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FOREWORD BY THE AUTHORS 

To manage and improve engineering design processes in a methodical and 
systematic manner, an important issue that needs tackling is their analysis, 
interpretation and goal-oriented improvement. Although approaches for managing 
complex processes exist, a systematical, method-based analysis and improvement 
is still highly difficult.  

To support the systematic and holistic analysis and improvement of an 
engineering design process, this book presents a measurement system that makes 
use of complexity metrics to embody various patterns of the interplay of a 
process’ entities (e.g. tasks, documents, organizational units, etc.). These metrics 
are used to draw inferences about the process’ behavior (e.g. timeliness, need for 

communication, forming of opinions, etc.). This way, knowledge about a process 
can be extracted from existing process models, or new process models can be 
structured systematically by addressing desirable patterns. This supports 
management in reducing the risks in process planning through better 
understanding how the structure of a process impacts the behavior of a process. 
Generating such a means of process analysis and management provides a major 
contribution both for academia and industry, especially for the improvement of 
large and complex engineering design processes. The metrics embody the 
foundations of network theory and the management of structural complexity to 
generate a practice-oriented application.   

The metrics are supported by a meta-model for process modeling. The meta-model 
uses multiple-domain matrices, integrating existing process models across 
common domains and relationship types. The modeling method is enhanced with 
additional constructs of modeling that act as a bridging between existing 
dependency models and established process models.  

Furthermore, the analysis approach is operationalized by a framework to select the 
metrics in accordance with the goals of the process analysis. To this end, the 
metrics are classified and allocated to the common goals of process analysis with 
regard to the structure of a process, producing eight different guidelines. To enable 
a flexible application, a modular set-up consisting of three steps is chosen: As a 
starting point, the strategic level is addressed using common goals of process 
analysis. Then, these goals are concretized by typical questions that can be posed 
in their context. Finally, these questions are answered using the metrics and parts 
of the meta-model. 

The overall approach is detailed using three case studies from automotive 
development; on the one hand, the modeling and goal-oriented analysis of the 
body-in-white design of a premium class mid-size sedan is shown and, on the 
other hand, the detailed analysis and extraction of possible weak spots within the 
concept design, programming, and testing of electronic control units for an SUV is 
regarded. A third case study on general automotive design is used to illustrate all 
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iterations or rework, and, more generally, to potential weak spots in the overall 
structure of a process. 

The book is based on a rigorous scientific approach to illustrate the origin of the 
presented results as well as the limits of their applicability. At the same time, 
much attention was put to illustrating all details in their industrial relevance to 
bridge the scientific approach and its industrial application.  

Therefore, the book provides both academia and industry with new insights, above 
all a comprehensive collection of complexity metrics and their interpretation 
towards common problems in process management. It expands literature in 
structural complexity management into this field without limitation to its 
significance to other areas of application, as e.g. the design and management of 
complex product architectures. 

At the same time, the research in this book was motivated to come “full circle”, 

i.e. it was created in a way that both the modeling scheme, the analysis approach 
and the overall guidance about how both modeling and analysis work together 
were integrated in a more general framework. This endeavor thus guides the 
overall outline of the book. Nevertheless, none of these constituents to the solution 
are designed to be exclusive, so that, for example, the complexity metrics can also 
be based on models other than the multiple-domain matrices that are used here.  

 

Munich, March 2011 Dr.-Ing. Matthias Kreimeyer 

 Prof. Dr.-Ing. Udo Lindemann 

individual metrics. Results from the case studies point e.g. to particularly robust 
parts of the process, to critical structural bottle-necks, to the core drivers for 



 

THE RELEVANCE OF COMPLEXITY METRICS 

Industry and scientific research require methods to support management of 
complex engineering development processes in a way that recognises and exploits 
the characteristics of their structural complexity. In particular, there is a pressing 
need to find ways to exploit the structural knowledge represented in process 
models in support of process management.  

This research addresses this need through development of a systematic and 
scientifically rigorous yet practical approach to modelling and analysing 
processes. The approach is clearly demonstrated by application to different case 
studies of automotive design. It thereby presents a significant contribution to 
practitioners wishing to understand and improve their complex processes. It also 
fills a major gap in the scientific literature by further developing and systematising 
the emerging area of structural complexity management in engineering design. 

The empirical background of this research highlights the complexity of 
engineering design and clearly outlines the problem that, even when models of the 
activities, information flows, resources etc. are available, such models are 
sufficiently complex that problem areas cannot be identified by inspection. The 
concept of structural analysis serves here as a promising means to address this by 
identifying potential ‘problem areas’ within a complex process.  

The main body of this research considers a comprehensive state of the art drawn 
from the fields of system theory, graph-theory, matrix-based methods for 
structural complexity management, network theory, process management and 
software engineering. Contributions from these disciplines are combined, using an 
established approach of system analysis, enhanced with a clear goal-orientation. 
The solution is therefore based on three constituents: 

An enhanced method of process modelling is first introduced that encompasses a 
means of combining existing process models. This modelling scheme is, above all, 
constructed in a way that it serves as a means of making the use of complexity 
metrics compatible with existing models that, similarly, represent dependencies in 
a system.  

Based thereon, 52 complexity metrics are explained to analyze a process. The 
metrics address the clear and pressing need for a rigorous approach to formalise 
and prepare the large volumes of data required for process analysis in many 
practical situations, as it is often the case with complex systems. At the same time, 
the abstract approach is illustrated with extensive tables to support the 
interpretation of any findings. Above all, however, the substantial set of 52 
metrics should form a major resource for further research in structural complexity 
management for engineering design. 

Third, both modeling and analysis approach are combined offering a goal-oriented 
conduction of process analysis. This completes the description of the new 
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by showing how the approach can be linked to the real challenges faced in 
industry.  

Supported by three studies, the book clearly illustrates how the method of earlier 
chapters can be applied. The practical application of structural analysis to 
understand and improve complex processes is clearly demonstrated and critically 
reflected upon. 

 

Cambridge, December 2010 Professor P. John Clarkson 

 Engineering Design Centre, University of Cambridge 

approach and convincingly supports the technical discussion of previous chapters 



 

BACKGROUND OF THIS RESEARCH 

This work results from a series of research projects on the management of 
structural complexity at the Institute of Product Development at the Technische 
Universität München. Based on a rigorous research approach as a basis to the 
systematic obtainment of the results presented in this research, the authors’ 
involvement in numerous research projects provides an experiential basis to 
design a methodology that fulfils all requirements.  

The authors were, among other activities, involved in a major study to identify and 
conceptualize a possible reorganization of the development departments involved 
in the design and simulation of the body-in-white of a large German automotive 
manufacturer1. In fact, this project provided the motivation for the research 
presented in this research, as the initial study at the company showed that almost 
all problems were interconnected, and the systematic determination of 
improvement potential, while only “reorganizing” the existing structure, appeared 
as an almost insurmountable problem. 

The authors were also involved in various projects to improve process 
management in engineering design. At a strategic level, a management framework 
based on common management models was developed in cooperation with a 
management consulting firm to better guide the development of automotive safety 
features [KREIMEYER et al. 2006d]. At the operational level, a project to set up 
guidelines to access the various committees inside a large automotive 
manufacturer was run to improve decision making; to do so, the overall structure 
of the various decision processes was analyzed to obtain specific routes through 
the various decision-making bodies. Another project was carried out to research 
the potential and implementation of architectural standards across all models of a 
premium class automotive manufacturer; here, the goal was to establish all 
necessary processes to implement the definition of sustainable architectural 
standards, derive individual models, maintain and update them, and integrate 
future technologies in a cost-efficient manner.  

Part of the research presented in this research was done in collaboration with 
another large German automotive manufacturer [KÖNIG et al. 2008] [KREIMEYER 
et al. 2008d]. In combination with the data available from the reorganization 
project described above, these two comparable projects provided ample empirical 
data and relevant access to industry to guarantee an approach both pragmatic and 
relevant. A third set of empirical data was available publicly [Braha & Bar-Yam 
2004]. 

                                                           
1 For an overview see [DEUBZER et al. 2007]; a problem description is given in [KREIMEYER et 
al. 2005] and [KREIMEYER et al. 2007b]; the core concept is detailed in [HERFELD et al. 2006] 
and [KREIMEYER et al. 2006a] and completed in [KREIMEYER et al. 2007a]. 
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[KEIJZER et al. 2007]. A second study was carried out as a benchmark comparing 
the engineering divisions of three firms producing diesel engines of various sizes 
(400 to 100.000 horsepower). Both studies generated a broad picture of the 
necessities and particularities of engineering design.  

Furthermore, the authors have been active for a long time in research on structural 
complexity management. As co-founders of the research group “Systems 

Engineering” at the Institute of Product Development
2, the authors repeatedly 

organized the International Dependency and Structure Modeling (DSM) 
Conference3, which serves as an international platform for practitioners and 
researchers on structural complexity management. The authors were also co-
foundera of the Special Interest Group “Managing Structural Complexity” within 

the Design Society, and still act as chairs of this Special Interest Group4. The 
authors also re-launched the web-portal www.DSMweb.org5 to provide the 
international research community on structural complexity as well as interested 
practitioners with a comprehensive set of material, publications, and tutorials to 
facilitate the application of methods to manage structural complexity. At the same 
time, the authors were directly involved in re-launching the Special Interest Group 
on “Modeling and Management of Engineering Processes (MMEP)” within the 

Design Society6.  

Ultimately, much of this experience resulted in the successful application of the 
Collaborative Research Center SFB 768 on “Managing cycles in innovation 

processes–integrated development of product service systems based on technical 
products”. Within this research center, the authors led the research group on 
“Development of models and processes” and supported both project A2 

“Modellierung und Analyse disziplinen-übergreifender Zusammenhänge” 

(“Modeling and Analysis of trans-disciplinary Relationships”) and B1 

“Prozessplanung für die zyklengerechte Lösungsentwicklung” (“Process Planning 

for the Efficient Development of Product Service Systems”). 

 

 

 
 

 

                                                           
2 see http://www.pe.mw.tum.de, viewed on 20 February 2009 

3 see http://www.dsm-conference.org, viewed on 20 February 2009 

4 see http://www.designsociety.org/index.php?menu=35&action=21, viewed on 20 February 2009 

5 see http://www.DSMweb.org, viewed on 20 February 2009 

6 see http://www-edc.eng.cam.ac.uk/mmep, viewed on 20 February 2009 

At the same time, two large studies of engineering design were conducted. One 
study focused on the collaboration patterns in the “digital factory planning” in 
automotive companies and their ties to the engineering design and supply industry 

http://www.DSMweb.org5
http://www.pe.mw.tum.de
http://www.dsm-conference.org
http://www.designsociety.org/index.php?menu=35&action=21
http://www.DSMweb.org
http://www-edc.eng.cam.ac.uk/mmep
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1. Complex processes in engineering design 

1.1 Preface 

As globalization increases, the time to market continues to decrease and customers 
can choose among a variety of suppliers and demand better prices, better quality, 
and more and more customized products [COOPER & EDGETT 2005].  

Companies have to cope with this trend, especially in their engineering 
departments [SPATH et al. 2001]. To do so, several strategies have become 
available, which continue to evolve over time. The claim to operate in a “lean” 

manner, for example, has recently found its way from the factory floor to the 
engineering department [GRAEBSCH et al. 2007]. One of the constants to raising 
efficiency for many decades now has been process management [SMITH 1996].  

The aim of process management is a better definition and control of the processes7 
with respect to the “three sacred cows”: “time, quality and budget” [KNEUPER 
2007] [PMI 2003]. Process management works under the assumption that a better 
definition and control of a process enables a manager to know more about its 
price, duration and possible risks [DINSMORE & CABANIS-BREWIN 2006]. These 
goals, however, demand an in-depth knowledge of the processes that govern a 
company. 

Process management now includes many facets, for example, scheduling, 
communication, resource management, and others [BECKER et al. 2005], and has 
developed many different models, methods, and tools. This is not only the case in 
general business process management8, but also in the management of engineering 
design processes9 [HALES & GOOCH 2004] [CLARKSON & ECKERT 2005]. In fact, 
many approaches from the management of business processes remain valid in 
engineering design, yet their application is complicated by the fact that creativity, 
moving targets, the management of uncertainties and the limited ability to plan 
any generation of knowledge during the process have to be considered 
[HATCHUEL & WEIL 2003] [VAJNA 2005, p. 371]. These specific facts — together 
with the need for a detailed division of labor — have made it necessary to 
incorporate many points of synchronization in any engineering design process, 
thus causing all entities in a process to be tightly interwoven [COATES et al. 2000]. 
This is especially the case for products that are of an interdisciplinary character, 
e.g., mechatronic devices or product-service systems.   

                                                           
7

process involves the processing of tasks, including their inputs and outputs, as well as the 
necessary organizational aspects, such as the company organization, resources, and milestones. 

8 Compare Section 2.2.1 for a closer review of business process management 

9An overview of current practices and strategies is given, e.g., by LINDEMANN, comparing 
different strategies and problem-solving models [LINDEMANN 2007, pp. 33-35]; a rather formal 
approach is given by BALDWIN, visualizing engineering design as a transformation of input 
parameters into output parameters [BALDWIN & CLARK 2000]. 

 

© Springer-Verlag Berlin Heidelberg 2011

M. Kreimeyer and U. Lindemann, Complexity Metrics in Engineering Design: Managing the 

 The term process, being central to this research, is defined in section 2.2.1; in this research, a 

Structure of Design Processes, DOI 10.1007/978-3-642-20963-5_1,
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10 1. Complex processes in engineering design 

As a commonly practiced strategy to raise efficiency and shorten process lead 
times through parallelization in engineering design, concurrent engineering 
[BULLINGER & WARSCHAT 1996] has brought with it an intensified need for a 
networked engineering design process. In concurrent engineering processes, more 
than ever before, tasks are not simply put into sequence, with one task waiting for 
the preceding tasks to finish, but they are processed in parallel, and interlinked to 
be synchronized on the go to reduce the cycle time while the individual artifacts 
within the process are gradually concretized. This has created an even greater need 
for densely networked processes, as currently even partial results have to be 
checked for their mutual dependencies [KREIMEYER et al. 2008c].  

A deeper look into engineering design processes reveals that such networks of a 
process exist on many levels. Not only are the tasks interlinked [EPPINGER 2001], 
but also the documents [ILIE et al. 2008], the IT Systems [BURR et al. 2003], and, 
above all, the protagonists of the process, i.e., engineers and management who 
communicate10 with each other [SCHÖN 1983, p. 76]. In fact, HERFELD concludes 
that the management of an engineering design process necessitates a balanced 
improvement and the mutual calibration of all involved perspectives that are 
relevant [HERFELD 2007, p. 100]11. 

The methods used in process management make these different networks explicit 
as process models or process maps. In fact, “business process models are an 

important knowledge source for managerial decision making” [DALAL et al. 
2004]. Figure 1-1 shows a process model in swimlane notation: Organizational 
units are represented as lanes, where those tasks that a unit is responsible for are 
shown as a flow chart. Figure 1-2 shows a complex model of a “real-world” 

automotive design process (see also section 1.2), equally organized as a swimlane 
model. Such models depict a common time-based plot of the processes taking 

                                                           
10 An overview of the role of human communication in engineering design can be found in 
[MAIER 2007, p. 28]. 

11 HERFELD concludes that the basic views necessary for a well-balanced process improvement 
are product architecture (requirements, functions, and components), human actors (in his case 
simulation and embodiment design engineers in an automotive company), information (geometry 
models, simulation models, communication in general), tools (3D-design tools, finite element 
simulation, data management), and the process per se (synchronization points, milestones, 
availabilities of resources). 

Figure 1-1: Example of a process model 
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place in a company. Usually, the models represent tasks, actors, data objects and 
supporting resources, and they thus represent a partial view of the many network 
perspectives there are to a process. These networks are commonly plotted out as 
“boxes and arrows”, i.e., qualitative models whose elements are interdependent or 
associated. Often, detailed information on process behavior, e.g., runtimes or the 
probability of a decision, is not available.  

So far, there has been little work to tap the full extent of knowledge embedded in 
these process maps [ZAKARIAN & KUSIAK 2000] [MENDLING 2008, p. 103]. While 
some quantitative methods are available, e.g., the Critical Path Method (see 
appendix 10.1.12), little work has been done regarding the possible meaning of 
patterns that arise in the structure of a process. Most of the research available so 
far concentrates on the role of iterations in engineering design (e.g., [BADKE-
SCHAUB & GEHRLICHER 2003] [WYNN et al. 2007]). 

The research results presented here bridge this gap by showing how the structure 
of a process relates to its behavior, as suggested, for example, in [MALIK 2003, p. 
93]. They present an approach that is based on analyzing the interplay within the 
network of entities of a process. From this network and its characteristics, 
inferences about the behavior of the process are drawn — for instance which 
actors are “central” (i.e., a characteristic of the structure of the process 
organization), and hence with whom effective communication might be critical to 
process performance or predictability (i.e., the behavior of the process). To do so, 
complexity measures are applied to obtain a condensed view of the characteristics 
of processes comprised of many entities. Overall, the goal is, therefore, to extract 
the knowledge about the behavior embedded in process models to deduce 
implications for their improvement. 

In general, processes have become increasingly complex due to rising product 
complexity and reduced process lead times. This increased complexity needs to be 
managed, and understanding the specific aspects of complexity can reduce risks 
and better define and control a process. In this research, complexity metrics are, 
therefore, developed that support the structured analysis of a process.  
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Figure 1-2: Detailed overview of the process of developing the body-in-white of a premium 
class sedan 
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1.2 A practical application: A design process at Audi AG 

Before introducing the research approach and the solution design, an example of a 
process analysis in automotive body design is explored. This example highlights 
the different aspects of process analysis as commonly encountered in process 
management. From it, a problem description, the relevant hypotheses, and the 
overall goal of the research are drawn to illustrate the background of this research.  

The process represents a real development process as practiced at Audi AG, 
Germany. AUDI is a brand of the Volkswagen Group, manufacturing passenger 
cars and SUVs for the premium segments of nearly all international markets.  

First, the context of the actual process is described. Then, the model representing 
the process is shown. As this research focuses on how the resulting process chart 
can be systematically analyzed, typical analyses are run to show how the 
complexity of the process chart can productively and systematically be analyzed.   

Figure 1-2 provides an example of a process in automotive body design. The 
process chart was set up as part of the initial work in a process reengineering 
project. Its scope is the interaction between embodiment design and simulation 
departments, comprising 134 different business objects that are processed 
concurrently by 160 different tasks. The process involves four major phases, 14 
organizational units (three of them external service providers), and 27 different IT 
systems. There are 54 major decisions modeled as OR-decision (for reasons of 
simplicity, management agreed not to differentiate XOR and OR in the model). 
The process is structured as a swimlane model for each organizational unit along 
an implicit left-to-right time axis that is not to scale. Nine sub-processes take 
place, and they are colored according to their specific focus (different simulations 
are run); most of them take place concurrently in two organizational units 
(internally and at an external service provider). 

1.2.1 Description of the process  

The process focuses on the interaction of all embodiment design engineers and 
simulation engineers, both internally and externally, who are involved in 
developing the body-in-white (Figure 1-3) for serial production. The body-in-
white includes the car body as well as doors, hoods, lids without further 
components (axes, motor) and trim (windshields, seats, upholstery, electronics, 
etc.). Simulation only considers, in this example, vibration, deformation (such as 
crash), and air flow load cases for the body-in-white. Overall, the body-in-white is 
a highly complex product. Here, approximately 400 components and 130 different 
load cases are used.  

Developing such a complex product demands a complex process organization. 
The process starts with the official launch of the project12. It ends with the start of 

                                                           
12 It is hard to differentiate in such large development projects between whether the process that 
takes place for approximately five years is a project of repetitive character (for every new model 
and its derivates) or a process. Here, the term “process” is chosen to emphasize the fact that the 

repetition of the process taking place can lead to corporate learning about the process to raise its 
efficiency. 
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detailed production preparation after testing and pre-series are finished, i.e., when 
design and simulation are no longer involved to a major extent. Thus, the process 
starts with the business object “customer need”, delivered by the marketing 

department; it finishes after all components have reached the release level “ready 

for purchasing”. 

As Figure 1-4 shows, 14 organizational units are involved (shaded). The strategy 
department delivers the first input; the concept department and the design 
department prepare the initial concepts (two to four) with the support of the body 
development department, including the technology design, the body-in-white 
department, the simulation departments, and others. After a decision has been 
made about which concept is detailed for serial development (generally, elements 
of all different concept designs are combined into a final design), the latter three 
departments complete the overall design, which is progressively tested and refined 
until the “Final Design Freeze” milestone.  

All of this is supported by various external services in simulation and 
development, and by suppliers who not only deliver the final components but also 

                                                           
13 For nondisclosure reasons, the real nature of the case study is withheld; the case study focuses 
on the design process of a mid-size sedan derivative at Audi AG, Germany. 

Figure 1-3: Body-in-white of a premium class sedan13 [VOLKSWAGEN AG 2007]  
(p. 143 & p. 147) 

Figure 1-4: Organizational structure of the organizational units involved in the process 
(shaded) 
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support development as an integrated partner. In the process chart, these service 
providers are modeled only as archetypical organizational units. 

The process is supported by a complex organizational structure. The development 
is done jointly by the pre-development departments, the body design department, 
and the interior development department. During the concept phase, a concept for 
the body and for the interior is prepared; it involves a technology model that 
collects all chains of dimensioning and all technical aspects of the car (e.g., the 
envelope of the wheels moving under steering and suspension movement), and the 
contour of the car (in collaboration with the designers). The technology model is 
initially set up and constantly kept up-to-date to serve as a point of reference for 
all other activities. During this early phase, the other departments only act as 
support to feed know-how on serial production into the concept phase. At all time 
the body design department tries to work ahead of the interior design to ensure a 
good fit. As the level of detail rises, the development task is transferred to the 
respective development departments (body-in-white, interior, safety applications) 
and their development teams (about 800 engineers). This transfer of responsibility 
takes place at the end of the concept phase.  

While limited simulations and estimations take place in the early phases, detailed 
simulation only occurs after the concept is released at the “project decision” 

milestone. At first, a scaled model of a predecessor is used, and little by little 
information is transferred from the development departments to the simulation 
departments with growing concretization. Each of these iterations takes about four 
months. The more detailed the models are, the better simulations that can be run; 
thus, in the beginning only worst-case scenarios are simulated for core load cases, 
whereas variant models of all components and their functionalities can be 
reviewed later. In the process model, the growing degree of integration of the 
simulation departments into the development process can easily be spotted in the 
lower half of Figure 1-2 (the different types of load cases are marked as colored 
sub-processes), where there are more and more tasks shown over the progression 
of time. After initial structural simulations, the air flow is optimized, including air 
conditioning. At the same time, using the same basic simulation model, vibration 
(i.e., eigenfrequencies, noise, and harshness) and deformation (crash, passenger, 
and pedestrian protection) are simulated. Most geometry and simulated models 
are, in fact, prepared by external partners (so-called “extended workbench”), 

coordinated by the internal development engineers. When the first components are 
available about halfway through the prototype phase, these are tested to validate 
the simulation results and to test load cases that cannot be simulated with 
sufficient quality (e.g., fatigue). The prototype phase concludes when a series of 
full prototypes has been validated and a final concept is ready for serial 
development at the “vehicle concept decision” milestone. 

After the final vehicle is decided on, all components are prepared for serial 
production during the serial development phase. Again, many simulations and 
tests are run to ascertain the properties of all components and assemblies. At the 
end of that phase, the design is “frozen”, i.e., no more changes to the geometry are 
permissible, as the production tools are about to be ordered, which represent a 
large investment and, therefore, should not be further altered.  
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During the final (pre-production) phase of the development process, typically, 
endurance-related issues are solved, and the final release is prepared to enable 
purchasing production equipment. Figure 1-5 provides an overview of the relevant 
phases and the milestones that start and end a phase; in fact, the concept phase 
consists of two phases, with an intermediate review. In the process these phases 
are further detailed to work packages of two to three weeks’ size.  

The tasks of the engineers are executed using complex software tools. Most tasks 
are supported by specific tools, which are strongly interrelated both via mutual 
interfaces between them and across the exchange of information throughout the 
process. For each, different models and other information objects are required as 
input, and most tools are linked to one another to some extent by generating 
output data that is further processed. Figure 1-6 lists the occurrence of different 
systems in the process, showing the variety of different systems in use. 

Figure 1-5: Overview of major milestones and phases of process in focus 

 

Figure 1-6: Employment of different IT systems in the process (name of system & 
occurrence) 
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1.2.2 Modeling the process as an EPC process chart 

The model is set up as an EPC model (see appendix 10.1.1), following common 
rules of modeling, as a network of alternating tasks and business objects14. For all 
tasks, the supporting IT systems are added as attributes, and the responsible 
organizational units are allocated using horizontal swimlanes. Milestones appear 
as columns in the model, collecting necessary business objects.  

The model was designed using the ARIS Toolset. A printed map with font size 7 
reaches a printout size of A0 (841mm x 1189mm); it is thus barely readable. At 
the given level of detail (“control level,” see Figure 1-7), it is impossible to 
recognize all 1089 relations (between any two entities) that are modeled. The 
model is set up at a medium level of detail according to Audi AG’s specification 
of the “control” level. 

1.2.3 Deficits when analyzing the process chart using existing methods 

A process chart is almost always the starting point to analyze and improve a 
process. The primary reason to build such a process model is to gain an overview 
of entities that are relevant to the improvement project. In the context of the 
process chart from Figure 1-2, the intent was to improve collaboration between the 
different departments, i.e., their information exchange and their interfaces. To do 
so, an overview of all business objects and their purpose was needed. More 
generally, a process chart satisfies different demands. Above all, it helps gain an 
overview of a process, i.e., what entities are involved to what extent. As such, 
process charts are frequently used to document the organization, to reorganize a 
company by focusing on its processes, to facilitate continuous process 
management, to support process control, to certify a company according to, for 
example, ISO 9000 standards, to allow benchmarking with other divisions or 
companies, to manage knowledge embedded in the process, to select and 
customize enterprise resource planning tools, to introduce new software and 

                                                           
14 EPC prescribes an alternation of functions and events, with business objects as a third kind of 
entity; however, the company used a simplified modeling scheme.  

Figure 1-7: Levels of detail of process charts 
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workflow management, or to simulate processes to better anticipate risks [BECKER 
et al. 2005, p. 45]. 

However, addressing these issues directly by looking at a large process model is 
almost impossible, as a quick glance at Figure 1-2 proves. In fact, many of the 
goals above are only served implicitly by a process chart, which is often further 
analyzed to access the knowledge embedded in the process.   

In practice, the problems are less abstract: In the case of the process study 
presented here, a short survey15 among the engineers participating in the process 
showed the following core aspects necessary for an efficient process: 

‚ Transparent definition of responsibilities 

‚ Accessibility of tools and methods throughout the process 

‚ Fast transfer of information  

‚ Constant harmonization of business objects among design and simulation 
engineers 

A study on the quality of communication was also carried out for the same process 
[MAIER et al. 2008]. It pointed to additional key elements for efficient 
communication in the process in question. In particular, the following points 
turned out to be most important: 

‚ Understanding the mutual information needs: Each engineer should know 
about what information is available where.  

‚ Orientation and transparency: Each engineer should be able to locate his or 
her own task in the process and understand its relevance for the overall 
process. 

‚ Reflection about interaction: Each engineer should be able to consider how 
he or she can improve collaboration by communicating in the network.   

Unfortunately, a lack of available support for the management of complex 
processes prevented the identification of key entities and their mutual relations to 
access the root causes and possible drivers of the process. While the process chart 
shown (Figure 1-2) was available, no inferences could be drawn from this 
structure to detail the above goals with the knowledge represented in the process 
model. It was simply “too complex”. At the same time, investing more modeling 

effort, for example to simulate the process, served little purpose, as no systematic 
basis existed detailing the model [KREIMEYER ET AL. 2010].  

Available process management tools offer limited support of a systematic 
analysis. Media breaks, for example, can be detected, and lists of elements, such 
as the direct input that is necessary to reach a milestone, can be provided. More 
complex analyses, for example, the determination of a critical path to finish the 
process in time, were not possible, because the extensive data on durations of all 
tasks was not available. Equally, it might be intuitive to count those entities that 

                                                           
15 For detailed results, see [KREIMEYER et al. 2005] and [KREIMEYER et al. 2006b]. 
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are modeled16 the most often (body structure: 11 times; cockpit: 8 times; mounted 
parts: 7 times). However, this still does not indicate how they are embedded in the 
process. As such, only a few first impressions could be collected, and it is hard to 
determine the core business objects of the information exchange. 

A major driver of resource consumption is iteration. However, no direct indication 
of where these iterations would typically show up could be detected. While there 
are very few short iterations (i.e., direct rework or improvement among a few 
entities), those of medium length, involving 15 to 25 tasks (and thus business 
objects) play a major role. This is partly in the nature of the process chart, as only 
the interaction between the different tasks is modeled, but not, for example, the 
rework that needs to be done to each task. However, in order to improve the 
collaboration across departmental interfaces, such “longer” iterations are of 

interest, as they dominate the collaboration. Table 1-1 and Table 1-2 show what 
business objects and what links between tasks and business objects appear the 
most often. Whereas the technology model is among the top four objects, it is 
much less involved in controlling the iterations than the crash results, even though 
the technology model is designed as a central means of coordinating all design 
efforts by collecting all relevant core measures and information. 

                                                           
16 EPC uses an object-oriented modeling concept. It is thus possible (and quite common) that an 
object, such as a task or a business object, is instantiated several times across the process model, 
e.g., to represent iterations. 

Table 1-1: Occurrence of business objects in iterations 

 

 

Table 1-2: Occurrence of control influences of tasks on business objects within iterations 
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In the case of the crash simulation results, this could mean that a core team that 
manages the information on this data has a strong influence on how smoothly the 
process runs. If the team were able to influence the crash results in a way that all 
partners agreed on, an early exchange of (possibly immature) information, and 
thus unwanted iterations, might be prevented. 

Equally, tasks that lead to the important business objects appear quite often, 
although they are a small percentage of all the number of iterations; the results of 
the tasks listed in the tables are the most commonly reworked ones across 
department frontiers. Again, the controlling influence of the crash simulation is 
easily visible. However, the setup of the technology model is not among the top 
five elements, because that technology model is drawn from many sources and, 
thus, its formal set-up is not as relevant as other tasks. At the same time, the 
concept design of the cockpit also drives iterations.  

To further estimate the impact of the crash simulation results, this object was 
turned into the root node of a hierarchy representing the “avalanche” of 

subsequent tasks and business objects that depend on it to better visualize its 
impact. During the project, this was done manually for all tasks, as no algorithmic 
support was available. Figure 1-8 shows the 101 entities that can be reached 
directly or across other intermediate entities from the root node at the top. As the 
figure shows, the subsequent tasks and business objects are reached via different 
levels; yet, all subsequent entities are dependent on this initial entity. 

1.2.4 Conclusion: Systematic analysis of a process chart 

The complexity17 of a design process spawns not simply from the tasks the process 
consists of, but other entities that are relevant to the process and contribute to the 
fact that an engineering design process is perceived as complex. In fact, a complex 
product demands a complex process and a complex enterprise organization; yet, 
these different views are not independent of each other [EPPINGER 2001]. This 
complexity is mostly due to the different types of entities, their large number, and 
the relationships among them that often create knock-on changes. Yet, there is no 
methodical support to systematically analyze the relationships among the different 
entities in a complex process at such a high level of process management. 

                                                           
17 The term “complexity” is reviewed in detail in section 2.1.1. 

 

 Figure 1-8: Hierarchy with crash simulation results as root node (generated with Loomeo) 
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As the short case study shows, a systematic in-depth analysis of a process is, thus, 
a complex undertaking. Yet, there are several characteristics of the structure of the 
process, such as tasks or business objects, which are central to information 
exchange and govern the overall timeliness of the process or necessitate a great 
amount of communication to ensure coherent results. For effective process 
improvement, a comprehensive overview of the characteristics of a process is first 
necessary which prioritizes an in-depth analysis of possible improvement 
measures. At the same time, understanding the governing structural patterns helps 
reduce risks in process management.  

In fact, most results of the project that followed the case study shown above were 
based on the few results that were just outlined. Whereas these are based on the 
experience of the engineers who participated in setting up the model, the results 
are erratic, nevertheless, as they were not obtained in a systematic manner.   

1.3 The need for systematic analysis in practice 

As shown, no systematic support of analyzing a process in terms of its structure is 
available yet, which allows a high-level analysis to determine its possible weak 
spots and to prioritize further investigative efforts. To represent processes18 at a 
given level, process models are used. These usually take shape as process charts, 
i.e., large maps that represent the process in a flow-oriented manner. These maps 
are commonly found in any company, and using them efficiently to improve 
processes by using the knowledge represented in these charts is still very difficult.  

Processes serve, in the context of this research, as a form of dependency modeling 
with specific semantics. Being very common in industry, they therefore are an 
adequate means of illustrating what shape dependency models can take in 
industry. The complexity metrics shown later are, above all, tailored to generically 
work with such dependency models.  

1.3.1 The problem: Systematic analysis of a process chart  

As the example showed, extracting inferences about the process behavior from a 
process map is a difficult issue that has not been methodically supported so far. 
Here, the complexity of the process model represents the actual barrier (Figure 
1-9) to gaining an in-depth understanding of the process: Resolving the problem at 
an even more abstract level can possibly aid understanding the chart better, and it 
will later be shown that structural characteristics and complexity metrics, for 
example, can support the aggregated characterization of a structure. However, it is 
equally necessary to find the way back from abstraction to a level of application to 
make the methodology suitable for use in industrial practice. Therefore, a 
complete solution to the problem requires not only analysis at an abstract level, 
i.e., the upward path of the model shown in Figure 1-9, but the interpretation also 
needs to be methodically supported, i.e., the downward path.    

                                                           
18 The terminology specific to this research is only introduced here; details are given in section 
2.1.1. 
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The knowledge of the process is, to a large extent, found in the interplay of tasks, 
business objects, organizational units, and other entities. This interplay forms a 
network-like structure of all entities that are involved in the process; in the 
introductory case study, not only were tasks and business objects tightly coupled, 
but also, for example, the different departments and the supporting IT systems. 
This leads to the basic assumption that the intentional design of this network-like 
system of a process governs its behavior, and that if the process’ entities were 
coupled differently, the process would exhibit a different behavior. 

This interplay takes shape — at a finer level of detail — as certain structural 
patterns that are referred to as “structural characteristics”; these patterns are the 

basic constellations of a few entities and their relations with other entities. A 
process is, therefore, assembled from many of these patterns, and the literature 
(e.g., [BAR-YAM 1997]) shows that these patterns embody small units of behavior 
that point to the behavior of the overall process. Making the patterns accessible, 
therefore, means making the knowledge embedded in the process accessible. 

Describing this structure19, however, is not simple. There are many perspectives to 
a process, such as tasks, business objects, people, or IT systems. These 
perspectives are not independent of each other and thus contribute to the patterns. 
At the same time, the process behavior is only generated by the interplay of all 
perspectives. To gain a complete overview of a process, therefore, it is necessary 
to review all entities and their involvement in every possible pattern. However, 
improving a process is most useful in those places that drive the overall process or 
that are, at least, of high impact. Therefore, identifying those patterns that stand 
out from the rest of the process is a good approach to find the relevant patterns.  

                                                           
19 The term “structure” is critical for this research. Defined in section 2.1.1, it addresses, at its 
core, the pattern that is generated from a constellation of objects and their mutual relations. For 
example, an engineer and his communication with his partners in the process characterize the 
importance of the engineer for the process from the standpoint of the structure of communication 
in the process.  

Figure 1-9: Solving technical problems via abstraction, based on [LINDEMANN 2007, p. 29] 
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The problem is further aggravated by the fact that process models are often 
inconsistent or incomplete. While such low quality of the model is problematic, it 
is often the most valid, when the process modeled is actually controversial; in 
other cases, only parts of a process are modeled explicitly, while their 
environment is intentionally neglected. Nevertheless, often the part of the process 
the process chart focuses on is still meaningful and can be analyzed. In general, 
however, the quality of the analysis will only be as good as the input to it.  

Finally, many process models only provide qualitative information for a process 
(i.e., “boxes and arrows”), and thus make it impossible to use simulation 

approaches or more sophisticated methodologies to analyze the process. Yet, the 
patterns (and thus the knowledge) are already embodied in these “boxes and 

arrows”. The challenge is to relate the structure to the behavior of the process 
[KAUFFMAN 1993] [HOLLAND 1996] [BAR-YAM 1997]. Of course, there is no 
absolute truth about this inference, as different companies (and thus different 
processes) have different cultures, which then lead to different foci of process 
organization; while in one company, the concept of having single employees as 
center coordinators of design knowledge might be desirable, a different company 
might prefer to store knowledge in a database, for example, and not depend on 
single employees that much. Yet, there are certain patterns that may appear in a 
process, and these patterns are linked to one or more common kinds of behavior in 
a process. Figure 1-10 shows an example of engineers in a process, 
communicating via channels (e.g. team meetings). Whereas in the pattern on the 
left no designated coordinator of communication is discernable, in the pattern on 
the right all major flows of information go through the person at the center.  

As engineering design processes can be very large, the identification “by the 

naked eye”, as in the example in Figure 1-10, is typically not possible, as the case 
study in the beginning of this section was able to prove. Therefore, a formal 
approach is necessary to handle large systems that are densely crosslinked. It may 
also need to be supported by a computer-based tool or by algorithms that can be 
computed in realistic run-times. 

1.3.2 Basic hypotheses and research questions  

With the focus on extracting knowledge about a process’s behavior from the 
constellation of its elements and relations, this research was based on three 
fundamental hypotheses. These are introduced here, as they delineate the approach 

Figure 1-10: Example of two possible communication patterns in a process 
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developed in this research, and their knowledge permits the solution that is 
presented to be better understood.  

The first hypothesis represents the basic understanding of a system (i.e., a 
process); commonly, processes are seen as a time-oriented flow of tasks and 
documents. Here, however, all supporting entities as well as their coupling will 
also be considered. An engineering design process is thus not simply a set of tasks 
that can be put into interaction, but rather forms a network of multiple layers 
consisting of different classes of entities20 (such as tasks, organizational units, 
milestones, resources) [GAUSEMEIER et al. 2006, p. 223] [ZACHMAN 1987]. This is 
generally due to the high degree of integration seen in almost any kind of product 
today; in turn, it both causes and necessitates many different stakeholders in a 
process, who need to collaborate [SPATH et al. 2001]. Therefore, when improving 
a process, it is necessary to gain a detailed understanding of the process and all 
involved domains that enable the process [HERFELD 2007, pp. 92-93]. An 
engineering design process21 is a complex socio-economic construct that is unique 
within each company and for each product. Typically, the holistic analysis of a 
process should involve different views of the process, represented by the available 
domains, as well as its relation to the product architecture [SOSA et al. 2004b].  

The second hypothesis points to the assumption that it is possible to identify 
certain patterns of entities22 in a process that drive the behavior of the 
process. This phenomenon is referred to as inference [KAUFFMAN 1993] 
[HOLLAND 1996] [BAR-YAM 1997] [CANTAMESSA et al. 2006]. In fact, being a 
network of multiple layers, a process forms a complex system. This system 
“process” only emerges because the goal-oriented and purposeful configuration of 
its entities provides value over the pure sum of all the entities [BOARDMAN & 
SAUSER 2006]. Thus, methods of understanding, modeling, and managing systems 
can be applied [MILLER et al. 2006]. Figure 1-11 shows an example of the degree 
distribution of a network, which allows the assessment of  the homogeneity of a 

                                                           
20 These are later addressed as domains (i.e., a class of one type of entity of a process) and 
relationship types (i.e., one class of relations between entities). See section 2.1.1   

21 While we speak of processes, in fact, many processes actually exist as projects [LINDEMANN 
2007, p. 16]. See page 69 for more details. 

22 This constellation of entities will later be referred to as structural characteristics of a network. 
Possible structural characteristics are explained in section 2.1.6. 

 

Figure 1-11: Example of a structural characteristic (a “hub”), the possible related behavior, 
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process (details are found in appendix 10.5.12): For a network that is structured 
around a central hub, there is a high risk of failure of the overall process 
associated with the failure of the central entity connecting the overall process. 
This can be identified using a (schematically represented) degree distribution.  

The third hypothesis proposes that the identification of structural outliers is an 
appropriate means for the high-level analysis of the behavior of a process. As 
outliers, such instances are identified that particularly stand out with regard to 
their involvement in a pattern of entities. While, of course, a process has a limited 
number of entities that is often too small to obtain statistically significant results, 
the concept of the outliers essentially embodies the Pareto principle23 [REED 2001] 
by highlighting the core entities of a system.  

In fact, the identification of outliers makes it possible to pinpoint entities that are 
of extremely high or low impact, thus significantly driving a pattern of entities 
[HAWKINS 1980]. Outliers are, therefore, those results that are “numerically 

distant” from the main population of results, and they commonly show up in 

histograms or other distributions [BARNETT & LEWIS 1998, p. 16].  

The approach presented here is not meant to rate the outliers in terms of their 
possible negative or positive contribution, even though every structural 
characteristic present in the process will inevitably contribute to the process 
quality. However, as the implications of an outlier vary for different companies, 
the neutral term “outlier” was chosen to indicate that an outlier is only meant to 
point to a possible problem without judging if there actually is a weak spot in the 
process.  

Based on these hypotheses, the research focuses on a main research question: 

How can a process be systematically analyzed (I) in terms of the structure of 
the relations of its entities (II) in a goal-oriented manner (III) to point a user 
to possible weak spots (IV) and their meaning (V)? 

Figure 1-12 visualizes the idea behind this research question: The initial goal is to 
analyze the process in a comprehensive and systematic manner. To do so, process 
models are to be used to access knowledge about the behavior using the network-
like structure of the process. This analysis is to be given in a goal-oriented 
manner, i.e., by providing target-oriented analyses in a compact form that point to 
possible weak spots in the overall process structure. Lastly, the interpretation of 
these findings is to be supported to better draw inferences about the actual impact 
and behavior of the identified weak spots. 

                                                           
23 Also called the 80/20 rule.  

Figure 1-12: Focus of this research 
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The intent of this research, therefore, is in developing a methodical support to 
analyze process charts in a systematic manner to obtain a complete overview of 
the behavior of the process. The behavioral description needs to be as correct as 
possible with the available input data, i.e., in the first step, it should not be 
supported by additional simulations or other methods but enable a compact picture 
of the overall process and its improvement potential. The results of the analysis 
need to be consistent to allow for a comparison of the process’ entities to point to 
possible weak spots. They need to be intuitive and supported by clear guidelines 
that allow transferring the results back to an operational level. 

1.3.3 The approach used in this research 

The solution presented was developed from a strategy similar to that of Agile 
Development. In a repetitive pattern, small entities (i.e., the metrics and individual 
aspects of matrix-based process modeling) were developed (based on 
requirements from various companies), tested, and improved. Each time, a second 
step consisted of integrating the partial solutions into the overall context, again 
involving testing, improving, and completing. As such, the research approach used 
is in line with common iterative research approaches in technical sciences 
[MINNEMANN 1991, p. 16]. It is also consistent with research approaches in 
economics and management, in general, where empirical (requirements, test, and 
adaptation) and conceptual work collude [KORNMEIER 2007, p. 43]. This research 
is, in fact, very similar to action research [ARGYRIS et al. 1985, pp. 36-40]. 

This research can be classified as a development of the application of principles 
(as commonly done in economics and management science [KORNMEIER 2007, pp. 
23]) at a high level of abstraction. At the same time, the generalization of the 
approach is intended to explain why processes behave in a certain manner due to 
their structure. However, the approach does not present a means of prognosis per 
se, but only elements of prognosis [KREIMEYER et al. 2006c] [HEYMANN 2005, pp. 
513]. 

1.4 Context of developing complexity metrics  

As the research question shows, this research is intended to generate a 
methodology that facilitates the systematic analysis of a process by regarding and 
evaluating its structure. Therefore, the following goals, requirements, and limits to 
the solution need to be considered. 

1.4.1 Goals of this research 

To address the problems encountered in the analysis of a large and complex 
engineering design process, this research was initiated to meet the following goals: 

‚ Establishment of a structural process modeling method: 

o Show that a process consists of multiple layers of a network 

o Develop a pragmatic process model that allows this structure to be 
accessed integrating common process modeling methodologies (to 
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generate a solution that is suitable for different kinds of process models) 
as a common basis for the design of structural metrics  

‚ Development of structural metrics tailored to engineering design processes: 

o Develop a coherent set of metrics that can describe the structure of a 
process network  

‚ Setup of a selection framework to guide a process analysis project: 

o Set up a framework to select appropriate metrics in relation to the goals 
of process analysis  

o Show the possible significance for each metric to extend the applicability 
of the framework  

o Show how a framework can be applied in process improvement 

The process model creates the foundation to answer the research question by 
providing a common basis and a consistent structure to develop structural metrics. 
It uses essentially the first hypothesis by modeling the process as a network 
instead of a purely time-oriented flow. At the same time, it addresses the fact that 
different process models might serve as a starting point to analyze an existing 
process chart. The second goal addresses the main research question directly, 
collecting goals, possible metrics, and an approach to identify the main drivers for 
the behavior, combining hypotheses two and three. Last, the overall framework 
combines the modeling and the analysis method into a measurement system that 
enables a goal-oriented application. 

1.4.2 Basic requirements of the solution 

Generally, this research is intended to deliver a rigorous contribution to design 
research, extending the existing body of knowledge and understanding of 
engineering design processes, while, at the same time, delivering a practicable 
methodology to industry. To this end, this research is based on the common 
aspects of research methodology. 

At the solution level, there are different requirements of developing a “good” 

method. This entails a solution that is complete, correct, consistent, and clear. 
Complete refers to several aspects at the same time. On the one hand, the 
approach to be developed needs to be complete in regard to its setup, i.e., it should 
support the planning of an analysis, the necessary modeling and the analysis itself. 
On the other hand, the approach needs to consider, in each of these aspects of the 
solution, all possible scenarios, i.e., the planning of the analysis should contain all 
relevant elements of an analysis; the modeling needs to embody all possible 
modeling constructs, and the analysis should provide a means of analysis for the 
possible behaviors found in the engineering design processes. A correct analysis 
approach is one that is homomorphous with the process it focuses on. As such, the 
elements of the approach to be designed should represent the empirical object as 
closely as possible. The analysis approach to be developed needs to be consistent 
in itself and with the existing use of similar methods; this relates especially to 
metrics that are in use in engineering and software design. Finally, the developed 
approach needs to be as clear and as self-explanatory as possible, necessitating 
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detailed guidelines about how to apply the method and interpret the results 
obtained. As the solution presented here consists of three parts, the requirements 
are grouped accordingly. 

The process modeling framework needs to enable the complete representation of 
the structure of a process. It should do so in a formalized way, making an 
automated assessment possible. It should be in line with common approaches to 

the management of structural complexity, thus not developing a new methodology 
but extending existing methods where necessary. It should, as such, integrate the 

structural aspects of existing process models to be compliant with the state of the 
art in process management. It should, furthermore, be able to represent large 

systems in a manageable fashion, allowing, for example, the automated 
integration of partial models into an overall model that can be recombined, reused, 
or parsed from different sources. It should, thus, provide an adapter to structural 
process analysis. 

The metrics need to be, above all, relevant to process management. As such, they 
should be collected from sources that have empirically validated their usefulness 
and applicability. They also need to respect the necessary measurement 
foundation24

, which describes the quality of “good” measures. Ultimately, the 

metrics should allow an intuitive understanding of the structure to the extent that 
is possible for such an abstract entity.  

Lastly, the metrics selection framework should enable a straightforward 
navigation of all necessary aspects of process modeling and metrics-based 
assessment based on relevant concepts, goals, and interests of process 
management. It should, therefore, classify the metrics comprehensively and show 
their mutual dependencies. Ultimately, it should be created in such a way that it 
can later be extended. 

1.4.3 Targeted audience 

With the author’s experience and the three case studies originating from 
automotive design, the focus is on processes similar to automotive design. These 
are characterized by a multitude of requirements from various sources that result 
in a highly integrated product that is concurrently designed by many engineers 
from different backgrounds. The high degree of division of labor corresponds to a 
great number of specific artifacts in the process (files, prototypes, etc.) that are 
processed by highly specialized resources. The processes are commonly 
coordinated by development engineers [HERFELD 2007, pp. 18-20] [SAPUAN et al. 
2006]. Other similar contexts could be, for example, aircraft design, the 
development of production machinery, or mechatronic household appliances.  

The approach is, therefore, tailored for managers, consultants and project 
engineers who continually have to plan, improve, and control processes. At the 
same time, the solution is meant to improve scientific understanding of 

                                                           
24 Measurement foundation is detailed in section 2.3.1. It describes how measures for a system 
can be set up in a systematical and error-free manner. There are various models that explain 
“good” complexity metrics, especially provided by the set of Weyuker’s Criteria [WEYUKER 
1988].  
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engineering design processes by providing formalized access to the structure of 
engineering design processes. 

1.4.4 What this book is not about 

As there are many aspects of process management, and because this research 
regroups and recombines many different streams of research from different 
disciplines, a brief overview of possible misconceptions of this research is given 
to ensure that it is understood correctly.  

With the focus on structure, the approach developed is tailored to analyze 
qualitative models. It does not provide any quantitative model or a more complete 
description and analysis of a process outside its structure, e.g., in terms of cost, 
run-time of the process, or the amount of manpower needed to design a product. It 
intentionally only considers the need to systematically analyze qualitative models 
(i.e., “boxes and arrows”) to discover possible weak spots of a process, which will 
be referred to as outliers.  

Thus, the methodology will not provide any rating as to whether a process is good 
or bad. Rather, the approach is meant to methodically access possible outliers that 
can turn out as problematic in a given context, depending on the company culture. 
Thus, the measures in this process are referred to as metrics and not as 
performance indicators.  

As such, the approach presented is meant to complement existing views on 
process analysis and potentially to review the structure and, in the long run, 
interlink this structural analysis with other approaches in order to better 
understand engineering design processes. Thus, this approach is not meant to 
replace any existing paradigms, such as business process reengineering or 
continuous improvement within a company, but it complements these paradigms 
by providing means to access the structure of a process. 

Therefore, the results of this research are not planning methods; they only 
contribute to better plan processes using existing methodologies by generating 
knowledge about risks in process management. This is done through gaining 
insight into how the behavior of a process relates to the structure that is set up 
during process planning and execution, i.e., when actors, tasks, and resources are 
combined into an overall architecture.  

In this context, it needs to be stressed that the focus is not on how such models can 
be generated to depict a real life process, but the focus is on how a model needs to 
be structured. Thus, information collection via interviews or similar methods is 
omitted, and it is assumed that (partial) models are available, and that they are of 
reasonable quality. 
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1.4.5 Related fields of science 

Figure 1-13 regroups the related major fields of science that are most important to 
this research. In general, the focus of this research is on engineering design 
processes; however, a number of inputs are taken from management sciences, 
especially topics that are related to process management, its application, and the 
modeling of processes.  

The access to structural complexity is not available as a dedicated field of 
science, but rather it avails itself of different approaches in engineering sciences, 
especially matrix-based methods, and in applied mathematics, mostly graph theory 
and network science, which is another interdisciplinary field of science bordering 
almost any other field of research. The different forms of system sciences 
contribute equally to this research.  

Software Engineering provides numerous means of measuring structures; in fact, 
processes are, in many ways, similar to software programs, being based on a 
number of interrelated resources and representing a flow of information 
[CARDOSO 2006]. Many approaches and the foundations available can, therefore, 
be adapted almost directly.  

Ultimately, all three fields of science contribute to their systematization in a 
framework. In fact, frameworks from all fields of science are relevant; however, 
those frameworks most closely related to managing metrics are available in 
software engineering, which is why the section on frameworks is linked to this 
science in Figure 1-13. 

1.5 Structure of this book 

As shown in Figure 1-14, following the introduction given by industrial need, as 
provided in the initial case study, the research question is explored throughout the 
state-of-the-art shown in chapter 2. Here, the foundations of systems and their 
structures are presented by collecting possible models and methods for the 
analysis and meaning of structures. Engineering design processes are then 
analyzed for their structural content. The structure inherent to common process 
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models is collected to later constitute a meta-model suitable for structural process 
models, and typical goals of process improvement are collected that focus on 
structural analysis in a framework designed later in this research. A literature 
review on different kinds of metrics that connect to structures is also presented to 
show current models and approaches and to discuss their capabilities and 
transferability to process management. These will later serve as a basis to 
assemble a comprehensive set of structural metrics. Lastly, different frameworks 
are reviewed to enable a goal-oriented analysis of the structure of a process. 

Chapter 3 establishes an overview of the three subsequent solution chapters and 
places them in a common context. A basic procedural model is used as a broad 
framework.  

Chapter 4 introduces a matrix-based modeling scheme predicated on Multiple-
Domain Matrices. To incorporate all needs of process modeling as reviewed as 
part of the state-of–the-art, this modeling scheme is extended to incorporate 
different modeling needs, such as Boolean operators or product attributes. The 
modeling scheme itself consists of a meta-model that serves as a reference for the 
establishment of a structural process model using commonly accepted semantics. 
It is also used as a basis for the formulation of metrics and their interpretation. 

Chapter 5 regroups the structural characteristics that govern different systems to 
form a generic procedure to design structural metrics. In the second step, the 
metrics that were developed as part of this research are presented, and their 
suitability and adherence to the foundation of measurement and the requirements 
of process management is reviewed. Lastly, the metrics are classified to generate a 
complete picture of their applicability.  

Chapter 6 makes use of this classification to generate a framework connecting the 
metrics to the different goals of process improvement to allow a goal-oriented 
application of the structural metrics. To do so, first a set of goals for structural 
process analysis is established which, in the second step, is completed by different 
questions that operationalize each goal. Each question is then completed with a set 
of metrics, domains, and relationship types that can be used to provide answers to 
the question. Connecting these three constituents back to the metrics, the goal-
oriented interpretation using each metric’s structural significance is laid out.  

In chapter 7 two examples of process analysis from automotive design are 
presented. The first case study regards the use of metrics to characterize another 
engineering design process in general. The second case study takes up the initial 
case study from chapter 1, using the framework to present and review the 
applicability of a goal-oriented process analysis.  

The conclusion in chapter 8 summarizes all chapters to determine if the research 
question was answered and to record the strength and weaknesses of the approach 
shown.  

To complete this research, a comprehensive appendix details all aspects that can 
only be briefly addressed in the main body of this research.  
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2. The foundations of complexity metrics 

To analyze the structure of engineering design processes using metrics, 
foundations from the different areas of relevance shown in Figure 2-1 are used. 
These were identified using the DRM (Design Research Methodology) approach 
[BLESSING & CHAKRABARTI 2009, p. 63].  

In this chapter, each area is explained in detail and related to the needs of this 
research. First, the foundations of systems in general and the structure are 
explained. Different means of dependency modeling for systems are explained, 
including relevant analysis methods. These foundations are used to explore what 
structural content is relevant for process management regarding both the goals of 
an analysis and the actual process models. Last, existing metrics are reviewed that 
are able to assess structures in general and, more specifically, in processes. 

2.1 Structural complexity of a system 

Complexity is present in many disciplines. Commonly, complexity means 
“consisting of parts or entities not simply coordinated, but some of them involved 

in various degrees of subordination; complicated, involved, intricate; not easily 
analyzed or disentangled“ [SIMPSON et al. 1989]. Indeed, complexity has many 
facets. Computational complexity refers to the computability of an algorithm 
[PAPADIMITRIOU 1994]; information processing understands complexity as the 
total number of properties transmitted  [NEWELL 1990]; and physics sees it as the 
probability of reaching a certain state vector [HEISENBERG 1999, HEISENBERG 
2007]. In engineering, complexity generally addresses the high coupling of the 
entities of a technical system [MAURER 2007], and software science focuses on 

Figure 2-1: Main areas of relevance to this research 
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assessing program code for its complexity, and thereby the risk of introducing 
errors into the code. 

Complexity science originated from Cybernetics, founded by [WIENER 1948], and 
Systems Theory, founded for the most part by Ludwig von Bertalanffy [VON 

BERTALANFFY 1950]. It was also influenced by Dynamic System Theory, which 
belongs to the field of applied mathematics for the description of dynamic systems 
[PADULO & ARBIB 1974].  

Structural Complexity Management is often seen as having evolved out of the first 
complex engineering projects that were accompanied by the paradigm of Systems 
Engineering, having itself evolved out of Systems Theory (e.g., the [NASA 
1995]). The first use of Design Structure Matrices (DSM) is attributed to Don 
Steward [STEWARD 1981], who used DSM to better plan complex projects 
involving many interdependencies, thus opening up the field of today’s paradigm 
of structural complexity. Design Structure Matrices later evolved to Domain 
Mapping Matrices [DANILOVIC & BROWNING 2004], and then to Multiple-Domain 
Matrices [MAURER 2007]. While structural complexity generally regards technical 
(i.e., planned) systems, in parallel, Network Science describes complex systems of 
random or natural origin, such as the internet or molecules [BARABÁSI, 2003] 
[WATTS & STROGATZ 1998].  

Figure 2-2 shows the development of each field of science from a historical point 
of view. The originating methods are discussed as follows. First, a review of 
systems and how they are constituted to derive a specific view on what the 
structure of a system is provided. For this purpose, the terms system, complexity, 
structure, domain and relationship type are explained. Using these basic notions, 
different kinds of dependency modeling are then introduced. Here, graph theory 
serves as a formal basis for all other dependency models and introduces a number 

Figure 2-2: Evolution of sciences related to structural complexity (after [ART AND SCIENCE 
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of concepts that keep appearing in other dependency models (e.g., cliques as 
tightly coupled clusters). Then, models and methods for matrix-based dependency 
models and for large networks are reviewed in detail to collect a complete set of 
analysis methods and the requirements to model the dependencies within a system.  

2.1.1 General notions of managing structural complexity 

Understanding processes as a complex system that has a network-like character 
and a certain structure necessitates certain basic notions and terminology, which 
are explained in this section. 

System 

The concept of a “system” is essential to the analysis of processes, as a process25 
represents a special form of a system [WASSON 2006]. A “system” is a set of 

entities that have relations among each other, either by interacting with or being 
independent of each other, and the system is delimited from the environment by a 
system border and connected to the environment by inputs and outputs [HALL 
1963] [LINDEMANN 2007, p. 337].  

WASSON  defines a  system as an “integrated set of interoperable entities, each 

with explicitly specified and bounded capabilities, working synergistically to 
perform value-added processing to enable a user to satisfy mission-oriented 
operational needs in a prescribed operating environment with a specified outcome 
and probability of success” [WASSON 2006, p. 18]. The “integrated set” refers to 

the fact that a system consists “of hierarchical levels of physical entities, entities, 

or components”. The entities are interoperable, as they must be compatible with 

each other to allow greater value of the system [BOARDMAN & SAUSER 2006]. 
This is also addressed by the “explicitly specified and bounded capabilities”, 

meaning that every entity “should work to accomplish some higher level goal”. To 

work “synergistically” underlines the additional value [RECHTIN 1991, p. 29] and 
the leverage factor of a network. Ultimately, the “value-added processing” alludes 

to the classical process term, which is based on the assumption that a process 
provides some additional value to the customer. This aspect of customer 
orientation is further emphasized by the expressions “specified outcome” and 

“success” in the definition [PATZAK 1982].  

In a more general manner, MAURER provides a definition of a complex system that 

is, in many respects, similar to that of WASSON: “A system is created by 

compatible and interrelated parts that form a system structure, possess individual 

properties, and contribute to fulfill the system’s purpose. Systems are delimited by 

a system border and connected to their surroundings by inputs and outputs. 

Changes to parts of a system can be characterized by dynamic effects and result in 

a specific system behavior”. MAURER thus adopts the aspect of the relationships 

(“compatible and interrelated”) and boundaries (“system border”) but also 

provides a new aspect, that is, a system response that is not necessarily linear 

(“dynamic…specific system behavior”) to the definition [AUE & DUSCHL 1982] 

[MAURER 2007, p. 31]. 

                                                           
25 The term process will be defined later in section 2.2.1. 



36 2. The foundations of complexity metrics 

Keeping the focus of this research in mind, the following definition of a system is 

used: 

A system is a set of entities of (possibly) different types that are related to 

each other via various kinds of relations. The system is delimited by a 

system border, across which inputs and outputs of the system are possible as 

an interaction with the environment. The system fulfills a purpose, which 

guides the meaningful arrangement of entities and relations. The behavior of 

the system is, in turn, due to the arrangement of the system’s elements. 

To a certain extent understanding a system denies traditional cause-and-effect 

chains and the certainty of determinism that, as practice shows, are not applicable 

to complex systems and complex processes anyway. This, however, implies that a 

reductionist approach which only centers on certain objects is too limited when 

regarding complex systems [BANATHY 1997]. 

Modeling complex systems  

To manage a complex system, modeling is used to better understand it 
[BROWNING 2002]. In comparison to the object being modeled, a model26 
represents a target-oriented, simplified formation analogous to the original, which 
permits drawing conclusions based on the original [LINDEMANN 2007]. These 
conclusions normally comprise “making predictions and testing hypotheses about 

the effects of certain actions” [BROWNING 2002]. In this way, systems are made 
more transparent to improve understanding. 

A model thus represents an abstraction of a real system, serving a certain purpose 
the model was made for; at the same time, a model usually involves pragmatics 
for those points that appear to be of little relevance to the purpose during the 
generation of the model [RECKER 2007]. This implies that the modeler influences 
the model in its expressiveness even before it is analyzed [MENDLING 2008, p. 7]. 
The development of any model-based analysis framework must thus incorporate 
possibly “unclean” models. 

Nodes and edges, entities and relationships 

In regards to a system’s entities and relations, the management of structural 

complexity can be understood as an application of Graph Theory27. As different 
terms prevail in the different disciplines, Table 2-1 provides an overview of how 
the entities and relations within a system are commonly denominated.  

                                                           
26 A good model acknowledges the “Guidelines of Modeling” to achieve inter-subjectivity of the 
models: correctness (i.e., the model is syntactically correct), relevance (only the interesting parts 
of the object being modeled are represented in the model), economic efficiency (the trade-off 
between the expense to build the model and making it as complete as possible), clarity (to ensure 
that a reader is able to understand the model), comparability (the consistent use of naming 
conventions and modeling schemes), and systematic design (the clear separation of different 
views) [BECKER et al. 1995]. 

27 Graph theory is outlined in more detail in section 2.1.2. 
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Domains  

From a structural point of view, a system can be disentangled into a network-like 
model of entities and their relations. These entities can be of different kinds, e.g., 
documents, organizational units, and work packages. However, if many such kinds 
are mixed, a productive analysis is impossible. Each kind of entity represents a 
specific view, called a “domain”

28. The purpose of a domain is to create 
“homogeneous networks” that allow elements to be compared during analysis 
[MAURER 2007, pp. 71-72]. The term “domain” can, therefore, be defined as a 

specific view of a complex system, comprising one type of entity. 

Three principles apply to the use of domains to model the structure of a complex 
system that involves specific views (visualized in): 

� Instantiation: An entity is an instantiation of a domain. Thus, all entities 

that belong to one domain are of the same type, e.g., “information object”.  

� Decomposition: A domain can be refined by creating sub-domains that are 

congruent with a part of the super-domain to which they belong, e.g., the 

domain “document” and the domain “prototype” can both be “information 

objects” in a process.  

� Recombination: A system can be assembled by combining relevant 

domains and relationship types (see next page). By assembling different 

domains and relationship types, different views of the system can be 

generated.  

Relationship types 

Like the domains (see above), the relationships within a domain (or between two 
domains) need to be uniform to allow a systematic modeling and a purposeful 
analysis. While a domain contains entities of a kind, one relationship type refers to 
one class of relations that are similar [MAURER 2007, pp. 71-72]. The relationship 
type therefore defines the kind of (directed or undirected) relation between two 
entities. It is described as “(entity of domain A) is related to (entity of domain B)”. 

The term “related” can be replaced to specify the type of relationship; of course, 

                                                           
28 A domain is comparable to a “class” of objects in object-oriented programming paradigms. 

Table 2-1: Different terminologies to describe the parts of a system 
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reflexive relationship types (“intra-domain”) are possible as well as mappings 
between two domains (“inter-domain”).   

Again, three principles apply: 

� Instantiation: A relation is an instantiation of a relationship type. 

� Differentiation: A relationship type can be refined by detailing the 

description in a coherent manner with the superior relationship type. 

However, such a refined relationship type applies to fewer entities and is 

harder to model coherently [MAURER 2007, pp. 71]. 

� Recombination: A system can be assembled by combining relationship 

types.   

Figure 2-3 visualizes these three principles for both domains and relationship 

types. At the highest domain it uses domains and relationship types to set up the 

meta-model of a system. Here, the basic class of an entity is defined. If a pre-

defined meta-model is used, it actually provides the domains and relationships. If 

necessary, both domains and relationships can be refined and broken down into 

more specific sub-domains or differentiated relationship types. This is necessary, 

for example, when two domains are linked by two different relationship types 

simultaneously such that each transport a specific meaning, as shown in the 

example on page 131. To build a model, the chosen domains and relationship 

types are instantiated. 

Figure 2-4 embodies these principles into the basic meta-model that is used for 
structural modeling, using only domains and relationship types and their 
decomposition. It represents a common dependency model that is only able to 
represent entities and relations.   

 

Figure 2-3: Principles of using domains and relationship types to describe the structure of a 
complete system 
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Views to a system: Native and aggregated networks 

Complex systems can consist of more than one domain. These domains can be 
coupled within themselves or among themselves. In turn, it is possible that two 
domains are not directly related but only via a third domain. However, for many 
analyses it is necessary to use intra-domain networks, i.e., networks that consist of 
only one domain and of one relationship type that connects only the entities of the 
one domain among themselves. Therefore, aggregate views are needed at times to 
reduce the relationships via an intermediate domain to using just one single 
domain of reference. 

In fact, according to the availability of models and data, a network can be native, 
i.e., the information in the model is a direct result of the data acquisition [MAURER 
2007, p. 78] , or it can be aggregated, i.e., it is computed based on other networks 
that are available. Figure 2-5 visualizes the difference. In common Multiple-
Domain Modeling (compare section 2.1.3), this aggregation is used to condense 
relations across one or more domains into single intra-domain networks to 
facilitate analysis. Section 2.1.3 illustrates in greater depth how this is done. 

Structure 

Although the term structure (Latin: structura: orderly combination, derived from 
the verb struere: combine, stack, stratify) appears to be one of the most common 
words in engineering terminology, there seem to be very few definitions available. 
Commonly, the term structure is used in engineering for organizational structures 
and product structures, i.e., the purposeful organization of an enterprise into 

 

Figure 2-4: Meta-model for structural modeling 

 

Figure 2-5: Native and aggregated networks 
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manageable entities or the setup of a product’s components, functions, etc., into a 
meaningful architecture. 

In mathematics (algebra and model theory), the term structure refers to a set of 
distinct entities, including the functions that transform these objects and the 
relations among the objects and functions. Systems Theory narrows this definition 
down to the patterns of interaction of the elements towards a behavior of the 
system [OLIVER et al. 1997, p. 21], which possibly serves a purpose [BOARDMAN 
& SAUSER 2006]. Structure is also closely connected to the phenomenon of 
emergence (see section 2.1.4) and sophistication, which is sometimes used as a 
measure for complexity and its logic decomposition into compact parts [KOPPEL 
1987]. Both concepts indicate that structure involves the regrouping of entities of 
a system according to the logics (and the relationships between the entities) of a 
specific perspective. This is in line with the common understanding of structure as 
“the aggregate of entities in their relationships to each other” [MERRIAM-
WEBSTER ONLINE DICTIONARY 2009]. A structure can be a hierarchy (a cascade of 
one-to-many relationships) or a network featuring many-to-many relationships 
[PULLAN & BHADESHIA 2000]. MALIK and BEER both refer to structure as the 
degree of organization which helps to bring order to a complex system and 
maintain it in order to enable the management of the system [MALIK 2003, p. 211] 
[BEER 1972, p. 65]. [GOLDENFELD & KADANOFF 1999] link complexity to 
structure (i.e., a basic pattern) by pointing out that everything has a basic structure 
according to how it is built; yet all systems come in variations that deviate from 
this basic structure, causing complexity. Structure is, therefore, defined as follows: 

Structure regards the pattern in the network formed by dependencies (edges) 
between a system’s entities (nodes). It reflects the semantics of this network; 

the structure of a system therefore always contributes – in its constellation – 
to the purpose of the system. A structure takes shape in structural 
characteristics, i.e. a particular constellation of nodes and edges. The 
characteristic gains its meaning by the way the pattern is related to the actual 
system it is part of, i.e. it must serve a special purpose in the context of the 
overall system. A structural characteristic only possesses significance in the 
context of the system it is describing. 

In process management, structure refers to patterns within processes. Workflow 
patterns29, as a particular case, represent the basic decision structures of a process 
[VAN DER AALST, et al. 2003]. These patterns, however, relate to possible 
constellations of splitting and joining the control-flow of a process using AND, 
OR, or XOR operators. Yet, the patterns relate to the different perspectives of a 
process, as also outlined by [CARDOSO, 2005a]: control-flow, data, and resources. 
This idea can be extended to detect possible errors in a process, i.e., they search 
process models for typical structures that point to an error in the model [VAN 

DONGEN et al. 2006] [MENDLING 2008, pp. 59]. MENDLING does so, in fact, using 
metrics to formalize the patterns.  

                                                           
29 A comprehensive overview is available at http://www.workflowpatterns.com (accessed 10.05.2009).  

http://www.workflowpatterns.com
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Complexity 

Complexity often involves the difficulty of handling a system, as it is hard to 

estimate the outcome of an action (therefore, popular lore goes “never change a 

running system”) [LEE 2003]. Apart from these notions, complexity is sometimes 

defined as a degree of disorder [SHANNON & WEAVER 1998].  

Like the approach by [CARDOSO 2006b], complexity is thus characterized by: 

‚ Structure: A complex system is a potentially highly structured system 
which indicates a structure with variations [GOLDENFELD & KADANOFF 
1999] [OLIVER et al. 1997, p. 29]. 

‚ Configuration: Complex systems have a large number of possible 
arrangements of their parts [KAUFFMAN 1993] [HOLLAND 1996] [BAR-YAM 
1997]. 

‚ Interaction: A complex system is one in which there are multiple 
interactions between many different parts [RIND 1999]. 

‚ Inference: System structure and behavior cannot be inferred from the 
structure and behavior of its parts [KAUFFMAN 1993] [HOLLAND 1996] 
[BAR-YAM 1997]. 

‚ Response: Parts can adjust in response to changes in adjacent parts 
[KAUFFMAN 1993] [HOLLAND 1996] [BAR-YAM 1997]. 

‚ Understandability: A complex system is one that by design or function, or 
both, is difficult to understand and verify [WENG et al. 1999] [IEEE 1991]. 

The completeness of a solution (or rather the lack of determining the completeness 
of a complex solution), as well as uncertainty about a complex system’s state and 

coupling are not part of the definition, although they, too, are commonly related to 
complexity [DANILOVIC & SANDKULL 2002].  

Process Complexity 

In particular, the contextuality of a system (i.e., its strong relation to the 
environment) and radical openness (i.e., its possible unforeseeable interaction with 
entities not originally suspected to be relevant) are seen as the core drivers of 
complexity [CHU et al. 2003]. This implies that a complex system has many 
entities which have many different relationships, as stated for systems30. 

Processes are systems in themselves; CARDOSO points out that a process exhibits 

multiple facets of process complexity [CARDOSO 2005a]. He bases his conclusions 

on the similarities of executing a process to running a software, as it has structure 

(software is a highly structured system, cf. above), arrangements (a program has 

many possible arrangements), interacts with different parts, inference (the 

behavior of parts may be different than the sum of the parts), response (program 

gives response to input) and understandability (a software program is difficult to 

understand and verify). He thus transfers and adapts the work from software 

                                                           
30 Further definitions of complexity can be found in [SUH 1999]. [WEBER 2005] discusses 
different ways of looking at complexity in engineering design. 
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engineering to describe process complexity as the number of tasks in the process 

(task complexity), the degree of cross-linking in the arrangement of tasks, and the 

related decision points such as AND, OR, or XOR (control-flow complexity), the 

degree of dependency of the information objects and their mapping to tasks, 

resources etc. (data-flow complexity), and the degree of interdependency of 

resources and their attribution to the tasks in the process (resource complexity).  

Cardoso thus deduces that the definition provided by the IEEE Glossary is 

appropriate to describe process complexity [CARDOSO 2005b]. It is adapted here to 

include not simply the sequence of tasks, but all necessary supportive domains and 

their relationships. 

Process complexity is “the degree to which a process is difficult to analyze, 

understand or explain. It may be characterized by the number and intricacy 

of activity interfaces, transitions, conditional and parallel branches, the 

existence of loops, roles, activity categories, the types of data structures, and 

other process characteristics” [IEEE 1991]. 

Focusing on the network of entities and relationships of the system “engineering 

design process”, in the following, different models, methods, and tools that are 

commonly used to understand, represent, and analyze such systems are presented. 

First, approaches to manage complex network structures are reviewed; then, the 

concept of structure is extended to engineering design processes in order to collect 

metrics that embody structure in a process. 

In summary, processes can be understood as a special class of systems that are 

constructed from entities and their relations among each other. Within this 

network-like structure, certain patterns can be identified that serve as structural 

characteristics. To productively manage such a complex system, a detailed 

classification of entities and relations into appropriate domains and relationship 

types provides a systematic basis to model a system and to compare the entities 

among each other. The actual entities and relations can be taken from any process 

model, as will be shown in section 2.2.3.  

There is a consensus that the structure of a system, i.e., the purposeful 

constellation of entities and relationships, drives its behavior. The identification of 

the patterns that repetitively occur within such a structure can serve as a basis to 

draw inferences about the behavior of a system. It is, therefore, necessary to 

collect these patterns and relate them to their structural significance to better 

analyze a system and understand its behavior. The structural characteristics that 

are available so far will thus be explained in the following sections.  

Lastly, complex systems tend to have many domains that are not independent of 

each other. The aggregation of different views onto a system provides a compact 

means of generating manageable models that do not reduce the structure of a 

system but condense it to its individual impact on a domain of reference. It is, 

therefore, necessary to further explore the creation of such aggregate views to 

better identify structural patterns within large processes. 
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2.1.2 Graph Theory 

Graph Theory31 provides the mathematical foundations to study any kind of 
network, called a graph. A graph is an ordered pair G = (N, E), where N is a set of 
nodes (also called vertices) and E is a set of edges (also called arcs); being a 2-
element subset of N, a graph is thus a formal description for “boxes and arrows” 

when drawing a network on plain paper. It is commonly understood to date back 
to the works of Euler and the “Seven Bridges of Königsberg”, i.e., the 
mathematical solution to the question whether a walk through the city of 
Königsberg could be routed in a way that all bridges would be crossed only once. 

Graph Theory describes networks in a generic way, attributing to them the 
following basic properties:  

‚ They can be directed (“digraph”) or undirected, or both (“mixed graph”). 

‚ They can have a weight associated to nodes or edges (“weighted graph”). 

‚ They can have loops (“simple graph”) or not. 

‚ An edge can connect a node to itself (“loop”). 

‚ They can have multiple edges between two nodes (“multigraph”), one, or 
none, or one edge connecting one node to many others (“hyperedge”). 

‚ They can have edges not associated with any node (“half-edges”, “loose 

edges”). 

Graphs have basic characteristics used to compute more complex analyses: 

‚ Two edges of a graph are called “adjacent” if they share a common node; 

equally, two nodes are called “adjacent” if they are connected by an edge. 

‚ An edge is called an “incident” (in a directed graph), if it is directed towards a 

node; the opposite direction is called an “outgoing” edge. 

‚ The number of edges that connect to a node is called a “degree” of the node.  

‚ Nodes are discernable (“node-labeled graph”), edges as well (“edge-labeled”). 

In particular cases, nodes or edges can also be treated as not distinguishable.  

Graphs also contain certain basic structures that can be used to describe them: 

‚ Elements in a graph can be “disconnected”, i.e., a node has no edge to any 
other node.  

‚ A graph is “complete” if every pair of nodes is connected by an edge, i.e., if 
the graph contains all possible edges. Such a graph, in which every node is 
connected to every other node, is also called a “clique”. 

‚ If a graph is “strongly connected”, it does not necessarily have any cliques in 

it, but every node can be reached from every other node. 

                                                           
31 There are many textbooks available on graph theory that need not be included here; for a better 
understanding, refer to [DIESTEL 2006]. [GROSS & YELLEN 2005] also is used as a common, 
very detailed, textbook; a good introduction in German is available by [TITTMANN 2003]. 
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‚ A graph is “bipartite” if the set of nodes can be grouped into two sets U and 
V in a way that each edge has one node in U and one in V. This implies that 
the nodes in U are disconnected; equally no node in V is connected to 
another node in V. 

‚ A “path” is a set of adjacent edges listed in a specific order; the path can be 

attributed by its length. A “walk” more specifically addresses an alternating 

sequence of nodes and edges that form an open or closed (=“cycle”) walk. 
The shortest path between two nodes is also called a “geodesic”. 

‚ A “cycle” is a path that starts and ends with the same node.  

‚ If a graph has no cycles, it is called a “forest”. If it is a connected graph that 

has no cycles, it is called a “tree”. 

‚ A “spanning” tree is the minimal graph necessary to connect all edges in a 

graph. 

‚ A “planar” graph is a graph whose edges do not cross each other.  

‚ A “subgraph” is a graph S contained within a graph G: G is the “supergraph” 

of S. 

‚ “Graph labeling” is used to assign integer labels to nodes and edges; this can 

be used for the “coloring” of a graph, assigning a color to each node with no 

tuple of neighboring nodes being of the same color. 

‚ The “genus” of a graph refers to the fact that the graph can be drawn as a 
planar graph on a surface of genus n (e.g., a sphere, a torus, etc.). 

Graphs are commonly modeled as “boxes and edges”. There are many methods to 

draw a graph, serving different purposes. A common algorithm is a force-based 
layout that arranges the nodes in a way such that nodes which are closely 
connected arrange as neighbors, repelling less connected nodes [FRUCHTERMAN & 
REINGOLD 1991]. 

Mathematically, graphs can be modeled as an Adjacency Matrix, which is similar 
to a DSM (see below). Adjacency Lists are also a possibility, listing which node is 
connected to what other node. MAURER ET AL. used this to indicate the usefulness 
of graphs to represent DSMs, while drawing equally on the extensive means of 
systematic analysis available in Graph Theory to extend analysis tools suitable for 
matrix-based methodologies [MAURER et al. 2004]. Other models, e.g., the 
Distance Matrix, are not considered here. 

Commonly, the models and methods of Graph Theory provide the basis for 
analyzing structures, as shown in the next section (see Table 2-2 on page 50). 
Graph Theory also provides the basic means of describing large networks in 
Network Theory. 



2.1 Structural complexity of a system 45 

2.1.3 Matrix-based methodologies to manage structures 

Research on matrix-based complexity management32 has come a long way. 
Originating from a focus on process management using the Design Structure 
Matrix (DSM) [STEWARD 1981], a whole community has developed around this 
research. DSM is able to model and analyze dependencies of one single type 
within one single domain. For example, for a product, the domain “components” 

can be considered. Using the relationship type “change of component 1 causes 

change of component 2”, an assembly can be analyzed with regard to the overall 

change impacts in order to model possible change propagations [KELLER et al. 
2005]. [BROWNING 2001a] classifies four types of DSMs to model different types 
of problems: Component-, team-, activity-, and parameter-based DSMs. [JARRATT 
2004] also proposes eight basic types of a DSM related to product architectures. 
However, all of these classifications present special cases of DSM application and 
should not understood as the only possibilities of modeling, but as suggestions for 
commonly accepted and useful models. 

Binary DSMs only represent the existence of a relation, whereas numerical DSMs 
[BROWNING & EPPINGER 2002] implement a weighted graph to represent the 
strength of a relation. DSMs can either be directed (as shown in Figure 2-6), or 
non-directed; in the latter case, a DSM can either be written as a triangular matrix, 
i.e., only the upper or lower triangular matrix is used, or as a symmetrical DSM, 
i.e., the upper and lower triangular matrices are symmetric to the diagonal. 
Elements in DSMs are never reflexive, i.e., a relation from an element to itself is 
not permissible.   

                                                           
32 A recent compendium on different types of matrix-based methods is available as [LINDEMANN 
et al. 2009]. Similarly, [BONJOUR 2008] provides a complete overview of recent developments 
(in French). Also, the web portal www.DSMweb.org (accessed 10.7.2009) provides a reference 
data base related to matrix-based dependency modeling. 

 

Figure 2-6: Binary Design Structure Matrix of a simple process 
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DSM was later extended to Domain Mapping Matrices (DMM) [DANILOVIC & 
BROWNING 2007]. The goal was to enable matrix methodology to include not just 
one domain at a time but to allow mapping between two domains [YASSINE, A. et 
al. 2003]. DMMs are thus rectangular, and again they can be binary or numerical.  

MAURER has taken this approach further to model whole systems consisting of 
multiple domains, each having multiple elements, connected by various 
relationship types [MAURER 2007]: the Multiple Domain Matrix (MDM). Figure 
2-8 illustrates this concept. It shows how a MDM basically is a DSM with more 
detailed DSMs along its diagonal and DMMs outside the diagonal. It also depicts 
how multiple relationship types create several representations of a specific 
submatrix of the overall MDM. 
  

 

Figure 2-7: Binary Domain Mapping Matrix for the process shown in the previous figure 

 

Figure 2-8: Multiple Domain Matrix combining the DSM and DMM from the two previous 
figures and introducing two additional DSMs for one domain, using two different relationship 
types 
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The MDM allows a system’s structure to be analyzed across multiple domains, 
condensing each single analysis into one aggregated DSM that represents multiple 
domains at one time. That way, the MDM is able to apply algorithms for DSM 
analysis meaningfully across several domains [WALDMAN & SANGAL 2007] 
[CRAWLEY & COLSON 2007]. 

The main advantage of a MDM is that relations across more than one domain can 
be aggregated into a DSM using a domain mapping logic, using one native DMM 
(differentiating the direction of the DMM mapping as cases 1 and 2), two DMMs 
(case 3), one DSM and one DMM (differentiating the direction of the DMM 
mapping as cases 4 and 5), and ultimately two DMMs and one DSM (case 6). 
Figure 2-9 and Figure 2-10 illustrate these cases.  

 

Figure 2-9: Possible cases 1 to 3 for computing an aggregated DSM within a MDM [MAURER 
2007, pp. 113-116] 
 
 

 

Figure 2-10: Possible cases 4 to 6 for computing an aggregated DSM within a MDM 
[MAURER 2007, pp. 113-116] 
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As it is very important “to determine which aspects are to be considered in order 

to answer a specific question” [MAURER 2007, p. 18], these cases can be used to 
collect and compile the existing information on the structure in accordance to the 
goal of the analysis. MAURER proposes two ways to do so: the opportunistic 
application (“see what you can get”) and the requirements-driven application 
(“define what you need”) [MAURER 2007, p. 93]. Each way is, at the same time, 
equivalent to the strategy of acquiring the data for the model. An MDM can thus 
be used either to gather native data or to combine data in a way suitable for an 
analysis. [BIEDERMANN & LINDEMANN 2008] extend the proposition and suggest 
a way of calculating cycles across domains of an MDM instead of elements of a 
DSM to calculate single DSMs out of a series of matrices in an MDM; however, 
this strategy remains largely unexplored.  

There are several strategies to analyze the DSMs generated. Classically, a DSM 
is used for sequencing, tearing, banding and clustering. In sequencing, the rows 
and columns of a flow-oriented DSM are rearranged in a way that as few relations 
as possible remain below the diagonal, thus reducing the number of active 
feedbacks, leading to an ideal sequence. However, such an ideal sequence cannot 
always be found33. Tearing consists of choosing the set of feedback marks that 
obstruct sequencing the DSM. The relations that need to be removed are called 
"tears". Banding rearranges the rows and columns in a way that blocks of parallel 
entities remain, which, for example, in a process can be executed independently of 
each other. Thus, a “band” represents a group of elements being active in parallel. 
Clustering is executed to find those clusters of entities that are mutually related. 
Figure 2-11 provides an overview. MAURER explains all techniques in detail 
[MAURER 2007, pp. 225-240]. Similarly, there are algorithms for the systematic 
analysis of DMMs, mostly focused on clustering [DANILOVIC & BROWNING 2007] 
[MCCORMICK et al. 1972]. 

Furthermore, DSMs can be analyzed for structural characteristics. The analysis 
is based on identifying patterns within a structure, i.e., typical constellations of 
entities and relations. A structural characteristic is defined as follows:  

 

                                                           
33 See page 164 for the limits of triangularization. 

 

Figure 2-11: Classic DSM analysis techniques 
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A structural characteristic is a particular constellation of entities and 
relations, i.e., it is formed by a particular pattern formed from nodes and 
edges in the graph [CARDOSO, J. 2006a] [MAURER 2007, p. 123]. The 
characteristic gains its meaning by the way the pattern is related to the actual 
system it is part of, i.e., it must serve a special purpose in the context of the 
overall system [BOARDMAN & SAUSER 2006]. A structural characteristic 
only possesses significance in the context of the system it is describing. 

Figure 2-12 categorizes the common basic structural characteristics that are 
currently available in different works. The structural characteristics shown form 
the basic building blocks to analyzing a structure. An overview is available in 
[MAURER 2007, pp. 225-240], therefore the classification is not detailed further34. 
Eppinger similarly proposes that there are patterns across several domains 
[EPPINGER 2001]; however, he does not formalize them.  

Table 2-2 illustrates the available basic phenomena in graph theory [GROSS & 
YELLEN 2005] and shows which structural characteristics (Figure 2-12) they relate 
to. Although there is no complete one-on-one relationship between phenomena 
and structural criteria, the table regroups what phenomenon a structural criterion 
focuses on. For each, the table shows whether the mathematical phenomenon has 
an application in engineering design or not. As can be seen, there are a number of 
phenomena that have no application (yet). 
                                                           
34 Structural characteristics will later be used to create structural metrics. They are detailed in 
section 5.1.  

 

Figure 2-12: Overview of basic structural characteristics 
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There are still shortcomings to matrix-based methodologies [KREIMEYER et al. 
2008a].   

Generally, attributes to an edge are only possible to a limited extent. Whereas 
matrix-based models are mostly designed as qualitative models and not as 
quantitative models, this fact still hinders the transfer from other models such as 
Petri-nets into a DSM.  

Linking elements of a matrix to a relation is not possible in a matrix. While two 
nodes of a system can be related, it is not possible to link an element of a matrix to 
a relation (i.e., a node to an edge). This issue is resolved in section 4.4.2.  

So far there has not been any systematic research to generate a catalogue of 
structural characteristics. Equally, the differentiation between structural 
characteristics and structural metrics is still not clearly defined.  

Some fields of research have developed indicators to measure the degree of 
complexity of a system as a numerical value. Yet little work has been done so far. 
While the metrics developed as part of this research are not exhaustive, they are 
meant to fill this gap (see section 5.2).  

Network structures in practice often contain decision points that can only be 
represented with limits in a matrix. There has been work undertaken to overcome 
this problem [BELHE & KUSIAK 1995], which is not complete, however, as it does 
not allow logic operators to be included  as part of the matrix description. Section 
4.4.3 completes the existing approaches. 

Common variant design is addressed through commonality issues, for example, 
[BRAUN & DEUBZER 2007]. The modeling of decision points and differentiation of 
co-existing solutions with a common base (e.g., one body with different 
component assemblies) still remains largely unsolved. In process management, 
process alternatives are often designed and compared to generate an improved 

Table 2-2:  Phenomena in graph theory and adoption as structural criteria (based on [GROSS 
& YELLEN 2005]) 
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process. However, there is no methodology yet to generate such structures based 
on a common matrix-based description.  

MAURER introduces a way of excluding several cells of a matrix upon certain 
conditions to describe boundary conditions [MAURER 2007]. Yet, matrix notation 
is still unable to work with more complex conditional settings; even for static, 
non-conditional relations within a system, no notation supports the use of existing 
algorithms. 

The evolution over time (or another axis) remains unsolved, although many 
problems represented in matrices undergo changes, e.g., team structures; however, 
no real mechanism of evolution of a matrix has yet been found. A first approach 
has been shown [EBEN et al. 2008] based on Delta DSMs that map how one DSM 
differs from another [DE WECK 2007]. 

The management of hierarchical decomposition within a cell is still difficult to 
consistently describe [DANILOVIC & BÖRJESSON 2001]. Often, it is necessary to 
go into detail for a few cells only; while it is possible to zoom into such a matrix 
within one cell (it is very similar to an MDM), no description of how to handle the 
multitude of relations from the zoomed matrix going into one single row/column 
in the higher-ranking matrix is available. 

The intuitive and graphical representation of MDMs is still unsolved. DIEHL 
proposes a 3D-vizualization using several planes, where each plane represents a 
DSM, and the space in between is used to show how two planes interrelate [DIEHL 
2009]. However, this is only applicable for small systems. Yet, there has been 
ample research for visualization35.  

Ultimately, no framework for a goal-oriented analysis has been proposed to 
operationalize the opportunistic and the requirements-driven approaches 
systematically [MAURER 2007, p. 93]. More generally, the potentials and limits of 
analyzing structural complexity in different contexts have not been given much 
attention. Section 6 proposes a framework to operationalize the selection of 
metrics for the context of engineering design processes.   

In summary, different matrix-based dependency models were shown that enable 
the modeling and analysis of complex systems for which all entities and relations 
are basically known. Therefore, these models can be seen as deterministic models. 
In the context of analyzing a process chart, these models are, therefore, suitable to 
serve as a means to collect the entities and relations from any process chart in a 
common form, providing a basis to design structural metrics. In practice, however, 
these models are often not as definite as they seem, as generating a process model 
is essentially a process of consolidating different opinions as to how an as-is 
process is actually run. This, however, is not the focus here.  

All modeling methods are paired with different analysis approaches that produce 
different structural characteristics which aid the analysis of the systems being 
modeled. Yet, a number of shortcomings still exist, some of which are highly 
relevant for process modeling, as section 2.2 will show. In particular, the modeling 
and analysis of logic operators in a structure, the systematic aggregation of 
                                                           
35 Examples could be, for example, graph spectra [MAURER et al. 2004], linking it to common 
models [KARNIEL & REICH 2007] or various kinds of graphic representations [LIMA 2007]. 
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different domains and their relationships, and the goal-oriented application of 
analysis in the context of process analysis have not yet been resolved.  

2.1.4 Network Theory 

Additional means of analyzing large network structures are provided by Network 
Theory. The combined use of approaches from Structural Complexity 
Management and Network Theory, therefore, provides a comprehensive toolset 
for the analysis of highly coupled structures; furthermore, both consider processes, 
among other fields of application, and thus provide empirical evidence for their 
use in process analysis. For a better understanding, the analysis tools provided by 
Network Theory and the relevant network models are presented here. 

Network and Graph Theory are closely related. Whereas Graph Theory is focused 
on the formal modeling and analysis of the interaction of single nodes and edges 
of networks of limited size36, Network Theory regards global properties of large 
networks. Thus, Network Theory makes extensive use of graphs, but with a 
different analytic approach37 mostly based on statistics. Network Theory aims at 
creating viable models for large network structures, finding statistical properties to 
describe the networks, and making predictions about their behavior. The networks 
can be of any type. Commonly, four groups are regarded: Social networks (e.g., 
friendships, organizational structures in business, or email exchange), information 
networks (e.g., academic collaboration, websites and hyperlinks, or patent 
citations), technological networks (e.g., distribution networks, phone lines, or 
computer networks), and biological networks (e.g., metabolic pathways, genetic 
regulations, or the food chain) [NEWMAN 2003a, p.7]. To all these networks, the 
basic properties applicable to graphs (directed or not, weighted or not, etc.) shown 
in the previous section apply.  

Network Science differentiates different models, as Table 2-3 shows. The work on 
random graphs is mostly focused on models, as in [ERDOES & RÉNYI 1959]; 
generalized random graphs can be found, for example, in the works of [BOLLOBÁS 
1981] and [NEWMAN et al. 2001]. Small world networks are commonly referenced 
in [WATTS & STROGATZ 1998]. 

Having these models available, the basic properties of large networks as currently 
available can be accounted for. In this context, emergence is an effect particularly 
important to Network Theory, acknowledging essentially the fact that certain 
patterns originate from even random networks, and it is these structural patterns 
that govern the behavior of the overall network. 

 

                                                           
36 Graph Theory is not limited to a certain network size; however, a direct analysis of nodes is 
pointless for networks with millions of vertices, as commonly encountered in Network Theory 
[NEWMAN 2003a, p. 2]. 

37 There are several review publications on the state of the art available: [NEWMAN 2003a] is the 
most complete, while [STROGATZ 2001] provides more examples. [ALBERT & BARABASI 2002] 
is also considered very comprehensive. [DOROGOVTSEV & MENDES 2002], [HAYES 2000b], 
[HAYES 2000a], and [CAMI & DEO 2008] have reviewed the state of the art on Network Theory. 
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The most common property is the size of a network, described by the number of 
nodes, the number of edges, the mean degree of a node, the mean distance of two 
nodes, and the diameter (i.e., the longest geodesic38 in a network). 

The small world effect formalizes the phenomenon commonly known as “six 

degrees of freedom”, an experiment undertaken in the 1960s by Stanley Milgram 

to assess how many people a letter would pass through to arrive at a recipient 
unknown to the sender [KLEINFELD 2002]. Using the small world effect, the 
shortest path between two nodes of the network can be calculated as well as the 
mean path length of all paths connecting any two nodes in the network. 
Obviously, the more “small world” a network is, the quicker information is spread 

or a common opinion is generated (see Figure 2-13). Unlike matrix-based methods 
in engineering, however, the network models used have statistical properties that 
do not occur in technical systems. Thus, this effect is not directly transferable.  

 

                                                           
38 A geodesic is the shortest path between a given pair of nodes. 

Table 2-3: Overview of statistical models for large, static networks (based on [NEWMAN 
2003a]) 
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The transitivity39 of a network addresses the fact that if node A is connected to 
nodes B and C, it is quite probable that nodes B and C are connected, too. Thus, 
nodes with a high degree tend to generate clusters around them, even if these are 
not explicitly present [WATTS & STROGATZ 1998].  

Resilience is also called connectivity. The research interest in a network is how 
the average path length across the network changes if individual nodes are 
removed, and when the network falls apart into distinct groups; additionally, the 
size of these groups is used to characterize a network [ALBERT et al. 2000]. 
Typically, large networks are resilient against the removal of random nodes. This 
relates to the fact that common network structures consist of nodes with a low 
degree, thus being rarely involved in communication [NEWMAN 2003a]. The 
targeted removal of nodes with the highest degree, on the other hand, quickly 
breaks down the connectivity of the networks to such an extent, that with a few 
nodes removed, the network falls apart. This is especially true for scale-free 
networks (see next paragraph).   

Networks in the real world possess different degree distributions [ERDOES & 
RÉNYI 1959] [BOLLOBÁS 1981]. While a completely random graph with equal 
probabilities p of a node being connected will generate a homogeneous network, a 
scale-free graph will turn to a hub-and-spoke-like structure (commonly measured 
using a histogram of the degrees in the network). See Figure 2-14 for the two 
cases. The application is highly relevant to judge the robustness of a network in 
terms of the random failure of a node and its target (i.e., an attack). While 
networks tend to remain generally intact if a node that is minimally connected 
drops out, removing a hub may cause the network to fail completely, as, for 
example, the failure of the power grid in the USA in 1996 showed [WATTS & 
STROGATZ 1998]. Scale-free networks have received particular attention, 
following a power-law degree distribution. In fact, most large networks, e.g., the 
internet, are scale-free networks, having dedicated hubs and few connected spokes 
[LI et al. 2005] [KIM et al. 2002] [BARABÁSI & ALBERT 1999].  

                                                           
39 Also referred to as “clustering”, which should not be confused with clusters in graphs or 

DSMs. 

 

Figure 2-13: Different network types[ WATTS & STROGATZ 1998] 
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In social networks especially, the characteristics of homophily or assortative 
mixing have led to research on mixing patterns. The interest is in how different 
nodes in a network establish groups of similarity of a kind that are not directly 
represented in the network [NEWMAN 2002] [NEWMAN 2003b]. A common 
example is a network of friendships in school.  If the skin color of the children is 
introduced into the study, the network will sort the nodes in a way that distinct 
black and white subgraphs will appear [MOODY 2003]. A more special case is 
degree correlations; here, the pattern is about what constellations of degrees 
correlate [MASLOV & SNEPPEN 2002].  

Social networks, in particular, show community structures, which are similar to 
the effect of clustering in DSMs (see Figure 2-11, right-hand side). A community 
is a group of nodes that are densely connected to each other and little connected to 
the outside network. To detect groups, cluster analysis is performed, which assigns 
a connection strength (much like the weight of an edge) to each pair of nodes 
[MOODY 2003] [NEWMAN 2003a]. However, more recent methods do not simply 
assign a community to a group of edges that are pairwise neighbors, but that are 
related via different geodesics across the group [GIRVAN & NEWMAN 2002].  

Another feature of networks is the navigation of the network. While it is not only 
possible to find one’s way across a large network even without knowing people 

explicitly (“a small world”, [KLEINFELD 2002]), it is also common that individual 
paths across the network take shape.  

Centrality is also a common property of individual nodes as well as networks 
[FREEMAN 1978]. Commonly, centrality is measured using the betweenness of a 
node, i.e., its position on a number of geodesics between all pairs of nodes in a 
network; the more geodesics a node is on, the more central it is because it is part 
of more communication paths across the network.  

Finally, motifs have been recently researched. Motifs are parts of the network 
that, as a subgraph, are recurrent, i.e., they appear in a similar pattern in different 
places across the network [MILO et al. 2002].  

In summary, Network Theory provides a set of structural characteristics that 
complement those provided by Structural Complexity Management. However, 
these structural characteristics are based on statistical network models that 
incorporate random network phenomena that do not necessarily occur in technical 
systems, such as shortcuts across the network, as found in Small World networks. 

 

Figure 2-14: Homogeneous exponential and inhomogeneous scale-free network after 
[ALBERT et al. 2000] 
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In fact, most networks that are regarded in Network Theory are networks from a 
social context. As processes are socio-technical systems, they do, in fact, exhibit 
these phenomena, too, to a certain extent. For example, an organizational structure 
in a process provides the basic communication structure; however, it does not 
elicit all communication channels available. The clustering coefficient that 
reviews the possible relations of a node is a good example, as it points to entities 
of the process that may be more importantly connected than shown in the actual 
network. Therefore, these structural characteristics provide a good complement to 
existing structural characteristics.   

2.1.5 Other approaches to managing complex systems 

General Systems Theory is interested in fundamentals, principles, and models 
valid for any kind of system, thus providing a general framework to describe how 
entities interact [VON BERTALANFFY 1968]. To this end, it applies differential 
equations. Systems Theory is based on the hypothesis of open systems, as opposed 
to many theories in physics, for example, i.e., systems that interact with their 
environment and are able to change their state through constant adaptation. 
General Systems Theory was later extended to New System Theory, differing 
mostly in the fact that the observer now was part of the system [PULM 2004, p.23]. 
It created the approaches of Self-Organization, Autopoiesis, and Dynamic 
Systems Theory. Self-Organization is, to some extent, related to emergence40, i.e., 
how structure arises out of the relations and interactions of a system’s entities. In 

particular, it regards how a system changes over time based on influences that 
originate from itself [DIETRICH 2001, p. 87].  Autopoiesis extends this concept to a 
level at which a system is able to reproduce itself based on the entities it is made 
of [MINGERS 1994]. Both approaches make use of four core principles inherent to 
open systems as proposed in General Systems Theory: Complexity (i.e., being a 
network of entities and their relationships), self-reference (i.e., the behavior of the 
system has an impact on the system itself), redundancy (i.e., entities that are in 
control cannot be separated from those that are being controlled), and autonomy 
(i.e., the behavior of the system can be detached – to some extent – from the 
environment) [PROBST 1987, p. 76]. 

Cybernetics [WIENER 1948] is closely related to General Systems Theory. Its 
main interest is in how complex, dynamic systems can be controlled to achieve a 
goal-oriented behavior [PROBST 1981, p. 7] regarding the control mechanisms 
among the entities of a system and the transfer functions that represent 
relationships. Cybernetics is an important foundation of  management sciences 
[MALIK 2003, p. 80]. BEER bridged cybernetics and management science to create 
the field of Management Cybernetics [BEER 1972]. It is based on the concept of 
systems, and it incorporates the control mechanisms from cybernetics to model 
and determine how the actors in an enterprise are mutually interdependent and 
how they reach decisions by influencing each other [JACKSON 1991]. Cybernetics 
provides a paradigm where things are interdependent and certain organizational 
patterns directly impact the behavior of a system. This is also the basic 
understanding in this research.  

                                                           
40 See section 2.1.4. 
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Systems Engineering is another discipline that uses the ideas from System 
Theory to better manage problems in engineering design. To do so, it extends the 
understanding of a system from the technical system under consideration to the 
project that creates the technical system [OLIVER et al. 1997, p. 85]. Systems 
Engineering makes extensive use of the network structure of the system and the 
control mechanisms that govern the system, and the context of Systems 
Engineering has given rise to a number of methodologies to model processes (e.g., 
IDEF, see appendix), Quality Function Deployment (see section 6.1.1), and 
various other models [INCOSE 2007].  A core concept is to link the behavior of a 
system (i.e., what a system does) to its structure (i.e., how a system is built), as 
proposed in this research [OLIVER et al. 1997, p. 21]. 

System dynamics equally regards systems, focusing on their internal network 
structure. However, it concentrates on the dynamics of this network to simulate its 
behavior in order to deduce improvement measures [FORRESTER 1977]. It is based 
both on quantitative models, mostly network-like flowcharts, and qualitative 
models to detect feedback loops that may either reinforce or balance the system.  

Operations Research is interested in attributing resources to a problem under 
certain boundary conditions, using optimization algorithms to achieve an optimum 
solution. It applies methods such as linear programming, graph theory, scheduling 
algorithms, network theory, and different aspects of combinatorial analysis [FINKE 
2008, p. ix]. Operations Research treats many problems that are similar in this 
research, and many algorithms for structural analysis have originated from 
Operations Research, especially regarding connectivity, shortest paths, matchings, 
and n-partite graphs [BIENA 2008].  

Information Theory tries to quantify information, thus making possible many 
modern communication technologies. It applies a basic measure for the 
complexity of information, namely entropy, eliciting the average storage space 
necessary to recuperate a piece of information [SHANNON & WEAVER 1998, pp. 
48-50]). It was later extended to Algorithmic Information Theory, combining it 
with the idea of determining the computability of an algorithm using a Turing 
Machine (i.e., a model of the computation of an algorithm). Tuning machines use 
the more formal Kolmogorov complexity as a measure for the computational 
resources necessary to describe a piece of information [BURGIN 1982]. 

To explain networks of economic transactions, New Institutional Economics is 
also related to the research presented here; however, it is mostly focused on 
explaining the rationale behind why two or more entities form a network. The 
Principal-agent problem regards, in particular, the “asymmetric” exchange of 

information within a network of potential partners, whereas Transaction Cost 
Theory focuses on the cost of exchanging information, and how this exchange can 
be organized most efficiently [KEIJZER 2007, p. 28]. 

2.1.6 Summary 

With structure defined as the purposeful patterns that occur in the set of entities 
and relationships of a system, structural complexity prevails in different 
disciplines, creating different dependency models. Matrix-based models such as 
Multiple-Domain Matrices have only lately matured to a level able to describe 
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large systems involving several domains and relationship types, and many 
questions remain unsolved. Yet, the method is able to embed many analyses that 
can be traced back to Graph Theory or Systems Theory. 

Table 2-4: Summary of features of structural analysis in different disciplines 
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Graph Theory and Network Theory have evolved in parallel, creating different 
techniques to systematically analyze structural characteristics, such as the 
centrality of an actor in a social network or planarity as a measure of 
understandability of a system. The recombination of the different appropriate 
structural characteristics from the different disciplines provides a comprehensive 
toolset for the analysis of any system, as shown in Table 2-4 (features appearing in 
several disciplines are listed only once). In particular, research in engineering and 
social sciences provides empirical evidence of the applicability of different 
structures in any kind of system and in processes specifically. 

Furthermore, Multiple-Domain Matrices make it possible to create aggregate 
views that recombine different domains and relationship types into compact 
Design Structure Matrices used to analyze the long-range effects across several 
domains. The combination of Multiple-Domain Matrices with structural 
characteristics available in the different sciences, therefore, provides a 
comprehensive analysis tool for large complex systems. Yet, some gaps in 
modeling methodology still exist, especially the modeling of logic operators, the 
goal-oriented analysis and the aggregation of different domains. These issues will, 
therefore, be addressed later to complete the existing modeling methods. 

2.2 Structural aspects of process management 

Processes have been of interest for a long time. Process orientation was already 
proposed in 1934 [NORDSIECK 1934], yet process management did not really catch 
on until the 1980’s [BECKER et al. 2005, p. 3]. A process-oriented organization is 
characterized by customer orientation, fewer interfaces, lower effort of 
coordination, clear responsibilities in terms of the results of the process, 
systematic improvement of process performance, process controlling, 
decentralized management, and organizational learning [SCHMELZER & 
SESSELMANN 2006, pp. 68-71].  

In the following, the basics of process management are explained. In particular, 
those aspects that relate to the structure of a process are focused, i.e., 
dependencies and their patterns in process management. Quantitative analyses 
(e.g., towards lead time) are omitted.   

2.2.1 Processes in Engineering Design 

Process orientation has led to many different areas of research. In general, the 
more general notion of a process can be broken down into business processes and 
engineering design processes. Such a basic classification is, of course, not 
complete; there are many other taxonomies available, e.g., in primary (i.e., value-
generating), secondary (i.e., doing the preliminary work for the value generation), 
and supporting processes (e.g., administration) [BECKER et al. 2005]. However, 
these are not addressed in this book, as the primary focus is on structure.  

Table 2-5 lists common definitions of the term “process”.  Basically, a process is a 

set of interdependent tasks. Yet, a process is commonly characterized by its 
objective, its activities, its inputs and outputs, the events before and after it, its 
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reference to time, and the resources used. Thus, many different aspects 
collectively enable a process, for example, resources or the inputs and outputs.  

The following definition for a process used for this research is based on [VAN DER 

AALST & VAN HEE 2002, p. 4], while additionally introducing the aspect of a 
network of tasks that are highly interdependent, which is of high relevance 
especially to processes in engineering [O'DONOVAN et al. 2005]. This definition is 
used, as it embodies the concept of a process as a multi-layered network (i.e., the 
first hypothesis of this research) and thus lays the foundation of assessing the 
structure of a process to deduce indications about its behavior. 

A process consists of interdependent tasks that exchange information via 
artifacts. The process is enabled and supported by the purposeful allocation 
of resources and time-oriented constraints. All of these entities are 
interrelated, on the one hand, via the input-output relationships among tasks 
along the principal process flow, and, on the other hand, via other 
relationship types that generate the overall process network. 

In this context, a task is a logical unit of work that is carried out as a single whole 
by one resource over a period of time. A resource is the generic name for a person, 
machine, or group of persons or machines that can perform a specific task. All 
entities may have relationships among themselves.  

Table 2-5: Definitions of the term "process" in literature 
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A business process is “a special process that is directed by the business objectives 

of a company and by the business environment. Essential features of a business 
process are interfaces to the business partners of the company (e.g., customers, 
suppliers). Examples of business processes are the order processing in a factory, 
the routing process of a retailer, or the credit assignment of a bank” [BECKER et al. 
2003, p. 4]. Such a process is, therefore, repeatable without the necessity to 
generate knowledge about the process execution.  

An engineering design process, in contrast, is a process during which knowledge 
about an object is generated. As this object still necessitates designing, its nature is 
– at least in part – unknown. This generates uncertainty throughout the process 
that needs to be managed, and that causes an engineering design process to be 
much less deterministic than a business process. Table 2-6 distinguishes business 
processes and engineering design processes.  

As can be seen, in engineering, design processes have the character of problem 
solving [LINDEMANN 2007, pp. 45-47], i.e., they cannot simply be processed but 
necessitate the generation of knowledge [HATCHUEL & WEIL 2003]. They thus 
represent a “wicked problem”

41 [RITTEL & WEBBER 1973]. Mostly, this is due to 
the high degree of novelty that is common for any product being designed. As a 
result, during the process, there is always a high degree of uncertainty present 
about the outcome – the earlier in the process, the more uncertainty there is in the 
process [LORENZ 2009, pp. 27-30]. In process management, this uncertainty takes 
shape especially in iterations, during which the design is reworked, improved and 
refined [WYNN et al. 2007] [ROELOFSEN et al. 2008]. Often, too, these iterations 
are not regularly cyclic, but they occur as leaps forward or backward in time 
[BADKE-SCHAUB & GEHRLICHER 2003]. While the process often creates quite 

                                                           
41 A “wicked problem” refers to a problem that cannot be definitively described and that has no 

definite solution. Therefore, there are no optimal solutions, and solving the problem is hardly 
possible, only indications can be given. 

Table 2-6: Difference between business processes and engineering design processes 
[VAJNA 2005, p. 371] 
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erratic patterns due to this, artifacts, or rather the knowledge about their desirable 
properties, are characterized by their growing concretization during process 
runtime [KREIMEYER et al. 2008c], and the intermediate results that represent 
certain stages of this concretization determine the path of the process [VAJNA 
2005] [PONN & LINDEMANN 2005], at times necessitating the re-planning of the 
process. At the same time, engineering design processes are often impacted by 
moving targets and late changes to the initial concept due to late learning during 
the design process. Overall, engineering processes,  therefore, have a low degree 
of repeatability [VAJNA 2005], and they are difficult to model and plan 
[O'DONOVAN 2004]. Yet, their behavior follows basic patterns [EPPINGER 2001], 
namely the specific mutual dependencies between the organization, the process 
and the product architecture. These need to be well aligned and mutually adapted.  

Engineering Design Processes are often carried out as projects, with the project 
organization bridging the organizational hierarchy and the common process 
[LINDEMANN 2007, p. 12 and p. 16]. A project, however, is understood as a 
“temporary endeavor undertaken to create a unique product, service or result” 

[PMI 2003, p. 5]. WYNN differentiates processes as mechanistic or projects as 
non-mechanistic [WYNN 2007, p. 84]; the interest in the process is more on the 
mechanism (or structural patterns, as in this research), while a project plan is more 
focused on the timeline. 

In this context, the control flow is an important aspect. The control flow (also 
called control view) is the set of relations of the various entities of a project 
[SCHEER 1999, p. 102]; it is thus equivalent to the network of entities in the 
process definition applied here. The concept generally prevails in business process 
management. However, the term is used by other fields of science, as well.  

Process management makes use of this understanding to analyze, design, 
implement, enact, monitor, and evaluate processes to improve value creation in the 
enterprise [ZUR MUEHLEN 2004, pp. 82-87], shown in Figure 2-15. The 
importance of the relations among the different entities of a process as a basis for 
the behavior of the process is commonly recognized; this has led to the 
understanding that improving the interfaces between different entities in a process 
provides the biggest leverage to obtain a more efficient process [RECHTIN 1991, p. 
29] [WASSON 2006, p. 18] [FLURSHEIM 1977].  

 

Figure 2-15: Business process management lifecycle [MENDLING 2008, p. 5] 
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Figure 2-16 visualizes the importance of how the paradigm, i.e., a certain 
perspective or understanding, drives the different activities during process 
management in engineering design [KREIMEYER 2008]; the model is similar to the 
Spiral Model in software development [BOEHM 1988].  

The model works as follows: First, a model is prepared (the level of detail, the 
relevant views, the modeling language, and the access to information); then, 
problem areas of the process are defined and prioritized (i.e., the system border is 
drawn). Next, information is collected and models are created, and, last, the 
models are consolidated before they are analyzed for possible improvements 
[BECKER et al. 2005, 109-122].  

In the context of this research, only structural aspects are of interest, and thus, the 
constitution only relates to collecting information about the relationships between 
the entities of the process. In the same manner, the model is a dependency model 
that then is evaluated, for example, for patterns that characterize the process’s 
behavior, from which possible improvements are deduced. 

As both figures show, the process model is the core component to process 
management [LINDEMANN 2007, p. 124], generating an overview about the current 
situation inside the company as the prerequisite for the improvement of a process. 
Of course, every process model is more or less simplified, made abstract, and 
reduced to the essentials. To model a process, usually the inputs and outputs, as 
well as the transforming tasks of the process, are captured, e.g., through 
workshops and interviews. The system boundary, in this context, describes 
departments, persons and facilities assigned to the system.  

 

Figure 2-16: Influence of the modeling paradigm and continuous process improvement 
[KREIMEYER 2008] 
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STETTER [2000] highlights his hypothesis that some weakness can be found in 
every design process model, for example, cost-intensive iterations in late phases, 
problems in finding and retrieving stored information, or problems caused by 
frequent product changes [STETTER 2000, p. 48]. Based on this hypothesis, it can 
be summarized that the identification of strengths and improvement potential in 
industrial practice not only consists of a search for strengths and weaknesses, but 
also includes the selection of the most prominent improvement potential.  

The relevance of an improvement is given by the goals of a process improvement 
project, which dictate the modeling paradigm and which guide the later analysis of 
the model(s) created. The following section reviews possible goals more closely. 

2.2.2 Goals of analyzing, improving and managing processes 

Processes are managed for a number of reasons, satisfying different stakeholders, 
and there are various classifications of the concepts and goals of process 
management. Table 2-7 lists those aspects related to the structure of the process. 
These are adapted from the literature on typical errors, common problems, or the 
general intent of process management. Their categorization, as shown in the left-
hand row, can be understood as common goals that for which processes are 
analyzed and improved.   

The table is constructed from the references shown in the top row. From each 
reference, relevant concepts in process management were collected. In fact, some 
references directly address the goals of process management [KREIMEYER et al. 
2008b] [BECKER et al. 2005, p.5, p. 30, p. 124], while others speak about the foci 
of process improvement in a more  general manner [ZIMMERMANN 2008, p. 72] 
[SCHMELZER & SESSELMANN 2006, pp. 68-70] [IDS SCHEER 2007, p. 10] 
[GAITANIDES et al. 1994], and again others address typical problems in processes 
[BEST & WETH 2009, p. 77] [EUROPEAN FOUNDATION FOR QUALITY 

MANAGEMENT 1995]. All of these concepts were collectively classified with 
regard to their structural content, i.e., only those concepts that relate to the 
structure of a process to at least some extent were kept. In the context of this 
research, the concepts shown will be used as a framework to systematize a process 
in a goal-oriented manner. Section 6.1 will show common methods into which 
these concepts can be embedded. 
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Table2-7: Different concepts in process improvement  
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Table 2-7: Different concepts in process improvement (continued)  

 

2.2.3 Process models and their structural content 

Process models are an essential part of process management, as they help in 
understanding a process by representing the entities involved, their relationships, 
and the quality of their interactions. They are thus used for a variety of purposes 
which coincide with the different goals of process management, as shown before. 

To assess process models for their structural content, it is necessary to understand 
to what extent each individual process model depicts a part of the structure of a 
process. In the interest of comparing what model is made for what purpose, 
BROWNING assesses different process models as to their focus and the different 
stakeholders interested in a process model [BROWNING 2009] [BROWNING 2008]. 
He concludes that while every model in his review is made for a different purpose, 
many models convey similar information.  

To suit different needs, numerous methodologies for process modeling are 
available, and non-exhausted lists and comparisons are provided, for example, by 
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[BICHLMAIER 2000, pp. 43-61], [BAUMBERGER 2007, pp. 299-316], [SPATH & 
WEISBECKER 2008], [BROWNING 2009], [HEISIG et al. 2008], [LANGER et al. 
2009], or [KARNIEL & REICH 2009]. [BROWNING & RAMASESH 2007] look more 
deeply into network-like process models, reviewing the literature published in the 
last decade. They conclude that, among other foci, the interaction of tasks and 
their impact on overall process improvement can be found in all existing models, 
yet needs more focus.  

To be able to design a comprehensive approach that allows analysis of different 
process models in terms of their structural content, it is necessary to outline how 
process models can be compared and returned to one common denominator with 
respect to their structure. Both necessities are explained in the following section, 
starting with the latter aspect of reviewing how the interoperability of such models 
can be assessed to then analyzing models for their common structural content. 

Comparing and recombining process models  

To develop an analysis method that suits not one but all common process models, 
a structured basis for its design is needed. To do so, a modeling framework needs 
to be created that incorporates the particularities of common process models, i.e., 
their specific modeling constructs, such as their semantics and semiotics. This 
section reviews the necessary methodology by looking more closely at the results 
of research on the interoperability of process models.  

A process model involves many different aspects, summarized in Figure 2-17, for 
example, the semantics, their syntax, and the notation in which they are 
embedded. Existing process models vary in one or more aspects shown, and they 
do so to create an effective methodical support of one or several goals of process 
management. To do so, the semantics of the different modeling languages 
generally contain different aspects of, for example, scheduling, resource 
attribution or other domains. Other models, e.g., extended Event-driven Process 
Chains (EPC, see appendix 10.1.1), focus on the preparation and possible 
implementation of a process support through information technology and, 
therefore, integrate IT-systems and information objects into their semantics. 

 

Figure 2-17: Aspects of process modeling [KÜHN 2004] 

Notation Syntax

Modeling 
language

Modeling 
technique

Modeling 
procedure

Semantic 
domain

Semantic 
mapping

Semantics Steps Results

considers

visualizes

defines visualization

defines meaning

defines way of language application delivers

describes
meaning of

arranges 
according to

defines grammar



68 2. The foundations of complexity metrics 

Again, YAWL (Yet Another Workflow Language, see appendix), for example, 
was designed to support the setup of the best possible workflow systems and, 
therefore, strongly focuses on formally correct decision logics, so-called workflow 
patterns, in the modeling scheme, while leaving out many other aspects that EPC 
integrates. However, if metrics are to be applied to estimate the complexity of a 
certain property of a process, it is necessary to have a basis to make these 
measures interoperable [CARDOSO 2005b]. 

As stated above, many process models are very similar to each other, following 
only marginally different foci, and a lot of work exists on the so-called 
interoperability of process or enterprise models.   

To allow process models to be compared, BECKER & PFEIFFER [2008] suggest 
analyzing process models in terms of their semantics and syntax, and thus find two 
classes of conflicts that can arise between any two process models (language and 
ontology-based). To systematize the comparison of process models and to 
overcome these conflicts, HÖFFERER [2007] describes a meta-model-based 
approach to achieve a better interoperability between different process models by 
using ontologies42 to compare how “close” one process model’s meta-model is to 
the next [HÖFFERER 2007]. He thus proposes a terminological level at which 
models become comparable and which can be transferred from one model to 
another. The model is extended to a meta-level across the meta-models of 
different process modeling methodologies, referred to as a meta2-model (see 
Figure 2-18).  

Whereas modeling language-based conflicts limits the exchangeability of process 
models [BECKER & PFEIFFER 2008], the aspect of reviewing the semantics of 
processes at the level of the meta2-model is of interest to see if different process 
models offer similar structural content, namely similar domains and relationship-
types. This approach is quite similar to the SEMAT methodology which compares 

                                                           
42 For the ontology-based comparison of process models, see also [GUIZZARDI et al. 2002], 
[PFEIFFER & GEHLERT 2005], and [SIMON & MENDLING 2007]. 

 

Figure 2-18: Different meta-levels to compare process models [HÖFFERER 2007] 
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process modeling methodologies using a meta3-model as a framework for the 
comparison [KLUTH et al. 2008]. In the following, the meta²-level is chosen to 
compare the meta-models of different process modeling methodologies.  

Comparison of common process models and their structures 

With the goal of analyzing processes and their structure, this section reviews 
common process models as to their structural content. Common models are, in this 
context, those models that are either considered standard in industry according to 
[IDS SCHEER 2007] or that serve as a common reference in research with 
[BROWNING & RAMASESH 2007] as the main reference. The interest of this 
analysis is to generate a meta-model later for structural process modeling able to 
accommodate common process models (see chapter 4 of this book), thus 
becoming an analysis adapter for existing process models.  

Table 2-8 represents the most common process models used for engineering 
design process analysis. All models are described in detail in appendix 10.1 of this 
book. In the appendix, each model is described as a flow-oriented model 
according to the individual modeling conventions, and it is represented as a 
specific meta-MDM that shows all domains contained in the respective modeling 
language as well as the relationship types that can be found. Figure 2-19 shows the 
SADT meta-model on the left-hand side with four basic types of activities that 
generate four domains in the meta-MDM on the right-hand side. Those domains 
that are related can be seen in the flow-chart model; their relationship types are 
given in the meta-MDM to the right-hand side of Figure 2-19. 

Table 2-8: Common process modeling methodologies 
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Using the meta²-level, the process models from Table 2-10 were compared 
concerning their structural content. Figure 2-20 shows the general approach, 
using an example of two partial process models in EPC and IUM on the lower 
level, their meta-models on the middle level, and the regrouped domains on the 
top of the figure. The relationship types are not shown in the figure but are, of 
course, part of the analysis, as well. The analysis consists of two steps.  First, 
common domains are collected to constitute the domains of a meta2-model. Then, 
relationship types among these domains are established by collecting common 
relationship types of the individual meta-models for all process modeling 
methodologies.  

 

Figure 2-19: Example of a SADT as a flow-chart meta-model and as a meta-MDM to show 
the structural content 

 

Figure 2-20: Example of the meta²-model approach taken here to compare process models 
and  their structural content, aligning an EPC and an IUM Model at level 3 of the model by 
[HÖFFERER 2007] 
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Table 2-9 shows the domains of each process meta-model. Based on the 
descriptions of each model, these domains were regrouped into eight categories 
that represent common domains of process modeling. All descriptions and the 
necessary references are given in the appendix. 

The table was designed like that of Table 2-7. Again, all individual classes of 
objects of the chosen process modeling methods were collected based on their 
descriptions in the references. For example, IUM lists  “actions”, “functions”, and 

“activities” as descriptions for a task according to [MERTINS & JOCHEM 1998]. All 
classes of modeling objects were collectively classified. The resulting domains are 
listed in the top row of Table 2-9. 

Table 2-9: Regrouped domains of structural interest for all 13 reviewed process modeling 
methodologies 
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There are specific modeling constructs that can be understood as additional 
domains, as Table 2-10 shows: P3 and PMM allow the specific decomposition of 
the tasks in the process, forming a domain of their own. Similarly, BPMN and 
YAWL introduce an individual domain to represent logic operations. BPMN 
furthermore models text annotations explicitly as a separate domain, although 
such annotations are common in all process models and, in fact, do normally not 
represent a specific domain of their own. 

The same collection and classification can be done for the classes of relations that 
each modeling method provides. However, as the descriptions in appendix 10.1 
show, many process modeling methods are not very specific about the different 
relationship types. For example, for SADT (Figure 2-20) no description is given at 
all; therefore the actual meta-model and the references only indicate an 
input/output relationship type [MARCA & MCGOWEN 1988]. The result of this 
collection of relationship types is not shown here but is taken up in section 4.3 to 
construct a meta-model for structural process modeling that entails all relevant 
domains and relationship types. 

In summary, all process models contain aspects of the structure of a system to 
some extent, as they all consist of “boxes and arrows”. While some models 

specify the structure very strictly, others leave more room for process modeling 
experts to adapt the model. Yet, it is possible to review existing models at a more 
abstract level to find a common denominator, both with regard to the domains 
involved and their relationships. Section 4.2 takes up that concept to generate a 
meta-model that later serves as a basis for the application and interpretation of 
structural metrics for engineering design process analysis. 

2.2.4 Strategies to analyze design processes and models 

Process analysis is a common buzzword and a wide field of research43, and it has 
been so for many decades now. Generally, there are specific methods to analyze 
                                                           
43 For example,  [CHAMPY & HAMMER 2007], [DE BRUIN et al. 2000], [BECKER et al. 2005], 
[SCHMELZER & SESSELMANN 2006], and [GAITANIDES et al. 1994] provide an overview of 
general process management. [CLARKSON & ECKERT 2005] and [FAHRWINKEL 1995] review 
approaches specifically for engineering design. 

Table 2-10: Further domains that occur among reviewed process modeling methodologies 
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and deduce improvements for each individual aspect of process management, as 
shown in Table 2-7. There are also two kinds of strategies: continuous 
improvement and radical reengineering [HAMMER & CHAMPY 2003]. Both, 
however, are based on modeling a process and the analysis of the process models.  

Engineering design is closely connected to problem solving [LINDEMANN 2003] 
[LINDEMANN 2007]. In turn, a process must support the best possible problem 
solving, and, therefore, the structure of the process organization needs to be 
closely connected to the product architecture. 

This ambiguous borderline between process improvement and product design 
makes it difficult to systematize approaches to process improvement in 
engineering design. WYNN organizes process models, including the modeling and 
improvement intents in a framework consisting of several layers [WYNN 2007, pp. 
16-60], as shown in Figure 2-21. The classes represent specific views of the 
design process, and each has created different models and improvement 
approaches.  

As Figure 2-21 shows, the structure of a process is only addressed implicitly, 
which reflects the fact that there has been minimal attention in research on process 
improvement so far. In Wynn’s system, structure is a part of the analytical 
approaches, and is addressed to activities, information transfer, or the actors. To 
this end, different strategies exist (task networks, queuing models, multi-agent 
simulations, system dynamics), but there is no overall approach that supports the 
selection of any of these quantitative, detailed and labor-intensive methodologies 
from a more qualitative point of view. 

 

Figure 2-21: Framework of organizing process models and their analysis [WYNN 2007, p. 60] 
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Generally, different methods of analyzing and improving processes are available 
[FREISLEBEN 2001, pp.71-74]: Experiential, analysis of historic structures, 
identification of duplication of work, analysis of interfaces, capability of 
communication, calibration of milestones, and comparison to reference models. 
However, these do not relate to structures directly except for the analysis of 
historic process models, which are the focus of this research. 

The structure of processes has generally been addressed from a semantic point of 
view, having created many procedural models44 to guide the design process; 
however, these remain at a very rudimentary level. At a more sophisticated level 
of detail, a DSM is generally used to interrelate the tasks of a design process to 
improve sequence, communication, or synchronization [BROWNING 2002] 
[KUSIAK et al. 1995] [STEWARD 1981].  

Other research has enriched the simple dependencies in these models to include, 
for example,  the possibility to overlap tasks [KRISHNAN & EPPINGER 1997], the 
uncertainty inherent in a task [CHALUPNIK et al. 2008], decision options and 
scenarios [CLARKSON & HAMILTON 2000] [WYNN 2007], the different aspects of 
behavior of the actors of the tasks on a strategic level, such as coordination 
techniques, cooperation techniques, organization models, project management, 
and others [WHITFIELD et al. 2000], the behavior of actors on an operational level, 
e.g., resource attribution, scheduling, and others [COATES et al. 2000], and 
complex simulation [KARNIEL & REICH 2009]. 

Besides these approaches, which are focused mostly on the principal process flow 
as a set of tasks and their supportive entities (e.g., resources), another stream of 
research has focused on how the design process can be best aligned for the product 
architecture [SOSA et al. 2004b] [KREIMEYER et al. 2007c] [DANILOVIC & 
BROWNING 2007].  

Little work has been done outside these basic metric designs, which relate mostly 
to product complexity. However, individual work on, for example, customer 
integration [KAIN et al. 2008], the role of social networks [LIBERATI et al. 2007], 
or enterprise architectures [WALDMAN & SANGAL 2007] have shown the need to 
manage the structure not only among the tasks but across all entities and domains 
of a design process [EPPINGER 2001].  

So far, no comprehensive approach is available for the structural analysis of a 
complete process, and there seems to be no framework for the systematic 
improvement of a process’s structure. There are, however, many fragmented 
methods and algorithms available that support the analysis and improvement. 

2.2.5 Summary 

A process can be understood as a system made up from different domains and 
relationship types, and it forms a network structure which only serves its purpose 
as a whole. While common business processes have already become highly 

                                                           
44 Typical procedural models are, for example, the VDI 2221, the Munich Procedural Model 
[LINDEMANN 2003], the SPALTEN model [ALBERS et al. 2005], and the V-model of the VDI 
2206. An overview can be found in [BAUMBERGER 2007, pp. 72-77]. 
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complex, in engineering design this complexity is even greater through growing 
specialization and the distributed generation of knowledge.  

Process management offers different methodologies to improve such processes, 
and improvements follow certain goals. Those goals relevant to structural process 
improvement were reviewed and consolidated to serve as a basis to set up a 
framework to organize structural metrics for process analysis.  

An important foundation of process management is the modeling of processes. 
Each modeling method brings with it different domains and relationship types for 
the set of common aspects regarded by process management. Using a meta²-
model, it was shown that process models in research and industry have common 
structural content that can be used to access the process structure embedded in 
these models; furthermore, different process models can be combined and/or 
compared that way with regard to the structure of the process. Nevertheless, there 
is no comprehensive approach to analyze the structure of a process in a goal-
oriented manner. Although different methods for process analysis exist, these 
remain largely unconnected.  

2.3 Metrics to analyze the structure of a process 

This section reviews metrics as a means of the systematic analysis of large 
systems45.  First, the foundations of measuring are introduced; then the different 
aspects of good measurement of the complexity of a structure in network, 
software, processes, and engineering design, are reviewed. In particular, existing 
structural metrics are reviewed in detail to increase the understanding of the 
existing basis for developing metrics able to characterize different structures in an 
engineering design process.  

2.3.1 Basics and measurement foundation  

Metrics46 are a means of representing a quantitative or qualitative measurable 
aspect of an issue in a condensed form [HORVÁTH 2003]. This “measurement is a 

mapping of properties of empirical objects to formal objects by a homomorphism” 

[ZUSE 1998, p. 92]. As such, a metric is therefore intended to depict an actual 
situation in a reduced and efficient manner.  

Measurement theory47 [ZUSE 1998] provides the basis for the design of such 
metrics. It describes how a phenomenon can be measured by establishing mapping 

                                                           
45 “Large” will not be specifically defined, as it addresses essentially the fact that a system has 
many entities and relationships that are complex and thus difficult to handle. 

46 Measurement theory also refers to scales and measures, which, in this context, will be used 
synonymously. In economics, the term “performance indicator” is used, as well; however, it is 

not applied here, as it implies rating a good or bad performance rather than a basic metric 
[KAPLAN & NORTON 1992]. 

47 Measurement Theory is succinctly reviewed in [SUPPES & ZINNES 1963] (available at 
http://suppes-corpus.stanford.edu/article.html?id=43, accessed 9.8.2009) and in [LUCE et al. 
1988] 

http://suppes-corpus.stanford.edu/article.html?id=43
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of an empirical concept to a mathematical concept. Measurement foundation 
addresses three common problems [STEVENS 1946]:  

‚ The representation problem addresses the fact that a numerical scale should 
represent the relations that prevail in the real world. 

‚ The uniqueness problem assesses the invariance of a metric to basic 
mathematical transformations. 

‚ The meaningfulness problem allows the possibility of drawing conclusions 
from measured value. 

Besides these foundations, the validity of a metric is, of course, of particular 
interest. The goal is to see if a metric actually represents what is supposed to be 
measured. The validity of a metric, therefore, largely relates to the meaningfulness 
problem. It can be broken down into three aspects [MENDLING 2008, p. 106], 
visualized in Figure 2-22: 

‚ Content: Is the full range of possible meanings of the object represented? 

‚ Criterion: Is the measured aspect the correct one to represent the topic of 
interest? 

‚ Construct: Is the criterion in line with theoretical reasoning? 

These problems are approached by different kinds of metrics. The scale hierarchy 
[STEVENS 1946] classifies metrics as nominal, ordinal, interval, and ratio scales. 
Identification numbers, for example, are nominal values, attributing a name to an 
empirical issue. Ordinal scales, such as the weight of an edge that relates to, for 
example, the intensity of the use of the communication channel represented by the 
edge, relate directly to the proportions in the empirical domain. Interval scales 
preserve only the relative distance between two empirical observations. Ratio 
scales, ultimately, extend the interval by a zero that expresses the absence of an 
empirical observation.  

 

Figure 2-22: Example of a structural metric and the different aspects of its description 
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Metrics can also be classified as fundamental and derived [ZUSE 1998, p. 95]. 
Fundamental metrics commonly emerge at an initial point of research; derived 
measures aggregate one or several fundamental measures.  

There is ongoing discussion about what kind of metrics can be seen as “real 

metrics” [AICHELE 1997, p. 74]. Some researchers argue that only ratios are real 
measures, as they not only yield a result but also a scale provided by the baseline 
of a fraction. Other researchers see the problem pragmatically, arguing that any 
metric that is able to express an empirical problem in a meaningful way is a useful 
measure. In this research, the latter view is followed.  

Overall, two basic strategies to generate specific measures are possible: Either, 
well-understood fundamental metrics can be applied to a comparable context to 
generate new derived measures, or new fundamental metrics can be used. In this 
research, as presented in the following chapters, mostly new derived metrics are 
developed that use pre-existing empirical foundations.  

A set of related metrics is commonly organized as a measurement system48. The 
goal of establishing such a system is to organize metrics concerning their number, 
precision, and appropriate allocation based on their commonalities and relations 
among each other [AICHELE 1997, p. 79]. A measurement system can thus be 
defined as an “ordered set of metrics that are semantically related, that 
complement each other and that – as a set – are intended to represent an empirical 
issue in a well-balanced and complete way” [LACHNIT 1976]. 

A measurement system, therefore, is intended to structure a complex issue49 in the 
real world in a condensed way, while making it possible to detail individual 
aspects as needed. Thus, an issue can be accessed in a structural manner, while it 
also serves as a framework to compare different objects under observation 
[SCHÜRRLE 1995, p. 14]. Like metrics per se, such a system intends to be 
homomorphous containing aspects that are of relevance in the real world. A 
measurement system can be structured in four different basic ways [AICHELE 
1997, p. 81]: 

‚ A mathematical system relates metrics by calculating combined or derived 
metrics from fundamental ones. This way, hierarchies of metrics, like the 
DuPont-System of Financial Control, are set up. 

‚ Practical systems apply factual logic to relate metrics; relations are usually 
empirically established, such as the RL-System [AICHELE 1997, p. 81]. 

‚ A heuristic system is more focused than a practical system, developed 
explicitly to solve a specific issue and relate metrics to this issue. The GQM-
approach shown in section 6.1.2 is an example that will be used later. 

                                                           
48

Also referred to as “scorecard”, “metrics suite”, or “ratio system” [REICHMANN & LACHNIT 
1977] 

49 Measurement systems are most commonly found in economics, e.g., the balance sheet 
analysis, the DuPont-System of Financial Control, or Tucker’s Managerial Control Concept. 

Compare, for example, [AICHELE 1997, pp. 84-109] for an overview of measurement systems in 
economics or [GEIGER 2000, pp. 129-133] for such systems in engineering management. 
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‚ An empirical system is focused on statistically significant metrics that have 
originated from empirical observation. In contrast to a heuristic system, the 
attribution of a metric to an issue is considered more objective.  

In practice, measurement systems are used as early-warning instruments, as means 
of  analysis (e.g., for benchmarking processes or spotting improvement potential 
in a process), or as management tools to plan and control a complex system 
[GEIGER 2000, p. 99].  

With the above definitions, TSAI and KERNLER summarize the requirements of 
metrics as follows [KERNLER 1996, pp. 35-38] [TSAI et al. 1986]: 

‚ Purposefulness: Metrics should provide sufficient informational content to 
describe the issue in question. 

‚ Homomorphism: Metrics should be designed to be as homomorphous with 
the behavior of original data as is possible and purposeful. 

‚ Simplicity: A user who should be able to understand the metric easily. 

‚ Consistency: A user should produce the same result when measuring the 
same process. 

‚ Automation: The metric should be suitable for process automation.  

‚ Metrics must be additive: If two independent processes are put into a queue, 
the value of the complexity metric should be at least the sum of the single 
values. 

In addition, Weyuker’s properties have become the established reference for 
metrics design, especially in software engineering [WEYUKER 1988]. They 
provide a set of properties that any good metric should fulfill. The set is, however, 
rather generic and is criticized for this [MENDLING 2008, p. 117]. In fact, a metric 
that is correct in terms of Weyuker’s properties can still be meaningless, i.e., 
Weyuker’s properties do not acknowledge the basics of measurement foundation 
[CHERNIAVSKY & SMITH 1991]. Secondly Weyuker’s properties deny the fact that 

a single metric cannot capture complexity in all its facets [ZUSE 1998]. Still, the 
properties are commonly applied to define metrics [CARDOSO 2005a]. 

The procedure to design metrics commonly involves two stages of reducing a 
system [GEIGER 2000, p. 95]. In the first stage, the system from the real world is 
reduced to its relevant issues and then quantitatively or qualitatively modeled. In 

 

Figure 2-23: Modeling process of representing a system as a measurement system [GEIGER 
2000, p. 95]  
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the second step, the relevant aspects of this model are reduced and quantified. A 
similar model is proposed in [MUTSCHELLER 1996, pp. 63-83]; the author, 
however, extends the procedure to include the implementation and review of the 
applicability of the measures. In this research, essentially, the second reduction is 
the focus, as the metrics are used to analyze existing process models. 

2.3.2 Metrics to describe networks 

Metrics to describe network structures are generally derived from applied graph 
theory and network theory, as described in sections 2.1.2 to 2.1.5. They are 
usually grouped into three categories [BRANDES & ERLEBACH 2005]: 

‚ Element-level metrics assess the position of a single element within the 
overall network.  

‚ Group-level metrics regard the constitution and quality of groups50 of 
elements within the overall network.  

‚ Network-level metrics characterize the properties of the overall network.  

MENDLING lists the most common metrics that are commonly used to describe a 
network structure [MENDLING 2008, pp. 107-109]: 

‚ The degree, i.e., the number of edges connected to a node represents the 
connectivity of a single node. 

‚ The density of a network, i.e., the ratio of existing edges to the maximum 
number of possible edges measures the cohesion of the overall graph. 

‚ The centrality of a node, based on different methods [FREEMAN 1978], 
represents the cohesion of a network around a central node.  

‚ The connectivity, i.e., the number of nodes that need to be removed for the 
graph to be unconnected, measures the level of homogeneity of the network. 

Network metrics thus incorporate different aspects from Graph Theory; in fact, 
many of these metrics only take shape in different applied sciences, which will be 
reviewed below. 

2.3.3 Metrics in software engineering 

Software metrics are highly relevant to process management, as a software 
program and the control-flow graph of a process are very similar; several authors 
have drawn attention to the fact that executing a software is much like running a 
workflow or a process [CARDOSO 2005b] [GRUHN & LAUE 2006a] [ROLÓN et al. 
2006a].  

In software engineering, metrics are a popular basis for quality assurance51; they 
are employed to measure the degree of complexity in software to estimate the 
                                                           
50 A module is a group of highly interconnected entities, whereas these high interconnections 
have been planned by the structural organization and are therefore predefined. 

51 An overview of the foundations is provided in [NAVLAKHA 1987]; the recent state of the art 
can be found in [ZUSE 1998] and [DUMKE & LEHNER 2000]. An annotated bibliography is 
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level of error that the software is likely to encounter and to design test methods 
adapted to a specific new software development [ZUSE 1998]. Typically, thus, the 
metrics are selected top down [MENDLING 2008, pp. 110-111], i.e., the metrics are 
applied to measure certain aspects of a software program that are part of the 
quality assurance. This is why they are generally regrouped using the Goal-
Question-Metric measurement system that will be shown in section 6.1.2. 

Here, only basic metrics are presented, which will be of interest later. Commonly, 
there are two kinds of metrics, as there are two fundamentally different 
programming paradigms: Procedural programming uses a series of function calls, 
plus connecting split and join operations (e.g., goto, for…then, etc.), to constitute 
the control-flow of a program, whereas object-oriented programming uses classes 

                                                                                                                                     
available at http://ivs.cs.uni-magdeburg.de/sw-eng/us/bibliography (viewed on 15 February 
2009). 

Table 2-11: Common structural metrics for procedural programming paradigms 

 

http://ivs.cs.uni-magdeburg.de/sw-eng/us/bibliography
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to define and instantiate objects, which then use methods to transform data. Thus, 
their control-flow graphs vary substantially.  

Table 2-11 lists common metrics for procedural paradigms from the literature. 
They are typically based on counting function calls along the control flow; this is 
in line with the programming paradigm, as the metrics are generally oriented to 
mimic the execution of the program.  

For object-oriented programming, the cohesion (i.e., the degree of the functional 
relationship of one entity to another entity) and the coupling (i.e., the 
interdependence between two entities) are important [WAND et al. 1990] and drive 
the metrics as shown in Table 2-12.  

There are many more metrics available in software engineering. However, most of 
them are more conceptual and have not made their way into design practice. Two 
other measures, however, more abstract metrics have influenced many other 
metrics substantially. The entropy of information is part of information theory 
[SHANNON & WEAVER 1998] and measures the degree of disorder in a system; it 
was developed as part of the development of modern telecommunication facilities 
and has impacted the measurement of runtime complexity decisively. Kolmogorov 

complexity is a measure for the shortest program that can output a given string 
[CARDOSO 2006]; it plays an important role in the formalization of software code 
and has, as such, laid the foundation for the formulation of effort calculation as 
shown above, for example, in Halstead’s metrics.  

In summary, metrics from software management can be classed as highly relevant 
for process analysis, as software is similarly characterized by many decisions that 
cannot be analyzed in a deterministic manner. Software engineering offers several 
metrics, including empirical foundations, because of their relevance in software 

Table 2-12: Common structural metrics for object-oriented programming paradigms 
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design. The transfer of these foundations to process management is highly 
possible, as the following sections will show.  

2.3.4 Metrics in process management 

Structural metrics for process assessment are a recent development [GHANI et al. 
2008]; while quantitative measures have been used for a long time, the pioneer 
work on qualitative metrics occurred only in the 1990’s with the assessment of 
Petri nets of the first structural and dynamic metrics [LEE & YOON 1992]. 

Today, a number of metrics exist52. Yet, these metrics have neither been 
consolidated nor compiled into a coherent body of knowledge; so far, the 
knowledge on qualitative assessment of processes and their structure is still 
fragmented [MENDLING 2008, p. 114].  

Generally, two kinds of metrics are in use: those that are mainly used for the 
prediction of the behavior of a process, and those that are used to estimate errors 
in a process model [GRONBACK 2006] [GRUHN & LAUE 2006a]. However, the 
border between the two kinds cannot be clearly defined, as often process models 
are designed in a way that is not completely free of errors, while deviations from a 
semantically and semiotically correct model are intended to transmit a certain 
purpose or meaning [MENDLING et al. 2007]. Table 2-13, therefore, does not 
differentiate the two kinds. 

Overall, many metrics are similar and use comparable concepts that have been, in 
part, embodied independently from each other. At the same time, many 
approaches remain conceptual and without empirical evidence. Lastly, few authors 
provide detailed algorithms that can be used to compute53 the metrics. 

Metrics for business processes represent thus the main contribution that is used to 
answer the research question behind this book. Although many were developed for 
business processes and workflows, they can be transferred to engineering design 
processes without limit, as engineering design processes are basically a subclass of 
a business process, being more complex and less deterministic in their overall 
behavior (compare Table 2-6). 

                                                           
52 A detailed overview of metrics with a structural focus on workflows and business processes is 
provided in [MENDLING 2008, pp. 110-117]; the earlier work is also comprehensively summed 
up in [CARDOSO et al. 2006], and [GRUHN & LAUE 2006a]. 

53 As complexity metrics are difficult to compute, tool support is necessary. Currently, there are 
three software tools available that embody a wide set of metrics: KOPeR [NISSEN 1998], 
EPCMetrics [GRUHN ET AL. 2006], and STAN [BECK & STUHR 2008]. 
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Table 2-13: Overview of common metrics in process management (based in part on 
[MENDLING 2008] 
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Table 2-13: Overview of common metrics in process management (continued) 
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2.3.5 Metrics for engineering design processes 

Generally, metrics in engineering design processes are meant to serve three 
purposes: estimation, monitoring, and performance measurement. Yet, there is 
generally little specific work on metrics for engineering design processes 
available54

. This is mainly because product development has the nature of “a 

mental exercise” and because of “a lack of easily identifiable items to measure” 
[BASHIR 1999]. It is true that the existing metrics, therefore, remain either highly 
specialized, or they are conceptual and hard to apply.  

The most common metrics55 are very simple. Having originated from systems 
engineering, the measures of activity (also called active sum) and passivity have a 
strong structural focus. They compare the immediate impact of neighboring 
entities on each other and thus are similar to the degree-measure that is a common 
basis in graph theory [DAENZER & HUBER 2002, pp. 558-560 ] [LINDEMANN 2007, 
pp. 73-76].  

Other metrics in engineering design incorporate the numerical evaluation of the 
product or process architecture to some extent. Mostly, these metrics are designed 
as effectivity and efficiency measures, for example, for attributing the necessary 
manpower [NORDEN 1964] or for estimating the degree of efficiency of a design 
process [O'DONNELL & DUFFY 2005, pp. 70-79]. Similarly, there are metrics to 
assess the impact of project characteristics on process planning [CLARK 1989]. 
These involve, for example, the level of risk in new product development, which 

                                                           
54 [BASHIR 1999] provides a sound overview of the state of the art of metrics in engineering 
design at the time of writing, while [HORNBY 2007] provides a  recent overview of common and 
more specific measures (which are not further regarded here).  

55 Score evaluations and similar methods are common in engineering design, e.g., in risk 
management [LINDEMANN 2007, p. 276]. As they have no explicit focus on structure, they are 
not considered here.  

 

 

Figure 2-24: Activity and passivity of the elements of a system  
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is broken down into metrics for product innovation, product complexity, design 

maturity, and schedule pressure [ZURN 1991]. Also, lead time can be broken down 
into the driver’s product complexity, management complexity, and amount of 

charge [GRIFFIN 1993]. LIU ET AL. establish a metrics-based process review from a 
structural point of view [LIU et al. 2003]. They apply theoretical measures to 
assess the critical degree (a weighted measure of the task precedence in the 
process), the likelihood of error occurrence (based on an estimation of the novelty 
of a product and the availability of knowledge in the company), and the spread 

degree of a task (a weighted measure of the reachability of subsequent tasks) to 
support the planning of a process based on other process reviews.  

As can be seen from these few process-based approaches, the estimation of the 
design complexity56 (i.e., a measure of how complex a product is) is the focus in 
all approaches, as the product complexity necessarily drives the process 
complexity. Early works measure design complexity by the coupling between the 

design targets and their variables [DIXON et al. 1988]. SUH develops different 
metrics for function coupling [SUH 1999], and other authors introduce estimators 

of design complexity [BASHIR & THOMSON 1999] [SUMMERS & SHAH 2003]. 
HORNBY ultimately introduces modularity (based on the number of modules and 
the degree of their interaction with the overall system), reuse (measuring the 
repeated occurrence of entities within the design) and hierarchy (similar to the 
nesting depth in process management) as classifying measures for product 
complexity [HORNBY 2007]. 

A measure that focuses purely on process complexity is illustrated by [SCHLICK et 
al. 2008]. Here, a numerical DSM is used to model project dynamics; the approach 
is able to cope with large teams “who make at least partially autonomous 

decisions on product components but also strongly interact in their impact on 
project performance”. 

There are, of course, many other measures available that, however, do not relate to 
structural complexity but are measures used in, for example, benchmarking 
projects, process audits, or performance measurement for management and 
organizations (mostly financial and operational measures in project management 
[PMI 2003]). 

In summary, although engineering design science strongly focuses on model 
building, there is virtually no work on complexity metrics available [BENSON 
2007], even less so for processes. This can be attributed in part to the fact that 
engineering design processes can be treated like business processes concerning 
their analysis; however, the specific interpretation basis for such processes cannot 
be directly transferred, and there is a large gap in science about the meaning of the 
available structural metrics for processes. 
  

                                                           
56 Compare [AMERI et al. 2008] for a detailed comparison of existing measures of product 
complexity. 
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2.3.6 The limits of using metrics in an organization 

GRIFFIN points out that measurement is an important first step towards process 
improvement [GRIFFIN 1993], as it is important to have a sound overview of the 
initial state, the needs and development potential, and a final comparison after 
improvement measures have been implemented.  

Yet, metrics are no remedy for any problem. “What you measure is what you get” 

was the driving dictum for the research of the Balanced Scorecard, at the time 
revolutionary, as it allowed a wider, balanced picture that substituted a former 
management that was only guided by financial goals (see section 6.1.3 for more 
details). To this end, metrics already show their biggest disadvantage: While 
reducing the complexity of the representation of an issue, they tend to 
oversimplify or omit dependencies of an issue, thus making the representation 
incomplete [KAPLAN & NORTON 1992]. It is, therefore, necessary to select a group 
of metrics to represent a problem in a balanced way. 

Secondly, metrics directly impact the behavior of personnel in a company. In 
particular, in the management concept “Management by Objectives”, metrics are a 

common basis for the evaluation of the performance of personnel [DRUCKER 
2007, p. 261]. The concept is based on goals for each member of a company, 
whose fulfillment is measured to assess the individual performance [ODIORNE 
1980, p. 82]. As part of this measurement, the motivation of an employee is 
directly related to the results of the measurement; in turn, a measurement 
influences the behavior of an employee in a positive way, but it can equally 
demotivate [MUTSCHELLER 1996, p. 61]. Thus, measures need to be chosen 
carefully to ensure they are not influenced by staff out of fear or personal 
ambition. This leads to two consequences: One the one hand, staff needs to be 
integrated early into the process of installing measures in the company to achieve 
a transparent measurement system that is favorably accepted and thus maintained; 
on the other hand, metrics need to be changed at regular intervals to ensure that 
the staff also considers other relevant specifics of a situation that are not part of 
the measures in place.  

Organizational learning similarly stresses the fact that “maps and images” guide 

the behavior of individuals in an organizational setting [ARGYRIS & SCHÖN 1978, 
pp. 17-19]; metrics can serve as such images that are considered attainable and 
therefore guide individuals without considering other aspects. In this context, 
individuals take on the role of a so-called learning agent, whose learned behavior 
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is guided by the impact of their actions [ARGYRIS & SCHÖN 1978, p. 29]. Three 
types of learning are common, which involve more reflection of the third type, the 
deuteron-learning (see Figure 2-25). Generally, single- and double-loop learning is 
guided by the results of the behavior, upon which measurement of the results can 
have a detrimental influence if metrics are designed in a way that neither stipulates 
reflection nor is set up in a holistic way to avoid one-sided behavior. 

In engineering practice, metrics are mostly used for project controlling; they are 
rarely used for concept and test design [FINK & HAMPP 2005]. An empirical study 
in the software industry revealed five common strategies as to how engineers 
commonly cope with metrics in a company [SIMON & SIMON 2005]:  

‚ Optimism-strategy: Personnel disapprove of the metrics, perceiving them as 
implicit criticism and a constraint on their professionalism. 

‚ Delegation-strategy: The results of metrics are attributed to external reasons 
that are not related to an individual engineer’s work, and thus responsibility 

is denied. 

‚ Automatism-strategy: Problems that surface through the metrics are blamed 
on tool-support (automated workflows, or, in software engineering, code 
generators). 

‚ Particularity-strategy: As design in problem solving, metrics are not 
recognized as relevant to the specific issue, and their validity for common 
situations is denied.  

‚ Tortoise-and-Hare-strategy: Refers to the fact that an issue was already 
improved before metrics were introduced, and engineers tend to turn away 
from a problem.  

Generally, it can be stated that metrics provoke a lack of emphasis on the 
environment in terms of a goal (and its respective measure) due to a lack of 
understanding of the actual system [DEMING 1994]. Three “traps” are inherent in 
such measurements:  

‚ Common and special situations are little differentiated by such 
measurements, although criteria are not universally valid. Typically, 
measures depend on other external influences; deflections thus must exist. 

‚ A single measure is not the best criterion to judge an issue, and often the 
focus is misplaced. A more comprehensive set of metrics helps avoid single-
sided improvements. The overemphasis of individually measured aspects 
can, in some cases, lead to “bogus metrics”, i.e., metrics that mislead the 
company [BOLLINGER 1995]. 

‚ The common assumption that improving a single measure improves the 
overall system is wrong, as in most cases a more holistic view is needed to 
correctly assess a system. 

It is possible that a set of metrics is misleading in the long term. It is generally 
recommended that measures be alternated from time to time and there be 
overlapping measures that exercise a certain control over each other, which, at the 
same time, lowers the risk of manipulation of an individual measure [KAPLAN & 
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NORTON 1992]. The goal is to lower the risk of simply seeing the measure and not 
seeing the object behind the measure. Furthermore, a balanced set of several 
measures works best to achieve a comprehensive picture. 

Metrics for analysis should, therefore, not be applied in isolation, as they do not 
describe “goodness” per se. Rather, they point to possible quality issues that need 
to be further evaluated [BOLLINGER 1995], which in this research is targeted by 
assessing outliers to show how a process improvement project can be prioritized 
and where possible improvements can be expected.  

2.3.7 Summary 

As the most reduced model possible, metrics are able to represent a system in a 
condensed form to show important characteristics and to point to important 
aspects. In process analysis especially, metrics are a tool for the identification of 
weak spots and their conditions [BENSON 2007]. As such, metrics can introduce 
the risk of reduction past a meaningful limit (reductionism).  

At the same time, metrics need to be used carefully in a company, as they 
necessarily influence the behavior of staff, especially in the context of 
management by objectives, where objectives are related to measures. They should, 
therefore, be used mainly to focus on further investigations [BENSON 2007]. 

There is a substantial body of metrics available that is able to assess the structural 
complexity of a system with a view to different patterns. These metrics are used, 
on the one hand, to discover modeling errors, and, on the other hand, to better 
understand a system’s behavior through the measurement. Many different metrics 
for the analysis of network structures in all kinds of disciplines exist and can be 
transferred to process management; yet no comprehensive compilation is 
available. At the same time, the transfer to the specifics of engineering design 
processes, i.e., what behavioral aspects relate to what structural characteristic 
evaluated in a metric, remains unsolved. There is, especially, no systematic listing 
of the significance of the available metrics against the domains and relationship 
types common to process management.  

Commonly, metrics are not independent of each other but can be organized in a 
measurement system (according to, for example, focus, goal, granularity). This 
enables the systematic and goal-oriented employment of metrics. This is 
especially important in regards to the structural analysis of a process, as a metric 
can only be purposeful in the context of a goal and the related semantics; metrics, 
therefore, cannot be designed without a meta-model that provides a semantic 
context to later interpret the metric. 
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Table 2-14: Available metrics (see section 2.3) and structural characteristics assessed by 
metrics 
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2.4 Directions from the state of the art 

The management of engineering design processes is a wide field of research; there 
are many different models and methods available, few of which, however, are 
designed to cope with the structure of a process in a comprehensive manner. 
Nevertheless, the management of structural complexity and related fields of 
science have provided different means of understanding, modeling, and managing 
relationships in a complex system. 

Both process management and the different sciences related to structural 
complexity have created a number of different metrics that evaluate the 
complexity of a system based on various structural characteristics; many of them 
are empirically validated and recognized in research and application, and the 
transferability to the management of processes is generally confirmed. Table 2-14 
summarizes existing metrics and the structural criteria they assess: A mark in a 
cell relates a metric and a structural characteristic that the metric focuses on; 
however, it is possible that a metric also includes other structural characteristics 
that are not essential to its function. The table was generated by reviewing every 
metric (as shown on page 80 and the following pages) for its basic structural 
focus, as described in the literature. 

As the table shows, some structural characteristics are not evaluated yet; however, 
a substantial toolset exists that is suited for the structural analysis of a process. In 
particular, n-partite-ness, isolated nodes, leafs, bridge nodes, biconnected 
components, spanning trees, the Small World effect, transitivity, degree 
distributions, navigation, and centrality are not evaluated as recognized metrics, 
although some of these structural characteristics have, in fact, the character of 
metrics themselves. These need to be reviewed in detail for their use in extending 
the set of means of analysis for processes. 

Furthermore, process management and the analysis of processes is generally a 
goal-oriented procedure, which works to improve a process for one or another 
concept. As a review of the literature shows, the common goals of process 
management (planning, resource consumption, quality, flexibility, organizational 
decomposition, interfaces, and transparency of process, see page 66 and the 
following pages) and the typical properties of design processes (dynamics, 
creative nature, loops, leaps, iterations, results that are not predictable, changes, 
imperfect definitions, uncertainty and risk, maturity of artifacts, process path not 
determinable, and the involvement of many stakeholders, see page 61 and the 
following) and the means of analyzing a structure have not been systematically 
used in conjunction, and, therefore, no mapping between them is available. 
However, as individual works show, the goals can be related to certain structural 
patterns via the individual process patterns; for example, the triangularization of a 
DSM of tasks relates directly to the reduction of leaps and loops by proposing an 
improved sequence of tasks, thus contributing to better process planning.  

These structural characteristics may possibly occur for all domains and 
relationship types that exist in process models. In fact, it is necessary to know the 
specific semantics of a process model to give meaning to the structural 
characteristics and to the structural metrics, as only the semantics of the nodes and 
edges of the underlying network structure allow indications about the behavior to 
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be deduced. However, the specific attribution of all structural characteristics to all 
relevant domains has yet not been researched. Thus, no dedicated means of 
systematical analysis exists, but only fragmented parts thereof.  

As common domains, tasks, artifacts, events, organizational units, resources, and 
time, were identified as basic domains of process management (Table 2-9). These 
can serve as an approximation to interpret the structural metrics and give them 
significance, which, however, will be precise if the relationship type is also 
considered in the second step. However, in many cases, this procedure will be too 
complex to be handled. To facilitate this procedure, principal relationship types 
were identified.  



3. Concept of an integrated set of complexity metrics 

This chapter provides an overview of the following three chapters that delineate 
different aspects of the solution and how they were developed. The reason for this 
layout is because developing the solution first requires detailing the modeling 
method, then the metrics, and lastly the contextualization of the metrics in an 
overall scheme. However, when using this approach, the elements to the solution 
are reversed. Therefore, this section provides a concise preview of the elements of 
the solution and their dependencies.  

In general, the measurement system is intended to provide a method to analyze a 
process chart by drawing inferences about the process’s behavior from the 
structure of its entities, as modeled in the process chart. Therefore, it is necessary 
to identify possible constellations of nodes and edges as basic constituents of 
structural characteristics to develop structural metrics independently of domains 
and relationship types. In a second step, the metrics are combined with common 
domains and relationship types to evaluate the particularities of engineering design 
processes and, thereby, give the structural metrics a process-focused meaning.  

3.1 Solution design process 

The solution was developed successively by collecting requirements from industry 
and combining them with further requirements and existing solutions in the 
literature. Potential concepts for the solution were compared each time and 
recombined to provide the best possible solution to the requirements identified. At 
each step extending the solution, the results were verified using industrial case 
studies, some of which are shown here.  

As Figure 3-1 shows, these steps were run parallel in order to develop the 
modeling method, the analysis method, and the framework. Of course, these three 
strands of the solution design process are not independent of each other, but the 
modeling method serves as a basis for the analysis, and the overall analysis 
approach is systematized in the framework. For this reason, the following chapters 
are ordered accordingly. To prepare these three chapters and the successive case 
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study, the requirements and directions from the state of the art are collected into a 
general concept, which is detailed below.   

3.2 Requirements for the solution design 

Throughout the previous chapter, the different fields of science and their 
contributions to a structural measurement system were reviewed. Based on this, 
the definition of the problem can be refined with the following sub-problems: 

‚ No high-level analysis procedure is available to systematically screen all 
entities and relationships in a process chart for possible weak spots. 

‚ No overall modeling method exists that represents the structure of a process 
including domains and relationship types common to process management. 
Current dependency models are unable to cope with Boolean Operators that 
are commonly employed in process models.  

‚ No comprehensive set of analysis tools exists to draw inferences about the 
behavior of a process from its entities and their mutual relations. 

‚ No framework is available that orients the analysis of a process towards 
goals that are commonly followed in process management. 

To provide a solution to this problem, many constituents of the solution are 
already available, as chapter 2 showed. An important part of the solution design is, 
therefore, to assemble the existing parts and fill the remaining gaps in a way that 
the solution is correct, complete, consistent, and clear. In the following section, 
the requirements for each of the sub-problems are presented. 

The overall approach is required to systematically guide a user through all phases 
of the procedure of analyzing a process for possible improvement potentials, 
starting with specifying the goals of the analysis and the questions relevant to it, 
building the model to be analyzed, selecting the relevant means of analysis, and 
interpreting their results in a coherent manner. The approach also needs to provide 
a means of starting with different sets of input information, i.e., it needs to work 
with existing process charts or build them from scratch. Similarly, not every 
process analysis may follow a certain set of goals; in such cases, the overall 
approach should be able to analyze the process at hand in a more generic manner 
to obtain basic insights that help refine the analysis approach and possibly re-run it 
with regards to certain details. 

The process modeling method provides the semantics of common process 
models to ensure that the analysis is able to work with different existing process 
models that serve as input. To do so, the model needs to encompass the domains 
and relationship types that are relevant to the goal-oriented analysis of a process as 
well as for generic screening for potential improvement. Thus, the process model 
needs to serve as an adaptor to filter relevant dependency data from existing 
process models and make it available for analysis. To do so, the model needs to be 
able to represent all modeling constructs that are relevant to process management, 
i.e., entities, relationships, attributes to entities and relationships, and logic 
operators. Furthermore, to be suitable for more extended analyses, it should 
provide an interface to other models, especially the product architecture. For 
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complex process models, the process modeling method also needs to be able to 
create condensed, aggregate views of the specific domain being analyzed to ensure 
the efficient handling of the dependency data required for the analysis of the 
structure. The model is referred to as the Structural Process Architecture. 

The analysis method needs to provide a comprehensive toolbox to assess the 
structure of a process in terms of the existence and impact of all relevant patterns 
that may occur among the entities and relationships in a process chart. The 
patterns need to be connected to their structural significance for all domains and 
relationship types as defined for relevant existing process models, based on 
empirical evidence. It is furthermore necessary to reduce these patterns into 
metrics to evaluate their occurrence for every single entity, group, or network 
(depending on the scope of the pattern) to ensure that all entities and relationships 
are assessed regarding their contribution to the behavior of the process. Using 
metrics for this reduction, the metrics need to adhere to measurement foundations 
(representation, uniqueness, meaningfulness) and to Weyuker’s Properties. To 

further narrow the focus of the analysis and to allow a hierarchy of the results to 
be obtained through the metrics, the results of the metrics should be ranked by 
their degree of distinctiveness in the process. To do so, different means of 
identifying entities that “stick out” are necessary. This analysis should be intuitive 
and automatable for processing large process charts, as well. It takes shape as the 
Structural Measurement System (SMS) 

Last, the overall framework needs to connect the solution elements consistently 
by linking the goals of the analysis to an operational layer that connects them to 
the patterns (and their evaluation through metrics) as well as to the relevant 
domains and relationship types in the process chart. The framework should, as a 
simplified access to the analysis, provide goals common to process management 
as primary points of entry to a process analysis. It is presented later as the 
Structural Goal Question Metric (S-GQM) approach. 

As the development of a structural measurement system presents a method design, 
the method description follows the basic needs of the Munich Method Model 
[LINDEMANN 2007, p. 56]. To facilitate its application, it should be as concrete as 
possible to enable an “as is” deployment in industry [WALLACE et al. 2003]. A 
close relationship between the method developed and its industrial application is, 
therefore, critical. Ultimately, it needs be flexible in its application to 
accommodate varying needs and boundary conditions [LÓPEZ-MESA et al. 2004]. 
Thus the method development needs to be as modular as possible. 

3.3 Constituents of the solution  

Overall, the method to be designed needs to provide methodical circumnavigation 
of the complexity barrier at an abstract level (see page 22) to cope with the 
complexity of a process chart. To do so, the procedure shown in Figure 3-2 is 
followed. It starts from a set of goals of the analysis that can be concretized using 
different questions; these questions are those that  a process analyst might be 
interested in finding answers to. To address these goals, the procedure needs to 
link each question to a set of metrics, domains, and relationship types that will 
provide answers. Similarly, it needs to help the user interpret the results obtained 
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in order to collect indications about the process’s behavior, and possibly potential 
improvement. To prioritize the results, structural outliers can be sought that 
indicate the specific particularities of a process from a structural point of view. 

The basic procedure is, therefore, straightforward. After an initial goal has been 
selected, one or more questions are suggested by the framework to allow a better 
focus of the analysis. Metrics are allocated to each question to help answer the 
selected questions. At the same time, a question commonly only relates to one 
domain or a few domains, but not all; thus, relevant domains are chosen at the 
same time. Each is accompanied by its principal relationship type57. Using these 
tools, a process can then be analyzed to identify possible structural outliers. The 
structural significance each metric provides can then be used to investigate the 
nature of the outliers to answer the initial questions and guide further 
improvement measures.  

Figure 3-3 concretizes the elements of the overall solution and their 
interdependencies. It shows the necessity of the modeling method (inner box) to 
develop an analysis approach (middle box) that is framed through the attribution 
to goals and questions (outer box).  

The individual selection of the models, methods, and tools used for each of these 
three constituents is argued in the respective chapters. The overall analysis 
procedure is detailed in the following section. 

                                                           
57 In theory, the selection of the appropriate relationship type depends on the question, the metric, 
and the domain simultaneously; the selection of the principal relationship type, therefore, is a 
certain simplification, as it does not incorporate all influences that determine the relationship 
type. However, the principal relationship types, as part of the meta-model (section 4.2), are 
described in a way to be as generic as possible without losing the nature of common relationship 
types applicable to a domain. Therefore, only a small error is introduced. At the same time, the 
framework is significantly simplified, as one additional variable aspect depending on three other 
inputs is removed.  

 

Figure 3-2: Basic procedure of the goal-oriented analysis of a process structure 
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3.4 Overall concept: Analysis procedure 

To enable a goal-oriented analysis of the structure of the system “process”, several 

steps have to be carried out. There are different procedural models available to 
support an analysis in a structured manner. The Structured Analysis approach 
views systems from a data flow perspective [DEMARCO 1978, pp. 1-7 and 37-44]. 
In Systems Engineering, the systematic analysis is more holistically focused, using 
a problem solving procedure [DAENZER & HUBER 2002, p. 96]. The information 
structure approach to analyze DSMs is more focused on DSMs, including building 
and analyzing a model for task interdependencies [YASSINE et al. 1999]. In 
structural management, these different models together are used to design a 
procedure for the analysis of a systems’ structure of the five latter steps, as shown 

in Figure 3-4 [MAURER 2007, p. 69]. In the context of process analysis, this 
procedure is extended by an initial step, as setting goals is highly relevant for a 
purposeful analysis. This phase is optional if the process is not analyzed to answer 
a specific question but only to generate a general picture of a process. 

In Figure 3-4, the different elements of the overall solution are depicted. The 
different aspects are explained in the following paragraphs lists how each of these 
phases relate to the structural analysis of a process and what deliverables are 
gained. Initially, the goals of the analysis project are set, and each can be detailed 
by various questions. During the system definition, the overall scope of the 
process analysis is defined, including what process is going to be regarded and 
which aspects of this process are relevant to the analysis; to this end, the basic 
goals need to be determined to purposefully set the system border, i.e., the 
relevant domains and relationship types are defined. Likewise, the metrics needed 
to answer the questions from the initial phase are selected. All of these elements 

 

Figure 3-3: Constituents of the overall solution and their principal dependencies 
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can be obtained using the questions from the first phase. The information 
acquisition then generates the structural datasets of relevance, i.e., entities and 
relationships that are then modeled into an overall dependency model using a 
Multiple-Domain Matrix. This matrix is then analyzed using structural metrics 
that are selected according to the goals of interest, as defined in the first phase. 
Ultimately, the results from the metrics are interpreted in order to prioritize 
possible weak spots in the process and to deduce measures. 

Setting goals for analysis 

To enable a goal-oriented process analysis, in the initial step the Goal-Question-
Metric (GQM) scheme is used to guide the analysis. From a list of eight different 
goals, an appropriate goal can be chosen and further detailed by selecting 
appropriate questions. The intent is to point the user to relevant aspects of the 
chosen goal of process improvement. To this end, the common goals of process 
analysis as described in the state of the art are used and extended to accommodate 
possible needs of structural process analysis. Chapter 6 details the framework that 
embodies the goals and questions. 

The framework is, by no means, meant as a rigid or prescriptive system. It can be 
extended and adapted to suit individual needs of process analysis just as well. 
Also, it is possible to omit this step and run a more individual analysis that works 
to characterize a process in general, looking for possible improvement potentials 
without following a particular goal.  

 

Figure 3-4: Basic procedure of structural analysis based on [MAURER 2007, p. 69] 
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System definition  

If questions have been selected, metrics can be chosen in the next step. Those 
structural metrics that are able to provide answers are allocated to each question 
(section 6.2). If no particular questions are asked, metrics can be selected 
individually from their descriptions or from different classifications that are 
available. These classifications are listed in section 5.2.4. 

The metrics then need to be assigned to the datasets that are to be acquired later or 
that are already available. If questions guide the analysis, the framework provides 
relevant domains and their relationship types. In other cases, either individual 
information needs or the available datasets guide the selection of domains and 
relationship types.  

Datasets for the analysis need to be available as Design Structure Matrices (DSM) 
for almost all structural metrics. Two kinds of input datasets are, therefore, 
possible. Either, the native data is available as a DSM, or an aggregate view can 
be computed for relations that span at least one intermediate domain. Section 4.5 
introduces these different ways of building the model.   

More generally, the domains and relationship types involved can be selected from 
a structural process meta-model that is used to introduce common aspects of 
process modeling into the analysis. This meta-model is also used as a reference for 
the development of the structural metrics. It is detailed in section 4.2. 

Information acquisition  

In all cases, the input data needs to be acquired; this can be done either through 
workshops or by parsing and converting existing process models. Section 4.5 
briefly addresses these issues. The structural content of common process models is 
used to set up the meta-model so that it can integrate all kinds of process models 
into one overall structural model. The partial models acquired are modeled as 

Table 3-1: Focus and deliverables of each phase during the structural analysis of a 
process
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dependency models of any kind that can be converted to partial Design Structure 
Matrices (DSM) or Domain Mapping Matrices (DMM). 

Modeling 

The different partial models are then assembled into one overall Multiple-Domain 
Matrix (MDM) within the frame that is spanned by the meta-model. To integrate 
all particularities of common process models, section 4.4 introduces new aspects 
into the MDM, such as the integration of the product architecture, the modeling of 
different attributes, and the integration of logic operators to model decision points.  

Structure analysis 

The analysis of the model which is then available is undertaken using structural 
metrics that are developed and described in detail in section 5.2. These metrics are 
based on the numeric evaluation of structural characteristics as found in different 
disciplines that focus on the management of structural complexity. Section 5.1 
collects these different approaches and proposes a procedure to develop structural 
metrics from these structural characteristics.   

Discussion of practices 

A major part of the development of the metrics is the description of their 
significance. Section 5.2.2 details their meaning in reference to all domains of the 
meta-model. Therefore, the results that are obtained from the application of the 
structural metrics to a process model can systematically be interpreted to provide 
detailed and comprehensive insight into the question that is being analyzed and to 
deduce possible measures for improvement.  



4. Modeling the structure of design processes 

In this section, a model representing the structure of a process is laid out to serve 
the following purposes: 

‚ Serve as an interface to other process models. 

‚ Provide the semantics of common process models as a basis for the 
development of metrics that are independent of a specific process model. 

‚ Represent all modeling constructs that are relevant to process management 
from a structural point of view (entities, relationships, attributes to entities 
and relationships, logic operators) 

‚ Provide an interface to the product architecture. 

‚ Support the creation of aggregate views onto a specific domain. 

As a modeling technique, Multiple-Domain Matrices (MDM) are chosen as an apt 
way of representing and manipulating a network structure consisting of different 
domains and relationship types. The argument for this choice is given in section 
4.2. First, the use of an MDM is argued and explained; then, based on the different 
process models reviewed in the state of the art, an MDM-based Structural Process 
Architecture (SPA) is developed that serves two purposes. First, it is meant to 
enable assembling a structural process model from different partial models that 
may be available in a process improvement project; secondly and more 
importantly, the meta-model is needed to provide a reference for the interpretation 
of the metrics and the measurement framework developed to systematically access 
the metrics. Finally, MDM is extended to include attributes to edges and logic 
operators, which, up to now, was not possible in this notation. Also, the linkup of 
the process structure to the product architecture is explained. 

4.1 Design processes as a multi-layered network 

The focus in this research is on engineering design processes. There are, in fact, 
many different kinds of processes that are common to engineering design, for 
example, the planning process, the technology development process, the 
purchasing process, and others58. Here, the focus is on the primary process, i.e., 
the process of generating new or adapted technical designs [BECKER et al. 2005, p. 
7] [SCHMELZER & SESSELMANN 2006, p. 55].   

As the introductory case study in section 1.1 showed, engineering design 
processes are, in fact, a network of multiple domains that coexist to enable the 
development of a product. Each of these domains is networked in itself, 
commonly, in many different ways, and the different domains are networked 
among each other. Figure 4-1 shows an example of three domains that make up 
the network layers of a process; all are mutually linked and coupled. 

                                                           
58 See [BAUMBERGER 2007, pp. 123] for an overview of different kinds of processes. 
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Inevitably, the behavior of the process depends, to a large extent, on this network 
and its structure, as, for example, communication among organizational units is 
only possible if they are related to each other. Thus, the specific setup of entities 
and their relationships constitutes the value of an actual process. 

To model the structure of an engineering process comprehensively and to gain a 
deeper understanding of it, it should therefore be understood as the multi-layered 
network it actually is, i.e., it should comprehend every part of the company 
organization that is actually necessary to enable it. To analyze a process, in turn, it 
is important to select and relate all domains that are relevant to such a specific 
analysis in an integrated manner, which simultaneously enables and facilitates 
systematic and comprehensive analysis. 

4.2 MDM-based modeling of the structure of a process 

There are many different modeling methodologies that could be applied to 
represent such networks; in fact, there are plenty of dependency models available, 
as section 2.1 showed, e.g., graphs or incidence lists. [BELHE & KUSIAK 1996] 
compare different dependency modeling methods for process models. They 
conclude that all major models can be converted among them, using adjacency 
matrices to represent the dependencies. Such matrices are similar to DSMs and, 
therefore, to MDMs. 

Multiple-Domain Matrices (MDM) allow multiple network structures to be 
represented, both within a single domain (e.g., tasks) and across domains (e.g., the 
attribution of organizational units to individual tasks). Equally, an MDM is able to 
capture different relationship types that coexist concurrently. This makes it an 
ideal tool for modeling the structure of design processes. Figure 4-1 visualizes the 
concept. In this example, two different networks among organizational units 
coexist. Accordingly, the MDM contains two OU-DSMs. 

 

Figure 4-1: Structural equivalence of process model in flow-oriented notation and MDM 
notation 
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Here, the MDM is chosen for a number of reasons: 

‚ The network structure of the process is modeled in all its facets. This way, 
no single relationship dominates over the others, i.e., the complexity of the 
process is captured more realistically. In fact, most process models can be 
converted into a MDM with little or no loss of information concerning their 
structure.  

‚ Different models can be combined; this way, it is possible to check how 
well-aligned the different structures that are modeled actually are (e.g., a 
process and a team). 

‚ Qualitative and quantitative models can be combined to some extent, if they 
each can be represented using MDM methodology (e.g., using weights for 
nodes or edges or by introducing attributes via additional matrices). 

‚ The process can be analyzed either based on the native data, with regard to 
the impact of an analysis on other domains (e.g., by finding clusters in a 
task-DSM and then constituting teams in the OU-DSM in Figure 4-1), or 
using aggregate views (e.g., by computing how tasks are interrelated via 
documents, and then using the computed task-DSM). 

‚ Structural characteristics become accessible. This allows systematic analysis 
using available algorithms for DSM, DMM and MDM analysis. Based on 
native or aggregate datasets, structural characteristics can span one or more 
domains.  

‚ Common DSM-based analysis is applicable, e.g., tearing, banding, or 
clustering. While these algorithms can be used on other dependency models, 
as well, their effect is directly visible in a matrix representation.  

Of course, MDM-modeling possesses a number of disadvantages, too: 

‚ The matrices grow rapidly. While, theoretically, almost all information in a 
common process model can be converted into an MDM, this hardly makes 
sense. If, for example, an EPC model contains many attributes, e.g., starting- 
and end-times of every task, a small process chart will turn into a very large 
MDM. Therefore, it makes sense to convert only those parts of a process 
model that are of interest to an analysis.  

‚ Reading a matrix is not very intuitive. While, in general, a matrix reflects an 
engineer’s mindset, a MDM that contains several domains is nearly 

impossible to read manually and thus needs tool support. Modeling a process 
exclusively in MDM notation, therefore, rarely makes sense, as most users 
will be unable to understand the process model, and little transparency 
would be generated. 

‚ There are different matrix notations. Generally, two different conventions 
about how a DSM or related matrix is written exist; either, an entry in the 
cell of a matrix is read as “row impacts column”, or the other way round. 

Here, all matrices are designed as “row impacts column”. 
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‚ The actual graphical structure of a flow chart is lost when turned into an 
MDM. This is a major shortcoming, as the “structuredness” and “style” of 

the flow chart layout are important to understand a process model [GRUHN & 
LAUE 2007b] as well as transmit part of the meaning of a process model.  

4.3 The Structural Process Architecture model 

As shown in section 2.2.3, models are commonly defined using a meta-model to 
describe the entities within the modeling language and their possible relations. 
This section makes use of this approach to describe a meta-model suitable to 
model multi-layered process networks as a Multiple-Domain Matrix. 

The need for a meta-model 

There are many different process models available, each of which has a particular 
focus on the structure of a process. Thus, there is no need to develop any further 
modeling languages, as specific models exist to suit almost all possible needs 
[BROWNING 2009].  

At the same time, however, choosing one modeling language will produce only a 
limited number of domains and relationship types. Therefore, developing 
structural metrics based on only one process modeling language is not practical, as 
it will limit the application of the metrics to this one kind of modeling language. 
Thus, the transferability of the metrics to another process model using a different 
modeling language would be more difficult. 

This section is, therefore, intended to design an adaptor that allows plugging 
different process models into a common denominator to which to apply the 
structural metrics. The meta-model developed in the following is, therefore, meant 
as a “set of models” [HÖFFERER 2007], i.e., to create a modeling scheme capable 
of describing relevant aspects of structural modeling and a goal-oriented process 
analysis. This Structural Process Architecture is thus a consequent extension of the 
regrouped process models. It represents a meta²-model approach, as previously 
outlined. Figure 4-2 visualizes the concept: For example, the domain task is 
tailored to represent different tasks or activities as found in common process 
models. The same applies to the relationship types, which are equally collected 
from relevant meta-models (level 2) for processes. 

When used, the meta-model provides, in turn, orientation when modeling a 
structural process model, and it serves as a guide and an example when submitting 
a process model to structural analysis using metrics. The principal reason is that 
the meta-model systematizes and collects relevant domains and relationship types 
and puts these into a common framework. 

This framework is necessary for the development of meaningful metrics. As 
defined, structure consists of a particular pattern of nodes and edges in a graph, 
but a structure only has meaning if it is related to a certain semantic context. This 
context is provided by the meta-model that describes the types of nodes and edges 
concerning their meaning in an industrial application. 
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The meta-model consists of two views on a structure: The domains, describing 
what types of entities are common to process modeling, and the relationship types, 
describing how the domains are commonly related. This meta-model is, by no 
means, exhaustive; it makes use of the most common process models and 
integrates their concepts which, regarding common models, appear to be the 
principal aspects of process modeling. However, it may be necessary to refine the 
model for a new concept, using, for example, the principles shown in Figure 2-3. 

 

Figure 4-2: Generation of the SPA (application of the approach shown in Figure 2-20) 
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The domains in the Structural Process Architecture 

As found in the state of the art, the process model makes use of six domains that 
are most common and represent the usual domains found in process modeling. 
Table 4-1 lists them and a short description of each one; a mapping of each 
domain can be found in the process modeling language in Table 2-9 (page 71). 

The relationship types in the Structural Process Architecture 

Similarly, the different relationship types that occur in the 13 reviewed process 
models can be regrouped. The review of the different process models for their 
structural content shows that some modeling languages are very specific about the 
relationship types.  EPC, for example, provides a finely detailed spectrum of 
different types, while others leave this refinement to the user. For this reason, 
relationship types were consequently collected, and those types that are common 
across the majority of models or that are at a higher level of abstraction were 
designated as principal relationship types. These can be found in bold print in 
the list of relationship types for each possible tuple of domains. Of the 36 possible 
relationship types between the six domains, only 28 actually occur in the reviewed 
models; while the other relationships can, of course, also be designated, they 
appear to be irrelevant.  

Table 4-2 shows how many relationship types there are between any pair of 
domains. As can be seen, the most important focus in common process models is 
placed on the interplay of tasks and artifacts. Many of these relationship types are 
similar or even identical. They were, therefore, regrouped; all detailed relationship 
types are listed in Table 4-3. 

  

Table 4-2: Occurrence of relationships among domains of process modeling for all 13 
reviewed methodologies (read as “row relates to column”) 
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Looking, for example, at the relationship types from tasks to resources, two 
relationship types are common, as the table shows: “Task requires resource” and 

“task processes resource”. Of the two, “requires” is the more general one, and it is, 
therefore, designated as the principal relationship type. 

Besides the specific relationship types, general decomposition is relevant to each 
domain, as well. Some common process models do, in fact, explicitly allow 
decomposition to a finer granularity or the regrouping to larger entities, e.g., 
collecting tasks into value chains. This is why the following decompositional 
relationship types need to be considered in addition to any relationship type 
specific to process models to address the possible levels of granularity in a process 
model:  

‚ Is part of 

‚ Is a generalization of 

‚ Consists of 

The decompositional relationship types are not represented in the Structural 
Process Architecture, as it does not focus on the interdependencies among 
different levels of detail. However, they need to be considered when entities of the 
same super-domain (e.g., the domain’s “phases” and “milestones” for the domain 

“points in time” from the meta-model) are combined in an overall process model. 

The complete Structural Process Architecture (SPA) model 

The SPA model regroups the domains and relationships that were collected across 
the most common process models. This way it serves as a supermodel that 
recombines these models and serves as a consistent structure for the development 
and operation of the structural metrics. It provides a semantic background to both 
design the measures and to give them a meaning when interpreting them. 

Table 4-3 shows the overall model. It is read as “row impacts column”. For 

example, a “task has the output of an artifact” (row 1, column 2), using the 

principal relationship type. To be more specific, it is possible that this output is, 
for example, only a change of an existing artifact; in this case, a “task changes an 

artifact”, using the refined relationship as shown. In the following, further aspects 

of using the meta-model are explained, and an example for the application is 
given. In section 4.4.1, the meta-model is complemented by an additional domain; 
therefore, a complete meta-model is only shown in appendix 10.4. 
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Table 4-3: Structural Process Architecture with domains and relationship types suited for 
most modeling and analysis purposes 
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4.4 Specific aspects of modeling engineering design processes 

While the Structural Process Architecture model originates from the domains and 
relationships encountered in common process modeling languages, there are a few 
more specifics that need to be accounted for, especially for process models: 

‚ The link to the product architecture: As any engineering design process 
creates a product, the process setup is oriented to serve the architecture of 
the product.  

‚ The occurrence of attributes to nodes and edges: Depending on the 
information needed in the process analysis, different aspects need to be 
modeled in the MDM besides nodes and edges. Specifically the information 
transfer, commonly modeled as edges, is often of interest and may need 
more detailing.  

‚ The occurrence of decision points: During the generation of knowledge in 
the process, many decisions have to be made about how to proceed with the 
process, e.g., by iterating or continuing downstream. These decision points 
are often modeled as Boolean operators to represent decision logics.  

To suit the set of modeling constructs to incorporate these aspects of process 
modeling, the following sections first extend the meta-model to product attributes. 
Then, MDM modeling techniques are extended to include attributes in a manner 
coherent with common MDM modeling, and, last, an extension to model decision 
points in MDM is proposed. 

4.4.1 Alignment of the process structure with the product architecture 

Process improvement based on the requirements and constraints set by the product 
architecture has generated a lot of interest in research in order to discover the 
interdependencies of a technical product and its design process [HENDERSON & 
CLARK 1990, p. 9]: “Architectural knowledge tends to become embedded in the 

structure and information processing procedures of established organizations”
59.  

It is neither the specific focus of the approach presented in this research to propose 
a process structure that corresponds to the needs of the product architecture, nor to 
analyze how well a process is suited to efficiently creating a specific product. 
However, a framework to analyze a process in engineering design needs a specific 
“adapter” for the content processed in the process organization. As such, the 
alignment of process and product addresses the fact that the organizational 

                                                           
59 There are many examples available: [KREIMEYER et al. 2007c] and [SOSA et al. 2004a], for 
example, align the process structure with the product architecture to facilitate communication 
across the overall process. DANILOVIC proposes to use a clustering of product attributes to define 
workgroups that work more efficiently because they are closely related for the development 
issues for which they are responsible [DANILOVIC & SANDKULL 2002]. PONN defines the need 
to align the process in response to the specific situation, i.e., the need to generate knowledge 
about certain aspects of the product [PONN & LINDEMANN 2005]. HERFELD provides a concept 
that allows close cooperation between design and simulation engineers based on team structures 
that originate from the dependencies of requirements and their embodiment in the product’s 

components [HERFELD 2007]. 
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dependencies of a process (which are the focus here) are only in place because 
they are meant to generate a certain content.  

The process has as a specific environment for the product it is generating 
knowledge about. As the first-level interface in the SPA model presented in the 
previous section, these can be understood as attributes to entities of the process. If, 
for example, three tasks of an automotive design process are linked to developing 
the rearview mirror of a car, the rearview mirror could be the content attribute of 
these three tasks. As such, the three tasks are linked across the common attribute. 
Additionally, four other tasks of the same process might be linked to designing the 
sheet metal parts of the driver’s door. As the mirror is attached to the door, there is 
a relationship between the two attributes, which possibly indicates a relationship 
between the tasks. Figure 4-3 visualizes this example and shows how the 
additional domain “product attributes” are introduced (1) to link different tasks 
that are connected to a certain product attribute, and (2) how these attributes can 
be linked to each other (3).  

Product attributes can be of different kinds, and they can be related in different 
ways to the process. Basically, a product attribute is a “characteristic” of the 

product at a given level of abstraction and perspective to the product [PAHL & 
BEITZ 2007, p. 220]. Each level of abstraction has a different scope, as shown by 
the Munich Model of Product Concretization [PONN & LINDEMANN 2008, p. 21]: 
requirements, functions, principles of operation, geometry, concept. Each of these 
can be further detailed using different perspectives of Design for X, e.g., design 
for assembly, design for maintenance, and more.  

Relations among product attributes are manifold and are not the focus here60. The 
relation of product attributes to the process is only vaguely described, as many 
authors addressing the topic often do not clarify their understanding of structure 
any further; generally, “product attribute is implemented by process” [EPPINGER 
2001] or “product attribute connects to process / product attribute has affiliation to 

                                                           
60 [PIMMLER & EPPINGER 1994] suggest four basic kinds: Spatial, energy, information, and 
material. [JARRATT 2004, p. 125] extends these to mechanical steady state, mechanical dynamic, 
spatial, thermal steady state, thermal dynamic, electrical signal, electrical earth, electrical 
dynamic. However, many other relationship types are possible.  

 

Figure 4-3: Use of product attributes in process model 
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process” [SOSA 2008] is what is provided. However, there appears to be no 
detailed descriptions of how the different domains of a process relate to a product 
architecture [O'DONNELL & DUFFY 2005, pp. 12-14]. 

The goal of introducing product attributes is the coherence of the process 
necessary for a high degree of efficiency of the process [O'DONNELL & DUFFY 
2005, pp. 12-14], i.e., the “alignment” of the structures of a product and its design 
process including all supporting domains [SOSA et al. 2004b].  

Table 4-4 shows how product attributes can be introduced into the Structural 
Process Architecture from Table 4-3. It proposes basic relationship types that 
represent a general view of the product for the best generalization possible. 

4.4.2 Inclusion of attributes to nodes and edges 

To allow the comprehensive modeling of a process, either from scratch or by 
converting one or more existing models into an overall structural process model, 
the modeling methodology needs to be as extensive as possible to include all 
possible modeling constructs that are necessary to represent a given process. 
Besides a principal flow of a process, there may be additional attributes that 
complete the process description and that form part of the overall structure. For 
example, the IT systems that are used by individual tasks are, in fact, attributes of 
the domain “IT-system” that are related to the elements in the domain “tasks”.  

Table 4-4: Extension of the Structure Process Architecture to include product attributes 
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Basic MDM notation is able to include entities of different domains, being related 
within one domain as a DSM or across two domains as a DMM. It is, therefore, 
able to represent attributes of any element; the attributes can simply be mapped to 
the entities to which they belong. However, MDM notation is unable to include 
attributes (i.e., entities or nodes) of the relations between different nodes (i.e., to 
the edges). Figure 4-4 illustrates these two kinds of attributes. 

Figure 4-5 illustrates an example: Business object c is generated by task B and 
transferred using IT system 3, attributed to edge γ as the transferring system (as 
opposed to another system the business object originates from). Several different 
process models use such constructs. Another integration is given by [BRAUN & 
LINDEMANN 2007], for example, who link a process layer to a basic product 
architecture and, at the same time, to a resource layer to estimate the expected 
expenditures in a development process.  

A basic approach would be to model relationship γ using three matrices, linking 

two domains at a time as shown in Figure 4-5. However, such a model can turn 
out to be ambiguous in certain cases. In fact, if the chains of relations (c, d, i) are 
not explicitly named in the matrix-based notation, another unwanted chain of 
relation occurs. Figure 4-6 uses the common notation with an “x” indicating the 

existence of a relation. It shows how task B produces business object c via IT 
system 2, which is actually not the case in the modeled process. The model is, 
therefore, not unambiguous and thus insufficient. 

 

Figure 4-4: Attributes to nodes and edges 

 

Figure 4-5: Three individual chains of relations (c, d, i) in graphical and matrix notation using 
three DMMs 
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The reason for such unwanted edges is the fact that the individual denomination of 
a chain of relation is lost when replacing the chain with the simple existence of a 
relationship. Figure 4-7 illustrates this phenomenon for the previous example: 
There, the chains of relations a-A-1, b-B-1, and a-B-1 are modeled as DMMs. 
However, as the individual chains of relations are not differentiated, a fourth 
unintended chain of relations occurs that draws one edge from each of the 
intended cases. In fact, the more tightly a structure is coupled, the higher the 
probability that such unwanted edges occur. Therefore, an explicit denomination 
needs to be introduced which indicates each chain of relations in MDM notation. 

In fact, another domain needs to be introduced to identify each chain of relations. 
Even though this approach is complex and makes the generation of the matrices 
quite large, it is the only way to ensure unambiguity. In Figure 4-8, the new 
domain is included in the MDM. The empty matrices constituting the whole 
MDM are visualized, too, although only six basic matrices are needed. As can be 
seen, business object c is produced via chains c and i (1). However, only chain i 
is possible with task B (2). As chain i only contains IT system 3, business object c 
is produced only via IT system 3 (3) and not via system 2, as originally indicated 
by the matrices depicted in Figure 4-6. 

 

Figure 4-6: Unwanted relation in the example from Figure 4-5 because of ambiguous 
modeling 

 

Figure 4-7: Occurrence of unwanted relations using three DMMs 
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The approach is equally applicable to DSMs, as a DSM can be understood as a 
DMM linking two identical domains. As the same ambiguity, as in the DMM case, 
can occur for DSMs, a denomination of the chain of relations is necessary. 

The approach serves as a basis for extending matrix methodology to facilitate the 
completeness of modeling constructs. It is especially valuable to complete matrix 
methodology for handling large systems with many elements; in such cases, it is 
not just the compactness of a matrix that is of interest but also the strict modeling 
scheme and the possibility to represent multiple relations in their coexistence. As 
it is in line with common MDM notation, it allows the effortless application of 
common analysis methodology.  

4.4.3 Decision points modeled as Boolean operators 

Almost all available process models can model the split or merge of the process 
flow using logic operators. These operators represent decision points that, 
according to the results of the process up to this point, take it along one path or 
another. To make a process model containing such operators accessible to a 
systematic analysis using structural metrics, a conversion into an MDM is 
necessary. The sub-section below describes different ways of doing this. 

Basic logic operators and possible conversions 

Commonly, logic operators are modeled as Boolean operators to represent the 
choices that are possible. Boolean algebra provides three basic operators AND, 
OR, and NOT which can be used to model all other more complex operators such 
as XOR, NAND, or NOR [PAHL & BEITZ 2007, p. 47]. Table 4-5 shows the basic 
Boolean operators and explains their behavior.  

 

Figure 4-8: Unambiguous MDM-based description of attributes to edges 
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To model the control flow of a process (see section 2.2.3), typically only AND, 
OR, and XOR are used; for example, in IDEF-3, EPC, or IUM models, these 
operators are commonly used. The NOT operator is, in fact, not used in any 
common process modeling methodology. For this reason, the logic modeling for 
processes explained in this section focuses only on AND, OR, and XOR.  

Whereas no decision is made when using the AND connector, and the process 
simply splits or joins, both OR and XOR are based on a decision that influences 
the process behavior. In most process models, the actual decision is made in the 
entity before the operator, i.e., a task that is followed by a split-operator will have 
different possible outcomes which influence any further procedure. As such, both 
OR and XOR cause a non-deterministic behavior of the process and influence the 
structure of a process (see Table 4-6).  

As Table 4-6 shows, the process model can take different shapes if it is reduced to 
a structure that does not involve any logic operators. In fact, the operators in 
common models such as IDEF-3 and others represent different variants of the 
possible behavior of the process in one single model. If the process model is 
unfolded to reveal the relations of its entities across the connectors, the entities can 

Table 4-5: Basic Boolean operators (according to PAHL & BEITZ 2007, p. 47) 
 

 

Table 4-6: Process flow for the common split and join operators 
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interact differently, depending on the operators involved. [BELHE & KUSIAK 1996] 
illustrate this with an example of a simple process: The conversion of a process 
with only seven tasks and three Boolean operators will turn into six different 
process flows (see appendix 10.2.1 for the complete example and algorithms). 

Overall, five ways of converting a process flow involving logic operators into an 
MDM are possible. The five rules are ordered according to their degree of 
completeness of converting the structure of a process. Appendix 10.2.5 shows the 
algorithms and resulting matrices for each conversion rule in detail. Table 4-7 
sums up all conversion rules with their advantages, disadvantages, and 
recommended adaptations. Depending on the application case, any method is 
suitable to produce a valid MDM.  

 

Table 4-7: Conversions of a process model with logical operators into matrix-based notation 
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Rule 1: Resolve all logical connections [BELHE & KUSIAK 1996] 

Logical operators are eliminated by creating different graphs and matrices for each 

alternate process given by each decision in the process. Because of the large 

number of different matrices eventually obtained, this rule is only of theoretical 

interest, while its application is of little practical use. The number n of all possible 

graphs amounts to n = 3
k
 * 2

m
 with k the number of binary OR-operators and m 

the number of binary XORs.  

Rule 2: Neglect the operators [KREIMEYER et al. 2007d] 

By dropping all decision points and turning their connections into simple edges, 

only the basic structure of the process remains. This way, flow characteristics can 

be analyzed, while a critical path across different decision points (Critical Path 

Method), for example, cannot be observed. Thus, only analyses based on 

structural characteristics, i.e., those that do not rely on decision points, are 

possible. 

Rule 3: Translate operators into probabilities [GÄRTNER et al. 2008] [CHO & 
EPPINGER 2001] 

By resolving all possible paths into or after a decision point as numerical values 
that correlate to the probability for taking each path, it is possible to evaluate the 
sequence of decisions that take place numerically. As such, the decision points are 
basically modeled like a Bayesian network. However, the appropriate numerical 
data (e.g., as a numerical DSM) is necessary, which often is not the case.  

Rule 4: Logical operators as additional entities in the process domain 

The operators are kept as an additional entity, losing information about the type of 
operator. The operators lose their meaning, and only the pure existence of a 
relationship is transferred, as if all operators were AND operators. This approach 
extends the simple disregard of the operators, as in rule 3, and integrates an 
additional number of entities into the network that can be analyzed using a 
common methodology. A process network with n entities will, therefore, grow to a 
network with n + k entities, with k as the number of distinct logic operators. The 
approach is mainly useful if the process model only consists of a single DSM and 
if decision points are of little importance.  

Rule 5: Carry along the logical operators and their characteristics 

Extending rule 4, this approach (explained in the following) extends the process 
MDM by a new domain that models the existence and connectivity of connectors 
(i.e., connectors are modeled as nodes of a new domain “connector”) and that uses 

another additional domain to model the type of the connector (i.e., each connector 
node is attributed with its type using a DMM). Although somewhat complex in 
both execution and result, the resulting matrices can transfer the structure of any 
process model without loss of information bi-directionally.  
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MDM-based modeling of logic operators 

With MDM as a chosen common basis to model the relationships in any given 
process notation, not only is their structural impact relevant, but also their 
modeling in MDM in order to assemble a complete, correct, and consistent 
process model that is then submitted to analysis. Therefore, logical operators need 
to be unambiguously represented in the model. As rule 5 is the most complete, it is 
the one that is chosen for the representation in the following. However, for simpler 
cases, the other rules can also be applied to generate a process model. In this sub-
section, the EPC notation is used to show that the rule is applicable even for 
complex process models.  

To allow the conversion of logic operators, an MDM can be used that handles 
decision points as an additional domain; the nodes of this domain serve as an 
intermediate connection between the tasks and events that alternate in the process 
flow of an EPC model. To characterize the type of each of these connectors, each 
node that represents a connector is attributed with its type (AND, OR, XOR) using 
an additional DMM (the characteristic domain). Figure 4-9 shows how a basic 
EPC process element (left-hand side) necessitates that four domains be converted. 

Theoretically, all 16 matrices within the emerging MDM could contain entries 
representing dependencies. If, however, the EPC model that is used as a basis is 
semantically correct, only the shaded matrices in the MDM are needed, while the 
others remain empty. Yet, it is often possible that process models in practice do 
not fully adhere to all rules that are set in the process meta-model. Therefore, 
dependencies can also occur in the empty matrices, for example, if tasks are 
directly linked (especially for notations other than EPC or for “dirty” models).  

For EPC, ten elementary combinations of tasks, events, and logic connectors are 
possible, as shown in Table 4-8. In fact, it is impossible that any entity of a 
process not executing a task can make a decision to change the primary flow of 
the process. Therefore, events being only static states, the process cannot lead to 
different tasks. However, real-life modeling of process does not always adhere 
fully to the process modeling notation; therefore, the MDM conversion is also able 
to cope with the impossible cases of EPC.  

 

Figure 4-9: MDM with appropriate domains to translate the primary flow of an EPC model  
(domains that are potentially not empty are shaded) 
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To accommodate all possible constellations of logical operators in a process 
model, those combinations shown in Table 4-8 are possible. Each can be 
understood as the smallest possible building block of a process model, as from 
these blocks, all possible processes can be assembled. These Elementary Building 
Blocks (EBB) thus embody the smallest units of a process. Interlinking them 
results in the entire process. Representing the elementary connection types, they 
consist of two process elements (either tasks or events), and one logical connector. 
Altogether, there are ten possible EBBs: six for tasks with AND, OR, XOR for 
splits and joins (compare Table 4-8).  Figure 4-10 illustrates two EBBs: an XOR-
join EBB for events and an AND-split EBB for tasks. All other EBBs are formed 
in the same way.  

The example in Figure 4-11 provides a possible recombination of EBBs 
constituting a complete process. It combines the two EBBs from the previous 
example, linking the two connectors in a DSM. Except for this entry, the overall 
MDM is the superposition of the two previous smaller MDMs. 

Table 4-8: Logics in EPC notation [SCHEER 1999] 
 

 

 

Figure 4-10: Example for EBBs of XOR-join (left-hand side) and AND-split (right-hand side) 
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Thus, the approach of converting a process model into an MDM using rule 5 has a 
number of advantages: Above all, it is compliant to the “classic” matrix-based 
description of systems, thus extending the modeling base to describe and analyze 
the structure of a process.  

While MDM and EPC are somewhat different forms of notation, the proposed 
mode of conversion shows that their content is compatible in terms of the structure 
of the process, i.e., the interaction and dependencies of the various entities that 
prevail in the process. In fact, a direct inter-conversion between both notations is 
possible (omitting the fact that, of course, the actual design of the graphical 
process model is lost). As such, it supports a consolidation in the form of a clearly 
defined interface between the modeling methods.  

As EPC was only used as an example in this sub-section, the proposed method is 
applicable for any other graphical notation involving logical operators, e.g., IUM 
or IDEF-3 (an example is found in appendix 10.2). The definiteness of the 
approach allows modeling iterations and other structural characteristics common 
to processes. It is suitable for representing a large process unambiguously, as long 
as all entities are uniquely named (logical operators, too).  

As the outcome of the conversion is an MDM, all structural characteristics and 
metrics applicable to an MDM are relevant. This holds true for the interpretation, 
as well. However, when evaluating a structural characteristic or metric for a 
decision point other than AND, the underlying structure does not necessarily 
represent a network that is present at all times but that can be present. As such, 
interpretations need to be made more carefully, considering the fact that the 
relationships within the structure represent possibilities and are not permanent.   

4.5 Building the process model  

The meta-model presented as the Structural Process Architecture lays the 
foundations of modeling a process. Its application has different facets, which are 
explained in this section. Above all, the SPA model is used to generate a process 
model that can later be submitted to structural analysis. To this end, the process 
MDM can be analyzed either using the native data from the process model, or the 
domains and relationship types can be recombined to generate aggregate views.  

 

Figure 4-11: Recombination of the two EBBs from Figure 4-10 
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4.5.1 Generating a process model  

Two modes of generating a process model are possible; either, the model is 
generated as an MDM from scratch, or one or more existing process models are 
imported. Which of the two possibilities is chosen to create a model depends on 
the actual context of the process improvement and the availability of other models: 
If existing process models are available (compare the models in appendix 10.1), 
these can be processed directly. If other models are available, these can be turned 
into an MDM by identifying their domains and relationships. If no models are 
available, a process MDM has to be created from scratch.  

To create an MDM from scratch, a procedure proposed independently by 
[MAURER 2007, p. 69] and [DONG 2002] can be used, based on best practices: 
Using workshops, interviews, existing documentation, questionnaires, or web-
based forms [SABBAGHIAN et al. 1998], the system is delimited by collecting 
relevant entities and relations. Classifying these, a list of domains and relationship 
types is generated that forms the meta-model for the successive model-building. In 
a second step, using the same methods of information acquisition, the domains are 
then refined to their individual elements, and these are reviewed in a pair-wise 
manner to collect the existence of all relevant relationships. Figure 4-12 integrates 
this procedure into the overall context of structural analysis.   

The Structural Process Architecture is thus a reference to define domains and 
relationship types. If the analysis follows a certain goal (see section 6.2.1), the 
meta-model furthermore helps by including domains that are relevant to answer 
questions related to the chosen goals. 

The following questions should guide setting up the system definition. They 
operationalize the principles of a system description as shown on page 38.  
  

 

Figure 4-12: Two approaches to setting up a structural process model 
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‚ Which domains are available in the existing process organization? 

‚ Which domains are needed to answer specific questions or to get a complete 
picture? 

‚ How can the domains of the meta-model be refined to generate a meta-
MDM for the analysis in question? 

‚ How are these domains related?  

‚ Which of these relationship types are relevant for the analysis in question? 

‚ How can the relationship types of the meta-model be refined to describe the 
domains of the analysis in question? 

Figure 4-13 shows an example of an MDM that was created from scratch, based 
on the SPA model. Here, the communication structure among the 45 committees 
relevant for a development process was modeled. For this problem, it was 
necessary to detail the committees that regroup personnel from the company 
across departments and specific roles. Therefore, the domain “organizational 

units” from the meta-model was further decomposed into departments, 
committees, and roles. Equally, the relationship types have been refined from the 
basic propositions of the meta-model to fit the refined domains; some pairs of 
domains are connected by two different relationship types paralleling each other. 
For example, roles are, on the one hand, connected to committees as being part of 
them and, on the other hand, as being responsible for creating the agenda for a 
committee’s meeting. To adapt both domains and relationship types, the principles 

laid out on page 38 were applied. 

 

Figure 4-13: Example of refinement of a domain into three more detailed sub-domains 
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As a result, a specific meta-MDM61 for the process analysis was generated, as 
shown. Then, the meta-MDM was instantiated, i.e., its relevant sub-matrices were 
filled, as proposed above. In the example, 12 matrices were needed and generated 
through workshops and from document analysis to build the complete MDM. 

To generate an MDM based on existing process models — for example, an 
EPC chart, as shown in the introductory case study — a different procedure 
applies, as here the meta-model plays a slightly different role. Basically, either one 
model can be parsed and converted, or several models can be combined into one 
MDM. In all cases, the existing process models need to be exported from their 
native systems and converted into appropriate matrices; the model shown in the 
introductory case study was, for example, generated in a modified version of the 
ARIS Toolset, exported into a spreadsheet format, and then the individual export 
files were assembled as an MDM. However, this procedure is different for every 
modeling tool and not regarded here, as it is mostly an application development 
specific to the modeling system.  

If one model is converted, the Structural Process Architecture model generally 
supports the goal-oriented analysis and the selection of the appropriate domains 
within the existing process model, which need to be converted into the MDM.  

If two or more models are combined into an MDM, the Structural Process 
Architecture serves as a frame of reference to collect models for all domains and 
relationship types necessary; furthermore, it helps to combine possible different 
levels of granularity in a process model [WYNN et al. 2009]. While, of course, it is 
not possible to combine two process models with different levels of abstraction 
into one homogenous model, it is possible to connect models that only differ 
slightly in their level of detail. To this end, it is often possible to combine several 
sub-models into an overall model by finding the correct abstract terminology that 
bridges the elements of the sub-models. If several models are combined this way, 
it is important to introduce a common naming scheme for all entities involved, as 
these form the “docking points” among the models. Experience has shown that an 

enumeration of all entities is a good basis to do so. See the validating case study in 
chapter 7 for an example; here, 99 different models were assembled into one 
MDM to generate a coherent model. 

4.5.2 Aggregate views recombining domains and relationship types 

As shown on page 39, a process model will commonly consist of more than two 
coupled domains [GUILLAUME & LATAPY 2004]. Yet, when analyzing the model 
and comparing the entities of these domains among each other, it is necessary to 
compare only entities of one kind with each other. To do so, it is often necessary 
to incorporate indirect relationships among these entities, which only exist via an 
intermediate domain. To do so, an aggregate view can be used that only contains 
entities of one domain and their (computed) relations among each other. This is 
especially necessary for analyzing structural characteristics [MAURER 2007, p. 82] 
or structural metrics based on intra-domain networks (i.e., DSMs). 
                                                           
61 Also called a system-graph [LINDEMANN ET AL. 2009]: It shows, what domains and 
relationship types are used and how they relate. As such, it is similar to an Entity-Relationship-
Diagram at a meta-level. 
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As Figure 4-14 shows, five basic patterns of relationship types are possible at the 
meta-level, either as inter-domain relations, connecting two domains, or as 
reflexive, intra-domain relations, relating the elements of a domain to other 
elements of the same domain. These relationship types can be directed or not.  

Based on these basic patterns, three forms of aggregation are possible, and each 
can lead to either an intra-domain aggregation (producing a DSM) or an inter-
domain aggregation (producing a DMM). Table 4-9 shows all six kinds: 
Aggregation is possible via different paths at the meta-level, via a common entity 
of reference, or via superposition. As the table shows, the aggregation via path 
searching produces a directed relation (dashed) between two business objects, the 
second reached via an intermediate task. If the two tasks are connected to the same 
task, their aggregate relation is not directed as in path searching. If two models are 
superposed, the directedness of the resulting aggregate relation finally depends on 
the available input data.  

If an aggregate view is produced via path searching, the possible paths within the 
meta-MDM are followed and computed, as suggested by [BIEDERMANN & 
LINDEMANN 2008]. In such cases, directed networks are the result of directed 
native data: if the native data is an undirected network, of course, the aggregate 
view is undirected, as well; in mixed native networks, containing directed and 
undirected relationship types, each aggregation has to be checked individually for 
possible directedness. 

Aggregate views can, furthermore, be created by evaluating the concurrent 
attribution to a domain of reference, as shown in the center row of Table 4-9. 
Here, two entities in the domain “business objects” both relate to an entity in a 
second domain, and thus share a common partner in that domain. The aggregate 
views are always undirected. 

 

Figure 4-14: Basic patterns of aggregation of domains 
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Thirdly, it is possible to overlay two networks that are of the same domain 
(“superposition”), i.e., the same kind of entities at the same level of granularity, 
but that have possible different relationship types. Commonly, such an 
aggregation only makes sense if the two networks are very similar, e.g., if either 
partial models are combined or if the relationship types within the models to be 
combined are a decomposition of a higher-level relationship type that will then 
govern the aggregate view. Of course, an aggregation of directed native data will 
provide a directed, aggregate view, while undirected models will naturally bring 
forth an undirected model. Combined models, integrating directed and undirected 
relationship types, are not advisable, as the outcome will then be mixed within one 
aggregate view, making it impossible to differentiate this directedness in further 

Table 4-9: Different forms of aggregation 
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analyses. This third principle is, in fact, used when two process models are 
combined to generate a process model with a wider system border.  

However, for the purpose of process analysis, only directed relationship types are 
considered in the following. To this end, undirected relationship types are treated 
as bidirectional directed relationship types, which is sufficient to calculate 
aggregate domains and structural metrics. There is an ongoing discussion whether 
this is permissible and whether DMMs especially are directed matrices or how; 
however, from a pragmatic point of view, treating undirected relationship types as 
bidirectional relationships is sufficient for structural analysis  

Using this convention and the three remaining patterns of relationships, the 
example shown in Figure 4-15 can be assembled by recombining the different 
patterns to constitute a process MDM including its domains (four of them in the 
example: organizational units, business objects, tasks, IT systems) and relationship 
types62 (four, again). The undirected basic relationship type between tasks and IT 
systems is resolved as bidirectional-directed.   

In the example in Figure 4-15, different aggregate views can now be calculated. If, 
for example, the business objects are in focus, two possible intra-domain networks 
can be computed to generate a business object-DSM: Either, the business objects 
can be related via just the tasks, or they can be related via the tasks across the IT 
systems and back via the tasks. In the first case, one intermediate domain is used; 
in the other case, the view is aggregated via two intermediate domains.  

The computations of path searching can, therefore, be brought down to the 
computation of reachability within the MDM (compare Table 2-2 on page 50), 
following all possible paths starting from a domain of reference (the business 
objects in the example above) back to itself. Every individual circuit (i.e., a 
directed cycle) though the MDM will generate a new aggregate view for the 
domain of reference that is – at the same time – the start and end domain for this 
circuit. In the same manner, all paths in the MDM running between two different 

                                                           
62 The figure only serves as an example; whether organizational units actually use a directed 
relationship type to connect to a business object or not is not the focus in this section.  

 

Figure 4-15: Example of recombination of domains and resolving of undirected basic 
relationship 
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domains can be brought back to an aggregate DMM; this, however, is not further 
regarded here, as no aggregate DMMs are needed for the structural metrics.  

Figure 4-16 lists a few examples of native data (left-hand side) and the way these 
can be aggregated towards a domain of reference (red hexagon) following all 
possible circuits with the domain of reference as the start and end domain. For 
example, in the first case, no closed loop is found in the graph of domains and 
relationship types. Therefore, no aggregate view can be computed. In the second 
row, one circuit from the domain of reference (the red hexagon, serving as a 
reference towards which the network is to be aggregated) to the green rectangle 
and back exists. Here, an aggregate view for the domain of reference via this 
intermediate domain is possible. For the last row, for example, four different 
aggregate views of the domain of reference are possible.  Of course, this principle 
of aggregation can also be used for more domains than shown in the figure.  

When creating aggregate views, domains and relationship types are condensed 
into a single domain, changing the relationship type of the new, aggregate view. 
As such, the relationship types and intermediate objects are chained up to create 
the aggregate relationship type. The example in Figure 4-17 explains the process 
of aggregation, first collecting the initial relationship type, then the intermediate 

 

Figure 4-16: Possible aggregations of up to three domains (using path searching) 
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domain, then the second relationship type. Unfortunately, there is no other 
systematic way to condense the aggregate relationship type any further. In many 
cases, however, a higher level of abstraction can be found; for the example, in 
Figure 4-17, “task delivers information task” can be applied, which is reasonably 

close to the original aggregate relationship type. However, these simplifications 
always include a loss of precision and, therefore, should be considered with care. 

To compute aggregate views, the rules shown in Figure 2-9 and Figure 2-10 are 
applied. For each path, the matrices along the path are multiplied, either starting 
from the beginning of the path or the end of the path. For example, an aggregation 
path via one other domain, therefore, consists of two matrix-multiplications, a path 
across two other domains of three multiplications, and so on. Figure 4-17 shows 
the matrices that embody the relationship types of the flow chart; the aggregate 
DSM is calculated according to case 3 of the rules presented in section 2.1.3. For 
larger systems, in particular, involving many matrices, it has proven useful in 
practice to use an ID for each individual matrix, and first to collect the IDs along 
each aggregation path, and then to compute the aggregate views. 

When using logic operators according to the modeling scheme shown in section 
4.4.3, aggregation is more complex, as Figure 4-18 shows. Commonly, models 
involving logic operators do not connect all entities via these operators, but some 
are directly connected. Thus, on the one hand, aggregate views exist, as shown 
above via the relationships entered in DSMs and DMMs. On the other hand, 
aggregate views exit in parallel via the logic operators, which can be nested 
among themselves (e.g., an OR can be connected to an XOR, and so on). 

 

 

Figure 4-17: Aggregate relationship type for the example from Figure 4-15 
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Figure 4-19 shows how the aggregate view for the domain “tasks” is computed. 
DMMs 1 and 2 are multiplied to generate the intermediate DSM of relationships 
that do not use any logic connector between them; then, a second intermediate 
DSM including the logic operators is calculated. As a third step, both intermediate 
matrices are added. This aggregate view thus represents the minimum set of 
relations among the tasks. 

Regarding interpretation, the summing up of two (or more) matrices means that 
the full set of relationships between two domains is spread over two (or more) 
other domains; in this case, the domain “connectors” only contains one entity, the 
XOR connector, and, therefore, only contains the relationships between those 
entities, whose behavior is governed by this logic operator. In a larger context, 

 

Figure 4-18: Combined aggregation with logic operators 

 

Figure 4-19: Computation of aggregate DSM from MDM with logic operators (computed 
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however, this principle of aggregation via superposition is another possible 
strategy that is viable for other contexts, too, e.g. the data exchange between 
different IT systems via different interfaces and intermediary systems. Here, 
however, it is only used to combine models of the same relationship type, as is the 
case with logic operators, as the aggregation of similar but not identical 
relationship types requires a very detailed review of the combinability of the 
relationship types to ensure a purposeful analysis of the aggregate model. 

4.5.3 Example of a process model for engineering release management 

Using the meta-model and its principles of application shown, a process model for 
the analysis of a release management process at a large premium automotive 
manufacturer was created.  

The goal of the analysis was to identify improvement measures for the 
communication among the different organizational bodies along the principal 
process flow for a new product line based on the experience from other projects. 
Specifically, the following aspects were targeted to be improved: 

‚ Alignment of committees and organizational entities with process chains 

‚ Improvement of the assignment of tasks to organizational entities by 
reshuffling the work distribution based on the process sequence, by the 
targeted deduction of interdependencies between organizational entities, and 
through the generation of suggestions for an improved organizational setup 

‚ Improvement of the composition of committees by re-ordering the 
committees based on the process sequence and by deducing communication 
channels between committees 

 

Figure 4-20: EPC meta-model of the process analysis  
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The process model was first assembled as an EPC model and then exported into an 
MDM to be further analyzed. Figure 4-20 shows the input process model as an 
EPC meta-model that was then translated into a meta-MDM (Figure 4-21). Based 
on this meta-MDM, the actual process model was then imported and analyzed. 

From this native data, aggregate views for the organizational entities and for the 
committees were computed to analyze the use of resources and to identify 
necessary communication channels. Equally, aggregate views for the documents 
and the related IT systems were computed to better analyze the data flows 
between these domains. The following analyses were computed in detail:  

‚ Analysis of aggregate organizational entities-organizational entities DSM 
(via functions) and aggregate committees-committees DSM (via functions) 

‚ Analysis of aggregate objects-objects DSM (via functions) 

Based on this model, the structural characteristics of the aggregate DSMs were 
examined (e.g., clusters, bottlenecks, start-/end-nodes) to gain a better 
understanding of the character of the overall system, and the native organizational 
structure was compared to the aggregate organizational entities–organizational 
entities DSM to see how well aligned the existing organization was in comparison 
to the needs exercised by the principal process flow. 

As core findings, a potentially lean process chain was eventually proposed, 
reducing media breaks through better integration of the information flow and 
through the elimination of redundant communication efforts by the definition of 
specific communication efforts.  

 

Figure 4-21: Meta-MDM adapted to the analysis of the EPC model used for the process 
analysis 
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4.6 Conclusion: MDM-based process modeling 

Common process models are mostly focused on the flow of information through 
the process. Into this sequence, they integrate boundary conditions, for example, 
that are set by other domains in the process organization, such as organization 
units or points in time. However, all of these different domains impact the process 
organization concurrently, and thus different network structures coexist in a 
process.  

Multiple-domain matrices (MDM) enable a more balanced modeling of these 
different networks, as they are able to clearly differentiate various domains and 
relationship types in a large dependency model, integrating all into one coherent 
model. This model can be extended as needed by adding one matrix at a time, 
making it possible to import data from various sources to combine them into one 
overall process model. While losing to a time-oriented representation of the flow 
of time, leaps back in time or loops in the principal process flow, as well as in the 
supporting domains, can be represented at the same time. 

Furthermore, an MDM allows condensed aggregate views to be created that take 
into account the relations via any number of domains, reducing them into a single 
matrix that enables running specific analyses of a domain of reference without 
losing sight of the implications that originate from the interplay with other 
domains. As such, a process model that consists of several domains becomes 
accessible for more straightforward analysis without reducing its complexity. By 
doing so, one-sided improvements can be avoided during the analysis of a process 
model. Furthermore, existing algorithms and metrics that are only suitable to work 
with one domain, as commonly established, can be applied to more complex 
process networks. Therefore, an MDM is advantageous for a more comprehensive 
analysis.  

Yet, MDMs are difficult to use. In fact, large matrices are not intuitive to read, and 
they are not meant to replace the graphical modeling of a process. In the context of 
this research, MDMs are, therefore, used essentially to serve as a common adapter, 
representing the structural content of different process modeling languages. 



 

5. Complexity Metrics for Design Processes 

This section lays out available complexity metrics in order to assess the structure 
of engineering design processes to discover indications about their behavior. 
These metrics receive, as an input, a structural model (preferably based on the 
Structural Process Architecture, as shown in the previous chapter, although any 
other graph or dependency model can be used) of only the entities and 
relationships of the system. The metrics are, therefore, suited to work with 
qualitative models, as commonly found in process models set up from “boxes and 

arrows”. These metrics and their description are referred to as the Structural 
Measurement System (SMS). They support the following purposes as discussed in 
chapter 3: 

‚ Provide a comprehensive toolbox to analyze a process chart for the 
occurrence of all relevant patterns among its entities and relationships 

‚ Analyze patterns to describe their occurrence as metrics for every single 
entity, group or network (depending on the scope of the pattern) 

‚ Connect the patterns to their structural significance for all domains and 
relationship types as defined by the Structural Process Architecture from the 
previous chapter 

‚ Provide empirical evidence for the metrics available 

‚ Ensure that the metrics are compliant with measurement foundation 
(representation, uniqueness, meaningfulness) and Weyuker’s Properties 

‚ Rank the results of the analysis by their degree of distinctiveness for the 
process by identifying results that “stick out” 

‚ Describe the metrics in an intuitive and understandable manner 

‚ Present the metrics in a way that their computation can be automated 

The set of metrics was developed to assess design processes in a comprehensive 
way; thus, the resulting metrics should fill in the solution space as completely as 
possible. The solution space for structural metrics with a focus on engineering 
design processes is spanned by three axes, as shown in Figure 5-1. 

Principally, process analysis is guided by common goals or, more generally, 
concepts as already shown in Table 2-7, namely, planning, resource consumption, 
quality, flexibility, organizational decomposition, interfaces, and transparency of 
process. These concepts guide the use of different process models that assemble 
the relevant entities and relationships in a process, which can be regrouped under 
the Structural Process Architecture’s domains and relationship types, consisting 
mainly of tasks, artifacts, events, organizational units, resources, and time, as well 
as the appropriate relationship types (Table 2-9 and Table 4-3). The system of 
entities and relationships of a process then creates different structural 

characteristics that dictate the behavior of the process, a fact that is referred to as 
emergence. 
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These three axes form the solution space to the behavior of a process from a 
structural point of view. Generally, the solution space is filled with the 
particularities of engineering design processes that, in part, relate to the 
structure of a process. Such particularities are, mostly, the dynamics of a process, 
its creative nature, iterations in the process (loops, leaps), the fact that results are 
not predictable, the driving influence of continuously appearing changes, the work 
based on imperfect definitions, the uncertainty inherent in the process and the 
accompanying risks, the growing maturity of artifacts, the fact that a definite 
process path is commonly not determinable, and the involvement of many 
stakeholders (see section 2.2.1).  

These particularities relate, at least to some extent, to the structure of a process, 
and they can thus be related to structural characteristics. Yet these structural 
characteristics are, at an abstract level, independent of the semantics of process 
analysis, as a structure is a constellation of nodes and edges that gains its meaning 
by the semantics and purpose transported by the model (for a definition of 
structural characteristics see page 49).  

Therefore, possible constellations of nodes and edges as basic constituents of 
structural characteristics are shown first to develop structural metrics 
independently of domains and relationship types. In a second step, the metrics are 
then combined with common domains and relationship types to evaluate the 
particularities of engineering design processes and, thereby, give the structural 
metrics a process-focused meaning as a Structural Measurement System. The 
development of structural metrics independent of their application allows, at the 
same time, the development of a more general concept that can be adapted to 
different needs of analysis, possibly not only for engineering design processes but, 
for example, product architectures. 
  

 

Figure 5-1: Solution space for the development of structural metrics for engineering design 
processes 



5.1 Assessing structural characteristics using metrics 135 

5.1 Assessing structural characteristics using metrics 

To develop the complexity metrics, a two-stage process is followed, which is 
commonly used in such cases [GEIGER 2000, p. 95] [MUTSCHELLER 1996, pp. 63-
83]. At the first stage, basic structural characteristics are developed that serve as 
elementary constituents of any network structure; from these elementary 
components, the combined structural characteristics can be assembled which many 
different disciplines, e.g., Network theory, have generated.  

In the second stage, basic structural metrics can be used to embody these 
structural characteristics in basic measures; recombining and refining these 
measures then generates combined and special structural metrics to assess 
different structural aspects of engineering design processes. This last step is, in 
fact, a tailoring of existing metrics to the needs of the empirical object. This 
procedure is in line with the common reasoning that led to a classification of two 
kinds of metrics: basic and combined structural metrics, similar to fundamental 
and derived measures [ZUSE 1998, p. 95]. Figure 5-2 visualizes the procedure. 

5.1.1 Basic and combined structural characteristics 

All structural characteristics are constructed from basic patterns63 of nodes and 
edges that are the constituents of any graph. Such basic structural characteristics 
can be node-induced or edge-induced, as Figure 5-3 shows. Although the focus in 
this research is essentially on directed graphs, node-induced basic structural 
characteristics are differentiated according to the directedness of the network, as 
the underlying concepts in graph theory64 vary accordingly. 

Node-induced basic structural characteristics relate to the connectivity of a graph. 
If a path from any node to any other node of a graph can be found, the graph is 

                                                           
63 Patterns or particular patterns are the constellation of nodes and edges of a structural 
characteristic; however, this constellation does not relate to any semantics of the model and, 
therefore, is just a pattern of entities, whereas a structural characteristic only gains its right to 
exist from the pattern AND its meaning. Yet, since the two terms are very closely related, the 
terms are not further differentiated and used synonymously.  

64 See section 2.1.2 for the basics from graph theory that are used here. 

 

Figure 5-2: Procedure to set up structural metrics 
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called a connected graph; otherwise, the graph is disconnected. A block is either a 
maximally 2-connected graph (i.e., a graph that remains connected if one edge is 
removed), a bridge (including its nodes), or an isolated node. A 2- or biconnected 
component, therefore, is also a block. A directed graph is said to be strongly 
connected if every node can be reached from every other node. A clique is a 
completely connected graph with a relational density of 1.  

Edge-induced basic structural characteristics take shape as different kinds of 
paths. Hierarchies are a special set of paths to all reachable nodes that can be 
attained from a root node (also called arborescence). Sync graphs are graphs 
consisting of a set of parallel paths connecting two nodes. A cycle is a path 
starting and ending at the same node (called a circuit if a direction is given; a cycle 
with only bidirectional edges has two circuits).  

From these basic structural characteristics, combined structural characteristics can 
be set up; different disciplines of research have provided a set of structural 
characteristics that can be considered more or less complete and computable, as 
was shown in Table 2-2. Table 5-1 summarizes the structural characteristics 
currently available. Some disciplines claim, in fact, basic structural characteristics 
as specific to their domain; however, in such cases, these structural characteristics 
already bear a specific meaning and are no basic constituents.  

Based on these structural characteristics, common structures can be described in a 
comprehensive manner. Each of these structural characteristics serves, in the next 
step, as a basis for a measurement that produces structural metrics. 

 

 

Figure 5-3: Basic node-induced and edge-induced structural characteristics 
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5.1.2 Solution principles for structural metrics 

Table 5-1 provided a list of currently available structural characteristics. 
Classifying them at a higher level of aggregation, several solution principles can 
be deduced that serve, together with the structural characteristics shown in Figure 
5-3, as basic aspects that are detailed using different structural metrics. In the 
following, each solution principle is explained.  

Metrics assessing the size and density of a network are basic counters to 
characterize a process by the occurrence of domains, entities, and relationships; as 
such, they mostly serve as a scaling reference to other metrics. Isolated nodes and 
leafs (as start- or end-nodes) are also part of this group of metrics. 

Adjacency addresses the fact that a node is connected to neighboring elements; 
metrics based on adjacency as a feature of a network, therefore, only regard the 
relationships of a node within its immediate environment, while secondary 
impacts or even those farther on are not regarded. As such, the direct impact 
among nodes and the distribution within the overall network are focused on. Also, 
splits and joins, and more generally, structural busses are relevant to adjacency as 
a feature of a structure; likewise, the number of independent sets addresses the 
number of bands obtained in banding a DSM. 

Looking at the propagation and long-range impact of a node across the whole 
process, attainability (also referred to as reachability) extends the metrics 
relevant to adjacency to the whole network. Thus, nodes are regarded in terms of 
their embedding in the overall network. 

Metrics using closeness do not simply look at the overall embedding, but refine 
this feature by how closely related any two nodes are within the network. 
Although actually related to paths, centrality uses a count of path lengths to 
attribute to a node its centrality within a network, thus indicating whether it is well 

Table 5-1: Combined structural characteristics (according to relevant disciplines) 
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integrated into the network or whether it has a position on its border. 

By evaluating paths a process is characterized by how it can be navigated, and it 
is analyzed by which paths across the network are relevant to this navigation. 
Furthermore, each individual path can have special properties, as it constitutes, in 
fact, a dependent subset of the overall network; therefore, specific metrics 
assessing relevant features of a path are part of this group, too.  

Clustering is an important feature. Here, metrics assessing clusters, i.e., densely 
or completely connected groups of entities, are counted; equally, transitivity, i.e., 
potentially existing clusters, are regarded. Ultimately, modules as pre-defined 
groups of entities that may form a cluster are of interest, especially with regard to 
whether their border is purposefully drawn. 

Metrics that are part of the group of connectivity are oriented towards the 
resilience of a network, i.e., its robustness against individual entities and 
relationships dropping out. 

Cycles are another important feature of complex networks, especially if they 
represent engineering design processes that are almost always subject to iterations. 
The metrics within this group are tailored to characterize cycles in general, the 
involvement of different entities and relationships in the cycles, and possible 
decision points that initiate or re-start iterations within a process.  

Metrics that involve several domains address the fact that not all process 
networks are set up with only one domain and that aggregation towards one single 
domain is not always practical. These metrics thus make use of the ideas behind 
the features n-partite-ness and mixing patterns. Overall, these metrics strive to 
assess the degree of alignment between a set of domains from different angles.  

Metrics on cognition in structural analysis are still at an early stage of research; 
the basic concept is to evaluate the human capability to actually grasp or 
understand a network structure using empirical concepts or planarity.  

Ultimately, metrics involving Boolean Operators can be used for structures that 
are modeled using decision points, as shown in section 4.4.3. However, the 
metrics are good for any other dependency model as well, as long as decisions are 
explicitly modeled. 

5.1.3 Evaluation of structural characteristics using structural metrics 

There are different measurement philosophies, which have lead to different kind 
of metrics (nominal, ordinal, interval, and ratio scales), as provided by 
measurement foundation (section 2.3.1), and discussion is still ongoing about what 
measure is a good measure. The very existence of this discussion indicates that the 
question may have no fundamental answer, but rather that a selection of the type 
of measurement needs to be made according to the nature of the empirical object 
under observation. Generally, two major kinds of measurement philosophies can 
be differentiated: comparative measures – comparing two or more relative 
measures to each other – and absolute measures, requiring a reference or scale.  

It is scarcely possible to measure a characteristic of a structure in an absolute 
manner, as there is no structure of reference that could be used. Therefore, 
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complexity metrics will typically be comparative measures. To identify structural 
outliers, such measures are fully sufficient.  

Furthermore, the quality of the measurement needs to be related to the model, and 
again the quality of the model needs to be related to the empirical object; across 
both of these stages, information is lost due to increasing abstraction. Errors may 
be introduced at both stages, as a complete aggregation of an empirical object into 
a model is not possible, and neither is it possible to completely represent such a 
model in a (set of) metric(s). In other words, a strict reductionism is not possible, 
and the basic structural characteristics, therefore, cannot be understood as 
epiphenomena65 in a strict sense. Thus, they cannot serve as an absolute scale for a 
possible absolute metric. 

However, the application of structural complexity metrics does not call for a 
precise measurement, but for the identification of possible weak spots that indicate 
parts of a process (e.g., an entity, a cluster, a relationship, a domain) which need 
further attention and which, when improved, may potentially render the overall 
process more efficient. Thus, a metric is not suited to be a stand-alone means of 
process improvement, but rather it supports systematic analysis and improvement 
by prioritizing certain structural characteristics in a process over others and by 
indicating how structural changes of a process impact its behavior. 

Therefore, the complexity metrics should mainly be used to identify structural 
outliers (see next section), i.e., such instances of a structural characteristic that 
significantly stand out from the rest of the system. Of course, statistical 
significance cannot be reached for the analysis of most process models, as 
common process models only have a limited number of nodes, and, therefore, the 
population of the analysis will be, from a statistical point of view, too limited to 
                                                           
65 An epiphenomenon is a phenomenon at a higher level of abstraction that, as a constituent, is 
able to explain a phenomenon at a lower level of abstraction; the paradigm of strict reductionism 
postulates that one lower level phenomenon can be completely explained using more 
fundamental epiphenomena [ANDERSON 1972]. 

Table 5-2: Available means to set up basic structural metrics to identify structural outliers 
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obtain a mathematically sound significance level or p-value. Rather, a structural 
outlier can be identified using the Pareto principle [REED 2001].  

To identify outliers, a distribution is necessary, and thus basic structural metrics 
use the occurrence of a structural characteristic, node-related enumeration, or 
edge-related enumeration (Table 5-2).  

Statistics provide further measures, for example, mean values, variance, regression 
analysis, correlation, factor analysis, and others. However, due to the limits of the 
dataset (i.e., the process model being analyzed generally possessing only a small 
number of entities and relations), these cannot be employed in most cases and, 
thus, are not part of the basic metrics.  

In fact, for the structural analyses shown here, basic metrics are generally 
sufficient; to refine them, however, combined and special structural metrics can 
be generated, as shown in Table 5-3. These metrics make use of basic metrics but 
take a more focused perspective. 

In the last step, the results of the measurement need to be visualized using an 
appropriate form of representation. 

Table 5-4 lists the different forms of representation. The mode of representation66 
is chosen according to the type and quantity of results of the metric. The quantity 

                                                           
66 A good overview of different modes or representation, their dependencies, and their strengths 
and weaknesses can be found in [TUFTE 1992] 

Table 5-3: Available means to set up combined and special structural metrics to identify 
structural outliers 
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of the results of the metric depends on whether a metric delivers a single value for 
an entity of the process or the overall process. In the former case, histograms are 
used; in the latter the metrics are given for each reference (a sub-process, a 
domain, etc.). If a metric is used separately for outgoing and incident edges (see 
section 5.2.4), portfolios can be used to relate the results of a metric to the relevant 
two or three axes. Likewise, portfolios or tables can be used if a reference of the 
measurement is used, for example, when comparing one domain to another.  

Table 5-4: Different forms of representation 
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5.1.4 Structural outliers 

As the metrics provide a highly condensed picture of the process, they do not 
provide detailed information about the process’s behavior; however, their main 
focus is to identify structural outliers that characterize the process’s structure. 
These outliers are the entities and relationships of the actual process that “stick 

out” the most and therefore are the most interesting for process improvement. A 

structural outlier is defined as follows: 

Outliers are such instances are of a network structure that particularly stand 
out with regard to their involvement in a structural characteristic. The 
identification of outliers makes it possible to pinpoint entities that are of 
extremely high or low impact to the system represented as the network, 
thus significantly driving a pattern of entities [HAWKINS 1980]. Outliers 
are, therefore, those results that are “numerically distant” from the main 

population of results are understood as outliers, and they commonly show 
up in histograms or other distributions [BARNETT & LEWIS 1998, p. 16]. 
While, of course, a process has a limited number of entities that is often too 
small to obtain statistically significant results, the concept of the outliers 
essentially embodies the Pareto principle67 [REED 2001] by highlighting the 
core entities of a system.  

Different modes of identification of structural outliers are possible. All necessitate 
the existence of a histogram or a distribution that presents the results of a metric 
per node, per edge, per process-module or for any other reference that is part of 
the structure being focused on.  

‚ The most intuitive outliers are upper-bound outliers that appear at the top 
of a distribution. Most commonly, the Pareto principle will be applied to 
spot the top five or top ten outliers that drive and govern the process. 
Typically, these entities will be the most relevant ones for the process.  

‚ At the other end of the scale, lower-bound outliers are of interest, too; 
commonly, these will be such entities that are almost not integrated into the 
process, therefore contributing very little to the process.  

‚ Structural outliers can, furthermore, appear within any part of a distribution, 
e.g., as a characteristic spike or an abrupt drop in the range of results. These 
abrupt-drop outliers will generally appear as a particular footprint of the 
process.  

‚ Lastly, the comparison of two datasets (either a native and an aggregate one, 
or two aggregate ones) will allow the identification of cross-aggregation 
outliers that will not show up as one of the three kinds above but only 
become visible if two distributions are compared based on identical abscissa.   

Figure 5-4 visualizes their appearance in the distribution68 of the metric “Relative 

centrality” for the process models shown in the later case studies. In the left 
aggregate view (points in time via documents), node 24 is the most interesting 

                                                           
67 Also called the 80/20 rule.  

68 This example is taken from the second case study, as shown in section 7.2. 
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outlier, as it clearly sticks out above the rest in the process. This point in time is, 
therefore, the one that drives the process the most, as most paths within the overall 
process run across this point in time. It will, therefore, be most important in 
driving the timeliness of the process. Furthermore, nodes 49, 33, 44, 22, and 43 
appear at the lower bound. They appear little integrated and may be of little 
importance to the process. Their analysis could, therefore, provide possible cost-
saving potential. Thirdly, a small drop appears from the plateau after node 67. 
This drop points to two plateaus, in fact, the one with a centrality of approximately 
12 and the one with a centrality lower than five. These two groups could point to, 
for example, different levels of importance of the points in time in question. 
Lastly, node 33 appears as an outlier if the left-hand aggregate view is compared 
to a second aggregation of points in time via tasks. While node 33 does not appear 
as highly relevant in that distribution, it still shows a very different characteristic if 
compared to the initial position in the Pareto distribution. This could indicate that 
the document structure and the task structure may vary considerably in their 
integration of node 33. 

5.2 Overview of the Structural Measurement System 

To represent a comprehensive overview of available complexity metrics for the 
structure of engineering design processes, the Structural Measurement System 
(SMS) regroups available complexity metrics. For each, the general concept of the 
metrics, i.e., the different aspects of their description and the different perspectives 
that can be taken for a metric are described. While many basic metrics are not 
explained in detail, those metrics that use a more complex rationale are illustrated 
in this section. All metrics are detailed in appendix 10.4.  

5.2.1 A comprehensive set of complexity metrics 

Overall, 52 metrics were assembled to represent a comprehensive toolset for the 
structural analysis of processes. Table 5-5 provides an overview of these metrics, 
grouped by basic solution principles of a structure that govern each metric.  
  

 

Figure 5-4: Example of different types of outliers for the metric "Relative centrality" 
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All metrics were developed starting from the solution principles shown. Each 
solution principle was, to this end, reviewed for its different aspects. Each aspect 
of a solution principle was then translated into a structural metric. This process 
was done from two sides to collect a list of metrics as complete as possible. First, 
existing metrics were attributed to the solution principles bottom-up, i.e., existing 
metrics (as shown in Table 2-11, 2-12, and 2-13) were attributed to the solution 
principles to gain an overview of available metrics and the completeness of 
existing solutions. This attribution was shown in Table 2-14. Most of these metrics 
are basic structural metrics, as they are directly derived from structural 
characteristics. Second, those solution principles (and their aspects) that are 
relevant to engineering design processes were broken down into their structural 
content to fill the gaps in the list of existing structural metrics (shaded in Table 2-
14). These metrics are explained in detail in section 5.2.3. This second group of 
metrics represents mostly combined and special structural metrics that are 
based on more specific evaluations.  

Table 5-5: Metrics that are part of the Structural Measurement System 
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During the design of the metrics, each metric was defined and its structural 
significance and representation described. Table 5-6 provides an example.  

Generally, each metric is visualized as a graph representation to show one 
example of a constellation of nodes and edges. This graph serves as an example 
for the description of the metric where possible. The definition explains the 
algorithm that is followed to calculate the metric; where applicable, it also 
integrates possible modes of normalization. Each metric has a basic structural 

significance which is, however, very generic if no domain and no relationship type 
serve as a reference for a possible interpretation. For this reason, only the basic 
aspects of the meaning transported by the metric are explained. The principal 
representation is then detailed, as shown in Figure 5-5. Again, the example shown 
in the graph representation serves as a depiction. For some metrics, more than one 
representation is possible, for example, a histogram and a portfolio differentiating 
active and passive metrics (i.e., outgoing edges and incident edges for the 
“Number of reachable nodes” that can actively be reached and the “Reachability 

of a node” as passively reachable). In such cases, a reference refers to further 
depictions, and the description of the metric may be split into two descriptions, 
one for the active and one for the passive metric – compare Table 5-4 for common 
forms of representation. Ultimately, available references explain algorithms and 
empirical evidence relevant to the metric.  

Figure 5-5 presents an example of the metric “Reachability of a node”, taken from 

page 326 in the appendix. As can be seen in the example, node 1 has a high impact 
on the overall network, being simultaneously the start-node, generating a number 
of reachable nodes as 6, i.e., all available nodes in the network outside this node. It 
is, however, impossible to reach the node from any other point in the network, 
thus resulting in a reachability of zero. It, therefore, influences the network in an 
important manner; however, the degree of impact on any downstream node is not 
further assessed (for example, using weights or other means).  

Table 5-6: Description of the metric "Reachability of a node" 
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Using the Structural Process Architecture, the meaning of the metric is further 
detailed in a second table, as shown in the example in Table 5-7, to outline its 
detailed domain-specific significance. For each domain, the relevant meaning and 
informational value transmitted by the metric are explained. The interpretation is, 
furthermore, based on the principal relationship, as shown in this meta-model in 
Table 4-3, as these represent common intra-domain relationship types. 

If the network shown in Figure 5-5 represents, for example, a network of tasks, it 
can be deduced that node 3 depends highly on previously compiled information 
that is transferred across the process; thus, if there were any errors in the previous 
process, there is a high risk that the wrong input information may impact the task, 
as the task serves as an information sink for the three tasks previously executed.  

 

Figure 5-5: Visualization of the metric "Reachability of a node" 

Table 5-7: Domain-specific significance of metric "Reachability of a node" 
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5.2.2 Relevance and limits of basic structural metrics  

Before the complexity metrics are further detailed, the foundations to consider 
whether the proposed metrics embody the foundation of a good measurement are 
laid out. As shown in section 2.3.1, the representation, uniqueness, and 
meaningfulness are of relevance for any measurement [STEVENS 1946]. The 
meaningfulness can furthermore be broken down into the content, the criterion, 
and the construct [MENDLING 2008, p. 106].  

All metrics necessitate certain semantics (i.e., their content) to validate the 
construct. All metrics are, therefore, examined with a focus on the domains and 
principal relationship types provided by the Structural Process Architecture shown 
in chapter 4: tasks, artifacts, events, organizational units, resources, and time. 
Only the domain “Product attributes” was not considered more closely, as this 
domain only serves as an adaptor for the product architecture.  

The results of the examination of each metric provided, in part, indications of the 
structural significance of each metric, as shown in appendix 10.5. The rationale 
for the development of these indications is given in the following. 

A good representation69 demands that the scale of a metric be proportional to the 
phenomenon in the empirical observation. Most of the proposed metrics are 
counters, thus producing a result proportional to the counted phenomenon, e.g., 
edges or nodes. Only a few metrics use other concepts. The following section 
5.2.3 looks deeper into those metrics that escape reasoning based on counters.  

As most metrics are listed as original counters, normalization is optional, 
particularly with a regard to only comparing measures among themselves; as the 
main goal of this research is to spot outliers, normalization is of limited interest if 
only a single process is under review. If, however, two or more processes are 
compared for certain structural characteristics, the base for which each metric is 
normalized needs to be carefully chosen. In most cases, the number of nodes (or 
edges, respectively) in the graph will be the base. In more complicated cases, e.g., 
measures of centrality, the normalization is explained as part of the description of 
the definition of the metric.  

The uniqueness of each metric refers to the invariance of a metric in 
mathematical operations. In simple terms, it refers to the fact that the result of the 
metric can be obtained in one and only one way. As this proof necessitates 
extensive mathematical background, it is not provided for any of the given 
metrics, and there is no dedicated literature available that reviews even the 
common metrics, such the Activity metric or McCabe’s Cyclomatic number.  

The meaningfulness of the metrics is argued in detailed description in the 
appendix. The content of each metric is designed to involve the full scale of 
possibilities, including the non-existence of a structural characteristic, thus 
producing ratio scales (see section 2.3.1). This fact is highly relevant for the 
development of metrics that are meant to discover structural outliers, as outliers 
that show up on the top of the scale as well as outliers that range on “the long tail” 

                                                           
69 This term is not to be confused with the term “representation” as used for the visualization of 

the results of the metric; here, representation refers to the proposed criterion as cited in 
[STEVENS 1946]. 
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are relevant [ANDERSON 2007]. The criterion is, at each time, based on empirical 
evidence where available, describing the domain-specific significance of each 
metric in detail in the appendix (see Table 5-7 for an example). Paired with the 
description of the graph representation of the metric’s focus, the criterion is, 
therefore, shown for each metric. Ultimately, the construct behind each metric 
refers to the theoretical reasoning, and it is thus closely related to the definition 
and interpretation of a metric. The theoretic reasoning is, furthermore, provided in 
the given references for each metric 

An important part of the meaningfulness is the granularity of the model, which 
impacts the results of the metrics. If one and the same process were modeled at 
three different levels of detail, an intuitive expectation would be that, if there were 
one important improvement potential in the process, analyzing the process using 
structural metrics would yield this problem at any level of detail. Of course, the 
metrics are, as such, tailored to consistently analyze a given process model at a 
given level of detail. Comparable results across different levels of detail of a 
process are, therefore, mainly an issue of the appropriate process model. However, 
different levels of detail do not imply an increase or decrease in the number of 
nodes and edges in the associated graphs in proportion to the level of detail. As the 
metrics are mainly conceptualized as counters, they will, therefore, not necessarily 
yield results that remain comparable among the levels of details. 

Figure 5-6 illustrates this example: While – at the task level – the process only 
contains one cycle, at a higher level one further cycle occurs. Furthermore, at a 
work package level, the two tasks are of different sizes, task two involving six 
work packages and eight relations, but task four only three work packages and 
three relations. 

To further discuss the validity of the metrics, Weyuker’s properties form an 
important basis. Particularly, but not exclusively, in software quality assurance, 
the following nine properties are commonly considered relevant for the 
development of metrics to assess a structure [WEYUKER 1988]. The compliance of 

 

Figure 5-6: Disproportional increase of number of nodes and edges of process graph at 
different levels of detail 
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a metric with these properties commonly indicates the conceptual soundness of a 
metric [CARDOSO 2005a]: 

1. A metric cannot measure all software programs as being equally complex.  

2. There are only a finite number of programs of the same complexity.  

3. Even a program perceiving a different complexity may map into the same 
complexity measurement value. 

4. The complexity of a program depends on its implementation, and even if 
two programs solve the same problem, they can have different complexities.  

5. The complexity of two programs joined together is greater than the 
complexity of either program considered separately.  

6. A program of a given complexity when joined to two other programs does 
not necessarily imply that the resulting program will be of equal complexity, 
even if the two added programs are of equal complexity. 

7. A permuted version of a program can have a different complexity; thus the 
order of statements matters.  

8. If a program is a straight renaming of another program, its complexity 
should be the same as the original program.  

9. The complexity of two programs joined together may be greater than the 
sum of their individual complexities. 

Intuitively, different processes have different levels of complexity; the same is 
true for the results of the metrics proposed in this research, as counting different 
processes that are set up from different numbers of nodes and edges, property 1 is 
fulfilled. Yet, to be able to compare processes at all in terms of their levels of 
complexity, they need to be modeled with the same scope (domains and 
relationship types) at a comparable level of detail. This is also true for property 2, 
which is equally fulfilled by the metrics as proposed. While there are a great 
number of processes in any company, they are typically of different size and 
complexity. The case studies in chapter 7 will clearly illustrate this fact. 
Property 3 is fulfilled as well; in fact, it is possible for every metric to construct 
different graphs that yield the same result for a given metric. However, it is not 
possible that two different graphs have the same results for all metrics, as at least 
one metric will always deviate. Property 4 is only partly relevant, as it originally 
addresses different programming languages and paradigms that will make one and 
the same program take different shapes (and thus vary in complexity) if it is 
written in different languages; of course, a process that is modeled in two different 
process modeling languages can result in different results for the metric, as well. 
Yet, if the Structural Process Architecture is used as suggested to condense the 
structural content of the different process models to a comparable level, i.e., the 
same domains and relationship types, this property is not relevant. The fulfillment 
of property 5 is based, again, on the enumerative nature of the metrics: the more 
elements, the higher the results of the metrics. This extends also to property 6, 
which will generally lead to a greater complexity if two processes are joined. As 
the order of tasks in a process is essential to the purpose of a process, swapping 
the order of tasks is only of limited interest to process management, and therefore 
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property 7 is of limited relevance. However, metrics (e.g., the number of 
feedbacks) that relate to an ideal sequence of a process from a structural point of 
view use this property to point to processes with more feedbacks (thus having a 
less ideal sequence) as being more complex. Property 8 is intuitive; if a process 
model is assessed twice using the same metrics, the results will be identical. 
However, in some cases heuristic algorithms are used for the computation of a 
metric; in such cases the actual outcomes of the computations can differ, even 
though they should be identical from a theoretical point of view. Ultimately, 
property 9 states that joining two processes does not mean that the results of the 
metrics for each initial process can be summed to obtain the results for the 
finalized process. Of course, the metrics are not simply added, as most of them 
(except for the “number of” metrics) involve other mathematical operations than 

just the enumeration of nodes and edges. In fact, in some cases the resulting 
complexity may even be lower than the sum of the initial results, for example, if 
two processes are joined via a common node. In this case, the resulting process 
will have one node less than the sum of the numbers of nodes of the initial 
processes. However, as WEYUKER states, this property is not a very strict one.  

Ultimately, automation is of relevance in addition to the above criteria [KERNLER 
1996, pp. 35-38]. Unfortunately, not all metrics are applicable in practice due to 
computational limitations, even though algorithmic support is – in theory – 
available. Appendix 10.6 gives an overview of those metrics that have proven 
computable with reasonable computing time at a desktop workstation. 

5.2.3 Relevance and limits of combined and specific structural metrics  

A few metrics use more extensive computation schemes and, therefore, cannot be 
as simply argued as shown in the previous section. Additionally, some of these 
metrics use extended reasoning to suit the needs of process analysis and are, 
therefore, explained in this section. In particular, Boolean operators (activity / 
passivity, McCabe’s Cyclomatic number, Control-flow complexity), module 
quality, hierarchies (tree criticality, snowball factor, forerun factor, tree-
robustness), cycles and feedbacks (number of feedbacks, activation of cycle, 
number of starting points for iterations), cognitive weight, and degree of non-
planarity are reviewed more closely. Every metric is first described at a conceptual 
level, then a small example is used, and finally the entire metric is discussed. 

The metric activity/passivity, in its common form, evaluates how “active” or 

“passive” an element is, i.e., how much it impacts other nodes directly or how 
much it is impacted by them [DAENZER & HUBER 2002, p. 558]. To calculate the 
activity or passivity, the number of outgoing or incident edges is counted for each 
node.  If, however, a logical connector appears between a set of nodes, it is not 
possible to calculate the activity or passivity.  

In the case of AND and XOR, this is a simple problem to solve, as either all nodes 
or simply one node are connected. If, however, an OR is in between two nodes, 
neither the maximum number of points (= n) that may eventuate nor the minimum 
number (= 1) is correct. Rather, a mean value in between is relevant from a 
structural point of view, to show the impact weight of logically connected entities. 
Thus, from a structural point of view, there is a need for a “mean impact value”. 

Table 5-8 shows the basic idea: If a join-OR has two incident edges, it can have 
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three possible structural constellations. Cases 1 and 2 are single edges each; cases 
1 and 2 correspond to two edges. This way, the mean impact equals 1.3333, 
supposing a uniform distribution of all possible cases. 

More generally, the weight of the impacting connector can be calculated using 
binomial coefficients. Each time, the case to which no edge is connected is 
omitted, as this would mean the process is interrupted. Table 5-9 provides the 
necessary formulas. Instead of the direct calculation of the activity and passivity, 
weights are proposed that are necessary for the calculation of nested operators, as 
shown below. 

Table 5-8: Example of an OR and possible structural constellations 

 

Table 5-9: Calculation of structural weights of different logic operators in processes 
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A special case arises for nested operators. In such a case, the operators can either 
be recombined, or the respective weights have to be split (Figure 5-7). In practice, 
a fusion of similar connectors has proven a very adequate approximation, as, on 
the one hand, from a structural point of view there is commonly no information on 
the factual structural relevance of each case, and, on the other hand, often in 
process modeling, logical operators are nested for reasons of visualization and not 
because of a nested dependency structure among the operators. In general, nested 
operators are calculated successively, starting at the deepest level of nesting (i.e., 
from the left to the right for the example in Figure 5-7).  

For nested operators, the weights are calculated for each individual operator and 
then summed for each entity in the process model. Figure 5-8 visualizes the 
calculation scheme, consisting of the following steps (an example is shown in the 
appendix): First, splits and joins are separated, then for each split and join, the 
appropriate weights are calculated according to the formulas from Table 5-9. 
Then, if no nesting of operators is to be resolved, the weights are directly 
translated into corresponding activity or passivity; if nested operators exist, a 
further differentiation of preceding and succeeding operators is made, and finally, 
the activity and passivity are calculated along these paths of nested operators.  

 

Figure 5-7: Nested operators and approximation through recombination 

 

Figure 5-8: Calculation scheme for using weights to calculate the activity and passivity 
including nested Boolean operators between the concerned entities of the process 
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If Boolean operators are part of the process model, not only the activity and 
passivity as shown above can be calculated to better understand decision points in 
the process, but also McCabe’s Cyclomatic number and the Control-flow 
Complexity can be calculated. 

McCabe’s Cyclomatic Number (MCC) [MCCABE 1976] counts the number of 
linearly independent paths through a process, enumerating edges, nodes, and 
connected components in the control flow. In principle, the number is, therefore, a 
direct measure of the number of binary decisions70 in a process. Thus, the lower 
the number, the fewer options there are in the process. As many process models 
are of a bipartite nature, this calculation can be extended to assess this bipartite 
network directly, i.e., without first aggregating the two domains into an aggregate 
view. This way, EPC models, for example, can be assessed directly. 

The original MCC is valid for unipartite graphs, calculated for edges (e), nodes (n) 
and connected components (p), with p being the probability of a decision at a 
connector. If, for example, an EPC model is transferred into an MDM-based 
process model, as shown in section 4.4.3, the bipartite version of the MCC is 
calculated as shown in Table 5-10 using the matrices spanned by E, F, and V; 
there, F, E, V are the powers of the respective matrices for functions, events, and 
connectors. While this matrix-representation contains additional edges in both the 
basic and the MDM representation (because connectors are modeled as nodes), 
this does not change the MCC, as each additional edge leading to a connector 
(e å e + 1) is compensated by an additional node (n å n + 1), i.e., a connector. 
This is also true for “dirty” models that do not fully adhere to the modeling 

scheme (which often happens with pragmatic models), as long as a connector only 
acts as a split or a join of the process. Therefore, with F the number of functions, E 
the number of events, and V the number of connectors, the MCC can simply be 
summed up from the matrix; e is the total number of Xs within the matrices p 
equals 1, as only Boolean decisions (i.e., no non-binary decisions) are possible. 
The number of the AND splits have to be deduced to make sure these are not 
counted as decision points (unless this is intended).  

The Control-flow complexity (CFC), proposed by [WOODWARD et al. 1979] and 
extended to workflows by [CARDOSO 2005], expands the idea of counting binary 
decisions to counting the number of states a process can take, i.e., how many 
different pathways there may be considering how many paths the process can split 

                                                           
70 The term “binary” refers to the existence of only two possible options for each decision, i.e., 
“yes” and “no”. 

Table 5-10: McCabe's Cyclomatic number for unipartite and bipartite process graph 
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(or re-join) at each connector. The CFC has additive properties and can be added 
up from the individual CFCs of each connector. Each time, n is the number of 
outgoing (or incident, respectively) edges at the connector. For AND, the CFC is 
1, as no decision is taken [CARDOSO 2005]. For XOR, the process splits into (joins 
out of) n different options, therefore, the CFC is n. For an OR, there are 2n options 
possible. However, this includes the option that no edge is followed, which would 
stop the process; therefore, this option is taken out of the equation (Table 5-11).  

The evaluation of hierarchies71 is difficult, as a combined assessment of the reach 
of a hierarchy (i.e., the longest path in the graph of reachable nodes, starting from 
a dedicated root node) and of the width of each level of the hierarchy always 
demands a trade-off, prioritizing either one or the other aspect (Figure 5-9).  

As hierarchies can have different meanings (see Table 5-12), different trade-offs 
may be necessary; hence, a general metric “Tree criticality” is used with any 
weighing function. The more specialized “Forerun factor” and “Snowball factor” 

use the reciprocal value of the level (i.e., the shortest path from the root node to 
the level) as weight for each level to favor the impact of levels closer to the root 
node over those that are further away, as in most cases those levels closer to the 
root node will be more important to it. 

                                                           
71 “Hierarchies” are also referred to as “trees”; here, the term hierarchy is chosen, as the 

algorithmic concept is also used to compute the nesting depth of a model, which is often 
understood as an extension to different levels of the hierarchy of a model [GRUHN & LAUE 
2006a]; for this reason, the start node of the hierarchy is called the root node. 

Table 5-11: Formulas to calculate the control-flow complexity (CFC) 

 

 

Figure 5-9: Short wide hierarchy on the left, long narrow hierarchy on the right-hand side 
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The metric “Tree-robustness” makes use, again, of the assessment of all existing 

hierarchies in the process of calculating the degree to which the process is 
permeated by different hierarchies. Therefore, the appropriate weighing has to be 
chosen if the “Forerun factor” and the “Snowball Factor” are not applicable. 

Cycles are evaluated by counting the number of cycles, involved nodes, and edges 
[MAURER 2007]. However, in a process, where an iteration starts is particularly of 
interest (i.e., where the cycle is initially entered for the first time), and where the 
decision is taken to iterate (i.e., re-run the cycle after an initial first run) and how 
many edges actually cause the feedbacks (several iterations may share one 
common communication channel that leads back in the process flow) is also of 
interest. Therefore, the metrics in Table 5-13 detail the assessment of cycles.  

These three metrics are not straightforward counters, as they are based on the 
triangularization of the DSM representing the process in focus to first obtain an 
idealized sequence before cycles are sought; this triangularization cannot always 
be calculated exactly. Triangularization is commonly done using an algorithm that 
removes one edge after another for the cycles in a DSM until no more feedbacks 
exist [KUSIAK & WANG 1993]. This is done in the order of importance – at first, 

Table 5-12: Different possible meanings of hierarchies in a structure 

 

Table 5-13: Metrics to detail cycles in a process structure 
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feedbacks causing the largest cycles are removed, then the list is pared down to 
the shortest cycles. In some cases, it is possible that different edges could be 
removed for cycles of equal length, where removing one edge or the other will 
yield different results for the overall triangularization. So far, no algorithm is 
available to overcome this ambiguity. Thus, the result is often only an estimate.  

Figure 5-10 shows a small process graph and the reciprocal DSM. There, node 1 is 
the activation of cycle 1, which only alternates between node 1 and node 2. It is 
identified in the DSM on the left, which is already in a triangularized format. 
There, node 1 is the uppermost node in the cycle among nodes 1 and 2. Node 1 is, 
at the same time, the activation node for cycle 2. Cycle 2 is only rerun if the 
feedback as marked is used. Overall, there are thus three feedbacks that can be 
identified. Ultimately, node 4, for example, is the starting point for the iteration 
marked as cycle 2. This iteration is, however, only executed in some cases, which 
cannot be deduced from the structure of the process; yet, node 4 is of particular 
interest, as here the process either continues further downstream or back upstream.  

In contrast, the cognitive weight makes use of empirically-founded basic 
constituents of a structure that each have an assigned numerical value of the 
degree of difficulty to understand such a constellation in a structural context. 
These weights have been proven useful both in software science [SHAO & WANG 
2003] [WANG 2006] [MCQUAID 1997] and in process management; in the latter 
application, however, the cognitive weight has not fully matured [GRUHN & LAUE 
2007a]. A basic overview of possible weights is shown in Table 5-14 

Ultimately, the degree of non-planarity uses an average of the count of all edges 
that need to be removed and thus is not fully proportional to the concept that is 
being measured. While common empirical evidence exists which indicates that 
networks with many relations that cross each other are considered more complex 
[HENRY et al. 1981] [RICHTER 2007, p. 140], there is no evidence available that 
the measurement by the degree of non-planarity as proposed is relevantly scaled. 
However, as experiments on generic networks show [KORTLER et al. 2009], the 
measure is clearly able to differentiate between graphs of different complexity.  

All of these metrics still lack detailed empirical evidence of their application in 
process analysis and only present a conceptual level that is, each time, based on 
general empirical observation and existing publications. Yet, the basic reasoning 

 

Figure 5-10: Example for rationale behind the three metrics shown in Table 5-13 
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of the structure of a process is similar among them, i.e., the design of the metrics 
of assessment of structural characteristics that are accepted in literature. 

At the same time, these metrics close the gap between the available structural 
characteristics and the existing body of structural metrics that could be adapted 
from other fields of science. Thus, their right to exist is obvious. Their use is, 
therefore, shown in the case study to provide basic evidence of their suitability.  

5.2.4 Classification of available metrics 

To better characterize the metrics and to make them accessible for different 
analysis without using the framework shown in the next chapter, a classification of 
the metrics shown is provided in this section to illustrate different views of a 
structure.  

While grouping metrics of the principal features of a structure already represents a 
certain classification, metrics can be further regrouped in different ways. Table  
5-15 provides an overview of the relevant taxonomies that will be outlined in the 
following. The 52 metrics of the Structural Measurement System can be regrouped 
differently for each classification; these groups are listed in appendix 10.4. In the 
following, only the categories are explained to detail the multi-facetedness of the 
structural metrics. 

Classifying the metrics in terms of their scope of analysis yields groups of 
metrics, which access the process at different levels of granularity. Single entities 
focus on, for example, individual tasks or relationships and how they interact with 
the process. Modules are pre-defined groups of elements such as teams or phases; 
for these, coherence within the module and interaction with the surrounding 
system are the primary focus of the analysis. Metrics that regard the alignment of 
entities recombine two domains at a time to see whether the structures of both 
domains fit together. The overall process, i.e., the complete network, can be 

Table 5-14: Empirically researched cognitive weights of structural characteristics 
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characterized in two ways.  First, it can be characterized as a single metric which 
supports the comparison of several such networks, for example, comparing them 
by the number of nodes and the relational density. Second, it can be characterized 
as a histogram, where the characteristic distribution of values of metrics for 
individual entities provides a picture of each process. In fact, many of these 
distributions, for example, for activity/passivity or for the degrees of all nodes, can 
be approximated as a set of coefficients of a distribution function. However, this 
concept is not further regarded here, as it does not provide information about the 
identification of structural outliers. 

The categorization of metrics as to their suitability to analyze particularities of 
the model excludes those metrics that only have a general structural focus. The 
group of metrics that are capable of analyzing decision points (i.e., AND-, OR-, 
and XOR-gates) is limited to three basic metrics. The comprehensibility of the 
model assesses the basic human capability to grasp and understand the network 
represented by the model. Ultimately, some metrics generate information about 
possible modeling errors, for example, when nodes are not connected to the mode. 
This kind of information can be extracted from metrics regarding the quality of 
modeling. 

The focus of analysis intends to regroup metrics into primary categories from 
which a structure can be analyzed. Metrics on robustness focus on the cohesion 

Table 5-15: Available classifications of the structural metrics 
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and connectivity of the overall network. Metrics on propagation regard the speed 
of information transmission and the reach and impact of information and errors, 
both in terms of direct impact among neighboring entities and across the overall 
network. Grouping refers to the buildup of sub-graphs that stand out within the 
process, such as complete clusters that may be the foundation of the constitution 
of a team, for example. Metrics which are concerned with the extent of a network 
describe its size and the quality of its crosslinking.  

The direction of impact regroups metrics into those that only consider active 
metrics, i.e., such metrics that assess the outgoing edges of a node or a module, 
whereas passive metrics assess only incident edges. In some cases, the direction is 
not of interest, and metrics, therefore, are classed as related. The Snowball factor, 
for example, is the active metric assessing the reachability in a network as an 
outgoing hierarchy, and the Forerun factor assesses only incident edges in the 
same manner. Although some metrics can be split into an active and a passive 
metric, they are not always listed as separate metrics, e.g., the degree distribution. 
Although not in all cases, a separate metric for each direction may provide 
substantial additional informational value.   

Equally, metrics can be regrouped by the type of entity they consider, either the 
nodes or edges of the network. Like the basic structural characteristics (see section 
5.1.1), they assess either nodes (i.e., node-induced structural characteristics) or 
edges (i.e., edge-induced structural characteristics).  

Ultimately, the type of network characterizes the input information that is 
necessary for a metric. Intra-domain networks are DSMs consisting of only one 
domain and one relationship type. Inter-domain networks are DMMs that relate 
two domains at a time via one relationship type. Multiple-Domain networks are 
MDMs that consist of at least two domains and at least two relationship-types.  

5.3 An example application of the Structural Measurement System 

As the Structural Measurement System presented up to here is the main focus of 
this book, a short case study72 is introduced to provide a better picture of how the 
metrics work and what results they are able to deliver. Two further example 
applications are shown in chapter 7. The case study here uses an existing, 
published process model in order to be able to compare newly calculated and 
existing results. Therefore, first, the process model is introduced, then the different 
metrics are computed and the results are discussed in detail. 

5.3.1 The process in focus 

The process used for this case study was already described and analyzed in [Braha 
& Bar-Yam 2004]. As it is available online73, it was used here as a basis to 
illustrate the complexity metrics shown up to here.  
                                                           
72 Adapted from Kreimeyer, M., Bradford, N., Lindemann, U., Process Analysis using Structural 
Metrics, Design 2010, with friendly permission by the Design Society. 

73 available at http://necsi.org/projects/braha/largescaleengineering (last checked on 24 October 
2010) 

http://necsi.org/projects/braha/largescaleengineering
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The process model represents the basic vehicle development process at General 
Motors. It lays out the 26 weeks of General Motors’ automotive development 

separated into phases: Expert opinion phase, quick study phase and integrated 
vehicle concept model and o.d. deliverables phase. Within the process, 120 tasks 
are linked in a Design Structure Matrix (DSM) containing 417 immediate directed 
relations. The tasks are accomplished by 19 organizational units. Each set of tasks 
belonging to an organizational unit is referred to as a module.   

The model was built from interviews with engineers and from documentation. For 
each task, it was asked ‘Where do the inputs for the task come from?’ and ‘Where 

do the outputs generated by the task go to?’. The answers were used to construct 

the network of information flows. In the following, the tasks shown in Table 5-16 
will occur repeatedly and are therefore listed here as T1 to T120. 

In an earlier analysis of the process [Braha & Bar-Yam 2004] the following main 
results were elicited. They concern especially the small-world properties (i.e. most 
nodes are not adjacent but reachable via a short average path length) and the 
degree-related properties (i.e. direct coupling among immediate neighbors) of the 
involved tasks: 

BRAHA & BAR-YAM consider the process to exhibit clear small-world properties. 
Accordingly, the task network’s entities have a relatively high cluster coefficient, 
whereas the characteristic path length is relatively short and approximately equal 
to a characteristic path length of a random graph having the same number of nodes 
and edges. A modular organization (defined by a higher degree of internal 
information exchange than across the borders of modules) was found to be a 
consequence of high cluster-coefficients and small word properties. 

Table 5-16: The most important tasks in the process [Braha & Bar-Yam 2004] 
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They furthermore identify an imbalance concerning the relation of out-degrees and 
in-degrees (activity and passivity). Most tasks were found to have relatively low 
in- and out-degrees, whereas few have high degrees. Those few having a high out-
degree, or respectively passive (high in-degree) tasks are characterized as 
information generators (or information consumers, respectively). In turn, tasks 
with a high in-degree have a low out-degree and vice versa. The process is 
dominated by a small number of such tasks. 

BRAHA & BAR-YAM declare their results as typical for product development 
processes, with the following consequences: The most effective way of improving 
the overall process is to improve the central, dominating tasks, similar to the 
concept of structural outliers. Secondly, they conclude that a failure of those tasks 
is likely to impede the correct function of the overall process.  

5.3.2 Overview of the analyses using structural complexity metrics 

Only the core metrics are shown here, some metrics, such as the Number of 
Organizational Interfaces could not be calculated for the dataset at hand, and 
others, such as the Degree of Planarity or the different metrics towards the 
cognitive weight of a network could not be computed due to a lack of sufficient 
algorithmic support. Table 5-17 lists the 34 structural metrics that were used. For 
each, the relevant dataset is listed in order to generate meaningful results. The 
metrics are arranged by categories related to the underlying structural patterns.  

The results of the metrics generate distributions, within which the individual 
values can be compared to identify relevant outliers. Three views can be identified 
that each relate to a distinct dataset: The overall process model as a whole, the 
tasks individually, and the modules as formed by the tasks belonging to the 
different organizational units. Thus, the results are organized accordingly. 

Table 5-17: Overview over the applied structural metrics 
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5.3.3 Analyses using complexity metrics for the overall process model 

At first, a basic analysis of processes is the calculation of metrics concerning size 
and density as well as metrics delivering characteristic values for overall 
networks. The number of domains in the MDM is two: Tasks and organizational 
units. The number of nodes is 139: 120 tasks and 19 organizational units. The 
number of edges is 537, of which 417 edges are entries of the task-task DSM. The 
number of classes (i.e. number of different kinds of nodes) is 139, equally, as no 
node is instantiated more than once in the actual process model, which sometimes 
happens when one task is instantiated several times for easier modeling or to show 
how results are transferred. The number of interfaces between domains is 120, i.e. 
each task is executed by exactly one organizational unit. The number of edges per 
node is 3.457 for the task-task network and 3.891 for the overall network 
(including the organizational units). Respectively, the relational density is 0.029 
and 0.028. Both values show that a rather low part of all possible connections is 
exhausted and the process is, possibly, rather linear. This concurs with the initial 
process model that can be triangularized easily, i.e. the task sequence can be put 
into an ideal order without severe conflicts. The number of unconnected nodes, 
which could reveal possible mistakes in the process model, is zero, pointing to the 
fact that, at least, no errors were made by forgetting or not connecting a node. 
However, such missing links can, of course, also be intentional and do not 
necessarily always point to errors. The number of independent sets (i.e. the 
number of sets of tasks accomplished concurrently and independently from each 
other, as found when banding the respective DSM) is eight, i.e. the process can be 
broken down into eight phases. The number of paths across the overall process is 
especially useful for estimating the importance of root nodes. From root node T1 
36 paths lead to the process’ five end nodes, whereas 33 paths start from root node 
T2, leaving both starting tasks relatively equal in their impact. The average path 
length of these shortest paths is 3.6 between T1 and the end nodes and 5.6 
between T2 and the end nodes, showing that information spreads faster throughout 
the process starting at root node T1. This metric, although it describes connection 
between tasks, concerns the overall process as properties of start and end nodes.  

 

 

Figure 5-11: The five levels of the process 
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Figure 5-11 visualizes the different paths as a graph: The maximum height of the 
process’ hierarchy, i.e. the number of levels from start to end nodes, is 4. The 

width of the process’ levels (the number of nodes per level) is 2 on first level (i.e. 

the start nodes), 28 on second level, 50 on third level, 35 on fourth level and 5 on 
fifth level (i.e. the end nodes). 

The process has two start nodes, namely T1 and T2, and five end nodes: T85, 
T111, T117, T119 and T120. The maximum nesting depth, i.e. the number of 
splits retraceable to a root node, is 100 for root node T1 and 33 for root node T2, 
showing again a higher influence of root node T1, as the process bifurcates 
noticeably more from this task. The number of cliques, i.e. the number of 
complete clusters within the network, is zero, i.e. no groups of tasks that are 
completely mutually connected exist within the model. The global cluster-
coefficient (quotient of the sum of all cluster-coefficients per node and the number 
of information distributors) is 0.27, indicating that many tasks are likely to be 
coupled more intensely than the number of cliques shows; this potential for 
coupling relies on the concept that two tasks connected to a third task are likely to 
be interrelated because they are coupled to a third task in the same way. The 
number of feedbacks within the process, i.e. the number tears in a triangularized 
DSM, is 24, a rather low percentage (5.75% of all 417 connections), showing that 
the overall iterative nature of the process is broken down rather well into only few 
intended relations. 

5.3.4 Analyses using complexity metrics for each task 

The majority of structural metrics is applied to compare the entities of one domain 
to each other, i.e., the tasks of the task-task-DSM. As shown in Table 5-17, 
adjacency and attainability are the categories concerning most metrics applicable 
on the behavior of the correlations between tasks. Metrics referring to adjacency 
and attainability are predestinated for measuring the importance of single entities 
for the function of the complete network. 

 

Figure 5-12: Activity and passivity per task, left, and degree correlation (nodes), right  
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The most basic metrics are activity and passivity (also referred to as out- and in-
degree) of a node. Figure 5-12 (left hand side)  shows a concurrent plot of both 
metrics per node. Four tasks (T72, T73, T65 and T37) stand out most, accordingly 
being highly active and highly passive at the same time. The four fields inert, 
active, passive and critical are defined by the average values for both axes. The 
start nodes T1 and T2 are positioned on the activity-axis with a value of 0 for 
passivity, as they only deliver information. However, T1’s out-degree is nearly 
five times higher than the value for T2, indicating a higher initial impact of T1 
onto the overall network.  

The degree correlation can be based on edges as well as on nodes. The 
representation of the correlation based on nodes as in Figure 5-12 (right hand side) 
reveals a high number of connections between nodes with values of one or two for 
activity or passivity. Accordingly, most nodes within the process have relatively 
low in- and out-degrees at the same time; at the same time, the correlation plot 
shows that many nodes are connected with similar in- and out-degrees, as the 
diagonal axis of the plot contains many non-zero entries. Similarly, the 
representation of the correlation based on edges (not shown) indicates that 64% of 
the edges link two nodes both having more than one incident as well as more than 
one outgoing edge, i.e. most information transfers between two tasks will be based 
on several inputs into the first task and generate more than one output at the 
second task. The conclusion of both correlations is that a major part of the 
network consists of connections between nodes with low degrees, of which most 
have a degree larger than 1 (i.e. each task being coupled to more than one other 
task). Nonetheless, there are twelve highly important edges that are the only 
connection between the nodes (i.e. directed forwarding between two tasks). 

The degree distribution reveals the occurrence of similar in- and out-degrees 
within the process. The plot underlines the occurrence of low degrees in the 
process, pointing to a hub-and-spoke-like structure of the overall process (i.e. the 
network is a scale-free network, like many typical collaboration structures 
[Newman 2002]). High degrees appear rarely, as Figure 5-13 shows. 

 

Figure 5-13: Degree distribution 
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The representation of the synchronization and distribution points produces no new 
results as all entries within the DSM have the value 1. In fact, these metrics are 
especially useful to be used with weighted edges in a process graph. Accordingly 
the representation is identical to the activity/passivity plots. In other cases, if e.g. a 
weighted DSM is used, these metrics would be able to underline the importance of 
a task not just based on the degree but also on its coupling strength. 

The active and passive reachability describe the number of nodes a designated 
node is able to reach (or the number of nodes that can reach this designated node, 
respectively). In a process analysis, these metrics are very important, as they show 
the propagation of information (and errors) across the overall process, thus 
estimating the impact (and impactedness) thereof for each task. They thereby 
extend the picture generated by the degree across not just adjacent tasks but across 
all tasks. The plot of both metrics per node (Figure 5-14, left) a few highly 
actively and passively reachable tasks: T118, T112, T89, T90, T91and T75. These 
tasks are therefore highly integrated into the flow of information through the 
process and play an important role in the supply of information of all other tasks. 

The active and passive proximity are calculated by summating the rows (columns, 
respectively) of the distance matrix (listing the shortest path between any pair of 
tasks, zero if not reachable), i.e. describing the distance of one task to all others. 
As outliers for the active and passive proximity the following tasks appear: T75, 
T83, T89, T90, T98, T114, T155 and  T116 (Figure 5-14, right). Once again, tasks 
T75, T89 and T90 (compare the results for reachability in the previous paragraph) 
seem to be of higher importance for the function of the overall network, a 
relatively high average path length represents high impact, as a high number of 
nodes positioned on according paths are involved into the incident and outgoing 
flow of information. 

In a comparable manner, the relative centrality counts the number of shortest paths 
between any two nodes that cross a designated node: The higher the value, the 
more information flows go via that designated node. The following tasks stand 
out: T39, T39, T4, T72 and T73 (Figure 5-15). These nodes are therefore the 
central information brokers across the overall process. 

 

Figure 5-14: Active and passive reachability, left, and active and passive proximity, right 
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Another pair of meaningful metrics for the estimation of influence of entities are 
the snowball factor and the forerun factor. They assess the outgoing (incoming, 
respectively) hierarchy of reachable nodes with decreasing impact for nodes that 
are farther away: They calculate as the sum of the products of width and height of 
the level in the hierarchy, weighted by to the inverse of the shortest path length to 
the root node. They thereby relativize the active and passive reachability, as nodes 
that can be reached but that are far away and have little impact are not counted as 
importantly. Figure 5-16 shows the plot for both metrics per node. Here, tasks 
T36, T37, T65, T72, T91 and T112 show up, having high values for both metrics. 
The distribution of the values shows that, each time, only a few nodes have high 
influence onto the process. Those particular nodes are one start node, T1, as well 
as the tasks T3, T10, T11 and T37. Start node T2 only has the 44th position in this 
ranking, which underlines the much higher importance of root node T1. The plot 
of all values for forerun factors, however, shows a more linear distribution, 
indicating that few tasks dominate the spread of information, while the tasks rely 
more homogeneously on the information intake from other tasks.  

Figure 5-15: Relative centrality 

Figure 5-16: Snowball and forerun factor per task (portfolio on the right hand side and 
individual distributions) 
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The local cluster-coefficient shows how a task is likely to drive the clustering of 
tasks in the process. It is calculated as the quotient of existing edges to adjacent 
neighbors and the number of possible edges. Apart from five outliers with a 
maximum coefficient of one (T6, T33, T86, T88 and T111), the distribution shows 
a relatively linear behavior. Accordingly, those five tasks are connected to each 
possible neighbor, and close workgroups are likely to be necessary at this part of 
the process.  

To assess iterations and uncertainty in the process, the metric number of cycles per 
node can provide insight. The more cycles take path via a node, the more this task 
will receive and distribute information from and to the overall network, and will 
therefore be of high influence. Figure 5-17 shows the distribution and the top 
values, also for how edges are involved in these cycles, pointing to important 
channels of communication. Both metrics describe task T4 as most influential; 
while this coincides with e.g. the relevance as detected e.g. through the degree 
distribution, this is incidental. 

5.3.5 Analyses using complexity metrics for each module 

On a different level, the use of structural metrics delivers meaningful results 
concerning the properties of modules involved into development processes as well 
as interdependencies among the different modules. Modules are predefined groups 
of entities, in contrast to clusters that develop during the process’ progress caused 

by their intense interaction. In case of the analyzed process, 19 organizational 
units are each taken as the designated modules of tasks they are responsible for, 
i.e., one organizational unit is responsible for one process module.  

The fan-criticality (i.e. the number of outgoing and incident cross-border relations 
per module) allows comparing the out- and in-degrees of modules. The plot in 
Figure 5-18 (left hand side) shows module 17 stands out the most concerning both 
in- and out-degree, accordingly being most influenced as well as being the most 
influential module, being concerned with integration of a large set of components.  

 

 

Figure 5-17: Number of cycles per node (left) and per edge (right) 
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The metric tree-robustness is applicable either on complete domains or on 
modules. The portfolio of the values for active and passive tree-robustness (i.e. the 
quotient of the number of nodes with a nonzero value for snowball or respectively 
forerun factor and the sum of the according factors) in Figure 5-18 (right hand 
side)  shows modules 1, 2, 6, 7 and 17 as the most important outliers. This 
indicates that no module is dominated by both incoming and outgoing hierarchies 
of information flow, but that they either collect incoming information (all 
integration modules (6, 7, and 17) or generate it.  

The distribution of the values of the global cluster-coefficient per module, i.e. the 
quotient of the sum of all local cluster coefficients and the number of nodes with 
an activity higher than one in a designated module, shows two outliers (modules 1 
and 12). These modules are, therefore, the most likely to cause information 
transfers among the other modules. 

The metrics delivering most information concerning the relation of internal and 
cross boarder flow of information of modules are module quality 1 and module 
quality 2. The metric module-quality 1 computes as the product of the number of 
edges that cross the border of the module and the number of edges within the 
module; module quality is calculated as the respective quotient. The first metric 
describes the flow of information through modules, while the second one 
describes the compactness of a module. For both modules, module 18 (TVIE – 
total vehicle engineering) can be identified as the most remarkable outlier. 

Through these metrics the modules 1, 17, and 18 are determined as the most 
influential ones. In spite of the three more influencing modules, the process’ 

organizational units are interconnected quite evenly. A rather low fraction of 122 
(36,72%) of the 417 edges connect nodes within equal modules, characterizing the 
flow of information through the process as rather integrated among different 
modules. There is even one module without any internal connections (Module 15), 
for this reason it is positioned at the last positions for module quality 1 and 2 with 
value of zero. The importance of module 18 is rather logical because it contains 
most nodes per module. The importance of module 1 is a consequence of both of 
the process’ start nodes being contained in this module, having high values for 

influence-describing metrics. 

Figure 5-18: Fan-out and fan-in per module, left, and tree-robustness, right 
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In summary, from a modules’ point of view, the network can be described as well-
balanced, with the modules 1, 17 and 18 having a higher importance because of 
their position in the process’ progress at the beginning of the first phase or, 

respectively, at the end of the last phase. 

5.3.6 Conclusions for the regarded process  

For a better comparison, Table 5-18 lists the core results. There, the influence 
measuring metrics are sectioned into active and passive ones. Active ones 
determine the distribution of information, the passive ones describe information 
sinks. For all metrics, the top-ten upper-bound and lower-bound structural outliers 
are listed in the table. Start and end nodes are printed in bold. 

Concerning the structure of the analyzed development process, one result 
approved by every metric is the difference concerning the importance of the 
networks’ two start nodes. Start node T1 is much more influential onto the overall 

process than T2 is, which is reasonable given that the design sketch generated in 
T2 only impacts tasks that are related to the exterior design of the car.  Therefore, 
T1 ranks first three times, whereas T2 is not even once among the top ten of the 
active-influence measuring metrics, describing the inequality concerning their 
importance. This points, however, to the fact that the development process seems 
to be little design driven.  

In general, among the top ten positions of the active influence-measuring metrics 
many different tasks occur, showing a quite evenly distribution of importance. Not 
even do the process’ start nodes occur among all top ten rankings, underlining the 

evenly distribution among the involved tasks. This result is consistent with the 
flow of information between the process’ organizational units, which is likewise 

determined as homogeneous.  

Some overall properties of the process can be deduced. Several indications 
categorize the development process as organized in a well-balanced and even 
manner: The two start nodes do have, logically, a high importance. But throughout 
the process, importance and influence onto the overall network is distributed 
among several tasks, a fact underlined by the high number of 65 different tasks 
appearing among the top and lowest ten positions depicted in Table 5-18.  
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Another structural indication is the fact that within the entire process only two 
tasks with only one incident and one outgoing node succeed each other twice. All 
remaining connections (415 of 417) are edges connecting nodes with higher in- 
and out-degrees and are therefore far less critical. The number of edges being the 
only connection between two nodes (12 occurrences), is similarly low. The 
equally distributed interdependencies between the process’ organizational units 

confirm the general properties from another point of view.  

Table 5-18: Top ten and lowest ten outliers for selected structural metrics 
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The small percentage (5.575%) of feedbacks among all connections also describes 
the flow of information as straight and evenly. However, there are about 4 million 
cycles that are, in particular, driven by T4; this coincides not only with its 
importance based on the degree but furthermore with its centrality (second 
outlier), confirming that especially here, decisions are taken and systems 
architecting is taking place.  

The results are partially consistent with the results of an earlier analysis [Braha & 
Bar-Yam 2004] speaking of few nodes being of high importance for the overall 
process. For single metrics, assessing single views onto the structure, this may be 
right. For example, task T39 ranks at first position of values for the metric relative 
centrality, appearing to be of outstanding importance. But, regarding all active 
influence measuring metrics simultaneously, it ranks at position 15, representing a 
rather high but not significantly outstanding importance. 

Concerning another result of the earlier analysis, the newly calculated results are 
identical. Most nodes do have quite low degrees most connections within the 
network link entities with small activity and passivity. The metrics degree 
correlation based on edges and on nodes as well as degree distribution confirm 
this result unequivocally. 

5.4 Conclusion: Structural metrics 

The review of the state of the art (section 2.3) showed that good foundations are 
available to measure the complexity of, in particular, flow-oriented systems such 
as processes or workflows. Yet, no comprehensive set of metrics could be 
identified. In this chapter, a Structural Measurement System was generated to fill 
this gap, based on existing evidence. As methodical support, measurement 
foundation provides the requirements for metrics design. 

The metrics shown were developed based on a generic procedure for metrics 
design. The procedure is based on classifying different existing structural 
characteristics that can be considered as complete as possible. However, these 
structural characteristics are still abstract and necessitate more research into their 
significance for processes to support the development of refined metrics. As an 
intermediate option, therefore, solution principles for the assessment of structures 
were used as input for both basic and combined and special structural metrics. The 
solution principles are, in fact, comparable to different classes of problems that 
can occur in a network. As a consequence, they relate to different problems that 
are currently regarded in process management and serve as a viable basis for 
metrics design.   

In conclusion, the metrics, therefore, meet the demands set by process 
management in general. The set of metrics is as comprehensive as the solution 
principles and the underlying set of structural characteristics permits; yet, many 
metrics remain conceptual, e.g., the Cognitive Weight or path-based metrics that 
are still too complex to compute. At the same time, the metrics numerically 
evaluate all relevant patterns as provided by the solution principles and the 
available structural characteristics, which are currently the main means of 
assessing the completeness of the solution.  
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All structural metrics are connected to their structural significance, as listed in 
appendix 10.5. Here, the meaning of each metric is based on the meta-model as 
provided by the Structural Process Architecture shown in the previous chapter. 
However, the indications of the structural significance of the metrics remain 
abstract and need more expertise to be applied. As no generalization is possible 
without losing, to some degree, the concreteness of a solution, this is due to the 
checklist-like character of how the metrics are presented. A compromise between 
the degree of abstraction and the level of detail is practical as general applicability 
and transferability to other cases are not lost.  

All structural metrics are based on measurement foundation, as reviewed in 
section 2.3.1. As detailed, the enumerative nature of most structural metrics is in 
line with these requirements. All other metrics were reviewed in detail to explain 
the rationale for them and their empirical foundations in more depth. Yet, more 
empirical evidence is needed in the long run to extend their applicability. To this 
end, more case studies and experience derived from their application are necessary 
and should be collected in ongoing projects. This is especially important as not all 
empirical evidence is centered on metrics per se but on structures in a more 
general way. 

Therefore, some metrics are more viable than others. Case studies show that the 
metrics for size and density, activity/passivity, degree distribution, attainability 
and closeness, the snowball factor and forerun factor, the number of cliques, and 
the number of cycles (including related counters) are the most practicable metrics 
as they bear sound empirical evidence, good computability (limited only for 
cycles), and good structural significance across all domains and relationships 
defined in the meta-model. All other metrics lack either the detailed algorithms, 
which make them impracticable to use, or too little evidence is available to fully 
understand the structural significance of the metrics in detail.  

So far, the Structural Measurement System covers common cases of application as 
found in process management. However, the interdependencies of the metrics are 
not reviewed yet. For example, the correlation of metrics between their meaning 
and mathematical foundation is needed to generate more proof of their 
significance. Furthermore, a more formal description of all metrics needs to be 
developed to point to further missing metrics. 

Overall, the complexity metrics provide a much more condensed overview of a 
structure than structural characteristics themselves. Therefore, a comprehensive 
analysis at a rudimentary but global level of process management is possible 
without examining every detail. This way, the structure and the behavior that is 
coupled to it becomes accessible. Possible examples are the hierarchies in a 
process: It is almost impossible to assess all outgoing hierarchies for every task to 
judge the impact of each task on the process. The metric “number of reachable 

nodes” and “forerun factor” makes it possible to easily spot the tasks of interest. In 
a second step, a more detailed analysis of the structure can then be undertaken and 
the actual structural characteristics can be examined individually. 



6. The S-GQM framework to select metrics  

To enable the goal-oriented analysis of a process using complexity metrics as e.g. 
provided by the Structural Measurement System, a framework is necessary to 
select the metrics and to guide their application. The solution presented here is 
based on the GQM approach and therefore called Structural Goal Question Metric 
framework (S-GQM). However, the framework is not meant as the only means of 
systematically applying metrics to a process analysis. Nevertheless, the framework 
is designed to help address the most common elements of a process analysis, as 
shown in the requirements outlined in chapter 3.  

‚ Enable a simplified access to the analysis by providing goals common to 
process management as primary points of entry to a process analysis. 

‚ Connect the goals of the analysis to an operational layer and to relevant 
metrics and the necessary semantics (domains and relationship types). 

As Figure 3-3 showed, different elements are relevant for the analysis of a process 
from a structural point of view. Globally, such an undertaking is guided by goals 
and, more generally, concepts74. To concretize these goals, questions can be asked 
to examine the intent behind a goal and to demand answers be delivered by the 
analysis. In fact, structural characteristics can then be used to analyze an existing 
process using these questions; in the context of this research, structural 
characteristics are embodied in structural metrics that allow a condensed analysis 
of one or several structural characteristics. At the same time, questions also arise 
about certain issues within a domain and its relationship types. Therefore, 
questions relate to domains, too. Likewise, the structural significance of a metric 
is only given for a domain and a relationship type, which can alternatively be 
represented as an aggregate view that encompasses two or more domains and 
relationship types. Lastly, this structural significance is used to provide answers to 
any initial questions.  

In section 6.1, a number of existing frameworks are reviewed. All of these use a 
generic layer of certain goals or concepts, refining them from an operational level 
to a measurement level. The most common approach in the management of 
measurement, the Goal-Question-Metric (GQM) is chosen and adapted, as it is 
both practical and simultaneously archetypical for other frameworks. Goal 
orientation is provided by the common goals of process analysis, as reviewed in 
section 2.2.2.  

6.1 Existing frameworks to facilitate the analysis of a system 

To efficiently employ metrics to assess a process network, the metrics need to be 
selected according to the user’s needs and goals. Measurement frameworks align 
requirements and their implementation by employing a networked or hierarchical 

                                                           
74 The strategic level does not necessarily address goals. For example, “Interfaces” does not state 
a goal but only a concept. Nevertheless, the term “goal” is used to help clarify the GQM scheme 

and to address the focus of the analysis of a process. 
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decomposition of the user’s requirements down to the entities that make up a 

solution. In this section, different means of selecting metrics according to the 
initial specifications are explained. 

6.1.1 Quality Function Deployment and the House of Quality  

Quality Function Deployment is a method to implement requirements in a 
physical product. The original Japanese name of QFD translates as a property-
function-interrelation and refers to its original development at Toyota. QFD is 
used to identify attributes of a system that are necessary to achieve the 
characteristics a customer expects and/or requires. Development work can be 
structured to prioritize those attributes that are of highest relevance to the 
customer [AKAO 1992]. QFD is commonly used for systems with a low degree of 
novelty, as knowledge about how requirements can be related to the product 
attributes is necessary. It can, in general, be applied to any process of structuring 
how requirements or expectations relate to a system [LINDEMANN 2007, p. 296].  

The classic approach proposed by AKAO integrates four aspects by interrelating 
them via correlation matrices [AKAO 1992]: the customer’s requirements, the 

functions of a product, the quality characteristics of the product, and its 
components. The House of Quality (HoQ) represents the first of these matrices, 
relating requirements to quality characteristics (using a DMM); it adds a matrix 
(i.e., a DSM) to correlate each aspect with itself, pointing to conflicts.  Figure 6-1 
shows a common House of Quality. 

Quality function deployment can be used at different levels of abstraction, 
mapping a conceptual or strategic problem to an operational implementation. As 
such, overall goals, for example, can be related in a structured manner to 
intermediate functions, and from there to a product’s properties, and so on. 

Therefore, different HoQs can coexist. Generally, QFD provides a means of 
breaking down a set of conceptual aspects from an operational to a qualitative and 
even quantitative level. At the same time, it consistently relates these levels to 
each other. In that, it is similar to the Goal-Question-Metric approach. 

 

Figure 6-1: House of Quality 
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6.1.2 Goal-Question-Metric 

The Goal-Question-Metric approach was developed in the early 1990’s. It is a 

systematic method to set up a quality model in software development, breaking 
down overall quality goals into intermediate questions and then to metrics to reply 
to these questions. Returning from the questions to the goals, the measures are 
interpreted to obtain indications about the software quality. As such, the GQM 
approach bridges the conceptual level (goals) via an operational level (questions) 
to a quantitative level (metrics). The metrics serve as concrete and quantifiable 
entities75 [BASILI & ROMBACH 1988], as Figure 6-2 shows. 

A critical part of GQM is the establishment of goals, which are determined using 
three coordinates: issues, objects, and viewpoints. These are coupled to a purpose 
that indicates the direction a goal should develop. Table 6-1 shows an example of 
a GQM application in software development. 

GQM is similar to the Munich Procedural Model [LINDEMANN 2007, p. 45], as it 
makes overlapping use of basic metrics to answer different questions that relate to 
different overall goals. As such, it recognizes the fact that individual metrics are 
not fully independent but rather form a network of metrics, much like the Munich 
Procedural Model proposes for design methods [LINDEMANN 2003]. At the same 

                                                           
75 Similar to the earlier Software Quality Metrics approach [BOEHM et al. 1976] 

 

Figure 6-2: GQM model hierarchical structure [BASILI,  et al. 1994]  

Table 6-1: Example for GQM [BASILI  et al. 1994] 

 

Goal 1 Goal 2

Question QuestionQuestionQuestionQuestion

Metric Metric Metric Metric Metric Metric
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time, the Munich Procedural Model uses seven overall phases (called “elements”) 
that each use an average of five questions to be more concrete about the tasks to 
be executed during each element. To each question, a number of methods are 
attributed. However, the model has not been applied to any structure assessment 
so far. 

The GQM approach is sometimes compared to the Balanced Scorecard, which 
similarly attributes a strategic perspective to individual metrics to measure a 
company’s performance. 

6.1.3 Balanced Scorecard 

The Balanced Scorecard was developed by Robert Kaplan and Peter Norton in 
1992 to overcome the one-sided management of companies based only on 
financial measures [KAPLAN & NORTON 1992]. At the time, the DuPont-System of 
Financial Control, which focuses on a return on investment calculus, was 
generally used to strategically steer a company. However, as Kaplan and Norton 
recognized, human and organizational aspects mattered just as much to develop a 
sustainable company. MORISAWA illustrates the essence of the Balanced Scorecard 
as follows [MORISAWA 2002]: 

‚ Achieving a balance among short-term, medium-term, and long-term 
management objectives through a diverse measurement of performances. 

‚ Creating a sense of understanding by establishing non-financial quantitative 
indicators (a process index) other than financial indicators. 

‚ Eliminating vagueness by keeping to quantitative indicators. 

‚ Promoting organizational learning through a repeated cycle of hypothesis 
verification (i.e., hypothesis at the start of a term, correction after the term, 
and feedback for the next term’s plan). 

‚ Providing a common strategic communication platform linking the heads 
and members of the organization of a company. 

Determined to provide a “fast but comprehensive view”, the Balanced Scorecard 
was developed to bring together basic measures for the performance of a company 
in a comprehensive management report, thus guarding against suboptimization. It 
links overall strategic perspectives to goals that are to be achieved. For each goal, 
drivers that enable the company to reach the goal are determined, and suitable 
“Key Performance Indicators” are attributed that show the level which the driver 

has achieved. The performance indicators, therefore, rate a goal, differing from the 
more descriptive viewpoint a metric takes. The performance indicators are 
obtained by setting up goals for the different perspectives of all stakeholders. 
Then, for each perspective cause and effect, chains of possible drivers are set up 
indicating how the goals are to be achieved, linking the customer perception to 
actions. These cause-and-effect chains are used to determine measures able to 
represent the level of implementation to satisfy the customer’s expectations. 

Figure 6-3 shows an example of the common four perspectives. However, they 
can be adapted to suit a company’s needs. 
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In a so-called “second generation”, the Balanced Scorecard was later extended to 

accommodate the need of changing strategies over time; this so-called strategy 
map uses a strategic linkage model, making the approach less abstract. Later a 
vision (called “Destination Statement”) was introduced to guide the development 

of goals [MORISAWA 2002], and the assessment of risks was also incorporated 
[REICHMANN & FORM 2000].  

The Balanced Scorecard is criticized for a number of reasons. It is often seen as 
too rigid, because it only enables one to see what is previously modeled in the 
cause-and-effect chains. However, this makes it an efficient tool to navigate 
changes in a company. Yet, the original intention was to create a comprehensive 
picture of a company. In fact, the performance indicators are commonly created in 
a way that they slightly overlap; this overlap helps their efficiency as a controlling 
tool, as no single indicator can be manipulated without showing up in one or 
several “neighboring” performance indicators. Furthermore, the process of setting 
up the performance indicators helps create a common understanding. 

The Balanced Scorecard is closely connected to the Goal-Question-Metric 
approach, as Table 2-10 shows. Different authors use this proximity to develop 
methodologies that address the advantages of both methods. The Model, Measure, 
Manage Paradigm [OFFEN & JEFFERY 1997] combines strategic and project issues 
as in the perspectives of the Balanced Scorecard, breaking down each as done in 
the GQM approach. In a similar manner, the multi-level Balanced Scorecard uses 
the GQM across different scorecards for different levels of detail to align 
perspectives, for example, from a company’s level of detail down to a 

departmental level of detail [BECKER & BOSTELMANN 1999]. 

 

Figure 6-3: Balanced Scorecard [KAPLAN & NORTON 1992] 
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6.1.4 Directions and requirements 

Frameworks allow for a goal-oriented access to methods. They use, generally, 
matrices that map goals to specific methods; as an intermediary layer, questions 
can be used to shift the concepts to a more practical level and to specify the 
information needs. Using common goals from process management, a framework 
can thus be set up to relate metrics to these goals, similar to the GQM approach, to 
enable a goal-oriented structural analysis of engineering design processes.  

However, no framework provides a comprehensive basis for the interpretation; 
only the Balanced Scorecard provides access to possible causes behind the 
measures. There is, thus, the need to extend frameworks to find the way back from 
the abstract, methodical layer to the deduction of suggestions about how to 
interpret the results of an analysis.  

Therefore, the framework to be designed should fulfill the following requirements, 
most of which are met best by the GQM scheme, which is most closely focused on 
guiding the process of using metrics for a goal-oriented analysis (these are derived 
from the section above and from the requirements shown in Figure 3-1): 

‚ Offer goals as a strategic level of the analysis 

‚ Refine the goals via an intermediate layer that helps to concretize the goals 
through questions 

‚ Attribute metrics, domains, and relationships to each question that points the 
user to possible answers 

‚ Provide indications of the possible structural significance of the results 
obtained from the metrics 

‚ Be modular to incorporate future extensions 

Table 6-2: Balanced Scorecard (BSC) and Goal-Question-Metric (GQM) (based on 
[BUGLIONE & ABRAN 2000]) 
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6.2 Systematic access to the structure of a process 

As initially stated, the main problem in the analysis of a large engineering design 
process is the complexity of this very task, producing a seemingly insurmountable 
barrier; thus, resorting to a more abstract layer is a necessary intermediary. As 
Figure 3-3 showed, different aspects that are mutually dependent play a role in 
this. Given that there are a number of elements to each aspect, there are numerous 
possibilities that could be recombined; thus, the proposal of a generic approach 
that integrates all possible aspects is almost impossible and rarely fruitful.  

Based on the Structural Process Architecture and the Structural Measurement 
System, providing for a set of 52 metrics, 6 domains and 26 principal relationship 
types (based on 71 detailed relationship types), a total 8,42 combinations are 
possible. The framework suggested here reduces this number to a pragmatic set 
that serves the basic needs of process management (compare the common goals 
and concepts of process management on page 66 and the following pages). 
However, this reduction does not imply that any metric is of lesser relevance, but 
rather that it only represents a basic subset of the overall solution space that can be 
extended to suit different goals of process management. 

Figure 6-4 illustrates the reduced approach in more detail. For example, if the 
organizational structure is the focus of the process analysis, the appropriate goal 
G 1 is selected. This example also indicates why the term “goal” is not fully 

appropriate (see footnote 74). In the example, goal G 1 proposes two questions 
Q 1 and Q 2, of which Q 2, “Is the team structure appropriate for the given 

workflow?”, is selected. This question leads to metric M 1 and to domains D 1 and 
D 2. In many cases, it is possible that several metrics provide answers to one 
question, and thus several questions can relate to the same metric. In the example, 
metric M 1 will provide the number of organizational interfaces between the 
domains tasks and roles, i.e., it will indicate how straightforwardly the human 

 

Figure 6-4: Using goals and questions to identify relevant metrics and domains 
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resources are assigned to the individual tasks of the process. If this number is 
compared to the number of tasks and to the number of roles, the ratio will indicate 
whether there are few or many assignments per role, indicating the fact that there 
may be many changes in responsibility for a task. In a second step, if a set of 
processes is compared to this end, the process that exhibits the highest numbers 
should then be prioritized for any further analysis. 

In the following sections, the main steps are further explained. First, the goals are 
laid out, then, questions are allocated to each goal, and ultimately, the allocation 
of metrics, domains, and principal relationship-types is discussed. 

6.2.1 Goals and questions of structural process analysis 

As proposed earlier, there are two ways to approach the analysis of a system, 
either following a goal-oriented strategy or an opportunistic manner. Maurer 
defines these two strategies as “define what you need”, i.e., the requirements-
driven approach, as opposed to “see what you can get”, i.e., the opportunistic 
application of analysis to a system [MAURER 2007, p. 93]. 

To analyze a process in a goal-oriented way, Table 2-9 (page 71) reviewed 
common concepts for the structural analysis of a process. These concepts 
represent abstract classes of analysis; not necessarily all of them have the direct 
character of a SMART76 goal, i.e., being specific, measurable, attainable, 
relevant, and time bound.  

The goals were collected from the different concepts of process management, as 
shown on page 64 and the following. All relevant concepts of process 
management were detailed from the given references (Table 2-9) in terms of their 
structural content. For each question, the relevant domains and relationship types, 
as addressed by the original references, were collected; similarly, the metrics were 
allocated based on the indications given by the references for existing metrics (see 
page 80 and following) and the assessment of structures in general (see pages 48 
and 52 and following). This attribution is not always ideal, as the literature does 
not always focus on structure. Therefore, the goals were consolidated in 
workshops with process managers from different industries to be as relevant as 
possible. 

The goals guide the strategic level of the analysis. Here, the core concepts to be 
followed during the analysis are set up. As part of the state of the art, seven major 
goals of process management were identified that are complemented by an eighth 
goal to integrate the additional aspect of a systematic analysis of Boolean 
operators to analyze decision points in a process model. The goals are not fully 
independent, as the attribution of the metrics will show. These goals are:  

‚ Planning 

‚ Resource consumption 

‚ Quality 

                                                           
76 SMART criteria are commonly accepted as the “good” description of goals as part of 

Management by Objectives [ODIORNE 1980, p. 82].  
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‚ Flexibility 

‚ Organizational decomposition 

‚ Interfaces 

‚ Transparency 

‚ Decision making 

Planning refers to the degree to which the process plan can be pre-determined. As 
such, it comprises, for example, structural bottlenecks, tasks that can be worked on 
independently of each other, iterations, or the chances of adherence to a schedule 
as embedded in the structure of the process. These occur particularly as cycles 
among points in time, tasks and artifacts, as bridges within the process network, 
and as densely crosslinked interfaces among several domains. Planning, therefore, 
particularly addresses the runtime of a process, its critical paths, and its repetitive 
tasks. The following questions detail this goal: 

‚ To what extent is it possible to incorporate risks into the process planning? 

This question especially addresses the fact that a densely networked process 
implies a higher risk of delays towards a milestone. Clusters, in particular, 
and, more generally, iterations are the drivers of such delays. Furthermore, 
the less linear a process, the more complex its planning to break up cycles 
among the artifacts or points in time that hinder a linear process flow. 

‚ How can the focus be concentrated on important process steps? 

This question aims at identifying important tasks that have the highest 
impact on the process flow, being central sinks or distributors of 
information, thereby coordinating the overall process, and driving and/or 
controlling iterations.   

‚ What are bottlenecks in the schedule? 

Bottlenecks in the structure are those communication channels or tasks and 
documents that, if defective or incomplete, hinder the further execution of 
the process. Therefore, bridge nodes and edges as well as the connectivity of 
the graph are within the scope of this question. 

‚ What parts of the process are substantially impacted by iterations? What 
level of uncertainty is handled by the process? 

Iterations are a major driver of costs and delays, although the goal is to 
improve the quality of an artifact by reworking part of its contents. 
Therefore, those parts of the process that are impacted by iterations deserve 
particular attention. Cycles, their start- and end-nodes, their main 
communication channels, as well as existing and possible clusters, contribute 
to such iterations. Iterations also point to the level of uncertainty that is 
inherent to the process, i.e., the degree of novelty of the item that is being 
developed and the amount of knowledge that needs to be generated as a 
result.  
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‚ What is the stakeholder situation? 

The stakeholder situation is characterized by the number of different 
domains that are relevant for a process model; therefore, the stakeholder 
situation typically relates to the size of the network and its different 
measures. 

The resource consumption covers aspects like capacities and the utilization of 
resources that emerge out of the attribution of two domains to each other. Thus, 
for example, redundant work, the availability of IT systems and other resources, 
and the homogenous layout of the process are addressed. To this end, structural 
characteristics such as attainability and sync graphs among tasks, organizational 
units, and resources are applied. The following questions detail this goal: 

‚ Is the process laid out in a homogeneous manner? 

This question addresses the even distribution of tasks in the process and their 
allocation to organizational units as well as their inputs and outputs. The 
interest is to find such tasks and artifacts that collect the knowledge of the 
process, which will generally cluster in those tasks and organizational units 
that are the most involved throughout the process. Equally, those 
organizational units that represent the core competencies of the process can 
be identified.  

‚ Where is it possible to remove redundancies to reduce waste? 

Multiple allocations to tasks and other entities in the process are an indicator 
of the unnecessary use of resources; another driver of resource consumption 
is the frequent change of responsibility, causing additional coordination 
effort. The metrics grouped under this question, therefore, regard multiple 
allocations and interruptions in the alignment of different domains. 

‚ Are the resources easily accessible? 

The availability of resources is essential for the efficient execution of any 
task in a process. Therefore, this question focuses on the reachability of 
resources within the process network. 

The concept of quality includes, in particular, the consistency, the integration, and 
the distribution of information and errors, thereby focusing on the quality of the 
process, not of the product. By looking at the reachability, the resilience, the 
hierarchies, and the alignment of the artifacts with the rest of the process network, 
the propagation of errors, the fragmentation of tasks as well as documents, and the 
general consistency of information transfer are considered. The following 
questions detail this goal: 

‚ Does the process allow for the consistent transfer of information? 

Like the accessibility of resources, the continuity of information transfers, 
i.e., the reachability of one resource from another resource, is the essence of 
information consistency. This also applies to artifacts that are generated 
throughout the process.  
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‚ Is the documentation in line with the process? 

The alignment of artifacts (representing the intermediate results of the 
process) and the tasks point to possible issues within the exchange of 
information throughout the process. Dissimilar structures of these two 
domains (size, degree distribution, cycles) are an indicator of inefficient 
documentation.  

‚ What is the risk of error distribution across the process? 

The propagation of information also includes the propagation of errors 
among the tasks and artifacts. Therefore, short and wide hierarchies point to 
root nodes within these two domains that have a high impact across the 
whole process network and that are thus susceptible to collecting incoming 
errors or to distributing errors rapidly across the process. 

The goal of flexibility of the process makes use of similar concepts like resource 
consumption; however, aspects that contribute to the flexibility of a process, for 
example, redundancy, robustness, and adaptation, commonly consume more 
resources. As many of these aspects can only be judged from the semantics of the 
process network, only buffers and the general robustness are regarded closely, 
evaluating the adjacency and attainability of points in time, tasks, and artifacts in 
particular. The following questions detail this goal: 

‚ What buffers are available in the process to absorb delays and errors? 

Synchronization points among points in time, tasks, and artifacts that collect 
information can serve as buffers if used correctly; a node with a high passive 
degree (i.e., having a high passivity) will collect many inputs before 
continuing the process. Therefore, these entities need to be identified to be 
aware of their potential as buffers.  

‚ How robust is the overall process to individual failures? 

The resilience of the overall network facilitates the adaptation of the process 
in case individual nodes (e.g., key personnel) drop out. Therefore, nodes that 
could compromise the integrity of the network indicate a lack of flexibility 
to cope with problems with these entities. Similarly, multiple paths across 
the overall process point to more flexibility to cope with unforeseen changes 
in the process structure.  

The organizational decomposition is intended to establish efficient 
communication channels by means of a purposeful decomposition of 
organizational units. Here, coordination of all tasks, the adequate setup of teams, 
and distinct responsibilities are of interest. Hence, organizational units are focused 
on, and analyzed for straightforward crosslinking with their tasks, in particular, 
their internal attainability, clustering, and resilience. The following questions 
detail this goal: 

‚ Is the organization of workgroups and teams adequate? 

This question addresses the alignment of the process with the organizational 
setup. The clustering of tasks in the process points to necessary workgroups.   
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‚ How well is the organizational structure suited to provide efficient 
communication? 

The ability of each organizational unit to be able to reach other 
organizational units is an important driver for communication; therefore, the 
attainability of organizational units as well as the mean path length is of 
interest in characterizing the communication within a process; also, bridge 
nodes and central organizational units are of interest. Similarly, the metrics 
of this question point to entities that may not be well integrated, being little 
connected or not reachable at all. 

‚ What is the internal structure of an organizational unit? 

As a socio-technical system, a process is driven to a large extent by opinion 
leaders and information hubs that coordinate the process, even if they are not 
the executives that formally manage the process. Therefore, their 
identification is targeted by the metrics focusing on the centrality and the 
degree distribution and correlation of the network formed by the 
organizational units.  

Interfaces are another important concept in process management. Here, 
disruptions among resources, artifacts, or organizational units are addressed, as 
well as errors in the transmission of information, the supply of information in 
general, and the integration of all organizational units. Hence, hierarchies are of 
interest, as they point to the propagation and the communication channels that 
belong across the process. The following questions detail this goal: 

‚ Which entities of the process need to be synchronized? 

This question addresses the need for information exchange among tasks and 
organizational units; therefore, the degree is of importance, as well as the 
attainability. The distribution of degrees and their correlation, in particular, 
point to those entities that are of high importance for the process.  

‚ How fast is communication in the process? 

Like the propagation of errors, the propagation of information is represented 
by hierarchies across the process, which show what information can reach 
other entities from its root node. Therefore, the attainability, as well as 
hierarchies among the tasks and among the organizational units, is examined 
to characterize the speed of communication.  

‚ What are relevant communication channels?  

While the synchronization within the process takes place at particular tasks 
or organizational units, there are also characteristic paths within these 
networks that this question aims to identify. Therefore, path-based metrics 
are applied.  

Furthermore, transparency covers the clarity and comprehensiveness of the 
process, i.e., the degree of complexity of grasping and understanding the process 
and the involvement of individual entities therein. This transparency affects, of 
course, all domains of a process network. The following questions detail this goal: 
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‚ Are the organizational units aware of their impact on the overall process? 

The higher the degree of crosslinking in the process, the more difficult it is 
for an individual entity (organizational units, mostly, but also tasks and 
points in time) to judge the long-range impact of their work. Therefore, the 
size of the network, the degree of its crosslinking, and its planarity are used 
to gain insights into this question. 

‚ How transparent is the overall process organization? 

The cognitive ability of humans is limited to comprehending only a few 
objects at a time; therefore, understanding a highly complex process is very 
difficult. This question is intended to grant access to cognitive models that 
allow the evaluation of the degree of complexity of a process network from 
such a point of view. 

Lastly, decision making addresses the fact that the structure of a process reveals 
many decision points, both those that are explicitly modeled as Boolean operators 
and those that drive iterations, i.e., the start-nodes and end-nodes of cycles that 
govern a process in particular. As such decisions impact all domains, no particular 
selection is proposed. The following question details this goal: 

‚ Which decision points have a high impact on the process? 

This question relates to metrics that evaluate the impact of a decision point 
on the process, mostly through the degree of tasks and business objects. 
However, the assessment of overall processes is also possible. 

Overall, the goals and questions can be used to focus on a more general 
undertaking towards process improvement. In the author’s experience, such 

projects rarely start with one explicit goal but rather with a vague idea of where 
the problems that motivate the project might originate from. Therefore, the goals 
and questions are, above all, intended to point to common problems. However, 
they should not be understood as a delimiter that indicates the maximum 
applicability of structural metrics. In fact, during each application, the goals and 
questions, as well as the set of metrics, domains, and relationship types, should be 
extended according to the nature of the analysis project.  

6.2.2 Allocation of metrics, domains and relationship-types  

After a principal focus on the analysis is designated using the goals and questions, 
measurements are used to identify outliers, deduce their significance for the 
behavior of the actual process, and deduce indications towards possible 
improvements, thus providing answers to the questions.  

To each question, thus, a set of metrics, domains, and relationship types needs to 
be  allocated in a way that it provides answers to the questions. To do so, three 
research approaches were used that, concurrently, provide a good reference for the 
allocation of metrics. 

First, metrics that have been used to answer one specific question before, as 
shown in the references, can be allocated for the appropriate questions; for 
example, McCabe’s Cyclomatic number is typically used to compare different 
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control-flows (i.e., different processes or different modules in a process) to their 
decision structures. Therefore, the allocation of this metric to a question that 
regards the decision structure of a process is obvious. 

Secondly, all metrics were developed for a particular structural significance for 
each domain of the meta-model (see page 146). This significance is, in each case, 
based on empirical evidence and on the research that is, in part, shown in the two 
case studies in the subsequent chapter. The significance given for each metric, 
therefore, also allows the attribution of individual pairs of metrics and domains 
(including the principal relationship type) to questions. 

Lastly, the metrics embody different, more general, structural characteristics that 
imply a certain behavior of a domain. Although not detailed in this research, this 
classification was used to classify the metrics concerning their focus of analysis 
(robustness, grouping, extent, and propagation; see the tables in appendix 10.7 and 
the explanation in section 5.2.4 on page 157). Based on this classification, the two 
methods above of allocating metrics to questions could be cross-verified to see if 
all relevant metrics had been allocated.  

Figure 6-5 shows the simplified S-QGM scheme that results from the attribution 
of metrics and domains to the questions (the complete framework is given in the 
appendix; there also are the IDs for goals G01…G08, questions Q01…Q22, and 

metrics M01…M52). As an example, goal G01 “Interfaces” is detailed with its 

five questions Q01 through Q05. Question Q01 “To what extent is it possible to 

incorporate risks into the process planning?” uses metric M40 “Number of 

cycles”, for example, to point to the expected maximum number of iterations for 
the domain “Tasks”. The more iterations there are, the less deterministic the 

outcome of the process; therefore, a high risk of delays needs to be anticipated and 
considerable effort needs to be put into the core tasks that are reworked during the 
iterations. In turn, process planning needs to integrate possible buffers for these 
iterations, and possibly break up the iterations into distinct phases of rework. 

Depending on the available native data in the process analysis, either native 
datasets or aggregate views can be used for the analysis. A combination of both 
kinds of input data (e.g., a native task-DSM and an aggregate task-DSM that is 
computed via intermediate artifacts) can be used to further detail the analysis and 

 

Figure 6-5: Resulting S-GQM scheme 
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check for the coherence of the domains among each other. In most analyses, 
aggregate views will be necessary, as the networks will, in most cases, be 
multipartite, i.e., the different domains will not be internally networked but only 
via other domains. In such cases, the domain of reference is provided by the  
S-GQM, and the aggregation path needs to be chosen carefully to mimic the actual 
process execution. If, for example, an aggregate view on resources is necessary 
(e.g., IT systems), these systems will commonly exchange artifacts via the tasks 
they are allocated to. Therefore, the aggregation path will be from resources to 
tasks to artifacts to tasks to resources.   

6.2.3 Identifying structural outliers 

As the metrics selected and computed up to here provide a highly condensed 
picture of the process, they still do not provide detailed information about the 
process’s behavior; however, their main focus is to identify structural outliers that 
characterize the process’s structure. Therefore, this and the subsequent sections 
are also valid for a process analysis that is not guided by the GQM scheme.  

Figure 6-6 shows the basic procedure for working with outliers. To analyze the 
results from the metrics properly, first, the metrics need to be calculated for the 
relevant datasets. Then, the results of each metric are regarded individually to 
identify outliers. Here, the scale of each metric (i.e., the range of values that are 
possible for the metric) is of interest for running a Pareto analysis to identify 
outliers properly. Within the scale, outliers are then sought and collected. In the 
next step, the collected outliers are compared; often, an entity that appears as an 
outlier in one distribution might also be an outlier in another distribution, making 
it, therefore, even more relevant to the process. Furthermore, cross-aggregation 
outliers can only be identified if different metrics are compared in terms of their 
possible correlation. Lastly, the results need to be described and documented for 
further use and to serve as input for their interpretation. 

6.2.4 Structural significance of the outliers 

The interpretation of outliers should take place from different perspectives 
simultaneously, otherwise the actual context of the process is ignored, and the 
results may not be meaningful. 

There are different ways of accessing the meaning of a metric. The basic access to 
the interpretation of a result is given by the process model itself; in all cases, the 
outliers should be related to their context and meaning. If a process model 
contains, for example, the coordination of the process as a distinct task, this task 

 

Figure 6-6: Basic procedure for working with outliers 
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will show up as highly central in the process. While this result is correct, it may be 
of little use if the principal process flow is being analyzed. 

Secondly, the structural context of an entity that appears as a structural outlier 
should be considered. If, for example, a set of 60 different feedbacks is identified 
as outliers, these may have a different impact on and relevance for the structure. 

Figure 6-7 visualizes two different kinds of feedback. While the feedback close to 
the diagonal of the task-DSM is of little relevance, as it is only part of a short 
iteration, the other outlier is a major jump back in the process flow.  

Thirdly, the structural significance as given by the tables that are part of the 
description of all metrics can be used. These lists can serve as a comprehensive 
list of possible interpretations to guide the interpretation. However, they do not 
represent a complete checklist but only a collection of common interpretations and 
issues related to each metric, domain, and principal relationship type. In all cases, 
but especially when using the tables of structural significance, the domain and the 
relationship type should be reflected in the interpretation to ensure the possible 
interpretation actually fits the initial data. Particularly when complex aggregations 
are used (across several intermediate domains or involving many decision points), 
the expressiveness of the aggregate dataset is low and may not be in line with the 
principal relationship type assumed in the tables of structural significance.  

In the final step, the results and indications of their meaning need to be discussed 
with relevant staff to deduce conclusions and individual improvement measures. 
Here, again, the context of the process matters most, as even the results from a 
well-balanced process analysis (i.e., incorporating many different metrics to 
ensure a complete picture) do not guarantee that the process improvement is just 
as comprehensive. To avoid a one-sided suboptimization, the results, therefore, 
should always be critically reviewed with all possible stakeholders and possibly 
supported by more detailed methods, for example, simulations for key outliers that 
undergo improvements in subsequent steps.  

 

Figure 6-7: Structural context of feedbacks in task-DSM (part of the case study in section 7.1) 
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6.3 Using and adapting the framework  

During a process analysis, a framework is employed during the first phase of the 
procedural model that guides the process analysis (shown in Figure 6-8). Here, the 
goals are set and appropriate questions are selected according to the individual 
needs of the analysis project. Each question yields a set of metrics, domains, and 
relationship types that help produce indications to the questions.  

With this input, the system border is basically drawn, and the necessary 
information can be acquired, either from existing process models or by building a 
process MDM, as discussed in section 4.5.1. During these two steps, the 
combination of each metric, domain, and relationship should be reflected in the 
available data and the information needs that drive the analysis. Certain domains 
may need refining to better answer the questions or provide information that is not 
available in sufficient quality (e.g., because a process is so little consolidated that 
no meaningful process model can be built). Once the process model is available, 
the results for the metrics can be computed for the relevant domains and 
relationship types. In the last step, the framework comes into place again, 
providing guidance to interpret the results obtained. Here, the initial questions 
should be reconsidered to see if significant answers are provided by the metrics or 
if the analysis should be re-run with an improved selection of different (and 
possibly related) metrics, sub-domains, and refined relationship types. To this end, 
the principles of using domains and relationships, as discussed in Figure 2-3 and 
the classification of the metrics (Table 5-15), support this process.  

The framework is designed in a modular manner and can be extended to different 
cases as might be necessary. As Figure 3-3 showed, it consists of different aspects 
that are interrelated, and each can be changed or extended accordingly. 

‚ Goals 

‚ Questions  

‚ Metrics 

‚ Domains 

‚ Relationship types 

‚ Structural significance 

Each time, the interdependencies between these aspects need to be reviewed 
according to the logics discussed in this chapter. Moreover, the interdependencies 
to the existing entities in the framework should also be reviewed. If, for example, 
a new structural metric is introduced into a set of metrics to answer a question, it 

 

Figure 6-8: Procedural model for structural process analysis 
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is necessary to examine the informational value that is gained; if, for example, two 
metrics correlate, the metric should not be introduced, or the two metrics should 
be marked accordingly. 

6.4 Conclusion: S-GQM framework for structural analysis 

This chapter presented the Structural Goal Question Metric (S-GQM) framework 
used to integrate an overall approach of structural measurement for process 
analysis. The framework is designed to address the common goals of process 
analysis. It makes use of the common principles of pursuing a goal-oriented 
application of a method. The framework operationalizes the goals by asking 
questions that embody the relevant facets of each goal.  

The development of the goals and questions guided by common goals in process 
management is defined throughout the state of the art. However, these goals and 
questions are generally quantitatively evaluated in existing analysis 
methodologies. Therefore, they had to be mapped for their structural content, 
which reduces their expressiveness to some extent. The structural focus that is 
embodied in the framework, therefore, generally relies on case studies that are 
shown in the next chapter and in the literature review and a recombination of 
patterns found in the literature on behavioral indications that can be deduced from 
structure. The framework, therefore, presents a heuristic system (see 76 for the 
different possible measurement systems that serve as frameworks for 
systematizing metrics). The goals and questions may not be complete, but they are 
meant as a guideline for common use cases and to demonstrate the application of 
the structural metrics. Depending on the context of the individual application, an 
extension and adaption are probably necessary; therefore, no “out-of-the-box” 

application was designed. At the same time, however, the hierarchical design of 
the framework, based on the GQM scheme, allows easy adaptation.  

The allocation of the metrics for the goals and questions is based on different 
sources to ensure a good quality of the framework. However, the allocation of 
metrics is difficult. In fact, for most questions, many metrics provide partial 
answers without being fully relevant to the question. Therefore, for each 
allocation, a compromise between expressiveness and compactness of the 
framework has to be made. In the framework presented, this choice was used to 
design a pragmatic framework that embodies the most viable metrics, as discussed 
in section 5.3. 

Similarly, the allocation of domains and relationship types is sufficient for the 
purpose pursued, as it was guided by the semantics transported in each question. 
Nevertheless, a detailed review of the domains and relationship types for each 
analysis project is necessary, as again no “out-of-the-box” application is realistic. 

This is because the underlying meta-model only serves as a generic frame of 
reference. Yet, in practice, different domains and relationship types might be 
available, either because they are relevant to the company being analyzed, or 
simply because the process model that is used as an initial starting point dictates a 
different set. To this end, the structural significance can only be deduced from the 
description of the metrics. This, however, is supported by the framework in a 
straightforward manner. 



 

7. Industrial application of metrics 

In this chapter, the analysis of engineering design processes using the goal-
oriented application of structural complexity metrics is shown. To do so, two 
different processes are modeled as Multiple-Domain Matrices, different metrics 
are selected and computed for the process models, and the findings from the 
analyses are compared to statements from engineers and managers involved with 
the processes to validate the findings.  

The first case study in 7.1 focuses on the electronic control unit design for a 
premium class SUV. Here, the development of different highly-integrated 
mechatronic components takes place in a linearly planned design process that, 
however, exhibits large iterations. In the process analysis, no particular goal was 
followed, but rather a general characterization was of interest to identify the core 
drivers for the process. Therefore, it is used to demonstrate the application of 
structural metrics in general. 

The second case study, shown in section 7.2, regards the process from the 
introduction to this book, focusing on the development of the body-in-white of a 
medium-sized premium class sedan. This process can be characterized as a 
function-oriented mechanic design process, as it produces the sheet metal design 
of the car that is optimized for different functions, such as vibration, 
crashworthiness, and passenger safety. Therefore, the interfaces among the sheet 
metal engineers and the simulation engineers are of particular interest to ensure 
the efficient transfer of information between the two groups. Thus, the application 
of the S-GQM framework and the different aspects of aggregating domains are 
shown. 

Both case studies are used to illustrate the use of the Structural Process 
Architecture, the Structural Measurement System and the Structural Goal-
Question-Metric framework that were laid out in chapters 4 to 6 at different levels. 
Above all, the use of the complexity metrics per se is reviewed to show how they 
serve their overall purpose of identifying possible weak spots. Then, at a more 
detailed level, the most common metrics and their individual use are 
demonstrated. To use the metrics, the application of the MDM-based process 
modeling and the framework are also reviewed. 

7.1 Electronic control unit design: General analysis in Automotive 

Development 

This case study demonstrates an example of the analysis of an engineering design 
process. The process focuses on the design, testing, and integration of the onboard 
electronic control units of a premium-class Passenger Car77. These devices cover 
all electronically controlled functions of the vehicle, such as engine control, 
climate control, and the entertainment system. Figure 7-1 shows the typical 
integration of electronic control units, sensors, and actors in a vehicle.  

                                                           
77 For nondisclosure reasons, the dataset cannot be published.  
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7.1.1 Goals and focus of the project 

The case study was carried out in cooperation with one of the biggest producers of 
premium cars and the world's biggest manufacturer of commercial vehicles. It was 
driven by the interest to clarify “how complex” the design process for electronic 

control units was. To this end, the application of structural analysis was intended 
to show the different facets of complexity within the process to better prioritize 
future improvements. Their interest in this analysis was to better characterize the 
fact that development processes in the automotive industry, especially for highly 
integrated systems, are continuously increasing in complexity and, therefore, need 
continuous improvement. This complexity shows, in particular, through the 
complex network structure of the overall structure of the process, the reach and 
impact of the activities carried out during the process, and the existence of 
iterations, as these were not explicitly described in the existing process 
documentation.  

For this purpose, the overall electric/electronic development process, consisting of 
15 distinct sub-processes (called “modules” hereafter), was analyzed for possible 

weak spots taking shape as structural outliers. As such, a Pareto analysis for all 
relevant computable metrics was carried out to allow a detailed quantified 
structural comparison of the process entities.   

7.1.2 The process model used 

As many relationships within the process were unknown and not part of the 
process documentation, the process model was assembled from different sources. 
Overall, 198 partial models were integrated into one global MDM to represent 
relevant domains and relationship types. The partial models of the process 
modules were mostly extracted from individual process models, modeled in UML 
using Innovator (by MID GmbH), for which an individual export interface was 
programmed to export the structural content of the process models in a 
spreadsheet format. This data was available for the domains modules, activities, 
documents, points in time, and roles. Additionally, data on product attributes was 
integrated based on information exported from the requirements management 
system based on Doors (by IBM Telelogic). Figure 7-2 presents the domains and 

 

Figure 7-1: Different onboard controllers in a 2003 Mercedes S-Class  [Daimler AG 2010] 
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relationship types involved. Because of inconsistencies and a lack of complete 
information in the given timeframe the project was carried out in, the product 
attributes had already been excluded at an early phase of the analysis. However, 
the engineers at the company agreed that the process models themselves were of 
good quality and should be sufficient to yield a comprehensive picture of the 
processes. At a later stage, the data concerning the integration of different roles 
(i.e., human actors in the process) was excluded from the analysis, too, as this data 
was only partially available, and it was not the core interest in the analysis. 
Secondly, the density of the aggregate role-role DSM that was computed using the 
existing data was too dense to deduce any relevant information.  

As can be seen, native data was available on the direct dependencies among the 
activities, and it was possible to generate different aggregate views on points in 
time, documents, and activities; each of these models could be attributed to the 
process modules to which they belonged. Figure 7-3 shows the setup of the 
process MDM, including the domain “Roles”.  

 

Figure 7-2: Entity-relationship model of domains and relationship types in the process model 

 

Figure 7-3: Meta-MDM of the process model 
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After instantiation of the MDM and import of all 198 partial models, the overall 
MDM78 consisted of 1860 entities and 7070 native dependencies (all directed). 
The large number of entities is due to the fact that, according to the company’s 

process modeling guidelines, existing iterations were modeled as repetitive 
phases, i.e., no upstream flow of information was modeled, but the part of the 
process that was iterated was modeled a second time. For more iterations, 
accordingly, the process was repeatedly modeled more times, thus producing a 
behavioral model rather than a structural model79. However, these repeated 
sections of the process model did bear different names and could not, therefore, be 
identified. Only the repeated use of documents could, to some extent, indicate 
iterations.  

Figure 7-4 provides an impression of the network of activities of 3 of the 15 
process modules. The graph represents how the activities of the design process are 
interlinked via the documents that are produced or that serve as an input. Each 
node (numbered for nondisclosure reasons) represents an activity; each edge 
linking two nodes at a time represents a document. There are 377 activities in the 
model and 237 different documents. On average, each task has 1.65 edges, i.e., the 
process is rather densely networked. The modules can be recognized easily in the 
figure (left, center, and right), and the interfaces among the modules line up in 
between. The figure also illustrates that the process modules are of different size 
and structural specificity. The gaps in the process model are not visualized; 
however, it can be recognized by the fact that the aggregate view on activities 
linked via documents leaves 51 activities that are not connected to any other 
activity. 

                                                           
78 The overall MDM was modeled in both a spreadsheet software and in Loomeo (by Teseon 
GmbH). All graph depictions are also extracted from Loomeo. 

79 During the analysis, this led to the problem that cycles were hard to identify (see page 164). 

Figure 7-4: Visualization of network of activities (via documents) as a strength-based graph 
for three modules 
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7.1.3 Analysis and findings 

The selection of metrics for a complete representation of the structural complexity 
of the process was guided by two aspects. On the one hand, a relevant spectrum of 
metrics and domains was chosen to ensure a broad and balanced picture. On the 
other hand, domains and aggregate views that were either incomplete (or 
aggregated from incomplete datasets) or that were too densely networked to 
conclude any meaningful results (e.g., for roles that represented one complete 
cluster within the role-role DSM) were excluded. The metrics listed in Table 7-1 
were calculated based on this reasoning.  

 

Table 7-1: Metrics calculated in this case study and domains (native and aggregate) 
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As can be seen, the goal was to represent the central categories of structural 
features (size, density, adjacency, attainability, closeness, hierarchies, cycles, 
domains) in a balanced way. Within each category, those metrics were chosen that 
serve as basic counters and represent the active and passive aspects of each node’s 

embedding in the network. Similarly, those domains were used that provide 
reasonable data quality, which in such a large process is difficult to obtain in an 
industrial setting, as many different process modelers with a slightly different 
understanding of the process are involved, generating different models. As it 
turned out, the data quality of the native DSM of activities was too low to generate 
purposeful results; this DSM was generated through interviews among engineers 
that individually were only involved in small parts of the process, which therefore 
generated a picture too fragmented to provide a coherent process model. Thus, the 
metrics were generally calculated only for the aggregate views. 

During the course of the project, a metric designator was introduced to visualize 
the datasets for each metric in a simple manner. It represents, on the one hand, 
whether a metric is calculated for a native or an aggregate dataset and, on the other 
hand, shows the aggregation used if applicable. For the aggregation, the six 
different types as proposed by [MAURER 2007, p. 85] were used. See page 47 for 
more details on this aggregation. 

Table 7-2 characterizes the overall process. Three domains are regarded as the 
four aggregate views that were agreed upon with the project partners during the 
kickoff meeting. The process network is quite large, with 710 nodes in total and 
all distinct, i.e., no nodes are re-used or instantiated several times; however, this 
information is deceiving, as stated before, because iterations are modeled not as a 
repeated set of activities but as a second independent process. However, due to the 
modeling (all data was made anonymous by the company, and the real nature of 
the entities was only available for a few entities), there are, in fact, activities that 
are re-used. This can also be seen in the number of edges, which is only slightly 
larger than the number of nodes for most aggregate views; thus, the process must 
be quite linear, resulting therefore in a low quota of edges per node. This is also 
shown by the fact that the relational density is very low. Yet, this picture is 
partially falsified by the limited quality of the model, in which approximately 15 
percent of the nodes are not connected to the model.  

 

Figure 7-5: Metric designator used to relate metrics to datasets; the example here shows the 
attribution of the aggregate view on tasks for the forerun factor 
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From this, a minimal amount of effort for coordination can be deduced, as there is 
a limited number of interfaces; however, the large number of points in time that 
are connected to both documents and activities suggests that there is a high risk 
that these domains are not aligned with each other. Thus, particular regard needs 
to be paid to a well harmonized organization of these points in time with the needs 
of the process and the generation of the deliverable documents.  

At the same time, the high degree of linearity that the low relational densities 
point to suggests that there is more potential for concurrent engineering. However, 
the cascade of consistency in the generation of knowledge about the product 
(reflected in the linearity of the generated documents) suggests a straightforward 
and, therefore, easily understandable procedure to generate the documentation. 

The process model is focused on the activities, as most process models are 
(compare the description of common modeling methodologies, appendix), as 
Table 7-3 shows. The activities are strongly linked to documents and points in 
time; all activities are organized into the different modules, yet not all activities 
produce documents (or, more generally, any deliverables), and not all are bound to 
certain points in time. Here, more focus needs to be put on a better model, in 
particular into integrating the missing edges to generate a meaningful model. The 

Table 7-2: Size and density of process network 

 

Table 7-3: Number of interfaces between domains (native data) 
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one edge that links one module to one point in time appears to be another 
modeling error. Again, the low number of interfaces between the different 
domains points to a possible linear process flow.  

The adjacency of the structure is reflected in the assessment of the metric 
Activity / Passivity, as shown in the portfolios in Figure 7-6 and following. Here, 
the majority of all activities has a low activity or passivity in all cases. This takes 
shape in comparison to the degree distribution (see Figure 7-9), which points to 
very few activities that are highly influential and that are, at the same time, highly 
influenced in relation to neighboring activities. There is one activity (node ID 231) 
that ranks highest in both activity and passivity, while only five other activities 
(node IDs 14, 78, 81, 227, and 247) make up for the highly critical activities, 
while all other entities rank considerably lower (left-hand side of Figure 7-6). 
Thus, these six activities are the core drivers that both coordinate their immediate 
surroundings and that advance the generation of knowledge of the process. 
Therefore, these activities merit particular attention during the planning of the 
process to ensure sufficient resources to lower the risk of generating or 
distributing errors. However, this picture of the overall process is dominated by 
one single process module (right-hand side of Figure 7-6) that introduces all of 
these nodes into the overall process.  

The document structure appears similar when compared to the network of 
activities. Here again most nodes cluster with low values for the activity and 
passivity metric, and only a few outliers appear. Equally, the aggregate views of 
documents via activities and of activities via documents (Figure 7-7) are similar, 
which suggests a good alignment of these two domains. However, each domain 
has a few outliers that need particular attention, e.g., two highly passive 
documents (right-hand side of Figure 7-7) that collect more than 20 inputs. As 
they absorb many possible changes, they are highly error-prone and can possibly 
be seen as intermediate results of the process. 

Figure 7-6: Activity / passivity activities (native) of global process (left) and of a selected 
module (right) 
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The picture for the points in time (related either via activities or via documents) is 
spread evenly; there are a number of points in time that serve as starting points 
(passivity zero) or end points (activity zero) of the process. Those points in time 
that have a high activity also exhibit a high passivity measure; therefore, these 
points in time (IDs 32 and 47, noticeably appearing in both parts of Figure 7-8 in 
the top right corner of the portfolios) are the most important drivers to coordinate 
the process. Reaching these points in time without delays is, therefore, especially 
important for the timeliness of the overall process. By recombining and spreading 
information, however, these points in time are highly susceptible to delays and 
errors, as they need to serve as buffers (i.e., the process only continues if all input 
data is available and can be transferred to all subsequent entities).  

  

Figure 7-7: Activities via documents (left) and documents via tasks (right) 

 

Figure 7-8: Points in time via activities (left) and via documents (right) 
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The degree distribution renders the picture more precise. Figure 7-9 shows the 
distribution of degrees of all activities (via documents) taking shape as a scale-free 
network. Most nodes have a low degree, and only a few are related to more than 
one other node actively and passively (i.e., most nodes only have one incident and 
one outgoing edge). The network therefore has a hub-and-spoke structure and 
depends highly on a few activities that serve as busses (distributors and sinks at 
the same time) which ensure the overall transfer of information. These nodes are 
those that were identified with the activity and passivity metrics. 

As these few nodes coordinate the information exchange, the process is unlikely to 
fail because of random events, e.g., the illness of an engineer, as few activities 
among all activities are of high importance for the overall process. At the same 
time, the process is very susceptible to a targeted attack on these nodes, e.g., if the 
documents relevant to these activities contain errors or if they are deleted on 
purpose.  

Although not shown here, the aggregate view on documents (via activities), for 
example, exhibits similar properties. This is in line with the results shown for the 
similar activity and passivity measures, as illustrated in Figure 7-7. 

The fan criticality examines the activity and passivity of the modules of the 
process. Table 7-4 shows the results of the active and passive fan criticality of the 
activities for the native process network. As can be seen, many modules are 
minimally connected to the overall process. Some modules (4, 5, 7, 8, 9, and 15) 
only serve as input or output for the overall process and, therefore, cannot be part 
of any major iterations. Only three modules have an important input and output 
relation with the overall process (modules 2, 6, and 10), and, therefore are the 
most important for the generation of the process outcome, but also the most likely 
to be delayed or error-prone. At the same time, they necessitate the highest 
amount of coordination. Again, gaps in the data show, as not all inputs (39 in total, 
upper row) are balanced by outputs (42 in total).  

 

Figure 7-9: Degree distribution of activities (via documents) 
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Assessing the attainability of the process serves to clarify whether the above 
analyses, which only regard adjacent nodes, is also true for the mutual impact of 
nodes across the overall network. Figure 7-10 shows two portfolios for the 
number of reachable nodes and the reachability of a node. While the activities 
(via documents) exhibit a certain degree of clustering in the portfolio, the 
documents are spread out more evenly. However, the two portfolios use different 
scales and, therefore, cannot be directly compared.  

In the aggregate view on activities (via documents) a few nodes are easily 
reachable but do not reach any other nodes; these are, therefore, the outcomes of 
the process. Likewise, some nodes only serve as input for the overall process and 
cannot be reached and thus cannot be modified during the process. Here, no 
moving targets are either expected or admitted. There are a few nodes that are 
both highly reachable and that can reach many other nodes (approximately 25 to 
35 each). These activities, again, are central to the information transfer among the 
activities of the overall process, as they depend highly on other input they share 
with subsequent activities (ten nodes of 377 nodes: IDs 26, 78, 80, 85, 87, 88, 91, 
168, 169, and 170). The high impact of node 78 across the overall network 
coincides with its local importance, being among the highest activity and passivity 
measures. All other metrics do not correlate. 

Table 7-4: Fan criticality of activities (native) for all modules of the overall process 

 

Figure 7-10: Activities via documents (left) and documents via activities (right) 
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Measuring the closeness can be done using the proximity metric, as shown in 
Figure 7-11. This proximity puts the attainability of the entities of a process into 
the perspective of the individual engineer. While the reachability only states if 
another entity can be reached at all, proximity assesses the distance of this 
reachability. Here, the measures are normalized to the number of reachable nodes; 
therefore, a node that only reaches a few nodes in its vicinity, but that can do so 
using very short paths, will exhibit a high proximity measure.  

In the figure, only proximities that are not zero are shown for better visualization. 
Eight nodes reach a proximity equaling 1 both actively and passively: IDs 14, 59, 
60, 61, 83, 98, 114, and 125. Node ID 14 also ranks among those nodes that 
exhibit a very high activity and passivity and, therefore, is highly influential in its 
local process module, as it can reach (and be reached by) many other nodes that 
are situated very close to it. Node ID 78, which appeared as an outlier in the 
previous metrics, only exhibits a medium proximity (act. 0.69, pass. 0.73), thus is 
not very centrally located and not as well integrated as suspected. Remarkably, 
there are many documents (aggregated via activities) that show high active 
proximity but very low passive proximity. These documents have immediate 
impact, if changed, on other documents, while depending little on other 
documents. They can, therefore, be considered very robust in terms of changes. 

The relative centrality assesses a combination of reachability and path length 
across each node to establish a measure of how central a node is to a network: The 
more paths that run across a node, the more central it is, if it is simultaneously 
easily attainable throughout the network. Figure 7-12 shows the histogram of 
centrality measures for all activities (via documents) of the overall process. Eleven 
nodes show up as highly central (IDs 20, 92, 114, 125, 156, 171, 191, 216, 221, 
252, and 268). These activities are thus most important for the coherence of and 
communication within the process, serving essentially as a broker for information 
exchange and the formation of opinions. These activities are, therefore, 
particularly at risk for errors, as their failure can seriously hinder the function of 
the process. As a consequence, intensively controlling these tasks is necessary for 

Figure 7-11: Activities via documents (left) and documents via activities (right), both 
normalized 
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a positive outcome of the process. These activities also demand attention during 
process planning. At the same time, there are many activities that are not central to 
the process. These should be closely examined for their actual contribution to the 
process, as they are little connected.  

Hierarchies play an important role in the velocity of propagation of information 
and errors. Thus, they complement the informational value of the attainability of a 
node. In contrast to the measure for the number of reachable nodes, the Snowball 
factor weighs the reachable nodes by their distance: The farther away a node, the 
lower its contribution to the Snowball factor.  

Figure 7-13 shows the Snowball factor for the aggregate view on points in time 
(via activities), and Figure 7-14 regards the aggregate view on points in time (via 
documents). As can be seen, for the aggregation via activities, very few nodes can 

Figure 7-12: Histogram of relative centrality of individual activities (via documents), only 
values >10  

Figure 7-13: Points in time (via activities) 
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be reached; therefore, the process appears relatively robust for a timely execution, 
as only three nodes (of 96) have a Snowball factor that is greater than six (IDs 47, 
56.5, and 32), and twelve further points in time have an average impact on 
subsequent nodes. Thus, if any of these nodes is delayed, it will rapidly spread this 
delay over all subsequent points in time.  

Yet, this picture does not hold true if the points in time are aggregated via the 
documents that are generated as deliverables for the subsequent points in time, as 
Figure 7-14 shows. Here, twelve points in time have a relatively high Snowball 
factor (IDs 25.5, 26, 30.5, 32, 32.5, 37, 37.5, 40, 42, 44, 47, and 51), and two of 
these points in time (IDs 32 and 47) coincide with the aggregate view previously 
shown. These two nodes are thus most likely to guarantee a timely execution of 
the process, as they bear the highest risk of delaying a large part of the subsequent 
points in time.  

The Forerun factor similarly regards hierarchies; however, these are incoming 
hierarchies (i.e., passive ones) while the Snowball factor regards outgoing ones. 
Figure 7-15 shows a histogram of the Forerun factor for all nodes on the aggregate 

Figure 7-14: Points in time (via documents) 

Figure 7-15: Points in time (via activities) 
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view for points in time (via activities). Like the results for the Snowball factor, the 
comparison to the aggregate view on points in time (via documents) yields 
different results.  

While for the aggregation via activities only a few points in time appear to be the 
most important buffers for delays in the previous process (notably IDs 0, 3, 5, 6, 
and 32), the aggregation via documents shows again a number of almost equally 
impacted points in time that are subject to a delay if any previous point in time is 
delayed (IDs 25.5, 26, 32, 32.5, 33, 37, 42, 47, 51, 57.5, 58, and 60). Again, only 
point in time ID 32 shows up in both distributions, which indicates that the 
process planning (i.e., the attribution of points in time to the activities and 
documents) is not well aligned with the actual process, as these results conflict. 
On the other hand, point in time ID 32 appears as structural outliers for both 
incoming and outgoing hierarchies and, therefore, plays a core role in the 
coordination of the planning. It therefore merits particular attention during 
planning to ensure the necessary buffers and to install the required measures of 
process controlling to ensure reaching this point in time according to the schedule.  

An important focus in this case study was to concentrate on iterations that 
appeared unexpectedly in the process. The measures focusing on cycles in the 
structure (number of cycles, number of cycles per node, and number of cycles 
per edge) are both assessed for each process module and for the overall process.  

  

Figure 7-16: Points in time (via documents) 

Table 7-5: Occurrence of cycles in all modules of the process (activities via documents) 
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Table 7-5 shows the cycles within each process module; as can be seen, there are a 
limited number of cycles, and they are of negligible length (two to four, not shown 
here). This is reasonable, as the partial process models explicitly do not model 
iterations.  

However, the process is governed by a large number of cycles. Overall, 2,412,081 
cycles can be identified in the aggregate view on activities (via documents) of the 
overall process. Figure 7-17 shows the number of cycles of different lengths. 
While there are only a few short cycles (similar to the results in Table 7-5), long 
cycles up to a length of 16 can be found. A few nodes and edges are the drivers of 
these cycles; the top five nodes and edges are listed in Table 7-6. As can be seen, 
the nodes are evenly distributed, each being involved in approximately 200,000 
cycles. However, the edge between nodes ID 172 and ID 178 is part of more than 
two thirds of all cycles and, therefore, of particular importance. The document 
generating this edge is thus of highest importance to the process.   

 

Figure 7-17: Activities (via documents) for overall process 

Table 7-6: Occurrence of nodes and edges in cycles of activities (via documents) 
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These cycles are caused by 74 feedbacks (measuring the number of feedbacks). 
Therefore, the process can, in fact, be brought to a highly linear sequence 
establishing six mostly incomplete clusters that each run the main iterations 
locally, each being connected to a few other activities.  

The graph in Figure 7-19 shows the part of the process graph most impacted by 
the cycles. In fact, all cycles appear at the interface of two process modules at 
each time, for example, module 6 on the left-hand side, module 12 on the right-
hand side in Figure 7-19. This clarifies why, within the former process 
organization, iterations were mostly unexpected, as the cycles across the processes 
were not explicitly known. 

Figure 7-18: Section of the activity-activity DSM (via documents) exhibiting 74 feedbacks 
after triangularization 

Figure 7-19: Most occurring edge in all cycles in context of overall process (activities via 
documents) 
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While cycles are most prominent among the activities and documents (not shown 
here), they also occur among the points in time, as Figure 7-20 shows. This 
suggests severe problems in process planning, as subsequent points in time cannot 
precede each other.  

7.1.4 Implications and validation 

Table 7-7 summarizes the core outliers among the activities of the process being 
observed. Even considering the low data quality of the process model for which 
the analysis was conducted, only a few of the 43 activities turned out to be crucial 
for the function of the overall network consisting of 377 activities. These activities 
are to be prioritized during process planning and reengineering.  

As the table shows, the listed activities are of a different character, as already seen 
in the previous section. Only a few appear as structural outliers involving two 
metrics at the same time. These activities (IDs 14, 78, 114, 125, 172, and 244) are 
of particular interest to the process. These core outliers, as well as those outliers 
that showed up during the individual analyses, were reviewed with experts in the 
company, and the results were found to be meaningful and in line with the 
expectations of the analysis. Table 7-8 lists the relevant activities and provides a 
description of what work is conducted at each activity. The activities are ordered 
in the table as they would take place in the process. 

Figure 7-20: Points in time (via documents): There are 66 cycles among the points in time 

Table 7-7: Overview of core outliers among activities  
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As the descriptions illustrate, all activities were identified that are core activities 
of the design of the electronic onboard controllers, including their software. As 
such, IDs 125 and 47 define the core architecture, ID 78 initializes the release 
management used to advance the progress of the software code, IDs 178, 172, 
226, and 231 are concerned with the standard modules of the software (including 
testing), and IDs 32 and 114 document the testing process and prepare the release 
into different configurations of the final vehicle. 

In regards to their degree (activity, passivity), IDs 125, 47, 78, 14, and 32 are 
most relevant. Of course, the initial design of the architecture (IDs 125 and 47) 
both impacts many directly subsequent activities and accesses the knowledge of 
many other activities; therefore, these activities are at the center of an initial hub-
and-spoke-like process structure. During the process, the onboard-bus and its 
communication interfaces are defined. Therefore, if, for example, a signal is 
wrongly placed, it is highly likely that the final controller is not functional. 
Equally, the release-management (initiated during ID 78) is active throughout the 
process, thus accessing many other activities during the process. Also, the 
documentation of different tests (ID 32) collects information from various 
activities, forwarding the results to the relevant engineers. Thus, all of these tasks 
act as synchronization points during the process. Similarly, the archiving of 
verified releases (ID with matching documentation, numbering, and versioning) is 
relevant for all successive tasks and, therefore, shows a high degree, i.e. having 
many connections to other tasks. During this task, software and hardware are also 
checked for compatibility. 

IDs 125, 78, and 114 also exhibit a tight integration into the overall process, as 
they not only impact their direct neighbors but are attainable throughout the 
network. The early definition of the functional architecture (ID 125) sets the 
cornerstone for the subsequent development of the controller. Therefore, it has a 

Table 7-8: Description of activities that showed up during the analysis 
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high proximity to all other activities, as they detail the functions for serial 
production. The release management (ID 78) is not only accessed directly by 
many activities, but its definition is used throughout the process to access, 
assemble, and control the maturity of different parts of the software and the 
overall controller design; therefore, its high values for reachability and number of 
reachable nodes make sense. Lastly, ID 114 indicates a very high centrality. In this 
activity, the developed controller is reviewed for the fulfillment of the required 
functionality, and thus the decision as to whether it has sufficiently matured to be 
embedded in the overall vehicle is finalized. Thus, it brings together all strands of 
the development process and may start an iteration where necessary. As many 
activities rely on archived (and therefore released) software revisions, the 
archiving of software releases also plays a central role. 

Lastly, IDs 172, 244 and 226 appear in most cycles, and IDs 172, 178, 244, and 
231 are part of the most important information transfers in all iterations. The 
review of software maturity (ID 172) focuses on controlling an externally 
developed software code that is generated by a supplier and tested at the car 
manufacturer for the fulfillment of all requirements; therefore, many iteration 
cycles are run between the actual programming and the testing. The same applies 
for the overall testing (ID 226). Additionally, changes in the software that are 
necessary due to findings during testing (ID 231) can necessitate a change in the 
requirements (ID 178); a review of the requirements may be necessary for the 
verification of each test. Finally, ID 244 is the task during which externally 
developed standard software is integrated into those software packages that are 
developed in-house. The compatibility between these different software packages 
is highly relevant for a later integration into the vehicle and, therefore, is an 
essential part of iterations between software suppliers and the software engineers 
at the company.  

The computation of aggregate views of one single domain that is networked via 
other domains has drawn attention to problems in process planning, for example, 
such as different cycles among points in time which, by their nature, need to be in 
a linear sequence and cannot iterate. This implies that the modeling of iterations as 
repeated sequences within each process module is not purposeful, as the process 
still exhibits higher-level iterations. This, however, was originally not expected, as 
the process modeling implies. The reason is that the process, although well-
structured into modules, exhibits iterations across the interfaces between the 
modules, which neither the engineers involved nor the process modelers were 
apparently suspecting.  

7.1.5 Reflection 

As the case study on electronic control unit development shows, the overall 
approach works well. As confirmed by the engineers in the company, the core 
entities of the process and the driving influences were identified precisely. This 
confirms, on the one hand, the value of structural metrics and, on the other hand, 
the identification of core drivers of the process by using the concept of structural 
outliers.  

Apart from the metrics on the size and density of the network structure, 
particularly the metric “degree distribution” (which encompasses, in principle, the 
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activity / passivity and the fan criticality), the centrality, the Snowball and Forerun 
factors, and the cycle-based metrics (especially the number of cycles per node and 
per edge) prove to be a good means of spotting entities that are of relevance for 
the network. Also the structural significance of these metrics could be verified for 
the domains that were reviewed (activities, documents, points in time) using the 
aggregate, rather general relationship types, of the model. Obtaining these results 
confirms the gain that is obtained by using aggregate views for managing the 
multipartite nature of the network.  

The other metrics that were applied (closeness, reachability and number of 
reachable nodes, number of cycles) showed good results, too; however, these did 
not deviate much from the results obtained through the other metrics and, 
therefore, contributed less additional insight. The number of unconnected nodes, 
finally, helped the quality of the model to be judged, but provided little value in 
estimating the process’s behavior. 

Nevertheless, these results indicate that the chosen approach of using structural 
metrics and structural outliers is able to provide viable results with minimal effort 
in a systematic manner. The fact that the derived behavior of the process, as 
identified through the metrics, was confirmed by the company, indicated that the 
research question could be answered for this case study.  

The findings thus confirm the hypotheses initially used in this research: The fact 
that the process consists of interconnected domains is, in fact, clearly visible in the 
entity-relationship diagram that depicts the domains and relationship types (Figure 
7-2). Equally, the identification of structural patterns within this network could be 
shown, and the second hypothesis can, therefore, be considered viable, as well. 
Last, the use of outliers could be demonstrated, although only upper-bound 
outliers were sought. 

7.2 Automotive design process at Audi AG: Analysis of interfaces  

To come full circle, the initial case study is taken up again. As initially explained, 
the process shown in Figure 1-2 (page 12) shows an EPC model of the design of 
the body-in-white of a premium class sedan at Audi AG. This model is now 
further explored in the following. The model is also part of this book and available 
through the Springer website80.  

Audi AG is a major German automotive manufacturer, catering especially for the 
premium segment in nearly all markets. The development process for each car 
development project follows the overall process specifications, consolidated in a 
high level process standard. This process is, for each project, broken down into a 
process and a project plan. The model used here was generated ex-post, i.e. when 
the project in focus was almost finished. The process regards the development 
process of a new mid-size sedan, focusing especially on one derivative from the 
main platform.  

                                                           
80 See http://extras.springer.com/ for the dataset 

http://extras.springer.com/
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The process model was established in the context of a larger project on the 
improvement of communication between design and simulation departments, as 
lined out in section 1-2.  

7.2.1 Goals and focus of the project 

To remain consistent with the goals of the overall project, which was focused on 
the improvement of communication between design and simulation departments, 
the goal “Interfaces” was chosen for the analysis of the process. Table 7-9 lists the 
three questions and the 18 assigned metrics belonging to three domains.  

Before the application of the metrics, each metric was reviewed concerning its 
computability and the relevance of the results. As shown in appendix 10.6, some 
metrics are too complex to calculate for large models, as the computation time of 
available algorithms is often not proportional to the number of nodes. In this 
model, this refers to path-based metrics. As there are many paths possible across 
the overall process, path-based metrics could not be computed for the example; 
therefore, such results are excluded. Similarly, only an estimate of cycles was 
possible due to the high degree of crosslinking in the model, which was calculated 
for a simplified model, from which all entities were removed that clearly do not 
contribute to the core process (i.e., the strategic process planning during the very 
early phases and the final calculus of fatigue and endurance). Lastly, instead of the 
metrics “Synchronization points / distribution points”, the metric “Activity / 

Table 7-9: Questions and assigned metrics for goal "Interfaces” 
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passivity” was chosen, as it similarly processes the degree of an entity in order to 
judge its integration into the network. However, as the process model also 
contains Boolean operators (54 decision points modeled as OR-connectors), the 
“Activity / passivity” is more suitable for analyzing the model. 

Lastly, the domain “IT systems” was also integrated into the analysis, as the 
communication within the process strongly relied on the exchange of models 
between engineering software tools (Computer-Aided Design and Computer-
Aided Engineering tools).  

Before the metrics are detailed, however, the available model is explained. As the 
following section will show, no native datasets were available for the domains in 
question; therefore, different aggregate views were deduced. 

7.2.2 The process model used 

The process chart as initially shown (Figure 1-2, page 12) was build from 
interviews with 68 engineers in all involved departments (see organizational chart, 
Figure 1-4) during approximately four months. Each individual interview was 
modeled, and the model was fed back to the interviewee to verify the partial 
model before its integration into the overall context. The model was discussed 
again in a series of workshops with relevant management. The model thus 
collected and consolidated a considerable amount of knowledge on how to run 
such an engineering design process. 

Figure 7-21 shows its meta-model of available native data for the initial analysis. 
The actual organizational setup (i.e., the reflexive relationship type between 
organizational entities as shown in Figure 1-4) was not integrated into the model, 
as it changed several times during the course of the actual project. As the figure 
shows, the principal process flow is an alternating sequence of tasks and business 
objects. IT systems and organizational units are allocated to the tasks. In the native 
model, these allocations are not directed; for the structural analysis, the undirected 
relationship types were, however, converted into bidirectional relationship types to 
enable the method of “path searching” (see page 124) to create aggregate views.  

Figure 7-21: Entity-relationship model of domains and relationship types in the process 
model 
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Furthermore, the model uses Boolean operators in the principal process flow. 
However, AND operators are not used, but if a task generates two business objects 
at a time, two relationships are simply instantiated. If, however, one or the other 
business objects is created (exclusive decisions are not differentiated, therefore 
ORs also represent possible XORs), an OR-connector is inserted. Decision points 
are exclusively splits or joins; if a split-decision follows a join-decision, two 
successive OR-connectors are used. This occurs only four times in the model. 
Figure 7-22 provides an example from the original process model. 

From this data, a MDM was generated, whose meta-MDM is shown in Figure 
7-23. IDs 1, 8, 15, and 29 are empty, as these actually are the aggregate views that 
are needed for the metrics as chosen for the goal “Interfaces”. All other DMMs 

Figure 7-22: Section of original process model (in German) with two successive Boolean 
operators 

 

Figure 7-23: Meta-MDM of the process model including IDs for all partial matrices 
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that have an ID are native datasets exported from the original process modeling 
tool (ARIS Toolset by IDS Scheer AG).  

Four aggregate views are needed; each view could, theoretically, be computed in 
several ways. However, only those aggregations that mimic the actual process 
execution were chosen; therefore, tasks were aggregated via the intermediate 
business objects. Similarly, business objects were aggregated via the intermediate 
tasks. Organizational units and IT systems each were aggregated via the tasks and 
intermediate business objects.  

To explain the impact of the OR-connectors, the aggregation for tasks is further 
detailed. In the process model, a maximum of two OR connectors occur between 
any set of tasks and business objects. Thus, three different aggregations are 
possible, as shown in Figure 7-24: no OR, one OR, or two ORs between a task and 
a business object, both for the mapping from tasks to business objects and vice 
versa. For the creation of a complete aggregate view for tasks, therefore, 3² cases 
need to be combined to create a network that spans all possible combinations, as 
IDs 1.1a through 1.3a can be combined with IDs 1.1b through 1.3b. Therefore, the 
aggregate view of tasks calculates as shownin Table 7-10. Here, all three 
mappings of tasks to business objects are combined with all three possible 
mappings of business objects to tasks, generating nine intermediate results that 
each are task-task DSMs. The superposition of these nine DSMs then generates 
the complete aggregation, which takes shape as a DSM with ID 1.  

The relationship type is the same for all three cases; although connectors are 
treated as an additional domain, this does not change the relationship type; 
therefore all three cases can be superposed to generate one overall aggregate view, 
as shown in Table 7-10. Ultimately, the superposition of all nine intermediate 
matrices that originate from the computation generate the aggregate task-DSM 
(ID 1), which includes all paths across all OR-connectors. 
  

 

Figure 7-24: Possible aggregations for different constellations of OR connectors 
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This procedure similarly applies to the other possible aggregate views. Business 
objects can be aggregated via intermediate tasks and OR connectors, creating a 
DSM with the ID 8, and organizational units can be aggregated via tasks as ID 29. 
Therefore, for organizational units, the aggregation shown above can be applied 
and extended to create an organizational unit DSM. The same can be done for IT 
systems for the matrix with ID 36. All of these networks are fully coherent for the 
case study, as the model quality of the initial process map is of very good quality. 
Figure 7-25 visualizes the task-network as a strength-based graph. As can be seen, 
most tasks are well integrated into a general body that iterates and does not exhibit 
any clear structure at all, while a few tasks stick out as start- or end-nodes. At the 
very center, the process revolves around task AC 65, which will later be identified 
as one of the core tasks (the coordination of simulating the crash of the vehicle). 

Table 7-10: All possible aggregations for the process model as shown in Figure 7-24 
 

 

 

Figure 7-25: Visualization of activity network (via business objects) 
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Overall, four aggregate views are thus calculated, which are summed up in Table 
7-11. Here, the basic metrics which show the size of each resulting network are 
also given. The domain “organizational units” in particular sticks out. Here, all 
entities are densely networked. 

This dense network poses a large problem for the metrics, as these are designed to 
assess the existence of a relation between two entities. However, in the aggregate 
view “organizational units”, multiple paths between any two entities exist, i.e., the 
resulting graph is a multigraph with up to 80 edges between two nodes. If this 
multigraph is converted into a binary DSM (i.e., redundant edges and reflexive 
relations along the diagonal are removed), 85 edges remain. The problem occurs 
with the other aggregate views, too, but to a much lesser extent. Tasks only exhibit 
three multigraphs of magnitude 3 and thirty-two of magnitude 2. Business objects 
have 119 extra paths if the multigraph is not converted into a binary DSM. Their 
conversion into a binary DSM, therefore, does not change the overall quality of 
the network to a large extent (as a comparison, the largest degree of a node is 32 
for a binary DSM for tasks). Therefore, binary matrices are used that represent 
only the existence of a relationship and neglect multigraphs. Only organizational 
units and IT Systems are significantly impacted by multiple paths; therefore, Table 
7-11 provides both values for the binary DSM and for the multigraphs for these 
two aggregate views.  
  

Table 7-11: Overview of computed aggregate views 
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7.2.3 Analysis and findings 

As Table 7-12 shows, those metrics that detail the goal “Interfaces” were selected 

for this case study. The metric “Proximity” was omitted in the case study, as its 

message is transmitted, in part, by the combination of the reachability and the 
centrality metrics. Furthermore, the cycles could only be estimated, as the large 
and densely connected network was not computable81 by any reasonable effort 
(simulations always crashed after 120 GB temporary files were written). 
Therefore, only the cycles for the aggregate view on tasks were estimated by 
computing the maximum computable cycle length of 11. Equally, the development 
of cycles and the involved nodes and edges for this length confirm with their trend 
the estimate that is used here. Similarly, cycles for artifacts were estimated up to 
length 15.  

Appendix 10.9 (page 398) lists the complete results from the case study regrouped 
into four tables for each aggregate view. Here, only selected results are shown. 
These are regrouped by the three questions suggested by goal G01 “Interfaces.”  

Which entities of the process need to be synchronized? 

Overall, the process exhibits a strong hub-and-spoke-like structure, as the degree 
distribution for tasks shows (Figure 7-26, left-hand side). There are many tasks 
that are minimally connected, while only a few nodes have a high degree of up to 
32. These tasks especially are the main hubs that drive the synchronization. The 
degree correlation chart provides further insight. Here, mostly lower degrees 
correlate, and most are connected to a few nodes of medium degree (10 to 14). 

                                                           
81 See also appendix 10.6 

Table 7-12: Overview of metrics calculated in this case study and assigned domains (all 
aggregate views) 
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Interestingly, there is only one major synchronization point that shows both a high 
incident and an outgoing degree. Task AC 65 (“Coordinate simulation of crash”) 

has 16 incident and 30 outgoing edges. All other tasks that serve as collection or 
distribution points do not have both functions at the same time. Therefore, 
communication at these points can be coordinated with comparably low effort 
(e.g., using checklists for the tasks in question, such as task AC 32 “Release 

cockpit” or AC 66 “Simulate crash”), as they mostly channel communication. 

However, the improvement of the process should be centered on AC 65 in a more 
detailed way, as it impacts many other tasks simultaneously.  

The other metrics confirm the central role of task AC 65. It also shows the highest 
results for the metrics concerning its relative centrality (top outlier), the snowball 
factor and the forerun factor (second-ranking outlier in both), and it is involved in 
most iterations (top outlier). Therefore, it can be deduced that this task transports 
an important part of the core knowledge about the development of the body-in-
white, which is often about safety aspects in case of an accident.  

This is also confirmed by the fact that the simulation of a crash (AC 66) has an 
equally high impact not only in the analysis above as to its degree (it shows up as 
highly passive, collecting 17 different input artifacts into one overall simulation 
model), but also in its snowball factor (top outlier), which indicates that 
throughout the process, the results from this task significantly impact the 
subsequent development. Therefore, when improving this task, subsequent tasks 
and their stakeholders not only need to be integrated (only one task is actually 
directly connected in its wake), but all tasks that rely on the actual results from 
this simulation. In fact, task AC 66 is able to reach 109 different other tasks of all 
160 tasks in the process, thus impacting the process to an important degree. 
Nevertheless, this ranking of reachability is only an average value, as the initial 
tasks of the process are able to reach all tasks in the process. As a standalone-
value, the reachability is, therefore, only of limited expressiveness.  

Furthermore, task AC 43 “Setup simulation model for crash” also shows up with 
the top outlier for the forerun and is significantly involved in iterations (third 
outlier in cycles, most important outlier among cycles per edge, i.e., 

 

Figure 7-26: Degree distribution (left) and correlation (right) for aggregate view on tasks (via 
artifacts) 
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communication channels across which iterations are run). During this task, the 
simulation model for task AC 66 is prepared, collecting many artifacts that are 
generated in the antecedent process. This task, therefore, has the potential to detect 
errors that occurred at an earlier stage and that will show up during the integration 
into an overall model. This integration takes shape in a comparatively low 
snowball factor, i.e., the information is channeled in a single stream and only 
spreads out throughout the process at a later stage.  

Like the number of unconnected nodes, which is zero, the fan criticality is similar 
for all sub-processes present in the process. Therefore, no additional information 
can be deduced from this metric.  

Although not shown here, the aggregate view on artifacts exhibits similar 
properties, which center on the simulation models, especially the crash task, and 
the results from these simulations. The simulation results for the crash task do, in 
fact, exhibit the highest snowball factor and the highest relative centrality; 
however, they show a low value for the number of reachable nodes, indicating 
their importance but the difficulty of accessing the results. Furthermore, important 
documents are the specifications that impact many subsequent tasks, as expected, 
and the technology model that was mentioned in the introduction. This model is 
the central coordination object that collects all changes throughout the process. 
Therefore, next to the crash simulation data, this artifact is among the most 
important for better communication among the departments involved.  

How fast is communication in the process? 

The speed of communication among the tasks was already explained, in part, with 
the previous question that relies equally on the snowball factor and forerun factor. 
In addition, the communication among the departments involved is considered. To 
do so, the aggregate view on organizational units is computed via tasks and 
artifacts, thus assessing the direct information exchange among the departments 
involved. Here, it is not the development department but the simulation 
department, which is responsible for safety applications, that is revealed as the 
most important outlier for its centrality. This indicates that this department is the 
driving force to settle conflicts among components and create the central opinions 
and final concepts of a large part. This is confirmed by the metric snowball factor, 
for which this organizational unit equally scores highest. Therefore, the 
department is well embedded in the process. However, it cannot easily generate 
these results, as the low forerun factor points to a high effort for the collection of 
relevant information. This analysis also holds true for the other two simulation 
departments that are involved, although these two organizational units show lower 
values in all metrics. 

By contrast, the body-in-white department is the classic engineering department, 
producing the sheet metal design of the vehicle’s body. Although not as central to 

the overall process (i.e., a low value for its centrality), this department is much 
better integrated into the process, showing a well-balanced snowball and forerun 
factor; therefore, the efficient transfer of both input and output information is 
much better assured.  
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This picture is somewhat archetypical for such development scenarios, as an 
empirical study found in [HERFELD 2007] shows. While the development of the 
product’s functions is actually run in the simulation departments, the “classic” 

embodiment design engineers are still seen as the driving force in a process, thus 
the process is centered on their work. 

The graph of the aggregate view on organizational units (Figure 7-27) confirms 
this picture. Clearly, the safety application department takes a central role, while 
the departments focused on mechanical component design exist as outsiders.  

What are relevant communication channels? 

The computation of path-based metrics could not be calculated due to 
computational reasons; therefore, the relative centrality was used to deduce 
indications. The original aggregate view on departments, although no metric per 
se, also provides further insight into the communication structure.  

Figure 7-28 shows the computed aggregate view on organizational units, as it 
results from the necessary matrix multiplications. As can be seen, the matrix 
presents a multigraph, i.e., the values in each cell indicate the number of paths 
between each pair of organizational units. Here, for example, the simulation 
department (OU 10) has 38 different communications channels to the body-in-
white design department (OU6); however, when examined the other way around, 
only 16 communication paths exist. This confirms the picture from the previous 
question, stating that collecting information to build simulation models demands a 
high effort, while the dissemination of the results is much easier.  

Figure 7-27: Relations among organizational units via the principal process flow (i.e., via 
tasks and artifacts) 
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Additionally, the interfaces among IT resources82 were examined. The necessary 
interfaces between them were deduced as an aggregate view via tasks and business 
objects. Figure 7-29 shows the multigraph of interfaces that can be computed; 
again, the number in each cell represents the number of paths, thus indicating the 
need for an interface. As can be seen, IT systems RE 4, RE 6, RE 12, RE 16, RE 
22, and RE 27 are of high importance; all except RE 27 (the text editor that is used 
to customize simulation models before they are submitted to being solved) are 
directly related to the transfer of geometry data into the setup of simulation 
models. Here, the need for interfaces can, therefore, be directly deduced.  

                                                           
82 All IT systems mentioned are registered trademarks by the respective companies.  

Figure 7-28: Multiple paths between organizational units (aggregate view as multigraph, via 
tasks and artifacts) 

Figure 7-29: Necessary interfaces among IT systems based on an aggregate view on tasks 
(via artifacts) 
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Converting the matrix from Figure 7-29 into a DSM allows the different metrics 
that elicit the mutual attainability of different IT systems to be computed. For the 
snowball factor, Pam Crash (RE 20), the central tool for crash simulation, scores 
highest, thus supporting the previous analysis that the artifacts related to crash 
simulation are a core element of the efficient collaboration in the process; here, an 
interface to subsequent systems will raise the usability of the crash simulation 
results. The necessary interfaces are, above all, to link to RE 4, RE 16, RE 22, and 
RE 12 (in descending order of importance according to interface matrix, Figure 
7-29). In terms of its forerun factor, Ansa (RE 4) is the most important IT system; 
this tool is used to support the setup of so-called input decks, i.e., the setup of 
simulation models that are then solved using Nastran, for example.  The interface 
to this tool, therefore, supports the collection of information that was identified as 
an important key to better collaboration in the process. As the interface matrix 
illustrates, the tool collects information from many different systems; therefore, 
the import of geometry data is not only needed, but the management of different 
partial models are needed to set up a simulation model (e.g., boundary conditions, 
materials, reference date, etc.). Ultimately, Catia (RE 6) appears as key outlier 
(upper bound) for its relative centrality. This is not surprising, as it is the core tool 
to design the sheet metal body of the body-in-white.   

7.2.4 Implications and validation 

The core findings of this case study point to a limited set of tasks, artifacts, 
organizational units, and IT systems that appear as the most important structural 
outliers. These findings were reviewed with engineers along with a series of 
discussions and workshops, and the results largely coincide with the engineers’ 

intuitive understanding of their work and involvement in the process that was 
reviewed. On the whole, all results were judged meaningful, and the three 
questions that guided the operationalization of the goal “interfaces” were deemed 

correct by all engineers. Initially, it was suggested by the engineers in the 
company that the risk in planning and the consistent transfer of information should 
be considered as further questions; however, the engineers later dismissed these as 
too vague to be answered from the structure, as they rely much more on the actual 
content of the process. 

All entities that were identified in the case study were also designated by the 
engineers independently from the results of the metrics. This confirms the concept 
of the structural metrics and the structural outliers, as well as the scope of the goal 
“interfaces and the related aspects of structural process analysis.” However, the 
order of importance obtained through this case study was judged differently from 
the results of the outliers, which prescribe a certain priorization of the entities. In 
contrast to the structural outliers, the three most important tasks were identified as: 

1. Support development of body structure  

2. Coordinate simulation of crash 

3. Coordinate simulation of passenger safety 
 
All of these tasks also became top upper-bound outliers in this case study; 
however, the order suggested by the engineers deviated slightly. 
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Likewise, as important artifacts, the following three entities were designated in the 
company independently from metrics: 

1. Interior lining concept 

2. Body structure model 

3. Simulation results crash 

Again, these artifacts were identified as top outliers, however, in a different order. 
In discussion, the reasons for this different weighing in industry were that all 
engineers had more background information available on the entities that did not 
show up in the structure, such as the actual informational content of each artifact, 
the cost determination of a particular task, or the criticality of timing of 
information availability. Furthermore, certain political aspects and their own 
involvement in certain tasks caused the engineers to weigh the entities according 
to other standards, not just the structure of the process.  

7.2.5 Reflection 

As already seen with the first case study (see section 7.1.5), the results can be 
judged viable and meaningful, which again confirms the concept of the structural 
metrics, the identification of important entities using structural outliers, and the 
underlying MDM-based modeling.  

The process modeling proved to be very useful in the analysis of the process 
model in EPC notation that already existed. The process model was assembled 
from a dataset that was exported out of the original modeling tool (ARIS Toolset 
by IDS Scheer AG) and completed with further data that was acquired externally. 
In fact, the organizational structure among the different departments was 
originally not part of the model, and neither were the interfaces among the IT 
systems, which were later added as two additional DSMs (not shown in the entity-
relationship diagram in Figure 7-21). These were only used later in the project to 
determine missing interfaces.  

The goal-oriented selection of the metrics, domains, and relationship types proved 
viable, too. Nevertheless, discussions showed that such a S-GQM framework can 
only be of limited prescriptive use, as each project requires different answers and 
therefore different metrics to answer these questions. To this end, the framework 
provided a good starting point for the analysis.  

As useful metrics that provided good insights into the process and good structural 
significance, the combination or reachability / number of reachable nodes and the 
Snowball / Forerun factor proved to be especially useful in judging how an entity 
is embedded in the overall process. Furthermore, the degree distribution, 
encompassing the synchronization / distribution points and the fan criticality, was 
very helpful to assess the individual impact of an entity in its immediate 
environment. These measures seem to be the most useful and offer a good first 
overview if combined with the relative centrality. Also, the number of paths, as 
found through the computation of aggregate views in the hypergraphs, showed the 
tight coupling of certain parts of the process and sufficiently answered the initial 
interest in this process analysis. 
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Unfortunately, the cycle-based metrics could only be estimated due to limitations 
in computing power and appropriate algorithmic support. However, the adapted 
approximation for a lower number of cycles appears reasonable, as computations 
with a simplified network showed. However, this issue needs further exploration.  

7.3 Conclusions from the case studies 

In general, the results of the case studies verify many speculations that could not 
be clarified before within the two companies. To this end, the findings from the 
metrics point to the core drivers of the process, and their individual review points 
to a set of activities that all appear meaningful. This applies to all domains that 
were reviewed during the case studies, even if only examples of the results could 
be shown. Within both case studies, the results were confirmed by engineers in the 
companies as being correct. Therefore, the metrics have proven their 
meaningfulness83. This demonstrates that both the overall concept and the 
individual metrics are viable means of analysis which generate meaningful results. 

Secondly, all metrics that were used have been able to differentiate those entities 
of higher relevance from those of lower relevance. As was discussed in the 
findings of each case study, it can be deduced that the representation is also 
purposeful, and the relevant scales provide a sufficient basis to compare the 
entities within a process. This contributes to the applicability of the hypothesis of 
identifying structural outliers via the scale of the metrics, which prove viable, as 
well. 

Thirdly, the different results of the metrics indicate that the metrics do not 
correlate, as they point to different nodes that, for each metric, appear as most 
important. This makes it possible to conclude that the uniqueness of each metric 
is sufficient to identify different entities with the different structural characteristics 
that each individual metric represents.  

At the same time, it could be seen that the different layers of the overall networks 
exhibit similar properties (e.g., having hub-and-spoke like structures, being linear, 
revolving around a few core entities, having a high potential for more concurrent 
engineering through more intense networking, etc.) but are not well aligned. This 
was demonstrated in both case studies and across the different domains within 
each of them. For example, in the first case study, the fact that only 237 
documents appear as results of the overall 377 activities underscores this fact. 
However, the exclusion of iterations in the process modules relativizes this 
observation, as many activities will, in fact, appear twice or more, although they 
cannot be identified as such. This verifies that processes can be understood as 
network-like structures exhibiting different structural patterns. 
Finally, the use of the overall S-GQM framework could be demonstrated. As the 
case study shows, it provides a good starting point for a first analysis; however, its 
application necessitates detailed reflection to choose metrics, domains, and 
relationship types for a specific problem. It should, therefore, generally be 
understood as a guideline which aids in the planning of a process analysis.

                                                           
83 The metrics are reviewed based on the core requirements of a good measurement 
(meaningfulness, representation, and uniqueness), as discussed in section 2.3.1 (page 76).  



 

8.  Conclusions and outlook 

In this section, the results presented in this book are reviewed, followed by a 
discussion of the strengths and weaknesses of the approach and the implications 
that can be drawn from them for both academic and industrial applications.  

8.1 Summary of results  

This research was run to design a method that supports the purposeful and 
systematic description and analysis of an engineering design process in terms of 
the structure of relations of its entities. The intent of this analysis is to alert a user 
to possible weak spots that merit further attention for potential improvement. To 
achieve this, the research is based on the hypothesis that a process is a network of 
entities and relationships of different types, within whose constellation certain 
meaningful patterns can be identified that can be related to the behavior of the 
process. While these structural characteristics occur throughout the process, 
possible weak spots in a process can be identified by looking at structural outliers, 
representing the most peculiar patterns in a process.  

As a basis of this goal, the review of contributions from system theory, graph-
theory, matrix-based methods for structural complexity management, network 
theory, process management, and software engineering showed that a systematic 
method for a goal-oriented analysis and improvement of engineering design 
process is still missing. Yet, existing methods provide a good basis to construct a 
comprehensive solution based on the needs of process management (i.e., the 
modeling and the goal-orientation), from the management of structures (i.e., 
dependency modeling and complexity metrics), and the structured analysis of 
complex systems (i.e., procedural models and frameworks).  

The solution is based on a goal-oriented analysis procedure that guides the 
complete process of analyzing a structure. It uses three constituents: a modeling 
method for processes, a comprehensive set of structural metrics to assess the 
model, and a framework that provides a goal-oriented selection of the structural 
metrics and the necessary parts of the process that need to be modeled.  

The process is modeled using multiple-domain matrices that were extended to 

(i.e., the different domains and relationship types, attributes, and logic operators). 
The modeling method is supported by a meta-model, the Structural Process 
Architecture, to facilitate the recombination of different existing process models 
as well as to guide the information collection when modeling a process. 

Based on this meta-model, which also provides the semantics of the structure of 
common process models, the existing body of complexity metrics was adapted and 
extended to a comprehensive set of 52 structural metrics, the Structural 
Measurement System. Each metric is based on a detailed theoretical reasoning in 
line with measurement theory; furthermore, most metrics are based on empirical 
evidence. All metrics are completed by a description of their structural 
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significance that supports drawing inferences about the behavior of a process 
subjected to analysis.  

The metrics and modeling of the process are systematized in the general 
framework, the Structural Goal Question Metric framework. This framework is 
guided – on the strategic level – by goals common to process management. Each 
goal is detailed by a set of questions that can be answered using the structural 
metrics and their structural significance. To do so, each question has been 
allocated the relevant structural metrics as well as the necessary semantics, 
represented as domains and relationship types provided by the meta-model. 

The overall approach was demonstrated using three case studies from automotive 
development. All three confirm the applicability of the hypotheses and the 
viability of the approach as well the individual constituents as shown.  

8.2 Reflection 

In this section, a reflection on the strengths and weaknesses is presented first, 
followed by the individual implications that can be drawn for the industrial 
application of the solution presented here and the implications for research. 

8.2.1 Strengths and weaknesses 

The general analysis procedure is designed to complement existing approaches 
for process analysis. Therefore, it is not meant to replace existing methods, which 
it is not able to do. While existing approaches for process analysis focus mostly on 
quantitative models, the approach presented using structural metrics investigates 
qualitative models, i.e., a representation of the structure of a process. Thus, the 
approach presented is not a method to support process planning as such, as it does 
not provide any direct means of planning the interaction of any entities of a 
process. Nevertheless, it is able to provide indications about how the structure of a 
process will impact its behavior and, therefore, helps clarify the structure of the 
process plan.  

The analysis procedure examines all aspects of analyzing a process. Thus, its 
completeness is relevant for the approach to be applicable in an industrial context. 
The goal-orientation, the modeling scheme, the analysis method, and the 
systematic access to the significance of the results obtained during the analysis 
are, therefore, integrated as a whole. 

The actual implementation of the approach in a company was not reviewed in 
detail in this research. However, the case studies show that the approach is viable 
and provides an effective and efficient means of obtaining good results. As it is 
based on commonly accepted approaches for the methodical analysis of a system, 
the approach can, therefore, be considered suitable to fill the gap detailed by the 
initial research question.  

The goal of establishing a Structural Process Architecture as a structural 
process modeling method as the first of three constituents to the overall approach 
is based on the hypothesis that a process consists of multiple layers of a network. 
This hypothesis was verified through the literature review, which showed how 



8.2 Reflection 229 

almost all common process models couple the entities of the model not only 
through the primary flow of information but via other different relationship types, 
e.g., the organizational structure or IT interfaces. The hypothesis was also shown 
to be valid during both case studies, showing that indirect relationships via 
intermediate domains can be condensed meaningfully to provide better insight into 
such complex network structures. 

This Structural Process Architecture was designed using Multiple-domain 
matrices (MDM), and it serves as a semantic basis for the metrics and as 
orientation when assembling different existing process models or modeling a 
process from scratch. The matrix-based modeling is in line with common 
approaches to the management of structural complexity, using existing modeling 
schemes, and adapting and extending them to the needs of process management. It 
is, furthermore, able to represent large systems in a manageable fashion, even 
though the visualization is not intuitive. Nevertheless, large matrices are hard to 
handle, and obtaining results always requires extensive tool support, especially 
spreadsheet software.  

The design of the Structural Measurement System was undertaken to create a 
means of systematically obtaining a comprehensive picture of an engineering 
design process. A metrics-based approach was chosen, as it offers a means of 
condensing the information into a reduced form which can be easily and 
systematically applied to all entities and relationships of a complex system. The 
structural metrics are based on existing metrics taken from comparable 
environments (especially software programs or workflow design), or on structural 
characteristics that so far have not been evaluated numerically but are based on 
previous application in similar systems. In doing so, it was possible to base all 
metrics on existing empirical evidence as to the validity of their application and on 
experience about the extent to which interpretations are possible. The viability of 
the results that were obtained in the two case studies confirms their use and the 
second hypothesis, which states that it is possible to draw inferences about the 
behavior of a system by analyzing its structure. This was also confirmed in the 
literature that was reviewed.  

However, the completeness of the approach was not verified from all possible 
angles. The development of the approach was guided by the identified goals of 
process management as well as by the spectrum of available structural 
characteristics that were collected from different disciplines and matched to the 
domains and properties of processes (such as iterations, workgroups, etc.). 
However, an inverse approach was not taken, i.e., no structural characteristics and 
structural metrics were sought starting from a set of process properties that were to 
be analyzed. 

The structural metrics grant access to the behavior of a process without the 
detailed modeling of the actual behavior by providing an estimate based on 
structural patterns and their significance. This inference, however, has less depth 
than other approaches, such as the simulation of a process, a value stream analysis, 
or path costing. Such methods, although more detailed, provide deeper insight but 
necessitate a significantly higher amount of modeling effort and focus more on 
single issues. The question remains unsolved as to whether it is reasonable to 
expect that enough information can be captured to describe either the structure or 
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the behavior sufficiently “accurately” for analysis. Practical experience indicates 
that it often takes many months even for a small process to be modeled as 
correctly as possible. Still, the degree to which such models are “good” remains 
unknown. Nevertheless, the approach shown here can be used to guide more 
detailed efforts, as the structural metrics make it possible for such undertakings to 
focus on more sophisticated methods only as a second step. 

To do so, the structural metrics are also able to work with models of average 
quality. Of course, any analysis should be based on complete modeling of a 
process. Only if sound data is used, can the results be fully trusted. Yet, process 
models in industry are rarely complete, mostly because it is either too time-
consuming to obtain a complete model or because the procedures that are modeled 
often cannot be turned into one coherent model as there is no single way that 
things are done. For such incomplete data, the approach has proven possible, as 
even for sub-sets of a process relevant results can be found. 

Nevertheless, the use of structural metrics is only suitable for large processes, as a 
certain minimum population of nodes and edges is necessary to obtain results, 
whose outliers can be evaluated with good quality. The design of the structural 
metrics has shown that they are not viable for small models of less than 
approximately 40 entities. However, with larger models, the third hypothesis 
works well, as the case studies have shown, even though only upper-bound 
outliers have been sought and evidence for the other three kinds of structural 
outliers have not been shown. 

Unfortunately, no absolute judgment whether a process is “good” or “bad” can be 

derived from the application of the metrics. However, tendencies are possible, 
although even this is subject to how each company wants to develop or how things 
are done in that company. Therefore, generalizing about each metric’s structural 

significance is limited. Overall, the approach still requires a deep understanding of 
the principles of the metrics to interpret the results correctly, as the structural 
significance of the metrics is significantly impacted by the chosen domains and 
relationship types, and no standardized interpretation is possible. 

Thus, a high risk exists that the metrics can be misleading if applied by an 
unskilled user. As a consequence, the application of the metrics necessitates a 
critical reflection of the application, implementation, and interpretation each time 
the metrics are used. In fact, a small change in the structure can cause major 
changes in the results of the metrics [BIEDERMANN et al. 2009]. This risk of 
misunderstanding the metrics can be accompanied by the risk of manipulation. As 
the outcome can change significantly for even minor changes within the structure, 
a user could adapt the results to his personal advantage. Therefore, several 
“overlapping” metrics should be used at all times to cross-verify the metrics 
among each other. 

Lastly, mathematical inadequacies still exist in the formulation of the structural 
metrics. There is still the inability to work with very densely populated networks 
and multigraphs, as the case studies have demonstrated. Furthermore, the 
computation time for some metrics, especially cycle-based and path-based 
metrics, is still high, and algorithms are still insufficient; yet, there are only 
limited means of estimating the metrics, even though in many cases the 
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computation of a complete solution is not necessary (compare the cycles in case 
study 7.2). 

As the last constituent of the solution, the setup of a Structural Goal Question 
Metric framework to guide a process analysis project is designed to aid the 
selection of appropriate metrics in relation to a chosen goal of process analysis. It 
was implemented using the GQM scheme. However, certain simplifications were 
used. In particular, the formulation of goals, which is an important aspect of the 
original scheme, was not used, as the framework that was designed here is 
designed to have a wider focus of application. However, the framework was 
extended to also guide the interpretation, using the structural metrics allocated to 
the structural metrics, an aspect that is not part of the original GQM scheme.  

The benefit gained from the framework was demonstrated in case study 7.2. 
Although the selection of metrics to be allocated to a goal and its questions is 
difficult and at times fuzzy, the framework serves as a good starting point for any 
analysis. In comparison to the current state of the art, the framework is the most 
complete method in this field of research. 

However, the framework is lacking a generic analysis mode. Often, process 
analysis in industry is done “because there is something wrong”, and a general 

analysis for possible problems is needed. To do so, a basic set of metrics is 
required that is not part of the framework.  

Also, the framework does not provide clear guidance about the use of native and 
aggregate datasets, but only about the necessary domains, whose targeted selection 
remains unsolved. Another level could be introduced to better differentiate the use 
of aggregate views from the use of native data.  

With all these constituents, the research question as laid out in chapter 1 can be 
sufficiently answered. All three hypotheses have proven viable and correct, and 
the requirements have been met. Still, the inadequacies that were discussed in the 
above paragraph prevail, hindering, however, only certain areas of the 
applicability of the method that was developed.  

8.2.2 Implications for industry 

The approach shown changes the paradigm of process improvement to some 
extent, as engineers in any company need to understand that today’s processes are 

not as linear as they used to be and that they are part of a dense network of 
activities. While graph and network theory still are too abstract for many 
individuals to fully understand, the detailed description of different characteristics 
can help individual engineers to better place themselves in these networks. In 
design methodology, this trend has already begun to establish itself [GAUSEMEIER 
et al. 2006]. 

Thus, management and engineers in industry are offered a new approach that 
extends current methodologies for systematically analyzing existing processes for 
possible improvements by looking at the network of relationships across the whole 
process organization.  

The overall approach is oriented to the needs of industrial practice. Despite its 
high degree of abstraction, it allows processes at a pragmatic level to be analyzed 



232 8. Conclusions and outlook 

and indications that can directly support process improvement to be deduced. The 
high degree of abstraction is necessary to analyze a process top down as well as to 
compare the results of different analyses across several processes to strategically 
guide process improvement activities. This enables management to base decisions 
on more than a gut feeling, which is often the primary source of decision in 
industry [GIGERENZER 2007]. To better support such decisions, using structural 
metrics can provide a tool similar to a Balanced Scorecard for process 
improvement activities, as it provides access to the cause-effect relationships in a 
structure (i.e., spotting an outlier using metrics, then looking into the actual 
structure of the process). 

Unlike many existing approaches in process management, the structural metrics 
presented in this research require minimal effort in data acquisition and 
computation for results that point to improvement potentials that – in a second 
step – can be analyzed further. Thus, the approach presented is relevant, as it is 
able to rely on existing process models that are already available in many 
companies. From these models, patterns that govern a process can be extracted, 
and knowledge about the typical behavior of these processes can be uncovered and 
submitted to further analysis as to its implications about how a process is 
commonly run. To this end, it matters little if the process model is not the most 
recent, as engineering design processes vary little from one development project to 
the next if the product architectures remain similar. Typically, the patterns (for 
example, the relevance of certain tasks or the centrality of core product models) 
will prevail for many generations of a product. Therefore, knowledge about the 
importance and impact of core entities of a process are directly transferable.  

In general, a process analysis using the structural measurement system for 
engineering design processes can be applied for various purposes: 

‚ Comparing different processes at a given point in time to prioritize the 
investment of resources into process improvement and rework. For example, 
a process manager might wish to compare a number of processes he is 
responsible for. To determine which of them is the most complex and thus 
bears the highest potential to cause errors, a complexity metric is useful to 
identify the most complex process to start improvement with. 

‚ Tracing changes over time to schedule possible improvements. For example, 
an organizational setup may grow more and more complex over time, as new 
teams are introduced. To trace the degree of complexity, a process engineer 
can employ structural metrics to better estimate the degree of stability and 
suitability of the architecture. The metrics can aid quality assurance and the 
maintenance of such systems. 

‚ Assessing complex process structures at an abstract level to estimate the 
amount of effort. For example, in project planning, a linear timeline is 
desirable to guarantee a smooth process execution. If, however, the tasks are 
interlinked in a way that no ideal sequence can be reached (e.g., as 
triangularization for a DSM would provide), an analysis of the structure can 
support the process planner to judge how much effort might be needed for 
communication during process runtime. 



8.3 Outlook 233 

‚ Identification of improvement potential and of error-prone entities of a 
process organization. For example, if all information is routed through a 
person who is highly central to the process, there is a risk that if this person 
falls ill or changes his or her employer, the process disintegrates.  

‚ Assessment of the human cognitive ability to understand a process. The 
more complex a process becomes, the more complex the interaction with 
such a process, and it is not perceived as transparent. Assessing how easily a 
system can be comprehended (e.g., the flowchart of a process or the various 
states of a product and their mutual dependencies) can serve to design it 
better and to judge how users will interact with it.  

However, structural metrics do need to be handled with care. Only if they are 
well-accepted and if their impact is understood, they can be usefully employed. 
Otherwise, there is a high risk that they will be misleading, as they represent a 
much reduced picture of the process. 

8.2.3 Implications for Research 

While the implications above are true for research as well, the formal modeling 
and evaluation of different characteristics of design processes makes it possible to 
describe in detail what concurrent engineering actually is like. Otherwise 
descriptions often remain vague. In other terms, the presented research helps 
making “patterns” in engineering design processes [WYNN et al. 2007] [EPPINGER 
2001] [BADKE-SCHAUB & GEHRLICHER 2003] become clearer and accessible.  

While there is no “perfect” process, the numerical analysis of processes makes 

comparisons easier. In the long run, using structural metrics makes it possible to 
compare a number of processes for characteristics of “good” and “bad” processes. 

As an intermediate step, the creation of a “footprint” of different kinds of 

engineering processes is definitely within reach, using a pre-defined set of 
structural metrics for a standardized comparison, for example, a process that is 
centered on a few people who are highly knowledgeable, as opposed to a process 
during which a new product development is undertaken and no detailed know-how 
is available. This might occur in different task distributions, their different 
tendencies to rely on iterations, and the changing centrality of staff involved. 
However, such an analysis will also rely on datasets that model processes at a 
comparable level of detail with a comparable modeling scope (e.g., how iterations 
are resolved in the model).  

8.3 Outlook 

Despite the effort invested in this research, some items remain unsolved and 
represent opportunities for future research.  

The formalization of structural metrics was omitted here, in part, to provide a 
comprehensive overview of the existing basis. However, the metrics were only 
described textually, and a formalized description remains to be shown. This also 
includes the completion of the set of necessary algorithms. Using a mathematical 
description, the mutual interdependencies and correlation of the metrics could also 
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be explored, which would contribute to the classification of the metrics and their 
allocation to relevant solution principles as well as the framework. A possible 
long-term vision for this undertaking could be a formal algebra for structural 
analysis that provides a complete set of properties, rules, and operations that can 
be done using structural characteristics.  

To further classify the metrics, an interesting step would be to approach the 
problem tackled in this research by “coming from the other side”. As the approach 
was developed by starting from the available means of structural analysis and 
mapping them to relevant aspects of a process’s behavior, a complete solution can 

only be obtained by classifying all relevant properties and allocating the necessary 
means of analysis for them.  

Next, the use of metrics with logic operators has not been shown, although it has 
been part of this research [GÜRTLER et al. 2009]. However, even the work that has 
been done so far is limited to assessing the degree of an entity. Nevertheless, its 
working principles can be transferred to the attainability within a graph in the 
same way, opening up its transfer to all other structural characteristics as well. At 
the same time, such effort needs to be accompanied by the adaptation of rules for 
interpretation and, more generally, the different structural significance that the 
metrics bear if they do not consider an existing structure but one that could 
become a structure (in the case of OR or XOR operators). 

Furthermore, the methodical management of aggregate views can be extended. In 
this research, only those aspects of creating aggregate views were explored that 
were needed in the given context (path-searching for DSMs). The details of 
creating the other possible aggregate views were not explored. This concerns, in 
particular, the management of interacting with the emerging aggregate relationship 
types that are difficult to handle. To this end, action-based research to formulate 
ontologies which help define suitable, more compact relationship types than the 
one described on page 127 are desirable. Furthermore, a general framework to 
guide the goal-oriented aggregation of different domains is still needed, which 
helps choose relevant inputs for the aggregation under a certain goal and which 
prescribes a domain of reference, the domains to be integrated into the domain of 
reference, its relationship types, and the more compact aggregate relationship 
type. This aggregational framework could be integrated into the GQM scheme to 
close the existing gap in selecting the right dataset for answering a specific 
question.  

The interaction of the approach developed with the product architecture has only 
been touched upon, as it is not the direct focus of this research. The alignment of 
the product architecture and the process architecture has not been regarded in 
more detail, even though an adaptor to the product was created through the 
domain “product attribute” in the meta-MDM.  
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In the appendix, the following topics are detailed: 
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10.2 (pp. 288 - 294) 4.4.3 (p. 114)

Nesting of Boolean operators 10.3 (pp. 295 - 296) 4.4.3 (p. 114)

Structural Process Architecture 10.4 (p. 297) 4.3 (p. 104)

List of structural metrics and 
description of their structural 
significance

10.5 (pp. 298 - 388) 5.2 (p. 143)

Computability of metrics 10.6 (p.390) 5.2.2 (p. 147)

Classification of metrics 10.7 (p. 392) 5.2.4 (p. 157)

S-GQM framework 10.8 (p. 396) 6.2 (p. 179)

Complete results from case study 7.2 10.9 (p. 398) 7.2.3 (p. 218)
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10.1 Structural content of process modeling methodologies 

In this section of the appendix, common process modeling methodologies are 
evaluated concerning their structural content. For this purpose the structural meta-
model for each methodology is shown with its core domains and the relationship 
types linking these domains. 

Process modeling methodology Acronym

Extended Event-driven Process Chains eEPC

Object-oriented Event-driven Process Chains oEPC

Business-Process Modelling (Integrierte Unternehmensmodellierung) IUM

Unified Modeling Language UML

Structured Analysis and Design Technique SADT

Integrated Definition Method IDEF0 / 
IDEF3

Business Process Modeling Notation BPMN

Yet Another Workflow Language YAWL

Signposting

Petri-Nets

Process Module Methodology PMM

Program Evaluation and Review Technique PERT

Objektorientierte Methode für die Geschäftsprozessmodellierung 
und -analyse

OMEGA
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10.1.1 Extended Event-driven Process Chains  

EPC is a semi-formal graphical notation to model workflows and processes at 
several levels of detail. At its core, the behavior of a process is represented 
concerning various economic foci, e.g., process costs or lead time. eEPC extends 
the basic structure of place/transition nets (like Petri nets) to illustrate business 
processes [SCHEER 1999]. With its well-structured representation of a process, 
eEPC is one of the most common modeling standards in German industry. 

EPC supports six basic domains with a wide range of pre-defined relationship 
types. It is possible to extend the basic definitions to suit actual modeling needs. 
The basic notation includes AND, OR, and XOR, which branch off from the 
principal flow in the model. 

The following MDM shows the basic domains and relationship types that are 
employed in eEPC models. In that manner, it is similar to the ARIS House of 
Business Engineering (HOBE), which also includes the control view. The control 
view integrates all actual elements and relations of the process into a control flow. 
As it does not bring in an additional domain, it is not represented in the MDM.  

  

 

OrganizationalUnit

Event

FunctionOutput

Input

Resource

Milestone
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10.1.2 Object-oriented Event-driven Process Chains  

Object-orientated Event-driven Process Chains do not focus on the function as a
central activity but on objects as discrete, distinguishable entities progressing 
through the process [SCHEER et al. 1997]. They integrate the concept of object-
orientation into common process modeling to enable the representation of the 
transition of a business object. Like an object in software, a business object can be 
modeled with its different attributes and methods that are used to process the 
object. As such, the object in oEPC regroups the function view and the data view 
of eEPC into one singe modeling construct. The control flow, i.e., the network of 
relationships, is created by the messages the objects exchange while they progress 
from one event to the next. This means that the messages in oEPC take the place 
of the events in eEPC. The control flow can be split or joined using AND, OR, 
and XOR. The formal bipartite structure of messages and objects can be broken up 
by interrelating objects directly; however, in a formal process model, this is not 
the basic intention of the modeling scheme [SCHEER et al. 1997, p. 9]. 

Object Message Method Attribute 
(object)

Attribute 
(resources)

Object ‚ (has relation) ‚Sends

Message ‚Starts

Method ‚ Is attribute to

Attribute 
(object)

‚ Is attribute to

Attribute 
(resources)

‚ Is attribute to

Object

Message 

Organizational UnitAttribute

Method
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10.1.3 Integrated Business-Process Modeling (IUM) 

Integrated Business-Process Modeling (in German: “Integrierte 

Unternehmensmodellierung”) regards the whole company from the perspective of 

the production process [SPUR et al. 1993] [MERTINS & JOCHEM 1998]. Unlike 
EPC, it does not have an explicit control view, but it models entities out of a basic 
set of objects in any sequence necessary. The entities represent the core objects, as 
shown below. Decisions can be modeled using AND, OR and XOR; however, 
these are not modeled explicitly but by representing the states the process takes in 
one case or the other (i.e., by case distinction). IUM is particularly centered on the 
“Action” as the processing task in a process, and discerns between basic “actions” 

as simple verbal descriptions of a task, “functions” that process inputs to outputs, 
and activities that specify resource and control information. 

Product Action Order Resource

Product ‚ Is part of

‚ Consists of

‚ Is processed 
by

‚ Is processed by ‚ Is processed by

Action ‚ Processes ‚ Leads to ‚ Processes ‚ Processes

Order ‚ Controls ‚ Is part of

‚ Consists of

Resource ‚ Supports ‚ Is part of

‚ Consists of

Action

Product OrderResource

Order (controlling) Resource (supporting)
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10.1.4 Unified Modeling Language 

UML is a set of notations for the design and analysis of object-oriented software 
[RUMBAUGH et al. 2005]. Offering a variety of models, activity diagrams have 
proved to be most suitable for process modeling, as they are one of the central 
behavioral models offered in UML 2.0 specification [ÖSTERREICH et al. 2003, p. 
12] [BULLINGER & SCHREINER 2001]. UML as a highly formalized notation is 
especially useful, as business processes are often modeled to be later embedded 
into an information system, which, in turn, will be specified in UML. Activity 
models allow for the splitting and joining of the process flow; however, they do 
not necessarily represent the logic operators. 

Initial / final node Activity Responsibility

Initial / final node ‚ Starts process 
(initial node)

Activity ‚ Ends process 
(final node)

‚ Transits into

Responsibility ‚ Is responsible for

Responsibility

Activity

End node

yyyxxx
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10.1.5 Structured Analysis and Design Technique (SADT) and IDEF 0 

SADT is a graphical modeling language [MARCA & MCGOWEN 1988] developed 
for use in the integrated computer-aided manufacturing studies of the U. S. 
Airforce in the 1970s. It became the basic model later used in the IDEF0 (see 
following section). As a very basic notation, it allows  modeling the basic entities 
and relations to sketch the algorithm of a software program using the semantics 
shown in the MDM below. Although activities are related directly to one another, 
the relationship between them represents an input/output relationship, which is 
why these inputs and outputs are resolved as a separate domain. Mechanisms 
represent all possible resources like roles or technical equipment [BICHLMAIER

2000]. Logic operators cannot be represented. 

IDEF0 is built on the functional structure of SADT (see section above) and uses 
the same semantics. The SADT MDM is, therefore, applicable for IDEF0 as well. 
Only the modeling syntax (e.g., types of forks) differs slightly from SADT from a 
structural point of view (see next page). 

Control Activity Input / Output Mechanism

Control ‚ Controls

Activity ‚ Serves as 
control for

‚ Has output of

Input / Output ‚ Is input for ‚ Output of… 
is input for…

Mechanism ‚ Supports

Activity

Activity (Output) 

Activity (Input) Activity (Control)

Activity (Mechanism)
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10.1.6 Integrated Definition Method  

IDEF (Integration DEFinition) was developed as a set of definitions and notations 
for various purposes of modeling [KNOWLEDGE BASED SYSTEMS 1992]. The IDEF 
family provides various modeling languages for software engineering; two of 
them are relevant for process modeling, as they are able to model sequences of 
activities and functions. IDEF 0, being similar to SADT, is explained on the 
previous page. 

IDEF3 is designed as an Integrated DEFinition for Process Description Capture 

Method, complementing IDEF0 [BADICA & FOX 2005]. It provides a notation to 
describe process flows by modeling the relationships between actions as well as 
the specific states (“labels”) a process undergoes. As such, it is an object-centered 
approach, whereas the object is part of the transformation that takes place within 
each task (“unit of behavior”), also referred to as an “action box”. In the object-
centered view, units of behavior (although shown differently in the MDM) are 
actually represented as attributes of the edges between the different states. IDEF3 
allows the modeling of logical operators. Besides transitional relationship types, 
constraints can be represented. In addition to units of behavior, these can be 
represented by referents, which basically duplicate a unit of behavior in the model. 

Unit of behavior / 
action box

Label Objects / 
object states

Unit of behavior/
action box

‚ Precedes

‚ (others possible, too)

Label ‚ Relates (object) to 
(object)

Objects/
object states

‚ Uses…in transition ‚ Transits into

Action box

Object State Transition Network DiagramProcess Description Diagram

Unit of behavior

Object / Labelled object
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10.1.7 Business Process Modeling Notation 

The Business Process Modeling Notation is a graphical notation to represent 
workflows and business processes [WHITE & MIERS 2008]. It was, in part, 
designed to allow the link to execution languages to run simulations of a process. 
Its primary focus, however, is an intuitive understanding of complex models.  

For all domains, specific descriptions of the types of elements are available: For 
example, activities can be modeled as tasks, multiple instances of a task, sub 
processes and other constructs. Besides common relationships (sequence and 
message flows), conditions can also be modeled. Pools and lanes are used to 
represent stakeholders or applications that are active during an activity. 
Employing so-called gateways that represent an individual domain, the process 
model can be enhanced using decision logics. As in IDEF3, text annotations can 
also be attached to the relationships (not shown in MDM) [ALLWEYER 2008]. 

Currently, the Business Process Modeling Notation is available as release 1.2; an 
update to 2.0 exists as a proposal. The proposal is intended to extend BPMN to 
include the extraction of specific views onto the process, and to improve the 
exchange of models among different modeling tools and mappings to other 
process modeling schemes.  

Activity Event Gateway Data 
object

Text Pool / Lane

Activity ‚ Precedes

‚ Transmits 
message to

‚ Ends ‚ Precedes

‚ Transmits 
message to

‚ Associate
s with as 
output

Event ‚ Starts ‚ Occurs in

Gateway ‚ Precedes

‚ Transmits 
message to

Data 
object

‚ Associates 
with as input

Text ‚ Annotate ‚ Annotate ‚ Annotate ‚ Annotate ‚ Annotate 

Pool / 
Lane

‚ Executes ‚ Takes 
decision 

‚ Transmits 
message 
to

Event 

xxx Pool

Activity

GatewayData object

Annotation
Text
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10.1.8 Yet Another Workflow Language  

YAWL is a modeling language to represent workflows in a way that can be 
executed in a software system based on Petri nets [VAN DER AALST & TER 

HOFSTEDE 2005]. It is based on a rather simple network of tasks that are arranged 
using workflow patterns and data objects that are exchanged. Decision points 
(AND, OR, XOR) can be modeled using conditions. The modeling method 
strongly relies on the introduction of attributes for further detail and decomposes 
the basic modeling objects, as shown in the MDM.  

Start / end 
node

Task Data Condition

Start / end 
node

‚ Starts process 
with

Task ‚ Ends process 
in

‚ Precedes ‚ Generates… as 
output

‚ Leads to

Data ‚ Is input for

Condition ‚ Is reached by 

Start node

Task (with AND split)

Task

Condition

Data (as input)

Data (as output)
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10.1.9 Signposting 

The signposting approach was primarily developed to capture expert knowledge 
about a process, to use this knowledge to plan and simulate processes, and to 
identify and assess potentials for process improvement. Therefore, the approach 
looks at behavior as a starting point for modeling and then deduces how high level 
processes arise from lower level decisions taken during runtime. At its core, the 
model, therefore, uses tasks that represent the activities during the process. These 
are attributed in particular with their inputs and outputs using parameters, the 
resources they require or consume, and their temporal aspects. Decisions can be 
represented by attributing multiple relationships to a task, where each is related to 
a possible scenario that actually represents the behavior at that decision point 
[CLARKSON & HAMILTON 2000] [WYNN et al. 2006] [WYNN 2007] [WYNN et al. 
2009].  

Task Parameter Resource Process Time / 
Duration 

Task ‚ Creates

‚ Changes

‚ Requires… as 
input 

‚ Results in 

‚ Requires ‚ Has 
duration of

Parameter ‚ Informs

Resource ‚ Is required 
for

‚ Is occupied 
by

‚ Is available at

‚ Is available 
during

‚ Is organized 
in

Process ‚ Provides 
detail for

‚ Encapsules

‚ Encapsules

Time / 
Duration

Task

Parameter 

Process

Resource

(as attribute)

Time / duration

(as attribute)
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10.1.10 Petri-Nets 

Petri nets, also referred to as place/transition nets, are a modeling notation to 
describe discrete systems by modeling the transition of states the process 
undergoes. This is done by representing the process as a bipartite graph that 
changes between places, representing the state at a certain point of time, and 
transitions that represent the activities undertaken during the process. Unlike all 
other process modeling methodologies, Petri nets are based on a sound 
mathematical formalization that allows detailed simulation and analysis 
[PETERSON 1981].  

Transition Place

Transition ‚ Emits token to

Place ‚ Fires via token

Place

Transition

Token
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10.1.11 Process Module Methodology  

The Process Module Methodology decomposes the process into compact, 
integrated modules (“Baustein”, i.e., building blocks) that are the basic entities for 
setting up a part of a process or a whole process to allow flexible planning. It 
permits a comprehensive identification of critical parts of the process. Most 
importantly, one module represents an individual work package that is often of a 
transdiciplinary character [BICHLMAIER & GRUNWALD 1999]. The modules are 
interrelated by the information that is transferred, and the dependencies can be of 
different type (e.g., general information, product data). Furthermore, the modules 
can be attributed with the necessary competences and tools or methods. While 
organizational dependencies can be modeled using the input/output information, 
logics and decisions cannot be represented, as the model does not focus on a 
behavioral view [BICHLMAIER 2000, p. 81].  

Work package Information Document Tool / 
method

Process 
chain

Work 
package

‚ Is input to ‚ Is part of

Information ‚ Is output of

Document ‚ Represents

Tool / method ‚ Supports

‚ Is necessary 
for

Process 
chain

‚ Supports

‚ Is necessary 
for

Work package

Input information

(right hand row)

Output information

(left hand row)

Input documents

(left hand row)

Output documents

(right hand row)

Tools / methods

(as attribute)

Processchain
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10.1.12 Program Evaluation and Review Technique (PERT) 

The Program Evaluation and Review Technique was developed in the late 1950’s 

to plan complex engineering projects, allowing for parallelization where possible 
while admitting to a certain randomness of the process. Therefore, it is based on a 
network of tasks and their interdependencies. These tasks result in events that can 
synchronize multiple relationships in a process. Originally developed as an 
“activity on arc” network (i.e., the edges between events represent the tasks and 
their attributes), it was later converted to an “activity on node” network, for which 
it is most commonly used. Tasks within PERT are commonly used with the 
optimistic and pessimistic time for their execution as well as the most likely time 
to run the task (i.e., a basic probabilistic model is applied to estimate the expected 
time). Using these attributes, the critical path, i.e., the path through the process 
that is most likely to delay the overall process because it has no float, can be 
determined using the Critical Path Method (CPM) [PMI 2003]. However, CPM 
does not use the most likely time but the expected time to determine the critical 
path.  

     
Task Event Time

Task ‚ Results in ‚ Has minimum runtime of

‚ Has maximum runtime of

‚ Has most likely runtime of

Event ‚ Starts 

Time

Event

Task

Activity on arc

t = xxx

Time

Activity on node
Task

Time
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10.1.13   OMEGA 

The OMEGA method (German acronym for “Objektorientierte Methode für die 

Geschäftsprozessmodellierung und -analyse”: Object-oriented method for the 
modeling and analysis of business processes) was developed towards the end of 
the 1990’s to overcome problems with common process modeling methodologies 
like SADT and similar methods: a quick understanding of the model, a systematic 
analysis and a means of synthesis for suggestions for improvement of the process 
is provided by [FAHRWINKEL 1995]  [GAUSEMEIER & FINK 1999]. Besides the 
domains and relationships shown in the MDM below, Omega also supports the 
regrouping of activities into business processes to establish a control flow. This 
control flow can include AND, OR, and XOR. Furthermore, it is possible to 
describe communication relationships by attributing a supporting IT system to the 
edge (unlike what is shown below).  
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10.2 Conversion of a process with logic operators  

As shown in section 4.4.3, five conversions of Boolean operators into matrix-
based notation are possible. In this section, they are presented using an exemplary 
design process for a mechatronic product, as shown in Figure 10-1, taken from 
[BELHE & KUSIAK 1996]. The process is modeled in IDEF3 notation and is set up 
as follows: 

 

1. Prepare product specifications 

2. Preliminary design 

3. Evaluate cost 

4. Thermal analysis 

5. Electrical analysis 

6. Analyze test data 

7. Finalize design details 

 

Figure 10-1: Exemplary design process [BELHE & KUSIAK 1996]  
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10.2.1 Rule 1:  Resolve all logical connections 

Alternative 1: C1= {(2,4), (6,7)}  

Alternative 2: C2= {(2,5), (6,7)}  

Alternative 3: C3= {(2,4), (2,5), (6,7)}  

 

Figure 10-2: Conversion according to rule 1, alternative result 1 

 

Figure 10-3: Conversion according to rule 1, alternative result 2 

 

Figure 10-4: Conversion according to rule 1, alternative result 3 
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Alternative 4: C4= {(2,4), (6,2), (6,7)} 

Alternative 5: C5= {(2,5), (6,2), (6,7)}  

Alternative 6: C6= {(2,4), (2,5), (6,2), (6,7)}  

 

Figure 10-5: Conversion according to rule 1, alternative result 4 

 

Figure 10-6: Conversion according to rule 1, alternative result 5 

 

Figure 10-7: Conversion according to rule 1, alternative result 6 
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10.2.2 Rule 2: Neglect the operators 

Figure 10-9 shows the conversion: First, the new edges are added (dashed lines), 
then the nodes originating from logic operators are removed as well as all adjacent 
edges thereof (nodes 8-10 and adjacent edges). 

 

Figure 10-8: Conversion according to rule 2 (two possible cases) 

 

Figure 10-9: Conversion according to rule 2: exemplary process graph 
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Precedent and subsequent 

nodes of operators
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vBool and adjacent

nodes are removed
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Figure 10-10: Matrix B as resulting description of rule 2 (lower right) with intermediate 
matrices from algorithm 

Matrix A Matrix A*

Matrix B** Matrix A** Matrix B
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10.2.3 Rule 3:  Translate operators into probabilities 

There are no probabilities given in the example of [BELHE & KUSIAK 1996]; 
therefore, the following values are used to illustrate rule 3:  

OR-connector:  p=0.8 for each outdoing edge (i.e., it is possible that both 
edges eventuate) 

XOR-connector: p=0.5 for each outgoing edge  

AND-connector: p=1 for each outgoing edge 

10.2.4 Rule 4: Logic operators as additional entities 

Nodes 1098 ,, vvv  represent the logic operators that were converted into regular 

nodes. 

 

Figure 10-11: Conversion according to rule 3 

Figure 10-12: Conversion according to rule 4 



294 10. Appendix 

10.2.5 Rule 5: Logic operators as additional entities with their 
characteristics 

 
  

 

Figure 10-13: Multiple-Domain Matrix according to rule 5 
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10.3 Nesting of Boolean operators  

While the example in Figure 10-14 does not use the weights but shows how a 
successive operator following a split is integrated into its predecessor, the example 
in Figure 10-15 shows how weights are used for a more complex setting of nested 
Boolean operators.  

Table 10-1 lists the weights of each connector and the activity and passivity of the 
tasks in the example. For example, the activity of task 1 calculates as 2.16, as 
starting from the farthest reachable node, c_4 calculates as 1.33. Connector c_3 

 

Figure 10-14: Direct calculation of nested operators (not using weights) 

 

Figure 10-15: Weights of connectors to calculate the activity and passivity of the involved 
tasks 
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then combines with 1.33 and an additional edge as an AND-split to a value of 
2.33. This value is then inputted to calculate c_3, also using the weight of c_5, 
which calculates as 2. The XOR combines thus one outgoing edge weighted as 
2.33 and one as 2; assuming the equal structural relevance, the weight of c_2 thus 
calculates as 2.16. As no previous splits exist, this value is the activity of task 1.  

task activity passivity connector weight

task 1 2.16 0 c_1 -2.16

task 2 2.16 0 c_2 2.16

task 3 0 1.33 c_3 2.33

task 4 0 1.33 c_4 1.33

task 5 0 1.33 c_5 2

task 6 0 1.33 c_6 1

task 7 0 1.33

task 8 0 1.33

Table 10-1: Weights, activities and passivities of all entities in the example from Figure 10-15
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10.4 The complete Structural Process Architecture 
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10.5 List of structural metrics  

Each metric as listed in 

Table 10-2 is detailed in the following section. The description is completed by the 
list of possible structural significance for the domains and principal relationship 
types as provided by the Structural Process Architecture. This significance is 
intended to facilitate the interpretation of the results of each metric. It does not 
indicate the only possibilities of interpretation and is not intended as a complete 
checklist of possible meanings. 

Table 10-2: Available metrics for structural analysis (as compiled in this research)

Size and density Hierarchies

Number of domains Height of hierarchy

Number of nodes Width of hierarchy

Number of edges Tree criticality

Number of classes Snowball factor

Number of interfaces between domains Forerun factor

Number of edges per node Tree-robustness

Relational density Maximum nesting depth

Number of unconnected nodes Clustering

Adjacency Number of cliques

Activity / Passivity Cluster-coefficient (local)

Degree correlation (nodes) Cluster-coefficient (global)

Degree correlation (edges) Module quality 1 (flow of information)

Degree distribution Module quality 2 (compactness)

Fan criticality Cycles

Synchronization points / distribution 
points

Number of cycles

Number of independent sets number of cycles per node 

Attainability Number of cycles per edge

Number of reachable nodes Number of feedbacks

Reachability of a node Activation of cycle

Closeness Number of starting points for iterations

Proximity Iterative oscillation

Relative centrality (based on between-
ness)

Several domains

Connectivity Bipartite density

Node connectivity Number of organizational interfaces

Edge connectivity Cognition

Paths Cognitive weight

Number of paths Degree of non-planarity

Path length Boolean Operators

Weight of an edge McCabe Cyclomatic Number

Centrality of path (based on centrality) Control-Flow Complexity

Centrality of path (based on degree) Log-based Complexity

Degree of progressive oscillation
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10.5.1 Number of domains 

Definition 

‚ Number of different domains within the network  

 

Structural significance  

‚ Evaluation of the multi-factedness of the network 

‚ Number of possible views and stakeholders in a process  

 

Representation 

‚ Metric for each process  

 

Literature 

[GRUHN & LAUE 2006b] 

 

Domain 1:

e.g., activities

Domain 2:

e.g., IT resources

Domain 3:

e.g., organizational units

Domain 4:

e.g., artifacts

Process 1

Process 2

…

Process

4

…

Number of  domains
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10.5.2 Number of nodes 

Definition 

‚ Number of nodes per domain 

‚ Can be detailed to count start- and end-nodes explicitly (2 start-nodes and 2 
end-nodes are found in the example) 

Structural significance  

‚ Size of the network 

‚ Assessment basis to put other metrics into perspective 

 

Representation 

‚ Metric per domain 

 

Literature 

[AZUMA & MOLE 1994], [BROWNING 2002], [GRUHN & LAUE 2006b] 

 

 

Domain 1:

6 nodes Domain  1

Domain  2

Domain  3

…

6 

…

Domain Number of  nodes 

per domain
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10.5.3 Number of edges 

Definition 

‚ Number of edges within a single domain  

‚ Differentiation of directed and undirected edges possible 

 

Structural significance  

‚ Determination of the level of interaction within a domain  

‚ Estimation of the number of interfaces and communication activity 

 

Representation 

‚ Metric per domain 

 

Literature 

[BROWNING 2001b]  
  

 

Domain 1:

8 edges Domain  1

Domain  2

Domain  3

…

8 

…

Domain Number of  edges

per domain
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Structural significance 

Number of domains Number of nodes Number of edges

Task ‚ Level of 
decomposition within 
tasks (e.g., tasks, 
work packages)

‚ Number of tasks in 
process (number of 
instances)

‚ Extent of network of 
tasks

‚ Number of interfaces 
among tasks

Artifact ‚ Level of 
decomposition within 
artifacts (e.g., 
documents, files)

‚ Number of artifacts in 
process (number of 
instances)

‚ Extent of network of 
artifacts

‚ Number of interfaces 
among artifacts

Org. unit ‚ Level of 
decomposition within 
organization units 
(e.g., division, teams)

‚ Number of 
organizational units 
in process (number 
of instances)

‚ Extent of network of 
organizational units

‚ Number of interfaces 
among organizational 
units

Time ‚ Level of 
decomposition within 
time (e.g., phases, 
milestones)

‚ Number of points in 
time during process 
(number of 
instances)

‚ Extent of network of 
points in time

‚ Number of interfaces 
among points in time

Event ‚ Level of 
decomposition within 
events (e.g. states, 
messages)

‚ Number of events in
process (number of 
instances)

‚ Extent of network of 
events

‚ Number of interfaces 
among events

Resource ‚ Level of 
decomposition within 
resources (e.g., IT 
system, machine)

‚ Number of resources 
in process (number 
of instances)

‚ Extent of network of 
resources

‚ Number of interfaces 
among resources
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10.5.4 Number of classes 

Definition 

‚ Number of unique nodes per domain, (i.e., number of nodes that do not 
bear the same name, as opposed to total number of nodes) 

 

Structural significance  

‚ Evaluation of the diversity of the network 

‚ Relativization of node count when using object-oriented models (i.e., when 
nodes are instantiated several times) 

 

Representation 

‚ Metric per domain  

 

Literature 

[GRUHN & LAUE 2006b], [HENRY et al. 1981] 

 

 

 

In this domain:

4 classes

2 identical nodes

(i.e., 2 instances)

Domain  1

Domain  2

Domain  3

…

4

…

Domain Number of  classes
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10.5.5 Number of interfaces between domains 

Definition 

‚ Number of edges between each pair of domains  

‚ Differentiation of directed and undirected edges possible 

 

Structural significance  

‚ Determination of the level of interaction between each pair of domains  

‚ Evaluation of the size of the interface between two domains 

 

Representation 

‚ Metric for each pair of domains 

 

Literature 

[BROWNING 2002]  
  

 

Domain 1

Domain 2

Domain 3

Domain 4

4 edges across 

the boundary of  

domain 3 and 

domain 4

4

0 2

1 2 0

Number of  edges
Domain 4

Domain 3

Domain 2

Domain 1
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Structural significance 

Number of classes
Number of interfaces between 
domains

Task ‚ Number of unique tasks in 
process

‚ Extent of interfaces of tasks to 
another domain (e.g., to 
resources that support the tasks)

‚ Number of interfaces to another 
domain

Artifact ‚ Number of unique artifacts in 
process

‚ Extent of interfaces of artifacts 
to another domain (e.g., to 
resources that process the 
artifacts)

‚ Number of interfaces to another 
domain

Org. unit ‚ Number of unique organizational 
units in process

‚ Extent of interfaces of 
organizational units to another 
domain (e.g., to tasks  that the 
organizational units are
responsible for)

‚ Number of interfaces to another 
domain

Time ‚ Number of unique points in time 
during process

‚ Extent of interfaces of points in
time to another domain (e.g., to 
tasks that are finished at the 
points in time)

‚ Number of interfaces to another 
domain

Event ‚ Number of unique events in 
process

‚ Extent of interfaces of events to 
another domain (e.g., to tasks 
that produce an event)

‚ Number of interfaces to another 
domain

Resource ‚ Number of unique resources in 
process

‚ Extent of interfaces of resources
to another domain (e.g., to tasks 
that are supported by a resource)

‚ Number of interfaces to another 
domain
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10.5.6 Number of edges per node 

Definition 

‚ Quotient of the number of edges and the number of nodes 

‚ For each domain; also possible for the complete process 

 

Structural significance  

‚ Evaluation of the density of networking within the process 

‚ Description of the level of cross-linking within the network 

 

Representation 

‚ Metric per domain 

 

Literature 

[BROWNING 2002] 

 

 

6 nodes

7 edges Domain  1

Domain  2

Domain  3

…

1.1667

…

Domain Number of  edges 

per node
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10.5.7 Relational density 

Definition 

‚ Quotient of the number of edges in a domain and the number of possible 
edges 

‚ For each domain; also possible for the complete process 

 

Structural significance  

‚ Evaluation of the density and intensity of networking in the process 

‚ Intensity of cross-linking 

 

Representation 

‚ Metric per domain  

 

Literature 

[VANDERFEESTEN et al. 2007], [MENDLING 2008] 

 
  

 

4 existing edges out of

12 possible edges 

(directed case, possible 

other edges dashed)

Domain  1

Domain  2

Domain  3

…

0.333

…

Domain Relational density
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Structural significance 

Number of edges per node Relational density

Task ‚ Mean degree of dependency of 
one task on another task

‚ Degree of proximity of task 
network to an ideal sequence 
(smaller numbers)

‚ Extent to which the potential 
for networking is exhausted

‚ Degree to which Concurrent 
Engineering is implemented

‚ Mean degree to which the 
process can be decomposed 
into meaningful modules to 
raise transparency

Artifact ‚ Mean degree of dependency of 
one artifact on another artifact

‚ Degree of proximity of artifact 
network to an ideal lifecycle of 
growing maturity (smaller 
numbers)

‚ Extent of clear arrangement 
of artifacts

‚ Degree of comprehensibility 
of relations among artifacts

‚ Degree to which Concurrent 
Engineering is reflected by 
harmonized documents

Org. unit ‚ Mean degree of dependency of 
one organizational unit on 
another organizational unit

‚ Density of social network

‚ Extent to which the potential 
for a social network is 
exhausted

‚ Degree of lone fighting in 
the process

‚ Estimation of potential for 
process improvement through 
social and organizational 
measures

Time ‚ Mean degree of dependency of 
one point in time on another 
point in time

‚ Proximity to ideal sequence

‚ Degree of linearity of the 
process

‚ Extent to which the potential 
for synchronization of points 
in time is exhausted 

Event ‚ Mean degree of dependency of 
one event on another event

‚ Estimation of effort necessary 
for transferring the process to 
an idea sequence 

‚ Degree of linearity of the 
process

‚ Extent to which the potential 
for synchronization of events
is exhausted

Resource ‚ Mean number of interfaces 
between two resources

‚ Mean degree of consistency of 
transfer of artifacts among 
resources

‚ Extent to which isolated 
resources dominate the 
process

‚ Estimation of potential for 
implementing better interfaces 
between resources
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10.5.8 Number of unconnected nodes 

Definition 

‚ Number of nodes which are not connected to the graph  

 

Structural significance  

‚ Number of independent entities 

‚ Identification of possible modeling errors 

 

Representation 

‚ Number of unconnected nodes per domain  

 

Literature 

[MAURER 2007, p. 209]  
  

 

Unconnected nodes

Domain 1

Domain 2

Domain 3

…

2 

…

Domain Number of un-

connected elements
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Structural significance 

Number of unconnected nodes

Task ‚ Independent node (task, artifact)

‚ Missing relationship in process

‚ Missing relationship in model

‚ Wrong level of detail of model

‚ Wrong system border (node is not part of model)

Artifact

Org. unit

Time

Event

Resource
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10.5.9 Activity / Passivity 

Definition 

‚ Number of outgoing edges (= activity) or number of incident edges 
(= passivity) 

‚ Also applicable for logic operators (see section 4.4.3) 

 

Structural significance  

‚ Intensity of changes that a node exerts on or receives from its immediate 
neighbors 

‚ Quick identification of nodes that are highly relevant for the process 

‚ Degree of homogeneity of network 

‚ Importance of node for local process (immediate environment) 

 

Representation 

‚ Portfolio containing all existing nodes 

 

Literature 

[LINDEMANN 2007, p. 256], [DAENZER & HUBER 2002]  
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Structural significance 

Activity / passivity

Task ‚ Degree of influence exercised /received by a task

‚ Degree of importance of a task in its immediate environment / 

degree of independence of a task from its immediate environment

‚ Extent of effort to coordinate with neighboring tasks (degree of 

communication)

‚ Risk to distribute / be impacted by errors

‚ Importance of decision point (only for logic operators)

Artifact ‚ Degree of change impact of / on an artifact (number of changes 

absorbed / sent)

‚ Degree of (in)dependence on other artifacts: Identification of 

possible partial results that can be generated independently

‚ Impact of artifacts for individual decision points (only for logic 

operators)

Org. unit ‚ Degree of direct control and authority / of dependency on 

superiors

‚ Extent of direct integration of an organizational unit into the 

process organization

Time ‚ Degree of control of individual points in time / degree of 

dependency on other points in time

‚ Degree to which a point in time serves as a synchronization point / 

as a buffer for delays 

‚ Impact of points in time on decision points in the process (only for 

logic operators)

Event ‚ Degree of direct impact of one event on the next immediate 

event(s) / of dependency on the previous immediate event(s)

‚ Degree of control over the quality of one event 

‚ Risk of distributing errors at one event

‚ Impact of events on decision points in the process (only for logic 

operators)

Resource ‚ Importance of single resources for neighboring resources

‚ Potential for consistency that is possible with a resource

‚ Degree of openness of a resource for flexible use in the process
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10.5.10   Degree correlation (nodes) 

Definition 

‚ Occurrence of a correlation of the degrees of incident and outgoing edges 
for all nodes (i.e., occurrence of each possible pair of activity and 
passivity) 

 

Structural significance  

‚ Degree to which a node impacts (or is impacted by) the process 

‚ Tendency to which the process relies on individual nodes to coordinate the 
overall structure 

 

Representation 

‚ Plot of the occurrence of each pair of activity and passivity  

 

Literature 

[AHN et al. 2007], [NIKOLOSKI et al. 2005] 
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Structural significance 

Degree correlation (nodes)

Task ‚ Degree of the possibility that tasks are more interdependent than 

they appear to be explicitly (because of indirect relationships, 

weak relationships, or missing relationships in the model)

‚ Degree to which the overall process is laced by critical tasks that 

ensure the overall connectivity of the process

‚ Level of risk of distribution of errors of the overall process

Artifact ‚ Degree of the possibility that artifacts are not consistent among 

themselves because of relationships that were not respected 

(indirect relationships, weak relationships, or missing relationships 

in the model)

‚ Degree to which the overall process is dependent on artifacts that 

serve as communication hubs

Org. unit ‚ Degree to which the potential for networking among organizational 

units is capitalized (measure for possible social relationships that 

are not modeled)

‚ Level of the risk that the process depends on a few central 

organizational units

Time ‚ Degree of possible delays from unexpected reasons (because of 

indirect relationships, weak relationships, or missing relationships 

in the model)

‚ Level of the risk that the process depends on a few critical points 

in time that, if delayed, delay the overall process noticeably

Event ‚ Degree to which an event is possibly more dependent on other 

events than expected (because of indirect relationships, weak 

relationships, or missing relationships in the model)

‚ Degree of controllability of the overall process by only a few 

selected states

Resource ‚ Measure for the possible need of more direct interfaces among 

resources

‚ Level of the risk that consistent information transfer between the 

resources is focused on few interfaces
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10.5.11   Degree correlation (edges) 

 

Definition 

‚ Occurrence of a correlation of the degrees of incident and outgoing edges 
for each edge (i.e., occurrence of each possible pair of activity and 
passivity ordered to each individual edge, classified by incident and 
outgoing edges) 

 

Structural significance  

‚ Degree to which an edge impacts (or is impacted by) the network 

‚ Degree of the process to be dependent on individual paths or on a 
networked structure 

‚ Tendency of how the transmission of information is handled (integration or 
distribution) 

‚ Identification of nodes that play a central role in integrating or distributing 
information 

‚ Determination of critical edges that rely on other edges to be fully 
operational 

 

Representation 

‚ Plot of the occurrence of each pair of activity and passivity for the sixteen 
possible cases of correlations  
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Structural significance 

Degree correlation (edges)

Task ‚ Degree of the importance of a single interface (as transition 

between two tasks) for the overall process

‚ Measure for the tendency of the process to rely on single or on 

combined information transfer

Artifact ‚ Degree to which the overall process relies on the networking 

among individual artifacts

‚ Measure for the tendency of spreading documents in a central 

homogeneous manner

Org. unit ‚ Degree of the social network to be spread out as a chain or a 

homogeneous network

Time ‚ Measure for the degree of linearity of the process with few 

kickbacks

Event ‚ Measure for the homogeneity of progress in the process across a 

line of states or across many states simultaneously

Resource ‚ Degree of risk that individual interfaces rely on the transfer across 

other interfaces, which can interrupt the overall process if disrupted
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10.5.12   Degree distribution 

Definition  

‚ Distribution of number of nodes with identical activity or passivity 

 

Structural significance  

‚ Homogeneity of the process  

‚ Sensitivity of network to the malfunction or drop-out of individual nodes 

‚ Identification of critical nodes that can cause a failure of the overall process 

‚ Identification of hubs in the process 

‚ Identification of nodes that are little integrated and possibly of little 
importance 

 

Representation 

‚ Plot of number of nodes with identical activity or with identical passivity 

 

Literature 

[ALBERT & BARABASI 2002] 
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Structural significance 

Degree distribution

Task ‚ Degree of randomness in process (the more the degrees are 

distributed as an exponential function, the more the process is not 

random)

‚ Degree for the extent of failure of tasks that is necessary for overall 

process to fail (i.e., fall apart or be seriously hindered in its 

connectivity)

o Measure for the risk of success of a deliberate attack against 

central tasks (e.g., sabotage) to cause the overall network to fail 

o Measure for the risk that random failures of tasks (e.g., by 

producing errors) do not corrupt the overall network

‚ Degree to which the process is controlled by central tasks (i.e., 

all tasks can be reached across a very short path)

Artifact ‚ Degree of randomness of the consistency among documents 

‚ Degree of risk caused by wrong or faulty documents

‚ Degree of risk caused by data loss or by the loss of knowledge

Org. unit ‚ Degree of organization in the social network

‚ Degree to which the process depends on core organizational units 

that need to be particularly protected

Time ‚ Tendency of the process to rely on (few) critical points in time that 

control the process

‚ Level of the risk that the overall process is delayed if single points 

in time are not reached in time

‚ Degree to which the process is laced with bottlenecks

Event ‚ Degree of organized progress of the process

‚ Level of risk of the overall process to depend on (few) critical 

events that control the process

‚ Degree for the controllability of the overall process using few events

Resource ‚ Degree of homogeneity of the interfaces in the resource system

‚ Degree of dependency of the overall process on (few) critical 

resources

‚ Level of risk of the overall process to fail if single resources fail
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10.5.13   Fan criticality 

Definition  

‚ Activity (= Fan-Out) / passivity (= Fan-In) for a module (number of 
outgoing or incident edges for a module) 

‚ Also possible for logic operators 

 

Structural significance  

‚ Similar to the metric “activity / passivity” but for modules 

‚ Only sensible for the evaluation of existing modules (= pre-defined groups 
of elements) 

‚ Comparison of modules concerning their susceptibility to changes and/or 
their impact on the overall network 

 

Representation 

‚ Portfolio of Fan-In and Fan-Out containing all modules 

 

Literature 

[GRUHN & LAUE 2006b] , [DAENZER & HUBER 2002] 
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Structural significance

Fan criticality

Task ‚ Degree of influence of a module (i.e., a defined set of tasks) on its 

immediate environment (active fan criticality)

‚ Degree of influence from the immediate environment on a module

‚ Level of risk of possible errors generated in a module

‚ Extent of interaction necessary with immediate environment 

(communication) 

Artifact ‚ Degree of impact of changes made to a (pre-defined) set of 

artifacts on their immediate surroundings

‚ Degree of dependence of  a set of artifacts on their immediate 

surroundings

‚ Level to which a set of artifacts can be generated independently 

from the process

Org. unit ‚ Number of communication channels available to a body of 

organizational units (e.g., a department) to send (active) or receive 

(passive) information

‚ Degree to which a body of organizational units is embedded into 

the process via its immediate environment

Time ‚ Level of independence of a set of points in time (e.g., a phase) 

from the overall schedule

‚ Degree of influence of a set of points in time to the schedule 

(active fan criticality)

‚ Degree to which a set of points in time serves as a buffer 

(passive fan criticality)

Event ‚ Level of integration of a set of events into the overall process

‚ Degree of independence for reaching a set of events from the 

overall process

‚ Level of influence of a set of events on the overall process

Resource ‚ Degree of openness of an encapsulated family of resources 

(e.g., a group of IT systems) to the overall process

‚ Level of risk of an encapsulated family of resources to be a 

bottleneck

‚ Level of decoupling of an encapsulated family of resources from 

the overall process
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10.5.14   Synchronization points / distribution points 

Definition  

‚ Number of AND-joins (merging busses) as synchronization points 
concerning the flow of information 

‚ Number of AND-splits (distributing busses) concerning the flow of 
information 

‚ Only nodes with many more incident than outgoing edges are regarded (for 
synch. points, outgoing edges for distribution points) 

‚ Also possible for logic operators 

 

Structural significance  

‚ Identification of critical coordination points  

 

Representation 

‚ Pareto distribution of incoming or outgoing edges for relevant nodes (with 
“high” degree) 

 

Literature 

[GRUHN & LAUE 2006b] 
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Structural significance 

Compare also the interpretation guideline for Activity (Synchronization points) / 
Passivity (Distribution points) 

Synchronization points Distribution points

Task ‚ Degree to which a task serves 

as a buffer within the overall 

process by collecting inputs 

before continuing

‚ Degree to which a task 

possibly causes delays within 

the overall process by 

withholding outputs that are 

necessary for other tasks to 

continue

Artifact ‚ Degree to which an artifact 

serves as a buffer within the 

overall process by collecting 

inputs before continuing

‚ Degree to which an artifact 

possibly causes delays within 

the overall process by being 

the backbone, from which 

other artifacts are generated

Org. unit ‚ Degree to which an 

organizational unit serves as 

an information sink within the 

overall process by collecting 

information and know-how 

‚ Degree to which an 

organizational unit possibly 

controls the overall social net 

through spreading or 

withholding information

Time ‚ Degree to which a point in time 

serves as a buffer within the 

overall process by depending 

on other points in time

‚ Degree to which a point in 

time possibly causes delays 

within the overall process by 

allowing other points in time 

to be reached only after one 

point has been visited.

Event ‚ Degree to which an event 

serves as a buffer within the 

overall process by waiting for 

other events before continuing

‚ Degree to which an event 

possibly causes delays within 

the overall process by 

obstructing other events from 

being reached

Resource ‚ Degree to which a resource 

serves as an information sink 

within the overall process by 

integrating inputs

‚ Degree to which a resource 

possibly is a bottleneck within 

the overall process, through 

which many other nodes 

need to pass
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10.5.15   Number of independent sets 

 

Definition  

‚ Number of bands in a banded DSM 

 

Structural significance  

‚ Groups of nodes that can be executed independently of each other 

‚ Possibility of parallelization of process for each bands  

 

Representation 

‚ Metric per domain 

 

Literature 

[MAURER 2007, p. 226], [YASSINE  2004], [BROWNING 2001] 
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Structural significance 

Number of independent sets

Task ‚ Potential for parallelization and concurrent engineering

‚ Degree to which a process necessitates synchronization

Artifact ‚ Degree to which the artifacts are interdependent

Org. unit ‚ Potential to generate teams that operate independently towards a 

common goal 

Time ‚ Indicator of the creation of phases 

Event ‚ Robustness of the state of the process 

Resource ‚ Potential to integrate resources into a common workflow that is 

largely independent from the rest of the resources 
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10.5.16   Number of reachable nodes 

Definition  

‚ Number of nodes to be reached from starting node (i.e., number of all 
nodes within the tree of each root node) 

‚ Can be normalized to the total number of nodes within the graph 

 

Structural significance  

‚ Degree of influence of a node onto the overall network 

‚ Extent of the downstream hierarchy 

‚ Influence is not weighted according  to distance (as opposed to hierarchies) 

 

Representation 

‚ Pareto distribution of all nodes ordered by the number of passively 
reachable nodes 

‚ Also possible as a plot of reachabilities and number of reachable nodes (see 
Metric “Reachability of a node”) 

 

Literature 

[MAURER 2007, p. 202] 
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10.5.17   Reachability of a node 

Definition  

‚ Number of possible starting nodes to reach a designated node 

‚ Can be normalized for the total number of nodes within the graph 

 

Structural significance  

‚ Influence of the overall process on a node 

‚ Influence is not weighted according to distance (as opposed to hierarchies)  

 

Representation 

‚ Pareto distribution of nodes ordered by the number of passively reachable 
nodes (see metric “Number of reachable nodes”) 

‚ Also possible as a plot of reachabilities and number of reachable nodes 

 

Literature 

[MAURER 2007, p. 202] 
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reachability: 2 (0.34)

No. of reachable nodes: 5 (0.83)

Node 3

reachability: 4 (0.67)

No. of reachable nodes: 0 (0.00)

(in brackets: normalized to total number of nodes-1)
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Structural significance 

Number of reachable nodes Reachability of a node

Task ‚ Degree to which a task is 
actively in control of the 
subsequent process

‚ Level of risk of a task to supply 
subsequent tasks with errors 

‚ Relevance of a task for the 
subsequent process

‚ Degree to which a task serves 
as an information sink 

‚ Level of risk of a task to be 
based on wrong assumptions

‚ Degree to which a task depends 
on previously compiled 
information

Artifact ‚ Extent of necessary consistency 
with subsequent artifacts

‚ Level of impact of an artifact on 
the overall, subsequent process

‚ Level of risk of an artifact to 
transmit errors into the 
subsequent process

‚ Extent of necessary consistency 
with previous artifacts

‚ Level of impact of the overall, 
previous process onto an artifact

‚ Level of risk of an artifact to work 
with erroneous information 

Org. unit ‚ Level of the potential to 
communicate within the social 
network

‚ Degree of control exercised by 
an organizational unit over 
other units

‚ Visibility of an organizational unit 
within the organizational setup

‚ Extent to which information is 
likely to arrive at an 
organizational unit

Time ‚ Level of relevance of a point in 
time for all other subsequent 
points in time

‚ Degree of control of a point in 
time over the subsequent 
schedule

‚ Level of importance of a point in 
time for its integration into 
overall schedule

‚ Level of risk of a point in time to 
delay the overall subsequent 
process

‚ Degree of control of the schedule 
previous to a point in time over 
its timeliness

‚ Level of importance of a point in 
time for its integration into the 
overall schedule

‚ Degree to which a point in time 
serves as a buffer for the overall 
process

Event ‚ Level of relevance of an event 
for all subsequent events 

‚ Degree of control of an event 
for all subsequent events

‚ Level of risk of an event to delay 
the overall, subsequent process

‚ Level of relevance of an event 
for all previous events in the 
overall process

‚ Degree of control of the process 
previous to an event over its 
timeliness

‚ Degree to which an event serves 
as a buffer for the overall, 
previous process 

Resource ‚ Extent of possible consistency 

‚ Degree to which a resource can 
be used to spread information 
efficiently

‚ Level of potential for consistency 
among all artifacts in the process

‚ Openness to deal with various 
inputs
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10.5.18   Proximity 

Definition  

‚ Total length of all paths that cross a node 

‚ Differentiation of active and passive path length possible 

‚ Also referred to as closeness 

 

Structural significance  

‚ Compactness of a process from a node's point of view 

‚ Estimation of velocity of reaching other entities in the process 

‚ Degree of immediacy of influence on or by other nodes 

 

Representation 

‚ Portfolio according to incident and outgoing path length for all nodes 

‚ Distribution of absolute proximity (active and passive) for all nodes 

 

Literature 

[MAURER 2007, p. 205] 
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Structural significance 

Proximity

Task ‚ Level of importance of a task as a broker for information within the 

overall process

‚ Degree of integration of a task into the overall process

‚ Degree of tangibility of long-range impacts of a task on the overall 

process

Artifact ‚ Level of importance of an artifact to serve as a central information 

sink that needs to be documented well

‚ Degree of integration of an artifact into the overall process

‚ Degree of tangibility of long-range interactions of an artifact with all 

other artifacts

Org. unit ‚ Extent of potential of an organizational unit to work as a central hub 

of information transfer and opinion formation

‚ Extent of potential of an organizational unit to communicate with all 

other organization units in the process

Time ‚ Level of importance of timeliness at a point in time to ensure the 

timeliness of the overall process

‚ Extent of integration of a point in time into the overall schedule

Event ‚ Degree of influence of an event on the overall process

‚ Visibility of an event within the overall process as a means of control

‚ Extent of integration of an event into the overall process

Resource ‚ Level of potential of a resource to serve as a central hub for 

information transfers and information processing

‚ Level of accessibility of resource from other resources throughout 

the overall process
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10.5.19   Relative centrality (based on between-ness) 

Definition  

‚ Number of shortest paths between any two nodes that cross a designated 
node  

‚ Normalization possible to (n-1)*(n-2) as maximum number of possible 
paths per node 

 

Structural significance  

‚ Degree of the communication activity in the process 

‚ Degree of integration of an entity into the process (e.g., in terms of opinion 
making) 

‚ Potential of an entity to influence the process 

‚ Identification of hubs in the overall process concerning their role as 
distributors of information 

 

Representation 

‚ Pareto distribution of all nodes and their centralities 

 

Literature 

[MAURER 2007, p. 144], [FREEMAN 1978] 
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Structural significance 

Relative centrality (based on between-ness)

Task ‚ Level of importance of a task for the overall process

‚ Degree of a task to serve as a broker for information and to form 

opinions

‚ Level of risk of a task to be susceptible to changes

‚ Level of risk of a task to seriously hinder the overall process in case 

of failure

‚ Degree to which a task should be detailed when planning a process

Artifact ‚ Degree to which an artifact serves as a central information hub

‚ Level of risk that is caused by an error in an artifact 

‚ Level of risk of an artifact to be susceptible to changes

‚ Degree to which an artifact possibly serves as a central point of 

reference

Org. unit ‚ Degree to which an organizational unit has the role of a central 

coordinator

‚ Degree to which an organizational unit works as a hub for 

information transfer

‚ Degree to which an organizational unit possibly serves as a 

repository of knowledge

Time ‚ Degree to which a point in time plays a central role in the overall 

schedule

‚ Level of risk of a point in time to be susceptible to changes and 

even iterations

‚ Level of importance of timeliness of a point in time for the overall 

timeliness

Event ‚ Degree to which an event plays a central role in reaching the 

overall process result

‚ Degree to which the progress of a process reflects in an event

Resource ‚ Degree to which a resource purposefully serves as a hub for 

information exchange

‚ Level of accessibility of a resource from the overall process
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10.5.20   Node connectivity 

Definition 

‚ Minimum number of nodes that need to be removed to separate the 
network into disjoint networks 

‚ Can purposefully be related to the size of the networks that remain after 
separation 

 

Structural significance  

‚ Evaluation of the robustness of the process against single entities dropping 
out 

‚ Tendency of the process to keep its overall integrity in case a node fails 

‚ Identification of nodes that are critical to the coherence of the overall 
process 

 

Representation 

‚ Number of removed nodes necessary per domain arranged according to 
number of resulting disjoint networks 

 

Literature 

[GROSS & YELLEN 2005, p. 175] 
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10.5.21   Edge connectivity 

Definition 

‚ Minimum number of edges to be removed to separate the network into two 
/ three /… disjoint networks 

‚ Can purposefully be related to the size of the networks that remain after 
separation 

 

Structural significance  

‚ Evaluation of the robustness of the process against single edges dropping 
out 

‚ Tendency of the network to keep its overall integrity in case an edge fails 

‚ Identification of nodes that are critical to the coherence of the overall 
process 

 

Representation 

‚ Number of removed edges necessary per domain arranged according to 
number of resulting disjoint networks 

 

Literature 

[GROSS & YELLEN 2005, p. 175] 
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Structural significance 

Node connectivity (/edge connectivity)

Task ‚ Degree of integrity of the overall process based on individual tasks 

(/on individual communication channels)

‚ Level of risk of the overall process to fall apart if individual tasks 

(/individual communication channels) fail 

‚ Number of tasks (/communication channels) that need to be 

removed to split the process into two or more independent 

processes

‚ Extent of independent sub-processes within the overall process, 

consisting of groups of tasks that are only connected to the process 

via one or a few connecting tasks (/communication channels)

‚ Level of flexibility to process parts of the overall process relatively 

independently 

Artifact ‚ Extent of independency of a group of artifacts that are only 

connected to the overall process via transferring artifacts 

(/communication channels)

Org. unit ‚ Degree of integrity of the social network

‚ Level of dependency of the social network on individual 

organizational units (/communication channels) that ensure the 

overall collaboration of the process

‚ Level of risk of the overall process to fall apart in case of failure of 

individual organizational units (/communication channels)

Time ‚ Extent of bottlenecks in the process that synchronize and spread 

the process flow  (/that channel the information flow)

‚ Level of risk of delays due to individual points in time not being 

reached

‚ Level of potential to generate results of parts of the process 

independently from the rest of the overall process

Event ‚ Degree of independence of the events within the overall process

‚ Level of potential to achieve certain events of the process 

independently from the rest of the overall process

‚ (/Level of risk of individual transitions in the overall process)

Resource ‚ Degree of integration of chain of resources

‚ Level of risk of obtaining isolated applications in case individual 

resources (/interfaces) fail
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10.5.22   Number of paths 

Definition  

‚ Number of all possible paths per pair of start- / end-nodes 

‚ Purposeful mostly for dedicated pairs of start and end nodes 

 

Structural significance  

‚ Evaluation of redundant pathways through the process 

‚ Determination of clarity of processing of process 

‚ Determination of critical start- and end-nodes 

 

Representation 

‚ Metric for each pair of nodes 

 

Literature 

[MCCABE 1976]  
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Structural significance 

Number of paths

Task ‚ Degree of directedness of a process (unambiguous processing of 

tasks)

‚ Extent of redundancies within the process

‚ Degree of parallelism in processing of tasks

Artifact ‚ Level of ambiguity in processing of artifacts

‚ Degree of possible parallelism in generation of artifacts

Org. unit ‚ Degree of variety of communication paths

‚ Level of flexibility of communication 

Time ‚ Level of synchronism of processing of process

‚ Extent of necessary coordination

Event ‚ Degree of parallelization of process

‚ Degree of variety of control of process

Resource ‚ Level of flexibility in resource landscape to provide the consistency 

and transfer of artifacts
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10.5.23   Path length 

Definition: 

‚ Number of edges between start-node and end-node (for a path) 

‚ Also possible as minimum path length for two nodes  

‚ Also possible as average path length for all paths across the overall 
network 

Possible meaning: 

‚ Difficulty to reach another designated node within the network 

‚ Description of the size of the network 

Representation: 

‚ Pareto distribution 

‚ Metric per domain (for average path length) 

Literature 

[NEWMAN 2003a] 
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Structural significance 

Path length

Task ‚ Distance between two tasks

‚ Degree of impact of one task on another task

‚ Minimum effort to synchronize two tasks (min. path length)

‚ Size of the process (average path length)

Artifact ‚ Distance between two artifacts

‚ Degree of impact of one artifact on another artifact

‚ Size of the process (average path length)

Org. unit ‚ Distance between two organizational units

‚ Effort for two organizational units to communicate

Time ‚ Possible number of phases between two points in time

‚ Duration between two points in time

Event ‚ Degree of impact of one event on another event

Resource ‚ Number of intermediate interfaces between two resources 



10. Appendix 339 

10.5.24   Weight of an edge 

Definition  

‚ Number of shortest paths that follow a designated edge 

 

Structural significance  

‚ Importance of an edge for the overall network - e.g., in terms of 
communication channels 

‚ Identification of critical edges for the function of the overall process 

 

Representation 

‚ Pareto distribution of weight for all edges 

 

Literature 

[HENRY et al. 1981] 
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Structural significance 

Weight of an edge

Task ‚ Level of importance of an information transfer or interface between 

two tasks for the overall process

‚ Degree to which a transfer of information is central to overall 

process

‚ Degree to which a transfer of information is part of a principal 

process path

Artifact ‚ Extent to which a transition between two artifacts is part of central 

genesis of knowledge in the overall process 

‚ Degree to which a transition between two artifacts is central to a 

process

‚ Extent of the spreading of artifacts throughout the process

‚ Level of the risk of spreading erroneous artifacts throughout the 

process

Org. unit ‚ Level of communication between two organizational units for the 

overall process

‚ Degree of centrality of an interface between two organizational units

Time ‚ Degree of centrality of a transition from one point in time to the 

next for the progress of the overall process

‚ Extent of progress made within the overall process at the transition 

between two points in time

Event ‚ Degree of centrality of a transition between two events for the 

overall process

‚ Level of potential to determine central events and interfaces to 

control the overall progress of the process 

Resource ‚ Degree of importance of an interface between two resources for 

the integrity of information transfer within the overall process
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10.5.25   Centrality of path (based on centrality) 

Definition  

‚ Sum of all centralities of all nodes along a specific path 

‚ Normalization of product for length of path and normalization basis of 
centrality 

 

Structural significance  

‚ Evaluation of relevance of an individual path for the overall process in 
terms of its connection to the overall process  

‚ Identification of critical transitions and pathways through the process 

‚ Degree to which an individual path is connected to the overall network 

 

Representation 

‚ Pareto distribution of all centralities for all relevant paths 

 

Literature 

[LOCH et al. 2003], [FREEMAN 1978] 
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Structural significance 

Centrality of a path (based on centrality)

Task ‚ Degree of independence of a sequence of tasks from the rest of 

the overall process

‚ Degree of influence taken by the overall process on a sequence of 

tasks

‚ Level of relevance of the principal process path for the overall 

process

Artifact ‚ Level of independence of principal path from other sources across 

overall process 

‚ Level of relevance of a sequence of artifacts for the overall process

Org. unit ‚ Degree of over-determination of a communication path or a chain 

of command across overall organizational setup

‚ Extent of external influences on communication path

‚ Level of relevance of a communication path for the overall process

Time ‚ Degree of synchronization of a central path necessary with overall 

process

‚ Degree of possible controllability of a sequence of points in time 

because of their independence from the overall schedule

‚ Degree of other-directedness of schedule

‚ Level of relevance of the principal process path for the overall 

process

Event ‚ Degree of independence of a sequence of events from the overall 

process

‚ Level of controllability of a sequence of events 

‚ Degree of synchronization necessary

‚ Level of relevance of the principal process path for the overall 

process

Resource ‚ Degree of openness of a series of resources towards other systems

‚ Extent of necessary interfaces of a series of resources with the 

overall process
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10.5.26   Centrality of path (based on degree) 

Definition  

‚ Sum of all degrees of nodes along a specific path (excluding edges of path) 

‚ Is equivalent to activity / passivity of a path 

‚ Differentiation by active and passive degree possible 

 

Structural significance  

‚ Evaluation of relevance of an individual path for the overall process in 
terms of processing  and distribution of information 

‚ Identification of critical transitions and pathways through the process 

 

Representation 

‚ Pareto distribution of centralities for all relevant paths 

 

Literature 

[MAURER 2007, p. 144], [FREEMAN 1978] 
  

 

Path 1

Path 2

Path 3

C
e
n
tr

a
lit

y
 o

f 
a
 p

a
th

 (
d

e
g

re
e
)

7

4 4



344 10. Appendix 

Structural significance 

Centrality of a path (based on degree)

Task ‚ Number of interfaces to neighboring tasks

‚ Degree of independence of a sequence of tasks from its direct 

interfaces to the process

‚ Degree of influence taken by interfacing tasks

‚ Degree to which the sequence of tasks is influenced by its direct 

interfaces 

‚ Relevance of the principal process path for the overall process

Artifact ‚ Number of interfaces to other documents in the process

‚ Extent of difficulty to achieve consistent documentation or a process

‚ Degree of independence of a sequence of documents from the 

direct interfaces to other documents in the process

Org. unit ‚ Number of interfaces of a communication path or a chain of 

command to other organizational units

‚ Extent of over-determination of a communication path

Time ‚ Number of synchronization points within the schedule

‚ Degree of other-directedness of schedule

Event ‚ Number of interfaces of series of events from other events within 

the overall process

‚ Extent of necessary synchronization with other events in the 

process

‚ Degree of other-directedness of schedule

Resource ‚ Number of interfaces of a series of resources to overall process

‚ Extent of integration into overall resource landscape



10. Appendix 345 

10.5.27   Degree of progressive oscillation 

Definition  

‚ Sum of length of all paths that run parallel to a designated path, starting 
and ending on that path 

 

Structural significance  

‚ Evaluation of the impact of supporting processes for an individual pathway 

‚ Determination of the degree to which a path depends on supporting 
processes 

‚ Identification of over-determined paths 

 

Representation 

‚ Pareto distribution of progressive oscillation for all relevant paths 

 

Literature 

[PONN & LINDEMANN 2005] 
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Structural significance 

Progressive oscillation

Task ‚ Number of supporting processes (as series of tasks) that contribute 

to direct progress of the principal process

‚ Level of independence of a principal path from supporting tasks

‚ Level of over-determination of principal path

‚ Level of risk of delays because of delays outside the principal path

‚ Degree of flexibility to execute principal process despite obstacles 

along principal path

Artifact ‚ Extent of supporting documentation to generate principal artifacts

‚ Level of risk of principal path to generate inconsistent 

documentation

‚ Degree of independence from other artifacts

Org. unit ‚ Extent of external influences on a communication path or a chain 

of command

‚ Level of risk of unwanted influences on a communication channel

‚ Level of risk of divergence of opinion building along a 

communication path

Time ‚ Extent of influence of external points in time on principal sequence 

‚ Level of risk of delays outside the sequence of points in time 

delaying the principal sequence

Event ‚ Degree of dependence on events outside principal process

‚ Number of states of supporting processes that can impact the 

principal sequence of events

Resource ‚ Degree of openness of a set of resources

‚ Degree of flexibility to replace principal chain of resources with 

other resources
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10.5.28   Height of hierarchy 

Definition 

‚ Number of levels of a tree 

‚ Hierarchy is computed level by level 

 

Structural significance  

‚ Evaluation of intensity of the distribution of information or errors  

‚ Possible as impact on other nodes (active root node) or as feed (passive 
root node) 

‚ Evaluation of secondary effects of changes to a node 

 

Representation 

‚ Pareto distribution of height of each hierarchy for all root nodes 

 

Literature 

[MAURER 2007, p. 218], [ROBERTSON & SEYMOUR 1986], [HARRISON & MAGEL 
1981], [PIWOWARSKI 1982] 
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10.5.29   Width of hierarchy 

Definition 

‚ Number of all end nodes (per level) of a tree 

‚ If a node is accessed by two or more levels, the lowest level is counted 

‚ Hierarchy is computed level by level 

 

Structural significance  

‚ Evaluation of velocity of distribution of information or errors (per level) 

‚ Possible as impact on other nodes (active root node) or as feed (passive 
root node) 

‚ Evaluation of secondary effects of changes to a node 

 

Representation 

‚ Pareto distribution per root node 

 

Literature 

[MAURER 2007, p. 218], [ROBERTSON & SEYMOUR 1986] 
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10.5.30   Tree criticality 

Definition 

‚ Surface of a tree (width, height), weighted according to level (active root 
node = snowball factor, passive root node = forerun factor) 

‚ Hierarchy is computed level by level 

‚ Weight of level can be set individually (e.g., as inverse of distance to root 
node) 

 

Structural significance  

‚ Measure for the distribution of information and errors within the process 

‚ Analysis for nodes that are robust against the propagation of errors  

‚ Analysis of nodes that are central distributors of information 

‚ Calculation is possible for consequences  (å active root node of hierarchy) 
or forerun (å passive root node of hierarchy) 

 

Representation 

‚ Metric per root node 

‚ Pareto distribution of height, width, and criticality for all nodes 
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Structural significance

Tree criticality (including width and height of a hierarchy)

Task ‚ Degree of a task to rapidly spread information and errors 

throughout the process

‚ Degree of susceptibility for information within the process

‚ Level of risk of a task to be impacted by errors

Artifact ‚ Extent necessity to adjust other artifacts to achieve consistency

‚ Degree of artifact to rapidly spread out information to other artifacts

‚ Level of risk of errors in an artifact to spread to other artifacts rapidly

Org. unit ‚ Extent of potential of an organizational unit to rapidly address other 

organizational units

‚ Extent of visibility of an organizational unit for other organizational 

units

‚ Degree of accessibility of know-how in the organizational setup

‚ Degree of potential to rapidly spread out information from one 

organizational unit to others

‚ Extent of influence of an organizational unit

Time ‚ Level of risk of a point in time to spread a delay across the overall 

process

‚ Degree of susceptibility of a point in time to be impacted by delays 

across the overall process

‚ Level of importance of a point in time for the information distribution 

across the overall process

Event ‚ Degree of influence of an event exercised on other events in the 

process

‚ Level of impact received from other events in the process

‚ Degree to which an event controls the subsequent process

‚ Level of risk of delays of an event because of delays in the 

previous process

Resource ‚ Level of potential of a resource to allow for the consistent 

exchange and processing of artifacts in the overall process

‚ Degree of the ability of a resource to rapidly distribute information 

to other resources

‚ Degree to which a resource is well integrated into the overall 

network of resources
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10.5.31   Snowball factor 

Definition 

‚ Sum of product of width (per level) and height, each level weighted 
according to inverse of shortest path length to root node 

‚ Hierarchy is computed level by level 

 

Structural significance  

‚ Measure for the spreading of information and error 

 

Representation 

‚ Portfolio for height, width, and snowball factor of all nodes  

‚ Also possible as distribution of snowball factor for all root nodes (see 
metric “Forerun factor”) 

 

Literature 

[LOCH et al. 2003] 
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Structural significance 

Snowball factor

Task ‚ Weighted degree of influence of a task on subsequent tasks

‚ Degree of importance of a task for the subsequent process

‚ Level of rapid information sharing with subsequent process

‚ Level of effort to synchronize subsequent tasks to achieve 

consistency 

‚ Level of risk of rapidly spreading errors from task to subsequent 

process

Artifact ‚ Weighted degree of impact of changing an artifact 

‚ Level of effort to achieve consistent documentation

‚ Level of importance of the quality of an artifact to influence the 

outcome of the overall process

‚ Level of risk of errors contained in an artifact to propagate to other 

artifacts

Org. unit ‚ Weighted degree of potential of the ability of an organizational unit 

to communicate within an organizational set

‚ Extent of networking within social network to enable quick 

distribution of information

‚ Degree of possible influence on other organizational units within 

organizational setup

Time ‚ Weighted level of risk of a delay at a point of time to delay the 

subsequent process

Event ‚ Weighted degree of influence of an event on the subsequent 

process

‚ Level of risk of an event to delay the subsequent process

‚ Level of importance of the quality of an event to influence the 

outcome of the overall process

Resource ‚ Weighted degree of potential to forward information consistently 

to other resources

‚ Degree of openness to transmit information to other resources 

‚ Level of potential of a resource to serve as an information hub
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10.5.32   Forerun factor 

Definition 

‚ Number of nodes that lead to a milestone or decision point weighted by 
closeness to this milestone 

‚ Hierarchy is computed level by level 

 

Structural significance  

‚ Extent of preparations that have to be arranged previous to a milestone 

‚ Robustness of an entity  towards incoming information and/or errors 

 

Representation 

‚ Portfolio for height, width, and forerun factor of all nodes (see metric 
“Snowball factor”) 

‚ Also possible as distribution of forerun factor for all root nodes  

 

Literature 

[BADKE-SCHAUB & GEHRLICHER 2003] 
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Structural significance 

Forerun factor

Task ‚ Weighted degree of dependency of a task on previous tasks

‚ Degree of importance of a task to compile information from the 

previous process

‚ Level of rapid information access from previous process

‚ Level of effort to synchronize with previous tasks to achieve 

consistency 

‚ Level of risk of rapidly spreading errors to influence task

Artifact ‚ Weighted degree of impact of changing the previous process into 

an artifact 

‚ Level of effort necessary to achieve documentation consistent with 

previous artifacts

‚ Level of dependence of the quality of an artifact on previous 

artifacts

‚ Level of risk of errors to be contained in an artifact 

‚ Level of importance of information search to generate an artifact

Org. unit ‚ Weighted degree of visibility of an organizational unit within the 

organizational setup

‚ Potential of an organizational unit to receive information 

‚ Extent of networking within social network to enable quick reception 

of information

‚ Degree of possible impact by other organizational units within 

organizational setup

Time ‚ Weighted level of risk of a delay at a point of time because of 

delays during the previous process

Event ‚ Weighted degree of impact of previous process on an event 

‚ Level of risk of an event to be delayed because of delays in the 

previous process

‚ Level of dependence of the quality of an event on the outcome of

the previous process

Resource ‚ Weighted degree of potential to generate information consistently 

to other resources

‚ Degree of openness to receive information from other resources 

‚ Level of potential of a resource to serve as an information hub
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10.5.33   Tree-robustness 

Definition 

‚ Quotient of number of all trees and sum of all tree criticalities 

‚ Hierarchies are computed level by level 

 

Structural significance  

‚ Degree to which the network is interspersed with trees 

‚ Robustness of a complete process concerning the distribution or reception 
of information and/or errors 

‚ Evaluation of the overall process for its robustness against rapid 
propagation of errors 

 

Representation 

‚ Metric per domain 
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Crit.: 4.33

Hierarchy 2

Crit.: 2.33
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…

0.3  

…

Domains Tree robustness

per domain
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10.5.34   Maximum nesting depth 

Definition 

‚ Number of splits in a process 

‚ Can only be calculated for process with one starting node 

 

Structural significance  

‚ Difficulty of understanding the process model 

‚ Estimation of well-structuredness of process if compared to maximum 
nesting depth for splits leading towards single end-node of process (process 
is well structured if difference of the two is zero) 

 

Representation 

‚ Metric per domain 

 

Literature 

[GRUHN & LAUE 2006a], [HARRISON & MAGEL 1981], [PIWOWARSKI 1982] 
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Structural significance 

Tree robustness Maximum nesting depth

Task ‚ Degree of an overall process 
to rapidly spread out 
information among all tasks

‚ Degree of susceptibility of an 
overall process to propagate 
errors across all tasks

‚ Level of subdivision of a 
process into possible sub-
processes (for a well-
structured process) (for 
starting node)

‚ Number of decision points in 
a process (if decision points 
are not modeled explicitly) 
after starting node

Artifact ‚ Degree of (mutual) dependency 
of all artifacts in a process 
among each other

‚ Level of risk of a process to 
contain inconsistent artifacts

‚ Degree of rapid distribution of 
information across artifacts

‚ Level of risk of spreading 
errors rapidly among artifacts

‚ Number of subsequent 
phases of generating artifacts 
in a process

‚ Level of potential for clusters 
of artifacts that can be
regrouped

‚ Level of hierarchization of 
artifacts

Org. unit ‚ Level of potential for 
communication among all 
organizational units in 
organizational setup

‚ Degree of potential to rapidly 
spread out information within 
the overall process

‚ Number of levels of hierarchy 
below an organizational unit

Time ‚ Degree of susceptibility of the 
schedule for the overall process 
to be dependent on single 
points in time

‚ Level of potential to create 
phases (i.e. pre-defined 
modules of points in time) 
based on well-structured 
groups of points in time

Event ‚ Degree to which the overall 
process is controlled by 
individual events

‚ Risk of the overall process to 
be delayed because of 
problems at individual events

‚ Level of organization among 
events

‚ Level of potential to regroup a 
number of states into a 
module to simplify process

Resource ‚ Level of potential for the 
continuous and consistent 
exchange of information among 
all resources

‚ Level of potential for the rapid 
sharing of information among 
artifacts

‚ Level of flexibility to 
circumnavigate individual 
resources in case of their 
failure
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10.5.35   Number of cliques 

Definition 

‚ Number of complete clusters within the network 

 

Structural significance  

‚ Identification of closely connected groups that involve a lot of 
communication 

‚ Degree to which the network is characterized by completely connected 
elements 

 

Representation 

‚ Distribution according to number of connected nodes forming a clique 

 

Literature 

[GROSS & YELLEN 2005, p. 43] 
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Structural significance 

Number of cliques

Task ‚ Degree of compilation of discipline-spanning knowledge in 

collaboration among several tasks

‚ Level of quality of a process model, where single cliques could be 

modeled as individual tasks at a higher more rudimentary level of 

detail

‚ Level of complexity of the object processed in the process

‚ Level of potential that the use of process simulation can improve 

the schedule (simulation of best navigation of iterations)

Artifact ‚ Level of mutual dependency on other artifacts that are jointly 

generated during the process

‚ Level of potential of possible integration of a clique of artifacts into 

one overall artifact

Org. unit ‚ Degree of necessity of work groups that are located in one space

‚ Number of possible meetings per time frame necessary to efficiently 

synchronize organizational units 

‚ Level of potential to introduce communities of practice to share 

knowledge across the borders of an organizational unit

Time ‚ Degree of non-linearity of the schedule 

‚ Level of risk of delays in the overall process

‚ Level of potential that the use of process simulation can improve 

the schedule (simulation of best navigation of iterations)

Event ‚ Degree of non-linearity of the schedule 

‚ Level of risk of not reaching a desired process outcome in a direct 

run

Resource ‚ Number of highly compatible resources
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10.5.36   Cluster-coefficient (local) 

Definition 

‚ Quotient of number of existing edges between nodes adjacent to a node and 
number of possible edges 

‚ Purposeful only for nodes with active degree > 1 

‚ Commonly used for active node; can also be computed for passive root 
nodes and for non-directed graphs 

 

Structural significance  

‚ Evaluation of tendency of individual nodes to be part of a cluster 

‚ Identification of nodes that are not fully involved in cluster 

‚ Identification of possible synchronization / distribution nodes that do not 
exhaust their options 

 

Representation 

‚ Pareto distribution of cluster-coefficient for all nodes  

 

Literature 

[NEWMAN 2003a], [WATTS & STROGATZ 1998] 
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Structural significance 

Cluster-coefficient (local)

Task ‚ Level of interdependence of a task on implicit or “weak” 

dependencies to be consistent

‚ Level of risk of unexpected changes to a task during the process

‚ Level of risk to induce small iterations among neighboring tasks in 

a process

‚ Level of tendency of a task to cause non-linearity in the process 

schedule

Artifact ‚ Level of potential for consistency among artifacts 

‚ Level of risk of a lack of consistency induced by an artifact

‚ Level of tendency of an artifact to cause non-linearity in the 

process schedule 

Org. unit ‚ Extent of possible social contacts in an organizational setup

‚ Level of potential for networking within social network

‚ Degree of necessity to closely involve the partners of an 

organizational unit among each other

Time ‚ Level of risk of a point in time to be involved in a small iteration

‚ Level of tendency of a point in time to cause non-linearity in the 

process schedule

Event ‚ Level of risk of an event not to reach the desired state in the 

planned manner

Resource ‚ Approximation of the necessary interfaces of a system to allow for 

efficient transmission of information
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10.5.37   Cluster-coefficient (global) 

Definition 

‚ Sum of all local cluster-coefficients divided by total number of nodes that 
have an active degree > 1 

‚ Commonly used for active node; can also be computed for passive root 
nodes and for non-directed graphs 

 

Structural significance  

‚ Evaluation of tendency of individual nodes to be part of a cluster (esp. for 
social networks) 

‚ Comparison of clustering of different networks 

‚ Degree to which the overall process utilizes its possibilities 

 

Representation 

‚ Metric per domain 

 

Literature 

[NEWMAN 2003a], [WATTS & STROGATZ 1998] 
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Structural significance 

Cluster-coefficient (global)

Task ‚ Level of potential for linearity of the overall process

‚ Level of risk of unexpected changes to occur

‚ Level of risk of iterations in the overall process

‚ Level of risk of possible conflicts among the tasks

‚ Degree of uncertainty in the process

Artifact ‚ Degree of mutual dependencies among artifacts

‚ Level of risk of unexpected changes to occur

‚ Level of risk of possible conflicts in the documentation

Org. unit ‚ Degree of necessity of the process to be supported by a dense 

social network

‚ Level of possible short communication channels outside the 

organizational setup to quickly overcome unexpected problems

Time ‚ Level of risk of the process to be delayed because of unexpected 

radiation of a delay at one point in time to another point in time

‚ Degree of possible ambiguity of the process schedule

‚ Level of risk of possible conflicts in the process schedule

Event ‚ Level of risk of events to occur unexpectedly

Resource ‚ Level of potential implementation of consistent interfaces 
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10.5.38   Module quality 1 (flow of information) 

Definition 

‚ Product of number of edges that cross the border of the module and number 
of edges within the module 

 

Structural significance  

‚ Degree of completeness of a module concerning complete clusters 

‚ Only useful for the evaluation of existing modules (pre-defined groups) 

‚ Comparison of modules concerning  their interaction with their 
environment 

‚ Indicator to possibly reduce complexity by introducing more modules with 
a reduced number of interfaces 

‚ Means of quality to generate modules out of clusters 

 

Representation 

‚ Metric per module per domain 

 

Literature 

[HENRY et al. 1981] 
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10.5.39   Module quality 2 (compactness) 

Definition 

‚ Product of number of edges that cross the border of the module and number 
of edges within module 

 

Structural significance  

‚ Degree of closeness of a module 

‚ Only useful to evaluate existing modules (pre-defined groups) 

‚ Comparison of modules concerning  their interaction with their 
environment 

‚ Indicator to possibly reduce complexity by introducing more modules with 
a reduced number of interfaces 

‚ Means of quality to generate modules out of clusters 

 

Representation 

‚ Metric per module per domain 

 

Literature 

[HENRY et al. 1981] 
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Structural significance 

Module quality 1 and 2

Task ‚ Degree of closeness of a module (as a pre-defined set of tasks)

‚ Level of quality of the model using well-defined modularization 

criteria for sub-processes

‚ Degree of distinctness of a module to reduce the number of 

prevailing interfaces

Artifact ‚ Degree of closeness of a module of artifacts (as a pre-defined set 

of artifacts)

‚ Level of potential to process a module of artifacts independently 

from the overall process

Org. unit ‚ Level of quality of the setup of teams and departments as modules 

of organizational units 

Time ‚ Degree of closeness of a module of points in time (as a pre-defined 

set of tasks, e.g., a phase) to allow for independent processing of 

the process

Event ‚ Degree of independence of a module of events (as a pre-defined 

set of events) from external influences

Resource ‚ Level of quality of embedding a module of resources into the 

overall resource landscape
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10.5.40   Number of cycles 

Definition 

‚ Number of paths with identical starting- and end-node 

‚ Can purposefully be combined with length of cycles and the occurrence of 
specific nodes and edges 

 

Structural significance  

‚ Evaluation of the overall level of uncertainty of the process 

‚ Determination of the degree of possible rework during process execution 

 

Representation 

‚ Metric per domain 

‚ Pareto distribution of occurrence of cycles and their length  

 

Literature 

[BADKE-SCHAUB & GEHRLICHER 2003] 
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Structural significance 

Number of cycles

Task ‚ Degree of non-linearity of the process

‚ Number of possible iterations in the process

‚ Extent of necessity to allocate mixed workgroups that closely 

synchronize iterations

‚ Extent of necessity of a central instance to coordinate the overall 

process 

‚ Level or risk of unexpected iterations to cause delays

‚ Extent of generation of knowledge in the process in an 

interdisciplinary context

Artifact ‚ Degree of focusing on centralized documents that are reworked 

and completed during the overall process

‚ Extent of risk of errors in individual documents to propagate 

throughout the process

Org. unit ‚ Extent of closeness of the social network

‚ Extent of implicit control within the social network in a way that 

information is transmitted back to the sender across a different path

‚ Level of risk of the occurrence of Chinese whisper phenomena in 

the process

Time ‚ Level of risk of unexpected delays in the schedule

Event ‚ Degree of non-linearity of the process

Resource ‚ Degree of continuity of the chain of resources 
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10.5.41   Number of cycles per node  

Definition 

‚ Occurrence of a node in all cycles 

 

Structural significance  

‚ Determination of core entities of a process that help cope with uncertainty 
in the process 

‚ Determination of entities that have an important impact on the generation 
of knowledge during the overall process 

 

Representation 

‚ Pareto distribution of occurrence of each  node in cycles 

 

Literature 

[MAURER 2007, p. 236] 
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Structural significance 

Number of cycles per node

Task ‚ Degree of importance of a task towards the generation of 

knowledge (as possible core competency)

‚ Extent of insecurity processed in a task 

‚ Degree of coordination exercised by a task

‚ Extent of interfaces that run through a task

Artifact ‚ Degree of importance of an artifact to document the progress of 

concretization in the process

‚ Extent of risk of errors in individual documents to propagate 

throughout the process

‚ Degree of synchronization of information that is carried out via a 

document

‚ Extent to which a document serves as an interface to assure 

consistency of information 

Org. unit ‚ Degree to which communication revolves around an organizational 

unit

Time ‚ Degree of necessity of buffering of a point in time to avoid delays

‚ Level of importance of a point in time for the timeliness of the 

overall process 

Event ‚ Extent of insecurity that results in an event

‚ Level of risk of not reaching an event because of unexpected 

results underway

Resource ‚ Degree of importance of a resource to ensure the data transfer 

among various workgroups
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10.5.42   Number of cycles per edge 

Definition 

‚ Occurrence of an edge in cycles 

 

Structural significance  

‚ Dependencies that are highly relevant to coping with uncertainty in the 
process 

‚ Identification of possible drivers for handling uncertainty 

 

Representation 

‚ Pareto distribution of occurrence of edges in cycles 

 

Literature 

[MAURER 2007, p. 236] 
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Structural significance 

Number of cycles per edge

Task ‚ Degree of importance of a communication channel between two 

tasks towards the generation of knowledge 

‚ Extent of insecurity that is communicated between two tasks

‚ Degree of coordination exercised by a communication channel

Artifact ‚ Degree of importance of an interface between two artifacts to 

document the progress of concretization in the process

‚ Extent of maturity generated with the transition of an artifact into 

another artifact

‚ Degree of synchronization of information that is carried via an 

interface

‚ Extent to which a document serves as an interface to assure 

consistency of information 

Org. unit ‚ Degree to which communication revolves around an two 

organizational units

Time ‚ Degree of necessity of buffering between two points in time to 

avoid delays

‚ Level of risk associated to a structural bottleneck in the schedule

Event ‚ Extent of insecurity that is processed from one event to the next

‚ Level of risk of not reaching an event because of unexpected 

results underway

Resource ‚ Degree of importance of a resource to ensure the data transfer 

among various workgroups
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10.5.43   Number of feedbacks 

Definition 

‚ Number of edges that impede the ideal triangularization of a DSM 

‚ Computation is nondeterministic as there is no unique form of 
triangularization; the minimum number of edges that impede ideal 
triangularization cannot always be computed 

 

Structural significance  

‚ Evaluation of the degree of uncertainty in the process 

‚ Determination of the degree of deviation from an ideal sequence 

 

Representation 

‚ Metric per domain 

 

Literature 

[BROWNING 2001a] 
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10.5.44   Activation of cycle 

Definition 

‚ Number of nodes that are the first ones in a cycle (in a triangularized DSM) 

‚ Computation is nondeterministic as there is no unique form of 
triangularization; the minimum number of edges that impede ideal 
triangularization cannot always be computed 

 

Structural significance  

‚ Nodes that are relevant for handling uncertainty 

‚ Identification of nodes that possibly lay the groundwork in one or more 
iteration(s) 

 

Representation 

‚ Pareto distribution of occurrence of activating nodes in cycles 
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Structural significance 

Number of feedbacks Activation of cycle

Task ‚ Degree of non-linearity of the 

process

‚ Extent of necessity of small, 

tightly cross-linked work groups

‚ Level of risk of the overall 

process to be delayed by 

(possibly unexpected) rework

‚ Extent of collaboration in an 

interdisciplinary context or 

based on strong division of 

labor

‚ Degree of a task to have a 

preparatory effect in the 

generation of knowledge in 

the process

‚ Level of risk of a task to lead 

to rework in case of 

insufficient quality of the 

results of that task

‚ Extent of knowledge 

necessary to process a task

Artifact ‚ Degree of focusing on (few 

or many) artifacts that control 

the process flow as transition 

points in iterations

‚ Level of involvement of an 

artifact to document 

information that is at the heart 

of an iteration

‚ Degree of informational value 

of a artifact

‚ Level of risk of errors 

contained in an artifact

Org. unit ‚ (not applicable) ‚ (not applicable)

Time ‚ Level of risk of delays in the 

overall process

‚ Extent of necessary planning 

to ensure robustness of a 

point in time against possible 

delays through rework

‚ Extent of necessary 

investment at a point of time 

to ensure high quality of the 

outcome and to reduce the 

chance of starting an iteration

Event ‚ Degree of non-linearity of the 

concretization of results in the 

process

‚ Extent of necessary 

preparations to be done for 

an event

‚ Extent of insecurity present 

at an event

‚ Extent of necessity of quality 

control at an event

Resource ‚ (not applicable) ‚ Level of quality necessary for 

the results of a resource
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10.5.45   Number of starting points for iterations 

Definition 

‚ Number of nodes that start iterations (nodes that are starting nodes of edges 
that  impede the ideal triangularization of the DSM) 

‚ Computation is nondeterministic as there is no unique form of 
triangularization; the minimum number of edges that impede ideal 
triangularization cannot always be computed 

 

Structural significance  

‚ Criticality of an entity to start an iteration 

‚ Determination of possible decision points that can cause iterations 

‚ Determination of entities where uncertainty in the process is handled 

 

Representation 

‚ Pareto distribution of outgoing edges that are starting points for iterations 
and number of initiated iterations 

 

Literature 

[LUKAS et al. 2007]  
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Structural significance 

Number of starting points for iterations

Task ‚ Degree of a task to evaluate the generation of knowledge in the 

process and to initialize possible rework

‚ Level of risk of a task to lead to rework in case of insufficient quality 

of the input and results of that task

‚ Extent of knowledge necessary to process a task (that should be 

made available early in the process)

‚ Level of risk associated to errors that are overlooked at a task

Artifact ‚ Level of involvement of an artifact to transport information that is 

at the heart of an iteration

‚ Degree of informational value of a artifact to prepare the decision 

for rework

‚ Level of risk of errors contained in an artifact to cause problems at 

a later stage

Org. unit ‚ Potential of an organizational unit to influence iterations before 

they take place

Time ‚ Extent of necessary planning to ensure robustness of a point in 

time against possible delays through rework

‚ Extent of knowledge necessary at a point of time to assess the 

quality of the input

‚ Extent of potential to install point in time as milestone

Event ‚ Extent of an event to serve as a decision point to control the flow 

of the process

‚ Extent of necessity of quality control at an event

‚ Extent of potential to install event as milestone

Resource ‚ Level of quality necessary for the results of a resource
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10.5.46   Iterative oscillation 

Definition 

‚ Sum of length of all cycles that share at least one edge with a selected path 

 

Structural significance  

‚ Degree to which a path interacts with other nodes based on uncertainty 
within the process 

‚ Determination of pathways through the network that are highly susceptable 
to changes long the way 

 

Representation 

‚ Pareto distribution of number of cycles per path 

 

Literature 

[LOCH et al. 2003] 
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Structural significance 

Iterative oscillation

Task ‚ Extent of effort necessary outside the principal process flow to

execute the process

‚ Degree of linearity of the process

Artifact ‚ Degree of linear progress in the process

‚ Extent of forecast reliability of a process to be represented as a 

simple Gantt chart

‚ Extent to which a series of artifacts are dependent on supporting 

artifacts

Org. unit ‚ Level of risk of possible influences exercised on a communication 

path outside the intended or official communication path

Time ‚ Extent of forecast reliability of a process to be represented as a 

simple Gantt chart

Event ‚ Extent of forecast reliability of a process to be represented as a 

simple Gantt chart

Resource ‚ Extent of possible support to be accessed by main chain or 

resources
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10.5.47   Bipartite density 

Definition 

‚ Percentage of existing implicit relations (within the same or via a different 
domain) in relation to the number of possible relations 

‚ Can be calculated across one or several level (i.e., across one or more 
nodes): an implicit path equals a shortest path to a reachable node that is 
not directly connected; the path length of that reachability serves as a 
parameter to the determination of implicit paths 

‚ Within a domain roughly similar to cluster coefficient (local)  

 

Structural significance  

‚ Comparison of alignment with other domains 

‚ Analysis of appropriateness of direct relations 

‚ Assessment of modeling accuracy (direct dependencies that should be 
modeled as indirect dependencies and vice versa) 

 

Representation 

‚ Metric for each domain related to another domain 

 

Literature 

[VANDERFEESTEN et al. 2007], [MAURER et al. 2006] 
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Structural significance 

Only applicable for a domain (left column) in relation to a reference domain (not 
specified). 

If a domain is assessed with a view to a second reference domain, each metric 
represents: ‚ the degree to which a network of entities (e.g., tasks) depends on supporting 

entities (e.g., resources) in the domain of reference to be processed. ‚ the degree to which a network of entities (e.g., tasks) is aligned with the 
needs imposed by the domain of reference (e.g., product attributes). 

   

Bipartite density

Task ‚ Extent of implicit communication among task that are not explicitly 
in place in process

‚ Extent of meetings and other means of synchronization necessary 
in the process

‚ Extent of correct modeling of the process (in terms of implicit 
relationships that possibly exist but were not modeled)

Artifact ‚ Extent of implicit transitions among task that drive the process and 
advance the maturity of the artifacts in the process

‚ Extent of synchronization necessary to achieve consistent 
documentation

‚ Extent of correct modeling of the process (in terms of implicit 
relationships that possibly exist but were not modeled)

Org. unit ‚ Density of the social network via indirect relationships 

‚ Extent of  possible shortcuts to support quick distribution of 
information

‚ Extent of meetings and other means of synchronization necessary 
in the process

‚ Extent of correct modeling of the process (in terms of implicit 
relationships that possibly exist but were not modeled)

Time ‚ Extent of implicit transitions among points in time that drive the 
process 

‚ Degree of attention that has to be paid to other points in time when 
planning the schedule of the process 

‚ Extent of correct modeling of the process (in terms of implicit 
relationships that possibly exist but were not modeled)

Event ‚ Extent of implicit transitions among events that drive the process 

‚ Extent of correct modeling of the process (in terms of implicit 
relationships that possibly exist but were not modeled)

Resource ‚ Extent of possibly purposeful interfaces among resources that 
should be implemented to facilitate the process and to support 
consistency among the processed artifacts

‚ Extent of correct modeling of the process (in terms of implicit 
relationships that possibly exist but were not modeled) 



382 10. Appendix 

10.5.48   Number of organizational interfaces 

Definition 

‚ Number of edges within one domain that link two nodes which are not 
attributed to the same node in a different domain (= reference domain) 

 

Structural significance  

‚ Analysis of the effort taken for a transition between two nodes because the 
node of reference is changed (e.g., different responsibility, different format, 
different media, different model) 

‚ Identification of those transitions that demand special interfaces 

‚ Comparable to attribution of two domains via a swimlane-model  

 

Representation 

‚ Metric per domain 

 

Literature  

[ANDERL & TRIPPNER 2000, p. 11], [BECKER et al. 2005, p. 123] 
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Structural significance 

Number of organizational interfaces (with view to reference 

domain)

Task ‚ Extent of effort necessary at the interface between two tasks with 

view to the transfers necessary via a supporting domain of 

reference (e.g., how many resources are applied to support the 

interface) 

Artifact ‚ Extent of effort necessary at the transition between two artifacts 

with view to the transfers necessary via a supporting domain of 

reference (e.g., through how many organizational units an artifact 

is transferred to make a transition to the next artifact) 

Org. unit ‚ Extent of effort necessary at the interface between two 

organizational units with view to the transfers necessary via a 

supporting domain of reference (e.g., how many artifacts are 

necessary for one organizational unit to communicate with another 

organizational unit) 

Time ‚ Extent of effort necessary at the transition between two points in 

time with view to the transfers necessary via a supporting domain 

of reference (e.g., how many resources support the process) 

Event ‚ Extent of effort necessary at the transition between two events 

with view to the transfers necessary via a supporting domain of 

reference (e.g., through how many resources an event is 

transferred to the next event) 

Resource ‚ Extent of effort necessary at the interface between two resources 

with view to the transfers necessary via a supporting domain of 

reference (e.g., how many documents are in between two 

resources) 
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10.5.49   Cognitive weight 

Definition 

‚ Based on the attribution of empirically founded characteristic values of 
typical constellations of edges and nodes 

‚ Summation of all cognitive weights 

 

Structural significance  

‚ Description of the human ability to grasp individual parts of the process as 
well as its global structure 

 

Representation 

‚ Metric per domain 

 

Literature 

[SHAO & WANG 2003], [MCQUAID 1997],  [WANG 2006] 

 

 

Element simply understandable

(example) 

Element more dif f icult 

to be understood (example) 

Domain 1 

Domain 2

Domain 3

…

xx 

yy  

zz  

…

Domains Cognitive weight
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10.5.50   Degree of non-planarity 

Definition 

‚ Minimum number of edges that have to be removed to obtain a planar 
graph  

‚ Computation is non-deterministic 

 

Structural significance  

� Possibility to measure the clarity and transparency of the process  

� Evaluation of the understandability of the process  

� Determination of the ascertainability of the network model 

� Description of the transparency of the process model 

 

Representation 

‚ Metric per domain 

 

Literature 

[KORTLER et al. 2009] 
  

at least 1 edge needs to be 

removed to obtain a planar graph

Domain 1 

Domain 2

Domain 3

…

1

…

Domain
Degree of  

non-planarity
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Structural significance 

Cognitive weight / degree of non-planarity

Task ‚ Degree of comprehensibility of the arrangement of tasks to form 

the overall process

‚ Level of chance to comprehend the role of a task in the context 

of the overall process

‚ Level of the chance to identify a possibly erroneous task in the 

context of the overall process

Artifact ‚ Degree of comprehensibility of the arrangement of artifacts 

‚ Degree of clear arrangement of the landscape of artifacts

‚ Level of chance to comprehend the importance of an artifact for 

the overall process

‚ Level of the chance to identify a possibly erroneous artifact in the 

context of the overall process

Org. unit ‚ Degree of comprehensibility of the social network

‚ Level of chance to comprehend the importance of relevant 

organizational units for the overall process

‚ Level of the chance to identify core personnel

Time ‚ Degree of comprehensibility of the interaction of points in time 

and their impact on planning

‚ Level of the chance to locate a point in time with respect to all its 

dependencies

‚ Level of risk of not integrating all dependencies into the planning 

of the schedule suitably

Event ‚ Degree of comprehensibility of the transition of events into each 

other

‚ Level of risk of not integrating all transitions into the planning of 

the schedule

Resource ‚ Degree of comprehensibility of the cross-linking of resources 

among each other

‚ Degree of clear arrangement of the landscape of resources

‚ Level of the chance to identify a possibly useful resource and 

access it
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10.5.51   McCabe Cyclomatic Number 

Definition 

‚ Difference of number of edges and number of nodes (excluding logical 
split connectors) plus two minus 

‚ Only applicable for processes with one initial node (i.e., root node of the 
process) 

‚ Only useful with Boolean operators to represent decision points 

‚ Adaptation for bipartite process graphs (e.g., EPC) necessary 

 

Structural significance  

‚ Number of possible paths in a control flow 

‚ Number of binary decisions in control flow 

 

Representation 

‚ Metric per domain 

 

Literature 

[MCCABE 1976], [CARDOSO 2006] 

 

OR

OR

Domain 1 

Domain 2

Domain 3

…

3  

…

Domains Cyclomatic number
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10.5.52   Control-Flow Complexity 

Definition 

‚ Sum of all possible constellations of outgoing edges from logic operators 
(splits) 

 

Structural significance  

‚ Number of all possible decisions in a process  

‚ Impact of a single decision (similar to activity of a split) 

 

Representation 

‚ For individual nodes: Pareto-distribution of Control-flow Complexity for 
all nodes  

‚ For overall process: Metric per domain 

 

Literature 

[CARDOSO 2005a], [GRUHN & LAUE 2006a] 
  

AND

XOR

OR

CFC = 1

CFC = n

CFC = 2n - 1

Domain 1 

Domain 2

Domain 3

…

x  

…

Domains Control-f low Complexity 
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Structural significance 

Cyclomatic number Control-flow complexity

Task ‚ Extent of moving targets in 

the process

‚ Degree of flexibility built into 

the process

‚ Degree of plurality of scenarios 

of process execution 

‚ Number of possible self-

contained modules of tasks 

(pre-defined process flows 

through a part of the process)  

that can be regrouped 

independently from decision 

points

‚ Degree of adaptivity of the 

process

Artifact ‚ Extent of fluctuating artifacts 

within  the process

‚ Degree of possible momentum 

of artifacts

‚ Degree of flexibility of the 

process documentation

‚ Degree of possible diversity of 

results of the process

‚ Number of possible self-

contained groups of artifacts 

that can be processed 

independently from decision 

points

‚ Degree of adaptivity of the 

process

Org. unit ‚ (not applicable) ‚ (not applicable)

Time ‚ Level of risk of different 

scenarios of a possible time to 

market

‚ Number of possible paths 

through the process 

‚ Degree of adaptivity of the 

process

Event ‚ Extent of possible overall 

states the process can take up

‚ Degree of insecurity processed 

‚ Degree of stability of a target-

oriented process flow

‚ Degree of flexibility of the 

process to (possibly 

unexpected) events

Resource ‚ (not applicable) ‚ (not applicable)
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10.6 Computability of metrics  

Metrics
Deterministic
computation

Heuristic
computation

Complexity of algorithm
84

Size and density

Number of domains 1 O(n)

Number of nodes 1 O(m)

Number of edges 1 O(m), max. O(n²)

Number of classes 1 O(n)

Number of interfaces 
between domains

1 O(m) , max. O(n1 · n2)

Number of edges per node 1 O(m), max. O(n²)

Relational density 1 O(m), max. O(n²)

Number of unconnected 
nodes

1 O(m), max. O(n²)

Adjacency

Activity / Passivity 1 O(m), max. O(n²)

Degree correlation (nodes) 1 O(m), max. O(n²)

Degree correlation (edges) 1 O(m), max. O(n²)

Degree distribution 1 O(m), max. O(n²)

Fan criticality 1 O(m), max. O(n²)

Synchronization points / 
distribution points

1 O(m), max. O(n²)

Number of independent sets 1
O(n + c · m), 
max. O(n + 2

n
· m)

Attainability

Number of reachable nodes 1 O(n · m), max. (n³)

Reachability of a node 1 O(n · m), max. (n³)

Closeness

Proximity 1 O(n · m), max. (n³)

Relative centrality 
(based on between-ness)

1 O(n² · m), max. (n
4
)

Connectivity

Node connectivity 1 O(m) (breadth-first search)

Edge connectivity 1 O(m) (breadth-first search)

Paths

Number of paths 1 O(m), max. O(n²)

Path length 1 O(m), max. O(n²)

Weight of an edge O(m), max. O(n²)

Centrality of path 
(based on centrality)

1 O(n³ · m), max. (n
5
)

Centrality of path 
(based on degree)

1 O(n · m), max. O(n³)

Degree of progressive 
oscillation

1 O(n · m), max. O(n³)
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Metrics
Deterministic
computation

Heuristic
computation

Complexity of algorithm
84

Hierarchies

Height of hierarchy 1 O(m)

Width of hierarchy 1 O(m)

Tree criticality 1 O(m)

Snowball factor 1 O(n · m), max. O(n³)

Forerun factor 1 O(n · m), max. O(n³)

Tree-robustness 1 O(n² · m), max. O(n
4
)

Maximum nesting depth 1 O(n)

Clustering

Number of cliques 1 O(2
n
)

Cluster-coefficient (local) 1 O(m²)

Cluster-coefficient (global) 1 O(m), max. O(n²)

Module quality 1 1 O(m), max. O(n²)

Module quality 2 1 O(m), max. O(n²)

Cycles

Number of cycles 1
O(n + c · m), 
max. O(n + 2

n
· m)

number of cycles per node 1
O(n + c · m), 
max. O(n + 2

n
· m)

Number of cycles per edge 1
O(n + c · m), 
max. O(n + 2

n
· m)

Number of feedbacks 1
O(n + c · m), 
max. O(n + 2

n
· m)

Activation of cycle 1
O(n + c · m), 
max. O(n + 2

n
· m)

Number of starting points for 
iterations

1
O(n + c · m), 
max. O(n + 2

n
· m)

Iterative oscillation 1
O(n + c · m), 
max. O(n + 2

n
· m)

Several domains

Bipartite density 1 O(m), max. O(n1 · n2)

Number of organizational 
interfaces

1 O(m), max. O(n1 · n2)

Cognition

Cognitive weight 1 n.a.

Degree of non-planarity 1 O(n! · n) 

Boolean Operators

McCabe Cyclomatic Number 1 O(m), max. O(n²)

Control-Flow Complexity 1 O(m), max. O(n²)

                                                          
84 The complexity of the algorithm refers to the time complexity of computing the algorithm; n is 
the number of nodes, m the number of edges; if more than one domain is involved, the domains 
are indexed; c is the number of cycles in the domain; if a maximum complexity of the algorithm 
can be estimated, the estimation is given. For relevant algorithms, see [LÄUCHLI 1991].
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10.7 Classification of metrics  

On the following four pages, the classification of structural metrics is listed as a 
table that spreads over four pages. For layout reasons, the table is split unevenly. 
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10.8 GQM-Framework for metrics 

ID Goal / Question Metrics

G01 Planning

Q01 To what extent is it possible to 
incorporate risks into the 
process planning?

Metrics: M06, M07, M20, M21, M40  
For domains: Artifacts, tasks, points in time

Q02 How can the focus be placed on 
important process steps?

Metrics: M09, M12, M18, M19, M20, M30, 
M31, M41, M43, M44, M45 
For domain: Tasks

Q03 What are bottlenecks in the 
schedule?

Metrics: M10, M20, M21, M43  
For domains: Artifacts, tasks, points in time

Q04 What parts of the process are 
substantially impacted by 
iterations? What level of 
uncertainty is handled by the 
process?

Metrics: M35, M36, M37, M40, M41, M42, 
M43, M44, M45, M46  
For domains: Artifacts, tasks, points in time

Q05 What is the stakeholder 
situation?

Metrics: M01, M02, M03, M04, M05, M06, 
M07, M08  
For domains: Overall Network

G02 Resource consumption

Q06 Is the process laid out in a 
homogeneous manner?

Metrics: M06, M07, M10, M11, M19, M25, 
M35, M36  
For domains: Artifacts, tasks

Q07 Where is it possible to remove 
redundancies to reduce waste?

Metrics: M05, M15, M18, M20, M21, M22, 
M47, M48  
For domains: Organizational units, 
resources, tasks

Q08 Are the resources easily 
accessible?

Metrics: M06, M08, M16, M17, M18, M19, 
M31, M32, M33 
For domain: Resources

G03 Quality

Q09 Does the process allow for the 
consistent transfer of 
information?

Metric(s): M06, M08, M16, M17, M18, M19, 
M31, M32, M33, M47  
For domain: Artifacts

Q10 Is the documentation in line with 
the process?

Metric(s): M02, M03, M04, M05, M12, M47 
For domains: Artifacts, tasks

Q11 What is the risk of error 
distribution across the process?

Metric(s): M06, M14, M15, M16, M17, M18, 
M31, M32, M33, M47  
For domains: Artifacts, tasks
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ID Goal / Question Metrics

G04 Flexibility

Q12 What buffers are available in the 
process to absorb delays and 
errors?

Metrics: M14, M27, M31, M32  for 
domains: Artifacts, tasks, points in time

Q13 How robust is the overall 
process against individual 
failures?

Metrics: M06, M12, M20, M21, M36  
For domains: Overall Network

G05 Organizational decomposition

Q14 Is the organization of 
workgroups and teams 
adequate?

Metrics: M05, M13, M35, M36, M37, M47, 
M48  
For domains: Organizational units, tasks

Q15 How well is the organizational 
structure suited to provide 
efficient communication?

Metrics: M06, M07, M08, M11, M12, M16, 
M17, M18, M19, M22, M23, M31, M32  
For domain: Organizational units

Q16 What is the internal structure of 
an organizational unit?

Metrics: M12, M14, M18, M19, M31, M32  
For domain: Organizational units

G06 Interfaces

Q17 Which entities of the process 
need to be synchronized?

Metrics: M08, M10, M13, M14, M31, M32 
for domain: Organizational units, tasks

Q18 How fast is communication in the 
process?

Metrics: M16, M17, M18, M19, M31, M32  
For domain: Organizational units, tasks

Q19 What are relevant 
communication channels? 

Metrics: M12, M22, M23, M24, M25, M26, 
M42, M43 
For domains: Artifacts, organizational 
units, tasks

G07 Transparency

Q20 Are the organizational units 
aware of their impact on the 
overall process?

Metrics: M06, M16, M17, M50  
For domains: Organizational units, tasks

Q21 How transparent is the overall 
process organization?

Metrics: M01, M02, M04, M49, M50  
For domains: Overall Network

G08 Decision making

Q22 Which decision points have a 
high impact on the process?

Metrics: M09, M43, M44, M51, M52 
For domains: Overall Network
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10.9 Complete results of case study 7.2
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Max. value of scale per metric 17 32 131 120 3233 52.3 62.7
205,
467

101,
751

72

Support dev. of body structure 
(AC 13)

806

Simulate parts (AC 19) 67

Coordinate setup of simulation 
model for mounted parts (AC 26)

17

Release parts (AC 31) 120

Release cockpit (AC 32) 32

Release body structure (AC 34) 118

Set up simulation model for 
passenger safety (AC 38)

41,11
1

Set up sim. model for parts (AC 41) 67

Set up sim. model for crash (AC 43) 62.7
145,
754

101,
751

Set up simulation model for 
body-in-white properties (AC 46)

68,
668

Set up simulation model for 
body structure properties (AC 49)

72

Coordinate simulation of crash 
(AC 65)

16 30 3233 51.9 62.4
205,
467

Simulate crash (AC 66) 17 52.3
101,
751

Pre-dev. concept / package (AC 75) 128

Simulate passenger safety (AC 90)
41,
111

Coord. sim. passenger safety 
(AC 91)

1190

Coordinate body-in-white sim. 
(AC 92)

156,
927

Simulate body-in-white (AC 93)
68,
668

Develop body-in-white (AC 94) 17

Develop vehicle strategy (AC 128) 131

Develop strategy for variants 
and derivates (AC 129)

131

Simulate body structure (AC 131) 72

Coordinate development of 
body structure model (AC 135)

17 51.7

Support modification of 
body structure model (AC 138)

119

Develop inter. lining conc. (AC 154) 19 54

Table 10-3: Key outliers (upper bound) for aggregate view on tasks (via artifacts)
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Max. value of scale per metric 21 21 96 84 976 44 43.3
331,
386

176,
546

51

Sim. results aero-acoustics 
(AR 19)

51

Sim. results aerodynamics (AR 20) 468

Release approval cockpit (AR 35) 84

Release approval seating (AR 36) 84

Release approval int. lining 
(AR 39)

84

Sim. model aero-acoustics (AR 45) 51

Simulation model crash (AR 49) 13 32,7

Simulation model for 
body-in-white properties (AR 52)

96,
486

Sim. model body structure (AR 55) 49

Simulation results crash (AR 66) 21 14 976 44

Data from crash tests (AR 67)
149,
867

Specifications for safety (AR 77)
176,
546

Sim. res. passenger safety 
(AR 86)

17 39,8

Results from body-in-white 
properties simulation (AR 88)

331,
386

149,
867

Vehicle concept (AR 89)
294,
209

96,
486

Vehicle concept draft (AR 93) 86

Specifications crash (AR 95) 15

Package as CAD model (AR 99) 86

Simulation results for 
components with deficits (AR 103)

33,5

Strategic vehicle concept (incl. 
variants and derivates) (AR 115)

96

Sim. results body structure 
(AR 117)

49

Technology model (AR 123) 21
588,

3
43,3

Technical specifications (AR 124)
295,
849

176,
546

Model of interior lining (AR 130) 82 76

Table 10-4: Key outliers (upper bound) for aggregate view on artifacts (via tasks)
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Relative 
centrality

Snowball-factor Forerun-factor

Max. value of scale per 
metric

26.6 11.5 12

Design Department (OU 02) 12.9

Body-in-white Design 
Department (OU 06)

13.3 10.5 12

Interior Design Department 
OU 07)

10.5 11.5

Comp. Flow Analysis 
Department (OU 08)

11

Safety Applications 
Department (OU 09)

26.6 11.5

Relative 
centrality

Snowball-factor Forerun-factor

Max. value of scale per 
metric

58.7 21 24.5

Ansa (RE 4) 57.1 24.5

Catia (RE 6) 58.7 20.5

Medina (RE 16) 23.5

Nastran (RE 19) 20.5

Pam Crash (RE 20) 21

Text Editor (RE 27) 43.5 23.5

Table 10-5: Key outliers (upper bound) for aggregate view on organizational units 
(via tasks and artifacts)

Table 10-6: Key outliers (upper bound) for aggregate view on IT systems
(via tasks and artifacts)



 

11. Keyword index 

Active metrics 162 

Activity 153, 167, 202 

Adjacency 139, 202 

Aggregate view 39, 125, 200, 220 

Inter-domain aggregation 126 

Intra-domain aggregation 126 

Analysis procedure 232 

Attainability 139, 205, 214 

Attribute 112 

Attribution 126 

Audi AG 216 

Balanced Scorecard 180 

Behavior 21 

Bipartite 44 

Body-in-white 13 

Boolean operator 115, 140 

Centrality 55, 170, 206 

Chain of relations 113 

Change propagation 45 

Closeness 206 

Cluster 162 

Clustering 140 

Cognitive weight 160 

Complexity 20, 41 

Design complexity 88 

Computability 222 

Concurrent engineering 10 

Connectivity 54, 140 

Construct 78 

Content 78 

Control flow 62 

Control-flow complexity 157 

Criterion 78 

Cybernetics 56 

Decision point 162, 217 

Decomposition 37, 73, 107 

Degree 43, 214 

Degree correlation 167 

Degree distribution 54, 168, 204 

Density 139 

Dependency model 103, 135 

Derived measure 78 

Design Structure Matrix 45 

Differentiation 38 

DMM 46 

Domain 37, 45, 140, 189 

Domain Mapping Matrix 46 

DSM 45, 211 

DSM analysis 48 

DuPont-System of Financial Control 180 

Edge 36 

Efficiency 88 

Elementary Building Block 120 

Engineering design process  
87, 110, 136 

Entity 36 

Entity-relationship model 197, 218 

Enumeration 141 

Fan criticality 205 

Fan-in 172 

Fan-out 172 

Feedback 192, 211 

Flexibility 187 

Forerun factor 158, 171, 208 

Framework 177, 183, 192 

Fundamental metric 78 
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Cycle 44, 140, 158, 171 

Cycles 210 

Decision making 189 
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Goal-oriented analysis 98 

Goal-Question-Metric 179 

Granularity 151, 162 

Graph 43, 50 

Grouping 162 

Hierarchy 157, 207 

House of Quality 178 

Inference 24

 

Information Theory 57 

Instantiation 37, 38 

Interface 188, 216 

Interoperability 69 

Iteration 214 

Level of detail 151 

Logic operator 116 

Management by Objectives 89 

McCabe’s Cyclomatic Number 156 

MDM 46

 

Meaningfulness 77, 151, 229 

Measurement system 79 

Measurement theory 77 

Absolute measure 141 

Comparative measure 141 

Meta-MDM 124, 197, 219 

Meta-model 105 

Metric 77

 

Metric designator 200 

Model 36

 

Meta-model 69 

Process chart 17 

Process model 10, 122, 163 

Quality of the model 22 

Module 81, 172, 196 

 

Nested operators 155 

Network architecture 103 

Network Theory 52 

New Institutional Economics 57 

Node 36 

Number of cycles 171, See cycles 

Number of cycles per edge See cycles 

Number of cycles per node See cycles 

Number of feedbacks 211 

Number of reachable nodes  

  See reachability 

Occurrence 141, 210 

Operations Research 57 

Organizational decomposition 187 

Organizational learning 89 

Outlier 24, 145 

Passive metrics 162 

Passivity 153, 167, 202 

Path 44, 140 

Path searching 126 

Pattern 40, 137 

Planning 185 

Process 9, 60 

Business process 61 

Engineering design process 61 

Process Complexity 41 

Process analysis 12, 74 

Process management 9, 59, 62 

Process Management 

Goals of process management 64 

Process model 68, 71, 232 

Product architecture 110 

General Motors 163 

General Systems Theory 56 

Geodesic 44 

Goal 136, 183, 184, 216 

SMART goal 184 

Multigraph 43, 226 

Multiple Domain Matrix 46

Multiple-Domain Matrices 102 

Munich Method Model 96 

Munich Procedural Model 179 

Native data 39 
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Relationship 36 

Relationship type 37, 45, 158 

Aggregate relationship type 130 

Principal relationship type 107 

Relationship-type 189 

Relative centrality 170 

Representation 77, 143, 148, 150, 229 

Resilience 54 

Resource consumption 186 

Robustness 162 

Root node 158 

Scale-free network 54 

S-GQM 190 

Six degrees of freedom 53 

Size 139 

Small world effect 53 

Snowball factor 158, 171, 207 

Strategy 184 

Structural characteristic 40, 48, 55, 138

 

Structural characteristics 21 

Structural Complexity Management 34 

Structural Goal Question Metric 96, 234 

Structural Measurement System  

  96, 146, 233 

Structural outlier 24, 141, 145, 191, 228 

Structural Process Architecture    96, 105, 108 

Structural significance 148, 189, 191 

Structure 22, 39 

Suboptimization 192 

Superposition 127, 220 

System 35 

System dynamics 57 

System-graph 124 

Systems Engineering 57 

Transitivity 54 

Transparency 188 

Tree-robustness 172 

Uniqueness 77, 150, 230 

Weight 43 

Weyuker’s properties 80, 152 

 

 

Project 62 

Propagation 162 

Proximity 169, 206 

Quality 186 

Quality Function Deployment 178 

Reachability 139, 169, 205 

Recombination 37, 38 
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