

Complexity Metrics in Engineering Design

Matthias Kreimeyer � Udo Lindemann

 Complexity Metrics

in Engineering Design

Managing the Structure of Design Processes

Matthias Kreimeyer
Engineering Architecture -
Architecture
Dachauer Straße 667
80995 München
Germany
matthias.kreimeyer@man.eu

Udo Lindemann
TU München
Lehrstuhl für
Produktentwicklung
Boltzmannstr. 15
85748 Garching
Germany
udo.lindemann@pe.mw.tum.de

ISBN 978-3-642-20962-8 e-ISBN 978-3-642-20963-5

Library of Congress Control Number: 2011933716

 À Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is

lication or parts thereof is permitted only under the provisions of the German Copyright Law of
for use must always be obtained from Springer.

Violations are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not

tective laws and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

ing, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this pub-

Cover design: eStudio Calamar S.L.

DOI 10.1007/978-3-642-20963-5

concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcast-

imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-

Springer Heidelberg Dordrecht London New York

September 9, 1965, in its current version, and permission

To Monica

FOREWORD BY THE AUTHORS

To manage and improve engineering design processes in a methodical and
systematic manner, an important issue that needs tackling is their analysis,
interpretation and goal-oriented improvement. Although approaches for managing
complex processes exist, a systematical, method-based analysis and improvement
is still highly difficult.

To support the systematic and holistic analysis and improvement of an
engineering design process, this book presents a measurement system that makes
use of complexity metrics to embody various patterns of the interplay of a
process’ entities (e.g. tasks, documents, organizational units, etc.). These metrics
are used to draw inferences about the process’ behavior (e.g. timeliness, need for

communication, forming of opinions, etc.). This way, knowledge about a process
can be extracted from existing process models, or new process models can be
structured systematically by addressing desirable patterns. This supports
management in reducing the risks in process planning through better
understanding how the structure of a process impacts the behavior of a process.
Generating such a means of process analysis and management provides a major
contribution both for academia and industry, especially for the improvement of
large and complex engineering design processes. The metrics embody the
foundations of network theory and the management of structural complexity to
generate a practice-oriented application.

The metrics are supported by a meta-model for process modeling. The meta-model
uses multiple-domain matrices, integrating existing process models across
common domains and relationship types. The modeling method is enhanced with
additional constructs of modeling that act as a bridging between existing
dependency models and established process models.

Furthermore, the analysis approach is operationalized by a framework to select the
metrics in accordance with the goals of the process analysis. To this end, the
metrics are classified and allocated to the common goals of process analysis with
regard to the structure of a process, producing eight different guidelines. To enable
a flexible application, a modular set-up consisting of three steps is chosen: As a
starting point, the strategic level is addressed using common goals of process
analysis. Then, these goals are concretized by typical questions that can be posed
in their context. Finally, these questions are answered using the metrics and parts
of the meta-model.

The overall approach is detailed using three case studies from automotive
development; on the one hand, the modeling and goal-oriented analysis of the
body-in-white design of a premium class mid-size sedan is shown and, on the
other hand, the detailed analysis and extraction of possible weak spots within the
concept design, programming, and testing of electronic control units for an SUV is
regarded. A third case study on general automotive design is used to illustrate all

vii

iterations or rework, and, more generally, to potential weak spots in the overall
structure of a process.

The book is based on a rigorous scientific approach to illustrate the origin of the
presented results as well as the limits of their applicability. At the same time,
much attention was put to illustrating all details in their industrial relevance to
bridge the scientific approach and its industrial application.

Therefore, the book provides both academia and industry with new insights, above
all a comprehensive collection of complexity metrics and their interpretation
towards common problems in process management. It expands literature in
structural complexity management into this field without limitation to its
significance to other areas of application, as e.g. the design and management of
complex product architectures.

At the same time, the research in this book was motivated to come “full circle”,

i.e. it was created in a way that both the modeling scheme, the analysis approach
and the overall guidance about how both modeling and analysis work together
were integrated in a more general framework. This endeavor thus guides the
overall outline of the book. Nevertheless, none of these constituents to the solution
are designed to be exclusive, so that, for example, the complexity metrics can also
be based on models other than the multiple-domain matrices that are used here.

Munich, March 2011 Dr.-Ing. Matthias Kreimeyer

 Prof. Dr.-Ing. Udo Lindemann

individual metrics. Results from the case studies point e.g. to particularly robust
parts of the process, to critical structural bottle-necks, to the core drivers for

THE RELEVANCE OF COMPLEXITY METRICS

Industry and scientific research require methods to support management of
complex engineering development processes in a way that recognises and exploits
the characteristics of their structural complexity. In particular, there is a pressing
need to find ways to exploit the structural knowledge represented in process
models in support of process management.

This research addresses this need through development of a systematic and
scientifically rigorous yet practical approach to modelling and analysing
processes. The approach is clearly demonstrated by application to different case
studies of automotive design. It thereby presents a significant contribution to
practitioners wishing to understand and improve their complex processes. It also
fills a major gap in the scientific literature by further developing and systematising
the emerging area of structural complexity management in engineering design.

The empirical background of this research highlights the complexity of
engineering design and clearly outlines the problem that, even when models of the
activities, information flows, resources etc. are available, such models are
sufficiently complex that problem areas cannot be identified by inspection. The
concept of structural analysis serves here as a promising means to address this by
identifying potential ‘problem areas’ within a complex process.

The main body of this research considers a comprehensive state of the art drawn
from the fields of system theory, graph-theory, matrix-based methods for
structural complexity management, network theory, process management and
software engineering. Contributions from these disciplines are combined, using an
established approach of system analysis, enhanced with a clear goal-orientation.
The solution is therefore based on three constituents:

An enhanced method of process modelling is first introduced that encompasses a
means of combining existing process models. This modelling scheme is, above all,
constructed in a way that it serves as a means of making the use of complexity
metrics compatible with existing models that, similarly, represent dependencies in
a system.

Based thereon, 52 complexity metrics are explained to analyze a process. The
metrics address the clear and pressing need for a rigorous approach to formalise
and prepare the large volumes of data required for process analysis in many
practical situations, as it is often the case with complex systems. At the same time,
the abstract approach is illustrated with extensive tables to support the
interpretation of any findings. Above all, however, the substantial set of 52
metrics should form a major resource for further research in structural complexity
management for engineering design.

Third, both modeling and analysis approach are combined offering a goal-oriented
conduction of process analysis. This completes the description of the new

ix

by showing how the approach can be linked to the real challenges faced in
industry.

Supported by three studies, the book clearly illustrates how the method of earlier
chapters can be applied. The practical application of structural analysis to
understand and improve complex processes is clearly demonstrated and critically
reflected upon.

Cambridge, December 2010 Professor P. John Clarkson

 Engineering Design Centre, University of Cambridge

approach and convincingly supports the technical discussion of previous chapters

BACKGROUND OF THIS RESEARCH

This work results from a series of research projects on the management of
structural complexity at the Institute of Product Development at the Technische
Universität München. Based on a rigorous research approach as a basis to the
systematic obtainment of the results presented in this research, the authors’
involvement in numerous research projects provides an experiential basis to
design a methodology that fulfils all requirements.

The authors were, among other activities, involved in a major study to identify and
conceptualize a possible reorganization of the development departments involved
in the design and simulation of the body-in-white of a large German automotive
manufacturer1. In fact, this project provided the motivation for the research
presented in this research, as the initial study at the company showed that almost
all problems were interconnected, and the systematic determination of
improvement potential, while only “reorganizing” the existing structure, appeared
as an almost insurmountable problem.

The authors were also involved in various projects to improve process
management in engineering design. At a strategic level, a management framework
based on common management models was developed in cooperation with a
management consulting firm to better guide the development of automotive safety
features [KREIMEYER et al. 2006d]. At the operational level, a project to set up
guidelines to access the various committees inside a large automotive
manufacturer was run to improve decision making; to do so, the overall structure
of the various decision processes was analyzed to obtain specific routes through
the various decision-making bodies. Another project was carried out to research
the potential and implementation of architectural standards across all models of a
premium class automotive manufacturer; here, the goal was to establish all
necessary processes to implement the definition of sustainable architectural
standards, derive individual models, maintain and update them, and integrate
future technologies in a cost-efficient manner.

Part of the research presented in this research was done in collaboration with
another large German automotive manufacturer [KÖNIG et al. 2008] [KREIMEYER
et al. 2008d]. In combination with the data available from the reorganization
project described above, these two comparable projects provided ample empirical
data and relevant access to industry to guarantee an approach both pragmatic and
relevant. A third set of empirical data was available publicly [Braha & Bar-Yam
2004].

1 For an overview see [DEUBZER et al. 2007]; a problem description is given in [KREIMEYER et
al. 2005] and [KREIMEYER et al. 2007b]; the core concept is detailed in [HERFELD et al. 2006]
and [KREIMEYER et al. 2006a] and completed in [KREIMEYER et al. 2007a].

xi

[KEIJZER et al. 2007]. A second study was carried out as a benchmark comparing
the engineering divisions of three firms producing diesel engines of various sizes
(400 to 100.000 horsepower). Both studies generated a broad picture of the
necessities and particularities of engineering design.

Furthermore, the authors have been active for a long time in research on structural
complexity management. As co-founders of the research group “Systems

Engineering” at the Institute of Product Development
2, the authors repeatedly

organized the International Dependency and Structure Modeling (DSM)
Conference3, which serves as an international platform for practitioners and
researchers on structural complexity management. The authors were also co-
foundera of the Special Interest Group “Managing Structural Complexity” within

the Design Society, and still act as chairs of this Special Interest Group4. The
authors also re-launched the web-portal www.DSMweb.org5 to provide the
international research community on structural complexity as well as interested
practitioners with a comprehensive set of material, publications, and tutorials to
facilitate the application of methods to manage structural complexity. At the same
time, the authors were directly involved in re-launching the Special Interest Group
on “Modeling and Management of Engineering Processes (MMEP)” within the

Design Society6.

Ultimately, much of this experience resulted in the successful application of the
Collaborative Research Center SFB 768 on “Managing cycles in innovation

processes–integrated development of product service systems based on technical
products”. Within this research center, the authors led the research group on
“Development of models and processes” and supported both project A2

“Modellierung und Analyse disziplinen-übergreifender Zusammenhänge”

(“Modeling and Analysis of trans-disciplinary Relationships”) and B1

“Prozessplanung für die zyklengerechte Lösungsentwicklung” (“Process Planning

for the Efficient Development of Product Service Systems”).

2 see http://www.pe.mw.tum.de, viewed on 20 February 2009

3 see http://www.dsm-conference.org, viewed on 20 February 2009

4 see http://www.designsociety.org/index.php?menu=35&action=21, viewed on 20 February 2009

5 see http://www.DSMweb.org, viewed on 20 February 2009

6 see http://www-edc.eng.cam.ac.uk/mmep, viewed on 20 February 2009

At the same time, two large studies of engineering design were conducted. One
study focused on the collaboration patterns in the “digital factory planning” in
automotive companies and their ties to the engineering design and supply industry

http://www.DSMweb.org5
http://www.pe.mw.tum.de
http://www.dsm-conference.org
http://www.designsociety.org/index.php?menu=35&action=21
http://www.DSMweb.org
http://www-edc.eng.cam.ac.uk/mmep

ACKNOWLEDGEMENTS

This book would not have been possible without the help of numerous colleagues
and friends. My gratitude extends to all of them. Above all, the continuous support
of Udo Lindemann and John Clarkson brought this book to its final state, and their
guidance and input provided the most important foundations.

An important tribute goes to my colleagues at the university, many of whom have
become close friends through our close collaboration. In particular the support of
my friends Frank Deubzer and Ulrich Herfeld need to be mentioned. I have gained
many valuable ideas and much energy during our ongoing discussions and our
fruitful collaboration in different contexts. Maik Maurer, Thomas Braun, and
Wieland Biedermann have helped me develop the ideas of complexity
management much further, both at the institute and at Teseon GmbH. Finally, I
want to thank those colleagues who have helped me with both proofreading and
providing valuable feedback. This, in particular, helped finalizing all the little
details, especially Stefan Langer, Christoph Baumberger, Ralf Stetter, Udo Pulm,
and Willem Keijzer. Of course, the many helping hands deserve my gratitude,
among them Nikolas Bradford, Matthias Gürtler, and Caspar Sunder-Plassmann.
Similarly, the support of my colleagues at MAN Nutzfahrzeuge, especially
Wilhelm Heintze, enabled me to make this book possible.

In addition, special thanks goes to the international research community,
especially Tyson Browning, Ed Crawley, Mike Danilovic, Steven Eppinger,
Georges Fadel, Andrew Kusiak, Anja Maier, Don Steward, and David Wynn.
Their input and ideas and their continuous provision of new references helped me
to complete many of my concepts, whose full development would otherwise not
have been possible.

Lastly and mostly, I am deeply grateful to my parents, to Monica, and to my
friends for supporting me all the while. Their patience and comprehension eave
me the strength necessary for the finishing touch.

Munich, December 2010 Matthias Kreimeyer

xiii

CONTENTS

1. 9

1.1 Preface ...9

1.2 A practical application: A design process at Audi AG 13

1.2.1 Description of the process ... 13

1.2.2 Modeling the process as an EPC process chart 17

1.2.3 Deficits when analyzing the process chart using existing methods . 17

1.2.4 Conclusion: Systematic analysis of a process chart 20

1.3 ... 21

1.3.1 The problem: Systematic analysis of a process chart 21

1.3.2 Basic hypotheses and research questions .. 23

1.3.3 The approach used in this research .. 26

1.4 Context of developing complexity metrics.. 26

1.4.1 Goals of this research .. 26

1.4.2 Basic requirements of the solution .. 27

1.4.3

1.4.4 What this book is not about ... 29

1.4.5 Related fields of science .. 30

1.5 Structure of this book .. 30

2. The foundations of complexity metrics 33

2.1 Structural complexity of a system ... 33

2.1.1 General notions of managing structural complexity 35

2.1.2 Graph Theory .. 43

2.1.3 Matrix-based methodologies to manage structures 45

2.1.4 Network Theory .. 52

2.1.5 Other approaches to managing complex systems 56

2.1.6 Summary ... 57

2.2 Structural aspects of process management .. 59

2.2.1

Processes in Engineering Design ... 59

Complex processes in engineering design

The need for systematic analysis in practice

1

Targeted audience .. 28

 Contents

2.2.2 Goals of analyzing, improving and managing processes 64

2.2.3 Process models and their structural content 66

2.2.4 Strategies to analyze design processes and models 72

2.2.5 Summary ... 74

2.3 Metrics to analyze the structure of a process... 75

2.3.1 Basics and measurement foundation ... 75

2.3.2 Metrics to describe networks ... 79

2.3.3 Metrics in software engineering .. 79

2.3.4 Metrics in process management .. 82

2.3.5 Metrics for engineering design processes .. 85

2.3.6 The limits of using metrics in an organization 87

2.3.7 Summary ... 89

2.4 Directions from the state of the art .. 91

3. 93

3.1 Solution design process ... 93

3.2 Requirements for the solution design .. 94

3.3 Constituents of the solution ... 95

3.4 Overall concept: Analysis procedure .. 97

4. Modeling the structure of design processes 101

4.1

4.2 MDM-based modeling of the structure of a process 102

4.3 The Structural Process Architecture model ... 104

4.4 Specific aspects of modeling engineering design processes.................. 109

4.4.1 Alignment of the process structure with the product architecture . 109

4.4.2 Inclusion of attributes to nodes and edges 111

4.4.3 Decision points modeled as Boolean operators 114

4.5 Building the process model ... 120

4.5.1 Generating a process model .. 121

4.5.2 Aggregate views recombining domains and relationship types 123

4.5.3 Example of a process model for engineering release
management .. 130

2

Concept of an integrated set of complexity metrics

Design processes as a multi-layered network .. 101

Contents 3

4.6 Conclusion: MDM-based process modeling ... 132

5. Complexity Metrics for Design Processes 133

5.1 Assessing structural characteristics using metrics 135

5.1.1 Basic and combined structural characteristics 135

5.1.2 Solution principles for structural metrics 137

5.1.3 Evaluation of structural characteristics using structural metrics ... 138

5.1.4 Structural outliers .. 142

5.2 Overview of the Structural Measurement System 143

5.2.1 A comprehensive set of complexity metrics 143

5.2.2 Relevance and limits of basic structural metrics 147

5.2.3 Relevance and limits of combined and specific structural metrics 150

5.2.4 Classification of available metrics ... 157

5.3 An example application of the Structural Measurement System 159

5.3.1 The process in focus .. 159

5.3.2 Overview of the analyses using structural complexity metrics 161

5.3.3 Analyses using complexity metrics for the overall process model 162

5.3.4 Analyses using complexity metrics for each task 163

5.3.5 Analyses using complexity metrics for each module 167

5.3.6 Conclusions for the regarded process .. 169

5.4 Conclusion: Structural metrics .. 171

6. The S-GQM framework to select metrics 173

6.1 Existing frameworks to facilitate the analysis of a system 173

6.1.1 Quality Function Deployment and the House of Quality 174

6.1.2 Goal-Question-Metric ... 175

6.1.3 Balanced Scorecard ... 176

6.1.4 Directions and requirements .. 178

6.2 Systematic access to the structure of a process 179

6.2.1 Goals and questions of structural process analysis 180

6.2.2 Allocation of metrics, domains and relationship-types 185

6.2.3 Identifying structural outliers .. 187

6.2.4 Structural significance of the outliers .. 187

 Contents

6.3 Using and adapting the framework ... 189

6.4 Conclusion: S-GQM framework for structural analysis 190

7. Industrial application of metrics 191

7.1 Electronic control unit design: General analysis in Automotive
Development .. 191

7.1.1 Goals and focus of the project ... 192

7.1.2 The process model used .. 192

7.1.3 Analysis and findings .. 195

7.1.4 Implications and validation ... 208

7.1.5 Reflection .. 210

7.2 Automotive design process at Audi AG: Analysis of interfaces 211

7.2.1 Goals and focus of the project ... 212

7.2.2 The process model used .. 213

7.2.3 Analysis and findings .. 218

7.2.4 Implications and validation ... 223

7.2.5 Reflection .. 224

7.3 Conclusions from the case studies... 225

8. Conclusions and outlook

8.1 Summary of results ... 227

8.2 Reflection .. 228

8.2.1 Strengths and weaknesses ... 228

8.2.2 Implications for industry ... 231

8.2.3 Implications for Research .. 233

8.3 Outlook.. 233

9. References 235

10. Appendix 271

10.1 Structural content of process modeling methodologies 272

10.2 Conversion of a process with logic operators .. 288

10.3 Nesting of Boolean operators .. 295

10.4 The complete Structural Process Architecture 297

227

4

Contents

10.5 List of structural metrics ... 298

10.6 Computability of metrics ... 390

10.7 Classification of metrics .. 392

10.8 GQM-Framework for metrics ... 396

10.9 Complete results of case study 7.2 .. 398

11. Keyword index 401

5

 Contents

LIST OF ABBREVIATIONS

ARIS Architecture of Integrated Information Systems

BSC Balanced Scorecard

BPMN Business Process Modeling Notation

CAD Computer Aided Design

CAE Computer Aided Engineering

CFC Control-Flow Complexity

DMM Domain Mapping Matrix

DSM Design Structure Matrix

EBB Elementary Building Block

eEPC Extended Event-driven Process Chain

EPC Event-driven Process Chain

GQM Goal-Question-Metric

HOQ House of Quality

IDEF Integrated Definition Method

IT Information Technology

IUM Business-Process Modeling
(Integrierte Unternehmensmodellierung)

MCC McCabe Complexity

MDM Multiple-Domain Matrix

NVH Noise Vibration Harshness: domain of simulation

oEPC Object-oriented Event-driven Process Chain

OMEGA Objektorientierte Methode für die
Geschäftsprozessmodellierung und –analyse

PERT Program Evaluation and Review Technique

PMM Process Module Methodology

QFD Quality Function Deployment

SADT Structured Analysis and Design Technique

S-GQM Structural Goal Question Metric

SMS Structural Measurement System

SPA Structural Process Architecture

UML Unified Modeling Language

YAWL Yet Another Workflow Language

6

Contents

LIST OF SOFTWARE TOOLS

ABAQUS Solver for non-linear calculus by ABAQUS Inc.

ANIMATOR Postprocessor by Dassault Systèmes

ANSA Preprocessor by BETA CAE Systems S.A.

CATIA Commercial CAD System by Dassault Systèmes

COVISE COllaborative VIsualization and Simulation
Environment: postprocessor for computational flow dynamics
simulations by VirCinity GmbH

ENSIGHT Computational flow dynamics postprocessor tool
by CEI Corp.

EVA EVAluator: Postprocessor software

FALANCS Stress and strain simulation tool by LMS International

FEMFAT Finite Element Method - FATigue: Fatigue simulation tool
by Engineering Center Steyr GmbH & Co KG

GS Mesher Surface and Solid Mesher
by MacNeal-Schwendler Corporation

HYPERMESH Preprocessor by Altair Engineering GmbH

ICEM Parametric CAD surface modeler by ICEM Ltd.

LOOMEO Software to support Multiple-Domain Matrices
by Teseon GmbH

MEDINA Pre- and postprocessor
by T-Systems Enterprise Services GmbH

MS OFFICE Office Product Range by Microsoft Corp.

NASTRAN NAsa STRuctural Analysis:
Solver by MacNeal-Schwendler Corporation

PAM CRASH /
PAM VIEW

Solver and viewer for crash simulation by ESI Group

PATRAN Pre- and postprocessor by MacNeal-Schwendler Corporation

PERMAS Solver for linear calculus by Intes GmbH

POWERFLOW Computational flow dynamics simulation tool by Exa Corp.

SFE Concept CAD program with integrated preprocessor and mesher
by SFE GmbH

STAR CD Simulation tool for fluid flow, heat transfer and stress
by CD-adapco

 7

1. Complex processes in engineering design

1.1 Preface

As globalization increases, the time to market continues to decrease and customers
can choose among a variety of suppliers and demand better prices, better quality,
and more and more customized products [COOPER & EDGETT 2005].

Companies have to cope with this trend, especially in their engineering
departments [SPATH et al. 2001]. To do so, several strategies have become
available, which continue to evolve over time. The claim to operate in a “lean”

manner, for example, has recently found its way from the factory floor to the
engineering department [GRAEBSCH et al. 2007]. One of the constants to raising
efficiency for many decades now has been process management [SMITH 1996].

The aim of process management is a better definition and control of the processes7
with respect to the “three sacred cows”: “time, quality and budget” [KNEUPER
2007] [PMI 2003]. Process management works under the assumption that a better
definition and control of a process enables a manager to know more about its
price, duration and possible risks [DINSMORE & CABANIS-BREWIN 2006]. These
goals, however, demand an in-depth knowledge of the processes that govern a
company.

Process management now includes many facets, for example, scheduling,
communication, resource management, and others [BECKER et al. 2005], and has
developed many different models, methods, and tools. This is not only the case in
general business process management8, but also in the management of engineering
design processes9 [HALES & GOOCH 2004] [CLARKSON & ECKERT 2005]. In fact,
many approaches from the management of business processes remain valid in
engineering design, yet their application is complicated by the fact that creativity,
moving targets, the management of uncertainties and the limited ability to plan
any generation of knowledge during the process have to be considered
[HATCHUEL & WEIL 2003] [VAJNA 2005, p. 371]. These specific facts — together
with the need for a detailed division of labor — have made it necessary to
incorporate many points of synchronization in any engineering design process,
thus causing all entities in a process to be tightly interwoven [COATES et al. 2000].
This is especially the case for products that are of an interdisciplinary character,
e.g., mechatronic devices or product-service systems.

7

process involves the processing of tasks, including their inputs and outputs, as well as the
necessary organizational aspects, such as the company organization, resources, and milestones.

8 Compare Section 2.2.1 for a closer review of business process management

9An overview of current practices and strategies is given, e.g., by LINDEMANN, comparing
different strategies and problem-solving models [LINDEMANN 2007, pp. 33-35]; a rather formal
approach is given by BALDWIN, visualizing engineering design as a transformation of input
parameters into output parameters [BALDWIN & CLARK 2000].

© Springer-Verlag Berlin Heidelberg 2011

M. Kreimeyer and U. Lindemann, Complexity Metrics in Engineering Design: Managing the

 The term process, being central to this research, is defined in section 2.2.1; in this research, a

Structure of Design Processes, DOI 10.1007/978-3-642-20963-5_1,

9

10 1. Complex processes in engineering design

As a commonly practiced strategy to raise efficiency and shorten process lead
times through parallelization in engineering design, concurrent engineering
[BULLINGER & WARSCHAT 1996] has brought with it an intensified need for a
networked engineering design process. In concurrent engineering processes, more
than ever before, tasks are not simply put into sequence, with one task waiting for
the preceding tasks to finish, but they are processed in parallel, and interlinked to
be synchronized on the go to reduce the cycle time while the individual artifacts
within the process are gradually concretized. This has created an even greater need
for densely networked processes, as currently even partial results have to be
checked for their mutual dependencies [KREIMEYER et al. 2008c].

A deeper look into engineering design processes reveals that such networks of a
process exist on many levels. Not only are the tasks interlinked [EPPINGER 2001],
but also the documents [ILIE et al. 2008], the IT Systems [BURR et al. 2003], and,
above all, the protagonists of the process, i.e., engineers and management who
communicate10 with each other [SCHÖN 1983, p. 76]. In fact, HERFELD concludes
that the management of an engineering design process necessitates a balanced
improvement and the mutual calibration of all involved perspectives that are
relevant [HERFELD 2007, p. 100]11.

The methods used in process management make these different networks explicit
as process models or process maps. In fact, “business process models are an

important knowledge source for managerial decision making” [DALAL et al.
2004]. Figure 1-1 shows a process model in swimlane notation: Organizational
units are represented as lanes, where those tasks that a unit is responsible for are
shown as a flow chart. Figure 1-2 shows a complex model of a “real-world”

automotive design process (see also section 1.2), equally organized as a swimlane
model. Such models depict a common time-based plot of the processes taking

10 An overview of the role of human communication in engineering design can be found in
[MAIER 2007, p. 28].

11 HERFELD concludes that the basic views necessary for a well-balanced process improvement
are product architecture (requirements, functions, and components), human actors (in his case
simulation and embodiment design engineers in an automotive company), information (geometry
models, simulation models, communication in general), tools (3D-design tools, finite element
simulation, data management), and the process per se (synchronization points, milestones,
availabilities of resources).

Figure 1-1: Example of a process model

Development

department

Simulation

department

Concept design

department

Collect

requirements

Designate

package

Designate

interfaces

Deliver

know-how

Run digital

mock-up

Detail

components

Simulate

components

1.1 Preface 11

place in a company. Usually, the models represent tasks, actors, data objects and
supporting resources, and they thus represent a partial view of the many network
perspectives there are to a process. These networks are commonly plotted out as
“boxes and arrows”, i.e., qualitative models whose elements are interdependent or
associated. Often, detailed information on process behavior, e.g., runtimes or the
probability of a decision, is not available.

So far, there has been little work to tap the full extent of knowledge embedded in
these process maps [ZAKARIAN & KUSIAK 2000] [MENDLING 2008, p. 103]. While
some quantitative methods are available, e.g., the Critical Path Method (see
appendix 10.1.12), little work has been done regarding the possible meaning of
patterns that arise in the structure of a process. Most of the research available so
far concentrates on the role of iterations in engineering design (e.g., [BADKE-
SCHAUB & GEHRLICHER 2003] [WYNN et al. 2007]).

The research results presented here bridge this gap by showing how the structure
of a process relates to its behavior, as suggested, for example, in [MALIK 2003, p.
93]. They present an approach that is based on analyzing the interplay within the
network of entities of a process. From this network and its characteristics,
inferences about the behavior of the process are drawn — for instance which
actors are “central” (i.e., a characteristic of the structure of the process
organization), and hence with whom effective communication might be critical to
process performance or predictability (i.e., the behavior of the process). To do so,
complexity measures are applied to obtain a condensed view of the characteristics
of processes comprised of many entities. Overall, the goal is, therefore, to extract
the knowledge about the behavior embedded in process models to deduce
implications for their improvement.

In general, processes have become increasingly complex due to rising product
complexity and reduced process lead times. This increased complexity needs to be
managed, and understanding the specific aspects of complexity can reduce risks
and better define and control a process. In this research, complexity metrics are,
therefore, developed that support the structured analysis of a process.

12 1. Complex processes in engineering design

Figure 1-2: Detailed overview of the process of developing the body-in-white of a premium
class sedan

1.2 A practical application: A design process at Audi AG 13

1.2 A practical application: A design process at Audi AG

Before introducing the research approach and the solution design, an example of a
process analysis in automotive body design is explored. This example highlights
the different aspects of process analysis as commonly encountered in process
management. From it, a problem description, the relevant hypotheses, and the
overall goal of the research are drawn to illustrate the background of this research.

The process represents a real development process as practiced at Audi AG,
Germany. AUDI is a brand of the Volkswagen Group, manufacturing passenger
cars and SUVs for the premium segments of nearly all international markets.

First, the context of the actual process is described. Then, the model representing
the process is shown. As this research focuses on how the resulting process chart
can be systematically analyzed, typical analyses are run to show how the
complexity of the process chart can productively and systematically be analyzed.

Figure 1-2 provides an example of a process in automotive body design. The
process chart was set up as part of the initial work in a process reengineering
project. Its scope is the interaction between embodiment design and simulation
departments, comprising 134 different business objects that are processed
concurrently by 160 different tasks. The process involves four major phases, 14
organizational units (three of them external service providers), and 27 different IT
systems. There are 54 major decisions modeled as OR-decision (for reasons of
simplicity, management agreed not to differentiate XOR and OR in the model).
The process is structured as a swimlane model for each organizational unit along
an implicit left-to-right time axis that is not to scale. Nine sub-processes take
place, and they are colored according to their specific focus (different simulations
are run); most of them take place concurrently in two organizational units
(internally and at an external service provider).

1.2.1 Description of the process

The process focuses on the interaction of all embodiment design engineers and
simulation engineers, both internally and externally, who are involved in
developing the body-in-white (Figure 1-3) for serial production. The body-in-
white includes the car body as well as doors, hoods, lids without further
components (axes, motor) and trim (windshields, seats, upholstery, electronics,
etc.). Simulation only considers, in this example, vibration, deformation (such as
crash), and air flow load cases for the body-in-white. Overall, the body-in-white is
a highly complex product. Here, approximately 400 components and 130 different
load cases are used.

Developing such a complex product demands a complex process organization.
The process starts with the official launch of the project12. It ends with the start of

12 It is hard to differentiate in such large development projects between whether the process that
takes place for approximately five years is a project of repetitive character (for every new model
and its derivates) or a process. Here, the term “process” is chosen to emphasize the fact that the

repetition of the process taking place can lead to corporate learning about the process to raise its
efficiency.

14 1. Complex processes in engineering design

detailed production preparation after testing and pre-series are finished, i.e., when
design and simulation are no longer involved to a major extent. Thus, the process
starts with the business object “customer need”, delivered by the marketing

department; it finishes after all components have reached the release level “ready

for purchasing”.

As Figure 1-4 shows, 14 organizational units are involved (shaded). The strategy
department delivers the first input; the concept department and the design
department prepare the initial concepts (two to four) with the support of the body
development department, including the technology design, the body-in-white
department, the simulation departments, and others. After a decision has been
made about which concept is detailed for serial development (generally, elements
of all different concept designs are combined into a final design), the latter three
departments complete the overall design, which is progressively tested and refined
until the “Final Design Freeze” milestone.

All of this is supported by various external services in simulation and
development, and by suppliers who not only deliver the final components but also

13 For nondisclosure reasons, the real nature of the case study is withheld; the case study focuses
on the design process of a mid-size sedan derivative at Audi AG, Germany.

Figure 1-3: Body-in-white of a premium class sedan13 [VOLKSWAGEN AG 2007]
(p. 143 & p. 147)

Figure 1-4: Organizational structure of the organizational units involved in the process
(shaded)

1.2 A practical application: A design process at Audi AG 15

support development as an integrated partner. In the process chart, these service
providers are modeled only as archetypical organizational units.

The process is supported by a complex organizational structure. The development
is done jointly by the pre-development departments, the body design department,
and the interior development department. During the concept phase, a concept for
the body and for the interior is prepared; it involves a technology model that
collects all chains of dimensioning and all technical aspects of the car (e.g., the
envelope of the wheels moving under steering and suspension movement), and the
contour of the car (in collaboration with the designers). The technology model is
initially set up and constantly kept up-to-date to serve as a point of reference for
all other activities. During this early phase, the other departments only act as
support to feed know-how on serial production into the concept phase. At all time
the body design department tries to work ahead of the interior design to ensure a
good fit. As the level of detail rises, the development task is transferred to the
respective development departments (body-in-white, interior, safety applications)
and their development teams (about 800 engineers). This transfer of responsibility
takes place at the end of the concept phase.

While limited simulations and estimations take place in the early phases, detailed
simulation only occurs after the concept is released at the “project decision”

milestone. At first, a scaled model of a predecessor is used, and little by little
information is transferred from the development departments to the simulation
departments with growing concretization. Each of these iterations takes about four
months. The more detailed the models are, the better simulations that can be run;
thus, in the beginning only worst-case scenarios are simulated for core load cases,
whereas variant models of all components and their functionalities can be
reviewed later. In the process model, the growing degree of integration of the
simulation departments into the development process can easily be spotted in the
lower half of Figure 1-2 (the different types of load cases are marked as colored
sub-processes), where there are more and more tasks shown over the progression
of time. After initial structural simulations, the air flow is optimized, including air
conditioning. At the same time, using the same basic simulation model, vibration
(i.e., eigenfrequencies, noise, and harshness) and deformation (crash, passenger,
and pedestrian protection) are simulated. Most geometry and simulated models
are, in fact, prepared by external partners (so-called “extended workbench”),

coordinated by the internal development engineers. When the first components are
available about halfway through the prototype phase, these are tested to validate
the simulation results and to test load cases that cannot be simulated with
sufficient quality (e.g., fatigue). The prototype phase concludes when a series of
full prototypes has been validated and a final concept is ready for serial
development at the “vehicle concept decision” milestone.

After the final vehicle is decided on, all components are prepared for serial
production during the serial development phase. Again, many simulations and
tests are run to ascertain the properties of all components and assemblies. At the
end of that phase, the design is “frozen”, i.e., no more changes to the geometry are
permissible, as the production tools are about to be ordered, which represent a
large investment and, therefore, should not be further altered.

16 1. Complex processes in engineering design

During the final (pre-production) phase of the development process, typically,
endurance-related issues are solved, and the final release is prepared to enable
purchasing production equipment. Figure 1-5 provides an overview of the relevant
phases and the milestones that start and end a phase; in fact, the concept phase
consists of two phases, with an intermediate review. In the process these phases
are further detailed to work packages of two to three weeks’ size.

The tasks of the engineers are executed using complex software tools. Most tasks
are supported by specific tools, which are strongly interrelated both via mutual
interfaces between them and across the exchange of information throughout the
process. For each, different models and other information objects are required as
input, and most tools are linked to one another to some extent by generating
output data that is further processed. Figure 1-6 lists the occurrence of different
systems in the process, showing the variety of different systems in use.

Figure 1-5: Overview of major milestones and phases of process in focus

Figure 1-6: Employment of different IT systems in the process (name of system &
occurrence)

Planning

decision

Vehicle concept decision Final design freeze Launch of production

Pre-production phaseSerial development phasePrototype phaseConcept phase

Model decision

Project decision

1.2 A practical application: A design process at Audi AG 17

1.2.2 Modeling the process as an EPC process chart

The model is set up as an EPC model (see appendix 10.1.1), following common
rules of modeling, as a network of alternating tasks and business objects14. For all
tasks, the supporting IT systems are added as attributes, and the responsible
organizational units are allocated using horizontal swimlanes. Milestones appear
as columns in the model, collecting necessary business objects.

The model was designed using the ARIS Toolset. A printed map with font size 7
reaches a printout size of A0 (841mm x 1189mm); it is thus barely readable. At
the given level of detail (“control level,” see Figure 1-7), it is impossible to
recognize all 1089 relations (between any two entities) that are modeled. The
model is set up at a medium level of detail according to Audi AG’s specification
of the “control” level.

1.2.3 Deficits when analyzing the process chart using existing methods

A process chart is almost always the starting point to analyze and improve a
process. The primary reason to build such a process model is to gain an overview
of entities that are relevant to the improvement project. In the context of the
process chart from Figure 1-2, the intent was to improve collaboration between the
different departments, i.e., their information exchange and their interfaces. To do
so, an overview of all business objects and their purpose was needed. More
generally, a process chart satisfies different demands. Above all, it helps gain an
overview of a process, i.e., what entities are involved to what extent. As such,
process charts are frequently used to document the organization, to reorganize a
company by focusing on its processes, to facilitate continuous process
management, to support process control, to certify a company according to, for
example, ISO 9000 standards, to allow benchmarking with other divisions or
companies, to manage knowledge embedded in the process, to select and
customize enterprise resource planning tools, to introduce new software and

14 EPC prescribes an alternation of functions and events, with business objects as a third kind of
entity; however, the company used a simplified modeling scheme.

Figure 1-7: Levels of detail of process charts

Overall structure:

Value Chains

Control level:

Swimlane Flowchart

Descriptive level:

Flowchart

18 1. Complex processes in engineering design

workflow management, or to simulate processes to better anticipate risks [BECKER
et al. 2005, p. 45].

However, addressing these issues directly by looking at a large process model is
almost impossible, as a quick glance at Figure 1-2 proves. In fact, many of the
goals above are only served implicitly by a process chart, which is often further
analyzed to access the knowledge embedded in the process.

In practice, the problems are less abstract: In the case of the process study
presented here, a short survey15 among the engineers participating in the process
showed the following core aspects necessary for an efficient process:

‚ Transparent definition of responsibilities

‚ Accessibility of tools and methods throughout the process

‚ Fast transfer of information

‚ Constant harmonization of business objects among design and simulation
engineers

A study on the quality of communication was also carried out for the same process
[MAIER et al. 2008]. It pointed to additional key elements for efficient
communication in the process in question. In particular, the following points
turned out to be most important:

‚ Understanding the mutual information needs: Each engineer should know
about what information is available where.

‚ Orientation and transparency: Each engineer should be able to locate his or
her own task in the process and understand its relevance for the overall
process.

‚ Reflection about interaction: Each engineer should be able to consider how
he or she can improve collaboration by communicating in the network.

Unfortunately, a lack of available support for the management of complex
processes prevented the identification of key entities and their mutual relations to
access the root causes and possible drivers of the process. While the process chart
shown (Figure 1-2) was available, no inferences could be drawn from this
structure to detail the above goals with the knowledge represented in the process
model. It was simply “too complex”. At the same time, investing more modeling

effort, for example to simulate the process, served little purpose, as no systematic
basis existed detailing the model [KREIMEYER ET AL. 2010].

Available process management tools offer limited support of a systematic
analysis. Media breaks, for example, can be detected, and lists of elements, such
as the direct input that is necessary to reach a milestone, can be provided. More
complex analyses, for example, the determination of a critical path to finish the
process in time, were not possible, because the extensive data on durations of all
tasks was not available. Equally, it might be intuitive to count those entities that

15 For detailed results, see [KREIMEYER et al. 2005] and [KREIMEYER et al. 2006b].

1.2 A practical application: A design process at Audi AG 19

are modeled16 the most often (body structure: 11 times; cockpit: 8 times; mounted
parts: 7 times). However, this still does not indicate how they are embedded in the
process. As such, only a few first impressions could be collected, and it is hard to
determine the core business objects of the information exchange.

A major driver of resource consumption is iteration. However, no direct indication
of where these iterations would typically show up could be detected. While there
are very few short iterations (i.e., direct rework or improvement among a few
entities), those of medium length, involving 15 to 25 tasks (and thus business
objects) play a major role. This is partly in the nature of the process chart, as only
the interaction between the different tasks is modeled, but not, for example, the
rework that needs to be done to each task. However, in order to improve the
collaboration across departmental interfaces, such “longer” iterations are of

interest, as they dominate the collaboration. Table 1-1 and Table 1-2 show what
business objects and what links between tasks and business objects appear the
most often. Whereas the technology model is among the top four objects, it is
much less involved in controlling the iterations than the crash results, even though
the technology model is designed as a central means of coordinating all design
efforts by collecting all relevant core measures and information.

16 EPC uses an object-oriented modeling concept. It is thus possible (and quite common) that an
object, such as a task or a business object, is instantiated several times across the process model,
e.g., to represent iterations.

Table 1-1: Occurrence of business objects in iterations

Table 1-2: Occurrence of control influences of tasks on business objects within iterations

20 1. Complex processes in engineering design

In the case of the crash simulation results, this could mean that a core team that
manages the information on this data has a strong influence on how smoothly the
process runs. If the team were able to influence the crash results in a way that all
partners agreed on, an early exchange of (possibly immature) information, and
thus unwanted iterations, might be prevented.

Equally, tasks that lead to the important business objects appear quite often,
although they are a small percentage of all the number of iterations; the results of
the tasks listed in the tables are the most commonly reworked ones across
department frontiers. Again, the controlling influence of the crash simulation is
easily visible. However, the setup of the technology model is not among the top
five elements, because that technology model is drawn from many sources and,
thus, its formal set-up is not as relevant as other tasks. At the same time, the
concept design of the cockpit also drives iterations.

To further estimate the impact of the crash simulation results, this object was
turned into the root node of a hierarchy representing the “avalanche” of

subsequent tasks and business objects that depend on it to better visualize its
impact. During the project, this was done manually for all tasks, as no algorithmic
support was available. Figure 1-8 shows the 101 entities that can be reached
directly or across other intermediate entities from the root node at the top. As the
figure shows, the subsequent tasks and business objects are reached via different
levels; yet, all subsequent entities are dependent on this initial entity.

1.2.4 Conclusion: Systematic analysis of a process chart

The complexity17 of a design process spawns not simply from the tasks the process
consists of, but other entities that are relevant to the process and contribute to the
fact that an engineering design process is perceived as complex. In fact, a complex
product demands a complex process and a complex enterprise organization; yet,
these different views are not independent of each other [EPPINGER 2001]. This
complexity is mostly due to the different types of entities, their large number, and
the relationships among them that often create knock-on changes. Yet, there is no
methodical support to systematically analyze the relationships among the different
entities in a complex process at such a high level of process management.

17 The term “complexity” is reviewed in detail in section 2.1.1.

 Figure 1-8: Hierarchy with crash simulation results as root node (generated with Loomeo)

1.3 The need for systematic analysis in practice 21

As the short case study shows, a systematic in-depth analysis of a process is, thus,
a complex undertaking. Yet, there are several characteristics of the structure of the
process, such as tasks or business objects, which are central to information
exchange and govern the overall timeliness of the process or necessitate a great
amount of communication to ensure coherent results. For effective process
improvement, a comprehensive overview of the characteristics of a process is first
necessary which prioritizes an in-depth analysis of possible improvement
measures. At the same time, understanding the governing structural patterns helps
reduce risks in process management.

In fact, most results of the project that followed the case study shown above were
based on the few results that were just outlined. Whereas these are based on the
experience of the engineers who participated in setting up the model, the results
are erratic, nevertheless, as they were not obtained in a systematic manner.

1.3 The need for systematic analysis in practice

As shown, no systematic support of analyzing a process in terms of its structure is
available yet, which allows a high-level analysis to determine its possible weak
spots and to prioritize further investigative efforts. To represent processes18 at a
given level, process models are used. These usually take shape as process charts,
i.e., large maps that represent the process in a flow-oriented manner. These maps
are commonly found in any company, and using them efficiently to improve
processes by using the knowledge represented in these charts is still very difficult.

Processes serve, in the context of this research, as a form of dependency modeling
with specific semantics. Being very common in industry, they therefore are an
adequate means of illustrating what shape dependency models can take in
industry. The complexity metrics shown later are, above all, tailored to generically
work with such dependency models.

1.3.1 The problem: Systematic analysis of a process chart

As the example showed, extracting inferences about the process behavior from a
process map is a difficult issue that has not been methodically supported so far.
Here, the complexity of the process model represents the actual barrier (Figure
1-9) to gaining an in-depth understanding of the process: Resolving the problem at
an even more abstract level can possibly aid understanding the chart better, and it
will later be shown that structural characteristics and complexity metrics, for
example, can support the aggregated characterization of a structure. However, it is
equally necessary to find the way back from abstraction to a level of application to
make the methodology suitable for use in industrial practice. Therefore, a
complete solution to the problem requires not only analysis at an abstract level,
i.e., the upward path of the model shown in Figure 1-9, but the interpretation also
needs to be methodically supported, i.e., the downward path.

18 The terminology specific to this research is only introduced here; details are given in section
2.1.1.

22 1. Complex processes in engineering design

The knowledge of the process is, to a large extent, found in the interplay of tasks,
business objects, organizational units, and other entities. This interplay forms a
network-like structure of all entities that are involved in the process; in the
introductory case study, not only were tasks and business objects tightly coupled,
but also, for example, the different departments and the supporting IT systems.
This leads to the basic assumption that the intentional design of this network-like
system of a process governs its behavior, and that if the process’ entities were
coupled differently, the process would exhibit a different behavior.

This interplay takes shape — at a finer level of detail — as certain structural
patterns that are referred to as “structural characteristics”; these patterns are the

basic constellations of a few entities and their relations with other entities. A
process is, therefore, assembled from many of these patterns, and the literature
(e.g., [BAR-YAM 1997]) shows that these patterns embody small units of behavior
that point to the behavior of the overall process. Making the patterns accessible,
therefore, means making the knowledge embedded in the process accessible.

Describing this structure19, however, is not simple. There are many perspectives to
a process, such as tasks, business objects, people, or IT systems. These
perspectives are not independent of each other and thus contribute to the patterns.
At the same time, the process behavior is only generated by the interplay of all
perspectives. To gain a complete overview of a process, therefore, it is necessary
to review all entities and their involvement in every possible pattern. However,
improving a process is most useful in those places that drive the overall process or
that are, at least, of high impact. Therefore, identifying those patterns that stand
out from the rest of the process is a good approach to find the relevant patterns.

19 The term “structure” is critical for this research. Defined in section 2.1.1, it addresses, at its
core, the pattern that is generated from a constellation of objects and their mutual relations. For
example, an engineer and his communication with his partners in the process characterize the
importance of the engineer for the process from the standpoint of the structure of communication
in the process.

Figure 1-9: Solving technical problems via abstraction, based on [LINDEMANN 2007, p. 29]

1.3 The need for systematic analysis in practice 23

The problem is further aggravated by the fact that process models are often
inconsistent or incomplete. While such low quality of the model is problematic, it
is often the most valid, when the process modeled is actually controversial; in
other cases, only parts of a process are modeled explicitly, while their
environment is intentionally neglected. Nevertheless, often the part of the process
the process chart focuses on is still meaningful and can be analyzed. In general,
however, the quality of the analysis will only be as good as the input to it.

Finally, many process models only provide qualitative information for a process
(i.e., “boxes and arrows”), and thus make it impossible to use simulation

approaches or more sophisticated methodologies to analyze the process. Yet, the
patterns (and thus the knowledge) are already embodied in these “boxes and

arrows”. The challenge is to relate the structure to the behavior of the process
[KAUFFMAN 1993] [HOLLAND 1996] [BAR-YAM 1997]. Of course, there is no
absolute truth about this inference, as different companies (and thus different
processes) have different cultures, which then lead to different foci of process
organization; while in one company, the concept of having single employees as
center coordinators of design knowledge might be desirable, a different company
might prefer to store knowledge in a database, for example, and not depend on
single employees that much. Yet, there are certain patterns that may appear in a
process, and these patterns are linked to one or more common kinds of behavior in
a process. Figure 1-10 shows an example of engineers in a process,
communicating via channels (e.g. team meetings). Whereas in the pattern on the
left no designated coordinator of communication is discernable, in the pattern on
the right all major flows of information go through the person at the center.

As engineering design processes can be very large, the identification “by the

naked eye”, as in the example in Figure 1-10, is typically not possible, as the case
study in the beginning of this section was able to prove. Therefore, a formal
approach is necessary to handle large systems that are densely crosslinked. It may
also need to be supported by a computer-based tool or by algorithms that can be
computed in realistic run-times.

1.3.2 Basic hypotheses and research questions

With the focus on extracting knowledge about a process’s behavior from the
constellation of its elements and relations, this research was based on three
fundamental hypotheses. These are introduced here, as they delineate the approach

Figure 1-10: Example of two possible communication patterns in a process

24 1. Complex processes in engineering design

developed in this research, and their knowledge permits the solution that is
presented to be better understood.

The first hypothesis represents the basic understanding of a system (i.e., a
process); commonly, processes are seen as a time-oriented flow of tasks and
documents. Here, however, all supporting entities as well as their coupling will
also be considered. An engineering design process is thus not simply a set of tasks
that can be put into interaction, but rather forms a network of multiple layers
consisting of different classes of entities20 (such as tasks, organizational units,
milestones, resources) [GAUSEMEIER et al. 2006, p. 223] [ZACHMAN 1987]. This is
generally due to the high degree of integration seen in almost any kind of product
today; in turn, it both causes and necessitates many different stakeholders in a
process, who need to collaborate [SPATH et al. 2001]. Therefore, when improving
a process, it is necessary to gain a detailed understanding of the process and all
involved domains that enable the process [HERFELD 2007, pp. 92-93]. An
engineering design process21 is a complex socio-economic construct that is unique
within each company and for each product. Typically, the holistic analysis of a
process should involve different views of the process, represented by the available
domains, as well as its relation to the product architecture [SOSA et al. 2004b].

The second hypothesis points to the assumption that it is possible to identify
certain patterns of entities22 in a process that drive the behavior of the
process. This phenomenon is referred to as inference [KAUFFMAN 1993]
[HOLLAND 1996] [BAR-YAM 1997] [CANTAMESSA et al. 2006]. In fact, being a
network of multiple layers, a process forms a complex system. This system
“process” only emerges because the goal-oriented and purposeful configuration of
its entities provides value over the pure sum of all the entities [BOARDMAN &
SAUSER 2006]. Thus, methods of understanding, modeling, and managing systems
can be applied [MILLER et al. 2006]. Figure 1-11 shows an example of the degree
distribution of a network, which allows the assessment of the homogeneity of a

20 These are later addressed as domains (i.e., a class of one type of entity of a process) and
relationship types (i.e., one class of relations between entities). See section 2.1.1

21 While we speak of processes, in fact, many processes actually exist as projects [LINDEMANN
2007, p. 16]. See page 69 for more details.

22 This constellation of entities will later be referred to as structural characteristics of a network.
Possible structural characteristics are explained in section 2.1.6.

Figure 1-11: Example of a structural characteristic (a “hub”), the possible related behavior,
and the assessment

Structural characteristic Possible failure of central entity Assessment using degree distribution

n
u
m

b
e
r

o
f

n
o

d
e
s

w
it
h
 d

e
g

re
e
 x

degree x

1.3 The need for systematic analysis in practice 25

process (details are found in appendix 10.5.12): For a network that is structured
around a central hub, there is a high risk of failure of the overall process
associated with the failure of the central entity connecting the overall process.
This can be identified using a (schematically represented) degree distribution.

The third hypothesis proposes that the identification of structural outliers is an
appropriate means for the high-level analysis of the behavior of a process. As
outliers, such instances are identified that particularly stand out with regard to
their involvement in a pattern of entities. While, of course, a process has a limited
number of entities that is often too small to obtain statistically significant results,
the concept of the outliers essentially embodies the Pareto principle23 [REED 2001]
by highlighting the core entities of a system.

In fact, the identification of outliers makes it possible to pinpoint entities that are
of extremely high or low impact, thus significantly driving a pattern of entities
[HAWKINS 1980]. Outliers are, therefore, those results that are “numerically

distant” from the main population of results, and they commonly show up in

histograms or other distributions [BARNETT & LEWIS 1998, p. 16].

The approach presented here is not meant to rate the outliers in terms of their
possible negative or positive contribution, even though every structural
characteristic present in the process will inevitably contribute to the process
quality. However, as the implications of an outlier vary for different companies,
the neutral term “outlier” was chosen to indicate that an outlier is only meant to
point to a possible problem without judging if there actually is a weak spot in the
process.

Based on these hypotheses, the research focuses on a main research question:

How can a process be systematically analyzed (I) in terms of the structure of
the relations of its entities (II) in a goal-oriented manner (III) to point a user
to possible weak spots (IV) and their meaning (V)?

Figure 1-12 visualizes the idea behind this research question: The initial goal is to
analyze the process in a comprehensive and systematic manner. To do so, process
models are to be used to access knowledge about the behavior using the network-
like structure of the process. This analysis is to be given in a goal-oriented
manner, i.e., by providing target-oriented analyses in a compact form that point to
possible weak spots in the overall process structure. Lastly, the interpretation of
these findings is to be supported to better draw inferences about the actual impact
and behavior of the identified weak spots.

23 Also called the 80/20 rule.

Figure 1-12: Focus of this research

Behavior!Weak spots?

26 1. Complex processes in engineering design

The intent of this research, therefore, is in developing a methodical support to
analyze process charts in a systematic manner to obtain a complete overview of
the behavior of the process. The behavioral description needs to be as correct as
possible with the available input data, i.e., in the first step, it should not be
supported by additional simulations or other methods but enable a compact picture
of the overall process and its improvement potential. The results of the analysis
need to be consistent to allow for a comparison of the process’ entities to point to
possible weak spots. They need to be intuitive and supported by clear guidelines
that allow transferring the results back to an operational level.

1.3.3 The approach used in this research

The solution presented was developed from a strategy similar to that of Agile
Development. In a repetitive pattern, small entities (i.e., the metrics and individual
aspects of matrix-based process modeling) were developed (based on
requirements from various companies), tested, and improved. Each time, a second
step consisted of integrating the partial solutions into the overall context, again
involving testing, improving, and completing. As such, the research approach used
is in line with common iterative research approaches in technical sciences
[MINNEMANN 1991, p. 16]. It is also consistent with research approaches in
economics and management, in general, where empirical (requirements, test, and
adaptation) and conceptual work collude [KORNMEIER 2007, p. 43]. This research
is, in fact, very similar to action research [ARGYRIS et al. 1985, pp. 36-40].

This research can be classified as a development of the application of principles
(as commonly done in economics and management science [KORNMEIER 2007, pp.
23]) at a high level of abstraction. At the same time, the generalization of the
approach is intended to explain why processes behave in a certain manner due to
their structure. However, the approach does not present a means of prognosis per
se, but only elements of prognosis [KREIMEYER et al. 2006c] [HEYMANN 2005, pp.
513].

1.4 Context of developing complexity metrics

As the research question shows, this research is intended to generate a
methodology that facilitates the systematic analysis of a process by regarding and
evaluating its structure. Therefore, the following goals, requirements, and limits to
the solution need to be considered.

1.4.1 Goals of this research

To address the problems encountered in the analysis of a large and complex
engineering design process, this research was initiated to meet the following goals:

‚ Establishment of a structural process modeling method:

o Show that a process consists of multiple layers of a network

o Develop a pragmatic process model that allows this structure to be
accessed integrating common process modeling methodologies (to

1.4 Context of developing complexity metrics 27

generate a solution that is suitable for different kinds of process models)
as a common basis for the design of structural metrics

‚ Development of structural metrics tailored to engineering design processes:

o Develop a coherent set of metrics that can describe the structure of a
process network

‚ Setup of a selection framework to guide a process analysis project:

o Set up a framework to select appropriate metrics in relation to the goals
of process analysis

o Show the possible significance for each metric to extend the applicability
of the framework

o Show how a framework can be applied in process improvement

The process model creates the foundation to answer the research question by
providing a common basis and a consistent structure to develop structural metrics.
It uses essentially the first hypothesis by modeling the process as a network
instead of a purely time-oriented flow. At the same time, it addresses the fact that
different process models might serve as a starting point to analyze an existing
process chart. The second goal addresses the main research question directly,
collecting goals, possible metrics, and an approach to identify the main drivers for
the behavior, combining hypotheses two and three. Last, the overall framework
combines the modeling and the analysis method into a measurement system that
enables a goal-oriented application.

1.4.2 Basic requirements of the solution

Generally, this research is intended to deliver a rigorous contribution to design
research, extending the existing body of knowledge and understanding of
engineering design processes, while, at the same time, delivering a practicable
methodology to industry. To this end, this research is based on the common
aspects of research methodology.

At the solution level, there are different requirements of developing a “good”

method. This entails a solution that is complete, correct, consistent, and clear.
Complete refers to several aspects at the same time. On the one hand, the
approach to be developed needs to be complete in regard to its setup, i.e., it should
support the planning of an analysis, the necessary modeling and the analysis itself.
On the other hand, the approach needs to consider, in each of these aspects of the
solution, all possible scenarios, i.e., the planning of the analysis should contain all
relevant elements of an analysis; the modeling needs to embody all possible
modeling constructs, and the analysis should provide a means of analysis for the
possible behaviors found in the engineering design processes. A correct analysis
approach is one that is homomorphous with the process it focuses on. As such, the
elements of the approach to be designed should represent the empirical object as
closely as possible. The analysis approach to be developed needs to be consistent
in itself and with the existing use of similar methods; this relates especially to
metrics that are in use in engineering and software design. Finally, the developed
approach needs to be as clear and as self-explanatory as possible, necessitating

28 1. Complex processes in engineering design

detailed guidelines about how to apply the method and interpret the results
obtained. As the solution presented here consists of three parts, the requirements
are grouped accordingly.

The process modeling framework needs to enable the complete representation of
the structure of a process. It should do so in a formalized way, making an
automated assessment possible. It should be in line with common approaches to

the management of structural complexity, thus not developing a new methodology
but extending existing methods where necessary. It should, as such, integrate the

structural aspects of existing process models to be compliant with the state of the
art in process management. It should, furthermore, be able to represent large

systems in a manageable fashion, allowing, for example, the automated
integration of partial models into an overall model that can be recombined, reused,
or parsed from different sources. It should, thus, provide an adapter to structural
process analysis.

The metrics need to be, above all, relevant to process management. As such, they
should be collected from sources that have empirically validated their usefulness
and applicability. They also need to respect the necessary measurement
foundation24

, which describes the quality of “good” measures. Ultimately, the

metrics should allow an intuitive understanding of the structure to the extent that
is possible for such an abstract entity.

Lastly, the metrics selection framework should enable a straightforward
navigation of all necessary aspects of process modeling and metrics-based
assessment based on relevant concepts, goals, and interests of process
management. It should, therefore, classify the metrics comprehensively and show
their mutual dependencies. Ultimately, it should be created in such a way that it
can later be extended.

1.4.3 Targeted audience

With the author’s experience and the three case studies originating from
automotive design, the focus is on processes similar to automotive design. These
are characterized by a multitude of requirements from various sources that result
in a highly integrated product that is concurrently designed by many engineers
from different backgrounds. The high degree of division of labor corresponds to a
great number of specific artifacts in the process (files, prototypes, etc.) that are
processed by highly specialized resources. The processes are commonly
coordinated by development engineers [HERFELD 2007, pp. 18-20] [SAPUAN et al.
2006]. Other similar contexts could be, for example, aircraft design, the
development of production machinery, or mechatronic household appliances.

The approach is, therefore, tailored for managers, consultants and project
engineers who continually have to plan, improve, and control processes. At the
same time, the solution is meant to improve scientific understanding of

24 Measurement foundation is detailed in section 2.3.1. It describes how measures for a system
can be set up in a systematical and error-free manner. There are various models that explain
“good” complexity metrics, especially provided by the set of Weyuker’s Criteria [WEYUKER
1988].

1.4 Context of developing complexity metrics 29

engineering design processes by providing formalized access to the structure of
engineering design processes.

1.4.4 What this book is not about

As there are many aspects of process management, and because this research
regroups and recombines many different streams of research from different
disciplines, a brief overview of possible misconceptions of this research is given
to ensure that it is understood correctly.

With the focus on structure, the approach developed is tailored to analyze
qualitative models. It does not provide any quantitative model or a more complete
description and analysis of a process outside its structure, e.g., in terms of cost,
run-time of the process, or the amount of manpower needed to design a product. It
intentionally only considers the need to systematically analyze qualitative models
(i.e., “boxes and arrows”) to discover possible weak spots of a process, which will
be referred to as outliers.

Thus, the methodology will not provide any rating as to whether a process is good
or bad. Rather, the approach is meant to methodically access possible outliers that
can turn out as problematic in a given context, depending on the company culture.
Thus, the measures in this process are referred to as metrics and not as
performance indicators.

As such, the approach presented is meant to complement existing views on
process analysis and potentially to review the structure and, in the long run,
interlink this structural analysis with other approaches in order to better
understand engineering design processes. Thus, this approach is not meant to
replace any existing paradigms, such as business process reengineering or
continuous improvement within a company, but it complements these paradigms
by providing means to access the structure of a process.

Therefore, the results of this research are not planning methods; they only
contribute to better plan processes using existing methodologies by generating
knowledge about risks in process management. This is done through gaining
insight into how the behavior of a process relates to the structure that is set up
during process planning and execution, i.e., when actors, tasks, and resources are
combined into an overall architecture.

In this context, it needs to be stressed that the focus is not on how such models can
be generated to depict a real life process, but the focus is on how a model needs to
be structured. Thus, information collection via interviews or similar methods is
omitted, and it is assumed that (partial) models are available, and that they are of
reasonable quality.

30 1. Complex processes in engineering design

1.4.5 Related fields of science

Figure 1-13 regroups the related major fields of science that are most important to
this research. In general, the focus of this research is on engineering design
processes; however, a number of inputs are taken from management sciences,
especially topics that are related to process management, its application, and the
modeling of processes.

The access to structural complexity is not available as a dedicated field of
science, but rather it avails itself of different approaches in engineering sciences,
especially matrix-based methods, and in applied mathematics, mostly graph theory
and network science, which is another interdisciplinary field of science bordering
almost any other field of research. The different forms of system sciences
contribute equally to this research.

Software Engineering provides numerous means of measuring structures; in fact,
processes are, in many ways, similar to software programs, being based on a
number of interrelated resources and representing a flow of information
[CARDOSO 2006]. Many approaches and the foundations available can, therefore,
be adapted almost directly.

Ultimately, all three fields of science contribute to their systematization in a
framework. In fact, frameworks from all fields of science are relevant; however,
those frameworks most closely related to managing metrics are available in
software engineering, which is why the section on frameworks is linked to this
science in Figure 1-13.

1.5 Structure of this book

As shown in Figure 1-14, following the introduction given by industrial need, as
provided in the initial case study, the research question is explored throughout the
state-of-the-art shown in chapter 2. Here, the foundations of systems and their
structures are presented by collecting possible models and methods for the
analysis and meaning of structures. Engineering design processes are then
analyzed for their structural content. The structure inherent to common process

Figure 1-13: Overview of related fields of science

Software
engineering

Formal
descriptions of

structures

Management
science

Engineering
design

How can a process be purposefully and systematically described and analyzed in

terms of the structure of relations of its entities to point a user to possible weak

spots that merit further attention towards their potential for improvement?

Structural complexity Metrics FrameworksProcesses

Research question

Related f ields

of science

Contributions

1.5 Structure of this book 31

models is collected to later constitute a meta-model suitable for structural process
models, and typical goals of process improvement are collected that focus on
structural analysis in a framework designed later in this research. A literature
review on different kinds of metrics that connect to structures is also presented to
show current models and approaches and to discuss their capabilities and
transferability to process management. These will later serve as a basis to
assemble a comprehensive set of structural metrics. Lastly, different frameworks
are reviewed to enable a goal-oriented analysis of the structure of a process.

Chapter 3 establishes an overview of the three subsequent solution chapters and
places them in a common context. A basic procedural model is used as a broad
framework.

Chapter 4 introduces a matrix-based modeling scheme predicated on Multiple-
Domain Matrices. To incorporate all needs of process modeling as reviewed as
part of the state-of–the-art, this modeling scheme is extended to incorporate
different modeling needs, such as Boolean operators or product attributes. The
modeling scheme itself consists of a meta-model that serves as a reference for the
establishment of a structural process model using commonly accepted semantics.
It is also used as a basis for the formulation of metrics and their interpretation.

Chapter 5 regroups the structural characteristics that govern different systems to
form a generic procedure to design structural metrics. In the second step, the
metrics that were developed as part of this research are presented, and their
suitability and adherence to the foundation of measurement and the requirements
of process management is reviewed. Lastly, the metrics are classified to generate a
complete picture of their applicability.

Chapter 6 makes use of this classification to generate a framework connecting the
metrics to the different goals of process improvement to allow a goal-oriented
application of the structural metrics. To do so, first a set of goals for structural
process analysis is established which, in the second step, is completed by different
questions that operationalize each goal. Each question is then completed with a set
of metrics, domains, and relationship types that can be used to provide answers to
the question. Connecting these three constituents back to the metrics, the goal-
oriented interpretation using each metric’s structural significance is laid out.

In chapter 7 two examples of process analysis from automotive design are
presented. The first case study regards the use of metrics to characterize another
engineering design process in general. The second case study takes up the initial
case study from chapter 1, using the framework to present and review the
applicability of a goal-oriented process analysis.

The conclusion in chapter 8 summarizes all chapters to determine if the research
question was answered and to record the strength and weaknesses of the approach
shown.

To complete this research, a comprehensive appendix details all aspects that can
only be briefly addressed in the main body of this research.

32 1. Complex processes in engineering design

Figure 1-14: Structure of this book

Goals

and

questions

General characterization of

integrated controller design

Analysis of interfaces

in automotive body design

Structural

metrics

and their

signif icance

Relevance

of structural

metrics

Classif ication

of structural

metrics

Industrial need Research question Research approachChapter 1:

Introduction

Chapter 2:

Related state

of the art

Systems

and

structures

Engineering

design

processes

Measurement

and

metrics

Frameworks

and

goal-orientation

Chapter 3:

Goal-oriented analysis

of a process structure

Chapter 4:

MDM-based modeling

of a process structure

Specif ic

aspects of

modeling

Modeling

procedure

Chapter 5:

Structural metrics for

engineering design

processes

Chapter 6:

Framework for the

selection of structural

metrics

Allocation of

structural

metrics

Chapter 7:

Verif ication of

the results

Chapter 8:

Conclusion

Procedure

to use the

f ramework

Setup of

structural

metrics

Structural

meta-model

Strengths and weaknesses

Relevant elements to the solutionAnalysis procedure

2. The foundations of complexity metrics

To analyze the structure of engineering design processes using metrics,
foundations from the different areas of relevance shown in Figure 2-1 are used.
These were identified using the DRM (Design Research Methodology) approach
[BLESSING & CHAKRABARTI 2009, p. 63].

In this chapter, each area is explained in detail and related to the needs of this
research. First, the foundations of systems in general and the structure are
explained. Different means of dependency modeling for systems are explained,
including relevant analysis methods. These foundations are used to explore what
structural content is relevant for process management regarding both the goals of
an analysis and the actual process models. Last, existing metrics are reviewed that
are able to assess structures in general and, more specifically, in processes.

2.1 Structural complexity of a system

Complexity is present in many disciplines. Commonly, complexity means
“consisting of parts or entities not simply coordinated, but some of them involved

in various degrees of subordination; complicated, involved, intricate; not easily
analyzed or disentangled“ [SIMPSON et al. 1989]. Indeed, complexity has many
facets. Computational complexity refers to the computability of an algorithm
[PAPADIMITRIOU 1994]; information processing understands complexity as the
total number of properties transmitted [NEWELL 1990]; and physics sees it as the
probability of reaching a certain state vector [HEISENBERG 1999, HEISENBERG
2007]. In engineering, complexity generally addresses the high coupling of the
entities of a technical system [MAURER 2007], and software science focuses on

Figure 2-1: Main areas of relevance to this research

Main research question

Workflow
metrics

Software
engineering

Measurement
foundation

Software
metrics

Graph theory

Formal

descriptions of

structures

Network
theory

System
sciences

Structural
complexity

Matrix-based
methods

Process
management

Management
science

Business
processes

Process
modeling

Eng. design
processes

Process
improvement

Process
metrics

Process
analysis

Metrics to analyze

the structure of

a process

Structural aspects

of process

management

Structural complexity of a system

Focus of contribution

Specific view
on structure

Specific view
on structure

© Springer-Verlag Berlin Heidelberg 2011

M. Kreimeyer and U. Lindemann, Complexity Metrics in Engineering Design: Managing the

Structure of Design Processes, DOI 10.1007/978-3-642-20963-5_2,

33

34 2. The foundations of complexity metrics

assessing program code for its complexity, and thereby the risk of introducing
errors into the code.

Complexity science originated from Cybernetics, founded by [WIENER 1948], and
Systems Theory, founded for the most part by Ludwig von Bertalanffy [VON

BERTALANFFY 1950]. It was also influenced by Dynamic System Theory, which
belongs to the field of applied mathematics for the description of dynamic systems
[PADULO & ARBIB 1974].

Structural Complexity Management is often seen as having evolved out of the first
complex engineering projects that were accompanied by the paradigm of Systems
Engineering, having itself evolved out of Systems Theory (e.g., the [NASA
1995]). The first use of Design Structure Matrices (DSM) is attributed to Don
Steward [STEWARD 1981], who used DSM to better plan complex projects
involving many interdependencies, thus opening up the field of today’s paradigm
of structural complexity. Design Structure Matrices later evolved to Domain
Mapping Matrices [DANILOVIC & BROWNING 2004], and then to Multiple-Domain
Matrices [MAURER 2007]. While structural complexity generally regards technical
(i.e., planned) systems, in parallel, Network Science describes complex systems of
random or natural origin, such as the internet or molecules [BARABÁSI, 2003]
[WATTS & STROGATZ 1998].

Figure 2-2 shows the development of each field of science from a historical point
of view. The originating methods are discussed as follows. First, a review of
systems and how they are constituted to derive a specific view on what the
structure of a system is provided. For this purpose, the terms system, complexity,
structure, domain and relationship type are explained. Using these basic notions,
different kinds of dependency modeling are then introduced. Here, graph theory
serves as a formal basis for all other dependency models and introduces a number

Figure 2-2: Evolution of sciences related to structural complexity (after [ART AND SCIENCE

FACTORY 2009])

20001940 1970

Dynamic
Systems
Theory

Systems
Theory

Cybernetics

Network
Science

Structural
Complexity

Management

Complexity
Science

Self-Organization,
Autopoiesis, Adaptation
Emergence

Small World phenomena,
Scale-free networks

Information theory

Systems Science Engineering

Dependency models,
DSM, DMM, MDM

2.1 Structural complexity of a system 35

of concepts that keep appearing in other dependency models (e.g., cliques as
tightly coupled clusters). Then, models and methods for matrix-based dependency
models and for large networks are reviewed in detail to collect a complete set of
analysis methods and the requirements to model the dependencies within a system.

2.1.1 General notions of managing structural complexity

Understanding processes as a complex system that has a network-like character
and a certain structure necessitates certain basic notions and terminology, which
are explained in this section.

System

The concept of a “system” is essential to the analysis of processes, as a process25
represents a special form of a system [WASSON 2006]. A “system” is a set of

entities that have relations among each other, either by interacting with or being
independent of each other, and the system is delimited from the environment by a
system border and connected to the environment by inputs and outputs [HALL
1963] [LINDEMANN 2007, p. 337].

WASSON defines a system as an “integrated set of interoperable entities, each

with explicitly specified and bounded capabilities, working synergistically to
perform value-added processing to enable a user to satisfy mission-oriented
operational needs in a prescribed operating environment with a specified outcome
and probability of success” [WASSON 2006, p. 18]. The “integrated set” refers to

the fact that a system consists “of hierarchical levels of physical entities, entities,

or components”. The entities are interoperable, as they must be compatible with

each other to allow greater value of the system [BOARDMAN & SAUSER 2006].
This is also addressed by the “explicitly specified and bounded capabilities”,

meaning that every entity “should work to accomplish some higher level goal”. To

work “synergistically” underlines the additional value [RECHTIN 1991, p. 29] and
the leverage factor of a network. Ultimately, the “value-added processing” alludes

to the classical process term, which is based on the assumption that a process
provides some additional value to the customer. This aspect of customer
orientation is further emphasized by the expressions “specified outcome” and

“success” in the definition [PATZAK 1982].

In a more general manner, MAURER provides a definition of a complex system that

is, in many respects, similar to that of WASSON: “A system is created by

compatible and interrelated parts that form a system structure, possess individual

properties, and contribute to fulfill the system’s purpose. Systems are delimited by

a system border and connected to their surroundings by inputs and outputs.

Changes to parts of a system can be characterized by dynamic effects and result in

a specific system behavior”. MAURER thus adopts the aspect of the relationships

(“compatible and interrelated”) and boundaries (“system border”) but also

provides a new aspect, that is, a system response that is not necessarily linear

(“dynamic…specific system behavior”) to the definition [AUE & DUSCHL 1982]

[MAURER 2007, p. 31].

25 The term process will be defined later in section 2.2.1.

36 2. The foundations of complexity metrics

Keeping the focus of this research in mind, the following definition of a system is

used:

A system is a set of entities of (possibly) different types that are related to

each other via various kinds of relations. The system is delimited by a

system border, across which inputs and outputs of the system are possible as

an interaction with the environment. The system fulfills a purpose, which

guides the meaningful arrangement of entities and relations. The behavior of

the system is, in turn, due to the arrangement of the system’s elements.

To a certain extent understanding a system denies traditional cause-and-effect

chains and the certainty of determinism that, as practice shows, are not applicable

to complex systems and complex processes anyway. This, however, implies that a

reductionist approach which only centers on certain objects is too limited when

regarding complex systems [BANATHY 1997].

Modeling complex systems

To manage a complex system, modeling is used to better understand it
[BROWNING 2002]. In comparison to the object being modeled, a model26
represents a target-oriented, simplified formation analogous to the original, which
permits drawing conclusions based on the original [LINDEMANN 2007]. These
conclusions normally comprise “making predictions and testing hypotheses about

the effects of certain actions” [BROWNING 2002]. In this way, systems are made
more transparent to improve understanding.

A model thus represents an abstraction of a real system, serving a certain purpose
the model was made for; at the same time, a model usually involves pragmatics
for those points that appear to be of little relevance to the purpose during the
generation of the model [RECKER 2007]. This implies that the modeler influences
the model in its expressiveness even before it is analyzed [MENDLING 2008, p. 7].
The development of any model-based analysis framework must thus incorporate
possibly “unclean” models.

Nodes and edges, entities and relationships

In regards to a system’s entities and relations, the management of structural

complexity can be understood as an application of Graph Theory27. As different
terms prevail in the different disciplines, Table 2-1 provides an overview of how
the entities and relations within a system are commonly denominated.

26 A good model acknowledges the “Guidelines of Modeling” to achieve inter-subjectivity of the
models: correctness (i.e., the model is syntactically correct), relevance (only the interesting parts
of the object being modeled are represented in the model), economic efficiency (the trade-off
between the expense to build the model and making it as complete as possible), clarity (to ensure
that a reader is able to understand the model), comparability (the consistent use of naming
conventions and modeling schemes), and systematic design (the clear separation of different
views) [BECKER et al. 1995].

27 Graph theory is outlined in more detail in section 2.1.2.

2.1 Structural complexity of a system 37

Domains

From a structural point of view, a system can be disentangled into a network-like
model of entities and their relations. These entities can be of different kinds, e.g.,
documents, organizational units, and work packages. However, if many such kinds
are mixed, a productive analysis is impossible. Each kind of entity represents a
specific view, called a “domain”

28. The purpose of a domain is to create
“homogeneous networks” that allow elements to be compared during analysis
[MAURER 2007, pp. 71-72]. The term “domain” can, therefore, be defined as a

specific view of a complex system, comprising one type of entity.

Three principles apply to the use of domains to model the structure of a complex
system that involves specific views (visualized in):

� Instantiation: An entity is an instantiation of a domain. Thus, all entities

that belong to one domain are of the same type, e.g., “information object”.

� Decomposition: A domain can be refined by creating sub-domains that are

congruent with a part of the super-domain to which they belong, e.g., the

domain “document” and the domain “prototype” can both be “information

objects” in a process.

� Recombination: A system can be assembled by combining relevant

domains and relationship types (see next page). By assembling different

domains and relationship types, different views of the system can be

generated.

Relationship types

Like the domains (see above), the relationships within a domain (or between two
domains) need to be uniform to allow a systematic modeling and a purposeful
analysis. While a domain contains entities of a kind, one relationship type refers to
one class of relations that are similar [MAURER 2007, pp. 71-72]. The relationship
type therefore defines the kind of (directed or undirected) relation between two
entities. It is described as “(entity of domain A) is related to (entity of domain B)”.

The term “related” can be replaced to specify the type of relationship; of course,

28 A domain is comparable to a “class” of objects in object-oriented programming paradigms.

Table 2-1: Different terminologies to describe the parts of a system

38 2. The foundations of complexity metrics

reflexive relationship types (“intra-domain”) are possible as well as mappings
between two domains (“inter-domain”).

Again, three principles apply:

� Instantiation: A relation is an instantiation of a relationship type.

� Differentiation: A relationship type can be refined by detailing the

description in a coherent manner with the superior relationship type.

However, such a refined relationship type applies to fewer entities and is

harder to model coherently [MAURER 2007, pp. 71].

� Recombination: A system can be assembled by combining relationship

types.

Figure 2-3 visualizes these three principles for both domains and relationship

types. At the highest domain it uses domains and relationship types to set up the

meta-model of a system. Here, the basic class of an entity is defined. If a pre-

defined meta-model is used, it actually provides the domains and relationships. If

necessary, both domains and relationships can be refined and broken down into

more specific sub-domains or differentiated relationship types. This is necessary,

for example, when two domains are linked by two different relationship types

simultaneously such that each transport a specific meaning, as shown in the

example on page 131. To build a model, the chosen domains and relationship

types are instantiated.

Figure 2-4 embodies these principles into the basic meta-model that is used for
structural modeling, using only domains and relationship types and their
decomposition. It represents a common dependency model that is only able to
represent entities and relations.

Figure 2-3: Principles of using domains and relationship types to describe the structure of a
complete system

Domain

e.g. „information object“

Relationship type

e.g. „is necessary to produce“

D
e

c
o

m
p

o
s
it
io

n

Sub-Domain

e.g. „document“

Relationship type

e.g. „delivers boundary conditions for“

D
if

fe
re

n
ti
a
ti
o

n

In
s
ta

n
ti
a

ti
o

n

In
s
ta

n
ti
a

ti
o

n

Entity

e.g. „list of requirements“

e.g. „concept design“

Relationship

e.g. „ list of requirements delivers

boundary conditions for concept

design“

Recombination

C
o

n
c
re

te
 m

o
d

e
l

M
e

ta
 -

m
o

d
e

l

2.1 Structural complexity of a system 39

Views to a system: Native and aggregated networks

Complex systems can consist of more than one domain. These domains can be
coupled within themselves or among themselves. In turn, it is possible that two
domains are not directly related but only via a third domain. However, for many
analyses it is necessary to use intra-domain networks, i.e., networks that consist of
only one domain and of one relationship type that connects only the entities of the
one domain among themselves. Therefore, aggregate views are needed at times to
reduce the relationships via an intermediate domain to using just one single
domain of reference.

In fact, according to the availability of models and data, a network can be native,
i.e., the information in the model is a direct result of the data acquisition [MAURER
2007, p. 78] , or it can be aggregated, i.e., it is computed based on other networks
that are available. Figure 2-5 visualizes the difference. In common Multiple-
Domain Modeling (compare section 2.1.3), this aggregation is used to condense
relations across one or more domains into single intra-domain networks to
facilitate analysis. Section 2.1.3 illustrates in greater depth how this is done.

Structure

Although the term structure (Latin: structura: orderly combination, derived from
the verb struere: combine, stack, stratify) appears to be one of the most common
words in engineering terminology, there seem to be very few definitions available.
Commonly, the term structure is used in engineering for organizational structures
and product structures, i.e., the purposeful organization of an enterprise into

Figure 2-4: Meta-model for structural modeling

Figure 2-5: Native and aggregated networks

Domain

Relationship type

Sub-Domain

Relationship type
(differentiated)

is differentiation of

is decomposition of

List of

reqs.

Prepare

concept

Native network

� Two or more domains

� Two relationship types

Aggregated network

� One domain (native)

� One relationship type

(computed)

Prepare

concept

is input foris output of

delivers information object to

Collect
specs

Collect
specs

Collect
specs

Collect
specs

40 2. The foundations of complexity metrics

manageable entities or the setup of a product’s components, functions, etc., into a
meaningful architecture.

In mathematics (algebra and model theory), the term structure refers to a set of
distinct entities, including the functions that transform these objects and the
relations among the objects and functions. Systems Theory narrows this definition
down to the patterns of interaction of the elements towards a behavior of the
system [OLIVER et al. 1997, p. 21], which possibly serves a purpose [BOARDMAN
& SAUSER 2006]. Structure is also closely connected to the phenomenon of
emergence (see section 2.1.4) and sophistication, which is sometimes used as a
measure for complexity and its logic decomposition into compact parts [KOPPEL
1987]. Both concepts indicate that structure involves the regrouping of entities of
a system according to the logics (and the relationships between the entities) of a
specific perspective. This is in line with the common understanding of structure as
“the aggregate of entities in their relationships to each other” [MERRIAM-
WEBSTER ONLINE DICTIONARY 2009]. A structure can be a hierarchy (a cascade of
one-to-many relationships) or a network featuring many-to-many relationships
[PULLAN & BHADESHIA 2000]. MALIK and BEER both refer to structure as the
degree of organization which helps to bring order to a complex system and
maintain it in order to enable the management of the system [MALIK 2003, p. 211]
[BEER 1972, p. 65]. [GOLDENFELD & KADANOFF 1999] link complexity to
structure (i.e., a basic pattern) by pointing out that everything has a basic structure
according to how it is built; yet all systems come in variations that deviate from
this basic structure, causing complexity. Structure is, therefore, defined as follows:

Structure regards the pattern in the network formed by dependencies (edges)
between a system’s entities (nodes). It reflects the semantics of this network;

the structure of a system therefore always contributes – in its constellation –
to the purpose of the system. A structure takes shape in structural
characteristics, i.e. a particular constellation of nodes and edges. The
characteristic gains its meaning by the way the pattern is related to the actual
system it is part of, i.e. it must serve a special purpose in the context of the
overall system. A structural characteristic only possesses significance in the
context of the system it is describing.

In process management, structure refers to patterns within processes. Workflow
patterns29, as a particular case, represent the basic decision structures of a process
[VAN DER AALST, et al. 2003]. These patterns, however, relate to possible
constellations of splitting and joining the control-flow of a process using AND,
OR, or XOR operators. Yet, the patterns relate to the different perspectives of a
process, as also outlined by [CARDOSO, 2005a]: control-flow, data, and resources.
This idea can be extended to detect possible errors in a process, i.e., they search
process models for typical structures that point to an error in the model [VAN

DONGEN et al. 2006] [MENDLING 2008, pp. 59]. MENDLING does so, in fact, using
metrics to formalize the patterns.

29 A comprehensive overview is available at http://www.workflowpatterns.com (accessed 10.05.2009).

http://www.workflowpatterns.com

2.1 Structural complexity of a system 41

Complexity

Complexity often involves the difficulty of handling a system, as it is hard to

estimate the outcome of an action (therefore, popular lore goes “never change a

running system”) [LEE 2003]. Apart from these notions, complexity is sometimes

defined as a degree of disorder [SHANNON & WEAVER 1998].

Like the approach by [CARDOSO 2006b], complexity is thus characterized by:

‚ Structure: A complex system is a potentially highly structured system
which indicates a structure with variations [GOLDENFELD & KADANOFF
1999] [OLIVER et al. 1997, p. 29].

‚ Configuration: Complex systems have a large number of possible
arrangements of their parts [KAUFFMAN 1993] [HOLLAND 1996] [BAR-YAM
1997].

‚ Interaction: A complex system is one in which there are multiple
interactions between many different parts [RIND 1999].

‚ Inference: System structure and behavior cannot be inferred from the
structure and behavior of its parts [KAUFFMAN 1993] [HOLLAND 1996]
[BAR-YAM 1997].

‚ Response: Parts can adjust in response to changes in adjacent parts
[KAUFFMAN 1993] [HOLLAND 1996] [BAR-YAM 1997].

‚ Understandability: A complex system is one that by design or function, or
both, is difficult to understand and verify [WENG et al. 1999] [IEEE 1991].

The completeness of a solution (or rather the lack of determining the completeness
of a complex solution), as well as uncertainty about a complex system’s state and

coupling are not part of the definition, although they, too, are commonly related to
complexity [DANILOVIC & SANDKULL 2002].

Process Complexity

In particular, the contextuality of a system (i.e., its strong relation to the
environment) and radical openness (i.e., its possible unforeseeable interaction with
entities not originally suspected to be relevant) are seen as the core drivers of
complexity [CHU et al. 2003]. This implies that a complex system has many
entities which have many different relationships, as stated for systems30.

Processes are systems in themselves; CARDOSO points out that a process exhibits

multiple facets of process complexity [CARDOSO 2005a]. He bases his conclusions

on the similarities of executing a process to running a software, as it has structure

(software is a highly structured system, cf. above), arrangements (a program has

many possible arrangements), interacts with different parts, inference (the

behavior of parts may be different than the sum of the parts), response (program

gives response to input) and understandability (a software program is difficult to

understand and verify). He thus transfers and adapts the work from software

30 Further definitions of complexity can be found in [SUH 1999]. [WEBER 2005] discusses
different ways of looking at complexity in engineering design.

42 2. The foundations of complexity metrics

engineering to describe process complexity as the number of tasks in the process

(task complexity), the degree of cross-linking in the arrangement of tasks, and the

related decision points such as AND, OR, or XOR (control-flow complexity), the

degree of dependency of the information objects and their mapping to tasks,

resources etc. (data-flow complexity), and the degree of interdependency of

resources and their attribution to the tasks in the process (resource complexity).

Cardoso thus deduces that the definition provided by the IEEE Glossary is

appropriate to describe process complexity [CARDOSO 2005b]. It is adapted here to

include not simply the sequence of tasks, but all necessary supportive domains and

their relationships.

Process complexity is “the degree to which a process is difficult to analyze,

understand or explain. It may be characterized by the number and intricacy

of activity interfaces, transitions, conditional and parallel branches, the

existence of loops, roles, activity categories, the types of data structures, and

other process characteristics” [IEEE 1991].

Focusing on the network of entities and relationships of the system “engineering

design process”, in the following, different models, methods, and tools that are

commonly used to understand, represent, and analyze such systems are presented.

First, approaches to manage complex network structures are reviewed; then, the

concept of structure is extended to engineering design processes in order to collect

metrics that embody structure in a process.

In summary, processes can be understood as a special class of systems that are

constructed from entities and their relations among each other. Within this

network-like structure, certain patterns can be identified that serve as structural

characteristics. To productively manage such a complex system, a detailed

classification of entities and relations into appropriate domains and relationship

types provides a systematic basis to model a system and to compare the entities

among each other. The actual entities and relations can be taken from any process

model, as will be shown in section 2.2.3.

There is a consensus that the structure of a system, i.e., the purposeful

constellation of entities and relationships, drives its behavior. The identification of

the patterns that repetitively occur within such a structure can serve as a basis to

draw inferences about the behavior of a system. It is, therefore, necessary to

collect these patterns and relate them to their structural significance to better

analyze a system and understand its behavior. The structural characteristics that

are available so far will thus be explained in the following sections.

Lastly, complex systems tend to have many domains that are not independent of

each other. The aggregation of different views onto a system provides a compact

means of generating manageable models that do not reduce the structure of a

system but condense it to its individual impact on a domain of reference. It is,

therefore, necessary to further explore the creation of such aggregate views to

better identify structural patterns within large processes.

2.1 Structural complexity of a system 43

2.1.2 Graph Theory

Graph Theory31 provides the mathematical foundations to study any kind of
network, called a graph. A graph is an ordered pair G = (N, E), where N is a set of
nodes (also called vertices) and E is a set of edges (also called arcs); being a 2-
element subset of N, a graph is thus a formal description for “boxes and arrows”

when drawing a network on plain paper. It is commonly understood to date back
to the works of Euler and the “Seven Bridges of Königsberg”, i.e., the
mathematical solution to the question whether a walk through the city of
Königsberg could be routed in a way that all bridges would be crossed only once.

Graph Theory describes networks in a generic way, attributing to them the
following basic properties:

‚ They can be directed (“digraph”) or undirected, or both (“mixed graph”).

‚ They can have a weight associated to nodes or edges (“weighted graph”).

‚ They can have loops (“simple graph”) or not.

‚ An edge can connect a node to itself (“loop”).

‚ They can have multiple edges between two nodes (“multigraph”), one, or
none, or one edge connecting one node to many others (“hyperedge”).

‚ They can have edges not associated with any node (“half-edges”, “loose

edges”).

Graphs have basic characteristics used to compute more complex analyses:

‚ Two edges of a graph are called “adjacent” if they share a common node;

equally, two nodes are called “adjacent” if they are connected by an edge.

‚ An edge is called an “incident” (in a directed graph), if it is directed towards a

node; the opposite direction is called an “outgoing” edge.

‚ The number of edges that connect to a node is called a “degree” of the node.

‚ Nodes are discernable (“node-labeled graph”), edges as well (“edge-labeled”).

In particular cases, nodes or edges can also be treated as not distinguishable.

Graphs also contain certain basic structures that can be used to describe them:

‚ Elements in a graph can be “disconnected”, i.e., a node has no edge to any
other node.

‚ A graph is “complete” if every pair of nodes is connected by an edge, i.e., if
the graph contains all possible edges. Such a graph, in which every node is
connected to every other node, is also called a “clique”.

‚ If a graph is “strongly connected”, it does not necessarily have any cliques in

it, but every node can be reached from every other node.

31 There are many textbooks available on graph theory that need not be included here; for a better
understanding, refer to [DIESTEL 2006]. [GROSS & YELLEN 2005] also is used as a common,
very detailed, textbook; a good introduction in German is available by [TITTMANN 2003].

44 2. The foundations of complexity metrics

‚ A graph is “bipartite” if the set of nodes can be grouped into two sets U and
V in a way that each edge has one node in U and one in V. This implies that
the nodes in U are disconnected; equally no node in V is connected to
another node in V.

‚ A “path” is a set of adjacent edges listed in a specific order; the path can be

attributed by its length. A “walk” more specifically addresses an alternating

sequence of nodes and edges that form an open or closed (=“cycle”) walk.
The shortest path between two nodes is also called a “geodesic”.

‚ A “cycle” is a path that starts and ends with the same node.

‚ If a graph has no cycles, it is called a “forest”. If it is a connected graph that

has no cycles, it is called a “tree”.

‚ A “spanning” tree is the minimal graph necessary to connect all edges in a

graph.

‚ A “planar” graph is a graph whose edges do not cross each other.

‚ A “subgraph” is a graph S contained within a graph G: G is the “supergraph”

of S.

‚ “Graph labeling” is used to assign integer labels to nodes and edges; this can

be used for the “coloring” of a graph, assigning a color to each node with no

tuple of neighboring nodes being of the same color.

‚ The “genus” of a graph refers to the fact that the graph can be drawn as a
planar graph on a surface of genus n (e.g., a sphere, a torus, etc.).

Graphs are commonly modeled as “boxes and edges”. There are many methods to

draw a graph, serving different purposes. A common algorithm is a force-based
layout that arranges the nodes in a way such that nodes which are closely
connected arrange as neighbors, repelling less connected nodes [FRUCHTERMAN &
REINGOLD 1991].

Mathematically, graphs can be modeled as an Adjacency Matrix, which is similar
to a DSM (see below). Adjacency Lists are also a possibility, listing which node is
connected to what other node. MAURER ET AL. used this to indicate the usefulness
of graphs to represent DSMs, while drawing equally on the extensive means of
systematic analysis available in Graph Theory to extend analysis tools suitable for
matrix-based methodologies [MAURER et al. 2004]. Other models, e.g., the
Distance Matrix, are not considered here.

Commonly, the models and methods of Graph Theory provide the basis for
analyzing structures, as shown in the next section (see Table 2-2 on page 50).
Graph Theory also provides the basic means of describing large networks in
Network Theory.

2.1 Structural complexity of a system 45

2.1.3 Matrix-based methodologies to manage structures

Research on matrix-based complexity management32 has come a long way.
Originating from a focus on process management using the Design Structure
Matrix (DSM) [STEWARD 1981], a whole community has developed around this
research. DSM is able to model and analyze dependencies of one single type
within one single domain. For example, for a product, the domain “components”

can be considered. Using the relationship type “change of component 1 causes

change of component 2”, an assembly can be analyzed with regard to the overall

change impacts in order to model possible change propagations [KELLER et al.
2005]. [BROWNING 2001a] classifies four types of DSMs to model different types
of problems: Component-, team-, activity-, and parameter-based DSMs. [JARRATT
2004] also proposes eight basic types of a DSM related to product architectures.
However, all of these classifications present special cases of DSM application and
should not understood as the only possibilities of modeling, but as suggestions for
commonly accepted and useful models.

Binary DSMs only represent the existence of a relation, whereas numerical DSMs
[BROWNING & EPPINGER 2002] implement a weighted graph to represent the
strength of a relation. DSMs can either be directed (as shown in Figure 2-6), or
non-directed; in the latter case, a DSM can either be written as a triangular matrix,
i.e., only the upper or lower triangular matrix is used, or as a symmetrical DSM,
i.e., the upper and lower triangular matrices are symmetric to the diagonal.
Elements in DSMs are never reflexive, i.e., a relation from an element to itself is
not permissible.

32 A recent compendium on different types of matrix-based methods is available as [LINDEMANN
et al. 2009]. Similarly, [BONJOUR 2008] provides a complete overview of recent developments
(in French). Also, the web portal www.DSMweb.org (accessed 10.7.2009) provides a reference
data base related to matrix-based dependency modeling.

Figure 2-6: Binary Design Structure Matrix of a simple process

Task 1

Task 2

Task 3 Task 4

Task 6

Task 5

http://www.DSMweb.org

46 2. The foundations of complexity metrics

DSM was later extended to Domain Mapping Matrices (DMM) [DANILOVIC &
BROWNING 2007]. The goal was to enable matrix methodology to include not just
one domain at a time but to allow mapping between two domains [YASSINE, A. et
al. 2003]. DMMs are thus rectangular, and again they can be binary or numerical.

MAURER has taken this approach further to model whole systems consisting of
multiple domains, each having multiple elements, connected by various
relationship types [MAURER 2007]: the Multiple Domain Matrix (MDM). Figure
2-8 illustrates this concept. It shows how a MDM basically is a DSM with more
detailed DSMs along its diagonal and DMMs outside the diagonal. It also depicts
how multiple relationship types create several representations of a specific
submatrix of the overall MDM.

Figure 2-7: Binary Domain Mapping Matrix for the process shown in the previous figure

Figure 2-8: Multiple Domain Matrix combining the DSM and DMM from the two previous
figures and introducing two additional DSMs for one domain, using two different relationship
types

Task 1

Task 2

Task 3 Task 4

Task 6

Task 5

Person 1

Person 2

Person 3

Person 4

Person 1

Person 2 Person 4Person 3

…is disciplinary head of…

Person 2

Person 4Person 3

Person 1

…belongs to the same project team as…

2.1 Structural complexity of a system 47

The MDM allows a system’s structure to be analyzed across multiple domains,
condensing each single analysis into one aggregated DSM that represents multiple
domains at one time. That way, the MDM is able to apply algorithms for DSM
analysis meaningfully across several domains [WALDMAN & SANGAL 2007]
[CRAWLEY & COLSON 2007].

The main advantage of a MDM is that relations across more than one domain can
be aggregated into a DSM using a domain mapping logic, using one native DMM
(differentiating the direction of the DMM mapping as cases 1 and 2), two DMMs
(case 3), one DSM and one DMM (differentiating the direction of the DMM
mapping as cases 4 and 5), and ultimately two DMMs and one DSM (case 6).
Figure 2-9 and Figure 2-10 illustrate these cases.

Figure 2-9: Possible cases 1 to 3 for computing an aggregated DSM within a MDM [MAURER
2007, pp. 113-116]

Figure 2-10: Possible cases 4 to 6 for computing an aggregated DSM within a MDM
[MAURER 2007, pp. 113-116]

Task 1 Task 2

Doc. 1

Task 1 Task 2

Person 1

Native DMM (Case 1 & 2) Two native DMMs (Case 3)

T

natnatagg DMMDMMDSM ©? inputnatoutputnatagg DMMDMMDSM ,, ©?

Doc. 1 Doc. 2

Task 1 Task 2

T

leftlowernatnatrightuppernatagg DMMDSMDMMDSM // ©©? ,,

Doc. 1 Doc. 2

Task 1 Task 2

Native DSM + native DMM (Case 4 & 5)

T

natnatnatagg DMMDSMDMMDSM ©©?

Native DSM + two native DMMs (Case 6)

48 2. The foundations of complexity metrics

As it is very important “to determine which aspects are to be considered in order

to answer a specific question” [MAURER 2007, p. 18], these cases can be used to
collect and compile the existing information on the structure in accordance to the
goal of the analysis. MAURER proposes two ways to do so: the opportunistic
application (“see what you can get”) and the requirements-driven application
(“define what you need”) [MAURER 2007, p. 93]. Each way is, at the same time,
equivalent to the strategy of acquiring the data for the model. An MDM can thus
be used either to gather native data or to combine data in a way suitable for an
analysis. [BIEDERMANN & LINDEMANN 2008] extend the proposition and suggest
a way of calculating cycles across domains of an MDM instead of elements of a
DSM to calculate single DSMs out of a series of matrices in an MDM; however,
this strategy remains largely unexplored.

There are several strategies to analyze the DSMs generated. Classically, a DSM
is used for sequencing, tearing, banding and clustering. In sequencing, the rows
and columns of a flow-oriented DSM are rearranged in a way that as few relations
as possible remain below the diagonal, thus reducing the number of active
feedbacks, leading to an ideal sequence. However, such an ideal sequence cannot
always be found33. Tearing consists of choosing the set of feedback marks that
obstruct sequencing the DSM. The relations that need to be removed are called
"tears". Banding rearranges the rows and columns in a way that blocks of parallel
entities remain, which, for example, in a process can be executed independently of
each other. Thus, a “band” represents a group of elements being active in parallel.
Clustering is executed to find those clusters of entities that are mutually related.
Figure 2-11 provides an overview. MAURER explains all techniques in detail
[MAURER 2007, pp. 225-240]. Similarly, there are algorithms for the systematic
analysis of DMMs, mostly focused on clustering [DANILOVIC & BROWNING 2007]
[MCCORMICK et al. 1972].

Furthermore, DSMs can be analyzed for structural characteristics. The analysis
is based on identifying patterns within a structure, i.e., typical constellations of
entities and relations. A structural characteristic is defined as follows:

33 See page 164 for the limits of triangularization.

Figure 2-11: Classic DSM analysis techniques

Sequencing Tearing Banding Clustering

Ideal

sequence

Possible

tear

Cluster

Independent

tasks

2.1 Structural complexity of a system 49

A structural characteristic is a particular constellation of entities and
relations, i.e., it is formed by a particular pattern formed from nodes and
edges in the graph [CARDOSO, J. 2006a] [MAURER 2007, p. 123]. The
characteristic gains its meaning by the way the pattern is related to the actual
system it is part of, i.e., it must serve a special purpose in the context of the
overall system [BOARDMAN & SAUSER 2006]. A structural characteristic
only possesses significance in the context of the system it is describing.

Figure 2-12 categorizes the common basic structural characteristics that are
currently available in different works. The structural characteristics shown form
the basic building blocks to analyzing a structure. An overview is available in
[MAURER 2007, pp. 225-240], therefore the classification is not detailed further34.
Eppinger similarly proposes that there are patterns across several domains
[EPPINGER 2001]; however, he does not formalize them.

Table 2-2 illustrates the available basic phenomena in graph theory [GROSS &
YELLEN 2005] and shows which structural characteristics (Figure 2-12) they relate
to. Although there is no complete one-on-one relationship between phenomena
and structural criteria, the table regroups what phenomenon a structural criterion
focuses on. For each, the table shows whether the mathematical phenomenon has
an application in engineering design or not. As can be seen, there are a number of
phenomena that have no application (yet).

34 Structural characteristics will later be used to create structural metrics. They are detailed in
section 5.1.

Figure 2-12: Overview of basic structural characteristics

N
u
m

b
e
r

o
f
n
o
d
e
s

Isolated

node

n

Start / end node

Leaf

Transit edge

(Bus)

Bridge node

Transit node

Path

Clique

Spanning

tree

Biconnected

component

Cycle

Similarity

Adjacency

Hierarchy

1 n
Number of edges

1

Sync graph

Block

50 2. The foundations of complexity metrics

There are still shortcomings to matrix-based methodologies [KREIMEYER et al.
2008a].

Generally, attributes to an edge are only possible to a limited extent. Whereas
matrix-based models are mostly designed as qualitative models and not as
quantitative models, this fact still hinders the transfer from other models such as
Petri-nets into a DSM.

Linking elements of a matrix to a relation is not possible in a matrix. While two
nodes of a system can be related, it is not possible to link an element of a matrix to
a relation (i.e., a node to an edge). This issue is resolved in section 4.4.2.

So far there has not been any systematic research to generate a catalogue of
structural characteristics. Equally, the differentiation between structural
characteristics and structural metrics is still not clearly defined.

Some fields of research have developed indicators to measure the degree of
complexity of a system as a numerical value. Yet little work has been done so far.
While the metrics developed as part of this research are not exhaustive, they are
meant to fill this gap (see section 5.2).

Network structures in practice often contain decision points that can only be
represented with limits in a matrix. There has been work undertaken to overcome
this problem [BELHE & KUSIAK 1995], which is not complete, however, as it does
not allow logic operators to be included as part of the matrix description. Section
4.4.3 completes the existing approaches.

Common variant design is addressed through commonality issues, for example,
[BRAUN & DEUBZER 2007]. The modeling of decision points and differentiation of
co-existing solutions with a common base (e.g., one body with different
component assemblies) still remains largely unsolved. In process management,
process alternatives are often designed and compared to generate an improved

Table 2-2: Phenomena in graph theory and adoption as structural criteria (based on [GROSS
& YELLEN 2005])

2.1 Structural complexity of a system 51

process. However, there is no methodology yet to generate such structures based
on a common matrix-based description.

MAURER introduces a way of excluding several cells of a matrix upon certain
conditions to describe boundary conditions [MAURER 2007]. Yet, matrix notation
is still unable to work with more complex conditional settings; even for static,
non-conditional relations within a system, no notation supports the use of existing
algorithms.

The evolution over time (or another axis) remains unsolved, although many
problems represented in matrices undergo changes, e.g., team structures; however,
no real mechanism of evolution of a matrix has yet been found. A first approach
has been shown [EBEN et al. 2008] based on Delta DSMs that map how one DSM
differs from another [DE WECK 2007].

The management of hierarchical decomposition within a cell is still difficult to
consistently describe [DANILOVIC & BÖRJESSON 2001]. Often, it is necessary to
go into detail for a few cells only; while it is possible to zoom into such a matrix
within one cell (it is very similar to an MDM), no description of how to handle the
multitude of relations from the zoomed matrix going into one single row/column
in the higher-ranking matrix is available.

The intuitive and graphical representation of MDMs is still unsolved. DIEHL
proposes a 3D-vizualization using several planes, where each plane represents a
DSM, and the space in between is used to show how two planes interrelate [DIEHL
2009]. However, this is only applicable for small systems. Yet, there has been
ample research for visualization35.

Ultimately, no framework for a goal-oriented analysis has been proposed to
operationalize the opportunistic and the requirements-driven approaches
systematically [MAURER 2007, p. 93]. More generally, the potentials and limits of
analyzing structural complexity in different contexts have not been given much
attention. Section 6 proposes a framework to operationalize the selection of
metrics for the context of engineering design processes.

In summary, different matrix-based dependency models were shown that enable
the modeling and analysis of complex systems for which all entities and relations
are basically known. Therefore, these models can be seen as deterministic models.
In the context of analyzing a process chart, these models are, therefore, suitable to
serve as a means to collect the entities and relations from any process chart in a
common form, providing a basis to design structural metrics. In practice, however,
these models are often not as definite as they seem, as generating a process model
is essentially a process of consolidating different opinions as to how an as-is
process is actually run. This, however, is not the focus here.

All modeling methods are paired with different analysis approaches that produce
different structural characteristics which aid the analysis of the systems being
modeled. Yet, a number of shortcomings still exist, some of which are highly
relevant for process modeling, as section 2.2 will show. In particular, the modeling
and analysis of logic operators in a structure, the systematic aggregation of

35 Examples could be, for example, graph spectra [MAURER et al. 2004], linking it to common
models [KARNIEL & REICH 2007] or various kinds of graphic representations [LIMA 2007].

52 2. The foundations of complexity metrics

different domains and their relationships, and the goal-oriented application of
analysis in the context of process analysis have not yet been resolved.

2.1.4 Network Theory

Additional means of analyzing large network structures are provided by Network
Theory. The combined use of approaches from Structural Complexity
Management and Network Theory, therefore, provides a comprehensive toolset
for the analysis of highly coupled structures; furthermore, both consider processes,
among other fields of application, and thus provide empirical evidence for their
use in process analysis. For a better understanding, the analysis tools provided by
Network Theory and the relevant network models are presented here.

Network and Graph Theory are closely related. Whereas Graph Theory is focused
on the formal modeling and analysis of the interaction of single nodes and edges
of networks of limited size36, Network Theory regards global properties of large
networks. Thus, Network Theory makes extensive use of graphs, but with a
different analytic approach37 mostly based on statistics. Network Theory aims at
creating viable models for large network structures, finding statistical properties to
describe the networks, and making predictions about their behavior. The networks
can be of any type. Commonly, four groups are regarded: Social networks (e.g.,
friendships, organizational structures in business, or email exchange), information
networks (e.g., academic collaboration, websites and hyperlinks, or patent
citations), technological networks (e.g., distribution networks, phone lines, or
computer networks), and biological networks (e.g., metabolic pathways, genetic
regulations, or the food chain) [NEWMAN 2003a, p.7]. To all these networks, the
basic properties applicable to graphs (directed or not, weighted or not, etc.) shown
in the previous section apply.

Network Science differentiates different models, as Table 2-3 shows. The work on
random graphs is mostly focused on models, as in [ERDOES & RÉNYI 1959];
generalized random graphs can be found, for example, in the works of [BOLLOBÁS
1981] and [NEWMAN et al. 2001]. Small world networks are commonly referenced
in [WATTS & STROGATZ 1998].

Having these models available, the basic properties of large networks as currently
available can be accounted for. In this context, emergence is an effect particularly
important to Network Theory, acknowledging essentially the fact that certain
patterns originate from even random networks, and it is these structural patterns
that govern the behavior of the overall network.

36 Graph Theory is not limited to a certain network size; however, a direct analysis of nodes is
pointless for networks with millions of vertices, as commonly encountered in Network Theory
[NEWMAN 2003a, p. 2].

37 There are several review publications on the state of the art available: [NEWMAN 2003a] is the
most complete, while [STROGATZ 2001] provides more examples. [ALBERT & BARABASI 2002]
is also considered very comprehensive. [DOROGOVTSEV & MENDES 2002], [HAYES 2000b],
[HAYES 2000a], and [CAMI & DEO 2008] have reviewed the state of the art on Network Theory.

2.1 Structural complexity of a system 53

The most common property is the size of a network, described by the number of
nodes, the number of edges, the mean degree of a node, the mean distance of two
nodes, and the diameter (i.e., the longest geodesic38 in a network).

The small world effect formalizes the phenomenon commonly known as “six

degrees of freedom”, an experiment undertaken in the 1960s by Stanley Milgram

to assess how many people a letter would pass through to arrive at a recipient
unknown to the sender [KLEINFELD 2002]. Using the small world effect, the
shortest path between two nodes of the network can be calculated as well as the
mean path length of all paths connecting any two nodes in the network.
Obviously, the more “small world” a network is, the quicker information is spread

or a common opinion is generated (see Figure 2-13). Unlike matrix-based methods
in engineering, however, the network models used have statistical properties that
do not occur in technical systems. Thus, this effect is not directly transferable.

38 A geodesic is the shortest path between a given pair of nodes.

Table 2-3: Overview of statistical models for large, static networks (based on [NEWMAN
2003a])

54 2. The foundations of complexity metrics

The transitivity39 of a network addresses the fact that if node A is connected to
nodes B and C, it is quite probable that nodes B and C are connected, too. Thus,
nodes with a high degree tend to generate clusters around them, even if these are
not explicitly present [WATTS & STROGATZ 1998].

Resilience is also called connectivity. The research interest in a network is how
the average path length across the network changes if individual nodes are
removed, and when the network falls apart into distinct groups; additionally, the
size of these groups is used to characterize a network [ALBERT et al. 2000].
Typically, large networks are resilient against the removal of random nodes. This
relates to the fact that common network structures consist of nodes with a low
degree, thus being rarely involved in communication [NEWMAN 2003a]. The
targeted removal of nodes with the highest degree, on the other hand, quickly
breaks down the connectivity of the networks to such an extent, that with a few
nodes removed, the network falls apart. This is especially true for scale-free
networks (see next paragraph).

Networks in the real world possess different degree distributions [ERDOES &
RÉNYI 1959] [BOLLOBÁS 1981]. While a completely random graph with equal
probabilities p of a node being connected will generate a homogeneous network, a
scale-free graph will turn to a hub-and-spoke-like structure (commonly measured
using a histogram of the degrees in the network). See Figure 2-14 for the two
cases. The application is highly relevant to judge the robustness of a network in
terms of the random failure of a node and its target (i.e., an attack). While
networks tend to remain generally intact if a node that is minimally connected
drops out, removing a hub may cause the network to fail completely, as, for
example, the failure of the power grid in the USA in 1996 showed [WATTS &
STROGATZ 1998]. Scale-free networks have received particular attention,
following a power-law degree distribution. In fact, most large networks, e.g., the
internet, are scale-free networks, having dedicated hubs and few connected spokes
[LI et al. 2005] [KIM et al. 2002] [BARABÁSI & ALBERT 1999].

39 Also referred to as “clustering”, which should not be confused with clusters in graphs or

DSMs.

Figure 2-13: Different network types[WATTS & STROGATZ 1998]

Increasing randomnessp = 0 p = 1

Random graphSmall world graphRegular graph

2.1 Structural complexity of a system 55

In social networks especially, the characteristics of homophily or assortative
mixing have led to research on mixing patterns. The interest is in how different
nodes in a network establish groups of similarity of a kind that are not directly
represented in the network [NEWMAN 2002] [NEWMAN 2003b]. A common
example is a network of friendships in school. If the skin color of the children is
introduced into the study, the network will sort the nodes in a way that distinct
black and white subgraphs will appear [MOODY 2003]. A more special case is
degree correlations; here, the pattern is about what constellations of degrees
correlate [MASLOV & SNEPPEN 2002].

Social networks, in particular, show community structures, which are similar to
the effect of clustering in DSMs (see Figure 2-11, right-hand side). A community
is a group of nodes that are densely connected to each other and little connected to
the outside network. To detect groups, cluster analysis is performed, which assigns
a connection strength (much like the weight of an edge) to each pair of nodes
[MOODY 2003] [NEWMAN 2003a]. However, more recent methods do not simply
assign a community to a group of edges that are pairwise neighbors, but that are
related via different geodesics across the group [GIRVAN & NEWMAN 2002].

Another feature of networks is the navigation of the network. While it is not only
possible to find one’s way across a large network even without knowing people

explicitly (“a small world”, [KLEINFELD 2002]), it is also common that individual
paths across the network take shape.

Centrality is also a common property of individual nodes as well as networks
[FREEMAN 1978]. Commonly, centrality is measured using the betweenness of a
node, i.e., its position on a number of geodesics between all pairs of nodes in a
network; the more geodesics a node is on, the more central it is because it is part
of more communication paths across the network.

Finally, motifs have been recently researched. Motifs are parts of the network
that, as a subgraph, are recurrent, i.e., they appear in a similar pattern in different
places across the network [MILO et al. 2002].

In summary, Network Theory provides a set of structural characteristics that
complement those provided by Structural Complexity Management. However,
these structural characteristics are based on statistical network models that
incorporate random network phenomena that do not necessarily occur in technical
systems, such as shortcuts across the network, as found in Small World networks.

Figure 2-14: Homogeneous exponential and inhomogeneous scale-free network after
[ALBERT et al. 2000]

N
u

m
b

e
r

o
f

n
o

d
e

s

Degree
N

u
m

b
e

r
o

f
n

o
d

e
s

DegreeExponential Scale-free

56 2. The foundations of complexity metrics

In fact, most networks that are regarded in Network Theory are networks from a
social context. As processes are socio-technical systems, they do, in fact, exhibit
these phenomena, too, to a certain extent. For example, an organizational structure
in a process provides the basic communication structure; however, it does not
elicit all communication channels available. The clustering coefficient that
reviews the possible relations of a node is a good example, as it points to entities
of the process that may be more importantly connected than shown in the actual
network. Therefore, these structural characteristics provide a good complement to
existing structural characteristics.

2.1.5 Other approaches to managing complex systems

General Systems Theory is interested in fundamentals, principles, and models
valid for any kind of system, thus providing a general framework to describe how
entities interact [VON BERTALANFFY 1968]. To this end, it applies differential
equations. Systems Theory is based on the hypothesis of open systems, as opposed
to many theories in physics, for example, i.e., systems that interact with their
environment and are able to change their state through constant adaptation.
General Systems Theory was later extended to New System Theory, differing
mostly in the fact that the observer now was part of the system [PULM 2004, p.23].
It created the approaches of Self-Organization, Autopoiesis, and Dynamic
Systems Theory. Self-Organization is, to some extent, related to emergence40, i.e.,
how structure arises out of the relations and interactions of a system’s entities. In

particular, it regards how a system changes over time based on influences that
originate from itself [DIETRICH 2001, p. 87]. Autopoiesis extends this concept to a
level at which a system is able to reproduce itself based on the entities it is made
of [MINGERS 1994]. Both approaches make use of four core principles inherent to
open systems as proposed in General Systems Theory: Complexity (i.e., being a
network of entities and their relationships), self-reference (i.e., the behavior of the
system has an impact on the system itself), redundancy (i.e., entities that are in
control cannot be separated from those that are being controlled), and autonomy
(i.e., the behavior of the system can be detached – to some extent – from the
environment) [PROBST 1987, p. 76].

Cybernetics [WIENER 1948] is closely related to General Systems Theory. Its
main interest is in how complex, dynamic systems can be controlled to achieve a
goal-oriented behavior [PROBST 1981, p. 7] regarding the control mechanisms
among the entities of a system and the transfer functions that represent
relationships. Cybernetics is an important foundation of management sciences
[MALIK 2003, p. 80]. BEER bridged cybernetics and management science to create
the field of Management Cybernetics [BEER 1972]. It is based on the concept of
systems, and it incorporates the control mechanisms from cybernetics to model
and determine how the actors in an enterprise are mutually interdependent and
how they reach decisions by influencing each other [JACKSON 1991]. Cybernetics
provides a paradigm where things are interdependent and certain organizational
patterns directly impact the behavior of a system. This is also the basic
understanding in this research.

40 See section 2.1.4.

2.1 Structural complexity of a system 57

Systems Engineering is another discipline that uses the ideas from System
Theory to better manage problems in engineering design. To do so, it extends the
understanding of a system from the technical system under consideration to the
project that creates the technical system [OLIVER et al. 1997, p. 85]. Systems
Engineering makes extensive use of the network structure of the system and the
control mechanisms that govern the system, and the context of Systems
Engineering has given rise to a number of methodologies to model processes (e.g.,
IDEF, see appendix), Quality Function Deployment (see section 6.1.1), and
various other models [INCOSE 2007]. A core concept is to link the behavior of a
system (i.e., what a system does) to its structure (i.e., how a system is built), as
proposed in this research [OLIVER et al. 1997, p. 21].

System dynamics equally regards systems, focusing on their internal network
structure. However, it concentrates on the dynamics of this network to simulate its
behavior in order to deduce improvement measures [FORRESTER 1977]. It is based
both on quantitative models, mostly network-like flowcharts, and qualitative
models to detect feedback loops that may either reinforce or balance the system.

Operations Research is interested in attributing resources to a problem under
certain boundary conditions, using optimization algorithms to achieve an optimum
solution. It applies methods such as linear programming, graph theory, scheduling
algorithms, network theory, and different aspects of combinatorial analysis [FINKE
2008, p. ix]. Operations Research treats many problems that are similar in this
research, and many algorithms for structural analysis have originated from
Operations Research, especially regarding connectivity, shortest paths, matchings,
and n-partite graphs [BIENA 2008].

Information Theory tries to quantify information, thus making possible many
modern communication technologies. It applies a basic measure for the
complexity of information, namely entropy, eliciting the average storage space
necessary to recuperate a piece of information [SHANNON & WEAVER 1998, pp.
48-50]). It was later extended to Algorithmic Information Theory, combining it
with the idea of determining the computability of an algorithm using a Turing
Machine (i.e., a model of the computation of an algorithm). Tuning machines use
the more formal Kolmogorov complexity as a measure for the computational
resources necessary to describe a piece of information [BURGIN 1982].

To explain networks of economic transactions, New Institutional Economics is
also related to the research presented here; however, it is mostly focused on
explaining the rationale behind why two or more entities form a network. The
Principal-agent problem regards, in particular, the “asymmetric” exchange of

information within a network of potential partners, whereas Transaction Cost
Theory focuses on the cost of exchanging information, and how this exchange can
be organized most efficiently [KEIJZER 2007, p. 28].

2.1.6 Summary

With structure defined as the purposeful patterns that occur in the set of entities
and relationships of a system, structural complexity prevails in different
disciplines, creating different dependency models. Matrix-based models such as
Multiple-Domain Matrices have only lately matured to a level able to describe

58 2. The foundations of complexity metrics

large systems involving several domains and relationship types, and many
questions remain unsolved. Yet, the method is able to embed many analyses that
can be traced back to Graph Theory or Systems Theory.

Table 2-4: Summary of features of structural analysis in different disciplines

2.2 Structural aspects of process management 59

Graph Theory and Network Theory have evolved in parallel, creating different
techniques to systematically analyze structural characteristics, such as the
centrality of an actor in a social network or planarity as a measure of
understandability of a system. The recombination of the different appropriate
structural characteristics from the different disciplines provides a comprehensive
toolset for the analysis of any system, as shown in Table 2-4 (features appearing in
several disciplines are listed only once). In particular, research in engineering and
social sciences provides empirical evidence of the applicability of different
structures in any kind of system and in processes specifically.

Furthermore, Multiple-Domain Matrices make it possible to create aggregate
views that recombine different domains and relationship types into compact
Design Structure Matrices used to analyze the long-range effects across several
domains. The combination of Multiple-Domain Matrices with structural
characteristics available in the different sciences, therefore, provides a
comprehensive analysis tool for large complex systems. Yet, some gaps in
modeling methodology still exist, especially the modeling of logic operators, the
goal-oriented analysis and the aggregation of different domains. These issues will,
therefore, be addressed later to complete the existing modeling methods.

2.2 Structural aspects of process management

Processes have been of interest for a long time. Process orientation was already
proposed in 1934 [NORDSIECK 1934], yet process management did not really catch
on until the 1980’s [BECKER et al. 2005, p. 3]. A process-oriented organization is
characterized by customer orientation, fewer interfaces, lower effort of
coordination, clear responsibilities in terms of the results of the process,
systematic improvement of process performance, process controlling,
decentralized management, and organizational learning [SCHMELZER &
SESSELMANN 2006, pp. 68-71].

In the following, the basics of process management are explained. In particular,
those aspects that relate to the structure of a process are focused, i.e.,
dependencies and their patterns in process management. Quantitative analyses
(e.g., towards lead time) are omitted.

2.2.1 Processes in Engineering Design

Process orientation has led to many different areas of research. In general, the
more general notion of a process can be broken down into business processes and
engineering design processes. Such a basic classification is, of course, not
complete; there are many other taxonomies available, e.g., in primary (i.e., value-
generating), secondary (i.e., doing the preliminary work for the value generation),
and supporting processes (e.g., administration) [BECKER et al. 2005]. However,
these are not addressed in this book, as the primary focus is on structure.

Table 2-5 lists common definitions of the term “process”. Basically, a process is a

set of interdependent tasks. Yet, a process is commonly characterized by its
objective, its activities, its inputs and outputs, the events before and after it, its

60 2. The foundations of complexity metrics

reference to time, and the resources used. Thus, many different aspects
collectively enable a process, for example, resources or the inputs and outputs.

The following definition for a process used for this research is based on [VAN DER

AALST & VAN HEE 2002, p. 4], while additionally introducing the aspect of a
network of tasks that are highly interdependent, which is of high relevance
especially to processes in engineering [O'DONOVAN et al. 2005]. This definition is
used, as it embodies the concept of a process as a multi-layered network (i.e., the
first hypothesis of this research) and thus lays the foundation of assessing the
structure of a process to deduce indications about its behavior.

A process consists of interdependent tasks that exchange information via
artifacts. The process is enabled and supported by the purposeful allocation
of resources and time-oriented constraints. All of these entities are
interrelated, on the one hand, via the input-output relationships among tasks
along the principal process flow, and, on the other hand, via other
relationship types that generate the overall process network.

In this context, a task is a logical unit of work that is carried out as a single whole
by one resource over a period of time. A resource is the generic name for a person,
machine, or group of persons or machines that can perform a specific task. All
entities may have relationships among themselves.

Table 2-5: Definitions of the term "process" in literature

2.2 Structural aspects of process management 61

A business process is “a special process that is directed by the business objectives

of a company and by the business environment. Essential features of a business
process are interfaces to the business partners of the company (e.g., customers,
suppliers). Examples of business processes are the order processing in a factory,
the routing process of a retailer, or the credit assignment of a bank” [BECKER et al.
2003, p. 4]. Such a process is, therefore, repeatable without the necessity to
generate knowledge about the process execution.

An engineering design process, in contrast, is a process during which knowledge
about an object is generated. As this object still necessitates designing, its nature is
– at least in part – unknown. This generates uncertainty throughout the process
that needs to be managed, and that causes an engineering design process to be
much less deterministic than a business process. Table 2-6 distinguishes business
processes and engineering design processes.

As can be seen, in engineering, design processes have the character of problem
solving [LINDEMANN 2007, pp. 45-47], i.e., they cannot simply be processed but
necessitate the generation of knowledge [HATCHUEL & WEIL 2003]. They thus
represent a “wicked problem”

41 [RITTEL & WEBBER 1973]. Mostly, this is due to
the high degree of novelty that is common for any product being designed. As a
result, during the process, there is always a high degree of uncertainty present
about the outcome – the earlier in the process, the more uncertainty there is in the
process [LORENZ 2009, pp. 27-30]. In process management, this uncertainty takes
shape especially in iterations, during which the design is reworked, improved and
refined [WYNN et al. 2007] [ROELOFSEN et al. 2008]. Often, too, these iterations
are not regularly cyclic, but they occur as leaps forward or backward in time
[BADKE-SCHAUB & GEHRLICHER 2003]. While the process often creates quite

41 A “wicked problem” refers to a problem that cannot be definitively described and that has no

definite solution. Therefore, there are no optimal solutions, and solving the problem is hardly
possible, only indications can be given.

Table 2-6: Difference between business processes and engineering design processes
[VAJNA 2005, p. 371]

62 2. The foundations of complexity metrics

erratic patterns due to this, artifacts, or rather the knowledge about their desirable
properties, are characterized by their growing concretization during process
runtime [KREIMEYER et al. 2008c], and the intermediate results that represent
certain stages of this concretization determine the path of the process [VAJNA
2005] [PONN & LINDEMANN 2005], at times necessitating the re-planning of the
process. At the same time, engineering design processes are often impacted by
moving targets and late changes to the initial concept due to late learning during
the design process. Overall, engineering processes, therefore, have a low degree
of repeatability [VAJNA 2005], and they are difficult to model and plan
[O'DONOVAN 2004]. Yet, their behavior follows basic patterns [EPPINGER 2001],
namely the specific mutual dependencies between the organization, the process
and the product architecture. These need to be well aligned and mutually adapted.

Engineering Design Processes are often carried out as projects, with the project
organization bridging the organizational hierarchy and the common process
[LINDEMANN 2007, p. 12 and p. 16]. A project, however, is understood as a
“temporary endeavor undertaken to create a unique product, service or result”

[PMI 2003, p. 5]. WYNN differentiates processes as mechanistic or projects as
non-mechanistic [WYNN 2007, p. 84]; the interest in the process is more on the
mechanism (or structural patterns, as in this research), while a project plan is more
focused on the timeline.

In this context, the control flow is an important aspect. The control flow (also
called control view) is the set of relations of the various entities of a project
[SCHEER 1999, p. 102]; it is thus equivalent to the network of entities in the
process definition applied here. The concept generally prevails in business process
management. However, the term is used by other fields of science, as well.

Process management makes use of this understanding to analyze, design,
implement, enact, monitor, and evaluate processes to improve value creation in the
enterprise [ZUR MUEHLEN 2004, pp. 82-87], shown in Figure 2-15. The
importance of the relations among the different entities of a process as a basis for
the behavior of the process is commonly recognized; this has led to the
understanding that improving the interfaces between different entities in a process
provides the biggest leverage to obtain a more efficient process [RECHTIN 1991, p.
29] [WASSON 2006, p. 18] [FLURSHEIM 1977].

Figure 2-15: Business process management lifecycle [MENDLING 2008, p. 5]

Analysis

Design

Enactment

Monitoring

ImplementationEvaluation

Inf rastructure

Process ModelRequirements

Case Data

Case Data

Requirements

2.2 Structural aspects of process management 63

Figure 2-16 visualizes the importance of how the paradigm, i.e., a certain
perspective or understanding, drives the different activities during process
management in engineering design [KREIMEYER 2008]; the model is similar to the
Spiral Model in software development [BOEHM 1988].

The model works as follows: First, a model is prepared (the level of detail, the
relevant views, the modeling language, and the access to information); then,
problem areas of the process are defined and prioritized (i.e., the system border is
drawn). Next, information is collected and models are created, and, last, the
models are consolidated before they are analyzed for possible improvements
[BECKER et al. 2005, 109-122].

In the context of this research, only structural aspects are of interest, and thus, the
constitution only relates to collecting information about the relationships between
the entities of the process. In the same manner, the model is a dependency model
that then is evaluated, for example, for patterns that characterize the process’s
behavior, from which possible improvements are deduced.

As both figures show, the process model is the core component to process
management [LINDEMANN 2007, p. 124], generating an overview about the current
situation inside the company as the prerequisite for the improvement of a process.
Of course, every process model is more or less simplified, made abstract, and
reduced to the essentials. To model a process, usually the inputs and outputs, as
well as the transforming tasks of the process, are captured, e.g., through
workshops and interviews. The system boundary, in this context, describes
departments, persons and facilities assigned to the system.

Figure 2-16: Influence of the modeling paradigm and continuous process improvement
[KREIMEYER 2008]

Paradigm

� Value creation in product

design

� Alignment and comparison

of process architectures

� Process patterns and
characteristic features

� Modeling the

overall network

structure of a

process

� Planning the overall process is problem solving

� Evolving concretization over time

� Interdisciplinary interaction

� Anticipating uncertainty and moving targets

� Relationship

between product

and process

� Multi-goal

optimization

� Processes as complex

systems

� Interdependencies within

the system

� The human element
� Drawing the border of the

system „process“

64 2. The foundations of complexity metrics

STETTER [2000] highlights his hypothesis that some weakness can be found in
every design process model, for example, cost-intensive iterations in late phases,
problems in finding and retrieving stored information, or problems caused by
frequent product changes [STETTER 2000, p. 48]. Based on this hypothesis, it can
be summarized that the identification of strengths and improvement potential in
industrial practice not only consists of a search for strengths and weaknesses, but
also includes the selection of the most prominent improvement potential.

The relevance of an improvement is given by the goals of a process improvement
project, which dictate the modeling paradigm and which guide the later analysis of
the model(s) created. The following section reviews possible goals more closely.

2.2.2 Goals of analyzing, improving and managing processes

Processes are managed for a number of reasons, satisfying different stakeholders,
and there are various classifications of the concepts and goals of process
management. Table 2-7 lists those aspects related to the structure of the process.
These are adapted from the literature on typical errors, common problems, or the
general intent of process management. Their categorization, as shown in the left-
hand row, can be understood as common goals that for which processes are
analyzed and improved.

The table is constructed from the references shown in the top row. From each
reference, relevant concepts in process management were collected. In fact, some
references directly address the goals of process management [KREIMEYER et al.
2008b] [BECKER et al. 2005, p.5, p. 30, p. 124], while others speak about the foci
of process improvement in a more general manner [ZIMMERMANN 2008, p. 72]
[SCHMELZER & SESSELMANN 2006, pp. 68-70] [IDS SCHEER 2007, p. 10]
[GAITANIDES et al. 1994], and again others address typical problems in processes
[BEST & WETH 2009, p. 77] [EUROPEAN FOUNDATION FOR QUALITY

MANAGEMENT 1995]. All of these concepts were collectively classified with
regard to their structural content, i.e., only those concepts that relate to the
structure of a process to at least some extent were kept. In the context of this
research, the concepts shown will be used as a framework to systematize a process
in a goal-oriented manner. Section 6.1 will show common methods into which
these concepts can be embedded.

2.2 Structural aspects of process management 65

Table2-7: Different concepts in process improvement

66 2. The foundations of complexity metrics

Table 2-7: Different concepts in process improvement (continued)

2.2.3 Process models and their structural content

Process models are an essential part of process management, as they help in
understanding a process by representing the entities involved, their relationships,
and the quality of their interactions. They are thus used for a variety of purposes
which coincide with the different goals of process management, as shown before.

To assess process models for their structural content, it is necessary to understand
to what extent each individual process model depicts a part of the structure of a
process. In the interest of comparing what model is made for what purpose,
BROWNING assesses different process models as to their focus and the different
stakeholders interested in a process model [BROWNING 2009] [BROWNING 2008].
He concludes that while every model in his review is made for a different purpose,
many models convey similar information.

To suit different needs, numerous methodologies for process modeling are
available, and non-exhausted lists and comparisons are provided, for example, by

2.2 Structural aspects of process management 67

[BICHLMAIER 2000, pp. 43-61], [BAUMBERGER 2007, pp. 299-316], [SPATH &
WEISBECKER 2008], [BROWNING 2009], [HEISIG et al. 2008], [LANGER et al.
2009], or [KARNIEL & REICH 2009]. [BROWNING & RAMASESH 2007] look more
deeply into network-like process models, reviewing the literature published in the
last decade. They conclude that, among other foci, the interaction of tasks and
their impact on overall process improvement can be found in all existing models,
yet needs more focus.

To be able to design a comprehensive approach that allows analysis of different
process models in terms of their structural content, it is necessary to outline how
process models can be compared and returned to one common denominator with
respect to their structure. Both necessities are explained in the following section,
starting with the latter aspect of reviewing how the interoperability of such models
can be assessed to then analyzing models for their common structural content.

Comparing and recombining process models

To develop an analysis method that suits not one but all common process models,
a structured basis for its design is needed. To do so, a modeling framework needs
to be created that incorporates the particularities of common process models, i.e.,
their specific modeling constructs, such as their semantics and semiotics. This
section reviews the necessary methodology by looking more closely at the results
of research on the interoperability of process models.

A process model involves many different aspects, summarized in Figure 2-17, for
example, the semantics, their syntax, and the notation in which they are
embedded. Existing process models vary in one or more aspects shown, and they
do so to create an effective methodical support of one or several goals of process
management. To do so, the semantics of the different modeling languages
generally contain different aspects of, for example, scheduling, resource
attribution or other domains. Other models, e.g., extended Event-driven Process
Chains (EPC, see appendix 10.1.1), focus on the preparation and possible
implementation of a process support through information technology and,
therefore, integrate IT-systems and information objects into their semantics.

Figure 2-17: Aspects of process modeling [KÜHN 2004]

Notation Syntax

Modeling
language

Modeling
technique

Modeling
procedure

Semantic
domain

Semantic
mapping

Semantics Steps Results

considers

visualizes

defines visualization

defines meaning

defines way of language application delivers

describes
meaning of

arranges
according to

defines grammar

68 2. The foundations of complexity metrics

Again, YAWL (Yet Another Workflow Language, see appendix), for example,
was designed to support the setup of the best possible workflow systems and,
therefore, strongly focuses on formally correct decision logics, so-called workflow
patterns, in the modeling scheme, while leaving out many other aspects that EPC
integrates. However, if metrics are to be applied to estimate the complexity of a
certain property of a process, it is necessary to have a basis to make these
measures interoperable [CARDOSO 2005b].

As stated above, many process models are very similar to each other, following
only marginally different foci, and a lot of work exists on the so-called
interoperability of process or enterprise models.

To allow process models to be compared, BECKER & PFEIFFER [2008] suggest
analyzing process models in terms of their semantics and syntax, and thus find two
classes of conflicts that can arise between any two process models (language and
ontology-based). To systematize the comparison of process models and to
overcome these conflicts, HÖFFERER [2007] describes a meta-model-based
approach to achieve a better interoperability between different process models by
using ontologies42 to compare how “close” one process model’s meta-model is to
the next [HÖFFERER 2007]. He thus proposes a terminological level at which
models become comparable and which can be transferred from one model to
another. The model is extended to a meta-level across the meta-models of
different process modeling methodologies, referred to as a meta2-model (see
Figure 2-18).

Whereas modeling language-based conflicts limits the exchangeability of process
models [BECKER & PFEIFFER 2008], the aspect of reviewing the semantics of
processes at the level of the meta2-model is of interest to see if different process
models offer similar structural content, namely similar domains and relationship-
types. This approach is quite similar to the SEMAT methodology which compares

42 For the ontology-based comparison of process models, see also [GUIZZARDI et al. 2002],
[PFEIFFER & GEHLERT 2005], and [SIMON & MENDLING 2007].

Figure 2-18: Different meta-levels to compare process models [HÖFFERER 2007]

layer n models modeling languages

layer 3 meta²-model meta² modeling language

layer 2 metamodel meta modeling language

layer 1 model modeling language

layer 0 subject under consideration

conforms to

conforms to

represented

by

in

in

in

describes

describes

… … …

2.2 Structural aspects of process management 69

process modeling methodologies using a meta3-model as a framework for the
comparison [KLUTH et al. 2008]. In the following, the meta²-level is chosen to
compare the meta-models of different process modeling methodologies.

Comparison of common process models and their structures

With the goal of analyzing processes and their structure, this section reviews
common process models as to their structural content. Common models are, in this
context, those models that are either considered standard in industry according to
[IDS SCHEER 2007] or that serve as a common reference in research with
[BROWNING & RAMASESH 2007] as the main reference. The interest of this
analysis is to generate a meta-model later for structural process modeling able to
accommodate common process models (see chapter 4 of this book), thus
becoming an analysis adapter for existing process models.

Table 2-8 represents the most common process models used for engineering
design process analysis. All models are described in detail in appendix 10.1 of this
book. In the appendix, each model is described as a flow-oriented model
according to the individual modeling conventions, and it is represented as a
specific meta-MDM that shows all domains contained in the respective modeling
language as well as the relationship types that can be found. Figure 2-19 shows the
SADT meta-model on the left-hand side with four basic types of activities that
generate four domains in the meta-MDM on the right-hand side. Those domains
that are related can be seen in the flow-chart model; their relationship types are
given in the meta-MDM to the right-hand side of Figure 2-19.

Table 2-8: Common process modeling methodologies

70 2. The foundations of complexity metrics

Using the meta²-level, the process models from Table 2-10 were compared
concerning their structural content. Figure 2-20 shows the general approach,
using an example of two partial process models in EPC and IUM on the lower
level, their meta-models on the middle level, and the regrouped domains on the
top of the figure. The relationship types are not shown in the figure but are, of
course, part of the analysis, as well. The analysis consists of two steps. First,
common domains are collected to constitute the domains of a meta2-model. Then,
relationship types among these domains are established by collecting common
relationship types of the individual meta-models for all process modeling
methodologies.

Figure 2-19: Example of a SADT as a flow-chart meta-model and as a meta-MDM to show
the structural content

Figure 2-20: Example of the meta²-model approach taken here to compare process models
and their structural content, aligning an EPC and an IUM Model at level 3 of the model by
[HÖFFERER 2007]

Activity

Activity (Output)

Activity (Input) Activity (Control)

Activity (Mechanism)

Task

Event

Function

Input /
Output

Function 1 Event b Action 1Product 1

Input 1 Output 1

Product 2Event a

EPC process model IUM process model

L
a

y
e

r
0

:

M
o

d
e

l

L
a

y
e

r
1

:

M
e

ta
-m

o
d

e
l

Product

“starts”

“generates”

“supports”,

“is input for”

“creates”,

“uses”,

“produces”,

“delivers output for” “is processed by”

“processes”

Action

L
a

y
e

r
2

:

M
e

ta
²-

m
o

d
e

l EventArtifact

EPC meta model IUM meta model

Domains and relationship types collected at meta2 level

2.2 Structural aspects of process management 71

Table 2-9 shows the domains of each process meta-model. Based on the
descriptions of each model, these domains were regrouped into eight categories
that represent common domains of process modeling. All descriptions and the
necessary references are given in the appendix.

The table was designed like that of Table 2-7. Again, all individual classes of
objects of the chosen process modeling methods were collected based on their
descriptions in the references. For example, IUM lists “actions”, “functions”, and

“activities” as descriptions for a task according to [MERTINS & JOCHEM 1998]. All
classes of modeling objects were collectively classified. The resulting domains are
listed in the top row of Table 2-9.

Table 2-9: Regrouped domains of structural interest for all 13 reviewed process modeling
methodologies

72 2. The foundations of complexity metrics

There are specific modeling constructs that can be understood as additional
domains, as Table 2-10 shows: P3 and PMM allow the specific decomposition of
the tasks in the process, forming a domain of their own. Similarly, BPMN and
YAWL introduce an individual domain to represent logic operations. BPMN
furthermore models text annotations explicitly as a separate domain, although
such annotations are common in all process models and, in fact, do normally not
represent a specific domain of their own.

The same collection and classification can be done for the classes of relations that
each modeling method provides. However, as the descriptions in appendix 10.1
show, many process modeling methods are not very specific about the different
relationship types. For example, for SADT (Figure 2-20) no description is given at
all; therefore the actual meta-model and the references only indicate an
input/output relationship type [MARCA & MCGOWEN 1988]. The result of this
collection of relationship types is not shown here but is taken up in section 4.3 to
construct a meta-model for structural process modeling that entails all relevant
domains and relationship types.

In summary, all process models contain aspects of the structure of a system to
some extent, as they all consist of “boxes and arrows”. While some models

specify the structure very strictly, others leave more room for process modeling
experts to adapt the model. Yet, it is possible to review existing models at a more
abstract level to find a common denominator, both with regard to the domains
involved and their relationships. Section 4.2 takes up that concept to generate a
meta-model that later serves as a basis for the application and interpretation of
structural metrics for engineering design process analysis.

2.2.4 Strategies to analyze design processes and models

Process analysis is a common buzzword and a wide field of research43, and it has
been so for many decades now. Generally, there are specific methods to analyze

43 For example, [CHAMPY & HAMMER 2007], [DE BRUIN et al. 2000], [BECKER et al. 2005],
[SCHMELZER & SESSELMANN 2006], and [GAITANIDES et al. 1994] provide an overview of
general process management. [CLARKSON & ECKERT 2005] and [FAHRWINKEL 1995] review
approaches specifically for engineering design.

Table 2-10: Further domains that occur among reviewed process modeling methodologies

2.2 Structural aspects of process management 73

and deduce improvements for each individual aspect of process management, as
shown in Table 2-7. There are also two kinds of strategies: continuous
improvement and radical reengineering [HAMMER & CHAMPY 2003]. Both,
however, are based on modeling a process and the analysis of the process models.

Engineering design is closely connected to problem solving [LINDEMANN 2003]
[LINDEMANN 2007]. In turn, a process must support the best possible problem
solving, and, therefore, the structure of the process organization needs to be
closely connected to the product architecture.

This ambiguous borderline between process improvement and product design
makes it difficult to systematize approaches to process improvement in
engineering design. WYNN organizes process models, including the modeling and
improvement intents in a framework consisting of several layers [WYNN 2007, pp.
16-60], as shown in Figure 2-21. The classes represent specific views of the
design process, and each has created different models and improvement
approaches.

As Figure 2-21 shows, the structure of a process is only addressed implicitly,
which reflects the fact that there has been minimal attention in research on process
improvement so far. In Wynn’s system, structure is a part of the analytical
approaches, and is addressed to activities, information transfer, or the actors. To
this end, different strategies exist (task networks, queuing models, multi-agent
simulations, system dynamics), but there is no overall approach that supports the
selection of any of these quantitative, detailed and labor-intensive methodologies
from a more qualitative point of view.

Figure 2-21: Framework of organizing process models and their analysis [WYNN 2007, p. 60]

74 2. The foundations of complexity metrics

Generally, different methods of analyzing and improving processes are available
[FREISLEBEN 2001, pp.71-74]: Experiential, analysis of historic structures,
identification of duplication of work, analysis of interfaces, capability of
communication, calibration of milestones, and comparison to reference models.
However, these do not relate to structures directly except for the analysis of
historic process models, which are the focus of this research.

The structure of processes has generally been addressed from a semantic point of
view, having created many procedural models44 to guide the design process;
however, these remain at a very rudimentary level. At a more sophisticated level
of detail, a DSM is generally used to interrelate the tasks of a design process to
improve sequence, communication, or synchronization [BROWNING 2002]
[KUSIAK et al. 1995] [STEWARD 1981].

Other research has enriched the simple dependencies in these models to include,
for example, the possibility to overlap tasks [KRISHNAN & EPPINGER 1997], the
uncertainty inherent in a task [CHALUPNIK et al. 2008], decision options and
scenarios [CLARKSON & HAMILTON 2000] [WYNN 2007], the different aspects of
behavior of the actors of the tasks on a strategic level, such as coordination
techniques, cooperation techniques, organization models, project management,
and others [WHITFIELD et al. 2000], the behavior of actors on an operational level,
e.g., resource attribution, scheduling, and others [COATES et al. 2000], and
complex simulation [KARNIEL & REICH 2009].

Besides these approaches, which are focused mostly on the principal process flow
as a set of tasks and their supportive entities (e.g., resources), another stream of
research has focused on how the design process can be best aligned for the product
architecture [SOSA et al. 2004b] [KREIMEYER et al. 2007c] [DANILOVIC &
BROWNING 2007].

Little work has been done outside these basic metric designs, which relate mostly
to product complexity. However, individual work on, for example, customer
integration [KAIN et al. 2008], the role of social networks [LIBERATI et al. 2007],
or enterprise architectures [WALDMAN & SANGAL 2007] have shown the need to
manage the structure not only among the tasks but across all entities and domains
of a design process [EPPINGER 2001].

So far, no comprehensive approach is available for the structural analysis of a
complete process, and there seems to be no framework for the systematic
improvement of a process’s structure. There are, however, many fragmented
methods and algorithms available that support the analysis and improvement.

2.2.5 Summary

A process can be understood as a system made up from different domains and
relationship types, and it forms a network structure which only serves its purpose
as a whole. While common business processes have already become highly

44 Typical procedural models are, for example, the VDI 2221, the Munich Procedural Model
[LINDEMANN 2003], the SPALTEN model [ALBERS et al. 2005], and the V-model of the VDI
2206. An overview can be found in [BAUMBERGER 2007, pp. 72-77].

2.3 Metrics to analyze the structure of a process 75

complex, in engineering design this complexity is even greater through growing
specialization and the distributed generation of knowledge.

Process management offers different methodologies to improve such processes,
and improvements follow certain goals. Those goals relevant to structural process
improvement were reviewed and consolidated to serve as a basis to set up a
framework to organize structural metrics for process analysis.

An important foundation of process management is the modeling of processes.
Each modeling method brings with it different domains and relationship types for
the set of common aspects regarded by process management. Using a meta²-
model, it was shown that process models in research and industry have common
structural content that can be used to access the process structure embedded in
these models; furthermore, different process models can be combined and/or
compared that way with regard to the structure of the process. Nevertheless, there
is no comprehensive approach to analyze the structure of a process in a goal-
oriented manner. Although different methods for process analysis exist, these
remain largely unconnected.

2.3 Metrics to analyze the structure of a process

This section reviews metrics as a means of the systematic analysis of large
systems45. First, the foundations of measuring are introduced; then the different
aspects of good measurement of the complexity of a structure in network,
software, processes, and engineering design, are reviewed. In particular, existing
structural metrics are reviewed in detail to increase the understanding of the
existing basis for developing metrics able to characterize different structures in an
engineering design process.

2.3.1 Basics and measurement foundation

Metrics46 are a means of representing a quantitative or qualitative measurable
aspect of an issue in a condensed form [HORVÁTH 2003]. This “measurement is a

mapping of properties of empirical objects to formal objects by a homomorphism”

[ZUSE 1998, p. 92]. As such, a metric is therefore intended to depict an actual
situation in a reduced and efficient manner.

Measurement theory47 [ZUSE 1998] provides the basis for the design of such
metrics. It describes how a phenomenon can be measured by establishing mapping

45 “Large” will not be specifically defined, as it addresses essentially the fact that a system has
many entities and relationships that are complex and thus difficult to handle.

46 Measurement theory also refers to scales and measures, which, in this context, will be used
synonymously. In economics, the term “performance indicator” is used, as well; however, it is

not applied here, as it implies rating a good or bad performance rather than a basic metric
[KAPLAN & NORTON 1992].

47 Measurement Theory is succinctly reviewed in [SUPPES & ZINNES 1963] (available at
http://suppes-corpus.stanford.edu/article.html?id=43, accessed 9.8.2009) and in [LUCE et al.
1988]

http://suppes-corpus.stanford.edu/article.html?id=43

76 2. The foundations of complexity metrics

of an empirical concept to a mathematical concept. Measurement foundation
addresses three common problems [STEVENS 1946]:

‚ The representation problem addresses the fact that a numerical scale should
represent the relations that prevail in the real world.

‚ The uniqueness problem assesses the invariance of a metric to basic
mathematical transformations.

‚ The meaningfulness problem allows the possibility of drawing conclusions
from measured value.

Besides these foundations, the validity of a metric is, of course, of particular
interest. The goal is to see if a metric actually represents what is supposed to be
measured. The validity of a metric, therefore, largely relates to the meaningfulness
problem. It can be broken down into three aspects [MENDLING 2008, p. 106],
visualized in Figure 2-22:

‚ Content: Is the full range of possible meanings of the object represented?

‚ Criterion: Is the measured aspect the correct one to represent the topic of
interest?

‚ Construct: Is the criterion in line with theoretical reasoning?

These problems are approached by different kinds of metrics. The scale hierarchy
[STEVENS 1946] classifies metrics as nominal, ordinal, interval, and ratio scales.
Identification numbers, for example, are nominal values, attributing a name to an
empirical issue. Ordinal scales, such as the weight of an edge that relates to, for
example, the intensity of the use of the communication channel represented by the
edge, relate directly to the proportions in the empirical domain. Interval scales
preserve only the relative distance between two empirical observations. Ratio
scales, ultimately, extend the interval by a zero that expresses the absence of an
empirical observation.

Figure 2-22: Example of a structural metric and the different aspects of its description

Empirical object:
Communication

network in the process

Measure:
Centrality

Construct: Number of communication paths f rom

any organizational unit to any other unit across the

unit in question

Criterion: Number of geodesics between all pairs of

nodes in network across node in question

Content: “Organizational unit is very central” (and

thus has very high inf luence) to “unit has no

inf luence at all” (because it is not part of the

process)

Issue: Assessment of the inf luence of a single

organizational unit on the overall process

Unit 1

Unit 2

Unit 3 Unit 6

Unit 7

Unit 5Unit 4

C
e

n
tr

a
li
ty

20

12

8 8
7

5
4

2.3 Metrics to analyze the structure of a process 77

Metrics can also be classified as fundamental and derived [ZUSE 1998, p. 95].
Fundamental metrics commonly emerge at an initial point of research; derived
measures aggregate one or several fundamental measures.

There is ongoing discussion about what kind of metrics can be seen as “real

metrics” [AICHELE 1997, p. 74]. Some researchers argue that only ratios are real
measures, as they not only yield a result but also a scale provided by the baseline
of a fraction. Other researchers see the problem pragmatically, arguing that any
metric that is able to express an empirical problem in a meaningful way is a useful
measure. In this research, the latter view is followed.

Overall, two basic strategies to generate specific measures are possible: Either,
well-understood fundamental metrics can be applied to a comparable context to
generate new derived measures, or new fundamental metrics can be used. In this
research, as presented in the following chapters, mostly new derived metrics are
developed that use pre-existing empirical foundations.

A set of related metrics is commonly organized as a measurement system48. The
goal of establishing such a system is to organize metrics concerning their number,
precision, and appropriate allocation based on their commonalities and relations
among each other [AICHELE 1997, p. 79]. A measurement system can thus be
defined as an “ordered set of metrics that are semantically related, that
complement each other and that – as a set – are intended to represent an empirical
issue in a well-balanced and complete way” [LACHNIT 1976].

A measurement system, therefore, is intended to structure a complex issue49 in the
real world in a condensed way, while making it possible to detail individual
aspects as needed. Thus, an issue can be accessed in a structural manner, while it
also serves as a framework to compare different objects under observation
[SCHÜRRLE 1995, p. 14]. Like metrics per se, such a system intends to be
homomorphous containing aspects that are of relevance in the real world. A
measurement system can be structured in four different basic ways [AICHELE
1997, p. 81]:

‚ A mathematical system relates metrics by calculating combined or derived
metrics from fundamental ones. This way, hierarchies of metrics, like the
DuPont-System of Financial Control, are set up.

‚ Practical systems apply factual logic to relate metrics; relations are usually
empirically established, such as the RL-System [AICHELE 1997, p. 81].

‚ A heuristic system is more focused than a practical system, developed
explicitly to solve a specific issue and relate metrics to this issue. The GQM-
approach shown in section 6.1.2 is an example that will be used later.

48

Also referred to as “scorecard”, “metrics suite”, or “ratio system” [REICHMANN & LACHNIT
1977]

49 Measurement systems are most commonly found in economics, e.g., the balance sheet
analysis, the DuPont-System of Financial Control, or Tucker’s Managerial Control Concept.

Compare, for example, [AICHELE 1997, pp. 84-109] for an overview of measurement systems in
economics or [GEIGER 2000, pp. 129-133] for such systems in engineering management.

78 2. The foundations of complexity metrics

‚ An empirical system is focused on statistically significant metrics that have
originated from empirical observation. In contrast to a heuristic system, the
attribution of a metric to an issue is considered more objective.

In practice, measurement systems are used as early-warning instruments, as means
of analysis (e.g., for benchmarking processes or spotting improvement potential
in a process), or as management tools to plan and control a complex system
[GEIGER 2000, p. 99].

With the above definitions, TSAI and KERNLER summarize the requirements of
metrics as follows [KERNLER 1996, pp. 35-38] [TSAI et al. 1986]:

‚ Purposefulness: Metrics should provide sufficient informational content to
describe the issue in question.

‚ Homomorphism: Metrics should be designed to be as homomorphous with
the behavior of original data as is possible and purposeful.

‚ Simplicity: A user who should be able to understand the metric easily.

‚ Consistency: A user should produce the same result when measuring the
same process.

‚ Automation: The metric should be suitable for process automation.

‚ Metrics must be additive: If two independent processes are put into a queue,
the value of the complexity metric should be at least the sum of the single
values.

In addition, Weyuker’s properties have become the established reference for
metrics design, especially in software engineering [WEYUKER 1988]. They
provide a set of properties that any good metric should fulfill. The set is, however,
rather generic and is criticized for this [MENDLING 2008, p. 117]. In fact, a metric
that is correct in terms of Weyuker’s properties can still be meaningless, i.e.,
Weyuker’s properties do not acknowledge the basics of measurement foundation
[CHERNIAVSKY & SMITH 1991]. Secondly Weyuker’s properties deny the fact that

a single metric cannot capture complexity in all its facets [ZUSE 1998]. Still, the
properties are commonly applied to define metrics [CARDOSO 2005a].

The procedure to design metrics commonly involves two stages of reducing a
system [GEIGER 2000, p. 95]. In the first stage, the system from the real world is
reduced to its relevant issues and then quantitatively or qualitatively modeled. In

Figure 2-23: Modeling process of representing a system as a measurement system [GEIGER
2000, p. 95]

Relevant
aspects of

model

Metrics and
measurement

system

Model
(qualitative or
quantitative)

Relevant
issues of

object

Object under
observation

First reduction Second reduction

2.3 Metrics to analyze the structure of a process 79

the second step, the relevant aspects of this model are reduced and quantified. A
similar model is proposed in [MUTSCHELLER 1996, pp. 63-83]; the author,
however, extends the procedure to include the implementation and review of the
applicability of the measures. In this research, essentially, the second reduction is
the focus, as the metrics are used to analyze existing process models.

2.3.2 Metrics to describe networks

Metrics to describe network structures are generally derived from applied graph
theory and network theory, as described in sections 2.1.2 to 2.1.5. They are
usually grouped into three categories [BRANDES & ERLEBACH 2005]:

‚ Element-level metrics assess the position of a single element within the
overall network.

‚ Group-level metrics regard the constitution and quality of groups50 of
elements within the overall network.

‚ Network-level metrics characterize the properties of the overall network.

MENDLING lists the most common metrics that are commonly used to describe a
network structure [MENDLING 2008, pp. 107-109]:

‚ The degree, i.e., the number of edges connected to a node represents the
connectivity of a single node.

‚ The density of a network, i.e., the ratio of existing edges to the maximum
number of possible edges measures the cohesion of the overall graph.

‚ The centrality of a node, based on different methods [FREEMAN 1978],
represents the cohesion of a network around a central node.

‚ The connectivity, i.e., the number of nodes that need to be removed for the
graph to be unconnected, measures the level of homogeneity of the network.

Network metrics thus incorporate different aspects from Graph Theory; in fact,
many of these metrics only take shape in different applied sciences, which will be
reviewed below.

2.3.3 Metrics in software engineering

Software metrics are highly relevant to process management, as a software
program and the control-flow graph of a process are very similar; several authors
have drawn attention to the fact that executing a software is much like running a
workflow or a process [CARDOSO 2005b] [GRUHN & LAUE 2006a] [ROLÓN et al.
2006a].

In software engineering, metrics are a popular basis for quality assurance51; they
are employed to measure the degree of complexity in software to estimate the

50 A module is a group of highly interconnected entities, whereas these high interconnections
have been planned by the structural organization and are therefore predefined.

51 An overview of the foundations is provided in [NAVLAKHA 1987]; the recent state of the art
can be found in [ZUSE 1998] and [DUMKE & LEHNER 2000]. An annotated bibliography is

80 2. The foundations of complexity metrics

level of error that the software is likely to encounter and to design test methods
adapted to a specific new software development [ZUSE 1998]. Typically, thus, the
metrics are selected top down [MENDLING 2008, pp. 110-111], i.e., the metrics are
applied to measure certain aspects of a software program that are part of the
quality assurance. This is why they are generally regrouped using the Goal-
Question-Metric measurement system that will be shown in section 6.1.2.

Here, only basic metrics are presented, which will be of interest later. Commonly,
there are two kinds of metrics, as there are two fundamentally different
programming paradigms: Procedural programming uses a series of function calls,
plus connecting split and join operations (e.g., goto, for…then, etc.), to constitute
the control-flow of a program, whereas object-oriented programming uses classes

available at http://ivs.cs.uni-magdeburg.de/sw-eng/us/bibliography (viewed on 15 February
2009).

Table 2-11: Common structural metrics for procedural programming paradigms

http://ivs.cs.uni-magdeburg.de/sw-eng/us/bibliography

2.3 Metrics to analyze the structure of a process 81

to define and instantiate objects, which then use methods to transform data. Thus,
their control-flow graphs vary substantially.

Table 2-11 lists common metrics for procedural paradigms from the literature.
They are typically based on counting function calls along the control flow; this is
in line with the programming paradigm, as the metrics are generally oriented to
mimic the execution of the program.

For object-oriented programming, the cohesion (i.e., the degree of the functional
relationship of one entity to another entity) and the coupling (i.e., the
interdependence between two entities) are important [WAND et al. 1990] and drive
the metrics as shown in Table 2-12.

There are many more metrics available in software engineering. However, most of
them are more conceptual and have not made their way into design practice. Two
other measures, however, more abstract metrics have influenced many other
metrics substantially. The entropy of information is part of information theory
[SHANNON & WEAVER 1998] and measures the degree of disorder in a system; it
was developed as part of the development of modern telecommunication facilities
and has impacted the measurement of runtime complexity decisively. Kolmogorov

complexity is a measure for the shortest program that can output a given string
[CARDOSO 2006]; it plays an important role in the formalization of software code
and has, as such, laid the foundation for the formulation of effort calculation as
shown above, for example, in Halstead’s metrics.

In summary, metrics from software management can be classed as highly relevant
for process analysis, as software is similarly characterized by many decisions that
cannot be analyzed in a deterministic manner. Software engineering offers several
metrics, including empirical foundations, because of their relevance in software

Table 2-12: Common structural metrics for object-oriented programming paradigms

82 2. The foundations of complexity metrics

design. The transfer of these foundations to process management is highly
possible, as the following sections will show.

2.3.4 Metrics in process management

Structural metrics for process assessment are a recent development [GHANI et al.
2008]; while quantitative measures have been used for a long time, the pioneer
work on qualitative metrics occurred only in the 1990’s with the assessment of
Petri nets of the first structural and dynamic metrics [LEE & YOON 1992].

Today, a number of metrics exist52. Yet, these metrics have neither been
consolidated nor compiled into a coherent body of knowledge; so far, the
knowledge on qualitative assessment of processes and their structure is still
fragmented [MENDLING 2008, p. 114].

Generally, two kinds of metrics are in use: those that are mainly used for the
prediction of the behavior of a process, and those that are used to estimate errors
in a process model [GRONBACK 2006] [GRUHN & LAUE 2006a]. However, the
border between the two kinds cannot be clearly defined, as often process models
are designed in a way that is not completely free of errors, while deviations from a
semantically and semiotically correct model are intended to transmit a certain
purpose or meaning [MENDLING et al. 2007]. Table 2-13, therefore, does not
differentiate the two kinds.

Overall, many metrics are similar and use comparable concepts that have been, in
part, embodied independently from each other. At the same time, many
approaches remain conceptual and without empirical evidence. Lastly, few authors
provide detailed algorithms that can be used to compute53 the metrics.

Metrics for business processes represent thus the main contribution that is used to
answer the research question behind this book. Although many were developed for
business processes and workflows, they can be transferred to engineering design
processes without limit, as engineering design processes are basically a subclass of
a business process, being more complex and less deterministic in their overall
behavior (compare Table 2-6).

52 A detailed overview of metrics with a structural focus on workflows and business processes is
provided in [MENDLING 2008, pp. 110-117]; the earlier work is also comprehensively summed
up in [CARDOSO et al. 2006], and [GRUHN & LAUE 2006a].

53 As complexity metrics are difficult to compute, tool support is necessary. Currently, there are
three software tools available that embody a wide set of metrics: KOPeR [NISSEN 1998],
EPCMetrics [GRUHN ET AL. 2006], and STAN [BECK & STUHR 2008].

2.3 Metrics to analyze the structure of a process 83

Table 2-13: Overview of common metrics in process management (based in part on
[MENDLING 2008]

84 2. The foundations of complexity metrics

Table 2-13: Overview of common metrics in process management (continued)

2.3 Metrics to analyze the structure of a process 85

2.3.5 Metrics for engineering design processes

Generally, metrics in engineering design processes are meant to serve three
purposes: estimation, monitoring, and performance measurement. Yet, there is
generally little specific work on metrics for engineering design processes
available54

. This is mainly because product development has the nature of “a

mental exercise” and because of “a lack of easily identifiable items to measure”
[BASHIR 1999]. It is true that the existing metrics, therefore, remain either highly
specialized, or they are conceptual and hard to apply.

The most common metrics55 are very simple. Having originated from systems
engineering, the measures of activity (also called active sum) and passivity have a
strong structural focus. They compare the immediate impact of neighboring
entities on each other and thus are similar to the degree-measure that is a common
basis in graph theory [DAENZER & HUBER 2002, pp. 558-560] [LINDEMANN 2007,
pp. 73-76].

Other metrics in engineering design incorporate the numerical evaluation of the
product or process architecture to some extent. Mostly, these metrics are designed
as effectivity and efficiency measures, for example, for attributing the necessary
manpower [NORDEN 1964] or for estimating the degree of efficiency of a design
process [O'DONNELL & DUFFY 2005, pp. 70-79]. Similarly, there are metrics to
assess the impact of project characteristics on process planning [CLARK 1989].
These involve, for example, the level of risk in new product development, which

54 [BASHIR 1999] provides a sound overview of the state of the art of metrics in engineering
design at the time of writing, while [HORNBY 2007] provides a recent overview of common and
more specific measures (which are not further regarded here).

55 Score evaluations and similar methods are common in engineering design, e.g., in risk
management [LINDEMANN 2007, p. 276]. As they have no explicit focus on structure, they are
not considered here.

Figure 2-24: Activity and passivity of the elements of a system

4 inf luencing nodes

3 inf luenced nodes

Node 1

Node 2

Node 3

activity

p
a
s
s
iv

it
y

active

critical

inertial

passive

Node 2

act.: 3

pass: 3Node 3

act.: 0

pass: 2

Node 1

act.: 1

pass: 1

86 2. The foundations of complexity metrics

is broken down into metrics for product innovation, product complexity, design

maturity, and schedule pressure [ZURN 1991]. Also, lead time can be broken down
into the driver’s product complexity, management complexity, and amount of

charge [GRIFFIN 1993]. LIU ET AL. establish a metrics-based process review from a
structural point of view [LIU et al. 2003]. They apply theoretical measures to
assess the critical degree (a weighted measure of the task precedence in the
process), the likelihood of error occurrence (based on an estimation of the novelty
of a product and the availability of knowledge in the company), and the spread

degree of a task (a weighted measure of the reachability of subsequent tasks) to
support the planning of a process based on other process reviews.

As can be seen from these few process-based approaches, the estimation of the
design complexity56 (i.e., a measure of how complex a product is) is the focus in
all approaches, as the product complexity necessarily drives the process
complexity. Early works measure design complexity by the coupling between the

design targets and their variables [DIXON et al. 1988]. SUH develops different
metrics for function coupling [SUH 1999], and other authors introduce estimators

of design complexity [BASHIR & THOMSON 1999] [SUMMERS & SHAH 2003].
HORNBY ultimately introduces modularity (based on the number of modules and
the degree of their interaction with the overall system), reuse (measuring the
repeated occurrence of entities within the design) and hierarchy (similar to the
nesting depth in process management) as classifying measures for product
complexity [HORNBY 2007].

A measure that focuses purely on process complexity is illustrated by [SCHLICK et
al. 2008]. Here, a numerical DSM is used to model project dynamics; the approach
is able to cope with large teams “who make at least partially autonomous

decisions on product components but also strongly interact in their impact on
project performance”.

There are, of course, many other measures available that, however, do not relate to
structural complexity but are measures used in, for example, benchmarking
projects, process audits, or performance measurement for management and
organizations (mostly financial and operational measures in project management
[PMI 2003]).

In summary, although engineering design science strongly focuses on model
building, there is virtually no work on complexity metrics available [BENSON
2007], even less so for processes. This can be attributed in part to the fact that
engineering design processes can be treated like business processes concerning
their analysis; however, the specific interpretation basis for such processes cannot
be directly transferred, and there is a large gap in science about the meaning of the
available structural metrics for processes.

56 Compare [AMERI et al. 2008] for a detailed comparison of existing measures of product
complexity.

2.3 Metrics to analyze the structure of a process 87

2.3.6 The limits of using metrics in an organization

GRIFFIN points out that measurement is an important first step towards process
improvement [GRIFFIN 1993], as it is important to have a sound overview of the
initial state, the needs and development potential, and a final comparison after
improvement measures have been implemented.

Yet, metrics are no remedy for any problem. “What you measure is what you get”

was the driving dictum for the research of the Balanced Scorecard, at the time
revolutionary, as it allowed a wider, balanced picture that substituted a former
management that was only guided by financial goals (see section 6.1.3 for more
details). To this end, metrics already show their biggest disadvantage: While
reducing the complexity of the representation of an issue, they tend to
oversimplify or omit dependencies of an issue, thus making the representation
incomplete [KAPLAN & NORTON 1992]. It is, therefore, necessary to select a group
of metrics to represent a problem in a balanced way.

Secondly, metrics directly impact the behavior of personnel in a company. In
particular, in the management concept “Management by Objectives”, metrics are a

common basis for the evaluation of the performance of personnel [DRUCKER
2007, p. 261]. The concept is based on goals for each member of a company,
whose fulfillment is measured to assess the individual performance [ODIORNE
1980, p. 82]. As part of this measurement, the motivation of an employee is
directly related to the results of the measurement; in turn, a measurement
influences the behavior of an employee in a positive way, but it can equally
demotivate [MUTSCHELLER 1996, p. 61]. Thus, measures need to be chosen
carefully to ensure they are not influenced by staff out of fear or personal
ambition. This leads to two consequences: One the one hand, staff needs to be
integrated early into the process of installing measures in the company to achieve
a transparent measurement system that is favorably accepted and thus maintained;
on the other hand, metrics need to be changed at regular intervals to ensure that
the staff also considers other relevant specifics of a situation that are not part of
the measures in place.

Organizational learning similarly stresses the fact that “maps and images” guide

the behavior of individuals in an organizational setting [ARGYRIS & SCHÖN 1978,
pp. 17-19]; metrics can serve as such images that are considered attainable and
therefore guide individuals without considering other aspects. In this context,
individuals take on the role of a so-called learning agent, whose learned behavior

Figure 2-25: Three types of organizational learning

Results
Behavior of

learning agent
Goals

Reflection and
analysis of

results

Single-loop-learning

Double-loop-learning

Deutero-learning

88 2. The foundations of complexity metrics

is guided by the impact of their actions [ARGYRIS & SCHÖN 1978, p. 29]. Three
types of learning are common, which involve more reflection of the third type, the
deuteron-learning (see Figure 2-25). Generally, single- and double-loop learning is
guided by the results of the behavior, upon which measurement of the results can
have a detrimental influence if metrics are designed in a way that neither stipulates
reflection nor is set up in a holistic way to avoid one-sided behavior.

In engineering practice, metrics are mostly used for project controlling; they are
rarely used for concept and test design [FINK & HAMPP 2005]. An empirical study
in the software industry revealed five common strategies as to how engineers
commonly cope with metrics in a company [SIMON & SIMON 2005]:

‚ Optimism-strategy: Personnel disapprove of the metrics, perceiving them as
implicit criticism and a constraint on their professionalism.

‚ Delegation-strategy: The results of metrics are attributed to external reasons
that are not related to an individual engineer’s work, and thus responsibility

is denied.

‚ Automatism-strategy: Problems that surface through the metrics are blamed
on tool-support (automated workflows, or, in software engineering, code
generators).

‚ Particularity-strategy: As design in problem solving, metrics are not
recognized as relevant to the specific issue, and their validity for common
situations is denied.

‚ Tortoise-and-Hare-strategy: Refers to the fact that an issue was already
improved before metrics were introduced, and engineers tend to turn away
from a problem.

Generally, it can be stated that metrics provoke a lack of emphasis on the
environment in terms of a goal (and its respective measure) due to a lack of
understanding of the actual system [DEMING 1994]. Three “traps” are inherent in
such measurements:

‚ Common and special situations are little differentiated by such
measurements, although criteria are not universally valid. Typically,
measures depend on other external influences; deflections thus must exist.

‚ A single measure is not the best criterion to judge an issue, and often the
focus is misplaced. A more comprehensive set of metrics helps avoid single-
sided improvements. The overemphasis of individually measured aspects
can, in some cases, lead to “bogus metrics”, i.e., metrics that mislead the
company [BOLLINGER 1995].

‚ The common assumption that improving a single measure improves the
overall system is wrong, as in most cases a more holistic view is needed to
correctly assess a system.

It is possible that a set of metrics is misleading in the long term. It is generally
recommended that measures be alternated from time to time and there be
overlapping measures that exercise a certain control over each other, which, at the
same time, lowers the risk of manipulation of an individual measure [KAPLAN &

2.3 Metrics to analyze the structure of a process 89

NORTON 1992]. The goal is to lower the risk of simply seeing the measure and not
seeing the object behind the measure. Furthermore, a balanced set of several
measures works best to achieve a comprehensive picture.

Metrics for analysis should, therefore, not be applied in isolation, as they do not
describe “goodness” per se. Rather, they point to possible quality issues that need
to be further evaluated [BOLLINGER 1995], which in this research is targeted by
assessing outliers to show how a process improvement project can be prioritized
and where possible improvements can be expected.

2.3.7 Summary

As the most reduced model possible, metrics are able to represent a system in a
condensed form to show important characteristics and to point to important
aspects. In process analysis especially, metrics are a tool for the identification of
weak spots and their conditions [BENSON 2007]. As such, metrics can introduce
the risk of reduction past a meaningful limit (reductionism).

At the same time, metrics need to be used carefully in a company, as they
necessarily influence the behavior of staff, especially in the context of
management by objectives, where objectives are related to measures. They should,
therefore, be used mainly to focus on further investigations [BENSON 2007].

There is a substantial body of metrics available that is able to assess the structural
complexity of a system with a view to different patterns. These metrics are used,
on the one hand, to discover modeling errors, and, on the other hand, to better
understand a system’s behavior through the measurement. Many different metrics
for the analysis of network structures in all kinds of disciplines exist and can be
transferred to process management; yet no comprehensive compilation is
available. At the same time, the transfer to the specifics of engineering design
processes, i.e., what behavioral aspects relate to what structural characteristic
evaluated in a metric, remains unsolved. There is, especially, no systematic listing
of the significance of the available metrics against the domains and relationship
types common to process management.

Commonly, metrics are not independent of each other but can be organized in a
measurement system (according to, for example, focus, goal, granularity). This
enables the systematic and goal-oriented employment of metrics. This is
especially important in regards to the structural analysis of a process, as a metric
can only be purposeful in the context of a goal and the related semantics; metrics,
therefore, cannot be designed without a meta-model that provides a semantic
context to later interpret the metric.

90 2. The foundations of complexity metrics

Table 2-14: Available metrics (see section 2.3) and structural characteristics assessed by
metrics

2.4 Directions from the state of the art 91

2.4 Directions from the state of the art

The management of engineering design processes is a wide field of research; there
are many different models and methods available, few of which, however, are
designed to cope with the structure of a process in a comprehensive manner.
Nevertheless, the management of structural complexity and related fields of
science have provided different means of understanding, modeling, and managing
relationships in a complex system.

Both process management and the different sciences related to structural
complexity have created a number of different metrics that evaluate the
complexity of a system based on various structural characteristics; many of them
are empirically validated and recognized in research and application, and the
transferability to the management of processes is generally confirmed. Table 2-14
summarizes existing metrics and the structural criteria they assess: A mark in a
cell relates a metric and a structural characteristic that the metric focuses on;
however, it is possible that a metric also includes other structural characteristics
that are not essential to its function. The table was generated by reviewing every
metric (as shown on page 80 and the following pages) for its basic structural
focus, as described in the literature.

As the table shows, some structural characteristics are not evaluated yet; however,
a substantial toolset exists that is suited for the structural analysis of a process. In
particular, n-partite-ness, isolated nodes, leafs, bridge nodes, biconnected
components, spanning trees, the Small World effect, transitivity, degree
distributions, navigation, and centrality are not evaluated as recognized metrics,
although some of these structural characteristics have, in fact, the character of
metrics themselves. These need to be reviewed in detail for their use in extending
the set of means of analysis for processes.

Furthermore, process management and the analysis of processes is generally a
goal-oriented procedure, which works to improve a process for one or another
concept. As a review of the literature shows, the common goals of process
management (planning, resource consumption, quality, flexibility, organizational
decomposition, interfaces, and transparency of process, see page 66 and the
following pages) and the typical properties of design processes (dynamics,
creative nature, loops, leaps, iterations, results that are not predictable, changes,
imperfect definitions, uncertainty and risk, maturity of artifacts, process path not
determinable, and the involvement of many stakeholders, see page 61 and the
following) and the means of analyzing a structure have not been systematically
used in conjunction, and, therefore, no mapping between them is available.
However, as individual works show, the goals can be related to certain structural
patterns via the individual process patterns; for example, the triangularization of a
DSM of tasks relates directly to the reduction of leaps and loops by proposing an
improved sequence of tasks, thus contributing to better process planning.

These structural characteristics may possibly occur for all domains and
relationship types that exist in process models. In fact, it is necessary to know the
specific semantics of a process model to give meaning to the structural
characteristics and to the structural metrics, as only the semantics of the nodes and
edges of the underlying network structure allow indications about the behavior to

92 2. The foundations of complexity metrics

be deduced. However, the specific attribution of all structural characteristics to all
relevant domains has yet not been researched. Thus, no dedicated means of
systematical analysis exists, but only fragmented parts thereof.

As common domains, tasks, artifacts, events, organizational units, resources, and
time, were identified as basic domains of process management (Table 2-9). These
can serve as an approximation to interpret the structural metrics and give them
significance, which, however, will be precise if the relationship type is also
considered in the second step. However, in many cases, this procedure will be too
complex to be handled. To facilitate this procedure, principal relationship types
were identified.

3. Concept of an integrated set of complexity metrics

This chapter provides an overview of the following three chapters that delineate
different aspects of the solution and how they were developed. The reason for this
layout is because developing the solution first requires detailing the modeling
method, then the metrics, and lastly the contextualization of the metrics in an
overall scheme. However, when using this approach, the elements to the solution
are reversed. Therefore, this section provides a concise preview of the elements of
the solution and their dependencies.

In general, the measurement system is intended to provide a method to analyze a
process chart by drawing inferences about the process’s behavior from the
structure of its entities, as modeled in the process chart. Therefore, it is necessary
to identify possible constellations of nodes and edges as basic constituents of
structural characteristics to develop structural metrics independently of domains
and relationship types. In a second step, the metrics are combined with common
domains and relationship types to evaluate the particularities of engineering design
processes and, thereby, give the structural metrics a process-focused meaning.

3.1 Solution design process

The solution was developed successively by collecting requirements from industry
and combining them with further requirements and existing solutions in the
literature. Potential concepts for the solution were compared each time and
recombined to provide the best possible solution to the requirements identified. At
each step extending the solution, the results were verified using industrial case
studies, some of which are shown here.

As Figure 3-1 shows, these steps were run parallel in order to develop the
modeling method, the analysis method, and the framework. Of course, these three
strands of the solution design process are not independent of each other, but the
modeling method serves as a basis for the analysis, and the overall analysis
approach is systematized in the framework. For this reason, the following chapters
are ordered accordingly. To prepare these three chapters and the successive case

Figure 3-1: Solution design process

Goals and requirements

Concepts, concept

evaluation, concept
selection

Detailed solution design

Analysis approach for

engineering design
processes

Use of existing process

models

Goal-oriented analysis

Meta-model

Goal-question-metric-based

measurement system

Structural metrics

and their significance

Strategic and operational

organization of analysis

Modeling

(chapter 4)

Analysis

(chapter 5)

Framework

(chapter 6)

MDM-based process model

Assessment of structural

patterns of process models

Verification of solution

Validation

(chapter 7)

Solution design

(chapter 3)

Two case studies from

automotive industry

© Springer-Verlag Berlin Heidelberg 2011

M. Kreimeyer and U. Lindemann, Complexity Metrics in Engineering Design: Managing the

Structure of Design Processes, DOI 10.1007/978-3-642-20963-5_3,

93

94 3. Concept of an integrated set of complexity metrics

study, the requirements and directions from the state of the art are collected into a
general concept, which is detailed below.

3.2 Requirements for the solution design

Throughout the previous chapter, the different fields of science and their
contributions to a structural measurement system were reviewed. Based on this,
the definition of the problem can be refined with the following sub-problems:

‚ No high-level analysis procedure is available to systematically screen all
entities and relationships in a process chart for possible weak spots.

‚ No overall modeling method exists that represents the structure of a process
including domains and relationship types common to process management.
Current dependency models are unable to cope with Boolean Operators that
are commonly employed in process models.

‚ No comprehensive set of analysis tools exists to draw inferences about the
behavior of a process from its entities and their mutual relations.

‚ No framework is available that orients the analysis of a process towards
goals that are commonly followed in process management.

To provide a solution to this problem, many constituents of the solution are
already available, as chapter 2 showed. An important part of the solution design is,
therefore, to assemble the existing parts and fill the remaining gaps in a way that
the solution is correct, complete, consistent, and clear. In the following section,
the requirements for each of the sub-problems are presented.

The overall approach is required to systematically guide a user through all phases
of the procedure of analyzing a process for possible improvement potentials,
starting with specifying the goals of the analysis and the questions relevant to it,
building the model to be analyzed, selecting the relevant means of analysis, and
interpreting their results in a coherent manner. The approach also needs to provide
a means of starting with different sets of input information, i.e., it needs to work
with existing process charts or build them from scratch. Similarly, not every
process analysis may follow a certain set of goals; in such cases, the overall
approach should be able to analyze the process at hand in a more generic manner
to obtain basic insights that help refine the analysis approach and possibly re-run it
with regards to certain details.

The process modeling method provides the semantics of common process
models to ensure that the analysis is able to work with different existing process
models that serve as input. To do so, the model needs to encompass the domains
and relationship types that are relevant to the goal-oriented analysis of a process as
well as for generic screening for potential improvement. Thus, the process model
needs to serve as an adaptor to filter relevant dependency data from existing
process models and make it available for analysis. To do so, the model needs to be
able to represent all modeling constructs that are relevant to process management,
i.e., entities, relationships, attributes to entities and relationships, and logic
operators. Furthermore, to be suitable for more extended analyses, it should
provide an interface to other models, especially the product architecture. For

3.3 Constituents of the solution 95

complex process models, the process modeling method also needs to be able to
create condensed, aggregate views of the specific domain being analyzed to ensure
the efficient handling of the dependency data required for the analysis of the
structure. The model is referred to as the Structural Process Architecture.

The analysis method needs to provide a comprehensive toolbox to assess the
structure of a process in terms of the existence and impact of all relevant patterns
that may occur among the entities and relationships in a process chart. The
patterns need to be connected to their structural significance for all domains and
relationship types as defined for relevant existing process models, based on
empirical evidence. It is furthermore necessary to reduce these patterns into
metrics to evaluate their occurrence for every single entity, group, or network
(depending on the scope of the pattern) to ensure that all entities and relationships
are assessed regarding their contribution to the behavior of the process. Using
metrics for this reduction, the metrics need to adhere to measurement foundations
(representation, uniqueness, meaningfulness) and to Weyuker’s Properties. To

further narrow the focus of the analysis and to allow a hierarchy of the results to
be obtained through the metrics, the results of the metrics should be ranked by
their degree of distinctiveness in the process. To do so, different means of
identifying entities that “stick out” are necessary. This analysis should be intuitive
and automatable for processing large process charts, as well. It takes shape as the
Structural Measurement System (SMS)

Last, the overall framework needs to connect the solution elements consistently
by linking the goals of the analysis to an operational layer that connects them to
the patterns (and their evaluation through metrics) as well as to the relevant
domains and relationship types in the process chart. The framework should, as a
simplified access to the analysis, provide goals common to process management
as primary points of entry to a process analysis. It is presented later as the
Structural Goal Question Metric (S-GQM) approach.

As the development of a structural measurement system presents a method design,
the method description follows the basic needs of the Munich Method Model
[LINDEMANN 2007, p. 56]. To facilitate its application, it should be as concrete as
possible to enable an “as is” deployment in industry [WALLACE et al. 2003]. A
close relationship between the method developed and its industrial application is,
therefore, critical. Ultimately, it needs be flexible in its application to
accommodate varying needs and boundary conditions [LÓPEZ-MESA et al. 2004].
Thus the method development needs to be as modular as possible.

3.3 Constituents of the solution

Overall, the method to be designed needs to provide methodical circumnavigation
of the complexity barrier at an abstract level (see page 22) to cope with the
complexity of a process chart. To do so, the procedure shown in Figure 3-2 is
followed. It starts from a set of goals of the analysis that can be concretized using
different questions; these questions are those that a process analyst might be
interested in finding answers to. To address these goals, the procedure needs to
link each question to a set of metrics, domains, and relationship types that will
provide answers. Similarly, it needs to help the user interpret the results obtained

96 3. Concept of an integrated set of complexity metrics

in order to collect indications about the process’s behavior, and possibly potential
improvement. To prioritize the results, structural outliers can be sought that
indicate the specific particularities of a process from a structural point of view.

The basic procedure is, therefore, straightforward. After an initial goal has been
selected, one or more questions are suggested by the framework to allow a better
focus of the analysis. Metrics are allocated to each question to help answer the
selected questions. At the same time, a question commonly only relates to one
domain or a few domains, but not all; thus, relevant domains are chosen at the
same time. Each is accompanied by its principal relationship type57. Using these
tools, a process can then be analyzed to identify possible structural outliers. The
structural significance each metric provides can then be used to investigate the
nature of the outliers to answer the initial questions and guide further
improvement measures.

Figure 3-3 concretizes the elements of the overall solution and their
interdependencies. It shows the necessity of the modeling method (inner box) to
develop an analysis approach (middle box) that is framed through the attribution
to goals and questions (outer box).

The individual selection of the models, methods, and tools used for each of these
three constituents is argued in the respective chapters. The overall analysis
procedure is detailed in the following section.

57 In theory, the selection of the appropriate relationship type depends on the question, the metric,
and the domain simultaneously; the selection of the principal relationship type, therefore, is a
certain simplification, as it does not incorporate all influences that determine the relationship
type. However, the principal relationship types, as part of the meta-model (section 4.2), are
described in a way to be as generic as possible without losing the nature of common relationship
types applicable to a domain. Therefore, only a small error is introduced. At the same time, the
framework is significantly simplified, as one additional variable aspect depending on three other
inputs is removed.

Figure 3-2: Basic procedure of the goal-oriented analysis of a process structure

3.4 Overall concept: Analysis procedure 97

3.4 Overall concept: Analysis procedure

To enable a goal-oriented analysis of the structure of the system “process”, several

steps have to be carried out. There are different procedural models available to
support an analysis in a structured manner. The Structured Analysis approach
views systems from a data flow perspective [DEMARCO 1978, pp. 1-7 and 37-44].
In Systems Engineering, the systematic analysis is more holistically focused, using
a problem solving procedure [DAENZER & HUBER 2002, p. 96]. The information
structure approach to analyze DSMs is more focused on DSMs, including building
and analyzing a model for task interdependencies [YASSINE et al. 1999]. In
structural management, these different models together are used to design a
procedure for the analysis of a systems’ structure of the five latter steps, as shown

in Figure 3-4 [MAURER 2007, p. 69]. In the context of process analysis, this
procedure is extended by an initial step, as setting goals is highly relevant for a
purposeful analysis. This phase is optional if the process is not analyzed to answer
a specific question but only to generate a general picture of a process.

In Figure 3-4, the different elements of the overall solution are depicted. The
different aspects are explained in the following paragraphs lists how each of these
phases relate to the structural analysis of a process and what deliverables are
gained. Initially, the goals of the analysis project are set, and each can be detailed
by various questions. During the system definition, the overall scope of the
process analysis is defined, including what process is going to be regarded and
which aspects of this process are relevant to the analysis; to this end, the basic
goals need to be determined to purposefully set the system border, i.e., the
relevant domains and relationship types are defined. Likewise, the metrics needed
to answer the questions from the initial phase are selected. All of these elements

Figure 3-3: Constituents of the overall solution and their principal dependencies

Goals and concepts

Questions

Structural metrics

Domains

Relationship types

Aggregate views

Structural significance

Questions concretize

the goals and concepts

Structural characteristics describe one

or more relevant aspects of each question

Structural metrics provide

indications towards a question

Structural characteristics

Structural metrics gain a

meaning only if applied to a

set of domain(s) and relationship

type(s) that either exists as a native

dataset or as an aggregate view

The results of metrics used for a

dataset generates a structural significance

The structural significance provides indications

about the behavior of the involved domain(s) and

relationship type(s)

Questions commonly dictate

a certain set of domains and

relationship types

Process modeling

method

Analysis method
Framework

98 3. Concept of an integrated set of complexity metrics

can be obtained using the questions from the first phase. The information
acquisition then generates the structural datasets of relevance, i.e., entities and
relationships that are then modeled into an overall dependency model using a
Multiple-Domain Matrix. This matrix is then analyzed using structural metrics
that are selected according to the goals of interest, as defined in the first phase.
Ultimately, the results from the metrics are interpreted in order to prioritize
possible weak spots in the process and to deduce measures.

Setting goals for analysis

To enable a goal-oriented process analysis, in the initial step the Goal-Question-
Metric (GQM) scheme is used to guide the analysis. From a list of eight different
goals, an appropriate goal can be chosen and further detailed by selecting
appropriate questions. The intent is to point the user to relevant aspects of the
chosen goal of process improvement. To this end, the common goals of process
analysis as described in the state of the art are used and extended to accommodate
possible needs of structural process analysis. Chapter 6 details the framework that
embodies the goals and questions.

The framework is, by no means, meant as a rigid or prescriptive system. It can be
extended and adapted to suit individual needs of process analysis just as well.
Also, it is possible to omit this step and run a more individual analysis that works
to characterize a process in general, looking for possible improvement potentials
without following a particular goal.

Figure 3-4: Basic procedure of structural analysis based on [MAURER 2007, p. 69]

System
definition

Information
acquisition

Modeling
Structure
analysis

Discussion
of practices

Setting
goals for
analysis

E_1

E_2

XOR

F_1

F_2

V

Business

object 2

Task a

Business

object 1

G01

Q01

M06, M07,
M20, M21,

M40

Artifacts,
tasks,

points in
time

Q02

M09, M12,
M18, M19,
M20, M30,
M31, M41,
M43, M44,

M45

Tasks

Q03

M10, M20,
M21, M43

Artifacts,
tasks,

points in
time

Q04

M35, M36,
M37, M40,
M41, M42,
M43, M44,
M45, M46

Artifacts,
tasks,

points in
time

Q05

M01, M02,
M03, M04,
M05, M06,
M07, M08

Overall
Network

Upper-bound outlier

Lower-bound outlier

Abrupt-drop outlier

R
e

la
ti
v
e

 c
e

n
tr

a
lit

y

Node 1

Node 2

Node 3

Business

object 1

Business

object 2

Task a

E_2

E_1 F_1

F_2

3.4 Overall concept: Analysis procedure 99

System definition

If questions have been selected, metrics can be chosen in the next step. Those
structural metrics that are able to provide answers are allocated to each question
(section 6.2). If no particular questions are asked, metrics can be selected
individually from their descriptions or from different classifications that are
available. These classifications are listed in section 5.2.4.

The metrics then need to be assigned to the datasets that are to be acquired later or
that are already available. If questions guide the analysis, the framework provides
relevant domains and their relationship types. In other cases, either individual
information needs or the available datasets guide the selection of domains and
relationship types.

Datasets for the analysis need to be available as Design Structure Matrices (DSM)
for almost all structural metrics. Two kinds of input datasets are, therefore,
possible. Either, the native data is available as a DSM, or an aggregate view can
be computed for relations that span at least one intermediate domain. Section 4.5
introduces these different ways of building the model.

More generally, the domains and relationship types involved can be selected from
a structural process meta-model that is used to introduce common aspects of
process modeling into the analysis. This meta-model is also used as a reference for
the development of the structural metrics. It is detailed in section 4.2.

Information acquisition

In all cases, the input data needs to be acquired; this can be done either through
workshops or by parsing and converting existing process models. Section 4.5
briefly addresses these issues. The structural content of common process models is
used to set up the meta-model so that it can integrate all kinds of process models
into one overall structural model. The partial models acquired are modeled as

Table 3-1: Focus and deliverables of each phase during the structural analysis of a
process

100 3. Concept of an integrated set of complexity metrics

dependency models of any kind that can be converted to partial Design Structure
Matrices (DSM) or Domain Mapping Matrices (DMM).

Modeling

The different partial models are then assembled into one overall Multiple-Domain
Matrix (MDM) within the frame that is spanned by the meta-model. To integrate
all particularities of common process models, section 4.4 introduces new aspects
into the MDM, such as the integration of the product architecture, the modeling of
different attributes, and the integration of logic operators to model decision points.

Structure analysis

The analysis of the model which is then available is undertaken using structural
metrics that are developed and described in detail in section 5.2. These metrics are
based on the numeric evaluation of structural characteristics as found in different
disciplines that focus on the management of structural complexity. Section 5.1
collects these different approaches and proposes a procedure to develop structural
metrics from these structural characteristics.

Discussion of practices

A major part of the development of the metrics is the description of their
significance. Section 5.2.2 details their meaning in reference to all domains of the
meta-model. Therefore, the results that are obtained from the application of the
structural metrics to a process model can systematically be interpreted to provide
detailed and comprehensive insight into the question that is being analyzed and to
deduce possible measures for improvement.

4. Modeling the structure of design processes

In this section, a model representing the structure of a process is laid out to serve
the following purposes:

‚ Serve as an interface to other process models.

‚ Provide the semantics of common process models as a basis for the
development of metrics that are independent of a specific process model.

‚ Represent all modeling constructs that are relevant to process management
from a structural point of view (entities, relationships, attributes to entities
and relationships, logic operators)

‚ Provide an interface to the product architecture.

‚ Support the creation of aggregate views onto a specific domain.

As a modeling technique, Multiple-Domain Matrices (MDM) are chosen as an apt
way of representing and manipulating a network structure consisting of different
domains and relationship types. The argument for this choice is given in section
4.2. First, the use of an MDM is argued and explained; then, based on the different
process models reviewed in the state of the art, an MDM-based Structural Process
Architecture (SPA) is developed that serves two purposes. First, it is meant to
enable assembling a structural process model from different partial models that
may be available in a process improvement project; secondly and more
importantly, the meta-model is needed to provide a reference for the interpretation
of the metrics and the measurement framework developed to systematically access
the metrics. Finally, MDM is extended to include attributes to edges and logic
operators, which, up to now, was not possible in this notation. Also, the linkup of
the process structure to the product architecture is explained.

4.1 Design processes as a multi-layered network

The focus in this research is on engineering design processes. There are, in fact,
many different kinds of processes that are common to engineering design, for
example, the planning process, the technology development process, the
purchasing process, and others58. Here, the focus is on the primary process, i.e.,
the process of generating new or adapted technical designs [BECKER et al. 2005, p.
7] [SCHMELZER & SESSELMANN 2006, p. 55].

As the introductory case study in section 1.1 showed, engineering design
processes are, in fact, a network of multiple domains that coexist to enable the
development of a product. Each of these domains is networked in itself,
commonly, in many different ways, and the different domains are networked
among each other. Figure 4-1 shows an example of three domains that make up
the network layers of a process; all are mutually linked and coupled.

58 See [BAUMBERGER 2007, pp. 123] for an overview of different kinds of processes.

© Springer-Verlag Berlin Heidelberg 2011

M. Kreimeyer and U. Lindemann, Complexity Metrics in Engineering Design: Managing the

Structure of Design Processes, DOI 10.1007/978-3-642-20963-5_4,

101

102 4. Modeling the structure of design processes

Inevitably, the behavior of the process depends, to a large extent, on this network
and its structure, as, for example, communication among organizational units is
only possible if they are related to each other. Thus, the specific setup of entities
and their relationships constitutes the value of an actual process.

To model the structure of an engineering process comprehensively and to gain a
deeper understanding of it, it should therefore be understood as the multi-layered
network it actually is, i.e., it should comprehend every part of the company
organization that is actually necessary to enable it. To analyze a process, in turn, it
is important to select and relate all domains that are relevant to such a specific
analysis in an integrated manner, which simultaneously enables and facilitates
systematic and comprehensive analysis.

4.2 MDM-based modeling of the structure of a process

There are many different modeling methodologies that could be applied to
represent such networks; in fact, there are plenty of dependency models available,
as section 2.1 showed, e.g., graphs or incidence lists. [BELHE & KUSIAK 1996]
compare different dependency modeling methods for process models. They
conclude that all major models can be converted among them, using adjacency
matrices to represent the dependencies. Such matrices are similar to DSMs and,
therefore, to MDMs.

Multiple-Domain Matrices (MDM) allow multiple network structures to be
represented, both within a single domain (e.g., tasks) and across domains (e.g., the
attribution of organizational units to individual tasks). Equally, an MDM is able to
capture different relationship types that coexist concurrently. This makes it an
ideal tool for modeling the structure of design processes. Figure 4-1 visualizes the
concept. In this example, two different networks among organizational units
coexist. Accordingly, the MDM contains two OU-DSMs.

Figure 4-1: Structural equivalence of process model in flow-oriented notation and MDM
notation

Task 1

OU 1

Task 3

Task 2

Task 4

OU 2

OU 3
OU 4

OU 5

OU 1

OU 2

OU 3
OU 4

OU 5

Team 1 Team 2

Reporting

“Team” DSM“Reporting” DSM

X

4.2 MDM-based modeling of the structure of a process 103

Here, the MDM is chosen for a number of reasons:

‚ The network structure of the process is modeled in all its facets. This way,
no single relationship dominates over the others, i.e., the complexity of the
process is captured more realistically. In fact, most process models can be
converted into a MDM with little or no loss of information concerning their
structure.

‚ Different models can be combined; this way, it is possible to check how
well-aligned the different structures that are modeled actually are (e.g., a
process and a team).

‚ Qualitative and quantitative models can be combined to some extent, if they
each can be represented using MDM methodology (e.g., using weights for
nodes or edges or by introducing attributes via additional matrices).

‚ The process can be analyzed either based on the native data, with regard to
the impact of an analysis on other domains (e.g., by finding clusters in a
task-DSM and then constituting teams in the OU-DSM in Figure 4-1), or
using aggregate views (e.g., by computing how tasks are interrelated via
documents, and then using the computed task-DSM).

‚ Structural characteristics become accessible. This allows systematic analysis
using available algorithms for DSM, DMM and MDM analysis. Based on
native or aggregate datasets, structural characteristics can span one or more
domains.

‚ Common DSM-based analysis is applicable, e.g., tearing, banding, or
clustering. While these algorithms can be used on other dependency models,
as well, their effect is directly visible in a matrix representation.

Of course, MDM-modeling possesses a number of disadvantages, too:

‚ The matrices grow rapidly. While, theoretically, almost all information in a
common process model can be converted into an MDM, this hardly makes
sense. If, for example, an EPC model contains many attributes, e.g., starting-
and end-times of every task, a small process chart will turn into a very large
MDM. Therefore, it makes sense to convert only those parts of a process
model that are of interest to an analysis.

‚ Reading a matrix is not very intuitive. While, in general, a matrix reflects an
engineer’s mindset, a MDM that contains several domains is nearly

impossible to read manually and thus needs tool support. Modeling a process
exclusively in MDM notation, therefore, rarely makes sense, as most users
will be unable to understand the process model, and little transparency
would be generated.

‚ There are different matrix notations. Generally, two different conventions
about how a DSM or related matrix is written exist; either, an entry in the
cell of a matrix is read as “row impacts column”, or the other way round.

Here, all matrices are designed as “row impacts column”.

104 4. Modeling the structure of design processes

‚ The actual graphical structure of a flow chart is lost when turned into an
MDM. This is a major shortcoming, as the “structuredness” and “style” of

the flow chart layout are important to understand a process model [GRUHN &
LAUE 2007b] as well as transmit part of the meaning of a process model.

4.3 The Structural Process Architecture model

As shown in section 2.2.3, models are commonly defined using a meta-model to
describe the entities within the modeling language and their possible relations.
This section makes use of this approach to describe a meta-model suitable to
model multi-layered process networks as a Multiple-Domain Matrix.

The need for a meta-model

There are many different process models available, each of which has a particular
focus on the structure of a process. Thus, there is no need to develop any further
modeling languages, as specific models exist to suit almost all possible needs
[BROWNING 2009].

At the same time, however, choosing one modeling language will produce only a
limited number of domains and relationship types. Therefore, developing
structural metrics based on only one process modeling language is not practical, as
it will limit the application of the metrics to this one kind of modeling language.
Thus, the transferability of the metrics to another process model using a different
modeling language would be more difficult.

This section is, therefore, intended to design an adaptor that allows plugging
different process models into a common denominator to which to apply the
structural metrics. The meta-model developed in the following is, therefore, meant
as a “set of models” [HÖFFERER 2007], i.e., to create a modeling scheme capable
of describing relevant aspects of structural modeling and a goal-oriented process
analysis. This Structural Process Architecture is thus a consequent extension of the
regrouped process models. It represents a meta²-model approach, as previously
outlined. Figure 4-2 visualizes the concept: For example, the domain task is
tailored to represent different tasks or activities as found in common process
models. The same applies to the relationship types, which are equally collected
from relevant meta-models (level 2) for processes.

When used, the meta-model provides, in turn, orientation when modeling a
structural process model, and it serves as a guide and an example when submitting
a process model to structural analysis using metrics. The principal reason is that
the meta-model systematizes and collects relevant domains and relationship types
and puts these into a common framework.

This framework is necessary for the development of meaningful metrics. As
defined, structure consists of a particular pattern of nodes and edges in a graph,
but a structure only has meaning if it is related to a certain semantic context. This
context is provided by the meta-model that describes the types of nodes and edges
concerning their meaning in an industrial application.

4.3 The Structural Process Architecture model 105

The meta-model consists of two views on a structure: The domains, describing
what types of entities are common to process modeling, and the relationship types,
describing how the domains are commonly related. This meta-model is, by no
means, exhaustive; it makes use of the most common process models and
integrates their concepts which, regarding common models, appear to be the
principal aspects of process modeling. However, it may be necessary to refine the
model for a new concept, using, for example, the principles shown in Figure 2-3.

Figure 4-2: Generation of the SPA (application of the approach shown in Figure 2-20)

Table 4-1: Domains in the Structural Process Architecture

L
a

y
e

r
1

:

m
e

ta
-m

o
d

e
l

Domain:

Task

L
a

y
e

r
2

:

m
e

ta
²-

m
o

d
e

l

Domain:

Event

Domain:

Artifact

Common

domains in

process

models

Common
relationship

types in

process

models

“leads to”
“is followed by”

Relationship type: “leads to” (plus others)

Relationship type: “starts” (plus others)

The collection of modeling constructs of the

meta-models of different process models (e.g.,

EPC, SADT,…) provides the basis for the

domains and relationship types in the MDM

meta-mode.

106 4. Modeling the structure of design processes

The domains in the Structural Process Architecture

As found in the state of the art, the process model makes use of six domains that
are most common and represent the usual domains found in process modeling.
Table 4-1 lists them and a short description of each one; a mapping of each
domain can be found in the process modeling language in Table 2-9 (page 71).

The relationship types in the Structural Process Architecture

Similarly, the different relationship types that occur in the 13 reviewed process
models can be regrouped. The review of the different process models for their
structural content shows that some modeling languages are very specific about the
relationship types. EPC, for example, provides a finely detailed spectrum of
different types, while others leave this refinement to the user. For this reason,
relationship types were consequently collected, and those types that are common
across the majority of models or that are at a higher level of abstraction were
designated as principal relationship types. These can be found in bold print in
the list of relationship types for each possible tuple of domains. Of the 36 possible
relationship types between the six domains, only 28 actually occur in the reviewed
models; while the other relationships can, of course, also be designated, they
appear to be irrelevant.

Table 4-2 shows how many relationship types there are between any pair of
domains. As can be seen, the most important focus in common process models is
placed on the interplay of tasks and artifacts. Many of these relationship types are
similar or even identical. They were, therefore, regrouped; all detailed relationship
types are listed in Table 4-3.

Table 4-2: Occurrence of relationships among domains of process modeling for all 13
reviewed methodologies (read as “row relates to column”)

4.3 The Structural Process Architecture model 107

Looking, for example, at the relationship types from tasks to resources, two
relationship types are common, as the table shows: “Task requires resource” and

“task processes resource”. Of the two, “requires” is the more general one, and it is,
therefore, designated as the principal relationship type.

Besides the specific relationship types, general decomposition is relevant to each
domain, as well. Some common process models do, in fact, explicitly allow
decomposition to a finer granularity or the regrouping to larger entities, e.g.,
collecting tasks into value chains. This is why the following decompositional
relationship types need to be considered in addition to any relationship type
specific to process models to address the possible levels of granularity in a process
model:

‚ Is part of

‚ Is a generalization of

‚ Consists of

The decompositional relationship types are not represented in the Structural
Process Architecture, as it does not focus on the interdependencies among
different levels of detail. However, they need to be considered when entities of the
same super-domain (e.g., the domain’s “phases” and “milestones” for the domain

“points in time” from the meta-model) are combined in an overall process model.

The complete Structural Process Architecture (SPA) model

The SPA model regroups the domains and relationships that were collected across
the most common process models. This way it serves as a supermodel that
recombines these models and serves as a consistent structure for the development
and operation of the structural metrics. It provides a semantic background to both
design the measures and to give them a meaning when interpreting them.

Table 4-3 shows the overall model. It is read as “row impacts column”. For

example, a “task has the output of an artifact” (row 1, column 2), using the

principal relationship type. To be more specific, it is possible that this output is,
for example, only a change of an existing artifact; in this case, a “task changes an

artifact”, using the refined relationship as shown. In the following, further aspects

of using the meta-model are explained, and an example for the application is
given. In section 4.4.1, the meta-model is complemented by an additional domain;
therefore, a complete meta-model is only shown in appendix 10.4.

108 4. Modeling the structure of design processes

Table 4-3: Structural Process Architecture with domains and relationship types suited for
most modeling and analysis purposes

4.4 Specific aspects of modeling engineering design processes 109

4.4 Specific aspects of modeling engineering design processes

While the Structural Process Architecture model originates from the domains and
relationships encountered in common process modeling languages, there are a few
more specifics that need to be accounted for, especially for process models:

‚ The link to the product architecture: As any engineering design process
creates a product, the process setup is oriented to serve the architecture of
the product.

‚ The occurrence of attributes to nodes and edges: Depending on the
information needed in the process analysis, different aspects need to be
modeled in the MDM besides nodes and edges. Specifically the information
transfer, commonly modeled as edges, is often of interest and may need
more detailing.

‚ The occurrence of decision points: During the generation of knowledge in
the process, many decisions have to be made about how to proceed with the
process, e.g., by iterating or continuing downstream. These decision points
are often modeled as Boolean operators to represent decision logics.

To suit the set of modeling constructs to incorporate these aspects of process
modeling, the following sections first extend the meta-model to product attributes.
Then, MDM modeling techniques are extended to include attributes in a manner
coherent with common MDM modeling, and, last, an extension to model decision
points in MDM is proposed.

4.4.1 Alignment of the process structure with the product architecture

Process improvement based on the requirements and constraints set by the product
architecture has generated a lot of interest in research in order to discover the
interdependencies of a technical product and its design process [HENDERSON &
CLARK 1990, p. 9]: “Architectural knowledge tends to become embedded in the

structure and information processing procedures of established organizations”
59.

It is neither the specific focus of the approach presented in this research to propose
a process structure that corresponds to the needs of the product architecture, nor to
analyze how well a process is suited to efficiently creating a specific product.
However, a framework to analyze a process in engineering design needs a specific
“adapter” for the content processed in the process organization. As such, the
alignment of process and product addresses the fact that the organizational

59 There are many examples available: [KREIMEYER et al. 2007c] and [SOSA et al. 2004a], for
example, align the process structure with the product architecture to facilitate communication
across the overall process. DANILOVIC proposes to use a clustering of product attributes to define
workgroups that work more efficiently because they are closely related for the development
issues for which they are responsible [DANILOVIC & SANDKULL 2002]. PONN defines the need
to align the process in response to the specific situation, i.e., the need to generate knowledge
about certain aspects of the product [PONN & LINDEMANN 2005]. HERFELD provides a concept
that allows close cooperation between design and simulation engineers based on team structures
that originate from the dependencies of requirements and their embodiment in the product’s

components [HERFELD 2007].

110 4. Modeling the structure of design processes

dependencies of a process (which are the focus here) are only in place because
they are meant to generate a certain content.

The process has as a specific environment for the product it is generating
knowledge about. As the first-level interface in the SPA model presented in the
previous section, these can be understood as attributes to entities of the process. If,
for example, three tasks of an automotive design process are linked to developing
the rearview mirror of a car, the rearview mirror could be the content attribute of
these three tasks. As such, the three tasks are linked across the common attribute.
Additionally, four other tasks of the same process might be linked to designing the
sheet metal parts of the driver’s door. As the mirror is attached to the door, there is
a relationship between the two attributes, which possibly indicates a relationship
between the tasks. Figure 4-3 visualizes this example and shows how the
additional domain “product attributes” are introduced (1) to link different tasks
that are connected to a certain product attribute, and (2) how these attributes can
be linked to each other (3).

Product attributes can be of different kinds, and they can be related in different
ways to the process. Basically, a product attribute is a “characteristic” of the

product at a given level of abstraction and perspective to the product [PAHL &
BEITZ 2007, p. 220]. Each level of abstraction has a different scope, as shown by
the Munich Model of Product Concretization [PONN & LINDEMANN 2008, p. 21]:
requirements, functions, principles of operation, geometry, concept. Each of these
can be further detailed using different perspectives of Design for X, e.g., design
for assembly, design for maintenance, and more.

Relations among product attributes are manifold and are not the focus here60. The
relation of product attributes to the process is only vaguely described, as many
authors addressing the topic often do not clarify their understanding of structure
any further; generally, “product attribute is implemented by process” [EPPINGER
2001] or “product attribute connects to process / product attribute has affiliation to

60 [PIMMLER & EPPINGER 1994] suggest four basic kinds: Spatial, energy, information, and
material. [JARRATT 2004, p. 125] extends these to mechanical steady state, mechanical dynamic,
spatial, thermal steady state, thermal dynamic, electrical signal, electrical earth, electrical
dynamic. However, many other relationship types are possible.

Figure 4-3: Use of product attributes in process model

2

3

1

4.4 Specific aspects of modeling engineering design processes 111

process” [SOSA 2008] is what is provided. However, there appears to be no
detailed descriptions of how the different domains of a process relate to a product
architecture [O'DONNELL & DUFFY 2005, pp. 12-14].

The goal of introducing product attributes is the coherence of the process
necessary for a high degree of efficiency of the process [O'DONNELL & DUFFY
2005, pp. 12-14], i.e., the “alignment” of the structures of a product and its design
process including all supporting domains [SOSA et al. 2004b].

Table 4-4 shows how product attributes can be introduced into the Structural
Process Architecture from Table 4-3. It proposes basic relationship types that
represent a general view of the product for the best generalization possible.

4.4.2 Inclusion of attributes to nodes and edges

To allow the comprehensive modeling of a process, either from scratch or by
converting one or more existing models into an overall structural process model,
the modeling methodology needs to be as extensive as possible to include all
possible modeling constructs that are necessary to represent a given process.
Besides a principal flow of a process, there may be additional attributes that
complete the process description and that form part of the overall structure. For
example, the IT systems that are used by individual tasks are, in fact, attributes of
the domain “IT-system” that are related to the elements in the domain “tasks”.

Table 4-4: Extension of the Structure Process Architecture to include product attributes

112 4. Modeling the structure of design processes

Basic MDM notation is able to include entities of different domains, being related
within one domain as a DSM or across two domains as a DMM. It is, therefore,
able to represent attributes of any element; the attributes can simply be mapped to
the entities to which they belong. However, MDM notation is unable to include
attributes (i.e., entities or nodes) of the relations between different nodes (i.e., to
the edges). Figure 4-4 illustrates these two kinds of attributes.

Figure 4-5 illustrates an example: Business object c is generated by task B and
transferred using IT system 3, attributed to edge γ as the transferring system (as
opposed to another system the business object originates from). Several different
process models use such constructs. Another integration is given by [BRAUN &
LINDEMANN 2007], for example, who link a process layer to a basic product
architecture and, at the same time, to a resource layer to estimate the expected
expenditures in a development process.

A basic approach would be to model relationship γ using three matrices, linking

two domains at a time as shown in Figure 4-5. However, such a model can turn
out to be ambiguous in certain cases. In fact, if the chains of relations (c, d, i) are
not explicitly named in the matrix-based notation, another unwanted chain of
relation occurs. Figure 4-6 uses the common notation with an “x” indicating the

existence of a relation. It shows how task B produces business object c via IT
system 2, which is actually not the case in the modeled process. The model is,
therefore, not unambiguous and thus insufficient.

Figure 4-4: Attributes to nodes and edges

Figure 4-5: Three individual chains of relations (c, d, i) in graphical and matrix notation using
three DMMs

Entity A

Attribute 2Attribute 1

Attribute to an entity

(quality of node of graph)

Attribute to a relation

(quality of edge of graph)

Entity B

cc

dd
ii

A

B

c

b

2

3

4.4 Specific aspects of modeling engineering design processes 113

The reason for such unwanted edges is the fact that the individual denomination of
a chain of relation is lost when replacing the chain with the simple existence of a
relationship. Figure 4-7 illustrates this phenomenon for the previous example:
There, the chains of relations a-A-1, b-B-1, and a-B-1 are modeled as DMMs.
However, as the individual chains of relations are not differentiated, a fourth
unintended chain of relations occurs that draws one edge from each of the
intended cases. In fact, the more tightly a structure is coupled, the higher the
probability that such unwanted edges occur. Therefore, an explicit denomination
needs to be introduced which indicates each chain of relations in MDM notation.

In fact, another domain needs to be introduced to identify each chain of relations.
Even though this approach is complex and makes the generation of the matrices
quite large, it is the only way to ensure unambiguity. In Figure 4-8, the new
domain is included in the MDM. The empty matrices constituting the whole
MDM are visualized, too, although only six basic matrices are needed. As can be
seen, business object c is produced via chains c and i (1). However, only chain i
is possible with task B (2). As chain i only contains IT system 3, business object c
is produced only via IT system 3 (3) and not via system 2, as originally indicated
by the matrices depicted in Figure 4-6.

Figure 4-6: Unwanted relation in the example from Figure 4-5 because of ambiguous
modeling

Figure 4-7: Occurrence of unwanted relations using three DMMs

Unwanted relation

caused by this pair

of relations

A c

B b 3

c

d
i

2

A

B

c

b

2

3

bA

B1 B2

2b

2a bB

bA

B1 B2

2b

2a bB

bA

B1 B2

2b

2a bB

Three intended different relations among three domains

bA

B1 B2

2b

2a bB

Unintended relation

114 4. Modeling the structure of design processes

The approach is equally applicable to DSMs, as a DSM can be understood as a
DMM linking two identical domains. As the same ambiguity, as in the DMM case,
can occur for DSMs, a denomination of the chain of relations is necessary.

The approach serves as a basis for extending matrix methodology to facilitate the
completeness of modeling constructs. It is especially valuable to complete matrix
methodology for handling large systems with many elements; in such cases, it is
not just the compactness of a matrix that is of interest but also the strict modeling
scheme and the possibility to represent multiple relations in their coexistence. As
it is in line with common MDM notation, it allows the effortless application of
common analysis methodology.

4.4.3 Decision points modeled as Boolean operators

Almost all available process models can model the split or merge of the process
flow using logic operators. These operators represent decision points that,
according to the results of the process up to this point, take it along one path or
another. To make a process model containing such operators accessible to a
systematic analysis using structural metrics, a conversion into an MDM is
necessary. The sub-section below describes different ways of doing this.

Basic logic operators and possible conversions

Commonly, logic operators are modeled as Boolean operators to represent the
choices that are possible. Boolean algebra provides three basic operators AND,
OR, and NOT which can be used to model all other more complex operators such
as XOR, NAND, or NOR [PAHL & BEITZ 2007, p. 47]. Table 4-5 shows the basic
Boolean operators and explains their behavior.

Figure 4-8: Unambiguous MDM-based description of attributes to edges

Tasks

T
a

s
k
s

Business

objects
IT systems

B
u

s
in

e
s
s

o
b

je
c
ts

IT
 s

y
s
te

m
s

Chains of

relation

C
h

a
in

s
 o

f

re
la

ti
o

n

1
2 3

4.4 Specific aspects of modeling engineering design processes 115

To model the control flow of a process (see section 2.2.3), typically only AND,
OR, and XOR are used; for example, in IDEF-3, EPC, or IUM models, these
operators are commonly used. The NOT operator is, in fact, not used in any
common process modeling methodology. For this reason, the logic modeling for
processes explained in this section focuses only on AND, OR, and XOR.

Whereas no decision is made when using the AND connector, and the process
simply splits or joins, both OR and XOR are based on a decision that influences
the process behavior. In most process models, the actual decision is made in the
entity before the operator, i.e., a task that is followed by a split-operator will have
different possible outcomes which influence any further procedure. As such, both
OR and XOR cause a non-deterministic behavior of the process and influence the
structure of a process (see Table 4-6).

As Table 4-6 shows, the process model can take different shapes if it is reduced to
a structure that does not involve any logic operators. In fact, the operators in
common models such as IDEF-3 and others represent different variants of the
possible behavior of the process in one single model. If the process model is
unfolded to reveal the relations of its entities across the connectors, the entities can

Table 4-5: Basic Boolean operators (according to PAHL & BEITZ 2007, p. 47)

Table 4-6: Process flow for the common split and join operators

116 4. Modeling the structure of design processes

interact differently, depending on the operators involved. [BELHE & KUSIAK 1996]
illustrate this with an example of a simple process: The conversion of a process
with only seven tasks and three Boolean operators will turn into six different
process flows (see appendix 10.2.1 for the complete example and algorithms).

Overall, five ways of converting a process flow involving logic operators into an
MDM are possible. The five rules are ordered according to their degree of
completeness of converting the structure of a process. Appendix 10.2.5 shows the
algorithms and resulting matrices for each conversion rule in detail. Table 4-7
sums up all conversion rules with their advantages, disadvantages, and
recommended adaptations. Depending on the application case, any method is
suitable to produce a valid MDM.

Table 4-7: Conversions of a process model with logical operators into matrix-based notation

4.4 Specific aspects of modeling engineering design processes 117

Rule 1: Resolve all logical connections [BELHE & KUSIAK 1996]

Logical operators are eliminated by creating different graphs and matrices for each

alternate process given by each decision in the process. Because of the large

number of different matrices eventually obtained, this rule is only of theoretical

interest, while its application is of little practical use. The number n of all possible

graphs amounts to n = 3
k
 * 2

m
 with k the number of binary OR-operators and m

the number of binary XORs.

Rule 2: Neglect the operators [KREIMEYER et al. 2007d]

By dropping all decision points and turning their connections into simple edges,

only the basic structure of the process remains. This way, flow characteristics can

be analyzed, while a critical path across different decision points (Critical Path

Method), for example, cannot be observed. Thus, only analyses based on

structural characteristics, i.e., those that do not rely on decision points, are

possible.

Rule 3: Translate operators into probabilities [GÄRTNER et al. 2008] [CHO &
EPPINGER 2001]

By resolving all possible paths into or after a decision point as numerical values
that correlate to the probability for taking each path, it is possible to evaluate the
sequence of decisions that take place numerically. As such, the decision points are
basically modeled like a Bayesian network. However, the appropriate numerical
data (e.g., as a numerical DSM) is necessary, which often is not the case.

Rule 4: Logical operators as additional entities in the process domain

The operators are kept as an additional entity, losing information about the type of
operator. The operators lose their meaning, and only the pure existence of a
relationship is transferred, as if all operators were AND operators. This approach
extends the simple disregard of the operators, as in rule 3, and integrates an
additional number of entities into the network that can be analyzed using a
common methodology. A process network with n entities will, therefore, grow to a
network with n + k entities, with k as the number of distinct logic operators. The
approach is mainly useful if the process model only consists of a single DSM and
if decision points are of little importance.

Rule 5: Carry along the logical operators and their characteristics

Extending rule 4, this approach (explained in the following) extends the process
MDM by a new domain that models the existence and connectivity of connectors
(i.e., connectors are modeled as nodes of a new domain “connector”) and that uses

another additional domain to model the type of the connector (i.e., each connector
node is attributed with its type using a DMM). Although somewhat complex in
both execution and result, the resulting matrices can transfer the structure of any
process model without loss of information bi-directionally.

118 4. Modeling the structure of design processes

MDM-based modeling of logic operators

With MDM as a chosen common basis to model the relationships in any given
process notation, not only is their structural impact relevant, but also their
modeling in MDM in order to assemble a complete, correct, and consistent
process model that is then submitted to analysis. Therefore, logical operators need
to be unambiguously represented in the model. As rule 5 is the most complete, it is
the one that is chosen for the representation in the following. However, for simpler
cases, the other rules can also be applied to generate a process model. In this sub-
section, the EPC notation is used to show that the rule is applicable even for
complex process models.

To allow the conversion of logic operators, an MDM can be used that handles
decision points as an additional domain; the nodes of this domain serve as an
intermediate connection between the tasks and events that alternate in the process
flow of an EPC model. To characterize the type of each of these connectors, each
node that represents a connector is attributed with its type (AND, OR, XOR) using
an additional DMM (the characteristic domain). Figure 4-9 shows how a basic
EPC process element (left-hand side) necessitates that four domains be converted.

Theoretically, all 16 matrices within the emerging MDM could contain entries
representing dependencies. If, however, the EPC model that is used as a basis is
semantically correct, only the shaded matrices in the MDM are needed, while the
others remain empty. Yet, it is often possible that process models in practice do
not fully adhere to all rules that are set in the process meta-model. Therefore,
dependencies can also occur in the empty matrices, for example, if tasks are
directly linked (especially for notations other than EPC or for “dirty” models).

For EPC, ten elementary combinations of tasks, events, and logic connectors are
possible, as shown in Table 4-8. In fact, it is impossible that any entity of a
process not executing a task can make a decision to change the primary flow of
the process. Therefore, events being only static states, the process cannot lead to
different tasks. However, real-life modeling of process does not always adhere
fully to the process modeling notation; therefore, the MDM conversion is also able
to cope with the impossible cases of EPC.

Figure 4-9: MDM with appropriate domains to translate the primary flow of an EPC model
(domains that are potentially not empty are shaded)

Or

Domain „tasks“

Domain „events“

Domain „connectors“

Domain„type of connector“

Task leads to connector

Connector leads to event

4.4 Specific aspects of modeling engineering design processes 119

To accommodate all possible constellations of logical operators in a process
model, those combinations shown in Table 4-8 are possible. Each can be
understood as the smallest possible building block of a process model, as from
these blocks, all possible processes can be assembled. These Elementary Building
Blocks (EBB) thus embody the smallest units of a process. Interlinking them
results in the entire process. Representing the elementary connection types, they
consist of two process elements (either tasks or events), and one logical connector.
Altogether, there are ten possible EBBs: six for tasks with AND, OR, XOR for
splits and joins (compare Table 4-8). Figure 4-10 illustrates two EBBs: an XOR-
join EBB for events and an AND-split EBB for tasks. All other EBBs are formed
in the same way.

The example in Figure 4-11 provides a possible recombination of EBBs
constituting a complete process. It combines the two EBBs from the previous
example, linking the two connectors in a DSM. Except for this entry, the overall
MDM is the superposition of the two previous smaller MDMs.

Table 4-8: Logics in EPC notation [SCHEER 1999]

Figure 4-10: Example for EBBs of XOR-join (left-hand side) and AND-split (right-hand side)

Representation of type of join

XOR

E_1

E_2

V_1

E_2

E_1

Representation of type of split

V

F_1

F_2

V_2 F_1

F_2

120 4. Modeling the structure of design processes

Thus, the approach of converting a process model into an MDM using rule 5 has a
number of advantages: Above all, it is compliant to the “classic” matrix-based
description of systems, thus extending the modeling base to describe and analyze
the structure of a process.

While MDM and EPC are somewhat different forms of notation, the proposed
mode of conversion shows that their content is compatible in terms of the structure
of the process, i.e., the interaction and dependencies of the various entities that
prevail in the process. In fact, a direct inter-conversion between both notations is
possible (omitting the fact that, of course, the actual design of the graphical
process model is lost). As such, it supports a consolidation in the form of a clearly
defined interface between the modeling methods.

As EPC was only used as an example in this sub-section, the proposed method is
applicable for any other graphical notation involving logical operators, e.g., IUM
or IDEF-3 (an example is found in appendix 10.2). The definiteness of the
approach allows modeling iterations and other structural characteristics common
to processes. It is suitable for representing a large process unambiguously, as long
as all entities are uniquely named (logical operators, too).

As the outcome of the conversion is an MDM, all structural characteristics and
metrics applicable to an MDM are relevant. This holds true for the interpretation,
as well. However, when evaluating a structural characteristic or metric for a
decision point other than AND, the underlying structure does not necessarily
represent a network that is present at all times but that can be present. As such,
interpretations need to be made more carefully, considering the fact that the
relationships within the structure represent possibilities and are not permanent.

4.5 Building the process model

The meta-model presented as the Structural Process Architecture lays the
foundations of modeling a process. Its application has different facets, which are
explained in this section. Above all, the SPA model is used to generate a process
model that can later be submitted to structural analysis. To this end, the process
MDM can be analyzed either using the native data from the process model, or the
domains and relationship types can be recombined to generate aggregate views.

Figure 4-11: Recombination of the two EBBs from Figure 4-10

V_1 î V_2

E_1

E_2

XOR

F_1

F_2

V

E_2

E_1 F_1

F_2

4.5 Building the process model 121

4.5.1 Generating a process model

Two modes of generating a process model are possible; either, the model is
generated as an MDM from scratch, or one or more existing process models are
imported. Which of the two possibilities is chosen to create a model depends on
the actual context of the process improvement and the availability of other models:
If existing process models are available (compare the models in appendix 10.1),
these can be processed directly. If other models are available, these can be turned
into an MDM by identifying their domains and relationships. If no models are
available, a process MDM has to be created from scratch.

To create an MDM from scratch, a procedure proposed independently by
[MAURER 2007, p. 69] and [DONG 2002] can be used, based on best practices:
Using workshops, interviews, existing documentation, questionnaires, or web-
based forms [SABBAGHIAN et al. 1998], the system is delimited by collecting
relevant entities and relations. Classifying these, a list of domains and relationship
types is generated that forms the meta-model for the successive model-building. In
a second step, using the same methods of information acquisition, the domains are
then refined to their individual elements, and these are reviewed in a pair-wise
manner to collect the existence of all relevant relationships. Figure 4-12 integrates
this procedure into the overall context of structural analysis.

The Structural Process Architecture is thus a reference to define domains and
relationship types. If the analysis follows a certain goal (see section 6.2.1), the
meta-model furthermore helps by including domains that are relevant to answer
questions related to the chosen goals.

The following questions should guide setting up the system definition. They
operationalize the principles of a system description as shown on page 38.

Figure 4-12: Two approaches to setting up a structural process model

Generation of MDM

from scratch:

Export from existing

process models:
� System definition

through choice of

process model(s)

� Parsing of existing

model(s)

� Export into DSMs and

DMMs

� Definition of involved

entities

� Classification into

domains

� Definition of basic

interactions

� Classification into

relationship types

� Definition of entities for

each domain

� Definition of relationships

between every pair of

entities using interviews,

questionnaires, or other

documentation

System
definition

Information
acquisition

Modeling
Structure
analysis

Discussion
of practices

Setting
goals for
analysis

122 4. Modeling the structure of design processes

‚ Which domains are available in the existing process organization?

‚ Which domains are needed to answer specific questions or to get a complete
picture?

‚ How can the domains of the meta-model be refined to generate a meta-
MDM for the analysis in question?

‚ How are these domains related?

‚ Which of these relationship types are relevant for the analysis in question?

‚ How can the relationship types of the meta-model be refined to describe the
domains of the analysis in question?

Figure 4-13 shows an example of an MDM that was created from scratch, based
on the SPA model. Here, the communication structure among the 45 committees
relevant for a development process was modeled. For this problem, it was
necessary to detail the committees that regroup personnel from the company
across departments and specific roles. Therefore, the domain “organizational

units” from the meta-model was further decomposed into departments,
committees, and roles. Equally, the relationship types have been refined from the
basic propositions of the meta-model to fit the refined domains; some pairs of
domains are connected by two different relationship types paralleling each other.
For example, roles are, on the one hand, connected to committees as being part of
them and, on the other hand, as being responsible for creating the agenda for a
committee’s meeting. To adapt both domains and relationship types, the principles

laid out on page 38 were applied.

Figure 4-13: Example of refinement of a domain into three more detailed sub-domains

Committee Role Department Product
attribute

Phase

Committee Committee is

superior to
committee

Committee is of

relevance to
department

Committee

decides on
product attribute

Committee is

active during
phase

Role 1) Role is part of

committee

2) Role makes

agenda

Role informs

role

Role is part of

department

Role processes

productattribute

Role is active

during phase

Department
Department has

responsibility
for committee

Department is

part of
department

--- ---

Product
attribute --- --- --- --- ---

Phase
--- --- --- --- ---

4.5 Building the process model 123

As a result, a specific meta-MDM61 for the process analysis was generated, as
shown. Then, the meta-MDM was instantiated, i.e., its relevant sub-matrices were
filled, as proposed above. In the example, 12 matrices were needed and generated
through workshops and from document analysis to build the complete MDM.

To generate an MDM based on existing process models — for example, an
EPC chart, as shown in the introductory case study — a different procedure
applies, as here the meta-model plays a slightly different role. Basically, either one
model can be parsed and converted, or several models can be combined into one
MDM. In all cases, the existing process models need to be exported from their
native systems and converted into appropriate matrices; the model shown in the
introductory case study was, for example, generated in a modified version of the
ARIS Toolset, exported into a spreadsheet format, and then the individual export
files were assembled as an MDM. However, this procedure is different for every
modeling tool and not regarded here, as it is mostly an application development
specific to the modeling system.

If one model is converted, the Structural Process Architecture model generally
supports the goal-oriented analysis and the selection of the appropriate domains
within the existing process model, which need to be converted into the MDM.

If two or more models are combined into an MDM, the Structural Process
Architecture serves as a frame of reference to collect models for all domains and
relationship types necessary; furthermore, it helps to combine possible different
levels of granularity in a process model [WYNN et al. 2009]. While, of course, it is
not possible to combine two process models with different levels of abstraction
into one homogenous model, it is possible to connect models that only differ
slightly in their level of detail. To this end, it is often possible to combine several
sub-models into an overall model by finding the correct abstract terminology that
bridges the elements of the sub-models. If several models are combined this way,
it is important to introduce a common naming scheme for all entities involved, as
these form the “docking points” among the models. Experience has shown that an

enumeration of all entities is a good basis to do so. See the validating case study in
chapter 7 for an example; here, 99 different models were assembled into one
MDM to generate a coherent model.

4.5.2 Aggregate views recombining domains and relationship types

As shown on page 39, a process model will commonly consist of more than two
coupled domains [GUILLAUME & LATAPY 2004]. Yet, when analyzing the model
and comparing the entities of these domains among each other, it is necessary to
compare only entities of one kind with each other. To do so, it is often necessary
to incorporate indirect relationships among these entities, which only exist via an
intermediate domain. To do so, an aggregate view can be used that only contains
entities of one domain and their (computed) relations among each other. This is
especially necessary for analyzing structural characteristics [MAURER 2007, p. 82]
or structural metrics based on intra-domain networks (i.e., DSMs).

61 Also called a system-graph [LINDEMANN ET AL. 2009]: It shows, what domains and
relationship types are used and how they relate. As such, it is similar to an Entity-Relationship-
Diagram at a meta-level.

124 4. Modeling the structure of design processes

As Figure 4-14 shows, five basic patterns of relationship types are possible at the
meta-level, either as inter-domain relations, connecting two domains, or as
reflexive, intra-domain relations, relating the elements of a domain to other
elements of the same domain. These relationship types can be directed or not.

Based on these basic patterns, three forms of aggregation are possible, and each
can lead to either an intra-domain aggregation (producing a DSM) or an inter-
domain aggregation (producing a DMM). Table 4-9 shows all six kinds:
Aggregation is possible via different paths at the meta-level, via a common entity
of reference, or via superposition. As the table shows, the aggregation via path
searching produces a directed relation (dashed) between two business objects, the
second reached via an intermediate task. If the two tasks are connected to the same
task, their aggregate relation is not directed as in path searching. If two models are
superposed, the directedness of the resulting aggregate relation finally depends on
the available input data.

If an aggregate view is produced via path searching, the possible paths within the
meta-MDM are followed and computed, as suggested by [BIEDERMANN &
LINDEMANN 2008]. In such cases, directed networks are the result of directed
native data: if the native data is an undirected network, of course, the aggregate
view is undirected, as well; in mixed native networks, containing directed and
undirected relationship types, each aggregation has to be checked individually for
possible directedness.

Aggregate views can, furthermore, be created by evaluating the concurrent
attribution to a domain of reference, as shown in the center row of Table 4-9.
Here, two entities in the domain “business objects” both relate to an entity in a
second domain, and thus share a common partner in that domain. The aggregate
views are always undirected.

Figure 4-14: Basic patterns of aggregation of domains

Undirected relationship type among domains

Basic:

Reflexive:

IT systemsTasks

Tasks

Directed relationship type among domains

(or other

direction)

Basic:

Bidirectional:

Reflexive:

Tasks

Tasks

Tasks

Business

objects

Business

objects

4.5 Building the process model 125

Thirdly, it is possible to overlay two networks that are of the same domain
(“superposition”), i.e., the same kind of entities at the same level of granularity,
but that have possible different relationship types. Commonly, such an
aggregation only makes sense if the two networks are very similar, e.g., if either
partial models are combined or if the relationship types within the models to be
combined are a decomposition of a higher-level relationship type that will then
govern the aggregate view. Of course, an aggregation of directed native data will
provide a directed, aggregate view, while undirected models will naturally bring
forth an undirected model. Combined models, integrating directed and undirected
relationship types, are not advisable, as the outcome will then be mixed within one
aggregate view, making it impossible to differentiate this directedness in further

Table 4-9: Different forms of aggregation

126 4. Modeling the structure of design processes

analyses. This third principle is, in fact, used when two process models are
combined to generate a process model with a wider system border.

However, for the purpose of process analysis, only directed relationship types are
considered in the following. To this end, undirected relationship types are treated
as bidirectional directed relationship types, which is sufficient to calculate
aggregate domains and structural metrics. There is an ongoing discussion whether
this is permissible and whether DMMs especially are directed matrices or how;
however, from a pragmatic point of view, treating undirected relationship types as
bidirectional relationships is sufficient for structural analysis

Using this convention and the three remaining patterns of relationships, the
example shown in Figure 4-15 can be assembled by recombining the different
patterns to constitute a process MDM including its domains (four of them in the
example: organizational units, business objects, tasks, IT systems) and relationship
types62 (four, again). The undirected basic relationship type between tasks and IT
systems is resolved as bidirectional-directed.

In the example in Figure 4-15, different aggregate views can now be calculated. If,
for example, the business objects are in focus, two possible intra-domain networks
can be computed to generate a business object-DSM: Either, the business objects
can be related via just the tasks, or they can be related via the tasks across the IT
systems and back via the tasks. In the first case, one intermediate domain is used;
in the other case, the view is aggregated via two intermediate domains.

The computations of path searching can, therefore, be brought down to the
computation of reachability within the MDM (compare Table 2-2 on page 50),
following all possible paths starting from a domain of reference (the business
objects in the example above) back to itself. Every individual circuit (i.e., a
directed cycle) though the MDM will generate a new aggregate view for the
domain of reference that is – at the same time – the start and end domain for this
circuit. In the same manner, all paths in the MDM running between two different

62 The figure only serves as an example; whether organizational units actually use a directed
relationship type to connect to a business object or not is not the focus in this section.

Figure 4-15: Example of recombination of domains and resolving of undirected basic
relationship

Undirected basic

relationship type

Directed bidirectional

relationship type

Resolved as

Directed bidirectional

relationship type

Directed basic

relationship type

IT systemsIT systems

Tasks TasksBusiness

objects
Org. units

4.5 Building the process model 127

domains can be brought back to an aggregate DMM; this, however, is not further
regarded here, as no aggregate DMMs are needed for the structural metrics.

Figure 4-16 lists a few examples of native data (left-hand side) and the way these
can be aggregated towards a domain of reference (red hexagon) following all
possible circuits with the domain of reference as the start and end domain. For
example, in the first case, no closed loop is found in the graph of domains and
relationship types. Therefore, no aggregate view can be computed. In the second
row, one circuit from the domain of reference (the red hexagon, serving as a
reference towards which the network is to be aggregated) to the green rectangle
and back exists. Here, an aggregate view for the domain of reference via this
intermediate domain is possible. For the last row, for example, four different
aggregate views of the domain of reference are possible. Of course, this principle
of aggregation can also be used for more domains than shown in the figure.

When creating aggregate views, domains and relationship types are condensed
into a single domain, changing the relationship type of the new, aggregate view.
As such, the relationship types and intermediate objects are chained up to create
the aggregate relationship type. The example in Figure 4-17 explains the process
of aggregation, first collecting the initial relationship type, then the intermediate

Figure 4-16: Possible aggregations of up to three domains (using path searching)

D
o

m
a

in
 o

f
re

fe
re

n
c
e

Native data Possible aggregations

128 4. Modeling the structure of design processes

domain, then the second relationship type. Unfortunately, there is no other
systematic way to condense the aggregate relationship type any further. In many
cases, however, a higher level of abstraction can be found; for the example, in
Figure 4-17, “task delivers information task” can be applied, which is reasonably

close to the original aggregate relationship type. However, these simplifications
always include a loss of precision and, therefore, should be considered with care.

To compute aggregate views, the rules shown in Figure 2-9 and Figure 2-10 are
applied. For each path, the matrices along the path are multiplied, either starting
from the beginning of the path or the end of the path. For example, an aggregation
path via one other domain, therefore, consists of two matrix-multiplications, a path
across two other domains of three multiplications, and so on. Figure 4-17 shows
the matrices that embody the relationship types of the flow chart; the aggregate
DSM is calculated according to case 3 of the rules presented in section 2.1.3. For
larger systems, in particular, involving many matrices, it has proven useful in
practice to use an ID for each individual matrix, and first to collect the IDs along
each aggregation path, and then to compute the aggregate views.

When using logic operators according to the modeling scheme shown in section
4.4.3, aggregation is more complex, as Figure 4-18 shows. Commonly, models
involving logic operators do not connect all entities via these operators, but some
are directly connected. Thus, on the one hand, aggregate views exist, as shown
above via the relationships entered in DSMs and DMMs. On the other hand,
aggregate views exit in parallel via the logic operators, which can be nested
among themselves (e.g., an OR can be connected to an XOR, and so on).

Figure 4-17: Aggregate relationship type for the example from Figure 4-15

Tasks Business
objects

Tasks
DSM 1

„creates b.o.
that starts“

DMM 1 (native)
„creates“

Business
objects DMM 2 (native)

„starts“
DSM 2

„creates“

„starts“

„creates business

object that starts“

DMM 1

DMM 2

DSM 1 = DMM 1 · DMM 2

Native data:

Aggregate view:

Business

objects
Tasks

Tasks

4.5 Building the process model 129

Figure 4-19 shows how the aggregate view for the domain “tasks” is computed.
DMMs 1 and 2 are multiplied to generate the intermediate DSM of relationships
that do not use any logic connector between them; then, a second intermediate
DSM including the logic operators is calculated. As a third step, both intermediate
matrices are added. This aggregate view thus represents the minimum set of
relations among the tasks.

Regarding interpretation, the summing up of two (or more) matrices means that
the full set of relationships between two domains is spread over two (or more)
other domains; in this case, the domain “connectors” only contains one entity, the
XOR connector, and, therefore, only contains the relationships between those
entities, whose behavior is governed by this logic operator. In a larger context,

Figure 4-18: Combined aggregation with logic operators

Figure 4-19: Computation of aggregate DSM from MDM with logic operators (computed
relations in brackets)

XOR

This aggregate relation

is computed only via

one domain „business objects“

This aggregate relation

is computed via two

domains: „connectors“

and „business objects“

DMM 1

DMM 2

DMM 3

DMM 4

DMM 2

Task B

Task A

Business

object 1

Business

object 2
Business

object 3

Task C Task D

130 4. Modeling the structure of design processes

however, this principle of aggregation via superposition is another possible
strategy that is viable for other contexts, too, e.g. the data exchange between
different IT systems via different interfaces and intermediary systems. Here,
however, it is only used to combine models of the same relationship type, as is the
case with logic operators, as the aggregation of similar but not identical
relationship types requires a very detailed review of the combinability of the
relationship types to ensure a purposeful analysis of the aggregate model.

4.5.3 Example of a process model for engineering release management

Using the meta-model and its principles of application shown, a process model for
the analysis of a release management process at a large premium automotive
manufacturer was created.

The goal of the analysis was to identify improvement measures for the
communication among the different organizational bodies along the principal
process flow for a new product line based on the experience from other projects.
Specifically, the following aspects were targeted to be improved:

‚ Alignment of committees and organizational entities with process chains

‚ Improvement of the assignment of tasks to organizational entities by
reshuffling the work distribution based on the process sequence, by the
targeted deduction of interdependencies between organizational entities, and
through the generation of suggestions for an improved organizational setup

‚ Improvement of the composition of committees by re-ordering the
committees based on the process sequence and by deducing communication
channels between committees

Figure 4-20: EPC meta-model of the process analysis

Function

Event

Event

Organizational

Entity

Organizational

Unit

Event-driven

Process Chain (EPC)

Event starts

function

Function finishes

with event

Application

system

Object

(Input / Output)

Committee

Unit executes function

Committee

executes

function

Entity executes function

Entity is part

of Unit

Entity forms

(part of)

committee

Function generates /

necessitates object

Application system is

necessary to execute

function

Object is processed by

application system

4.5 Building the process model 131

The process model was first assembled as an EPC model and then exported into an
MDM to be further analyzed. Figure 4-20 shows the input process model as an
EPC meta-model that was then translated into a meta-MDM (Figure 4-21). Based
on this meta-MDM, the actual process model was then imported and analyzed.

From this native data, aggregate views for the organizational entities and for the
committees were computed to analyze the use of resources and to identify
necessary communication channels. Equally, aggregate views for the documents
and the related IT systems were computed to better analyze the data flows
between these domains. The following analyses were computed in detail:

‚ Analysis of aggregate organizational entities-organizational entities DSM
(via functions) and aggregate committees-committees DSM (via functions)

‚ Analysis of aggregate objects-objects DSM (via functions)

Based on this model, the structural characteristics of the aggregate DSMs were
examined (e.g., clusters, bottlenecks, start-/end-nodes) to gain a better
understanding of the character of the overall system, and the native organizational
structure was compared to the aggregate organizational entities–organizational
entities DSM to see how well aligned the existing organization was in comparison
to the needs exercised by the principal process flow.

As core findings, a potentially lean process chain was eventually proposed,
reducing media breaks through better integration of the information flow and
through the elimination of redundant communication efforts by the definition of
specific communication efforts.

Figure 4-21: Meta-MDM adapted to the analysis of the EPC model used for the process
analysis

Functions F

E takes

place

after F

F

generates

I/O

Events E E starts F

Organizational

Units OU

OU

executes F

Committees C
C executes

F

Organizational

Entities OE

OU

executes F

OE is part

of OU
S forms C

Objects I/O

I/O is

necessary

input for F

I/O is

processed

byAS

Application

Systems AS

AS is

necessary

to execute

F

F

E

OE

AS

I/O

C

OU

F E OU C OE I/O AS

132 4. Modeling the structure of design processes

4.6 Conclusion: MDM-based process modeling

Common process models are mostly focused on the flow of information through
the process. Into this sequence, they integrate boundary conditions, for example,
that are set by other domains in the process organization, such as organization
units or points in time. However, all of these different domains impact the process
organization concurrently, and thus different network structures coexist in a
process.

Multiple-domain matrices (MDM) enable a more balanced modeling of these
different networks, as they are able to clearly differentiate various domains and
relationship types in a large dependency model, integrating all into one coherent
model. This model can be extended as needed by adding one matrix at a time,
making it possible to import data from various sources to combine them into one
overall process model. While losing to a time-oriented representation of the flow
of time, leaps back in time or loops in the principal process flow, as well as in the
supporting domains, can be represented at the same time.

Furthermore, an MDM allows condensed aggregate views to be created that take
into account the relations via any number of domains, reducing them into a single
matrix that enables running specific analyses of a domain of reference without
losing sight of the implications that originate from the interplay with other
domains. As such, a process model that consists of several domains becomes
accessible for more straightforward analysis without reducing its complexity. By
doing so, one-sided improvements can be avoided during the analysis of a process
model. Furthermore, existing algorithms and metrics that are only suitable to work
with one domain, as commonly established, can be applied to more complex
process networks. Therefore, an MDM is advantageous for a more comprehensive
analysis.

Yet, MDMs are difficult to use. In fact, large matrices are not intuitive to read, and
they are not meant to replace the graphical modeling of a process. In the context of
this research, MDMs are, therefore, used essentially to serve as a common adapter,
representing the structural content of different process modeling languages.

5. Complexity Metrics for Design Processes

This section lays out available complexity metrics in order to assess the structure
of engineering design processes to discover indications about their behavior.
These metrics receive, as an input, a structural model (preferably based on the
Structural Process Architecture, as shown in the previous chapter, although any
other graph or dependency model can be used) of only the entities and
relationships of the system. The metrics are, therefore, suited to work with
qualitative models, as commonly found in process models set up from “boxes and

arrows”. These metrics and their description are referred to as the Structural
Measurement System (SMS). They support the following purposes as discussed in
chapter 3:

‚ Provide a comprehensive toolbox to analyze a process chart for the
occurrence of all relevant patterns among its entities and relationships

‚ Analyze patterns to describe their occurrence as metrics for every single
entity, group or network (depending on the scope of the pattern)

‚ Connect the patterns to their structural significance for all domains and
relationship types as defined by the Structural Process Architecture from the
previous chapter

‚ Provide empirical evidence for the metrics available

‚ Ensure that the metrics are compliant with measurement foundation
(representation, uniqueness, meaningfulness) and Weyuker’s Properties

‚ Rank the results of the analysis by their degree of distinctiveness for the
process by identifying results that “stick out”

‚ Describe the metrics in an intuitive and understandable manner

‚ Present the metrics in a way that their computation can be automated

The set of metrics was developed to assess design processes in a comprehensive
way; thus, the resulting metrics should fill in the solution space as completely as
possible. The solution space for structural metrics with a focus on engineering
design processes is spanned by three axes, as shown in Figure 5-1.

Principally, process analysis is guided by common goals or, more generally,
concepts as already shown in Table 2-7, namely, planning, resource consumption,
quality, flexibility, organizational decomposition, interfaces, and transparency of
process. These concepts guide the use of different process models that assemble
the relevant entities and relationships in a process, which can be regrouped under
the Structural Process Architecture’s domains and relationship types, consisting
mainly of tasks, artifacts, events, organizational units, resources, and time, as well
as the appropriate relationship types (Table 2-9 and Table 4-3). The system of
entities and relationships of a process then creates different structural

characteristics that dictate the behavior of the process, a fact that is referred to as
emergence.

© Springer-Verlag Berlin Heidelberg 2011

M. Kreimeyer and U. Lindemann, Complexity Metrics in Engineering Design: Managing the

Structure of Design Processes, DOI 10.1007/978-3-642-20963-5_5,

133

134 5. Complexity Metrics for Design Processes

These three axes form the solution space to the behavior of a process from a
structural point of view. Generally, the solution space is filled with the
particularities of engineering design processes that, in part, relate to the
structure of a process. Such particularities are, mostly, the dynamics of a process,
its creative nature, iterations in the process (loops, leaps), the fact that results are
not predictable, the driving influence of continuously appearing changes, the work
based on imperfect definitions, the uncertainty inherent in the process and the
accompanying risks, the growing maturity of artifacts, the fact that a definite
process path is commonly not determinable, and the involvement of many
stakeholders (see section 2.2.1).

These particularities relate, at least to some extent, to the structure of a process,
and they can thus be related to structural characteristics. Yet these structural
characteristics are, at an abstract level, independent of the semantics of process
analysis, as a structure is a constellation of nodes and edges that gains its meaning
by the semantics and purpose transported by the model (for a definition of
structural characteristics see page 49).

Therefore, possible constellations of nodes and edges as basic constituents of
structural characteristics are shown first to develop structural metrics
independently of domains and relationship types. In a second step, the metrics are
then combined with common domains and relationship types to evaluate the
particularities of engineering design processes and, thereby, give the structural
metrics a process-focused meaning as a Structural Measurement System. The
development of structural metrics independent of their application allows, at the
same time, the development of a more general concept that can be adapted to
different needs of analysis, possibly not only for engineering design processes but,
for example, product architectures.

Figure 5-1: Solution space for the development of structural metrics for engineering design
processes

5.1 Assessing structural characteristics using metrics 135

5.1 Assessing structural characteristics using metrics

To develop the complexity metrics, a two-stage process is followed, which is
commonly used in such cases [GEIGER 2000, p. 95] [MUTSCHELLER 1996, pp. 63-
83]. At the first stage, basic structural characteristics are developed that serve as
elementary constituents of any network structure; from these elementary
components, the combined structural characteristics can be assembled which many
different disciplines, e.g., Network theory, have generated.

In the second stage, basic structural metrics can be used to embody these
structural characteristics in basic measures; recombining and refining these
measures then generates combined and special structural metrics to assess
different structural aspects of engineering design processes. This last step is, in
fact, a tailoring of existing metrics to the needs of the empirical object. This
procedure is in line with the common reasoning that led to a classification of two
kinds of metrics: basic and combined structural metrics, similar to fundamental
and derived measures [ZUSE 1998, p. 95]. Figure 5-2 visualizes the procedure.

5.1.1 Basic and combined structural characteristics

All structural characteristics are constructed from basic patterns63 of nodes and
edges that are the constituents of any graph. Such basic structural characteristics
can be node-induced or edge-induced, as Figure 5-3 shows. Although the focus in
this research is essentially on directed graphs, node-induced basic structural
characteristics are differentiated according to the directedness of the network, as
the underlying concepts in graph theory64 vary accordingly.

Node-induced basic structural characteristics relate to the connectivity of a graph.
If a path from any node to any other node of a graph can be found, the graph is

63 Patterns or particular patterns are the constellation of nodes and edges of a structural
characteristic; however, this constellation does not relate to any semantics of the model and,
therefore, is just a pattern of entities, whereas a structural characteristic only gains its right to
exist from the pattern AND its meaning. Yet, since the two terms are very closely related, the
terms are not further differentiated and used synonymously.

64 See section 2.1.2 for the basics from graph theory that are used here.

Figure 5-2: Procedure to set up structural metrics

� Node induced

patterns

� Edge induced

patterns

� Graph theory

� DSM and related

methods

� Structural complexity

management

� Network theory

� Occurrence

� Node-related

enumeration

� Edge-related

enumeration

� Statistical evaluation

� Empirical observation

and homomorphism

� Domain- related

issues

� Relationship-type

related issues

� Metric

� Portfolio

� Histogram

Representation
Combined and

special struc. metrics
Basic structural

metrics

Combined structural

characteristics

Basic structural

characteristics

First stage Second stage

136 5. Complexity Metrics for Design Processes

called a connected graph; otherwise, the graph is disconnected. A block is either a
maximally 2-connected graph (i.e., a graph that remains connected if one edge is
removed), a bridge (including its nodes), or an isolated node. A 2- or biconnected
component, therefore, is also a block. A directed graph is said to be strongly
connected if every node can be reached from every other node. A clique is a
completely connected graph with a relational density of 1.

Edge-induced basic structural characteristics take shape as different kinds of
paths. Hierarchies are a special set of paths to all reachable nodes that can be
attained from a root node (also called arborescence). Sync graphs are graphs
consisting of a set of parallel paths connecting two nodes. A cycle is a path
starting and ending at the same node (called a circuit if a direction is given; a cycle
with only bidirectional edges has two circuits).

From these basic structural characteristics, combined structural characteristics can
be set up; different disciplines of research have provided a set of structural
characteristics that can be considered more or less complete and computable, as
was shown in Table 2-2. Table 5-1 summarizes the structural characteristics
currently available. Some disciplines claim, in fact, basic structural characteristics
as specific to their domain; however, in such cases, these structural characteristics
already bear a specific meaning and are no basic constituents.

Based on these structural characteristics, common structures can be described in a
comprehensive manner. Each of these structural characteristics serves, in the next
step, as a basis for a measurement that produces structural metrics.

Figure 5-3: Basic node-induced and edge-induced structural characteristics

Single edge

Path

CycleSync graphHierarchy

Edge-induced basic structural characteristics Node-induced basic structural characteristics

Connected

components

Connected

components

Strongly connected

componentsBlock

Clique

single node

U
n

d
ir

e
c
te

d
 g

ra
p

h

D
ir

e
c
te

d
 g

ra
p

h

5.1 Assessing structural characteristics using metrics 137

5.1.2 Solution principles for structural metrics

Table 5-1 provided a list of currently available structural characteristics.
Classifying them at a higher level of aggregation, several solution principles can
be deduced that serve, together with the structural characteristics shown in Figure
5-3, as basic aspects that are detailed using different structural metrics. In the
following, each solution principle is explained.

Metrics assessing the size and density of a network are basic counters to
characterize a process by the occurrence of domains, entities, and relationships; as
such, they mostly serve as a scaling reference to other metrics. Isolated nodes and
leafs (as start- or end-nodes) are also part of this group of metrics.

Adjacency addresses the fact that a node is connected to neighboring elements;
metrics based on adjacency as a feature of a network, therefore, only regard the
relationships of a node within its immediate environment, while secondary
impacts or even those farther on are not regarded. As such, the direct impact
among nodes and the distribution within the overall network are focused on. Also,
splits and joins, and more generally, structural busses are relevant to adjacency as
a feature of a structure; likewise, the number of independent sets addresses the
number of bands obtained in banding a DSM.

Looking at the propagation and long-range impact of a node across the whole
process, attainability (also referred to as reachability) extends the metrics
relevant to adjacency to the whole network. Thus, nodes are regarded in terms of
their embedding in the overall network.

Metrics using closeness do not simply look at the overall embedding, but refine
this feature by how closely related any two nodes are within the network.
Although actually related to paths, centrality uses a count of path lengths to
attribute to a node its centrality within a network, thus indicating whether it is well

Table 5-1: Combined structural characteristics (according to relevant disciplines)

138 5. Complexity Metrics for Design Processes

integrated into the network or whether it has a position on its border.

By evaluating paths a process is characterized by how it can be navigated, and it
is analyzed by which paths across the network are relevant to this navigation.
Furthermore, each individual path can have special properties, as it constitutes, in
fact, a dependent subset of the overall network; therefore, specific metrics
assessing relevant features of a path are part of this group, too.

Clustering is an important feature. Here, metrics assessing clusters, i.e., densely
or completely connected groups of entities, are counted; equally, transitivity, i.e.,
potentially existing clusters, are regarded. Ultimately, modules as pre-defined
groups of entities that may form a cluster are of interest, especially with regard to
whether their border is purposefully drawn.

Metrics that are part of the group of connectivity are oriented towards the
resilience of a network, i.e., its robustness against individual entities and
relationships dropping out.

Cycles are another important feature of complex networks, especially if they
represent engineering design processes that are almost always subject to iterations.
The metrics within this group are tailored to characterize cycles in general, the
involvement of different entities and relationships in the cycles, and possible
decision points that initiate or re-start iterations within a process.

Metrics that involve several domains address the fact that not all process
networks are set up with only one domain and that aggregation towards one single
domain is not always practical. These metrics thus make use of the ideas behind
the features n-partite-ness and mixing patterns. Overall, these metrics strive to
assess the degree of alignment between a set of domains from different angles.

Metrics on cognition in structural analysis are still at an early stage of research;
the basic concept is to evaluate the human capability to actually grasp or
understand a network structure using empirical concepts or planarity.

Ultimately, metrics involving Boolean Operators can be used for structures that
are modeled using decision points, as shown in section 4.4.3. However, the
metrics are good for any other dependency model as well, as long as decisions are
explicitly modeled.

5.1.3 Evaluation of structural characteristics using structural metrics

There are different measurement philosophies, which have lead to different kind
of metrics (nominal, ordinal, interval, and ratio scales), as provided by
measurement foundation (section 2.3.1), and discussion is still ongoing about what
measure is a good measure. The very existence of this discussion indicates that the
question may have no fundamental answer, but rather that a selection of the type
of measurement needs to be made according to the nature of the empirical object
under observation. Generally, two major kinds of measurement philosophies can
be differentiated: comparative measures – comparing two or more relative
measures to each other – and absolute measures, requiring a reference or scale.

It is scarcely possible to measure a characteristic of a structure in an absolute
manner, as there is no structure of reference that could be used. Therefore,

5.1 Assessing structural characteristics using metrics 139

complexity metrics will typically be comparative measures. To identify structural
outliers, such measures are fully sufficient.

Furthermore, the quality of the measurement needs to be related to the model, and
again the quality of the model needs to be related to the empirical object; across
both of these stages, information is lost due to increasing abstraction. Errors may
be introduced at both stages, as a complete aggregation of an empirical object into
a model is not possible, and neither is it possible to completely represent such a
model in a (set of) metric(s). In other words, a strict reductionism is not possible,
and the basic structural characteristics, therefore, cannot be understood as
epiphenomena65 in a strict sense. Thus, they cannot serve as an absolute scale for a
possible absolute metric.

However, the application of structural complexity metrics does not call for a
precise measurement, but for the identification of possible weak spots that indicate
parts of a process (e.g., an entity, a cluster, a relationship, a domain) which need
further attention and which, when improved, may potentially render the overall
process more efficient. Thus, a metric is not suited to be a stand-alone means of
process improvement, but rather it supports systematic analysis and improvement
by prioritizing certain structural characteristics in a process over others and by
indicating how structural changes of a process impact its behavior.

Therefore, the complexity metrics should mainly be used to identify structural
outliers (see next section), i.e., such instances of a structural characteristic that
significantly stand out from the rest of the system. Of course, statistical
significance cannot be reached for the analysis of most process models, as
common process models only have a limited number of nodes, and, therefore, the
population of the analysis will be, from a statistical point of view, too limited to

65 An epiphenomenon is a phenomenon at a higher level of abstraction that, as a constituent, is
able to explain a phenomenon at a lower level of abstraction; the paradigm of strict reductionism
postulates that one lower level phenomenon can be completely explained using more
fundamental epiphenomena [ANDERSON 1972].

Table 5-2: Available means to set up basic structural metrics to identify structural outliers

140 5. Complexity Metrics for Design Processes

obtain a mathematically sound significance level or p-value. Rather, a structural
outlier can be identified using the Pareto principle [REED 2001].

To identify outliers, a distribution is necessary, and thus basic structural metrics
use the occurrence of a structural characteristic, node-related enumeration, or
edge-related enumeration (Table 5-2).

Statistics provide further measures, for example, mean values, variance, regression
analysis, correlation, factor analysis, and others. However, due to the limits of the
dataset (i.e., the process model being analyzed generally possessing only a small
number of entities and relations), these cannot be employed in most cases and,
thus, are not part of the basic metrics.

In fact, for the structural analyses shown here, basic metrics are generally
sufficient; to refine them, however, combined and special structural metrics can
be generated, as shown in Table 5-3. These metrics make use of basic metrics but
take a more focused perspective.

In the last step, the results of the measurement need to be visualized using an
appropriate form of representation.

Table 5-4 lists the different forms of representation. The mode of representation66
is chosen according to the type and quantity of results of the metric. The quantity

66 A good overview of different modes or representation, their dependencies, and their strengths
and weaknesses can be found in [TUFTE 1992]

Table 5-3: Available means to set up combined and special structural metrics to identify
structural outliers

5.1 Assessing structural characteristics using metrics 141

of the results of the metric depends on whether a metric delivers a single value for
an entity of the process or the overall process. In the former case, histograms are
used; in the latter the metrics are given for each reference (a sub-process, a
domain, etc.). If a metric is used separately for outgoing and incident edges (see
section 5.2.4), portfolios can be used to relate the results of a metric to the relevant
two or three axes. Likewise, portfolios or tables can be used if a reference of the
measurement is used, for example, when comparing one domain to another.

Table 5-4: Different forms of representation

142 5. Complexity Metrics for Design Processes

5.1.4 Structural outliers

As the metrics provide a highly condensed picture of the process, they do not
provide detailed information about the process’s behavior; however, their main
focus is to identify structural outliers that characterize the process’s structure.
These outliers are the entities and relationships of the actual process that “stick

out” the most and therefore are the most interesting for process improvement. A

structural outlier is defined as follows:

Outliers are such instances are of a network structure that particularly stand
out with regard to their involvement in a structural characteristic. The
identification of outliers makes it possible to pinpoint entities that are of
extremely high or low impact to the system represented as the network,
thus significantly driving a pattern of entities [HAWKINS 1980]. Outliers
are, therefore, those results that are “numerically distant” from the main

population of results are understood as outliers, and they commonly show
up in histograms or other distributions [BARNETT & LEWIS 1998, p. 16].
While, of course, a process has a limited number of entities that is often too
small to obtain statistically significant results, the concept of the outliers
essentially embodies the Pareto principle67 [REED 2001] by highlighting the
core entities of a system.

Different modes of identification of structural outliers are possible. All necessitate
the existence of a histogram or a distribution that presents the results of a metric
per node, per edge, per process-module or for any other reference that is part of
the structure being focused on.

‚ The most intuitive outliers are upper-bound outliers that appear at the top
of a distribution. Most commonly, the Pareto principle will be applied to
spot the top five or top ten outliers that drive and govern the process.
Typically, these entities will be the most relevant ones for the process.

‚ At the other end of the scale, lower-bound outliers are of interest, too;
commonly, these will be such entities that are almost not integrated into the
process, therefore contributing very little to the process.

‚ Structural outliers can, furthermore, appear within any part of a distribution,
e.g., as a characteristic spike or an abrupt drop in the range of results. These
abrupt-drop outliers will generally appear as a particular footprint of the
process.

‚ Lastly, the comparison of two datasets (either a native and an aggregate one,
or two aggregate ones) will allow the identification of cross-aggregation
outliers that will not show up as one of the three kinds above but only
become visible if two distributions are compared based on identical abscissa.

Figure 5-4 visualizes their appearance in the distribution68 of the metric “Relative

centrality” for the process models shown in the later case studies. In the left
aggregate view (points in time via documents), node 24 is the most interesting

67 Also called the 80/20 rule.

68 This example is taken from the second case study, as shown in section 7.2.

5.2 Overview of the Structural Measurement System 143

outlier, as it clearly sticks out above the rest in the process. This point in time is,
therefore, the one that drives the process the most, as most paths within the overall
process run across this point in time. It will, therefore, be most important in
driving the timeliness of the process. Furthermore, nodes 49, 33, 44, 22, and 43
appear at the lower bound. They appear little integrated and may be of little
importance to the process. Their analysis could, therefore, provide possible cost-
saving potential. Thirdly, a small drop appears from the plateau after node 67.
This drop points to two plateaus, in fact, the one with a centrality of approximately
12 and the one with a centrality lower than five. These two groups could point to,
for example, different levels of importance of the points in time in question.
Lastly, node 33 appears as an outlier if the left-hand aggregate view is compared
to a second aggregation of points in time via tasks. While node 33 does not appear
as highly relevant in that distribution, it still shows a very different characteristic if
compared to the initial position in the Pareto distribution. This could indicate that
the document structure and the task structure may vary considerably in their
integration of node 33.

5.2 Overview of the Structural Measurement System

To represent a comprehensive overview of available complexity metrics for the
structure of engineering design processes, the Structural Measurement System
(SMS) regroups available complexity metrics. For each, the general concept of the
metrics, i.e., the different aspects of their description and the different perspectives
that can be taken for a metric are described. While many basic metrics are not
explained in detail, those metrics that use a more complex rationale are illustrated
in this section. All metrics are detailed in appendix 10.4.

5.2.1 A comprehensive set of complexity metrics

Overall, 52 metrics were assembled to represent a comprehensive toolset for the
structural analysis of processes. Table 5-5 provides an overview of these metrics,
grouped by basic solution principles of a structure that govern each metric.

Figure 5-4: Example of different types of outliers for the metric "Relative centrality"

Upper-bound outlier

Lower-bound outlier

Abrupt-drop outlier

Points in time (aggregate view via documents in Pareto distribution) Points in time (aggregate view via tasks in same order as left distribution)

Cross-aggregation outlier

(cf. position of node 33 in

the distribution on the

left-hand side)

R
e

la
ti
v
e

 c
e

n
tr

a
lit

y

R
e

la
ti
v
e

 c
e

n
tr

a
lit

y

144 5. Complexity Metrics for Design Processes

All metrics were developed starting from the solution principles shown. Each
solution principle was, to this end, reviewed for its different aspects. Each aspect
of a solution principle was then translated into a structural metric. This process
was done from two sides to collect a list of metrics as complete as possible. First,
existing metrics were attributed to the solution principles bottom-up, i.e., existing
metrics (as shown in Table 2-11, 2-12, and 2-13) were attributed to the solution
principles to gain an overview of available metrics and the completeness of
existing solutions. This attribution was shown in Table 2-14. Most of these metrics
are basic structural metrics, as they are directly derived from structural
characteristics. Second, those solution principles (and their aspects) that are
relevant to engineering design processes were broken down into their structural
content to fill the gaps in the list of existing structural metrics (shaded in Table 2-
14). These metrics are explained in detail in section 5.2.3. This second group of
metrics represents mostly combined and special structural metrics that are
based on more specific evaluations.

Table 5-5: Metrics that are part of the Structural Measurement System

5.2 Overview of the Structural Measurement System 145

During the design of the metrics, each metric was defined and its structural
significance and representation described. Table 5-6 provides an example.

Generally, each metric is visualized as a graph representation to show one
example of a constellation of nodes and edges. This graph serves as an example
for the description of the metric where possible. The definition explains the
algorithm that is followed to calculate the metric; where applicable, it also
integrates possible modes of normalization. Each metric has a basic structural

significance which is, however, very generic if no domain and no relationship type
serve as a reference for a possible interpretation. For this reason, only the basic
aspects of the meaning transported by the metric are explained. The principal
representation is then detailed, as shown in Figure 5-5. Again, the example shown
in the graph representation serves as a depiction. For some metrics, more than one
representation is possible, for example, a histogram and a portfolio differentiating
active and passive metrics (i.e., outgoing edges and incident edges for the
“Number of reachable nodes” that can actively be reached and the “Reachability

of a node” as passively reachable). In such cases, a reference refers to further
depictions, and the description of the metric may be split into two descriptions,
one for the active and one for the passive metric – compare Table 5-4 for common
forms of representation. Ultimately, available references explain algorithms and
empirical evidence relevant to the metric.

Figure 5-5 presents an example of the metric “Reachability of a node”, taken from

page 326 in the appendix. As can be seen in the example, node 1 has a high impact
on the overall network, being simultaneously the start-node, generating a number
of reachable nodes as 6, i.e., all available nodes in the network outside this node. It
is, however, impossible to reach the node from any other point in the network,
thus resulting in a reachability of zero. It, therefore, influences the network in an
important manner; however, the degree of impact on any downstream node is not
further assessed (for example, using weights or other means).

Table 5-6: Description of the metric "Reachability of a node"

146 5. Complexity Metrics for Design Processes

Using the Structural Process Architecture, the meaning of the metric is further
detailed in a second table, as shown in the example in Table 5-7, to outline its
detailed domain-specific significance. For each domain, the relevant meaning and
informational value transmitted by the metric are explained. The interpretation is,
furthermore, based on the principal relationship, as shown in this meta-model in
Table 4-3, as these represent common intra-domain relationship types.

If the network shown in Figure 5-5 represents, for example, a network of tasks, it
can be deduced that node 3 depends highly on previously compiled information
that is transferred across the process; thus, if there were any errors in the previous
process, there is a high risk that the wrong input information may impact the task,
as the task serves as an information sink for the three tasks previously executed.

Figure 5-5: Visualization of the metric "Reachability of a node"

Table 5-7: Domain-specific significance of metric "Reachability of a node"

Node 1

Node 2

Node 3

Reachable nodes

R
e
a
c
h
a
b

ili
ty

Node 3

Reachability: 3 (0.51)

No. of reachable nodes: 2 (0.34)

Node 2

Reachability: 2 (0.34)

No. of reachable nodes: 5 (0.83)

Node 1

Reachability: 0 (0.00)

No. of reachable nodes: 6 (1.00)

(in brackets: normalized to total number of nodes-1)

Graph representation Representation of metric

5.2 Overview of the Structural Measurement System 147

5.2.2 Relevance and limits of basic structural metrics

Before the complexity metrics are further detailed, the foundations to consider
whether the proposed metrics embody the foundation of a good measurement are
laid out. As shown in section 2.3.1, the representation, uniqueness, and
meaningfulness are of relevance for any measurement [STEVENS 1946]. The
meaningfulness can furthermore be broken down into the content, the criterion,
and the construct [MENDLING 2008, p. 106].

All metrics necessitate certain semantics (i.e., their content) to validate the
construct. All metrics are, therefore, examined with a focus on the domains and
principal relationship types provided by the Structural Process Architecture shown
in chapter 4: tasks, artifacts, events, organizational units, resources, and time.
Only the domain “Product attributes” was not considered more closely, as this
domain only serves as an adaptor for the product architecture.

The results of the examination of each metric provided, in part, indications of the
structural significance of each metric, as shown in appendix 10.5. The rationale
for the development of these indications is given in the following.

A good representation69 demands that the scale of a metric be proportional to the
phenomenon in the empirical observation. Most of the proposed metrics are
counters, thus producing a result proportional to the counted phenomenon, e.g.,
edges or nodes. Only a few metrics use other concepts. The following section
5.2.3 looks deeper into those metrics that escape reasoning based on counters.

As most metrics are listed as original counters, normalization is optional,
particularly with a regard to only comparing measures among themselves; as the
main goal of this research is to spot outliers, normalization is of limited interest if
only a single process is under review. If, however, two or more processes are
compared for certain structural characteristics, the base for which each metric is
normalized needs to be carefully chosen. In most cases, the number of nodes (or
edges, respectively) in the graph will be the base. In more complicated cases, e.g.,
measures of centrality, the normalization is explained as part of the description of
the definition of the metric.

The uniqueness of each metric refers to the invariance of a metric in
mathematical operations. In simple terms, it refers to the fact that the result of the
metric can be obtained in one and only one way. As this proof necessitates
extensive mathematical background, it is not provided for any of the given
metrics, and there is no dedicated literature available that reviews even the
common metrics, such the Activity metric or McCabe’s Cyclomatic number.

The meaningfulness of the metrics is argued in detailed description in the
appendix. The content of each metric is designed to involve the full scale of
possibilities, including the non-existence of a structural characteristic, thus
producing ratio scales (see section 2.3.1). This fact is highly relevant for the
development of metrics that are meant to discover structural outliers, as outliers
that show up on the top of the scale as well as outliers that range on “the long tail”

69 This term is not to be confused with the term “representation” as used for the visualization of

the results of the metric; here, representation refers to the proposed criterion as cited in
[STEVENS 1946].

148 5. Complexity Metrics for Design Processes

are relevant [ANDERSON 2007]. The criterion is, at each time, based on empirical
evidence where available, describing the domain-specific significance of each
metric in detail in the appendix (see Table 5-7 for an example). Paired with the
description of the graph representation of the metric’s focus, the criterion is,
therefore, shown for each metric. Ultimately, the construct behind each metric
refers to the theoretical reasoning, and it is thus closely related to the definition
and interpretation of a metric. The theoretic reasoning is, furthermore, provided in
the given references for each metric

An important part of the meaningfulness is the granularity of the model, which
impacts the results of the metrics. If one and the same process were modeled at
three different levels of detail, an intuitive expectation would be that, if there were
one important improvement potential in the process, analyzing the process using
structural metrics would yield this problem at any level of detail. Of course, the
metrics are, as such, tailored to consistently analyze a given process model at a
given level of detail. Comparable results across different levels of detail of a
process are, therefore, mainly an issue of the appropriate process model. However,
different levels of detail do not imply an increase or decrease in the number of
nodes and edges in the associated graphs in proportion to the level of detail. As the
metrics are mainly conceptualized as counters, they will, therefore, not necessarily
yield results that remain comparable among the levels of details.

Figure 5-6 illustrates this example: While – at the task level – the process only
contains one cycle, at a higher level one further cycle occurs. Furthermore, at a
work package level, the two tasks are of different sizes, task two involving six
work packages and eight relations, but task four only three work packages and
three relations.

To further discuss the validity of the metrics, Weyuker’s properties form an
important basis. Particularly, but not exclusively, in software quality assurance,
the following nine properties are commonly considered relevant for the
development of metrics to assess a structure [WEYUKER 1988]. The compliance of

Figure 5-6: Disproportional increase of number of nodes and edges of process graph at
different levels of detail

Task 1 Task 3

Task 2

Task 4

Rudimentary level of

detail: Tasks

WP 2.1

WP 2.4

WP 2.3

WP 2.2

WP 2.5

WP 2.6

WP 4.1 WP 4.3

WP 4.2

Fine level of detail:

Work packages

5.2 Overview of the Structural Measurement System 149

a metric with these properties commonly indicates the conceptual soundness of a
metric [CARDOSO 2005a]:

1. A metric cannot measure all software programs as being equally complex.

2. There are only a finite number of programs of the same complexity.

3. Even a program perceiving a different complexity may map into the same
complexity measurement value.

4. The complexity of a program depends on its implementation, and even if
two programs solve the same problem, they can have different complexities.

5. The complexity of two programs joined together is greater than the
complexity of either program considered separately.

6. A program of a given complexity when joined to two other programs does
not necessarily imply that the resulting program will be of equal complexity,
even if the two added programs are of equal complexity.

7. A permuted version of a program can have a different complexity; thus the
order of statements matters.

8. If a program is a straight renaming of another program, its complexity
should be the same as the original program.

9. The complexity of two programs joined together may be greater than the
sum of their individual complexities.

Intuitively, different processes have different levels of complexity; the same is
true for the results of the metrics proposed in this research, as counting different
processes that are set up from different numbers of nodes and edges, property 1 is
fulfilled. Yet, to be able to compare processes at all in terms of their levels of
complexity, they need to be modeled with the same scope (domains and
relationship types) at a comparable level of detail. This is also true for property 2,
which is equally fulfilled by the metrics as proposed. While there are a great
number of processes in any company, they are typically of different size and
complexity. The case studies in chapter 7 will clearly illustrate this fact.
Property 3 is fulfilled as well; in fact, it is possible for every metric to construct
different graphs that yield the same result for a given metric. However, it is not
possible that two different graphs have the same results for all metrics, as at least
one metric will always deviate. Property 4 is only partly relevant, as it originally
addresses different programming languages and paradigms that will make one and
the same program take different shapes (and thus vary in complexity) if it is
written in different languages; of course, a process that is modeled in two different
process modeling languages can result in different results for the metric, as well.
Yet, if the Structural Process Architecture is used as suggested to condense the
structural content of the different process models to a comparable level, i.e., the
same domains and relationship types, this property is not relevant. The fulfillment
of property 5 is based, again, on the enumerative nature of the metrics: the more
elements, the higher the results of the metrics. This extends also to property 6,
which will generally lead to a greater complexity if two processes are joined. As
the order of tasks in a process is essential to the purpose of a process, swapping
the order of tasks is only of limited interest to process management, and therefore

150 5. Complexity Metrics for Design Processes

property 7 is of limited relevance. However, metrics (e.g., the number of
feedbacks) that relate to an ideal sequence of a process from a structural point of
view use this property to point to processes with more feedbacks (thus having a
less ideal sequence) as being more complex. Property 8 is intuitive; if a process
model is assessed twice using the same metrics, the results will be identical.
However, in some cases heuristic algorithms are used for the computation of a
metric; in such cases the actual outcomes of the computations can differ, even
though they should be identical from a theoretical point of view. Ultimately,
property 9 states that joining two processes does not mean that the results of the
metrics for each initial process can be summed to obtain the results for the
finalized process. Of course, the metrics are not simply added, as most of them
(except for the “number of” metrics) involve other mathematical operations than

just the enumeration of nodes and edges. In fact, in some cases the resulting
complexity may even be lower than the sum of the initial results, for example, if
two processes are joined via a common node. In this case, the resulting process
will have one node less than the sum of the numbers of nodes of the initial
processes. However, as WEYUKER states, this property is not a very strict one.

Ultimately, automation is of relevance in addition to the above criteria [KERNLER
1996, pp. 35-38]. Unfortunately, not all metrics are applicable in practice due to
computational limitations, even though algorithmic support is – in theory –
available. Appendix 10.6 gives an overview of those metrics that have proven
computable with reasonable computing time at a desktop workstation.

5.2.3 Relevance and limits of combined and specific structural metrics

A few metrics use more extensive computation schemes and, therefore, cannot be
as simply argued as shown in the previous section. Additionally, some of these
metrics use extended reasoning to suit the needs of process analysis and are,
therefore, explained in this section. In particular, Boolean operators (activity /
passivity, McCabe’s Cyclomatic number, Control-flow complexity), module
quality, hierarchies (tree criticality, snowball factor, forerun factor, tree-
robustness), cycles and feedbacks (number of feedbacks, activation of cycle,
number of starting points for iterations), cognitive weight, and degree of non-
planarity are reviewed more closely. Every metric is first described at a conceptual
level, then a small example is used, and finally the entire metric is discussed.

The metric activity/passivity, in its common form, evaluates how “active” or

“passive” an element is, i.e., how much it impacts other nodes directly or how
much it is impacted by them [DAENZER & HUBER 2002, p. 558]. To calculate the
activity or passivity, the number of outgoing or incident edges is counted for each
node. If, however, a logical connector appears between a set of nodes, it is not
possible to calculate the activity or passivity.

In the case of AND and XOR, this is a simple problem to solve, as either all nodes
or simply one node are connected. If, however, an OR is in between two nodes,
neither the maximum number of points (= n) that may eventuate nor the minimum
number (= 1) is correct. Rather, a mean value in between is relevant from a
structural point of view, to show the impact weight of logically connected entities.
Thus, from a structural point of view, there is a need for a “mean impact value”.

Table 5-8 shows the basic idea: If a join-OR has two incident edges, it can have

5.2 Overview of the Structural Measurement System 151

three possible structural constellations. Cases 1 and 2 are single edges each; cases
1 and 2 correspond to two edges. This way, the mean impact equals 1.3333,
supposing a uniform distribution of all possible cases.

More generally, the weight of the impacting connector can be calculated using
binomial coefficients. Each time, the case to which no edge is connected is
omitted, as this would mean the process is interrupted. Table 5-9 provides the
necessary formulas. Instead of the direct calculation of the activity and passivity,
weights are proposed that are necessary for the calculation of nested operators, as
shown below.

Table 5-8: Example of an OR and possible structural constellations

Table 5-9: Calculation of structural weights of different logic operators in processes

152 5. Complexity Metrics for Design Processes

A special case arises for nested operators. In such a case, the operators can either
be recombined, or the respective weights have to be split (Figure 5-7). In practice,
a fusion of similar connectors has proven a very adequate approximation, as, on
the one hand, from a structural point of view there is commonly no information on
the factual structural relevance of each case, and, on the other hand, often in
process modeling, logical operators are nested for reasons of visualization and not
because of a nested dependency structure among the operators. In general, nested
operators are calculated successively, starting at the deepest level of nesting (i.e.,
from the left to the right for the example in Figure 5-7).

For nested operators, the weights are calculated for each individual operator and
then summed for each entity in the process model. Figure 5-8 visualizes the
calculation scheme, consisting of the following steps (an example is shown in the
appendix): First, splits and joins are separated, then for each split and join, the
appropriate weights are calculated according to the formulas from Table 5-9.
Then, if no nesting of operators is to be resolved, the weights are directly
translated into corresponding activity or passivity; if nested operators exist, a
further differentiation of preceding and succeeding operators is made, and finally,
the activity and passivity are calculated along these paths of nested operators.

Figure 5-7: Nested operators and approximation through recombination

Figure 5-8: Calculation scheme for using weights to calculate the activity and passivity
including nested Boolean operators between the concerned entities of the process

Or

Recombined approximationNested operators

Or

Or

positive weight Negative weight

Join-connector

Nested operators

calculate weight for the type of the operators (AND, OR, or XOR)

Passivity PassivityActivity Activity

for direct successor use

absolute value

for direct predecessor use

absolute value

fo
r
a
ff

e
c
te

d

n
o

d
e

Split-connector

fo
r
a
ff

e
c
te

d

n
o

d
e

5.2 Overview of the Structural Measurement System 153

If Boolean operators are part of the process model, not only the activity and
passivity as shown above can be calculated to better understand decision points in
the process, but also McCabe’s Cyclomatic number and the Control-flow
Complexity can be calculated.

McCabe’s Cyclomatic Number (MCC) [MCCABE 1976] counts the number of
linearly independent paths through a process, enumerating edges, nodes, and
connected components in the control flow. In principle, the number is, therefore, a
direct measure of the number of binary decisions70 in a process. Thus, the lower
the number, the fewer options there are in the process. As many process models
are of a bipartite nature, this calculation can be extended to assess this bipartite
network directly, i.e., without first aggregating the two domains into an aggregate
view. This way, EPC models, for example, can be assessed directly.

The original MCC is valid for unipartite graphs, calculated for edges (e), nodes (n)
and connected components (p), with p being the probability of a decision at a
connector. If, for example, an EPC model is transferred into an MDM-based
process model, as shown in section 4.4.3, the bipartite version of the MCC is
calculated as shown in Table 5-10 using the matrices spanned by E, F, and V;
there, F, E, V are the powers of the respective matrices for functions, events, and
connectors. While this matrix-representation contains additional edges in both the
basic and the MDM representation (because connectors are modeled as nodes),
this does not change the MCC, as each additional edge leading to a connector
(e å e + 1) is compensated by an additional node (n å n + 1), i.e., a connector.
This is also true for “dirty” models that do not fully adhere to the modeling

scheme (which often happens with pragmatic models), as long as a connector only
acts as a split or a join of the process. Therefore, with F the number of functions, E
the number of events, and V the number of connectors, the MCC can simply be
summed up from the matrix; e is the total number of Xs within the matrices p
equals 1, as only Boolean decisions (i.e., no non-binary decisions) are possible.
The number of the AND splits have to be deduced to make sure these are not
counted as decision points (unless this is intended).

The Control-flow complexity (CFC), proposed by [WOODWARD et al. 1979] and
extended to workflows by [CARDOSO 2005], expands the idea of counting binary
decisions to counting the number of states a process can take, i.e., how many
different pathways there may be considering how many paths the process can split

70 The term “binary” refers to the existence of only two possible options for each decision, i.e.,
“yes” and “no”.

Table 5-10: McCabe's Cyclomatic number for unipartite and bipartite process graph

154 5. Complexity Metrics for Design Processes

(or re-join) at each connector. The CFC has additive properties and can be added
up from the individual CFCs of each connector. Each time, n is the number of
outgoing (or incident, respectively) edges at the connector. For AND, the CFC is
1, as no decision is taken [CARDOSO 2005]. For XOR, the process splits into (joins
out of) n different options, therefore, the CFC is n. For an OR, there are 2n options
possible. However, this includes the option that no edge is followed, which would
stop the process; therefore, this option is taken out of the equation (Table 5-11).

The evaluation of hierarchies71 is difficult, as a combined assessment of the reach
of a hierarchy (i.e., the longest path in the graph of reachable nodes, starting from
a dedicated root node) and of the width of each level of the hierarchy always
demands a trade-off, prioritizing either one or the other aspect (Figure 5-9).

As hierarchies can have different meanings (see Table 5-12), different trade-offs
may be necessary; hence, a general metric “Tree criticality” is used with any
weighing function. The more specialized “Forerun factor” and “Snowball factor”

use the reciprocal value of the level (i.e., the shortest path from the root node to
the level) as weight for each level to favor the impact of levels closer to the root
node over those that are further away, as in most cases those levels closer to the
root node will be more important to it.

71 “Hierarchies” are also referred to as “trees”; here, the term hierarchy is chosen, as the

algorithmic concept is also used to compute the nesting depth of a model, which is often
understood as an extension to different levels of the hierarchy of a model [GRUHN & LAUE
2006a]; for this reason, the start node of the hierarchy is called the root node.

Table 5-11: Formulas to calculate the control-flow complexity (CFC)

Figure 5-9: Short wide hierarchy on the left, long narrow hierarchy on the right-hand side

Level: root node

Level 1

Level 2

Level 3

5.2 Overview of the Structural Measurement System 155

The metric “Tree-robustness” makes use, again, of the assessment of all existing

hierarchies in the process of calculating the degree to which the process is
permeated by different hierarchies. Therefore, the appropriate weighing has to be
chosen if the “Forerun factor” and the “Snowball Factor” are not applicable.

Cycles are evaluated by counting the number of cycles, involved nodes, and edges
[MAURER 2007]. However, in a process, where an iteration starts is particularly of
interest (i.e., where the cycle is initially entered for the first time), and where the
decision is taken to iterate (i.e., re-run the cycle after an initial first run) and how
many edges actually cause the feedbacks (several iterations may share one
common communication channel that leads back in the process flow) is also of
interest. Therefore, the metrics in Table 5-13 detail the assessment of cycles.

These three metrics are not straightforward counters, as they are based on the
triangularization of the DSM representing the process in focus to first obtain an
idealized sequence before cycles are sought; this triangularization cannot always
be calculated exactly. Triangularization is commonly done using an algorithm that
removes one edge after another for the cycles in a DSM until no more feedbacks
exist [KUSIAK & WANG 1993]. This is done in the order of importance – at first,

Table 5-12: Different possible meanings of hierarchies in a structure

Table 5-13: Metrics to detail cycles in a process structure

156 5. Complexity Metrics for Design Processes

feedbacks causing the largest cycles are removed, then the list is pared down to
the shortest cycles. In some cases, it is possible that different edges could be
removed for cycles of equal length, where removing one edge or the other will
yield different results for the overall triangularization. So far, no algorithm is
available to overcome this ambiguity. Thus, the result is often only an estimate.

Figure 5-10 shows a small process graph and the reciprocal DSM. There, node 1 is
the activation of cycle 1, which only alternates between node 1 and node 2. It is
identified in the DSM on the left, which is already in a triangularized format.
There, node 1 is the uppermost node in the cycle among nodes 1 and 2. Node 1 is,
at the same time, the activation node for cycle 2. Cycle 2 is only rerun if the
feedback as marked is used. Overall, there are thus three feedbacks that can be
identified. Ultimately, node 4, for example, is the starting point for the iteration
marked as cycle 2. This iteration is, however, only executed in some cases, which
cannot be deduced from the structure of the process; yet, node 4 is of particular
interest, as here the process either continues further downstream or back upstream.

In contrast, the cognitive weight makes use of empirically-founded basic
constituents of a structure that each have an assigned numerical value of the
degree of difficulty to understand such a constellation in a structural context.
These weights have been proven useful both in software science [SHAO & WANG
2003] [WANG 2006] [MCQUAID 1997] and in process management; in the latter
application, however, the cognitive weight has not fully matured [GRUHN & LAUE
2007a]. A basic overview of possible weights is shown in Table 5-14

Ultimately, the degree of non-planarity uses an average of the count of all edges
that need to be removed and thus is not fully proportional to the concept that is
being measured. While common empirical evidence exists which indicates that
networks with many relations that cross each other are considered more complex
[HENRY et al. 1981] [RICHTER 2007, p. 140], there is no evidence available that
the measurement by the degree of non-planarity as proposed is relevantly scaled.
However, as experiments on generic networks show [KORTLER et al. 2009], the
measure is clearly able to differentiate between graphs of different complexity.

All of these metrics still lack detailed empirical evidence of their application in
process analysis and only present a conceptual level that is, each time, based on
general empirical observation and existing publications. Yet, the basic reasoning

Figure 5-10: Example for rationale behind the three metrics shown in Table 5-13

Node 1

Node 4

Node 5

Node 2

Cycle 2

Cycle 1

Cycle 3

Feedback for cycle 2

Node 3

5.2 Overview of the Structural Measurement System 157

of the structure of a process is similar among them, i.e., the design of the metrics
of assessment of structural characteristics that are accepted in literature.

At the same time, these metrics close the gap between the available structural
characteristics and the existing body of structural metrics that could be adapted
from other fields of science. Thus, their right to exist is obvious. Their use is,
therefore, shown in the case study to provide basic evidence of their suitability.

5.2.4 Classification of available metrics

To better characterize the metrics and to make them accessible for different
analysis without using the framework shown in the next chapter, a classification of
the metrics shown is provided in this section to illustrate different views of a
structure.

While grouping metrics of the principal features of a structure already represents a
certain classification, metrics can be further regrouped in different ways. Table
5-15 provides an overview of the relevant taxonomies that will be outlined in the
following. The 52 metrics of the Structural Measurement System can be regrouped
differently for each classification; these groups are listed in appendix 10.4. In the
following, only the categories are explained to detail the multi-facetedness of the
structural metrics.

Classifying the metrics in terms of their scope of analysis yields groups of
metrics, which access the process at different levels of granularity. Single entities
focus on, for example, individual tasks or relationships and how they interact with
the process. Modules are pre-defined groups of elements such as teams or phases;
for these, coherence within the module and interaction with the surrounding
system are the primary focus of the analysis. Metrics that regard the alignment of
entities recombine two domains at a time to see whether the structures of both
domains fit together. The overall process, i.e., the complete network, can be

Table 5-14: Empirically researched cognitive weights of structural characteristics

158 5. Complexity Metrics for Design Processes

characterized in two ways. First, it can be characterized as a single metric which
supports the comparison of several such networks, for example, comparing them
by the number of nodes and the relational density. Second, it can be characterized
as a histogram, where the characteristic distribution of values of metrics for
individual entities provides a picture of each process. In fact, many of these
distributions, for example, for activity/passivity or for the degrees of all nodes, can
be approximated as a set of coefficients of a distribution function. However, this
concept is not further regarded here, as it does not provide information about the
identification of structural outliers.

The categorization of metrics as to their suitability to analyze particularities of
the model excludes those metrics that only have a general structural focus. The
group of metrics that are capable of analyzing decision points (i.e., AND-, OR-,
and XOR-gates) is limited to three basic metrics. The comprehensibility of the
model assesses the basic human capability to grasp and understand the network
represented by the model. Ultimately, some metrics generate information about
possible modeling errors, for example, when nodes are not connected to the mode.
This kind of information can be extracted from metrics regarding the quality of
modeling.

The focus of analysis intends to regroup metrics into primary categories from
which a structure can be analyzed. Metrics on robustness focus on the cohesion

Table 5-15: Available classifications of the structural metrics

5.3 An example application of the Structural Measurement System 159

and connectivity of the overall network. Metrics on propagation regard the speed
of information transmission and the reach and impact of information and errors,
both in terms of direct impact among neighboring entities and across the overall
network. Grouping refers to the buildup of sub-graphs that stand out within the
process, such as complete clusters that may be the foundation of the constitution
of a team, for example. Metrics which are concerned with the extent of a network
describe its size and the quality of its crosslinking.

The direction of impact regroups metrics into those that only consider active
metrics, i.e., such metrics that assess the outgoing edges of a node or a module,
whereas passive metrics assess only incident edges. In some cases, the direction is
not of interest, and metrics, therefore, are classed as related. The Snowball factor,
for example, is the active metric assessing the reachability in a network as an
outgoing hierarchy, and the Forerun factor assesses only incident edges in the
same manner. Although some metrics can be split into an active and a passive
metric, they are not always listed as separate metrics, e.g., the degree distribution.
Although not in all cases, a separate metric for each direction may provide
substantial additional informational value.

Equally, metrics can be regrouped by the type of entity they consider, either the
nodes or edges of the network. Like the basic structural characteristics (see section
5.1.1), they assess either nodes (i.e., node-induced structural characteristics) or
edges (i.e., edge-induced structural characteristics).

Ultimately, the type of network characterizes the input information that is
necessary for a metric. Intra-domain networks are DSMs consisting of only one
domain and one relationship type. Inter-domain networks are DMMs that relate
two domains at a time via one relationship type. Multiple-Domain networks are
MDMs that consist of at least two domains and at least two relationship-types.

5.3 An example application of the Structural Measurement System

As the Structural Measurement System presented up to here is the main focus of
this book, a short case study72 is introduced to provide a better picture of how the
metrics work and what results they are able to deliver. Two further example
applications are shown in chapter 7. The case study here uses an existing,
published process model in order to be able to compare newly calculated and
existing results. Therefore, first, the process model is introduced, then the different
metrics are computed and the results are discussed in detail.

5.3.1 The process in focus

The process used for this case study was already described and analyzed in [Braha
& Bar-Yam 2004]. As it is available online73, it was used here as a basis to
illustrate the complexity metrics shown up to here.

72 Adapted from Kreimeyer, M., Bradford, N., Lindemann, U., Process Analysis using Structural
Metrics, Design 2010, with friendly permission by the Design Society.

73 available at http://necsi.org/projects/braha/largescaleengineering (last checked on 24 October
2010)

http://necsi.org/projects/braha/largescaleengineering

160 5. Complexity Metrics for Design Processes

The process model represents the basic vehicle development process at General
Motors. It lays out the 26 weeks of General Motors’ automotive development

separated into phases: Expert opinion phase, quick study phase and integrated
vehicle concept model and o.d. deliverables phase. Within the process, 120 tasks
are linked in a Design Structure Matrix (DSM) containing 417 immediate directed
relations. The tasks are accomplished by 19 organizational units. Each set of tasks
belonging to an organizational unit is referred to as a module.

The model was built from interviews with engineers and from documentation. For
each task, it was asked ‘Where do the inputs for the task come from?’ and ‘Where

do the outputs generated by the task go to?’. The answers were used to construct

the network of information flows. In the following, the tasks shown in Table 5-16
will occur repeatedly and are therefore listed here as T1 to T120.

In an earlier analysis of the process [Braha & Bar-Yam 2004] the following main
results were elicited. They concern especially the small-world properties (i.e. most
nodes are not adjacent but reachable via a short average path length) and the
degree-related properties (i.e. direct coupling among immediate neighbors) of the
involved tasks:

BRAHA & BAR-YAM consider the process to exhibit clear small-world properties.
Accordingly, the task network’s entities have a relatively high cluster coefficient,
whereas the characteristic path length is relatively short and approximately equal
to a characteristic path length of a random graph having the same number of nodes
and edges. A modular organization (defined by a higher degree of internal
information exchange than across the borders of modules) was found to be a
consequence of high cluster-coefficients and small word properties.

Table 5-16: The most important tasks in the process [Braha & Bar-Yam 2004]

5.3 An example application of the Structural Measurement System 161

They furthermore identify an imbalance concerning the relation of out-degrees and
in-degrees (activity and passivity). Most tasks were found to have relatively low
in- and out-degrees, whereas few have high degrees. Those few having a high out-
degree, or respectively passive (high in-degree) tasks are characterized as
information generators (or information consumers, respectively). In turn, tasks
with a high in-degree have a low out-degree and vice versa. The process is
dominated by a small number of such tasks.

BRAHA & BAR-YAM declare their results as typical for product development
processes, with the following consequences: The most effective way of improving
the overall process is to improve the central, dominating tasks, similar to the
concept of structural outliers. Secondly, they conclude that a failure of those tasks
is likely to impede the correct function of the overall process.

5.3.2 Overview of the analyses using structural complexity metrics

Only the core metrics are shown here, some metrics, such as the Number of
Organizational Interfaces could not be calculated for the dataset at hand, and
others, such as the Degree of Planarity or the different metrics towards the
cognitive weight of a network could not be computed due to a lack of sufficient
algorithmic support. Table 5-17 lists the 34 structural metrics that were used. For
each, the relevant dataset is listed in order to generate meaningful results. The
metrics are arranged by categories related to the underlying structural patterns.

The results of the metrics generate distributions, within which the individual
values can be compared to identify relevant outliers. Three views can be identified
that each relate to a distinct dataset: The overall process model as a whole, the
tasks individually, and the modules as formed by the tasks belonging to the
different organizational units. Thus, the results are organized accordingly.

Table 5-17: Overview over the applied structural metrics

162 5. Complexity Metrics for Design Processes

5.3.3 Analyses using complexity metrics for the overall process model

At first, a basic analysis of processes is the calculation of metrics concerning size
and density as well as metrics delivering characteristic values for overall
networks. The number of domains in the MDM is two: Tasks and organizational
units. The number of nodes is 139: 120 tasks and 19 organizational units. The
number of edges is 537, of which 417 edges are entries of the task-task DSM. The
number of classes (i.e. number of different kinds of nodes) is 139, equally, as no
node is instantiated more than once in the actual process model, which sometimes
happens when one task is instantiated several times for easier modeling or to show
how results are transferred. The number of interfaces between domains is 120, i.e.
each task is executed by exactly one organizational unit. The number of edges per
node is 3.457 for the task-task network and 3.891 for the overall network
(including the organizational units). Respectively, the relational density is 0.029
and 0.028. Both values show that a rather low part of all possible connections is
exhausted and the process is, possibly, rather linear. This concurs with the initial
process model that can be triangularized easily, i.e. the task sequence can be put
into an ideal order without severe conflicts. The number of unconnected nodes,
which could reveal possible mistakes in the process model, is zero, pointing to the
fact that, at least, no errors were made by forgetting or not connecting a node.
However, such missing links can, of course, also be intentional and do not
necessarily always point to errors. The number of independent sets (i.e. the
number of sets of tasks accomplished concurrently and independently from each
other, as found when banding the respective DSM) is eight, i.e. the process can be
broken down into eight phases. The number of paths across the overall process is
especially useful for estimating the importance of root nodes. From root node T1
36 paths lead to the process’ five end nodes, whereas 33 paths start from root node
T2, leaving both starting tasks relatively equal in their impact. The average path
length of these shortest paths is 3.6 between T1 and the end nodes and 5.6
between T2 and the end nodes, showing that information spreads faster throughout
the process starting at root node T1. This metric, although it describes connection
between tasks, concerns the overall process as properties of start and end nodes.

Figure 5-11: The five levels of the process

5.3 An example application of the Structural Measurement System 163

Figure 5-11 visualizes the different paths as a graph: The maximum height of the
process’ hierarchy, i.e. the number of levels from start to end nodes, is 4. The

width of the process’ levels (the number of nodes per level) is 2 on first level (i.e.

the start nodes), 28 on second level, 50 on third level, 35 on fourth level and 5 on
fifth level (i.e. the end nodes).

The process has two start nodes, namely T1 and T2, and five end nodes: T85,
T111, T117, T119 and T120. The maximum nesting depth, i.e. the number of
splits retraceable to a root node, is 100 for root node T1 and 33 for root node T2,
showing again a higher influence of root node T1, as the process bifurcates
noticeably more from this task. The number of cliques, i.e. the number of
complete clusters within the network, is zero, i.e. no groups of tasks that are
completely mutually connected exist within the model. The global cluster-
coefficient (quotient of the sum of all cluster-coefficients per node and the number
of information distributors) is 0.27, indicating that many tasks are likely to be
coupled more intensely than the number of cliques shows; this potential for
coupling relies on the concept that two tasks connected to a third task are likely to
be interrelated because they are coupled to a third task in the same way. The
number of feedbacks within the process, i.e. the number tears in a triangularized
DSM, is 24, a rather low percentage (5.75% of all 417 connections), showing that
the overall iterative nature of the process is broken down rather well into only few
intended relations.

5.3.4 Analyses using complexity metrics for each task

The majority of structural metrics is applied to compare the entities of one domain
to each other, i.e., the tasks of the task-task-DSM. As shown in Table 5-17,
adjacency and attainability are the categories concerning most metrics applicable
on the behavior of the correlations between tasks. Metrics referring to adjacency
and attainability are predestinated for measuring the importance of single entities
for the function of the complete network.

Figure 5-12: Activity and passivity per task, left, and degree correlation (nodes), right

0

5

10

15

20

25

30

0 5 10 15 20 25 30

A
ct

iv
it

y

Passivitypassive

critical

inert

active

Average

passivity

Average activity

T1

T72

T37

T73

T65T2

A
ct

iv
e

d
e

g
re

e

Passive degree
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 2 1 0 2 0 0 0 0 0 0 0 0 0 0

1 0 12 6 2 2 2 1 0 0 0 0 0 0 0 0

2 0 5 11 7 0 1 1 0 0 0 1 1 0 0 0

3 0 1 2 4 3 1 0 1 4 1 1 0 0 0 0

4 1 2 6 4 4 1 1 1 0 0 0 0 0 0 1

5 0 0 1 1 3 4 0 0 0 0 0 0 0 0 0

6 0 1 2 0 0 0 0 1 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

9 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0

10 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

12 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

164 5. Complexity Metrics for Design Processes

The most basic metrics are activity and passivity (also referred to as out- and in-
degree) of a node. Figure 5-12 (left hand side) shows a concurrent plot of both
metrics per node. Four tasks (T72, T73, T65 and T37) stand out most, accordingly
being highly active and highly passive at the same time. The four fields inert,
active, passive and critical are defined by the average values for both axes. The
start nodes T1 and T2 are positioned on the activity-axis with a value of 0 for
passivity, as they only deliver information. However, T1’s out-degree is nearly
five times higher than the value for T2, indicating a higher initial impact of T1
onto the overall network.

The degree correlation can be based on edges as well as on nodes. The
representation of the correlation based on nodes as in Figure 5-12 (right hand side)
reveals a high number of connections between nodes with values of one or two for
activity or passivity. Accordingly, most nodes within the process have relatively
low in- and out-degrees at the same time; at the same time, the correlation plot
shows that many nodes are connected with similar in- and out-degrees, as the
diagonal axis of the plot contains many non-zero entries. Similarly, the
representation of the correlation based on edges (not shown) indicates that 64% of
the edges link two nodes both having more than one incident as well as more than
one outgoing edge, i.e. most information transfers between two tasks will be based
on several inputs into the first task and generate more than one output at the
second task. The conclusion of both correlations is that a major part of the
network consists of connections between nodes with low degrees, of which most
have a degree larger than 1 (i.e. each task being coupled to more than one other
task). Nonetheless, there are twelve highly important edges that are the only
connection between the nodes (i.e. directed forwarding between two tasks).

The degree distribution reveals the occurrence of similar in- and out-degrees
within the process. The plot underlines the occurrence of low degrees in the
process, pointing to a hub-and-spoke-like structure of the overall process (i.e. the
network is a scale-free network, like many typical collaboration structures
[Newman 2002]). High degrees appear rarely, as Figure 5-13 shows.

Figure 5-13: Degree distribution

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Activity/

passivity

N
u

m
b

e
r

o
f

n
o

d
e

s
w

it
h

a
c
ti
v
it
y
/p

a
s
s
iv

it
y

x

Activity

Passivity

5.3 An example application of the Structural Measurement System 165

The representation of the synchronization and distribution points produces no new
results as all entries within the DSM have the value 1. In fact, these metrics are
especially useful to be used with weighted edges in a process graph. Accordingly
the representation is identical to the activity/passivity plots. In other cases, if e.g. a
weighted DSM is used, these metrics would be able to underline the importance of
a task not just based on the degree but also on its coupling strength.

The active and passive reachability describe the number of nodes a designated
node is able to reach (or the number of nodes that can reach this designated node,
respectively). In a process analysis, these metrics are very important, as they show
the propagation of information (and errors) across the overall process, thus
estimating the impact (and impactedness) thereof for each task. They thereby
extend the picture generated by the degree across not just adjacent tasks but across
all tasks. The plot of both metrics per node (Figure 5-14, left) a few highly
actively and passively reachable tasks: T118, T112, T89, T90, T91and T75. These
tasks are therefore highly integrated into the flow of information through the
process and play an important role in the supply of information of all other tasks.

The active and passive proximity are calculated by summating the rows (columns,
respectively) of the distance matrix (listing the shortest path between any pair of
tasks, zero if not reachable), i.e. describing the distance of one task to all others.
As outliers for the active and passive proximity the following tasks appear: T75,
T83, T89, T90, T98, T114, T155 and T116 (Figure 5-14, right). Once again, tasks
T75, T89 and T90 (compare the results for reachability in the previous paragraph)
seem to be of higher importance for the function of the overall network, a
relatively high average path length represents high impact, as a high number of
nodes positioned on according paths are involved into the incident and outgoing
flow of information.

In a comparable manner, the relative centrality counts the number of shortest paths
between any two nodes that cross a designated node: The higher the value, the
more information flows go via that designated node. The following tasks stand
out: T39, T39, T4, T72 and T73 (Figure 5-15). These nodes are therefore the
central information brokers across the overall process.

Figure 5-14: Active and passive reachability, left, and active and passive proximity, right

0

20

40

60

80

100

120

0 20 40 60 80 100 120Active reachability

P
a

s
s
iv

e
 r
e

a
c
h

a
b

il
it
y

T1T2

T119

A
v
e

ra
g

e

Average

T72

T73

T23,

T24,

T5

T11

8T112

T9

1T89,

T90T75

T120,

T85

T111, T117

0

100

200

300

400

500

600

0 100 200 300 400 500 600

P
a

s
s
iv

e

p
ro

x
im

it
y

Active proximity

T83

T5, T21,

T23, T24
T1T2

End node T111 T114

T75
T115

A
v
e

ra
g

e

Average

T98

T89

T90, T116T119, T85

T120

T117

166 5. Complexity Metrics for Design Processes

Another pair of meaningful metrics for the estimation of influence of entities are
the snowball factor and the forerun factor. They assess the outgoing (incoming,
respectively) hierarchy of reachable nodes with decreasing impact for nodes that
are farther away: They calculate as the sum of the products of width and height of
the level in the hierarchy, weighted by to the inverse of the shortest path length to
the root node. They thereby relativize the active and passive reachability, as nodes
that can be reached but that are far away and have little impact are not counted as
importantly. Figure 5-16 shows the plot for both metrics per node. Here, tasks
T36, T37, T65, T72, T91 and T112 show up, having high values for both metrics.
The distribution of the values shows that, each time, only a few nodes have high
influence onto the process. Those particular nodes are one start node, T1, as well
as the tasks T3, T10, T11 and T37. Start node T2 only has the 44th position in this
ranking, which underlines the much higher importance of root node T1. The plot
of all values for forerun factors, however, shows a more linear distribution,
indicating that few tasks dominate the spread of information, while the tasks rely
more homogeneously on the information intake from other tasks.

Figure 5-15: Relative centrality

Figure 5-16: Snowball and forerun factor per task (portfolio on the right hand side and
individual distributions)

5.3 An example application of the Structural Measurement System 167

The local cluster-coefficient shows how a task is likely to drive the clustering of
tasks in the process. It is calculated as the quotient of existing edges to adjacent
neighbors and the number of possible edges. Apart from five outliers with a
maximum coefficient of one (T6, T33, T86, T88 and T111), the distribution shows
a relatively linear behavior. Accordingly, those five tasks are connected to each
possible neighbor, and close workgroups are likely to be necessary at this part of
the process.

To assess iterations and uncertainty in the process, the metric number of cycles per
node can provide insight. The more cycles take path via a node, the more this task
will receive and distribute information from and to the overall network, and will
therefore be of high influence. Figure 5-17 shows the distribution and the top
values, also for how edges are involved in these cycles, pointing to important
channels of communication. Both metrics describe task T4 as most influential;
while this coincides with e.g. the relevance as detected e.g. through the degree
distribution, this is incidental.

5.3.5 Analyses using complexity metrics for each module

On a different level, the use of structural metrics delivers meaningful results
concerning the properties of modules involved into development processes as well
as interdependencies among the different modules. Modules are predefined groups
of entities, in contrast to clusters that develop during the process’ progress caused

by their intense interaction. In case of the analyzed process, 19 organizational
units are each taken as the designated modules of tasks they are responsible for,
i.e., one organizational unit is responsible for one process module.

The fan-criticality (i.e. the number of outgoing and incident cross-border relations
per module) allows comparing the out- and in-degrees of modules. The plot in
Figure 5-18 (left hand side) shows module 17 stands out the most concerning both
in- and out-degree, accordingly being most influenced as well as being the most
influential module, being concerned with integration of a large set of components.

Figure 5-17: Number of cycles per node (left) and per edge (right)

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

N
u

m
b

e
r

o
f

cy
cl

e
s

p
e

r
n

o
d

e

Average

N
u

m
b

e
r

o
f

cy
cl

e
s

p
e

r
e

d
g

e

Nodes Edges

Average

Top tasks (number of cycles):

T4 (3930201), T39 (3928650),

T72 (3882975), T118 (3621104),

T84 (3526184)

Top edges (number of cycles):

T4 å T39 (3928644),

T4 å T91 3621104

T4 å T118 (2613185)

168 5. Complexity Metrics for Design Processes

The metric tree-robustness is applicable either on complete domains or on
modules. The portfolio of the values for active and passive tree-robustness (i.e. the
quotient of the number of nodes with a nonzero value for snowball or respectively
forerun factor and the sum of the according factors) in Figure 5-18 (right hand
side) shows modules 1, 2, 6, 7 and 17 as the most important outliers. This
indicates that no module is dominated by both incoming and outgoing hierarchies
of information flow, but that they either collect incoming information (all
integration modules (6, 7, and 17) or generate it.

The distribution of the values of the global cluster-coefficient per module, i.e. the
quotient of the sum of all local cluster coefficients and the number of nodes with
an activity higher than one in a designated module, shows two outliers (modules 1
and 12). These modules are, therefore, the most likely to cause information
transfers among the other modules.

The metrics delivering most information concerning the relation of internal and
cross boarder flow of information of modules are module quality 1 and module
quality 2. The metric module-quality 1 computes as the product of the number of
edges that cross the border of the module and the number of edges within the
module; module quality is calculated as the respective quotient. The first metric
describes the flow of information through modules, while the second one
describes the compactness of a module. For both modules, module 18 (TVIE –
total vehicle engineering) can be identified as the most remarkable outlier.

Through these metrics the modules 1, 17, and 18 are determined as the most
influential ones. In spite of the three more influencing modules, the process’

organizational units are interconnected quite evenly. A rather low fraction of 122
(36,72%) of the 417 edges connect nodes within equal modules, characterizing the
flow of information through the process as rather integrated among different
modules. There is even one module without any internal connections (Module 15),
for this reason it is positioned at the last positions for module quality 1 and 2 with
value of zero. The importance of module 18 is rather logical because it contains
most nodes per module. The importance of module 1 is a consequence of both of
the process’ start nodes being contained in this module, having high values for

influence-describing metrics.

Figure 5-18: Fan-out and fan-in per module, left, and tree-robustness, right

5.3 An example application of the Structural Measurement System 169

In summary, from a modules’ point of view, the network can be described as well-
balanced, with the modules 1, 17 and 18 having a higher importance because of
their position in the process’ progress at the beginning of the first phase or,

respectively, at the end of the last phase.

5.3.6 Conclusions for the regarded process

For a better comparison, Table 5-18 lists the core results. There, the influence
measuring metrics are sectioned into active and passive ones. Active ones
determine the distribution of information, the passive ones describe information
sinks. For all metrics, the top-ten upper-bound and lower-bound structural outliers
are listed in the table. Start and end nodes are printed in bold.

Concerning the structure of the analyzed development process, one result
approved by every metric is the difference concerning the importance of the
networks’ two start nodes. Start node T1 is much more influential onto the overall

process than T2 is, which is reasonable given that the design sketch generated in
T2 only impacts tasks that are related to the exterior design of the car. Therefore,
T1 ranks first three times, whereas T2 is not even once among the top ten of the
active-influence measuring metrics, describing the inequality concerning their
importance. This points, however, to the fact that the development process seems
to be little design driven.

In general, among the top ten positions of the active influence-measuring metrics
many different tasks occur, showing a quite evenly distribution of importance. Not
even do the process’ start nodes occur among all top ten rankings, underlining the

evenly distribution among the involved tasks. This result is consistent with the
flow of information between the process’ organizational units, which is likewise

determined as homogeneous.

Some overall properties of the process can be deduced. Several indications
categorize the development process as organized in a well-balanced and even
manner: The two start nodes do have, logically, a high importance. But throughout
the process, importance and influence onto the overall network is distributed
among several tasks, a fact underlined by the high number of 65 different tasks
appearing among the top and lowest ten positions depicted in Table 5-18.

170 5. Complexity Metrics for Design Processes

Another structural indication is the fact that within the entire process only two
tasks with only one incident and one outgoing node succeed each other twice. All
remaining connections (415 of 417) are edges connecting nodes with higher in-
and out-degrees and are therefore far less critical. The number of edges being the
only connection between two nodes (12 occurrences), is similarly low. The
equally distributed interdependencies between the process’ organizational units

confirm the general properties from another point of view.

Table 5-18: Top ten and lowest ten outliers for selected structural metrics

5.4 Conclusion: Structural metrics 171

The small percentage (5.575%) of feedbacks among all connections also describes
the flow of information as straight and evenly. However, there are about 4 million
cycles that are, in particular, driven by T4; this coincides not only with its
importance based on the degree but furthermore with its centrality (second
outlier), confirming that especially here, decisions are taken and systems
architecting is taking place.

The results are partially consistent with the results of an earlier analysis [Braha &
Bar-Yam 2004] speaking of few nodes being of high importance for the overall
process. For single metrics, assessing single views onto the structure, this may be
right. For example, task T39 ranks at first position of values for the metric relative
centrality, appearing to be of outstanding importance. But, regarding all active
influence measuring metrics simultaneously, it ranks at position 15, representing a
rather high but not significantly outstanding importance.

Concerning another result of the earlier analysis, the newly calculated results are
identical. Most nodes do have quite low degrees most connections within the
network link entities with small activity and passivity. The metrics degree
correlation based on edges and on nodes as well as degree distribution confirm
this result unequivocally.

5.4 Conclusion: Structural metrics

The review of the state of the art (section 2.3) showed that good foundations are
available to measure the complexity of, in particular, flow-oriented systems such
as processes or workflows. Yet, no comprehensive set of metrics could be
identified. In this chapter, a Structural Measurement System was generated to fill
this gap, based on existing evidence. As methodical support, measurement
foundation provides the requirements for metrics design.

The metrics shown were developed based on a generic procedure for metrics
design. The procedure is based on classifying different existing structural
characteristics that can be considered as complete as possible. However, these
structural characteristics are still abstract and necessitate more research into their
significance for processes to support the development of refined metrics. As an
intermediate option, therefore, solution principles for the assessment of structures
were used as input for both basic and combined and special structural metrics. The
solution principles are, in fact, comparable to different classes of problems that
can occur in a network. As a consequence, they relate to different problems that
are currently regarded in process management and serve as a viable basis for
metrics design.

In conclusion, the metrics, therefore, meet the demands set by process
management in general. The set of metrics is as comprehensive as the solution
principles and the underlying set of structural characteristics permits; yet, many
metrics remain conceptual, e.g., the Cognitive Weight or path-based metrics that
are still too complex to compute. At the same time, the metrics numerically
evaluate all relevant patterns as provided by the solution principles and the
available structural characteristics, which are currently the main means of
assessing the completeness of the solution.

172 5. Complexity Metrics for Design Processes

All structural metrics are connected to their structural significance, as listed in
appendix 10.5. Here, the meaning of each metric is based on the meta-model as
provided by the Structural Process Architecture shown in the previous chapter.
However, the indications of the structural significance of the metrics remain
abstract and need more expertise to be applied. As no generalization is possible
without losing, to some degree, the concreteness of a solution, this is due to the
checklist-like character of how the metrics are presented. A compromise between
the degree of abstraction and the level of detail is practical as general applicability
and transferability to other cases are not lost.

All structural metrics are based on measurement foundation, as reviewed in
section 2.3.1. As detailed, the enumerative nature of most structural metrics is in
line with these requirements. All other metrics were reviewed in detail to explain
the rationale for them and their empirical foundations in more depth. Yet, more
empirical evidence is needed in the long run to extend their applicability. To this
end, more case studies and experience derived from their application are necessary
and should be collected in ongoing projects. This is especially important as not all
empirical evidence is centered on metrics per se but on structures in a more
general way.

Therefore, some metrics are more viable than others. Case studies show that the
metrics for size and density, activity/passivity, degree distribution, attainability
and closeness, the snowball factor and forerun factor, the number of cliques, and
the number of cycles (including related counters) are the most practicable metrics
as they bear sound empirical evidence, good computability (limited only for
cycles), and good structural significance across all domains and relationships
defined in the meta-model. All other metrics lack either the detailed algorithms,
which make them impracticable to use, or too little evidence is available to fully
understand the structural significance of the metrics in detail.

So far, the Structural Measurement System covers common cases of application as
found in process management. However, the interdependencies of the metrics are
not reviewed yet. For example, the correlation of metrics between their meaning
and mathematical foundation is needed to generate more proof of their
significance. Furthermore, a more formal description of all metrics needs to be
developed to point to further missing metrics.

Overall, the complexity metrics provide a much more condensed overview of a
structure than structural characteristics themselves. Therefore, a comprehensive
analysis at a rudimentary but global level of process management is possible
without examining every detail. This way, the structure and the behavior that is
coupled to it becomes accessible. Possible examples are the hierarchies in a
process: It is almost impossible to assess all outgoing hierarchies for every task to
judge the impact of each task on the process. The metric “number of reachable

nodes” and “forerun factor” makes it possible to easily spot the tasks of interest. In
a second step, a more detailed analysis of the structure can then be undertaken and
the actual structural characteristics can be examined individually.

6. The S-GQM framework to select metrics

To enable the goal-oriented analysis of a process using complexity metrics as e.g.
provided by the Structural Measurement System, a framework is necessary to
select the metrics and to guide their application. The solution presented here is
based on the GQM approach and therefore called Structural Goal Question Metric
framework (S-GQM). However, the framework is not meant as the only means of
systematically applying metrics to a process analysis. Nevertheless, the framework
is designed to help address the most common elements of a process analysis, as
shown in the requirements outlined in chapter 3.

‚ Enable a simplified access to the analysis by providing goals common to
process management as primary points of entry to a process analysis.

‚ Connect the goals of the analysis to an operational layer and to relevant
metrics and the necessary semantics (domains and relationship types).

As Figure 3-3 showed, different elements are relevant for the analysis of a process
from a structural point of view. Globally, such an undertaking is guided by goals
and, more generally, concepts74. To concretize these goals, questions can be asked
to examine the intent behind a goal and to demand answers be delivered by the
analysis. In fact, structural characteristics can then be used to analyze an existing
process using these questions; in the context of this research, structural
characteristics are embodied in structural metrics that allow a condensed analysis
of one or several structural characteristics. At the same time, questions also arise
about certain issues within a domain and its relationship types. Therefore,
questions relate to domains, too. Likewise, the structural significance of a metric
is only given for a domain and a relationship type, which can alternatively be
represented as an aggregate view that encompasses two or more domains and
relationship types. Lastly, this structural significance is used to provide answers to
any initial questions.

In section 6.1, a number of existing frameworks are reviewed. All of these use a
generic layer of certain goals or concepts, refining them from an operational level
to a measurement level. The most common approach in the management of
measurement, the Goal-Question-Metric (GQM) is chosen and adapted, as it is
both practical and simultaneously archetypical for other frameworks. Goal
orientation is provided by the common goals of process analysis, as reviewed in
section 2.2.2.

6.1 Existing frameworks to facilitate the analysis of a system

To efficiently employ metrics to assess a process network, the metrics need to be
selected according to the user’s needs and goals. Measurement frameworks align
requirements and their implementation by employing a networked or hierarchical

74 The strategic level does not necessarily address goals. For example, “Interfaces” does not state
a goal but only a concept. Nevertheless, the term “goal” is used to help clarify the GQM scheme

and to address the focus of the analysis of a process.

© Springer-Verlag Berlin Heidelberg 2011

M. Kreimeyer and U. Lindemann, Complexity Metrics in Engineering Design: Managing the

Structure of Design Processes, DOI 10.1007/978-3-642-20963-5_6,

173

174 6. The S-GQM framework to select metrics

decomposition of the user’s requirements down to the entities that make up a

solution. In this section, different means of selecting metrics according to the
initial specifications are explained.

6.1.1 Quality Function Deployment and the House of Quality

Quality Function Deployment is a method to implement requirements in a
physical product. The original Japanese name of QFD translates as a property-
function-interrelation and refers to its original development at Toyota. QFD is
used to identify attributes of a system that are necessary to achieve the
characteristics a customer expects and/or requires. Development work can be
structured to prioritize those attributes that are of highest relevance to the
customer [AKAO 1992]. QFD is commonly used for systems with a low degree of
novelty, as knowledge about how requirements can be related to the product
attributes is necessary. It can, in general, be applied to any process of structuring
how requirements or expectations relate to a system [LINDEMANN 2007, p. 296].

The classic approach proposed by AKAO integrates four aspects by interrelating
them via correlation matrices [AKAO 1992]: the customer’s requirements, the

functions of a product, the quality characteristics of the product, and its
components. The House of Quality (HoQ) represents the first of these matrices,
relating requirements to quality characteristics (using a DMM); it adds a matrix
(i.e., a DSM) to correlate each aspect with itself, pointing to conflicts. Figure 6-1
shows a common House of Quality.

Quality function deployment can be used at different levels of abstraction,
mapping a conceptual or strategic problem to an operational implementation. As
such, overall goals, for example, can be related in a structured manner to
intermediate functions, and from there to a product’s properties, and so on.

Therefore, different HoQs can coexist. Generally, QFD provides a means of
breaking down a set of conceptual aspects from an operational to a qualitative and
even quantitative level. At the same time, it consistently relates these levels to
each other. In that, it is similar to the Goal-Question-Metric approach.

Figure 6-1: House of Quality

Customer

requirements
Technical

characteristics

Correlation

matrix

Design targets

Planning matrix

6.1 Existing frameworks to facilitate the analysis of a system 175

6.1.2 Goal-Question-Metric

The Goal-Question-Metric approach was developed in the early 1990’s. It is a

systematic method to set up a quality model in software development, breaking
down overall quality goals into intermediate questions and then to metrics to reply
to these questions. Returning from the questions to the goals, the measures are
interpreted to obtain indications about the software quality. As such, the GQM
approach bridges the conceptual level (goals) via an operational level (questions)
to a quantitative level (metrics). The metrics serve as concrete and quantifiable
entities75 [BASILI & ROMBACH 1988], as Figure 6-2 shows.

A critical part of GQM is the establishment of goals, which are determined using
three coordinates: issues, objects, and viewpoints. These are coupled to a purpose
that indicates the direction a goal should develop. Table 6-1 shows an example of
a GQM application in software development.

GQM is similar to the Munich Procedural Model [LINDEMANN 2007, p. 45], as it
makes overlapping use of basic metrics to answer different questions that relate to
different overall goals. As such, it recognizes the fact that individual metrics are
not fully independent but rather form a network of metrics, much like the Munich
Procedural Model proposes for design methods [LINDEMANN 2003]. At the same

75 Similar to the earlier Software Quality Metrics approach [BOEHM et al. 1976]

Figure 6-2: GQM model hierarchical structure [BASILI, et al. 1994]

Table 6-1: Example for GQM [BASILI et al. 1994]

Goal 1 Goal 2

Question QuestionQuestionQuestionQuestion

Metric Metric Metric Metric Metric Metric

176 6. The S-GQM framework to select metrics

time, the Munich Procedural Model uses seven overall phases (called “elements”)
that each use an average of five questions to be more concrete about the tasks to
be executed during each element. To each question, a number of methods are
attributed. However, the model has not been applied to any structure assessment
so far.

The GQM approach is sometimes compared to the Balanced Scorecard, which
similarly attributes a strategic perspective to individual metrics to measure a
company’s performance.

6.1.3 Balanced Scorecard

The Balanced Scorecard was developed by Robert Kaplan and Peter Norton in
1992 to overcome the one-sided management of companies based only on
financial measures [KAPLAN & NORTON 1992]. At the time, the DuPont-System of
Financial Control, which focuses on a return on investment calculus, was
generally used to strategically steer a company. However, as Kaplan and Norton
recognized, human and organizational aspects mattered just as much to develop a
sustainable company. MORISAWA illustrates the essence of the Balanced Scorecard
as follows [MORISAWA 2002]:

‚ Achieving a balance among short-term, medium-term, and long-term
management objectives through a diverse measurement of performances.

‚ Creating a sense of understanding by establishing non-financial quantitative
indicators (a process index) other than financial indicators.

‚ Eliminating vagueness by keeping to quantitative indicators.

‚ Promoting organizational learning through a repeated cycle of hypothesis
verification (i.e., hypothesis at the start of a term, correction after the term,
and feedback for the next term’s plan).

‚ Providing a common strategic communication platform linking the heads
and members of the organization of a company.

Determined to provide a “fast but comprehensive view”, the Balanced Scorecard
was developed to bring together basic measures for the performance of a company
in a comprehensive management report, thus guarding against suboptimization. It
links overall strategic perspectives to goals that are to be achieved. For each goal,
drivers that enable the company to reach the goal are determined, and suitable
“Key Performance Indicators” are attributed that show the level which the driver

has achieved. The performance indicators, therefore, rate a goal, differing from the
more descriptive viewpoint a metric takes. The performance indicators are
obtained by setting up goals for the different perspectives of all stakeholders.
Then, for each perspective cause and effect, chains of possible drivers are set up
indicating how the goals are to be achieved, linking the customer perception to
actions. These cause-and-effect chains are used to determine measures able to
represent the level of implementation to satisfy the customer’s expectations.

Figure 6-3 shows an example of the common four perspectives. However, they
can be adapted to suit a company’s needs.

6.1 Existing frameworks to facilitate the analysis of a system 177

In a so-called “second generation”, the Balanced Scorecard was later extended to

accommodate the need of changing strategies over time; this so-called strategy
map uses a strategic linkage model, making the approach less abstract. Later a
vision (called “Destination Statement”) was introduced to guide the development

of goals [MORISAWA 2002], and the assessment of risks was also incorporated
[REICHMANN & FORM 2000].

The Balanced Scorecard is criticized for a number of reasons. It is often seen as
too rigid, because it only enables one to see what is previously modeled in the
cause-and-effect chains. However, this makes it an efficient tool to navigate
changes in a company. Yet, the original intention was to create a comprehensive
picture of a company. In fact, the performance indicators are commonly created in
a way that they slightly overlap; this overlap helps their efficiency as a controlling
tool, as no single indicator can be manipulated without showing up in one or
several “neighboring” performance indicators. Furthermore, the process of setting
up the performance indicators helps create a common understanding.

The Balanced Scorecard is closely connected to the Goal-Question-Metric
approach, as Table 2-10 shows. Different authors use this proximity to develop
methodologies that address the advantages of both methods. The Model, Measure,
Manage Paradigm [OFFEN & JEFFERY 1997] combines strategic and project issues
as in the perspectives of the Balanced Scorecard, breaking down each as done in
the GQM approach. In a similar manner, the multi-level Balanced Scorecard uses
the GQM across different scorecards for different levels of detail to align
perspectives, for example, from a company’s level of detail down to a

departmental level of detail [BECKER & BOSTELMANN 1999].

Figure 6-3: Balanced Scorecard [KAPLAN & NORTON 1992]

Financial perspective

Goals Measures

How do we look

to shareholders?

Innovation and

learning perspective

Goals Measures

Internal

business perspective

Goals Measures

Customer perspective

Goals Measures

How do

customers see us? What must we excel at?

Can we continue

to improve and

create value?

178 6. The S-GQM framework to select metrics

6.1.4 Directions and requirements

Frameworks allow for a goal-oriented access to methods. They use, generally,
matrices that map goals to specific methods; as an intermediary layer, questions
can be used to shift the concepts to a more practical level and to specify the
information needs. Using common goals from process management, a framework
can thus be set up to relate metrics to these goals, similar to the GQM approach, to
enable a goal-oriented structural analysis of engineering design processes.

However, no framework provides a comprehensive basis for the interpretation;
only the Balanced Scorecard provides access to possible causes behind the
measures. There is, thus, the need to extend frameworks to find the way back from
the abstract, methodical layer to the deduction of suggestions about how to
interpret the results of an analysis.

Therefore, the framework to be designed should fulfill the following requirements,
most of which are met best by the GQM scheme, which is most closely focused on
guiding the process of using metrics for a goal-oriented analysis (these are derived
from the section above and from the requirements shown in Figure 3-1):

‚ Offer goals as a strategic level of the analysis

‚ Refine the goals via an intermediate layer that helps to concretize the goals
through questions

‚ Attribute metrics, domains, and relationships to each question that points the
user to possible answers

‚ Provide indications of the possible structural significance of the results
obtained from the metrics

‚ Be modular to incorporate future extensions

Table 6-2: Balanced Scorecard (BSC) and Goal-Question-Metric (GQM) (based on
[BUGLIONE & ABRAN 2000])

6.2 Systematic access to the structure of a process 179

6.2 Systematic access to the structure of a process

As initially stated, the main problem in the analysis of a large engineering design
process is the complexity of this very task, producing a seemingly insurmountable
barrier; thus, resorting to a more abstract layer is a necessary intermediary. As
Figure 3-3 showed, different aspects that are mutually dependent play a role in
this. Given that there are a number of elements to each aspect, there are numerous
possibilities that could be recombined; thus, the proposal of a generic approach
that integrates all possible aspects is almost impossible and rarely fruitful.

Based on the Structural Process Architecture and the Structural Measurement
System, providing for a set of 52 metrics, 6 domains and 26 principal relationship
types (based on 71 detailed relationship types), a total 8,42 combinations are
possible. The framework suggested here reduces this number to a pragmatic set
that serves the basic needs of process management (compare the common goals
and concepts of process management on page 66 and the following pages).
However, this reduction does not imply that any metric is of lesser relevance, but
rather that it only represents a basic subset of the overall solution space that can be
extended to suit different goals of process management.

Figure 6-4 illustrates the reduced approach in more detail. For example, if the
organizational structure is the focus of the process analysis, the appropriate goal
G 1 is selected. This example also indicates why the term “goal” is not fully

appropriate (see footnote 74). In the example, goal G 1 proposes two questions
Q 1 and Q 2, of which Q 2, “Is the team structure appropriate for the given

workflow?”, is selected. This question leads to metric M 1 and to domains D 1 and
D 2. In many cases, it is possible that several metrics provide answers to one
question, and thus several questions can relate to the same metric. In the example,
metric M 1 will provide the number of organizational interfaces between the
domains tasks and roles, i.e., it will indicate how straightforwardly the human

Figure 6-4: Using goals and questions to identify relevant metrics and domains

e.g., G 1 “Organizational structure”

e.g., Q 2 “Is the team structure appropriate

for the given workflow?”

e.g., M 1 “Interfaces (organizational)”

Goals

Questions

Metrics M 1 M2 M 3 M 4

Domains e.g., D 1 “tasks” and D 2 “org. units”

and principal relationship types
D 1

D 2

D 3

Q 1

Q 2

G 1

Q 3

Q 4

G 2

180 6. The S-GQM framework to select metrics

resources are assigned to the individual tasks of the process. If this number is
compared to the number of tasks and to the number of roles, the ratio will indicate
whether there are few or many assignments per role, indicating the fact that there
may be many changes in responsibility for a task. In a second step, if a set of
processes is compared to this end, the process that exhibits the highest numbers
should then be prioritized for any further analysis.

In the following sections, the main steps are further explained. First, the goals are
laid out, then, questions are allocated to each goal, and ultimately, the allocation
of metrics, domains, and principal relationship-types is discussed.

6.2.1 Goals and questions of structural process analysis

As proposed earlier, there are two ways to approach the analysis of a system,
either following a goal-oriented strategy or an opportunistic manner. Maurer
defines these two strategies as “define what you need”, i.e., the requirements-
driven approach, as opposed to “see what you can get”, i.e., the opportunistic
application of analysis to a system [MAURER 2007, p. 93].

To analyze a process in a goal-oriented way, Table 2-9 (page 71) reviewed
common concepts for the structural analysis of a process. These concepts
represent abstract classes of analysis; not necessarily all of them have the direct
character of a SMART76 goal, i.e., being specific, measurable, attainable,
relevant, and time bound.

The goals were collected from the different concepts of process management, as
shown on page 64 and the following. All relevant concepts of process
management were detailed from the given references (Table 2-9) in terms of their
structural content. For each question, the relevant domains and relationship types,
as addressed by the original references, were collected; similarly, the metrics were
allocated based on the indications given by the references for existing metrics (see
page 80 and following) and the assessment of structures in general (see pages 48
and 52 and following). This attribution is not always ideal, as the literature does
not always focus on structure. Therefore, the goals were consolidated in
workshops with process managers from different industries to be as relevant as
possible.

The goals guide the strategic level of the analysis. Here, the core concepts to be
followed during the analysis are set up. As part of the state of the art, seven major
goals of process management were identified that are complemented by an eighth
goal to integrate the additional aspect of a systematic analysis of Boolean
operators to analyze decision points in a process model. The goals are not fully
independent, as the attribution of the metrics will show. These goals are:

‚ Planning

‚ Resource consumption

‚ Quality

76 SMART criteria are commonly accepted as the “good” description of goals as part of

Management by Objectives [ODIORNE 1980, p. 82].

6.2 Systematic access to the structure of a process 181

‚ Flexibility

‚ Organizational decomposition

‚ Interfaces

‚ Transparency

‚ Decision making

Planning refers to the degree to which the process plan can be pre-determined. As
such, it comprises, for example, structural bottlenecks, tasks that can be worked on
independently of each other, iterations, or the chances of adherence to a schedule
as embedded in the structure of the process. These occur particularly as cycles
among points in time, tasks and artifacts, as bridges within the process network,
and as densely crosslinked interfaces among several domains. Planning, therefore,
particularly addresses the runtime of a process, its critical paths, and its repetitive
tasks. The following questions detail this goal:

‚ To what extent is it possible to incorporate risks into the process planning?

This question especially addresses the fact that a densely networked process
implies a higher risk of delays towards a milestone. Clusters, in particular,
and, more generally, iterations are the drivers of such delays. Furthermore,
the less linear a process, the more complex its planning to break up cycles
among the artifacts or points in time that hinder a linear process flow.

‚ How can the focus be concentrated on important process steps?

This question aims at identifying important tasks that have the highest
impact on the process flow, being central sinks or distributors of
information, thereby coordinating the overall process, and driving and/or
controlling iterations.

‚ What are bottlenecks in the schedule?

Bottlenecks in the structure are those communication channels or tasks and
documents that, if defective or incomplete, hinder the further execution of
the process. Therefore, bridge nodes and edges as well as the connectivity of
the graph are within the scope of this question.

‚ What parts of the process are substantially impacted by iterations? What
level of uncertainty is handled by the process?

Iterations are a major driver of costs and delays, although the goal is to
improve the quality of an artifact by reworking part of its contents.
Therefore, those parts of the process that are impacted by iterations deserve
particular attention. Cycles, their start- and end-nodes, their main
communication channels, as well as existing and possible clusters, contribute
to such iterations. Iterations also point to the level of uncertainty that is
inherent to the process, i.e., the degree of novelty of the item that is being
developed and the amount of knowledge that needs to be generated as a
result.

182 6. The S-GQM framework to select metrics

‚ What is the stakeholder situation?

The stakeholder situation is characterized by the number of different
domains that are relevant for a process model; therefore, the stakeholder
situation typically relates to the size of the network and its different
measures.

The resource consumption covers aspects like capacities and the utilization of
resources that emerge out of the attribution of two domains to each other. Thus,
for example, redundant work, the availability of IT systems and other resources,
and the homogenous layout of the process are addressed. To this end, structural
characteristics such as attainability and sync graphs among tasks, organizational
units, and resources are applied. The following questions detail this goal:

‚ Is the process laid out in a homogeneous manner?

This question addresses the even distribution of tasks in the process and their
allocation to organizational units as well as their inputs and outputs. The
interest is to find such tasks and artifacts that collect the knowledge of the
process, which will generally cluster in those tasks and organizational units
that are the most involved throughout the process. Equally, those
organizational units that represent the core competencies of the process can
be identified.

‚ Where is it possible to remove redundancies to reduce waste?

Multiple allocations to tasks and other entities in the process are an indicator
of the unnecessary use of resources; another driver of resource consumption
is the frequent change of responsibility, causing additional coordination
effort. The metrics grouped under this question, therefore, regard multiple
allocations and interruptions in the alignment of different domains.

‚ Are the resources easily accessible?

The availability of resources is essential for the efficient execution of any
task in a process. Therefore, this question focuses on the reachability of
resources within the process network.

The concept of quality includes, in particular, the consistency, the integration, and
the distribution of information and errors, thereby focusing on the quality of the
process, not of the product. By looking at the reachability, the resilience, the
hierarchies, and the alignment of the artifacts with the rest of the process network,
the propagation of errors, the fragmentation of tasks as well as documents, and the
general consistency of information transfer are considered. The following
questions detail this goal:

‚ Does the process allow for the consistent transfer of information?

Like the accessibility of resources, the continuity of information transfers,
i.e., the reachability of one resource from another resource, is the essence of
information consistency. This also applies to artifacts that are generated
throughout the process.

6.2 Systematic access to the structure of a process 183

‚ Is the documentation in line with the process?

The alignment of artifacts (representing the intermediate results of the
process) and the tasks point to possible issues within the exchange of
information throughout the process. Dissimilar structures of these two
domains (size, degree distribution, cycles) are an indicator of inefficient
documentation.

‚ What is the risk of error distribution across the process?

The propagation of information also includes the propagation of errors
among the tasks and artifacts. Therefore, short and wide hierarchies point to
root nodes within these two domains that have a high impact across the
whole process network and that are thus susceptible to collecting incoming
errors or to distributing errors rapidly across the process.

The goal of flexibility of the process makes use of similar concepts like resource
consumption; however, aspects that contribute to the flexibility of a process, for
example, redundancy, robustness, and adaptation, commonly consume more
resources. As many of these aspects can only be judged from the semantics of the
process network, only buffers and the general robustness are regarded closely,
evaluating the adjacency and attainability of points in time, tasks, and artifacts in
particular. The following questions detail this goal:

‚ What buffers are available in the process to absorb delays and errors?

Synchronization points among points in time, tasks, and artifacts that collect
information can serve as buffers if used correctly; a node with a high passive
degree (i.e., having a high passivity) will collect many inputs before
continuing the process. Therefore, these entities need to be identified to be
aware of their potential as buffers.

‚ How robust is the overall process to individual failures?

The resilience of the overall network facilitates the adaptation of the process
in case individual nodes (e.g., key personnel) drop out. Therefore, nodes that
could compromise the integrity of the network indicate a lack of flexibility
to cope with problems with these entities. Similarly, multiple paths across
the overall process point to more flexibility to cope with unforeseen changes
in the process structure.

The organizational decomposition is intended to establish efficient
communication channels by means of a purposeful decomposition of
organizational units. Here, coordination of all tasks, the adequate setup of teams,
and distinct responsibilities are of interest. Hence, organizational units are focused
on, and analyzed for straightforward crosslinking with their tasks, in particular,
their internal attainability, clustering, and resilience. The following questions
detail this goal:

‚ Is the organization of workgroups and teams adequate?

This question addresses the alignment of the process with the organizational
setup. The clustering of tasks in the process points to necessary workgroups.

184 6. The S-GQM framework to select metrics

‚ How well is the organizational structure suited to provide efficient
communication?

The ability of each organizational unit to be able to reach other
organizational units is an important driver for communication; therefore, the
attainability of organizational units as well as the mean path length is of
interest in characterizing the communication within a process; also, bridge
nodes and central organizational units are of interest. Similarly, the metrics
of this question point to entities that may not be well integrated, being little
connected or not reachable at all.

‚ What is the internal structure of an organizational unit?

As a socio-technical system, a process is driven to a large extent by opinion
leaders and information hubs that coordinate the process, even if they are not
the executives that formally manage the process. Therefore, their
identification is targeted by the metrics focusing on the centrality and the
degree distribution and correlation of the network formed by the
organizational units.

Interfaces are another important concept in process management. Here,
disruptions among resources, artifacts, or organizational units are addressed, as
well as errors in the transmission of information, the supply of information in
general, and the integration of all organizational units. Hence, hierarchies are of
interest, as they point to the propagation and the communication channels that
belong across the process. The following questions detail this goal:

‚ Which entities of the process need to be synchronized?

This question addresses the need for information exchange among tasks and
organizational units; therefore, the degree is of importance, as well as the
attainability. The distribution of degrees and their correlation, in particular,
point to those entities that are of high importance for the process.

‚ How fast is communication in the process?

Like the propagation of errors, the propagation of information is represented
by hierarchies across the process, which show what information can reach
other entities from its root node. Therefore, the attainability, as well as
hierarchies among the tasks and among the organizational units, is examined
to characterize the speed of communication.

‚ What are relevant communication channels?

While the synchronization within the process takes place at particular tasks
or organizational units, there are also characteristic paths within these
networks that this question aims to identify. Therefore, path-based metrics
are applied.

Furthermore, transparency covers the clarity and comprehensiveness of the
process, i.e., the degree of complexity of grasping and understanding the process
and the involvement of individual entities therein. This transparency affects, of
course, all domains of a process network. The following questions detail this goal:

6.2 Systematic access to the structure of a process 185

‚ Are the organizational units aware of their impact on the overall process?

The higher the degree of crosslinking in the process, the more difficult it is
for an individual entity (organizational units, mostly, but also tasks and
points in time) to judge the long-range impact of their work. Therefore, the
size of the network, the degree of its crosslinking, and its planarity are used
to gain insights into this question.

‚ How transparent is the overall process organization?

The cognitive ability of humans is limited to comprehending only a few
objects at a time; therefore, understanding a highly complex process is very
difficult. This question is intended to grant access to cognitive models that
allow the evaluation of the degree of complexity of a process network from
such a point of view.

Lastly, decision making addresses the fact that the structure of a process reveals
many decision points, both those that are explicitly modeled as Boolean operators
and those that drive iterations, i.e., the start-nodes and end-nodes of cycles that
govern a process in particular. As such decisions impact all domains, no particular
selection is proposed. The following question details this goal:

‚ Which decision points have a high impact on the process?

This question relates to metrics that evaluate the impact of a decision point
on the process, mostly through the degree of tasks and business objects.
However, the assessment of overall processes is also possible.

Overall, the goals and questions can be used to focus on a more general
undertaking towards process improvement. In the author’s experience, such

projects rarely start with one explicit goal but rather with a vague idea of where
the problems that motivate the project might originate from. Therefore, the goals
and questions are, above all, intended to point to common problems. However,
they should not be understood as a delimiter that indicates the maximum
applicability of structural metrics. In fact, during each application, the goals and
questions, as well as the set of metrics, domains, and relationship types, should be
extended according to the nature of the analysis project.

6.2.2 Allocation of metrics, domains and relationship-types

After a principal focus on the analysis is designated using the goals and questions,
measurements are used to identify outliers, deduce their significance for the
behavior of the actual process, and deduce indications towards possible
improvements, thus providing answers to the questions.

To each question, thus, a set of metrics, domains, and relationship types needs to
be allocated in a way that it provides answers to the questions. To do so, three
research approaches were used that, concurrently, provide a good reference for the
allocation of metrics.

First, metrics that have been used to answer one specific question before, as
shown in the references, can be allocated for the appropriate questions; for
example, McCabe’s Cyclomatic number is typically used to compare different

186 6. The S-GQM framework to select metrics

control-flows (i.e., different processes or different modules in a process) to their
decision structures. Therefore, the allocation of this metric to a question that
regards the decision structure of a process is obvious.

Secondly, all metrics were developed for a particular structural significance for
each domain of the meta-model (see page 146). This significance is, in each case,
based on empirical evidence and on the research that is, in part, shown in the two
case studies in the subsequent chapter. The significance given for each metric,
therefore, also allows the attribution of individual pairs of metrics and domains
(including the principal relationship type) to questions.

Lastly, the metrics embody different, more general, structural characteristics that
imply a certain behavior of a domain. Although not detailed in this research, this
classification was used to classify the metrics concerning their focus of analysis
(robustness, grouping, extent, and propagation; see the tables in appendix 10.7 and
the explanation in section 5.2.4 on page 157). Based on this classification, the two
methods above of allocating metrics to questions could be cross-verified to see if
all relevant metrics had been allocated.

Figure 6-5 shows the simplified S-QGM scheme that results from the attribution
of metrics and domains to the questions (the complete framework is given in the
appendix; there also are the IDs for goals G01…G08, questions Q01…Q22, and

metrics M01…M52). As an example, goal G01 “Interfaces” is detailed with its

five questions Q01 through Q05. Question Q01 “To what extent is it possible to

incorporate risks into the process planning?” uses metric M40 “Number of

cycles”, for example, to point to the expected maximum number of iterations for
the domain “Tasks”. The more iterations there are, the less deterministic the

outcome of the process; therefore, a high risk of delays needs to be anticipated and
considerable effort needs to be put into the core tasks that are reworked during the
iterations. In turn, process planning needs to integrate possible buffers for these
iterations, and possibly break up the iterations into distinct phases of rework.

Depending on the available native data in the process analysis, either native
datasets or aggregate views can be used for the analysis. A combination of both
kinds of input data (e.g., a native task-DSM and an aggregate task-DSM that is
computed via intermediate artifacts) can be used to further detail the analysis and

Figure 6-5: Resulting S-GQM scheme

G01

Q01

M06, M07,
M20, M21,

M40

Artifacts,
tasks,

points in
time

Q02

M09, M12,
M18, M19,
M20, M30,
M31, M41,
M43, M44,

M45

Tasks

Q03

M10, M20,
M21, M43

Artifacts,
tasks,

points in
time

Q04

M35, M36,
M37, M40,
M41, M42,
M43, M44,
M45, M46

Artifacts,
tasks,

points in
time

Q05

M01, M02,
M03, M04,
M05, M06,
M07, M08

Overall
Network

G02

Q06

Q07

…

G03 …8 Goals

22 Questions

52 Metrics

6 Domains

26 Principal

relationship

types

6.2 Systematic access to the structure of a process 187

check for the coherence of the domains among each other. In most analyses,
aggregate views will be necessary, as the networks will, in most cases, be
multipartite, i.e., the different domains will not be internally networked but only
via other domains. In such cases, the domain of reference is provided by the
S-GQM, and the aggregation path needs to be chosen carefully to mimic the actual
process execution. If, for example, an aggregate view on resources is necessary
(e.g., IT systems), these systems will commonly exchange artifacts via the tasks
they are allocated to. Therefore, the aggregation path will be from resources to
tasks to artifacts to tasks to resources.

6.2.3 Identifying structural outliers

As the metrics selected and computed up to here provide a highly condensed
picture of the process, they still do not provide detailed information about the
process’s behavior; however, their main focus is to identify structural outliers that
characterize the process’s structure. Therefore, this and the subsequent sections
are also valid for a process analysis that is not guided by the GQM scheme.

Figure 6-6 shows the basic procedure for working with outliers. To analyze the
results from the metrics properly, first, the metrics need to be calculated for the
relevant datasets. Then, the results of each metric are regarded individually to
identify outliers. Here, the scale of each metric (i.e., the range of values that are
possible for the metric) is of interest for running a Pareto analysis to identify
outliers properly. Within the scale, outliers are then sought and collected. In the
next step, the collected outliers are compared; often, an entity that appears as an
outlier in one distribution might also be an outlier in another distribution, making
it, therefore, even more relevant to the process. Furthermore, cross-aggregation
outliers can only be identified if different metrics are compared in terms of their
possible correlation. Lastly, the results need to be described and documented for
further use and to serve as input for their interpretation.

6.2.4 Structural significance of the outliers

The interpretation of outliers should take place from different perspectives
simultaneously, otherwise the actual context of the process is ignored, and the
results may not be meaningful.

There are different ways of accessing the meaning of a metric. The basic access to
the interpretation of a result is given by the process model itself; in all cases, the
outliers should be related to their context and meaning. If a process model
contains, for example, the coordination of the process as a distinct task, this task

Figure 6-6: Basic procedure for working with outliers

Computation of
metrics

Identification of
outliers for each

metric

Collection of
outliers for

different metrics

Analysis of
correlation of

results for
different metrics

Description of
results and
reference to
semantics

188 6. The S-GQM framework to select metrics

will show up as highly central in the process. While this result is correct, it may be
of little use if the principal process flow is being analyzed.

Secondly, the structural context of an entity that appears as a structural outlier
should be considered. If, for example, a set of 60 different feedbacks is identified
as outliers, these may have a different impact on and relevance for the structure.

Figure 6-7 visualizes two different kinds of feedback. While the feedback close to
the diagonal of the task-DSM is of little relevance, as it is only part of a short
iteration, the other outlier is a major jump back in the process flow.

Thirdly, the structural significance as given by the tables that are part of the
description of all metrics can be used. These lists can serve as a comprehensive
list of possible interpretations to guide the interpretation. However, they do not
represent a complete checklist but only a collection of common interpretations and
issues related to each metric, domain, and principal relationship type. In all cases,
but especially when using the tables of structural significance, the domain and the
relationship type should be reflected in the interpretation to ensure the possible
interpretation actually fits the initial data. Particularly when complex aggregations
are used (across several intermediate domains or involving many decision points),
the expressiveness of the aggregate dataset is low and may not be in line with the
principal relationship type assumed in the tables of structural significance.

In the final step, the results and indications of their meaning need to be discussed
with relevant staff to deduce conclusions and individual improvement measures.
Here, again, the context of the process matters most, as even the results from a
well-balanced process analysis (i.e., incorporating many different metrics to
ensure a complete picture) do not guarantee that the process improvement is just
as comprehensive. To avoid a one-sided suboptimization, the results, therefore,
should always be critically reviewed with all possible stakeholders and possibly
supported by more detailed methods, for example, simulations for key outliers that
undergo improvements in subsequent steps.

Figure 6-7: Structural context of feedbacks in task-DSM (part of the case study in section 7.1)

Feedback is part of

a small cluster

Feedback is major

jump upstream

6.3 Using and adapting the framework 189

6.3 Using and adapting the framework

During a process analysis, a framework is employed during the first phase of the
procedural model that guides the process analysis (shown in Figure 6-8). Here, the
goals are set and appropriate questions are selected according to the individual
needs of the analysis project. Each question yields a set of metrics, domains, and
relationship types that help produce indications to the questions.

With this input, the system border is basically drawn, and the necessary
information can be acquired, either from existing process models or by building a
process MDM, as discussed in section 4.5.1. During these two steps, the
combination of each metric, domain, and relationship should be reflected in the
available data and the information needs that drive the analysis. Certain domains
may need refining to better answer the questions or provide information that is not
available in sufficient quality (e.g., because a process is so little consolidated that
no meaningful process model can be built). Once the process model is available,
the results for the metrics can be computed for the relevant domains and
relationship types. In the last step, the framework comes into place again,
providing guidance to interpret the results obtained. Here, the initial questions
should be reconsidered to see if significant answers are provided by the metrics or
if the analysis should be re-run with an improved selection of different (and
possibly related) metrics, sub-domains, and refined relationship types. To this end,
the principles of using domains and relationships, as discussed in Figure 2-3 and
the classification of the metrics (Table 5-15), support this process.

The framework is designed in a modular manner and can be extended to different
cases as might be necessary. As Figure 3-3 showed, it consists of different aspects
that are interrelated, and each can be changed or extended accordingly.

‚ Goals

‚ Questions

‚ Metrics

‚ Domains

‚ Relationship types

‚ Structural significance

Each time, the interdependencies between these aspects need to be reviewed
according to the logics discussed in this chapter. Moreover, the interdependencies
to the existing entities in the framework should also be reviewed. If, for example,
a new structural metric is introduced into a set of metrics to answer a question, it

Figure 6-8: Procedural model for structural process analysis

System
definition

Information
acquisition

Modeling
Structure
analysis

Discussion
of practices

Setting
goals for
analysis

190 6. The S-GQM framework to select metrics

is necessary to examine the informational value that is gained; if, for example, two
metrics correlate, the metric should not be introduced, or the two metrics should
be marked accordingly.

6.4 Conclusion: S-GQM framework for structural analysis

This chapter presented the Structural Goal Question Metric (S-GQM) framework
used to integrate an overall approach of structural measurement for process
analysis. The framework is designed to address the common goals of process
analysis. It makes use of the common principles of pursuing a goal-oriented
application of a method. The framework operationalizes the goals by asking
questions that embody the relevant facets of each goal.

The development of the goals and questions guided by common goals in process
management is defined throughout the state of the art. However, these goals and
questions are generally quantitatively evaluated in existing analysis
methodologies. Therefore, they had to be mapped for their structural content,
which reduces their expressiveness to some extent. The structural focus that is
embodied in the framework, therefore, generally relies on case studies that are
shown in the next chapter and in the literature review and a recombination of
patterns found in the literature on behavioral indications that can be deduced from
structure. The framework, therefore, presents a heuristic system (see 76 for the
different possible measurement systems that serve as frameworks for
systematizing metrics). The goals and questions may not be complete, but they are
meant as a guideline for common use cases and to demonstrate the application of
the structural metrics. Depending on the context of the individual application, an
extension and adaption are probably necessary; therefore, no “out-of-the-box”

application was designed. At the same time, however, the hierarchical design of
the framework, based on the GQM scheme, allows easy adaptation.

The allocation of the metrics for the goals and questions is based on different
sources to ensure a good quality of the framework. However, the allocation of
metrics is difficult. In fact, for most questions, many metrics provide partial
answers without being fully relevant to the question. Therefore, for each
allocation, a compromise between expressiveness and compactness of the
framework has to be made. In the framework presented, this choice was used to
design a pragmatic framework that embodies the most viable metrics, as discussed
in section 5.3.

Similarly, the allocation of domains and relationship types is sufficient for the
purpose pursued, as it was guided by the semantics transported in each question.
Nevertheless, a detailed review of the domains and relationship types for each
analysis project is necessary, as again no “out-of-the-box” application is realistic.

This is because the underlying meta-model only serves as a generic frame of
reference. Yet, in practice, different domains and relationship types might be
available, either because they are relevant to the company being analyzed, or
simply because the process model that is used as an initial starting point dictates a
different set. To this end, the structural significance can only be deduced from the
description of the metrics. This, however, is supported by the framework in a
straightforward manner.

7. Industrial application of metrics

In this chapter, the analysis of engineering design processes using the goal-
oriented application of structural complexity metrics is shown. To do so, two
different processes are modeled as Multiple-Domain Matrices, different metrics
are selected and computed for the process models, and the findings from the
analyses are compared to statements from engineers and managers involved with
the processes to validate the findings.

The first case study in 7.1 focuses on the electronic control unit design for a
premium class SUV. Here, the development of different highly-integrated
mechatronic components takes place in a linearly planned design process that,
however, exhibits large iterations. In the process analysis, no particular goal was
followed, but rather a general characterization was of interest to identify the core
drivers for the process. Therefore, it is used to demonstrate the application of
structural metrics in general.

The second case study, shown in section 7.2, regards the process from the
introduction to this book, focusing on the development of the body-in-white of a
medium-sized premium class sedan. This process can be characterized as a
function-oriented mechanic design process, as it produces the sheet metal design
of the car that is optimized for different functions, such as vibration,
crashworthiness, and passenger safety. Therefore, the interfaces among the sheet
metal engineers and the simulation engineers are of particular interest to ensure
the efficient transfer of information between the two groups. Thus, the application
of the S-GQM framework and the different aspects of aggregating domains are
shown.

Both case studies are used to illustrate the use of the Structural Process
Architecture, the Structural Measurement System and the Structural Goal-
Question-Metric framework that were laid out in chapters 4 to 6 at different levels.
Above all, the use of the complexity metrics per se is reviewed to show how they
serve their overall purpose of identifying possible weak spots. Then, at a more
detailed level, the most common metrics and their individual use are
demonstrated. To use the metrics, the application of the MDM-based process
modeling and the framework are also reviewed.

7.1 Electronic control unit design: General analysis in Automotive

Development

This case study demonstrates an example of the analysis of an engineering design
process. The process focuses on the design, testing, and integration of the onboard
electronic control units of a premium-class Passenger Car77. These devices cover
all electronically controlled functions of the vehicle, such as engine control,
climate control, and the entertainment system. Figure 7-1 shows the typical
integration of electronic control units, sensors, and actors in a vehicle.

77 For nondisclosure reasons, the dataset cannot be published.

© Springer-Verlag Berlin Heidelberg 2011

M. Kreimeyer and U. Lindemann, Complexity Metrics in Engineering Design: Managing the

Structure of Design Processes, DOI 10.1007/978-3-642-20963-5_7,

191

192 7. Industrial application of metrics

7.1.1 Goals and focus of the project

The case study was carried out in cooperation with one of the biggest producers of
premium cars and the world's biggest manufacturer of commercial vehicles. It was
driven by the interest to clarify “how complex” the design process for electronic

control units was. To this end, the application of structural analysis was intended
to show the different facets of complexity within the process to better prioritize
future improvements. Their interest in this analysis was to better characterize the
fact that development processes in the automotive industry, especially for highly
integrated systems, are continuously increasing in complexity and, therefore, need
continuous improvement. This complexity shows, in particular, through the
complex network structure of the overall structure of the process, the reach and
impact of the activities carried out during the process, and the existence of
iterations, as these were not explicitly described in the existing process
documentation.

For this purpose, the overall electric/electronic development process, consisting of
15 distinct sub-processes (called “modules” hereafter), was analyzed for possible

weak spots taking shape as structural outliers. As such, a Pareto analysis for all
relevant computable metrics was carried out to allow a detailed quantified
structural comparison of the process entities.

7.1.2 The process model used

As many relationships within the process were unknown and not part of the
process documentation, the process model was assembled from different sources.
Overall, 198 partial models were integrated into one global MDM to represent
relevant domains and relationship types. The partial models of the process
modules were mostly extracted from individual process models, modeled in UML
using Innovator (by MID GmbH), for which an individual export interface was
programmed to export the structural content of the process models in a
spreadsheet format. This data was available for the domains modules, activities,
documents, points in time, and roles. Additionally, data on product attributes was
integrated based on information exported from the requirements management
system based on Doors (by IBM Telelogic). Figure 7-2 presents the domains and

Figure 7-1: Different onboard controllers in a 2003 Mercedes S-Class [Daimler AG 2010]

7.1 Electronic control unit design: General analysis in Automotive Development 193

relationship types involved. Because of inconsistencies and a lack of complete
information in the given timeframe the project was carried out in, the product
attributes had already been excluded at an early phase of the analysis. However,
the engineers at the company agreed that the process models themselves were of
good quality and should be sufficient to yield a comprehensive picture of the
processes. At a later stage, the data concerning the integration of different roles
(i.e., human actors in the process) was excluded from the analysis, too, as this data
was only partially available, and it was not the core interest in the analysis.
Secondly, the density of the aggregate role-role DSM that was computed using the
existing data was too dense to deduce any relevant information.

As can be seen, native data was available on the direct dependencies among the
activities, and it was possible to generate different aggregate views on points in
time, documents, and activities; each of these models could be attributed to the
process modules to which they belonged. Figure 7-3 shows the setup of the
process MDM, including the domain “Roles”.

Figure 7-2: Entity-relationship model of domains and relationship types in the process model

Figure 7-3: Meta-MDM of the process model

Activity

DocumentPoint

in time
Role

Process

Document is generated / needed at point in time

Role generates document / document

is required by role

Role is active at point of time

Activity is processed by task

/ role is responsible for task

Document is input for / output of activityActivity is finished / starts at point of time

Activity delivers

information to activity

Process contains activity

00 0

Processes P P contains A

ActivitiesA

A delivers

information

to A

A is

processed

by R

A has D as

output

A finishes at

T

Roles R

R is

responsible

forA

R generates

D

R is active

at T

Documents D
D is input

forA

D required

by R

D is needed

at T

Points in time T A starts at T

D is

generated

at T

A

D

T

R

P

RAP D T

194 7. Industrial application of metrics

After instantiation of the MDM and import of all 198 partial models, the overall
MDM78 consisted of 1860 entities and 7070 native dependencies (all directed).
The large number of entities is due to the fact that, according to the company’s

process modeling guidelines, existing iterations were modeled as repetitive
phases, i.e., no upstream flow of information was modeled, but the part of the
process that was iterated was modeled a second time. For more iterations,
accordingly, the process was repeatedly modeled more times, thus producing a
behavioral model rather than a structural model79. However, these repeated
sections of the process model did bear different names and could not, therefore, be
identified. Only the repeated use of documents could, to some extent, indicate
iterations.

Figure 7-4 provides an impression of the network of activities of 3 of the 15
process modules. The graph represents how the activities of the design process are
interlinked via the documents that are produced or that serve as an input. Each
node (numbered for nondisclosure reasons) represents an activity; each edge
linking two nodes at a time represents a document. There are 377 activities in the
model and 237 different documents. On average, each task has 1.65 edges, i.e., the
process is rather densely networked. The modules can be recognized easily in the
figure (left, center, and right), and the interfaces among the modules line up in
between. The figure also illustrates that the process modules are of different size
and structural specificity. The gaps in the process model are not visualized;
however, it can be recognized by the fact that the aggregate view on activities
linked via documents leaves 51 activities that are not connected to any other
activity.

78 The overall MDM was modeled in both a spreadsheet software and in Loomeo (by Teseon
GmbH). All graph depictions are also extracted from Loomeo.

79 During the analysis, this led to the problem that cycles were hard to identify (see page 164).

Figure 7-4: Visualization of network of activities (via documents) as a strength-based graph
for three modules

7.1 Electronic control unit design: General analysis in Automotive Development 195

7.1.3 Analysis and findings

The selection of metrics for a complete representation of the structural complexity
of the process was guided by two aspects. On the one hand, a relevant spectrum of
metrics and domains was chosen to ensure a broad and balanced picture. On the
other hand, domains and aggregate views that were either incomplete (or
aggregated from incomplete datasets) or that were too densely networked to
conclude any meaningful results (e.g., for roles that represented one complete
cluster within the role-role DSM) were excluded. The metrics listed in Table 7-1
were calculated based on this reasoning.

Table 7-1: Metrics calculated in this case study and domains (native and aggregate)

196 7. Industrial application of metrics

As can be seen, the goal was to represent the central categories of structural
features (size, density, adjacency, attainability, closeness, hierarchies, cycles,
domains) in a balanced way. Within each category, those metrics were chosen that
serve as basic counters and represent the active and passive aspects of each node’s

embedding in the network. Similarly, those domains were used that provide
reasonable data quality, which in such a large process is difficult to obtain in an
industrial setting, as many different process modelers with a slightly different
understanding of the process are involved, generating different models. As it
turned out, the data quality of the native DSM of activities was too low to generate
purposeful results; this DSM was generated through interviews among engineers
that individually were only involved in small parts of the process, which therefore
generated a picture too fragmented to provide a coherent process model. Thus, the
metrics were generally calculated only for the aggregate views.

During the course of the project, a metric designator was introduced to visualize
the datasets for each metric in a simple manner. It represents, on the one hand,
whether a metric is calculated for a native or an aggregate dataset and, on the other
hand, shows the aggregation used if applicable. For the aggregation, the six
different types as proposed by [MAURER 2007, p. 85] were used. See page 47 for
more details on this aggregation.

Table 7-2 characterizes the overall process. Three domains are regarded as the
four aggregate views that were agreed upon with the project partners during the
kickoff meeting. The process network is quite large, with 710 nodes in total and
all distinct, i.e., no nodes are re-used or instantiated several times; however, this
information is deceiving, as stated before, because iterations are modeled not as a
repeated set of activities but as a second independent process. However, due to the
modeling (all data was made anonymous by the company, and the real nature of
the entities was only available for a few entities), there are, in fact, activities that
are re-used. This can also be seen in the number of edges, which is only slightly
larger than the number of nodes for most aggregate views; thus, the process must
be quite linear, resulting therefore in a low quota of edges per node. This is also
shown by the fact that the relational density is very low. Yet, this picture is
partially falsified by the limited quality of the model, in which approximately 15
percent of the nodes are not connected to the model.

Figure 7-5: Metric designator used to relate metrics to datasets; the example here shows the
attribution of the aggregate view on tasks for the forerun factor

DocumentActivityProcess
Points

in time
Role

aggregate

Domain

Dataset and

relationship type document is input for activity

activity has document as output

7.1 Electronic control unit design: General analysis in Automotive Development 197

From this, a minimal amount of effort for coordination can be deduced, as there is
a limited number of interfaces; however, the large number of points in time that
are connected to both documents and activities suggests that there is a high risk
that these domains are not aligned with each other. Thus, particular regard needs
to be paid to a well harmonized organization of these points in time with the needs
of the process and the generation of the deliverable documents.

At the same time, the high degree of linearity that the low relational densities
point to suggests that there is more potential for concurrent engineering. However,
the cascade of consistency in the generation of knowledge about the product
(reflected in the linearity of the generated documents) suggests a straightforward
and, therefore, easily understandable procedure to generate the documentation.

The process model is focused on the activities, as most process models are
(compare the description of common modeling methodologies, appendix), as
Table 7-3 shows. The activities are strongly linked to documents and points in
time; all activities are organized into the different modules, yet not all activities
produce documents (or, more generally, any deliverables), and not all are bound to
certain points in time. Here, more focus needs to be put on a better model, in
particular into integrating the missing edges to generate a meaningful model. The

Table 7-2: Size and density of process network

Table 7-3: Number of interfaces between domains (native data)

198 7. Industrial application of metrics

one edge that links one module to one point in time appears to be another
modeling error. Again, the low number of interfaces between the different
domains points to a possible linear process flow.

The adjacency of the structure is reflected in the assessment of the metric
Activity / Passivity, as shown in the portfolios in Figure 7-6 and following. Here,
the majority of all activities has a low activity or passivity in all cases. This takes
shape in comparison to the degree distribution (see Figure 7-9), which points to
very few activities that are highly influential and that are, at the same time, highly
influenced in relation to neighboring activities. There is one activity (node ID 231)
that ranks highest in both activity and passivity, while only five other activities
(node IDs 14, 78, 81, 227, and 247) make up for the highly critical activities,
while all other entities rank considerably lower (left-hand side of Figure 7-6).
Thus, these six activities are the core drivers that both coordinate their immediate
surroundings and that advance the generation of knowledge of the process.
Therefore, these activities merit particular attention during the planning of the
process to ensure sufficient resources to lower the risk of generating or
distributing errors. However, this picture of the overall process is dominated by
one single process module (right-hand side of Figure 7-6) that introduces all of
these nodes into the overall process.

The document structure appears similar when compared to the network of
activities. Here again most nodes cluster with low values for the activity and
passivity metric, and only a few outliers appear. Equally, the aggregate views of
documents via activities and of activities via documents (Figure 7-7) are similar,
which suggests a good alignment of these two domains. However, each domain
has a few outliers that need particular attention, e.g., two highly passive
documents (right-hand side of Figure 7-7) that collect more than 20 inputs. As
they absorb many possible changes, they are highly error-prone and can possibly
be seen as intermediate results of the process.

Figure 7-6: Activity / passivity activities (native) of global process (left) and of a selected
module (right)

7.1 Electronic control unit design: General analysis in Automotive Development 199

The picture for the points in time (related either via activities or via documents) is
spread evenly; there are a number of points in time that serve as starting points
(passivity zero) or end points (activity zero) of the process. Those points in time
that have a high activity also exhibit a high passivity measure; therefore, these
points in time (IDs 32 and 47, noticeably appearing in both parts of Figure 7-8 in
the top right corner of the portfolios) are the most important drivers to coordinate
the process. Reaching these points in time without delays is, therefore, especially
important for the timeliness of the overall process. By recombining and spreading
information, however, these points in time are highly susceptible to delays and
errors, as they need to serve as buffers (i.e., the process only continues if all input
data is available and can be transferred to all subsequent entities).

Figure 7-7: Activities via documents (left) and documents via tasks (right)

Figure 7-8: Points in time via activities (left) and via documents (right)

200 7. Industrial application of metrics

The degree distribution renders the picture more precise. Figure 7-9 shows the
distribution of degrees of all activities (via documents) taking shape as a scale-free
network. Most nodes have a low degree, and only a few are related to more than
one other node actively and passively (i.e., most nodes only have one incident and
one outgoing edge). The network therefore has a hub-and-spoke structure and
depends highly on a few activities that serve as busses (distributors and sinks at
the same time) which ensure the overall transfer of information. These nodes are
those that were identified with the activity and passivity metrics.

As these few nodes coordinate the information exchange, the process is unlikely to
fail because of random events, e.g., the illness of an engineer, as few activities
among all activities are of high importance for the overall process. At the same
time, the process is very susceptible to a targeted attack on these nodes, e.g., if the
documents relevant to these activities contain errors or if they are deleted on
purpose.

Although not shown here, the aggregate view on documents (via activities), for
example, exhibits similar properties. This is in line with the results shown for the
similar activity and passivity measures, as illustrated in Figure 7-7.

The fan criticality examines the activity and passivity of the modules of the
process. Table 7-4 shows the results of the active and passive fan criticality of the
activities for the native process network. As can be seen, many modules are
minimally connected to the overall process. Some modules (4, 5, 7, 8, 9, and 15)
only serve as input or output for the overall process and, therefore, cannot be part
of any major iterations. Only three modules have an important input and output
relation with the overall process (modules 2, 6, and 10), and, therefore are the
most important for the generation of the process outcome, but also the most likely
to be delayed or error-prone. At the same time, they necessitate the highest
amount of coordination. Again, gaps in the data show, as not all inputs (39 in total,
upper row) are balanced by outputs (42 in total).

Figure 7-9: Degree distribution of activities (via documents)

7.1 Electronic control unit design: General analysis in Automotive Development 201

Assessing the attainability of the process serves to clarify whether the above
analyses, which only regard adjacent nodes, is also true for the mutual impact of
nodes across the overall network. Figure 7-10 shows two portfolios for the
number of reachable nodes and the reachability of a node. While the activities
(via documents) exhibit a certain degree of clustering in the portfolio, the
documents are spread out more evenly. However, the two portfolios use different
scales and, therefore, cannot be directly compared.

In the aggregate view on activities (via documents) a few nodes are easily
reachable but do not reach any other nodes; these are, therefore, the outcomes of
the process. Likewise, some nodes only serve as input for the overall process and
cannot be reached and thus cannot be modified during the process. Here, no
moving targets are either expected or admitted. There are a few nodes that are
both highly reachable and that can reach many other nodes (approximately 25 to
35 each). These activities, again, are central to the information transfer among the
activities of the overall process, as they depend highly on other input they share
with subsequent activities (ten nodes of 377 nodes: IDs 26, 78, 80, 85, 87, 88, 91,
168, 169, and 170). The high impact of node 78 across the overall network
coincides with its local importance, being among the highest activity and passivity
measures. All other metrics do not correlate.

Table 7-4: Fan criticality of activities (native) for all modules of the overall process

Figure 7-10: Activities via documents (left) and documents via activities (right)

202 7. Industrial application of metrics

Measuring the closeness can be done using the proximity metric, as shown in
Figure 7-11. This proximity puts the attainability of the entities of a process into
the perspective of the individual engineer. While the reachability only states if
another entity can be reached at all, proximity assesses the distance of this
reachability. Here, the measures are normalized to the number of reachable nodes;
therefore, a node that only reaches a few nodes in its vicinity, but that can do so
using very short paths, will exhibit a high proximity measure.

In the figure, only proximities that are not zero are shown for better visualization.
Eight nodes reach a proximity equaling 1 both actively and passively: IDs 14, 59,
60, 61, 83, 98, 114, and 125. Node ID 14 also ranks among those nodes that
exhibit a very high activity and passivity and, therefore, is highly influential in its
local process module, as it can reach (and be reached by) many other nodes that
are situated very close to it. Node ID 78, which appeared as an outlier in the
previous metrics, only exhibits a medium proximity (act. 0.69, pass. 0.73), thus is
not very centrally located and not as well integrated as suspected. Remarkably,
there are many documents (aggregated via activities) that show high active
proximity but very low passive proximity. These documents have immediate
impact, if changed, on other documents, while depending little on other
documents. They can, therefore, be considered very robust in terms of changes.

The relative centrality assesses a combination of reachability and path length
across each node to establish a measure of how central a node is to a network: The
more paths that run across a node, the more central it is, if it is simultaneously
easily attainable throughout the network. Figure 7-12 shows the histogram of
centrality measures for all activities (via documents) of the overall process. Eleven
nodes show up as highly central (IDs 20, 92, 114, 125, 156, 171, 191, 216, 221,
252, and 268). These activities are thus most important for the coherence of and
communication within the process, serving essentially as a broker for information
exchange and the formation of opinions. These activities are, therefore,
particularly at risk for errors, as their failure can seriously hinder the function of
the process. As a consequence, intensively controlling these tasks is necessary for

Figure 7-11: Activities via documents (left) and documents via activities (right), both
normalized

7.1 Electronic control unit design: General analysis in Automotive Development 203

a positive outcome of the process. These activities also demand attention during
process planning. At the same time, there are many activities that are not central to
the process. These should be closely examined for their actual contribution to the
process, as they are little connected.

Hierarchies play an important role in the velocity of propagation of information
and errors. Thus, they complement the informational value of the attainability of a
node. In contrast to the measure for the number of reachable nodes, the Snowball
factor weighs the reachable nodes by their distance: The farther away a node, the
lower its contribution to the Snowball factor.

Figure 7-13 shows the Snowball factor for the aggregate view on points in time
(via activities), and Figure 7-14 regards the aggregate view on points in time (via
documents). As can be seen, for the aggregation via activities, very few nodes can

Figure 7-12: Histogram of relative centrality of individual activities (via documents), only
values >10

Figure 7-13: Points in time (via activities)

204 7. Industrial application of metrics

be reached; therefore, the process appears relatively robust for a timely execution,
as only three nodes (of 96) have a Snowball factor that is greater than six (IDs 47,
56.5, and 32), and twelve further points in time have an average impact on
subsequent nodes. Thus, if any of these nodes is delayed, it will rapidly spread this
delay over all subsequent points in time.

Yet, this picture does not hold true if the points in time are aggregated via the
documents that are generated as deliverables for the subsequent points in time, as
Figure 7-14 shows. Here, twelve points in time have a relatively high Snowball
factor (IDs 25.5, 26, 30.5, 32, 32.5, 37, 37.5, 40, 42, 44, 47, and 51), and two of
these points in time (IDs 32 and 47) coincide with the aggregate view previously
shown. These two nodes are thus most likely to guarantee a timely execution of
the process, as they bear the highest risk of delaying a large part of the subsequent
points in time.

The Forerun factor similarly regards hierarchies; however, these are incoming
hierarchies (i.e., passive ones) while the Snowball factor regards outgoing ones.
Figure 7-15 shows a histogram of the Forerun factor for all nodes on the aggregate

Figure 7-14: Points in time (via documents)

Figure 7-15: Points in time (via activities)

7.1 Electronic control unit design: General analysis in Automotive Development 205

view for points in time (via activities). Like the results for the Snowball factor, the
comparison to the aggregate view on points in time (via documents) yields
different results.

While for the aggregation via activities only a few points in time appear to be the
most important buffers for delays in the previous process (notably IDs 0, 3, 5, 6,
and 32), the aggregation via documents shows again a number of almost equally
impacted points in time that are subject to a delay if any previous point in time is
delayed (IDs 25.5, 26, 32, 32.5, 33, 37, 42, 47, 51, 57.5, 58, and 60). Again, only
point in time ID 32 shows up in both distributions, which indicates that the
process planning (i.e., the attribution of points in time to the activities and
documents) is not well aligned with the actual process, as these results conflict.
On the other hand, point in time ID 32 appears as structural outliers for both
incoming and outgoing hierarchies and, therefore, plays a core role in the
coordination of the planning. It therefore merits particular attention during
planning to ensure the necessary buffers and to install the required measures of
process controlling to ensure reaching this point in time according to the schedule.

An important focus in this case study was to concentrate on iterations that
appeared unexpectedly in the process. The measures focusing on cycles in the
structure (number of cycles, number of cycles per node, and number of cycles
per edge) are both assessed for each process module and for the overall process.

Figure 7-16: Points in time (via documents)

Table 7-5: Occurrence of cycles in all modules of the process (activities via documents)

206 7. Industrial application of metrics

Table 7-5 shows the cycles within each process module; as can be seen, there are a
limited number of cycles, and they are of negligible length (two to four, not shown
here). This is reasonable, as the partial process models explicitly do not model
iterations.

However, the process is governed by a large number of cycles. Overall, 2,412,081
cycles can be identified in the aggregate view on activities (via documents) of the
overall process. Figure 7-17 shows the number of cycles of different lengths.
While there are only a few short cycles (similar to the results in Table 7-5), long
cycles up to a length of 16 can be found. A few nodes and edges are the drivers of
these cycles; the top five nodes and edges are listed in Table 7-6. As can be seen,
the nodes are evenly distributed, each being involved in approximately 200,000
cycles. However, the edge between nodes ID 172 and ID 178 is part of more than
two thirds of all cycles and, therefore, of particular importance. The document
generating this edge is thus of highest importance to the process.

Figure 7-17: Activities (via documents) for overall process

Table 7-6: Occurrence of nodes and edges in cycles of activities (via documents)

7.1 Electronic control unit design: General analysis in Automotive Development 207

These cycles are caused by 74 feedbacks (measuring the number of feedbacks).
Therefore, the process can, in fact, be brought to a highly linear sequence
establishing six mostly incomplete clusters that each run the main iterations
locally, each being connected to a few other activities.

The graph in Figure 7-19 shows the part of the process graph most impacted by
the cycles. In fact, all cycles appear at the interface of two process modules at
each time, for example, module 6 on the left-hand side, module 12 on the right-
hand side in Figure 7-19. This clarifies why, within the former process
organization, iterations were mostly unexpected, as the cycles across the processes
were not explicitly known.

Figure 7-18: Section of the activity-activity DSM (via documents) exhibiting 74 feedbacks
after triangularization

Figure 7-19: Most occurring edge in all cycles in context of overall process (activities via
documents)

208 7. Industrial application of metrics

While cycles are most prominent among the activities and documents (not shown
here), they also occur among the points in time, as Figure 7-20 shows. This
suggests severe problems in process planning, as subsequent points in time cannot
precede each other.

7.1.4 Implications and validation

Table 7-7 summarizes the core outliers among the activities of the process being
observed. Even considering the low data quality of the process model for which
the analysis was conducted, only a few of the 43 activities turned out to be crucial
for the function of the overall network consisting of 377 activities. These activities
are to be prioritized during process planning and reengineering.

As the table shows, the listed activities are of a different character, as already seen
in the previous section. Only a few appear as structural outliers involving two
metrics at the same time. These activities (IDs 14, 78, 114, 125, 172, and 244) are
of particular interest to the process. These core outliers, as well as those outliers
that showed up during the individual analyses, were reviewed with experts in the
company, and the results were found to be meaningful and in line with the
expectations of the analysis. Table 7-8 lists the relevant activities and provides a
description of what work is conducted at each activity. The activities are ordered
in the table as they would take place in the process.

Figure 7-20: Points in time (via documents): There are 66 cycles among the points in time

Table 7-7: Overview of core outliers among activities

7.1 Electronic control unit design: General analysis in Automotive Development 209

As the descriptions illustrate, all activities were identified that are core activities
of the design of the electronic onboard controllers, including their software. As
such, IDs 125 and 47 define the core architecture, ID 78 initializes the release
management used to advance the progress of the software code, IDs 178, 172,
226, and 231 are concerned with the standard modules of the software (including
testing), and IDs 32 and 114 document the testing process and prepare the release
into different configurations of the final vehicle.

In regards to their degree (activity, passivity), IDs 125, 47, 78, 14, and 32 are
most relevant. Of course, the initial design of the architecture (IDs 125 and 47)
both impacts many directly subsequent activities and accesses the knowledge of
many other activities; therefore, these activities are at the center of an initial hub-
and-spoke-like process structure. During the process, the onboard-bus and its
communication interfaces are defined. Therefore, if, for example, a signal is
wrongly placed, it is highly likely that the final controller is not functional.
Equally, the release-management (initiated during ID 78) is active throughout the
process, thus accessing many other activities during the process. Also, the
documentation of different tests (ID 32) collects information from various
activities, forwarding the results to the relevant engineers. Thus, all of these tasks
act as synchronization points during the process. Similarly, the archiving of
verified releases (ID with matching documentation, numbering, and versioning) is
relevant for all successive tasks and, therefore, shows a high degree, i.e. having
many connections to other tasks. During this task, software and hardware are also
checked for compatibility.

IDs 125, 78, and 114 also exhibit a tight integration into the overall process, as
they not only impact their direct neighbors but are attainable throughout the
network. The early definition of the functional architecture (ID 125) sets the
cornerstone for the subsequent development of the controller. Therefore, it has a

Table 7-8: Description of activities that showed up during the analysis

210 7. Industrial application of metrics

high proximity to all other activities, as they detail the functions for serial
production. The release management (ID 78) is not only accessed directly by
many activities, but its definition is used throughout the process to access,
assemble, and control the maturity of different parts of the software and the
overall controller design; therefore, its high values for reachability and number of
reachable nodes make sense. Lastly, ID 114 indicates a very high centrality. In this
activity, the developed controller is reviewed for the fulfillment of the required
functionality, and thus the decision as to whether it has sufficiently matured to be
embedded in the overall vehicle is finalized. Thus, it brings together all strands of
the development process and may start an iteration where necessary. As many
activities rely on archived (and therefore released) software revisions, the
archiving of software releases also plays a central role.

Lastly, IDs 172, 244 and 226 appear in most cycles, and IDs 172, 178, 244, and
231 are part of the most important information transfers in all iterations. The
review of software maturity (ID 172) focuses on controlling an externally
developed software code that is generated by a supplier and tested at the car
manufacturer for the fulfillment of all requirements; therefore, many iteration
cycles are run between the actual programming and the testing. The same applies
for the overall testing (ID 226). Additionally, changes in the software that are
necessary due to findings during testing (ID 231) can necessitate a change in the
requirements (ID 178); a review of the requirements may be necessary for the
verification of each test. Finally, ID 244 is the task during which externally
developed standard software is integrated into those software packages that are
developed in-house. The compatibility between these different software packages
is highly relevant for a later integration into the vehicle and, therefore, is an
essential part of iterations between software suppliers and the software engineers
at the company.

The computation of aggregate views of one single domain that is networked via
other domains has drawn attention to problems in process planning, for example,
such as different cycles among points in time which, by their nature, need to be in
a linear sequence and cannot iterate. This implies that the modeling of iterations as
repeated sequences within each process module is not purposeful, as the process
still exhibits higher-level iterations. This, however, was originally not expected, as
the process modeling implies. The reason is that the process, although well-
structured into modules, exhibits iterations across the interfaces between the
modules, which neither the engineers involved nor the process modelers were
apparently suspecting.

7.1.5 Reflection

As the case study on electronic control unit development shows, the overall
approach works well. As confirmed by the engineers in the company, the core
entities of the process and the driving influences were identified precisely. This
confirms, on the one hand, the value of structural metrics and, on the other hand,
the identification of core drivers of the process by using the concept of structural
outliers.

Apart from the metrics on the size and density of the network structure,
particularly the metric “degree distribution” (which encompasses, in principle, the

7.2 Automotive design process at Audi AG: Analysis of interfaces 211

activity / passivity and the fan criticality), the centrality, the Snowball and Forerun
factors, and the cycle-based metrics (especially the number of cycles per node and
per edge) prove to be a good means of spotting entities that are of relevance for
the network. Also the structural significance of these metrics could be verified for
the domains that were reviewed (activities, documents, points in time) using the
aggregate, rather general relationship types, of the model. Obtaining these results
confirms the gain that is obtained by using aggregate views for managing the
multipartite nature of the network.

The other metrics that were applied (closeness, reachability and number of
reachable nodes, number of cycles) showed good results, too; however, these did
not deviate much from the results obtained through the other metrics and,
therefore, contributed less additional insight. The number of unconnected nodes,
finally, helped the quality of the model to be judged, but provided little value in
estimating the process’s behavior.

Nevertheless, these results indicate that the chosen approach of using structural
metrics and structural outliers is able to provide viable results with minimal effort
in a systematic manner. The fact that the derived behavior of the process, as
identified through the metrics, was confirmed by the company, indicated that the
research question could be answered for this case study.

The findings thus confirm the hypotheses initially used in this research: The fact
that the process consists of interconnected domains is, in fact, clearly visible in the
entity-relationship diagram that depicts the domains and relationship types (Figure
7-2). Equally, the identification of structural patterns within this network could be
shown, and the second hypothesis can, therefore, be considered viable, as well.
Last, the use of outliers could be demonstrated, although only upper-bound
outliers were sought.

7.2 Automotive design process at Audi AG: Analysis of interfaces

To come full circle, the initial case study is taken up again. As initially explained,
the process shown in Figure 1-2 (page 12) shows an EPC model of the design of
the body-in-white of a premium class sedan at Audi AG. This model is now
further explored in the following. The model is also part of this book and available
through the Springer website80.

Audi AG is a major German automotive manufacturer, catering especially for the
premium segment in nearly all markets. The development process for each car
development project follows the overall process specifications, consolidated in a
high level process standard. This process is, for each project, broken down into a
process and a project plan. The model used here was generated ex-post, i.e. when
the project in focus was almost finished. The process regards the development
process of a new mid-size sedan, focusing especially on one derivative from the
main platform.

80 See http://extras.springer.com/ for the dataset

http://extras.springer.com/

212 7. Industrial application of metrics

The process model was established in the context of a larger project on the
improvement of communication between design and simulation departments, as
lined out in section 1-2.

7.2.1 Goals and focus of the project

To remain consistent with the goals of the overall project, which was focused on
the improvement of communication between design and simulation departments,
the goal “Interfaces” was chosen for the analysis of the process. Table 7-9 lists the
three questions and the 18 assigned metrics belonging to three domains.

Before the application of the metrics, each metric was reviewed concerning its
computability and the relevance of the results. As shown in appendix 10.6, some
metrics are too complex to calculate for large models, as the computation time of
available algorithms is often not proportional to the number of nodes. In this
model, this refers to path-based metrics. As there are many paths possible across
the overall process, path-based metrics could not be computed for the example;
therefore, such results are excluded. Similarly, only an estimate of cycles was
possible due to the high degree of crosslinking in the model, which was calculated
for a simplified model, from which all entities were removed that clearly do not
contribute to the core process (i.e., the strategic process planning during the very
early phases and the final calculus of fatigue and endurance). Lastly, instead of the
metrics “Synchronization points / distribution points”, the metric “Activity /

Table 7-9: Questions and assigned metrics for goal "Interfaces”

7.2 Automotive design process at Audi AG: Analysis of interfaces 213

passivity” was chosen, as it similarly processes the degree of an entity in order to
judge its integration into the network. However, as the process model also
contains Boolean operators (54 decision points modeled as OR-connectors), the
“Activity / passivity” is more suitable for analyzing the model.

Lastly, the domain “IT systems” was also integrated into the analysis, as the
communication within the process strongly relied on the exchange of models
between engineering software tools (Computer-Aided Design and Computer-
Aided Engineering tools).

Before the metrics are detailed, however, the available model is explained. As the
following section will show, no native datasets were available for the domains in
question; therefore, different aggregate views were deduced.

7.2.2 The process model used

The process chart as initially shown (Figure 1-2, page 12) was build from
interviews with 68 engineers in all involved departments (see organizational chart,
Figure 1-4) during approximately four months. Each individual interview was
modeled, and the model was fed back to the interviewee to verify the partial
model before its integration into the overall context. The model was discussed
again in a series of workshops with relevant management. The model thus
collected and consolidated a considerable amount of knowledge on how to run
such an engineering design process.

Figure 7-21 shows its meta-model of available native data for the initial analysis.
The actual organizational setup (i.e., the reflexive relationship type between
organizational entities as shown in Figure 1-4) was not integrated into the model,
as it changed several times during the course of the actual project. As the figure
shows, the principal process flow is an alternating sequence of tasks and business
objects. IT systems and organizational units are allocated to the tasks. In the native
model, these allocations are not directed; for the structural analysis, the undirected
relationship types were, however, converted into bidirectional relationship types to
enable the method of “path searching” (see page 124) to create aggregate views.

Figure 7-21: Entity-relationship model of domains and relationship types in the process
model

Org.
Unit

Task
Business

object

Milestone
IT System

OR

Organizational unit is

responsible for task

IT system

supports task

Task generates

business object

Business object is necessary to

reach milestone

Business object

is input for task
OR-decision precedes OR-decision

214 7. Industrial application of metrics

Furthermore, the model uses Boolean operators in the principal process flow.
However, AND operators are not used, but if a task generates two business objects
at a time, two relationships are simply instantiated. If, however, one or the other
business objects is created (exclusive decisions are not differentiated, therefore
ORs also represent possible XORs), an OR-connector is inserted. Decision points
are exclusively splits or joins; if a split-decision follows a join-decision, two
successive OR-connectors are used. This occurs only four times in the model.
Figure 7-22 provides an example from the original process model.

From this data, a MDM was generated, whose meta-MDM is shown in Figure
7-23. IDs 1, 8, 15, and 29 are empty, as these actually are the aggregate views that
are needed for the metrics as chosen for the goal “Interfaces”. All other DMMs

Figure 7-22: Section of original process model (in German) with two successive Boolean
operators

Figure 7-23: Meta-MDM of the process model including IDs for all partial matrices

Two interconnected

Boolean operators

T BO OU M IT OR

Tasks T
T

generates

BO

T

generates

BO

Business

objects BO
BO is input

for T

BO is

necessary

to reach M

BO is input

for T

Organizational

units OU

OU is

responsible

for T

Milestones M

IT Systems IT IT supports

T

OR Connectors OR BO is input

for T

T

generates

BO

OR

precedes

OR

OU

T

IT

OR

BO

M

T BO OU M IT OR

ID 1 ID 2 ID 6

ID 7 ID 8 ID 12ID 10

ID 13 ID 15

ID 25 ID 29

ID 31 ID 32 ID 36

7.2 Automotive design process at Audi AG: Analysis of interfaces 215

that have an ID are native datasets exported from the original process modeling
tool (ARIS Toolset by IDS Scheer AG).

Four aggregate views are needed; each view could, theoretically, be computed in
several ways. However, only those aggregations that mimic the actual process
execution were chosen; therefore, tasks were aggregated via the intermediate
business objects. Similarly, business objects were aggregated via the intermediate
tasks. Organizational units and IT systems each were aggregated via the tasks and
intermediate business objects.

To explain the impact of the OR-connectors, the aggregation for tasks is further
detailed. In the process model, a maximum of two OR connectors occur between
any set of tasks and business objects. Thus, three different aggregations are
possible, as shown in Figure 7-24: no OR, one OR, or two ORs between a task and
a business object, both for the mapping from tasks to business objects and vice
versa. For the creation of a complete aggregate view for tasks, therefore, 3² cases
need to be combined to create a network that spans all possible combinations, as
IDs 1.1a through 1.3a can be combined with IDs 1.1b through 1.3b. Therefore, the
aggregate view of tasks calculates as shownin Table 7-10. Here, all three
mappings of tasks to business objects are combined with all three possible
mappings of business objects to tasks, generating nine intermediate results that
each are task-task DSMs. The superposition of these nine DSMs then generates
the complete aggregation, which takes shape as a DSM with ID 1.

The relationship type is the same for all three cases; although connectors are
treated as an additional domain, this does not change the relationship type;
therefore all three cases can be superposed to generate one overall aggregate view,
as shown in Table 7-10. Ultimately, the superposition of all nine intermediate
matrices that originate from the computation generate the aggregate task-DSM
(ID 1), which includes all paths across all OR-connectors.

Figure 7-24: Possible aggregations for different constellations of OR connectors

Task 1
Business
object A

ID 1.1a

Task 1
Business
object A

ID 1.2a

ID 1.3a

Task 1
Business
object A

OR

OR OR

„Task generates business object that is input for task“ ~ “Task precedes task”Aggregate
view ID 1 Task 1

Task 2
Business
object A

Task 2
Business
object A

Task 2
Business
object A

OR

OR OR

Task 2

ID 1.1b

ID 1.2b

ID 1.3b

S
u

p
e

rp
o

s
it
io

n

ID 2 ID 7

ID 6 ID 32 ID 12 ID 31

ID 6 ID 36 ID 32 ID 12 ID 36 ID 31

216 7. Industrial application of metrics

This procedure similarly applies to the other possible aggregate views. Business
objects can be aggregated via intermediate tasks and OR connectors, creating a
DSM with the ID 8, and organizational units can be aggregated via tasks as ID 29.
Therefore, for organizational units, the aggregation shown above can be applied
and extended to create an organizational unit DSM. The same can be done for IT
systems for the matrix with ID 36. All of these networks are fully coherent for the
case study, as the model quality of the initial process map is of very good quality.
Figure 7-25 visualizes the task-network as a strength-based graph. As can be seen,
most tasks are well integrated into a general body that iterates and does not exhibit
any clear structure at all, while a few tasks stick out as start- or end-nodes. At the
very center, the process revolves around task AC 65, which will later be identified
as one of the core tasks (the coordination of simulating the crash of the vehicle).

Table 7-10: All possible aggregations for the process model as shown in Figure 7-24

Figure 7-25: Visualization of activity network (via business objects)

7.2 Automotive design process at Audi AG: Analysis of interfaces 217

Overall, four aggregate views are thus calculated, which are summed up in Table
7-11. Here, the basic metrics which show the size of each resulting network are
also given. The domain “organizational units” in particular sticks out. Here, all
entities are densely networked.

This dense network poses a large problem for the metrics, as these are designed to
assess the existence of a relation between two entities. However, in the aggregate
view “organizational units”, multiple paths between any two entities exist, i.e., the
resulting graph is a multigraph with up to 80 edges between two nodes. If this
multigraph is converted into a binary DSM (i.e., redundant edges and reflexive
relations along the diagonal are removed), 85 edges remain. The problem occurs
with the other aggregate views, too, but to a much lesser extent. Tasks only exhibit
three multigraphs of magnitude 3 and thirty-two of magnitude 2. Business objects
have 119 extra paths if the multigraph is not converted into a binary DSM. Their
conversion into a binary DSM, therefore, does not change the overall quality of
the network to a large extent (as a comparison, the largest degree of a node is 32
for a binary DSM for tasks). Therefore, binary matrices are used that represent
only the existence of a relationship and neglect multigraphs. Only organizational
units and IT Systems are significantly impacted by multiple paths; therefore, Table
7-11 provides both values for the binary DSM and for the multigraphs for these
two aggregate views.

Table 7-11: Overview of computed aggregate views

218 7. Industrial application of metrics

7.2.3 Analysis and findings

As Table 7-12 shows, those metrics that detail the goal “Interfaces” were selected

for this case study. The metric “Proximity” was omitted in the case study, as its

message is transmitted, in part, by the combination of the reachability and the
centrality metrics. Furthermore, the cycles could only be estimated, as the large
and densely connected network was not computable81 by any reasonable effort
(simulations always crashed after 120 GB temporary files were written).
Therefore, only the cycles for the aggregate view on tasks were estimated by
computing the maximum computable cycle length of 11. Equally, the development
of cycles and the involved nodes and edges for this length confirm with their trend
the estimate that is used here. Similarly, cycles for artifacts were estimated up to
length 15.

Appendix 10.9 (page 398) lists the complete results from the case study regrouped
into four tables for each aggregate view. Here, only selected results are shown.
These are regrouped by the three questions suggested by goal G01 “Interfaces.”

Which entities of the process need to be synchronized?

Overall, the process exhibits a strong hub-and-spoke-like structure, as the degree
distribution for tasks shows (Figure 7-26, left-hand side). There are many tasks
that are minimally connected, while only a few nodes have a high degree of up to
32. These tasks especially are the main hubs that drive the synchronization. The
degree correlation chart provides further insight. Here, mostly lower degrees
correlate, and most are connected to a few nodes of medium degree (10 to 14).

81 See also appendix 10.6

Table 7-12: Overview of metrics calculated in this case study and assigned domains (all
aggregate views)

7.2 Automotive design process at Audi AG: Analysis of interfaces 219

Interestingly, there is only one major synchronization point that shows both a high
incident and an outgoing degree. Task AC 65 (“Coordinate simulation of crash”)

has 16 incident and 30 outgoing edges. All other tasks that serve as collection or
distribution points do not have both functions at the same time. Therefore,
communication at these points can be coordinated with comparably low effort
(e.g., using checklists for the tasks in question, such as task AC 32 “Release

cockpit” or AC 66 “Simulate crash”), as they mostly channel communication.

However, the improvement of the process should be centered on AC 65 in a more
detailed way, as it impacts many other tasks simultaneously.

The other metrics confirm the central role of task AC 65. It also shows the highest
results for the metrics concerning its relative centrality (top outlier), the snowball
factor and the forerun factor (second-ranking outlier in both), and it is involved in
most iterations (top outlier). Therefore, it can be deduced that this task transports
an important part of the core knowledge about the development of the body-in-
white, which is often about safety aspects in case of an accident.

This is also confirmed by the fact that the simulation of a crash (AC 66) has an
equally high impact not only in the analysis above as to its degree (it shows up as
highly passive, collecting 17 different input artifacts into one overall simulation
model), but also in its snowball factor (top outlier), which indicates that
throughout the process, the results from this task significantly impact the
subsequent development. Therefore, when improving this task, subsequent tasks
and their stakeholders not only need to be integrated (only one task is actually
directly connected in its wake), but all tasks that rely on the actual results from
this simulation. In fact, task AC 66 is able to reach 109 different other tasks of all
160 tasks in the process, thus impacting the process to an important degree.
Nevertheless, this ranking of reachability is only an average value, as the initial
tasks of the process are able to reach all tasks in the process. As a standalone-
value, the reachability is, therefore, only of limited expressiveness.

Furthermore, task AC 43 “Setup simulation model for crash” also shows up with
the top outlier for the forerun and is significantly involved in iterations (third
outlier in cycles, most important outlier among cycles per edge, i.e.,

Figure 7-26: Degree distribution (left) and correlation (right) for aggregate view on tasks (via
artifacts)

O
c
c
u

rr
e

n
c
e

 o
f
d

e
g

re
e

Passive degree (incident edges)

Active degree (outgoing edges)

Passive degree (incident edges)

220 7. Industrial application of metrics

communication channels across which iterations are run). During this task, the
simulation model for task AC 66 is prepared, collecting many artifacts that are
generated in the antecedent process. This task, therefore, has the potential to detect
errors that occurred at an earlier stage and that will show up during the integration
into an overall model. This integration takes shape in a comparatively low
snowball factor, i.e., the information is channeled in a single stream and only
spreads out throughout the process at a later stage.

Like the number of unconnected nodes, which is zero, the fan criticality is similar
for all sub-processes present in the process. Therefore, no additional information
can be deduced from this metric.

Although not shown here, the aggregate view on artifacts exhibits similar
properties, which center on the simulation models, especially the crash task, and
the results from these simulations. The simulation results for the crash task do, in
fact, exhibit the highest snowball factor and the highest relative centrality;
however, they show a low value for the number of reachable nodes, indicating
their importance but the difficulty of accessing the results. Furthermore, important
documents are the specifications that impact many subsequent tasks, as expected,
and the technology model that was mentioned in the introduction. This model is
the central coordination object that collects all changes throughout the process.
Therefore, next to the crash simulation data, this artifact is among the most
important for better communication among the departments involved.

How fast is communication in the process?

The speed of communication among the tasks was already explained, in part, with
the previous question that relies equally on the snowball factor and forerun factor.
In addition, the communication among the departments involved is considered. To
do so, the aggregate view on organizational units is computed via tasks and
artifacts, thus assessing the direct information exchange among the departments
involved. Here, it is not the development department but the simulation
department, which is responsible for safety applications, that is revealed as the
most important outlier for its centrality. This indicates that this department is the
driving force to settle conflicts among components and create the central opinions
and final concepts of a large part. This is confirmed by the metric snowball factor,
for which this organizational unit equally scores highest. Therefore, the
department is well embedded in the process. However, it cannot easily generate
these results, as the low forerun factor points to a high effort for the collection of
relevant information. This analysis also holds true for the other two simulation
departments that are involved, although these two organizational units show lower
values in all metrics.

By contrast, the body-in-white department is the classic engineering department,
producing the sheet metal design of the vehicle’s body. Although not as central to

the overall process (i.e., a low value for its centrality), this department is much
better integrated into the process, showing a well-balanced snowball and forerun
factor; therefore, the efficient transfer of both input and output information is
much better assured.

7.2 Automotive design process at Audi AG: Analysis of interfaces 221

This picture is somewhat archetypical for such development scenarios, as an
empirical study found in [HERFELD 2007] shows. While the development of the
product’s functions is actually run in the simulation departments, the “classic”

embodiment design engineers are still seen as the driving force in a process, thus
the process is centered on their work.

The graph of the aggregate view on organizational units (Figure 7-27) confirms
this picture. Clearly, the safety application department takes a central role, while
the departments focused on mechanical component design exist as outsiders.

What are relevant communication channels?

The computation of path-based metrics could not be calculated due to
computational reasons; therefore, the relative centrality was used to deduce
indications. The original aggregate view on departments, although no metric per
se, also provides further insight into the communication structure.

Figure 7-28 shows the computed aggregate view on organizational units, as it
results from the necessary matrix multiplications. As can be seen, the matrix
presents a multigraph, i.e., the values in each cell indicate the number of paths
between each pair of organizational units. Here, for example, the simulation
department (OU 10) has 38 different communications channels to the body-in-
white design department (OU6); however, when examined the other way around,
only 16 communication paths exist. This confirms the picture from the previous
question, stating that collecting information to build simulation models demands a
high effort, while the dissemination of the results is much easier.

Figure 7-27: Relations among organizational units via the principal process flow (i.e., via
tasks and artifacts)

222 7. Industrial application of metrics

Additionally, the interfaces among IT resources82 were examined. The necessary
interfaces between them were deduced as an aggregate view via tasks and business
objects. Figure 7-29 shows the multigraph of interfaces that can be computed;
again, the number in each cell represents the number of paths, thus indicating the
need for an interface. As can be seen, IT systems RE 4, RE 6, RE 12, RE 16, RE
22, and RE 27 are of high importance; all except RE 27 (the text editor that is used
to customize simulation models before they are submitted to being solved) are
directly related to the transfer of geometry data into the setup of simulation
models. Here, the need for interfaces can, therefore, be directly deduced.

82 All IT systems mentioned are registered trademarks by the respective companies.

Figure 7-28: Multiple paths between organizational units (aggregate view as multigraph, via
tasks and artifacts)

Figure 7-29: Necessary interfaces among IT systems based on an aggregate view on tasks
(via artifacts)

7.2 Automotive design process at Audi AG: Analysis of interfaces 223

Converting the matrix from Figure 7-29 into a DSM allows the different metrics
that elicit the mutual attainability of different IT systems to be computed. For the
snowball factor, Pam Crash (RE 20), the central tool for crash simulation, scores
highest, thus supporting the previous analysis that the artifacts related to crash
simulation are a core element of the efficient collaboration in the process; here, an
interface to subsequent systems will raise the usability of the crash simulation
results. The necessary interfaces are, above all, to link to RE 4, RE 16, RE 22, and
RE 12 (in descending order of importance according to interface matrix, Figure
7-29). In terms of its forerun factor, Ansa (RE 4) is the most important IT system;
this tool is used to support the setup of so-called input decks, i.e., the setup of
simulation models that are then solved using Nastran, for example. The interface
to this tool, therefore, supports the collection of information that was identified as
an important key to better collaboration in the process. As the interface matrix
illustrates, the tool collects information from many different systems; therefore,
the import of geometry data is not only needed, but the management of different
partial models are needed to set up a simulation model (e.g., boundary conditions,
materials, reference date, etc.). Ultimately, Catia (RE 6) appears as key outlier
(upper bound) for its relative centrality. This is not surprising, as it is the core tool
to design the sheet metal body of the body-in-white.

7.2.4 Implications and validation

The core findings of this case study point to a limited set of tasks, artifacts,
organizational units, and IT systems that appear as the most important structural
outliers. These findings were reviewed with engineers along with a series of
discussions and workshops, and the results largely coincide with the engineers’

intuitive understanding of their work and involvement in the process that was
reviewed. On the whole, all results were judged meaningful, and the three
questions that guided the operationalization of the goal “interfaces” were deemed

correct by all engineers. Initially, it was suggested by the engineers in the
company that the risk in planning and the consistent transfer of information should
be considered as further questions; however, the engineers later dismissed these as
too vague to be answered from the structure, as they rely much more on the actual
content of the process.

All entities that were identified in the case study were also designated by the
engineers independently from the results of the metrics. This confirms the concept
of the structural metrics and the structural outliers, as well as the scope of the goal
“interfaces and the related aspects of structural process analysis.” However, the
order of importance obtained through this case study was judged differently from
the results of the outliers, which prescribe a certain priorization of the entities. In
contrast to the structural outliers, the three most important tasks were identified as:

1. Support development of body structure

2. Coordinate simulation of crash

3. Coordinate simulation of passenger safety

All of these tasks also became top upper-bound outliers in this case study;
however, the order suggested by the engineers deviated slightly.

224 7. Industrial application of metrics

Likewise, as important artifacts, the following three entities were designated in the
company independently from metrics:

1. Interior lining concept

2. Body structure model

3. Simulation results crash

Again, these artifacts were identified as top outliers, however, in a different order.
In discussion, the reasons for this different weighing in industry were that all
engineers had more background information available on the entities that did not
show up in the structure, such as the actual informational content of each artifact,
the cost determination of a particular task, or the criticality of timing of
information availability. Furthermore, certain political aspects and their own
involvement in certain tasks caused the engineers to weigh the entities according
to other standards, not just the structure of the process.

7.2.5 Reflection

As already seen with the first case study (see section 7.1.5), the results can be
judged viable and meaningful, which again confirms the concept of the structural
metrics, the identification of important entities using structural outliers, and the
underlying MDM-based modeling.

The process modeling proved to be very useful in the analysis of the process
model in EPC notation that already existed. The process model was assembled
from a dataset that was exported out of the original modeling tool (ARIS Toolset
by IDS Scheer AG) and completed with further data that was acquired externally.
In fact, the organizational structure among the different departments was
originally not part of the model, and neither were the interfaces among the IT
systems, which were later added as two additional DSMs (not shown in the entity-
relationship diagram in Figure 7-21). These were only used later in the project to
determine missing interfaces.

The goal-oriented selection of the metrics, domains, and relationship types proved
viable, too. Nevertheless, discussions showed that such a S-GQM framework can
only be of limited prescriptive use, as each project requires different answers and
therefore different metrics to answer these questions. To this end, the framework
provided a good starting point for the analysis.

As useful metrics that provided good insights into the process and good structural
significance, the combination or reachability / number of reachable nodes and the
Snowball / Forerun factor proved to be especially useful in judging how an entity
is embedded in the overall process. Furthermore, the degree distribution,
encompassing the synchronization / distribution points and the fan criticality, was
very helpful to assess the individual impact of an entity in its immediate
environment. These measures seem to be the most useful and offer a good first
overview if combined with the relative centrality. Also, the number of paths, as
found through the computation of aggregate views in the hypergraphs, showed the
tight coupling of certain parts of the process and sufficiently answered the initial
interest in this process analysis.

7.3 Conclusions from the case studies 225

Unfortunately, the cycle-based metrics could only be estimated due to limitations
in computing power and appropriate algorithmic support. However, the adapted
approximation for a lower number of cycles appears reasonable, as computations
with a simplified network showed. However, this issue needs further exploration.

7.3 Conclusions from the case studies

In general, the results of the case studies verify many speculations that could not
be clarified before within the two companies. To this end, the findings from the
metrics point to the core drivers of the process, and their individual review points
to a set of activities that all appear meaningful. This applies to all domains that
were reviewed during the case studies, even if only examples of the results could
be shown. Within both case studies, the results were confirmed by engineers in the
companies as being correct. Therefore, the metrics have proven their
meaningfulness83. This demonstrates that both the overall concept and the
individual metrics are viable means of analysis which generate meaningful results.

Secondly, all metrics that were used have been able to differentiate those entities
of higher relevance from those of lower relevance. As was discussed in the
findings of each case study, it can be deduced that the representation is also
purposeful, and the relevant scales provide a sufficient basis to compare the
entities within a process. This contributes to the applicability of the hypothesis of
identifying structural outliers via the scale of the metrics, which prove viable, as
well.

Thirdly, the different results of the metrics indicate that the metrics do not
correlate, as they point to different nodes that, for each metric, appear as most
important. This makes it possible to conclude that the uniqueness of each metric
is sufficient to identify different entities with the different structural characteristics
that each individual metric represents.

At the same time, it could be seen that the different layers of the overall networks
exhibit similar properties (e.g., having hub-and-spoke like structures, being linear,
revolving around a few core entities, having a high potential for more concurrent
engineering through more intense networking, etc.) but are not well aligned. This
was demonstrated in both case studies and across the different domains within
each of them. For example, in the first case study, the fact that only 237
documents appear as results of the overall 377 activities underscores this fact.
However, the exclusion of iterations in the process modules relativizes this
observation, as many activities will, in fact, appear twice or more, although they
cannot be identified as such. This verifies that processes can be understood as
network-like structures exhibiting different structural patterns.
Finally, the use of the overall S-GQM framework could be demonstrated. As the
case study shows, it provides a good starting point for a first analysis; however, its
application necessitates detailed reflection to choose metrics, domains, and
relationship types for a specific problem. It should, therefore, generally be
understood as a guideline which aids in the planning of a process analysis.

83 The metrics are reviewed based on the core requirements of a good measurement
(meaningfulness, representation, and uniqueness), as discussed in section 2.3.1 (page 76).

8. Conclusions and outlook

In this section, the results presented in this book are reviewed, followed by a
discussion of the strengths and weaknesses of the approach and the implications
that can be drawn from them for both academic and industrial applications.

8.1 Summary of results

This research was run to design a method that supports the purposeful and
systematic description and analysis of an engineering design process in terms of
the structure of relations of its entities. The intent of this analysis is to alert a user
to possible weak spots that merit further attention for potential improvement. To
achieve this, the research is based on the hypothesis that a process is a network of
entities and relationships of different types, within whose constellation certain
meaningful patterns can be identified that can be related to the behavior of the
process. While these structural characteristics occur throughout the process,
possible weak spots in a process can be identified by looking at structural outliers,
representing the most peculiar patterns in a process.

As a basis of this goal, the review of contributions from system theory, graph-
theory, matrix-based methods for structural complexity management, network
theory, process management, and software engineering showed that a systematic
method for a goal-oriented analysis and improvement of engineering design
process is still missing. Yet, existing methods provide a good basis to construct a
comprehensive solution based on the needs of process management (i.e., the
modeling and the goal-orientation), from the management of structures (i.e.,
dependency modeling and complexity metrics), and the structured analysis of
complex systems (i.e., procedural models and frameworks).

The solution is based on a goal-oriented analysis procedure that guides the
complete process of analyzing a structure. It uses three constituents: a modeling
method for processes, a comprehensive set of structural metrics to assess the
model, and a framework that provides a goal-oriented selection of the structural
metrics and the necessary parts of the process that need to be modeled.

The process is modeled using multiple-domain matrices that were extended to

(i.e., the different domains and relationship types, attributes, and logic operators).
The modeling method is supported by a meta-model, the Structural Process
Architecture, to facilitate the recombination of different existing process models
as well as to guide the information collection when modeling a process.

Based on this meta-model, which also provides the semantics of the structure of
common process models, the existing body of complexity metrics was adapted and
extended to a comprehensive set of 52 structural metrics, the Structural
Measurement System. Each metric is based on a detailed theoretical reasoning in
line with measurement theory; furthermore, most metrics are based on empirical
evidence. All metrics are completed by a description of their structural

© Springer-Verlag Berlin Heidelberg 2011

227M. Kreimeyer and U. Lindemann, Complexity Metrics in Engineering Design: Managing the

incorporate the necessary constructs to fully represent any common process model

Structure of Design Processes, DOI 10.1007/978-3-642-20963-5_8,

228 8. Conclusions and outlook

significance that supports drawing inferences about the behavior of a process
subjected to analysis.

The metrics and modeling of the process are systematized in the general
framework, the Structural Goal Question Metric framework. This framework is
guided – on the strategic level – by goals common to process management. Each
goal is detailed by a set of questions that can be answered using the structural
metrics and their structural significance. To do so, each question has been
allocated the relevant structural metrics as well as the necessary semantics,
represented as domains and relationship types provided by the meta-model.

The overall approach was demonstrated using three case studies from automotive
development. All three confirm the applicability of the hypotheses and the
viability of the approach as well the individual constituents as shown.

8.2 Reflection

In this section, a reflection on the strengths and weaknesses is presented first,
followed by the individual implications that can be drawn for the industrial
application of the solution presented here and the implications for research.

8.2.1 Strengths and weaknesses

The general analysis procedure is designed to complement existing approaches
for process analysis. Therefore, it is not meant to replace existing methods, which
it is not able to do. While existing approaches for process analysis focus mostly on
quantitative models, the approach presented using structural metrics investigates
qualitative models, i.e., a representation of the structure of a process. Thus, the
approach presented is not a method to support process planning as such, as it does
not provide any direct means of planning the interaction of any entities of a
process. Nevertheless, it is able to provide indications about how the structure of a
process will impact its behavior and, therefore, helps clarify the structure of the
process plan.

The analysis procedure examines all aspects of analyzing a process. Thus, its
completeness is relevant for the approach to be applicable in an industrial context.
The goal-orientation, the modeling scheme, the analysis method, and the
systematic access to the significance of the results obtained during the analysis
are, therefore, integrated as a whole.

The actual implementation of the approach in a company was not reviewed in
detail in this research. However, the case studies show that the approach is viable
and provides an effective and efficient means of obtaining good results. As it is
based on commonly accepted approaches for the methodical analysis of a system,
the approach can, therefore, be considered suitable to fill the gap detailed by the
initial research question.

The goal of establishing a Structural Process Architecture as a structural
process modeling method as the first of three constituents to the overall approach
is based on the hypothesis that a process consists of multiple layers of a network.
This hypothesis was verified through the literature review, which showed how

8.2 Reflection 229

almost all common process models couple the entities of the model not only
through the primary flow of information but via other different relationship types,
e.g., the organizational structure or IT interfaces. The hypothesis was also shown
to be valid during both case studies, showing that indirect relationships via
intermediate domains can be condensed meaningfully to provide better insight into
such complex network structures.

This Structural Process Architecture was designed using Multiple-domain
matrices (MDM), and it serves as a semantic basis for the metrics and as
orientation when assembling different existing process models or modeling a
process from scratch. The matrix-based modeling is in line with common
approaches to the management of structural complexity, using existing modeling
schemes, and adapting and extending them to the needs of process management. It
is, furthermore, able to represent large systems in a manageable fashion, even
though the visualization is not intuitive. Nevertheless, large matrices are hard to
handle, and obtaining results always requires extensive tool support, especially
spreadsheet software.

The design of the Structural Measurement System was undertaken to create a
means of systematically obtaining a comprehensive picture of an engineering
design process. A metrics-based approach was chosen, as it offers a means of
condensing the information into a reduced form which can be easily and
systematically applied to all entities and relationships of a complex system. The
structural metrics are based on existing metrics taken from comparable
environments (especially software programs or workflow design), or on structural
characteristics that so far have not been evaluated numerically but are based on
previous application in similar systems. In doing so, it was possible to base all
metrics on existing empirical evidence as to the validity of their application and on
experience about the extent to which interpretations are possible. The viability of
the results that were obtained in the two case studies confirms their use and the
second hypothesis, which states that it is possible to draw inferences about the
behavior of a system by analyzing its structure. This was also confirmed in the
literature that was reviewed.

However, the completeness of the approach was not verified from all possible
angles. The development of the approach was guided by the identified goals of
process management as well as by the spectrum of available structural
characteristics that were collected from different disciplines and matched to the
domains and properties of processes (such as iterations, workgroups, etc.).
However, an inverse approach was not taken, i.e., no structural characteristics and
structural metrics were sought starting from a set of process properties that were to
be analyzed.

The structural metrics grant access to the behavior of a process without the
detailed modeling of the actual behavior by providing an estimate based on
structural patterns and their significance. This inference, however, has less depth
than other approaches, such as the simulation of a process, a value stream analysis,
or path costing. Such methods, although more detailed, provide deeper insight but
necessitate a significantly higher amount of modeling effort and focus more on
single issues. The question remains unsolved as to whether it is reasonable to
expect that enough information can be captured to describe either the structure or

230 8. Conclusions and outlook

the behavior sufficiently “accurately” for analysis. Practical experience indicates
that it often takes many months even for a small process to be modeled as
correctly as possible. Still, the degree to which such models are “good” remains
unknown. Nevertheless, the approach shown here can be used to guide more
detailed efforts, as the structural metrics make it possible for such undertakings to
focus on more sophisticated methods only as a second step.

To do so, the structural metrics are also able to work with models of average
quality. Of course, any analysis should be based on complete modeling of a
process. Only if sound data is used, can the results be fully trusted. Yet, process
models in industry are rarely complete, mostly because it is either too time-
consuming to obtain a complete model or because the procedures that are modeled
often cannot be turned into one coherent model as there is no single way that
things are done. For such incomplete data, the approach has proven possible, as
even for sub-sets of a process relevant results can be found.

Nevertheless, the use of structural metrics is only suitable for large processes, as a
certain minimum population of nodes and edges is necessary to obtain results,
whose outliers can be evaluated with good quality. The design of the structural
metrics has shown that they are not viable for small models of less than
approximately 40 entities. However, with larger models, the third hypothesis
works well, as the case studies have shown, even though only upper-bound
outliers have been sought and evidence for the other three kinds of structural
outliers have not been shown.

Unfortunately, no absolute judgment whether a process is “good” or “bad” can be

derived from the application of the metrics. However, tendencies are possible,
although even this is subject to how each company wants to develop or how things
are done in that company. Therefore, generalizing about each metric’s structural

significance is limited. Overall, the approach still requires a deep understanding of
the principles of the metrics to interpret the results correctly, as the structural
significance of the metrics is significantly impacted by the chosen domains and
relationship types, and no standardized interpretation is possible.

Thus, a high risk exists that the metrics can be misleading if applied by an
unskilled user. As a consequence, the application of the metrics necessitates a
critical reflection of the application, implementation, and interpretation each time
the metrics are used. In fact, a small change in the structure can cause major
changes in the results of the metrics [BIEDERMANN et al. 2009]. This risk of
misunderstanding the metrics can be accompanied by the risk of manipulation. As
the outcome can change significantly for even minor changes within the structure,
a user could adapt the results to his personal advantage. Therefore, several
“overlapping” metrics should be used at all times to cross-verify the metrics
among each other.

Lastly, mathematical inadequacies still exist in the formulation of the structural
metrics. There is still the inability to work with very densely populated networks
and multigraphs, as the case studies have demonstrated. Furthermore, the
computation time for some metrics, especially cycle-based and path-based
metrics, is still high, and algorithms are still insufficient; yet, there are only
limited means of estimating the metrics, even though in many cases the

8.2 Reflection 231

computation of a complete solution is not necessary (compare the cycles in case
study 7.2).

As the last constituent of the solution, the setup of a Structural Goal Question
Metric framework to guide a process analysis project is designed to aid the
selection of appropriate metrics in relation to a chosen goal of process analysis. It
was implemented using the GQM scheme. However, certain simplifications were
used. In particular, the formulation of goals, which is an important aspect of the
original scheme, was not used, as the framework that was designed here is
designed to have a wider focus of application. However, the framework was
extended to also guide the interpretation, using the structural metrics allocated to
the structural metrics, an aspect that is not part of the original GQM scheme.

The benefit gained from the framework was demonstrated in case study 7.2.
Although the selection of metrics to be allocated to a goal and its questions is
difficult and at times fuzzy, the framework serves as a good starting point for any
analysis. In comparison to the current state of the art, the framework is the most
complete method in this field of research.

However, the framework is lacking a generic analysis mode. Often, process
analysis in industry is done “because there is something wrong”, and a general

analysis for possible problems is needed. To do so, a basic set of metrics is
required that is not part of the framework.

Also, the framework does not provide clear guidance about the use of native and
aggregate datasets, but only about the necessary domains, whose targeted selection
remains unsolved. Another level could be introduced to better differentiate the use
of aggregate views from the use of native data.

With all these constituents, the research question as laid out in chapter 1 can be
sufficiently answered. All three hypotheses have proven viable and correct, and
the requirements have been met. Still, the inadequacies that were discussed in the
above paragraph prevail, hindering, however, only certain areas of the
applicability of the method that was developed.

8.2.2 Implications for industry

The approach shown changes the paradigm of process improvement to some
extent, as engineers in any company need to understand that today’s processes are

not as linear as they used to be and that they are part of a dense network of
activities. While graph and network theory still are too abstract for many
individuals to fully understand, the detailed description of different characteristics
can help individual engineers to better place themselves in these networks. In
design methodology, this trend has already begun to establish itself [GAUSEMEIER
et al. 2006].

Thus, management and engineers in industry are offered a new approach that
extends current methodologies for systematically analyzing existing processes for
possible improvements by looking at the network of relationships across the whole
process organization.

The overall approach is oriented to the needs of industrial practice. Despite its
high degree of abstraction, it allows processes at a pragmatic level to be analyzed

232 8. Conclusions and outlook

and indications that can directly support process improvement to be deduced. The
high degree of abstraction is necessary to analyze a process top down as well as to
compare the results of different analyses across several processes to strategically
guide process improvement activities. This enables management to base decisions
on more than a gut feeling, which is often the primary source of decision in
industry [GIGERENZER 2007]. To better support such decisions, using structural
metrics can provide a tool similar to a Balanced Scorecard for process
improvement activities, as it provides access to the cause-effect relationships in a
structure (i.e., spotting an outlier using metrics, then looking into the actual
structure of the process).

Unlike many existing approaches in process management, the structural metrics
presented in this research require minimal effort in data acquisition and
computation for results that point to improvement potentials that – in a second
step – can be analyzed further. Thus, the approach presented is relevant, as it is
able to rely on existing process models that are already available in many
companies. From these models, patterns that govern a process can be extracted,
and knowledge about the typical behavior of these processes can be uncovered and
submitted to further analysis as to its implications about how a process is
commonly run. To this end, it matters little if the process model is not the most
recent, as engineering design processes vary little from one development project to
the next if the product architectures remain similar. Typically, the patterns (for
example, the relevance of certain tasks or the centrality of core product models)
will prevail for many generations of a product. Therefore, knowledge about the
importance and impact of core entities of a process are directly transferable.

In general, a process analysis using the structural measurement system for
engineering design processes can be applied for various purposes:

‚ Comparing different processes at a given point in time to prioritize the
investment of resources into process improvement and rework. For example,
a process manager might wish to compare a number of processes he is
responsible for. To determine which of them is the most complex and thus
bears the highest potential to cause errors, a complexity metric is useful to
identify the most complex process to start improvement with.

‚ Tracing changes over time to schedule possible improvements. For example,
an organizational setup may grow more and more complex over time, as new
teams are introduced. To trace the degree of complexity, a process engineer
can employ structural metrics to better estimate the degree of stability and
suitability of the architecture. The metrics can aid quality assurance and the
maintenance of such systems.

‚ Assessing complex process structures at an abstract level to estimate the
amount of effort. For example, in project planning, a linear timeline is
desirable to guarantee a smooth process execution. If, however, the tasks are
interlinked in a way that no ideal sequence can be reached (e.g., as
triangularization for a DSM would provide), an analysis of the structure can
support the process planner to judge how much effort might be needed for
communication during process runtime.

8.3 Outlook 233

‚ Identification of improvement potential and of error-prone entities of a
process organization. For example, if all information is routed through a
person who is highly central to the process, there is a risk that if this person
falls ill or changes his or her employer, the process disintegrates.

‚ Assessment of the human cognitive ability to understand a process. The
more complex a process becomes, the more complex the interaction with
such a process, and it is not perceived as transparent. Assessing how easily a
system can be comprehended (e.g., the flowchart of a process or the various
states of a product and their mutual dependencies) can serve to design it
better and to judge how users will interact with it.

However, structural metrics do need to be handled with care. Only if they are
well-accepted and if their impact is understood, they can be usefully employed.
Otherwise, there is a high risk that they will be misleading, as they represent a
much reduced picture of the process.

8.2.3 Implications for Research

While the implications above are true for research as well, the formal modeling
and evaluation of different characteristics of design processes makes it possible to
describe in detail what concurrent engineering actually is like. Otherwise
descriptions often remain vague. In other terms, the presented research helps
making “patterns” in engineering design processes [WYNN et al. 2007] [EPPINGER
2001] [BADKE-SCHAUB & GEHRLICHER 2003] become clearer and accessible.

While there is no “perfect” process, the numerical analysis of processes makes

comparisons easier. In the long run, using structural metrics makes it possible to
compare a number of processes for characteristics of “good” and “bad” processes.

As an intermediate step, the creation of a “footprint” of different kinds of

engineering processes is definitely within reach, using a pre-defined set of
structural metrics for a standardized comparison, for example, a process that is
centered on a few people who are highly knowledgeable, as opposed to a process
during which a new product development is undertaken and no detailed know-how
is available. This might occur in different task distributions, their different
tendencies to rely on iterations, and the changing centrality of staff involved.
However, such an analysis will also rely on datasets that model processes at a
comparable level of detail with a comparable modeling scope (e.g., how iterations
are resolved in the model).

8.3 Outlook

Despite the effort invested in this research, some items remain unsolved and
represent opportunities for future research.

The formalization of structural metrics was omitted here, in part, to provide a
comprehensive overview of the existing basis. However, the metrics were only
described textually, and a formalized description remains to be shown. This also
includes the completion of the set of necessary algorithms. Using a mathematical
description, the mutual interdependencies and correlation of the metrics could also

234 8. Conclusions and outlook

be explored, which would contribute to the classification of the metrics and their
allocation to relevant solution principles as well as the framework. A possible
long-term vision for this undertaking could be a formal algebra for structural
analysis that provides a complete set of properties, rules, and operations that can
be done using structural characteristics.

To further classify the metrics, an interesting step would be to approach the
problem tackled in this research by “coming from the other side”. As the approach
was developed by starting from the available means of structural analysis and
mapping them to relevant aspects of a process’s behavior, a complete solution can

only be obtained by classifying all relevant properties and allocating the necessary
means of analysis for them.

Next, the use of metrics with logic operators has not been shown, although it has
been part of this research [GÜRTLER et al. 2009]. However, even the work that has
been done so far is limited to assessing the degree of an entity. Nevertheless, its
working principles can be transferred to the attainability within a graph in the
same way, opening up its transfer to all other structural characteristics as well. At
the same time, such effort needs to be accompanied by the adaptation of rules for
interpretation and, more generally, the different structural significance that the
metrics bear if they do not consider an existing structure but one that could
become a structure (in the case of OR or XOR operators).

Furthermore, the methodical management of aggregate views can be extended. In
this research, only those aspects of creating aggregate views were explored that
were needed in the given context (path-searching for DSMs). The details of
creating the other possible aggregate views were not explored. This concerns, in
particular, the management of interacting with the emerging aggregate relationship
types that are difficult to handle. To this end, action-based research to formulate
ontologies which help define suitable, more compact relationship types than the
one described on page 127 are desirable. Furthermore, a general framework to
guide the goal-oriented aggregation of different domains is still needed, which
helps choose relevant inputs for the aggregation under a certain goal and which
prescribes a domain of reference, the domains to be integrated into the domain of
reference, its relationship types, and the more compact aggregate relationship
type. This aggregational framework could be integrated into the GQM scheme to
close the existing gap in selecting the right dataset for answering a specific
question.

The interaction of the approach developed with the product architecture has only
been touched upon, as it is not the direct focus of this research. The alignment of
the product architecture and the process architecture has not been regarded in
more detail, even though an adaptor to the product was created through the
domain “product attribute” in the meta-MDM.

9. References

AHN et al. 2007

 Ahn, Y.-Y.; Han, S.; Kwak, H.; Moon, S.; Jeong, H.: Analysis of topological
characteristics of huge online social networking services. In: Proceedings of
the 16th International World Wide Web Conference, Banff, Alberta, Canada,
08.-12-05.2007. New York, NY: ACM 2007, pp. 835-844. ISBN: 978-1-
59593-654-7.

AICHELE 1997

 Aichele, C.: Kennzahlenbasierte Geschäftsprozessanalyse. Dissertation,
Universität Saarbrücken, 1996. Wiesbaden: Gabler 1997. ISBN: 3-409-
12173-0.

AKAO 1992

 Akao, Y.: QFD - Quality Function Deployment. Landsberg a. L.: Moderne
Industrie 1992. ISBN: 3-478-91020-6.

ALBERS et al. 2005

 Albers, A.; Burkardt, N.; Meboldt, M.: Spalten Problem Solving
Methodology In The Productdevelopment. In: Samuel, A. E. et al. (Eds.):
Proceedings of the 15th International Conference on Engineering Design,
ICED'05, Melbourne, Australia, 15.-18.08.2005. Barton ACT: Engineers
Australia 2005. ISBN: 0-85825-788-2.

ALBERT & BARABASI 2002

 Albert, R.; Barabasi, A.-L.: Statistical mechanics of complex networks.
Reviews of Modern Physics 74 (2002) 1, pp. 47-97.

ALBERT et al. 2000

 Albert, R.; Jeong, H.; Barabasi, A.-L.: Error and Attack Tolerance of
Complex Networks. Nature 406 (2000) 6794, pp. 378-382.

ALLWEYER 2008

 Allweyer, T.: BPMN - Business Process Modeling Notation. Norderstedt:
Books on Demand 2008. ISBN: 978-3-8370-7004-0.

AMERI et al. 2008

 Ameri, F.; Summers, J.; Mocko, G. M.; Porter, M.: Engineering design
complexity: an investigation of methods and measures. Research in
Engineering Design 19 (2008) 2-3, pp. 161-179.

ANDERL & TRIPPNER 2000

 Anderl, R.; Trippner, D.: STEP - Standard for the Exchange of Product
Model Data. Stuttgart: Teubner 2000. ISBN: 3-519-06377-8.

ANDERSON 2007

 Anderson, C.: The Long Tail - How endless choice is creating unlimited
demand. London: Random House Publ. 2007. ISBN: 978-1-8441-3851-7.

ANDERSON 1972

 Anderson, P. W.: More is different. Science 177 (1972) 4047, pp. 393-396.

© Springer-Verlag Berlin Heidelberg 2011

M. Kreimeyer and U. Lindemann, Complexity Metrics in Engineering Design: Managing the 235

Structure of Design Processes, DOI 10.1007/978-3-642-20963-5_9,

236 9. References

ARGYRIS & SCHÖN 1978

 Argyris, C.; Schön, D. A.: Organizational Learning: A Theory of Action
Perspective. Reading, MA: Addison-Wesley, 1978. ISBN: 0-201-00174-8.

ARGYRIS et al. 1985

 Argyris, C.; Putnam, R.; McLain Smith, D.: Action Science: Concepts,
Methods, and Skills for Research and Intervention. San Francisco: Jossey-
Bass 1985. ISBN: 0-87589-665-0.

ART AND SCIENCE FACTORY 2009

 Art And Science Factory: Map of Complexity Science. Cleveland, OH: Art
& Science Factory 2009. URL: http://www.art-sciencefactory.com/
complexity-map_feb09.html - Access Date: 04.03.2009.

AUE & DUSCHL 1982

 Aue, A.; Duschl, R.: SSADM & GRAPES: Two Complementary Major
European Methodologies for Information Systems Engineering. Berlin:
Springer 1982. ISBN: 3-540-55380-0.

AZUMA & MOLE 1994

 Azuma, M.; Mole, D.: Software Management Practice and Metrics in the
European Community and Japan: Some Results of a Survey. Journal of
Systems and Software 26 (1994) 1, pp. 5-18.

BADICA & FOX 2005

 Badica, C.; Fox, C.: On the Application of WF-Nets for Checking Hybrid
IDEF0-IDEF3 Business Process Models. In: Yakhno, T. (Ed.): Proceedings
of the 3rd International Conference on Advances in Information Systems,
ADVIS 2004, Izmir, Turkey, 20.-22.10.2004. Lecture Notes in Computer
Science, 3261. Berlin: Springer 2005, pp. 543-553. ISBN: 3-540-23478-0.

BADKE-SCHAUB & GEHRLICHER 2003

 Badke-Schaub, P.; Gehrlicher, A.: Patterns of decisions in design: leaps,
loops, cycles, sequences and meta-processes. In: Folkeson, A. et al. (Eds.):
Proceedings of the 14th International Conference on Engineering Design,
ICED'03, Stockholm, Sweden, 19.-21.08.2003. Glasgow: The Design
Society 2003. ISBN: 1-904670-00-8.

BALASUBRAMANIAN et al. 2005

 Balasubramanian, S.; Gupta, M.: Structural metrics for goal based business
process design and evaluation. Business Process Management Journal 11
(2005) 6, pp. 680-694.

BALDWIN & CLARK 2000

 Baldwin, C. Y.; Clark, K. B.: Design Rules - The Power of Modularity.
Cambridge, MA: MIT Press 2000. ISBN: 0-262-02466-7.

BANATHY 1997

 Banathy, B. H.: A Taste of Systemics. Pocklington: International Society for
the Systems Sciences 1997. URL: http://www.isss.org/taste.html - Access
Date: 28.02.2009.

http://www.art-sciencefactory.com/complexity-map_feb09.html
http://www.isss.org/taste.html
http://www.art-sciencefactory.com/complexity-map_feb09.html

9. References 237

BAR-YAM 1997

 Bar-Yam, Y.: Dynamics of complex systems. Reading, MA: Addison-
Wesley 1997. ISBN: 0-8133-4121-3.

BARABÁSI 2003

 Barabási, A.-L.: Linked - How Everything is Connected to Everything Else
and What it Means for Business, Science, and Everyday Life. New York,
NY: Plume 2003. ISBN: 0-452-28439-2.

BARABÁSI & ALBERT 1999

 Barabási, A.-L.; Albert, R.: Emergence of Scaling in Random Networks.
Science 286 (1999) 5439, pp. 509-512.

BARNETT & LEWIS 1998

 Barnett, V.; Lewis, T.: Outliers in Statistical Data. Chichester: Wiley 1998.
ISBN: 0-471-93094-6.

BASHIR 1999

 Bashir, A. H.: Metrics for Design Projects: A Review. Design Studies 20
(1999) 3, pp. 263-277.

BASHIR & THOMSON 1999

 Bashir, A. H.; Thomson, V.: Estimating Design Complexity. Journal of
Engineering Design 10 (1999) 3, pp. 247-257.

BASILI et al. 1994

 Basili, V. R.; Caldiera, G.; Rombach, H. D.: Goal Question Metric Paradigm.
In: Marciniak, J. J. (Ed.): Encyclopedia of Software Engineering. New York,
NY: Wiley 1994, pp. 528-532. ISBN: 0-471-54004-8.

BASILI & ROMBACH 1988

 Basili, V. R.; Rombach, H. D.: The TAME Project: Towards Improvement-
Oriented Software Environments. IEEE Transactions on Software
Engineering 14 (1988) 6, pp. 758-773.

BAUMBERGER 2007

 Baumberger, C.: Methoden zur kundenspezifischen Produktdefinition bei
individualisierten Produkten. Dissertation, Technische Universität München,
2007. München: Dr. Hut 2007. ISBN: 978-3-89963-660-4.

BECK & STUHR 2008

 Beck, C.; Stuhr, O.: STAN - Strukturanalyse für Java. JavaSPEKTRUM 5
(2008) pp. 44-49.

BECKER & PFEIFFER 2008

 Becker, J.; Pfeiffer, D.: Solving the Conflicts of Distributed Process
Modelling - Towards an integrated Approach. In: Golden, W. et al. (Eds.):
Proceedings of the 16th European Conference on Information Systems, ECIS
2008, Galway, Ireland, 09.-11.06.2008. Galway: ECIS 2008. ISBN: 978-0-
9553159-2-3.

238 9. References

BECKER et al. 2003

 Becker, J.; Kugeler, M.; Rosemann, M.: Process Management - A Guide for
the Design of Business Processes. Berlin: Springer 2003. ISBN: 3-540-
43499-2.

BECKER & BOSTELMANN 1999

 Becker, S. A.; Bostelmann, M. L.: Aligning Strategic and Project
Measurement Systems. IEEE Software 16 (1999) 3, pp. 46-51.

BECKER et al. 1995

 Becker, J.; Rosemann, M.; Schütte, R.: Grundsätze ordnungsgemäßer
Modellierung. Wirtschaftsinformatik 37 (1995) 5, pp. 435-445.

BEER 1972

 Beer, S.: Brain of the Firm - The Managerial Cybernetics of Organization.
London: Allen Lane 1972. ISBN: 0-7139-0219-1.

BELHE & KUSIAK 1996

 Belhe, U.; Kusiak, A.: Modeling Relationships Among Design Activities.
ASME Journal of Mechanical Design 118 (1996) 4, pp. 454-460.

BELHE & KUSIAK 1995

 Belhe, U.; Kusiak, A.: Resource Constrained Scheduling of Hierarchically
Structured Design Activity Networks. IEEE Transactions on Engineering
Management 42 (1995) 2, pp. 150-158.

BENSON 2007

 Benson, A.: Qualitätssteigerung in komplexen Entwicklungsprojekten durch
prozessbegleitende Kennzahlensysteme. Dissertation, Technische Universität
Hamburg-Harburg, 2007. Göttingen: Cuvillier 2007. ISBN: 978-3-86727-
295-7.

BEST & WETH 2009

 Best, E.; Weth, M.: Geschäftsprozesse optimieren - Der Praxisleitfaden für
erfolgreiche Reorganisation. Wiesbaden: Gabler 2009. ISBN: 978-3-8349-
1384-5.

BICHLMAIER 2000

 Bichlmaier, C.: Methoden zur flexiblen Gestaltung von integrierten
Entwicklungsprozessen. Dissertation, Technische Universität München,
2000. München: Utz 2000. ISBN: 3-89675-710-5.

BICHLMAIER & GRUNWALD 1999

 Bichlmaier, C.; Grunwald, S.: PMM - Process Module Methodology for
Integrated Design and Assembly Planning. In: Proceedings of the ASME
Design Engineering Technical Conferences, DETC, 4th Design for
Manufacturing Conference, Las Vegas, Nevada, 12.-15.09.1999. New York,
NY: ASME 1999. ISBN: 0-7918-1974-4.

BIEDERMANN et al. 2009

 Biedermann, W.; Kreimeyer, M.; Lindemann, U.: Measurement System to
Improve Data Acquistion Workshops. In: Kreimeyer, M.; Fadel, G.;
Lindemann, U. (Eds.): Proceedings of 10th International Design Structure
Matrix Conference – DSM’09. Munich: Hanser 2009.

9. References 239

BIEDERMANN & LINDEMANN 2008

 Biedermann, W.; Lindemann, U.: Cycles in the Multiple-Domain Matrix –
Interpretation and Applications. In: Kreimeyer, M. et al. (Eds.): Proceedings
of the 10th International DSM Conference, Stockholm, 11.-12.11.2008.
Munich: Hanser 2008, pp. 25-34. ISBN: 978-3-446-41825-7.

BIENA 2008

 Biena, W.: Graphs and Networks. In: Finke, G. et al. (Eds.): Operations
Research and Networks. London: Wiley 2008, pp. 29-69. ISBN: 978-1-
84821-092-9.

BLESSING & CHAKRABARTI 2009

 Blessing, L. T. M.; Chakrabarti, A.: DRM, a Design Research Methodology.
Berlin: Springer 2009. ISBN: 978-1-84882-586-4.

BLESSING 2002

 Blessing, L. T. M.: What is this thing called Design Research? In:
Proceedings of the 2002 International CIRP Design Seminar, Hong Kong,
16.-18.05.2002. Hong Kong: Hong Kong University of Science and
Technology 2002.

BOARDMAN & SAUSER 2006

 Boardman, J.; Sauser, B.: System of Systems - the meaning of of. In:
Proceedings of the 2006 IEEE/SMC International Conference on System of
Systems Engineering, Los Angeles, CA, 24.-26.04.2006. Piscataway, NJ:
IEEE Operations Center 2006, pp. 6-12. ISBN: 1-4244-0188-7.

BOEHM 1988

 Boehm, B.: A Spiral Model of Software Development and Enhancement.
IEEE Computer 21 (1988) 5, pp. 61-72. ISSN: 0018-9162.

BOEHM 1981

 Boehm, B. W.: Software Engineering Economics. Englewood Cliffs, NJ:
Prentice-Hall 1981. ISBN: 0-13-822122-7.

BOEHM et al. 1976

 Boehm, W.; Brown, J. R.; Lipow, M.: Quantitative Evaluation of Software
Quality. In: Proceedings of the 2nd International Conference on Software
Engineering, ICSE'76, San Francisco, California, 1976. Los Alamitos, CA:
IEEE Computer Society Press 1976, pp. 592-605.

BOLLINGER 1995

 Bollinger, T.: What can happen when metrics make the call. IEEE software
12 (1995) 1, p. 15.

BOLLOBÁS 1981

 Bollobás, B.: Degree Sequences of Random Graphs. Discrete Mathematics
33 (1981) pp. 1-19.

BONJOUR 2008

 Bonjour, E.: Contributions à l'instrumentation du métier d'architecte système:
de l'architecture modulaire du produit à l'organisation du système de
conception. Besançon: Habilitation de l'Université de Franche-Comté 2008.

240 9. References

BRAHA & BAR-YAM 2004

 Braha, D.; Bar-Yam, Y.: Topology of Large-scale Engineering Problem-
solving Networks. Physical Review E 69, 016113-1-7.

BRANDES & ERLEBACH 2005

 Brandes, U.; Erlebach, T.: Introduction. In: Brandes et al. (Eds.): Network
Analysis - Methodological Foundations. Lecture Notes in Computer Science,
3418. Berlin: Springer 2005, pp. 1-6. ISBN: 3-540-24979-6.

BRAUN & LINDEMANN 2007a

 Braun, S. C.; Lindemann, U.: A Multilayer Approach for Early Cost
Estimation of Mechatronical Products. In: Bocquet, J.-C. (Ed.): Proceedings
of the 16th International Conference on Engineering Design, ICED'07, Paris,
28.-31.08.2007. Glasgow: The Design Society 2007. ISBN: 1-904670-02-4.

BRAUN & LINDEMANN 2007b

 Braun, T.; Deubzer, F.: New Variant Management Using Multiple-Domain
Mapping. In: Lindemann, U. et al. (Eds.): Proceedings of the 9th
International DSM Conference, Munich, 16.-18.10.2008. Aachen: Shaker
2007, pp. 363-372. ISBN: 978-3-8322-6641-7.

BROOKS 1987

 Brooks, F. P.: No Silver Bullet - Essence and Accidents of Software
Engineering. IEEE Computer 20 (1987) 4, pp. 10-19.

BROWNING 2009

 Browning, T. R.: The Many Views of a Process: Towards a Process
Architecture Framework for Product Development Processes. Systems
Engineering 12 (2009) 1, pp. 69-90.

BROWNING 2002

 Browning, T. R.: Process Integration Using the Design Structure Matrix.
Journal of Systems Engineering 5 (2002) 3, pp. 180-193.

BROWNING & EPPINGER 2002

 Browning, T. R.; Eppinger, S. D.: Modeling Impacts of Process Architecture
on Cost and Schedule Risk in Product Development. IEEE Transactions on
Engineering Management 49 (2002) 4, pp. 428-442.

BROWNING & RAMASESH 2007

 Browning, T. R.; Ramasesh, R. V.: A Survey of Activity Network-Based
Process Models for Managing Product Development Projects. Production
and Operations Management 16 (2007) 2, pp. 217-240.

BROWNING 2001

 Browning, T. R.: Applying the Design Structure Matrix to System
Decomposition and Integration Problems: A Review and New Directions.
IEEE Transactions on Engineering Management 48 (2001) 3, pp. 292-306.

BUGLIONE & ABRAN 2000

 Buglione, L.; Abran, A.: Balanced Scorecard and GQM: What are the
Differences? In: Proceedings of the 3rd European Software Measurement
Conference, FESMA-AEMES 2000, Madrid, 18.-20.10.2000. Madrid:
AEMES 2000. ISBN: 84-688-7161-3.

9. References 241

BULLINGER & SCHREINER 2001

 Bullinger, H.-J.; Schreiner, P.: Business Process Management Tools - Eine
evaluierende Marktstudie über aktuelle Werkzeuge. Stuttgart: Fraunhofer
IRB 2001. ISBN: 3-8167-5629-8.

BULLINGER & WARSCHAT 1996

 Bullinger, H.-J.; Warschat, J. (Eds.): Concurrent Simultaneous Engineering
Systems - The Way to Successful Product Development. London: Springer
1996. ISBN: 3-540-76003-2.

BURGIN 1982

 Burgin, M.: Generalized Kolmogorov Complexity and Duality in Theory of
Computations. Notices of the Russian Academy of Sciences 25 (1982) 3, pp.
19-23.

BURR et al. 2003

 Burr, H.; Deubel, T.; Vielhaber, M.; Haasis, S.; Weber, W.: Challenges for
CAx and EDM in an international automotive company. In: Folkeson, A. et
al. (Eds.): Proceedings of the 14th International Conference on Engineering
Design, ICED'03, Stockholm, Sweden, 19.-21.08.2003. Glasgow: The
Design Society 2003. ISBN: 1-904670-00-8.

CAMI & DEO 2008

 Cami, A.; Deo, N.: Techniques for analyzing dynamic random graph models
of web-like networks: An overview. Networks 51 (2008) 4, pp. 211-255.

CANTAMESSA et al. 2006

 Cantamessa, M.; Milanesio, M.; Operti, E.: Value Chain Structure and
Correlation Between Design Structure Matrices In: ElMaraghy, H. A. et al.
(Eds.): Advances in Design. London: Springer 2006, pp. 303-313. ISBN:
978-1-84628-004-7.

CARDOSO 2007

 Cardoso, J.: Business Process Quality Metrics: Log-Based Complexity of
Workflow Patterns. Lecture Notes in Computer Science 4803/2007 (2007)
pp. 427-434.

CARDOSO 2006

 Cardoso, J.: Approaches to Compute Workflow Complexity. In: Leymann, F.
et al. (Eds.): Dagstuhl Seminar Proceedings. The Role of Business Processes
in Service Oriented Architectures, Schloss Dagstuhl, 16.-21.07.2006.
Wadern: Internationales Begegnungs- und Forschungszentrum für
Informatik, IBFI 2006.

CARDOSO et al. 2006

 Cardoso, J.; Mendling, J.; Neumann, G.; Reijers, H. A.: A Discourse on
Complexity of Process Models. In: Eder, J. et al. (Eds.): Proceedings of the
Business Process Management Workshops, BPM 2006, 2nd International
Worshop on Business Process Intelligence, BPI 2006, Vienna, Austria, 04.-
07.09.2006. Lecture Notes in Computer Science, 4103. Berlin: Springer
2006, pp. 117-128. ISBN: 3-540-38444-8.

242 9. References

CARDOSO 2005a

 Cardoso, J.: Control-flow Complexity Measurement of Processes and
Weyuker’s Properties. Proceedings of World Academy of Science,
Engineering and Technology, PWASET 8 (2005), pp. 213-218.

CARDOSO 2005b

 Cardoso, J.: How to Measure the Control-flow Complexity of Web Processes
and Workflows. In: Fischer, L. (Ed.): The Workflow Handbook. Lighthouse
Point: Future Strategies 2005, pp. 199-212. ISBN: 0-9703509-8-8.

CHALUPNIK et al. 2008

 Chalupnik, M. J.; Wynn, D. C.; Eckert, C. M.; Clarkson, P. J.: Investigating
Design Process Performance Under Uncertainty. In: Horváth, I. et al. (Eds.):
Proceedings of the 7th International Symposium on Tools and Methods of
Competitive Engineering, TMCE 2008, Izmir, Turkey, 21.-25.04.2008.
Delft: TU Delft 2008, pp. 1061-1074. ISBN: 978-90-5155-044-3.

CHERNIAVSKY & SMITH 1991

 Cherniavsky, J. C.; Smith, C. H.: On Weyuker's Axioms for Software
Complexity Measures. IEEE Transactions on Software Engineering 17
(1991) 6, pp. 636-638.

CHO & EPPINGER 2001

 Cho, S.-H.; Eppinger, S. D.: Product Development Process Modeling Using
Advanced Simulation. In: Allen, J. K. et al. (Eds.): Proceedings of the ASME
2001 Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, DETC'01, 13th International
Conference on Design Theory and Methodology, DTM, Pittsburgh, PA, 09.-
12.09.2001. New York, NY: ASME 2001. ISBN: 0-7918-3544-8.

CHU et al. 2003

 Chu, D.; Strand, R.; Fjelland, R.: Theories of Complexity. Complexity 8
(2003) 3, pp. 19-30.

CLARK 1989

 Clark, K. B.: Project Scope and Project Performance: The Effect of Parts
Strategy and Supplier Involvement on Product Development. Management
Science 35 (1989) 10, pp. 1247-1263.

CLARKSON & ECKERT 2005

 Clarkson, P. J.; Eckert, C.: Design Process Improvement - A review of
current practice. Berlin: Springer 2005. ISBN: 1-85233-701-X.

CLARKSON & HAMILTON 2000

 Clarkson, P. J.; Hamilton, J. R.: 'Signposting', A Parameter-driven Task-
based Model of the Design Process. Research in Engineering Design 12
(2000) 1, pp. 18-38.

COATES et al. 2000

 Coates, G.; Whitfield, R. I.; Duffy, A. H.; Hills, B.: Coordination
Approaches and Systems - Part II: An Operational Perspective. Research in
Engineering Design 12 (2000) 2, pp. 73-89.

9. References 243

COOPER & EDGETT 2005

 Cooper, R. G.; Edgett, S. J.: Lean, Rapid, and Profitable - New Product
Development. New York, NY: Basic Books 2005. ISBN: 0-9732827-1-1.

CRAWLEY & COLSON 2007

 Crawley, E.; Colson, J.: The Projection Relationship between Object Process
Models (OPM) and Design System Matrices (DSM). In: Lindemann, U. et al.
(Eds.): Proceedings of the 9th International DSM Conference, Munich, 16.-
18.10.2008. Aachen: Shaker 2007, pp. 137-150. ISBN: 978-3-8322-6641-7.

DAENZER & Huber 2002

 Daenzer, W. F.; Huber, F. (Eds.): Systems Engineering - Methodik und
Praxis. Zürich: Industrielle Organisation 2002. ISBN: 3-85743-998-X.

DAIMLER AG 2010

 Daimler Global Media Site, http://media.daimler.com/dcmedia/home/d,
viewed on 10 August 2010.

DALAL et al. 2004

 Dalal, N. P.; Kamath, M.; Kolarik, W. J.; Sivaraman, E.: Toward an
Integrated Framework for Modeling Enterprise Processes. Communications
of the ACM 47 (2004) 3, pp. 83-87.

DANEVA et al. 1996

 Daneva, M.; Heib, R.; Scheer, A.-W.: Benchmarking Business Process
Models. IWi Heft Nr. 136. Saarbrücken: Universität des Saarlandes, Institut
für Wirtschaftsinformatik, IWi 1996.

DANILOVIC & BROWNING 2007

 Danilovic, M.; Browning, T. R.: Managing complex product development
projects with design structure matrices and domain mapping matrices.
International Journal of Project Management 25 (2007) 3, pp. 300-314.

DANILOVIC & BROWNING 2004

 Danilovic, M.; Browning, T.: A Formal Approach for Domain Mapping
Matrices (DMM) to Complement Design Structuring Matrices (DSM). In:
Proceedings of the 6th International Design Structure Matrix Workshop,
Cambridge, UK, 12.-14.09.2004. Cambridge: University of Cambridge 2004.

DANILOVIC & SANDKULL 2002

 Danilovic, M.; Sandkull, B.: Managing Complexity and Uncertainty in a
Multiproject Environment. In: Proceedings of the 5th Conference of the
International Research Network on Organizing by Projects, Rotterdam.
Rotterdam: Erasmus University 2002.

DANILOVIC & BÖRJESSON 2001

 Danilovic, M.; Börjesson, H.: Participatory Dependence Structure Matrix
Approach. In: Proceedings of the 3rd Dependence Structure Martix (DSM)
International Workshop, Cambridge, MA, 29.-30.10.2001. Cambridge, MA:
Massachusetts Institute of Technology 2001.

http://media.daimler.com/dcmedia/home/d

244 9. References

DAVENPORT 1993

 Davenport, T. H.: Process Innovation - Reengineering Work Through
Information Technology. Boston: Harvard Business School Press 1993.
ISBN: 0-87584-366-2.

DE BRUIN et al. 2000

 de Bruin, B.; Verschut, A.; Wierstra, E.: Systematic Analysis of Business
Processes. Knowledge and Process Management 7 (2000) 2, pp. 87-96.

DE WECK 2007

 de Weck, O. L.: On the Role of DSM in Designing Systems and Products for
Changeability. In: Lindemann, U. et al. (Eds.): Proceedings of the 9th
International DSM Conference, Munich, 16.-18.10.2008. Aachen: Shaker
2007, pp. 311-323. ISBN: 978-3-8322-6641-7.

DEMARCO 1978

 DeMarco, T.: Structured Analysis. New York: Yourdon 1978.

DEMING 1994

 Deming, W. E.: Out of the Crisis. Cambridge: Cambridge University Press
1994. ISBN: 0-911379-01-0.

DEUBZER et al. 2007

 Deubzer, F.; Kreimeyer, M.; Herfeld, U.; Lindemann, U.: A Strategy for
efficient collaboration in virtual product development environments. In:
Bocquet, J.-C. (Ed.): Proceedings of the 16th International Conference on
Engineering Design, ICED'07, Paris, 28.-31.08.2007. Glasgow: The Design
Society 2007. ISBN: 1-904670-02-4.

DIEHL 2009

 Diehl, H.: Systemorientierte Visualisierung disziplinübergreifender
Entwicklungsabhängigkeiten mechatronischer Automobilsysteme.
Dissertation, Technische Universität München, 2009. München: Dr. Hut
2009.

DIESTEL 2006

 Diestel, R.: Graph Theory. Graduate Texts in Mathematics, 173. Berlin:
Springer 2006. ISBN: 978-3-540-26183-4.

DIETRICH 2001

 Dietrich, A.: Selbstorganisation - Management aus ganzheitlicher
Perspektive. Dissertation, Universität Graz, 2000. Wiesbaden: Gabler 2001.
ISBN: 3-8244-7406-9.

DINSMORE & CABANIS-BREWIN 2006

 Dinsmore, P. C.; Cabanis-Brewin, J.: The AMA Handbook of Project
Management. Toronto: AMACom Books 2006. ISBN: 0-8144-7271-0.

DIXON et al. 1988

 Dixon, J. R.; Duffey, M. R.; Irani, R. K.; Meunier, K. L.; Orelup, M. F.: A
Proposed Taxonomy of Mechanical Design Problems. In: Tipnis, V. A. et al.
(Eds.): Proceedings of the 1988 ASME International Computers in
Engineering Conference and Exhibition, 31.07.-04.08.1988, San Francisco,
CA. New York: ASME 1988, pp. 41-46.

9. References 245

DONG 2002

 Dong, Q.: Predicting and Managing System Interactions at Early Phase of the
Product Development Process. Ph.D. Thesis, Massachusetts Institute of
Technology, 2002. Cambridge, MA: Massachusetts Institute of Technology
2002.

DOROGOVTSEV & MENDES 2002

 Dorogovtsev, S. N.; Mendes, J. F.: Evolution of Networks. Advances in
Physics 51 (2002), pp. 1079-1187.

DRUCKER 2007

 Drucker, P. F.: The Practice of Management. Amsterdam: Elsevier 2007.
ISBN: 978-0-7506-8504-7.

DUMKE & LEHNER 2000

 Dumke, R.; Lehner, F.: Software-Metriken - Entwicklungen, Werkzeuge und
Anwendungsverfahren. Wiesbaden: Gabler 2000. ISBN: 3-8244-7120-5.

EBEN et al. 2008

 Eben, K.; Biedermann, W.; Lindemann, U.: Modeling Structural Change
over Time – Requirements and First Methods. In: Kreimeyer, M. et. al.
(Eds.): Proceedings of the 10th International DSM Conference, Stockholm,
11.-12.11.2008. Munich: Hanser 2008, pp. 15-24. ISBN: 978-3-446-41825-7.

EICHINGER et al. 2006

 Eichinger, M.; Maurer, M.; Lindemann, U.: Using Multiple Design Structure
Matrices. In: Marianovic, D. (Ed.): Proceedings of the 9th International
Design Conference, DESIGN 2006, Dubrovnik, Croatia, 15.-18.05.2006.
Zagreb: University of Zagreb, Faculty of Mechanical Engineering and Naval
Architecture 2006, pp. 229-236. ISBN: 953-6313-79-0.

EPPINGER 2001

 Eppinger, S. D.: Patterns of product development Interactions. In: Culley S.
et al. (Eds.): 13th International Conference on Engineering Design, ICED'01,
Glasgow, UK, 21.-23.08.2001. Bury St. Edmunds: Professional Engineering
2001, pp. 283-290. ISBN: 1-86058-354-7.

ERDOES & RÉNYI 1959

 Erdoes, P.; Rényi, A.: On Random Graphs I. Publicationes Mathematicae 6
(1959), pp. 290-297.

EUROPEAN FOUNDATION FOR QUALITY MANAGEMENT 1995

 European Foundation for Quality Management: Selbstbewertung, Richtlinien
für Unternehmen. Brüssel: EFQM 1995.

FAHRWINKEL 1995

 Fahrwinkel, U.: Methode zur Modellierung und Analyse von
Geschäftsprozessen zur Unterstützung des Business Process Reengineering.
Dissertation, Universität Paderborn, 1995. Paderborn: HNI 1995. ISBN: 3-
931466-00-0.

246 9. References

FINK & HAMPP 2005

 Fink, M.; Hampp, T.: Eine Untersuchung zum Metrikeinsatz In der Industrie.
In: Büren, G. et al. (Eds.): Proceedings of the DASMA Software Metrik
Kongress, MetriKon 2005, Kaiserslautern, 15.-16.11.2005. Aachen: Shaker
2005, pp. 33-42. ISBN: 3-8322-4615-0.

FINKE 2008

 Finke, G.: Operations Research and Networks. London: Wiley 2008. ISBN:
978-1-84821-092-9.

FLURSHEIM 1977

 Flursheim, C.: Engineering Design Interfaces: A management philosophy.
London: The Design Council 1977. ISBN: 0-85072-051-6.

FORRESTER 1977

 Forrester, J. W.: Industrial Dynamics. Cambridge, MA: MIT Press 1977.
ISBN: 0-262-06003-5.

FREEMAN 1978

 Freeman, L. C.: Centrality in Social Networks - Conceptual Clarification.
Social Networks 1 (1978) 3, pp. 215-239.

FREISLEBEN 2001

 Freisleben, D.: Gestaltung und Optimierung von
Produktentwicklungsprozesen mit einem wissensbasierten Vorgehensmodell.
Magdeburg: PhD Thesis Universität Magdeburg 2001.

FRUCHTERMAN & REINGOLD 1991

 Fruchterman, T.; Reingold, E.: Graph drawing by force-directed placement.
Software: Practice and Experience 21 (1991) 11, pp. 1129-1164.

GAITANIDES et al. 1994

 Gaitanides, M.; Scholz, R.; Vrohlings, A.; Raster, M.: Prozeßmanagement -
Konzepte, Umsetzungen und Erfahrungen des Reengineering. München:
Hanser 1994. ISBN: 3-446-17715-9.

GÄRTNER et al. 2008

 Gärtner, T.; Rohleder, N.; Schlick, C. M.: Simulation of Product Change
Effects on the Duration of Development Processes Based on the DSM. In:
Kreimeyer, M. et al. (Eds.): Proceedings of the 10th International DSM
Conference, Stockholm, 11.-12.11.2008. Munich: Hanser 2008, pp. 199-208.
ISBN: 978-3-446-41825-7.

GAUSEMEIER et al. 2006

 Gausemeier, J.; Hahn, A.; Kespohl, H. D.; Seifert, L.: Vernetzte
Produktentwicklung - Der erfolgreiche Weg zum Global Engineering
Network. München: Carl Hanser 2006. ISBN: 3-446-22725-3.

GAUSEMEIER & FINK 1999

 Gausemeier, J.; Fink, A.: Führung im Wandel - Ein ganzheitliches Modell
zur zukunftsorientierten Unternehmensgestaltung. München: Carl Hanser
1999. ISBN: 3-446-21079-2.

9. References 247

GEIGER 2000

 Geiger, O.: Kennzahlenorientiertes Entwicklungscontrolling - Ein
ganzheitliches, kennzahlenbasiertes Planungs-, Steuerungs- und
Kontrollinstrument zur Analyse des Entwicklungsbereichs industrieller
Unternehmen. Dissertation, Technische Universität Braunschweig, 2000.
Aachen: Shaker 2000. ISBN: 3-8265-5942-8.

GHANI et al. 2008

 Ghani, A. A. A.; Wei, K. T.; Muketha, G. M.; Wen, W. P.: Complexity
Metrics for Measuring the Understandability and Maintainability of Business
Process Models using Goal-Question-Metric (GQM). International Journal of
Computer Science and Network Security 8 (2008) 5, pp. 219-225.

GIGERENZER 2007

 Gigerenzer, G.: Gut Feelings. New York: Viking 2007. ISBN: 978-0-670-
03863-3.

GIRVAN & NEWMAN 2002

 Girvan, M.; Newman, M. E.: Community Structures in Social and Biological
Networks. Proceedings of the National Academy of Sciences 99 (2002) 12,
pp. 8271-8276.

GOLDENFELD & KADANOFF 1999

 Goldenfeld, N.; Kadanoff, L. P.: Simple Lessons from Complexity. Science
284 (1999) 5411, pp. 87-89.

GRAEBSCH et al. 2007

 Graebsch, M.; Lindemann, U.; Weiss, S.: Lean Development in Deutschland.
München: Dr. Hut 2007. ISBN: 978-3-89963-496-9.

GRIFFIN 1993

 Griffin, A.: Metrics for Measuring product Development Cycle Time.
Journal of Product Innovation Management 10 (1993) pp. 112-125.

GRONBACK 2006

 Gronback, R.: Model Validation: Applying Audits and Metrics to UML
Models. In: Proceedings of the 2004 Borland Conference, BORCON 2004,
San Jose, CA, 11.-15.09.2004. URL: http://conferences.embarcadero.com/
article/32089 - Access Date: 29.02.2009.

GROSS & YELLEN 2005

 Gross, J. L.; Yellen, J.: Graph Theory and its Applications. Boca Raton:
Chapman & Hall/CRC 2005. ISBN: 1-584-88505-X.

GRUHN & LAUE 2007a

 Gruhn, V.; Laue, R.: On experiments for measuring cognitive weights for
software control structures. In: Zhang, D. et al. (Eds.): 6th IEEE International
Conference on Cognitive Informatics, ICCI 2007, Lake Tahoe, CA, 06.-
08.08.2007. Piscataway, NJ: IEEE 2007, pp. 116-119. ISBN: 978-1-424-
41327-0.

GRUHN & LAUE 2007b

 Gruhn, V.; Laue, R.: What business process modelers can learn from
programmers. Science of Computer Programming 65 (2007) 1, pp. 4-13.

http://conferences.embarcadero.com/

248 9. References

GRUHN & LAUE 2006a

 Gruhn, V.; Laue, R.: Complexity Metrics for Business Process Models. In:
Abramowicz, W. et al. (Eds.): Proceedings of the 9th International
Conference on Business Information Systems, BIS 2006, Klagenfurt,
Austria, 31.05.-02.06.2006. Bonn: Gesellschaft für Informatik, GI 2006, pp.
1-12. ISBN: 3-88579-179-X.

GRUHN & LAUE 2006b

 Gruhn, V.; Laue, R.: Komplexitätsmetriken für Geschäftsprozessmodelle. In:
Mayr, H. C. et al. (Eds.): Proceedings of the Modellierung 2006, Innsbruck,
Austria, 22.-24.03.2006. Bonn: Gesellschaft für Informatik, GI 2006, pp.
289-292. ISBN: 3-88579-176-5.

GRUHN et al. 2006c

 Gruhn, V.; Laue, R.; Meyer, F.: Berechnung von Komplexitätsmetriken für
ereignisgesteuerte Prozessketten. In: Nüttgens, M. et al. (Eds.): Proceedings
of the 5th GI Workshop und Arbeitskreistreffen Geschäftsprozessmanage-
ment mit Ereignisgesteuerten Prozessketten, EPK 2006, Vienna, Austria,
30.11.-01.12.2006. Bonn: Gesellschaft für Informatik, GI 2006, pp. 189–202.

GÜRTLER et al. 2009

 Gürtler, M.; Kreimeyer, M.; Lindemann, U.: Extending the Active Sum /
Passive Sum Measure to Include Boolean Operators: A Case Study. In:
Kreimeyer, M.; Fadel, G.; Lindemann, U. (Eds.): Proceedings of 10th
International Design Structure Matrix Conference, DSM’09. Munich: Hanser

2009.

GUILLAUME & LATAPY 2004

 Guillaume, J.-L.; Latapy, M.: Bipartite Structure of all Complex Networks.
Information Processing Letters 90 (2004) 5, pp. 215-221.

GUIZZARDI et al. 2002

 Guizzardi, G.; Pires, L. F.; Sinderen, M. J. v.: On the role of Domain
Ontologies in the design of Domain-Specific Visual Modeling Languages.
In: Proceedings of the 17th ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2002, 2nd
Workshop on Domain-Specific Visual Languages, Seattle, WA, 04.-
08.11.2002. New York, NY: ACM Press 2002. ISBN: 1-581-13471-1.

HALES & GOOCH 2004

 Hales, C.; Gooch, S.: Managing Engineering Design. London: Springer
2004. ISBN: 1-85233-803-2.

HALL 1963

 Hall, A. D.: A Methodology for Systems Engineering. Princeton: Van
Nostrand 1963.

HALSTEAD 1977

 Halstead, M. H.: Elements of software science. New York, NY: North
Holland 1977. ISBN: 0-444-00215-4.

9. References 249

HAMMER & CHAMPY 2003

 Hammer, M.; Champy, J.: Reengineering the Corporation - A Manifesto for
Business Revolution. New York: HarperCollins 2003. ISBN: 0-06-055953-5.

HARRINGTON 1991

 Harrington, H. J.: Business Process Improvement – The Breakthrough
Strategy for Total Quality, Productivity and Competitiveness. New York:
McGraw-Hill 1991. ISBN: 0-07-026768-5.

HARRISON & MAGEL 1981

 Harrison, W. A.; Magel, K. I.: A Complexity Measure based on Nesting
Level. ACM SIGPLAN Notices 16 (1981) 3, pp. 63-74.

HATCHUEL & WEIL 2003

 Hatchuel, A.; Weil, B.: A new Approach of Innovative Design: an
Introduction to C-K Theory. In: Folkeson, A. et al. (Eds.): Proceedings of the
14th International Conference on Engineering Design, ICED'03, Stockholm,
Sweden, 19.-21.08.2003. Glasgow: The Design Society 2003. ISBN: 1-
904670-00-8.

HAYES 2000a

 Hayes, B.: Graph Theory in Practice: Part I. American Scientist 88 (2000) 1,
pp. 9-13.

HAYES 2000b

 Hayes, B.: Graph Theory in Practice: Part II. American Scientist 88 (2000) 2,
pp. 104-109.

HAWKINS 1980

 Hawkins, D. M.: Identification of Outliers. Chapman & Hall, London 1980.
ISBN: 0-412-21900-X

HEISENBERG 2007

 Heisenberg, W.: Physics and Philosophy - The Revolution in Modern
Science. New York: HarperPerennial 2007. ISBN: 978-0-06-120919-2.

HEISIG et al. 2008

 Heisig, P.; Grebici, K.; Ariyo, L.; Caldwell, N. H. M.; Clarkson, P. J.:
Towards an Integrated Product – Process – Rationale Framework for the
Product Life Cycle. In: Darlington, M. et al. (Eds.): Proceedings of the KIM
Project Conference 2008, Knowledge & Information Management Through
Life, University of Reading, 02.-03.04.2008. Bath: University of Bath 2008.

HENDERSON & CLARK 1990

 Henderson, R.; Clark, K.: Architectural Innovation: The Reconfiguration of
Existing Product Technologies and the Failure of Established Firms.
Administrative Science Quarterly 35 (1990) 1, pp. 9-30.

HENRY et al. 1981

 Henry, S.; Kafura, D.; Harris, K.: On the Relationships Among Three
Software Metrics. In: Proceedings of the 1981 ACM Workshop/Symposium
on Measurement and Evaluation of Software Quality, College Park, Md.,
25.-27.03.1981. New York: ACM 1981, pp. 81-88. ISBN: 0-89791-038-9.

250 9. References

HERFELD 2007

 Herfeld, U.: Matrix-basierte Verknüpfung von Komponenten und Funktionen
zur Integration von Konstruktion und Simulation. Dissertation, Technische
Universität München, 2007. München: Dr. Hut 2007. ISBN: 978-3-89963-
545-4.

HERFELD et al. 2006

 Herfeld, U.; Kreimeyer, M.; Deubzer, F.; Frank, T.; Lindemann, U.; Knaust,
U.: Verknüpfung von Komponenten und Funktionen zur Integration von
Konstruktion und Simulation in der Karosserieentwicklung. In: Proceedings
of the 13th Tagung Berechnung und Simulation im Fahrzeugbau, Würzburg,
27.-28.09.2006. VDI-Berichte, 1967. Düsseldorf: VDI-Verl. 2006, pp. 259-
276. ISBN: 3-18-091967-1.

HEYMANN 2005

 Heymann, M.: "Kunst" und Wissenschaft in der Technik des 20.
Jahrhunderts - Zur Geschichte der Konstruktionswissenschaft. Zürich:
Chronos 2005. ISBN: 3-0340-0723-X.

HÖFFERER 2007

 Höfferer, P.: Achieving Business Process Model Interoperability using
Metamodels and Ontologies. In: Proceedings of the 15th European
Conference on Information Systems, ECIS 2007, St. Gallen, 07.-09.06.2007.
St. Gallen: University of St. Gallen 2007, pp. 1620-1631.

HOLLAND 1996

 Holland, J. H.: Hidden Order - How Adaptation Builds Complexity. Reading,
MA: Addison-Wesley, 1996. ISBN: 0-201-40793-0.

HORNBY 2007

 Hornby, G. S.: Modularity, Reuse, and Hierarchy: Measuring Complexity by
Measuring Structure and Organization. Complexity 13 (2007) 2, pp. 50-61.

HORVÁTH 2003

 Horváth, P.: Controlling. München: Vahlen 2003. ISBN: 3-8006-2992-5.

IDS SCHEER 2007

 IDS Scheer: Business Process Report 2007. Saarbrücken: IDS Scheer AG
2007.

IEEE 1991

 IEEE: Standard Glossary of Software Engineering Terrninology. IEEE Std
610.12-1990. New York: IEEE 1991. ISBN: 1-559-37067-X.

ILIE et al. 2008

 Ilie, D.; Fischer, F.; Lindemann, U.: Analysis of the Information
Environment in the Context of Target and Requirements Management in the
Automotive Industry. In: Proceedings of the 2008 ASME International
Design Engineering Technical Conferences and Computers and Information
in Engineering Conference, IDETC/CIE 2008, 28th Computers and
Information in Engineering Conference, New York City, NY, 03.-
06.08.2008. New York, NY: ASME 2008, pp. 659-670. ISBN:
978-0-7918-4327-7.

9. References 251

INCOSE 2007

 INCOSE: Systems Engineering Handbook v3.1. San Diego: INCOSE 2007.

JACKSON 1991

 Jackson, M. C.: Systems Methodology for the Management Sciences. New
York: Plenum 1991. ISBN: 0-306-43877-1.

JARRATT 2004

 Jarratt, T. A. W.: A Model-based Approach to Support the Management of
Engineering Change. Ph.D. Thesis, University of Cambridge, 2004.
Cambridge: University of Cambridge 2004.

KAIN et al. 2008

 Kain, A.; Kirschner, R.; Lindemann, U.; Wastian, M.; Schneider, M.;
Klendauer, R.; Gunkel, J.: An Approach to Model Time Dependent Process-
Stakeholder Networks. In: Kreimeyer, M. et al. (Eds.): Proceedings of the
10th International DSM Conference, Stockholm, 11.-12.11.2008. Munich:
Hanser 2008, pp. 71-82. ISBN: 978-3-446-41825-7.

KAPLAN & NORTON 1992

 Kaplan, R. S.; Norton, D. P.: The Balanced Scorecard - Measures that drive
Performance. Harvard Business Review 70 (1992) 1, pp. 71-79.

KARNIEL & REICH 2009

 Karniel, A.; Reich, Y.: From DSM-based planning to Design Process
Simulation: A review of process-scheme logic verification issues. IEEE
Transactions on Engineering Management 56 (2009) 4, pp. 636-649.

KARNIEL & REICH 2007

 Karniel, A.; Reich, Y.: Coherent Interpretation of DSM Plan to PDP
Simulation. In: Bocquet, J.-C. (Ed.): Proceedings of the 16th International
Conference on Engineering Design, ICED'07, Paris, 28.-31.08.2007.
Glasgow: The Design Society 2007. ISBN: 1-904670-02-4.

KAUFFMAN 1993

 Kauffman, S. A.: The Origins of Order - Self-Organization and Selection in
Evolution. New York: Oxford University Press 1993. ISBN: 0-19-507951-5.

KEIJZER et al. 2007

 Keijzer, W.; Kreimeyer, M.; Schack, R.; Lindemann, U.; Zäh, M.:
Vernetzungsstrukturen in der Digitalen Fabrik. München: Dr. Hut 2007.
ISBN: 3-89963-378-4.

KEIJZER 2007

 Keijzer, W. C.: Wandlungsfähigkeit von Entwicklungsnetzwerken.
Dissertation, Technische Universität München, 2007. München: Technische
Universität München 2007.

KELLER et al. 2005

 Keller, R.; Eger, T.; Eckert, C. M.; Clarkson, P. J.: Visualising change
propagation. In: Samuel, A. E. et al. (Eds.): Proceedings of the 15th
International Conference on Engineering Design, ICED'05, Melbourne,
Australia, 15.-18.08.2005. Barton ACT: Engineers Australia 2005. ISBN:
0-85825-788-2.

252 9. References

KERNLER 1996

 Kernler, H.: PPS-Controlling. Wiesbaden: Gabler 1996. ISBN: 3-409-
92294-6.

KIM et al. 2002

 Kim, B. J.; Yoon, C. N.; Han, S. K.; Jeong, H.: Path Finding Strategies in
Scale-free Networks. Physical Review E 65 (2002) 2, id. 027103.

KLEINFELD 2002

 Kleinfeld, J. S.: The Small World Problem. Society 39 (2002) 2, pp. 61-66.

KLUTH et al. 2008

 Kluth, M.; Ahlemann, F.; Teuteberg, F.: SEMAT − Ein Werkzeug zur

ontologiebasierten Analyse und zum Vergleich von Prozessmodellen. In:
Loos, P. et al. (Eds.): Proceedings of the Modellierung betrieblicher
Informationssysteme, MobIS 2008, Saarbrücken, Germany, 27.-28.11.2008.
Bonn: Gesellschaft für Informatik, GI 2008, pp. 128-147. ISBN: 978-3-
88579-235-2.

KNEUPER 2007

 Kneuper, R.: CMMI - Verbesserung von Softwareprozessen mit Capability
Maturity Model Integration. Heidelberg: dpunkt 2007. ISBN: 3-89864-
373-5.

KNOWLEDGE BASED SYSTEMS 1992

 Knowledge Based Systems: IDEF3 method report. College Station, TX:
Knowledge Based Systems, Inc. 1992.

KÖNIG et al. 2008

 König, C.; Kreimeyer, M.; Braun, T.: Multiple-Domain Matrices as a
Framework for Systematic Process Analysis. In: Kreimeyer, M. et al. (Eds.):
Proceedings of the 10th International DSM Conference, Stockholm, 11.-
12.11.2008. Munich: Hanser 2008, pp. 131-244. ISBN: 978-3-446-41825-7.

KOPPEL 1987

 Koppel, M.: Complexity, Depth and Sophistication. Complex Systems 1
(1987) 6, pp. 1087-1091.

KORNMEIER 2007

 Kornmeier, M.: Wissenschaftstheorie und wissenschaftliches Arbeiten - Eine
Einführung für Wirtschaftswissenschaftler. Heidelberg: Physica-Verlag
2007. ISBN: 978-3-7908-1918-2.

KORTLER et al. 2009

 Kortler, S.; Kreimeyer, M.; Lindemann, U.: A planarity-based complexity
metric. In: Proceedings of the 17th International Conference on Engineering
Design, ICED'09, Stanford, CA, 24.-27.08.2009. Glasgow: The Design
Society 2009.

KREIMEYER ET AL. 2010

 Kreimeyer, M.; Wynn, D. C.; Clarkson, P. J.; Lindemann, U.: Profiling PD
Processes by Combining Structural Analysis and Simulation. In: Proceedings
of 11th International Design Conference DESIGN 2010. Glasgow: The
Design Society 2010, pp. 1131 – 1142.

9. References 253

KREIMEYER 2008

 Kreimeyer, M.: Elements of Research on Engineering Design Processes
(Presentation in Process SIG). In: Marjanovic, D. et al. (Eds.): Proceedings
of the 10th International Design Conference, DESIGN 2008, Dubrovnik,
Croatia, 19.-22-05.2008. Glasgow: The Design Society 2008. ISBN: 953-
6313-90-1.

KREIMEYER et al. 2008a

 Kreimeyer, M.; Daniilidis, C.; Lindemann, U.: A Framework to Classify
Process Improvement Projects. In: Marjanovic, D. et al. (Eds.): Proceedings
of the 10th International Design Conference, DESIGN 2008, Dubrovnik,
Croatia, 19.-22-05.2008. Glasgow: The Design Society 2008, pp. 951-958.
ISBN: 978-953-6313-89-1.

KREIMEYER et al. 2008b

 Kreimeyer, M.; Deubzer, F.; Herfeld, U.; Lindemann, U.: Strategies Towards
Maturity Of Product Information Objects To Manage Concurrent
Engineering Processes. In: Horváth, I. et al. (Eds.): Proceedings of the 7th
International Symposium on Tools and Methods of Competitive Engineering,
TMCE 2008, Izmir, Turkey, 21.-25.04.2008. Delft: TU Delft 2008, pp. 925-
940. ISBN: 978-90-5155-044-3.

KREIMEYER et al. 2008c

 Kreimeyer, M.; König, C.; Braun, T.: Structural Metrics to Assess Processes.
In: Kreimeyer, M. et al. (Eds.): Proceedings of the 10th International DSM
Conference, Stockholm, 11.-12.11.2008. Munich: Hanser 2008, pp. 245-258.
ISBN: 978-3-446-41825-7.

KREIMEYER et al. 2008d

 Kreimeyer, M.; Braun, S.; Gürtler, M.; Lindemann, U.: Relating two
Domains via a Third - an Approach to Overcome Ambiguous Attributions
using Multiple-Domain Matrices. In: Proceedings of the 2008 ASME
International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, IDETC/CIE 2008, 28th Computers
and Information in Engineering Conference, New York City, NY, 03.-
06.08.2008. New York, NY: ASME 2008. ISBN: 978-0-7918-4327-7.

KREIMEYER et al. 2007a

 Kreimeyer, M.; Deubzer, F.; Danilovic, M.; Fuchs, S. D.; Herfeld, U.;
Lindemann, U.: Team Composition to Enhance Collaboration Between
Embodiment Design and Simulation Departments. In: Bocquet, J.-C. (Ed.):
Proceedings of the 16th International Conference on Engineering Design,
ICED'07, Paris, 28.-31.08.2007. Glasgow: The Design Society 2007. ISBN:
1-904670-02-4.

KREIMEYER et al. 2007b

 Kreimeyer, M.; Eichinger, M.; Lindemann, U.: Aligning Multiple Domains
of Design Processes. In: Bocquet, J.-C. (Ed.): Proceedings of the 16th
International Conference on Engineering Design, ICED'07, Paris, 28.-
31.08.2007. Glasgow: The Design Society 2007. ISBN: 1-904670-02-4.

254 9. References

KREIMEYER et al. 2007c

 Kreimeyer, M.; Eichinger, M.; Lindemann, U.: Assessment of Process
Networks Using Graph and Network Theory Based Key Figures. In: Van
Velden, D. (Ed.): Proceedings of the 4th Future Business Technology
Conference, FUBUTEC 2007, Delft, the Netherlands, 25.-27.04.2007.
Ghent: EUROSIS-ETI 2007, pp. 13-19. ISBN: 978-90-77381-33-5.

KREIMEYER et al. 2006a

 Kreimeyer, M.; Herfeld, U.; Deubzer, F.; Dequidt, C.; Lindemann, U.:
Function-driven product design in virtual teams through methodical
structuring of requirements and components. In: Proceedings of the 8th
Biennial ASME Conference on Engineering Systems Design and Analysis,
ESDA 2006, Torino, Italy, 04.-07.07.2006. New York: ASME 2006. ISBN:
0-7918-3779-3.

KREIMEYER et al. 2006b

 Kreimeyer, M.; Herfeld, U.; Deubzer, F.; Lindemann, U.: Effiziente
Zusammenarbeit von Konstruktions- und Simulationsabteilungen in der
Automobilindustrie. CiDaD Working Paper Series 1 (2006) 2.

KREIMEYER et al. 2006c

 Kreimeyer, M.; Heymann, M.; Lauer, W.; Lindemann, U.: Die
Konstruktionsmethodik im Wandel der Zeit - Ein Überblick zum 100sten
Geburtstag von Prof. Wolf Rodenacker. Konstruktion (2006) 10, pp. 72-74.

KREIMEYER et al. 2006d

 Kreimeyer, M.; Neumüller, K.; Lindemann, U.: A Management Model for
the Design Process in Vehicle Safety Development. In: Marianovic, D. (Ed.):
Proceedings of the 9th International Design Conference, DESIGN 2006,
Dubrovnik, Croatia, 15.-18.05.2006. Glasgow: The Design Society 2006, pp.
1525-1532. ISBN: 953-6313-79-0.

KREIMEYER et al. 2005

 Kreimeyer, M.; Deubzer, F.; Herfeld, U.; Lindemann, U.: A Survey on
Efficient Collaboration of Design and Simulation in Product Development.
In: Proceedings of the 23rd CADFEM Users’ Meeting 2005 International

Congress on FEM Technology, Bonn, 09.-11.11.2005. Gräfing: CADFEM
GmbH 2005.

KRISHNAN et al. 1997

 Krishnan, V.; Eppinger, S. D.; Whitney, D. E.: A Model-Based Framework
to Overlap Product Development Activities. Management Science 43 (1997)
4, pp. 437-451.

KÜHN 2004

 Kühn, H.: Methodenintegration im Business Engineering. Dissertation,
Universität Wien, 2004. Wien: Universität Wien 2004.

KUSIAK & WANG 1993

 Kusiak, A.; Wang, J.: Efficient Organizing of Design Activities.
International Journal of Production Research 31 (1993) 4, pp. 753-769.

9. References 255

KUSIAK et al. 1995

 Kusiak, A.; Wang, J.; He, W.; Feng, C.-X.: A Structured Approach for
Analysis of Design Processes. IEEE Transactions on Components,
Packaging, and Manufactoring Technology - Part A 18 (1995) 3, pp. 664-
673.

LACHNIT 1976

 Lachnit, L.: Zur Weiterentwicklung betriebswirtschaftlicher
Kennzahlensysteme. Zeitschrift für betriebswissenschaftliche Forschung 28
(1976) 4, pp. 216-230.

LANGER et al. 2009

 Langer, S.; Kreimeyer, M.; Müller, P.; Lindemann, U.; Blessing, L.:
Entwicklungsprozesse hybrider Leistungsbündel - Evaluierung von
Modellierungsmethoden unter Berücksichtigung zyklischer Einflussfaktoren.
In: Thomas, O. et al. (Eds.): Dienstleistungsmodellierung - Methoden,
Werkzeuge und Branchenlösungen. Heidelberg: Physica-Verlag 2009, pp.
71-87. ISBN: 978-3-7908-2098-0.

LATVA-KOIVISTO 2001

 Latva-Koivisto, A. M.: Finding a complexity measure for business process
models. Research report. Helsinki: Helsinki University of Technology,
Systems Analysis Laboratory 2001.

LÄUCHLI 1991

 Läuchli, P.: Algorithmische Graphentheorie. Basel: Birkhäuser 1991. ISBN:
3-7643-2663-8.

LEE & YOON 1992

 Lee, G. S.; Yoon, J.-M.: An Empirical Study on the Complexity Metrics of
Petri Nets. Microelectronics and Reliability 32 (1992) 3, pp. 323-329.

LEE 2003

 Lee, T.: Complexity Theory in Axiomatic Design. Ph.D. Thesis,
Massachusetts Institute of Technology, 2003. Cambridge, MA:
Massachusetts Institute of Technology 2003.

LI et al. 2005

 Li, L.; Alderson, D.; Tanaka, R.; Doyle, J. C.; Willinger, W.: Towards a
Theory of Scale-Free Graphs: Definition, Properties, and Implications.
Internet Mathematics 2 (2005) 4, pp. 431-523.

LIBERATI et al. 2007

 Liberati, M.; Munari, F.; Racchetti, P.; Splendiani, T.: Social Network
Techniques Applied to Design Structure Matrix Analysis. The Case of a New
Engine Development at Ferrari SpA. In: Lindemann, U. et al. (Eds.):
Proceedings of the 9th International DSM Conference, Munich, 16.-
18.10.2008. Aachen: Shaker 2007, pp. 35-47. ISBN: 978-3-8322-6641-7.

LIMA 2007

 Lima, M.: VisualComplexity.com. URL: http://www.visualcomplexity.com -
Access Date: 04.03.2009.

http://www.visualcomplexity.com

256 9. References

LINDEMANN et al. 2009

 Lindemann, U.; Maurer, M.; Braun, T.: Structural Complexity Management.
Berlin: Springer 2009. ISBN: 978-3-540-87888-9.

LINDEMANN 2007

 Lindemann, U.: Methodische Entwicklung technischer Produkte. Berlin:
Springer 2007. ISBN: 3-540-37435-3.

LINDEMANN 2003

 Lindemann, U.: Methods are Networks of Methods. In: Folkeson, A. et al.
(Eds.): Proceedings of the 14th International Conference on Engineering
Design, ICED'03, Stockholm, Sweden, 19.-21.08.2003. Glasgow: The
Design Society 2003, pp. 625-626. ISBN: 1-904670-00-8.

LIU et al. 2003

 Liu, X.; Wang, Y.; Jiang, S.: A Metrics based Task Analysis Model for
Design Review Planning. Design Studies 24 (2003) pp. 375-390.

LOCH et al. 2003

 Loch, C.; Mihm, J.; Huchzermeier, A.: Concurrent Engineering and Design
Oscillations in Complex Engineering Projects. Concurrent Engineering:
Research and Applications 11 (2003) 3, pp. 733-750.

LÓPEZ-MESA et al. 2004

 López-Mesa, B.; Eriksson, S.; Thompson, G.: The Decomposition and
Linkage of Design Methods and Problems. In: Marjanovic, D. (Ed.):
Proceedings of the 8th International Design Conference, DESIGN 2004,
Dubrovnik, Croatia, 17.-20.05.2004. Glasgow: The Design Society 2004, pp.
367-376. ISBN: 953-6313-59-6.

LORENZ 2009

 Lorenz, M.: Handling of Strategic Uncertainties in Integrated Product
Development. Dissertation, Technische Universität München, 2008.
München: Dr. Hut 2009. ISBN: 978-3-89963-923-0.

LUCE & KRUMHANSL 1988

 Luce, R. D; Krumhansl, C. L.: Measurement, scaling, and psychophysics. In:
Atkinson, R. C.; Herrnstein, R. J.; Lindzey, G.; Luce, R. D. (Eds.): Stevens‘

Handbook of Experimental Psychology. New York: John Wiley and Sons
1988, pp. 3-74. ISBN: 0-471-04207-2.

LUKAS et al. 2007

 Lukas, M.; Gärtner, T.; Rohleder, N.; Schlick, C. M.: A Simulation Model to
Predict Impacts of Alterations in Development Processes. In: Lindemann, U.
et al. (Eds.): Proceedings of the 9th International DSM Conference, Munich,
16.-18.10.2008. Aachen: Shaker 2007, pp. 127-136. ISBN: 978-3-8322-
6641-7.

MAIER et al. 2008

 Maier, A.; Kreimeyer, M.; Lindemann, U.; Clarkson, P. J.: Reflecting
communication: a key factor for successful collaboration between
embodiment design and simulation. Journal of Engineering Design 20 (2009)
3, pp. 265-287.

9. References 257

MAIER 2007

 Maier, A.: A grid-based Asessment Method of Communcation in
Engineering Design. Ph.D. Thesis, University of Cambridge, 2007.
Cambridge: University of Cambridge 2007.

MALIK 2003

 Malik, F.: Strategie des Managements komplexer Systeme. Habilitation,
Universität St. Gallen, 1978. Bern: Haupt 2003. ISBN: 3-258-06684-1.

MARCA & MCGOWEN 1988

 Marca, D. A.; McGowen, C. L.: SADT - Structural Analysis and Design
Technique. New York: McGraw-Hill 1988. ISBN: 0-07-040235-3.

MASLOV & SNEPPEN 2002

 Maslov, S.; Sneppen, K.: Specificity and Stability in Topology of Protein
Networks. Science 296 (2002) 5569, pp. 910-913.

MAURER 2007

 Maurer, M.: Structural Awareness in Complex Product Design. Dissertation,
Technische Universität München, 2007. München: Dr. Hut 2007. ISBN:
978-3-89963-632-1.

MAURER et al. 2006

 Maurer, M.; Pulm, U.; Eichinger, M.; Lindemann, U.: Extending Design
Structure Matrices and Domain Mapping Matrices by Multiple Design
Structure Matrices. In: Proceedings of the 8th Biennial ASME Conference on
Engineering Systems Design and Analysis, ESDA 2006, Torino, Italy, 04.-
07.07.2006. New York: ASME 2006. ISBN: 0-7918-3779-3.

MAURER et al. 2004

 Maurer, M.; Pulm, U.; Lindemann, U.: Utilization of graph constellations for
the development of customizable product spectra. In: Proceedings of the 4th
International ICSC Symposium on Engineering of Intelligent Systems, EIS
2004, Funchal, Madeira, Portugal, 29.02.-02.03.2004. Millet, Alberta: ICSC
Interdisciplinary Research Canada 2004. ISBN: 3-906454-35-5.

MCCABE 1976

 McCabe, T. J.: A Complexity Measure. IEEE Transactions on Software
Engineering 2 (1976) 4, pp. 308-320.

MCCORMICK et al. 1972

 McCormick, J. W. T.; Schweizer, P. J.; White, T. W.: Problem
Decomposition and Data Reorganization by a Clustering Technique.
Operations Research 20 (1972) 5, pp. 993-1009.

MCQUAID 1997

 McQuaid, P. A.: The profile metric and software quality. In: Proceedings of
the International Conference on Software Quality. Montgomery, AL, 06.-
08.10.1997. Milwaukee, WI: American Society for Quality 1997, pp. 245-
252.

MENDLING 2008

 Mendling, J.: Metrics for Process Models. Lecture Notes in Business
Information Processing, 6. Berlin: Springer 2008. ISBN: 978-3-540-89223-6.

258 9. References

MENDLING et al. 2007

 Mendling, J.; Reijers, H. A.; Cardoso, J.: What Makes Process Models
Understandable? In: Alonso, G. et al. (Eds.): Proceedings of the 5th
International Conference on Business Process Management, BPM 2007,
Brisbane, Australia, 24.-28.09.2007. Berlin: Springer 2007, pp. 48-63. ISBN:
978-3-540-75182-3.

MERRIAM-WEBSTER ONLINE DICTIONARY 2009

 Merriam-Webster Online Dictionary: Structure. URL: http://www.merriam-
webster.com/dictionary/structure - Access Date: 05.02.2009.

MERTINS & JOCHEM 1998

 Mertins, K.; Jochem, R.: MO²GO. In: Bernus, P.; Mertins, K.; Schmidt, G.
(Eds.): Handbook on Architectures of Information Systems. Berlin: Springer
1998. ISBN: 3-540-64453-9.

MILLER et al. 2006

 Miller, W. D.; McCarter, G.; Hayenga, C. O.: Modeling Organizational
Dynamics. In: Proceedings of the 2006 IEEE/SMC International Conference
on System of Systems Engineering, Los Angeles, CA, 24.-26.04.2006.
Piscataway, NJ: IEEE Operations Center 2006, pp. 94-99. ISBN: 1-4244-
0188-7.

MILO et al. 2002

 Milo, R.; Shen-Orr, S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon, U.:
Network Motifs: Simple Building Blocks of Complex Networks. Science
298 (2002) 5594, pp. 824-827.

MINGERS 1994

 Mingers, J.: Self-Producing Systems - Implications and Applications of
Autopoiesis. Berlin: Springer 1994. ISBN: 0-306-44797-5.

MINNEMANN 1991

 Minnemann, S.: The Social Construction of a Technical Reality - Empirical
Studies of Group Engineering Practice. Ph.D. Thesis, Stanford University,
1991. Palo Alto, CA: Stanford University 1991.

MOODY 2003

 Moody, J.: Race, School Integration, and Friendship Segregation in America.
American Journal of Sociology 197 (2003) 3, pp. 679-716.

MORASCA 1999

 Morasca, S.: Measuring attributes of concurrent software specifications in
petri nets. In: Proceedings of the 6th International Software Metrics
Symposium, METRICS'99, Boca Raton, FL, 04.-06.11.1999. Los Alamitos,
CA: IEEE Computer Society 1999, pp. 100-110. ISBN: 0-7695-0403-5.

MORISAWA 2002

 Morisawa, T.: Building Performance Measurement Systems with the
Balanced Scorecard Approach. Tokyo: Nomura Research Institute 2002. NRI
Papers No. 45 (2002) April 1.

http://www.merriam-webster.com/dictionary/structure
http://www.merriam-webster.com/dictionary/structure

9. References 259

MUTSCHELLER 1996

 Mutscheller, A. M.: Vorgehensmodell zur Entwicklung von Kennzahlen und
Indikatoren für das Qualitätsmanagement. Dissertation, Universität St.
Gallen, 1996. St. Gallen: Universität St. Gallen 1996.

NASA 1995

 NASA: NASA Systems Engineering Handbook, SP-6105. Washington, D.
C.: National Aeronautics and Space Administration 1995.

NAVLAKHA 1987

 Navlakha J. K.: A Survey of System Complexity Metrics. The Computer
Journal 30 (1987) 3, pp. 233-238.

NEWELL 1990

 Newell, A.: Unified Theories of Cognition. Cambridge, MA: Harvard
University Press 1990. ISBN: 0-674-92099-6.

NEWMAN 2003a

 Newman, M. E.: The Structure and Function of Complex Networks. SIAM
Review 45 (2003) 2, pp. 167-256.

NEWMAN 2003b

 Newman, M. E.: Mixing patterns in networks. Physical Review E 67 (2003)
2, id. 026126.

NEWMAN 2002

 Newman, M. E.: Assortative Mixing in Networks. Physical Review Letters
89 (2002) 20, id. 208701.

NEWMAN et al. 2001

 Newman, M. E.; Strogatz, S. H.; Watts, D. J.: Random Graphs with Arbitrary
Degree Distributions and Their Applications. Physical Review E 64 (2001)
2, id. 026118.

NIKOLOSKI et al. 2005

 Nikoloski, Z.; Deo, N.; Kucera, L.: Degree-correlation of scale-free graphs.
In: Felsner, S. (Ed.): Proceedings of the 2005 European Conference on
Combinatorics, Graph Theory and Applications, EuroComb'05, Berlin, 05.-
09.09.2005. Discrete Mathematics & Theoretical Computer Science,
DMTCS Proceedings Volume AE (2005), pp. 239-244. URL: http://
www.dmtcs.org/proceedings/dmAE01ind.html - Access Date: 27.02.2009.

NISSEN 1998

 Nissen, M. E.: Redesigning Reengineering through Measurement-driven
Inference. MIS Quarterly 22 (1998) 4, pp. 509-534.

NORDEN 1964

 Norden, P. V.: Manpower utilization patterns in research and development.
Ph.D. Thesis, Columbia University, 1964. New York, NY: Columbia
University 1964.

NORDSIECK 1934

 Nordsieck, F.: Grundlagen der Organisationslehre. Stuttgart: Poeschel 1934.

http://www.dmtcs.org/proceedings/dmAE01ind.html
http://www.dmtcs.org/proceedings/dmAE01ind.html

260 9. References

O'DONNELL & DUFFY 2005

 O'Donnell, F. J.; Duffy, A. H. B.: Design Performance. London: Springer
2005. ISBN: 1-85233-889-X.

O'DONOVAN et al. 2005

 O'Donovan, B. D.; Eckert, C.; Clarkson, P. J.; Browning, T. R.: Design
Planning and Modelling. In: Clarkson, P. J. et al. (Eds.): Design Process
Improvement - A Review of Current Practice. London: Springer 2005, pp.
60-87. ISBN: 1-85233-701-X.

O'DONOVAN 2004

 O'Donovan, B. D.: Modelling and Simulation of Engineering Design
Processes. Ph.D. Thesis, University of Cambridge, 2000. Cambridge:
University of Cambridge 2004.

ODIORNE 1980

 Odiorne, G. S.: Management by Objectives. München: Moderne Industrie
1980. ISBN: 3-478-32640-0.

OFFEN & JEFFERY 1997

 Offen, R. J.; Jeffery, R.: Establishing Software Measurement Programs.
IEEE Computer Society 14 (1997) 2, pp. 45-53.

OLIVER et al. 1997

 Oliver, D. W.; Kelliher, T. P.; Keegan, J. G. Jr.: Engineering Complex
Systems. New York: McGraw-Hill 1997. ISBN: 0-07-048188-1.

OESTERREICH et al. 2003

 Oesterreich, B.; Weiss, C.; Schröder, C.; Weilkiens, T.; Lenhard, A.:
Objektorientierte Geschäftsprozessmodellierung mit der UML. Heidelberg:
dpunkt 2003. ISBN: 3-89864-237-2.

OVIEDO 1980

 Oviedo, E. I.: Control Flow, Data Flow and Program Complexity.
Proceedings of the 4th IEEE International Computer Software &
Applications Conference, COMPSAC'80, Chicago, IL, 27.-31.10.1980. Los
Alamitos, CA: IEEE Computer Society 1980, pp. 146-152.

SIMPSON et al. 1989

 Simpson, J. A.; Weiner, E. S. C.; Murry, J. A. H. (Eds.): The Oxford English
Dictionary. Oxford: Oxford University Press 1989. ISBN: 0-19-861186-2.

PADULO & ARBIB 1974

 Padulo, L.; Arbib, M. A.: System Theory - A Unified State-space Approach
to Continuous and Discrete Systems. Philadelphia: Saunders 1974. ISBN:
0-7216-7035-0.

PAHL et al. 2007

 Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.-H.: Konstruktionslehre. Berlin:
Springer 2007. ISBN: 978-3-540-34060-7.

PAPADIMITRIOU 1994

 Papadimitriou, C. H.: Computational Complexity. Reading, MA: Addison-
Wesley 1994. ISBN: 0-201-53082-1.

9. References 261

PATZAK 1982

 Patzak, G.: Systemtechnik – Planung komplexer, innovativer Systeme.
Berlin: Springer 1982. ISBN: 3-540-11783-0.

PETERSON 1981

 Peterson, J. L.: Petri Net Theory and the Modeling of Systems. Englewood
Cliffs, NJ: Prentice Hall 1981. ISBN: 0-13-661983-5.

PFEIFFER & GEHLERT 2005

 Pfeiffer, D.; Gehlert, A.: A framework for comparing conceptual models. In:
Desel, J. et al. (Eds.): Proceedings of the Workshop Enterprise Modelling
and Information Systems Architectures, EMISA 2005, Klagenfurt, 24.-
25.10.2005. Bonn: Gesellschaft für Informatik, GI 2005, pp. 108-122. ISBN:
3-88579-404-7.

PIMMLER & EPPINGER 1994

 Pimmler, T. U.; Eppinger, S. D.: Integration Analysis of Product
Decompositions. In: Hight, T. K. et al. (Eds.): Proceedings of the ASME
Design Technical Conferences, 6th International Conference on Design
Theory and Methodolog, DTM'94, Minneapolis, MN, 11.-14.09.1994. New
York, NY: ASME 1994. ISBN: 0-7918-1282-0.

PIWOWARSKI 1982

 Piwowarski, P.: A Nesting Level Complexity Measure. ACM SIGPLAN
Notices 19 (1982) 9, pp. 44-50.

PMI 2003

 PMI: A Guide To The Project Management Body Of Knowledge. Newtown
Square: Project Management Institute, PMI 2003. ISBN: 1-930699-21-2.

PONN & LINDEMANN 2008

 Ponn, J.; Lindemann, U.: Konzeptentwicklung und Gestaltung technischer
Produkte. Berlin: Springer 2008. ISBN: 978-3-540-68562-3.

PONN & LINDEMANN 2005

 Ponn, J.; Lindemann, U.: Characterization of Design Situations and
Processes and a Process Module Set for Product Development. In: Samuel,
A. E. et al. (Eds.): Proceedings of the 15th International Conference on
Engineering Design, ICED'05, Melbourne, Australia, 15.-18.08.2005. Barton
ACT: Engineers Australia 2005. ISBN: 0-85825-788-2.

PROBST 1987

 Probst, G. J. B.: Selbst-Organisation - Ordnungsprozesse in sozialen
Systemen aus ganzheitlicher Sicht. Berlin: Parey 1987. ISBN: 3-489-
63334-2.

PROBST 1981

 Probst, G. J. B.: Kybernetische Gesetzhypothesen als Basis für Gestaltungs-
und Lenkungsregeln im Management. Dissertation, Universität St. Gallen,
1981. Bern: Haupt 1981. ISBN: 3-258-03116-9.

PULLAN & BHADESHIA 2000

 Pullan, W.; Bhadeshia, H. (Eds.): Structure - In Science and Art. Cambridge:
Cambridge University Press 2000. ISBN: 0-521-78258-9.

262 9. References

PULM 2004

 Pulm, U.: Eine systemtheoretische Betrachtung der Produktentwicklung.
Dissertation, Technische Universität München, 2004. München: Dr. Hut
2004. ISBN: 3-89963-062-9.

RECHTIN 1991

 Rechtin, E.: Systems Architecting - Creating & Building Complex Systems.
Englewood Cliffs, NJ: Prentice Hall 1991. ISBN: 0-13-880345-5.

RECKER 2007

 Recker, J.: A Socio-pragmatic Constructionist Framework for Understanding
Quality in Process Modeling. Australasian Journal of Information Systems
14 (2007) 2, pp. 43-63.

REED 2001

 Reed, W. J.: The Pareto, Zipf and other power laws. Economics Letters 74
(2001) 1, pp. 15-19.

REICHMANN & FORM 2000

 Reichmann, T.; Form, S.: Balanced Chance and Risk Management.
Controlling 12 (2000) 4-5, pp. 189-199.

REICHMANN & LACHNIT 1977

 Reichmann, T.; Lachnit, L.: Kennzahlensysteme als Instrument zur Planung,
Steuerung und Kontrolle von Unternehmungen. Maschinenbau 9 (1977) pp.
45-53 and 10 (1977) pp. 13-19.

RICHTER 2007

 Richter, K.: Methoden zur Unterstützung bei der Entwicklung
plattformübergreifender Benutzerschnittstellen. Dissertation, Technische
Universität Darmstadt, 2007. Darmstadt: Technische Universität Darmstadt
2007.

RIND 1999

 Rind, D.: Complexity and Climate. Science 284 (1999) 5411, pp. 105-107.

RITTEL & WEBBER 1973

 Rittel, H.; Webber, M.: Dilemmas in a General Theory of Planning. Policy
Sciences, 4 (1972) 2, pp. 155-169. ISSN: 0032-2687.

ROBERTSON & SEYMOUR 1986

 Robertson, N.; Seymour, P. D.: Graph minors. II. Algorithmic aspects of
tree-width. Journal of Algorithms 7 (1986) 3, pp. 309-322.

ROELOFSEN et al. 2008

 Roelofsen, J.; Krehmer, H.; Lindemann, U.; Meerkamm, H.: Using the
Design-Structure-Matrix for the Avoidance of Unnecessary Iterations. In:
Kreimeyer, M. et al. (Eds.): Proceedings of the 10th International DSM
Conference, Stockholm, 11.-12.11.2008. Munich: Hanser 2008, pp. 209-218.
ISBN: 978-3-446-41825-7.

ROLÓN et al. 2006a

 Rolón, E.; Ruiz, F.; García, F.; Piattini, M.: Applying Software Process
Metrics in Business Process Model. RPM-AEMES 3 (2006) 2, pp. 45-61.

9. References 263

ROLÓN et al. 2006b

 Rolón, E.; Ruiz, F.; García, F.; Piattini, M.: Evaluation Measures for
Business Process Models. In: Haddad, H. M. (Ed.): Proceedings of the 21st
Annual ACM Symposium on Applied Computing, SAC 2006, Dijon, France,
23.-27.04.2006. New York, NY: Association for Computing Machinery,
ACM 2006, pp. 1567-1568. ISBN: 1-595-93108-2.

RUMBAUGH et al. 2005

 Rumbaugh, J.; Jacobson, I.; Booch, G.: The Unified Modeling Language
Reference Manual. Boston: Addison-Wesley 2005. ISBN: 0-321-24562-8.

SABBAGHIAN et al. 1998

 Sabbaghian, N.; Eppinger, S. D.; Murman, E.: Product Development Process
Capture and Display Using Web-Based Technologies. In: Zhou, M.-C. (Ed.):
Proceedings of the 28th IEEE International Conference on Systems, Man,
and Cybernetics, San Diego, CA, 11.-14.10.1998. Piscataway, NJ: IEEE
Service Center, 1998, pp. 2664-2669. ISBN: 0-7803-4778-1.

SAPUAN et al. 2006

 Sapuan, S. M.; Osman, M. R.; Nukman, Y.: State of the art of the concurrent
engineering technique in the automotive industry. Journal of Engineering
Design 17 (2006) 2, pp. 143-157.

SCHEER 1999

 Scheer, A.-W.: ARIS - Business Process Modeling. Berlin: Springer 1999.
ISBN: 3-540-65835-1.

SCHEER et al. 1997

 Scheer, A.-W.; Nüttgens, M.; Zimmermann, V.: Objektorientierte
Ereignisgesteuerte Prozeßkette (oEPK) - Methode und Anwendung.
Veröffentlichungen des Instituts für Wirtschaftsinformatik, IWi, Universität
des Saarlandes, IWi-Heft 141. Saarbrücken: Universität Saarbrücken 1997.

SCHLICK et al. 2008

 Schlick, C. M.; Duckwitz, S.; Gärtner, T.; Schmidt, T.: A Complexity
Measure for Concurrent Engineering Projects Based on the DSM. In:
Kreimeyer, M. et al. (Eds.): Proceedings of the 10th International DSM
Conference, Stockholm, 11.-12.11.2008. Munich: Hanser 2008, pp. 219-230.
ISBN: 978-3-446-41825-7.

SCHMELZER & SESSELMANN 2006

 Schmelzer, H.; Sesselmann, W.: Geschäftsprozessmanagement in der Praxis
- Kunden zufrieden stellen - Produktivität steigern - Wert erhöhen. München:
Hanser 2006. ISBN: 3-446-40589-5.

SCHÖN 1983

 Schön, D. A.: The Reflective Practitioner - How Professionals Think in
Action. New York: Basic Books 1983. ISBN: 0-465-06874-X.

SCHÜRRLE 1995

 Schürrle, L.-H.: Prozessorientierte Kennzahlen als Analyseinstrument.
Dissertation, Technische Universität Darmstadt, 1995. Aachen: Shaker 1995.
ISBN: 3-8265-1638-9.

264 9. References

SHANNON & WEAVER 1998

 Shannon, C. E.; Weaver, W.: The Mathematical Theory of Communication.
Urbana, IL: University of Illinois Press 1998. ISBN: 0-252-72546-8.

SHAO & WANG 2003

 Shao, J.; Wang, Y.: A New Measure of Software Complexity based on
Cognitive Weights. Canadian Journal of Electrical and Computer
Engineering 28 (2003) 2, pp. 69-74.

SIMON & MENDLING 2007

 Simon, C.; Mendling, J.: Integration of Conceptual Process Models by the
Example of Event-driven Process Chains. In: Oberweis, A. et al. (Eds.):
Proceedings of the 8th Internationale Tagung Wirtschaftsinformatik, WI
2007, Karlsruhe, 28.02.-02.03.2007. Karlsruhe: Universitätsverlag Karlsruhe
2007, pp. 677-694. ISBN: 978-3-86644-094-4.

SIMON & SIMON 2005

 Simon, D.; Simon, F.: Das wundersame Verhalten von Entwicklern beim
Einsatz von Quellcode-Metriken. In: Büren, G. et al. (Eds.): Proceedings of
the DASMA Software Metrik Kongress, MetriKon 2005, Kaiserslautern, 15.-
16.11.2005. Aachen: Shaker 2005, pp. 263-272. ISBN: 3-8322-4615-0.

SMITH 1996

 Smith, P. G.: Your product development process demands ongoing
improvement. Research Technology Management 39 (1996) 2, pp. 37-44.

SOSA 2008

 Sosa, M.: A Structured Approach to Predicting and Managing Technical
Interactions in Software Development. Research in Engineering Design 19
(2008) 1, pp. 47-70.

SOSA et al. 2004

 Sosa, M.; Eppinger, S. D.; Rowles, C. M.: The Misalignment of Product
Architecture and Organizational Structure in Complex Product Development.
Management Science 50 (2004) 12, pp. 1674-1689.

SPATH & WEISBECKER 2008

 Spath, D.; Weisbecker, A. (Eds.): Business Process Management Tools 2008.
Stuttgart: Fraunhofer IRB 2008. ISBN: 978-3-8167-7596-6.

SPATH et al. 2001

 Spath, D.; Dill, C.; Scharer, M.: Vom Markt zum Markt - Produktentstehung
als zyklischer Prozess. Stuttgart: LOG_X 2001. ISBN: 3-932298-09-8.

SPUR et al. 1993

 Spur, G.; Mertins, K.; Jochem, R.; Warnecke, H. J.: Integrierte
Unternehmensmodellierung. Berlin: Beuth 1993. ISBN: 3-410-12923-5.

STETTER 2000

 Stetter, R.: Method Implementation in Integrated Product Development.
Dissertation, Technische Universität München, 2000. München: Technische
Universität München 2000.

9. References 265

STEVENS 1946

 Stevens, S. S.: On the Theory of Scales of Measurement. Science 103 (1946)
2684, pp. 677-680.

STEWARD 1981

 Steward, D. V.: The Design Structure System: A Method for Managing the
Design of Complex Systems. IEEE Transactions on Engineering
Management 28 (1981) pp. 71-74.

STROGATZ 2001

 Strogatz, S. H.: Exploring complex networks. Nature 410 (2001) 6825, pp.
268-276.

SUH 1999

 Suh, N. P.: A Theory of Complexity, Periodicity and the Design Axioms.
Research in Engineering Design 11 (1999) 2, pp. 116-132.

SUMMERS & SHAH 2003

 Summers, J.; Shah, J.: Developing Measures of Complexity for Engineering
Design. In: Gupta, S. K. (Ed.): Proceedings of the ASME 2003 Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference, DETC'03, 15th International Conference on Design
Theory and Methodology, Chicago, IL, 02.-06.09.2003. New York, NY:
ASME 2003. ISBN: 0-7918-3701-7.

SUPPES & ZINNES 1963

 Suppes, P.; Zinnes, J.: Basic Measurement Theory. In: Luce, R.D.; Bush,
R.R.; Galante, E. (Eds.): Mathematical Psychology. New York: John Wiley
and Sons 1963, pp.4-76.

TITTMANN 2003

 Tittmann, P.: Graphentheorie - Eine anwendungsorientierte Einführung.
München: Hanser 2003. ISBN: 3-446-22343-6.

TJADEN et al. 1996

 Tjaden, G. S.; Narashimhan, S.; Mitra, S.: Structural effectiveness metrics
for business proceses. In: Pirkul H. et al. (Eds.): Proceedings of the 1th
Conference on Information Systems and Technology, INFORMS,
Washington, DC, 05.-09.05.1996. Washington, DC: INFORMS 1996, pp.
396-400.

TSAI et al. 1986

 Tsai, W. T.; Lopex, M. A.; Rodriguez, V.; Volovik, D.: An approach to
measuring data structure complexity. In: Proceedings of the 10th IEEE
Computer Society's Annual International Computer Software and
Applications Conference, COMPSAC'86, Chicago, IL, 08.-10.10.1986. New
York, NY: IEEE 1986, pp. 240–246. ISBN: 0-8186-4727-2.

TUFTE 2001

 Tufte, E. R.: The Visual Display of Quantitative Information. Cheshire:
Graphics Press 2001. ISBN: 0-9613921-4-2.

266 9. References

VAJNA 2005

 Vajna, S.: Workflow for Design. In: Clarkson, P. J. et al. (Eds.): Design
Process Improvement - A Review of Current Practice. London: Springer
2005, pp. 366-385. ISBN: 1-85233-701-X.

VAN DER AALST & TER HOFSTEDE 2005

 van der Aalst, W. M. P.; ter Hofstede, A. H. M.: YAWL: yet another
workflow language. Information Systems 30 (2005) 4, pp. 245-275.

VAN DER AALST & TER HOFSTEDE 2003

 van der Aalst, W. M. P.; ter Hofstede, A. H. M.; Kiepuszewski, B.; Barros,
A. P.: Workflow Patterns. Distributed and Parallel Databases 14 (2003) 1,
pp. 5-51.

VAN DER AALST & TER HOFSTEDE 2002

 van der Aalst, W. M. P.; van Hee, K. M.: Workflow Management - Models,
Methods, and Systems. Cambridge: MIT Press 2002. ISBN: 0-262-01189-1.

VAN DONGEN et al. 2006

 van Dongen, B. F.; Mendling, J.; van der Aalst, W. M. P.: Structural Patterns
for Soundness of Business Process Models. In: Proceedings of the 10th IEEE
International Enterprise Distributed Object Computing Conference,
EDOC'06, Hong Kong, 16.-20.10.2006. Los Alamitos: IEEE Computer
Society 2006, pp. 116-128. ISBN: 0-7695-2558-X.

VANDERFEESTEN et al. 2008

 Vanderfeesten, I.; Mendling, J.; Reijers, H. A.; van der Aalst, W.; Cardoso,
J.: On a quest for good process models: The cross-connectivity metric. In:
Bellahsène, Z. et al. (Eds.): Proceedings of the 20th international conference
on Advanced Information System Engineering, CAiSE'08, Montpellier, 16.-
20.06.2008. Lecture Notes in Computer Science, 5074. Berlin: Springer
2008, pp. 480-494. ISBN: 978-3-540-69533-2.

VANDERFEESTEN et al. 2007

 Vanderfeesten, I.; Reijers, H. A.; van der Aalst, W.; Cardoso, J.; Mendling,
J.: Quality Metrics for Business Process Models. In: Fischer, L. (Ed.): 2007
BPM and Workflow Handbook. Lighthouse Point, FL: Future Strategies Inc.
2007, pp. 179-190. ISBN: 978-0-9777527-1-3.

VOLKSWAGEN AG 2008

 Volkswagen AG: Phaeton Bordnetz. Kassel: Forschungsverbund
Fahrzeugsysteme, Universität Kassel 2008. URL: http://www.uni-
kassel.de/fb16/ fsg/bilder/phaeton_bordnetz.jpg - Access Date: 01.06.2008.

VOLKSWAGEN AG 2007

 Volkswagen AG: Phaeton. Wolfsburg: Volkswagen AG, Vertrieb
Kundendienst, VST 1/2 Technische Kundeninformation und
Dokumentenmanagement 2007.

VON BERTALANFFY 1950

 von Bertalanffy, L.: An Outline of General Systems Theory. British Journal
for the Philosophy of Science 1 (1950) 2, pp. 134-165.

http://www.uni-kassel.de/fb16/
http://www.uni-kassel.de/fb16/

9. References 267

VON BERTALANFFY 1968

 von Bertalanffy, L.: General System Theory - Foundations, Development,
Applications. New York, NY: Braziller 1968. ISBN: 0-8076-0453-4.

WALDMAN & SANGAL 2007

 Waldman, F.; Sangal, N.: Applying DSM to Enterprise Architectures. In:
Lindemann, U. et al. (Eds.): Proceedings of the 9th International DSM
Conference, Munich, 16.-18.10.2008. Aachen: Shaker 2007, pp. 61-71.
ISBN: 978-3-8322-6641-7.

WAND & WEBER 1990

 Wand, Y.; Weber, R.: Mario Bunge’s Ontology as a Formal Foundation for

Information System Concepts. In: Weingartner, P. et al. (Eds.): Studies in
Bunge’s Treatise on Basic Philosophy of the Sciences and the Humanities.
Amsterdam: Rodopi 1990, pp. 123-149. ISBN: 90-5183-187-0.

WANG 2006

 Wang, Y.: Cognitive Complexity of Software and its Measurement. In: Yao,
Y. (Ed.): Proceedings of the 5th IEEE International Conference on Cognitive
Informatics, ICCI 2006, Beijing, China, 17.-19.07.2006. Piscataway, NJ:
IEEE 2006, pp. 226-235. ISBN: 1-424-40475-4.

WASSON 2006

 Wasson, C. S.: System Analysis, Design, and Development Concepts,
Principles, and Practices. Hoboken, NJ: Wiley-Interscience 2006. ISBN: 0-
471-39333-9.

WATTS & STROGATZ 1998

 Watts, D. J.; Strogatz, S. H.: Collective Dynamics of 'Small-world'
Networks. Nature 393 (1998) 6684, pp. 440-442.

PONN & LINDEMANN 2005

 Weber, C.: What is “complexity”? In: Samuel, A. E. et al. (Eds.):
Proceedings of the 15th International Conference on Engineering Design,
ICED'05, Melbourne, Australia, 15.-18.08.2005. Barton ACT: Engineers
Australia 2005. ISBN: 0-85825-788-2.

WENG & BHALLA 1999

 Weng, G.; Bhalla, U. S.; Iyengar, R.: Complexity in Biological Signaling
Systems. Science 284 (1999) 5411, pp. 92-96.

WEYUKER 1988

 Weyuker, E. J.: Evaluating Software Complexity Measures. IEEE
Transactions on Software Engineering 14 (1988) 9, pp. 1357-1365.

WHITE & MIERS 2008

 White, S. A.; Miers, D.: BPMN Modeling and Reference Guide. Lighthouse
Point, FL: Future Strategies 2008. ISBN: 978-0-9777527-2-0.

WHITFIELD et al. 2000

 Whitfield, R. I.; Coates, G.; Duffy, A. H.; Hill, B.: Coordination Approaches
and Systems- Part I: A Strategic Perspective. Research in Engineering
Design 12 (2000) 1, pp. 48-60.

268 9. References

WIENER 1948

 Wiener, N.: Cybernetics - Or the Control and Communication in the Animal
and the Machine. New York: Technology Press 1948.

WOODWARD et al. 1979

 Woodward, M. R.; Hennell, M. A.; Hedley, D.: A Measure of Control Flow
Complexity in Program Text. IEEE Transactions on Software Engineering
SE-5 (1979) 1, pp. 45-50.

WYNN et al. 2009

 Wynn, D.; Nair, S.; Clarkson, P.J.: The P3 platform: An Approach and
Software System for Developing Diagrammatic Model-Based Methods in
Design Research. In: Proceedings of International Conference on
Engineering Design - ICED 2009. Glasgow: The Design Society 2009.

WYNN 2007

 Wynn, D. C.: Model-Based Approaches to Support Process Improvement in
Complex Product Development. Ph.D. Thesis, University of Cambridge,
2007. Cambridge: University of Cambridge 2007.

WYNN et al. 2007

 Wynn, D. C.; Eckert, C. M.; Clarkson, P. J.: Modelling Iteration in
Engineering Design. In: Bocquet, J.-C. (Ed.): Proceedings of the 16th
International Conference on Engineering Design, ICED'07, Paris, 28.-
31.08.2007. Glasgow: The Design Society 2007. ISBN: 1-904670-02-4.

WYNN et al. 2006

 Wynn, D. C.; Eckert, C. M.; Clarkson, P. J.: Applied Signposting: A
Modeling Framework to Support Design Process Improvement. In:
Proceedings of the ASME 2006 International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference,
IDETC/CIE 2006, 18th International Conference on Design Theory and
Methodology, DTM, Philadelphia, 10.-13.09.2006. New York, NY: ASME
2006. ISBN: 0-7918-4258-4.

YASSINE 2004

 Yassine, A.: An Introduction to Modeling and Analyzing Complex Product
Development Processes Using the Design Structure Matrix (DSM) Method.
Italian Management Review 9 (2004) pp. 72-88.

YASSINE et al. 2003

 Yassine, A.; Whitney, D.; Daleiden, S.; Lavine, J.: Connectivity maps:
modeling and analysing relationships in product development processes.
Journal of Engineering Design 14 (2003) 3, pp. 377-394.

YASSINE et al. 1999

 Yassine A.; Falkenburg D.; Chelst K.: Engineering Design Management: An
Information Structure Approach. International Journal of Production
Research, 37 (1999) 13, pp. 2957-2975. ISSN: 0020-7543.

ZACHMAN 1987

 Zachman, J. A.: A framework for information systems architecture. IBM
Systems Journal 26 (1987) 3, pp. 276-292.

9. References 269

ZAKARIAN & KUSIAK 2000

 Zakarian, A.; Kusiak, A.: Analysis of Process Models. IEEE Transactions on
Electronics Packaging Manufacturing 23 (2000) 2, pp. 137-147.

ZIMMERMANN 2008

 Zimmermann, I.: Schulungspaket Prozessmanagement. Modul 1: Grundlagen
Prozessmanagement. Kissing: WEKA-Media 2008. ISBN: 978-3-8276-4206-
6.

ZUR MUEHLEN 2004

 zur Muehlen, M.: Workflow-based Process Controlling - Foundation,
Design, and Implementation of Workflow-driven Process Information
Systems. Dissertation, Universität Münster, 2002. Advances in Information
Systems and Management Sciences. Berlin: Logos 2004. ISBN: 3-8325-
0388-9.

ZURN 1991

 Zurn, J. T.: Problem discovery function: a useful tool for assessing new
product introduction. IEEE Transactions on Engineering Management 38
(1991) 2, pp. 110-119.

ZUSE 1998

 Zuse, H.: A Framework of Software Measurement. Berlin: de Gruyter 1998.
ISBN: 3-11-015587-7.

10. Appendix

In the appendix, the following topics are detailed:

Description of section of appendix Section (page) Explanation in
section (page)

Structural content of process modeling
methodologies

10.1 (pp. 272 - 286) 2.2.3 (p. 58)

Conversion of a process with logic
operators into matrices

10.2 (pp. 288 - 294) 4.4.3 (p. 114)

Nesting of Boolean operators 10.3 (pp. 295 - 296) 4.4.3 (p. 114)

Structural Process Architecture 10.4 (p. 297) 4.3 (p. 104)

List of structural metrics and
description of their structural
significance

10.5 (pp. 298 - 388) 5.2 (p. 143)

Computability of metrics 10.6 (p.390) 5.2.2 (p. 147)

Classification of metrics 10.7 (p. 392) 5.2.4 (p. 157)

S-GQM framework 10.8 (p. 396) 6.2 (p. 179)

Complete results from case study 7.2 10.9 (p. 398) 7.2.3 (p. 218)

271

© Springer-Verlag Berlin Heidelberg 2011

M. Kreimeyer and U. Lindemann, Complexity Metrics in Engineering Design: Managing the

Structure of Design Processes, DOI 10.1007/978-3-642-20963-5_10,

272 10. Appendix

10.1 Structural content of process modeling methodologies

In this section of the appendix, common process modeling methodologies are
evaluated concerning their structural content. For this purpose the structural meta-
model for each methodology is shown with its core domains and the relationship
types linking these domains.

Process modeling methodology Acronym

Extended Event-driven Process Chains eEPC

Object-oriented Event-driven Process Chains oEPC

Business-Process Modelling (Integrierte Unternehmensmodellierung) IUM

Unified Modeling Language UML

Structured Analysis and Design Technique SADT

Integrated Definition Method IDEF0 /
IDEF3

Business Process Modeling Notation BPMN

Yet Another Workflow Language YAWL

Signposting

Petri-Nets

Process Module Methodology PMM

Program Evaluation and Review Technique PERT

Objektorientierte Methode für die Geschäftsprozessmodellierung
und -analyse

OMEGA

10. Appendix 273

10.1.1 Extended Event-driven Process Chains

EPC is a semi-formal graphical notation to model workflows and processes at
several levels of detail. At its core, the behavior of a process is represented
concerning various economic foci, e.g., process costs or lead time. eEPC extends
the basic structure of place/transition nets (like Petri nets) to illustrate business
processes [SCHEER 1999]. With its well-structured representation of a process,
eEPC is one of the most common modeling standards in German industry.

EPC supports six basic domains with a wide range of pre-defined relationship
types. It is possible to extend the basic definitions to suit actual modeling needs.
The basic notation includes AND, OR, and XOR, which branch off from the
principal flow in the model.

The following MDM shows the basic domains and relationship types that are
employed in eEPC models. In that manner, it is similar to the ARIS House of
Business Engineering (HOBE), which also includes the control view. The control
view integrates all actual elements and relations of the process into a control flow.
As it does not bring in an additional domain, it is not represented in the MDM.

OrganizationalUnit

Event

FunctionOutput

Input

Resource

Milestone

274 10. Appendix

10. Appendix 275

10.1.2 Object-oriented Event-driven Process Chains

Object-orientated Event-driven Process Chains do not focus on the function as a
central activity but on objects as discrete, distinguishable entities progressing
through the process [SCHEER et al. 1997]. They integrate the concept of object-
orientation into common process modeling to enable the representation of the
transition of a business object. Like an object in software, a business object can be
modeled with its different attributes and methods that are used to process the
object. As such, the object in oEPC regroups the function view and the data view
of eEPC into one singe modeling construct. The control flow, i.e., the network of
relationships, is created by the messages the objects exchange while they progress
from one event to the next. This means that the messages in oEPC take the place
of the events in eEPC. The control flow can be split or joined using AND, OR,
and XOR. The formal bipartite structure of messages and objects can be broken up
by interrelating objects directly; however, in a formal process model, this is not
the basic intention of the modeling scheme [SCHEER et al. 1997, p. 9].

Object Message Method Attribute
(object)

Attribute
(resources)

Object ‚ (has relation) ‚Sends

Message ‚Starts

Method ‚ Is attribute to

Attribute
(object)

‚ Is attribute to

Attribute
(resources)

‚ Is attribute to

Object

Message

Organizational UnitAttribute

Method

276 10. Appendix

10.1.3 Integrated Business-Process Modeling (IUM)

Integrated Business-Process Modeling (in German: “Integrierte

Unternehmensmodellierung”) regards the whole company from the perspective of

the production process [SPUR et al. 1993] [MERTINS & JOCHEM 1998]. Unlike
EPC, it does not have an explicit control view, but it models entities out of a basic
set of objects in any sequence necessary. The entities represent the core objects, as
shown below. Decisions can be modeled using AND, OR and XOR; however,
these are not modeled explicitly but by representing the states the process takes in
one case or the other (i.e., by case distinction). IUM is particularly centered on the
“Action” as the processing task in a process, and discerns between basic “actions”

as simple verbal descriptions of a task, “functions” that process inputs to outputs,
and activities that specify resource and control information.

Product Action Order Resource

Product ‚ Is part of

‚ Consists of

‚ Is processed
by

‚ Is processed by ‚ Is processed by

Action ‚ Processes ‚ Leads to ‚ Processes ‚ Processes

Order ‚ Controls ‚ Is part of

‚ Consists of

Resource ‚ Supports ‚ Is part of

‚ Consists of

Action

Product OrderResource

Order (controlling) Resource (supporting)

10. Appendix 277

10.1.4 Unified Modeling Language

UML is a set of notations for the design and analysis of object-oriented software
[RUMBAUGH et al. 2005]. Offering a variety of models, activity diagrams have
proved to be most suitable for process modeling, as they are one of the central
behavioral models offered in UML 2.0 specification [ÖSTERREICH et al. 2003, p.
12] [BULLINGER & SCHREINER 2001]. UML as a highly formalized notation is
especially useful, as business processes are often modeled to be later embedded
into an information system, which, in turn, will be specified in UML. Activity
models allow for the splitting and joining of the process flow; however, they do
not necessarily represent the logic operators.

Initial / final node Activity Responsibility

Initial / final node ‚ Starts process
(initial node)

Activity ‚ Ends process
(final node)

‚ Transits into

Responsibility ‚ Is responsible for

Responsibility

Activity

End node

yyyxxx

278 10. Appendix

10.1.5 Structured Analysis and Design Technique (SADT) and IDEF 0

SADT is a graphical modeling language [MARCA & MCGOWEN 1988] developed
for use in the integrated computer-aided manufacturing studies of the U. S.
Airforce in the 1970s. It became the basic model later used in the IDEF0 (see
following section). As a very basic notation, it allows modeling the basic entities
and relations to sketch the algorithm of a software program using the semantics
shown in the MDM below. Although activities are related directly to one another,
the relationship between them represents an input/output relationship, which is
why these inputs and outputs are resolved as a separate domain. Mechanisms
represent all possible resources like roles or technical equipment [BICHLMAIER

2000]. Logic operators cannot be represented.

IDEF0 is built on the functional structure of SADT (see section above) and uses
the same semantics. The SADT MDM is, therefore, applicable for IDEF0 as well.
Only the modeling syntax (e.g., types of forks) differs slightly from SADT from a
structural point of view (see next page).

Control Activity Input / Output Mechanism

Control ‚ Controls

Activity ‚ Serves as
control for

‚ Has output of

Input / Output ‚ Is input for ‚ Output of…
is input for…

Mechanism ‚ Supports

Activity

Activity (Output)

Activity (Input) Activity (Control)

Activity (Mechanism)

10. Appendix 279

10.1.6 Integrated Definition Method

IDEF (Integration DEFinition) was developed as a set of definitions and notations
for various purposes of modeling [KNOWLEDGE BASED SYSTEMS 1992]. The IDEF
family provides various modeling languages for software engineering; two of
them are relevant for process modeling, as they are able to model sequences of
activities and functions. IDEF 0, being similar to SADT, is explained on the
previous page.

IDEF3 is designed as an Integrated DEFinition for Process Description Capture

Method, complementing IDEF0 [BADICA & FOX 2005]. It provides a notation to
describe process flows by modeling the relationships between actions as well as
the specific states (“labels”) a process undergoes. As such, it is an object-centered
approach, whereas the object is part of the transformation that takes place within
each task (“unit of behavior”), also referred to as an “action box”. In the object-
centered view, units of behavior (although shown differently in the MDM) are
actually represented as attributes of the edges between the different states. IDEF3
allows the modeling of logical operators. Besides transitional relationship types,
constraints can be represented. In addition to units of behavior, these can be
represented by referents, which basically duplicate a unit of behavior in the model.

Unit of behavior /
action box

Label Objects /
object states

Unit of behavior/
action box

‚ Precedes

‚ (others possible, too)

Label ‚ Relates (object) to
(object)

Objects/
object states

‚ Uses…in transition ‚ Transits into

Action box

Object State Transition Network DiagramProcess Description Diagram

Unit of behavior

Object / Labelled object

280 10. Appendix

10.1.7 Business Process Modeling Notation

The Business Process Modeling Notation is a graphical notation to represent
workflows and business processes [WHITE & MIERS 2008]. It was, in part,
designed to allow the link to execution languages to run simulations of a process.
Its primary focus, however, is an intuitive understanding of complex models.

For all domains, specific descriptions of the types of elements are available: For
example, activities can be modeled as tasks, multiple instances of a task, sub
processes and other constructs. Besides common relationships (sequence and
message flows), conditions can also be modeled. Pools and lanes are used to
represent stakeholders or applications that are active during an activity.
Employing so-called gateways that represent an individual domain, the process
model can be enhanced using decision logics. As in IDEF3, text annotations can
also be attached to the relationships (not shown in MDM) [ALLWEYER 2008].

Currently, the Business Process Modeling Notation is available as release 1.2; an
update to 2.0 exists as a proposal. The proposal is intended to extend BPMN to
include the extraction of specific views onto the process, and to improve the
exchange of models among different modeling tools and mappings to other
process modeling schemes.

Activity Event Gateway Data
object

Text Pool / Lane

Activity ‚ Precedes

‚ Transmits
message to

‚ Ends ‚ Precedes

‚ Transmits
message to

‚ Associate
s with as
output

Event ‚ Starts ‚ Occurs in

Gateway ‚ Precedes

‚ Transmits
message to

Data
object

‚ Associates
with as input

Text ‚ Annotate ‚ Annotate ‚ Annotate ‚ Annotate ‚ Annotate

Pool /
Lane

‚ Executes ‚ Takes
decision

‚ Transmits
message
to

Event

xxx Pool

Activity

GatewayData object

Annotation
Text

10. Appendix 281

10.1.8 Yet Another Workflow Language

YAWL is a modeling language to represent workflows in a way that can be
executed in a software system based on Petri nets [VAN DER AALST & TER

HOFSTEDE 2005]. It is based on a rather simple network of tasks that are arranged
using workflow patterns and data objects that are exchanged. Decision points
(AND, OR, XOR) can be modeled using conditions. The modeling method
strongly relies on the introduction of attributes for further detail and decomposes
the basic modeling objects, as shown in the MDM.

Start / end
node

Task Data Condition

Start / end
node

‚ Starts process
with

Task ‚ Ends process
in

‚ Precedes ‚ Generates… as
output

‚ Leads to

Data ‚ Is input for

Condition ‚ Is reached by

Start node

Task (with AND split)

Task

Condition

Data (as input)

Data (as output)

282 10. Appendix

10.1.9 Signposting

The signposting approach was primarily developed to capture expert knowledge
about a process, to use this knowledge to plan and simulate processes, and to
identify and assess potentials for process improvement. Therefore, the approach
looks at behavior as a starting point for modeling and then deduces how high level
processes arise from lower level decisions taken during runtime. At its core, the
model, therefore, uses tasks that represent the activities during the process. These
are attributed in particular with their inputs and outputs using parameters, the
resources they require or consume, and their temporal aspects. Decisions can be
represented by attributing multiple relationships to a task, where each is related to
a possible scenario that actually represents the behavior at that decision point
[CLARKSON & HAMILTON 2000] [WYNN et al. 2006] [WYNN 2007] [WYNN et al.
2009].

Task Parameter Resource Process Time /
Duration

Task ‚ Creates

‚ Changes

‚ Requires… as
input

‚ Results in

‚ Requires ‚ Has
duration of

Parameter ‚ Informs

Resource ‚ Is required
for

‚ Is occupied
by

‚ Is available at

‚ Is available
during

‚ Is organized
in

Process ‚ Provides
detail for

‚ Encapsules

‚ Encapsules

Time /
Duration

Task

Parameter

Process

Resource

(as attribute)

Time / duration

(as attribute)

10. Appendix 283

10.1.10 Petri-Nets

Petri nets, also referred to as place/transition nets, are a modeling notation to
describe discrete systems by modeling the transition of states the process
undergoes. This is done by representing the process as a bipartite graph that
changes between places, representing the state at a certain point of time, and
transitions that represent the activities undertaken during the process. Unlike all
other process modeling methodologies, Petri nets are based on a sound
mathematical formalization that allows detailed simulation and analysis
[PETERSON 1981].

Transition Place

Transition ‚ Emits token to

Place ‚ Fires via token

Place

Transition

Token

284 10. Appendix

10.1.11 Process Module Methodology

The Process Module Methodology decomposes the process into compact,
integrated modules (“Baustein”, i.e., building blocks) that are the basic entities for
setting up a part of a process or a whole process to allow flexible planning. It
permits a comprehensive identification of critical parts of the process. Most
importantly, one module represents an individual work package that is often of a
transdiciplinary character [BICHLMAIER & GRUNWALD 1999]. The modules are
interrelated by the information that is transferred, and the dependencies can be of
different type (e.g., general information, product data). Furthermore, the modules
can be attributed with the necessary competences and tools or methods. While
organizational dependencies can be modeled using the input/output information,
logics and decisions cannot be represented, as the model does not focus on a
behavioral view [BICHLMAIER 2000, p. 81].

Work package Information Document Tool /
method

Process
chain

Work
package

‚ Is input to ‚ Is part of

Information ‚ Is output of

Document ‚ Represents

Tool / method ‚ Supports

‚ Is necessary
for

Process
chain

‚ Supports

‚ Is necessary
for

Work package

Input information

(right hand row)

Output information

(left hand row)

Input documents

(left hand row)

Output documents

(right hand row)

Tools / methods

(as attribute)

Processchain

10. Appendix 285

10.1.12 Program Evaluation and Review Technique (PERT)

The Program Evaluation and Review Technique was developed in the late 1950’s

to plan complex engineering projects, allowing for parallelization where possible
while admitting to a certain randomness of the process. Therefore, it is based on a
network of tasks and their interdependencies. These tasks result in events that can
synchronize multiple relationships in a process. Originally developed as an
“activity on arc” network (i.e., the edges between events represent the tasks and
their attributes), it was later converted to an “activity on node” network, for which
it is most commonly used. Tasks within PERT are commonly used with the
optimistic and pessimistic time for their execution as well as the most likely time
to run the task (i.e., a basic probabilistic model is applied to estimate the expected
time). Using these attributes, the critical path, i.e., the path through the process
that is most likely to delay the overall process because it has no float, can be
determined using the Critical Path Method (CPM) [PMI 2003]. However, CPM
does not use the most likely time but the expected time to determine the critical
path.

Task Event Time

Task ‚ Results in ‚ Has minimum runtime of

‚ Has maximum runtime of

‚ Has most likely runtime of

Event ‚ Starts

Time

Event

Task

Activity on arc

t = xxx

Time

Activity on node
Task

Time

286 10. Appendix

10.1.13 OMEGA

The OMEGA method (German acronym for “Objektorientierte Methode für die

Geschäftsprozessmodellierung und -analyse”: Object-oriented method for the
modeling and analysis of business processes) was developed towards the end of
the 1990’s to overcome problems with common process modeling methodologies
like SADT and similar methods: a quick understanding of the model, a systematic
analysis and a means of synthesis for suggestions for improvement of the process
is provided by [FAHRWINKEL 1995] [GAUSEMEIER & FINK 1999]. Besides the
domains and relationships shown in the MDM below, Omega also supports the
regrouping of activities into business processes to establish a control flow. This
control flow can include AND, OR, and XOR. Furthermore, it is possible to
describe communication relationships by attributing a supporting IT system to the
edge (unlike what is shown below).

Activity

Business object

External

object

Organizational unit

Milestone

Technical resource

Method

10. Appendix 287

288 10. Appendix

10.2 Conversion of a process with logic operators

As shown in section 4.4.3, five conversions of Boolean operators into matrix-
based notation are possible. In this section, they are presented using an exemplary
design process for a mechatronic product, as shown in Figure 10-1, taken from
[BELHE & KUSIAK 1996]. The process is modeled in IDEF3 notation and is set up
as follows:

1. Prepare product specifications

2. Preliminary design

3. Evaluate cost

4. Thermal analysis

5. Electrical analysis

6. Analyze test data

7. Finalize design details

Figure 10-1: Exemplary design process [BELHE & KUSIAK 1996]

1 &

2 O

4

5

6

X

73

J1

J2

J3

10. Appendix 289

10.2.1 Rule 1: Resolve all logical connections

Alternative 1: C1= {(2,4), (6,7)}

Alternative 2: C2= {(2,5), (6,7)}

Alternative 3: C3= {(2,4), (2,5), (6,7)}

Figure 10-2: Conversion according to rule 1, alternative result 1

Figure 10-3: Conversion according to rule 1, alternative result 2

Figure 10-4: Conversion according to rule 1, alternative result 3

290 10. Appendix

Alternative 4: C4= {(2,4), (6,2), (6,7)}

Alternative 5: C5= {(2,5), (6,2), (6,7)}

Alternative 6: C6= {(2,4), (2,5), (6,2), (6,7)}

Figure 10-5: Conversion according to rule 1, alternative result 4

Figure 10-6: Conversion according to rule 1, alternative result 5

Figure 10-7: Conversion according to rule 1, alternative result 6

10. Appendix 291

10.2.2 Rule 2: Neglect the operators

Figure 10-9 shows the conversion: First, the new edges are added (dashed lines),
then the nodes originating from logic operators are removed as well as all adjacent
edges thereof (nodes 8-10 and adjacent edges).

Figure 10-8: Conversion according to rule 2 (two possible cases)

Figure 10-9: Conversion according to rule 2: exemplary process graph

Original process graph

Precedent and

subsequent nodes of

operator are connected

vBool and adjacent

nodes are removed

Case 1: join-connector Case 2: split-connector

Original process graph

Precedent and subsequent

nodes of operators

are connected

vBool and adjacent

nodes are removed

292 10. Appendix

Figure 10-10: Matrix B as resulting description of rule 2 (lower right) with intermediate
matrices from algorithm

Matrix A Matrix A*

Matrix B** Matrix A** Matrix B

10. Appendix 293

10.2.3 Rule 3: Translate operators into probabilities

There are no probabilities given in the example of [BELHE & KUSIAK 1996];
therefore, the following values are used to illustrate rule 3:

OR-connector: p=0.8 for each outdoing edge (i.e., it is possible that both
edges eventuate)

XOR-connector: p=0.5 for each outgoing edge

AND-connector: p=1 for each outgoing edge

10.2.4 Rule 4: Logic operators as additional entities

Nodes 1098 ,, vvv represent the logic operators that were converted into regular

nodes.

Figure 10-11: Conversion according to rule 3

Figure 10-12: Conversion according to rule 4

294 10. Appendix

10.2.5 Rule 5: Logic operators as additional entities with their
characteristics

Figure 10-13: Multiple-Domain Matrix according to rule 5

10. Appendix 295

10.3 Nesting of Boolean operators

While the example in Figure 10-14 does not use the weights but shows how a
successive operator following a split is integrated into its predecessor, the example
in Figure 10-15 shows how weights are used for a more complex setting of nested
Boolean operators.

Table 10-1 lists the weights of each connector and the activity and passivity of the
tasks in the example. For example, the activity of task 1 calculates as 2.16, as
starting from the farthest reachable node, c_4 calculates as 1.33. Connector c_3

Figure 10-14: Direct calculation of nested operators (not using weights)

Figure 10-15: Weights of connectors to calculate the activity and passivity of the involved
tasks

2)11(
1

2_ ?-??Â?
n

i

iconnector EFA

33,1
3

2111

1
1_ ?--?? Â?

n

i

iconnector EF
n

A

Connector_2 is first calculated

The result is then inserted into

the calculation of connector_1

Calculation of the activity of task 1

XOR event 2task 1

event 1

event 3

V

event 4

Connector_1

Connector_2

Task 1

Event 1

Event 2

Event 3

Event 4

V

V

V

XOR

V

XOR

task 1

task 2

task 3

task 4

task 5

task 6

task 7

task 8

c_1 c_2

c_3

c_4

c_5

c_6

Task 1

Task 2

Task 1

Task 2

Task 1

Task 2

Task 1

Task 2

296 10. Appendix

then combines with 1.33 and an additional edge as an AND-split to a value of
2.33. This value is then inputted to calculate c_3, also using the weight of c_5,
which calculates as 2. The XOR combines thus one outgoing edge weighted as
2.33 and one as 2; assuming the equal structural relevance, the weight of c_2 thus
calculates as 2.16. As no previous splits exist, this value is the activity of task 1.

task activity passivity connector weight

task 1 2.16 0 c_1 -2.16

task 2 2.16 0 c_2 2.16

task 3 0 1.33 c_3 2.33

task 4 0 1.33 c_4 1.33

task 5 0 1.33 c_5 2

task 6 0 1.33 c_6 1

task 7 0 1.33

task 8 0 1.33

Table 10-1: Weights, activities and passivities of all entities in the example from Figure 10-15

10. Appendix 297

10.4 The complete Structural Process Architecture

298 10. Appendix

10.5 List of structural metrics

Each metric as listed in

Table 10-2 is detailed in the following section. The description is completed by the
list of possible structural significance for the domains and principal relationship
types as provided by the Structural Process Architecture. This significance is
intended to facilitate the interpretation of the results of each metric. It does not
indicate the only possibilities of interpretation and is not intended as a complete
checklist of possible meanings.

Table 10-2: Available metrics for structural analysis (as compiled in this research)

Size and density Hierarchies

Number of domains Height of hierarchy

Number of nodes Width of hierarchy

Number of edges Tree criticality

Number of classes Snowball factor

Number of interfaces between domains Forerun factor

Number of edges per node Tree-robustness

Relational density Maximum nesting depth

Number of unconnected nodes Clustering

Adjacency Number of cliques

Activity / Passivity Cluster-coefficient (local)

Degree correlation (nodes) Cluster-coefficient (global)

Degree correlation (edges) Module quality 1 (flow of information)

Degree distribution Module quality 2 (compactness)

Fan criticality Cycles

Synchronization points / distribution
points

Number of cycles

Number of independent sets number of cycles per node

Attainability Number of cycles per edge

Number of reachable nodes Number of feedbacks

Reachability of a node Activation of cycle

Closeness Number of starting points for iterations

Proximity Iterative oscillation

Relative centrality (based on between-
ness)

Several domains

Connectivity Bipartite density

Node connectivity Number of organizational interfaces

Edge connectivity Cognition

Paths Cognitive weight

Number of paths Degree of non-planarity

Path length Boolean Operators

Weight of an edge McCabe Cyclomatic Number

Centrality of path (based on centrality) Control-Flow Complexity

Centrality of path (based on degree) Log-based Complexity

Degree of progressive oscillation

10. Appendix 299

10.5.1 Number of domains

Definition

‚ Number of different domains within the network

Structural significance

‚ Evaluation of the multi-factedness of the network

‚ Number of possible views and stakeholders in a process

Representation

‚ Metric for each process

Literature

[GRUHN & LAUE 2006b]

Domain 1:

e.g., activities

Domain 2:

e.g., IT resources

Domain 3:

e.g., organizational units

Domain 4:

e.g., artifacts

Process 1

Process 2

…

Process

4

…

Number of domains

300 10. Appendix

10.5.2 Number of nodes

Definition

‚ Number of nodes per domain

‚ Can be detailed to count start- and end-nodes explicitly (2 start-nodes and 2
end-nodes are found in the example)

Structural significance

‚ Size of the network

‚ Assessment basis to put other metrics into perspective

Representation

‚ Metric per domain

Literature

[AZUMA & MOLE 1994], [BROWNING 2002], [GRUHN & LAUE 2006b]

Domain 1:

6 nodes Domain 1

Domain 2

Domain 3

…

6

…

Domain Number of nodes

per domain

10. Appendix 301

10.5.3 Number of edges

Definition

‚ Number of edges within a single domain

‚ Differentiation of directed and undirected edges possible

Structural significance

‚ Determination of the level of interaction within a domain

‚ Estimation of the number of interfaces and communication activity

Representation

‚ Metric per domain

Literature

[BROWNING 2001b]

Domain 1:

8 edges Domain 1

Domain 2

Domain 3

…

8

…

Domain Number of edges

per domain

302 10. Appendix

Structural significance

Number of domains Number of nodes Number of edges

Task ‚ Level of
decomposition within
tasks (e.g., tasks,
work packages)

‚ Number of tasks in
process (number of
instances)

‚ Extent of network of
tasks

‚ Number of interfaces
among tasks

Artifact ‚ Level of
decomposition within
artifacts (e.g.,
documents, files)

‚ Number of artifacts in
process (number of
instances)

‚ Extent of network of
artifacts

‚ Number of interfaces
among artifacts

Org. unit ‚ Level of
decomposition within
organization units
(e.g., division, teams)

‚ Number of
organizational units
in process (number
of instances)

‚ Extent of network of
organizational units

‚ Number of interfaces
among organizational
units

Time ‚ Level of
decomposition within
time (e.g., phases,
milestones)

‚ Number of points in
time during process
(number of
instances)

‚ Extent of network of
points in time

‚ Number of interfaces
among points in time

Event ‚ Level of
decomposition within
events (e.g. states,
messages)

‚ Number of events in
process (number of
instances)

‚ Extent of network of
events

‚ Number of interfaces
among events

Resource ‚ Level of
decomposition within
resources (e.g., IT
system, machine)

‚ Number of resources
in process (number
of instances)

‚ Extent of network of
resources

‚ Number of interfaces
among resources

10. Appendix 303

10.5.4 Number of classes

Definition

‚ Number of unique nodes per domain, (i.e., number of nodes that do not
bear the same name, as opposed to total number of nodes)

Structural significance

‚ Evaluation of the diversity of the network

‚ Relativization of node count when using object-oriented models (i.e., when
nodes are instantiated several times)

Representation

‚ Metric per domain

Literature

[GRUHN & LAUE 2006b], [HENRY et al. 1981]

In this domain:

4 classes

2 identical nodes

(i.e., 2 instances)

Domain 1

Domain 2

Domain 3

…

4

…

Domain Number of classes

304 10. Appendix

10.5.5 Number of interfaces between domains

Definition

‚ Number of edges between each pair of domains

‚ Differentiation of directed and undirected edges possible

Structural significance

‚ Determination of the level of interaction between each pair of domains

‚ Evaluation of the size of the interface between two domains

Representation

‚ Metric for each pair of domains

Literature

[BROWNING 2002]

Domain 1

Domain 2

Domain 3

Domain 4

4 edges across

the boundary of

domain 3 and

domain 4

4

0 2

1 2 0

Number of edges
Domain 4

Domain 3

Domain 2

Domain 1

10. Appendix 305

Structural significance

Number of classes
Number of interfaces between
domains

Task ‚ Number of unique tasks in
process

‚ Extent of interfaces of tasks to
another domain (e.g., to
resources that support the tasks)

‚ Number of interfaces to another
domain

Artifact ‚ Number of unique artifacts in
process

‚ Extent of interfaces of artifacts
to another domain (e.g., to
resources that process the
artifacts)

‚ Number of interfaces to another
domain

Org. unit ‚ Number of unique organizational
units in process

‚ Extent of interfaces of
organizational units to another
domain (e.g., to tasks that the
organizational units are
responsible for)

‚ Number of interfaces to another
domain

Time ‚ Number of unique points in time
during process

‚ Extent of interfaces of points in
time to another domain (e.g., to
tasks that are finished at the
points in time)

‚ Number of interfaces to another
domain

Event ‚ Number of unique events in
process

‚ Extent of interfaces of events to
another domain (e.g., to tasks
that produce an event)

‚ Number of interfaces to another
domain

Resource ‚ Number of unique resources in
process

‚ Extent of interfaces of resources
to another domain (e.g., to tasks
that are supported by a resource)

‚ Number of interfaces to another
domain

306 10. Appendix

10.5.6 Number of edges per node

Definition

‚ Quotient of the number of edges and the number of nodes

‚ For each domain; also possible for the complete process

Structural significance

‚ Evaluation of the density of networking within the process

‚ Description of the level of cross-linking within the network

Representation

‚ Metric per domain

Literature

[BROWNING 2002]

6 nodes

7 edges Domain 1

Domain 2

Domain 3

…

1.1667

…

Domain Number of edges

per node

10. Appendix 307

10.5.7 Relational density

Definition

‚ Quotient of the number of edges in a domain and the number of possible
edges

‚ For each domain; also possible for the complete process

Structural significance

‚ Evaluation of the density and intensity of networking in the process

‚ Intensity of cross-linking

Representation

‚ Metric per domain

Literature

[VANDERFEESTEN et al. 2007], [MENDLING 2008]

4 existing edges out of

12 possible edges

(directed case, possible

other edges dashed)

Domain 1

Domain 2

Domain 3

…

0.333

…

Domain Relational density

308 10. Appendix

Structural significance

Number of edges per node Relational density

Task ‚ Mean degree of dependency of
one task on another task

‚ Degree of proximity of task
network to an ideal sequence
(smaller numbers)

‚ Extent to which the potential
for networking is exhausted

‚ Degree to which Concurrent
Engineering is implemented

‚ Mean degree to which the
process can be decomposed
into meaningful modules to
raise transparency

Artifact ‚ Mean degree of dependency of
one artifact on another artifact

‚ Degree of proximity of artifact
network to an ideal lifecycle of
growing maturity (smaller
numbers)

‚ Extent of clear arrangement
of artifacts

‚ Degree of comprehensibility
of relations among artifacts

‚ Degree to which Concurrent
Engineering is reflected by
harmonized documents

Org. unit ‚ Mean degree of dependency of
one organizational unit on
another organizational unit

‚ Density of social network

‚ Extent to which the potential
for a social network is
exhausted

‚ Degree of lone fighting in
the process

‚ Estimation of potential for
process improvement through
social and organizational
measures

Time ‚ Mean degree of dependency of
one point in time on another
point in time

‚ Proximity to ideal sequence

‚ Degree of linearity of the
process

‚ Extent to which the potential
for synchronization of points
in time is exhausted

Event ‚ Mean degree of dependency of
one event on another event

‚ Estimation of effort necessary
for transferring the process to
an idea sequence

‚ Degree of linearity of the
process

‚ Extent to which the potential
for synchronization of events
is exhausted

Resource ‚ Mean number of interfaces
between two resources

‚ Mean degree of consistency of
transfer of artifacts among
resources

‚ Extent to which isolated
resources dominate the
process

‚ Estimation of potential for
implementing better interfaces
between resources

10. Appendix 309

10.5.8 Number of unconnected nodes

Definition

‚ Number of nodes which are not connected to the graph

Structural significance

‚ Number of independent entities

‚ Identification of possible modeling errors

Representation

‚ Number of unconnected nodes per domain

Literature

[MAURER 2007, p. 209]

Unconnected nodes

Domain 1

Domain 2

Domain 3

…

2

…

Domain Number of un-

connected elements

310 10. Appendix

Structural significance

Number of unconnected nodes

Task ‚ Independent node (task, artifact)

‚ Missing relationship in process

‚ Missing relationship in model

‚ Wrong level of detail of model

‚ Wrong system border (node is not part of model)

Artifact

Org. unit

Time

Event

Resource

10. Appendix 311

10.5.9 Activity / Passivity

Definition

‚ Number of outgoing edges (= activity) or number of incident edges
(= passivity)

‚ Also applicable for logic operators (see section 4.4.3)

Structural significance

‚ Intensity of changes that a node exerts on or receives from its immediate
neighbors

‚ Quick identification of nodes that are highly relevant for the process

‚ Degree of homogeneity of network

‚ Importance of node for local process (immediate environment)

Representation

‚ Portfolio containing all existing nodes

Literature

[LINDEMANN 2007, p. 256], [DAENZER & HUBER 2002]

4 inf luencing nodes

3 inf luenced nodes

Node 1

Node 2

Node 3

activity

p
a
s
s
iv

it
y

active

critical

inertial

passive

Node 2

act.: 3

pass: 3Node 3

act.: 0

pass: 2

Node 1

act.: 1

pass: 1

312 10. Appendix

Structural significance

Activity / passivity

Task ‚ Degree of influence exercised /received by a task

‚ Degree of importance of a task in its immediate environment /

degree of independence of a task from its immediate environment

‚ Extent of effort to coordinate with neighboring tasks (degree of

communication)

‚ Risk to distribute / be impacted by errors

‚ Importance of decision point (only for logic operators)

Artifact ‚ Degree of change impact of / on an artifact (number of changes

absorbed / sent)

‚ Degree of (in)dependence on other artifacts: Identification of

possible partial results that can be generated independently

‚ Impact of artifacts for individual decision points (only for logic

operators)

Org. unit ‚ Degree of direct control and authority / of dependency on

superiors

‚ Extent of direct integration of an organizational unit into the

process organization

Time ‚ Degree of control of individual points in time / degree of

dependency on other points in time

‚ Degree to which a point in time serves as a synchronization point /

as a buffer for delays

‚ Impact of points in time on decision points in the process (only for

logic operators)

Event ‚ Degree of direct impact of one event on the next immediate

event(s) / of dependency on the previous immediate event(s)

‚ Degree of control over the quality of one event

‚ Risk of distributing errors at one event

‚ Impact of events on decision points in the process (only for logic

operators)

Resource ‚ Importance of single resources for neighboring resources

‚ Potential for consistency that is possible with a resource

‚ Degree of openness of a resource for flexible use in the process

10. Appendix 313

10.5.10 Degree correlation (nodes)

Definition

‚ Occurrence of a correlation of the degrees of incident and outgoing edges
for all nodes (i.e., occurrence of each possible pair of activity and
passivity)

Structural significance

‚ Degree to which a node impacts (or is impacted by) the process

‚ Tendency to which the process relies on individual nodes to coordinate the
overall structure

Representation

‚ Plot of the occurrence of each pair of activity and passivity

Literature

[AHN et al. 2007], [NIKOLOSKI et al. 2005]

n:1

n:m 1:1

1:m

D
e
g

re
e
 o

f
p

a
s
s
iv

it
y

Degree of activity

N
u
m

b
e
r

o
f

n
o

d
e
s

314 10. Appendix

Structural significance

Degree correlation (nodes)

Task ‚ Degree of the possibility that tasks are more interdependent than

they appear to be explicitly (because of indirect relationships,

weak relationships, or missing relationships in the model)

‚ Degree to which the overall process is laced by critical tasks that

ensure the overall connectivity of the process

‚ Level of risk of distribution of errors of the overall process

Artifact ‚ Degree of the possibility that artifacts are not consistent among

themselves because of relationships that were not respected

(indirect relationships, weak relationships, or missing relationships

in the model)

‚ Degree to which the overall process is dependent on artifacts that

serve as communication hubs

Org. unit ‚ Degree to which the potential for networking among organizational

units is capitalized (measure for possible social relationships that

are not modeled)

‚ Level of the risk that the process depends on a few central

organizational units

Time ‚ Degree of possible delays from unexpected reasons (because of

indirect relationships, weak relationships, or missing relationships

in the model)

‚ Level of the risk that the process depends on a few critical points

in time that, if delayed, delay the overall process noticeably

Event ‚ Degree to which an event is possibly more dependent on other

events than expected (because of indirect relationships, weak

relationships, or missing relationships in the model)

‚ Degree of controllability of the overall process by only a few

selected states

Resource ‚ Measure for the possible need of more direct interfaces among

resources

‚ Level of the risk that consistent information transfer between the

resources is focused on few interfaces

10. Appendix 315

10.5.11 Degree correlation (edges)

Definition

‚ Occurrence of a correlation of the degrees of incident and outgoing edges
for each edge (i.e., occurrence of each possible pair of activity and
passivity ordered to each individual edge, classified by incident and
outgoing edges)

Structural significance

‚ Degree to which an edge impacts (or is impacted by) the network

‚ Degree of the process to be dependent on individual paths or on a
networked structure

‚ Tendency of how the transmission of information is handled (integration or
distribution)

‚ Identification of nodes that play a central role in integrating or distributing
information

‚ Determination of critical edges that rely on other edges to be fully
operational

Representation

‚ Plot of the occurrence of each pair of activity and passivity for the sixteen
possible cases of correlations

n:1

n:m 1:1

1:m

Incoming:

n:1

n:m 1:1

1:m

Outgoing:

4 incident cases

4
 o

u
tg

o
in

g
 c

a
s
e
s

correlation plot for

16 possible cases

316 10. Appendix

Structural significance

Degree correlation (edges)

Task ‚ Degree of the importance of a single interface (as transition

between two tasks) for the overall process

‚ Measure for the tendency of the process to rely on single or on

combined information transfer

Artifact ‚ Degree to which the overall process relies on the networking

among individual artifacts

‚ Measure for the tendency of spreading documents in a central

homogeneous manner

Org. unit ‚ Degree of the social network to be spread out as a chain or a

homogeneous network

Time ‚ Measure for the degree of linearity of the process with few

kickbacks

Event ‚ Measure for the homogeneity of progress in the process across a

line of states or across many states simultaneously

Resource ‚ Degree of risk that individual interfaces rely on the transfer across

other interfaces, which can interrupt the overall process if disrupted

10. Appendix 317

10.5.12 Degree distribution

Definition

‚ Distribution of number of nodes with identical activity or passivity

Structural significance

‚ Homogeneity of the process

‚ Sensitivity of network to the malfunction or drop-out of individual nodes

‚ Identification of critical nodes that can cause a failure of the overall process

‚ Identification of hubs in the process

‚ Identification of nodes that are little integrated and possibly of little
importance

Representation

‚ Plot of number of nodes with identical activity or with identical passivity

Literature

[ALBERT & BARABASI 2002]

Domain 1:

even distribution
Domain 2:

hub-and-spoke distribution

N
u
m

b
e
r

o
f

n
o

d
e
s
 w

it
h
 d

e
g

re
e
 x

Degree x

poisson distribution

scale-f ree distribution

318 10. Appendix

Structural significance

Degree distribution

Task ‚ Degree of randomness in process (the more the degrees are

distributed as an exponential function, the more the process is not

random)

‚ Degree for the extent of failure of tasks that is necessary for overall

process to fail (i.e., fall apart or be seriously hindered in its

connectivity)

o Measure for the risk of success of a deliberate attack against

central tasks (e.g., sabotage) to cause the overall network to fail

o Measure for the risk that random failures of tasks (e.g., by

producing errors) do not corrupt the overall network

‚ Degree to which the process is controlled by central tasks (i.e.,

all tasks can be reached across a very short path)

Artifact ‚ Degree of randomness of the consistency among documents

‚ Degree of risk caused by wrong or faulty documents

‚ Degree of risk caused by data loss or by the loss of knowledge

Org. unit ‚ Degree of organization in the social network

‚ Degree to which the process depends on core organizational units

that need to be particularly protected

Time ‚ Tendency of the process to rely on (few) critical points in time that

control the process

‚ Level of the risk that the overall process is delayed if single points

in time are not reached in time

‚ Degree to which the process is laced with bottlenecks

Event ‚ Degree of organized progress of the process

‚ Level of risk of the overall process to depend on (few) critical

events that control the process

‚ Degree for the controllability of the overall process using few events

Resource ‚ Degree of homogeneity of the interfaces in the resource system

‚ Degree of dependency of the overall process on (few) critical

resources

‚ Level of risk of the overall process to fail if single resources fail

10. Appendix 319

10.5.13 Fan criticality

Definition

‚ Activity (= Fan-Out) / passivity (= Fan-In) for a module (number of
outgoing or incident edges for a module)

‚ Also possible for logic operators

Structural significance

‚ Similar to the metric “activity / passivity” but for modules

‚ Only sensible for the evaluation of existing modules (= pre-defined groups
of elements)

‚ Comparison of modules concerning their susceptibility to changes and/or
their impact on the overall network

Representation

‚ Portfolio of Fan-In and Fan-Out containing all modules

Literature

[GRUHN & LAUE 2006b] , [DAENZER & HUBER 2002]

Fan-In

Module 1

Fan-Out

Fan-Out

F
a
n
-I
n

Module x

Module y

Module 1

Fan-In: 3

Fan-Out: 2

320 10. Appendix

Structural significance

Fan criticality

Task ‚ Degree of influence of a module (i.e., a defined set of tasks) on its

immediate environment (active fan criticality)

‚ Degree of influence from the immediate environment on a module

‚ Level of risk of possible errors generated in a module

‚ Extent of interaction necessary with immediate environment

(communication)

Artifact ‚ Degree of impact of changes made to a (pre-defined) set of

artifacts on their immediate surroundings

‚ Degree of dependence of a set of artifacts on their immediate

surroundings

‚ Level to which a set of artifacts can be generated independently

from the process

Org. unit ‚ Number of communication channels available to a body of

organizational units (e.g., a department) to send (active) or receive

(passive) information

‚ Degree to which a body of organizational units is embedded into

the process via its immediate environment

Time ‚ Level of independence of a set of points in time (e.g., a phase)

from the overall schedule

‚ Degree of influence of a set of points in time to the schedule

(active fan criticality)

‚ Degree to which a set of points in time serves as a buffer

(passive fan criticality)

Event ‚ Level of integration of a set of events into the overall process

‚ Degree of independence for reaching a set of events from the

overall process

‚ Level of influence of a set of events on the overall process

Resource ‚ Degree of openness of an encapsulated family of resources

(e.g., a group of IT systems) to the overall process

‚ Level of risk of an encapsulated family of resources to be a

bottleneck

‚ Level of decoupling of an encapsulated family of resources from

the overall process

10. Appendix 321

10.5.14 Synchronization points / distribution points

Definition

‚ Number of AND-joins (merging busses) as synchronization points
concerning the flow of information

‚ Number of AND-splits (distributing busses) concerning the flow of
information

‚ Only nodes with many more incident than outgoing edges are regarded (for
synch. points, outgoing edges for distribution points)

‚ Also possible for logic operators

Structural significance

‚ Identification of critical coordination points

Representation

‚ Pareto distribution of incoming or outgoing edges for relevant nodes (with
“high” degree)

Literature

[GRUHN & LAUE 2006b]

Example of a join

(synchronization point)

Node 1

Node 2 Node 3

Node 4

Node 5

Node 6

N
u
m

b
e
r

o
f

jo
in

s
 p

e
r
n
o

d
e

4

1 1 1 1

0

322 10. Appendix

Structural significance

Compare also the interpretation guideline for Activity (Synchronization points) /
Passivity (Distribution points)

Synchronization points Distribution points

Task ‚ Degree to which a task serves

as a buffer within the overall

process by collecting inputs

before continuing

‚ Degree to which a task

possibly causes delays within

the overall process by

withholding outputs that are

necessary for other tasks to

continue

Artifact ‚ Degree to which an artifact

serves as a buffer within the

overall process by collecting

inputs before continuing

‚ Degree to which an artifact

possibly causes delays within

the overall process by being

the backbone, from which

other artifacts are generated

Org. unit ‚ Degree to which an

organizational unit serves as

an information sink within the

overall process by collecting

information and know-how

‚ Degree to which an

organizational unit possibly

controls the overall social net

through spreading or

withholding information

Time ‚ Degree to which a point in time

serves as a buffer within the

overall process by depending

on other points in time

‚ Degree to which a point in

time possibly causes delays

within the overall process by

allowing other points in time

to be reached only after one

point has been visited.

Event ‚ Degree to which an event

serves as a buffer within the

overall process by waiting for

other events before continuing

‚ Degree to which an event

possibly causes delays within

the overall process by

obstructing other events from

being reached

Resource ‚ Degree to which a resource

serves as an information sink

within the overall process by

integrating inputs

‚ Degree to which a resource

possibly is a bottleneck within

the overall process, through

which many other nodes

need to pass

10. Appendix 323

10.5.15 Number of independent sets

Definition

‚ Number of bands in a banded DSM

Structural significance

‚ Groups of nodes that can be executed independently of each other

‚ Possibility of parallelization of process for each bands

Representation

‚ Metric per domain

Literature

[MAURER 2007, p. 226], [YASSINE 2004], [BROWNING 2001]

Domain 1

Domain 2

Domain 3

…

4

…

Domain Number of

independent sets

Band

324 10. Appendix

Structural significance

Number of independent sets

Task ‚ Potential for parallelization and concurrent engineering

‚ Degree to which a process necessitates synchronization

Artifact ‚ Degree to which the artifacts are interdependent

Org. unit ‚ Potential to generate teams that operate independently towards a

common goal

Time ‚ Indicator of the creation of phases

Event ‚ Robustness of the state of the process

Resource ‚ Potential to integrate resources into a common workflow that is

largely independent from the rest of the resources

10. Appendix 325

10.5.16 Number of reachable nodes

Definition

‚ Number of nodes to be reached from starting node (i.e., number of all
nodes within the tree of each root node)

‚ Can be normalized to the total number of nodes within the graph

Structural significance

‚ Degree of influence of a node onto the overall network

‚ Extent of the downstream hierarchy

‚ Influence is not weighted according to distance (as opposed to hierarchies)

Representation

‚ Pareto distribution of all nodes ordered by the number of passively
reachable nodes

‚ Also possible as a plot of reachabilities and number of reachable nodes (see
Metric “Reachability of a node”)

Literature

[MAURER 2007, p. 202]

Node 1

Node 2

Node 3

N
u
m

b
e
r

o
f

re
a
c
h
a
b

le
 n

o
d

e
s 6

5

2

326 10. Appendix

10.5.17 Reachability of a node

Definition

‚ Number of possible starting nodes to reach a designated node

‚ Can be normalized for the total number of nodes within the graph

Structural significance

‚ Influence of the overall process on a node

‚ Influence is not weighted according to distance (as opposed to hierarchies)

Representation

‚ Pareto distribution of nodes ordered by the number of passively reachable
nodes (see metric “Number of reachable nodes”)

‚ Also possible as a plot of reachabilities and number of reachable nodes

Literature

[MAURER 2007, p. 202]

Node 1

Node 2

Node 3
Reachable nodes

R
e
a
c
h
a
b

ili
ty

Node 1

reachability: 2 (0.34)

No. of reachable nodes: 4 (0.67)

Node 2

reachability: 2 (0.34)

No. of reachable nodes: 5 (0.83)

Node 3

reachability: 4 (0.67)

No. of reachable nodes: 0 (0.00)

(in brackets: normalized to total number of nodes-1)

10. Appendix 327

Structural significance

Number of reachable nodes Reachability of a node

Task ‚ Degree to which a task is
actively in control of the
subsequent process

‚ Level of risk of a task to supply
subsequent tasks with errors

‚ Relevance of a task for the
subsequent process

‚ Degree to which a task serves
as an information sink

‚ Level of risk of a task to be
based on wrong assumptions

‚ Degree to which a task depends
on previously compiled
information

Artifact ‚ Extent of necessary consistency
with subsequent artifacts

‚ Level of impact of an artifact on
the overall, subsequent process

‚ Level of risk of an artifact to
transmit errors into the
subsequent process

‚ Extent of necessary consistency
with previous artifacts

‚ Level of impact of the overall,
previous process onto an artifact

‚ Level of risk of an artifact to work
with erroneous information

Org. unit ‚ Level of the potential to
communicate within the social
network

‚ Degree of control exercised by
an organizational unit over
other units

‚ Visibility of an organizational unit
within the organizational setup

‚ Extent to which information is
likely to arrive at an
organizational unit

Time ‚ Level of relevance of a point in
time for all other subsequent
points in time

‚ Degree of control of a point in
time over the subsequent
schedule

‚ Level of importance of a point in
time for its integration into
overall schedule

‚ Level of risk of a point in time to
delay the overall subsequent
process

‚ Degree of control of the schedule
previous to a point in time over
its timeliness

‚ Level of importance of a point in
time for its integration into the
overall schedule

‚ Degree to which a point in time
serves as a buffer for the overall
process

Event ‚ Level of relevance of an event
for all subsequent events

‚ Degree of control of an event
for all subsequent events

‚ Level of risk of an event to delay
the overall, subsequent process

‚ Level of relevance of an event
for all previous events in the
overall process

‚ Degree of control of the process
previous to an event over its
timeliness

‚ Degree to which an event serves
as a buffer for the overall,
previous process

Resource ‚ Extent of possible consistency

‚ Degree to which a resource can
be used to spread information
efficiently

‚ Level of potential for consistency
among all artifacts in the process

‚ Openness to deal with various
inputs

328 10. Appendix

10.5.18 Proximity

Definition

‚ Total length of all paths that cross a node

‚ Differentiation of active and passive path length possible

‚ Also referred to as closeness

Structural significance

‚ Compactness of a process from a node's point of view

‚ Estimation of velocity of reaching other entities in the process

‚ Degree of immediacy of influence on or by other nodes

Representation

‚ Portfolio according to incident and outgoing path length for all nodes

‚ Distribution of absolute proximity (active and passive) for all nodes

Literature

[MAURER 2007, p. 205]

Node 1

Node 2

Node 3
Node 6

Node 7

Node 5
Node 4

Active proximity

P
a
s
s
iv

e
 p

ro
x
im

it
y

Node 1

act. prox.: 6

pass. prox.: 2

Node 2

act. prox.: 5

pass. prox.: 5

Node 3

act. prox.: 1

pass. prox.: 6

10. Appendix 329

Structural significance

Proximity

Task ‚ Level of importance of a task as a broker for information within the

overall process

‚ Degree of integration of a task into the overall process

‚ Degree of tangibility of long-range impacts of a task on the overall

process

Artifact ‚ Level of importance of an artifact to serve as a central information

sink that needs to be documented well

‚ Degree of integration of an artifact into the overall process

‚ Degree of tangibility of long-range interactions of an artifact with all

other artifacts

Org. unit ‚ Extent of potential of an organizational unit to work as a central hub

of information transfer and opinion formation

‚ Extent of potential of an organizational unit to communicate with all

other organization units in the process

Time ‚ Level of importance of timeliness at a point in time to ensure the

timeliness of the overall process

‚ Extent of integration of a point in time into the overall schedule

Event ‚ Degree of influence of an event on the overall process

‚ Visibility of an event within the overall process as a means of control

‚ Extent of integration of an event into the overall process

Resource ‚ Level of potential of a resource to serve as a central hub for

information transfers and information processing

‚ Level of accessibility of resource from other resources throughout

the overall process

330 10. Appendix

10.5.19 Relative centrality (based on between-ness)

Definition

‚ Number of shortest paths between any two nodes that cross a designated
node

‚ Normalization possible to (n-1)*(n-2) as maximum number of possible
paths per node

Structural significance

‚ Degree of the communication activity in the process

‚ Degree of integration of an entity into the process (e.g., in terms of opinion
making)

‚ Potential of an entity to influence the process

‚ Identification of hubs in the overall process concerning their role as
distributors of information

Representation

‚ Pareto distribution of all nodes and their centralities

Literature

[MAURER 2007, p. 144], [FREEMAN 1978]

Node 1

Node 2

Node 3

Node 6

Node 7

Node 5

Node 4

C
e
n
tr

a
lit

y

20

12

8 8
7

5
4

10. Appendix 331

Structural significance

Relative centrality (based on between-ness)

Task ‚ Level of importance of a task for the overall process

‚ Degree of a task to serve as a broker for information and to form

opinions

‚ Level of risk of a task to be susceptible to changes

‚ Level of risk of a task to seriously hinder the overall process in case

of failure

‚ Degree to which a task should be detailed when planning a process

Artifact ‚ Degree to which an artifact serves as a central information hub

‚ Level of risk that is caused by an error in an artifact

‚ Level of risk of an artifact to be susceptible to changes

‚ Degree to which an artifact possibly serves as a central point of

reference

Org. unit ‚ Degree to which an organizational unit has the role of a central

coordinator

‚ Degree to which an organizational unit works as a hub for

information transfer

‚ Degree to which an organizational unit possibly serves as a

repository of knowledge

Time ‚ Degree to which a point in time plays a central role in the overall

schedule

‚ Level of risk of a point in time to be susceptible to changes and

even iterations

‚ Level of importance of timeliness of a point in time for the overall

timeliness

Event ‚ Degree to which an event plays a central role in reaching the

overall process result

‚ Degree to which the progress of a process reflects in an event

Resource ‚ Degree to which a resource purposefully serves as a hub for

information exchange

‚ Level of accessibility of a resource from the overall process

332 10. Appendix

10.5.20 Node connectivity

Definition

‚ Minimum number of nodes that need to be removed to separate the
network into disjoint networks

‚ Can purposefully be related to the size of the networks that remain after
separation

Structural significance

‚ Evaluation of the robustness of the process against single entities dropping
out

‚ Tendency of the process to keep its overall integrity in case a node fails

‚ Identification of nodes that are critical to the coherence of the overall
process

Representation

‚ Number of removed nodes necessary per domain arranged according to
number of resulting disjoint networks

Literature

[GROSS & YELLEN 2005, p. 175]

Removing this node will

separate the process

into 2 parts
Domain 1

Domain 2

…

1

…

Domains Necessary number of

nodes to be removed

2

…

n

2

…

Number of

resulting

networks

10. Appendix 333

10.5.21 Edge connectivity

Definition

‚ Minimum number of edges to be removed to separate the network into two
/ three /… disjoint networks

‚ Can purposefully be related to the size of the networks that remain after
separation

Structural significance

‚ Evaluation of the robustness of the process against single edges dropping
out

‚ Tendency of the network to keep its overall integrity in case an edge fails

‚ Identification of nodes that are critical to the coherence of the overall
process

Representation

‚ Number of removed edges necessary per domain arranged according to
number of resulting disjoint networks

Literature

[GROSS & YELLEN 2005, p. 175]

Removing this edge will

separate the process

into 2 parts

Domain 1

Domain 2

…

1

…

Domains Necessary number of

edges to be removed

2

…

n

2

…

Number of

resulting

networks

334 10. Appendix

Structural significance

Node connectivity (/edge connectivity)

Task ‚ Degree of integrity of the overall process based on individual tasks

(/on individual communication channels)

‚ Level of risk of the overall process to fall apart if individual tasks

(/individual communication channels) fail

‚ Number of tasks (/communication channels) that need to be

removed to split the process into two or more independent

processes

‚ Extent of independent sub-processes within the overall process,

consisting of groups of tasks that are only connected to the process

via one or a few connecting tasks (/communication channels)

‚ Level of flexibility to process parts of the overall process relatively

independently

Artifact ‚ Extent of independency of a group of artifacts that are only

connected to the overall process via transferring artifacts

(/communication channels)

Org. unit ‚ Degree of integrity of the social network

‚ Level of dependency of the social network on individual

organizational units (/communication channels) that ensure the

overall collaboration of the process

‚ Level of risk of the overall process to fall apart in case of failure of

individual organizational units (/communication channels)

Time ‚ Extent of bottlenecks in the process that synchronize and spread

the process flow (/that channel the information flow)

‚ Level of risk of delays due to individual points in time not being

reached

‚ Level of potential to generate results of parts of the process

independently from the rest of the overall process

Event ‚ Degree of independence of the events within the overall process

‚ Level of potential to achieve certain events of the process

independently from the rest of the overall process

‚ (/Level of risk of individual transitions in the overall process)

Resource ‚ Degree of integration of chain of resources

‚ Level of risk of obtaining isolated applications in case individual

resources (/interfaces) fail

10. Appendix 335

10.5.22 Number of paths

Definition

‚ Number of all possible paths per pair of start- / end-nodes

‚ Purposeful mostly for dedicated pairs of start and end nodes

Structural significance

‚ Evaluation of redundant pathways through the process

‚ Determination of clarity of processing of process

‚ Determination of critical start- and end-nodes

Representation

‚ Metric for each pair of nodes

Literature

[MCCABE 1976]

2 paths

leading

to end 2,

1 path

leading to

end 1

Start node 2

End node 1 End node 2

Start node 1

… …

1 2 …

1 1 …Start 1

Start 2

Start 3

Start 4

336 10. Appendix

Structural significance

Number of paths

Task ‚ Degree of directedness of a process (unambiguous processing of

tasks)

‚ Extent of redundancies within the process

‚ Degree of parallelism in processing of tasks

Artifact ‚ Level of ambiguity in processing of artifacts

‚ Degree of possible parallelism in generation of artifacts

Org. unit ‚ Degree of variety of communication paths

‚ Level of flexibility of communication

Time ‚ Level of synchronism of processing of process

‚ Extent of necessary coordination

Event ‚ Degree of parallelization of process

‚ Degree of variety of control of process

Resource ‚ Level of flexibility in resource landscape to provide the consistency

and transfer of artifacts

10. Appendix 337

10.5.23 Path length

Definition:

‚ Number of edges between start-node and end-node (for a path)

‚ Also possible as minimum path length for two nodes

‚ Also possible as average path length for all paths across the overall
network

Possible meaning:

‚ Difficulty to reach another designated node within the network

‚ Description of the size of the network

Representation:

‚ Pareto distribution

‚ Metric per domain (for average path length)

Literature

[NEWMAN 2003a]

Path 1

Path 3

Path 2

N
u
m

b
e
r

o
f

p
a
th

s
p

e
r
e
d

g
e

4

2

4

Average path length: 3.33

338 10. Appendix

Structural significance

Path length

Task ‚ Distance between two tasks

‚ Degree of impact of one task on another task

‚ Minimum effort to synchronize two tasks (min. path length)

‚ Size of the process (average path length)

Artifact ‚ Distance between two artifacts

‚ Degree of impact of one artifact on another artifact

‚ Size of the process (average path length)

Org. unit ‚ Distance between two organizational units

‚ Effort for two organizational units to communicate

Time ‚ Possible number of phases between two points in time

‚ Duration between two points in time

Event ‚ Degree of impact of one event on another event

Resource ‚ Number of intermediate interfaces between two resources

10. Appendix 339

10.5.24 Weight of an edge

Definition

‚ Number of shortest paths that follow a designated edge

Structural significance

‚ Importance of an edge for the overall network - e.g., in terms of
communication channels

‚ Identification of critical edges for the function of the overall process

Representation

‚ Pareto distribution of weight for all edges

Literature

[HENRY et al. 1981]

Edge 2

Edge 3

Edge 5

Edge 4

Edge 1

N
u
m

b
e
r

o
f

p
a
th

s
p

e
r
e
d

g
e

4

2 2 2 2

340 10. Appendix

Structural significance

Weight of an edge

Task ‚ Level of importance of an information transfer or interface between

two tasks for the overall process

‚ Degree to which a transfer of information is central to overall

process

‚ Degree to which a transfer of information is part of a principal

process path

Artifact ‚ Extent to which a transition between two artifacts is part of central

genesis of knowledge in the overall process

‚ Degree to which a transition between two artifacts is central to a

process

‚ Extent of the spreading of artifacts throughout the process

‚ Level of the risk of spreading erroneous artifacts throughout the

process

Org. unit ‚ Level of communication between two organizational units for the

overall process

‚ Degree of centrality of an interface between two organizational units

Time ‚ Degree of centrality of a transition from one point in time to the

next for the progress of the overall process

‚ Extent of progress made within the overall process at the transition

between two points in time

Event ‚ Degree of centrality of a transition between two events for the

overall process

‚ Level of potential to determine central events and interfaces to

control the overall progress of the process

Resource ‚ Degree of importance of an interface between two resources for

the integrity of information transfer within the overall process

10. Appendix 341

10.5.25 Centrality of path (based on centrality)

Definition

‚ Sum of all centralities of all nodes along a specific path

‚ Normalization of product for length of path and normalization basis of
centrality

Structural significance

‚ Evaluation of relevance of an individual path for the overall process in
terms of its connection to the overall process

‚ Identification of critical transitions and pathways through the process

‚ Degree to which an individual path is connected to the overall network

Representation

‚ Pareto distribution of all centralities for all relevant paths

Literature

[LOCH et al. 2003], [FREEMAN 1978]

Path 1

Path 2

Path 3

C
e
n
tr

a
lit

y
 o

f
a
 p

a
th

 (
c
e
n
tr

a
lit

y
)

0.817

1.792
1.958

342 10. Appendix

Structural significance

Centrality of a path (based on centrality)

Task ‚ Degree of independence of a sequence of tasks from the rest of

the overall process

‚ Degree of influence taken by the overall process on a sequence of

tasks

‚ Level of relevance of the principal process path for the overall

process

Artifact ‚ Level of independence of principal path from other sources across

overall process

‚ Level of relevance of a sequence of artifacts for the overall process

Org. unit ‚ Degree of over-determination of a communication path or a chain

of command across overall organizational setup

‚ Extent of external influences on communication path

‚ Level of relevance of a communication path for the overall process

Time ‚ Degree of synchronization of a central path necessary with overall

process

‚ Degree of possible controllability of a sequence of points in time

because of their independence from the overall schedule

‚ Degree of other-directedness of schedule

‚ Level of relevance of the principal process path for the overall

process

Event ‚ Degree of independence of a sequence of events from the overall

process

‚ Level of controllability of a sequence of events

‚ Degree of synchronization necessary

‚ Level of relevance of the principal process path for the overall

process

Resource ‚ Degree of openness of a series of resources towards other systems

‚ Extent of necessary interfaces of a series of resources with the

overall process

10. Appendix 343

10.5.26 Centrality of path (based on degree)

Definition

‚ Sum of all degrees of nodes along a specific path (excluding edges of path)

‚ Is equivalent to activity / passivity of a path

‚ Differentiation by active and passive degree possible

Structural significance

‚ Evaluation of relevance of an individual path for the overall process in
terms of processing and distribution of information

‚ Identification of critical transitions and pathways through the process

Representation

‚ Pareto distribution of centralities for all relevant paths

Literature

[MAURER 2007, p. 144], [FREEMAN 1978]

Path 1

Path 2

Path 3

C
e
n
tr

a
lit

y
 o

f
a
 p

a
th

 (
d

e
g

re
e
)

7

4 4

344 10. Appendix

Structural significance

Centrality of a path (based on degree)

Task ‚ Number of interfaces to neighboring tasks

‚ Degree of independence of a sequence of tasks from its direct

interfaces to the process

‚ Degree of influence taken by interfacing tasks

‚ Degree to which the sequence of tasks is influenced by its direct

interfaces

‚ Relevance of the principal process path for the overall process

Artifact ‚ Number of interfaces to other documents in the process

‚ Extent of difficulty to achieve consistent documentation or a process

‚ Degree of independence of a sequence of documents from the

direct interfaces to other documents in the process

Org. unit ‚ Number of interfaces of a communication path or a chain of

command to other organizational units

‚ Extent of over-determination of a communication path

Time ‚ Number of synchronization points within the schedule

‚ Degree of other-directedness of schedule

Event ‚ Number of interfaces of series of events from other events within

the overall process

‚ Extent of necessary synchronization with other events in the

process

‚ Degree of other-directedness of schedule

Resource ‚ Number of interfaces of a series of resources to overall process

‚ Extent of integration into overall resource landscape

10. Appendix 345

10.5.27 Degree of progressive oscillation

Definition

‚ Sum of length of all paths that run parallel to a designated path, starting
and ending on that path

Structural significance

‚ Evaluation of the impact of supporting processes for an individual pathway

‚ Determination of the degree to which a path depends on supporting
processes

‚ Identification of over-determined paths

Representation

‚ Pareto distribution of progressive oscillation for all relevant paths

Literature

[PONN & LINDEMANN 2005]

3 paths run in parallel

to the principal path

P
ro

g
re

s
s
iv

e
 o

s
c
ill

a
ti
o

n

3

346 10. Appendix

Structural significance

Progressive oscillation

Task ‚ Number of supporting processes (as series of tasks) that contribute

to direct progress of the principal process

‚ Level of independence of a principal path from supporting tasks

‚ Level of over-determination of principal path

‚ Level of risk of delays because of delays outside the principal path

‚ Degree of flexibility to execute principal process despite obstacles

along principal path

Artifact ‚ Extent of supporting documentation to generate principal artifacts

‚ Level of risk of principal path to generate inconsistent

documentation

‚ Degree of independence from other artifacts

Org. unit ‚ Extent of external influences on a communication path or a chain

of command

‚ Level of risk of unwanted influences on a communication channel

‚ Level of risk of divergence of opinion building along a

communication path

Time ‚ Extent of influence of external points in time on principal sequence

‚ Level of risk of delays outside the sequence of points in time

delaying the principal sequence

Event ‚ Degree of dependence on events outside principal process

‚ Number of states of supporting processes that can impact the

principal sequence of events

Resource ‚ Degree of openness of a set of resources

‚ Degree of flexibility to replace principal chain of resources with

other resources

10. Appendix 347

10.5.28 Height of hierarchy

Definition

‚ Number of levels of a tree

‚ Hierarchy is computed level by level

Structural significance

‚ Evaluation of intensity of the distribution of information or errors

‚ Possible as impact on other nodes (active root node) or as feed (passive
root node)

‚ Evaluation of secondary effects of changes to a node

Representation

‚ Pareto distribution of height of each hierarchy for all root nodes

Literature

[MAURER 2007, p. 218], [ROBERTSON & SEYMOUR 1986], [HARRISON & MAGEL
1981], [PIWOWARSKI 1982]

= Root node

Level 1

Level 2

Level 3

Node 2

Node 1

Node 3

M
a
x
im

u
m

 h
e
ig

h
t

p
e
r

ro
o

t
n
o

d
e

3

2

1

348 10. Appendix

10.5.29 Width of hierarchy

Definition

‚ Number of all end nodes (per level) of a tree

‚ If a node is accessed by two or more levels, the lowest level is counted

‚ Hierarchy is computed level by level

Structural significance

‚ Evaluation of velocity of distribution of information or errors (per level)

‚ Possible as impact on other nodes (active root node) or as feed (passive
root node)

‚ Evaluation of secondary effects of changes to a node

Representation

‚ Pareto distribution per root node

Literature

[MAURER 2007, p. 218], [ROBERTSON & SEYMOUR 1986]

Node 5

Node 1

Node 2

Node 4

Node 3

M
a
x
im

u
m

w

id
th

 p
e
r

ro
o

t
n
o

d
e

5

4

3

0

1

10. Appendix 349

10.5.30 Tree criticality

Definition

‚ Surface of a tree (width, height), weighted according to level (active root
node = snowball factor, passive root node = forerun factor)

‚ Hierarchy is computed level by level

‚ Weight of level can be set individually (e.g., as inverse of distance to root
node)

Structural significance

‚ Measure for the distribution of information and errors within the process

‚ Analysis for nodes that are robust against the propagation of errors

‚ Analysis of nodes that are central distributors of information

‚ Calculation is possible for consequences (å active root node of hierarchy)
or forerun (å passive root node of hierarchy)

Representation

‚ Metric per root node

‚ Pareto distribution of height, width, and criticality for all nodes

Node 2

Node 1

Node 3

Width

H
e
ig

h
t

Node 2

Crit.: 5.5

criticality > 5

2 < criticality < 4

4 < criticality < 5

criticality < 2

Node 1

Crit.: 4.99

Node 3

Crit.: 3

350 10. Appendix

Structural significance

Tree criticality (including width and height of a hierarchy)

Task ‚ Degree of a task to rapidly spread information and errors

throughout the process

‚ Degree of susceptibility for information within the process

‚ Level of risk of a task to be impacted by errors

Artifact ‚ Extent necessity to adjust other artifacts to achieve consistency

‚ Degree of artifact to rapidly spread out information to other artifacts

‚ Level of risk of errors in an artifact to spread to other artifacts rapidly

Org. unit ‚ Extent of potential of an organizational unit to rapidly address other

organizational units

‚ Extent of visibility of an organizational unit for other organizational

units

‚ Degree of accessibility of know-how in the organizational setup

‚ Degree of potential to rapidly spread out information from one

organizational unit to others

‚ Extent of influence of an organizational unit

Time ‚ Level of risk of a point in time to spread a delay across the overall

process

‚ Degree of susceptibility of a point in time to be impacted by delays

across the overall process

‚ Level of importance of a point in time for the information distribution

across the overall process

Event ‚ Degree of influence of an event exercised on other events in the

process

‚ Level of impact received from other events in the process

‚ Degree to which an event controls the subsequent process

‚ Level of risk of delays of an event because of delays in the

previous process

Resource ‚ Level of potential of a resource to allow for the consistent

exchange and processing of artifacts in the overall process

‚ Degree of the ability of a resource to rapidly distribute information

to other resources

‚ Degree to which a resource is well integrated into the overall

network of resources

10. Appendix 351

10.5.31 Snowball factor

Definition

‚ Sum of product of width (per level) and height, each level weighted
according to inverse of shortest path length to root node

‚ Hierarchy is computed level by level

Structural significance

‚ Measure for the spreading of information and error

Representation

‚ Portfolio for height, width, and snowball factor of all nodes

‚ Also possible as distribution of snowball factor for all root nodes (see
metric “Forerun factor”)

Literature

[LOCH et al. 2003]

Height h

Level i

Width b

Root node

Width

H
e
ig

th

Node 1

Node 2

Node 3
Snowball > A

B < Snowball < A

C < Snowball < B

Snowball > C

352 10. Appendix

Structural significance

Snowball factor

Task ‚ Weighted degree of influence of a task on subsequent tasks

‚ Degree of importance of a task for the subsequent process

‚ Level of rapid information sharing with subsequent process

‚ Level of effort to synchronize subsequent tasks to achieve

consistency

‚ Level of risk of rapidly spreading errors from task to subsequent

process

Artifact ‚ Weighted degree of impact of changing an artifact

‚ Level of effort to achieve consistent documentation

‚ Level of importance of the quality of an artifact to influence the

outcome of the overall process

‚ Level of risk of errors contained in an artifact to propagate to other

artifacts

Org. unit ‚ Weighted degree of potential of the ability of an organizational unit

to communicate within an organizational set

‚ Extent of networking within social network to enable quick

distribution of information

‚ Degree of possible influence on other organizational units within

organizational setup

Time ‚ Weighted level of risk of a delay at a point of time to delay the

subsequent process

Event ‚ Weighted degree of influence of an event on the subsequent

process

‚ Level of risk of an event to delay the subsequent process

‚ Level of importance of the quality of an event to influence the

outcome of the overall process

Resource ‚ Weighted degree of potential to forward information consistently

to other resources

‚ Degree of openness to transmit information to other resources

‚ Level of potential of a resource to serve as an information hub

10. Appendix 353

10.5.32 Forerun factor

Definition

‚ Number of nodes that lead to a milestone or decision point weighted by
closeness to this milestone

‚ Hierarchy is computed level by level

Structural significance

‚ Extent of preparations that have to be arranged previous to a milestone

‚ Robustness of an entity towards incoming information and/or errors

Representation

‚ Portfolio for height, width, and forerun factor of all nodes (see metric
“Snowball factor”)

‚ Also possible as distribution of forerun factor for all root nodes

Literature

[BADKE-SCHAUB & GEHRLICHER 2003]

Related milestone 1

Weight

1/2 1/31/41/5 1

Node 1

Node 2

Node 3

F
o

re
ru

n
 f

a
c
to

r

4.25 4.25

2.83

3.5

354 10. Appendix

Structural significance

Forerun factor

Task ‚ Weighted degree of dependency of a task on previous tasks

‚ Degree of importance of a task to compile information from the

previous process

‚ Level of rapid information access from previous process

‚ Level of effort to synchronize with previous tasks to achieve

consistency

‚ Level of risk of rapidly spreading errors to influence task

Artifact ‚ Weighted degree of impact of changing the previous process into

an artifact

‚ Level of effort necessary to achieve documentation consistent with

previous artifacts

‚ Level of dependence of the quality of an artifact on previous

artifacts

‚ Level of risk of errors to be contained in an artifact

‚ Level of importance of information search to generate an artifact

Org. unit ‚ Weighted degree of visibility of an organizational unit within the

organizational setup

‚ Potential of an organizational unit to receive information

‚ Extent of networking within social network to enable quick reception

of information

‚ Degree of possible impact by other organizational units within

organizational setup

Time ‚ Weighted level of risk of a delay at a point of time because of

delays during the previous process

Event ‚ Weighted degree of impact of previous process on an event

‚ Level of risk of an event to be delayed because of delays in the

previous process

‚ Level of dependence of the quality of an event on the outcome of

the previous process

Resource ‚ Weighted degree of potential to generate information consistently

to other resources

‚ Degree of openness to receive information from other resources

‚ Level of potential of a resource to serve as an information hub

10. Appendix 355

10.5.33 Tree-robustness

Definition

‚ Quotient of number of all trees and sum of all tree criticalities

‚ Hierarchies are computed level by level

Structural significance

‚ Degree to which the network is interspersed with trees

‚ Robustness of a complete process concerning the distribution or reception
of information and/or errors

‚ Evaluation of the overall process for its robustness against rapid
propagation of errors

Representation

‚ Metric per domain

Hierarchy1

Crit.: 4.33

Hierarchy 2

Crit.: 2.33

Domain 1

Domain 2

…

0.3

…

Domains Tree robustness

per domain

356 10. Appendix

10.5.34 Maximum nesting depth

Definition

‚ Number of splits in a process

‚ Can only be calculated for process with one starting node

Structural significance

‚ Difficulty of understanding the process model

‚ Estimation of well-structuredness of process if compared to maximum
nesting depth for splits leading towards single end-node of process (process
is well structured if difference of the two is zero)

Representation

‚ Metric per domain

Literature

[GRUHN & LAUE 2006a], [HARRISON & MAGEL 1981], [PIWOWARSKI 1982]

Split 1

Split 2

Split 3

Domain 1

Domain 2

Domain 3

…

3

…

Domains Maximum nesting depth

10. Appendix 357

Structural significance

Tree robustness Maximum nesting depth

Task ‚ Degree of an overall process
to rapidly spread out
information among all tasks

‚ Degree of susceptibility of an
overall process to propagate
errors across all tasks

‚ Level of subdivision of a
process into possible sub-
processes (for a well-
structured process) (for
starting node)

‚ Number of decision points in
a process (if decision points
are not modeled explicitly)
after starting node

Artifact ‚ Degree of (mutual) dependency
of all artifacts in a process
among each other

‚ Level of risk of a process to
contain inconsistent artifacts

‚ Degree of rapid distribution of
information across artifacts

‚ Level of risk of spreading
errors rapidly among artifacts

‚ Number of subsequent
phases of generating artifacts
in a process

‚ Level of potential for clusters
of artifacts that can be
regrouped

‚ Level of hierarchization of
artifacts

Org. unit ‚ Level of potential for
communication among all
organizational units in
organizational setup

‚ Degree of potential to rapidly
spread out information within
the overall process

‚ Number of levels of hierarchy
below an organizational unit

Time ‚ Degree of susceptibility of the
schedule for the overall process
to be dependent on single
points in time

‚ Level of potential to create
phases (i.e. pre-defined
modules of points in time)
based on well-structured
groups of points in time

Event ‚ Degree to which the overall
process is controlled by
individual events

‚ Risk of the overall process to
be delayed because of
problems at individual events

‚ Level of organization among
events

‚ Level of potential to regroup a
number of states into a
module to simplify process

Resource ‚ Level of potential for the
continuous and consistent
exchange of information among
all resources

‚ Level of potential for the rapid
sharing of information among
artifacts

‚ Level of flexibility to
circumnavigate individual
resources in case of their
failure

358 10. Appendix

10.5.35 Number of cliques

Definition

‚ Number of complete clusters within the network

Structural significance

‚ Identification of closely connected groups that involve a lot of
communication

‚ Degree to which the network is characterized by completely connected
elements

Representation

‚ Distribution according to number of connected nodes forming a clique

Literature

[GROSS & YELLEN 2005, p. 43]

7 5 35 4

N
u
m

b
e
r

o
f

c
liq

u
e
s

Size of clique

2

1

000

10. Appendix 359

Structural significance

Number of cliques

Task ‚ Degree of compilation of discipline-spanning knowledge in

collaboration among several tasks

‚ Level of quality of a process model, where single cliques could be

modeled as individual tasks at a higher more rudimentary level of

detail

‚ Level of complexity of the object processed in the process

‚ Level of potential that the use of process simulation can improve

the schedule (simulation of best navigation of iterations)

Artifact ‚ Level of mutual dependency on other artifacts that are jointly

generated during the process

‚ Level of potential of possible integration of a clique of artifacts into

one overall artifact

Org. unit ‚ Degree of necessity of work groups that are located in one space

‚ Number of possible meetings per time frame necessary to efficiently

synchronize organizational units

‚ Level of potential to introduce communities of practice to share

knowledge across the borders of an organizational unit

Time ‚ Degree of non-linearity of the schedule

‚ Level of risk of delays in the overall process

‚ Level of potential that the use of process simulation can improve

the schedule (simulation of best navigation of iterations)

Event ‚ Degree of non-linearity of the schedule

‚ Level of risk of not reaching a desired process outcome in a direct

run

Resource ‚ Number of highly compatible resources

360 10. Appendix

10.5.36 Cluster-coefficient (local)

Definition

‚ Quotient of number of existing edges between nodes adjacent to a node and
number of possible edges

‚ Purposeful only for nodes with active degree > 1

‚ Commonly used for active node; can also be computed for passive root
nodes and for non-directed graphs

Structural significance

‚ Evaluation of tendency of individual nodes to be part of a cluster

‚ Identification of nodes that are not fully involved in cluster

‚ Identification of possible synchronization / distribution nodes that do not
exhaust their options

Representation

‚ Pareto distribution of cluster-coefficient for all nodes

Literature

[NEWMAN 2003a], [WATTS & STROGATZ 1998]

Cluster-coef f icients for three adjacent nodes

C=0

C=1/3

C=5/6

Node 1

Node 2

Node 3

C
lu

s
te

r-
c
o

e
ff

ic
ie

tn
 p

e
r
n
o

d
e

0.83

0.16

0

10. Appendix 361

Structural significance

Cluster-coefficient (local)

Task ‚ Level of interdependence of a task on implicit or “weak”

dependencies to be consistent

‚ Level of risk of unexpected changes to a task during the process

‚ Level of risk to induce small iterations among neighboring tasks in

a process

‚ Level of tendency of a task to cause non-linearity in the process

schedule

Artifact ‚ Level of potential for consistency among artifacts

‚ Level of risk of a lack of consistency induced by an artifact

‚ Level of tendency of an artifact to cause non-linearity in the

process schedule

Org. unit ‚ Extent of possible social contacts in an organizational setup

‚ Level of potential for networking within social network

‚ Degree of necessity to closely involve the partners of an

organizational unit among each other

Time ‚ Level of risk of a point in time to be involved in a small iteration

‚ Level of tendency of a point in time to cause non-linearity in the

process schedule

Event ‚ Level of risk of an event not to reach the desired state in the

planned manner

Resource ‚ Approximation of the necessary interfaces of a system to allow for

efficient transmission of information

362 10. Appendix

10.5.37 Cluster-coefficient (global)

Definition

‚ Sum of all local cluster-coefficients divided by total number of nodes that
have an active degree > 1

‚ Commonly used for active node; can also be computed for passive root
nodes and for non-directed graphs

Structural significance

‚ Evaluation of tendency of individual nodes to be part of a cluster (esp. for
social networks)

‚ Comparison of clustering of different networks

‚ Degree to which the overall process utilizes its possibilities

Representation

‚ Metric per domain

Literature

[NEWMAN 2003a], [WATTS & STROGATZ 1998]

graph with 5 local nonzero

cluster-coef f icients (CC)

Node 1

CC. loc.: 0.5

N
o

d
e
 2

C
C

.
lo

c
.:

 0
.3

3

Node 3

CC. loc.:0

Node 4

CC. loc.: 1

Node 5

CC. loc.: 0.5

Domain 1

Domain 2

…

0.29

…

Domains Cluster-coef f icient

per domain

10. Appendix 363

Structural significance

Cluster-coefficient (global)

Task ‚ Level of potential for linearity of the overall process

‚ Level of risk of unexpected changes to occur

‚ Level of risk of iterations in the overall process

‚ Level of risk of possible conflicts among the tasks

‚ Degree of uncertainty in the process

Artifact ‚ Degree of mutual dependencies among artifacts

‚ Level of risk of unexpected changes to occur

‚ Level of risk of possible conflicts in the documentation

Org. unit ‚ Degree of necessity of the process to be supported by a dense

social network

‚ Level of possible short communication channels outside the

organizational setup to quickly overcome unexpected problems

Time ‚ Level of risk of the process to be delayed because of unexpected

radiation of a delay at one point in time to another point in time

‚ Degree of possible ambiguity of the process schedule

‚ Level of risk of possible conflicts in the process schedule

Event ‚ Level of risk of events to occur unexpectedly

Resource ‚ Level of potential implementation of consistent interfaces

364 10. Appendix

10.5.38 Module quality 1 (flow of information)

Definition

‚ Product of number of edges that cross the border of the module and number
of edges within the module

Structural significance

‚ Degree of completeness of a module concerning complete clusters

‚ Only useful for the evaluation of existing modules (pre-defined groups)

‚ Comparison of modules concerning their interaction with their
environment

‚ Indicator to possibly reduce complexity by introducing more modules with
a reduced number of interfaces

‚ Means of quality to generate modules out of clusters

Representation

‚ Metric per module per domain

Literature

[HENRY et al. 1981]

Module A

Domain 1

Domain 2

…

360

…

Domains Module quality 1

A

B

C

…

Module

10. Appendix 365

10.5.39 Module quality 2 (compactness)

Definition

‚ Product of number of edges that cross the border of the module and number
of edges within module

Structural significance

‚ Degree of closeness of a module

‚ Only useful to evaluate existing modules (pre-defined groups)

‚ Comparison of modules concerning their interaction with their
environment

‚ Indicator to possibly reduce complexity by introducing more modules with
a reduced number of interfaces

‚ Means of quality to generate modules out of clusters

Representation

‚ Metric per module per domain

Literature

[HENRY et al. 1981]

Module A

10 edges within

2 edges incoming

3 outgoing edges

(2 * 3) / 10 =0.6

Domain 1

Domain 2

…

0.6

…

Domains Module quality 2

A

B

C

…

Module

366 10. Appendix

Structural significance

Module quality 1 and 2

Task ‚ Degree of closeness of a module (as a pre-defined set of tasks)

‚ Level of quality of the model using well-defined modularization

criteria for sub-processes

‚ Degree of distinctness of a module to reduce the number of

prevailing interfaces

Artifact ‚ Degree of closeness of a module of artifacts (as a pre-defined set

of artifacts)

‚ Level of potential to process a module of artifacts independently

from the overall process

Org. unit ‚ Level of quality of the setup of teams and departments as modules

of organizational units

Time ‚ Degree of closeness of a module of points in time (as a pre-defined

set of tasks, e.g., a phase) to allow for independent processing of

the process

Event ‚ Degree of independence of a module of events (as a pre-defined

set of events) from external influences

Resource ‚ Level of quality of embedding a module of resources into the

overall resource landscape

10. Appendix 367

10.5.40 Number of cycles

Definition

‚ Number of paths with identical starting- and end-node

‚ Can purposefully be combined with length of cycles and the occurrence of
specific nodes and edges

Structural significance

‚ Evaluation of the overall level of uncertainty of the process

‚ Determination of the degree of possible rework during process execution

Representation

‚ Metric per domain

‚ Pareto distribution of occurrence of cycles and their length

Literature

[BADKE-SCHAUB & GEHRLICHER 2003]

2 cycles with length 5

Domain 1

Domain 2

Domain 3

…

2

…

Domain Number of cycles

per domain

368 10. Appendix

Structural significance

Number of cycles

Task ‚ Degree of non-linearity of the process

‚ Number of possible iterations in the process

‚ Extent of necessity to allocate mixed workgroups that closely

synchronize iterations

‚ Extent of necessity of a central instance to coordinate the overall

process

‚ Level or risk of unexpected iterations to cause delays

‚ Extent of generation of knowledge in the process in an

interdisciplinary context

Artifact ‚ Degree of focusing on centralized documents that are reworked

and completed during the overall process

‚ Extent of risk of errors in individual documents to propagate

throughout the process

Org. unit ‚ Extent of closeness of the social network

‚ Extent of implicit control within the social network in a way that

information is transmitted back to the sender across a different path

‚ Level of risk of the occurrence of Chinese whisper phenomena in

the process

Time ‚ Level of risk of unexpected delays in the schedule

Event ‚ Degree of non-linearity of the process

Resource ‚ Degree of continuity of the chain of resources

10. Appendix 369

10.5.41 Number of cycles per node

Definition

‚ Occurrence of a node in all cycles

Structural significance

‚ Determination of core entities of a process that help cope with uncertainty
in the process

‚ Determination of entities that have an important impact on the generation
of knowledge during the overall process

Representation

‚ Pareto distribution of occurrence of each node in cycles

Literature

[MAURER 2007, p. 236]

Node 1

Node 2

Node 3

Node 4

Node 5

N
u
m

b
e
r

o
f

n
o

d
e
s
 i
n
 c

y
c
le

s

3 3

2

1 1

370 10. Appendix

Structural significance

Number of cycles per node

Task ‚ Degree of importance of a task towards the generation of

knowledge (as possible core competency)

‚ Extent of insecurity processed in a task

‚ Degree of coordination exercised by a task

‚ Extent of interfaces that run through a task

Artifact ‚ Degree of importance of an artifact to document the progress of

concretization in the process

‚ Extent of risk of errors in individual documents to propagate

throughout the process

‚ Degree of synchronization of information that is carried out via a

document

‚ Extent to which a document serves as an interface to assure

consistency of information

Org. unit ‚ Degree to which communication revolves around an organizational

unit

Time ‚ Degree of necessity of buffering of a point in time to avoid delays

‚ Level of importance of a point in time for the timeliness of the

overall process

Event ‚ Extent of insecurity that results in an event

‚ Level of risk of not reaching an event because of unexpected

results underway

Resource ‚ Degree of importance of a resource to ensure the data transfer

among various workgroups

10. Appendix 371

10.5.42 Number of cycles per edge

Definition

‚ Occurrence of an edge in cycles

Structural significance

‚ Dependencies that are highly relevant to coping with uncertainty in the
process

‚ Identification of possible drivers for handling uncertainty

Representation

‚ Pareto distribution of occurrence of edges in cycles

Literature

[MAURER 2007, p. 236]

Edge 1

Edge 2

Edge 3

Edge 4

Edge 5

N
u
m

b
e
r

o
f

e
d

g
e
s
 in

 c
y
c
le

s

3

1 1

2

1

372 10. Appendix

Structural significance

Number of cycles per edge

Task ‚ Degree of importance of a communication channel between two

tasks towards the generation of knowledge

‚ Extent of insecurity that is communicated between two tasks

‚ Degree of coordination exercised by a communication channel

Artifact ‚ Degree of importance of an interface between two artifacts to

document the progress of concretization in the process

‚ Extent of maturity generated with the transition of an artifact into

another artifact

‚ Degree of synchronization of information that is carried via an

interface

‚ Extent to which a document serves as an interface to assure

consistency of information

Org. unit ‚ Degree to which communication revolves around an two

organizational units

Time ‚ Degree of necessity of buffering between two points in time to

avoid delays

‚ Level of risk associated to a structural bottleneck in the schedule

Event ‚ Extent of insecurity that is processed from one event to the next

‚ Level of risk of not reaching an event because of unexpected

results underway

Resource ‚ Degree of importance of a resource to ensure the data transfer

among various workgroups

10. Appendix 373

10.5.43 Number of feedbacks

Definition

‚ Number of edges that impede the ideal triangularization of a DSM

‚ Computation is nondeterministic as there is no unique form of
triangularization; the minimum number of edges that impede ideal
triangularization cannot always be computed

Structural significance

‚ Evaluation of the degree of uncertainty in the process

‚ Determination of the degree of deviation from an ideal sequence

Representation

‚ Metric per domain

Literature

[BROWNING 2001a]

1 feedback

Domain 1

Domain 2

Domain 3

…

1

…

Domains Number of feedbacks

per domain

374 10. Appendix

10.5.44 Activation of cycle

Definition

‚ Number of nodes that are the first ones in a cycle (in a triangularized DSM)

‚ Computation is nondeterministic as there is no unique form of
triangularization; the minimum number of edges that impede ideal
triangularization cannot always be computed

Structural significance

‚ Nodes that are relevant for handling uncertainty

‚ Identification of nodes that possibly lay the groundwork in one or more
iteration(s)

Representation

‚ Pareto distribution of occurrence of activating nodes in cycles

Node 1

Node 3

Node 4

Node 2

N
u
m

b
e
r

o
f

a
c
ti
v
a
ti
o

n
 o

f
c
y
c
le

s

2

1

0 0 0

10. Appendix 375

Structural significance

Number of feedbacks Activation of cycle

Task ‚ Degree of non-linearity of the

process

‚ Extent of necessity of small,

tightly cross-linked work groups

‚ Level of risk of the overall

process to be delayed by

(possibly unexpected) rework

‚ Extent of collaboration in an

interdisciplinary context or

based on strong division of

labor

‚ Degree of a task to have a

preparatory effect in the

generation of knowledge in

the process

‚ Level of risk of a task to lead

to rework in case of

insufficient quality of the

results of that task

‚ Extent of knowledge

necessary to process a task

Artifact ‚ Degree of focusing on (few

or many) artifacts that control

the process flow as transition

points in iterations

‚ Level of involvement of an

artifact to document

information that is at the heart

of an iteration

‚ Degree of informational value

of a artifact

‚ Level of risk of errors

contained in an artifact

Org. unit ‚ (not applicable) ‚ (not applicable)

Time ‚ Level of risk of delays in the

overall process

‚ Extent of necessary planning

to ensure robustness of a

point in time against possible

delays through rework

‚ Extent of necessary

investment at a point of time

to ensure high quality of the

outcome and to reduce the

chance of starting an iteration

Event ‚ Degree of non-linearity of the

concretization of results in the

process

‚ Extent of necessary

preparations to be done for

an event

‚ Extent of insecurity present

at an event

‚ Extent of necessity of quality

control at an event

Resource ‚ (not applicable) ‚ Level of quality necessary for

the results of a resource

376 10. Appendix

10.5.45 Number of starting points for iterations

Definition

‚ Number of nodes that start iterations (nodes that are starting nodes of edges
that impede the ideal triangularization of the DSM)

‚ Computation is nondeterministic as there is no unique form of
triangularization; the minimum number of edges that impede ideal
triangularization cannot always be computed

Structural significance

‚ Criticality of an entity to start an iteration

‚ Determination of possible decision points that can cause iterations

‚ Determination of entities where uncertainty in the process is handled

Representation

‚ Pareto distribution of outgoing edges that are starting points for iterations
and number of initiated iterations

Literature

[LUKAS et al. 2007]

Node 1

Node 3

Node 4

Node 2

N
u
m

b
e
r

o
f

s
ta

rt
in

g
 p

o
in

ts
 f

o
r
it
e
ra

ti
o

n
s

1

0 0 0

1 1

10. Appendix 377

Structural significance

Number of starting points for iterations

Task ‚ Degree of a task to evaluate the generation of knowledge in the

process and to initialize possible rework

‚ Level of risk of a task to lead to rework in case of insufficient quality

of the input and results of that task

‚ Extent of knowledge necessary to process a task (that should be

made available early in the process)

‚ Level of risk associated to errors that are overlooked at a task

Artifact ‚ Level of involvement of an artifact to transport information that is

at the heart of an iteration

‚ Degree of informational value of a artifact to prepare the decision

for rework

‚ Level of risk of errors contained in an artifact to cause problems at

a later stage

Org. unit ‚ Potential of an organizational unit to influence iterations before

they take place

Time ‚ Extent of necessary planning to ensure robustness of a point in

time against possible delays through rework

‚ Extent of knowledge necessary at a point of time to assess the

quality of the input

‚ Extent of potential to install point in time as milestone

Event ‚ Extent of an event to serve as a decision point to control the flow

of the process

‚ Extent of necessity of quality control at an event

‚ Extent of potential to install event as milestone

Resource ‚ Level of quality necessary for the results of a resource

378 10. Appendix

10.5.46 Iterative oscillation

Definition

‚ Sum of length of all cycles that share at least one edge with a selected path

Structural significance

‚ Degree to which a path interacts with other nodes based on uncertainty
within the process

‚ Determination of pathways through the network that are highly susceptable
to changes long the way

Representation

‚ Pareto distribution of number of cycles per path

Literature

[LOCH et al. 2003]

Cycle 1

Cycle 2

Cycle 3
Three cycles along

selected path

N
u
m

b
e
r

o
f

o
s
c
ill

a
ti
o

n
s

3

10. Appendix 379

Structural significance

Iterative oscillation

Task ‚ Extent of effort necessary outside the principal process flow to

execute the process

‚ Degree of linearity of the process

Artifact ‚ Degree of linear progress in the process

‚ Extent of forecast reliability of a process to be represented as a

simple Gantt chart

‚ Extent to which a series of artifacts are dependent on supporting

artifacts

Org. unit ‚ Level of risk of possible influences exercised on a communication

path outside the intended or official communication path

Time ‚ Extent of forecast reliability of a process to be represented as a

simple Gantt chart

Event ‚ Extent of forecast reliability of a process to be represented as a

simple Gantt chart

Resource ‚ Extent of possible support to be accessed by main chain or

resources

380 10. Appendix

10.5.47 Bipartite density

Definition

‚ Percentage of existing implicit relations (within the same or via a different
domain) in relation to the number of possible relations

‚ Can be calculated across one or several level (i.e., across one or more
nodes): an implicit path equals a shortest path to a reachable node that is
not directly connected; the path length of that reachability serves as a
parameter to the determination of implicit paths

‚ Within a domain roughly similar to cluster coefficient (local)

Structural significance

‚ Comparison of alignment with other domains

‚ Analysis of appropriateness of direct relations

‚ Assessment of modeling accuracy (direct dependencies that should be
modeled as indirect dependencies and vice versa)

Representation

‚ Metric for each domain related to another domain

Literature

[VANDERFEESTEN et al. 2007], [MAURER et al. 2006]

D
o

m
a
in

 1

e
.g

.
ta

s
ks

D
o

m
a
in

 2

e
.g

.
A

rt
e
fa

c
ts

possible indirect

path across 3

nodes

indirect

path

across 1

node

direct and

indirect path

exist
… …

50% … …

50% 100% …
Domain 1

Domain 2

Domain 3

Bipartite Density

across 1 node

Domain

Reference

Domain

10. Appendix 381

Structural significance

Only applicable for a domain (left column) in relation to a reference domain (not
specified).

If a domain is assessed with a view to a second reference domain, each metric
represents: ‚ the degree to which a network of entities (e.g., tasks) depends on supporting

entities (e.g., resources) in the domain of reference to be processed. ‚ the degree to which a network of entities (e.g., tasks) is aligned with the
needs imposed by the domain of reference (e.g., product attributes).

Bipartite density

Task ‚ Extent of implicit communication among task that are not explicitly
in place in process

‚ Extent of meetings and other means of synchronization necessary
in the process

‚ Extent of correct modeling of the process (in terms of implicit
relationships that possibly exist but were not modeled)

Artifact ‚ Extent of implicit transitions among task that drive the process and
advance the maturity of the artifacts in the process

‚ Extent of synchronization necessary to achieve consistent
documentation

‚ Extent of correct modeling of the process (in terms of implicit
relationships that possibly exist but were not modeled)

Org. unit ‚ Density of the social network via indirect relationships

‚ Extent of possible shortcuts to support quick distribution of
information

‚ Extent of meetings and other means of synchronization necessary
in the process

‚ Extent of correct modeling of the process (in terms of implicit
relationships that possibly exist but were not modeled)

Time ‚ Extent of implicit transitions among points in time that drive the
process

‚ Degree of attention that has to be paid to other points in time when
planning the schedule of the process

‚ Extent of correct modeling of the process (in terms of implicit
relationships that possibly exist but were not modeled)

Event ‚ Extent of implicit transitions among events that drive the process

‚ Extent of correct modeling of the process (in terms of implicit
relationships that possibly exist but were not modeled)

Resource ‚ Extent of possibly purposeful interfaces among resources that
should be implemented to facilitate the process and to support
consistency among the processed artifacts

‚ Extent of correct modeling of the process (in terms of implicit
relationships that possibly exist but were not modeled)

382 10. Appendix

10.5.48 Number of organizational interfaces

Definition

‚ Number of edges within one domain that link two nodes which are not
attributed to the same node in a different domain (= reference domain)

Structural significance

‚ Analysis of the effort taken for a transition between two nodes because the
node of reference is changed (e.g., different responsibility, different format,
different media, different model)

‚ Identification of those transitions that demand special interfaces

‚ Comparable to attribution of two domains via a swimlane-model

Representation

‚ Metric per domain

Literature

[ANDERL & TRIPPNER 2000, p. 11], [BECKER et al. 2005, p. 123]

D
o

m
a
in

 2

e
.g

.
ro

le
s

D
o

m
a
in

 1

e
.g

.
a
rt

if
a
c
ts

no direct connection

with respect to reference domain:

2 edges will be counted

direct connections

will not be counted

… …

50% …

100% …
Domain 1

Domain 2

Domain 3

Number of connections

Domain

Reference

Domain

10. Appendix 383

Structural significance

Number of organizational interfaces (with view to reference

domain)

Task ‚ Extent of effort necessary at the interface between two tasks with

view to the transfers necessary via a supporting domain of

reference (e.g., how many resources are applied to support the

interface)

Artifact ‚ Extent of effort necessary at the transition between two artifacts

with view to the transfers necessary via a supporting domain of

reference (e.g., through how many organizational units an artifact

is transferred to make a transition to the next artifact)

Org. unit ‚ Extent of effort necessary at the interface between two

organizational units with view to the transfers necessary via a

supporting domain of reference (e.g., how many artifacts are

necessary for one organizational unit to communicate with another

organizational unit)

Time ‚ Extent of effort necessary at the transition between two points in

time with view to the transfers necessary via a supporting domain

of reference (e.g., how many resources support the process)

Event ‚ Extent of effort necessary at the transition between two events

with view to the transfers necessary via a supporting domain of

reference (e.g., through how many resources an event is

transferred to the next event)

Resource ‚ Extent of effort necessary at the interface between two resources

with view to the transfers necessary via a supporting domain of

reference (e.g., how many documents are in between two

resources)

384 10. Appendix

10.5.49 Cognitive weight

Definition

‚ Based on the attribution of empirically founded characteristic values of
typical constellations of edges and nodes

‚ Summation of all cognitive weights

Structural significance

‚ Description of the human ability to grasp individual parts of the process as
well as its global structure

Representation

‚ Metric per domain

Literature

[SHAO & WANG 2003], [MCQUAID 1997], [WANG 2006]

Element simply understandable

(example)

Element more dif f icult

to be understood (example)

Domain 1

Domain 2

Domain 3

…

xx

yy

zz

…

Domains Cognitive weight

10. Appendix 385

10.5.50 Degree of non-planarity

Definition

‚ Minimum number of edges that have to be removed to obtain a planar
graph

‚ Computation is non-deterministic

Structural significance

� Possibility to measure the clarity and transparency of the process

� Evaluation of the understandability of the process

� Determination of the ascertainability of the network model

� Description of the transparency of the process model

Representation

‚ Metric per domain

Literature

[KORTLER et al. 2009]

at least 1 edge needs to be

removed to obtain a planar graph

Domain 1

Domain 2

Domain 3

…

1

…

Domain
Degree of

non-planarity

386 10. Appendix

Structural significance

Cognitive weight / degree of non-planarity

Task ‚ Degree of comprehensibility of the arrangement of tasks to form

the overall process

‚ Level of chance to comprehend the role of a task in the context

of the overall process

‚ Level of the chance to identify a possibly erroneous task in the

context of the overall process

Artifact ‚ Degree of comprehensibility of the arrangement of artifacts

‚ Degree of clear arrangement of the landscape of artifacts

‚ Level of chance to comprehend the importance of an artifact for

the overall process

‚ Level of the chance to identify a possibly erroneous artifact in the

context of the overall process

Org. unit ‚ Degree of comprehensibility of the social network

‚ Level of chance to comprehend the importance of relevant

organizational units for the overall process

‚ Level of the chance to identify core personnel

Time ‚ Degree of comprehensibility of the interaction of points in time

and their impact on planning

‚ Level of the chance to locate a point in time with respect to all its

dependencies

‚ Level of risk of not integrating all dependencies into the planning

of the schedule suitably

Event ‚ Degree of comprehensibility of the transition of events into each

other

‚ Level of risk of not integrating all transitions into the planning of

the schedule

Resource ‚ Degree of comprehensibility of the cross-linking of resources

among each other

‚ Degree of clear arrangement of the landscape of resources

‚ Level of the chance to identify a possibly useful resource and

access it

10. Appendix 387

10.5.51 McCabe Cyclomatic Number

Definition

‚ Difference of number of edges and number of nodes (excluding logical
split connectors) plus two minus

‚ Only applicable for processes with one initial node (i.e., root node of the
process)

‚ Only useful with Boolean operators to represent decision points

‚ Adaptation for bipartite process graphs (e.g., EPC) necessary

Structural significance

‚ Number of possible paths in a control flow

‚ Number of binary decisions in control flow

Representation

‚ Metric per domain

Literature

[MCCABE 1976], [CARDOSO 2006]

OR

OR

Domain 1

Domain 2

Domain 3

…

3

…

Domains Cyclomatic number

388 10. Appendix

10.5.52 Control-Flow Complexity

Definition

‚ Sum of all possible constellations of outgoing edges from logic operators
(splits)

Structural significance

‚ Number of all possible decisions in a process

‚ Impact of a single decision (similar to activity of a split)

Representation

‚ For individual nodes: Pareto-distribution of Control-flow Complexity for
all nodes

‚ For overall process: Metric per domain

Literature

[CARDOSO 2005a], [GRUHN & LAUE 2006a]

AND

XOR

OR

CFC = 1

CFC = n

CFC = 2n - 1

Domain 1

Domain 2

Domain 3

…

x

…

Domains Control-f low Complexity

10. Appendix 389

Structural significance

Cyclomatic number Control-flow complexity

Task ‚ Extent of moving targets in

the process

‚ Degree of flexibility built into

the process

‚ Degree of plurality of scenarios

of process execution

‚ Number of possible self-

contained modules of tasks

(pre-defined process flows

through a part of the process)

that can be regrouped

independently from decision

points

‚ Degree of adaptivity of the

process

Artifact ‚ Extent of fluctuating artifacts

within the process

‚ Degree of possible momentum

of artifacts

‚ Degree of flexibility of the

process documentation

‚ Degree of possible diversity of

results of the process

‚ Number of possible self-

contained groups of artifacts

that can be processed

independently from decision

points

‚ Degree of adaptivity of the

process

Org. unit ‚ (not applicable) ‚ (not applicable)

Time ‚ Level of risk of different

scenarios of a possible time to

market

‚ Number of possible paths

through the process

‚ Degree of adaptivity of the

process

Event ‚ Extent of possible overall

states the process can take up

‚ Degree of insecurity processed

‚ Degree of stability of a target-

oriented process flow

‚ Degree of flexibility of the

process to (possibly

unexpected) events

Resource ‚ (not applicable) ‚ (not applicable)

390 10. Appendix

10.6 Computability of metrics

Metrics
Deterministic
computation

Heuristic
computation

Complexity of algorithm
84

Size and density

Number of domains 1 O(n)

Number of nodes 1 O(m)

Number of edges 1 O(m), max. O(n²)

Number of classes 1 O(n)

Number of interfaces
between domains

1 O(m) , max. O(n1 · n2)

Number of edges per node 1 O(m), max. O(n²)

Relational density 1 O(m), max. O(n²)

Number of unconnected
nodes

1 O(m), max. O(n²)

Adjacency

Activity / Passivity 1 O(m), max. O(n²)

Degree correlation (nodes) 1 O(m), max. O(n²)

Degree correlation (edges) 1 O(m), max. O(n²)

Degree distribution 1 O(m), max. O(n²)

Fan criticality 1 O(m), max. O(n²)

Synchronization points /
distribution points

1 O(m), max. O(n²)

Number of independent sets 1
O(n + c · m),
max. O(n + 2

n
· m)

Attainability

Number of reachable nodes 1 O(n · m), max. (n³)

Reachability of a node 1 O(n · m), max. (n³)

Closeness

Proximity 1 O(n · m), max. (n³)

Relative centrality
(based on between-ness)

1 O(n² · m), max. (n
4
)

Connectivity

Node connectivity 1 O(m) (breadth-first search)

Edge connectivity 1 O(m) (breadth-first search)

Paths

Number of paths 1 O(m), max. O(n²)

Path length 1 O(m), max. O(n²)

Weight of an edge O(m), max. O(n²)

Centrality of path
(based on centrality)

1 O(n³ · m), max. (n
5
)

Centrality of path
(based on degree)

1 O(n · m), max. O(n³)

Degree of progressive
oscillation

1 O(n · m), max. O(n³)

10. Appendix 391

Metrics
Deterministic
computation

Heuristic
computation

Complexity of algorithm
84

Hierarchies

Height of hierarchy 1 O(m)

Width of hierarchy 1 O(m)

Tree criticality 1 O(m)

Snowball factor 1 O(n · m), max. O(n³)

Forerun factor 1 O(n · m), max. O(n³)

Tree-robustness 1 O(n² · m), max. O(n
4
)

Maximum nesting depth 1 O(n)

Clustering

Number of cliques 1 O(2
n
)

Cluster-coefficient (local) 1 O(m²)

Cluster-coefficient (global) 1 O(m), max. O(n²)

Module quality 1 1 O(m), max. O(n²)

Module quality 2 1 O(m), max. O(n²)

Cycles

Number of cycles 1
O(n + c · m),
max. O(n + 2

n
· m)

number of cycles per node 1
O(n + c · m),
max. O(n + 2

n
· m)

Number of cycles per edge 1
O(n + c · m),
max. O(n + 2

n
· m)

Number of feedbacks 1
O(n + c · m),
max. O(n + 2

n
· m)

Activation of cycle 1
O(n + c · m),
max. O(n + 2

n
· m)

Number of starting points for
iterations

1
O(n + c · m),
max. O(n + 2

n
· m)

Iterative oscillation 1
O(n + c · m),
max. O(n + 2

n
· m)

Several domains

Bipartite density 1 O(m), max. O(n1 · n2)

Number of organizational
interfaces

1 O(m), max. O(n1 · n2)

Cognition

Cognitive weight 1 n.a.

Degree of non-planarity 1 O(n! · n)

Boolean Operators

McCabe Cyclomatic Number 1 O(m), max. O(n²)

Control-Flow Complexity 1 O(m), max. O(n²)

84 The complexity of the algorithm refers to the time complexity of computing the algorithm; n is
the number of nodes, m the number of edges; if more than one domain is involved, the domains
are indexed; c is the number of cycles in the domain; if a maximum complexity of the algorithm
can be estimated, the estimation is given. For relevant algorithms, see [LÄUCHLI 1991].

392 10. Appendix

10.7 Classification of metrics

On the following four pages, the classification of structural metrics is listed as a
table that spreads over four pages. For layout reasons, the table is split unevenly.

10. Appendix 393

394 10. Appendix

10. Appendix 395

396 10. Appendix

10.8 GQM-Framework for metrics

ID Goal / Question Metrics

G01 Planning

Q01 To what extent is it possible to
incorporate risks into the
process planning?

Metrics: M06, M07, M20, M21, M40
For domains: Artifacts, tasks, points in time

Q02 How can the focus be placed on
important process steps?

Metrics: M09, M12, M18, M19, M20, M30,
M31, M41, M43, M44, M45
For domain: Tasks

Q03 What are bottlenecks in the
schedule?

Metrics: M10, M20, M21, M43
For domains: Artifacts, tasks, points in time

Q04 What parts of the process are
substantially impacted by
iterations? What level of
uncertainty is handled by the
process?

Metrics: M35, M36, M37, M40, M41, M42,
M43, M44, M45, M46
For domains: Artifacts, tasks, points in time

Q05 What is the stakeholder
situation?

Metrics: M01, M02, M03, M04, M05, M06,
M07, M08
For domains: Overall Network

G02 Resource consumption

Q06 Is the process laid out in a
homogeneous manner?

Metrics: M06, M07, M10, M11, M19, M25,
M35, M36
For domains: Artifacts, tasks

Q07 Where is it possible to remove
redundancies to reduce waste?

Metrics: M05, M15, M18, M20, M21, M22,
M47, M48
For domains: Organizational units,
resources, tasks

Q08 Are the resources easily
accessible?

Metrics: M06, M08, M16, M17, M18, M19,
M31, M32, M33
For domain: Resources

G03 Quality

Q09 Does the process allow for the
consistent transfer of
information?

Metric(s): M06, M08, M16, M17, M18, M19,
M31, M32, M33, M47
For domain: Artifacts

Q10 Is the documentation in line with
the process?

Metric(s): M02, M03, M04, M05, M12, M47
For domains: Artifacts, tasks

Q11 What is the risk of error
distribution across the process?

Metric(s): M06, M14, M15, M16, M17, M18,
M31, M32, M33, M47
For domains: Artifacts, tasks

10. Appendix 397

ID Goal / Question Metrics

G04 Flexibility

Q12 What buffers are available in the
process to absorb delays and
errors?

Metrics: M14, M27, M31, M32 for
domains: Artifacts, tasks, points in time

Q13 How robust is the overall
process against individual
failures?

Metrics: M06, M12, M20, M21, M36
For domains: Overall Network

G05 Organizational decomposition

Q14 Is the organization of
workgroups and teams
adequate?

Metrics: M05, M13, M35, M36, M37, M47,
M48
For domains: Organizational units, tasks

Q15 How well is the organizational
structure suited to provide
efficient communication?

Metrics: M06, M07, M08, M11, M12, M16,
M17, M18, M19, M22, M23, M31, M32
For domain: Organizational units

Q16 What is the internal structure of
an organizational unit?

Metrics: M12, M14, M18, M19, M31, M32
For domain: Organizational units

G06 Interfaces

Q17 Which entities of the process
need to be synchronized?

Metrics: M08, M10, M13, M14, M31, M32
for domain: Organizational units, tasks

Q18 How fast is communication in the
process?

Metrics: M16, M17, M18, M19, M31, M32
For domain: Organizational units, tasks

Q19 What are relevant
communication channels?

Metrics: M12, M22, M23, M24, M25, M26,
M42, M43
For domains: Artifacts, organizational
units, tasks

G07 Transparency

Q20 Are the organizational units
aware of their impact on the
overall process?

Metrics: M06, M16, M17, M50
For domains: Organizational units, tasks

Q21 How transparent is the overall
process organization?

Metrics: M01, M02, M04, M49, M50
For domains: Overall Network

G08 Decision making

Q22 Which decision points have a
high impact on the process?

Metrics: M09, M43, M44, M51, M52
For domains: Overall Network

398 10. Appendix

10.9 Complete results of case study 7.2

A
c
ti

v
it

y

P
a
s
s
iv

it
y

N
o

 o
f

re
a
c
h

a
b

le

n
o

d
e
s

R
e
a
c
h

a
b

il
it

y
o

f
a
 n

o
d

e

R
e
la

ti
v
e

c
e
n

tr
a
li

ty

S
n

o
w

b
a
ll

-
fa

c
to

r

F
o

re
ru

n
-

fa
c
to

r

N
u

m
b

e
r

o
f

c
y
c
le

s
p

e
r

n
o

d
e

N
u

m
b

e
r

o
f

c
y
c
le

s
p

e
r

e
d

g
e

N
u

m
b

e
r

o
f

fe
e
d

b
a
c
k
s

Max. value of scale per metric 17 32 131 120 3233 52.3 62.7
205,
467

101,
751

72

Support dev. of body structure
(AC 13)

806

Simulate parts (AC 19) 67

Coordinate setup of simulation
model for mounted parts (AC 26)

17

Release parts (AC 31) 120

Release cockpit (AC 32) 32

Release body structure (AC 34) 118

Set up simulation model for
passenger safety (AC 38)

41,11
1

Set up sim. model for parts (AC 41) 67

Set up sim. model for crash (AC 43) 62.7
145,
754

101,
751

Set up simulation model for
body-in-white properties (AC 46)

68,
668

Set up simulation model for
body structure properties (AC 49)

72

Coordinate simulation of crash
(AC 65)

16 30 3233 51.9 62.4
205,
467

Simulate crash (AC 66) 17 52.3
101,
751

Pre-dev. concept / package (AC 75) 128

Simulate passenger safety (AC 90)
41,
111

Coord. sim. passenger safety
(AC 91)

1190

Coordinate body-in-white sim.
(AC 92)

156,
927

Simulate body-in-white (AC 93)
68,
668

Develop body-in-white (AC 94) 17

Develop vehicle strategy (AC 128) 131

Develop strategy for variants
and derivates (AC 129)

131

Simulate body structure (AC 131) 72

Coordinate development of
body structure model (AC 135)

17 51.7

Support modification of
body structure model (AC 138)

119

Develop inter. lining conc. (AC 154) 19 54

Table 10-3: Key outliers (upper bound) for aggregate view on tasks (via artifacts)

10. Appendix 399

A
c
ti

v
it

y

P
a
s
s
iv

it
y

N
o

 o
f

re
a
c
h

a
b

le
n

o
d

e
s

R
e
a
c
h

a
b

il
it

y

o
f

a
 n

o
d

e

R
e
la

ti
v
e

c
e
n

tr
a
li

ty

S
n

o
w

b
a
ll

-
fa

c
to

r

F
o

re
ru

n
-

fa
c
to

r

N
u

m
b

e
r

o
f

c
y
c
le

s
p

e
r

n
o

d
e

N
u

m
b

e
r

o
f

c
y
c
le

s
p

e
r

e
d

g
e

N
u

m
b

e
r

o
f

fe
e
d

b
a
c
k
s

Max. value of scale per metric 21 21 96 84 976 44 43.3
331,
386

176,
546

51

Sim. results aero-acoustics
(AR 19)

51

Sim. results aerodynamics (AR 20) 468

Release approval cockpit (AR 35) 84

Release approval seating (AR 36) 84

Release approval int. lining
(AR 39)

84

Sim. model aero-acoustics (AR 45) 51

Simulation model crash (AR 49) 13 32,7

Simulation model for
body-in-white properties (AR 52)

96,
486

Sim. model body structure (AR 55) 49

Simulation results crash (AR 66) 21 14 976 44

Data from crash tests (AR 67)
149,
867

Specifications for safety (AR 77)
176,
546

Sim. res. passenger safety
(AR 86)

17 39,8

Results from body-in-white
properties simulation (AR 88)

331,
386

149,
867

Vehicle concept (AR 89)
294,
209

96,
486

Vehicle concept draft (AR 93) 86

Specifications crash (AR 95) 15

Package as CAD model (AR 99) 86

Simulation results for
components with deficits (AR 103)

33,5

Strategic vehicle concept (incl.
variants and derivates) (AR 115)

96

Sim. results body structure
(AR 117)

49

Technology model (AR 123) 21
588,

3
43,3

Technical specifications (AR 124)
295,
849

176,
546

Model of interior lining (AR 130) 82 76

Table 10-4: Key outliers (upper bound) for aggregate view on artifacts (via tasks)

400 10. Appendix

Relative
centrality

Snowball-factor Forerun-factor

Max. value of scale per
metric

26.6 11.5 12

Design Department (OU 02) 12.9

Body-in-white Design
Department (OU 06)

13.3 10.5 12

Interior Design Department
OU 07)

10.5 11.5

Comp. Flow Analysis
Department (OU 08)

11

Safety Applications
Department (OU 09)

26.6 11.5

Relative
centrality

Snowball-factor Forerun-factor

Max. value of scale per
metric

58.7 21 24.5

Ansa (RE 4) 57.1 24.5

Catia (RE 6) 58.7 20.5

Medina (RE 16) 23.5

Nastran (RE 19) 20.5

Pam Crash (RE 20) 21

Text Editor (RE 27) 43.5 23.5

Table 10-5: Key outliers (upper bound) for aggregate view on organizational units
(via tasks and artifacts)

Table 10-6: Key outliers (upper bound) for aggregate view on IT systems
(via tasks and artifacts)

11. Keyword index

Active metrics 162

Activity 153, 167, 202

Adjacency 139, 202

Aggregate view 39, 125, 200, 220

Inter-domain aggregation 126

Intra-domain aggregation 126

Analysis procedure 232

Attainability 139, 205, 214

Attribute 112

Attribution 126

Audi AG 216

Balanced Scorecard 180

Behavior 21

Bipartite 44

Body-in-white 13

Boolean operator 115, 140

Centrality 55, 170, 206

Chain of relations 113

Change propagation 45

Closeness 206

Cluster 162

Clustering 140

Cognitive weight 160

Complexity 20, 41

Design complexity 88

Computability 222

Concurrent engineering 10

Connectivity 54, 140

Construct 78

Content 78

Control flow 62

Control-flow complexity 157

Criterion 78

Cybernetics 56

Decision point 162, 217

Decomposition 37, 73, 107

Degree 43, 214

Degree correlation 167

Degree distribution 54, 168, 204

Density 139

Dependency model 103, 135

Derived measure 78

Design Structure Matrix 45

Differentiation 38

DMM 46

Domain 37, 45, 140, 189

Domain Mapping Matrix 46

DSM 45, 211

DSM analysis 48

DuPont-System of Financial Control 180

Edge 36

Efficiency 88

Elementary Building Block 120

Engineering design process
87, 110, 136

Entity 36

Entity-relationship model 197, 218

Enumeration 141

Fan criticality 205

Fan-in 172

Fan-out 172

Feedback 192, 211

Flexibility 187

Forerun factor 158, 171, 208

Framework 177, 183, 192

Fundamental metric 78

© Springer-Verlag Berlin Heidelberg 2011

M. Kreimeyer and U. Lindemann, Complexity Metrics in Engineering Design: Managing the

Structure of Design Processes, DOI 10.1007/978-3-642-20963-5,

401

Cycle 44, 140, 158, 171

Cycles 210

Decision making 189

402 11. Keyword index

Goal-oriented analysis 98

Goal-Question-Metric 179

Granularity 151, 162

Graph 43, 50

Grouping 162

Hierarchy 157, 207

House of Quality 178

Inference 24

Information Theory 57

Instantiation 37, 38

Interface 188, 216

Interoperability 69

Iteration 214

Level of detail 151

Logic operator 116

Management by Objectives 89

McCabe’s Cyclomatic Number 156

MDM 46

Meaningfulness 77, 151, 229

Measurement system 79

Measurement theory 77

Absolute measure 141

Comparative measure 141

Meta-MDM 124, 197, 219

Meta-model 105

Metric 77

Metric designator 200

Model 36

Meta-model 69

Process chart 17

Process model 10, 122, 163

Quality of the model 22

Module 81, 172, 196

Nested operators 155

Network architecture 103

Network Theory 52

New Institutional Economics 57

Node 36

Number of cycles 171, See cycles

Number of cycles per edge See cycles

Number of cycles per node See cycles

Number of feedbacks 211

Number of reachable nodes

 See reachability

Occurrence 141, 210

Operations Research 57

Organizational decomposition 187

Organizational learning 89

Outlier 24, 145

Passive metrics 162

Passivity 153, 167, 202

Path 44, 140

Path searching 126

Pattern 40, 137

Planning 185

Process 9, 60

Business process 61

Engineering design process 61

Process Complexity 41

Process analysis 12, 74

Process management 9, 59, 62

Process Management

Goals of process management 64

Process model 68, 71, 232

Product architecture 110

General Motors 163

General Systems Theory 56

Geodesic 44

Goal 136, 183, 184, 216

SMART goal 184

Multigraph 43, 226

Multiple Domain Matrix 46

Multiple-Domain Matrices 102

Munich Method Model 96

Munich Procedural Model 179

Native data 39

11. Keyword index 403

Refinement 124

Relationship 36

Relationship type 37, 45, 158

Aggregate relationship type 130

Principal relationship type 107

Relationship-type 189

Relative centrality 170

Representation 77, 143, 148, 150, 229

Resilience 54

Resource consumption 186

Robustness 162

Root node 158

Scale-free network 54

S-GQM 190

Six degrees of freedom 53

Size 139

Small world effect 53

Snowball factor 158, 171, 207

Strategy 184

Structural characteristic 40, 48, 55, 138

Structural characteristics 21

Structural Complexity Management 34

Structural Goal Question Metric 96, 234

Structural Measurement System

 96, 146, 233

Structural outlier 24, 141, 145, 191, 228

Structural Process Architecture 96, 105, 108

Structural significance 148, 189, 191

Structure 22, 39

Suboptimization 192

Superposition 127, 220

System 35

System dynamics 57

System-graph 124

Systems Engineering 57

Transitivity 54

Transparency 188

Tree-robustness 172

Uniqueness 77, 150, 230

Weight 43

Weyuker’s properties 80, 152

Project 62

Propagation 162

Proximity 169, 206

Quality 186

Quality Function Deployment 178

Reachability 139, 169, 205

Recombination 37, 38

	Complexity Metricsin Engineering Design
	FOREWORD BY THE AUTHORS
	THE RELEVANCE OF COMPLEXITY METRICS
	BACKGROUND OF THIS RESEARCH
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF ABBREVIATIONS
	LIST OF SOFTWARE TOOLS

	1. Complex processes in engineering design
	1.1 Preface
	1.2 A practical application: A design process at Audi AG
	1.2.1 Description of the process
	1.2.2 Modeling the process as an EPC process chart
	1.2.3 Deficits when analyzing the process chart using existing methods
	1.2.4 Conclusion: Systematic analysis of a process chart

	1.3 The need for systematic analysis in practice
	1.3.1 The problem: Systematic analysis of a process chart
	1.3.2 Basic hypotheses and research questions
	1.3.3 The approach used in this research

	1.4 Context of developing complexity metrics
	1.4.1 Goals of this research
	1.4.2 Basic requirements of the solution
	1.4.3 Targeted audience
	1.4.4 What this book is not about
	1.4.5 Related fields of science

	1.5 Structure of this book

	2. The foundations of complexity metrics
	2.1 Structural complexity of a system
	2.1.1 General notions of managing structural complexity
	System
	Modeling complex systems
	Nodes and edges, entities and relationships
	Domains
	Relationship types
	Views to a system: Native and aggregated networks
	Structure
	Complexity

	Process Complexity
	2.1.2 Graph Theory
	2.1.3 Matrix-based methodologies to manage structures
	2.1.4 Network Theory
	2.1.5 Other approaches to managing complex systems
	2.1.6 Summary

	2.2 Structural aspects of process management
	2.2.1 Processes in Engineering Design
	2.2.2 Goals of analyzing, improving and managing processes
	2.2.3 Process models and their structural content

	Comparing and recombining process models
	Comparison of common process models and their structures
	2.2.4 Strategies to analyze design processes and models
	2.2.5 Summary

	2.3 Metrics to analyze the structure of a process
	2.3.1 Basics and measurement foundation
	2.3.2 Metrics to describe networks
	2.3.3 Metrics in software engineering
	2.3.4 Metrics in process management
	2.3.5 Metrics for engineering design processes
	2.3.6 The limits of using metrics in an organization
	2.3.7 Summary

	2.4 Directions from the state of the art

	3. Concept of an integrated set of complexity metrics
	3.1 Solution design process
	3.2 Requirements for the solution design
	3.3 Constituents of the solution
	3.4 Overall concept: Analysis procedure
	Setting goals for analysis
	System definition
	Information acquisition
	Modeling
	Structure analysis
	Discussion of practices

	4. Modeling the structure of design processes
	4.1 Design processes as a multi-layered network
	4.2 MDM-based modeling of the structure of a process
	4.3 The Structural Process Architecture model
	The need for a meta-model
	The domains in the Structural Process Architecture
	The relationship types in the Structural Process Architecture
	The complete Structural Process Architecture (SPA) model
	4.4 Specific aspects of modeling engineering design processes
	4.4.1 Alignment of the process structure with the product architecture
	4.4.2 Inclusion of attributes to nodes and edges
	4.4.3 Decision points modeled as Boolean operators

	Basic logic operators and possible conversions
	MDM-based modeling of logic operators
	4.5 Building the process model
	4.5.1 Generating a process model
	4.5.2 Aggregate views recombining domains and relationship types
	4.5.3 Example of a process model for engineering release management

	4.6 Conclusion: MDM-based process modeling

	5. Complexity Metrics for Design Processes
	5.1 Assessing structural characteristics using metrics
	5.1.1 Basic and combined structural characteristics
	5.1.2 Solution principles for structural metrics
	5.1.3 Evaluation of structural characteristics using structural metrics
	5.1.4 Structural outliers

	5.2 Overview of the Structural Measurement System
	5.2.1 A comprehensive set of complexity metrics
	5.2.2 Relevance and limits of basic structural metrics
	5.2.3 Relevance and limits of combined and specific structural metrics
	5.2.4 Classification of available metrics

	5.3 An example application of the Structural Measurement System
	5.3.1 The process in focus
	5.3.2 Overview of the analyses using structural complexity metrics
	5.3.3 Analyses using complexity metrics for the overall process model
	5.3.4 Analyses using complexity metrics for each task
	5.3.5 Analyses using complexity metrics for each module
	5.3.6 Conclusions for the regarded process

	5.4 Conclusion: Structural metrics

	6. The S-GQM framework to select metrics
	6.1 Existing frameworks to facilitate the analysis of a system
	6.1.1 Quality Function Deployment and the House of Quality
	6.1.2 Goal-Question-Metric
	6.1.3 Balanced Scorecard
	6.1.4 Directions and requirements

	6.2 Systematic access to the structure of a process
	6.2.1 Goals and questions of structural process analysis
	6.2.2 Allocation of metrics, domains and relationship-types
	6.2.3 Identifying structural outliers
	6.2.4 Structural significance of the outliers

	6.3 Using and adapting the framework
	6.4 Conclusion: S-GQM framework for structural analysis

	7. Industrial application of metrics
	7.1 Electronic control unit design: General analysis in Automotive Development
	7.1.1 Goals and focus of the project
	7.1.2 The process model used
	7.1.3 Analysis and findings
	7.1.4 Implications and validation
	7.1.5 Reflection

	7.2 Automotive design process at Audi AG: Analysis of interfaces
	7.2.1 Goals and focus of the project
	7.2.2 The process model used
	7.2.3 Analysis and findings
	7.2.4 Implications and validation
	7.2.5 Reflection

	7.3 Conclusions from the case studies

	8. Conclusions and outlook
	8.1 Summary of results
	8.2 Reflection
	8.2.1 Strengths and weaknesses
	8.2.2 Implications for industry
	8.2.3 Implications for Research

	8.3 Outlook

	9. References
	10. Appendix
	10.1 Structural content of process modeling methodologies
	10.1.1 Extended Event-driven Process Chains
	10.1.2 Object-oriented Event-driven Process Chains
	10.1.3 Integrated Business-Process Modeling (IUM)
	10.1.4 Unified Modeling Language
	10.1.5 Structured Analysis and Design Technique (SADT) and IDEF 0
	10.1.6 Integrated Definition Method
	10.1.7 Business Process Modeling Notation
	10.1.8 Yet Another Workflow Language
	10.1.9 Signposting
	10.1.10 Petri-Nets
	10.1.11 Process Module Methodology
	10.1.12 Program Evaluation and Review Technique (PERT)
	10.1.13 OMEGA

	10.2 Conversion of a process with logic operators
	10.2.1 Rule 1: Resolve all logical connections
	10.2.2 Rule 2: Neglect the operators
	10.2.3 Rule 3: Translate operators into probabilities
	10.2.4 Rule 4: Logic operators as additional entities
	10.2.5 Rule 5: Logic operators as additional entities with their characteristics

	10.3 Nesting of Boolean operators
	10.4 The complete Structural Process Architecture
	10.5 List of structural metrics
	10.5.1 Number of domains
	10.5.2 Number of nodes
	10.5.3 Number of edges

	Structural significance
	10.5.4 Number of classes
	10.5.5 Number of interfaces between domains

	Structural significance
	10.5.6 Number of edges per node
	10.5.7 Relational density

	Structural significance
	10.5.8 Number of unconnected nodes

	Structural significance
	10.5.9 Activity / Passivity

	Structural significance
	10.5.10 Degree correlation (nodes)

	Structural significance
	10.5.11 Degree correlation (edges)

	Structural significance
	10.5.12 Degree distribution

	Structural significance
	10.5.13 Fan criticality

	Structural significance
	10.5.14 Synchronization points / distribution points

	Structural significance
	10.5.15 Number of independent sets

	Structural significance
	10.5.16 Number of reachable nodes
	10.5.17 Reachability of a node

	Structural significance
	10.5.18 Proximity

	Structural significance
	10.5.19 Relative centrality (based on between-ness)

	Structural significance
	10.5.20 Node connectivity
	10.5.21 Edge connectivity

	Structural significance
	10.5.22 Number of paths

	Structural significance
	10.5.23 Path length

	Structural significance
	10.5.24 Weight of an edge

	Structural significance
	10.5.25 Centrality of path (based on centrality)

	Structural significance
	10.5.26 Centrality of path (based on degree)

	Structural significance
	10.5.27 Degree of progressive oscillation

	Structural significance
	10.5.28 Height of hierarchy
	10.5.29 Width of hierarchy
	10.5.30 Tree criticality

	Structural significance
	10.5.31 Snowball factor

	Structural significance
	10.5.32 Forerun factor

	Structural significance
	10.5.33 Tree-robustness
	10.5.34 Maximum nesting depth

	Structural significance
	10.5.35 Number of cliques

	Structural significance
	10.5.36 Cluster-coefficient (local)

	Structural significance
	10.5.37 Cluster-coefficient (global)

	Structural significance
	10.5.38 Module quality 1 (flow of information)
	10.5.39 Module quality 2 (compactness)

	Structural significance
	10.5.40 Number of cycles

	Structural significance
	10.5.41 Number of cycles per node

	Structural significance
	10.5.42 Number of cycles per edge

	Structural significance
	10.5.43 Number of feedbacks
	10.5.44 Activation of cycle

	Structural significance
	10.5.45 Number of starting points for iterations

	Structural significance
	10.5.46 Iterative oscillation

	Structural significance
	10.5.47 Bipartite density

	Structural significance
	10.5.48 Number of organizational interfaces

	Structural significance
	10.5.49 Cognitive weight
	10.5.50 Degree of non-planarity

	Structural significance
	10.5.51 McCabe Cyclomatic Number
	10.5.52 Control-Flow Complexity

	Structural significance
	10.6 Computability of metrics
	10.7 Classification of metrics
	10.8 GQM-Framework for metrics
	10.9 Complete results of case study 7.2

	11. Keyword index
	Cover
	Complexity Metricsin Engineering Design
	FOREWORD BY THE AUTHORS
	THE RELEVANCE OF COMPLEXITY METRICS
	BACKGROUND OF THIS RESEARCH
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF ABBREVIATIONS
	LIST OF SOFTWARE TOOLS

	1. Complex processes in engineering design
	1.1 Preface
	1.2 A practical application: A design process at Audi AG
	1.2.1 Description of the process
	1.2.3 Deficits when analyzing the process chart using existing methods
	1.2.2 Modeling the process as an EPC process chart
	1.2.4 Conclusion: Systematic analysis of a process chart

	1.3 The need for systematic analysis in practice
	1.3.1 The problem: Systematic analysis of a process chart
	1.3.2 Basic hypotheses and research questions

	1.4 Context of developing complexity metrics
	1.4.1 Goals of this research
	1.3.3 The approach used in this research
	1.4.2 Basic requirements of the solution
	1.4.3 Targeted audience
	1.4.4 What this book is not about

	1.5 Structure of this book
	1.4.5 Related fields of science

	2. The foundations of complexity metrics
	2.1 Structural complexity of a system
	2.1.1 General notions of managing structural complexity
	System
	Nodes and edges, entities and relationships
	Modeling complex systems
	Domains
	Relationship types
	Structure
	Views to a system: Native and aggregated networks

	Process Complexity
	Complexity
	2.1.2 Graph Theory
	2.1.3 Matrix-based methodologies to manage structures
	2.1.4 Network Theory
	2.1.5 Other approaches to managing complex systems
	2.1.6 Summary

	2.2 Structural aspects of process management
	2.2.1 Processes in Engineering Design
	2.2.2 Goals of analyzing, improving and managing processes
	2.2.3 Process models and their structural content

	Comparing and recombining process models
	Comparison of common process models and their structures
	2.2.4 Strategies to analyze design processes and models
	2.2.5 Summary

	2.3 Metrics to analyze the structure of a process
	2.3.1 Basics and measurement foundation
	2.3.2 Metrics to describe networks
	2.3.3 Metrics in software engineering
	2.3.4 Metrics in process management
	2.3.5 Metrics for engineering design processes
	2.3.6 The limits of using metrics in an organization
	2.3.7 Summary

	2.4 Directions from the state of the art

	3. Concept of an integrated set of complexity metrics
	3.1 Solution design process
	3.2 Requirements for the solution design
	3.3 Constituents of the solution
	3.4 Overall concept: Analysis procedure
	Setting goals for analysis
	System definition
	Information acquisition
	Discussion of practices
	Structure analysis
	Modeling

	4. Modeling the structure of design processes
	4.1 Design processes as a multi-layered network
	4.2 MDM-based modeling of the structure of a process
	4.3 The Structural Process Architecture model
	The need for a meta-model
	The domains in the Structural Process Architecture
	The relationship types in the Structural Process Architecture
	The complete Structural Process Architecture (SPA) model
	4.4 Specific aspects of modeling engineering design processes
	4.4.1 Alignment of the process structure with the product architecture
	4.4.2 Inclusion of attributes to nodes and edges

	Basic logic operators and possible conversions
	4.4.3 Decision points modeled as Boolean operators

	MDM-based modeling of logic operators
	4.5 Building the process model
	4.5.1 Generating a process model
	4.5.2 Aggregate views recombining domains and relationship types
	4.5.3 Example of a process model for engineering release management

	4.6 Conclusion: MDM-based process modeling

	5. Complexity Metrics for Design Processes
	5.1 Assessing structural characteristics using metrics
	5.1.1 Basic and combined structural characteristics
	5.1.2 Solution principles for structural metrics
	5.1.3 Evaluation of structural characteristics using structural metrics
	5.1.4 Structural outliers

	5.2 Overview of the Structural Measurement System
	5.2.1 A comprehensive set of complexity metrics
	5.2.2 Relevance and limits of basic structural metrics
	5.2.3 Relevance and limits of combined and specific structural metrics
	5.2.4 Classification of available metrics

	5.3 An example application of the Structural Measurement System
	5.3.1 The process in focus
	5.3.2 Overview of the analyses using structural complexity metrics
	5.3.3 Analyses using complexity metrics for the overall process model
	5.3.4 Analyses using complexity metrics for each task
	5.3.5 Analyses using complexity metrics for each module
	5.3.6 Conclusions for the regarded process

	5.4 Conclusion: Structural metrics

	6. The S-GQM framework to select metrics
	6.1 Existing frameworks to facilitate the analysis of a system
	6.1.1 Quality Function Deployment and the House of Quality
	6.1.2 Goal-Question-Metric
	6.1.3 Balanced Scorecard
	6.1.4 Directions and requirements

	6.2 Systematic access to the structure of a process
	6.2.1 Goals and questions of structural process analysis
	6.2.2 Allocation of metrics, domains and relationship-types
	6.2.4 Structural significance of the outliers
	6.2.3 Identifying structural outliers

	6.3 Using and adapting the framework
	6.4 Conclusion: S-GQM framework for structural analysis

	7. Industrial application of metrics
	7.1 Electronic control unit design: General analysis in Automotive Development
	7.1.2 The process model used
	7.1.1 Goals and focus of the project
	7.1.3 Analysis and findings
	7.1.4 Implications and validation
	7.1.5 Reflection

	7.2 Automotive design process at Audi AG: Analysis of interfaces
	7.2.1 Goals and focus of the project
	7.2.2 The process model used
	7.2.3 Analysis and findings
	7.2.4 Implications and validation
	7.2.5 Reflection

	7.3 Conclusions from the case studies

	8. Conclusions and outlook
	8.1 Summary of results
	8.2 Reflection
	8.2.1 Strengths and weaknesses
	8.2.2 Implications for industry

	8.3 Outlook
	8.2.3 Implications for Research

	9. References
	10. Appendix
	10.1 Structural content of process modeling methodologies
	10.1.1 Extended Event-driven Process Chains
	10.1.2 Object-oriented Event-driven Process Chains
	10.1.3 Integrated Business-Process Modeling (IUM)
	10.1.4 Unified Modeling Language
	10.1.5 Structured Analysis and Design Technique (SADT) and IDEF 0
	10.1.6 Integrated Definition Method
	10.1.7 Business Process Modeling Notation
	10.1.8 Yet Another Workflow Language
	10.1.9 Signposting
	10.1.10 Petri-Nets
	10.1.11 Process Module Methodology
	10.1.12 Program Evaluation and Review Technique (PERT)
	10.1.13 OMEGA

	10.2 Conversion of a process with logic operators
	10.2.1 Rule 1: Resolve all logical connections
	10.2.2 Rule 2: Neglect the operators
	10.2.4 Rule 4: Logic operators as additional entities
	10.2.3 Rule 3: Translate operators into probabilities
	10.2.5 Rule 5: Logic operators as additional entities with their characteristics

	10.3 Nesting of Boolean operators
	10.4 The complete Structural Process Architecture
	10.5 List of structural metrics
	10.5.1 Number of domains
	10.5.2 Number of nodes
	10.5.3 Number of edges

	Structural significance
	10.5.4 Number of classes
	10.5.5 Number of interfaces between domains

	Structural significance
	10.5.6 Number of edges per node
	10.5.7 Relational density

	Structural significance
	10.5.8 Number of unconnected nodes

	Structural significance
	10.5.9 Activity / Passivity

	Structural significance
	10.5.10 Degree correlation (nodes)

	Structural significance
	10.5.11 Degree correlation (edges)

	Structural significance
	10.5.12 Degree distribution

	Structural significance
	10.5.13 Fan criticality

	Structural significance
	10.5.14 Synchronization points / distribution points

	Structural significance
	10.5.15 Number of independent sets

	Structural significance
	10.5.16 Number of reachable nodes
	10.5.17 Reachability of a node

	Structural significance
	10.5.18 Proximity

	Structural significance
	10.5.19 Relative centrality (based on between-ness)

	Structural significance
	10.5.20 Node connectivity
	10.5.21 Edge connectivity

	Structural significance
	10.5.22 Number of paths

	Structural significance
	10.5.23 Path length

	Structural significance
	10.5.24 Weight of an edge

	Structural significance
	10.5.25 Centrality of path (based on centrality)

	Structural significance
	10.5.26 Centrality of path (based on degree)

	Structural significance
	10.5.27 Degree of progressive oscillation

	Structural significance
	10.5.28 Height of hierarchy
	10.5.29 Width of hierarchy
	10.5.30 Tree criticality

	Structural significance
	10.5.31 Snowball factor

	Structural significance
	10.5.32 Forerun factor

	Structural significance
	10.5.33 Tree-robustness
	10.5.34 Maximum nesting depth

	Structural significance
	10.5.35 Number of cliques

	Structural significance
	10.5.36 Cluster-coefficient (local)

	Structural significance
	10.5.37 Cluster-coefficient (global)

	Structural significance
	10.5.38 Module quality 1 (flow of information)
	10.5.39 Module quality 2 (compactness)

	Structural significance
	10.5.40 Number of cycles

	Structural significance
	10.5.41 Number of cycles per node

	Structural significance
	10.5.42 Number of cycles per edge

	Structural significance
	10.5.43 Number of feedbacks
	10.5.44 Activation of cycle

	Structural significance
	10.5.45 Number of starting points for iterations

	Structural significance
	10.5.46 Iterative oscillation

	Structural significance
	10.5.47 Bipartite density

	Structural significance
	10.5.48 Number of organizational interfaces

	Structural significance
	10.5.49 Cognitive weight
	10.5.50 Degree of non-planarity

	Structural significance
	10.5.51 McCabe Cyclomatic Number
	10.5.52 Control-Flow Complexity

	Structural significance
	10.6 Computability of metrics
	10.7 Classification of metrics
	10.8 GQM-Framework for metrics
	10.9 Complete results of case study 7.2

	11. Keyword index

