach uses the task model for instance for predicting user actions and
detecting user problems.

2.2.3 User Modeling Architectures

In addition to the algorithms, the architecture of a user modeling system
is an important aspect of the user modeling process. In early adaptive in-
terfaces, user modeling used to be an integral component of these systems
and could not be reused for other applications. Generic user models (Kobsa,
2001) instead allow the developer to reuse the user modeling architecture. In
addition, generic user modeling systems may enable different applications to
share a single user model and thus facilitate a reuse of user data. One exam-
ple of a generalized user modeling system is the Doppelgänger user modeling
system (Orwant, 1995). This system supports learning by means of different
techniques, such as linear prediction and Markov models. However, custom
learning techniques cannot be added and the accumulation of data is left
to the application. The user modeling system developer for this work was
created such that it allows the integration of a wide range of algorithms.
A user modeling framework for intelligent learning environments that imple-
ments both supervised and unsupervised learning is presented by Amershi and
Conati (2007). More recent developments in the domain of user modeling are
ubiquitous and distributed user modeling systems (Heckmann, 2005). They
combine information from different sources, such as mobile phones or portable
computers. In addition, location awareness is an important topic for mobile
devices (Sharifi et al., 2004). Our adaptation framework comprises a generic
and extensible user modeling component. The framework may be extended
with arbitrary user modeling algorithms and connected directly to observa-
tions from the user-system interaction. In doing so, the framework meets the
requirements of different kinds of adaptive interactive systems.

Logic-based systems represent data in a way that allows inference of new
knowledge by means of logical reasoning. One example of a user modeling sys-
tem that employs a logic-based representation is the BGP-MS system (Kobsa
and Pohl, 1995). It converts the internal representation to first-order logic and
uses logic reasoning on the data. Rules draw additional inferences about the
user. In a fashion similar to logic-based architectures, semantic user model-
ing systems employ a semantic representation using semantic web technology.
The semantic web employs a description logic formalism to add semantic an-
notations to existing data, thus allowing a description of meaning as well as
reasoning. An ontology defines the structure of the semantic data and of-
ten serves as a foundation for semantic user modeling architectures. Various
ontologies have been proposed specifically for user modeling. For instance,
Golemati et al. (2007) and Heckmann et al. (2005) demonstrate sophisticated
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examples of such ontologies and store user modeling data in terms of on-
tologies. The semantic notation facilitates data sharing between different ap-
plications. Razmerita et al. (2003) present a general architecture for a user
modeling server that is based on semantic technologies. However, semantic
user models do not support complex derivations and specific data types (e.g.
matrices for Markov chains). Since many algorithms employ such data types,
we present a generic user modeling system that supports arbitrary types ef-
ficiently. In order to connect the user model to a semantic description of the
interactive system, we use a bridging component.

2.3 Design Patterns for Adaptations

Every domain has experts who have collected valuable experience about suc-
cessful solutions for recurring problems. Sharing expert knowledge helps other
people working in the same domain to straightforwardly select suitable solu-
tions. Design patterns are an approach to record experience by writing down
recurring problems in a specific domain and successful solutions for these prob-
lems. In doing so, patterns serve as a means for communicating best practice.
Design patterns have their origins in architecture. In the seminal 1977 book
“A Pattern Language”, Alexander et al. (1977) introduce a set of 253 architec-
tural patterns. Each of these patterns describes an architectural problem and
presents a proven solution to this problem. Patterns are defined as follows:

Each pattern describes a problem which occurs over and over again in
our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice. (Alexander et al., 1977,
page x)

All these patterns employ the same structure, which is often referred to as
the Alexandrian form. The description is narrative and uses few subheadings.
After the heading, the context of the pattern is introduced followed by a
problem statement and an elaborate discussion of the problem. Thereafter, a
concise solution statement and a detailed discussion of the solution, including
a small drawing, present the solution. For example, the “Your Own Home”
pattern (Alexander et al., 1977, page 392) states that people are not happy
in a home they do not own. The recommended solution is to enable people to
own the house they live in, which they arrange according to their wishes and
expectations.

The concept of design patterns was adopted for the domain of software
engineering and design patterns have become an established method in soft-
ware engineering. The most well-known set of design patterns for software
engineering is presented in the book “Design Patterns: Elements of Reusable
Object-Oriented Software” by Gamma et al. (1995), often referred to as the
“gang of four” patterns. These design patterns describe problems occurring
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frequently during (object-oriented) software development and present success-
ful solutions. For instance, the “Singleton” design pattern proposes a method
to ensure that only a single instance of a specific class exists, which differ-
ent parts of a software application share. Design patterns have been widely
adopted and are part of many students’ curricula. Another pattern collection
called “Pattern-Oriented Software Architecture” (POSA; Buschmann et al.,
1996) presents a set of patterns for software architecture, which deal with
a more high-level view on software design. Beyond these patterns, numerous
pattern collections have been presented at workshops like “Pattern Languages
of Programming” (PLoP), such as patterns for parallel programming (Ortega-
Arjona, 2009) or patterns for creativity (Georgiakakis and Retalis, 2009).

A pattern language is a collection of patterns that describe best practice
for a specific domain. The patterns cover the most common problems of this
domain. An interlinking further connects the patterns to each other. While
many patterns do not intersect, some patterns may address overlapping prob-
lems. In this case, the context of the pattern determines which pattern to
use best. In the following, we introduce the concept of patterns and review
patterns from the literature, both in the area of interface patterns and for-
malization of design patterns.

2.3.1 Interface and Adaptation Patterns

Whereas design patterns are mostly used in the domain of software engineer-
ing, patterns have also been written for the domain of user interface design
and interaction design. Borchers (2001) introduces a pattern language for in-
teractive exhibits. For instance, the “Attract Visitor” pattern emphasizes the
importance of having an exhibit that is interesting enough to attract a visitor’s
attention. Van Duyne et al. (2006) present a pattern language for websites.
These patterns are structured into groups such as genres of sites, content, or
navigation. For example, the “Sitemap” pattern proposes a single place called
sitemap that may be used to access all pages of a website.

Different pattern catalogs have been defined for user interface design. Van
Welie and van der Veer (2003) have compiled extensive pattern collections of
reusable interface design knowledge, which may be used by designers and de-
velopers for creating graphical interfaces. Similarly, Tidwell (2005) presents an
extensive structured catalog of 94 interface design patterns. These patterns
cover a wide range of topics, from the general structure of graphical appli-
cations to form input to aesthetics. For example, the “Extras On Demand”
pattern advises a designer to offer a limited set of options in an interface and
to add a button that opens a larger set of options for advanced users. The
“Cancelability” pattern recommends offering a way to the user for cancelling
time-consuming operations. Many interface designs pattern are very specific
and describe a single interface element. While some of the patterns describe
dynamic behavior, such as “Responsive Enabling” or “Smart Menu Items”,
these patterns do not address adaptive user interfaces. Dearden and Finlay
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(2006) present a detailed and critical discussion on the current state of pattern
languages in human-computer interaction.

Patterns have also been used to describe adaptative hypertext systems.
A basic set of abstract adaptation patterns was presented for adaptive hy-
pertext systems by Danculovic et al. (2001), introducing “Link Personaliza-
tion”, “Content Personalization”, “Structure Personalization”, and “Remote
Personalization”. For example, the “Link Personalization” pattern recom-
mends altering the link structure of a website to better reflect a user’s needs.
The “Content Personalization” pattern discusses offering personalized content
nodes. The patterns are more general in nature than interface design patterns
and the number of patterns is significantly lower. These adaptation patterns
were extended by Koch and Rossi (2002) with more detailed patterns, such
as “Adaptive Anchor Annotation” or “Adaptive Sorting of Anchors”. The
“Adaptive Anchor Annotation” pattern discusses how adding annotations to
hypertext links lets the user better estimate the usefulness of a link. Another
pattern called “Adaptive Sorting of Anchors” recommends sorting anchors
in a way that more interesting anchors are shown first. As discussed in Sec-
tion 2.1, adaptive hypertext systems differ from other interactive systems. For
instance, the adaptations alter interface elements rather than links between
nodes or text. Therefore, we present a distinct set of adaptation patterns for
interactive systems in Chapter 4.

2.3.2 Formalization of Design Patterns

Design patterns use a textual and narrative form. For example, the patterns
collections by Gamma et al. (1995) and Buschmann et al. (1996) have been
published as books to be read by programmers. Therefore, humans read the
pattern descriptions, but a computer cannot process them automatically. Ap-
proaches for the formalization of patterns aim to increase the utility of pat-
terns by representing patterns using a well-defined structure and vocabulary.
In doing so, they provide a standardized and machine-processable representa-
tion. The formalization of patterns takes place on different levels of abstrac-
tion. First, a formalized pattern format extends the narrative description with
special markings to label sections of a pattern description. For instance, all
patterns may share the “motivation” and “solution” sections. This machine-
readable structure ensures consistency and enables referencing between dif-
ferent pattern collections. The Pattern Language Markup Language (PLML;
Fincher et al., 2003) follows this approach and provides an XML document
type definition (DTD) for specifying patterns. PLML is however a very high-
level definition for describing textual pattern collections in a uniform way to
enable interchange.

A more formal notation of patterns may serve as a basis for intelligent
tool support. For instance, tools may provide support for refactoring existing
projects according to patterns (e.g. Zannier and Maurer, 2003). Other ap-
proaches employ formal languages to specify patterns, including the semantics
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of the pattern. Mikkonen (1998) discusses an approach for formalizing patterns
based on a custom notation for defining objects formally, with the focus be-
ing on the temporal behavior of design patterns. Hallstrom and Soundarajan
(2008) present an approach for ensuring implementation correctness and facil-
itating reasoning about patterns. The approach is based on a pattern contract
formalism with pre and post conditions. However, approaches that rely on for-
mal languages have not found wide-spread use due to their high complexity
(Zdun, 2007).

Ontologies are formal representations of a domain and the contained con-
cepts. The Web Ontology Language (OWL; Smith et al., 2004) is a language
for defining ontologies. Different approaches use OWL to define design pat-
terns. For instance, Dietrich and Elgar (2005) present a formal pattern de-
scription based on OWL that describes the structure of design patterns. The
formalized patterns are used for scanning source code for design pattern us-
age and thus assist in the task of documenting source code. Henninger and
Ashokkumar (2006) propose a meta-model for software patterns based on
an OWL infrastructure for applying patterns in the software development
process. This model conceptually builds on PLML, but extends it consider-
ably by including a description logic representation of the patterns. For this
purpose, pattern attributes, such as “hasProblem”, “hasContext”, or “hasSo-
lution”, are defined by means of OWL restrictions. Henninger presents inter-
face patterns as an example of this approach. A tool called BORE supports
interface development by offering context-sensitive information. Moreover, a
formal framework for creating an interconnected pattern language for interac-
tive systems is provided. Our approach provides tool support for adaptation
patterns and includes a semantic description of parts of the patterns based
on OWL. However, it does not fully formalize the semantics of patterns in
OWL. Instead, OWL serves as a common formalization of different aspects of
adaptive interactive systems and enables the use of semantic techniques, such
as reasoning.

Model-based development (Schmidt, 2006) is based on an abstract model
(called platform-independent model or PIM), which is transformed into a con-
crete model (called platform-specific model or PSM). For instance, Petrasch
(2007) presents how to apply formalized interface patterns to model-based
user interface development. The more specific patterns are the better they
may be incorporated into the model-based development process. We present
an integration of a set of adaptation patterns into a model-based adaptation
framework. The model-based system description is automatically transferred
to an OWL-based semantic layer.

2.4 Semantics in Interactive Systems

Semantic interactive systems rely on an ontology for a description of the do-
main and other topics, such as the interactive system or the user. Ontologies
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create a formalization of a domain and describe all concepts contained in
this domain. For instance, the domain of cooking consists of ingredients and
recipes. Both concepts (e.g. vegetables as a group of ingredients) and instances
(e.g. a tomato as a special kind of ingredient) form the ontology. The ontol-
ogy is either created manually, for instance by using semantic editors such as
Protégé-OWL (Knublauch et al., 2004), or by mining data automatically, for
instance by means of ontology mining (e.g. Buitelaar and Ramaka, 2005). The
Web Ontology Language (OWL; Smith et al., 2004) represents a common no-
tation for the definition of ontologies. A more detailed introduction to OWL
is given in Chapter 5.

In this section, we discuss the use of semantic technologies in interactive
systems. On the one hand, domain knowledge encoded in ontologies allows
reasoning on this data, for instance in speech-based dialog systems. On the
other hand, ontologies enrich the dialog logic of interactive systems. After a
review of the use of ontologies in different research projects, we investigate
different ontology-based adaptation architectures.

2.4.1 Ontologies in Dialog Systems

A formalized representation of the domain of an interactive system facilitates
different applications in dialog systems. On the one hand, a generic dialog
engine accesses the domain knowledge when processing user input. On the
other hand, a single ontology serves as a unified knowledge representation for
different components of an interactive system. Milward and Beveridge (2003)
present an approach for replacing hand-crafted dialog design with a generic
dialog engine and ontological domain knowledge, which is used for different
purposes. For instance, the order in which the dialog system asks the user
questions is improved by incorporating the ontology. Other applications of
this ontology are in speech recognition and interpretation. In addition, they
present a system that supports general practitioners in the decision whether a
patient should be referred to a cancer specialist. For this purpose, the system
integrates medical domain knowledge encoded in an ontology.

Due to the broad area of application, ontologies have been used in mul-
timodal systems for other purposes than dialog management. In the follow-
ing, various uses of ontologies in three research projects are presented. The
SmartKom project (Wahlster, 2003) created a “dialog shell” for applications
that employ multimodal interaction between users and interactive systems,
supporting modalities such as speech and gesture for input and speech and
graphical for output. The SmartKom system employs an extensive unified on-
tology (Gurevych et al., 2003), which is utilized by different components of the
system. Prior systems instead often used different knowledge bases for differ-
ent purposes. Porzel et al. (2003) present several applications of the ontology,
such as multimodal fusion, semantic coherence scoring (interpretation of the
ASR results), and computing dialog coherence (interpretation in context). In
addition, the ontology is used for dialog management. For this purpose, a
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plan language models the actions necessary to carry out processes that are
defined by the ontology. The SmartWeb project (Wahlster, 2007) builds on
the SmartKom project and provides multimodal access to the semantic web.
As an example application, access from a mobile device to information in
the domain of a soccer championship is presented. The SmartWeb Integrated
Ontology (SWIntO; Sonntag et al., 2007 and Oberle et al., 2007) forms the
foundation of the dialog system. Factual knowledge is directly encoded into
the ontology and may be queried by the user. Moreover, a discourse ontology
specifies different kinds of multimodal interactions. In addition, semantic web
services are connected to the ontology (e.g. asking for available activities).
The different components of the dialog manager communicate via ontology
instances. Thus, the SmartWeb project uses the ontology as a unified knowl-
edge representation for different tasks.

The TALK research project addresses adaptive multimodal interactive sys-
tems and includes different components. First, the SAMMIE dialog manager
(Becker et al., 2006), an in-car dialog system for an MP3 application, uses
an ontology to model both domain knowledge as well as possible tasks. The
tasks are automatically converted into a format that a plan-based discourse
manager processes. A different approach was followed in the intelligent home
scenario (Amores et al., 2006). A domain ontology is used by a knowledge
manager component in a dialog system to provide domain reasoning. For
instance, in a home automation setting for handicapped people, a query like
“are there red lamps in the house” is answered using a query to the knowledge
manager, which computes the requested information and offers the results to
the user. The approach presented in this work also employs a single ontology,
which comprises information about the interactive system, the user, and the
domain. However, the adaptations are defined explicitly and are not derived
by means of ontology reasoning.

2.4.2 Architectures for Adaptive Interactive Systems

In addition to serving as a unified knowledge representation, ontologies have
been used for modeling interactive systems. For instance, Obrenović et al.
(2003) employ an ontology in addition to UML in the development process
of multimodal interactive systems. The high-level model description is only
available at design time to provide development support and for platform
mapping. However, it is not available at runtime as a knowledge representa-
tion for the interactive system itself. Our framework instead uses the model
both at design time and runtime. Aragones et al. (2007) present a seman-
tic adaptation framework, called ACUITy. A controller component mediates
between a UI engine and an ontology, which comprises information on the
user, the user interface, and the domain. An interface is generated from an
ontology-based definition of the application. Custom-tailored interfaces are
created by incorporating information about past interactions.
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Sophisticated adaptation architectures have been presented in the domain
of adaptive hypertext systems. Dolog and Nejdl (2003) and Henze et al. (2004)
present an approach that transfers techniques from adaptive hypermedia to
the semantic web. A first-order logic language adds semantic information to
documents and resources, such as topics of a document and dependencies be-
tween concepts. For instance, concept B discussed in document X may require
prior knowledge of concept A. A rule language called TRIPLE implements rea-
soning rules, for instance for deriving a set of examples for a specific topic.
Since the user modeling is also defined by means of semantic triples, rea-
soning may be used to extract a custom set of documents or resources for a
user, for instance a set of documents that discusses knowledge required as a
prerequisite for the current document.

In a similar fashion, the ODAS domain ontology presented by Tran et al.
(2008) is used in conjunction with adaptation rules in an adaptive hyper-
text portal. Tran et al. reason that rules ensure a better transparency and
controllability for developers than statistical adaptation methods. The on-
tology provides a knowledge foundation for adaptation rules and contains
different models, such as a system model, a task model, and a resource model.
Carmagnola et al. (2005) present a different semantic adaptation framework
for hypertext systems. It relies on different planes for the ontological repre-
sentation a specific type of knowledge, such as the user, the user’s actions,
the domain, or the context. Rules in the SWRL2 notation define intersec-
tions of the ontological planes, since rules combine the information from these
planes. In doing so, rules implement both user modeling and adaptations. User
modeling rules infer information about the user and adaptation rules perform
adaptations, such as removing links or adding explanations to links. For ex-
ample, an adaptation rule may emphasize items for older users (“user model”
plane) in the night (“context” plane) on a PDA device (“device” plane), thus
exploiting information from different planes. However, these architectures do
not represent adaptations in an intuitive and reusable way. Writing seman-
tic rules requires special knowledge of semantic technologies. The adaptation
framework presented in this work also relies on a unified semantic information
representation, on top of which adaptations are defined. Adaptations are trig-
gered by information from the user model, such as a prediction of the next user
action. However, adaptations are defined by means of adaptation patterns to
facilitate reuse. The ontology does not cover every aspect of the system, but
only information required for deciding which adaptations to apply.

2.5 Discussion

In this chapter, we reviewed related work for adaptive interactive systems and
user modeling. The chapter started with a review of different kinds of adaptive

2 SWRL: A Semantic Web Rule Language Combining OWL and RuleML: http://
www.w3.org/Submission/SWRL/

http://
www.w3.org/Submission/SWRL/
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interactive systems, such as adaptive websites, graphical user interfaces, and
speech dialog systems. Next, user modeling was introduced as a prerequisite
for adaptations. Both different user modeling algorithms, such as machine
learning or task modeling, and user modeling architectures were presented.
Thereafter, the concept of design patterns was introduced and different de-
sign pattern collections for graphical user interfaces and adaptive hypertext
systems were presented. Different approaches for formalizing patterns were
introduced. Finally, the use of ontologies in interactive systems and semantic
adaptation architectures was presented.

However, when addressing adaptive interactive systems, such as digital TV
systems or automotive dashboard systems, the approaches presented in the
literature cannot be directly transferred, since adaptive interactive systems
have different requirements with regard to user modeling and adaptations.
For example, hypertext systems adapt documents rather than interface ele-
ments. In addition, many approach in the literature present approaches that
are limited to specific domains or types of interactive systems. Therefore, we
present an approach for user modeling in adaptive interactive systems in the
following chapters and define adaptations for interactive systems in a general
and reusable way by means of multimodal adaptation patterns. In addition,
we present a generic adaptation framework. The framework employs semantic
technologies, but offers a reusable and abstract adaptation definition.
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User Modeling in Interactive Systems

I can calculate the motion of heavenly bodies,

but not the madness of people.

–Sir Isaac Newton (1642–1727)

Adaptive interactive systems observe the user-system interaction and draw
conclusions from these observations about user characteristics and preferences.
The process of representing a user by means of an abstract model is called
user modeling. Based on these conclusions, adaptations improve the interac-
tive system. Thus, user modeling represents a prerequisite for the adaptation
of interactive systems. The adaptation to user behavior is the focus of this
book. In this chapter, we present domain-independent algorithms we devel-
oped for modeling user actions. Numerous algorithms and architectures for
user modeling have been presented in the literature (see Section 2.2). How-
ever, these are often domain-specific, intended for other systems than inter-
active systems, such as hypertext systems, or describe only a part of the user
modeling process. An integrated user modeling approach for adaptive inter-
active systems needs to extract information from basic observations and pro-
cess this data to facilitate a higher-level description of user behavior. Finally,
this information provides triggers to an adaptation component. These triggers
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include the recognition and prediction actions or the detection of problems.
The approaches presented in the literature do not fulfill these requirements.

In this chapter, we introduce a novel approach for describing user ac-
tions in interactive systems. The approach starts with an observation of basic
events that occur in the user-system interaction. Different algorithms build on
each other to enable a higher-level description of user behavior and to build
a user model. User actions are described by sequences of basic events and
probabilistic automata detect these actions. Task models in turn facilitate a
description of more complex user behavior. Finally, different algorithms derive
information from the user model that triggers adaptations. For this purpose,
we present algorithms for predicting actions and action sequences.

An example illustrates the different approaches and algorithms we present
in this chapter. A digital TV system allows a user to watch different shows
and browse an electronic program guide (EGP). Since the number of shows is
extensive, the user may narrow down the list by selecting filter criteria, such
as channel or time. The TV system provides a graphical interface and may
be controlled by means of a remote control and speech input. For example,
the user presses the red button on the remote control to open the EPG and
uses speech input to select the channel “BBC” as a filter criterion. We use
this example throughout this chapter to illustrate various algorithms.

The chapter is structured as follows. First, the notions of user behavior as a
sequence of basic events and user behavior as actions and data are introduced.
Next, an approach for recognizing user actions in a sequence of basic events
is presented. Thereafter, the concept of task models is introduced and the
application of task models in adaptive interactive systems is discussed. Finally,
we present approaches for predicting a single user action and a sequence of
user actions that we devised and adapted for interactive systems.

3.1 User Behavior in Interactive Systems

In this section, we introduce the notion of user behavior as a sequence of
basic observations or low-level events. We regard user behavior in interactive
systems as a combination of user actions and associated data.

3.1.1 User Behavior as a Sequence of Events

For a human expert who observes the user-system interaction, the meaning
of the interaction is obvious: if a user presses the red button on a remote
control, this action tells the interactive system to open the EPG. However, the
system has to rely on sensors and internal information to understand the user
behavior. For instance, the system may derive from an observation of a specific
button press and reactions of a dialog component that a graphical screen
called “EpgView” was opened. An understanding of these observations allows
a description of higher-level user behavior. The source of these observations
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depends on the type of interactive system. For example, websites provide log
files with page access information and online stores accumulate articles that
customers bought. Based on this information, an adaptive website or store
may recommend pages or articles respectively to the user. Log events include
events from user input, such as a remote control or speech utterances, and
the corresponding internal reactions of the system.

Interactive systems have to represent observations of the user in a common
format in order to enable a user modeling system to draw further conclusions.
We call these observations basic events. They include user input, such as
key presses and speech utterances, or system reactions, e.g. internal state
or property changes. The view of an interactive system on user behavior is
limited to these events. Therefore, we regard the user-system interaction as
a sequence of low-level events (cf. Dix et al., 1993). An example sequence of
events from the digital TV system presented in the introduction is given in
Figure 3.1. The user presses a button “COMM 0x6e” (line 1) and the system
responds with a sequence of reactions (lines 2–4). Thereafter, the user selects a
channel with a speech utterance (line 5) and the system updates the graphical
screen accordingly (line 7).

The source of basic events is not limited to the interactive system, but
external sensors may contribute to the stream of events as well, including for
instance physiological observations like pulse or the location in a room. Since
the view of the user modeling component is limited to basic events, data that
should be incorporated into the user modeling process has to be represented
by these events. Without loss of generality, the observation of user behavior
is therefore limited to the observation of basic events.

Log data in adaptive interactive systems is either processed online or
recorded for offline processing. In order to include characteristics of the cur-
rent user, a user modeling component applies user modeling algorithms at
runtime. In some cases, recorded log data is preferable, for instance for train-
ing an initial user model or for static user characteristics that do not change
over time. For this purpose, the interactive system writes observed events
to log files and the user modeling system processes them offline. Moreover,
the event types that contribute to the user modeling may be limited to events
that are relevant for the adaptations. For example, internal state changes that
describe the inner workings of the interactive system instead of user actions
might not be relevant for the user modeling.

In order to describe higher-level user behavior, the interactive system has
to determine the meaning of sequences of basic events. For instance, a specific
sequence of these events may describe one single user action. The higher-level
interaction is composed of user actions, which in turn are sequences of basic
events. Therefore, recognizing these actions plays an important role in user
modeling. However, basic events do not directly reveal which action a user
performs. For example, line 1 of Figure 3.1 shows that a button “COMM 0x6e”
was pressed. This event does not reveal the meaning of this input. In this
case, this action opens the EPG. In addition, a speech utterance, such as
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1 [1180520776220] hw name={COMM_0x6e}

2 [1180520776220] event name={OpenEpg}

3 [1180520776220] state name={EpgMain}

4 [1180520776376] view name={EpgView}

...

5 [1180520778231] asr value={channel b-b-c}

6 [1180520778242] command name={SelectChannel} value={BBC}

7 [1180520778247] viewupdate name={EpgView}

Fig. 3.1. Exemplary log lines of a digital TV system. The user presses a button
(line 1) and the system loads the EPG screen (lines 2–4). Thereafter, the user selects
channel “BBC” with speech input (line 5) and the system updates the screen (lines
6–7).

time
Basic
events

Actions

Tasks
EpgSelection

OpenEpg SelectChannel

Fig. 3.2. Sequences of basic events describe user actions, which again can be com-
bined into tasks.

“open the program guide”, executes the same action, but produces a different
sequence of events. Therefore, an interpretation of basic events is required
to identify meaningful subsequences. Once user actions have been identified,
a higher-level description of user behavior becomes possible. As can be seen
in Figure 3.2, we describe user behavior as a hierarchy of observations. Basic
events form user actions, which in turn constitute the building blocks for tasks.
In the remainder of this chapter, we present approaches for recognizing user
actions from basic events and describing higher-level user behavior by means
of tasks.

3.1.2 Behavior as Actions and Data

User behavior in interactive systems consists of actions and data. Different
subsequences represent user actions. On the one hand, the user may choose
from a number of possible input methods. They represent modalities that
create different sequences, such as mouse, remote control, speech input, and
so on. On the other hand, different methods trigger the same action within
a modality, such as different buttons on the remote control. Thus, a set of
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different event sequences describes a user action. The functionality provided
by an interactive system defines the list of possible user actions. For instance,
a TV system allows the user to change the channel and the volume. The user
performs action sequences during the interaction. These sequences form tasks
that describe a higher-level user-system interaction. For instance, the task of
route destination entry in personal navigation devices comprises the steps of
entering a city, a street, and a house number and is defined by a number
of basic actions. Moreover, the order of these actions is not fixed, but the
user may decide about the order of actions. User modeling algorithms detect
user actions, describe higher-level user behavior, and predict user actions or
sequences of actions.

In addition to the meaning of an action, data defines this action further.
For example, if a user selects the “BBC” channel, the “SelectChannel” action
has the name of the channel “BBC” as a parameter. This data enables the in-
teractive system to describe user preferences. For this purpose, it extracts the
data and employs user modeling algorithms on it. The knowledge about user
preferences is built by the user modeling component by modeling the data
associated with actions. For instance, if the channel name “BBC” is the most
frequent parameter of the “SelectChannel” action, the user modeling compo-
nent infers that “BBC” is the user’s favorite channel. The research field of
data mining has produced an extensive number of algorithms that are appli-
cable to user modeling (see Chapter 2). An important requirement for user
modeling algorithms is transparency, thus allowing the user to comprehend
and anticipate the results of the computation. Therefore, straightforward algo-
rithms may be a sufficiently good choice. One example is the “most frequently
used” (MFU) algorithm, which picks the element from a list that was selected
most often by the user. In addition, domain-specific algorithms may be better
suited for producing good predictions than generic algorithms, since they may
consider domain knowledge. For instance, different algorithms specifically for
modeling the user’s TV preferences have been presented (see Ardissono et al.,
2003 and Vildjiounaite et al., 2008).

Thus, user modeling comprises both actions and data. For this purpose,
different kinds of information are derived from a specific event sequence. For
example, user modeling algorithms predict user actions based on previous
actions and the user’s favorite channels based on previously selected channel
names. Algorithms for modeling user preferences from observed data often
are domain- and application-specific. However, user actions may be described
in a domain-independent way. We present generic algorithms for describing
actions in the remainder of this chapter.

3.2 Recognizing User Actions in Event Sequences

In order to facilitate a comprehensive description of user behavior, meaningful
actions first have to be extracted from a sequence of basic events. Each user
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action, such as selecting a channel in a digital TV system, is represented by
different sequences of events. In the following, we present an approach we
devised for extracting these subsequences from the user-system interaction
and detecting user actions.

Instead of using machine learning, the developer may extend the interac-
tive system as to emit specific events to indicate which action was performed.
For instance, the developer may connect the events to interface elements, such
as graphical buttons. In this case, an observation of the action event indicates
that the user executed the respective action. However, this approach requires
extensive work by the developer. In addition, the developer may align actions
with a mapping between system events and user actions. Whenever a spe-
cific system event is observed, the user triggered the action associated with
that event. However, the developer has to ensure that the mapping includes
all relevant events and actions. Both approaches rely on a definition of user
actions by the developer. In addition to the extra work, the system designer
may easily miss actions and therefore produce an incomplete definition.

Data driven approaches recognize user actions based on sample data. These
approaches collect training data covering all actions. Sample data may be
collected by annotating sessions that were recorded with test users. After
the annotation has been performed, machine learning techniques extract user
actions from the interaction. Since the sequences that describe user actions are
quite different in length, hidden Markov models and artificial neural networks
are not well suited for this problem. Instead, we introduce an approach for
describing user actions by means of probabilistic automata in the following.
After an introduction of probabilistic automata, we discuss the application of
this tool to the problem of recognizing user actions.

3.2.1 Probabilistic Deterministic Finite-state Automata

Finite state automata consist of a number of states Q and an alphabet Σ. At
the beginning, one state that is marked as initial is activated. A number of
final states terminate the automaton. Transitions between states are defined as
δ : Q×Σ×Q. That is, a transition δ connects two states with a symbol of the
alphabet Σ. For example, the transition δa : Qx × σw ×Qy defines that, with
Qx being the active state in an automaton and the symbol σw being observed,
the automaton activates state Qy. A deterministic automaton allows only a
single transition between two states with a specific symbol (Equation 3.1).

∀q ∈ Q,∀a ∈ Σ, |{q′ : (q, a, q′) ∈ δ}| ≤ 1 (3.1)

Probabilistic deterministic finite-state automata (PDFA), described in de-
tail by Vidal et al. (2005a,b), extend automata with probabilities. For this
purpose, each transition in a PDFA possesses a transition probability P (δ)
and every state has a final-state probability F (q). The sum of all transitions
with a common source state and the final probability of the state equal to 1
(Equation 3.2).
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∀q ∈ Q, F (q) +
∑

a∈Σ,q′∈Q

P (q, a, q′) = 1 (3.2)

In addition, exactly one initial state is active at the beginning. A graphical
representation of an example PDFA is given in Figure 3.3: In the initial state
q0, the symbol x triggers a transition to state q1 and occurs with a probability
of 0.35, whereas the transition triggered by the symbol y to state q2 occurs
with a probability of 0.65. State q1 has a final-state probability of 0.1, i.e., the
automaton terminates in state q1 with a probability of 0.1.

A state acceptor represents an application of the state automaton to de-
termine if an automaton matches a given sequence and, if so, it computes the
probability. The acceptor starts at the initial state and processes the sequence
of symbols. For each symbol, the acceptor searches a transition in the active
state that matches the current symbol. If a transition is found, the acceptor
advances to the target state of the transition. If no matching transition is
found, the automaton does not accept the sequence and terminates. Other-
wise, this step is repeated for the remainder of the sequence. The acceptor
matches the sequence if the automaton is in a state with a final-state probabil-
ity greater than 0 at the end of the sequence. The probability of the accepted
sequence for an automaton is computed by multiplying the transition prob-
abilities of all transitions taken. Therefore, the probability for the sequence
(x, z) in the automaton in Figure 3.3 is 17.5 %.

Learning PDFAs from a list of sequences works as follows (see Vidal et al.,
2005b). An automaton initially consists of only the initial state. The following
training procedure is performed for each sequence in the training data. Start-
ing at the initial state, the training algorithm seeks a matching transition for
the current symbol of the sequence in the active state. If no matching transi-
tion is found, a new state and a transition to the new state with a weight of 1
are added to the automaton. Otherwise, the weight of the existing transition
is increased. After all sequences have been processed, the probabilities are
computed from the weights by dividing the weight of a transition by the sum
of the weights of all transitions that have the same source state.

Thus, PDFAs provide an approach based on finite-state automata for se-
quence classification. The approach relies on training sequences to learn a set
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Fig. 3.3. An example of a probabilistic deterministic finite-state automaton.
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of automata. In the following section, we discuss the application of PDFAs to
the problem of recognizing user actions in interactive systems.

3.2.2 Describing User Behavior using PDFAs

In this section, we present probabilistic automata as a solution to the problem
of recognizing user actions. For this purpose, the basic events from the user-
system interaction constitute the alphabet Σ. At design time of the interactive
system, we learn a set of PDFA matchers from annotated training data that
has been collected in test sessions. The interactive system then applies the
matchers to live interaction events to recognize user actions at runtime. An
overview of the workflow is given in Figure 3.4. First, log data is collected,
for instance by means of user tests. This data is then annotated by assigning
action names to sections of the recordings. Next, the interaction sequences
that correspond to the different actions are extracted. Probabilistic matchers
are trained based on the extracted sequences. In the following, we discuss the
individual steps in detail.

The first step of the learning process depicted in Figure 3.4 collects and
annotates training data. This data has to cover all user actions that should
be recognized. Moreover, the log in the training data has to be identical to
the log that is produced during the interaction of a user with the interactive
system. For instance, training data is collected in test sessions with users. If
no test users are available, the system designer performs sessions with the in-
teractive system. The system records the events and writes them to log files.
Once the training data has been collected, an annotation by means of label-
ing is performed. For this purpose, sections in the interaction timeline are
identified in which a user performs actions. These sections are labeled with
the name of the action. In order to support the annotation process, we ex-
tended a graphical evaluation tool with annotation facilities (Wesseling et al.,
2008). The tool displays a user session in a graphical timeline view. Sections
that correspond to a user action are selected visually. The annotation col-
lects different representations of each user action, for example because the
action was triggered using different modalities. The list of user actions is ei-
ther defined before the annotation or constructed implicitly by adding actions
as needed. Consistency and precision of the annotation are prerequisites for
a well performing matcher. After the annotation of the training data, all se-
quences that represent the same action are extracted. Specific sequences occur
multiple times or only once, depending on the user’s behavior. Each action is
represented by different sequences, because different modalities emit different
sequences for the same action or the user has different methods available to
trigger an action. A separate PDFA acceptor is trained for each action from
the extracted event sequences using the algorithm presented in Section 3.2.
The PDFA learning concludes the training process, which is performed at
design time of the interactive system.
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Fig. 3.4. The workflow of the probabilistic automaton approach for recognizing
user actions.

Adaptive interactive systems employ the matchers at runtime to recognize
user actions. For this purpose, the system loads all PDFA acceptors at startup
and submits events to the matchers. Each matcher recognizes one specific
user action. When entering a state with a final-state probability greater than
zero, a matcher recognizes a user action. All actions that occur in a sequence
are collected and the most likely action is selected if more than one action
was recognized. However, the length of an accepted event sequence is not
known in advance. Therefore, the matcher uses a timeout to collect different
sequences and selects the one with the highest probability after that timeout.
In addition, a threshold suppresses wrong recognitions with low probabilities,
which may occur due to errors in the annotations. Users may perform actions
using different modalities, such as remote control and speech input in the
example. In doing so, different event sequences represent a single action. All
sequences that represent an action are extracted and used to train a set of
PDFA matchers. Figure 3.1 presents an example sequence of basic events from
a digital TV system. In lines 1–4, the user opens the electronic program guide.
Therefore, the system designer marks the respective sequence with the name
of the action, which is “OpenEpg”. Lines 5–7 represent the “SelectChannel”
action.

Preprocessing of the log data is necessary for several reasons. The indi-
vidual preprocessing steps depend on the requirements of the user modeling
algorithm and the adaptations. A number of useful steps are discussed in
the following. First, some event types are not required for differentiating user
actions and are therefore filtered out to prevent a negative impact on the
recognition. Different actions have the same appearance in the log data and
the meaning depends on the context. For instance, a remote control but-
ton may have different meanings in different screens, e.g. opening the result
list in one screen or recording an entry in another one. The actions become
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distinguishable by adding context information to the events, such as the name
of the active view or state. Other events, such as events defining global com-
mands like scrolling in a list or changing the volume, do not have context in-
formation. Moreover, preprocessing may add missing information that is not
present explicitly in the event parameters. For instance, the modality can be
inferred automatically from event types. In addition, PDFA matchers recog-
nize user actions, but do not address data. For instance, a matcher recognizes
the “SelectChannel” action, but does not extract the name of the selected
channel. Manual extraction rules and other information extraction techniques
(see Appelt, 1999) add the respective information to events. For example, an
extraction rule adds the name of the channel to a speech recognition event
based on the recognition result.

We present an evaluation of the PDFA-based approach for recognizing user
actions in Chapter 6, which proves the feasibility of the approach. Therefore,
PDFAs are a viable means for describing user actions in interactive systems.
They present a more intuitive and less error-prone approach than a manual
description of user actions. Moreover, creating the matchers does not require a
detailed knowledge of the inner workings of the interactive system. In addition,
the matcher may be used in an evaluation to extract user actions in a set of log
files automatically. For this purpose, a part of the log sessions are annotated
and the resulting matchers are applied to the remaining log files. Thus, these
matchers may support the investigation of user behavior in an evaluation.

3.3 Modeling Tasks in Interactive Systems

Once user actions have been identified in a sequence of events, a higher-level
description of user activities becomes feasible. The higher-level description
defines which actions a user can perform in a specific interaction state as well
as their order. Based on this description, the interactive system for instance
recommends actions or detects user problems. In the example from the intro-
duction of this chapter, the interactive system has recognized the “OpenEpg”
and “SelectChannel” actions by means of the PDFA approach presented in the
previous section. Based on an explicit representation of possible user actions,
the interactive system knows that the user may perform the “SelectGenre” or
“OpenResults” actions next. Such an explicit representation of user actions is
called task model.

Tasks are hierarchical descriptions of activities that aim to accomplish a
goal. Task models present a formalism for defining which tasks a user can
perform in an interactive system. The process of creating a set of tasks for
an interactive system is called task modeling. Task modeling has originally
been intended for the development process, for instance for automatically
generating interfaces, and for the evaluation of interactive systems (Paternò,
2001). In the following, we use task models as an approach for describing
higher-level user activity at runtime of an interactive system. Task models
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enable an adaptive interactive system to observe the user-system interaction
and derive adaptation information accordingly. For instance, the adaptation
may recommend a specific action to the user.

In the remainder of this section, we present a novel approach that uses task
models at runtime of adaptive interactive systems to track the user-system
interaction. We introduce the concept of task models and present an approach
for applying them at runtime. Next, we discuss how to derive different kinds of
information from the task model, such as a prediction of the next user action
or the proficiency of the user with the interactive system. We present how this
information serves as a basis for deciding about possible adaptations.

3.3.1 Task Modeling

In the following, we introduce task models are a method for describing user
behavior. A task defines the activity required to accomplish a specific goal.
Activity is defined by means of a hierarchical arrangement of user actions.
Different relations exist between these actions. Two actions are executed se-
quentially (action A enables action B) or alternatively (user executes action
A or action B). For instance, task X may be defined such that the user has
to perform actions A, B, and C in sequence to achieve goal Z. A task model
defines all actions a user may execute while working on a task. However, a
subset of these actions suffices to finish the task. For instance, the user may
select among alternative actions or omit optional actions. A plan defines a
strategy a user follows to accomplish a goal and a plan is a subset of a task.

In order to describe a task, the individual actions that can be performed
during that task are identified first. Thereafter, the task model is constructed
using actions as building blocks. The process of identifying the individual
actions and arranging them accordingly is called task analysis. Different tech-
niques exist. Hierarchical Task Analysis (HTA; Annett and Duncan, 1967)
originates from the domain of industrial training. As a top-down analysis,
HTA starts with a goal and breaks the goal down recursively into tasks and
subtasks that have to be performed to accomplish the goal. HTA focuses on
physical and observable actions. In HTA, plans represent paths through the
hierarchical structure, because the user does not have to perform all tasks
for each plan. HTA includes a notation for tasks. GOMS (Goals, Operators,
Methods, and Selection Rules; Card et al., 1983) presents another approach
for task modeling. Further methods have been derived from GOMS (see John,
1995), such as Keystroke Level Modeling (KLM) and Cognitive, Perceptual,
and Motor GOMS (CPM-GOMS). GOMS describes user activity as goals,
operators, methods, and selection rules. A goal defines the purpose of the ac-
tivity and a number of operators are available to achieve that goal, such as
menu selection or mouse movement. In addition, a number of methods specify
action sequences similar to plans. Methods are defined hierarchically down to
the level of keystrokes. Finally, a number of selection rules select the most ap-
propriate methods. Kieras (2003) presents a top-down approach for building
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GOMS models that starts with a goal and decomposes the task continually,
until arriving at primitive operators at the bottom. Due to the complexity of
the models, different tools have been created for constructing GOMS models
(see Baumeister et al., 2000). However, there is no standard notation. GOMS
is used mainly during the evaluation of interactive systems and allows system
designers to evaluate an interactive system with a GOMS model instead of
real users. For instance, the time required for a task is computed by assigning
interaction times to the individual actions and running a simulation with the
GOMS model.

Different notations for task models exist, with one of the most well-known
formalisms being ConcurTaskTrees (CTT; Paternò et al., 1997). A CTT model
consists of a hierarchy of basic tasks, which are user tasks, application tasks,
interaction tasks, or abstract tasks. The user performs a “user task” without
interacting with the system, whereas the system performs an application task
without user interaction, e.g. a database query. Interaction tasks describe a
communication between the user and the system, for instance a mouse click
or a speech interaction that trigger system functions. Abstract tasks are com-
posed of a combination of the other task types. Different temporal operators
define the order in which the tasks are executed. The most important operators
are interleaving (an arbitrary order), enabling (one action enables another),
iteration (repetitive execution), and optional task (optional execution).

The task model we use in this work is similar to CTT models, but we
apply them at runtime to derive adaptation information. We limit the types to
system and interaction tasks, because user actions without system interaction
cannot be observed, as discussed in Section 3.1. User actions constitute the
building blocks of the task model. They are grouped using sequences (i.e., the
actions occur in the specified order) or alternatives (i.e., only one of the listed
actions is performed). Action groups may be optional or iterative, i.e., they
possibly occur more than once. In addition, actions may be marked as final
if they terminate the current task. Final actions may reference other tasks to
enable the task model to determine directly which task becomes active after
the current task.

We use a set of task models to describe the different tasks in an interactive
system. These correspond to different goals and parts of the system. Thus,
the task models for a digital TV system include watching TV, browsing the
teletext, or using an EPG. An example of a task in a graphical, statechart-
like notation is given in Figure 3.5. The notation includes user actions, final
user actions, and decision states, in which the user decides which action to
perform next. After selecting a set of criteria, such as time or channel, in the
EPG of a digital TV system, the user opens the result screen and thus finishes
the task by means of the “Show results” action. If the user decides to open
a filter selection menu, for instance by means of the “Go to time selection”
action, he or she either selects a value (e.g. using the “Select time” action) or
cancels the selection (using the “Cancel” action). Thus, a task model provides
a comprehensive description of higher-level user activity.
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Fig. 3.5. An example task model that describes the user’s activity when selecting
a set of filter criteria in an EPG.

3.3.2 Constructing Task Models

In the following, we discuss the construction of task models in more detail.
Approaches for an automatic definition of task models exist, for instance by
deriving the model from an existing application model or log data. However,
a manual revision is required due to the high amount of domain-dependent
information that only a domain expert knows.

Garland et al. (2001) present a semi-automatic approach for constructing
task models. They regard building task models as a complex endeavor that has
to be performed at least in part by domain experts. Rather than constructing
a task model automatically, the tooling supports a domain expert in building
the task model. The process starts with a set of example tasks that are used
by a machine learning engine to infer task models from annotated examples.
The domain expert continuously refines the examples and the task model,
until the model corresponds to the interactions of a user with the system. The
individual steps require manual work by a domain expert.

Our task modeling approach also includes automatic support for build-
ing initial task models, which are then refined by a domain expert. For this
purpose, we present two techniques. First, an initial task structure may be gen-
erated from the system model, if a mapping between the system description
and user actions is available (e.g. by mapping events to user actions). Second,
a coarse task structure may automatically be extracted from action sequences
in recorded user sessions, if annotated recordings are available. However, both
approaches only produce coarse task models that serve as a starting point for
a manual revision.

The task model notation used in this work uses an XML format. Although
these files may be created with a text editor, tool support significantly eases
this complex task. The ConcurTaskTree Environment (CTTE, Mori et al.,
2002) is a graphical editing tool for the CTT notation. In order to create task
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models for the adaptation framework presented in this work, we provide a
converter from CTTE models to the task model format used in this work.
This converter only supports a subset of the CTT notation. Only “interac-
tion” and “application” tasks are considered, because “user” tasks cannot be
observed by an interactive system. The sequential operators are also limited
to the “Choice” operator, which is mapped to an alternative action, and the
“Enabling” operator, which is mapped to a sequence. In addition, the “Op-
tional” operator is translated to optional actions and the “Iteration” operator
to repetitive actions or action sequences. Further operators are not necessary
to build complete task models used at runtime of interactive systems. Con-
structs of the task model format that are not part of the CTT notation, such
as final actions, are added by the domain expert after the export. The task
model is loaded at runtime by an interactive system to track the user-system
interaction. In the following section, we discuss how an interactive system
uses task models at runtime and how adaptations are triggered by a task
model-based description of the interaction.

3.3.3 Task Models in Adaptive Systems

Task models have mainly been used as a support for the development and
the evaluation of interactive systems. In the following, we introduce a novel
approach we developed to exploit task model information at runtime of inter-
active systems to serve as an adaptation trigger. At the beginning of a user
session, the system loads the task models. The individual building blocks of
the task models correspond to user actions. Whenever the system observes a
user action, for instance by means of the PDFA approach discussed in Sec-
tion 3.2, the task model status is updated accordingly. For this purpose, the
task modeling component keeps a list of active tasks and stores the active
state of each task. If an observed action is the initial one of an inactive task,
the respective task is activated. For this purpose, it is added to the list of
active tasks and the initial state of the model is activated. If an action is a
possible next step of an active task, the status of the active task is updated.
If an activated state is a final state, the task is closed. If a step is not allowed
according to an active task, the respective task is terminated. In addition, con-
ditions increase the validity of the task model, such as the current graphical
screen or speech state.

An example task model that describes the digital TV system presented
in the introduction is given in Figure 3.5. This model illustrates the task
of selecting filter criteria in an EPG and opening the result screen. When
the interactive system starts, the task is not active. Once the user opens the
EPG by means of the “Go to program guide” action, the “Filter selection”
task is activated. When the user opens the time menu using the “Go to time
selection” action, only the “Select time” and “Cancel” actions are available.
The task is finished when the user opens the result screen by means of the
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“Show results” action. The “Show results” action may be the start action of
another task.

By tracking user behavior with a task model, the interactive system can
anticipate user actions based on the list of valid actions in the current state.
However, probabilistic information improves the utility of a task model consid-
erably and facilitates different applications of a task model. Different methods
exist for adding statistical information to a task model. First, the system de-
signer annotates the task model with the expected probabilistic information.
For instance, the system designer could expect that a user selects action A
with a 60 % likelihood and action B with a 40 % likelihood. This information
does most likely not reflect actual probabilities, but serves as a starting point.
Second, the task model is trained from either recorded or live log data. For
this purpose, the task model tracks the interaction, as discussed previously,
and increases a counter in the model for every action it observes. The prob-
abilities are derived from the respective counters. The task model is trained
either from training data of multiple users, of a subgroup, or of a single user,
depending on the intended application of the information. The example task
model in Figure 3.5 includes statistical information. After having entered the
EPG screen, users select the “Go to time selection” action with a probability
of 12 % and the “Show results” action with a likelihood of 38 %.

In the remainder of this section, we discuss different applications of task
models we devised for adaptive interactive systems. The aim is to derive in-
formation to trigger adaptations, such as user problems or predictions. For
example, a prediction of the next user action triggers an adaptation that
highlights specific interface elements.

Predicting the Most Likely Next User Action

One application of a task model is to predict the most likely next user ac-
tion. An adaptation component uses this information to provide assistance
accordingly, for instance by means of adaptive help messages or by emphasiz-
ing interface elements. The prediction relies on statistical information in the
task model. For this purpose, this model tracks the interaction and therefore
is aware of the current interaction state. The user can perform only a limited
number of actions in each state. The task model predicts the most likely next
user action by selecting the one with the highest probability value.

For example, in the task model of Figure 3.5, the user enters the EPG of a
digital TV system by means of the “Go to program guide” action. According
to the task model, the “Go to time selection” action is performed with a
12 % likelihood, the “Go to channel selection” action with a 14% likelihood,
and the “Show results” action with a 38% likelihood, etc. Therefore, the task
model predicts the “Show results” action, since this action has the highest
probability.

Which action the task model predicts depends on the training data. If the
model is trained with data from a group of users, the prediction reflects the
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preferences of the group. For example, a task model recommends the most
common action to novice users by training the model with data from a group
of different users. On the other hand, a task model reflects the interaction
style and preferences of an individual user if the training data is taken only
from the current user.

Recommending Unknown Actions

In addition to recommending the most likely action, the task model can rec-
ommend actions that the user has not performed yet. For this purpose, the
model records the interaction of the user and thus knows the actions a user
performed. A comparison of the interaction of the current user with the in-
teractions of other users improves the recommendation. For this purpose, the
system employs two task models, one with the statistical information of the
current user and one with statistical information of other users. Both models
track the user-system interaction in parallel. The interactive system compares
the probability of the predicted actions of both models. If the probability of
the model that represents a user group is higher than the one of the model that
describes the user, the action predicted for the group may be recommended
to the user.

An example shall illustrate this approach. The task model in Figure 3.5
contains an action called “Show now”, which opens the list of TV shows that
are currently on the air. The group of all users executes the “Show now”
action with a 17% probability. If the current user however had not used the
“Show now” action at all or with a probability significantly lower than 17 %,
the task model could recommend this action, assuming that the user does not
know about the respective feature. Since the probability of the “Show results”
action (21 %) is higher, the model would never recommend the “Show now”
action by only considering the most likely action.

Finishing the Current Task

The task model may present a sequence of actions to the user for finishing
the current task. For this purpose, the model computes a plan for ending
the current task by regarding the model as a graph and finding the short-
est path between the active state and a final state. For example, Dijkstra’s
shortest path algorithm (Dijkstra, 1959) is suitable for computing the shortest
sequence of actions to finish the current task. Instead of using the weight of
the individual edges for finding the shortest path, the actions with the highest
probabilities are selected.

The adaptive interface uses the recommended sequence of actions to show
help that explains the sequence needed to finish the current task or to execute
the action sequence automatically. The task model in Figure 3.5 illustrates
this approach. If a user performed the “Go to time selection” action, the short-
est path algorithm generates the sequence (“Select time”, “Show results”) to
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finish the “Filter selection” task. The algorithm is more useful in combination
with more complex task models and long action sequences.

Detecting User Errors and Problems

A task model also reveals user problems in the interaction. For instance, the
user might hesitate in a task or frequently switch between tasks without fin-
ishing a task. First, time is an indicator of user problems. If a user hesitates
while interacting with the system, he or she might be in need of help. How-
ever, there are times of inactivity in the interaction, for instance when the
user is watching TV or working on tasks outside of the interactive system.
The task model recognizes hesitation by comparing the interaction times of
the current user with interaction times of other users. For this purpose, the
task model investigates the waiting times at the decision states. In addition
to recognizing user problems, the task model can infer the user’s proficiency,
for instance by connecting short waiting times to expert users.

Another indication of user problems is frequent task switching. If the user
does not finish tasks, but switches to other tasks continuously, the user may
need support, for instance by means of help messages. The user finishes a
task by executing an action that is marked as final action. Therefore, the
task model infers user problems if it observes that a user frequently starts
new tasks without performing one of the final actions of the previous task.
In addition, if a user needs more interaction steps to finish a task than the
average user, the interactive system assumes that the user needs help. For
instance, of a user switches frequently between the “filter selection” (shown in
Figure 3.5) and “watch TV” (not shown) tasks, a help message that explains
how to use the filter menu helps the user.

Thus, we introduced a novel approach for describing higher-level user be-
havior in adaptive interactive systems. We presented task models as a viable
means for this description. These models track user behavior, compute pre-
dictions of user actions or action sequences, and derive further information
about the user-system interaction, such as detecting problems or errors.

3.4 Predicting User Actions

An adaptive interactive system anticipates user behavior, for instance by pre-
dicting a user action. Such an interface may highlight interface elements re-
lated to predicted user actions or offer shortcuts for a sequence of user actions.
In this section, we introduce algorithms for predicting either a single user ac-
tion or a sequence of user actions. We adapted these algorithms for the use in
adaptive interactive systems from other domains.
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3.4.1 Predicting One User Action

A prediction of the next user action enables an interactive system to trigger
adaptations. For instance, the system provides help for the action or highlights
interface elements that are connected to the anticipated action. We introduce
two approaches for predicting a single user action in this section, an algorithm
based on Markov chains and an algorithm that exploits a task model. An
evaluation of both algorithms is presented in Chapter 6.3.

Task Model-based User Action Prediction

An algorithm for predicting a user action by means of probabilistic information
in a task model is presented in Section 3.3. A task model with probabilistic
information tracks the user-system interaction and produces a list of actions
the user can execute. The model selects the action with the highest probability
as a prediction. An example of an action prediction based on task model
information is presented in Section 3.3.

However, this approach always recommends the same action at a specific
state, although the actual actions of a user depend on the interaction history.
For instance, the task model in Figure 3.5 always recommends the “Show re-
sults” action, because this action has the highest probability of 38 %. Instead
of selecting the results screen directly, a user selects filter criteria, such as
channel or time, before opening the results screen. Therefore, the prediction
is improved by recommending the “Go to day selection” or “Go to channel
selection” action first. When the user enters the selection screen again, the
interactive system should recommend the “Show results” action. Thus, in-
cluding the interaction history into the prediction improves the usefulness of
the recommended action. In the following, we present an action prediction
algorithm that incorporates past user actions. For this purpose, we adopted
an algorithm for link prediction from the domain of adaptive hypertext to the
task of user action prediction in interactive systems.

Using Markov Chains for User Action Prediction

A prediction of a user action becomes more useful by incorporating the in-
teraction history. In this section, we present an algorithm based on Markov
chains that considers the interaction history. Markov chains are a statistical
tool for modeling sequences and have been applied to adaptive interactive
systems. For example, Zhu et al. (2002) and Sarukkai (2000) use Markov
chains to model user behavior for predicting links in adaptive websites. We
adapted the Markov chain-based approach to the domain of action prediction
in interactive systems by including domain knowledge.

Markov chains exploit the Markovian assumption, which states that a sym-
bol in a sequence only depends on the previous symbol. A sequence S consists
of a number of symbols xn and a transition probability matrix A stores the
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probabilities aij of symbol xi being followed by symbol xj . A prediction of the
next symbol is computed by comparing all probabilities in the column of the
matrix that is associated with the current symbol and selecting the one with
the highest probability. A Markov chain that only considers sequence of length
one is called 1st order Markov chain. Markov chains that consider longer se-
quences are called 2nd order or higher order Markov chains. For instance, with
an alphabet of (“A”, “B”), a 1st order Markov chain stores probabilities for
“A” and “B”, whereas a 2nd order Markov chain stores probabilities for the
sequences “AA”, “AB”, “BA”, and “BB”. With an alphabet of 40 symbols,
there already exist 1600 combinations with a 2nd order Markov chain. Since
the computational complexity of higher-order Markov chains increases signifi-
cantly, higher-order Markov chains are not well suited for devices with limited
computational resources, which often applies to interactive systems.

Therefore, we only consider first order Markov chains in this work. The
interaction history is included in a different way. Sarukkai (2000) presents
an approach for link prediction that stores the user’s interaction history and
includes the history into the prediction. In the following, we present how
we adapted this algorithm to the domain of user actions. The user actions
constitute the alphabet and an index is assigned to each action. For example,
the actions a, b, and c receive the indices 1, 2, and 3. Actions are represented
as vectors and define a probability distribution of the action. For instance,
action a with index 1 is represented by means of the vector sa = [1, 0, 0].
The probabilities of other actions are 0 in this case. The fact that the actions
a, b, and c occur with the same probability of 1

3
is expressed by the vector

s = [1
3
, 1

3
, 1

3
]. A matrix A represents the transition probabilities between the

actions. The probabilities of the next actions s(t) are computed by multiplying
the matrix with the vector that represents the current observation s(t − 1)
(Equation 3.3). This equation exploits the Markovian assumption.

s(t) = s(t − 1) ∗ A (3.3)

The interaction history is not yet included, but the next action is predicted
based on the previous one. The history h stores the last N action vectors. If an
action is observed, the new action is added to and the oldest action removed
from this vector. In this work, a number of N=5 observations is used. For
example, the action sequence [a, b, c, a, a] is represented by means of the vector
[[1,0,0], [0,1,0], [0,0,1], [1,0,0], [1,0,0]]. A prediction for the last N actions is
computed and the individual results are added up, with older actions receiving
a lower weight. The matrix An produces a prediction for the nth action in the
sequence. The weight of older actions is decreased by means of a dampening
factor d = (1.00, 0.50, 0.30, 0.25, 0.20). The result vector is normalized in order
to produce probabilities. Equation 3.4 presents the prediction algorithm that
incorporates the interaction history.
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Observed Task model Markov chain

user action prediction prediction

<open EPG> <open EPG> <open EPG>

1 Go to day selection Go to day selection Show results
2 Select day Select day Select day
3 Go to time selection Go to time selection Show results
4 Select time Select time Select time
5 Go to channel selection Show results Show results
6 Select channel Select channel Select channel
7 Show results Show results Show results

Table 3.1. Observed user actions and predictions by the task model algorithm and
the Markov chain algorithm.

s(t) =

N∑

j=1

d(j)h(t − j)Aj (3.4)

The transition matrix is trained using either events from the current inter-
action to reflect the characteristics of an individual user or recorded sessions
of a group of users to represent the characteristics of a user group. First, a
transition count matrix T is created from a sequence of observations. If action
xj is followed by action xi, the field tij of the matrix is incremented. The
probability transition matrix A is derived from matrix T by dividing each cell
by the sum of the respective row.

However, the Markov chain prediction sometimes produces predictions
that are not valid according to the task model due to the statistical nature
of the prediction. Therefore, we use a combination of the Markov prediction
and the task model information to ensure the validity of the prediction. For
this purpose, the task model tracks the interaction and the Markov chain al-
gorithm produces a prediction vector. Thereafter, the predictions that are not
valid according to the task model are removed.

Table 3.1 gives an example of the predictions of the task model algorithm
and the Markov chain algorithm, based on the task model given in Figure 3.5.
As can be seen, the task model algorithm always predicts the “Show results”
action in the EPG main screen, whereas the Markov chain algorithm predicts
the “Go to day selection” action correctly in line (3). However, the Markov
algorithm predicts the “Show results” action in line (5), whereas the user
selects another filter criterion first. An evaluation of the two algorithms is
presented in Chapter 6.3. Thus, the Markov chain algorithm outperforms the
task model algorithm due to the combination of statistical prediction and
domain knowledge.

3.4.2 Predicting a Sequence of User Actions

In addition to the prediction of a single action, predicting a sequence of ac-
tions allows an adaptive interactive system to offer shortcuts for executing the
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predicted sequence more quickly or conveniently. For example, if the user fre-
quently selects a specific set of filter criteria, the system may provide shortcuts
accordingly. In this section, we present an approach for predicting sequences
of user actions that exploits sequence mining. Interaction pattern mining ex-
tracts a set of frequent action sequences from an interaction and transforms
them into rules. These rules enable a prediction of action sequences.

Instead of using supervised learning techniques, such as case-based reason-
ing, neural networks, or probabilistic automata, sequence mining techniques
extract frequent episodes from a longer sequence without the need for train-
ing data. Agrawal and Srikant (1995) present different algorithms for sequence
mining and illustrate these algorithms with an example from the domain of
customer transactions. The algorithms exploit the a priori property. It states
that an episode with k symbols can only be frequent if all sub-episodes are
frequent. Another approach presented by Mannila et al. (1997) also exploits
the a priori property. Liu et al. (2003) employ this algorithm in adaptive office
software that learns frequent formatting options and presents them as short-
cuts to the user. Similarly, Heierman and Cook (2003) use sequence mining in
the domain of intelligent home automation. In this work, we use an algorithm
that is adapted from Mannila et al. to extract frequent action sequences from
the user-system interaction. This information may for instance be used to
present them as shortcuts to the user. An example system and an evaluation
of the interactive system are presented in Section 6.4.6.

An Algorithm for Mining User Actions

We introduce a sequence mining algorithm, which is based on an algorithm
presented by Mannila et al. (1997). We start with a definition of a number of
terms. An episode is a subsection of an event sequence and a frequent episode
appears more often than a previously defined threshold. An episode X is a
sub-episode of sequence Z if X represents the beginning of Z. In this case,
Z is a super-episode of X. A frequent episode is closed if there is no longer
episode in a set that contains it as a sub-episode. For instance, in the set of
episodes (AB, ABC, ABD), AB is a sub-episode of ABC and ABD. Thus,
the episode AB is not closed, because longer episodes exist that have the
sequence AB as a prefix. A rule consists of two episodes, which are called
trigger and implication. The trigger is a sub-episode of the implication. If a
trigger appears in a sequence, the remaining part of the implication follows
with a given probability. For instance, the rule AB/CD has the episode AB as
a trigger. When the AB sequence is observed, the rule predicts the sequence
CD.

The algorithm regards user actions as symbols. For this purpose, it pro-
cesses a sequence of user actions, for instance a live user-system interaction
or a log file. This algorithm comprises the following steps: mining frequent
episodes, selecting closed episodes, and creating rules. First, a set of frequent
episodes is extracted from a sequence. For this purpose, the algorithm finds
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episodes of length k (k ≤ 2) by combining episodes of length k-1. Thereafter,
it filters results by means of the a priori property and derives probabilistic
information. Pseudo code of the algorithm for mining frequent episodes is
given in Figure 3.6. The algorithm moves a sliding window with an increasing
length over the sequence. If the beginning of the episode in the window is a
frequent episode (or is not longer than a minimum length), this episode is
added to a list of candidates. The algorithm counts the occurrences of the
individual episodes. At the end of one iteration, all episodes that occur with
a frequency higher than a threshold minOccurrence are added to the list of
frequent episodes. In this work, a value of two is used as the minOccurrence
threshold. The algorithm terminates either at a given upper length lookahead
(values of five to 20 are used for this work) or if no more episodes are found
in the current iteration. The algorithm is based on the INTEMTM algorithm
(Mooney, 2007), which again exploits the a priori property and the windowing
method used in the WINEPI algorithm presented by Mannila et al. (1997).

function findFrequentEpisodes (sequence S, lookahead, minOccurence):

frequentEpisodes = []; length = 1; found = false

while length < lookahead and found:

candFreqEp = []; found = false

for (i=0; i<S.length - length; i++):

create new episode ‘‘a’’ with length ‘‘length’’,

starting at index ‘‘i’’

if beginning of ‘‘a’’ is frequent episode:

increment counter of a

for (episode a in candFreqEp):

if counter of a > minOccurence:

add a to episodes of length ‘‘length’’

found = true

length = length + 1

return frequentEpisodes

Fig. 3.6. Pseudo code of the algorithm for mining frequent interaction episodes.

After a set of frequent episodes has been extracted from the interaction
sequence, all non-closed ones are removed. For instance, the episode AB is
removed from the set (AB,ABC) since it is a sub-episode of episode ABC.
Finally, rules are generated from the set of frequent episodes. The confidence
of a rule is the probability that a trigger turns into the implication. The
confidence is computed using Equation 3.5, with α being a sub-episode of γ
in a sequence s and fr the frequency of the episodes.
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conf(r) = fr(α, s)/fr(γ, s) (3.5)

Therefore, if an episode α turns into episode γ four out of five times, the
confidence is 4

5
. The confidence of the sub-episodes is computed for every

closed episode, starting at a length of one. The rule is generated once the
confidence reaches a threshold. Thus, the algorithm selects the rule with the
shortest trigger for a fixed confidence level. Values of 0.5 to 0.7 are used as
confidence threshold. However, the confidence level may be connected to the
length of the sequences to better support sequences of different lengths.

Rules predict event sequences by observing an event sequence and match-
ing the observations with the rule triggers. If a trigger is observed, the remain-
der of the rule implication follows with a given probability. The length of the
prediction depends on the length of the rule and the length of the trigger. In
order to produce a prediction of an action sequence instead of a single action,
the difference in length between the trigger and the rule length has to be at
least two. If a minimum length of the prediction is required, rules with shorter
predictions are omitted. Moreover, episodes can contain repeating parts. For
example, the sequence ABCBCD contains a repetition of the sequence BC.
This repetition may reduce the interestingness of the prediction for the user.
Thus, removing repetitive sections improves the quality of the prediction.

Action Sequences for Adaptive Interactive Systems

In the following, we discuss how we employ the sequence prediction algorithm
in adaptive interactive systems. The approach comprises two steps, training
the algorithm and predicting action sequences at runtime. First, rules are
extracted either from recorded or live interaction data. For this purpose, a
list of user actions must be recognized in the interaction sequence first. In
order to generate rules from recorded data, the training algorithm is applied
to a sequence of log files. In this case, the training has to be performed only
once and is performed offline. Alternatively, the training algorithm collects
data from the current interaction. Since training the algorithm after each
observed action has a negative impact on the performance of the interactive
system, the training is performed either at fixed intervals (e.g. after every
fifth interaction) or during idle times of the interactive system. At runtime,
the system observes a sequence of user actions, which are for instance detected
by the PDFA approach presented in Section 3.2, and finds rule triggers. In
the example TV system, if the user often only selects a specific channel in the
EPG and then opens the results, the algorithm may extract the sequence (“Go
to program guide”, “Go to channel selection” / “Selection channel”, “Show
results”), with the first two actions being the rule trigger. Therefore, if the
user opens the channel selection screen, the rule predicts the last two actions
of the implication.

Once a sequence prediction has been computed, the adaptive interactive
system offers a shortcut to the user. In doing so, the user may execute the
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action sequence with a single interaction. An example application is presented
in Section 6.4.6. The adaptation allows the user to either execute the whole
sequence or only a subsequence of the predicted sequence. For example, if the
rule of the previously presented example has been triggered, the system offers
shortcuts for the user to execute the whole sequence with a single interaction.
Thus, once the user executed the first two actions, the remaining actions
require only a single click. A second use of the prediction is providing help
that explains how to execute the sequence.

However, an adaptive interactive system that employs a prediction of
actions requires additional information about the user actions, for example
by means of a semantic annotation. First, some actions terminate action se-
quences, such as actions that open the main menu and thus end a sequence in
a submenu. Second, some actions cannot be executed automatically, such as
safety checks that always have to be confirmed by the user. Therefore, the sys-
tem designer has to provide this information to allow the adaptive interactive
system to handle actions appropriately.

3.4.3 Invoking User Actions

In order to automatically execute action sequences, the system has to trigger
the individual actions of a sequence. How to invoke actions depends on the
formalism used for detecting user actions. If actions are defined by means of
annotated sequences (see Section 3.2), they are played back by simulating
these events. However, system reactions are not invoked, because the system
has to react to the simulated input in the same way as to actual user input.
For example, the simulation invokes a button press, but no system reactions
to the user input.

If user actions are connected to events, as discussed in Section 3.2, the
action is simulated by invoking the respective event. In any case, the system
designer has to consider possible side effects. Therefore, the system may pro-
vide shortcuts to the user by playing back the individual actions of a sequence.

3.5 Discussion

In this chapter, we introduced a novel approach for describing user actions
in adaptive interactive systems. Starting with an observation of basic obser-
vations, different algorithms build on each other to produce information that
triggers adaptations. First, we discussed the notion of user behavior as a se-
quence of basic events and the notion of user behavior as actions and data.
Basic events encode all aspects of the user-system interaction that are rele-
vant for user modeling. User actions can be extracted from the interaction
sequence and tasks describe higher-level user behavior.

We devised a PDFA-based algorithm for extracting user actions from the
sequence of events. Based on annotated log data, the algorithm detects user



3.5 Discussion 65

actions, which serve as a basis for a higher-level description of user behavior.
We introduced task models as a means for describing higher-level interaction.
So far, task models have been used at design time. Instead, we use task model
as a means to derive different kinds of information as adaptation triggers, such
as user problems or a prediction of the next user action. Different algorithms
for prediction both single user actions and sequences of user actions were
presented that we adapted to the domain of interactive systems. In addition,
we discussed the use of the predictions in adaptive interactive systems.

The algorithms presented in this chapter facilitate a sophisticated descrip-
tion of user behavior in adaptive interactive systems. The approach starts
with an observation of basic events and employs different algorithms that
work on top of each other to describe higher-level user behavior. This infor-
mation serves as a trigger for adaptations. In the following chapter, we present
usability principles for adaptations in interactive systems as well as a set of
adaptation patterns. These use the outcomes of the user modeling process as
triggers. In Chapter 6, we prove the feasibility of the user modeling algorithms
in an evaluation.



4

Adaptation Patterns for Interactive Systems

To understand is to perceive patterns.

–Isaiah Berlin (1909-1997)

The aim of adaptations is to improve the usability of interactive systems.
In the course of this, adaptations have to consider the usability fundamentals
of interactive systems. Usability has been a research topic for decades and
research and practical experience produced a number of usability principles.
These principles define high-level knowledge and fundamental goals of user
interfaces. They also apply to adaptive interactive systems, which represent
a special kind of interactive system. In this chapter, we introduce usability
principles and discuss how to design adaptations such that they comply with
these principles. At a first glance, the concept of adaptivity violates some us-
ability principles. For instance, an interface that adapts dynamically to user
behavior seems to violate the principle of predictability. Adaptations might
cause system reactions that are different from what the user expects. There-
fore, we investigate the effects of usability guidelines on the implementation
of adaptive interactive systems and discuss how adaptive interfaces comply
with usability principles.

Design patterns are a means for communicating best practice. They doc-
ument general and proven solutions for recurring problems, which are not
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limited to a specific system or platform. An overview of patterns in human-
computer interaction and adaptation patterns in the literature is given in
Section 2.3. The origin of patterns is in architecture (Alexander et al., 1977),
but patterns have been applied to different domains such as software engi-
neering and interface design. Interface design patterns define best practice of
usability in interactive systems and the context in which they should be used.
In this chapter, we introduce how adaptation patterns for interactive systems
can be identified. We present a format we created for adaptation patterns
and introduce a set of patterns we conceived for adaptive interactive systems.
In order to provide usable solutions, the adaptation patterns comply with
usability principles.

This chapter is structured as follows. First, a set of usability principles for
non-adaptive interactive systems is presented and the implications of these
principles for adaptations are discussed. Second, the process of identifying
and writing down patterns is introduced and a pattern format for adapta-
tion patterns in interactive systems is presented. Finally, we present a set of
patterns we created for adaptive interactive systems.

4.1 General Considerations for Adaptation Patterns

Adaptations improve the interaction of users with interactive systems. Thus,
adaptations should enable the user to interact with the user interface more
effectively, efficiently, and in a more satisfying way. However, adaptivity does
not fix interactive systems with usability deficits. Instead, adaptations improve
the usability of interactive systems that already comply with basic usability
principles. In the following, we first introduce usability principles for interac-
tive system and then proceed to discuss the implications of these principles
for adaptive interactive systems. Usability experts, researchers, or standards
committees have proposed different sets of usability principles in the past.
For instance, Shneiderman and Plaisant (2004) present “Eight golden rules
for interface design”, such as “Strive for consistency” or “Keep it simple”.
The international EN ISO 9241-110 standard (“Grundsätze der Dialoggestal-
tung”, principles of dialog design; Europäisches Kommittee für Normung,
2006) presents a more formal approach of usability guidelines for dialog sys-
tems. These collections all include the usability principles of predictability,
transparency, consistency, and controllability, in one form or another.

Since adaptive interactive systems are a special type of interactive systems,
usability principles for interactive systems have to be considered in adaptive
interfaces. Adaptivity seems to object some usability principles. For instance,
a dynamic adaptation of the interface seems to contradict the principle of
predictability, because the interactive system might react differently after the
adaptation has been applied. However, adaptations may be designed in a way
so as to comply with usability principles. In addition to the usability principles
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of regular user interfaces, usability principles have been discussed specifically
for adaptive interfaces.

Literature describes the implications of usability principles on adaptive
user interfaces. Jameson (2003) presents a set of usability requirements for
adaptive interactive systems and extends these requirements of regular user
interfaces for this purpose. In addition, Jameson proposes preventive and com-
pensatory measures that influence usability goals in adaptive interactive sys-
tems. In a similar way, Höök (2000) discusses usability issues that prevent
a widespread use of adaptations in interactive systems and presents solu-
tions for resolving these problems. Höök mentions control transparency and
predictability, privacy and trust, and treating systems as fellow beings. We
include the contributions of Jameson and Höök in the discussion of the respec-
tive usability principles in the following. In the remainder of this section, we
present usability principles for interactive systems, namely “Component Em-
phasis”, “List Element Selection”, “Alternative Elements”, “Adaptive Help
Presentation”, and “Shortcut Area”. We proceed to discuss the impact of
these principles on adaptations.

4.1.1 Predictability

A predictable user interface enables users to anticipate the reactions of the
system to their input. Users interact more quickly with an interactive system
if they do not have to evaluate the system reaction. On the one hand, users
learn to use interactive systems automatically if the interactive system reacts
in a uniform way to an action, called automatic processing. If users know
the reaction, they proceed with the next interaction step without evaluating
them first. If an adaptation changes the layout or dialog flow of an applica-
tion, automatic processing ceases to work and thus deprives expert users of an
efficient means of interaction. Therefore, adaptations should not break auto-
matic processing. On the other hand, consistency contributes to predictability
by allowing users to anticipate the reaction of the system even in previously
unused parts of the system. For instance, if the graphical layout or the speech
commands in conformation screens share a common layout in all parts of an
interactive system, users know how to operate all confirmation screens. There-
fore, once users understand the basic concepts behind the interaction, they
are able to operate all parts of the interactive system. Self-explaining and
consistent usage concepts contribute to predictability in interactive systems.

The principle of predictability plays a crucial role in adaptive interactive
systems. Adaptations should not break the predictability of the interactive
system. In addition, adaptations should be implemented in a predictable way.
First, the selection of adaptations should be performed in a way so as to en-
able the user to anticipate which adaptation is selected. If the user shows a
specific behavior, the adaptive system should always apply the same adapta-
tion. Second, if an adaptation recommends an element in a list or an action to
the user, the selection of the value should be comprehensible and consistent.
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The prediction of values by user modeling algorithms should not surprise a
novice user and at the same time should be predictable for expert users.

Some adaptations might still change the system in a way that does not
comply with predictability and consistency, for instance if the layout of a part
of the user interface is to be changed. In this case, the interface may be split
into two parts, a non-adaptive, fully predictable part and an adaptive, not
fully predictable part. An example of such an interface is the “Shortcut Area”
adaptation pattern presented in this chapter.

4.1.2 Transparency

Transparency allows the user to comprehend the inner workings and the cur-
rent interaction state. In doing so, it enables the user to build a mental model
of the interactive system. The user can understand the reactions of the inter-
active system and the system does not confuse the user through unexpected
reactions. In addition, the user may better plan future actions, especially
longer action sequences that depend on the state of the interactive system.
However, the interactive system does not necessarily communicate the actual
inner workings and state. Instead, the user sees a simplified model of the
interactive system, which does not contain unnecessary details or technical
aspects. Höök (2000) calls this approach the “glass box” approach. The inner
workings of the adaptive interactive system are a black box, which hides de-
tails from the user. However, the interactive system presents a “glass box” to
the user that shows a simplified model and allows the user to build a mental
model for the interaction more easily.

Explaining adaptation and user modeling decisions to the user is an im-
portant aspect for transparency. The interactive system may use different
methods to communicate these decisions to the user, such as explicit informa-
tion. On the other hand, the interactive system may allow the user to build
a mental model of the adaptation decision and thus dispenses with the need
to explain the decision. In any case, the adaptation decision is an impor-
tant aspect for transparency. The literature discusses different approaches for
transparency in adaptive interactive systems. For instance, Herlocker et al.
(2000) present an approach for explaining recommendations in collaborative
filtering systems.

4.1.3 Controllability

Controllability postulates that the user should keep control over the inter-
active system and the interaction, including the direction and speed of the
dialog. Moreover, the user should be able to control behavior and appearance
of the system, for instance by means of configurability. Controllability ensures
that the user keeps the feeling of being in control and not being controlled by
the interactive system.
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System-initiated adaptation performs changes to the interactive system
that are not controlled by the user and thus apparently contradict the principle
of controllability. Therefore, adaptations should be performed in a way so as to
let the user keep the feeling of control. In addition, further methods enable the
user to keep control over the interactive system. For instance, the interactive
system may allow the user to disable or enable adaptations globally or on
a more fine-grained level, e.g. in a settings menu. On the level of individual
adaptations, the system may allow the user to approve adaptations before
they are performed or allow the user to correct adaptation decisions, e.g.
by reverting them. Both methods however require a rich and complex user
interface that possibly confuses beginners.

Some user modeling systems allow the user to inspect and alter the user
model. For instance, Cook and Kay (1994) present a user modeling server
that allows users to browse the user model, view the individual entries, and
change the entries according to their preferences. However, users are reluctant
or unwilling to perform changes themselves unless the users judge the effort as
rewarding (cf. Mackay, 1991). Therefore, different approaches exist that allow
the user to keep control in adaptive interactive systems.

4.1.4 Unobtrusiveness

Unobtrusiveness is another principle that is of great relevance for adaptive
interactive systems. The user interacts with an interactive system in order
to accomplish a specific goal and the system should distract or obstruct him
or her as little as possible. Since adaptations change the system at runtime,
they possibly distract the user. Thus, adaptations may be limited to a specific
part of the interactive system. Some adaptive interfaces have been presented
in the literature that failed because they were too obtrusive. For example,
users regard anthropomorphic agents as too intrusive (cf. Jameson, 2003).
Therefore, adaptations should be implemented in an unobtrusive and non-
distracting way.

However, adaptations have to be implemented such that the user notices
them. During the development of a prototype that implements the “Adaptive
help” adaptation (see Section 6.4.2), we observed that some users did not
perceive the help messages. Therefore, we increased the degree of obtrusiveness
such that the users became aware of the adaptive help, without interrupting
the user-system interaction. Therefore, adaptations should be implemented in
a way that they do not distract the user from the current task, but have to
be intrusive enough to be perceived by the user.

4.1.5 Privacy

Although privacy is not a usability principle, it nevertheless represents a highly
relevant fundamental for adaptive interactive systems. Adaptation to user be-
havior relies on an observation of the user-system interaction and the interac-
tive system stores a user model with sensitive data that represents the user.
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While users might not be concerned by the fact that the interactive system
observes them and stores data (cf. Section 6.2), the user model still needs
to protect sensible user data from unauthorized access. On the other hand,
sharing data across different applications increases the utility of a user model.
Data does not have to be collected from scratch by each adaptive system. If
data from the user model should be shared, the user modeling component has
to allow the user to decide which parts of the user model to share and which
applications may access the user model.

Kobsa (2007) discusses different methods for enabling privacy in personal-
ized interactive systems. According to Kobsa, users want to know which data
is collected and want to be able to control how this data is used. Solutions for
ensuring privacy in adaptive interactive systems are for example anonymous
user modeling or client-side personalization, in which user data is not stored
on a public server. In addition, the interactive system may provide a private
mode that allows the user to disable user modeling on a per session basis.

4.2 Creating Patterns

Patterns represent proven solutions for frequently occurring problems in a spe-
cific domain. For this purpose, experts in a domain have to identify problems
and solutions that are worth being documented as patterns. This includes
problems that are common to different instances and generic. The process
of creating patterns comprises two stages: collecting patterns for a domain
and writing them down. For this purpose, a common structure is used for all
patterns in a pattern collection. In the following, we discuss the process of
identifying and collecting patterns. Thereafter, we present a pattern format
we defined for adaptation patterns in interactive systems.

4.2.1 Identifying Patterns

The pattern author is an expert in the respective domain, such as architecture,
software engineering, or usability. He or she wants to share experience and
knowledge with other people working in the same domain. As an expert in
the domain, the pattern author observes frequently occurring problems and
collects successful solutions for these problems. When a solution was applied
often or observed in other work or in the literature, the problem and the
solution are documented as a pattern. A discussion of the context further
defines the pattern.

Contrary to patterns, interface design guidelines define general rules, such
as layout, appearance, and behavior of a specific platform, rather than generic
knowledge for arbitrary interactive systems. The Apple Human Interface
Guidelines (Apple Inc., 2010) represent one example of interface guidelines.
These define a common look and feel for applications on the Mac OS software
platform. A closed group, such as a platform vendor or a committee, often
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defines guidelines. Unlike guidelines, design patterns describe knowledge that
has proven successful in practice and was discovered empirically. Pattern col-
lections show varying degrees of generality. On the one hand, the user interface
pattern collection presented by Tidwell (2005) comprises a large number of
patterns, some of them discussing very specific problems. On the other hand,
the pattern collection for adaptive hypertext systems presented by Koch and
Rossi (2002) includes a smaller number of patterns that discuss more general
problems and solutions.

Once recurring problems have been identified in a domain, the pattern
author defines a pattern format for the pattern collection and writes the pat-
terns down in the common format. In the following, we introduce different
pattern formats from the literature and present a format we defined for the
adaptation patterns in this work.

4.2.2 A Pattern Format for Adaptation Patterns for Interactive

Systems

Pattern formats have been defined for various domains. The original pattern
format is the Alexandrian form. It was introduced by Alexander’s pattern
language for architecture (Alexander et al., 1977). The Alexandrian form,
which is discussed in detail in Section 2.3, divides the pattern description into
two sections, a discussion of the problem and a discussion of the solution.
Unlike later formats, the Alexandrian form does not use explicit headings.
Another widely used pattern format is the “gang of four” format for software
engineering patterns by Gamma et al. (1995). It divides a pattern description
into sections with explicit headings. All patterns use common sections, such
as “Pattern Name and Classification”, “Intent”, or “Implementation”. These
sections enable readers to find interesting sections and skip uninteresting ones.

The pattern format by Gamma et al. (1995) serves as a basis for the adap-
tation patterns presented in this work. However, we removed inapplicable
sections, such as “Implementation” or “Sample code”, and added a section
“Adaptation trigger” to include the information how an adaptation is initi-
ated. In the following, we introduce the individual sections of the adaptation
pattern format.

• Name: An intuitive name allows the developer to easily identify and re-
member adaptation patterns.

• Intent: The intent describes the idea behind the pattern in a concise
statement. In doing so, the intent sketches the solution briefly.

• Motivation: The motivation describes the problem that is addressed by
the pattern and introduces the motivation for the presented solution.

• Forces: The forces section further defines the context of the pattern by
listing pieces of information that are relevant for the application of the
pattern. For instance, forces include general conditions or limitations of
the pattern.
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• Solution: The solution presents a method for solving the previously de-
scribed problem. In addition, this section discusses the merits of the adap-
tation.

• Adaptation Trigger: The adaptation trigger connects the pattern to the
user modeling and discusses user behavior that activates the adaptation.
For this purpose, this section presents an enumeration of user modeling
entities, such as user preferences or a prediction of user actions.

• Related Patterns: The context of the pattern is further defined by con-
necting the pattern to others, both from the same and from other pattern
collections. Moreover, if the pattern does not solve the problem of the de-
veloper, this section suggests other patterns that could be applied instead.

• Examples: A number of examples further illustrates the use of the pat-
terns. Screenshots of adaptive applications clarify the use of the pattern.

In the following, we present a number of adaptation patterns we defined
for interactive systems. The full description of these patterns in the format
introduced in this paragraph is presented in Appendix A.

4.3 An Adaptation Pattern Collection for Interactive

Systems

In this section, we present a set of adaptation patterns for interactive systems.
These change the user interface of the system, but do not depend on the appli-
cation logic. Since some adaptation address specific issues rather than general
problems, they are outside of the scope of this work. For example, such adap-
tations include an adaptive route generation algorithm of a navigation device
by the Adaptive Route Adviser (Langley et al., 1999). Instead, this work deals
with generic adaptations for user interfaces. These patterns discuss the adap-
tation of multimodal interactive systems by considering both graphical and
speech interfaces. The patterns presented in this section are more general in
nature than interaction pattern collections (e.g. Tidwell, 2005) and correspond
in their generality to the adaptation patterns for hypertext systems by Koch
and Rossi (2002). The adaptation patterns consider the usability principles
presented in Section 4.1.

Observations of the user-system interaction trigger adaptations. For this
purpose, a user modeling component creates a representation of the user from
these observations. This representation serves as a basis for adaptation de-
cisions. The model uses different algorithms such as the ones presented in
Chapter 3. The modeling process is not part of the pattern descriptions. In-
stead, the “Adaptation Trigger” section of the patterns describes observations
of the user modeling component that activate the adaptations.

In the following, we present a set of adaptation patterns we devised for
interactive systems. This section summarizes the patterns. A detailed dis-
cussion that uses the pattern format introduced in Section 4.2 is presented
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in Appendix A. We identified these patterns by reviewing adaptations in the
literature and classifying adaptations used in prototype systems we developed
for this work.

4.3.1 Component Emphasis

A user performs actions to achieve a specific goal. After user modeling al-
gorithms have recognized this goal, the “Component Emphasis” guides the
user to it. For this purpose, the system emphasizes interface elements that are
connected to predicted or recommended actions. The user employs interface
elements to control the system and the elements are connected to specific user
actions. For example, a graphical button or a speech command may open the
EPG in a TV system. During the interaction, the user may spend considerable
time looking for a specific element or may not know which action to use next.
The adaptation changes properties of the elements in a way as to draw the
user’s attention to them. Thus, emphasizing the respective elements guides
the user to the associated actions. In doing so, the user finishes the current
task more quickly or gets to know actions that have not been used before.

Different assumptions of the user modeling component may trigger the
adaptation. This includes either a prediction of the next action or a recom-
mendation of the user modeling component, for instance for actions the user
has not used yet. Since an emphasis of wrong elements impedes the user,
an appropriate user modeling prediction is crucial for this adaptation. The
adaptation only performs small changes of the interface by emphasizing ele-
ments. Significant changes of the interface may either distract a user from the
task or hinder the user in working with the interface as he or she knows it.
Therefore, subtle guidance supports the user. The adaptive emphasis should
be performed in a way such that the user does not confuse it with a regular
selection in the user interface. The changes are limited to the part of the inter-
face that requires emphasis. In doing so, users are enabled to reuse acquired
knowledge of the interactive system. Thus, distraction of the user through
fundamental changes of the interface is avoided.

A graphical button may for instance be emphasized by increasing its size
or selecting more noticeable colors. The emphasis may also be visualized by
means of an animation. In both cases, the user notices the button he or she
is looking for or knows which action to perform next. In a speech interface,
the interactive system may read a list of possible commands for each con-
text. Putting them to the beginning or end of the list emphasizes individual
commands. An example shall illustrate the adaptation. In an EPG, the user
specifies filter criteria, such as channel or time, to filter the list of TV shows.
After a number of criteria were selected, the user has to press a “Show results”
button to see all shows that match the selected criteria. Increasing the size of
the button and changing colors emphasizes the button. In doing so, the user
may finish the task more quickly. The adaptation may also be applied to voice
interfaces. If a user enters the filter selection screen, the system may read out
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the command for opening the result list as the last element. This pattern is
presented in the adaptation pattern form in Appendix A.1.

4.3.2 List Element Selection

The selection of elements from a list is a frequent task in interactive systems.
For example, a user may select names from an address book or a city from
a list in a navigation device. However, users select specific entries more fre-
quently than others. For instance, a user calls close friends more often than
other contacts. An adaptation may improve this task by enabling the user
to select frequently used entries more quickly. For this purpose, the List El-
ement Selection adaptation emphasizes specific entries in a list. In doing so,
the adaptation enables the user to see at a glance which list entries are more
relevant than others.

The user modeling component identifies list entries that are interesting
for the user. For this purpose, it selects entries that are selected more often
than the rest, either by an individual user or by a user group. In addition,
elements may be chosen that have not yet been selected, but are deemed to
be interesting according to the user’s behavior. Since an emphasis of wrong
elements impedes the user, the prediction quality is of great importance. The
reasoning behind this adaptation is that the selection of frequently used items
in a list should take less time than the selection of others. Emphasized list
elements should be highlighted in a way such that the user does not confuse
the emphasis with other markings, such as a selection cursor.

The interactive system may highlight entries by selecting more noticeable
text or background colors, adding visual markings, or increasing their size.
For instance, selecting a name from the address book is one of the fundamen-
tal functions of interactive systems that support phone calls, such as mobile
phones or automotive dashboard systems. Since users call a small number
of people from their phone book frequently, highlighting the names supports
their selection. For this purpose, the adaptation selects a more noticeable
background color for highlighted elements and adds a special icon to recom-
mended entries. If a list is longer than one screen, interesting items may also
be marked in a scrollbar to enable the user to see highlights in the full list.
Speech interfaces emphasize list elements by reading interesting elements first
or by adding acoustic markings. Whereas the “Component Emphasis” adap-
tation emphasizes interface elements that trigger actions, the “List Element
Selection” highlights one item in a list of similar elements. In Appendix A.2,
we present the description of this adaptation in the pattern form.

4.3.3 Alternative Elements

Users of interactive systems differ with regard to preferences and character-
istics, such as the proficiency with computers or eyesight. Therefore, a single
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interface, however well designed it may be, does not reflect the individual
requirements of a user in an optimal way. Instead of providing one configu-
ration that tries to consider all users, the “Alternative Elements” adaptation
enables an interactive system to select the most appropriate version of an
interface element. For this purpose, the system designer provides different al-
ternatives for interface elements, such as graphical screens or speech output
prompts. In addition, the developer specifies the characteristics of the individ-
ual elements. For instance, this may be information that is element is designed
for beginners or experts. Based on this information, the adaptation in turn
selects the most appropriate one.

A user modeling component computes information about characteristics of
the user that enables the adaptation to select one among the alternatives. This
information includes preferences or characteristics of the user, such as the pro-
ficiency with an interactive system, the age, or impairments. By providing a
set of alternatives to the adaptation that were created by the system designer,
all variants of the interactive system take into account design principles. Au-
tomatically generated alternatives can break with existing usability principles.
However, the developer has to spend additional time creating the alternatives,
but the user benefits from an improved usability. Significant changes should
be communicated to the user in order to avoid confusion, for instance with a
notification.

This adaptation may be applied to different parts of the user interface and
at different levels. In graphical interfaces, the adaptation may be applied to el-
ements ranging from complete graphical screens to individual items. In speech
interfaces, it may choose among different sets of speech output prompts. In
addition, the adaptation may select among different dialog flows and system
properties. For example, the adaptation selects among different versions of
a navigation destination input screen. A simple version is provided to novice
users and a more powerful one to advanced users. On a lower level, a larger font
size is chosen to improve the readability for visually impaired users. A speech
interface may provide different versions of speech output prompts. Novice
users receive extended prompts that explain the most important functions.
Intermediate users only require shorter prompts, which list the commands.
Finally, expert users, who could be annoyed by long and repetitive speech
output, only hear a short prompt explaining the current state of the system.
This pattern is presented in the adaptation pattern form in Appendix A.3.

4.3.4 Adaptive Help Presentation

The user may access online help in interactive systems faster than printed doc-
umentation. However, this help is often static or only considers the current
screen. People are likely to have different problems and needs. For instance,
beginners need general and extensive help, whereas experts seek specific so-
lutions and might be annoyed by superficial help. Adaptive help considers
the user’s current situation and background. For this purpose, it takes into
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account not only the current context, but also other information, such as the
user’s interaction history and characteristics. In doing so, help is more apt
and thus supports a user more precisely in the current task.

The user modeling component observes the user-system interaction to de-
termine the situation and characteristics of the user. Adaptive help may be
provided for a prediction of the next user action. In addition, the system may
detect user problems, such as hesitation or aimlessness. When deciding about
the selection of help, the system takes into account preferences and charac-
teristics of the user, such as the knowledge level in the current context or
general experience with the system. Adaptive help should not surprise, an-
noy, or obstruct the user. For instance, a user notices a help dialog that has
to be closed explicitly. However, it may interrupt the user’s train of thought
and thus distract from the task. The help messages have to be precise, since
users do not read these messages otherwise. At the same time, they have to
offer enough new information that users regard them as helpful. Help may be
assistive for beginners, but annoying for expert users.

Instead of overlapping the interface, the help messages may be presented on
a separate area of the screen. Alternatively, an icon (or a sound) may indicate
the availability of help that the user opens explicitly. The messages should not
fully engage the user’s attention, as for instance modal help messages do. In
speech interfaces, an acoustic signal may be used instead of a graphical hint.
An example shall illustrate the “Adaptive Help” adaptation. In an interactive
TV system, the user browses the TV program in an EPG with different filter
criteria, such as channel or time. Help is presented by fading in a yellow
message box on the top of the screen. When the user enters the selection
screen for the first time, the help explains how to select filter criteria. After
some criteria were selected, the help text on the screen tells the user to open
the result screen next. For this purpose, the interaction history is processed.
In Appendix A.4, we present the description of this pattern in the adaptation
pattern form.

4.3.5 Shortcut Area

Users perform specific actions or action sequences repeatedly. For example,
users apply settings after they start a jointly used system or select specific
elements in a list. The “Shortcut Area” adaptation offers shortcuts to actions
or data by presenting them in a separate area of the screen, called shortcut
area. In doing so, the adaptation does not interfere with the interaction and
enables the user to decide whether to use the shortcuts. Thus, the adaptation
does not distract the user. The adaptation may provide two kinds of shortcuts.
First, the shortcuts select among different alternatives. For example, in an
address book, the adaptation selects the most frequently used names and
places them in a separate area on the top of the list. Second, the shortcuts
may represent a sequence and allow the user to select a subsequence. For
instance, if the shortcuts represent a sequence of actions, the user selects an
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action and the interactive system executes the sequence from the first one to
the selected action.

The user modeling component computes the list of shortcuts. Based on
an observation of user actions, it provides a list of alternative actions or a
sequence of actions. Alternatively, a list of preferences may be created, such as
a list of the user’s favorite TV channels. Shortcuts that automatically appear
and overlap the interface distract the user. A separate area that is always
visible instead allows the user to decide whether or not to use shortcuts. In
doing so, it limits the distraction of the user.

The shortcut area may either be part of one interface element, such as a
list, or a separate part of the whole screen for presenting global shortcuts. In
both cases, a separate area is reserved for the adaptation. In a selection list,
a separate area on the top of the list presents the most frequently selected
entries of the list to the user. By selecting them, the user does not have
to scroll through the whole list. A different application of the Shortcut Area
pattern is to provide navigation shortcuts. Based on a prediction of a sequence
of actions, each action is represented by a button. If the user presses one of
these buttons, the action associated with the button and all actions before
the pressed one are executed. In doing so, the user may reduce the number
of interactions. The pattern is presented in the adaptation pattern form in
Appendix A.5.

4.4 Discussion

In this chapter, we introduced usability principles for interactive systems, such
as transparency or controllability, and the implications of these principles for
adaptations in interactive systems. We presented patterns as an approach for
sharing knowledge and best practice in a domain. The process of identifying
and defining patterns was discussed. Moreover, we defined a format for adap-
tation patterns in interactive systems. We devised a set of five adaptation pat-
terns, which are discussed in more detail using the previously defined pattern
format in Appendix A. These patterns include references to other patterns,
both from this pattern collection and pattern collections in the literature.
A number of examples both from graphical and speech-based interactive sys-
tems illustrate the patterns. These patterns support a developer in selecting
successful adaptations. In doing so, adaptive features may be integrated more
easily into any interactive systems. In the following chapter, we present an
adaptation framework that includes these patterns. In Chapter 6, we discuss
an evaluation of interactive systems that use these adaptations.

Whereas the pattern collection covers all adaptations that we identified
during the pattern discovery phase, additional patterns might be added in
the future. The pattern collection may evolve into a pattern language, which
offers a comprehensive description of patterns in a domain. Our adaptation
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pattern collection already fulfills many requirements of a pattern language,
such as a common naming convention and interconnectedness.



5

AdaGUIDE – An Adaptation Framework

Vision without implementation is hallucination.

–Benjamin Franklin (1706–1790)

In addition to usability and the selection of useful adaptations, Höök
(2000) identifies development methods as a crucial prerequisite for a widesp-
read adoption of adaptive interfaces. We presented an approach for user mod-
eling from basic events in Chapter 3 and a set of adaptation patterns for
interactive systems in Chapter 4. On this basis, we devised an adaptation
framework as part of this book to allow a developer to integrate the presented
approaches into interactive systems more easily and conveniently. This generic
adaptation framework provides a reusable platform for adaptive interactive
system and improves the task of developing these systems. For this purpose, it
integrates user modeling and adaptations. First, using an existing framework
reduces the development time, because the developer does not have to imple-
ment all the components of the framework. In addition, this framework com-
prises a number of user modeling algorithms and adaptations, which thus do
not have to be implemented. Second, the developer may avoid common pitfalls
of adaptation architectures by employing an existing architecture rather than
developing a new framework. In addition to supporting developers in creating
adaptive interfaces, the framework also serves as a test bed for an evaluation

M. Bezold and W. Minker, Adaptive Multimodal Interactive Systems, 81
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of the adaptation approach. In doing so, the framework shows the feasibility
of our adaptation approach.

In this chapter, we present an adaptation framework for adaptive inter-
active systems. The main components of the framework are a user modeling
component, an adaptation component, and a semantic layer. The user mod-
eling component observes the user-system interaction and creates an abstract
representation of the user. The adaptation component applies adaptations to
the interactive system. For this purpose, it employs information stored in a
semantic layer that serves as an abstraction of the interactive system. We
created a reference implementation of this framework as an extension to a
model-based development tool. The implementation includes the user model-
ing algorithms presented in Chapter 3 and the adaptations from Chapter 4.
The reference implementation also serves as a test bed for an evaluation and
verification of these approaches. We show the feasibility of the framework by
implementing adaptive features in different interactive systems and perform-
ing user tests with these interactive systems. These systems include a digital
TV system and an automotive dashboard system. Chapter 6 presents an eval-
uation of the user modeling algorithms and the adaptive test systems, which
employ our adaptation framework.

This chapter is structured as follows. After an overview of the architecture
of the framework, a semantic layer that serves as an abstraction of the interac-
tive system is introduced. Thereafter, a user modeling component is presented
that extracts information from the user-system interaction and computes fur-
ther derivations with user modeling algorithms. Finally, the integration of
adaptation patterns into the adaptation framework is discussed and a refer-
ence implementation of the framework is presented.

5.1 Overview of the Architecture

In the following, we present an adaptation framework called AdaGUIDE that
integrates the concepts presented in previous chapters. The aim of the frame-
work is to provide a reusable platform for adaptive interactive systems and to
create a test bed for an evaluation and assessment of the adaptation approach
we present in this work. Figure 5.1 gives an overview of the framework. A se-
mantic layer, a user modeling component, and an adaptation component con-
stitute the main components. The framework extends an interactive system.
Triggered by user behavior, the user modeling component uses algorithms,
such as the ones presented in Chapter 3, to model the user. An adaptation
component integrates the adaptation patterns from Chapter 4 to adapt the
interactive system.

A semantic layer creates an abstraction of the interactive system and other
aspects relevant for adaptations. It serves two purposes. First, this layer cre-
ates a uniform representation of different components, such as the interactive
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Fig. 5.1. The architecture of the adaptation framework comprises a semantic layer
that creates an abstract representation of the interactive system. A user modeling
component observes the user-system interaction and triggers and an adaptation
component.

system and the user model. In doing so, the semantic layer provides uniform
access to different aspects of the interactive system for the adaptation com-
ponent. Second, the semantic layer serves as an abstraction for using the
adaptation framework with different interactive systems. The semantic layer
employs semantic technologies and allows reasoning on the data.

A user modeling component observes the interaction by watching events
from the interactive system. This component serves two purposes, namely col-
lecting information about the user and employing algorithms to derive more
information. The user modeling component may use the algorithms presented
in Chapter 3, but the generic structure allows other user modeling algorithms
to be implemented as well (see Zukerman and Albrecht, 2001). Based on the
information in the semantic layer and the outcomes of the user modeling pro-
cess, an adaptation component decides about adaptations to better reflect the
characteristics of an individual user. For this purpose, the adaptation compo-
nent employs a formalized description of the adaptation patterns presented in
Chapter 4. The following sections discuss the individual components in detail.
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5.2 A Semantic Representation of Interactive Systems

In order to decide about adaptations for an interactive system, an adaptation
component requires a uniform and comprehensive representation of the sys-
tem. This representation must include information both about the system and
the user to decide how and which parts of the system to adapt. The represen-
tation of this information is crucial for an adaptive interface, since the system
may only consider information available in this layer. For instance, if an adap-
tation should highlight interface elements for beginners, the semantic layer has
to include proficiency information. In addition to the amount of information,
the formalism for this representation plays an important role. Only by repre-
senting all aspects using a common formalism may the adaptation component
access all this information. Ontologies represent a formalism for representing
a domain. We introduce a semantic layer that uses an ontology for describing
the domain of the adaptive interactive system. The adaptation component
may exploit all information that is represented using the common formalism
in the adaptation decision.

5.2.1 Ontologies

An ontology is a conceptualization of a domain in a machine-understandable
format. Ontologies, which have their roots in knowledge management (Gru-
ber, 1995; Noy and McGuinness, 2001), define a domain by a set of entities
and the relationships between these entities. A specific type and a set of prop-
erties define the entities. Properties have either primitive data types, such
as string or number, or are connections to other entities. Ontologies consist
of statements or triples, which comprise a subject, a predicate, and an ob-
ject. The subject is an entity from the ontology, the predicate corresponds
to a property, and an object is either an ontology element or primitive data.
Statements are visualized either with text or using a graphical notation. The
example in Figure 5.2 presents the graphical notation of statements of a wine
ontology. A set of types defines the templates for the ontology, in this case
“Wine” and “Estate”. The “Wine” type includes properties such as grape,
year, and wine estate. Individuals instantiate types to define specific entities,
such as a specific wine (e.g. Chateau Margaux, Cabernet Sauvignon, 1983). In
addition to storing data in statements, ontologies infer new information from
existing information, e.g. by means of inference rules. Ontologies represent a
proven approach for storing and accessing complex data.

Different formalisms for ontologies have been defined, such as DAML+OIL
and RDF/OWL (see Horrocks et al., 2003). The Web Ontology Language
(OWL; Smith et al., 2004) extends the Resource Description Framework
(RDF) with a formalism for defining types, called classes. Thus, items of the
same type are represented formally by a common class and share the same set
of properties. Inheritance defines a hierarchy of classes that inherit properties
from their parent class. Individuals instantiate classes and values are assigned
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Wine

grape: string
hasYear: integer
hasEstate: Estate

Types Individuals
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EstateA
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hasName: string
hasCountry: string

1983
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Chateu Margaux

France

hasName
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Fig. 5.2. An example of a wine ontology, which is represented by means of a graph-
ical notation.

to the properties of the respective class. Inference may be performed on the
OWL information, such as inheritance information. Restrictions add further
conditions to properties that must be valid. We use the OWL notation in
this work for different reasons. First, OWL enables a reuse of existing domain
ontologies. Since OWL is an accepted standard, many domain ontologies have
been defined using OWL. For instance, the OntoSelect repository (Buitelaar,
2004) or the SchemaWeb directory1 provide repositories of OWL ontologies.
In addition, existing OWL tooling may be used, such as the widely used
graphical ontology editor Protégé-OWL (Knublauch et al., 2004). Moreover,
different libraries exist that support OWL, such as the Jena framework2 for
building Semantic Web applications, different inference engines (e.g. KAON23

or FaCT++4), or querying languages such as SPARQL (Prud’hommeaux and
Seaborne, 2008). By using the OWL notation, all these technologies and ex-
isting libraries may be reused.

An OWL ontology forms the basis of the semantic layer in this frame-
work. This ontology covers different aspects of the adaptive interactive sys-
tem, which are described by a set of OWL classes. In the following, we discuss
the individual parts of the ontology for adaptive interactive systems.

5.2.2 An Ontology for Interactive Adaptive Systems

In this framework, we employ an ontology to describe different aspects of the
interactive system, such as the system itself, the user, the user-system inter-
action, and adaptations. The ontology provides a uniform access to different
kinds of information. An adaptation component reads and updates this infor-
mation. The ontology consists of a set of OWL classes with a set of properties.
For example, the name of a user represented by the User class is stored in a
property called hasName. The classes form a hierarchy with a common base
class called DialogThing. Each part of the ontology, such as the description

1 SchemaWeb: http://www.schemaweb.info/
2 The Jena framework: http://jena.sourceforge.net/
3 KAON2: http://kaon2.semanticweb.org/
4 FaCT++: http://code.google.com/p/factplusplus/

http://www.schemaweb.info/
http://jena.sourceforge.net/
http://kaon2.semanticweb.org/
http://code.google.com/p/factplusplus/
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of the interactive system or the user-system interaction, is again based on
a common ontology class. For instance, all classes of the system description
are derived from the DialogSystem class. The OWL formalism encodes fur-
ther knowledge, for instance as restrictions of properties or general knowledge
about the system by means of inference rules.

An overview of the structure of the ontology is given in Table 5.1. The
system description defines the structure of the interactive system and the in-
terface elements, such as graphical buttons and lists or speech components,
as well as their properties. The dialog domain describes the domain of the
interactive system, for instance a list of channels in an interactive TV system.
The domain description may incorporate existing ontologies. User modeling
information reflects data specific to the current user. In addition, the user
system interaction is described by actions and tasks. Finally, the ontology in-
cludes a description of adaptations. The ontology is restricted to a declarative
description of the system and describes the structure rather than the workings
of the system. For instance, the ontology does not include information about
the specific appearance of interface elements, but is limited to aspects that
are relevant for the adaptations.

The System Model

The system model provides classes for a technical description of the interactive
system and includes a description of the graphical and speech components. In
addition to the technical description, which may be generated from an existing
system description during the development phase, semantic information is
annotated to the system model to further enhance the scope of the knowledge
base. In doing so, these annotations may connect the system model with
domain information. For example, all elements, such as graphical buttons or
speech output prompts, may have a “type” property to describe their purpose,
e.g. “Help”.

As an example formalism, the implementation of this adaptation frame-
work (see Section 5.5) supports a statechart-based formalism (Harel, 1987).
Statecharts consist of states and transitions between these states. Transi-
tions are triggered by events. Therefore, the system model provides classes
for states, transitions, events, etc. However, interactive systems that rely on
a different formalism, such as USIXML (Limbourg et al., 2004) or XUL5, can
be represented by a different set of classes. The system model presents an
abstraction of the system for the adaptation layer, which reads information
about the system and performs changes through this representation.

The User Model

The user model describes preferences and characteristics of different users of
the interactive system. On the one hand, this model comprises information

5 XML User Interface Language: http://www.mozilla.org/projects/xul/

http://www.mozilla.org/projects/xul/
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Model Describes ...

DialogSystem ... the dialog system on a technical level, e.g. graphical elements
and speech components

DialogDomain ... the dialog domain
UserModelItem ... users and entries from the user model
Interaction ... user actions and tasks
Adaptation ... adaptations and to which elements they can be applied to

Table 5.1. The structure of the ontology with the five sub-models. All models are
derived from the OWL base class Thing and a common base class DialogThing.

about the user, such as name or preferences. On the other hand, it includes
technical information, such as the configuration of the system for a user, for
instance the state of interface elements.

However, not all user-related data is stored directly in the knowledge base,
since the OWL formalism does not support complex data types well. For in-
stance, storing the data of a matrix in the OWL notation is complex and
inefficient, requiring a significant number of statements to represent the in-
dividual rows and columns. Instead, a separate user model stores arbitrary
complex data types. In order to include data from the user modeling com-
ponent in the knowledge base, a bridging component synchronizes selected
data. A common type system of the knowledge base and the user modeling
component enables a direct data conversion.

The Interaction Model

The description of the user-system interaction plays a fundamental role when
adapting interactive systems to user behavior. The interaction model describes
user actions and is therefore an essential component of the framework. Differ-
ent elements define interaction at several levels of abstraction. At the lowest
level, basic events represent observations, such as a key press or an internal
state change of the system as a reaction to the key press. User actions consist
of sequences of these basic events and define logical steps in the user-system
interaction. Tasks describe the user-system interaction at a higher level and
are hierarchical constructs composed of user actions. The ontology does not
cover the internal structure, but only the description of the elements. For
instance, information about the composition of user actions out of low-level
events is not part of the semantic layer, but only the list of these actions.

The Adaptation Model

The adaptation model defines adaptations for interactive systems. Each one
consists of a name and a definition of which elements it can be applied to. How-
ever, this model does not define the execution of the adaptations. Instead, a
separate component specifies the execution at a functional level. For instance,
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an adaptation called “Component Emphasis”, which highlights a graphical
element in the interface, consists of the name “Component Emphasis” and a
list of interface element types it can adapt, e.g. graphical buttons.

The Domain Model

The domain model covers domain- and application-specific knowledge. Since
it depends on a specific domain and interactive system, the knowledge can in
most cases not be reused. For instance, the domain model of an interactive
TV system, which covers information such as the list of TV channels, is not
applicable to an automotive dashboard system.

The adaptation component does not require an ontology that compiles
extensive knowledge across domains, as for instance the Cyc project (Lenat,
1995) does. Rather, the interactive systems ontology only covers these pieces
of information that an adaptation component needs to derive adaptations.
Thus, the scope of the domain model depends on the requirements of a specific
adaptive interactive system. The domain model may however be connected to
existing ontologies, if an appropriate ontology already exists. Existing ontolo-
gies can for example be merged into the domain model by means of ontology
merging (see Noy and Musen, 2000).

5.2.3 Instantiating the Models

In the previous section, we introduced a number of models that describe dif-
ferent aspects of interactive systems by a set of OWL classes. In order to
describe one specific system, instances of these classes have to be created.
For this purpose, an individual is created for each entity of the interactive
system by instantiating the respective classes. A set of ontology connectors
produces these individuals and each connector covers a different aspect of
the system. For instance, a system model connector creates an individual for
each interface element, state, and transition. An interaction model adds an
individual for each user action. At startup, the interactive system executes all
ontology connectors to generate a common representation of different aspects
of the system. Therefore, these connectors bring together data from different
information representations into a common ontology-based formalism.

Figure 5.3 gives an example of ontology classes and individuals that are cre-
ated by ontology connectors. A set of ontology classes provides templates for
individuals, which are State, Transition, and Session in this example. The
ontology connectors create individuals for the different classes, for instance
for all states. For this purpose, an individual of the type State is created
for each state from the system description and the properties are initialized
with the respective values. In the example, an individual called State 10 is
created and the hasName property is initialized with the name of the state
“Main Menu”. In addition, state State 10 is connected to state State 5 by
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Fig. 5.3. Ontology connectors use classes as templates to create an interconnected
knowledge base to represent the interactive system.

means of a transition called Transition 6. In doing so, the ontology connec-
tors create an interconnected representation of the interactive system based
on the ontology classes.

Queries provide access to this semantic representation. A query applies
a set of input statements to an ontology and returns all matching ones. For
instance, a query may select all individuals for beginners. The adaptation
component performs such queries to determine which adaptations to apply.
On the other hand, the adaptation component also updates the semantic
representation to alter the interactive system. For this purpose, the connectors
watch the respective entities and update the interactive system accordingly
when entities have been changed.

5.3 A Framework for Modeling User Behavior

The requirements of different interactive systems towards a user modeling
component vary greatly. For instance, one system may adapt to the user’s
proficiency, whereas another one may adapt to the user’s interaction history.
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Therefore, a flexible and reusable user modeling architecture has to support
the requirements of different interactive systems. The user modeling compo-
nent serves two purposes, collecting data from the user-system interaction
and using user modeling algorithms to derive information for the adaptation
decision.

In this section, we introduce a user modeling architecture. It connects dif-
ferent components that read from and write to a common event bus. Different
components communicate through this bus. Finally, a user model applies al-
gorithms to the collected data.

5.3.1 The User Modeling Component

A user modeling component forms the backbone of the user modeling frame-
work and provides a generic communication bus for different components.
Whereas the component is generic, we present a number of specific user mod-
eling algorithms to illustrate this architecture. An overview of the user mod-
eling component is given in Figure 5.4. The interactive system submits events
to the event bus, which are observed by different components, such as an in-
teraction model and a user model. These models perform computations and
possibly submit new events. The user modeling component is tightly coupled
with the interactive system, but still represents a reusable and independent
component that can be employed in different interactive systems.

Events represent the basic interchange format of the user modeling com-
ponent and consist of a timestamp, a type, and a set of parameters (see
Figure 5.5). The timestamp denotes the time at which the event occurs. The
event type indicates the event trigger, such as a button press by the user or
an internal system reaction to user input. Finally, a set of parameters further
describes the event. The parameters depend on the event type. For instance,
they contain the name of the button in case of a button press. Different com-
ponents of the user modeling system exchange events through an event bus,
which is conceptually similar to blackboard architectures (cf. Corkill, 1991).
Producers submit events to the bus. For instance, the interactive system sub-
mits events when it observes a button press, a speech utterance, or a state
change. Other components subscribe to the event bus, either to all events
or certain event types with specific parameter values. These components are
notified when matching events are submitted. Therefore, the event presents a
generic interchange format between different components of the user modeling
system.

As discussed in Chapter 3, the view of the user modeling process is lim-
ited to events the system observes. For this purpose, the interactive system
or other sensors emit events to the user modeling component. These events
include input from different modalities, such as haptic input, speech, or ges-
ture interaction, as well as system reactions and internal events. Other input
types, such as facial expressions detected from a video stream or emotion
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Fig. 5.4. The event architecture transmits events from different sources, such as
the interactive system or higher-level components.

[1234567890123] type param_1={value_1} ... param_n={value_n}

Fig. 5.5. Structure of interaction events.

recognition from speech input, are beyond the scope of this work. However,
the user modeling component may process these if they are encoded as events.

Before the user modeling component processes events, it applies a pre-
processing. First, the user modeling component filters out these event types
that are not required in the user modeling process, such as internal system
reactions. Second, missing information is added to events, such as information
about the modality of the events. For example, regular expressions may add
properties to events based on the event type and existing properties. Finally,
the user modeling component may correct the order of events, if for some
reason they do not arrive in the correct order.

Higher-level models observe the events and submit new ones to the event
bus. For instance, an interaction model may subscribe to specific events and
submit a new interaction event when a certain action was observed. In Chap-
ter 3, we introduce an approach for modeling user behavior in interactive
systems. This approach detects user actions from basic events by means of
probabilistic automata (see Section 3.2). The user modeling framework in-
cludes an implementation of this algorithm. If the algorithm detects a user
action, the interaction model generates a new “interaction” event and stores
further information, such as the name of the action and a confidence score, as
event parameters. Similarly, a task modeling component (see Section 3.3) ob-
serves interaction events from the interaction model and detects the task a user
is working on. Different tasks are derived from the task model and submitted
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1 [1180520776220] hw name={COMM_0x6e}

2 [1180520776220] event name={Start}

3 [1180520776220] state name={Session_Main}

4 [1180520776376] view name={WelcomeView}

...

5 [1180520776379] interaction name={Startup}

6 [1180520776381] task name={Welcome} type={started}

Fig. 5.6. Exemplary log lines, showing a button press (line 1), reactions of the
system to this input (lines 2–4), and higher-level events created by the interaction
model and task model (lines 5 and 6).

to the event bus. Thus, higher-level models process events to describe user
behavior.

Figure 5.6 presents an event sequence from the startup of an interactive
system. The user presses a button on an input device (line 1), such as a remote
control. The interactive system responds with an internal event called “Start”
(line 2), enters a new state (line 3), and opens a graphical screen called “Wel-
comeView” (line 4). The interaction model observes these events, recognizes
the “Startup” action, and emits an “interaction” event accordingly (line 5).
The task model in turn observes “interaction” events to detect the task a user
is working on. In this example, the task model detects the “Welcome” task
and emits an appropriate event (line 6). In doing so, different components of
the user modeling framework communicate through generic events.

In addition, a user model is connected to the event bus. This model stores
information about the user and computes further derivations. In the following
section, we discuss the user model in detail. Finally, an adaptation compo-
nent receives event notifications and invokes adaptations depending on the
outcomes of the user modeling procedure. This sample lineup of components
provides a comprehensive description of user behavior. However, additional
components may be connected to the event bus. For instance, an interactive
system may require specific algorithms for recognizing user actions or tasks.
Therefore, a generic event bus connecting different components provides a
viable foundation for describing user behavior from low-level events in inter-
active systems.

5.3.2 The User Model

The user model derives user characteristics and preferences from an observa-
tion of basic events. In addition to storing user-specific data, the user model
serves two purposes: first, extracting information from events and updating
user model entries accordingly, and second, computing further inferences by
means of user modeling algorithms. We now discuss the responsibilities of the
user model in detail. Different entries are connected either to the event bus
or other user model entries and the values are updated with the outcomes
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of user modeling algorithms. Since the semantic knowledge representation
introduced in the previous chapter comprises user modeling information, the
semantic layer could be used as a data store for the user model. However, spe-
cific algorithms require data types that cannot be represented efficiently in an
ontology by means of statements. For example, storing a matrix semantically
requires a large number of statements, which perform significantly worse than
a binary representation. Therefore, we use a separate data store for the user
model.

The main purpose of the user model is to serve as a store for user-specific
data. This data is stored in user model entries by means of typed name-
value pairs, i.e., each entry consists of a type, a name, and a value. The user
model supports basic data types, such as strings or numbers, but also more
complex types by means of an extension facility. Complex data types store
data that is used by specific user modeling algorithms, which is beyond the
power of simple data types. Complex data types can be compounds of simple
types, such as list, map, or matrix, but may also be arbitrary other types.
User-defined data types can be integrated, allowing for very specific data
types for algorithms. Figure 5.7 illustrates the workings of the user model. In
Figure 5.7.A, an entry “user.name” of the type string stores the name of the
user “Peter”. The user model stores entries separately for each user. Thus, if
a different user works with the system, the “user.name” entry contains his or
her name. Default values may be defined by means of a template role that
is assigned to the user. For instance, the “beginner” role provides values for
users who are not experienced with interactive systems. In addition, custom
default value generators may be defined to compute specific values for new
users, for instance by generating a unique identifier. Restrictions limit the
values of a user modeling entry, for instance by defining a range for numbers
(e.g. age from 0 to 110 years) or providing a list of allowed values.

The user model also provides facilities for loading and updating values
directly from events and values of other entries. For this process called deriva-
tion, each user model entry may have a source that defines how the data is
loaded or updated. A user model source consists of data elements, which are
either events or other user model entries, and an operator that defines how to
compute the value. An operator performs a specific computation with the data
sources to produce a new value. The simplest operation is to copy the value
from the source to the target entry. An example is presented in Figure 5.7.B:
the source Copy copies the name of the last user action from the respective
“interaction” event into the “actions.last” user model entry.

The architecture supports more complex operations. The outcomes of com-
putations may again serve as sources for computations of other entries. In
Figure 5.7.C, user action prediction illustrates the use of complex data types
and derivations. We present the implementation of an algorithm in the user
model as an example. Before discussing its implementation, we briefly summa-
rize the Markov chain-based algorithm discussed in Section 3.4. Equation 5.1
shows the algorithm for computing a prediction of the next user action.
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Fig. 5.7. An example user model with derivations.

s(t) =

N∑

j=1

d(j)h(t − j)Aj (5.1)

s(t) represents a probability vector of the next user action. The interaction
history of the user is stored in a vector h of length N . d is a dampening factor
that assigns more weight to more recent actions. A matrix A stores the tran-
sition probabilities between actions and the matrix is computed from another
matrix T , which stores transition counts between actions. This algorithm is
implemented as follows in the framework (see Figure 5.7.C). The user model
stores the list of past interactions a user model entry “actions.history” and
updates this entry with the Add source, which appends interactions to the
list. Moreover, the matrix “actions.matrix”, which corresponds to matrix T ,
stores the number of transitions between two interactions and the MatrixAdd

operator updates the matrix when a new “interaction” event is observed. The
MarkovPrediction source of the “actions.next” entry uses these two entries
to compute the most likely next interaction with the prediction algorithm.
This operator converts the matrix “actions.matrix” into a probability matrix
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and combines it with the interaction history stored in “actions.history” to
compute the prediction.

In this fashion, arbitrary derivations, such as modeling the user’s favorite
channel from the respective event parameters or predicting the most likely
entry in a list, can be performed with values extracted from events by com-
bining (and possibly creating new) operators. Other algorithms, such as the
algorithms presented by Zukerman and Albrecht (2001), can be implemented
similarly within this framework for deriving information directly from ob-
served user behavior. In addition, domain-specific algorithms may be imple-
mented. An extension mechanism allows the definition of custom operators as
well as specific data types.

In addition to regular entries, the user model supports a special type of
entry called property. Properties store user-dependent values for different com-
ponents of the interactive system based on IDs of the interface elements. For
instance, a property “isEnabled” may store for every element of the inter-
active system, such as states, graphical elements, or speech output prompts,
whether they are enabled.

5.3.3 Connecting the User Model and the Ontology

Ontologies are a useful technology for user modeling (Razmerita et al., 2003;
Heckmann et al., 2005). Semantic user models use inference techniques and
may incorporate external ontologies. Since this framework comprises both a
semantic layer and a user modeling component and the semantic layer contains
information about the user model, using semantic user modeling techniques
in this framework would be obvious. As discussed before, the user model
requires however an efficient representation of data, such as matrices, which a
semantic representation does not fulfill. Instead, this framework connects the
user model and the ontology by means of bridging mechanisms.

User model entries correspond to properties of individuals. For instance,
the user model entry user.name introduced in Figure 5.7.A corresponds to
the property hasName of the individual CurrentUser, which is an instance of
the User class. Therefore, the bridging mechanism synchronizes data stored
in the user model and the corresponding statements in the semantic layer.
This framework provides two methods for connecting the user model to the
semantic layer. First, the user model entry definition comprises mapping in-
formation, which defines the ontology class and property of the corresponding
individual, and a query is used to retrieve the respective individual from the
ontology. A bridging component synchronizes the user model and the seman-
tic layer based on this mapping information. Only user model entries with
mapping information are synchronized with the ontology. Second, a special
functor umProperty allows access to user model data from queries. In doing
so, the query may select individuals from the semantic layer based on values
from the user model. For example, a query may include this functor to load
the name of the user into the query. These methods connect the user model
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and the ontology and thus facilitate a semantic notation and efficient data
storage at the same time. Since both the user model and the OWL formalism
exploit the XML Schema datatypes (XSD) (Biron and Malhotra, 2004), no
data conversion between the respective types is required.

5.4 Applying Adaptation Patterns

In this section, we present an adaptation component that exploits both the
semantic layer and the user modeling component to perform adaptations of the
interactive system using the adaptations presented in Chapter 4. Rules have
been used as a method for implementing adaptations (cf. Chu-Carroll, 2000
and Stephanidis et al., 1998). This framework also supports rules that connect
specific events emitted by the user modeling component to program code,
such as code defined in a scripting language. For instance, the observation of
a specific user action in a specific screen may change the user’s proficiency
from beginner to expert. In doing so, the developer implements adaptations
by constructing a rule base. However, a rule-based approach is not flexible and
larger sets of rules become confusing. In addition, it does not support reuse of
adaptation code well, because rules do not create an abstraction. Instead, we
devised a more flexible approach that allows both a reuse of the adaptation
definitions and an adjustment to a specific system.

We present an adaptation component that exploits the semantic represen-
tation of the interactive system to apply adaptations to the interactive system.
A user modeling component, which we introduced in the previous section, ob-
serves the user-system interaction and employs different algorithms to model
user behavior. The results of the user modeling procedure are forwarded to
the adaptation component as adaptations triggers. These include a prediction
of the next user action or an update of a user model entry that describes a
favorite value, such as a TV channel or the cell phone number. After such
a trigger was sent, the adaptation component selects an appropriate adapta-
tion and an interface element that should be adapted. In the remainder of
this section, we discuss the representation and execution of adaptations in the
adaptation framework.

5.4.1 Representation of Adaptations in the Framework

Adaptations are represented by a set of abstract adaptation selectors and
system-specific adaptation executors. System-independent selectors define
adaptations on an abstract level. They connect a user model trigger, the se-
lection of an individual from the ontology, and the selection of an abstract
adaptation. Second, system-specific executors define the execution of an ab-
stract adaptation on a specific interface element. Adaptation selectors allow
a system-independent definition of adaptations, which may be used in dif-
ferent interactive systems. The system-specific adaptation executors enable a
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tight integration of the adaptation into different interactive systems. In the
following, we discuss selectors and executors in more detail.

System-independent adaptation selectors define adaptations on an abstract
level. They may be reused between different interactive systems that employ
this framework. Selectors do not contain information on the execution of adap-
tations. They are connected to the user modeling component through an event
trigger, for instance the prediction of an action by the user modeling compo-
nent. When the respective event occurs, the adaptation component activates
the adaptation selector and a query selects individuals from the ontology as
adaptation candidates. For instance, one adaptation selector might select a
graphical button that is connected to the predicted user action. Finally, the
adaptation selector has an abstract adaptation associated to it that is ex-
ecuted on the selected individuals. For instance, the graphical button that
triggers the predicted action might be emphasized by means of the “Compo-
nent Emphasis” adaptation. Thus, an adaptation selector consists of an event
trigger, a knowledge base query, and a reference to an adaptation. Since all
this information does not depend on a specific interactive system, adaptation
selectors may be reused between different interactive systems.

Adaptation executors define the execution of an adaptation on a specific
interface element. Each executor defines the effects of an abstract adaptation
on a specific type of interface element. For instance, the previously mentioned
“Component Emphasis” adaptation is executed for a graphical button in in-
teractive system “A” by updating the “width” and “height” properties to
increase the size of the button. On interactive system “B”, the adaptation of
the button widget might be implemented as a change of the background im-
age. Therefore, whereas executors may be reused between different systems,
specific executors allow an integration that takes into account system-specific
design guidelines.

Each of the adaptation patterns in Chapter 4 may be represented by a
set of adaptation selectors and executors. More than one adaptation selector
defines a specific adaptation, for instance for different user modeling events.
In addition, a set of adaptation executors defines the adaptation for different
interactive systems. We defined a set of adaptation selectors as well as default
adaptation executors for each adaptation pattern. In the following section, we
discuss how the adaptation framework carries out adaptations based on the
specification introduced in this section.

Figure 5.8 illustrates the definition of adaptations in this framework. Adap-
tation selector “Selector A” is triggered by the prediction of an action and
selects graphical buttons that trigger the predicted action. The selector rec-
ommends the abstract “ButtonEmphasis” adaptation for the selected but-
tons. The adaptation component has two executors for the “ButtonEmphasis”
adaptation at its disposal. Executor “Executor a1” visualizes the adaptation
by increasing the size of the button, whereas executor “Executor a2” changes
the background color of the button. Adaptation selectors “Selector B1” and
“Selector B2” demonstrate that different selectors may trigger one executor.
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Fig. 5.8. The definition of adaptations is separated into system-independent adap-
tation selectors and system-dependent adaptation executors.

5.4.2 Executing Adaptations

The adaptation framework provides two methods for executing adaptations
based on the selectors and executors: specification by the developer and a
fully automatic execution by an adaptation component. While both methods
follow a similar approach, the adaptation component derives the decisions
taken by the developer automatically from the description of the adaptations.
The execution of an adaptation consists of the selection of a combination of
an adaptation and an interface element. For this purpose, a user modeling
component triggers an adaptation selector.

In the first execution method, adaptations are assigned to interface ele-
ments by the developer. For this purpose, the developer assigns adaptation
selectors to specific interface elements, for instance a “Component Empha-
sis” selector for a specific graphical button. Based on the information from
the semantic representation, the development environment provides tool sup-
port by only showing matching adaptations for selected interface elements.
For instance, if the designer selects a graphical button, only adaptations that
are applicable to graphical buttons are presented. In addition, the system
designer may influence the selection of adaptation executors by choosing a
set of possible executors. However, the developer may define new selectors if
no appropriate ones exist. In the second adaptation method, an adaptation
component automatically selects a suitable combination of interface elements
and adaptation selectors. For this purpose, the adaptation component uses
the information encoded in the semantic representation to derive appropriate
adaptation executors. These are in turn executed on the selected interface
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element. In doing so, the adaptation component automatically performs the
decisions taken by the system designer.

The execution of the “Component Emphasis” adaptation pattern intro-
duced in Section 5.4.1 serves as an example. Each button in a graphical in-
teractive system executes a specific action. If the user modeling component
predicts a user action, the “Component Emphasis” pattern highlights a button
that triggers the respective action. For this purpose, an adaptation selector
“Selector A” (see Figure 5.8) reacts to action predictions from the user mod-
eling component by selecting all interface elements that execute the predicted
action. The adaptation component decides whether an adaptation helps the
current user and whether the selected adaptation is appropriate based on the
selected interface element and context. Next, an adaptation executor is se-
lected for each interface element. In the example, the adaptation component
may decide between the executors “Executor a1” and “Executor a2”. In this
case, executor “Executor a2” is selected that highlights the graphical button
by selecting a more noticeable background color. Thus, the adaptations may
either be selected by the developer or derived automatically by an adaptation
component.

5.5 Implementation

In this section, we introduce a reference implementation of the adapta-
tion framework. The implementation shows the feasibility of the approach
and serves as a test bed for an evaluation of the user modeling algorithms
and adaptations. In addition to discussing the implementation, this section
presents the steps necessary to apply the framework to a non-adaptive inter-
active system.

5.5.1 Reference Implementation

In order to investigate the feasibility of this framework as well as the presented
adaptation approach, we developed a reference implementation of the adap-
tation framework. For this purpose, the framework was implemented as an
extension of a modeling tool called EB GUIDE Studio (Goronzy et al., 2006).
This tool is used to specify multimodal interactive systems. It comprises a
simulation component for executing the interactive system, which serves as a
dialog manager. The tool is implemented on the Java platform and provides
an extension mechanism through plug-ins. EB GUIDE Studio employs a stat-
echart formalism for the dialog logic and attaches both graphical and speech
components to states.

The simulation component of the modeling tool serves as a dialog manager.
In order to run the interactive system independently of the modeling tool on a
target platform, a code generator usually exports the model of the interactive
system to source code, which is in turn compiled into a target application.



100 5 AdaGUIDE – An Adaptation Framework

Therefore, the target application also has to provide adaptation mechanisms.
Since the adaptation framework has been implemented as a separate compo-
nent, a target platform can integrate the framework and thus perform user
modeling and adaptations independent of the modeling tool.

The adaptation framework extends the modeling tool with a semantic layer
as discussed in Section 5.2. The layer first loads the OWL ontology and a set
of ontology connectors instantiates the ontology classes to form the semantic
layer. This layer is available both at design time and runtime of the system.
The semantic layer is based on the Jena framework6, a Semantic Web library
with OWL support. In addition, the framework comprises a user modeling
component. This component describes the user-system interaction and pro-
vides information about the user, such as detecting and predicting user actions
and preferences of the user. All basic observations from the interactive system
as converted into events and submitted to the event bus. The user modeling
component includes an implementation of different algorithms, such as action
detection and prediction algorithms. A user model applies further algorithms
to this data. For this purpose, arbitrary algorithms may be implemented and
custom data types and operators may be provided as Java extensions. Finally,
the user modeling component provides adaptation triggers to an adaptation
component. This component comprises adaptation executors and selectors for
the adaptation patterns presented in this book. The prototype supports both
adaptation methods from Section 5.4. In the following, we discuss the imple-
mentation of adaptations in this framework in more detail.

Different adaptive interactive systems have been developed with this
framework. They implement adaptations such as providing adaptive help or
emphasizing interface elements based on a prediction of the next user-system
interaction. For this purpose, reusable adaptation selectors and system-specific
adaptation executors have been defined for the individual adaptation patterns.
In the following, we present the implementation of an adaptation selector and
an adaptation executor for the “Component Emphasis” adaptation as an ex-
ample. An XML notation is used for the definition of selectors and executors.

Figure 5.9 presents the definition of an adaptation selector called “But-
tonEmphasisSelector” for the “Component Emphasis” pattern. The selector
chooses a graphical button that triggers an action. The user modeling compo-
nent predicted this action. First, a range defines the types of interface elements
that the adaptation selector supports, in this case a button (“ds:Button” in
terms of the ontology, lines 3–5). Next, an adaptation trigger connects the
adaptation selector to the user modeling component by means of a trigger
event (lines 6–8). When the trigger event is observed, the selector is activated.
In this case, the adaptation trigger is activated if an “interactionPrediction”
event is observed. In order to allow a flexible selection of events, event defini-
tions may use wildcards. A number of adaptation candidates are selected from
the knowledge base by a query, which uses a syntax similar to the SPARQL

6 The Jena Framework: http://jena.sourceforge.net

http://jena.sourceforge.net
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01 <adaptationSelector name="ButtonEmphasisSelector"

02 pattern="ComponentEmphasis">

03 <ranges>

04 <range name="ds:Button" />

05 </ranges>

06 <trigger>

07 <event type="interactionPrediction" name="*" />

08 </trigger>

09 <subject>

10 <query variables="?element">

11 (?element rdf:type ds:Button)

12 (?triggerSource ds:hasName ?name)

13 (?element ds:triggers ?triggerSource)

14 </query>

15 </subject>

16 <adaptation name="ButtonEmphasis" />

17 </adaptationSelector>

Fig. 5.9. Example of an adaptation selector for the “Component Emphasis” adap-
tation pattern.

language. The query includes values from event triggers, in this case the name
of the prediction in the “?name” variable. For this purpose, the value of the
event parameter is assigned to the respective variable. The query in the ex-
ample selects all interface elements that are buttons and trigger the predicted
action (lines 9–15). Finally, the selector includes the name of an abstract
adaptation. Different executors may be defined for this abstract adaptation.
In this case, the abstract adaptation is called “ButtonEmphasis” (line 16).

Figure 5.10 presents an adaptation executor that complements the pre-
viously presented adaptation selector. The executor defines an adaptation
(“ButtonEmphasis”) for a specific type of interface element, in this case
generic interface components (“ds:Widget” as the generic type for all graphical
interface elements, line 3). The executor may be restricted to a specific kind of
context, such as a graphical (“view”) or speech (“speech”) context. The core
of the adaptation executor is an executor element, which the system designer
may extend. In this case, a type called “ActionExecutor” changes properties
of interface elements. The presented executor increases position and size of
the interface element (lines 4–17). Similarly, the adaptation executor could
implement other visualizations, such as a change of the background color or
an animation.

However, the adaptation component does not apply the adaptations di-
rectly to the interactive system when the respective adaptation selector is ac-
tivated. The selector may be executed while the respective interface element
is not activated. For instance, a computation in the user modeling component
may cause a delay. Therefore, the context of an adaptation executor serves as
a condition. It may be of the type “view” or “speech”. A context condition
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01 <adaptationExecutor name="SimpleButtonEmphasis"

02 adaptation="ButtonEmphasis" context="view">

03 <range class="ds:Widget" />

04 <executor class="ActionExecutor">

05 <widgetproperty name="x">

06 <translate value="-3^^int" />

07 </widgetproperty>

08 <widgetproperty name="y">

09 <translate value="-3^^int" />

10 </widgetproperty>

11 <widgetproperty name="width">

12 <translate value="6^^int" />

13 </widgetproperty>

14 <widgetproperty name="height">

15 <translate value="6^^int" />

16 </widgetproperty>

17 </executor>

18 </adaptationExecutor>

Fig. 5.10. Example of an adaptation executor for the “Button Emphasis” adapta-
tion. An executor complements the adaptation selector from Figure 5.9.

is valid if the current graphical screen or speech component corresponds to
the adaptation element. For instance, if a graphical button should be adapted
and the adaptation context is “view”, the adaptation is only executed if the
view of the button is active.

Adaptations are not always applied when they are selected, but only when
the respective context is active. Figure 5.11 shows the adaptation procedure.
If an adaptation is triggered and the context is valid, the adaptation is exe-
cuted. Otherwise, the adaptation is added to a list of active adaptations and
executed when the context becomes active. If the context becomes inactive,
the adaptation is reverted and added to the list of active adaptations. This
behavior allows an adaptation to be executed whenever a context is entered.
For example, this approach allows a help message to be displayed whenever
the user enters a specific screen. The selection of the adaptation is decoupled
from its application.

5.5.2 Applying the Framework to a Non-Adaptive Interactive

System

In the following, we discuss the steps necessary to apply the adaptation frame-
work to a non-adaptive interactive system. In doing so, we further illustrate
the workings of the framework. As a prerequisite, the system has to be devel-
oped in an environment supported by the adaptation framework, such as the
reference implementation presented in this section. The system description in
the semantic layer is derived automatically from the model-based description.
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Adaptation
active

Adaptation
executed

Adaptation triggered
and context valid

Adaptation triggered and
context not valid

Context changed
and context valid

Context changed 
and context not valid

Adaptation discarded

Fig. 5.11. The adaptation component has available a list of possible adaptations
and executes them when the respective contexts become valid.

The configuration of the user modeling component comprises the following
steps: First, the interactive system has to emit events to the event bus, for in-
stance caused by a remote control or speech input. In order to describe higher-
level user behavior, the developer has to provide a provision for recognizing
user actions, for instance by training PDFA automata, and a configuration
for the task model. Finally, the developer configures the user modeling com-
ponent such that it employs algorithms to model user behavior. This includes
for example predictions about user actions and preferences. For this purpose,
the developer uses existing algorithms or adds new ones.

In order to support adaptations, interface elements first have to be pre-
pared such that the adaptation component may update them. For this pur-
pose, interface elements have to read a per user configuration either from the
user model or a knowledge base. In addition, they may offer properties that
the adaptation component changes. For instance, a list that highlights the
user’s favorite items may read an entry from the user model that encodes the
user’s preferences. The user modeling component may alter a property of the
list to encode the user’s favorite items. The selected approach depends on the
specifics of an interactive system. In addition, the developer has to provide
information about the types of the interface elements, such as list or button.
Next, if no matching selector is available, the adaptation selector has to be de-
fined. However, selectors can be reused between different interactive systems.
Finally, custom adaptation executors have to be provided. They consider the
specific properties of the individual interface elements, such as how user mod-
eling information is communicated to the elements. The framework includes
a set of default executors, which only modify properties that are common to
all interface elements (e.g. position information).
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In the remainder of this section, we present two use cases that illustrate
the application of adaptations to an interactive system. In the first example,
speech output prompts shall be adapted to the user’s expertise by means of
the “Alternative Elements” adaptation. First, the system designer creates a
group of speech output elements, for instance a long welcome text, a short
text, and a beep, including an annotation that assigns the prompts to begin-
ners, advanced users, and experts respectively. The framework comprises an
adaptation selector that is activated when the interactive system opens a dif-
ferent speech context. An adaptation executor updates user model properties
to enable or disable the appropriate prompts. The interactive system consults
the user model to play back the prompts selected by the adaptation.

A second example discusses the adaptation of an interactive system by
emphasizing a graphical button to guide the user to the next interaction step.
The emphasis highlights the button by selecting a more noticeable background
color and increasing the size of the button. First, the developer adds anno-
tation to each interface element, such as buttons, to specify which action it
triggers. The framework comprises an adaptation selector that chooses inter-
face elements as adaptation candidates based on action predictions by the
user modeling component. Finally, the developer creates a custom adaptation
executor for the requirements of this specific interactive system. In this case,
the executor updates properties of the button to increase the size and change
the background color. Alternatively, the adaptation selector may use an an-
imation to display the emphasis. Thus, the adaptation component provides
for a flexible specification and execution of adaptations.

5.6 Discussion

In this chapter, we presented a novel adaptation framework that provides a
reusable shell for the user modeling algorithms and the adaptation patterns
introduced in previous chapters. The aim of the framework is to support the
development of adaptive interactive systems. This framework comprises sev-
eral components, which were discussed in this chapter. First, a semantic layer
constitutes the foundation and creates an abstract representation of the in-
teractive system as well as other building blocks, such as the user and the
user-system interaction. This layer is based on semantic web technologies,
such as OWL. Second, a user modeling component collects basic observations
from the user-system interaction and distributes them among different compo-
nents, such as an interaction model and a task model. A user model computes
derivations from these events, such as a prediction of the next user action
or a model of the user’s preferences. An implementation of the user modeling
algorithms discussed in Chapter 3 illustrates the use of the user model. Third,
an adaptation component employs a formalization of the adaptation patterns
from Chapter 4 to perform adaptations to the interactive system. The descrip-
tion of adaptations consists of adaptation selectors and adaptation executors.
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The framework may be reused in different interactive systems. We presented
a reference implementation of the framework that proves its feasibility. In
addition, we illustrated the workings of the framework with examples.

In order to prove the feasibility of the user modeling algorithms and adap-
tation patterns as well as the adaptation framework, we present a user evalua-
tion in the following chapter. Different interactive systems use this framework
to implement adaptations. Thus, the framework presents a viable and reusable
foundation for the implementation of user-adaptive interactive systems.



6

Evaluation

The only man who behaves sensibly is my tailor;

he takes my measurements anew every time he sees me,

while all the rest go on with their old measurements

and expect me to fit them.

–George Bernard Shaw (1856–1950)

Research on adaptive interactive systems has produced numerous adaptive
systems, such as hypertext, office, or speech dialog systems (see Chapter 2).
However, little empirical evidence exists on topics such as the effect of adapta-
tions on the user-system interaction and the decision when and how to apply
adaptations. For example, Lavie et al. (2005) criticize this lack of empirical
foundation. In order to allow developer to implement adaptations properly,
evaluation evidence has to be provided that is applicable to all interactive
systems. In this chapter, we present the results of user tests for user modeling
algorithms and adaptations. The evaluations have been performed such that
the results may be transferred to different interactive systems. In doing so, we
contribute to building a body of generic adaptation evidence.

Research on the evaluation of adaptive interactive systems revealed that an
assessment of the individual components provides more insight than an evalua-
tion of the complete system. Otherwise, the developer is unable to differentiate
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between good and weak components. In this work, we evaluated the individual
components separately, namely user modeling algorithms and adaptations.
Moreover, an evaluation of the individual components enables the reuse of
facts that have been discovered in an evaluation. For example, an interactive
system may select user modeling algorithms and adaptations that have been
evaluated independently of each other. In this chapter, we present an eval-
uation of the individual components of adaptive interactive systems that we
introduced in previous chapters. We investigated the attitudes of users to-
wards adaptive interactive systems. In addition, we performed an evaluation
of different user modeling algorithms. Finally, we implemented a set of inter-
active systems that provide different adaptive features. The evaluations have
been performed such that the results are generic. However, an assessment of
the individual components does not replace an evaluation of an end-to-end
system, which uses a specific combination of adaptations and user modeling
algorithms.

For some parts of this chapter, data from the evaluation of a prototype of
the DICIT project (Matassoni et al., 2008; Marquardt et al., 2008) was used.
The DICIT project (Distant-talking Interfaces for Control of Interactive TV),
an European FP6 project, developed a speech-enabled digital TV system and
supports distant-talking natural language interaction in addition to a remote
control. The prototype offers the general TV functionality, i.e., watching TV
or changing channels and volume. In addition, an electronic program guide
(EPG) allows users to browse the TV program and select shows by changing
a set of filters, such as time or channel. Users may put interesting programs
on a watch list and change settings, such as switching on or off the speech
output. All functions are controlled either by remote control or speech input.
The DICIT system provides a graphical interface and plays speech output
prompts to communicate with the user.

The chapter is structured as follows. First, an introduction to evaluation
approaches for adaptive interactive systems is given. Next, attitudes of users
of adaptive interactive systems and a larger group of international users are
investigated. Thereafter, an evaluation of the user modeling algorithms from
Chapter 3 is presented. Finally, an evaluation with test subjects of interactive
systems that implement the adaptations from Chapter 4 provides empirical
evidence for the application of the adaptations.

6.1 Evaluating Adaptive Interactive Systems

In this section, we provide an overview of different evaluation approaches for
adaptive interactive systems. In doing so, we explain the reasoning behind
evaluating the individual components separately. A general introduction to
adaptive systems and the most important components is given in Section 1.2.
In the remainder of this section, we discuss evaluation approaches for inter-
active systems that comply with these models.
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The layered evaluation approach by Brusilovsky et al. (2001) proposes a
separation of the evaluation of the interaction assessment and adaptation deci-
sion making processes. By investigating both components at the same time, a
positive evaluation result of one component may obscure problems in another.
Moreover, problems discovered by the evaluation do not reveal the source of
the problems. If however the components are evaluated separately, problems
in both components may be identified and addressed subsequently. The appli-
cation to a tutoring system called InterBook illustrates the layered evaluation
approach. Brusilovsky et al. conclude that having applied this approach in
previous evaluations could have made problems visible earlier.

Paramythis et al. (2001) present a more fine-grained evaluation approach
for adaptive systems. It is based on a decomposition of adaptive systems
into different components. The evaluation is performed on different groups
of these components. Breaking down a system into its constituents facilitates
an assessment of the individual parts and enables a reuse of the evaluation
results for different systems. A decomposition of adaptive systems into dif-
ferent components forms the basis of the approach by Paramythis et al. For
instance, these include interaction monitoring, explicitly provided knowledge,
the adaptation decision, and an automatic assessment of the adaptation. Re-
lated components form evaluation modules, which cover coherent topics. For
example, module A1 comprises “interaction monitoring; interpretation and
inferences; and user modeling” and therefore describes the user modeling pro-
cess. Module C on the other hand is “applying adaptations”, i.e., the decision
whether an adaptation should be performed. Modules A1 and C correspond to
these parts of adaptive interactive systems which we evaluate in this chapter.
However, the individual adaptations are not part of the evaluation modules
in the decomposition approach. The most obvious evaluation approach is the
“with-and-without” approach. It compares an adaptive interactive system to
the same system without adaptation. Adaptation can however not be disabled
if it is an integral part of the system. Moreover, the with-and-without evalu-
ation compares two systems that possibly are not optimal and thus produces
distorted results. Since the adaptations presented in Chapter 4 are not nec-
essarily an integral part of the system, a “with-and-without” evaluation still
allows valuable insight into the use of these adaptations.

The evaluation approach presented by Paramythis and Weibelzahl (2005)
builds on the module-based approach by Paramythis et al. (2001), but presents
a process-oriented decomposition of adaptive interactive systems. The adap-
tation process is separated into the following steps: a) collecting input data, b)
interpreting the collected data, c) modeling the current state of the world, d)
deciding which adaptation to apply, and e) applying the adaptation. A num-
ber of dynamic and static models, such as user model and system model,
complement these stages. The individual steps and models are described in
more detail in Section 1.2. Paramythis and Weibelzahl argue that the process-
oriented decomposition poses a helpful partitioning for the evaluation of adap-
tive interactive systems. Although their approach is in early stages and has not
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been transformed into a full evaluation model, a comprehensive and compre-
hensible decomposition is still presented. The adaptation approach presented
in this book employs a similar model.

6.2 Attitudes of Users towards Adaptive Interactive

Systems

In addition to objective measures, the attitudes of users play an important
role with regard to user acceptance. For this purpose, we performed two user
surveys of adaptive features in interactive systems. The first one asked users
of different adaptive systems. The second one questioned a larger group of
users from different countries, who however had not used an adaptive system.

6.2.1 Users of Adaptive Systems

In order to investigate the adaptation patterns introduced in Section 4.3, we
carried out a user test of different interactive systems that implement these
adaptations. For this purpose, users had to perform a number of tasks with
an adaptive and a non-adaptive version of different test systems. At the end
of the evaluation, users were handed a questionnaire to collect their attitudes
towards adaptive interactive systems in general. The questionnaire is given in
Appendix B (Questionnaire G). In total, 36 users filled in the questionnaire;
20 of them had tested four different systems and another group of 16 had
tested only a single adaptive interactive system.

The users answered each question by means of a 7-point Likert scale, with
“1” corresponding to “agreement” and “7” to disagreement. The results of the
questionnaire are shown in Figure 6.1. Users agree strongly with the statement
that adaptivity is an interesting concept (Figure 6.1.b, median value of 1). The
subjects expected that adaptivity would be used commercially in the future
(Figure 6.1.b, median value of 1). In addition, users would not select a non-
adaptive version of the system if they could select (Figure 6.1.c, median value
of 6). Finally, subjects were undecided about the idea to relinquish other
features in favor of adaptivity (Figure 6.1.d, median value of 4). Therefore,
users of different systems showed a positive attitude towards adaptation in
general. However, they would not happily relinquish other features in favor of
adaptation.

6.2.2 Cultural Influence

The (Matassoni et al., 2008) developed a speech-enabled digital TV system,
which includes an EPG. Users from different countries, namely Italy, Ger-
many, the Czech Republic, and the United States of America, tested the final
prototype of the DICIT system in an evaluation. The evaluation included a
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Fig. 6.1. Attitudes of users of adaptive interactive systems towards adaptivity. The
users stated their general attitudes by means of four questions (a–d).

questionnaire that we extended for this work with a number of questions about
adaptive features. Whereas the implementation of these features was not part
of the DICIT project, the results still give an insight into the attitudes of
people in different countries towards adaptivity. The full evaluation of the
DICIT system is available as a public deliverable of the project (Sowa and
Arisio, 2009). In total, 159 subjects participated in the user study, including
49 natives of Germany (group “DE”), 50 natives of Italy (group “IT”), and 23
natives of either the United Kingdom or the United States of America (group
“EN”). The remaining subjects were non-native speakers from different coun-
tries and are excluded in this survey. The questionnaire used a 10-point Likert
scale from “1” for a very negative answer to “10” for a very positive one.

The results of the questions from the DICIT questionnaire that address
adaptivity are given in Figure 6.2. Significant differences between the three
groups could not be observed. Question 21 asked about the ability of a system
to adapt to user behavior in general. The users approved of such a feature with
a median value of nine for all groups (Figure 6.2.a). Question 22 suggests a
specific example of adaptation, namely highlighting the most frequently used
functions on the screen automatically. The participants approved of this idea,
but the attitude of German subjects (median value of 9) was more positive
than the attitude of the subjects in other countries (Figure 6.2.b, median value
of 8). Finally, question 23 asked whether a user modeling component that
observes the user would make the subjects feel monitored. However, users do
not feel uncomfortable because of the observation (Figure 6.2.c, median value
of 9).

In summary, users in all countries expressed a positive attitude towards
adaptive features in interactive systems and noted that an observation by
a user-modeling component would not make them feel uncomfortable. No
significant differences could be found between German, Italian, and English
or American users. Thus, our findings from the two surveys presented in this
section indicate an open-mindedness and positive attitude of users towards the
concept of adaptivity in general. Whereas privacy is regarded as an important
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Fig. 6.2. Attitudes towards adaptivity of 122 German (DE), Italian (IT), and En-
glish or American (EN) users of the DICIT system, a speech-enabled interactive TV
system.

topic in literature (cf. Kobsa, 2007), users did not express such concerns in
this survey.

6.3 Evaluation of the User Modeling Algorithms

In this section, we present an evaluation of the user modeling approach pre-
sented in Chapter 3. This includes an algorithm for recognizing user actions
by means of probabilistic automata and an approach for user action predic-
tion by means of a task model or Markov chains. For this purpose, applied to
algorithms to log data from user tests.

6.3.1 Test Data

We conducted the investigation of the user modeling algorithms presented in
Chapter 3 with log data obtained during the evaluation of the DICIT project.
This evaluation was conducted with 20 test subjects. The users had to perform
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a number of tasks, which cover all parts of the system. For this purpose, they
used both remote control and speech interaction. The average length of the
evaluation sessions is 24 minutes. During the evaluation, extensive log data
was collected in log files. A log file is a sequence of interaction events, such as
a key press, a speech utterance, or a reaction to user input by an interactive
system. A short excerpt of a log file is given in Figure 6.3, in which a user
presses a button (line 1) that causes different reactions of the system (lines
2–4). We annotated all log files with information about user actions using a
custom annotation tool (see Wesseling et al., 2008). A screenshot of the tool
is given in Figure 6.4. This tool displays recorded log files in timeline views
and presents different event types separately. For instance, one timeline may
show remote control events, whereas another one may display speech input.
In doing so, the interaction may be investigated in detail. In order to add
annotations, log event sequences that correspond to specific user actions are
selected and marked with the name of the user action. While the assessment
was performed within the digital TV domain, the algorithms are applicable
to any kind of interaction log data.

6.3.2 Action Recognition

In Section 3.2, we introduced an algorithm for recognizing user actions that
employs probabilistic automata. We tested this algorithm using the DICIT
recordings by comparing a manual annotation to an annotation created by
means of the PDFA models. One important metric of this algorithm is the
amount of training data needed for a sufficiently well performing model.
Therefore, the evaluation investigates the rate of correct matches in relation
to the number of sessions used for training. For this purpose, PDFA models
were trained with an increasing number of sessions (between one and 15) and
tested with five sessions. The evaluation was performed by means of cross-
validation with a random selection of sessions with 10 repetitions. In these
recordings, 32 different action classes were identified, such as “show results”
or “change channel”. The sequence length of these action classes ranges from
one to 64 events, with the average length being 3.1 events. A session consists
of 141 interactions on average.

1 [1180520776220] hw name={COMM_0x6e}

2 [1180520776220] event name={Start}

3 [1180520776220] state name={Session_Main}

4 [1180520776376] view name={WelcomeView}

Fig. 6.3. Exemplary log lines, showing a button press (line 1) and the reactions of
the interactive system to this input (lines 2–4).
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Fig. 6.4. An evaluation and annotation tool was used to perform the annotations
of the log data.

Fig. 6.5. Evaluation results of the PDFA matching algorithm. An increasing number
of log sessions were used to train the matchers and five sessions were used for testing.

Figure 6.5 presents the results of the comparison of the automatic and
the manual annotations in relation to the number of training sessions. Start-
ing with a match rate of 58.1 % with one training session, the match rate
increases with a growing number of sessions until it reaches a maximum of
89.5 % with 11 sessions. The match rate with two training sessions already
amounts to nearly 80 %. Therefore, the presented approach works with a
comparatively small number of training sessions and the match rate does not
improve considerably after 10 sessions.
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Matching fails for several reasons. First, the matcher does not trigger at
all (no recognition). Since the action is not present in the training data, it
appears in the manual annotation, but not in the automatic annotation. Using
more training data therefore reduces these kinds of errors, as can be seen in
Figure 6.5. Second, a wrong class is selected (wrong recognition), which occurs
in only about 2 % of the evaluation data. This kind of error occurs because of
inconsistencies or ambiguities in the annotations.

Therefore, PDFAs present a viable means for detecting user actions in
a sequence of basic events. However, this approach has limitations. First, it
highly depends on the annotations like all statistical approaches, i.e., only
patterns occurring in the annotated sessions can be recognized. In addition,
the consistency of the annotations affects the recognition accuracy. Second,
actions that depend on the number and order of events are not reflected well
by the statistical nature of this approach. For instance, the number of up
and down key presses decides which element in a list is selected, but the
probabilistic nature of the automata does not consider this well. In order to
comply with the PDFA approach, selections of list elements need to create
specific “list selection” events.

6.3.3 Action Prediction

In Section 3.4, we presented two approaches for predicting user actions, namely
prediction based on a task model and Markov chains. We compare these two
algorithms in the following. This evaluation exploits the data from the DICIT
evaluation. Ten sessions were used for training and ten for testing. Since the
behavior of real users is erratic, the prediction accuracy always remains signif-
icantly below 100%. Hartmann and Schreiber (2007) report in a comparison
of different prediction algorithms that the accuracy was limited to 40–60 %.
The task model prediction requires that a task is currently active. Therefore,
we determined the task model coverage, which describes the ratio of actions
in a session for which a task was active. With a coverage of 99.3%, a valid
task was active during virtually all interactions in these recordings.

We conducted the evaluation as follows. The annotated interaction sessions
were iterated sequentially and the task model tracked the action sequence. For
each interaction, both algorithms performed a prediction, which we compared
to the action the user actually performed. Based on these predictions, a match
rate was computed. The Markov chain algorithm uses the task model informa-
tion to eliminate invalid predictions. The rate of Markov predictions that were
invalid but corrected was 1.3 %. As can be seen in Figure 6.6, the Markov pre-
diction (59.8 % correct) was more accurate than the approach that uses only
the statistical task model information (56.3 % correct). The computation time
for the Markov prediction amounted to 8.3 ms and 0.2 ms for the task model
prediction with a dated 1.6 GHz PC. On a more 3.0 GHz hardware , the
average time was less than 1 ms for both algorithms. Whereas the difference
between the two algorithms is not significant, the Markov prediction did not
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Fig. 6.6. A comparison of two action prediction algorithms, namely task model
prediction and Markov prediction.

only produce better results, but also more variant predictions by not always
recommending the same action for a certain state in the task model. There-
fore, the Markov prediction achieves a better prediction rate. The prediction
produces results that are more valuable for the user. Since the performance of
both algorithms is comparable, the selection of the prediction algorithm may
depend on other criteria, such as the available computing resources.

6.4 Evaluation of the Adaptation Approach

In order to investigate our adaptation approach, we conducted a user test for
the adaptations presented in Chapter 4. These user tests examine the effec-
tiveness of the adaptations and provide empirical evidence for the application
of these adaptations. For this purpose, we created different test systems that
implement these adaptations. Although each system was created specifically
for the evaluation, they were derived from actual systems from two different
domains: a digital TV with an EPG and an automotive dashboard interface.
In this chapter, we present the results of a user test with these systems.

Design patterns receive validity when they are used repeatedly and there-
fore are considered efficient solutions. However, Metzker et al. (2003) argue
that HCI knowledge, which is for instance captured by means of patterns,
needs empirical validation. This chapter contributes to this endeavor by pro-
viding an empirical evaluation of systems that employ the adaptation pat-
terns presented in Chapter 4. The evaluations not only investigate whether
an adaptation improves the user-system interaction, but also give insight into
the general conditions under which the adaptations perform well.

The evaluation of the adaptations was conducted with two groups of users
and five different interactive systems. In a first evaluation, 20 users tested
four different adaptive systems. In a second evaluation, 16 different users
worked with one adaptive system. The evaluations comprise both a subjec-
tive survey by means of a questionnaire and an objective investigation by
means of log data collected during the tests. The subjective measures include
perceived attractiveness and usability. In addition to evaluating the different
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adaptations, the feasibility of the adaptation framework was demonstrated by
implementing the adaptive test systems with the framework. For this purpose,
the system uses the semantic layer and the adaptation component. The user
modeling component was configured to predict actions and values according to
the evaluation task. In the following, we introduce the test setup. Thereafter,
we discuss the individual test systems and their evaluation.

6.4.1 Test Setup

A separate interactive system was created for the investigation of each adap-
tation pattern. The effects of the individual adaptations could not have been
investigated as clearly with actual applications or multiple adaptations imple-
mented in one system. All systems were implemented using EB GUIDE Studio
(Goronzy et al., 2006), a modeling tool for interactive systems. The adapta-
tion framework was employed to show its feasibility. Only the “Shortcut Area”
adaptation did not use the framework. The adaptations were implemented
by means of adaptation selectors and adaptation executors, as described in
Chapter 5. In order to simulate the interaction with a remote control for a
TV system or a push rotary device used in automotive dashboard systems,
the users clicked on virtual buttons on the screen. In doing so, the number of
basic interactions could be surveyed more precisely than with a touch-enabled
interface, e.g. with regard to scrolling. All events caused by the user-system
interaction were written to a log file to enable an assessment of the user’s per-
formance. All subjects used both an adaptive and a non-adaptive version of
each interactive system to facilitate a comparison of the two conditions. The
order in which the subjects tested the individual systems was rotated to elim-
inate an effect of the order, for instance through a training effect. Likewise,
the adaptive and the non-adaptive version were used first alternately.

The test users completed a questionnaire to facilitate an assessment of
their attitudes. The full questionnaire is shown in Appendix B. The subjects
filled in a questionnaire both after the adaptive and the non-adaptive version
of each system. Each questionnaire started with a set of opposed attribute
pairs (such as “good” and “bad” or “predictable” and “unpredictable”). These
attributes are derived from the AttrakDiff questionnaire (Hassenzahl et al.,
2003), which measures the “pragmatic and hedonic quality” of a product. Each
attribute pair was rated on a 7-point Likert scale. The attribute pairs were
used to extract perceived attractiveness and usability measures. In addition,
the questionnaire for the adaptive versions comprised a group of questions re-
garding the users’ attitudes towards the adaptive features by means of three
hypotheses: 1) the adaptation confuses the user (H1), 2) the adaptation ac-
celerates the interaction (H2), and 3) the adaptation supports the user (H3).
A total number of eight questions express the hypotheses. In addition, the
questionnaire asked users whether they perceived the system as intrusive. Fi-
nally, users selected their preferred version (adaptive or non-adaptive) after
having tested both versions. The evaluation was split into two parts: Four
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Fig. 6.7. The demographical characteristics of the two test groups T1 and T2 that
were used for the evaluation of the adaptations.

adaptations (“Component Emphasis”, “Adaptive Help Presentation”, “List
Element Selection”, and “Alternative Elements”) were tested in user test
T1 and the “Shortcut Area” adaptation was tested in a separate user test
T2. In total, 20 German subjects participated in evaluation T1 and the lan-
guage of the respective interactive systems was German. Twelve subjects were
male, eight female. The age, gender, and expertise distributions are given in
Figure 6.7. With regard to age, more than half of the subjects were 35 years
old or younger. In a self-assessment, three subjects regarded themselves as
beginners, nine as advanced users, and eight as experts. For each test sys-
tem, the users had to perform tasks that were explained on a worksheet. In
addition, the users received a printed documentation of the respective sys-
tem and a short oral introduction by the supervisor. The tasks were similar
for the adaptive and the non-adaptive version to facilitate a comparison be-
tween both versions. Rather than performing actual user modeling, staged
predictions that correspond to the respective tasks were used to assess the
adaptations. Therefore, all user modeling predictions perfectly predicted the
next user action. While this accuracy cannot be achieved in real-world user
modeling systems, the effects of the adaptations become more obvious.

User test T2 investigated the “Shortcut Area” adaptation and was con-
ducted prior to test T1 with different subjects. Since the adaptation framework
was still incomplete at that time, the system did not employ the framework.
However, the algorithms and adaptations have since then been implemented
in the adaptation framework. Sixteen German test subjects participated in
evaluation T2. The questionnaires were the same as in evaluation T1 (see
Appendix B). As can be seen in Figure 6.7, all users in this group were younger
than 46 years and 11 out of 16 users were between 26 and 35 years old. The
number of male participants (11) was considerably higher than the number of
female subjects (five). Moreover, this group consisted only of advanced users
(seven) and experts (nine). In the following, we present the results of the user
tests of the five different adaptive interactive systems.
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Adaptation:
Context-dependent
help message

Fig. 6.8. The main screen of the test system for the “Adaptive Help Presentation”
adaptation. The help message reads: “Press red button to open list of shows.”

6.4.2 Adaptation Pattern: Adaptive Help Presentation

The “Adaptive Help Presentation” adaptation supports the user by providing
help that is tailored to the current user and situation. A digital TV system
served as a test system for this adaptation.

Test System and Task

We tested the “Adaptive Help Presentation” adaptation using an interactive
system that resembles a digital TV system with an EPG. A screenshot of
the main screen is given in Figure 6.8. The user browses a list of TV shows,
which is limited to 85 entries, and puts shows on a watch list. The TV system
notifies the user if a show starts that is on the watch list. In addition, the user
can change settings in a screen, such as the font size in the list of shows. The
user controls this system by means of up and down buttons and three color
buttons (red, green, and yellow). The meaning of the color buttons changes
in every screen, with the respective functions being explained on the bottom
of the screen.

The adaptive version of the test system displays a yellow box with a concise
help message in the upper right corner of the screen. This message explained
the user the next action according to the assignment sheet. The instruction
in Figure 6.8 tells the user to press the red button to open the list of shows.
The help messages relate to the current task. To improve the visibility of the
help messages, the help box is faded in with a delay of two seconds.

The users performed different tasks in a given order: putting a show from
the result list on the watch list (two times), removing an element from the
scheduling list (two times), changing one setting (font size from regular to
big), resetting the settings, and clearing the scheduling list. Similar tasks
were selected for the adaptive and the non-adaptive version, but in a different
order and with different values. However, the minimum number of interactions
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Fig. 6.9. Attractiveness and usability ratings of the “Adaptive Help Presentation”
adaptation.

required to complete the tasks in both versions was constant in order to allow
a comparison of the two variants. The printed documentation for this test
system was the most extensive of all systems due to the complexity of the test
system and the task.

Subjective Evaluation

Figure 6.9 gives the views of the users with regard to attractiveness and us-
ability. On average, the subjects rate the adaptive version as slightly more
attractive than the non-adaptive version. The usability of the adaptive ver-
sion is assessed as significantly better (p < 0.05).

With regard to the three hypotheses (see Figure 6.10), differences between
expert users and non-expert users can be observed. Users perceive the adapta-
tion as not confusing (H1, median value of 6.50), as faster (H2, median value of
2.00), and supportive (H3, median value of 1.25). However, the view of expert
and non-expert users differ significantly. Whereas non-expert users regard the
adaptation as not confusing, experts perceive the adaptation as neutral with
regard to confusion (H1, median value of 7.00 vs. 4.63 with p < 0.01). Simi-
larly, non-expert users opine that the adaptation accelerates the interaction,
whereas experts see little influence of the adaptation on the performance (H2,
median value of 1.25 vs. 4.00 with p < 0.05). Non-experts perceive the adap-
tation as supportive (H3, median value of 1.00 vs. 2.50 with p < 0.05), but
expert users approve of this statement less. Therefore, non-expert users rate
the adaptation significantly better than expert users. All users rejected the
notion that the system was intrusive strongly with a median value of 7.00.

A majority of 13 out of 20 users prefer the adaptive version, five users
prefer the non-adaptive version, and two users are undecided. However, the
five users who prefer the non-adaptive version are all experts.
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Fig. 6.10. User ratings for the three adaptation hypotheses for the “Adaptive Help
Presentation” adaptation.

Objective Evaluation

For the objective evaluation, the fastest user (V7) and the slowest user (V2)
were removed from the set of log files. The adaptation significantly reduces the
number of interactions (p ≤ 0.05) compared to the non-adaptive version. This
finding proves that users consult the adaptive help rather than using “trial
and error”, which they rely on in the non-adaptive version (Figure 6.11).

However, the operating time of the adaptive version remains constant com-
pared to the non-adaptive version (Figure 6.11). We attribute this to a strong
and significant (p ≤ 0.05) learning effect between the first and the second ver-
sion. Regardless of whether the adaptive or the non-adaptive version is used
first, the task is solved more quickly with the second version. In addition, the
reading time of the help message affects the operating time of the adaptive
version negatively.

Discussion and Lessons Learned

Beginners and advanced users regard the “Adaptive Help Presentation” adap-
tation as significantly more helpful and positive than expert users. Therefore,
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Fig. 6.11. Objective measures from the evaluation of the “Adaptive Help Presen-
tation” adaptation.

the adaptive help feature should only be enabled for beginners and advanced
users and disabled for experts. The adaptation improves the number of inter-
actions significantly, but does not affect the interaction time. A more detailed
study, which eliminates the learning effect, is required to investigate the influ-
ence of adaptive help on the operating time. Therefore, the “Adaptive Help
Presentation” adaptation assists beginners and advanced users who work with
interactive systems.

Whereas unintrusiveness was a design goal for the test system, a pre-test
study revealed that users overlook help messages unless the help is presented
with sufficient visibility. Color, location, and fading in turned out to be vi-
able means for controlling the visibility and intrusiveness of the help box. In
addition, users do not read help messages unless these are concise and clear.
Finally, the complexity of the task has to warrant help. Otherwise, people
either do not read the help messages or are even annoyed.

6.4.3 Adaptation Pattern: Component Emphasis

The “Component Emphasis” adaptation supports the user by drawing atten-
tion to interface elements through emphasis. We evaluated this adaptation
using a digital TV system.

Test System and Task

The test system is conceptually part of a digital TV system, which allows the
user to browse an EPG. In order to cope with the vast number of shows, the
user selects a number of search criteria, namely channel, time, date, and genre,
to constrain the number of visible shows. A screenshot of the main screen of
the test system is given in Figure 6.12. The user opens up a list of possible
values for each category and selects a value, e.g. “Sat.1” in the list of channels
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Adaptation:
An arrow indicates

the most likely
button that a user
is going to select.

Fig. 6.12. The main screen of the test system for the “Component Emphasis”
adaptation. The user already has selected a value for the channel criterion.

(“Sender”). After having specified a set of criteria, the user opens the result
screen by activating the “Results” (“Ergebnisse”) button. The result screen
however is only a mockup. The user controls the test system by means of up,
down, OK, and back buttons.

The adaptation inserts a yellow arrow on the left-hand side of the button
that the user is supposed to select next according to the task. For each version,
the user had to execute four tasks that each consist of selecting three different
filter criteria and opening the result screen. For instance, one task instructed
the user to select “RTL” for channel, “Friday” for day, and “documentary”
for genre. The number of actions required for each task was kept constant
by balancing the list positions of the individual filter values. In doing so, the
number of interactions and the execution time could be compared between
the different tasks.

Subjective Evaluation

Only a small yet not significant improvement can be observed with regard
to attractiveness and usability (Figure 6.13). However, the adaptive version is
judged very positively (Figure 6.14): The idea of the system as being confusing
(H1) is rejected with a median value of 6.75. Users strongly agree with a
median value of 1.00 with the statement that the adaptation decreases the
interaction time (H2). Moreover, users agree with a median value of 1.00
that the adaptation supports them (H3). Users reject the statement that the
adaptation is intrusive with a median value of 6.00. 70 % of the users (14 out
of 20) prefer the adaptive version, 20 % (four users) prefer the non-adaptive
version, and 10% (two users) are undecided.

Objective Evaluation

Users had to perform four subtasks for the adaptive and the non-adaptive
version. For the objective assessment, we removed the first task, because it
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Fig. 6.13. Attractiveness und usability ratings of the “Component Emphasis” adap-
tation.

Fig. 6.14. User ratings for the three adaptation hypotheses for the “Component
Emphasis” adaptation.

was considered the training task, and the last one was left out because of
issues in the user modeling. The average time and number of interactions was
computed for the remaining two tasks. In addition, the slowest (V2) and the
fastest (V7) user were removed as well as one user (V19), for whom the user
modeling did not function.

The results of the objective evaluation are given in Figure 6.15. Both
the average time (25.87 seconds for the adaptive vs. 27.47 seconds for the
non-adaptive version) and the number of interactions (22.8 interactions in
the adaptive vs. 23.8 interactions in the non-adaptive version) only slightly
improve with the adaptive version. However, the operating time as well as the
number of actions decreases for 71 % (12 out of 17) of the users.

Discussion and Lessons Learned

Although the “Component Emphasis” adaptation does not improve the per-
ceived attractiveness and usability significantly, the users strongly rate the
adaptation as not confusing, faster, and supportive. The number of average
interactions and the operating time both slightly decrease. The adaptation im-
proves the objective measures for a majority of 71 % of the users. Therefore,
the Component Emphasis presents a viable means to assist users by guiding
them to the next interaction.
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Fig. 6.15. Objective measures from the evaluation of the “Component Emphasis”
adaptation.

The emphasis of the interface element has to be performed such that the
user does not confuse the adaptation with a regular selection. A pre-test ver-
sion of this test system had two similar visualizations for cursor and emphasis,
which were subsequently confused by pre-test users. While this effect was lower
with the test version of the system, some users still confused the visualizations
in the first test iteration. A number of users suggested putting the selection
cursor on the emphasized element. However, other users rejected this idea. In
addition, this approach would have inhibited a comparison of the number of
user actions in the evaluation.

6.4.4 Adaptation Pattern: List Element Selection

The “List Element Selection” adaptation supports the user by highlighting list
items. We tested this adaptation with a name selection task in an automotive
dashboard interface.

Test System and Task

In order to investigate the “List Element Selection” adaptation, an interactive
system that resembles an automotive dashboard interface was created. The
evaluation task was the selection of names in an address book. The selection
screen consists of a list of 65 names in alphabetic order. A scrollbar on the
left hand side indicates the current position in the list. The user presses up
and down buttons to move the cursor and an OK button to select an item. A
screenshot of the system is given in Figure 6.16.

A solid red background and a yellow star highlight a list element in the
adaptive version (called “Adaptive”). In this test, the highlight corresponds
to the next item that should be selected according to the task. In addition, a
small yellow star indicates the position of the highlighted item in the scrollbar.
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Fig. 6.16. A list of names used in the test system for the “Component Emphasis”
adaptation. The system recommends an entry (“Lieb, Sebastian”) by highlighting
the respective line.

Fig. 6.17. Attractiveness ratings of the “List Element Selection” adaptation.

In order to investigate an approach that better reflects the imperfect nature
of predictions in real-world situations, a second adaptive version highlights
three list items instead of one (named “Adaptive, with errors”). In this case,
the adaptation emphasizes the correct item and two wrong items. Only 19
out of 20 subjects performed the evaluation with both adaptive versions. The
assignment sheet provided seven names the user had to select in the given
order. The number of interactions for all versions was constant to allow a
comparison between the different conditions. For this purpose, the sum of the
list indices was constant in both conditions.
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Fig. 6.18. User ratings for the three adaptation hypotheses for the “List Element
Selection” adaptation.

Subjective Evaluation

Users rate the attractiveness of the version with the adaptation that highlights
one item (“Adaptive”) as significantly better (p ≤ 0.05) and the usability
better, yet without significance (see Figure 6.17). Figure 6.18 presents the
analysis of the hypotheses: the adaptation is not perceived as confusing (H1,
rejection with a median value of 6.50), but as faster (H2, agreement with
median value of 1.00) and supportive (H3, agreement with a median value
of 1.50). The users did not experience the adaptation as intrusive (rejection
with a median value of 6.00). 19 out of 20 subjects (95 %) prefer the adaptive
version.

Similar results are observed for the version with three recommendations
(“Adaptive, with errors”), but the effect is weaker. The usability of this adap-
tation is regarded lower, but not significantly. Most users still prefer the adap-
tive version (15 out of 19), but four prefer the non-adaptive version.

Objective Evaluation

The slowest (V02) and the fastest subject (V07) were removed for the objective
evaluation. In addition, three more subjects (V09, V13, and V17) had to
be removed because the subjects talked to the supervisor, who was in the
same room. One subject (V08) was excluded due to problems with the user
modeling. The analysis was performed with the remaining 14 subjects.
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Fig. 6.19. Objective measures from the evaluation of the “List Element Selection”
adaptation.

Figure 6.19 presents the comparison of the objective measures for the two
variants. In the “Adaptive” condition, both the number of clicks (p ≤ 0.01)
and the total interaction time decreased significantly (p ≤ 0.05). Thus, the
adaptation lets users perform the task faster and with less effort. Both time
and number of interactions decrease in the “Adaptive, with errors” condition,
but without significance.

Discussion and Lessons Learned

The “List Element Selection” proved to be a successful adaptation. It was
significantly faster than the non-adaptive version and requires a smaller num-
ber of interactions. In addition, the users rated the adaptation positively in
the questionnaire. The “Adaptive, with errors” version also showed an im-
provement to the non-adaptive baseline, yet without significance. Therefore,
the List Element Selection adaptation presents a viable means to improve the
user-system interaction in list selection tasks.

A pre-test version of the test system used a white border for the selection
cursor and a red border to indicate the adaptation. However, users were not
able to distinguish these two markings. Instead, an additional symbol and a
different shape (such as filled rectangle compared to outlined border) allow
the user to differentiate the two markings more easily.

6.4.5 Adaptation Pattern: Alternative Elements

The “Alternative Elements” adaptation supports the user by selecting the
most appropriate interface elements from a number of alternatives. The adap-
tation was evaluated by means of an automotive dashboard interface.
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Test System and Task

We selected the task of navigation destination entry for the evaluation of the
“Alternative Elements” adaptation. Destination entry comprises the selection
of city, street, and house number. In both the non-adaptive and the adaptive
version, these values had to be selected from a limited set of 50 values each.
The users selected from the 50 largest German cities, the 50 most common
street names in Germany, and the values one to 50 as house numbers.

Two slightly different interfaces were created for this system. The “expert
mode” leaves more flexibility to the user by offering a menu in which the user
may choose the selection order. A screenshot of the main screen of the expert
version is given in Figure 6.20. The “beginner mode” enacts a fixed selection
order of city first, street next, and house number last. After each value, a
confirmation screen ensures that the correct value was selected. Whereas both
systems offer the same functionality, the level of control is reduced in the
beginner mode. The system is controlled by up and down buttons for scrolling,
an OK button for selection, and a back button.

The adaptation automatically selects the appropriate version. The begin-
ner mode is selected at the beginning of each session. Since the subjects are
only available for a limited amount of time, the mode is switched to the ex-
pert mode after the users had entered two destinations rather than performing
actual user modeling. A message indicates the mode selection both of the be-
ginner mode at the beginning and the expert mode after two iterations. Since
an investigation of the objective measures would have compared the beginner
to the expert mode rather than provide metrics of the adaptation (e.g. with
regard to the number of interactions), the objective investigation was omitted
for this adaptation.

Subjective Evaluation

Since the difference between the two modes was not fully obvious to all users in
the beginning of the experiments, the adaptation was again explained before
the users filled in the questionnaire of the adaptive condition. The users were
instructed not to rate the beginner or the expert mode, but the ability of the
system to switch between them.

Both perceived attractiveness (Figure 6.21) and usability (Figure 6.22)
improve for the adaptive version, yet not significantly. However, this improve-
ment is even clearer if only users younger than 46 years are investigated. In this
case, the improvement of the attractiveness becomes significant (p < 0.05).
The users’ answers to the questions about the three hypotheses are given
in Figure 6.23. Users disagree with the statement that the adaptation was
confusing, but not strongly (H1, median value of 5.25). They do not regard
the adaptation as faster than the non-adaptive version (H2, median value of
4.25). However, they agree that the system was supportive (H3, median value
of 3.00). Only small differences can be found between the complete group and
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Fig. 6.20. The main screen of the expert version of the test system for the “Element
Selection” adaptation.

Fig. 6.21. Attractiveness ratings of the “Element Selection” adaptation.

the group aged below 46 and therefore, these are not included in the figure.
The users do not perceive the adaptation as intrusive (rejection with a median
value of 5.00).

In the complete group, 11 out of 20 users (55 %) prefer the adaptive version
over the non-adaptive version, seven prefer the non-adaptive version, and two
are undecided. However, in the group of subjects aged under 46 years, ten out
of 15 subjects (66 %) prefer the adaptive version, three prefer the non-adaptive
version, and two are undecided.

Discussion and Lessons Learned

These findings indicate that users older than 45 years prefer a static interface,
whereas younger users like a system that selects the most appropriate version
for them. Some older users also stated that once they had learned to use an
interface, they did not want to be forced to learn a different one. Younger
users on the other hand prefer a dynamic interface.
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Fig. 6.22. Usability ratings of the “Element Selection” adaptation.

Fig. 6.23. User ratings for the three adaptation hypotheses for the “Element Se-
lection” adaptation.

Substantial interface changes should be communicated to the user, for
instance by means of explicit messages, in order to avoid confusion. Smaller
modifications, such as selecting a different font, may be performed without
notification. Further user tests should investigate the replacement of other user
interface elements, such as individual graphical elements or speech prompts.

6.4.6 Adaptation Pattern: Shortcut Area

The “Shortcut Area” adaptation supports the user by offering specific items,
such as list elements or action sequences, in a separate area of the interface.
An automotive dashboard interface was used to investigate this adaptation.

Test System and Task

We evaluated the “Shortcut Area” adaptation with a system that resembles
an automotive dashboard interface. It provides access to a “Music” menu, a
“Contacts” menu, and a “Climate Control” menu. A screenshot of the main
menu is given in Figure 6.24. The “Music” and the “Contacts” menus offer
different submenus and selection lists, whereas the “Climate Control” menu
allows the user to change the climate settings by means of different buttons.
The user controls the interactive system by clicking the buttons on the screen
with a mouse, thus resembling a touch screen interface.

The adaptation predicts a sequence of user actions and offers shortcut
buttons at the bottom of the screen. The user clicks the buttons to execute
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Fig. 6.24. The main screen of the test system for the “Shortcut Area” adaptation.

The adaptation

area allows the
user to select the

shortcuts produced

by the adaptative
interactive system.

Fig. 6.25. A sub-screen of the “Music” menu of the “Shortcut Area” test system.
A list of shortcuts is available at the bottom of the screen.

the whole action sequence or a subsequence of it. For example, if the user clicks
on the third button, the actions associated with the first, the second, and the
third button are executed. Figure 6.25 gives a screenshot of the “Music” menu
and the adaptation area on the bottom.

This test system exploits the user modeling algorithm presented in Sec-
tion 3.4.2. For this purpose, the users received a number of repetitive tasks,
such as selecting a certain song from the “Music” menu or changing the cli-
mate settings. The users trained the algorithm first by executing four tasks
from the assignment sheet. Each task consists of a sequence of actions the
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Fig. 6.26. Attractiveness and usability ratings of the “Shortcut Area” adaptation.

Fig. 6.27. User ratings for the three adaptation hypotheses for the “Shortcut Area”
adaptation.

users had to follow closely. For instance, one task instructs the user to open
the communications menu, open the contacts submenu, and select the name
“Martin W.”. After the training, the user executed each of the previously
trained tasks twice in a given order. The sequence prediction algorithm was
trained with user actions to predict the correct sequences by using the same
sequences both for training and evaluation. The decision whether to use the
adaptations was left to the user’s discretion.

This test system was not implemented using the adaptation framework
introduced in Chapter 5, since the framework had not been finished when this
evaluation was conducted. However, both the user modeling algorithm and
the adaptation has been made part of the framework since then. As discussed
in the introduction, a different user group than in the previously presented
tests performed this evaluation.

Subjective Evaluation

Figure 6.26 presents user assessments of attractiveness and usability. Users
regard the attractiveness of the adaptive version as significantly better (p <
0.05, median values of 1.38 vs. 0.44). While the mean value of the usability
rating of the adaptive version (1.86) is slightly better than the value of the
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Fig. 6.28. Objective measures from the evaluation of the “Shortcut Area” adapta-
tion.

non-adaptive version (1.57), some users rate the usability of the adaptive
version as worse, but without significance.

Figure 6.27 shows the results of the three adaptation hypotheses. The
subjects do not feel confused, but do not reject this notion strongly (H1,
rejection with a median value of 4.88). The users are convinced that the
adaptation allows them to use the system faster (H2, agreement with a median
value of 2.25) and feel supported by the adaptation (H3, agreement with a
median value of 2.00). Ten users prefer the adaptive version, five subjects favor
the non-adaptive version or another version, and one person did not select a
version.

Objective Evaluation

The results of the objective evaluation are given in Figure 6.28. Users reduce
the overall number of clicks significantly with the adaptive version (p < 0.001).
Therefore, the users employ the adaptive shortcuts, although they were not
forced to do so. However, the interaction time inversely increases significantly.
We attribute this to the fact that subjects compared the items in the adap-
tation area with the next steps on the worksheet.

Thus, users employ the adaptive version by choice, but with a negative
impact on the operating time. An evaluation with different tasks or a test with
real world problems can reveal if this adaptation also successfully reduces the
interaction time.

Discussion and Lessons Learned

The evaluation of the “Shortcut Area” adaptation shows that subjects employ
adaptive shortcuts by choice. A majority of the subjects prefer the adaptive
version. The adaptation allows users to reduce the number of interaction steps



6.4 Evaluation of the Adaptation Approach 135

significantly. However, we attribute an increase in the operating time to the
evaluation setup. Further evaluations therefore have to investigate if a different
test setup leads to a reduced operating time.

During the evaluation of the “Shortcut Area” adaptation, two additional
visualizations were tested. The first one offers only a single button, which
executes the whole sequence of five items. The users rejected this version
because of the limited flexibility. The second visualization adds a small icon
to the interface element that triggers the first action of the predicted sequence
instead of using a separate area on the bottom of the screen. The user opens
a menu by clicking on the icon to select a sequence of actions to be executed.
However, the users rejected this version as well, since it is more complex than
other visualizations.

6.4.7 Evaluation Summary

We presented an evaluation of interactive systems that employ different adap-
tations. This evaluation revealed a very positive attitude of users towards
adaptive features and a preference of a majority of users for the adaptive ver-
sion over a non-adaptive baseline version. However, not all differences were
significant. Users also comment positively on the specific adaptations. The
adaptations also improved the objective measures. A reduction of the number
of interactions and the interaction time was observed for most adaptations.
Some adaptations only showed a positive effect for a part of the users, such
as beginners or older users. In addition to proving the utility of adaptations,
this evaluation provides a better insight into the effects of adaptations on
the user-system interaction. In doing so, the evaluation contributes to an em-
pirical validation of adaptations and further refines the context of use of the
adaptation patterns in Chapter 4. This knowledge may be transferred to other
interactive systems that should be extended with adaptivity and thus supports
the development process of adaptive interactive systems.

The evaluations were performed on the assumption of a perfect user mod-
eling component that always predicts the correct values. The user model-
ing component in the evaluation predicted the next value according to the
specified task. Since the prediction accuracy of actual algorithms is limited,
real-world adaptive interactive systems require an evaluation that investigates
adaptations in conjunction with specific user modeling algorithms. For exam-
ple, Tsandilas and schraefel (2005) present an evaluation of a list selection
task that includes prediction accuracy as a variable. Moreover, the tasks used
in the evaluation were not real user tasks, but a script that the users followed.
An investigation of user interactions with real-world tasks is also needed.

Some adaptations only were successful for a subgroup of the users. For
instance, experts did not like the “Adaptive Help Presentation” adaptation
because they did not need assistance by the interactive system. Beginners
however rated this adaptation very positively. In addition, older users disliked
the “Alternative Elements” adaptation, whereas younger users accepted this
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adaptation. Therefore, some adaptations should be enabled for specific user
groups. In addition, adaptive systems should allow the user to disable the
adaptations.

Adaptations should be employed in interactive systems in a prudent way.
The adaptations presented in this chapter may serve as a guideline for how
to design the adaptations. The mere use of adaptations does not improve the
user-system interaction: Early test versions of some test systems used for the
evaluation implemented adaptations such that they confused test users or the
adaptations were not even noticed by the subjects. By taking these findings
into account, the adaptations could be implemented in a successful way for
the final test systems. Thus, adaptations have to be implemented according
to findings from evaluations. Moreover, adaptations should be employed such
that they support the appropriate user group, such as beginners or older users.

6.5 Discussion

In this chapter, we presented an evaluation of the approaches presented in
previous chapters, namely user modeling algorithms and a set of adaptation
patterns. A review of literature suggested a separate evaluation of the indi-
vidual components of an adaptive interactive system. Therefore, we examined
the components of adaptive interactive systems separately. First, an inves-
tigation examined attitudes towards adaptivity of two user groups, one of
users of adaptive interactive systems and a larger one of international users.
These users show a positive attitude towards adaptive features in interactive
systems. The user modeling algorithms presented in Chapter 3 were tested
with recorded log data. First, an evaluation of the PDFA-based action recog-
nition algorithm investigated the results in relation to the number of training
sessions and showed good recognition rates already with a small number of
sessions. Second, an evaluation of two action prediction algorithms, namely
Markov-based and task model prediction, showed a better performance of the
Markov-based algorithm. A user test with five different adaptive interactive
systems examined the adaptations introduced in Chapter 4. In most cases,
the adaptations showed an improvement both in the interaction time and the
number of interactions, although not always with significance. In doing so,
the evaluation refines the context of use of these adaptations. Although the
evaluation was based on strict task assignments, adaptations proved to be a
viable means for improving the usability of interactive systems. Further tests
should investigate the situations in which adaptation had a negative impact on
the user-system interaction. A questionnaire collected users’ attitude towards
adaptations and revealed that adaptations improve the perceived quality of an
interactive systems in addition to objective measures. However, some adap-
tations only worked for a subgroup of the users, such as beginners or older
users.
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Thus, we demonstrated the feasibility of the adaptation approach devel-
oped in this work with user tests, including the user modeling algorithms and
the adaptation patterns. In addition, we showed the viability of the adapta-
tion framework with a reference implementation by applying it to different
interaction systems. Adaptations should be implemented in a prudent way
and according to evaluation evidence. Otherwise, adaptations affect the us-
ability negatively. Pre-test versions revealed problems that were addressed
before the evaluation. The solutions were discussed in the respective sections.
However, the evidence from this evaluation should be expanded and further
strengthened as future work. In addition to evaluating more interactive sys-
tems, the evaluation should address adaptive speech-based dialog systems. We
discussed the application of the adaptations to voice interfaces in the pattern
descriptions. In order to support a widespread use of adaptations, empiri-
cal evidence on user modeling algorithms and the use of adaptations has to
be made available to developers. This chapter contributes to building such
a body of evidence. Developers may consult the findings presented in this
chapter when designing adaptive applications.
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Summary and Outlook

I like the dreams of the future better than the history of the past.

–Thomas Jefferson (1743–1826)

In this book, we discussed the adaptation of multimodal interactive sys-
tems to user behavior. The building blocks of the approach are a user modeling
component, a set of adaptation patterns, and an adaptation framework. The
user modeling component describes user behavior from basic events. Based on
a recognition of user actions, a higher-level description of user behavior and
a prediction of actions and preferences become feasible. For the adaptation
description, we collected a set of adaptations and and documented them as
patterns in a specific format. The adaptation framework integrates the user
modeling approach and the adaptations. A reference implementation of this
architecture shows the practicability of the presented approaches and serves
as a test bed for an evaluation. We performed an evaluation with test subjects
to investigate both the user modeling algorithms and the presented adapta-
tions. In the remainder of this chapter, we give a summary of this work and
give an outlook to future research.
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7.1 Summary

In this section, we summarize the chapters of this book, which discuss a set of
user modeling algorithms, multimodal adaptation patterns for interactive sys-
tems, and an adaptation framework. After a general introduction to adaptive
interactive systems in Chapter 1, we discussed related work for the individual
topics in Chapter 2.

User modeling describes the observation of the user-system interaction. We
regard user behavior as a sequence of basic events. The user modeling proce-
dure only considers user input and system reactions that are represented by
such an event. Different modalities, such as haptic and speech input, produce
these basic events. User behavior comprises actions, which are meaningful se-
quences of events, and data, which further defines these actions. For example,
if a user changes the channel to “BBC” in a TV system, the user performs
an action called “ChangeChannel” and the channel name is associated with
the action as data. In Chapter 3, we presented an approach we devised for
detecting user actions in a sequence of events. This approach uses probabilis-
tic automata to recognize different sequences that describe a specific action.
Once user actions have been detected, a description of higher-level user behav-
ior becomes feasible. We introduced task models as a technique for defining
possible user actions in adaptive interactive systems. Approaches in the liter-
ature mostly apply the task model at design time. Instead, we apply the task
model at runtime of an interactive system. Different adaptation triggers may
be derived from these models. We present different kinds of information that
may be extracted from a task model, such as recommending unused actions
or detecting problems in the user-system interaction. We present how this
information serves as an adaptation trigger. Thereafter, we presented differ-
ent action prediction algorithms. First, a prediction is derived from a task
model that was enriched with statistical information. Second, Markov chains
are used for modeling action sequences and predicting the next action. This
algorithm is adapted to interactive systems from an existing prediction algo-
rithm. Domain knowledge is added to the statistical algorithm to improve the
prediction. An evaluation shows the feasibility of the approaches, compares
the two algorithms, and exposes the individual advantages. In addition, we
introduce an algorithm for predicting sequences of actions. This algorithm
employs sequence mining for computing the most likely action sequence to
follow. These algorithms are tailored to interactive systems.

The outcomes of the user modeling process trigger adaptations. Since us-
ability is an important issue for adaptations, we started Chapter 4 with a
review of usability principles for interactive systems and discussed their im-
plications for adaptive interfaces. We introduced design patterns as a tech-
nique for communicating best practice in a domain. Thereafter, we presented
a pattern format we created for adaptation patterns in interactive systems.
Finally, we defined a set of adaptation patterns, which we derived from a re-
view of literature and from adaptations we implemented for this work. The
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adaptation patterns are applicable both to graphical and speech interfaces.
Developers may consult these reusable patterns when adding adaptive fea-
tures to multimodal user interfaces. Thus, these patterns simplify the task of
selecting appropriate adaptations for interactive systems.

In Chapter 5, we presented an adaptation framework that covers the com-
plete process from an observation of basic events to the execution of adapta-
tions. This framework allows system designers to integrate adaptations more
easily into both graphical and speech interfaces. The framework comprises
three main constituents: a semantic layer, a user modeling component, and
an adaptation component. The semantic layer employs an ontology to create a
common representation of the interactive system and other topics, such as the
user and the domain. In the user modeling component, basic events connect
different components that perform user modeling. Higher-level models, such as
an interaction model and a task model, perform additional inferences. A user
model is connected to basic events and updates user model entries from these
events. In addition, the user model performs further computations with dif-
ferent user modeling algorithms, such as computing preferences or predicting
actions. An adaptation component divides the definition of adaptations into
a system-independent and a system-dependent part. In doing so, adaptations
may be reused between different interactive systems and at the same time be
fitted to the requirements of a specific system. A reference implementation of
the framework serves as a test bed for an evaluation.

In order to show the practicability of these approaches and to provide
empirical evidence for adaptive interactive systems, we conducted user tests
with different interactive systems. The results of these tests were presented
in Chapter 6. An evaluation of the user modeling algorithms proves the fea-
sibility of the action recognition algorithm. In addition, a comparison of the
two action prediction algorithms revealed that the Markov chain algorithm
produces better predictions than the task model algorithm, yet not signifi-
cantly. In order to investigate the different adaptations, we implemented a
separate interactive system for each adaptation. In a user test, subjects were
handed an assignment sheet with tasks they followed closely. A questionnaire
collected users’ attitudes towards the individual adaptations. In general, the
subjects showed a very positive attitude towards the concept of adaptivity.
Moreover, objective measures, namely the interaction time and the number
of interaction steps, were improved by the adaptations. However, some adap-
tations should only be applied for specific user groups. For instance, some
adaptations were more successful for beginners or younger users and did not
work for experts or older users. Since the individual components have been
investigated separately, these results may be transferred to other interactive
systems. Thus, we provide evaluation evidence for adaptations in interactive
systems.

Thus, adaptations proved to be a feasible approach for improving the us-
ability and attractiveness of interactive systems. We demonstrated the via-
bility of the presented user modeling algorithms and adaptations in a user
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test. In addition, we illustrated the feasibility of the presented framework by
implementing different test systems with the framework. In doing so, we pre-
sented solutions in this work for the individual problems identified by Höök
(2000) that have to be addressed to allow a widespread use of adaptive inter-
faces, namely usability, useful adaptations, development methods, and main-
tainability. Therefore, this framework, in conjunction with the presented algo-
rithms and adaptations, presents a viable foundation for a use of adaptations
in interactive systems.

7.2 Outlook

In this section, we discuss research that may be conducted in the domain of
adaptive interactive systems. First, the number of adaptive interactive systems
developed with this framework may be increased. The adaptation patterns
presented in Chapter 4 are generic and more concrete adaptations may be
derived from these patterns. For this purpose, the list of adaptation selectors
and executors that are part of the framework may be extended. Although
we performed a thorough investigation of existing adaptations, new patterns
might possibly be identified.

In addition, a detailed study and evaluation of adaptive speech interfaces
may be performed. The adaptation patterns discuss multimodal interactive
systems and include adaptations for speech interfaces. However, an evalua-
tion of these interfaces may be performed to provide empirical evidence for
speech dialog systems. In addition, more adaptation executors and selectors
for speech interfaces further improve the scope of the framework.

Moreover, the automatic strategy of the adaptation component may be re-
fined. Currently, the adaptation component employs a strategy that activates
adaptations based on the number of active adaptations and the experience
of the user. This strategy may be improved by enabling the adaptation com-
ponent to learn an optimal strategy for applying adaptations for an individ-
ual user. For this purpose, the adaptation component may be equipped with
self-assessment capabilities to determine if the applied adaptations have been
successful.

In addition to adapting to user behavior, an interactive system may in-
tegrate other adaptation causes. For example, an interface may adapt to the
location of the user by reading the GPS position or to the time of the day
by reading a clock. These types of information may be integrated into the
framework by emitting GPS or time events. After user modeling has been
performed, these causes may be connected to the adaptation component.

The adaptation framework presented in Chapter 5 builds on a model-based
development environment. The foundation of the framework may be strength-
ened by using a formal foundation, such as UML. In doing so, all development
tools that are based on UML may employ the adaptation framework. Formal
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models transformations could be used between the different formalisms. Dif-
ferent reference models exist in the domain of adaptive hypertext. Therefore,
the ontology used by the semantic layer may be extended into a reference
model.



A

Adaptation Patterns for Interactive Systems

In this chapter, we present the adaptation patterns introduced in Section 4.3
in the pattern format introduced in Section 4.2.

A.1 Component Emphasis

Intent

Guide the user by emphasizing certain elements of the interface. Limit the
changes to the part of the interface that requires emphasis. In doing so, en-
able users to reuse acquired knowledge of the interactive system and avoid
distracting the user through fundamental changes of the interface.

Motivation

During the interaction with an interactive system, a user has a goal and is
looking for interface elements that helps in fulfilling it. For instance, the user
may look for a graphical button to trigger an action and the system provides
support by guiding the user to the respective interface element.

Forces

• The user follows a certain goal when using the interactive system and
may spent considerable time looking for interface elements that facilitate
reaching this goal.

• Performing major changes to the system confuse the user and distract from
the current task. Subtle guidance instead supports the user.

• Since emphasizing wrong elements impedes the user, an appropriate user
modeling prediction is crucial for this adaptation.

• The adaptive emphasis should be conceived in a way that the user does
not confuse it with a regular selection in the user interface.
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Solution

Make the adaptive system change properties of interface elements in a way as
to draw the user’s attention. Use assumptions of a user modeling component,
such as a prediction of the most likely next action or an action the user has
not used yet. Help the user reach the current goal by emphasizing interface
elements that are related to the respective assumption of the user modeling
component.

Adaptation Trigger

The following observations of the user modeling component trigger the Com-
ponent Emphasis adaptation:

• Prediction of the next user action.
• Actions that the user has not used yet, but which others have used.

Related Patterns

The “List Element Selection” pattern emphasizes elements in a list and is
therefore related to this pattern, which emphasizes arbitrary elements that
are related to user actions.

The “Prominent done button” pattern (Tidwell, 2005) statically empha-
sizes a button that finishes a task associated with a graphical view, but the
emphasis is not performed based on the current user’s behavior.

Example

Consider an electronic program guide, in which the user specifies filter criteria,
such as channel or time, to filter the list of TV shows. After a number of
criteria were selected, the user has to press a “Show results” button to see all
shows that match the selected criteria. Increasing the size of the button and
changing colors (see Figure A.1) emphasizes the button, thus supporting the
user in finishing the current task.

The Component Emphasis pattern is also applicable to voice interfaces. If
a user enters a state in which the system reads the list of possible utterances,
saying a phrase as the first or the last one draws a user’s attention to this
phrase.

A.2 List Element Selection

Intent

Support the user in selecting elements from a list, for instance by highlighting
frequently used entries from the list.
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Fig. A.1. Emphasis of a button in an interactive TV system. The “Start search”
button is emphasized compared to the non-emphasized “Rec. list” button. The rea-
soning is to provide non-intrusive and subtle hints, in this case by increasing the
size of the button and changing the text color.

Motivation

When selecting elements from a list, users select some elements frequently and
others not at all. The selection process is improved by emphasizing frequently
selected elements from the list.

Forces

• Selecting frequently used items in a list should take less time for the user
than selecting others.

• If a list is longer than one screen, highlight the interesting items also in the
scrollbar to enable the user to quickly scroll to the interesting elements.

• Emphasized list elements should be highlighted in a way that the user does
not confuse the emphasis with a selection cursor.

• Since emphasizing wrong elements impedes the user, a sufficiently good
user modeling prediction is crucial for this adaptation.

Solution

Emphasize these elements in the list that have been selected more often before
than others. In doing so, let the user see more quickly elements that are of
increased interest. For instance, change the text or background color of these
elements or add markers to differentiate interesting elements from others.

Adaptation Trigger

The following observations of the user modeling component trigger the List
Element Selection adaptation:

• List entries that have been selected more often than others either by the
current user or by other users.

• Elements in a list that the user has not yet selected, but which should be
interesting based on the user’s previous behavior.
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Related Patterns

The “Element Emphasis” adaptation pattern also emphasizes interface ele-
ments. However, these elements are not necessarily similar, as are list elements,
and are mostly used for navigating within the system.

The “Annotated scrollbar” pattern (Tidwell, 2005) recommends adding
information to the scrollbar, which is also proposed by this pattern to mark the
position of recommended elements in the list. Moreover, the “Adaptive Anchor
Annotation” (Koch and Rossi, 2002) pattern describes how to annotate links
in a hypertext system, for instance by adding the level of interest for the user.

Example

Selecting elements from a list is a very common task when interacting with
interactive systems. For instance, selecting a name from the address book is
one of the fundamental functions of interactive systems that support phone
calls, such as mobile phones or automotive dashboard systems. Since users call
a small number of people from their phone book frequently, the selection of
these names from the address book is improved by highlighting these names.
An example of such a system is given in Figure A.2, which shows an address
book that emphasizes the three most frequently selected elements.

Different visualizations of the “List Element Selection” pattern are possible
and have been examined by research projects. One example is the fisheye menu
(Bederson, 2000) that assigns a different font size to different elements; the
fisheye visualization can be employed for adaptations as well. Voice interfaces
emphasize list elements by reading interesting elements first or by adding
acoustic markings.

Positions of

emphasized

list elements

in scrollbar

Current 

selection

Emphasized

list element in

current page

Fig. A.2. Three elements are emphasized in a selection list by the List Element
Selection pattern to support the selection of frequently elements. Only one item is
visible in the current screen and the positions of the other elements are shown in
the scrollbar.
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A.3 Alternative Elements

Intent

Provide a set of configurations for different interface components or screens
and select the appropriate configuration to better support the needs of an
individual user.

Motivation

Since the requirements as well as the skills of users of interactive systems
vary, some system configurations better reflect the needs of an individual
user. Instead of providing one configuration that tries to consider all users, the
adaptation selects the version that is best suited for the needs of the current
user. A user modeling component provides information about characteristics
of the user, such as the proficiency with interactive systems.

Forces

• Different configurations of interface components or graphical screens better
reflect the needs of individual users.

• Automatically generated alternatives can break with existing usability
principles.

• The developer has to spend additional time developing the different alter-
natives, but the user benefits from an improved user-system interaction.
In addition, annotation has to be provided that allows the adaptation to
select the most appropriate alternative.

Solution

Provide different versions of a specific part or component of the interactive
system to the adaptation component, for instance of a graphical screen, a
speech output prompt, or a property (e.g. font size). Support users by select-
ing the appropriate alternative for the respective element using information
from the user modeling component. By providing a set of alternatives to the
adaptation component, which were created by the system designer, all variants
of the interactive system adhere to design principles.

Adaptation Trigger

The following observations of the user modeling component trigger the Alter-
native Elements adaptation:

• Preferences or properties of the user, such as the knowledge level or expe-
rience of the user.
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Related Patterns

The “Alternative views” pattern (Tidwell, 2005) lets the user decide among
alternative views, for instance of a web page. However, the most appropriate
view is not selected automatically.

The “Adaptive Conditional Fragments” pattern (Koch and Rossi, 2002)
personalizes the content of text fragments in adaptive hypertext systems by
selecting the most appropriate one of a set of alternative content nodes.

Example

The Alternative Elements pattern can be employed at different levels. For
instance, if a user has to enter different values in an input screen, such as
selecting the destination in a navigation device or selecting criteria in an
interactive TV program guide, a simple version of the screen is provided to
novice users and a more powerful version to advanced users. On a lower level,
a larger font size improves the readability for visually impaired users.

On the other hand, a speech interface can provide different levels of speech
output prompts. Novice users receive extended prompts that explain the most
important functions when they enter a new part of the system. Intermediate
users only require shorter prompts, which list the commands, but do not
necessarily explain them. Finally, expert users, who could be annoyed by long
and repetitive speech output, only hear a short prompt explaining the current
state of the system and receive more explanation only on request. A system
that employs this kind of adaptation is for example presented by Hassel and
Hagen (2006). Other speech features for this pattern are dialog initiative (user
or system initiative) or confirmation style (explicit, implicit, or none).

A.4 Adaptive Help Presentation

Intent

Present adaptive help for the user’s current situation.

Motivation

Help in interactive systems is often static or only considers the currently active
screen, but different people are likely to have different problems in different
contexts. Providing help to the user is more valuable if it covers the current
task of the user. By taking into account not only the current context, i.e., the
graphical screen or speech state, but also the user’s interaction history and
other user characteristics, help is more specific and thus supports a user more
precisely in the current task.
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Forces

• Help tailored to the current task of the user is more valuable than static
help.

• Static help can be too advanced for beginners and at the same time too
superficial for expert users.

• Providing help can be assistive for beginners, but annoying for expert
users.

Solution

Provide specific help for the current situation of the user. Observe the user-
system interaction to determine the situation and the context of the user.
Present the help either on a separate area of the screen, or use an icon (or
a sound) to indicate the availability of help. For instance, give the user an
option to open this help once it is available. However, ensure at the same time
that the help does not distract the user. Therefore, avoid messages that fully
engage the user’s attention, as for instance modal help messages. Provide an
acoustic signal instead of a graphical hint for speech interfaces or visually
impaired users.

Adaptation Trigger

The following observations of the user modeling component trigger the Adap-
tive Help Presentation adaptation:

• Prediction of the next user action.
• Detection of user problems.
• Preferences or properties of the user, such as the knowledge level or expe-

rience of the user.

Related Patterns

The “Multi-level help” pattern (Tidwell, 2005) suggests using different help
techniques. Adaptive help is one kind of help that provides information ad-
justed to the characteristics and current situation of the user.

Example

In an interactive TV system, the user can browse the TV program in an
electronic program guide and for this purpose specify different filter criteria,
such as channel or time. Help is presented to the user by fading in a yellow
message box on the top of the screen. When the user enters the selection
screen for the first time, the help explains how to select filter criteria. After
some criteria were selected, the help text on the screen tells the user to open
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the result screen next. For this purpose, the interaction history is considered.
Figure A.3 gives an example of the adaptive help feature in a digital TV
system.

Dix et al. (2004) differentiate active help, which presents help messages to
the user automatically, and passive help, in which the user request the help.
Adaptive help is most useful if it does not distract or annoy the user, but still
supports the user and introduces new features.

Fig. A.3. Adaptive help supports the user by showing a text message that fits the
current situation of the user. If a user is sufficiently proficient in working with the
system, help messages are no longer shown.

A.5 Shortcut Area

Intent

Present shortcuts for executing actions or selecting values to the user on a
separate part of the interface. In doing so, accelerate the execution of frequent
actions or sequences of actions and selection of the user’s favorite values.

Motivation

Users often perform some action sequences frequently, such as selecting specific
elements from a list (e.g. a list of fonts), or by executing the same actions over
and over again. The interactive system supports the user by presenting these
items as shortcuts. By employing a special area for the shortcuts, the decision
whether to use shortcuts is left to the user.

Forces

• Finding frequently used elements and executing actions repeatedly can
be very time-consuming for the user. Shortcuts can therefore simplify the
user-system interaction.
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• Shortcuts that automatically pop up on top of the interface interfere with
the user interface and distract the user. A separate area that is always
visible instead allows the user to decide whether or not to use shortcuts
and limits the distraction of the user.

• The shortcuts may either be different alternatives, such as different fonts
to select from, or a sequence of items, from which the user may pick a
subsequence, such as in a sequence of actions.

Solution

Employ a separate area of the screen – called shortcut area – to present
shortcuts to the user, thus avoiding a distraction of the user. Make this list
either part of one interface element (e.g. of a list) or make it a separate part
of the whole screen for presenting global shortcuts. In doing so, enable the
user to find frequently used elements more quickly by selecting them from a
distinct area of the screen. Use the output of a user modeling component to
create the list of shortcuts.

Adaptation Trigger

The following observations of the user modeling component trigger the Short-
cut Area adaptation:

• Prediction of the next user action or a sequence of user actions.
• Prediction of a user preference, such as a TV channel.

Related Patterns

The “Streamlined repetition” pattern (Tidwell, 2005) suggests considering re-
peated operations when creating an interface. The Shortcut Area provides
an automatic solution for this recommendation. The “Action panel” pattern
(Tidwell, 2005) presents a list of available actions to the user, which is similar
to a Shortcut Area that contains user actions. If the Shortcut Area presents a
sequence instead of single items, the adaptation is similar to the “Autocom-
plete” pattern (Tidwell, 2005), since the adaptation anticipates user behavior.

Example

In a selection list, a separate area on the top of the list presents the most
frequently selected entries of the list to the user. By selecting them, the user
does not have to scroll through the whole list. One example of such a list is
the font selection list in Microsoft Word (2000 and later), which shows the
most recently used fonts in a separate area on the top of the list.
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A different application of the Shortcut Area pattern is to provide naviga-
tion shortcuts. A user modeling component recognizes user actions and pre-
dicts a sequence of possible next actions, with each action being represented
by a button in an adaptation area. If the user presses one of these buttons, the
action associated with the button and all actions before the pressed button
are executed, thus reducing the number of required interactions. An exam-
ple of an interface that provides navigation shortcuts to the user is shown in
Figure A.4: In addition to the regular interface (shown on top), the interac-
tive system presents a list of likely next actions to the user on the bottom
of the screen. If the user presses one of these buttons, the interactive system
automatically executes the respective actions.

Fig. A.4. A separate adaptation area presents a list of buttons based on a prediction
of the user’s next actions. These actions are executed by pressing the respective
buttons.
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The Evaluation Questionnaire

In the following, the individual pages of the questionnaire from the user
evaluation are presented. Whereas the original questionnaire is in German,
the one presented in this chapter was translated into English. The evaluation
presented in Section 6.4 compares a non-adaptive and an adaptive version
of five interactive test systems. For this purpose, each of the test subjects
performed a number of tasks with both versions of the interactive systems.

The users filled in Questionnaire V1 after the non-adaptive version and
Questionnaire V2, which consists of two pages, after the adaptive version.
Questionnaire V1 contains a block of attribute pairs to poll users’ attitudes
towards the interactive system. These pairs are based on the AttrakDiff ques-
tionnaire Hassenzahl et al. (2003). In addition, users are asked to select
whether they prefer the adaptive version, the non-adaptive version, or if they
are undecided. This question should only be filled in after the users have
tested both versions. Finally, a text box allows users to enter general com-
ments. Questionnaire V2 corresponds to V1, but adds a number of questions
about the adaptive features of the tested system. After having tested both
versions, the users filled in Questionnaire G with questions about general at-
titudes towards adaptations and a set of questions about personal data for a
demographic analysis.
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Questionnaire V1

Variant: 
„non-adaptive“

User: System:

1 – Assessment of the system

Please state your impression of the interactive system you tested by means of the following pairs of 
words:

complicated        simple

pleasant        unpleasant

practical        impractical

ugly        beautiful

indirect        direct

likeable        unlikeable

predictable        unpredictable

rejecting        inviting

good        bad

repulsive        attractive

confusing        clear

motivating        daunting

2 – Comparison of the two variants

-- Please only fill in this question if you have used both the adaptive and the non-adaptive 
version of the test system.  --

I like the following version better:



Adaptive


Non-adaptive


Don't know

3 – General comments

If you have further comments, please write them down in the following text box. You may leave the 
text box empty.
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Questionnaire V2 (1/2)

Variant: 
„adaptive“

User: System:

1 – Assessment of the system

Please state your impression of the interactive system you tested by means of the following pairs of 
words:

complicated        simple

pleasant        unpleasant

practical        impractical

ugly        beautiful

indirect        direct

likeable        unlikeable

predictable        unpredictable

rejecting        inviting

good        bad

repulsive        attractive

confusing        clear

motivating        daunting

2 – Comparison of the two variants

-- Please only fill in this question if you have used both the adaptive and the non-adaptive 
version of the test system.  --

I like the following version better:



Adaptive


Non-adaptive


Don't know

-- Please turn over – more questions on the following page! --
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Questionnaire V2 (2/2)

3 – Questions about the adaptation

Please rate the adaptation in the interactive system you just used by means of the following 
statements:

The adaptation distracts me from 
the current goal.

true        not true

I can use the system more quickly 
due to the adaptation. 

true        not true

I can use the system more easily 
thanks to the adaptation. 

true        not true

The adaptation supports me when 
using the system.

true        not true

The adaptation confuses me. true        not true

The adaptation prolongs the time I 
need for using the system.

true        not true

The adaptation enables me to 
execute the actions better.

true        not true

I perceived the adaptation as 
intrusive.

true        not true

The adaptation obstructed my 
interaction with the system.

true        not true

3 – General comments

If you have further comments, please write them down in the following text box. You may leave the 
text box empty.
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Questionnaire G

Variant: 
„General“

User:

1 – Attitudes towards adaptations

Please state your general attitude towards adaptations by means of the following statements.

In general, I like the presented 
adaptations. 

true        not true

I think adaptation is an interesting 
concept.

true        not true

I think adaptation will be used 
commercially in the future. 

true        not true

If I could choose between an 
adaptive and a non-adaptive 
system, I would choose the non-
adaptive system.

true        not true

If I could choose between an 
adaptive and a non-adaptive 
system, I would relinquish other 
features in favor of adaptations. 

true        not true

2 – Personal data

Finally, we ask you to provide some personal data. This data does not allow conclusions about you 
and the data is only collected to allow a demographic analysis of the evaluation.

Gender
 

male
 

female

Age


< 18



18-25



26-35



36-45



46-55



56-65



> 65

I'm a computer...


beginner



advanced user



expert

3 – General comments

If you have further comments, please write them down in the following text box. You may leave the 
text box empty.
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rule, 96
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graphical interface, 19
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hypertext system, 17, 34
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menu, 20

navigation support, 17

presentation techniques, 17

speech interface, 23, 142

user interface, 3, 15

website, 17

Adaptive Help Presentation pattern, 77,
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agent, 20, 27

Alternative Elements pattern, 76, 128,
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automatic speech recognition, 9

automotive dashboard interface, 125,
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behavior, see user behavior

Component Emphasis pattern, 75, 122,
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context of use, 12
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cultural influence, 110

decomposition, 109
derivation, see inference
design pattern, 32, 67

formalization, 34
format, 32, 73
identification, 72
language, 33

detecting user problems, 57
development method, 2, 81
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system, see speech dialog system
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domain model, 11, 88
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empirical evidence, 107
evaluation, 107

questionnaire, 117, 155
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183



184 Index

form-based dialog system, 25
formalization, 34, 36, 84

goal, 29, 50
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interaction model, 9, 87, 92
interactive system, 3
interface element, 5, 86, 122

knowledge base, 36, 86

layered evaluation, 109
List Element Selection pattern, 76, 125,
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log file, 43, 63, 112, 117

Markov chain, 58, 93, 115
mixed initiative, 22
modality, 4, 90
model, 7, 8, 41
model-based development, 35, 142
multimodal

fusion, 4
interactive system, 3, 99

multimodality, 3, 74

objective evaluation measures, 116
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connector, 88, 100

pattern, see design pattern
plan recognition, 10, 30
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preprocessing, 49, 91
privacy, 71
probabilistic deterministic finite-state
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questionnaire, see evaluation question-
naire

reference
implementation, 82, 99
model, 18

rule, see adaptation rule

semantic
knowledge, 93

layer, 82–84, 100
representation, 84, 96
web, 19, 31

sequence
mining, 29, 61
prediction, 28, 60

Shortcut Area pattern, 78, 131, 152
speech

dialog system, 23
interaction, 24

state acceptor, 47
state-based dialog system, 24
statistical dialog system, 26
subjective evaluation measures, 116
system

model, 8, 86
reaction, 43, 90

task, 10, 30, 44, 50
model, 10, 30, 50
model construction, 53
modeling, 30, 50, 51

transparency, 45, 70

unobtrusiveness, 71
usability, 2, 5, 67, 68, 116, 117

principle, 67
user, 7, 110, 117

action, 10, 44, 46
action mining, 61
action prediction, 29, 55, 57, 115
action recognition, 44, 45, 48, 113
action recommendation, 56
attitudes, 110
behavior, 4, 7, 41, 42, 82
characteristics, 12
interface, 9
interface design, 33
model, 10, 27, 42, 86, 92
modeling, 3, 7, 27, 41, 43
modeling algorithm, 28, 81, 92, 112
modeling architecture, 31, 90
modeling component, 82, 83
modeling framework, 89
modeling system, 28

user-system interaction, 27, 41, 82, 96

voice user interface, 9, 23

web ontology language, 35, 84
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