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A new graduate may think: “SoC design is exciting; I want to design chips for 

SmartPhones!” But, experienced RTL designers know that the reality of SoC design 

is more than exciting. It takes blood, sweat and tears to wrestle up to 20 Million 

lines of Verilog code into a production-ready product. Chip companies apply man-

power, the latest tools and very sophisticated methodologies to find and fix the bugs 

in an SoC before it goes to silicon – bugs that can run into the thousands.

Hardware designers take pride in the fact that, out of necessity, they routinely 

create higher quality code than software developers. Unlike software that is often 

fixed after the product is shipped, the hardware must be essentially bug-free before 

tape-out. As design size and complexity has grown dramatically, it has become 

much harder for hardware design teams to live up to this promise. The result is 

often called the “verification crisis.” The design community, along with the EDA 

industry, has responded to this crisis by making significant improvements in verifi-

cation technology and methodology. The testbench has become parameterized and 

object oriented, and the evaluation of simulation results is now automated. This has 

helped to make verification teams much more productive.

But it is obvious that the verification crisis cannot be solved exclusively on the 

verification side. It has to be addressed on the design side as well. Why fix bugs in 

your design, if you can avoid them in the first place? Why create more bugs than 

necessary by writing too many lines of code? There are several approaches to the 

problem. The current generation of high-level synthesis tools allows for a drastic 

reduction in code size and thus reduces the number of bugs a designer will intro-

duce. They generate good quality implementations for a wide range of signal 

processing applications. This is closing the gap from the top. The other approach is 

to move RTL designers incrementally up to the next level, improving quality while 

staying within the RTL paradigm that they are comfortable in.

In this book, Mike Keating takes on the design part of the problem from the 

pragmatic view of an RTL designer. As co-author of the Reuse Methodology 

Manual and the Low Power Methodology Manual, he has established a track record 

of delivering practical design methodology. In this book, based on his extensive 

experience and research, Mike proposes some very practical, proven methods for 

writing better RTL, resulting in fewer lines of code and fewer bugs. He calls writing 

RTL an art, but he also realizes that every artist deserves the best tools –in this case 

Foreword
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a language that facilitates good design. To this end he suggests how the language 

(SystemVerilog) could be extended to enable a better, more concise coding style.

Whether you are a college student or an experienced RTL designer, I hope you 

will be open for change in how hardware design is done. We at Synopsys have sup-

ported Mike Keating’s work on this book, because we firmly believe that we need 

to get new concepts in front of RTL designers. We feel that a strong collaboration 

between designers and the EDA industry is key to designing tomorrow’s most 

advanced SoCs.

VP of Strategic Alliances, Synopsys Rich Goldman
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Preface

On a bleak January night in 1992, I sat hunched over a computer screen and a logic 

analyzer. It was well past midnight, and I was the only person in the lab – probably 

the only person in the building. We had just gotten an ASIC back from the ASIC 

house, and, of course, when we fired it up it didn’t work. The other guys had  narrowed 

the problem down somewhat; now it was my turn to try to find the cause.

I had narrowed it down to a particular module which had been written by an 

engineer we’ll call Jeff. Working my way through Jeff’s code, trying to find the 

cause of the bug, I realized that he had not indented his if-then-else statements. This 

made it absolutely impossible for me to figure out what his code was doing. So at 

1:00 in the morning, I spent an hour or so carefully indenting his code – and 

 thinking very unkind thoughts about Jeff. Once I had his code carefully laid out, it 

was trivial to find the problem - it was an else that should have been associated with 

a different if. Of course, with such poorly structured code, it is unlikely that Jeff 

knew exactly what his code did. Otherwise he would have spotted the rather obvi-

ous problem himself. Instead, the problem made its way into the silicon. Fortunately, 

we were able to compensate for with a software change.

In early 2010, I happened to interview a significant number of candidates for an 

entry-level design position. Most of these candidates were right out of school, but 

a few of them had a couple of years of experience. To each of these candidates I 

gave a very simple problem, to set them at their ease before I started asking the hard 

ones. I drew this on the whiteboard:
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Every single candidate who was right out of school said (pretty much word 

for word):

“Let us label the output of the AND gate D.”

Then they wrote:

assign D = A && B;

always @ (posedge clk) begin

C <= D;

end

None of the experienced candidates wrote it this way. And it never occurred to 

me that anyone in their right mind would. The experienced folks all wrote:

always @ (posedge clk) begin

C <= A && B;

end

This answer is simple and straight to the point. Why would you ever add an extra 

line (and an extra process) to the code? It makes no real difference in this trivial 

example. But when one is hunched over a computer screen and a logic analyzer in 

the small hours of the morning, extra lines of code and extra processes can become 

very expensive. Especially in designs that are tens or hundreds of thousands of lines 

of RTL code, all written by someone else.

These two events have bracketed twenty years of trying to deal with, and 

improve, code based design. As a manager and as a researcher, I have spent far 

more time reading other peoples’ RTL than my own. I have watched how engineers 

struggled when they had to debug someone else’s code – often to the point where 

it was easier to re-write the whole module than find the bug.

In running an IP development team, I learned how critical quality is, and yet how 

difficult it is to achieve zero-defect code. For years I thought this was a verification 

problem. I am now convinced that the problem is how we design hardware and how 

we write RTL code.

Recently I have spent a lot of time looking at high level design and synthesis 

tools. I think there is some real value in the approaches they take. But I think there 

are significant opportunities for improvement in how they approach the design 

problem. Most importantly, I have come to realize that good design and good code 

do not miraculously emerge from raising abstraction.

Good design and clean code are a fundamental challenge to the human intellect – to 

make simple the complex, to make clear the obscure, and to add structure to what 

can look like complete chaos.

This book is an attempt to frame and answer the question of what makes good 

design and clear code. It presents my conclusions from the last twenty years of 

struggling with the problems and challenges of designing complex systems – and 

in particular, the design of SoCs and the IP that goes in them.

It would be impossible to thank all the people who have helped me as I  developed 

(and borrowed, and occasionally stole) the ideas presented in this book. Many of 
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my friends and colleagues - both inside and outside Synopsys – have spend numer-

ous hours talking (and arguing) over these issues.

But I would like to thank specifically the IP development team in Synopsys, 

including Subramaniam Aravindhan, Steve Peltan, James Feagans, Saleem 

Mohammad, Matt Meyers, and Qiangwen Wang.

I’d like to thank Tri Nguyen, Aaron Yang, and Shaileshkumar Kumbhani who as 

interns helped with many experiments whose results have shaped my thinking and 

the conclusions discussed in this book. I am happy to report that they all now have 

real jobs as IP developers.

Finally, I’d like to thank Jason Buckley, Badri Gopalan, Arturo Salz, Dongxiang 

Wu, Johannes Stahl, Craig Gleason, Brad Pierce, and David Flynn for their  valuable 

discussions and feedback on the manuscript.
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The Problem

As semiconductor technology relentlessly pursues the path described by Moore’s 

law, the challenges of SoC design continue to grow dramatically. We are moving 

from chips with millions of gates to ones with billions of gates. The task of design-

ing such complex systems is becoming extremely difficult – and very expensive. 

Figure 1-1 shows an estimate of the escalating development cost for a complex SoC 

as we have moved from 130nm to 22nm technologies.

The explosive growth in the cost of chip design is driven by software and veri-

fication. In a very real sense, these two issues are the same: the difficulty in writing, 

testing and debugging code.

Chapter 1

The Third Revolution

Figure 1-1 Source: International Business Strategies, Inc. (Los Gatos, CA). Used by permission.

Because of the possibility of human or mechanical error, neither the author, Synopsys, Inc., nor 
any of its affiliates, including but not limited to Springer Science+Business Media, LLC guaran-
tees the accuracy, adequacy or completeness of any information contained herein. In no event shall 
the authors, Synopsys, Inc. or their affiliates be liable for any damages in connection with the 
information provided herein. Full disclaimer available at: p. v of Frontmatter.
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By contrast, the cost of physical design of chips has remained relatively stable over 

the last few technology generations. Place and route are well-defined, but computa-

tionally intensive tasks. The rapid growth in compute power - and the software that 

takes advantage of it - has kept the overall cost of physical design under control.

But writing and verifying the code for the chip - the RTL and the software that 

describe the intended function of the chip – are a completely different matter. The 

languages, tools, and methodology we use for code development have changed 

little as chips have become larger and more complex. The basic design approach for 

digital design – how we code Verilog or VHDL to describe complex functionality 

– has remained largely unchanged in the last fifteen years.

The code development numbers tell the tale:

Studies show that over the life of a project, RTL and software engineers average 

about 10 to 30 lines of code per day. This includes specifying, writing, testing and 

debugging of the code [4a][4b][4c]. This number has remained roughly constant for 

decades. If anything, lines of code per day may be decreasing as chips become 

larger and more complex. Studies show that code productivity drops as the size of 

the project increases [5].

The amount of functionality per line of code has also remained roughly constant – 

at about three to ten gates per line of code of RTL. The lower estimate is typical of 

control dominated code; the upper estimate is typical of data path dominated code.

Using a cost per engineer at $150k per year and the (upper end) estimate of 30 

lines of code per day, we can calculate: 

$150k per year/260 work days per year » $600 per day

$600 per day/ 30 lines of code per day = $20 per line of code

$20 per line of code / 10 gates per line of code = $2 per gate

This is an optimistic cost analysis. Studies of commercial software projects suggest 

an average cost that is slightly higher: about $25 to $33 per line of code [24][25]

[26][27]. Our experience with many chip and IP design projects supports the view 

that these numbers are typical of RTL code development as well.

This cost per gate and cost per line of software code have remained constant 

from the 180nm design of a few years ago to the leading edge 22nm designs of 

today. But the amount of software functionality and the number of logic gates in 

these designs roughly doubles with each generation.

Over the last fifteen years, design reuse has been used extensively to help reduce 

the cost of chip design, and to help offset the cost of RTL development. But reuse 

cannot, on its own, solve this problem. To develop differentiated chips, we must 

develop new hardware and software. And in turn, IP blocks are becoming increas-

ingly large and complex, escalating their cost as well.

The result is that the cost of developing code for complex SoC designs (and the 

IP that goes into them) is growing exponentially, and swamping other design costs. 

We have responded to this challenge by adding more and more engineers to each 

project – and decreasing the number of new design projects.

This trend is not sustainable. We are rapidly reaching a crisis point where we 

will be limited not by what we can manufacture but by what we can design. It is 

time to explore how to migrate our design methodology, tools, and languages 
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forward to meet the challenges of designing the highly complex digital systems of 

tomorrow.

Over the last twenty-five years, there have been two major revolutions in how we 

do hardware design. The first, starting in 1986, was the move from  schematic-based 

design to RTL and synthesis. The second, starting in 1996, was the adoption of 

design reuse and IP. We are overdue for the third revolution. This book attempts to 

describe the initial steps in this revolution. We start with a discussion of the funda-

mental aspects of good design.

Divide and Conquer

Divide and conquer is the key tool for solving many complex problems. The 

effective design of complex systems relies on the same principle: the partitioning 

of the system into appropriately sized components and designing good interfaces 

between them.

This book explores how to apply this fundamental technique to the design of 

complex hardware, in particular to SoC design.

The process of designing complex chips is itself a complex system. In the early 

days, the Integrated Device Manufacturer (IDM) model was common. A single 

company (such as LSI Logic in the 1980’s) could have its own EDA tools, its own 

fab, and its own design teams. Today, this complex system has been partitioned into 

separate subsystems.

EDA companies develop the tools to do design and provide them to the entire 

community. In general, design tools are simply too complex for design houses to 

develop on their own.

Similarly, fabs have become too expensive for most semiconductor companies 

to build and maintain. Instead, independent fab houses such as TSMC, UMC, 

GLOBALFOUNDRIES, and SMIC specialize in manufacturing complex chips and 

in designing and maintaining the latest semiconductor processes.

Figure 1-2 How the semiconductor industry has evolved.
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This repartitioning of the chip design process shows the basic principles of 

divide and conquer in action. When systems become too complex, it is more effi-

cient to divide the system into several smaller components, with a formalized 

interface between them. These interfaces are not free, though. Interfacing to an 

outside fab house is not trivial: the design files that one delivers to TSMC must 

meet TSMC’s specifications and requirements. It also costs a significant amount of 

money to build chips at a commercial fab. But as the cost and complexity of fabri-

cating chips rose, the cost of the interface became worthwhile. That is, TSMC (and 

others) hide the complexity of the manufacturing process from its customers and 

provide a relatively simple, formalized interface that allows designers to create 

chips without knowing the details of the manufacturing process.

This decoupling effect is the key to good interface design. The partitioning of 

the system, and the design of good interfaces between its components, results in 

transforming a large, complex, flat problem into a set of small problems that can be 

solved locally. It decouples the complexity of one component from the complexity 

of another.

The different tasks involved in digital design have also evolved over the years. 

In the late 1980s, synthesis was introduced, using tools to optimize digital cir-

cuits. In the 1990s, design reuse became a common methodology as chip design-

ers realized it was more efficient to buy certain common components - such as 

processors and interfaces - and focus their design efforts on differentiating 

blocks.

In recent years, the verification of complex intellectual property blocks (IP) and 

SoC designs has become so challenging that specialized verification languages and 

verification engineers have emerged as key elements in the design process.

The process of designing complex chips is continually evolving. At each step, 

the industry has addressed the increasing complexity of design by separating differ-

ent aspects of design, so that each aspect or task can be addressed independently. 

RTL and synthesis technology allows us to describe circuits independently from a 

specific technology or library. Design reuse and IP allow us to separate the design 

and verification of complex blocks from the design of the chip itself. Recent 

improvements in verification technology have occurred as design and verification 

have become separate functions in the design team.

The General Model

In general, then, the design of a complex system consists first of decomposing it 

into component parts. Figure 1-3 shows a cell phone as an example.

The phone contains a printed circuit board with a (small) number of key chips. 

Each complex chip (SoC) consists of a number of subsystems. Each subsystem 

consists of a number of blocks – either original designs or IP. Each block in turn con-

sists of a number of subsystems or layers, and each subsystem consists of a number 

of modules.
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The module is the leaf level of this hierarchy. This is where the detailed design 

is done. It consists of HDL code describing the detailed function of the design.

Note then that there are multiple levels of design:

Product design (the cell phone)•฀

PC board design•฀

SoC design•฀

IP design•฀

At each level of design, we decompose the design problem into a set of compo-

nents. For instance, at the SoC design level, we define the functional units of the 

design and the IP we will use for each functional unit. Then we must compose these 

units into the system itself. That is, we need to decide how to connect the IP 

together (at the SoC design level) or how to connect the modules together (at the IP 

design level).

At every level of design, this composition function consists of designing the 

interfaces between units. The design of these interfaces is one of the key elements 

in controlling the complexity of the design. For a good design, the design units 

(modules, IP, or chips) must be designed to have interfaces that isolate the complex-

ity of the unit from the rest of the system. We will talk much more about this 

throughout the book.

Figure 1-3 Cell phone and its component parts.
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Rule of Seven

At any level of hierarchy, the number of blocks in the design is not arbitrary. In the 

1950s, The psychologist George Miller published a paper called “The Magic 

Number Seven Plus and Minus Two”[1]. In this paper, he demonstrated that the 

human mind can hold seven objects (plus and minus two) at any one time. This is 

why telephone numbers (at least in the United States) are seven digits. We can 

remember seven digit phone numbers. We cannot remember 12 digit phone 

numbers.

Similarly in any design, at any level of hierarchy, we can at any one time under-

stand a design of up to seven to nine blocks.

Compare the two block diagrams in Figure 1-5. In the diagram on the left we see 

only nine high-level components. It is easy to understand the major components of 

the system and how they are related to each other.

In the diagram on the right, much more detail is shown. This makes it signifi-

cantly more difficult to understand the general functions. When we look at the 

diagram on the right we tend to focus in on one subsystem at a time, and try to 

understand what it does. Then we look at the larger diagram to understand the 

general, high-level functionality.

This is a common problem in design. To design effectively, we need at any one 

time to be looking at only a small number of design objects. By doing so, we can 

think effectively about the (sub)system we are designing.

Figure 1-4 A general design paradigm for systems.

The general paradigm then is shown in Figure 1-4.
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Tightly Coupled vs. Loosely Coupled Systems

Once we have partitioned the system or design into an appropriate number of 

design units, the key step is to design the interfaces between them. In general, 

 systems can be considered to be one of two types - tightly coupled or loosely 

coupled - based on what kind of interfaces they have.

Tightly coupled systems have interfaces that essentially connect the elements of 

the system into one single, flat unit.

One example of a tightly coupled system is the weather. In 1961, Edward Lorenz 

was doing computer modeling of weather systems. He decided to take a short cut, 

and entered .506 for one variable, where earlier he had used .506127. The result 

was a totally different weather pattern.

Later, he published a paper describing this surprising effect. The title was Does 

the flap of a butterfly’s wings in Brazil set off a tornado in Texas?[2]

His key discovery was that small, local effects can have large, global effects on 

the weather. This is typical of a tightly coupled system. Local causes can have 

global effects and local problems can become global problems.

In SoC design, a tightly coupled system is one where the interfaces between 

units create such tight interaction between the units that they essentially become a 

single flat design. Thus, a change to any unit in the design may require changes to 

all the other units in the design. Also, fixing a bug in anyone unit may require sig-

nificant changes to other units.

Figure 1-5 Two views of the same interface IP.
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Figure 1-7 Example of a loosely coupled system.

A loosely coupled system, on the other hand, uses interfaces to isolate the 

 different units in the design. An example of a loosely coupled system is a home 

video system, such as shown in Figure 1-7.

Although the DVD player, the set-top box, and the TV set are all very complex 

systems, the interface between them effectively isolates this complexity. The HDMI 

cable that connects the set-top box to the LCD display isolates the complexity of 

the set-top box from the display. The display does not need to understand anything 

about the internal behavior of the set-top box. All it has to do is understand the 

signals coming over the HDMI cable.

More importantly, if the set-top box breaks, we can still use the DVD player. 

Local bugs or defects in the set-top box do not become global problems for the 

entire system.

There are significant advantages to loosely coupled systems. But there are advan-

tages to tightly coupled systems as well. Tightly coupled systems can be more efficient. 

This is one of the reasons they occur in nature so often. It is also one of the reasons why 

many design teams prefer to do place and route flat rather than hierarchical.

The characteristics of a tightly coupled system are:

they can be more efficient than loosely coupled systems•฀

they allow for global optimization•฀

Figure 1-6 World-wide weather is a tightly coupled system. Copyright Astrogenic Systems. Used 
by permission.
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less planning is required•฀

they are harder to analyze•฀

local problems can become global problems•฀

they can result in “emergent” behavior: that is, big surprises•฀

Characteristics of a loosely coupled system are:

they are more robust•฀

they support the design of larger systems•฀

they are easier to analyze•฀

local problems remain local•฀

they require more design and planning effort•฀

they produce more predictable results•฀

they are easier to scale – they can become larger without becoming excessively •฀

complex

Flat place and route provides an excellent example of the characteristics of a tightly 

coupled system. A flat place and route allows optimization of the entire design, 

resulting in a denser, more area efficient layout. Less floorplanning is required. But 

a last minute ECO or bug fix can cause major problems. If the layout is so dense 

that a few more gates cannot be inserted where needed, then the whole place and 

route must be re-done from scratch. The local problem of adding a few gates has 

become a global problem of redoing place and route for the entire chip.

A hierarchical place and route requires much more floorplanning, and inevitably 

leads to less optimal density. But if one block needs an ECO or bug fix, there is a 

much higher likelihood that only that block will be affected; the physical design of 

the other blocks can remain unchanged. Local problems remain local, and the 

chances of a last minute bug fix causing a massive disruption are much lower. This 

in turn leads to a more predictable final product cost and project schedule.

One comment on emergent behavior: the academic discipline of complex sys-

tems theory has devoted a lot of effort to studying naturally occurring, tightly 

coupled systems. These scientists study complex systems in biology, sociology, 

economics, and political science. They have found that complex (tightly coupled) 

systems frequently exhibit surprising and unpredictable behavior. It is not possible 

to analyze tightly coupled complex systems by decomposing them into components 

and analyzing the behavior of individual components. So it becomes impossible to 

come up with a simple model that can be analyzed and simulated effectively. The 

result is that analysis is always partial, and the behavior of the system is never 

completely understood.

One classic example of this is an anthill. The behavior of an individual ant is 

extremely simple. But an entire colony of ants can exhibit quite complex behavior, 

including complex strategies to locate and acquire food, complex strategies for 

defending the colony against invaders, and in extraordinary circumstances even 

moving the entire colony. There is no way we could predict this kind of behavior 

from an analysis of the individual ant.

For more discussion of complex systems, see Complex Adaptive Systems [3a] 

and Unifying Themes in Complex Systems [3b].
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The lesson for designers of SoC’s is that very large, tightly coupled systems are 

much more likely to exhibit unexpected behaviors than loosely coupled systems. 

Such systems are difficult (if not impossible) to understand completely and to 

verify completely. In particular, tightly coupled hardware systems are more likely 

to fail in unexpected and catastrophic ways than loosely coupled systems.

Thus, one of the keys to the good design of SoC’s is to make sure that they are 

loosely coupled systems.

The Challenge of Verification

One of the biggest challenges in digital design today is achieving functional cor-

rectness. As designs become larger and more complex, the challenge of functional 

verification has become extremely difficult.

In particular, a number of new, sophisticated verification techniques have been 

added to the engineer’s toolbox: constrained random testing, assertion-based test-

ing, score-boarding, and formal verification. Unfortunately, these new techniques 

merely extend the previous trend in verification. We know that with more effort 

(and more sophisticated tools) we can find more bugs. But we have no useful model 

for how to find all of them.

A quantitative analysis is compelling. There is little reliable data for bug rates in 

RTL code, but there is a very large amount of data on software quality. Since in both 

cases we are using code as a means of design, it is likely that we can extrapolate 

some useful information from the software quality studies.

Figure 1-8 Verification is an asymptote.
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Software studies show that designers inject approximately 1 defect for every 10 lines 

of code. The process of compiling, reviewing, analyzing, and testing the code reduces this 

rate. For typical new code that has been well tested, a remaining defect rate of several 

defects per thousand lines of code (KLOC) is common. The very best code from the 

most sophisticated teams can achieve between 0.5 and one defect per KLOC [5].

One exception to this quality level is NASA. NASA has been able to achieve 

remarkable defect rates on mission-critical software, such as for the space shuttle: 

perhaps as low as.004 defects per line of code, but at a cost of about $1,000 per line 

of code [24](compared to about $25 per LOC for commercial software).

It is likely that hardware teams commonly achieve the same kind of defect rate 

as the very best software teams. One reason for this is that hardware teams typi-

cally invest significantly more resources in verification than software teams do. 

But all the evidence indicates that any code-based design of significant size will 

still have a significant number of residual defects even after the most rigorous test-

ing effort – short of adopting the cost structure and schedule of NASA projects.

As we build more and more complex chips, even very low defect rates such as 

0.1 defect per KLOC can be a major problem. In fact, functional bugs are a large, 

if not the largest, single cause of chip respins [6a][6b].

For example consider a 50 million gate design – that is, one with 50 million logic 

gates. This corresponds to approximately 10 million lines of code. At 0.1 defect per 

KLOC, this means that the chip is likely to ship with 5,000 defects.

There are two primary strategies for improving the situation:

reduce the number of lines of code•฀

lower the defect rate per thousand lines of code•฀

In this book, we will discuss design techniques for implementing both of these 

strategies by raising the level of abstraction in design.

The Pursuit of Simplicity

Consistently, studies indicate that the design reviews and code reviews are the most 

productive means of detecting bugs[7]. Even today, the most powerful verification 

tool in our toolbox is the human mind. One key element in lowering the defect rate 

in RTL code is to make the code easier for humans to understand.

Today, most RTL code has been written with the primary goal of making it easy 

for the compiler (synthesis tool) to produce good results. However, this has often 

resulted in code that is difficult to understand. All of us have written code, only to 

come back to it months later and find that we have no idea what the code actually 

does. Unfortunately, code that is difficult to understand is also difficult to review 

and for humans to detect bugs.

One of the goals of this book is to describe some techniques for simplifying RTL 

designs (by minimizing the state space) and to simplify the way this design is rep-

resented in the code itself.
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The Changing Landscape of Design

Another reason for this pursuit of simplicity is that chip design has changed in a 

fundamental way over the last decade. A dozen years ago, it was possible for a 

single senior engineer to understand every aspect of the chip -- the overall architec-

ture, what each module does, and how software interacts with it. In a finite amount 

of time, a single reviewer could read all of the RTL for a chip.

Those days are gone. Today an SoC consists of many pieces of IP, often pur-

chased from multiple third-party IP providers. It also requires large amounts of 

software, from low-level drivers to high-level applications. The RTL for a compli-

cated IP may be as large as an entire chip was just a few years ago.

As a result, no one engineer completely understands every aspect of an SoC 

design. No single human being could read all of the RTL for such a design. The 

design, verification, and debug a complex chip now requires an entire network of 

engineers.

As a side effect, during verification and debug, engineers are constantly dealing 

with code that they did not write, and which they may never have looked at before. 

They may not be experts on the bus protocols used on the chip or the interface 

protocols used in the I/O for the chip.

Another way to look at this paradigm shift is this: in previous generations of 

design, chips were designed by teams of engineers. Now they are designed by a 

network of engineers. Managing this network is much more complex than manag-

ing a team.

With a team, any member who has a question has direct access to the other team 

members and can find the answer to the question quickly and directly. With a net-

work, an engineer may have no direct access to the engineer who can answer the 

question. Access may require multi-node hops: finding where a IP came from, 

locating the field contact for the IP company, getting the field contact to relay the 

question to the design team, and so on. With a network, more information may be 

available, but accessing it quickly can be more difficult.

In this new model for chip design, there is a premium on simplicity: a simple, 

regular architecture, robust IP’s that are easy to integrate, and code that is easy to 

read and understand.

Structure of This Book

Chapter 2 gives a brief overview of techniques for simplifying designs.

Chapter 3 gives a detailed example of how to re-factor an RTL design to make it 

significantly less complex. It uses a control dominated design as the example.

Chapter 4 continues the example of Chapter 3, focusing on the design of a hierar-

chical state machine.

Chapter 5 discusses in more detail the concept of state space, and how to minimize it.
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Chapter 6 describes how the techniques described in previous chapters can simplify 

and improve verification.

Chapter 7 gives another detailed example of simplifying code, this time with a data 

path intensive design.

Chapter 8 describes how the design of module interfaces affects the complexity of 

the design.

Chapter 9 continues the discussion in Chapter Chapter 7, and extends it to the IP and 

system level; it describes how to measure and minimize complexity of complete 

designs.

Chapter 10 begins a discussion of raising the level of abstraction by extending cur-

rent design languages and tools.

Chapter 11 describes a series of proposed extensions to SystemVerilog that could 

start moving RTL up in abstraction.

Chapter 12 discusses the future of design – the potential for greatly improving 

designer productivity and the challenges and obstacles to realizing this 

potential.

Appendix A summarizes some of the design guidelines developed in the course of 

the book.

Appendix B provides some code examples of designs using the recommended cod-

ing styles for SystemVerilog as well as some examples of designs using the 

proposed extensions described in Chapter 10.

Appendix C provides some preliminary specifications for the proposed extensions 

to SystemVerilog.

Appendix D discusses some existing SystemVerilog features that can be useful in 

raising the abstraction of code.
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Confusion and clutter are the failure of design, not the  attributes 

of information.

—Edward R. Tufte

This chapter gives an overview of the challenges in RTL designs, and some of the 

basic techniques we can use to simplify them.

Challenges

The basic challenge in RTL design is that there are a lot of things going on at the 

same time. The design of hardware involves dealing with concurrency. And  currency 

is inherently a difficult problem.

In addition, in RTL we describe both the function of the design and a great deal 

of the implementation details. For instance, we define the basic clocking structure 

and whether reset is synchronous or asynchronous. By the way we write the RTL 

we determine whether latches or flip-flops will be used.

Historically, we have used code structure and coding style to develop code that 

is synthesis friendly, easy to achieve timing closure, and meets our power and gate 

count constraints. Clarity of the code has often been a secondary concern.

As designs become more complex, the challenge of describing both function and 

implementation at the same time becomes even more difficult. For instance, inter-

face protocols such as USB 3.0 involve a number of complex algorithms. Although 

we think about these algorithms as operating on packets, these are serial interfaces; 

we must implement the algorithms serially, operating on one bit or one word at a 

time. Developing the correct algorithm and at the same time defining its serial 

Chapter 2

Simplifying RTL Design

Because of the possibility of human or mechanical error, neither the author, Synopsys, Inc., nor 

any of its affiliates, including but not limited to Springer Science+Business Media, LLC guaran-

tees the accuracy, adequacy or completeness of any information contained herein. In no event shall 

the authors, Synopsys, Inc. or their affiliates be liable for any damages in connection with the 

information provided herein. Full disclaimer available at: p. v of Frontmatter.
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implementation is a complex task. As in any complex task, at some point it becomes 

easier to divide it into two separate tasks, and solve them separately.

One of the byproducts of designing both the function and the implementation 

details simultaneously is that the code size tends to become quite large. Source code 

file sizes can often run into the tens of pages. The code tends to be structured to be 

friendly to the compilers not necessarily to the humans who read and debug the 

code. All this results in code that is difficult to analyze, review, and debug.

Syntactic Fluff

Another byproduct of trying to write synthesis friendly code is that we end up with 

a lot of syntactic fluff. For example, describing a simple flop might consist of the 

following code:

always @(posedge clk or negedge reset) begin

if (!reset) foo <= 0;
else foo <= foo + 1;

end

In this case, the only part of the code that is algorithmically significant is 

the line:

The rest of the code is syntactic fluff. That is, it is required in order to convince 

the synthesis tool that a flip-flop should be used and tell it the nature of the clock 

and the reset signal as well as the reset value of foo (which is zero for most flops).

Another example of writing synthesis friendly code is the practice of separating 

the code into combinational and sequential sections. In the early days of synthesis, 

we could get better results by putting all the combinational code at the beginning 

of the file and all the sequential code at the end of the file. So code might look 

something like the following:

foo <= foo + 1;

assign a = b;

always @(c or d) begin
e = c && d;
f = c || d;

(continued)
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This structure, of course, makes no logical sense. Logically, the combinational code 

that defines the value of a should be right next to the sequential code where a is used.

With today’s synthesis tools, this kind of partitioning provides no value at all. 

The synthesis tools can optimize all the code across a very large module regardless 

of how the code is organized or structured.

One of the themes of this book is that we need to migrate our coding style from 

being synthesis friendly to being human friendly. The synthesis tools have become 

much more sophisticated over the last 10 years, but at the same time the designs 

have become much more complex. As a result, we have an opportunity to rethink 

how we code digital designs make them easier to understand and analyze. The 

power of modern synthesis tools gives us a lot of leeway to modify how we write 

code in order to make the design process faster and more robust.

Concurrency and State Space

There are several problems in RTL design that are simply the result of how hardware 

description languages and synthesis tools evolved. This category includes syntactic 

fluff and the fact that we describe function and implementation in the same file.

But there are two major challenges in RTL design that are fundamental to the 

problem of digital design: concurrency and state space. These two issues are closely 

related.

When we design a digital system, we are really specifying how that system 

evolves over time. That is, we are specifying the state space of the system and how 

it changes over time. The problem is that the state space may be very complex, 

consisting of multiple subsystems that are evolving simultaneously.

Consider, for example, a cell phone. The main digital chip in a cell phone may 

be simultaneously controlling the user interface, the audio and video services, net-

work access, and the radio subsystem.

We can demonstrate the challenge of such complex systems from a very simple 

example. Consider the state machine in Figure 2-1.

end

always @(posedge clk or negedge resetn) begin
if (!resetn) foo <= 0;
else foo <= a;

end

always @(posedge clk or negedge resetn) begin
if (!resetn) bar <= 0;
else bar <= e + f;

end

(continued)
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Analyzing the state machine is quite simple. We just have a counter that counts 

up to seven once the start signal is asserted.

If we have two state machines that are decoupled, as in Figure 2-2, the analysis 

is again simple:

Note: In this book, we use a mix of styles in state machine diagrams. For very 

simple diagrams, we use traditional bubble diagrams. For state machine drawings 

where we show some code, we use State Chart notation. This format (using rect-

angles instead of circles for states) gives room for including more information 

about the state. For an explanation of this format, see [11].

Figure 2-2 Two decoupled state machines.

Figure 2-1 A simple state machine.
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Figure 2-3 Two coupled state machines.

Now we have two state machines that count up to some terminal value, starting 

when the start signal is asserted. Note that because the two terminal counts are rela-

tively prime, there is no way to predict the value of b given the value of a. After a 

hundred clock cycles or so, the relationships between the values of aand b will 

appear to be completely random. Thus, while it is easy to analyze each state 

machine independently, analyzing and predicting the values of both states at any 

particular time starts to get a bit tricky.

In Figure 2-3 things are getting dicey. In the above design, the two counters have 

separate start signals. Also, we halt incrementing a based on the value of b, and vice 

versa. The two state machines are now tightly coupled, and the combined behavior 

depends heavily on when the two start signals are asserted. The behavior of this 

circuit is a lot more complex than the behavior of the previous two circuits.

As we can see, the concurrent behavior of two tightly coupled state machines 

can become very complex to analyze, even when each state machine is simple.

Techniques

The previous sections described three problems in RTL design: 

Syntactic fluff•฀

The order/structure of RTL code•฀

The problems of state space size and complexity, and the problem of •฀

concurrency

We now give a brief overview of some of the techniques we can use to address these 

problems. These techniques will be explored in more detail in the rest of the 

book.
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In this case, the signal temp has global scope. That means that when we are ana-

lyzing this design, we need to worry about the value of temp at all times. But in fact, 

the signal is used only as a temporary or intermediate value in calculating foo.

As mentioned earlier, the key technique for managing complexity is to divide 

and conquer. In terms of RTL design, and in fact in any code based design, the key 

mechanism is encapsulation. We want to partition the design – and the code – so 

that each piece can be designed and analyzed separately from the other pieces. To 

the degree possible, we would like to encapsulate functionality, hide local informa-

tion so that external pieces of the design don’t see it, and present a simple interface 

to the rest of the system.

Even with today’s languages and tools, we can use encapsulation techniques to 

raise the level of abstraction above the traditional RTL level. In doing so, we can 

make the function of the design more obvious and make the implementation less 

obtrusive.

In this section, we will examine four areas for encapsulation and raising the 

abstraction level of design:

Combinational code•฀

Sequential code•฀

Interfaces•฀

Data Types•฀

Encapsulating Combinational Code

Consider the following piece of SystemVerilog code:

input bit a;
input bit b;
input bit control;

bit temp;
bit [7:0] foo;

always_comb begin

if (control == 1) temp = a;
else temp = b;

end

always_comb foo = temp * 3;
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function automatic bit [7:0] foo (input bit a, b, 

control);
bit temp;
if (control == 1) temp = a;
else temp = b;
foo = temp * 3;

endfunction

Compare the previous counter to the following code:

This code is slightly shorter than the previous code. But it also has several 

 additional advantages:

 1. It makes it completely explicit that the value of foo depends only on the inputs a, 

b and control. This relationship is not at all obvious from the statement always_

comb foo = temp * 3. In fact, if the two always_comb blocks in the previous 

example are separated by significant amounts of code, it may not be easy at all 

to see the relationship between foo and the inputs a, b, and control.

 2. The signal temp is local within the function. It is completely obvious that it is not 

used by any other piece of code.

 3. All of the code required to calculate foo is grouped together within the function. 

There is no possibility of scattering this code throughout the file. This means that 

the analysis of how foo is calculated becomes a local rather than a global 

activity.

 4. The function foo must now be called explicitly whenever it is needed. This makes 

coding slightly more burdensome, but it makes analysis significantly easier. 

Typically, the function will be called in one or perhaps a few states. That means 

whenever the module is in the other states, we can completely ignore foo.

Thus, functions provide an effective encapsulation mechanism for combinational 

code.

Structuring Sequential Code

Unfortunately, modern hardware description languages do not provide an equiva-

lent encapsulation mechanism for sequential code. There is no structure that allows 

us to group pieces of sequential code together, define explicitly the inputs, or to 

hide local or temporary signals. The task construct allows some degree of encapsu-

lation, since (unlike function) it allows some timing and sequential constructs. And 

we will use it in a later chapter. But we are not allowed to have an always @ 

(posedge clk) block in a task. As a result, we really do not have an equivalent to the 

function for sequential code.
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Instead, we are left to group sequential code arbitrarily within always @ 

(posedge clk) blocks. These sequential blocks can be scattered throughout a file. 

To analyze the module then, it is necessary to read and memorize virtually the 

entire file

Consider the following code:

always @ (posedge clk or negedge resetn) begin
if (!resetn) begin
bar <= 0;
bar_p1 <= 0;

end else begin

bar_p1 <= bar;
bar <= a + b;

end

end

always @ (posedge clk or negedge resetn) begin
if (!resetn) begin
foo <= 0;

end else begin

foo <= bar_p1 + bar;
end

end

Here it is not obvious that foo depends on the inputs a and b. If the two sequen-

tial blocks are separated by significant amount of code, it may be nontrivial to sort 

out exactly what the relationship is between foo and bar.

One possible solution is to start grouping more and more sequential code into a 

single sequential process. The trouble with this solution is that this process becomes 

large and unwieldy.

The best mechanism for structuring sequential code is the state machine. In a 

state machine, we can create a single large sequential process that uses the case 

statement to structure the sequential code into separate states.

To address the problems of concurrency described earlier, we recommend using 

a single state machine per module. Effective decoupling of modules (described in 

Chapter 8) then helps manage concurrency between state machines.

The key challenge in grouping large amounts of sequential code into a single 

state machine is that this state machine can rapidly become large and unwieldy 

itself. In fact, we can easily violate the rule of seven: many interesting state 

machines have more than seven to nine states. The solution to this problem is to 

code the process as a hierarchical state machine. We discuss hierarchical state 

machines Chapter 4, and give an example in Appendix B.
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Using High Level Data Types

Functions and state machines are the two most important mechanisms for 

 encapsulation in RTL design. But there are some additional techniques available in 

SystemVerilog that can be very helpful in raising the abstraction level of RTL 

design.

Enumerated types are helpful in defining exactly what values are legal for a 

given signal or collection of signals. For instance:

bit read;
bit write;

This code implies that there are four possible values for the combination of the read 

and write signals. Most importantly, it implies that it is possible to assert both 

read and write at the same time; at least nothing in the declaration implies that this 

is impossible.

Instead, we can define an enumerated type signal rw which makes it explicit that 

only one of the read or write operations can be active at one time:

enum (NOP, READ, WRITE) rw;

Structs in SystemVerilog are also very useful in providing an encapsulation 

mechanism for related signals. For instance:

bit [ADDR_WIDTH] foo_address;
bit [ADDR_WIDTH] bar_address;

enum (NOP, READ, WRITE) foo_rw, bar_rw;

bit [DATA_WIDTH] foo_data;
bit [DATA_WIDTH] bar_data;

As written, the code relies on the signal name to imply the relationship between 

the different signals.
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Then in the top level module, we instantiate an interface and connect it to the 

memory. Note how simple the code for the instantiating the memory has become, 

since only the interface, and not five different ports, needs to be connected.

Using a struct data type, we can make it explicit that both foo and bar are exactly 

the same data type, with exactly the same type of address, data and control signals. 

The relationship between the address, data, and control signals is much more 

explicit as well.

The SystemVerilog interface construct provides an encapsulation mechanism at 

the interface level. A module definition with 30 or 40 inputs and outputs clearly 

violates the rule of seven. Using the interface construct, we can reduce this to seven 

to nine interface declarations.

The following is an example of how a simple memory interface can be defined 

using interfaces:

typedef struct {
bit [ADDR_WIDTH] address;
bit [DATA_WIDTH] data;

rw_type rw;} my_data_type;

my_data_type foo, bar;

interface mem_intf ; // interface for i_mem and d_mem
bit [ADDR_WIDTH-1:0] addr;
bit [WORD_SIZE-1:0] write_data;
bit [WORD_SIZE-1:0] read_data;
bit read;
bit write;

modport master (  output addr, write_data, read, write,  
input read_data);

modport slave (  input addr, write_data, read, write, 
output read_data, exc );

endinterface: mem_intf
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Then our behavioral model for the memory might look something like this. Note 

how simple the port declaration has become, since we declare the interface instead 

of five different ports.

module top ;
…

mem_intf d_mem_intf();
…

mem d_mem (.ifc(d_mem_intf), .clk(clk));
…

endmodule

module mem (input bit clk, mem_intf ifc);

bit [`WORD_SIZE-1:0] mem_array [`MEM_DEPTH-1:0] ;

always @(posedge clk) begin
if (ifc.read) ifc.read_data <= mem_array[ifc.addr];
if (ifc.write)mem_array[ifc.addr] <= ifc.write_data;

end

endmodule

For an extensive discussion of how to use the interface construct, see [8]. For a 

brief discussion of how extensions to the synthesizable subset of SystemVerilog 

could make the interface construct even more useful, see the first section of 

Appendix D.

Finally, even the for loop now has a small opportunity for encapsulation:

for (int index = 0; index < max_val; index++)

By declaring the loop index inside the for loop, we hide it from the rest of  

the code.

Thinking High-level

Most important of all, raising the level of abstraction of RTL code requires us to 

think high-level in every aspect of coding. For example, consider the following 

piece of code:
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if (foo == 1’b1)

This is an example of thinking at the bit level. We are asking if the value of foo 

is equal to one, which we associate with a Boolean value true.

The following piece of code is functionally the same as before, but simpler and 

at a higher level of abstraction:

if (foo)

In this statement, we simply ask if foo is true. In fact, we know that this is 

equivalent to asking if foo is not equal to zero.

There are several (admittedly small) problems with the first approach.

 1. It is more verbose than necessary, which can become a significant issue when 

reading large amounts of code.

 2. It inserts an implementation issue (the fact that we are using a value of one 

 represent a Boolean value true), when we are really interested in the functional 

or algorithmic aspects of the design.

Both ways of writing an if statement are perfectly legal, and both will produce 

exactly the same synthesis results, that is, the same gate level netlist. But the second 

version is more compact and more functional rather than structural.

All the techniques described in this chapter strive to achieve a single goal. There 

are many different ways of writing the same logic in RTL code. In the past, we had 

to choose the coding style that lead the synthesis tools to produce the optimum 

result. But today, with the explosion of complexity in design, we need to use a 

 coding methodology that makes the code easy to understand, to review, to analyze 

and to debug.
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The ability to simplify means to eliminate the unnecessary so that 

the necessary may speak. 

— Hans Hofmann

This chapter provides an example of how to reduce the complexity of an RTL 

design. It describes a project to rewrite a module and raise the level of abstraction 

without changing its functionality.

The project started with the Bus Control Unit (BCU) from a wireless USB 

design. This module initiates and controls the DMA from the MAC layer to the 

AMBA® AHB bus, as shown in Figure 3-1.

Chapter 3

Reducing Complexity in Control-Dominated 

Designs

Figure 3-1 Simplified block diagram of the wireless USB design.

Because of the possibility of human or mechanical error, neither the author, Synopsys, Inc., nor 

any of its affiliates, including but not limited to Springer Science+Business Media, LLC guaran-

tees the accuracy, adequacy or completeness of any information contained herein. In no event shall 

the authors, Synopsys, Inc. or their affiliates be liable for any damages in connection with the 

information provided herein. Full disclaimer available at: p. v of Frontmatter.
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We used the following metrics to assess our success in simplifying the RTL code:

number of lines of code•฀

internal state space of the design•฀

number of objects in the design•฀

amount of abstraction, partitioning, and information hiding in the design•฀

the overall readability of the code•฀

One constraint of the project was that we could not change the interface of the 

module. To test the design, and prove that we had not changed its function, we 

needed to be able to interface to the other blocks in the existing wireless USB 

design. For this reason we are not addressing the issues of input and output state 

space size.

The techniques that we used to simplify the code include:

partitioning the code into multiple files•฀

eliminating some syntactic fluff from the code•฀

restructuring the sequential code, moving it all into a single state machine•฀

using functions for the combinational code•฀

converting the state machine to a single, sequential process•฀

converting the state machine to a hierarchical state machine•฀

using the SystemVerilog •฀ struct construct to encapsulate important structures

Original Code

The initial design was chosen because it was one of the largest modules in the 

design and reasonably complex. It was also well-designed and well-coded; that is, 

it was designed and coded in compliance with the best common design practices. 

Any improvements would have to move beyond these practices and possibly 

require changes to the Verilog language.

The original Verilog-2001 code consisted of twenty-seven pages for a total of 

1600 lines of code (total lines of text including comments and blank lines), 

including

2 pages of input and output declarations•฀

4 pages of internal declarations (wires, regs, parameters)•฀

7 sequential processes (always @(posedge clk))•฀

10 combinational processes (always @*)•฀

30 assign statements•฀

The sequential processes included :

One process that was 5 pages long (a state machine)•฀

second process that was 3.5 pages long•฀

third process that was 1 page•฀

The rest of the sequential processes were less than 1 page each•฀
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The combinational processes included :

One process that was 2 pages long•฀

One process that was 1 page long•฀

The rest of the processes were less than 1 page•฀

Thus, of the 27 pages, 

6 pages (22%) were declarations•฀

12.5 pages (46%) were large processes•฀

These statistics are useful because declarations, although certainly necessary, are 

largely a distraction when trying to read and debug code. Large processes (more than 

1 page) are more difficult to read and understand than small processes. A state 

machine that takes 5 pages is very challenging to read and understand.

The rewrite project consisted of three steps:

Analyze and understand the code•฀

Rewrite the code•฀

Test the new code in the wireless USB test environment•฀

During the analysis phase, we did not consult with the original designer. We wanted 

to see how easy (or difficult) it was to understand the function of the design just 

from the code and a very high-level specification document. (This specification 

document, of course, was ambiguous and contained a lot of obsolete information. 

Like most specifications, it was not updated as the design changed).

During testing, we were not able to use formal verification to show that the new 

version and old version were equivalent. As we restructured the code, we converted 

the state machine into a single sequential process from the original two-process 

format. As a result, the two designs had slightly different timing – that is, certain 

internal actions moved from one clock cycle to another. (We could have maintained 

exactly the same behavior, but the resulting code would have been more complex, 

undermining the primary goal of the exercise). This rendered the two designs non-

equivalent (from the perspective of formal verification) but functionally equivalent, 

in terms of passing all the regression tests.

State Space in the Original Design

In the original Verilog code, the state machine consisted of 12 states.

The next two largest sequential processes assigned values to 44 registers and 

9 registers respectively. On first reading the code, it was not obvious which combi-

nations of these 53 registers can occur and which are impossible. Thus, the state 

space of these two processes was 253.

Without more information, we had to assume that any of these 253 states could 

occur during any of the 12 states of the state machine.
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Thus, the total state space, just of the state machine and these two processes, was 

12 * 253. In human terms, this is essentially infinite.

The original designer, of course, intended a much smaller state space. In fact, the 

original designer would see most of the variables in the sequential processes as data 

or temporary variables rather than control states. Because of his understanding of 

the design intent, the effective state space for the original designer is much smaller 

than the state space as actually represented in the code.

During the analysis phase of the re-write project, one key goal was to restructure 

the code to make it easier to understand the state space. We could then rewrite the 

code to minimize the state space and make it explicit and obvious.

Partitioning

The first step in restructuring the design was to partition it into several files. This 

allowed us to aggregate related code into separate code segments that could be 

analyzed and rewritten independently.

We partitioned the design into the following files:

input and output declarations•฀

internal declarations of wires, registers and parameters•฀

all combinational code (with a few exceptions, explained below)•฀

all sequential code (with a few exceptions, explained below)•฀

the top level code, consisting of:•฀

○ the module declaration

○ ‘include statements to include the other files

○ combinational code that directly drives primary outputs

○ sequential assignments that simply pipeline primary inputs

With this partitioning, virtually all the real action of the module was contained 

in two files: the combinational code and the sequential code. During the subse-

quent work we could largely ignore the other files, referring to them only as 

required.

Comments

The next step was to restructure the comments in the code.

Note that the comments in Example 3-1, although they contain some interesting 

information, completely interrupt the flow of the code. Scattering comments 

throughout a process actually makes reading the code harder. Instead, we moved 

the useful comments ahead of the process, so all the comments could be read at 

once, and then all the code could be read without interruption.
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Example 3-1 

// Flip Flop registers for Byte Stripping
always @(posedge hclk or negedge hreset)begin
     if (!hreset) begin

         rxf_saved_data <= 0;
         rxf_saved_data_cnt <= 0;
     end else begin

          if  (fsm_rxqreq_vld_clr ||
                 (fsm_q_sel == DWQ)))) begin

              rxf_saved_data_cnt <= 0;
          end else if (fsm_rxf_saved_data_load ||  

                                      (bium_wdata_pop &&                    

                                      (rxf_data_shift != 0))) begin

// bium_fifo_busy not needed - no pop on BUSY
// load RXF data register if:
// - FSM instructs to do so
// - or BIUM pops RXF and byte shifting is 

// required
             rxf_saved_data <=   

                  bcu_rdata[`DWC_UWB_BUS_DWIDTH-1:8];
// determine number of valid bytes saved in RXF 

// data register based on 

// shift value
              case (rxf_data_shift[1:0])
                   2’b00: rxf_saved_data_cnt <= ‘h0;
                   2’b01: rxf_saved_data_cnt <= ‘h3;
                   2’b10: rxf_saved_data_cnt <= ‘h2;
                   default: // 2’b11
                                   rxf_saved_data_cnt <= ‘h1;
              endcase

          end else if   (bcu_rxf_pop || bcu_dwf_pop ||  

                                          bcu_rxf_pktcnt_dec ||
                                       (fsm_dmareq_vld_clr && 

                                       (dmareq_f == DWF))) begin

// clear num valid bytes if we don’t load 

// RXF data register this clock and:
// - BCU pops RXF (last entry)
// - or BCU decrements RXF packet counter 

// (upon DMA completion or RX pkt flush)
             rxf_saved_data_cnt <= 0;
          end

     end

end
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We ended up eliminating many of the comments, because they simply restated 

what the code says. We kept only the comments that explained particularly tricky 

pieces of code.

Engineers are taught in school to use comments extensively. We find comments 

to be problematic: they are not tested in simulation, and they are typically not 

updated as the code changes. The result is that they are often incorrect and misleading. 

We prefer to use comments sparingly, mostly to explain the meaning of signals and 

to give a general ideal of the algorithm being implemented.

Syntactic fluff

Preprocessing Sequential Code

Once the design was partitioned into manageable sized files, and extraneous 

 comments removed, we still found the code difficult to read and understand. One 

of the most obvious causes of this was a large amount of syntactic fluff in the code. 

Consider the following (very small) sequential process.

1 always @(posedge hclk or negedge hreset_gen_n) begin

2  if (!hreset_gen_n) begin
3   csr_debug_bcu1_lo <= 4'b0;
4   bium_abort <= 1'b0;
5  end

6  else begin
7   csr_debug_bcu1_lo <= {bcu_dwf_pop, bcu_rxf_pop};
8   if (bium_dma_done)
9    bium_abort <= 1'b0;
10       else if (bium_abort_set)
11    bium_abort <= 1'b1;
12  end
13 end

This process consists of 13 lines of code. But all the meaningful action is 

described in lines 7 through 11. So five lines of code are of high-value, and the 

other seven are overhead. All they do is get in the way of understanding the code.

To make the code simpler and more readable, we developed a simple Perl script 

to act as a preprocessor for the RTL code. In this module, as in the vast majority of 

modules in the design:

there is only a single clock and a single reset•฀

non-blocking assignments are used for sequential code, and only for sequential code•฀
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blocking assignments are used for combinational code, and only for combina-•฀

tional code

only flip-flops are used, never latches•฀

With the Perl script, the sequential process above can be rewritten in a streamlined 

fashion as:

csr_debug_bcu1_lo <= {bcu_dwf_pop, bcu_rxf_pop};
if (bium_dma_done bium_abort <= 1'b0;
else if (bium_abort_set) bium_abort <= 1’b1;

1 always @(posedge hclk or negedge hreset_gen_n) begin
2  if (!hreset_gen_n) begin
3   csr_debug_bcu1_lo <= 4’b0;
4  end

5  else begin

6   csr_debug_bcu1_lo <= {bcu_dwf_pop, bcu_rxf_pop};
7  end

1 always @(posedge hclk or negedge hreset_gen_n) begin
2  if (!hreset_gen_n) begin
3   bium_abort <= 1’b0;
4  end

5  else begin

6    if (bium_dma_done) bium_abort <= 1'b0;
7    else if (bium_abort_set)bium_abort <= 1'b1;
8  end

9 end

This code is exactly equivalent to the original code.

Note that to re-generate legal Verilog code from the streamlined code, three 

additional pieces of information are needed:

 1. the reset values of the registers

 2. the name (and edge) of the clock

 3. the name (and edge) of reset

The Perl script uses the “<=” as an indication that this is a sequential process, 

and re-writes the code as:
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In the streamlined code, all three of these are provided in the signal declarations by 

the following code:

1 always @*
2 begin
3  next_txf_saved_data_dec = 0;
4  for (q=0; q<DWIDTH_LANES; q=q+1)
5   if (q < next_txf_saved_data_cnt)
6    next_txf_saved_data_dec[q] = 1'b1;
7  next_txf_saved_data_en = next_txf_saved_data_dec;
9 end

bit [3:0] csr_debug_bcu1_lo = 0;
bit [3:0] bium_abort = 0;

$clock posedge hclk
$reset negedge hreset_gen_n

That is, we use the initialization construct of Verilog to define the reset value. 

And we declare the clock and reset explicitly.

With this Perl script, we were able to dramatically reduce the size of the sequen-

tial code. More importantly, by eliminating the distraction of syntactic fluff, we 

made the code much easier to read.

Note that this approach is possible because the module in question uses only a 

single clock. But for the vast majority of modules in digital design, this is the case. 

Good design practices dictate that, whenever signals cross clock boundaries, a 

small separate module is used and that only this module contains multiple clocks. 

The Perl script approach described here does not apply to such a multi-clock  module, 

but does apply to all the other modules in the design.

Preprocessing Combinational Code

We used a similar approach on combinational code, which is a much simpler case. 

Here the Perl script recognizes that a blocking assignment is used (in this kind of 

module) only for combinational code.

So we can reduce the following combinational process:
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To this:

1 for (q=0; q<DWIDTH_LANES; q=q+1)
2  if (q < next_txf_saved_data_cnt)
3   next_txf_saved_data_dec[q] = 1’b1;
4  else next_txf_saved_data_dec[q] = 0;
5 next_txf_saved_data_en = next_txf_saved_data_dec;

always @* begin
case (state)
IDLE:   if (foo) next_state = STATE1;
STATE1: if (bar) next_state = IDLE;

endcase

end

always @(posedge clk) begin
state <= next_state;

end

The Perl script generates the appropriate legal Verilog syntax, adding back the 

always@*, begin, and end.

Once we had partitioned the code into multiple files, eliminated the syntactic 

fluff, and removed unnecessary comments, we found the code dramatically 

easier to read, analyze, and re-factor. We first focus on improving the sequential 

code.

Refactoring Sequential Code

Recoding the State Machine

There are two classic ways of coding a finite state machine (FSM):

Two-Process FSM
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In the original Verilog for the BCU, the state machine used the two-process 

approach. Although this is a common way of coding state machines, and approved 

in the Reuse Methodology Manual (RMM) [9], it can, in fact, lead to poorly struc-

tured, hard-to-analyze code. For example, we found states in the combinational 

state machine processes that looked like:

In this example, using doit as a flag between the combinational and sequential 

processes makes the code more complex and harder to analyze. It adds another 

(sequential) process to the state machine; the state machine now consists of a 

 combinational process, a sequential process, and a process for doit. There is no 

structure to keep these processes together in the code – they can be scattered 

 anywhere in the module. This violates the principle of locality: related code should 

be located together.

If we want to find out what happens in the state STATE_XYZ, we have to search 

though the rest of the code to find all the occurrences of doit, and analyze the code 

where it appears. If there are many flags (as was the case in the BCU design) then 

we have to scan all the code for all the occurrences of all the flags. And these occur-

rences were scattered over twenty-eight pages of code.

What we would like is for all the code related to the state STATE_XYZ to be in 

one place. That would make review and analysis much easier.

STATE_XYX : begin
if (foo) doit = 1;

always @(posedge clk) begin
if (doit) begin
bar <= 1’b1;
end

end

always @(posedge clk) begin
case (state)
IDLE:   if (foo) next_state <= STATE1;
STATE1: if (bar) next_state <= IDLE;

end

One-Process FSM

And many sequential processes elsewhere in the code that said something like:
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In response to these observations, we converted the state machine to the one-

process type of state machine, converting it to a single sequential process. This 

required a significant amount of work, but the result was code that was much 

cleaner and easier to understand. In particular, all the code (all the actions described 

by the code) for a particular state was in one place.

Relocating Other Sequential Code

Our next step was to examine the rest of the sequential code in the module. Our goal 

was to move this code from separate sequential processes (always@(posedge clk) 

blocks in the original code) into the central state machine. We found that there were 

basically two types of code. One type looks as follows:

if ((prev_state_bcu == RDQ1) && (state_bcu == RDQ2)) begin

case (fsm_q_sel)
TXQ: begin
txqreq_rr[fsm_txqnum_sel] <= bcu_rdata[F_RAO_RR];
txqreq_tag[fsm_txqnum_sel]<= bcu_rdata[F_RAO_TAG];

…

if (dma_clr && (q_sel == TXQ)) req_tx <= 1’b0;
else if (txq_clr) req_q <= 1’b0;
else if (dma_set && (q_sel == TXQ)) req_tx <= 1’b1;

if (dma_clr && (q_sel == TXQ))req_tx <= 1'b0;

In this case, it’s not clear whether this code can be moved into the state machine. 

But a careful analysis of the design indicated that the critical control signals (dma_

clr, txq_clr, and dma_set) are just flags from the state machine.

It turned out that dma_clr can only be true in state TX_STATE1; so we just 

moved the statement

In this case, it was straightforward to move this code into the state machine, as 

part of the code for state RDQ2.

The second type of sequential code looked as follows:

to the TX_STATE1 clause in the (new) state machine case statement.

Similarly, we moved the other two if statements to the appropriate states in the 

new state machine.
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In one or two isolated cases, a small piece of code could be active in more than one 

state. In these cases, a single piece of code had to be moved (copied) into two states. 

But in all cases, moving sequential code into the state machine made the design much 

easier to understand. For example, to analyze the original code, one would have to 

search the entire 27 page file to find all the places where dma_clr is referenced and 

then try to determine how this interacts with the rest of the state of the module.

To create the new code, we had to do exactly this analysis. But once we com-

pleted this analysis, we were able to move this code into a single state in the state 

machine. As a result, this code became trivial to analyze.

Using these techniques, we moved virtually all the sequential code into the state 

machine.

Moving all the sequential code into a one state machine, coded as a one sequen-

tial process, was the single most effective step we took in simplifying the code. As a 

result of moving the sequential code to the state machine, all the sequential  behavior 

of the design could be analyzed and understood from examining a single, small file. 

The state machine itself became simpler, and the overall code for the module 

became dramatically simpler.

Rewriting Combinational Code

After restructuring the sequential code, we turned to the file that contained all the 

combinational code. This was a considerable amount of code and quite complex to 

analyze. Our major concern was how to restructure this code so it would be easy to 

understand. How could we hide the information that we could hide and make obvious 

the information that needed to be visible? In other words, what was the  preferred 

encapsulation method for combinational code?

We decided to use functions. We ended up rewriting virtually all of the combi-

national code in the form of functions. For example,

function automatic [`DWIDTH-1:0] dma_cnt (
input [‘AWIDTH-1:0] addr,
input [‘LEN-1:0]   len);

bit [‘FIFOD-1:0]fifo_depth = 'FIFO_DEPTH;
reg [1:0] stbytes;

case (addr[1:0])
2'b00: stbytes = 2'b00;
2'b01: stbytes = 2'b11;
2'b10: stbytes = 2'b10;
2'b11: stbytes = 2'b01;
endcase

(continued)
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always @(posedge hclk or negedge hreset_gen_n) begin
case (dma_state)
IDLE: begin
if (dma_rdy) setup_dma();
…

end

…
endcase

end

function automatic setup_dma ()
…

cnt = dma_cnt(addr, len);
…

endfunction

In this case, a great deal of the complexity in calculating dma_cnt is hidden 

within the function definition. It is explicitly stated that the function depends only 

on two external variables (addr and len). This kind of encapsulation can be very 

effective in partitioning very complex combinational code into bite sized chunks 

that can be analyzed separately.

To show how dma_cnt is used, here is a fragment of the rest of the code, starting 

with the main state machine:

That is, the IDLE state calls setup_dma, which calls dma_cnt.

The only time we have to setup the DMA is in this IDLE state – in all other 

states, the functions setup_dma and dma_cnt are not used and can be ignored.

One concern we had about the file containing all the functions was that it was 

fairly large, about eight pages. The question was how to organize this code.

In the end, we made following observation. The key behavior in the module is 

really captured in the state machine. It describes how the behavior of the module 

evolves over time. On the other hand, the combinational code is really a set of defi-

nitions. For instance, the function above defines dma_cnt in terms of addr and len. 

And there is a well-established paradigm for ordering definitions, namely dictionary 

(alphabetical) order.

So the file of functions is simply ordered alphabetically. The function dma_cnt 

appears just after the function ccub_txfnum and before the function dma_txf.

if (len <= {fifo_depth,stbytes})
 dma_cnt = len;
else

 dma_cnt ={fifo_depth,stbytes};
endfunction

(continued)
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Analyzing the New Code

Now analysis of the overall design is quite simple. One starts with the state 

machine. From analyzing it, we understand the basic algorithm, the basic sequence, 

that the module executes. In fact, the top-level algorithm is contained in the idle 

state of the state machine (shown in slightly simplified form):

That is, if the module is told (by an external resource) to abort the DMA, we 

do the abort (initiated by state CCUB_STP). Otherwise, if there is a DMA request 

in one of the queues, we read the queue, initiated by state RDQ1. Otherwise, if 

there is a DMA request pending (as a result of reading the queue) then perform the 

DMA. There is a clear priority to the DMA: TX( transmit) has priority over RX 

(receive).

We can then analyze each of these activities (abort, read queue, do DMA) 

 separately by examining the states that execute them. These states in term refer to 

 functions (like ok_to_read_q) which can be found in the functions file (in  alphabetical 

order).

We have now defined a preferred structure for a module, consisting of a state 

machine, encapsulating the sequential code of the module, along with a set of func-

tions, which encapsulate the combinational code. The various states of the state 

machine call these functions. The state machine is the primary component of the 

module, and the place where we start analyzing the design. It functions like main 

in a C program. The functions are secondary components, called only by the state 

machine (or by each other).

Figure 3-2 shows this structure – the state machine consists of three states. State 

S0 calls function foo, and state S2 calls function bar.

This structure provides a systematic way of reviewing and understanding the 

code. In particular, it allows this analysis to be performed top-down and in sections 

of manageable size.

IDLE: begin
if (stop_condition)
state_bcu <= CCUB_STP;

else if (ok_to_read_q()) begin
state_bcu <= RDQ1;

else if (|dma_rdy.txf & !ccub_txf_stopped)
state_bcu <= DMA_TX;

else if ((dma_rdy.rxf & !ccub_rxf_stopped)|dma_rdy.dwf)
state_bcu <= DMA_RX;

end
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Restructuring for a Hierarchical State Machine

Now that we have created an overall structure for the code, we can make one more 

improvement to the state machine: convert it to a hierarchical finite state machine 

(HFSM). We discuss this in the next chapter.

System Verilog

The final modification that we made to the code was to employ the SystemVerilog 

construct struct. We used this technique to encapsulate some of the common struc-

tures in the design. Consider the following example:

When the BCU prepares to do a receive (RX) DMA, it first reads four 32-bit 

words from the receive request FIFO. This data contains all the required informa-

tion about the DMA transfer, and is composed of fourteen fields of varying width.

So as the data is popped off the FIFO word by word, the data is loaded in to the 

appropriate variables (registers).

In the original code, the designer thoughtfully named these with a common 

prefix to show that they were all associated with the receive DMA request:

reg  rxqreq_vld;
reg  rxqreq_ds;
reg  rxqreq_so;
reg  rxqreq_rr;
reg [3:0] rxqreq_tag;
reg [12:0] rxqreq_stripcnt;
reg  rxqreq_last_seg;
reg [12:0] rxqreq_len;
reg [31:0] rxqreq_addr;
reg [15:0] rxqreq_staddr;
reg  rxqreq_first_seg;
reg  rxqreq_first_dword;
reg [12:0] rxqreq_rbc = 0;

Figure 3-2 The general paradigm for state machines: states call functions.
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The original code uses a set of macros to specify the field locations, so reading 

the third word looked like:

Unfortunately, there are two problems with this approach, both of which can be 

addressed by using the SystemVerilog struct. 

1) There is nothing in the declaration other than the name that shows that these are 

all really fields in a single data structure.

2) There is nothing in the declaration that indicates where the various fields are 

located in the data words loaded from the FIFO.

In fact, the data words are distributed throughout the data words read from the 

FIFO, with a number of bits that are not used (n/u). Figure 3-3 shows the location 

of the fields in the four words in the FIFO.

So if we blindly trusted these macros to be correct, there was no problem. But 

when we tried to verify that the fields were being loaded correctly, we had to refer 

to the functional specification (which had a table like Figure 3-3) and the macro 

definitions (in a separate file) and the code itself. This was more documentation 

than we really wanted to look at simultaneously. And it all violated the principle of 

locality: all the information about the data structures in the FIFO, and how they are 

loaded into BCU registers, should be in one place.

This problem is addressed by using a struct, where the code becomes:

Figure 3-3 Fields in the FIFO.

txqreq_last_seg[txqnum_sel] <= bcu_rdata[F_LEN];
txqreq_len[txqnum_sel] <=bcu_rdata[F_RLEN-:W_RLEN];

struct packed {
 bit [15:0] staddr ;
 bit  first_seg ;
 bit  first_dword ;
 bit [12:0] rbc ;
 bit  vld;

(continued)
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rxqreq[DWORD1] <= bcu_rdata;

And the data from the FIFO is loaded into the correct fields in the struct.

Thus, using a struct:

1) Makes it clear that the different fields are all part of the same data structure

2) Makes it clear where the fields are located in the FIFO words

3) Reduces the lines of code necessary to read the fields from the FIFO

Using structs, we reduced the number of objects declared in the design (reg’s, 

wires, and, in the new version, structs) from about 75 in the old version to 25 in the 

new version. Again, encapsulation has simplified the design.

Note: In re-coding the BCU we did not use the SystemVerilog interface construct, 

in order to remain compatible with the other modules in the design. For new 

SystemVerilog designs, the interface construct can be useful. See Appendix D for a 

discussion of the SystemVerilog interface construct.

Simplified Block Diagram

One of the interesting side-effects of the code restructuring is that it allows a very 

concise, complete and accurate drawing of the design. Figure 3-4 shows this diagram.

Having defined DWORD1 to be “63:32”, we can read the entire 32 bit word with 

one assignment by saying:

//DWORD1 :
 bit [1:0] unused1;
 bit  ds ;
 bit  so ;
 bit [2:0] unused2;
 bit  rr ;
 bit [3:0] unused3;
 bit [3:0] tag ;
 bit [2:0] unused4;
 bit [12:0] stripcnt ;
//DWORD2 :
 bit  last_seg ;
 bit [17:0] unused5;
 bit [12:0] len ;
//DWORD3 :
 bit [31:0] addr ;
} rxqreq = 0;

(continued)
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The design (BCU) communicates with the BIUM (bus interface), CCUB (com-

mand control), PFC (FIFO control), CSR (control and status registers), and DCUB 

(data control) blocks. All the possible input/output transactions are shown in the 

yellow arrows. The eight data structures (fsm, dmareq, dma_redy, txqreq, rxqreq, 

dfqreq, rxf_save, txf_saved) contain virtually all the signals in the design. All the 

sequential code is in the DMA State Machine. The only parts of the code not shown 

are the functions (combinational code) referenced by the state machine.

Summary

We have used the following techniques to simplify the code:

partitioning the code into multiple files•฀

eliminating some syntactic fluff from the code•฀

restructuring the sequential code•฀

using functions for the combinational code•฀

converting the state machine to a single, sequential process•฀

converting the state machine to a hierarchical state machine•฀

using the system Verilog •฀ struct construct to encapsulate important structures

Figure 3-4 Block diagram of the BCU (center) and surrounding modules.
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The result has been:

We have reduced the state space of the design from about 2•฀
56 to about 24.

These states are encapsulated in a hierarchical state machine (shown in the next •฀

chapter).

We have provided a systematic encapsulation of sequential and combination •฀

code, allowing a simplified, systematic review process.

We have reduced the number of objects declared in the design by 67%.•฀

We have reduced the number of lines of code by about 30%.•฀

We have eliminated the syntactic fluff to make the function of the code much •฀

more obvious.
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Restructuring for a Hierarchical State Machine

In the previous chapter, we made numerous improvements in the BCU, and  developed 

an overall structure for the code. In this chapter, we re-work the finite state machine 

to be a hierarchical state machine (HFSM). We start with the general model for 

HFSMs and then move on to re-coding the BCU state machine.

The finite state machine is central to the structure of the BCU: it defines how the 

design functions over time. It is like the main in C code: it’s where we start any 

analysis of the code. Making the state machine as well-structured and as easy to 

understand as possible is critical.

General Model for HFSMs

State machines, like most aspects of design, follow the rule of seven. If there are more 

than about seven states in a state machine, it becomes much harder to design, to 

review, and to understand. The solution is to design and code it using hierarchy, and 

to limit the number of states at any one level of hierarchy to (at most) about seven.

Figure 4-1 shows the top level of a (generic) hierarchical state machine that 

consists of three states. IDLE is a normal state. S1 and S2 are composite states, 

indicated by the concentric circles.

Composite states are sub-state machines: state machines that are called by 

another state machine.  Figure 4-2 shows the detail of the S1 sub state machine.

Chapter 4

Hierarchical State Machines

Because of the possibility of human or mechanical error, neither the author, Synopsys, Inc., nor 

any of its affiliates, including but not limited to Springer Science+Business Media, LLC guarantees 

the accuracy, adequacy or completeness of any information contained herein. In no event shall the 

authors, Synopsys, Inc. or their affiliates be liable for any damages in connection with the information 

provided herein. Full disclaimer available at: p. v of Frontmatter.
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Designing and coding a state machine to be a hierarchical state machine does not 

change the function of the state machine at all. It is largely a notational conve-

nience, like functions, that facilitate structure in our code. We code S1 as a task that 

is called by the case statement in the main state machine.

There is still only one state active at any one time. For instance, if the main state 

is in S1, then none of the states in S2 are active. If the main state is in S1 and S1 is 

in the S1A state, then the whole machine is in the S1A state.

Example 4-1 indicates how to code a hierarchical finite state machine, using 

tasks. The full code for this example is in Appendix B. Figure 4-3 shows the top 

level of the state machine. This simple state machine reads a 32-bit packet and then 

sends it out as two 16-bit words.

Figure 4-1 Top level state diagram for a generic hierarchical finite state machine.

Figure 4-2 Sub state finite state machine for composite state S1.



Example 4-1 

  enum {IDLE, GET_PKT, SEND_PKT} tx_state ;

  enum {GP_READ, GP_DONE } get_pkt_state ;

  enum {SP_DEST,SP_PAYLOAD,SP_DONE}send_pkt_state;

// ------------ main state machine ---------------

  always @ (posedge clk or negedge resetn) begin

    case (tx_state)

      IDLE : if (pkt_avail) tx_state <= GET_PKT ;

      GET_PKT : begin

        get_pkt () ;

        if (get_pkt_state == GP_DONE) 

             tx_state <= SEND_PKT ;

      end

      SEND_PKT : begin

        send_pkt () ;

        if (send_pkt_state == SP_DONE) 

             tx_state <= IDLE ;

      end

    endcase

  end

// ------------ get_pkt sub state machine ---------

  task get_pkt() ;

    case (get_pkt_state)

      GP_READ : begin

        input_packet.dest <= data_in[31:16] ;

              …

        get_pkt_state <= GP_DONE ;

      end

      GP_DONE : begin

        get_pkt_state <= GP_READ ;

      end

    endcase

  endtask

// ------------ send_pkt sub state machine -------

  task send_pkt() ;

    case (send_pkt_state)

              …

    endcase

  endtask

endmodule
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In the classic paradigm for hierarchical state machines [10], there is only 

one entry state into a sub-state machine. Referring back to Figure 4-2, all 

entries into the sub-state machine must start at state S1_ENTRY. We are not 

allowed to jump directly from IDLE (in the top state machine) to S1A. 

Similarly, there is only one exit state from the S1 sub-state machine, S1_EXIT. 

We are not allowed to jump from an intermediate state (like S1B) back to IDLE 

in the main state machine.

In Example 4-1, we enforce these rules by the way we code the state machine. 

The sub-state machines (get_pkt and send_pkt) are coded as tasks, which are 

called by the main state machine. What happens in the sub-state machine – 

specifically what happens on entry and on exit - is completely determined by the 

task.

These rules place some limitations on the state machine design, but more than 

compensates by providing a clean structure. Such a clean structure is essential 

when designing large, complex state machines.

The most significant restriction imposed by this state machine coding style is the 

fact that it is purely sequential. In some designs, there are primary outputs that are 

combinational, not registered, and that need to be driven as soon as a state machine 

enters a particular state.

For instance, we can imagine in Example 4-1 that we might need to drive 

some output (let’s call it comb_out) as soon as we enter the GP_READ state in 

the get_pkt sub-state machine. There is not an elegant way to do this in 

SystemVerilog. (Later in the book we propose some extensions to SystemVerilog 

to fix this.)

The best solution is to have a separate combinational process, something like:

always_comb

 if ((tx_state             == GET_PKT ) && 

         (get_pkt_state == GP_READ))

comb_out = 1;

Figure 4-3 Top level state machine diagram for Example 4-1.
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Figure 4-4 The BCU state machine diagram.

Figure 4-5 Top level of the hierarchical version of the BCU state machine.

Converting the BCU to a HFSM

We now turn to the challenge of converting the BCU state machine to a hierarchical 

state machine. The biggest challenges have to do with separating the states 

into clean sub-state machines with one entry state and one exit state. The original 

BCU state machine has a rather spaghetti-like graph, and untangling it was our 

biggest challenge.

Figure 4-4 shows the complete state machine state diagram.

The state machine appears to consist of two simple states (IDLE and ABORT) 

and two candidate composite states: ReadQ (which fetches the DMA request), and 

the DMA process itself. So our goal is shown in Figure 4-5.
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To make analysis easier, we partitioned the state machine code into three separate 

files as shown in Figure 4-6. We moved the case statements for the different DMA 

states into dma_state.v and moved the case statement for the read queue states into 

qstate.v. We used `include to insert the code in the right place in the top file, so we 

could test our changes every step of the way.

Our job now was to re-work the state machine so that we could convert qstate.v 

into a single task and convert dma_state.v into a single task. Then we would have 

a true hierarchical state machine.

We observed that dma_state.v has two entry points: DMA_TX and DMA_RX. So 

we decided to add an explicit DMA_ENTRY state to the DMA sub-state machine.

We also noted that DMA_DONE is already a single exit point for dma_state.v, but 

this state is very complex and interacts with all the other states. So we tentatively added 

another state, DMA_EXIT, which now just deals with setting the done bit and exiting 

cleanly. This minimized the changes need to the DMA_DONE case statement.

The DMA state is now a sub-state machine, as shown in Figure 4-7.

We observed that qstate.v has two entry points (RDQ1 and RDQ2) and two exit 

points (RDQ5 and STDN). In this case we definitely needed to add separate RDQ_

ENTRY and RDQ_EXIT states to meet the single-entry, single-exit design goal. 

Figure 4-8 shows the results.

Figure 4-6 Separating the BCU state machine into multiple files.
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Figure 4-7  The DMA sub state machine.

Figure 4-8 The Read Q sub state machine.
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Adding the explicit entry and exit states to the DMA and RDQ state machines 

did not come for free – it added two clock cycles to each DMA and to each queue 

read. But analysis and extensive testing showed that these extra cycles did not 

adversely affect performance. The modified design passed all regression tests.

If we had to, we could do a more extensive re-design that would have eliminated 

these extra cycles. But it would have made the code more complex and the rework 

effort much greater.

We have done some additional experiments where we designed and coded a state 

machine from the outset to be hierarchical. In all these cases we were able to avoid 

adding any extra cycles.

Our first conclusion from this experience was that hierarchical state machines, 

done properly and architected from the outset during the specification process, can 

be implemented in SystemVerilog with no performance penalty.

Our second conclusion was that design reviews of hierarchical state machines 

are much more successful than those of flat state machines. We participated in 

design reviews of this hierarchical state machine, as well as other hierarchical and 

flat state machines used in other projects. Consistently, after design reviews of 

modules that used HFSMs, the reviewers said that they understood the design com-

pletely and were confident that it was correct. Equally consistently, reviewers of 

(complex) flat state machines said that they understood some, but not all, of the 

behavior of the design and were not nearly as confident that it was correct.

Our third conclusion was that, although we can design HFSMs in SystemVerilog, 

language restrictions still prevented us from coding the state machines as we would 

really like. In particular, we find the generation of combinational outputs from the 

state machine very awkward. The result is that we have developed some proposals 

for adding a (hierarchical) state machine primitive to SystemVerilog. We discuss 

these proposals in Chapter 11.
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State space is a key metric for the complexity of a digital design. For most designs, 

it is the most important metric: the size of the control state space is the best indica-

tion of the complexity of the design. If this state space is very large, it is more likely 

to have bugs, to have bugs that are hard to detect, and to have bugs that are hard to 

fix without injecting other bugs in the process.

In some designs, the data path (the combinational functions) can be quite com-

plicated. Video and DSP algorithms can involve arithmetic operations on matrices, 

with nested loops of multipliers. But even in these designs, the really difficult bugs 

are most often found in the control logic.

This chapter focuses on analyzing the state space of RTL designs. Our first 

objective is to measure the state space. Then we discuss how to minimize state. But 

our most important objective is to make the entire state space of a design easy to 

understand. This will allow us to get it right when we design it; it will allow us to 

verify it, to fix it and to extend it as necessary.

To make the state space as easy to understand as possible, we will make it:

explicit•฀

structured•฀

minimal, in terms of the total number of states•฀

Input, Output, and Internal State Space

There are three state spaces that contribute to the complexity of the overall design: 

input state space•฀

output state space•฀

internal state space•฀

Chapter 5

Measuring and Minimizing State Space

Because of the possibility of human or mechanical error, neither the author, Synopsys, Inc., nor 

any of its affiliates, including but not limited to Springer Science+Business Media, LLC guaran-

tees the accuracy, adequacy or completeness of any information contained herein. In no event shall 

the authors, Synopsys, Inc. or their affiliates be liable for any damages in connection with the 

information provided herein. Full disclaimer available at: p. v of Frontmatter.
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The input state space of a design consists of all the different states that its input 

signals can represent. In its most naïve form, the size of the input state space is 2N, 

where N is the number of input wires to the module.

The output state space of a design consists of all the different states that its 

 output signals can represent. In its most naïve form, its size is 2M, where M is the 

number of output wires from the module.

The internal state space of a design consists of all the different states that its 

internal registers can represent. In its most naïve form, its size is 2P, where P is the 

number of register bits inside the module.

Since the output state space of one module is the input state space of other mod-

ules, we will focus primarily on the input state space and internal state space in the 

rest of our analysis.

Preliminary Calculations of State Space

Using our naïve measurements of state space, we can calculate the input, output and 

internal state space from the interface and signal declaration parts of the RTL code. That 

is, given the following code (a small subset of the declarations for the BCU example):

Example 5-1 

module bcu (

  input clk,  

  input hreset, 

  output idle,

  output fifo_busy,

  output reg dma_req,

  output reg [31:0] dma_addr,

  output reg [12:0] dma_count,

  input [31:0] rdata,

  input dma_done,

  input dma_error,

  input wdata_pop,

  input rdata_push

);

reg [3:0] state_bcu;

reg [1:0] fsm_q_sel;

reg fsm_dmareq_vld_set;

reg [12:0] dmareq_len;

reg [31:0] dmareq_addr;
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We can calculate the output state space = 2M, with M the number of outputs :

Outputs: idle, fifo_busy, dma_req, dma_addr (32 bits), dma_count(13 bits)

M = 1 + 1 + 1 + 32 + 13 = 48

Output State Space = 248 = 281 trillion

We calculate the input state space = 2N:

Inputs: rdata(32 bits), dma_done, dma_error, wdata_pop, rdata_push

N = 32 + 1 + 1 + 1 + 1 = 36 (not counting clock and reset)

Input State Space = 236 = 68 billion

We calculate the internal state space = 2P:

Registers: state_bcu (4 bits), fsm_q_sel (2 bits), fsm_dmareq_vld_set, dmareq_

len (13 bits), dmareq_addr (32 bits)

P = 4 + 2 + 1 + 13 + 32 = 52

Internal State Space = 252 = 4 *1015

These state spaces are huge; even the smallest is way too large to enumerate explic-

itly, or draw on a state diagram. But we notice an important fact about the output 

state space: dma_addr and dma_count, by their names, imply that they are data, not 

control signals.

In this particular design, the module sets up the DMA; it is given the DMA 

address and the DMA count as inputs (derived from rdata). It just passes this 

address and count on to its outputs. These signals do not affect the decisions made 

by the module in setting up the DMA. The value of the DMA address, for example, 

has no effect on whether or how the DMA is performed. Note that we know this 

information only by inspection of the RTL code of the module. There is no informa-

tion in the input/output declarations that identify which inputs/outputs are data and 

which are control.

Armed with this information, we can recalculate the output state space:

Outputs: idle, fifo_busy, dma_req,

M = 1 + 1 + 1 = 3

Output State Space = 23 = 8

Similarly, with the input state space, we review the RTL and learn that rdata is, 

in fact, data and not control; it does not affect the actual input state space. We 

recalculate:

Inputs: dma_done, dma_error, wdata_pop, rdata_push

N = 1 + 1 + 1 + 1 = 4 (not counting clock and reset)

Input State Space = 24 = 16

These are dramatically smaller numbers; we can, in fact, write down a list of 

all possible states, or draw this state space in the form of a diagram. This capabil-

ity indicates that these are state spaces we are likely to be able to understand 

completely.



58 5 Measuring and Minimizing State Space

Shallow vs. Deep State Space

Just as we distinguish between data and control for input and outputs state space, 

we distinguish between shallow and deep state space in analyzing the internal state 

space.

Deep state space consists of counters, memory, and similar elements: states that 

we would never draw as distinct states in a state machine diagram. Shallow state 

space consists of the states we normally think of as the state space in a design: the 

state space described by a state machine.

Consider the following trivial state machine:

Reset Timer

State1

Start Timer

State2

Wait ForTimeout

State3

[Timer == 8'hFF]

Example 5-2 

This simple design resets the timer, starts the timer and then waits for it to count 

to 255 before resetting. The eight bit timer has 256 states, but these are considered 

deep states – states we would never draw in a state diagram. The state machine 

itself consists of three (shallow) states – State1, State2 and State3.

Note that there is a close association between timer states and the shallow states 

of the state machine. State1 sets the timer to zero. State2 starts the timer counting. 

In State3, the timer is counting. As far as a state machine is concerned, the timer 

only has three “interesting” states: zero, counting, and 8’hFF.

This distinction between deep and shallow state space is important in correctly 

calculating the complexity of a design. The above state machine would be no more 



59Preliminary Calculations of State Space

complicated if it had a 12 bit counter – it would just wait in State3 longer. Similarly, 

reducing the counter to 4 bits would not make the design simpler.

Returning then to Example 5-1, given the code:

reg [3:0] state_bcu;

reg [1:0] fsm_q_sel;

reg fsm_dmareq_vld_set;

reg [12:0] dmareq_len;

reg [31:0] dmareq_addr;

We calculated the internal state space as:

P = 4 + 2 + 1 + 13 + 32 = 52

Internal State Space = 252 = 4 *1015

We observe (by analysis of the RTL) that dmareq_len is just temporary storage 

for the DMA count. The actions of the state machine do not depend on the particu-

lar value of dmareq_len. It is loaded with a count value (from the module inputs) 

and then decremented as the DMA progresses. The state machine then moves to the 

next state when dmareq_len is zero. It is just like the counter in Example 5-2. That 

is, it is deep state.

Similarly, analysis shows that dmareq_addr (the DMA address) and fsm_q_sel 

(which DMA source to use) are deep state.

We now recalculate the internal state space:

reg [3:0] state_bcu;

reg fsm_dmareq_vld_set;

P = 4 + 1 = 5

Internal State Space = 25 = 32

This space is much more understandable than 252, and it is something we could 

draw in a state diagram.

Further analysis shows that state_bcu (as its name implies) is the state variable 

for the state machine. So it is clearly shallow space, and thus part of the internal 

state space calculation.

The signal fsm_damreq_vld_set is more complicated. It is a flag set in one of the 

states of the state machine. Since its value does directly affect state (it determines 

which state the state machine goes to next), we consider it shallow state. In general, 

any variable that is not obviously deep state, we consider part of the shallow state 

space.
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The Cross Product of State Spaces

In the previous example, we considered a design with only one state machine, and 

with only one state variable. If instead, we had seen the following code:

reg [3:0] state_bcu;

reg [2:0] state_foo;

reg fsm_dmareq_vld_set;

And if our analysis showed that both state_bcu and state_  foo were state vari-

ables for state machines, then our calculation of internal state space would be:

P = 4 + 3 + 1 = 8

Internal State Space = 28 = 256

Note that the addition of a very small (eight state) state machine has grown the 

internal state space from one we could draw (and understand) quite easily, to one 

that would be quite difficult do draw or understand!

Here is another way of looking at this issue:

If there is more than one state machine in the module, then the internal state 

space of the module is equal to the cross product of the state spaces of the state 

machines. Consider Example 5-3:

State1

State3

State2

StateA

StateD

StateC

StateB

State Machine 1 State Machine 2

Example 5-3 

Here the total state space is the product of the number of states in the first state 

machine times the number of states in the second state machine, that is

Total State Space = 3 * 4 = 12.

If the two state machines are genuinely independent, then this is the correct 

calculation. That is, when the first state machine is in State1 the second state 



61Preliminary Calculations of State Space

machine can be in any one of its four states, and when the first state machine is in 

State2, the second state machine can be in any of its four states, and when the first 

state machine is in State3, the second state machine can be in any one of its four 

states. This is what we mean by fully independent state machines.

But in most designs, there is some correlation between the two state machines. 

For instance, when the first state machine is in State1, there may be a restriction 

that the second state machine can only be in StateA or StateB. In this case, the 

intended state space is smaller than the cross product of the two state machines. But 

it may be nontrivial to determine by inspection what this restricted, intended state 

space is. In many cases, the original intent of the designer may be impossible to 

determine from the design itself.

For instance, there may be nothing in the code that logically restricts the second 

state machine from being in State D when the first state machines in State1. It may 

be that the expected input transactions can never produce this combination of states. 

But this expectation about sequences of inputs is not explicit in the design of the 

state machines.

State1/A

State3/C

State2/A

State1/B

State2/B

State3/B

State3/D

State2/C

Example 5-4 

However, if the code is re-written to have only one combined state machine, the 

rules become explicit about which (combined) states are possible. Let us suppose that 

the intended behavior of the (combined) state machine is as shown in Example 5-4.

Note that in the Example 5-3, there were seven states drawn in the two state 

machines, but there were 12 possible states for the combination of the two (the 

cross product 3 * 4 = 12). In our new design, there are eight states drawn and eight 

possible states. That is, the state space now is completely explicit – the drawing 

(and code) show exactly which states are possible and which are not. No  information 
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is left in the designer’s head (about legal vs. illegal states). It is all there on paper 

for everyone to see.

Our code-based calculation changes as well. When we had two state machines, 

one with three states and one with four states, our code might look like:

reg [1:0]  state_123;

reg [1:0]  state_abcd;

enum bit {State1, State2, State3} state_123;

enum bit {StateA, StateB, StateC, StateD} state_abcd;

Then our initial calculation would be:

P = 2 + 2 = 4

Internal State Space = 24 = 16

But we know from the design that this is wrong! We only have 12 states. But 

because we used two bits as the state variable for the three-state machine, our code 

implies that the space is larger than it really is. This is where SystemVerilog’s enu-

merated type is so valuable.

Instead we code Example 5-3 as:

Now we are back to the 12 states we expected. Our internal state space calculation 

is now:

Internal State Space = 3 * 4 = 12

That is, the cross product of the two enumerated state variables.

In our improved design (Example 5-4), with one state machine, we have:

enum bit { State1_A, State1_B, State2_A, State2_B, 

State2_C,   State3_B,  State3_C,  State3_D}  

state_123;

This simple exercise in counting the state space shows the great advantage of 

having just one state machine in any one module and using enumerated types to 

declare the state variable.
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Sequential Processes and Internal State

Even when a module has only one (explicit) state machine, the effective shallow 

state of the module may be much larger than that of the state machine.

Any time we code a sequential process, we are creating state. That is, anytime 

we create a flip-flop by entering code such as:

    bit a;

    always_ff @(posedge clk) a <= b;

This code creates a one bit state machine consisting of two states; the variable a 

can have the value zero or one, depending on the value of b. In the context of the 

module, this may be deep or shallow state, but unless we have very explicit indica-

tions that this is deep state, we have to treat this as shallow state.

By adding a sequential process such as the one above, we clearly add to the total 

state space the design. For instance, if the above piece of code is included in the 

module that has State Machine 1 and State Machine 2 from Example 5-3, then the 

state space calculation becomes:

Total State Space = 3 * 4 * 2 = 24.

Thus, the addition of a single flip-flop has doubled the state space for the 

module.

There is no faster way to cause the state space of a module to explode than to 

have a large number of independent sequential processes.

Encapsulating Sequential Code

Encapsulation, abstraction, and information hiding are the key tools for managing 

complexity in a design. In one form or another, these all involve the basic strategy 

of divide and conquer.

In (System)Verilog, the function provides a way of encapsulating combinational 

code. There is no equivalent of encapsulation method for sequential code. There is 

no way to place an always@(posedge clock) or always_  ff inside a structure that 

will hide local values and calculations, and which will make explicit what global 

signals the process depends on.

The state machine is the closest mechanism we have for encapsulating sequen-

tial code. With a state machine we can at least add structure to sequential code, 

making the state space explicit. We can make the state variable explicit, and, using 

enumerated types, we can make the legal values explicit as well.

The great advantage of the state machine is that it makes the time evolution of 

the circuit explicit. If we have a large number of sequential processes scattered 
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throughout the code for a module, then we have to analyze the behavior of each of 

these processes for every cycle. This can become extremely complex.

On the other hand, when analyzing a state machine we can analyze the behavior 

of the code state-by-state. Thus, by using a state machine, we can change a global 

problem (analyzing all the sequential processes in the module simultaneously for 

each cycle) to a series of local problems (analyzing each state independently).

State Machines as Sequential Processes

To take advantage of the state machine as an encapsulation device, of course, it 

must be coded as a sequential process. The other standard coding style, using two 

processes, results in code like Example 5-5:

That is, we end up with lots of sequential processes outside the structure of a 

state machine – and the state space loses its structure and starts to explode in size.

Hierarchical State Machines

As mentioned in the previous chapter, we have found that designing and analyzing a 

state machine with many states to be extremely difficult. Hierarchical state machines 

address this problem, and are an essential tool for designing complex systems.

Example 5-5 

case (state)

  STATE1: begin

   if (condition1) begin

     next_state = STATE2;

     foo = bar;

   end else begin

     foo = bar;

   end

  end

 .

 .

 .

endcase  

 

always_ff (posedge clk) foo_reg <= foo;
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In the case of the BCU, the state machine was not really that complex. So in this 

section we give an example of a much more complex state machine. This state 

machine controls the protocol layer of the USB OTG core. The original design 

consisted of a very large, unstructured state machine consisting of 10’s of pages of 

code. We restructured the code to be a hierarchical state machine.

Examples

The following diagrams show three pages of a state chart drawing for a hierarchical 

state machine. Figure 5-1 shows the top level of the state machine.

TOP_IDLE

DEVICE_MODE HOST_MODE

[if_dev_mode]/

[if_host_mode]/ [if_host_mode]/

[if_dev_mode]/

RESET

Figure 5-1 Top level USB OTG hierarchical finite state machine.

At the top level, state machine has two composite states (states that call sub state 

machines): device mode, and host mode. Figure 5-2 shows the host mode sub state 

machine. This sub state machine consists of five states plus two composite states: 

host out and host in.
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Figure 5-3 shows the detail for the host out sub state machine. This is a leaf level 

sub state machine, consisting of six states and no composite states.

These are three of the eight drawings that comprise the complete state machine. 

The entire state machine consists of about 30 states. Thirty states are too many to 

HOST_MODE_IDLE

SEND_SPLIT

TKN2TKN

SEND_CRC5

HOST_IN

HOST_OUT

HOST_MODE_IDLE

Figure 5-2 Host Mode sub state machine for USB OTG.
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draw on a single piece of paper, and way too many to analyze as a flat design. But 

using a hierarchical state machine, we can limit the number of states in any one 

drawing to a maximum of eight states. We can analyze each sub-state machine, 

each drawing, as a separate object. This use of hierarchy greatly simplifies both 

design and analysis of the state machine.

Again, the BCU example shown earlier, with a total of fourteen states, is simple 

enough that going to a hierarchical state machine gives only a small advantage. But 

for a complex state machine like the USB, with thirty states, hierarchy is essential 

to keep design complexity manageable.

HOST_OUT_IDLE

TKN2DAT

SEND_DATA

WAIT_HSHK

SEND_EOP

HOST_OUT_DONE

Figure 5-3 Host Out sub state machine.
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Summary- Counting State

Input State Space

 1. Examine the input declarations. Remove the ones that are data – that is, ones 

whose values do not affect the operation of the design.

 2. For each remaining input variable, determine state space of that variable:

a. If it is an enumerated type, take the number of values

b. If it is not an enumerated type, take 2N, where N is the number of bits in the 

input variable

 3. Multiply the state space sizes of all the input (control) variables to get the full 

input control state space.

Output State Space

 1. Examine the output declarations. Remove the ones that are data – that is, ones 

whose values are not affected by the operation of the control path.

 2. For each remaining output variable, determine state space of that variable:

a. If it is an enumerated type, take the number of values

b. If it is not an enumerated type, take 2N, where N is the number of bits in the 

output variable

 3. Multiply the state space sizes of all the output (control) variables to get the full 

output control state space.

Internal State Space

If there is more than one sequential process in the module:

 1. Examine the declarations of the variables that are assigned a value in sequential 

processes

a. Remove the ones that are data – that is, ones whose values do not affect the 

operation of the design.

b. Remove the ones that are deep state – counters, memory, and so on.

 2. For each remaining variable, determine state space of that variable:

a. If it is an enumerated type, take the number of values

b. If it is not an enumerated type, take 2N, where N is the number of bits in the 

variable
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 3. Multiply the state space sizes of all the internal (control) variables to get the full 

internal (shallow) control state space.

If all the sequential code is in one finite state machine, then the internal state 

space is the number of states in the state machine.

State Space for Hierarchical State Machines

The above analysis of internal state space does not distinguish between flat and 

hierarchical state machines. We would like a metric that rewards hierarchy and 

reflects how it helps reduce the effective complexity of a design.

We consider such a metric to be an open question. But we suggest that some-

thing like the following would be reasonable:

 1. Count the total number of sub-state machines in the design – call this SS

 2. Find the (sub-)state machine with the largest number of simple states – call the 

number of simple states in this (sub-)state machine M

 3. Complexity = SS + M

For a flat 32-state machine:

SS = 0

M = 32

Complexity = SS + M = 32.

For the same state machine coded as a hierarchical state machine, with a total of 

four sub-state machines, each with eight simple states:

SS = 4

M = 8

Complexity = 4+8 = 12.

So the hierarchical design is judged to be roughly three times less complex than 

the flat design.
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This chapter discusses the challenges and opportunities of verifying RTL designs. 

In particular, we explore the opportunities presented by our proposed design 

approach. This approach – encapsulating the sequential code in a single state 

machine and combinational code in a set of functions – allows us to develop some 

powerful module level verification techniques. These techniques get us closer to a 

complete verification strategy than is possible using traditional design and coding 

practices.

In general, verification is an unbounded, and often ambiguous, problem. The one 

well-defined, bounded problem in verification is whether we have exercised all the 

behaviors of the circuit. That is, can we define a set of stimuli that, applied to the 

design under test, will exercise all the functionality of the design. This will be our 

focus for this chapter.

In developing this verification strategy, we will need to define more formally 

some concepts introduced earlier: 

Data vs. Control inputs and outputs•฀

Shallow vs. Deep internal states•฀

First, though, we make some observations about verification; these observations 

will help develop a sense of what can and cannot be achieved through (simulation-

based) verification. We focus on trying to answer the question: “When are we done 

simulating?”

Chapter 6

Verification

Because of the possibility of human or mechanical error, neither the author, Synopsys, Inc., nor 

any of its affiliates, including but not limited to Springer Science+Business Media, LLC guaran-

tees the accuracy, adequacy or completeness of any information contained herein. In no event shall 

the authors, Synopsys, Inc. or their affiliates be liable for any damages in connection with the 

information provided herein. Full disclaimer available at: p. v of Frontmatter.
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If we want to test even a moderately complex piece of RTL code, knowing when 

we are done is a daunting task. Most verification teams do not even attempt to 

achieve complete verification, and instead test as thoroughly as they can in a 

 reasonable amount of time. Then they ship it, and hope that it doesn’t come back.

This is a sorry state of affairs. In all other aspects of chip design, we know when 

we are done and are ready for tape-out. Static timing analysis, DRC and extraction, 

and power analysis all have well-defined pass/fail criteria for completion. But veri-

fication does not.

So let’s investigate what it would mean if we could completely verify an RTL 

design.

We will start with an AND gate.

If I want to test a light switch in my house, I flip it on and then I flip it off. 

I’m done. It’s tested. Additional flipping of the switch will give me no more 

information about the switching circuit.

Note: There are lots of other things I might want to know – like the lifetime 

of the switch, whether it works in all weather, and so on. And these might be 

discovered by additional testing. But for the purposes of this discussion, I am 

only interested in the functionality of the switch. Once I have flipped it on 

and off, I know everything about the function of the switch. In particular, I 

will know whether the up position is on or off. If I find out that the up position 

is off, then I may decide the switch is backwards – functionally incorrect. But 

the key here is that I know when to stop testing. How I interpret the results 

of the test is  outside the scope of this discussion. We are focused exclusively 

on the question: When am I done testing.

A

B

C

Clearly we can completely verify this circuit. In simulation, we simply assert the 

four possible input patterns to A and B and check the output at C. Once we have 

done that, additional simulation will give us no new information on the behavior of 

the circuit.

Thus, for a relatively simple combinational logic, we can completely test the 

circuit. On the other hand, a 32 x 32 multiplier requires 264 input patterns to be 

applied. Even with a superfast simulator, where we can apply an input vector every 

nanosecond, it would take more than 500 years to completely verify this design. 

Even though we can define a complete set of tests for the multiplier, it is not 

 practical to exercise them all.

Some Simple Examples of Verifiable Designs
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Next, let’s consider a simple flip flop with an AND gate:

A

B

C

CLOCK

Again we can completely verify this design. In simulation, we assert the same 

four input patterns as we did for the AND gate, and after each pattern we toggle the 

clock. We’re done. It’s tested.

That is, we have simulated all possible input, output, and internal states for the 

design.

On the other hand, consider a design with 64 flip-flops, each of which is 

completely independent from the other 63. From Chapter 5, we know that the 

state space of this design is 264. So we are dealing with the same number of tests 

as in the case of the 32 x 32 multiplier. And again it will take 264 input patterns, 

and again we’re looking at more than 500 years to cover the complete state 

space.

Clearly there is some dividing line between a simple circuit with one gate and 

one flip-flop and the kind of complex designs that end up in an SoC. The question 

is: where is this dividing line, and are there tricks we can use to bring a design back 

over the line from being unverifiable to being verifiable?

Verification Overview

Ultimately, both verification and design are human activities. In design, a human 

being converts some form of specification into a detailed design. No matter how 

powerful the design tools or methodology, the key actor in design is the human 

designer. The basic intent of the design has to be defined by a person who under-

stands the target application, the problem it is trying to solve.

In verification, we check this person’s work. Another set of eyes addresses the 

same task, from a different perspective. The RTL designer describes the detailed 

behavior of the design from the inside out. The verification engineer defines the 

behavior of the design from the outside in, by writing a test bench that models the 

environment that the design will go into. But ultimately, it is just a case of two 
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 different people looking at the same specification and developing two representations 

of that specification and comparing them.

Of course, each representation has bugs in it. Typically, verification engineers 

spend at least as much time debugging the test bench as they do debugging the 

design itself.

One approach to improving verification is to add additional representations of 

the specification. For instance, it is possible to develop a set of properties for the 

design and to prove formally that the design meets these properties. In addition, 

it is possible to insert a large number of assertions in the design, which essentially 

represent the intended behavior of the design in yet another format.

Each of these approaches makes sense, since they add additional pairs of eyes to 

look at the design and the design problem. Ultimately, each also involves additional 

debug, additional tools, and additional effort.

In this chapter we focus primarily on two pairs of eyes: the designer and the 

verification engineer. We also look at how the two can work together to produce a 

more verifiable design and a more complete test bench.

Goals of Complete Verification

The initial goal of complete verification is to exercise completely all the functionality 

that is actually in the code. Missing functionality is an important problem, but it is 

essentially an unbounded problem. Similarly, whether the functionality of the 

design is the desired functionality is an ill-defined problem. This desired function-

ality is typically captured in a natural language specification that is incomplete and 

ambiguous.

But, as mentioned earlier, the one well-defined, bounded problem in verification 

is whether we have exercised all the behaviors of the circuit. That is, can we define 

a set of stimuli that, applied to the design under test, will exercise all the functionality 

of the design.

The functionality of the actual code is bounded, even if it is huge. So this goal 

of completely exercising it is, at least in theory, achievable.

To support the goal of complete verification – in this sense of a complete set of 

stimuli - we have to be able to measure the completeness of the verification suite. 

One technique is to write functional coverage objects and use them to determine 

what functions of the design have been exercised. The problem with this approach 

is that it introduces yet another design representation. In addition to the RTL and 

testbench, we need to write (and debug) a complex set of assertions (coverage 

objects).

Instead, we focus on how we can extend code coverage to give us the complete-

ness metric we need.
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Verifying State Machines

State1

State3

State2

Example 6-1

For the state machine in Example 6-1, verification is pretty straightforward. Clock 

the state machine through all three states, back to the original state, and we are 

done. In particular, if the code looks like this:

case (state)
State1: state <= State2;
State2: state <= State3;
State3: state <= State1;

endcase

Then once code coverage tools report that each line of code has been executed 

during simulation, we have achieved complete verification in the following 

sense:

The entire state space has been covered; during simulation, the circuit has been •฀

put in every state, and every possible transition from one state to another has 

occurred

Additional simulation will not expose any behaviors not already exposed•฀
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In Example 6-2, things are slightly more complicated. In addition to the three 

shallow states, there is a counter that provides deep states.

IDLE

COUNTING

START COUNTER[  COUNTER == 64] 

Example 6-2

case (state)
IDLE: state <= START_COUNTER;
START_COUNTER: begin
counter <= 0;
state <= COUNTING;

end

COUNTING: begin
counter <= counter + 1;
if (counter == 64) state <= IDLE;

end

endcase

If the line coverage tells us that we have executed every line of code, then we know 

we have covered the shallow state space. But what about covering the deep state 

space – the counter?

We observe the following about the deep state space:

 1. The counter must be at least 7 bits, but many of its values (65 to 127) are unreach-

able. A well-designed state machine has no unreachable shallow state, but deep 

state variables (like counters) may have many unreachable states.

 2. The counter is set to a specific value and then modified by the state machine (the 

statements that clear and then increment the counter). This is what happens with 
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deep state – it is set to a value by the state machine (shallow state space) or by an 

input (input state space).

 3. The counter value is used to modify the state space of the design. When the 

counter reaches 64, the shallow state is changed (it goes back to IDLE). Again, 

this is what deep state is used for – it eventually appears in an “if   ” (or “case”) 

statement to decide whether and how to modify the state of the module.

 4. There are many equivalent states for the state machine. While it is in the 

COUNTING state, nothing in the circuit changes except the counter value. If 

we look at the state space as an ordered pair (shallow state, deep state), the 

states (COUNTING, counter == 1) and (COUNTING, counter == 2) are identi-

cal as far as the rest of the circuit – and the outside world – are concerned.

These observations affect how we verify – and how we measure complete-

ness of verification – when we consider deep state space. We note that simple line 

coverage does not tell us whether we have ever reached the state (COUNTING, 

counter == 64), and hence returned to the IDLE state. Line coverage only tells us 

that we executed the statement

if (counter == 64) state <= IDLE;

Conditional coverage tells us whether we have executed this line with all possible 

values of the conditional expression – that is, whether we have executed it with 

“counter == 64” true and with “counter == 64” false. Once we know that we have 

executed this line in both conditions, we know:

 1. We have tested the reachable states of the deep state variable “counter” – the 

state where it is 64, and the state where it is less than 64 (the 64 “equivalent” 

states where it is 0-63).

 2. We have executed the transition from the COUNTING state back to IDLE.

As a result, we know that we have completely exercised the circuit, and addi-

tional simulation will not expose any new behavior.

So with 100% line and conditional coverage, we’ve achieved complete  

verification – in our restricted sense of completely exercising the circuit.

Example: The BCU

We now consider a more realistic state machine. Below is code taken from the 

DMA controller (BCU) example described in Chapter 3.
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One state in the state machine is RDQ1:

RDQ1: begin
case (fsm.q_sel)
TXQ: begin
txqreq[fsm.txqnum_sel].first_seg <= 1'b1;
if (!fifo_busy && !q _empty(fsm.q _sel))

state_bcu <= RDQ2_TXQ;
end

DFQ: i f (!fifo_busy && !q _empty(fsm.q _sel))
state_bcu <= RDQ2_DFQ;

endcase

Where:

•฀ fsm.q_sel is deep state (a register holding information on which DMA queue is 

active)

•฀ txqreq[fsm.txqnum_sel].first_seg is also a deep state register

•฀ fifo_busy is an input to the module

•฀ q_empty is a function

We have already shown that line and condition coverage can tell us whether we 

have completely exercised the design when we have deep state and shallow state 

only. But what about functions? The function q_empty is shown below:

function q_empty (input fsm_q_sel_type fsm_q_sel);
case (fsm_q_sel)
TXQ: q_empty = bcu_txq_empty[fsm.txqnum_sel];
DWQ: q_empty = bcu_dwq_empty;
DFQ: q_empty = bcu_dfq_empty;
RXQ: q_empty = bcu_rxq_empty;

endcase

endfunction

Where:

•฀ bcu_txq_empty, bcu_dwq_empty, bcu_dfq_empty, bcu_rxq_empty are all inputs 

to the module

•฀ fsm.txqnum_sel is a deep state register in the module.

Thus, the function is just a convenient way of describing (encapsulating) a com-

plex function of inputs and deep state. When we use functions to encapsulate com-

binational code, all we are doing is encapsulating a (sometimes complex) 

combination of deep state and input state. When the state machine code says:

if (!fifo_busy && !q_empty(fsm.q_sel))
state_bcu <= RDQ2_TXQ;
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then the function q_empty is just an abbreviation for a more complex conditional 

statement. If we were to in-line the equivalent code, it would look like:

if (!fifo_busy && !(
((fsm_q_sel == TXQ)&& bcu_txq_empty 
[fsm.txqnum_sel])  ||

((fsm_q_sel == DWQ)&& bcu_dwq_empty)  ||
((fsm_q_sel == DFQ)&& bcu_dfq_empty)  ||
((fsm_q_sel == RXQ)&& bcu_rxq_empty)  ||

)
state_bcu <= RDQ2_TXQ;

Thus, all of our analysis - that conditional and line coverage measure the 

 completeness of verification – is still valid except for the fact that the function is 

called more than once.

If the function were only called once in the whole design, then code coverage of 

the function plus code coverage of the state machine would tell us everything about 

the completeness of coverage. But the fact that the function q_empty is called twice 

leaves some ambiguity – we don’t know that the function was completely exercised 

during each call.

On the other hand, if we have a tool or script that rewrites the code, in-lining the 

functions in the state machine, then coverage (of the rewritten code) would give us 

the desired information about the completeness of verification.

Thus we now have a general model of a state machine:

[ function foo();] 

IDLE

[Do Something Else] 

STATE2

[ function bar();] 

STATE1
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The state machine has a set of states and a set of functions that are called by 

states.

Our basic argument is this: in a state machine such as the one above, code cover-

age and complete verification are equivalent. That is, if we can accomplish com-

plete line and conditional coverage, we have completely exercised the functionality 

of the code.

A Canonical Design

Based on our work so far, we can now construct a standard or canonical representa-

tion of a module. For a module that is coded in this manner, we can use (an 

extended version of ) code coverage to provide us with a useful metric for how 

much of the function of the module has been exercised during simulation.

Figure 6-1 is a diagram of a module in canonical form. If the module has been 

designed in the style described in Chapter 3, then this is exactly what it looks like.

Figure 6-1 A module in canonical form.

Structure of the Canonical Design

The canonical design consists of:

Data inputs (registered at the input of the module under test or at the output of •฀

the previous module).

Control inputs (registered at the input of the module under test or at the output •฀

of the previous module). These should be coded as enumerated types; they issue 

commands or instructions to the control path of the design.
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if (write || read || (error == `DATA_ERROR)) begin 
…

A Canonical Design

Data outputs (registered at the output of the module under test)•฀

Control outputs (registered at the output of the module under test). These should •฀

be coded as enumerated types; they issue commands or instructions to the con-

trol path of the next module.

A Data Path consisting of operations on data (arithmetic, logical, or storing in •฀

memory or a register).

A Control Path consisting of:•฀

° a single state machine

° deep state registers, counters, and memory

There is one sequential process for the state machine, and all assignments to 

control variables and data outputs occur in this process. All of the other sequential 

code (always_ff or equivalent statements) is limited to:

Registers for inputs•฀

Internal registers for the data path•฀

Note that the data path output registers are driven by the state machine. That is, 

the state machine determines when and what data path variables are written to the 

data path output registers.

Separating Data from Control

To put a design into canonical form, the first step in our analysis is to separate the 

data path from the control path. This separation is essential for verification, since 

we need to use different strategies for verifying each. To do this separation, we need 

to distinguish between control variables and data variables.

A control variable is a variable that appears in the condition in a conditional 

statement. For example:

Here, the signals write, read, and error are control variables.

Control variables are control inputs, deep state variables, or functions of control 

inputs and deep state variables.

Data variables are variables that are not control variables.

From Figure 6-1, we see that data inputs can be combined. We can store data 

inputs in registers to create internal data variables. We can perform logical and 

arithmetic operations on data inputs and internal data variables. We can load data 

into output registers. As long as none of these results is used as a condition in a 

conditional statement, then all of these variables are elements in the data path, and 

are not part of the control path.
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case (state)
STATE1: begin
if (condition1) state <= …
if (condition2) deep_state_n <= …
if (condition3) control_output_n <= …
if (condition4) data_output_n <= …

6 Verification

Where each condition can be reduced to the form: 

A == B

A <= B

A >= B

A and B can be:

A control input•฀

A deep state•฀

A constant or parameter•฀

A function of control inputs, deep state(s), and constants/parameters.•฀

So in its most general form, a conditional state consists of one of the following:

if (f(control inputs, deep state)) deep_state_n <= g(control inputs, deep state);

if (f(control inputs, deep state)) control_output_n <= g(control inputs, deep 

state);

if (f(control inputs, deep state)) data_output_n <= g(data path);

Where f and g are arbitrary functions.

Note: the code for the state machine may consist of statements of the form

Verifying the Control Path: The State Machine

We start by focusing on verifying the control path for a design in the canonical 

form. This consists primarily of testing the state machine. We show that an extended 

code coverage measurement and give us a very good indication of how completely 

we have exercised the state machine.

The state machine code consists of lists of conditional actions:

if (condition1) state <= foo;
else state <= bar;

if (condition1) state <= foo;
if (!condition1)state <= bar;

but this is just equivalent to
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So our analysis applies to general conditional statements.

Given this structure, we can use (extended) code coverage to provide a large 

amount of information about the functional coverage of simulation – that is, how 

much of the function we have exercised.

Line Coverage

Achieving complete (100%) line coverage means we have entered every shallow 

state in the design.

Condition Coverage

Achieving complete (100%) condition coverage of statements of the form:

if (condition) state <= …

means we have executed every arc in the state machine, every possible way to get 

from one state to another.

Achieving complete (100%) line and condition coverage of statements of the 

form (including 100% coverage of the in-lined functions):

if (f(control inputs, deep state)) deep_state_n <= g(control inputs, deep state);

means we have executed every arc into the accessible deep states.

Achieving complete (100%) condition coverage of statements of the form:

if (f(control inputs, deep state)) control_output <= g(control inputs, deep state);

means we have executed every arc to the accessible output control states.

Achieving complete (100%) condition coverage of statements of the form:

if (f(control inputs, deep state)) data_output <= g( data path);

means we have executed every way of updating the data outputs.

Conditional Range Coverage

Line and condition coverage are available in most code coverage tools. We now 

consider some additional coverage metrics that are not commonly available, but 

would be very useful for designs in our canonical form.

If we consider a conditional statement

if (condition) …

Where condition is one of:

A == B

A <= B

A >= B
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Then it becomes important to know which values of A and B have been simu-

lated to generate both the true and false conditions.

For instance, if the condition is “A < 5” then testing with the values of 4 and 5 

provides more information than testing with 3 and 6 – it exercises the circuit at the 

exact point where the condition goes from true to false.

At the very least, then, we need a metric that indicates whether we have exer-

cised the boundary condition of the conditional expression.

In addition, there might be cases where it is possible to create test cases that 

exercise all the possible values of A. It would be useful, then, to extend coverage 

tools to record which values of A were exercised.

Cycle Coverage

Line and conditional coverage indicates which (shallow) states and which arcs 

between shallow states have been covered. But this does not indicate which com-

plete paths or cycles in the state machine have been covered. We need another 

coverage capability that measures what sequences of states have been exercised. In 

some designs this may be a very large space, and 100% coverage may not be pos-

sible (or even capable of being defined explicitly) but the metric combined with 

knowledge of the intended function of the design can provide valuable feedback on 

the quality of verification.

For instance, it would be useful to know that all paths through the state machine 

of length N have been exercised. It would be even more useful to be able to com-

bine this with a formal proof that no (unique) paths of length greater than N are 

possible in the state machine.

Input State Coverage

The above code coverage metrics give us an excellent measure of how much of the 

control path (state machine) has been exercised. This in turn gives us some indica-

tion of which input states have been exercised as well. If all the possible paths 

through the state machine have been exercised, then we have most likely exercised 

all the interesting input states, and sequences of input states.

Nonetheless, it would be useful to have a separate measure of how much of 

the control input state space we have exercised. Such a metric could indicate 

what input states and what sequences of input states have been used during 

simulation.

Demonstrating that we have exercised all possible input states would give us a 

certain level of confidence in our verification suite. Demonstrating that we have 

covered all input state sequences of length less than some value M would give us 

even more information on the quality of the tests.
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It would be even better if we could also formally prove that input state sequences 

of length greater than M do not produce any new behavior in the design.

Verifying the Data Path

There are two distinct problems in verifying the data path of a design.

 1. Verifying that the state machine controls the data path correctly

 2. Verifying that the data path implements the correct function or algorithm

The combination of our design strategy (using the canonical form) and extend-

ing code coverage help address the first problem. The next two sections address this 

aspect of verification.

Data Path Uniqueness

As we use code coverage to exercise all the possible ways to update the data outputs, 

we have a problem of observability. Consider the statement

if (A) data_output <= x + y;
else data_output <= x * y;

Line coverage will tell us if we have executed both cases during simulation; but if 

x = y = 2, then in both cases the result written to data_output is 4. When A is true, 

we have a problem verifying that we actually wrote out x + y and not x * y. For this 

reason, it is useful to have the capability of determining if, when we update data 

outputs, the data output value uniquely identifies the data path calculation per-

formed. It should be possible to extend code coverage tools to provide this analysis 

capability.

Data Range Coverage

As indicated earlier, it is not feasible to exercise an RTL data path completely if it 

has a large multiplier, or even a large adder. But such issues as overflow, rounding 

and saturation can be verified to some extent. To test these capabilities, we need a 

coverage metric that indicates whether boundary conditions for the data path – 

data values at or near the point where the data path is forced to round, saturate, or 

 overflow – have been tested.

It would be useful to extend code coverage to include such a capability.
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Verifying the Data Path Algorithm

The processes outlined in this chapter allow us to use (extended) code coverage to 

give a great deal of functional coverage – that is, a great deal of information about 

how completely the design has been exercised during simulation. However, there is 

a clear limitation on how much these methods can tell us about the data path itself.

For instance, if the data path implements a video algorithm, there may be no 

other way to verify the algorithm than running real video and looking at a display. 

The usual mechanism for this kind of verification is to develop a high level model 

(often in C) and use it to develop and verify the algorithm.

Once the algorithm is verified using a high level model and testbench, the key 

challenge is to show that the RTL version of the design is equivalent to the high 

level model – that it does, in fact, implement the algorithm. For complex algo-

rithms, RTL simulation is not an effective way to do this. These algorithms can 

involve a number of large multipliers; as described earlier, this quickly leads to data 

paths that cannot be completely exercised in a finite amount of time.

The best solution to this problem is formal verification. Tools are becoming 

available that can prove the equivalence between a high-level, untimed model and 

an RTL implementation. As these tools mature, they should become a key tool in 

verifying the data path section of a design.

Summary

In typical RTL code, line and condition coverage give inadequate information on 

functional coverage. This is because

Multiple concurrent sequential processes (effectively multiple concurrent state •฀

machines) produce a cross product space. The coverage of this cross product 

space is not measured by code coverage.

Combinational code – multiple concurrent combinational processes – do not, •฀

in general, provide any indication of when their outputs are used functionally 

(that is, to change internal or output state). They are active in all states. There is 

no way to in-line them, to make their usage unique for each state. Thus, there 

is no way for code coverage to indicate how much of the functionality of the 

combinational process is being exercised.

Modules that have a single state machine that encompasses all the (non-data 

path) sequential code, and that use functions to encapsulate combinational code, 

and that have these functions called only by the state machine, are different. Under 

these conditions, code coverage indicates what functionality has been exercised, 

provided the coverage tool is extended to include:

Functions in-lined in the state machine•฀

Conditional coverage indicating which values have been tested for both true and •฀

false results
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Coverage of input state space•฀

Cycle (path) coverage of the state machine•฀

Conditional range coverage•฀

Data uniqueness metrics•฀

Data range coverage•฀

An open question for research is this: Can typical code be analyzed and auto-

matically re-written so as to meet the requirements for code coverage to indicate 

functional coverage?
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In Chapters 3 and 4, we discussed a control intensive design, the BCU. In this chapter, 

we discuss a data path intensive design: the discrete cosine transform (DCT) block in 

a JPEG design. We show how we recoded it to dramatically  simplify the RTL.

Used in many video applications, the DCT is a two-dimensional transform per-

formed on an 8 x 8 matrix of pixels. It is typically implemented as two one- dimensional 

transforms:

A horizontal transform, which consists of multiplying the matrix, row by row, •฀

times a set of constants.

A vertical transform, which consists of multiplying the modified matrix (the •฀

result of the horizontal transform), column by column, times a set of constants.

For the purposes of our discussion, we can ignore many of the details of the 

DCT. But it is useful to understand the basic structure and flow of the transform. 

To understand this structure, let’s start with the C-language implementation of it.

As shown in Figure 7-1, we use three 8 x 8 arrays:

The variable array •฀ block, which contains the 64 pixels being operated on

The constant array •฀ c which contains the constant multipliers used in the 

algorithm

The constant array •฀ s which indicates which of the partial products need to have 

their sign inverted

The algorithm itself consists of two steps: the first step processes the input array 

one row at a time (the horizontal transform), writing the result back into the array 

as it executes. The second step consists of processing this modified array one 

 column up at a time (the vertical transform).

The C code for the DCT is shown in Appendix B. An abbreviated version is 

shown in Figure 7-1.

Chapter 7

Reducing Complexity in Data Path  

Dominated Designs

Because of the possibility of human or mechanical error, neither the author, Synopsys, Inc., nor 

any of its affiliates, including but not limited to Springer Science+Business Media, LLC guaran-

tees the accuracy, adequacy or completeness of any information contained herein. In no event shall 

the authors, Synopsys, Inc. or their affiliates be liable for any damages in connection with the 

information provided herein. Full disclaimer available at: p. v of Frontmatter.
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In the hardware version, shown in Figure 7-2, the input array of pixels is 

replaced by a stream of pixels (one per clock cycle), and the output is also a stream 

of pixels (one per clock cycle). The results of the horizontal transform are stored in 

the DCTRAM, which provides inputs to the vertical transform. In the original RTL, 

the first (horizontal, or row-by-row) step is implemented as three separate 

modules:

•฀ mulh which implements the multiplier – it creates eight products by multiplying 

the current pixel times each of the eight distinct values in the constant array c.

•฀ crossh which routes each of the eight products to the appropriate element in the 

temporary array reg_x[7:0].

•฀ acch which performs the inner accumulation loop on reg_x

The results are written into the DCT RAM.

Figure 7-1 The DCT Algorithm.

Figure 7-2 Block Diagram of the DCT.
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The second (vertical, or column by column) step is implemented by the mulv, 

crossv, and accv blocks. It operates on data read from the DCT RAM.

The basic strategy for the hardware design relies on the characteristics of the 

 constant array c that is used in the algorithm. In the C code, this array is defined as:

int c[8][8]={

{23168, 32144, 30272, 27248, 23168, 18208, 12544, 6400},

{23168, 27248, 12544, 6400, 23168, 32144, 30272, 18208},

{23168, 18208, 12544, 32144, 23168, 6400, 30272, 27248},

{23168, 6400, 30272, 18208, 23168, 27248, 12544, 32144},

{23168, 6400, 30272, 18208, 23168, 27248, 12544, 32144},

{23168, 18208, 12544, 32144, 23168, 6400, 30272, 27248},

{23168, 27248, 12544, 6400, 23168, 32144, 30272, 18208},

{23168, 32144, 30272, 27248, 23168, 18208, 12544, 6400}

};

Note that, even though there are 64 entries in the array, there are only eight 

 distinct values. To perform the inner loop of the algorithm, the hardware implemen-

tation multiplies the target pixel with each of the eight distinct values. This is done 

in the mulh and mulv blocks. The crossh and crossv blocks then route the multipli-

cation results to the appropriate accumulator, based on the particular (row, column) 

of the current pixel.

The accumulator blocks acch and accv perform the rest of the arithmetic (add 

by 2048, right shift, negation and summing). The acch block outputs one pixel at a 

time to the DCTRAM. When the DCTRAM has enough entries (one full column) 

then the mulv block starts reading from the DCTRAM and executing the column by 

column part of the algorithm.

The addr_gen module generates control signals for the entire DCT as well as 

addresses for the DCTRAM.

Problems and Limitations in the Original Code

The original design was coded in Verilog 95. As a result, it was limited to one 

dimensional arrays and unsigned data types only. It also contains a great deal of 

hand optimizations to guide synthesis.
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It turned out that all this effort to code the multipliers as shift and adds was 

completely wasted. When we re-coded this section to use simple multiplication 

(Example 7-1), we actually got better synthesis results (met timing, with smaller 

area). Modern synthesis tools really can find the optimal implementation for arith-

metic operators.

We recoded the DCT, using SystemVerilog and focusing on three key points:

minimizing the number of lines of code•฀

minimizing the complexity of the code – in particular, minimizing the amount •฀

of hand optimization in the code

adding structure to the code to make it easier to understand•฀

Minimizing Lines of Code

The original code for the DCT consisted of 1855 lines. In recoding the DCT, we were 

quickly able to reduce this to about 500 lines. We started by restructuring the code, 

combining the mulh, crossh, and acch modules into a single module called dct_h.

assign k7 = x17 + {x[10], x[10], x, 3’b 000};

assign k3 = {x7[13], x7[13], x7[13], x7[13],

x7[13], x7[13], x7[13], x7[13],x7} + {x5[13], 

x5[13], x5[13],x5, 5’b 00000} + {x3, 9’b 

000000000};

assign k0 = {x[10], x[10], x[10], x[10],
x[10], x[10], x[10], x[10],x} + {x5[13], x5[13], x5[13],

x5, 2’b 00} + {x5, 5’b 00000};

The mulh code for the multiplication by eight constants shows this hand  optimization. 

It starts by pre-calculating common constant multiplications as shift-and-add:

It then factors the constants into multiples of these pre-calculated values. Three of 

the eight calculations are shown below:

assign x3 = {x[10], x, 1’b 0} + {x[10], x[10], x};

assign x5  = {x[10], x, 2’b 00} + {x[10], x[10], 

x[10], x};

assign x7 = {x, 3’b 000} - {x[10], x[10], x[10], 

x};

assign x17 = {x[10], x, 4’b0000}+{x[10],x[10],x[10

],x[10],  x[10],x};
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Figure 7-3 Block diagram of DCT code after first round of modification.
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Example 7-1 

typedef bit [12:0] bit13;

function bit13 [7:0] get_y (bit signed [10:0] x);

  bit signed [15:0] k7;

  bit signed [16:0] k6;

  bit signed [20:0] k5;

  bit signed [21:0] k3;

  bit signed [19:0] k2;

  bit signed [21:0] k1;

  bit signed [18:0] k0;

  

  k7 = x * 25;

  k6 = x * 49;

  k5 = x * 569;

  k3 = x * 1703;

  k2 = x * 473;

  k1 = x * 2009;

  k0 = x * 181;

We use a similar strategy for the vertical blocks. Thus the structure of the code 

ended up as shown in Figure 7-3:

Converting the module declaration to the less verbose ANSI style and eliminating 

two module interfaces (and their verbose Verilog95 port declarations) resulted in 

dct_h being just a bit larger than mulh.

We then used signed data types, multidimensional arrays, and functions to simplify 

the code. The part of the code that replaced the mulh.v now looks like Example 7-1:
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Note that we used a function to add more structure to the code. We also 

 eliminated the pre-computation of partial products – relying on synthesis to do the 

optimization.

In a similar way, we converted the crossh and acch into functions in the dct_h.

The structure of the dct_h is shown graphically in Figure 7-4. The code is out-

lined in Figure 7-5. It consists of two sequential processes and three functions. The 

bodies of the processes and functions have been replaced by comments to make the 

overall structure easier to see.

get_y Shiftget_cross get_acc

Figure 7-4 Diagram of code showing the functions used to encapsulate combinational code.

  get_y[0] = k0[18:6];

  get_y[1] = k1[21:9];

  get_y[2] = k2[19:7];

  get_y[3] = k3[21:9];

  get_y[5] = k5[20:8];

  get_y[6] = {k6[16], k6[16:5]};

  get_y[7] = {k7[15], k7[15], k7[15:5]};

  get_y[4] = 0;

endfunction

Example 7-1 (continued)
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The input pixel is clocked into a flip-flop, then three functions (get_y, get_cross, 

get_acc) perform the inner loop of the calculation, and the result (eight pixel val-

ues) are clocked into a shift register (after one row or column has been processed). 

The shift register is then clocked out one pixel at a time.

We make the following observations about this code:

 1. The module declaration is much simpler than the original. Much of this is due to 

using the ANSI style port declaration. But in addition, we restructured some of 

the communication between addr_gen and dct_h to reduce the number of control 

signals.

 2. We now use functions instead of combinational code. This allows us to declare 

the intermediate values as local variables within the function. This simplifies the 

code and makes review and analysis easier.

 3. By using signed types, we were able to reduce the amount of manual sign 

extension.

 4. By using multidimensional arrays, including defining (the return value of) the 

functions as multidimensional arrays, we were able to simplify the code.

 5. There is no state machine in the design. The input is registered and the output is 

registered, but no control state is saved.

Figure 7-5 Outline of modified code.

always_ff @(posedge) begin

     register input pixel

function get_y ;   

      does initial math on registered input 

function get_crossh;  

      calls get_y() and maps result to right location

      in matrix 

function get_acc_value;  

      calls get_crossh and calculates the accumulated

      value

always_ff @(posedge clk)  

      calls get_acc_value(), registers the result and 

      shifts out
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The code for the final sequential process in dct_h looks like Example 7-2 (with 

reset code removed for easier reading):

Example 7-2 

always_ff @(posedge clk) begin

  if (en) begin

    reg_x <= get_acc(sgn, sel, load, reg_x);

    if (load) sh <= reg_x[7:1]; 

    else for (int i=1;i<7;i++) sh[i]<= sh[i+1];

  end

end

always_comb dct_h_out = load ? reg_x[0] : sh[1];

So the accumulator registers (reg_x) call the function get_acc, which calls the 

function get_cross, which calls the function get_y. The only combinational logic in 

this version of the code is the assignment of dct_h_out.

Note that the final sequential process is followed by a combinational assign-

ment. This is one of those cases where a combinational output has to be driven 

directly out of the module to meet overall system timing.

Table 7-1 

Original Verilog95 Version First SystemVerilog Version

Lines of code 1855 519

Files 8 4

Sequential processes 5 5

Combinational processes 5 6

Assign statements 144 6

Functions 0 8

Tasks 0 0

Table 7-1 summarizes the progress we made in reducing the complexity of the 

DCT code. In addition to the reduction in the lines of code, the biggest difference 

is in the number of assign statements. We have replaced almost all the assign state-

ments with functions, replacing unstructured code with structured code.

Other Versions of the Code

After making the modification described above, we created some other versions of 

the DCT code.
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Task Version

In the task version, we decided to add more structure to dct_h and dct_v. Earlier in 

this book, we observed the difficulty in encapsulating sequential code, in a way 

equivalent to the function. In a control-dominated design, we can use a state 

machine to structure sequential code. In the case of the DCT, there is no state 

machine. Instead, we used tasks to structure the sequential code.

In the task version of the code, we used a task to register the inputs and outputs, 

and do the output shifting. We then used a single sequential process to call these 

two tasks. The code for the task version of dct_h.v is outlined in Figure 7-6.

Figure 7-6 Outline of the task version of the code.

task update_input();

     register input pixel

function get_y;

     does initial math on registered input 

function get_crossh;

     calls get_y() and maps result to right location 

     in matrix 

 

function get_acc_value 

     calls get_crossh and calculates the accumulated 

     value

task update_sr();

     calls get_acc_value(), registers the result and 

     shifts out

  

//-------------------- MAIN -----------------------

always @(posedge clk) begin

   update_input ();

   update_sr();

end

Some notes about the tasks:

 1. The tasks use non-blocking assignments. The result is that the new code is 

exactly equivalent to the old code. It is just more structured.

 2. The added structure makes analysis of the module easier. The sequential process 

acts like the main of a C program. We start by looking at what this process does; 

everything else in the code – the tasks and functions – exists only to support the 

main sequential process.
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 3. The registers controlled by the two tasks (the variable x in update_input, and 

the variables reg_x and sh in update_sr) are global – declared at the top level of 

the module – rather than local.

Table 7-2 

Original  

Verilog95

First System- 

Verilog Task Version

Lines of code 1855 519 544

Files 8 4 4

Sequential processes 5 5 3

Combinational processes 5 6 3

Assign statements 144 6 1

Functions 0 8 10

Tasks 0 0 6

Table 7-2 summarizes the progress made so far. Note that in addition to using 

tasks to add structure to the sequential code, we have also migrated more of the 

combinational code into functions. We have now started refactoring the addr_gen 

block in addition to dct_h and dct_v. Most of the improvement in the combinational 

code is a result of the work on the addr_gen block.

Note also that there was a slight increase in lines of code for the task version. 

This growth is due to several factors:

the overhead of a •฀ task/function compared to an assign statement (task/endtask 

and function/endfunction in a total of 8 places)

a few more comments in the task version•฀

a few more lines of white space to improve readability of the code•฀

But we more than made up for this 5% growth in the next round of code 

reduction.

More Code Size Reduction

In looking at the code for the task version of the DCT, we realized that we had 

reduced the code size, and improved the structure of the code, to the point where 

we could start combining four modules into one module.

The main reason to use multiple modules was to keep each file down to a reasonable 

size – five pages or less – so we could read and analyze each module without getting 

overwhelmed. We found that having multiple modules – and the overhead of multiple 

port lists – was no longer an advantage. So we combined the modules into a single 

module, and were able to reduce the total DCT code to about 280 lines. This is less than 

5 pages, which we regard as the maximum recommended length for a module.

By combining the four modules into one module, we could use a single sequen-

tial process to invoke all the tasks. This single sequential process now acts as the 

equivalent of main in C programs. To review and analyze the DCT code, we just 

start at this process and follow the task calls. This is now truly structured RTL.
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The full code for the 1-file version of the DCT is included in Appendix B.

Figure 7-7 gives an outline of the code.

Figure 7-7 Outline of the 1-file version of the DCT.

//------ from addr_gen.v ------------

task update_addr();

     manages the address to RAM that stores 

     intermediate results, calling

     increment_addr()twice;

function automatic increment_addr;

     write (horizontal) and read (vertical) 

     addresses to RAM; this is

     called twice, so we declare it an 

     automatic function

function automatic get_sgn ();

     calculate the sign of the constant used in 

     get_y and get_y_vert

//--------------- horizontal from dct_h.v --------

function get_y;

function get_crossh;

function get_reg_x;

task update_sr;

//--------------- vertical from dct_v.v------------

function get_y_vert ;

function get_crossv ;

function get_reg_xv ; 

task update_srv ; 

//-------------------- MAIN -----------------------

task main ();

   horiz_in <= pixel_in;

   update_addr();

   update_sr();

   vertical_in <= ram_out;

   update_srv; 

endtask

always_ff @(posedge clk) main();
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Table 7-3 shows the progress made in the various versions of the DCT code.

The final count of lines of code is quite remarkable. The reference C model – at 

the highest level of abstraction, and using integer arithmetic – is about 125 lines of 

code. Thus, with some effort – and taking advantage of the language features now 

available – we were able to reduce the code size of the design by a factor of about 

5x, to where the RTL was only a little over 2x the size of the reference C code.

Untimed Version

One advantage of the 1-file version of the DCT is that the clock only appears once 

– in the single sequential process at the end of the module. We can then make some 

minor changes, and use the code to create an untimed model of the DCT. In the 

untimed version, we had to make the following changes:

 1. The testbench had to be modified. Instead of simply instantiating the DCT and 

generating a clock, it explicitly calls the main task in the DCT for each pixel 

being processed.

 2. The lone remaining sequential process was deleted.

 3. The non-blocking assignments in the tasks have been changed to blocking. This 

is necessary to assure the correct sequence of execution. (That is, the discipline 

established by clocking is replaced by the discipline of the order of assignments). 

In two cases, we had to re-order some statements to support this discipline.

 4. In the timed code, it takes two cycles to read and write the DCTRAM. In the 

untimed model, this is done in zero time. As a result, the exact timing of some 

control signals changes. The variable index is used in the code to coordinate vari-

ous activities. In several cases we had to change the way index was used, such as 

changing a condition if (index == 0) to if (index == 7).

Figure 7-8 gives the outline for the code for the task version. Figure 7-9 shows 

how the testbench invokes the dct.

Table 7-3 

Original 

Verilog95

First 

SystemVerilog Task Version 1-File Version

Lines of code 1855 519 544 278

Files 8 4 4 1

Sequential processes 5 5 3 1

Combinational processes 5 6 3 2

Assign statements 144 6 1 0

Functions 0 8 10 8

Tasks 0 0 6 4



101More Code Size Reduction

The objective of this exercise was to see if the same code could be used for both 

an untimed and a timed model of the design.

The advantage of an untimed model is that it simulates faster and is easier to 

understand and debug. The execution of the untimed model involves no concur-

rency. Like a C model, it executes in a linear fashion, completing one calculation 

before starting another.

The fact that we had to make changes other than simply eliminating the clock 

was disappointing. Nonetheless, we have shown that RTL can be coded in a struc-

tured format that makes for simple, if not yet automated, conversion between 

untimed and timed versions.

Figure 7-8 Outline of the untimed version of the DCT.

//------ from addr_gen.v ------------

task update_addr();

function automatic increment_addr;

function automatic get_sgn ();

//--------------- horizontal from dct_h.v ------

function get_y;

function get_crossh;

function get_reg_x;

task update_sr;

//--------------- vertical from dct_v.v-------

function get_y_vert ;

function get_crossv ;

function get_reg_xv ; 

task update_srv ; 

//-------------------- MAIN -------------------

task main ();

  horiz_in = pixel_in;

  update_addr();

  update_sr();

  vertical_in = ram_out;

  update_srv; 

endtask
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Experimental Versions

Based on previous versions of the code, we developed two experimental versions 

of the DCT. They both used integer arithmetic – all variables are declared to be type 

int (as in the C version).

From the 1-file version, we created the ExpClk version, which replaced the 

 bit-level arithmetic with integer arithmetic, and used a less efficient (but simpler) 

way of handling the constant array.

Starting from the untimed version, we developed the Exp version, which again 

used integer math and the simpler constant handling.

Figure 7-10 shows a fragment of the code. This task is used by both the Exp and 

ExpClk versions, either called explicitly by the test bench (Exp verion) or executed 

at each clock by an always_ff process (ExpClk version).

Some notes on the code:

 1. All the variables are declared as type integer. This results in faster simulation, 

but of course synthesis produces a design with much larger area.

 2. The constant matrices s and c are used directly as in the C code. We again rely 

on synthesis to do efficient mappings, rather than the manual mapping done in 

the function get_crossh.

initial begin

  for (int i=0;i<MAX_TEST;i++) begin

      get_input_pixel();

      u1.main();

  end

  $finish;

end

Figure 7-9 (Partial) test bench for the untimed version of the DCT.

Figure 7-10 Integer version of the code.

int reg_x [7:0]; 

int x,v;

int sh [7:0]; 

const int c[8][8]=’{

‘{23168,32144,30272,27248,23168,18208,12544,6400},

‘{23168,27248,12544,6400,23168,32144,30272,18208},

‘{23168,18208,12544,32144,23168,6400,30272,27248},

‘{23168,6400,30272,18208,23168,27248,12544,32144},
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‘{23168,6400,30272,18208,23168,27248,12544,32144},

‘{23168,18208,12544,32144,23168,6400,30272,27248},

‘{23168,27248,12544,6400,23168,32144,30272,18208},

‘{23168,32144,30272,27248,23168,18208,12544,6400}

};

int s[8][8]=’{

‘{0, 0, 0, 0, 0, 0, 0, 0},

‘{0, 0, 0, 1, 1, 1, 1, 1},

‘{0, 0, 1, 1, 1, 0, 0, 0},

‘{0, 0, 1, 1, 0, 0, 1, 1},

‘{0, 1, 1, 0, 0, 1, 1, 0},

‘{0, 1, 1, 0, 1, 1, 0, 1},

‘{0, 1, 0, 0, 1, 0, 1, 0},

‘{0, 1, 0, 1, 0, 1, 0, 1}

};

task update_sr();

  if (index == 0) reg_x = ‘{0,0,0,0,0,0,0,0};

  else x = pixin - 128;

  for(int u=0;u<8;u++)begin

    v= x *c[index][u];

    v+=2048;

    v = v >>>12;

    if(s[index][u]) v=-v;

    reg_x[u]+=v;

  end

  if (index == 7)

    for (int i=0;i<8;i++) sh[i]= reg_x[i];

  else for (int i=0;i<7;i++) sh[i]= sh[i+1];

endtask

Figure 7-10 (continued)

Simulation Results for the Different Versions of the DCT

Reference Versions

We used two reference versions of the code in running simulation. 

 1. The original C code. Coded for speed and simplicity at a high level. The code is 

shown in Appendix B.

 2. A Reference SystemVerilog version. For this version, we copied the C code into 

SystemVerilog and made only those changes necessary to get it to compile as a 

SystemVerilog design.
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To convert the C code to legal (but not synthesizable) SystemVerilog code, we 

had to make the following changes:

change the {} to begin/end.•฀

Add apostrophes at the appropriate points in the declaration of the constant •฀

arrays c and s.

Change •฀ void dct to function dct.

Change •฀ reg to reg_x, since reg is a reserved work in SystemVerilog.

With these rather trivial changes, the code now compiled and ran in the VCS 

simulator. Figure 10-2 (in Chapter 10– Raising Abstraction Above RTL) shows the 

converted code.

We then ran simulations for the different versions of the DCT. In each case we 

ran the same pixel streams, with the simulation run consisting of five million pixels. 

The results are presented in Table 7-4:

Table 7-4 

Name Description Runtime

Verilog 95 Original Verilog95 version of dct 115 sec

Function Original converted to SystemVerilog using functions 119 sec

Task Function version plus sequential processes as tasks 118 sec

Untimed Task version modified to run untimed 77 sec

ExpClk Experimental version using integer math 19 sec

Exp Experimental version using Untimed structure, integer math 18 sec

Ref SV C code translated directly into SystemVerilog 6.9 sec

Ref C Original C reference version of dct 2.5 sec

Conclusions: The C was clearly the fastest version. The Int version, virtually 

identical to the C version, ran somewhat slower because SystemVerilog simulation 

performs run-time bounds checking, which C does not.

The Verilog95, (SystemVerilog) Function, and (SystemVerilog) Task versions 

all ran at essentially the same speed.

The Untimed version ran considerably faster than the three timed versions, but 

slower than the Reference C and Reference SystemVerilog versions. Clearly elimi-

nating the clock provides some speed improvement, but using bit rather than integer 

arithmetic resulted in slower simulation than the reference (integer) versions.

The Exp (integer) version shows a significant speed-up over the bit-based ver-

sions. This implies that the biggest speed-up in SystemVerilog simulation comes 

with integer arithmetic. This makes sense because the simulator can use native 

integer types for integer simulation; bit-based simulation requires more complex 

and slower data representation.

The Verilog95, function, and task versions are all synthesizable. The ExpClk 

version is also synthesizable, but because it uses integer math, the area is much 

larger than for the other synthesizable versions. The area results are given below. 

All versions met timing.
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Synthesis Results

We synthesized the three versions of the DCT using a commercial 65nm library and 

a 100MHz clock rates. Table 7-5 summarizes the synthesis results.

Table 7-5 

Name Description Area(gates)

Verilog 95 Original Verilog95 version of dct 16,308

1 File Original converted to SystemVerilog using functions, tasks,  

and in a single file with one sequential process

15,400

ExpClk Experimental version using integer math 43,874

We then re-ran synthesis for the Verilog95 and 1-File versions at a 250MHz 

clock rate. The results are shown in Table 7-6.

Table 7-6 

Name Description Area(gates)

Verilog 95 Original Verilog95 version of dct 25,818

1 File Original converted to SystemVerilog using functions, tasks, 

and in a single file with one sequential process

18,000

The fact that the 1-File version is smaller than the original Verilog95 version is 

mostly due to the fact that the multipliers in the original version were coded as 

shift-and-add. This form of code constrained the synthesis tool and produced a 

 sub-optimal result. In the 1-File version we left the multipliers as multipliers, 

allowing the tool to explore a broader range of implementations.

Gates per Line of Code

There has long been a rough estimate that Verilog code produces about 5 gates per 

line of code (for control dominated designs) to about 10 gates per line of code (for 

data path dominated designs). The Verilog95 version of the DCT meets this esti-

mate, at roughly 9 gates per line of code.

Many observers have stated that to get an order of magnitude improvement over 

these (gates per line of code) numbers requires C-based high level synthesis. But in 

fact the final RTL version of the DCT achieved about 58 gates per line of code, an 

improvement of almost 6x.

We also took the original C code and used a C-based high level synthesis tool to 

generate RTL (and then synthesized to gates). To achieve the QOR (specifically the 

area) of the RTL versions, we had to add a significant amount of code to the original C 

version (mostly details for handling the constant multiply efficiently). The final (syn-

thesizable) C version was about 263 lines of code, for about 61 gates per line of code.
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Thus, our final RTL reached about the same code density (gates per line of code) 

as the C-based version. Although there are other advantages of synthesizing from 

untimed C models, these results suggest the following: The big leap forward from 

where we are today to a 10x improvement is not necessarily a leap from Verilog to 

C. Simply moving from today’s code to well-written SystemVerilog code can pro-

duce a dramatic improvement.

Formal Verification

To verify that the different versions of the dct were functionally equivalent, we 

initially used a simple test bench and simulation.

Later, we tried a more sophisticated verification strategy using formal verifica-

tion. We could not use Formality, because Formality cannot check the equivalence 

of an untimed model to a timed model.

Instead, we used Hector, an experimental formal verification tool that can com-

pare (untimed) C models to RTL. Using Hector, we were able to prove that the Task 

implementation of the DCT was equivalent to the (untimed) C model.

Canonical Design

When we look at the Canonical Design for a control-dominated design, it looks like 

Figure 7-11.

Figure 7-11 Canonical form for a digital design.
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But for our data-path intensive design, the model is slightly different. In the 

DCT design, the model looks more like Figure 7-12:

Figure 7-12 DCT has no state machine, so it is a simple subset of the canonical design.

Without the extensive control logic, we do not have a state machine or a concern 

about deep and shallow state. Instead, commands come into the module and directly 

control the data path. It is the data path itself that requires the most attention: par-

titioning it into functions to make the analysis simpler.

Summary

As in the case of a control-dominated design, we have found that a structured  coding 

and design style reduces the complexity and number of lines of code in a design. In 

particular, we can reduce the number of sequential processes to a minimum.

Using functions and tasks to add structure to the code produces a canonical 

design for a data path module, and facilitates analysis and verification. As in the 

case of the example in Chapter 3, we were able to have a single sequential process 

per module. As a result, each module has the equivalent of a main – a single point 

of entry, where a systematic analysis of the module can begin.

We have also shown that using these techniques – and the features available in 

the synthesizable subset of SystemVerilog – we could reduce the code size dramati-

cally, without adversely affecting simulation time or synthesis results.
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In previous chapters, we described how to simplify modules. In this chapter we 

describe how to simplify the interfaces between modules. In doing so, we use the 

same basic approach used in addressing module design: 

Reducing the number of lines of code•฀

Reducing the complexity of the design by minimizing the state space•฀

Add structure to the code to make analysis of the code easier•฀

We start with a trivial example which, while small, nonetheless shows one prin-

ciple we will use.

Command-based Interface

Consider the following code:

Chapter 8

Simplifying Interfaces

M. Keating, The Simple Art of SoC Design: Closing the Gap between RTL and ESL,  

DOI 10.1007/978-1-4419-8586-6_8, © Synopsys, Inc. 2011

module dct_h (

input bit read,

input bit write,

.

.

.

endmodule

Because of the possibility of human or mechanical error, neither the author, Synopsys, Inc., nor 

any of its affiliates, including but not limited to Springer Science+Business Media, LLC guaran-

tees the accuracy, adequacy or completeness of any information contained herein. In no event shall 

the authors, Synopsys, Inc. or their affiliates be liable for any damages in connection with the 

information provided herein. Full disclaimer available at: p. v of Frontmatter.
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Now we have made it clear that either read or write or nothing can happen – but 

read and write can never be active at the same time. We are moving from an inter-

face consisting of wires to an interface consisting of commands.

In this case we have reduced the input state space of the design from four to 

three – not a huge win numerically. But when applied to a real design, the reduction 

can be dramatic.

The general model is shown in Figure 8-1:

Figure 8-1 Module interfaces using command and data ports.

typedef enum bit {NOP, READ, WRITE} rw_type;

module dct_h (

input rw_type rw,

.

.

.

endmodule

The module has one (input) interface from each module that drives it and one 

(output) interface to each module that it drives.

To minimize the input/output state space, we explicitly separate data from con-

trol, and then declare the control inputs as an enumerated type. The complexity (for 

a single interface) then goes from 2n, where n is the number of wires, to N, where 

N is the number of commands listed in the enumerated type.

Although the command interface is drawn (and thought of) as unidirectional, it 

often is a handshake interface. There is a preferred handshake for interfaces 

between modules: the FIFO.

Read and write are both control inputs (not data). The input state space for this 

module is 22 = 4 states. But we may not support doing both read and write at the same 

time. In this case, the real state space is three, as expressed by the following code:
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The FIFO provides a well-defined handshake interface; it also provides timing 

isolation between the two modules. The sending module does not need to know if 

the receiving module is ready for data; it just monitors the FIFO status, and if it is 

not full, it can deliver a new command and data. Similarly, the receiving module 

does not have to know anything about the internal timing of the sending module; it 

just monitors the empty signal from the FIFO, and knows when new command/data 

are available.

In those cases where a single register is used between modules, there are two 

cases:

 1. The receiving module is guaranteed always to be ready to receive data/

command

 2. The receiving module is not always ready to receive data/command, and needs 

to throttle back the sending module

In the first case, a simple register interface suffices: this is just equivalent to a 

1-deep FIFO with full always negated.

In the second case, it is best to use a 1-deep FIFO. There are many ways to create 

an ad-hoc handshake across modules, but the FIFO is a standard handshake that all 

engineers understand.

Example: CPU Pipeline

The classic example of a command-based interface is the CPU pipeline. A simple 

5-stage RISC processor[12] might have an Instruction Decode (ID) to Execute 

Stage (EX) interface like Figure 8-3.

The ALU receives a command (IRp1, or Instruction Register piped one stage) 

and data from the ID stage. The Data consists of:

Program Counter (for jumps, which require calculation of the target address): •฀

register PC_p1 in the diagram.

Outputs from the Register File (for normal operations, like shift or add): registers •฀

A and B in the diagram.

Figure 8-2 A FIFO is the preferred interface between modules.
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Figure 8-4 Simplified diagram of the EX stage.

Immediate (for instructions that encode one argument in the instruction itself ): •฀

register IMM in the diagram.

The ALU output from the previous cycle (for forwarding, to avoid unnecessary •฀

pipeline stalls): register RSLT in the diagram.

The opcode (IRp1 in the diagram) is the command that tells the ALU what to do 

with this data.

A simplified diagram might look like Figure 8-4.

Figure 8-3 Instruction Decode and Execute stages of a pipelined processor.
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The concept of an opcode – an enumerated list of commands that tell the module 

how to manipulate the data – is the concept we are generalizing to all module 

interfaces.

In an actual CPU design, there are more inputs than just the opcode.

Figure 8-5 EX stage with control inputs from Pipe Controller.

As shown in Figure 8-5, additional signals – stall and forward, for example – 

typically come from other stages or from a central pipeline controller. In one design 

we have seen, there were eighty-nine opcodes and nine independent control signals, 

for an input control state space of 

89 * 29 = 45,568 or less than 216.

This is a large state space, but quite manageable in automation terms, if not in 

human terms. To simulate all possible input states, executing at 2,000 instructions 

per second (a reasonable simulation speed for a simple processor) would take less 

than a minute.

Example: BCU

The BCU described in Chapter 3 is a bit more complicated, because it has interfaces 

to multiple modules. Its input declaration (control inputs only – not data) looks like 

Example 8-1.
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This is 20 signals, for a state space of 220= 1,048,576. But it can be made smaller, 

since many states are mutually exclusive, and can be combined into an enumerated 

structure.

For example, the first three signals (control signals from the bium) are not inde-

pendent. Only one can be active at a time. Thus, they can be combined into a single 

enumerated type with four values:

Example 8-1

typedef enum bit [1:0] {bium_nop, bium_dma_done, 

bium_error, bium_wdata_pop } bium_cmd ;

ccub_rxf_stop, ccub_txf_stop, ccub_rxf_resume,  

ccub_txf_resume, ccub_resp_rdy,

Similarly, the five inputs from the ccub:

input bit bium_dma_done,

input bit bium_error,

input bit bium_wdata_pop,

input bit bium_rdata_push,

input bit csr_disable_bium_abort,

input bit bcu_fifo_busy,

input bit [1:0] bcu_txq_empty,

input bit bcu_rxq_empty,

input bit bcu_dwq_empty,

input bit bcu_dfq_empty,

input bit bcu_rxf_empty,

input bit bcu_dwf_empty,

input bit dcub_txfnum_vld,

input bit ccub_rxf_stop,

input bit [1:0] ccub_txf_stop,

input bit ccub_rxf_resume,

input bit ccub_txf_resume,

input bit ccub_resp_rdy,
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Just making these two simple changes reduces the input state space to:

4 * 29 * 7 = 14, 336

We have then reduced the input state space from over 1,000,000 to about 14,000, 

an improvement of 73x, or about 2 orders of magnitude. More importantly, the 

input state space is now structured: there are four bium commands and seven ccub 

commands.

Example: USB

CPU design is a mature science. Passing the opcode (rather than random wires) 

from stage to stage has been well established for many years. In the BCU example, 

we are dealing with a recent design that incorporates modern concepts of interface 

design. That is, the designer purposely minimized the complexity of the interface 

to the degree possible in Verilog 2K. The improvements we were able to make stem 

directly from our ability to use SystemVerilog.

For an example of how the interface state space can get out of control, we 

now look at an older design, a module from a USB interface designed a decade 

ago.

Consider the following set of (control) input declarations in Example 8-2.

There are 53 wires in the control inputs, for an input state space of:

253 = 9,007,199,254,740,992

In human terms this is essentially infinite. But many of these input control sig-

nals are mutually exclusive, and could be combined into enumerated states, dra-

matically reducing the input state space. This kind of analysis could be done easily 

by the original designer. But for anyone else, this analysis would be a challenging 

task indeed.

This case is an excellent example of how design intent becomes lost when the 

input state space is not carefully designed. The original designer of this code cer-

tainly understood which signals were mutually exclusive and understood the intended 

input state space, which was probably no larger than that of the BCU -- on the order 

of 220. But by coding the inputs as he did, the original designer completely hid which 

were the intended input states and which input states were never intended to occur.

typedef enum bit { ccub_nop, ccub_rxf_stop, ccub_

txf_stop_0, ccub_txf_stop1, ccub_rxf_resume, ccub_

txf_resume, ccub_resp_rdy, } ccub_cmd ;

can be combined into:
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Example 8-2

//Control inputs

input rst_phyclk;

input phy_clk;

input se_hs_hnsk_on;

input sr_bus_idle;

input se_send_chirp;

input phy_rxvalid;

input phy_rxvalidh;

input phy_rxerr;

input phy_rxactive;

input phy_txready;

input epi_cur_dtsync;

input epi_dec_desccmd;

input app_setdesc_sup;

input app_synccmd_sup;

input ubl_cntrlep;

input ubl_bulkep;

input ubl_cmdstate_intrd;

input ubl_cmdstate_sts;

input ubl_ep_ok;

input ubl_ext_cyc;

input ubl_ep0_cyc;

input ubl_isoep;

input ubl_send_stall;

input ubl_send_nak;

input ubl_rx_err;

input ubl_send_nyet;

input ubl_cntrl_hshk;

input ubl_get_status;

input ubl_int_rd;

input se_usbreset;

input sync_wrcmd_sts_ok;

input sync_srcbuf_empty;

input app_phyif_8bit;

input ubl_se0_nak;

input ubl_test_j;

input ubl_test_k;

input ubl_test_pkt;

input sr_remotewakeup;

input sync_dev_discon;

input line_state_se0;
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Impact on Verification

Minimizing the input state space of the design has a significant impact on  making 

the design easier to understand. But it also has a significant impact on verification.

For designs such as the USB module described above, with an input state space 

of 253, verifying the entire set of possible inputs to the design is not practical. At a 

simulation speed of 10,000 cycles per second (a very fast simulation environment), 

it would take more than 28,000 years just to stimulate the module with every pos-

sible input state. Or, if we used 28,000 cpu’s, we could do it in one year. Thus, 

completely verifying just the input state space of the design is impractical.

On the other hand, for designs with an input state space on the order of 50,000, 

such as the execute stage in a CPU, the numbers are quite different. Even at 2,000 

cycles per second, we can drive all possible input states in less than a minute. 

Clearly, a much larger portion of the behavior of the module can be verified in an 

acceptable amount of time.

The key point here is that without carefully managing the input state space, the 

very concept of complete verification is impossible.

Separating Data and Control

To minimize and structure the input state space, it is necessary to separate data and 

control. The advantage of doing this has already been described in the chapter on 

verification.

In some cases, a single command interface may consist of both data and control. 

For instance, a packet read from a FIFO may contain both data and information as 

to how the data should be handled. In this case we may want to use a struct to 

clearly delineate the separation between command and data. Consider, for example, 

the following declaration in the BCU:

input app_nz_len_pkt_stall;

input app_nz_len_pkt_stall_all;

input app_enable_erratic_err;

input [2:0] hs_timeout_calib;

input [2:0] fs_timeout_calib;

input [1:0] se_enum_speed;

input app_scale_down;

input byteif_txvalid;

Example 8-2 (continued)
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In this case, we use comments to make explicit which fields in the structure or 

control and which fields are data. In the future, it might be useful to have the capa-

bility within SystemVerilog to tag fields as either control or data. Making the 

 distinction between control and data inputs an explicit capability of the language 

would facilitate manual and automatic analysis of the source code.

General Connectivity

So far, we have talked about the internal state space (of a module) and the input 

state space (of a module) as metrics of complexity. Another important measure of 

complexity is the connectivity between modules.

Figure 8-6 Simplified diagram of a JPEG core.

In the case of a data path intensive design such as a JPEG core, shown in Figure 

8-6, the architecture is defined in terms of data-processing functions such as dct or 

quantizer. The modules are arranged to fit this architecture, with each module hav-

ing an interface to the preceding data block and to the succeeding data block.

The result is that each module communicates closely with two other blocks, but 

has little direct communication with other blocks. This results in a fairly simple 

connectivity graph. More importantly, it means that changes to any one block are 

unlikely to ripple through and affect all the other blocks in the design – rather, such 

changes are likely to impact, at most, the blocks two neighbors.

In a control-dominated design, such as the USB core shown in Figure 8-7, the 

architecture is shown in a series of layers, mirroring the layers of the communica-

tion protocol.

struct packed{

bit tr ; // Control:  Transmit 

direction

bit ds ; // Control:  Descriptor

bit rr ; // Control:  Response required

bit [1:0] tag ; // Data: Tag ID

bit [31:0] addr ; // Data: DMA address

} dmareq;
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In this case, the individual modules again tend to communicated to their nearest 

neighbors, with no direct connection, for instance, between the Transceiver 

Interface Module and the Protocol State Machine.

Both of these designs have architectures that limit interdependencies between 

modules. A poorly architected design would look something like Figure 8-8.

Figure 8-8 A poorly architected design with excessive connectivity.

Figure 8-7 Block diagram of the USB.
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Here each module communicates directly with (almost) every other module. 

The connectivity graph is almost complete instead of sparse. The result is that 

changing any one module (fixing a bug, or adding a feature ) is likely to require 

modifying many, if not all, the other modules. This can lead to a design that is virtu-

ally impossible to maintain.

Concurrency and Analysis

In this chapter, as in others, we have tried to show techniques for minimizing con-

currency in order to facilitate analysis of a design. By using a single state machine 

within a module, we minimize concurrency within the module.

By using a FIFO between modules, we minimize the impact of concurrency 

between modules. Although the two modules operate concurrently, the FIFO isolates 

much of this concurrency. Each module can be analyzed independently, and be thought 

of as receiving and delivering a data stream to its neighbors. Even though the modules 

operate concurrently, there is no need to analyze them concurrently, except to make 

sure the FIFOs are of the appropriate depth to meet performance objectives.

This appropriate FIFO depth is often difficult to determine analytically, but can 

be determined by simulation. For small designs, we can run RTL simulation with 

realistic workloads to determine the required FIFO size. For larger designs, we may 

have to use high level modeling: transaction level models that are fast enough to 

allow us to run real workloads and that are accurate enough to reflect delays and 

latencies in the system.

Total State Space

If we look again at the BCU design, we see that by re-structuring the design we reduced 

the internal state space from about 256 to about 24. This was described in Chapter 3.

In this chapter, we reduced the input state space of the BCU from about 220 to 

about 214. The total state space of the design is the cross product of these two state 

spaces, so we have reduced the total state space of the BCU from:

256 * 220  to 24 * 214

or from essentially infinite to about 262,000. Although this state space is still large, 

it is now small enough that we can consider verifying a large part (if not all) of it.

Summary

In previous chapters, we showed that careful, structured design of control- dominated 

and data-path dominated code can result in much simpler designs. In this chapter, 

we showed that the same principles apply to interface design.
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Interfaces, such as a FIFO interface, that decouple the two modules can greatly 

reduce the complexity of the overall design. In a tightly coupled design, the com-

plexity of the design is the cross product of the complexity of the individual mod-

ules. In a decoupled design, the complexity is the complexity of the interface. With 

a well-structured interface, this can be orders of magnitude smaller.

A well-structured interface uses structs to group wires into fields and to separate 

these fields into data and control words. So we move from thinking about wires and 

bits to thinking about control, data, and transactions. Enumerated types reduce the 

state space complexity of the control word in the interface.
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This chapter extends some of the concepts introduced in earlier chapters, and 

applies them to the IP, subsystem, and chip level.

A central point of this book so far is to develop useful metrics of complexity in 

design, and then use these metrics to identify:

Methods for simplifying designs so they are more likely to be functionally correct•฀

Opportunities for tools – both synthesis and verification – to help develop and •฀

verify designs better

Language constructs that would make it easier to develop simpler designs•฀

All of the techniques described so far are responses to what the metrics tell us.

The key metrics proposed include:

Lines of code•฀

Internal (shallow) state space•฀

Input state space (we ignore output state space since it is someone else’s input •฀

state space, but this may be a mistake)

Structure – how many objects in the design (so reward •฀ structs and classes and 

such, punish random wires)

Numbers of interfaces to a module•฀

Module connectivity – how complex the connectivity graph is for a given IP.•฀

To this point, these metrics have been applied to the IP or block level of design. 

The question now is: 

What about the complexity of an IP as a unit?•฀

How do we measure complexity at the SoC level?•฀

What techniques can we use to minimize this complexity?•฀

What overall benefits should we be able to realize by doing so?•฀

Chapter 9

Complexity at the Chip Level

Because of the possibility of human or mechanical error, neither the author, Synopsys, Inc., nor 
any of its affiliates, including but not limited to Springer Science+Business Media, LLC guaran-
tees the accuracy, adequacy or completeness of any information contained herein. In no event shall 
the authors, Synopsys, Inc. or their affiliates be liable for any damages in connection with the 
information provided herein. Full disclaimer available at: p. v of Frontmatter.



124 9 Complexity at the Chip Level

To answer these questions, we will extend some of the techniques used for 

design at the block level. 

We extend the concept of the command interface to the transaction interface, and •฀

develop a metric for the interface complexity of an IP

We extend the concept of module connectivity to IP connectivity at the  subsystem •฀

and then the SoC level

In looking at module connectivity we will use a concept similar to the cyclo-

matic complexity metric used in software.

Overview

Cyclomatic complexity is a method for measuring the complexity of software 

code. It was introduced by Thomas McCabe in his paper “A Complexity 

Measure” [17] published in 1976.

Cyclomatic complexity is a graph-based metric. It considers a piece of soft-

ware (a function, method, class, etc) as a graph and calculates a metric based on 

the numbers of nodes and edges. The intent of the metric is to measure the num-

ber of linearly independent paths through the code.

Specifically, the nodes in the graph are blocks of statements that are always 

executed as a unit; that is, blocks of statements that have no conditional state-

ments (if, case, for, etc).

The edges in the graph are directed edges; two nodes are connected if the second 

node (group of statements) might be executed immediately after the first node 

(group of statements). For instance, if there is an if statement in the first group of 

statements that (under a specific condition) calls the second group of statements, 

then there is a directed edge from the first group of statements to the second group.

Details

The cyclomatic complexity of a piece of code is the count of the number of 

linearly independent paths through the code. For instance, if the source code 

contains no decision points such as if statements, case statements or for loops, 

the complexity is 1, since there is only a single path through the code.

If the code has exactly one if statement containing exactly one condition there 

would be two paths through the code, one path where the if statement evaluates 

to true and one path where the if statement evaluates to false.

The formal mathematical equation for the cyclomatic complexity of a struc-

tured program (methods in object-oriented code) is defined on the control flow 

graph of the code to be:

CC = E – N + 2P

Where 

CC is the cyclomatic complexity

E is the number of edges in the control flow graph

N is the number of vertices in the control flow graph

(continued)
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P is defined as follows:

For a single method, P is always equal to 1. Cyclomatic complexity may, how-

ever, be applied to several methods at the same time (for example, to all of the 

methods in a class), and in these cases P will be equal to the number of methods 

in question, as each method will appear as a disconnected subset of the graph.

In his paper, McCabe shows that the cyclomatic number equals the maximum 

number of linearly independent paths in the code. That is, the cyclomatic com-

plexity of any structured program with only one entry point and one exit point 

is equal to the number of decision points (conditional statements) contained in 

that program plus one.

For example:

public int getFoo (int bar) {

int rslt = 0;

if (bar == 0) {

rslt = 2;

} else {

rslt = 0;

}

return rslt;

}

This code has two decision points (if and else) plus the entry point adds one, 

for a cyclomatic complexity of 3. Graphically:

E = 5, N = 4, P = 1 so CC = 3
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From Command to Transaction Interfaces

When talking about an IP block as a collection of modules, we described the inter-

faces as a set of commands (the control interface) and data. In most IP, the com-

munication between modules is simple and the timing of this communication is 

relatively straight-forward. Command and data is typically delivered in one clock 

cycle, either directly from the sending module or from a FIFO.

When we look at an IP embedded in an SoC, the situation is different. Now, data 

and command may take several cycles to go from one IP (say, the CPU) over a bus 

to another IP (say, a data processing block like a JPEG core). The simple command/

data style of interface is no longer a good model for this kind of communication.

Instead of looking at an IP as simply a collection of modules (as we did earlier 

in the book) we can look at it in the general form shown in Figure 9-1. This general 

model has data coming in and data coming out of the IP. The detailed behavior of 

the data path is controlled by the control registers, written through the bus interface 

from a CPU or host processor.

Bus Interface

Control Registers

N bits = 2N states
Data Path

Transaction

Setup
Transaction

Data

Data In

Figure 9-1 A general model for an IP.

We now think of communication to/from this IP as a set of transactions. Within 

the IP, a transaction may just consist of one module popping a control and/or data 

word off a FIFO that was written by a different module.

When we look at how the IP functions within the chip, transactions become 

more complex. Within the context of the chip, one transaction may consist of the 

CPU writing a large number of registers in the IP in order to set up the data path 

correctly. Another transaction may consist of the IP writing a large block of data 

over the bus to a on-chip memory.
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There are several of ways of looking at these transactions, resulting in different 

kinds of metrics for the interface of the IP, and the complexity of IP as it behaves 

in the SoC.

1 register read/write = 1 transaction•฀

The complete setup of all control registers = 1 transaction•฀

The complete setup of all control registers + the transfer of data to memory =  •฀

1 transaction

JPEG Example

The JPEG IP (whose DCT we discussed in Chapter 7) has seven registers; they are 

nominally 32 bit registers, but only registers 1, 2, and 3 use any of the upper 16 bits. 

The register map is shown in Figure 9-2. In addition to setting up these registers, it 

is necessary to load quantization values and Huffman coding values into memory.

As we did in analyzing modules, we can separate these fields into data and 

control.

Basically, registers 4-7 and the Huffman and Quantization tables are data: they 

affect the data path in the JPEG IP. Registers 0-3 affect the control of the JPEG:

Register 0 starts and stops processing•฀

Register 1 determines whether we are encoding or decoding and how headers are •฀

processed

Figure 9-2 Registers 0-3 (32 bits) and Registers 4-7 (16 bits only).
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Register 2 determines the number of Minimum Coded Units (MCUs) to •฀

process

Register 3 determines the number of MCUs between start markers and the num-•฀

ber of pixels per line

The fields NMCU, NRST, Ns, Ysiz and Xsiz are effectively deep state. The shallow 

state for these registers consists of eight bits:

1 bit from register 0•฀

7 bits from register 1•฀

Thus, the shallow state of the register set, as seen by the host CPU, is 28, or 256. 

This is a very manageable state space. Programming and operating the JPEG is a 

straight-forward process.

USB Example

The Wireless USB core (of which BCU, described earlier, is a part) is a much more 

complex design. It has approximately 127 registers, depending on the configura-

tion. This is clearly a very large number of registers to read and write in order to 

set up correct operation of the core.

Many of the registers are effectively data: address pointers for where data should 

be delivered to/sent from by the core, and the like. But a very conservative estimate 

of the number of control bits in this register set is at least 142, so the shallow control 

state space of this register set is 2142.

Clearly, this state space is way too large for a human to comprehend. Also clear 

is that there are not 2142 different operations that the core can perform. Most states 

in this state space are not useful – in essence, they are illegal states. But nothing in 

the register map makes it explicit which states are legal and which are not.

In order to manage this space – to make the core so that users can program it – 

we need to apply a layer of virtualization on it, to simplify it down to a human level. 

We need to create a layer above the core that gives the user a simple programming 

model.

Software Driver

The most common solution to this problem is to provide the software driver along 

with the RTL for the core. The software driver reduces the enormous register state 

space to a (relatively) small number of operations: reading and writing data, and 

managing the network. Effectively, the driver restricts usage of the core to those 
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functions for which it was intended. It forces the user to program the register set 

only into configurations intended by the designers, and which have been tested.

An alternative solution to the problem of a huge register state space is to provide 

a layer of virtualization in hardware. Instead of seeing 127 registers, the program-

mer would see only one – which can be set to a small number of functions. These 

functions are then mapped by hardware into the (much larger number of) register 

reads/writes required to activate that function.

The advantage of the software driver as the virtualization layer is that it is flex-

ible and does not impact the gate count of the core. The advantage of the hardware 

layer is that it is not flexible – the programmer cannot modify the mapping of func-

tion to registers, and so cannot put the core in a state not intended by the designers 

and not tested by them.

Virtual Platforms and Software Development

The key role played by the software driver is that it translates register reads and 

writes (the primitive transactions of an IP core connected to a bus) into a set of 

higher level transactions (such as reading a packet or processing a video frame). 

Having a trusted software driver for an IP can be an enabler for software develop-

ment on virtual platforms.

Virtual platforms use behavioral models for the various components of an SoC 

to create a high level model of the chip for software developers to use while devel-

oping and debugging their embedded software. These models are too high level to 

model all the detailed behavior of the IP – at most they model registers for read/

writes, but not the behavior that results from reading and writing these registers. So 

there is no way to verify that the specific reads and writes are correct. Instead, we 

rely on trusted software drivers to make sure that specific read and writes occur 

correctly. The virtual platform then models only the data transactions of the IP. 

By doing so, simulation on the virtual platform is extremely fast, allowing users to 

test and debug software effectively.

Connectivity and Complexity at the SoC Level

Given an IP core and its register map/software driver, we can calculate a complexity 

metric for it based on the ideas described above.

Once we have a collection of IP – and memory and IO – in the form of an SoC, 

we need a metric to calculate the complexity of the overall chip. And we will need 

techniques to keep this complexity under control.

There are several ways to look at a system. We start with a standard block 

diagram.
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Function and Structure

The block diagram in Figure 9-3 shows a simple system.

CPU MEMORY

Bus Interface

CSR
Data

Path

USB

Bus Interface

CSR
Data

Path

Display Driver

Video Codec

Figure 9-3 Diagram of a very simple SoC.

This block diagram shows the functionality of the system and the structure. A more 

complex system might consist of a number of subsystems; the block diagram can 

show this hierarchical structure.

In terms of complexity, the structure of the system, as shown in the block dia-

gram, can tell us whether we have violated the rule of seven: if we have more than 

7-9 blocks at any one level of hierarchy, then the structure is getting too complex, 

and we need to re-partition.

Connectivity and Bandwidth

We can view this system as a network or graph, as shown in Figure 9-4. In this 

graph, we can focus on which blocks can communicate with which blocks. In par-

ticular is shows what communication mechanism (in this case the Bus) is used for 

communication.

One of the major concerns in any modern SoC design is to assure adequate com-

munication bandwidth between elements in the system.
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In the trivial case shown in Figure 9-4, the bottlenecks are likely to be the bus 

and the shared memory. Assuming the video codec, USB and display driver all have 

DMA capability, there will be to be up to four bus masters competing for bandwidth 

through the bus to the memory.

Assuring adequate bandwidth early in the design cycle is challenging. We can 

come up with a reasonable guess of average bandwidth requirements, and try to 

design the bus and memory subsystem to provide at least this amount of bandwidth, 

and preferably more (to handle peak loads).

Typically, we can only achieve reasonable confidence in the communication/

memory bandwidth by running simulations of actual workloads with fairly accurate 

models. Early in the design of the system, we can use transaction level models – 

models of the interconnect and memory systems - to give us an indication of 

whether the bandwidth is sufficient. But the ultimate proof of performance is to run 

actual workloads on a detailed model of the design, such as an FPGA prototype or 

emulation system.

CPU

BUS

MEM VC

DD
USB

Figure 9-4 Connectivity graph for Figure 9-3.

Running real software on an FPGA prototype can also provide a large degree of 

confidence in the functional correctness of the hardware design. Because it can run 

many orders of magnitude faster than a simulator, the prototype can cover many 

more test cases than simulation. But there are still limits to what prototype testing 

can achieve, depending on the complexity of the system, and the size of the verifi-

cation space.

Transactions and Complexity

One approach to assessing the overall complexity of a system is to analyze the 

transaction space of the design.
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In the connectivity graph in Figure 9-5 we show the logical connections rather 

than the physical connections in the system. The bus is removed – since it only 

provides a path for transactions – and we show instead who can communicate with 

whom.

Note that in the block diagram we have 5 nodes (the 5 blocks). The bus structure 

implies that any block can communicate with any other block, resulting in a com-

pletely connected graph. Functionally, of course, this is not accurate, since (for 

example) the USB would never communicate directly to the display driver.

The Connectivity/Bandwidth graph shows the bus; but the bus does not generate 

transactions. So it affects the performance of the system, but not the functional 

complexity.

CPU
MEM

VC

DD
USB

Figure 9-5 Graph showing the logical connectivity but not the physical connectivity for Figure 9-3.

The transaction graph in Figure 9-5 shows the possible paths of transactions. 

The CPU can talk directly to all the other blocks (to read/write registers and set up 

transactions, if nothing else). In addition, the USB and video codec communicate 

directly with memory, and the video codec communicates directly with the display 

driver.

Thus, we have 5 nodes and 7 edges in our graph. We then annotate the graph 

with the number of different transactions possible on each edge. For instance there 

may be exactly two possible transactions between the Video Codec and the Display 

Driver: the Video Codec can send a frame of data to the Display Driver, and the 

Display Driver can report status back to the Video codec.

The complexity of the system is then the product of all the possible transactions 

on all the edges.
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If the design includes a lot of virtualization, as described earlier, then the number 

of transactions may be small: say, 5 transactions per edge. Then the complexity of 

the system is:

75 = 16,807

So every transaction could be tested, even in simulation. But even small 

sequences of transactions pose a challenge to simulation. Testing all possible two-

transaction sequences requires 

75 * 75 = about 282 million transactions

Assuming 20 clock cycles per transaction and a simulation speed of 100 cycles 

per second, this would require about 16,000 cpu hours. For an FPGA prototype 

running at 100MHz, though, this would take only about a minute. But even for an 

FPGA prototype, testing all possible sequences of 3 transactions would require:

75 * 75 * 75 = about 4.7 * 1012 transactions

Or about 280 hours.

Limits to Chip Level Verification

These numbers indicate that only a very small subset of system functionality can 

be verified at the chip level – even if we use transaction level simulation or an 

FPGA prototype.

The first conclusion is that we cannot hope to verify IP at the chip level. We must 

build chips out of fully verified, trusted IP.

The second conclusion is that we can only do a limited amount of chip-level 

verification. We can verify that the basic transactions work and that the IP and 

buses are connected correctly. We can measure performance, and do some basic 

software testing.

Of course, we should do all we can do to minimize system complexity at the 

chip level. This will allow us to verify more of the system behavior and give us 

more confidence that it will function correctly once it is fabricated.

One strategy for minimizing complexity in a system as well as the verification 

effort is to manage the transaction complexity of the system. If we use virtualiza-

tion (most likely through software) to restrict the possible sequences of transac-

tions, we may be able to reduce the complexity of the system to a tractable level. 

The challenge is that there are a number of largely autonomous agents (in our case, 

the CPU, USB, and video codec) generating transactions, so there is no obvious 

way to assure exactly what sequences of transactions can occur.

But clearly, we need to manage system complexity by keeping the number of  

transaction types on any edge of the graph to a minimum. And we need to design and 

verify the chip at the transaction/software-driver level. If we deal with any blocks  
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at the register read/write level, then we quickly (as in the case of the USB described 

earlier) end up with the number of transactions per edge in the range of 2100, or 

essentially infinite.

Sub-systems and SoC Design

There are then two arguments for using hierarchy to partition a large SoC into a set 

of subsystems. The first, of course, is the rule of seven: it is difficult to reason about 

a system that has much more than 7 to 9 blocks at any one level of hierarchy. The 

second argument is that partitioning the system helps manage the transaction com-

plexity of the system.

CPU MEM VC

DD

USB

CPU MEM AC

MEM

Figure 9-6 System partitioned into separate audio and video subsystems.

If we partition a system, say, into an audio and video subsystem (as shown in 

Figure 9-6), sharing a data input and a common memory, then we partition the 

transactions as well. The audio subsystem and video subsystem each may have a 

high number of internal transactions. But the transactions between each subsystem 

and the rest of the chip are limited to the raw data input and the processed audio/

video output.

SoC designs are so complex today that most are partitioned into multiple sub-

systems, or even hierarchies of subsystems (that is, subsystems of subsystems). 

Thus, at every level of design from the smallest module to the complete chip, we 

can use the basic strategy of encapsulation and well-designed interfaces to mini-

mize the effective complexity of the system. We can structure the design so that 

global problems are broken up into a manageable set of smaller, local, tractable 

problems.
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SoC Debug

One of the great challenges posed by an IP-based chip design methodology is 

that the IP and software can come from many sources. Some of the IP will come 

from third party providers and some will come from internal block developers. 

But with today’s SoCs, the engineers designing and verifying the chip are not 

the engineers developing the IP. The result is that the chip designers do not know 

the internals of the IP. This makes debugging subtle problems at the chip level 

very difficult.

A similar problem is faced by the engineers writing the different layers of 

software that run on the chip. The engineers writing the drivers are not the engi-

neers who wrote the RTOS. And the software engineers developing the applica-

tion software typically do not know the internals of the RTOS or the drivers.

Although this IP-based SoC design methodology is essential for building 

complex SoCs, it can make debug very challenging. To constrain this challenge 

it is essential that the blocks are all robustly verified before integration into the 

chip.

It is also essential that the interfaces are well-designed and standardized. For 

hardware blocks this means standard bus interfaces such as AHB[20], AXI[20], 

and OCP[21]. It also helps if the transactions that occur between blocks are well 

defined and documented. For the chip design engineer, understanding the inter-

faces and transactions at the chip level are key for chip level debug.

(continued)
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These complexities become even greater as the sources of IP expand. IP can 

be purchased from a third-party IP vendor, developed internally, or it can be 

legacy code from a previous project. It can be highly configurable, including 

configurable processors. Some of it may be generated from a high level synthe-

sis tool, with the golden source code in C, C++, SystemC or Matlab.

The best way to integrate and verify IP from these various sources is still an 

open question. But having a high level model for the IP (and the chip) can allow 

verification engineers to develop and debug their tests more quickly and easily 

than on RTL.

One common technique is to use processor-driven testing. In this case, tests 

are written in C and run on the central processor. Bus functional models then 

drive the IO to/from the chip to make a complete testbench.
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Summary

This chapter makes the following key points:

 1. IP must be fully verified before it is integrated into the system. Very little func-

tional verification can be performed at the chip level.

 2. Sofware drivers are a key component of IP. Many IPs are simply too complex to 

be programmed correctly by software engineers not intimately aware of all the 

internal details of the design.

 3. Hierarchy – that is, subsystems – are critical to managing the complexity of 

today’s SoC.

 4. At the subsystem and chip level, verification can and should focus only on verify-

ing the connectivity and performance of the system, not its basic functionality.

One comment on this last point: there is a fundamental, underlying conflict 

between IP and SoC design. With today’s practices and tools, it is not possible to 

completely verify a complex IP at an acceptable cost. We can make dramatic 

improvements from where we are today. And it is hoped that some of the ideas in 

this book will contribute to these improvements.

But no one has shown that it is possible to completely verify that a complex 

piece of code is functionally correct. It is not even clear if this is a well-defined 

problem – since the underlying intention of a design is often vague and poorly 

defined. The one hopeful sign is that the flight software of the space shuttle (about 

500,000 LOC) appears to be bug free. But the cost of developing and testing this 

software was on the order of $1,000 per line of code. For a commercial IP of, say, 

200,000 LOC, this would equate to a development cost of $200M. This cost would 

have to come down by at least a factor of 10 to be viable for chip and IP design.

So the intent of this chapter is to show how limited our ability is to verify at the 

chip and system level, and to give some guidance on how to structure designs for 

optimal verification at the chip level, and to emphasize the importance of bottom-up 

verification.
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In the previous chapters, we have discussed the challenges in SoC design and how 

to meet these challenges by using current tools and languages most effectively. In 

this chapter we extend our discussion to new paradigms, including high level design 

and synthesis.

The Challenge

As chip complexity rises faster than project budgets, there is a compelling need to 

improve designer productivity.

In the past, the move to RTL design (enabled by synthesis technology) and 

design reuse have provided significant boosts to designer productivity, particularly 

for SoC design. Raising the level of design above the RTL level is the most promis-

ing path to providing another significant boost.

To provide this benefit, raising the level of abstraction must address two 

problems:

 1. It must enable designers to produce larger, more complex, but still optimal 

designs for the same effort.

 2. It must dramatically reduce the amount of verification effort required for these 

complex designs.

The verification aspect of this problem is key. The two components of SoC 

design costs that are growing the fastest are functional verification and software. 

For many IP designs, the verification effort is 80% or more of the total project 

effort. Clearly, no significant progress can be made in improving overall design 

productivity without addressing the verification challenge.
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High level design and high level synthesis provide a promising approach to these 

problems. The basic objective of current high level synthesis tools is to allow the designer 

to code at the untimed, algorithmic level, typically in C/C++/SystemC. Automated 

synthesis then converts the untimed model into a fully timed, pipelined model, typi-

cally in Verilog, that can be synthesized into gates by traditional synthesis tools.

The advantages of designing and coding at this level are:

 1. The designer can evaluate many different architectures before committing to 

detailed design.

 2. The amount of code required for a given design decreases by an order of magni-

tude, typically reducing the number of bugs by a similar amount.

 3. Untimed code is much easier to test, debug, and reason about.

Current High Level Synthesis Tools

The current high level synthesis tools have had some success in some designs. In 

particular, these tools do well with algorithmic designs such as video and audio 

codecs, where loops of complex arithmetic operations dominate the design. The 

tools can partially unroll the loops, schedule the operations, optimize the sharing of 

multipliers, and so on.

For example, consider the DCT from Chapter 7. A fragment of the C code for 

this looks like Example 10-1:

The high level synthesis tool maps this to a hardware template. One such 

 hardware template is shown in Figure 10-1. The loops of arithmetic operations 

are mapped onto a set of hardware resources such as multipliers and adders (or an 

ALU), with scratch pad memories and registers to hold temporary values. These 

resources are shown on the right side of Figure 10-1.

The looping itself is controlled by a state machine, shown on the left side of 

Figure 10-1.

Example 10-1 

for(y=0;y<8;y++){

 for(x=0;x<8;x++){

 for(u=0;u<8;u++){

 v=block[y][x]*c[x][u];

 v+=2048;

 v>>=12;

 if(s[x][u]) v=-v;

 reg[u]+=v;

 }

 }

}
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The high level synthesis process is shown in Figure 10-2. The key steps in this pro-

cess are scheduling, allocation and binding. These steps determine which arithmetic 

operations are executed in which cycle, how operators are shared, and how the resources 

are used. Figure 10-3 shows these steps in more detail: the design is mapped to a 

graph of operations, and then the graph is partitioned (scheduled) into clock cycles. 

Finally, this schedule is mapped onto hardware resources like ALUs and registers.

Figure 10-1 Typical Target Architecture for High Level Synthesis[22]. © 2009 IEEE. Used by 

Permission.

Figure 10-2 Basic High Level Synthesis Design Steps[22]. © 2009 IEEE. Used by Permission.
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Typically, code such as that shown in Example 10-1 will not produce acceptable 

QOR (in particular area) if synthesized directly. The designer usually must either 

modify the code or provide guidance to the tool (through a script or GUI). At the 

very least, the designer needs to tell the tool what the target latency and cycle time 

are. Often, the designer needs to guide the tool in terms of which loops to unroll 

and which loops not to unroll.

In addition, typical hardware designs operate on variables that may not be an 

“int” in C. The DCT, for example, may operate on 8-bit or 16-bit pixels. For area 

efficiency, we must indicate to the synthesis tool, either in code or via the GUI, the 

correct size of the variables. Tools typically use some form of extended C (often 

SystemC data types) for specifying variable sizes.

Figure 10-3 Example of Scheduling, Binding and Allocation[23]. © 2009 IEEE. Used by 

Permission.
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Thus, the C code that is synthesized is not the purely untimed, integer C we 

started out with, but rather C code to which considerable timing and sizing informa-

tion has been added. Most high level synthesis tools provide some capability for 

simulating this partially timed C code before synthesis.

For some designs, like the DCT, providing timing information is not sufficient 

to produce good QOR from high level synthesis. There are patterns in the constant 

arrays (c[x][u] in the code fragment in Example 10-1) that can be exploited to make 

the arithmetic much more efficient. Most current tools cannot spot and exploit these 

patterns; rather, the C code must be modified to produce a design that is comparable 

to hand-coded RTL in area.

There are many advantages in using high level design and synthesis for DSP-

type applications. The amount of code can be reduced significantly: in some cases 

it can be reduced by a factor of 10x. There are typically fewer bugs (if only because 

there are fewer lines of code), and these bugs are typically found earlier in the 

design cycle.

Successes

Users of C-level synthesis have reported significant successes, especially in 

datapath-centric designs like video and audio codecs. One design team has 

reported doing a complete video codec that supports multiple standards 

including H.264. This design was coded entirely in ANSI C. Compiling this 

C code with the High Level Synthesis tool produced a single hierarchical 

RTL design. No manual intervention was required to generate production-

ready RTL. The resulting RTL synthesizes to about 700k gates.

Based on this experience, and previous projects using high level synthesis, 

the design team reports a code compaction of 3x over RTL. The combination 

of fewer lines of code and a C-based verification methodology has had a 

significant impact on verification.

C-Level Verification

Verifying the C code was significantly easier than for an equivalent RTL 

design. The team reported a 3x reduction in bugs as compared to RTL coding. 

The fact that C has a sequential programming model (that is, there is no con-

currency in the C code) makes the C code fundamentally easier to debug than 

RTL. Debugging an issue in C took half the time taken to debug an issue in 

RTL. Due to the speed of C simulation the team was able to verify the algo-

rithmic design much faster than in RTL.

RTL Verification

The C code was extensively verified by the design team before synthesis. 

After synthesis, the RTL was verified by a separate verification team. This 

(continued)
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But there are still some significant opportunities for improving the current versions 

of these tools:

 1. It often takes a significant effort by the designer to produce an untimed model 

that is competitive in area with a hand-coded design.

 2. Users have found that a significant amount of verification must still be done at 

the RTL level. The successful results mentioned above achieve a 2x overall 

improvement, but we need a path to still larger gains.

 3. Most users find the current tools inadequate for control-dominated designs.

Part of the problem is that the scheduling and pipelining algorithms used by 

these tools need to improve, and over time they certainly will.

Another part of the problems is that there is a huge gap between high level 

design (as supported by today’s tools) and RTL design. Specifically:

High Level Design RTL Design

Abstraction Untimed Fully timed, pipelined

Language C++/SystemC Verilog/SystemVerilog

Functional Debug Source code debug (gdb) Waveform Viewer

So the two approaches are different in abstraction, language and tools. This is a 

very large gap. Imagine if gate level netlists were in a different language from RTL, 

and required an entirely different set of simulation tools.

As long as such a dramatic gap exists, high level design will be very limited in 

its adoption and in the value it can deliver to designers. The goal of this chapter is 

to discuss how to close the gap between high level design and RTL design.

team reported that the synthesized RTL was more thoroughly verified – and 

had significantly fewer bugs – than the typical hand-coded RTL that they 

receive.

After an initial cycle of debug, the RTL verification became more of a 

regression test as the C design was refined and re-synthesized.

One lesson learned was that the more code that is encapsulated in C, the 

better. When hand coded and synthesized RTL are combined, bugs become 

harder to find and verification becomes more difficult.

Bottom Line

The overall verification effort for the project was estimated to be about half 

that of verifying an equivalent RTL design created by hand. This resulted 

in a significant productivity improvement and reduction in the overall proj-

ect cycle time.
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Closing the Abstraction Gap

The fundamental problem with the current approach of C-based high level synthe-

sis is its premise that it is possible to synthesize high-performance RTL from 

untimed C. The reality is that synthesis requires a “partially timed” design descrip-

tion that contains more low level information than the pure C code. At the same 

time, unless a full RTL language is used (such as SystemC), it is not possible to 

describe the detailed timing relationships required for many control-dominated 

designs, such as a USB or DRAM interface.

On the other hand, typical RTL contains a great deal of low level information 

that is redundant and unnecessary. The first few chapters of this book describe the 

“syntactic fluff” and unstructured code found in most designs. More fundamentally, 

RTL code (and RTL synthesis tools) requires a detailed, cycle-by-cycle description 

of the circuit.

In many cases this is more information than the designer cares about. For instance, 

the design specification may allow a range of latencies; it may allow a tradeoff 

between latency and power. The specification may also allow a slower or faster 

start-up sequence than the RTL describes. Or the RTL may describe a precise timing 

between when registers are written and when they affect the behavior of a design, even 

if the designer knows that registers are only written when the circuit is not active.

Thus, the detail required for RTL demands that a design over-specify the behav-

ior of a design. There are no timing “don’t cares” in RTL the way there are logical 

“don’t cares.”

Figure 10-4 Gap between RTL and high level synthesis is too large.
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To improve the productivity of hardware design and verification, to raise the 

abstraction of design across the whole spectrum from data path to control code, we 

need to find a flexible way of describing circuit behavior that has the right amount 

of detail for the problem being solved. That is, we need code that contains the opti-

mum amount of (timing) information.

Designers need to provide enough information so that tools can do a good job of 

scheduling and optimization. But designers should not have to provide any addi-

tional information. The less timing (and variable sizing) information in the code, 

the easier the code is to review manually and to verify automatically.

But above all else, we need to provide a productive design environment where we 

can move seamlessly from very high levels of abstraction (untimed C) to very low levels 

of abstraction (RTL SystemVerilog) as required to solve a specific design problem.

SystemC

High Level Synthesis tool providers have recognized that untimed C does not 

address the needs of designers. Most have extended their tools to support 

SystemC – a template library (and reference simulator) that extends C to be a full 

RTL language. Unfortunately, SystemC does not really address the problems 

outlined above. It is a template library added to a very large language (C++), not 

a domain specific hardware description language (see section on Domain Specific 

Languages below).

SystemC has proven to be very useful as a high level modeling language for 

virtual platforms. It allows software developers to work in a C++ environment for 

developing and debugging their embedded software. Because users are debugging 

their software, and not the SystemC models, the shortcomings of SystemC are not 

a major impediment.

But as a hardware design language, SystemC has major liabilities. It is verbose, 

cumbersome to use and very difficult to debug. And it has much more syntactic 

fluff than Verilog.

A current trend is to extend C-based high level synthesis with SystemC to pro-

vide the hardware-specific capabilities needed for high level design. Unfortunately, 

because of SystemC’s shortcomings, this combination has not yielded the produc-

tivity gains designers are seeking.

The Right Usage Model for High Level Design

The adoption of SystemC as a hardware design language is an accident of history. 

Most high level synthesis tools were developed before SystemVerilog was devel-

oped. Verilog95 and Verilog2001 offer little support for abstract design. But most 
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importantly, initial marketing of high level synthesis completely misunderstood 

the market. HLS companies initially envisioned that algorithm developers could 

use HLS tools to design hardware. Over the last half dozen years or so, it has 

become clear that this is not going to happen.

Algorithm development and hardware design are two separate disciplines 

requiring different skill sets and knowledge. Good design requires that architects, 

algorithm developers and hardware designers work together. Forcing hardware 

designers to work in C or SystemC (neither of which is acceptable as a hardware 

design language) makes no more sense than forcing algorithm developers to 

use Verilog95.

The solution is to have an environment that allows algorithm developers and 

hardware designers to work together effectively. Such an environment must support 

C++, must allow C++ to be extended with hardware data types (arbitrary sized 

variables), and must provide a full RTL capability.

Extending C++ to become a true HDL would create yet another language, and 

this seems an unlikely and unnecessary path. It is much more feasible to use 

SystemVerilog and C++ together to achieve our goals.

SystemVerilog as a High Level Design Language

SystemVerilog already employs many C/C++ constructs (classes, structs, enu-

merated types). It also supports RTL as well as extensive hardware verification 

capabilities. Also, most simulators support C/SystemVerilog co-simulation. Thus, 

combining C and SystemVerilog seems the right basis for moving forward.

Example 10-2 shows (part of) the C code for the DCT on the left. On the right 

it shows the same code converted to SystemVerilog. The changes required are:

 1) Adding apostrophes to the constant array declarations (int c)

 2) Changing void dct to function dct (and adding endfunction)

 3) Converting {} to begin end

 4) Changing the variable reg to reg_x since reg is a reserved work in Verilog

These changes are very minor, and could be automated. Thus, with minor 

modifications, a SystemVerilog simulator could be enhanced to support this 

level of C natively. Then it would be possible to take the original C code and 

incrementally modify variables from integers to SystemVerilog types such as bit 

and logic, while remaining in the same environment and using the same debug-

ger. This would give C code all the data types required for high level synthesis, 

while providing the full capability of SystemVerilog to describe lower level 

aspects of the design.

Thus, combining C and SystemVerilog would allow a smooth “lowering” of C 

to start closing the gap between untimed C and RTL design abstractions.
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Example 10-2 Left = C, Right = SystemVerilog. Changes are highlighted in red.

int block[8][8];     int block[8][8];

int s[8][8]={     int s[8][8]=’{

{0, 0, 0, 0, 0, 0, 0, 0},    ‘{0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 1, 1, 1, 1, 1},    ‘{0, 0, 0, 1, 1, 1, 1, 1},

{0, 0, 1, 1, 1, 0, 0, 0},    ‘{0, 0, 1, 1, 1, 0, 0, 0},

{0, 0, 1, 1, 0, 0, 1, 1},    ‘{0, 0, 1, 1, 0, 0, 1, 1},

{0, 1, 1, 0, 0, 1, 1, 0},    ‘{0, 1, 1, 0, 0, 1, 1, 0},

{0, 1, 1, 0, 1, 1, 0, 1},    ‘{0, 1, 1, 0, 1, 1, 0, 1},

{0, 1, 0, 0, 1, 0, 1, 0},    ‘{0, 1, 0, 0, 1, 0, 1, 0},

{0, 1, 0, 1, 0, 1, 0, 1}    ‘{0, 1, 0, 1, 0, 1, 0, 1}

};        };

int pixout;     int pixout;

void dct(){    function dct();

  int y,x,u,v;     int y,x,u,v;

  int reg[8];           int reg_x[8];

/* Horizontal */    /* Horizontal */

for(y=0;y<8;y++){    for(y=0;y<8;y++) begin

  for(x=0;x<8;x++)      for(x=0;x<8;x++)

    reg[x]=0;    reg_x[x]=0;

  for(x=0;x<8;x++){            for(x=0;x<8;x++) begin

    for(u=0;u<8;u++){  for(u=0;u<8;u++) begin

      v=block[y][x]*c[x][u];    v=block[y][x]*c[x][u];

      v+=2048;    v+=2048;

      v>>=12;    v>>=12;

      if(s[x][u]) v=-v;    if(s[x][u]) v=-v;

      reg[u]+=v;    reg_x[u]+=v;

    }  end

  }        end

  for(x=0;x<8;x++) {       for(x=0;x<8;x++) begin

      block[y][x]=reg[x];  block[y][x]=reg_x[x];

    }       end

  }    end

    endfunction
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But to make this work, we need to raise the level of abstraction of RTL, specifi-

cally the synthesizable subset of SystemVerilog. SystemVerilog is the best infra-

structure on which to build a true high-level design environment. But as shown in 

the earlier chapters of this book, SystemVerilog as it is typically used is too low 

level for complex designs.

Raising the Level of Abstraction of RTL

At first, it might seem improbable that we can raise the level of abstraction while 

remaining at the RTL level. But the previous chapters show that there is a huge 

difference between well-written and poorly-written RTL, in terms of clarity of code 

and design complexity.

A number of authors have remarked that C is just portable assembly language. 

But this misses a key point. Although they operate at approximately the same level 

of abstraction, C provides a means of expressing this abstraction that is much more 

powerful than assembly language. In particular, it allows the development of pro-

grams that are much larger, more structured, and easier to get right than assembly 

language.

C++, of course, provides a whole new paradigm in programming – object oriented 

software – which provides a dramatic increase in abstraction above C. But C provides 

significant, incremental improvements of abstraction over assembly language.

Perhaps it would be useful to try to define what we mean by raising the level of 

abstraction. At the very least, we mean enabling code that is more concise, easier 

to understand, and more natural for the problem it is solving. There are two basic 

approaches to raising the abstraction of design:

 1) Leaving out (implementation) details that can be addressed by a compiler

 2) Using more appropriate primitives, especially primitives that express a design in 

a simple, appropriate way

C-synthesis tools use the first approach, leaving out timing details. But they are 

playing catch-up in the second approach, since they have eliminated many of the 

useful primitives (logic/bit) of Verilog, and are forced to extend C to put them back.

Matlab uses the second approach. By providing matrices and matrix arithmetic 

as primitives in the language, complex algorithms can be expressed (and tested) at 

a very high level of abstraction. The equivalent code in C or Verilog would require 

multiple for-loops, greatly obscuring the underlying intent of the code. Note that in 

focusing on the second approach, Matlab also addresses the first approach – using 

higher level primitives often results in leaving out implementation details. Matlab 

is a good example of a domain specific language.

The proposals in this book use both the first and the second approach to raise the 

level of abstraction of RTL above the level of Verilog (as it is commonly used 

today). The first approach is represented in recommendations not to “pre-synthe-

size” code. For instance, we should not code a multiply by constant as a shift and 
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add. Rather, we should leave it as a multiply, and let synthesis do the optimization. 

By leaving out such low-level implementation details we produce cleaner code and, 

it turns out, better synthesis results.

The recommendations to use tasks, functions, and a single state machine per 

module all represent a shift of which SystemVerilog primitives should be used to 

code RTL. By using these more appropriate, higher level constructs we raise the 

level of abstraction in our RTL code.

Domain Specific Languages

Domain-specific languages are a hot topic in software. One of the challenges in 

software development today is that both the applications (like speech recognition or 

internet searches) and the software development environment (C++ on parallelizing 

compilers targeting multi-core hardware) are getting extremely complex. To create 

the best software, a programmer has to be a world-class expert in the problem 

domain and in software development. This combination is becoming increasingly 

difficult to achieve.

One approach is to change the programming environment, to modify the pro-

gramming language to allow the developer to deal with constructs and operations 

that are specific and natural to the problem domain.

Martin Fowler provides extensive information on this topic in his book Domain 

Specific Languages[13].

SystemVerilog as a Domain Specific Language

Hardware design requires a domain specific language to meet the needs of today’s 

very complex designs. Unfortunately, SystemVerilog does not provide such a 

capability.

Just as C++ facilitates a higher level of abstraction than C, SystemVerilog pro-

vides incremental improvements over Verilog. In its verification capabilities, it 

provides a host of primitives not available in Verilog, including classes, dynamic 

and associative arrays, mailboxes, queues, assertions (including sequences) and 

many more.

On the hardware description side of SystemVerilog (the synthesizable subset), 

enumerated types, structs and unions, and interfaces provide abstraction mecha-

nisms that allow the engineer to code synthesizable RTL that is more structured 

than Verilog.

But there are still some fundamental shortcomings in the synthesizable subset of 

SystemVerilog. Largely for historical reasons, SystemVerilog does not provide 

constructs specific to and appropriate for the domain of digital hardware design. 

Verilog was developed before synthesis tools were available. It was intended pri-

marily as a general-purpose (hardware) simulation language. So “always” is really 
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a simulation directive; later, it was used by synthesis to indicate a flop (“always @

(posedge clk …)) or combination logic (“always @ (sig1 or sig2 …)). Now that 

synthesis is such a fundamental design tool, we need to revisit the hardware 

description side of SystemVerilog and make it a much more domain-specific 

 language – that is, raise its level of abstraction.

SystemVerilog Primitives

Designers of digital hardware think in terms of the following primitives.

Combinational gates•฀

Flip-flops•฀

Latches•฀

Clock•฀

Reset•฀

Above this level, designers think in terms of:

FIFOs•฀

Finite State Machines•฀

Above this level, designers think in terms of :

Packets•฀

Transactions•฀

Operations on matrices of pixels•฀

Figure 10-5 Defining the right primitives to make SystemVerilog a domain specific language for 

design.
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Note that none of these are primitives (types) in SystemVerilog. Instead we have 

Bit and logic•฀

Wire•฀

Reg•฀

Whether a specific reg (or wire or bit) is a flip flop or a logic gate depends on 

how it is used (always_ff or always_comb, etc.) It makes much more sense to define 

a variable to be of type combinational, flip-flop, clock, and so on. This would allow 

more effective automatic checking of the code, as well as eliminate a lot of syntac-

tic fluff that obscures RTL code today.

Proposal

We propose updating the synthesizable subset of SystemVerilog to make it a true 

domain specific language for digital hardware design. Doing so will shrink the gap 

between C-level design and RTL design, and provide a path to addressing the major 

C++ and SystemVerilog provide the key capabilities required for hardware 

design. At the behavioral level, C++ offers a very rich set of features, includ-

ing polymorphism, operator overloading, and so on. C++ allows developers 

to describe very complex systems, without worrying about what will end up 

in hardware and what will end up as software. SystemVerilog overlaps C++ 

as a behavioral language, providing classes, interfaces, and other object-ori-

ented features. But SystemVerilog is not as rich or as general as C++.

SystemVerilog has many specialized features for hardware design, includ-

ing clocks, resets, state machines, as well as higher level features such as 

structs and enums. Synthesizable C++ overlaps SystemVerilog as a detailed 

design language, but is not as rich or as general as SystemVerilog.

The ideal design environment enables engineering teams to work in both 

languages, smoothly transitioning from one to the other as required for a 

specific design task.
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short-coming of high level synthesis – how to raise the level of abstraction in 

 control-dominated design.

The next chapter presents some initial ideas of what this extended SystemVerilog 

should look like. Eventually, it should support all of the primitives listed above as 

first-class objects in the language: combinational gates, flip-flops, latches, clock, 

reset, FIFOs, finite state machines, packets, transactions, and matrices. But we 

confine our initial focus to the finite state machine and the primitives needed to 

support it: combinational gates, flip-flops, latches, clock, and reset.
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Overview

The extensions described in this chapter focus on providing an efficient finite state 

machine primitive for SystemVerilog. In earlier chapters, we described the chal-

lenges of state machine design and the value of reducing state space to a minimum. 

Using a hierarchical finite state machine can significantly reduce the complexity of 

a design, often by several orders of magnitude. But there is no explicit support in 

SystemVerilog for FSMs in general or for hierarchical FSM specifically. Thus, 

there is no uniform way of coding them.

Providing a uniform coding mechanism for a hierarchical finite state machine pro-

vides many benefits to the designer and to the EDA tools that assist the designer:

 1) All state machines would have the same fundamental structure, making design 

review much easier

 2) State machines would be explicit, enabling tools to do more checking and analy-

sis, as well as more optimized simulation and synthesis.

 3) Hierarchical state machines would be easier to code, encouraging designers to 

use them.

Basic Extensions

We start with Example 11-1. It shows a simple state machine that reads a packet 

from the input and sends the packet to the output.

The key changes in the code from standard SystemVerilog are the use of :

 1. smodule

 2. bit_  ff

Chapter 11

SystemVerilog Extensions

Because of the possibility of human or mechanical error, neither the author, Synopsys, Inc., nor 
any of its affiliates, including but not limited to Springer Science+Business Media, LLC guaran-
tees the accuracy, adequacy or completeness of any information contained herein. In no event shall 
the authors, Synopsys, Inc. or their affiliates be liable for any damages in connection with the 
information provided herein. Full disclaimer available at: p. v of Frontmatter.
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 3. bit_comb

 4. $clock

 5. $reset

 6. top_state_machine, sub_state_machine

 7. state_var

 8. done (to signal the end of a sub-state machine activity)

 9. combinational and sequential assignments in the same case statement

Each of these features is described in the next section.

Example 11-1 

smodule foo (

  input bit clk, resetn,

  input bit pkt_in_fifo_empty, pkt_out_fifo_full,

  input bit [31:0] data_in,

  output bit_ff [7:0] data_out = 8’h6,

  output bit_comb got_pkt,

  output bit_comb in_pkt_pop );

 

  $clock posedge (clk) ;

  $reset async negedge (resetn) ;

  struct packed{

    bit [7:0] header;

    bit [7:0] destination;

    bit [7:0] payload;

    bit [7:0] crc; } input_packet;

//--------------------- main state machine ------

state_machine tctrl ();

  typedef state_var {IDLE,GET_PKT,SEND_MPKT} 

    tx_state_type;

  tx_state_type tx_state = GET_PKT;

  case (tx_state)

    IDLE:if (!pkt_in_fifo_empty) 

               tx_state <= GET_PKT;

    GET_PKT: begin

      get_input_packet();

      if (get_input_packet.done) 

             tx_state <= SEND_MPKT;

    end
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Example 11-1 (continued)

    SEND_MPKT: begin

      send_mpkt_sm();

      if (send_mpkt_sm.done) 

              tx_state <= GET_PKT;

    end

    default: ;

  endcase

endstate_machine //tctrl

//---------------gpkt sub-state machine ---------

state_machine get_input_packet();

  state_var {GET_PACKET,DONE}gpkt_state=GET_PACKET;

  done =0;

  case (gpkt_state)

    GET_PACKET: begin

      input_packet.header <= data_in[31:24];

      input_packet.destination <= data_in[23:16];

      input_packet.payload <= data_in[15:8];

      input_packet.crc <= data_in[7:0];

      in_pkt_pop <= 1;

      got_pkt = 1;

      gpkt_state <= DONE;

    end

    DONE: begin

      done = 1;

      got_pkt = 0;

      in_pkt_pop <= 0;

      gpkt_state <= GET_PACKET;

    end

    default:;

  endcase

endstate_machine

//------------- mpkt state machine ----------

state_machine send_mpkt_sm();

  state_var {  

    SEND_HEADER,SEND_DEST,SEND_PAYLOAD,SEND_CRC }

       mpkt_state = SEND_HEADER;

  done =0;

  case (mpkt_state)

    SEND_HEADER: begin
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smodule

We define a special kind of module (smodule, or synchronous module) where we 

can make certain assumptions about the design that are not true of all designs (and 

hence not true of modules in general). In an smodule we assume (and require):

 1. There is only one clock for the module. All flops are clocked on a same edge of 

this clock, either posedge or negedge.

 2. There is only one reset for the module.

Within an smodule, the features described below can be used.

      if (! pkt_out_fifo_full) begin

        data_out <= input_packet.header;

        mpkt_state <= SEND_DEST;

      end

    end

    SEND_DEST: begin

      if (! pkt_out_fifo_full) begin

        data_out <= input_packet.destination;

        mpkt_state <= SEND_PAYLOAD;

      end

    end

    SEND_PAYLOAD: begin

      if (! pkt_out_fifo_full) begin

        data_out <= input_packet.payload;

        mpkt_state <= SEND_CRC;

      end

    end

    SEND_CRC: begin

      if (! pkt_out_fifo_full) begin

        data_out <= input_packet.crc;

        mpkt_state <= SEND_HEADER;

        done = 1;

      end

    end

    default:;

  endcase

endstate_machine

tctrl ();// =  always_ff@(posedge clk) tctrl();

endmodule

Example 11-1 (continued)
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bit_   ff

In an smodule, we declare signals to be of type bit_  ff (or logic_  ff) if they are flops, 

bit_latch (or logic_latch) if they are latches. Any signal declared to be of type bit_  ff 

will be clocked on each clock cycle, using the clock (and edge) defined in the 

$clock statement.

Assignments to a bit_  ff variable must use the <= (non-blocking) assignment 

operator.

Signals of type bit_  ff may have an initialization value, which is used for its reset 

value. Every bit_  ff which is declared to have an initialization value will be reset 

using the reset signal specified by $reset.

Examples: 

output bit_ff [7:0] data_out = 8’h6;

bit_ff [31:0] foo = 32’hdeadbeef;

bit_comb

In an smodule, we declare signals to be of type bit_comb (or logic_comb) if they 

are combinational signals.

Assignments to a bit_comb variable must use the = (blocking) assignment 

operator.

Examples:

output bit_comb in_pkt_pop;

bit_comb[17:0] bar;

$clock

$clock defines which edge of which input signal is used for the clock for the smod-

ule. Only one clock can be defined, and it will be used for all flops.

$reset

$reset defines which edge of which input signal is used for the reset signal for the 

smodule, and whether it is synchronous or asynchronous. Only one reset can be 

defined, and it will be used for all flops that have an initialization value 

defined.
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state_machine

The features described above allow us to define a very concise construct for the 

hierarchical state machine. The top state machine (state_machine tctrl) 

defines the main state machine. We instantiate it explicitly at the top level of the 

module (see the next to last line of Example 11-1). As a result, it is treated like a 

task that is called every clock cycle (that is, on the clock edge defined by $clock).

The top state machine can call sub state machines (state_machine get_

input_packet). Sub state machines are like tasks that are called when they are 

invoked by another state machine (either the top state machine or another sub state 

machine).

state_var

The state machine uses a special kind of enum statement to define the state variable 

for the state machine (state_var {GET_PACKET, DONE} gpkt_state = GET_

PACKET;). This state_var defines the states for the state machine and the reset 

state. We use the state_var rather than a regular enum because it enables the simula-

tion and synthesis tools to do analysis and optimizations based on the fact that it is 

a state variable for a state machine.

done (to signal the end of a sub-state machine activity)

Each sub state machine has a predefined Boolean signal called done. It is used by 

the sub state machine to signal to the calling state machine that the sub state 

machine is done, and that control goes back to the calling state machine.

combinational and sequential assignments  
in the same case statement

A key feature of the state machine construct is the ability to mix combinational and 

sequential assignments in the body (case statement) of the state machine. This is 

enabled by the bit_  ff/bit_comb features that define explicitly how these assignments 

are to be interpreted. In standard Verilog, sequential code and combinational code 

would have to be in separate processes, since the process type (always_comb or 

always_ff ) would be the only indication of whether the assignment was a combina-

tional assignment or a sequential assignment.

With the bit_  ff/bit_comb types we can mix both types of assignments in the 

same case statement. We know that a variable of type bit_  ff will synthesize to a 
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case (mpkt_state)

SEND_HEADER: begin

  if (first()) 

      $display(“first cycle in SEND_HEADER”);

  if (! pkt_out_fifo_full) begin

      data_out <= input_packet.header;

      mpkt_state <= SEND_DEST;

  end

end

flip-flop, and that in simulation the assignment will occur at the next clock. We 

know that a variable of type bit_comb will synthesize to logic gates, and that in 

simulation the assignment will occur immediately.

The result is that all of the actions in a particular state (both combinational and 

sequential assignments) are co-located in the same section of code, making it easier 

to review and understand the code.

Other Capabilities

There are other capabilities for smodules not shown Example 11-1. They are 

described in the next sections.

First

The state machine has a pre-defined function first that returns a one if it is the first 

clock cycle that the state machine is in that state, and a zero otherwise. For 

example:

Functions and Tasks

As in regular modules, functions and tasks can be used to structure code. Functions 

and tasks can be called by state machines.

Assignments Outside State Machines

Because of the capabilities provided by bit_  ff/bit_comb/$clock/$reset, assignments in 

smodules can be made without using always statements, as shown in Example 11-2.
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In this code:

 1. header is defined as a flop, which will be reset to all ones

 2. payload is defined as a flop, which will be reset to zero

 3. The assignment to header is a non-blocking assignment to a bit_  ff; no always_  ff 

is required.

 4. out_comb is defined as a combinational signal. It is assigned using a blocking 

operator. No always_comb is required.

Iterative State Loops

In some state machines, it is convenient to iterate over a state variable. For this we 

introduce the for-istate construct.

Example 11-2 

smodule foo (

input bit clk, resetn,

input bit pkt_in_fifo_empty, out_comb_control,

input bit [31:0] data_in,

output bit_comb [31:0] out_comb

);

$clock posedge (clk) ;

$reset async negedge (resetn) ;

bit_ff [15:0] header = 16’hffff;

bit_ff [15:0] payload = 16’h0;

if (!pkt_in_fifo_empty) begin

     header <= data_in[31:16];

     payload <= data_in[15:0];

end

if (out_comb_control) out_comb = {header, payload);

else out_comb = 32’b0; 

endmodule
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In Example 11-3, we declare the loop variable (i) to be of type istate. As a result, 

each iteration through the loop is treated as a separate state. We output eight bits, 

one per clock cycle. Compare this to Example 11-4.

Example 11-3 

case (spkt_state)

 SEND_HEADER: begin

     for (istate i = 0; i < 8; i++) begin

             bit_stream_out <= input_packet.header[i];

     end

     spkt_state <= SEND_DEST;

 end

Example 11-4 

case (spkt_state)

    SEND_HEADER: begin

         for (int i = 0; i < 8; i++) begin

                 stream_out <= input_packet.header[i];

         end

         spkt_state <= SEND_DEST;

     end

In example 11-4, the loop variable is declared as type int. In this case, all 8 bits 

are output at the same time; the synthesis tool unrolls the for loop and all 8 sequen-

tial assignments happen on the same clock edge.

We extend SystemVerilog, then, to include an iteration mechanism (for istate) 

which indicates that each iteration through the loop corresponds to a state in a state 

machine. By declaring the loop variable to be of type istate (iterative state), we 

specify an inferred state machine with the appropriate number of states. So the 

istate in Example 11-3 is equivalent to Example 11-5.
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This istate iteration can be used in DSP applications, like the DCT, to create very 

compact RTL. Example 11-6 shows the C code for one of two key nested loops for 

the DCT algorithm:

case (spkt_state)

    SEND_HEADER: begin

        case (i)

            0: begin

                bit_stream_out <= input_packet.header[i];

                i++;

            end

            1: begin

                bit_stream_out <= input_packet.header[1];

                i++;

            end

            2: begin

                bit_stream_out <= input_packet.header[1];

                i++;

            end

            3: begin

                bit_stream_out <= input_packet.header[1];

                i++;

            end

            4: begin

                bit_stream_out <= input_packet.header[1];

                i++;

            end

            5: begin

                bit_stream_out <= input_packet.header[1];

                i++;

            end

            6: begin

                bit_stream_out <= input_packet.header[1];

                i++;

            end

            7: begin

                bit_stream_out <= input_packet.header[i];

                i = 0;

            end

        spkt_state <= SEND_DEST;

    end

Example 11-5 



165Iterative State Loops

Example 11-7 is the RTL for this loop, coded as a state machine using istates.

Example 11-6 

/* Horizontal */

for(y=0;y<8;y++){

    for(x=0;x<8;x++)

        reg[x]=0;

    for(x=0;x<8;x++){

        for(u=0;u<8;u++){

             v=block[y][x]*c[x][u];

             v+=2048;

             v>>=12;

             if(s[x][u]) v=-v;

             reg[u]+=v;

       }

   }

Example 11-7 

//----------- horizontal processing --------------

sub_state_machine horizontal_dct();

    int v;

    begin

        done = 0;

        for (istate y=0;y<8;y++) begin

            for(istate x=0;x<8;x++) begin

                for(int u=0;u<8;u++) begin

                    v=pixin*c[x][u];

                    v+=2048;

                    v>>>12;

                    if(s[x][u]) v=-v;

                    if (x ==0) reg_x[u]<=v;

                    else if (x < 7) reg_x[u]<=reg_x[u]+v;

                    else tmp_x[u] <= reg_x[u] + v;

                end

            end

        end

        done = 1;

    end

endstate_machine
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Note that:

 1. The three main loops (y, x, u) are virtually identical to the C code. Only a mini-

mum amount of changes are needed to convert the high level C to RTL.

 2. Using for (int u…) in the inner loop specifies that all eight u values for a given 

pixel will be calculated at the same time – that is, in the same clock cycle by 

parallel hardware.

 3. Using for (istate y…) and for (istate x …) specifies that each pixel in the 8x8 

input array will take one state (one cycle in this case) to process.

 4. The key modifications that make this version more RTL-like than the C code are the 

lines where reg_x and tmp_x are assigned values. This form of the code achieves mini-

mum latency – and avoids having to initialize reg_x to 0 (as is done in the C code).

This use of the for-istate capability starts to blur the line between high level synthe-

sis and RTL. With minor modifications, we can convert the C code to RTL. The key 

modifications consist of specifying which loops get unrolled (for-int loops) and which 

loops don’t get unrolled (for-istate loops). In extended SystemVerilog, we indicate this 

in the source code; in C-synthesis this is typically specified in pragmas or in the GUI.

Fork and Join

As part of the state machine extensions to SystemVerilog, we propose making the 

SystemVerilog construct fork-join_none synthesizable. This construct makes it pos-

sible to specify pipelines explicitly and concisely. In SystemVerilog, fork causes 

processes to be spawned in parallel; join_none specifies that the forking process 

does not wait for the forked process to complete before continuing execution.

In Example 11-8, we outline how this can be done for a DCT. In this example, each 

state machine calls the next state machine in the pipeline, at the appropriate time.

The horizontal_dct state machine processes eight pixels, then forks the state 

machine mem_write. Horizontal_dct continues processing the next eight pixels 

(one pixel per clock cycle) while mem_write writes the eight processed pixels into 

memory, one pixel per clock cycle.

When enough pixels have been written into the memory, mem_write forks off 

mem_read.

When mem_read has read the first pixel, it forks the vertical_dct state machine.

Once the vertical_dct has completed processing one pixel, it forks output_pixels.

At that point, all five processes (horizontal, mem_write, mem_read, vertical, 

output_pixels) are operating in parallel, as a pipeline. The start-up of the pipeline is 

shown in Figure 11-1.

The classic problem of pipeline stalls is handled by how we interpret the fork 

command. For instance, the horizontal_dct forks mem_write every time through its 

y-loop; that is, each time it is done with a set of eight pixels. If the previous itera-

tion’s mem_write has not completed – that is, if it is not done writing the eight 

previous pixels to memory – then horizontal_dct stalls, waiting for mem_write to 

complete. That is, the fork command is blocking – if the forked process is not done, 

the forking process waits until it is done.
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Example 11-8 

//------------ horizontal processing -----------

sub_state_machine horizontal_dct();

    done = 0;

    while (run) begin

        for (istate y=0;y<8;y++) begin

            for(istate x=0;x<8;x++) begin

                for(int u=0;u<8;u++) begin

                    v=pixin*c[x][u];

                      …

                end

            end

            fork mem_write(y); join_none // new feature 

        end

    end

    done = 1;

endstate_machine

//------------- write scratchpad memory ---------

sub_state_machine mem_write(int y);

    for(istate x=0;x<8;x++) begin

    …

    if ((y == 7) && (x == 0) fork mem_read(); join_none

end

endstate_machine

//---------- read scratchpad memory ------------

sub_state_machine mem_read();

    for (istate y=0;y<8;y++) begin

        for(istate x=0;x<8;x++) begin

           …

            if ((y == 0) && (x == 0)) 

        fork vertical_dct; join_none

        end

    end

endstate_machine

//------------ vertical processing -------------

sub_state_machine vertical_dct();

int v;

    for(istate y=0;y<8;y++) begin
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The combination of for-istate and fork-join_none is a major step in closing the 

gap between RTL and high level synthesis. We are still in the RTL domain, since 

the compiler does not do any scheduling, and does not move operations from one 

clock cycle to another. The cycle-by-cycle behavior of the design is completely 

determined by the source code. However, the concise, C-like style of coding is 

much higher in abstraction than ordinary RTL.

Summary

By extending and improving the synthesizable subset of SystemVerilog, we effec-

tively raise the level of abstraction of RTL design, while remaining entirely within 

the RTL paradigm. By adding some new primitives to SystemVerilog, we create a 

more natural and concise way of describing the most common RTL structures. In 

doing so, we make RTL code:

Figure 11-1 The DCT pipeline generated by fork-join_none.

        for(istate x=0;x<8;x++) begin

           for(int u=0;u<8;u++) begin

               v=v_pixin*c[x][u];

                     …

           end

           fork output_pixels(); join_none

       end

  end

endstate_machine

//------------- output results ---------------

sub_state_machine output_pixels();

    …

endstate_machine

Example 11-8 (continued)



169There is No Substitute for Good Code

 1. Easier to get right the first time

 2. Easier for engineers to review and analyze (in design reviews, etc.)

 3. Easier to develop automated tools to analyze and detect errors

 4. Easier to verify

In particular, the proposed constructs make RTL code easier to understand and 

analyze – both for humans and for EDA tools - because they:

 1. Eliminate inferencing of registers – flip-flops and latches are explicitly declared

 2. Eliminate inferencing of clocks and reset – they are explicitly declared

 3. Eliminate inferencing of state machines – they are explicitly declared, allowing 

improved optimization (during synthesis) and improved verification through 

state coverage analysis

 4. Eliminate a class of synthesis-simulation mismatch problems by removing the 

confusing simulation behavior of blocking vs. non-blocking assignments

There is No Substitute for Good Code

The extensions outlined above are the first steps in making the synthesizable subset of 

SystemVerilog into a genuine domain-specific language for hardware design. These 

are only first steps; other constructs, including FIFOs and packets, are needed.

But improving the language is only part of the solution to improving design 

productivity. Ultimately, it is how we use the language that determines the quality 

and  productivity of design. There is no substitute for good code. Said differently, 

any  language can be abused to produce unreadable, unsupportable, and unverifiable 

designs.

The key to good code has always been structure. In 1968. Edsger W. Dijkstra 

published the famous paper “Go To Statement Considered Harmful”[14], and a 

revolution in programming was born. Based on the work of Dijkstra and other 

researchers, programmers moved from what today is considered “spaghetti code” 

to structured programming.

In the last twenty years or so, object oriented programming has extended the 

concepts of structured programming, to help deal with really large programs. With 

object oriented programs, functionality is partitioned into separate objects that pro-

vide services but hide the internal implementation.

In RTL design, we use modules to provide the partitioning and information 

 hiding provided in software by classes. A module with a well-designed interface 

hides its internal structure from the rest of the system, and provides services 

 (typically some form of data processing) via its interface. A poorly designed inter-

face exposes the internal structure of the module to the rest of the system, under-

mining the  structure of the design and compromising overall quality, robustness, 

and supportability.

But if we look inside the module, at the RTL code itself, we typically see code 

that seems to violate all of the recommendations of structured programming. Most 
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RTL is a random collection of combinational and sequential processes, without any 

interconnecting structure. The code consists of dozens or even hundreds of inde-

pendent small objects (processes) that are connected by signals, but whose inter-

connections are virtually impossible to understand without drawing some kind of 

diagram or schematic.

The methodology developed by Dijkstra included the practice of separating a 

program into separate sections, each of which has a single point of access. In C, 

“main” provides this single point of access – once we understand what main does, 

and what is done by the functions called by main, we understand the program.

But typical RTL does not have a main. All the processes are on equal footing. 

To understand the program, we must read and memorize the entire program and 

then sort out the relationships of all the processes – how they work together to 

implement a function.

The coding style described in this book attempts to put RTL code squarely 

within the category of structured code. The features described in this chapter can 

make this significantly easier. But the RTL designer must understand and practice 

the basic principles of structured code:

Each module must have a single entry point that allows a systematic way to •฀

review of the code.

Functions and tasks can be used to encapsulate complex code; they are superior •฀

to processes because they are called. The call graph of the module provides a 

clear description of the structure of the module.

But most importantly of all, the RTL designer must keep the complexity of the 

code well within the intellectual capacity of the designer, various reviewers, and 

any designer who may have to support the code in the future.
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The Fundamental Principle of Structured Programming is that 

at all times and under all circumstances, the  programmer must 

keep the program within his intellectual grasp..

—Tom Harbron

In this final chapter, we move away from the discussion of particular design 

 techniques to a discussion of design in general, and future trends in SoC design.

The central problem in designing electronic products is the problem of scaling. As 

technology relentlessly executes Moore’s law, the design techniques and practices of 

one generation quickly become obsolete. They are no longer adequate to deal with 

the complexity of the next generation of chips, software, systems, and end products.

To anticipate what chip design will be like in the future, we need to look at how 

the core technologies are scaling.

The semiconductor industry has been impressive in its ability to modify  processes, 

materials, and equipment to keep shrinking technology nodes. Copper interconnect 

and hi-k dielectric/metal gates are just two of many examples of innovations that have 

kept the industry tracking Moore’s law. There are significant challenges in  scaling 

CMOS below 20nm, but techniques such as FinFETs, Extreme Ultraviolet lithogra-

phy, and direct e-beam write are promising approaches to meeting these challenges.

The EDA industry also has a good track record of meeting the challenges of 

implementing complex chips. Today’s place and route tools are much more capable 

than a decade ago. They have taken advantage of faster processors and are using 

parallel programming techniques to take advantage of multi-core processors. The 

introduction of many resolution enhancement techniques, including Optical 

Proximity Correction (OPC), Sub Resolution Assist Features (SRAF) and support 

for Phase Shift Masks (PSM) have allowed optical lithography to continue scaling 

deep into the nanometer range.

Chapter 12

The Future of Design

Because of the possibility of human or mechanical error, neither the author, Synopsys, Inc., nor 
any of its affiliates, including but not limited to Springer Science+Business Media, LLC guaran-
tees the accuracy, adequacy or completeness of any information contained herein. In no event shall 
the authors, Synopsys, Inc. or their affiliates be liable for any damages in connection with the 
information provided herein. Full disclaimer available at: p. v of Frontmatter.
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Design

Unfortunately, design – coding, verifying, and synthesizing functionality – is not 

doing nearly as good a job of scaling as semiconductor process and implementation 

tools. The basic tools and methodology for RTL-based design have changed little 

over the last fifteen years. There have been small improvements in the synthesizable 

subset of RTL, as Verilog has matured from Verilog95 to Verilog 2k to SystemVerilog. 

But the actual code as written by most engineers has changed little.

Similarly, verification-specific languages, like the verification side of 

SystemVerilog, have facilitated writing larger and more complex test benches. But 

the fundamental approach to verification – directed tests plus constrained random 

testing of RTL – has remained unchanged for at least ten years.

Synthesis, as well, has changed little over the last 10 years. C-based synthesis 

has been around, and had some limited success, over that whole time. But it has not 

become anything close to a mainstream technology. And it is not likely to do so as 

long as it remains in its current form. RTL synthesis has improved in runtime and 

capacity, but little of its fundamental capabilities have changed.

The result is that teams have scaled the design and verification process by grow-

ing the size of the team as chips become larger and more complex.

Function Does Not Scale

Figure 12-1 from the International Technology Roadmap for Semiconductors 

shows how hardware and software design productivity has lagged Moore’s Law.

Figure 12-1 Semiconductor Industry Association. The International Technology Roadmap for 
Semiconductors, 2009 Edition. International SEMATECH:Austin, TX, 2009. Used by permission.
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A great example of the design gap is this:

Since the 1980’s, semiconductor technology has gone from resolving 10 micron •฀

features to resolving 22 nm features (a factor of about 500). They can now 

deposit a layer of material precisely one atom thick on a substrate.

Since the 1980’s, software productivity has gone from about 30 lines of code a •฀

day (per engineer, over the life of a project) to about … 30 lines of code a day.

We live in a world where function (hardware and software) is described in code. 

But code does not scale. Individual coders cannot code more lines of code (RTL or 

C++) than they could decades ago. And as projects get bigger, productivity actually 

decreases. One engineer can code about 10,000 lines of (debugged, production-

ready) code in a year. But 100 engineers cannot code 1,000,000 lines of (debugged, 

production-ready) code in a year – the problems of coordinating work and debug-

ging complex problems degrade productivity[15][5].

The functionality of the 30 lines of code (per engineer-day) has increased very 

slowly over time, and most of this increase has been due to the use of libraries and 

IP. The introduction of C++ in 1983 also gave software productivity a small, one 

time gain.

There is no evidence that RTL coders have done any better than their software 

colleagues. RTL productivity has been roughly constant at (on the order of) 100 

gates/30 lines of code per engineer-day (over the life of the project, including 

verification). There is some indication that this productivity has decreased as IP 

designs become bigger and more configurable – hence harder to design and 

verify.

Another telling point about code-based design is quality. Studies ([4a][4b][4c]) 

have shown that coders inject about one bug for every ten lines of code. That means 

for a 10,000 line program (or piece of RTL code), about 1,000 bugs must be 

removed through testing/verification.

We don’t have good data on RTL designs, but for software we know [5] that the 

very best software teams ship code with about 1 defect per thousand lines of code. 

That is, they find and remove about 99% of the bugs in the original code. This is a 

remarkable accomplishment, but it still leaves one bug per thousand lines of code: 

a minor problem for a 10,000 line program, but a major headache for a program of 

1 million or 10 million lines of code.

So code does not scale: productivity and quality have remained roughly constant 

for at least twenty years, at 30 lines of code per engineer-day, 1 bug per 10 lines of 

code initial quality, 1 bug per 1,000 lines of code shipped quality.
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To give an example from IP design: The Verification IP (VIP) for the USB is the 

bus functional model that drives transactions into the RTL model for the USB. It is 

a critical part of the overall test bench for the USB digital IP. For USB2.0 this VIP 

was 141,000 lines of code. For USB3.0 it is 272,000 lines of code. That is, from 

one generation to the next, it has grown by about 2x, to over a quarter of a million 

lines of code. All this is just to create USB transactions.

The total code for the USB3.0 – RTL and test bench – is about 900,000 lines of code.

Just for reference, the Encyclopaedia Britannica has about 4 million lines 

(44 million words)

By Robert N. Charette // February 2009

The F-35 Joint Strike Fighter, scheduled to become operational in 2010, will 

require about 5.7 million lines of code to operate its onboard systems. And 

Boeing’s new 787 Dreamliner, scheduled to be delivered to customers in 

2010, requires about 6.5 million lines of software code to operate its avionics 

and onboard support systems.

These are impressive amounts of software, yet if you bought a premium-

class automobile recently, ”it probably contains close to 100 million lines of 

software code,” says Manfred Broy, a professor of informatics at Technical 

University, Munich, and a leading expert on software in cars.

Figure 12-2 100 Million Lines of Code in a High End Car (Photo courtesy of John Filiss, 
www.seriouswheels.com).

Now let’s consider how the size of designs has changed over the last few years. 

From the IEEE Spectrum:

http://www.seriouswheels.com
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Small is Beautiful – and Tractable

The reality is this: we are very good at small designs, and very bad at large ones.

In particular, we are very good at analyzing and solving problems when we can 

see the entire problem at the same time. For instance, if we were planning a trip and 

looked it up on a map, we would want the map (at least initially) to show the entire 

route. Tracking a route that covers three or four pages of a map is much, much 

harder. After planning the overall route, we probably want a detailed map of the 

destination – how to get from the freeway to a particular hotel, for example. But 

this is a secondary consideration, done only after the overall route has been 

planned.

Top down design, of course, is exactly this practice. The top level algorithm is 

described in a few lines, relying on subsidiary functions. In software classes, we are 

taught that a function should fit on a single screen.

The reason for this is that, smart as humans are, we still have a very limited ability 

to reason about complex problems. We reason well about what we can see. We 

reason poorly about what we can’t see – but instead have to remember.

Unfortunately, the one-screen rule (the most basic programming rule in theory) 

is the one most often violated in practice. Any solution to the challenges of design 

productivity and quality must address this issue. As long as we are dealing with 

units of code that are too large to understand, we are in trouble.

How Does IP Help?

The reuse revolution has certainly helped design productivity at the chip level. 

IP such as processors, memory, memory controllers, USB and PCI interfaces 

have made chip design largely a question of assembling IP and designing the 

interconnect and communication between IPs. Subsystems consisting of multiple 

IPs – such as video subsystems – enable a natural and effective hierarchy for 

chip design.

But if we look below the level of the subsystem, and look at the IP itself, we see 

a problem. Table 12-1 shows the basic hierarchy of digital design, from the lowest 

level on up.

Table 12-1 Abstraction levels in SoC design.

Type Example Size

Standard Cell Scan Flop 10’s of gates

Small IP FIFO Controller 400 lines of code

Large IP USB 3.0 182,000 lines of code

Subsystem Video Subsystem 10’s of IPs

SoC Cell Phone Chip 10’s of subsystems
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The obvious discontinuity here is the jump in size from standard cells to small 

IP to large IP. With standard cells and with subsystems and chips we are assembling 

larger blocks out of a reasonable number (~10) of smaller blocks. This is a rational 

form of composition.

But a large IP that consists of 182,000 lines of code is a huge jump from the size 

of a standard cell or small IP. It is the power and verbosity of RTL that gets us into 

this kind of untenable scaling.

For example, another large IP – a PCI Express controller – has a total of 53,000 

lines of code. The top level file consists of 1500 lines of code distributed as:

Input and output declarations: 120 lines•฀

All declarations (including input and output): 600 lines•฀

Assign statements: 80 lines•฀

Instantiations: 900 lines•฀

Number of instantiations: 9•฀

So the top level of the PCI Express takes 1500 lines to instantiate just 9 modules.

Automation and Scaling

In general, the problem of scaling has been most effectively addressed by  automation: 

that is, turning specific designs problems into generic problems that can then be 

solved in a routine, automated fashion.

For example, when chips consisted of a few thousand gates, it was rational to 

design each transistor by hand, and thus to optimize performance and area. But as 

chips grew to tens and then hundreds of thousands of transistors, this kind of 

 custom design became economically infeasible for most designs. Designers then 

turned the specific problem of designing an optimal transistor into the generic prob-

lem of developing a standard cell library.

Semiconductor companies have always taken this approach as well – developing 

complex processes that use “step and repeat” to allow the manufacture of very com-

plex devices in high volume.

EDA has similarly turned place and route – once a manual process – into a fully 

automated process, using sophisticated algorithms to turn the specific problem – how 

to route this chip – into the generic problem of solving an optimization problem.

In all these cases, engineers developed infrastructure that enabled automation. 

This infrastructure can be very expensive – fabs can cost billions of dollars, EDA 

tools are expensive to develop and to purchase. But the payoff has been very high.

Engineers have not made such infrastructure investments for RTL design (or, 

with very few exceptions, for software design). Instead, most engineering organiza-

tions have adopted a “code like hell” approach to development. The result has been 

an explosion in code size and in the cost of chip development.

The only way to reduce development cost and allow RTL design to scale is to 

invest in infrastructure. We need technology that will significantly reduce the 
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amount of code required to describe the function of a digital design. And we need 

technology that enables engineers to visualize complex design, not by scrolling 

through pages and pages of code, but by examining a single, static representation 

of the design.

The Future of Design

The future of design will be determined by the ability of designers and EDA com-

panies to develop and use scalable design techniques.

Data structures will need to become more powerful, and timing control will have 

to rise in abstraction. More and more timing will be left out of the code, especially 

for algorithm-intensive code. The timing that remains explicit in the code will be 

controlled by hierarchical state machines that allow the designer to express concur-

rency and pipelining naturally and simply.

High level system modeling (typically in SystemC) has long used the concept of 

Transaction Level Modeling – where system level communication is modeled by 

passing data structures (or in TLM 2.0, pointers to data structures) from one block 

(IP or subsystem) to another.

As interfaces become more powerful and more standardized (data structures 

passed by FIFOs locally and busses globally), the RTL interface and the TLM 

interface will start to merge as a concept. Designers will be able to code interfaces 

as data structures and guide the compiler to interpret them either as TLM objects 

(for high level modeling) or as RTL interfaces (for synthesis).

All of this, of course, means that design will be rising in abstraction. Designers 

will write code that more naturally describes their intent, and compilers will play 

an extended role in scheduling and optimization.

Verification

Raising the abstraction of design will have a significant impact on verification. The 

complexity of today’s applications, and the fallibility of human engineers, will 

mean that complete verification will always be an elusive goal. But by raising the 

level of abstraction, we can make the verification process simpler, more robust, and 

more automated.

There is a limit, of course, to how high we can raise the abstraction of a design. 

The code must reflect the intended behavior of the design. At the highest level of 

abstraction, the code is really just an executable specification. This executable 

specification cannot be avoided: at some point, engineers must take the marketing 

requirements, and various other natural language specifications, and turn them into 

something that can be simulated and tested. This translation of requirements into 

code is an activity that can’t be avoided, and which has to be done by humans.
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Today, the code we write is typically much lower level than required for an 

executable specification. Typically it has much more detailed timing information, 

to meet the requirements of the synthesis engine. But if we improve the synthesis 

tools to the point where the executable specification can be synthesized, then we 

change the nature of verification.

Verification of the execution specification, like writing it, is an unavoidable, 

fundamentally human activity. We may make mistakes, but the mistakes are in our 

understanding of what the design is expected to do, not in the “incidental” aspects 

of the design such as low level coding decisions.

Once we have a verified executable specification, we should then be able to 

automate the detailed design, through high level synthesis. Verification can then 

be automated: formal verification can prove that the detailed implementation is 

equivalent to the executable specification. At that point, verification is as automated 

and complete as possible.

Equivalence checking between high level (untimed) code and RTL is a difficult 

problem, but enough progress has been made recently [16a][16b][16c] to suggest it 

could become a mature technology in a few years.

Visualization

One key element of managing code complexity is to reduce code size. All the tech-

niques discussed in this book focus on this approach. But improved visualization 

tools can also help manage complexity.

Visual design tools – like UML and VisualHDL – have met with limited success 

at best. Designers really do prefer to enter code rather than make drawings. But 

visualization tools such as waveform viewers are essential tools for debug. IDEs 

like Eclipse and VisualStudio are very popular because they help software engi-

neers understand their code. The state machine visualization capability of Debussy 

is also very useful.

There is a great opportunity to extend these tools and enable designers to see (on 

a single screen) an entire design – at least at some level of abstraction. The tools 

that would be useful include:

A state machine display tool that takes advantage of the proposed state •฀

machine construct to display hierarchical state machines in a useful way. We 

could imagine clicking on a state at the top level and popping up a display of 

the sub-state machine. It could also measure the complexity of the state 

machine.

A connectivity diagram tool that would show the connections and interfaces •฀

between modules. With wires this becomes impossibly messy; but with structs 

and FIFOs as the interconnection mechanism, we can envision a very useful 

display. It could also measure and report the complexity of the overall 

design.
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Drivers of the Solution

As noted earlier, code has not scaled over the last ten or fifteen years. We have not 

been able to keep the number of lines of code (of design and testbenches) close to 

constant as complexity increased. Instead, the number of lines of code per gate or 

per function has remained roughly constant, driving design cost up as gate count 

has increased.

The proposals in this book suggest a path for managing complexity, reducing the 

number of lines of code, and getting code to start scaling. The question is: what is 

going to drive the changes required? These changes will require investments from 

EDA companies to develop and improve tools, and from designers as they migrate 

from current practices to new and unfamiliar ones.

There are a number of factors working against these investments. The two 

most recent revolutions in design – synthesis and IP reuse – were driven out of 

financial opportunity. Designers saw that they could reduce their development 

schedule and costs by adopting them, and were willing to pay for this advantage. 

The result was a significant increase in revenue to the companies that provided 

synthesis tools and IP.

But the world has changed over the last decade or so. Growth in the semiconduc-

tor industry has slowed dramatically, and it is maturing as an industry. That means 

that there is more focus on reducing costs, and in particular managing tool budgets 

carefully. The result is that EDA revenues are staying roughly constant, with little 

opportunity for significant growth. So it is hard for the large EDA companies to 

make major investments in new technology. There is just not enough upside reward 

to justify the risk.

The alternative path of having small EDA startups develop innovative  technology 

gets more difficult each year. With the recent downturn, funding has been difficult 

to find. More importantly, it is hard to produce a compelling EDA product in isola-

tion from the other tools and flows used in design. The cost of adopting a new tool 

for the designer is very high if the tool is not already integrated into the design flow. 

The result is that innovative EDA startups need considerable investment capital 

(which is hard to find) to develop products that are difficult for the customers to 

adopt (and hence do not garner high prices).

Thus, in the short term, market forces are not going to drive major investments 

in innovation. But there are several potential crises that could create a compelling 

need to solve these problems.

The first kind of crisis would be for major semiconductor companies to find 

that they simply cannot make the products that their customers demand. If the 

complexity of design becomes such that chips cannot be designed to an accept-

able level of quality in an acceptable amount of time for an acceptable price, then 

they may demand rapid improvements of how code is developed and verified. 

This crisis is slowly building now, but it is a “frog in the pot” kind of crisis. 

(There is an old saying that if you toss a frog in a boiling pot, it will jump out. But 

if you toss him in a cold pot and then slowly increase the temperature, it will 
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never jump out – just end up cooking.) The productivity challenge is turning up 

the temperature on the semiconductor industry, but it is showing no signs of 

jumping yet.

The other kind of crisis is if code quality ends up killing people. If a major car 

company were to find that its embedded software had bugs that were leading to 

fatal crashes, and that it could not fix these bugs reliably, then this too would pre-

cipitate change.

This second kind of crisis has to do with the fact that more and more chips and 

software are finding their way into mission-critical applications. Traditionally, 

mission-critical applications have used a different methodology from mainstream 

applications. Considerably more testing and verification, more design discipline 

and design rules, and more careful and thorough review have been used for flight 

systems, for example, and space systems. This methodology achieves a much 

higher level of quality than mainstream practices, but at a considerable cost. As 

mentioned in Chapter 1, NASA can achieve a remarkable quality level of about.004 

defects per KLOC, but at a cost of nearly $1,000 per line of code (compared to $25 

per line of code with mainstream methodologies.)

But now cars, medical devices, and other complex systems are incorporating 

chips and software. If these systems are developed using commercial (as opposed 

to mission-critical) development processes, then there is a significant chance of 

bugs creating serious problems.

On a more optimistic note, individual engineers in many companies understand 

and are working on these problems. The technical community, both in hardware 

design and in software design, is actively discussing how to move our code-based 

technology forward. Hopefully, when the financial imperative occurs, we will have 

the fundamental approaches for a solution worked out, and will be able to quickly 

implement the solutions.

Summary

We live in a world where function is described in code, and that is not likely to 

change.

Code size counts – after a certain size, code becomes intractably hard to under-

stand and debug. As design complexity constantly increases, we must constantly be 

developing techniques for reducing code size.

This book has attempted to show how to reduce code size – and complexity – in 

the small but important domain of synchronous digital design.
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This chapter summarizes the design and coding guidelines from previous chapters. 

It also provides some guidelines for coding datapaths using signed data types.

General

Guideline: Designs and coding should be kept as simple as possible, consistent 

with the objectives of the design. The best measure of simplicity/complexity is the 

size of the state space of the design.

Guideline: Locality. Related information should be located together in the code.

Guideline: File Size. Source code file should be no more than 5 pages (about 300 

lines).

Guideline: Rule of Seven. Any design or part of a design should consist of at most 

seven to nine objects.

State Machines

Guideline: There should be at most one state machine per module.

Guideline: All sequential code (registers that do any computation) should be in a state 

machine. Registers that simply buffer a signal do not need to be in a state machine.

Guideline: A state machine should be coded as a sequential process (always_ff). 

Auxiliary always_comb combinational processes can be used to drive combina-

tional outputs if required.

Appendix A

Guidelines

Because of the possibility of human or mechanical error, neither the author, Synopsys, Inc., nor
any of its affiliates, including but not limited to Springer Science+Business Media, LLC guarantees 
the accuracy, adequacy or completeness of any information contained herein. In no event shall 
the authors, Synopsys, Inc. or their affiliates be liable for any damages in connection with the 
information provided herein. Full disclaimer available at: p. v of Frontmatter.
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Guideline: A state machine with more than 7 to 9 states should be coded hierarchi-

cally. Any single sub-state-machine should have at most 7to 9 states.

Processes

Guideline: Use the SystemVerilog constructs always_ff and always_comb rather 

than always@. These constructs remove the ambiguity inherent in always@, 

where we can accidently code a latch when we intend a flip-flop.

Combinational Code

Guideline: Combinational code should be coded as functions.

Guideline: Functions in RTL should be coded as automatic to avoid synthesis/

simulation mismatches.

Guideline: Where practical, the function should be written with arguments that 

include all the signals needed by the function. But if the number of arguments gets 

large, this makes the code much harder to read; in this case, the function can be writ-

ten without arguments and the function code can refer to global signals directly.

Hint: Debugging with automatic functions: When using a waveform viewer to 

debug code written using functions, we need to be a bit careful. Normal combina-

tional code (always_comb blocks) are updated on the waveform viewer whenever 

an input changes. Functions are updated only when they are called. But with a little 

experience, debugging with functions becomes quite straight-forward.

Data Structures

Guideline: Use structs to assemble signals into data structures.

Guideline: Use enumerated types.

Guideline: Avoid reg and wire.

Guideline: Use bit and logic only as components of a struct.

Interfaces

Guideline: Design interfaces that isolate the two modules they connect. The FIFO 

is a great example of an interface that isolates the timing between two modules.
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Guideline: Use the interface or struct constructs rather than individual signals. 

(See Appendix D for a discussion of the interface construct.)

Guideline: Limit the number of interfaces of a module to 7-9.

Guideline: Design the interface to consist of a command word and a data word, 

rather than random wires.

Guideline: Use enumerated types to define the valid values of the command word.

Coding

Guideline: use “if (a)” instead of “if (a == 1)”

Partitioning

Guideline: Any module that has significant computation should be in a module that 

uses a single clock and a single reset. This facilitates analysis, since only one clock 

domain needs to be analyzed at a time.

Guideline: Any module with multiple clocks should consist only of the logic nec-

essary for crossing the two clock domains. This facilitates analysis of the clock 

domain crossing logic. This logic can be quite tricky, so isolating it in a very small 

module can make analysis much easier.

Guideline: Modules that contain logic (and synchronizers) for crossing clock 

domains should be named with a prefix such as SYNC to indicate the special role 

of the module. Using such a prefix helps implementation engineers identify critical 

clock-crossing paths in synthesis reports and dynamic netlist simulations.

Guidelines for Datapath Synthesis

The following guidelines are excerpted from a set of datapath guidelines; the full 

set can be found online [28].

These guidelines were originally developed to guide designers on how to get the 

best quality of results (QOR) from synthesis. But what they really amount to is this: 

to get the best results, do NOT try to out-guess the synthesis tool by doing manual 

pre-synthesis (like converting a multiply to a shift and add). Write the code in the 

most general fashion (that is, leave it as a multiply) and let the synthesis tool do the 

optimizations.

This general approach fits in with the observations made earlier in the book. 

Considering the complexity of design, and the strength and maturity of the synthe-

sis tools, we need to code for readability by human beings. The tools are smart 

enough to convert this user-friendly code into an optimal gate netlist.
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The guidelines below have been re-written slightly from the versions on the 

solvenet website, in order to emphasize how they improve the readability of code 

and to comply with the other guidelines in this book.

Note: to keep the following examples simple, we use assign statements. In real 

code, we would expect the datapath arithmetic to be larger and more complex and 

to be written in a function.

Note: A lot of these recommendations concern signed arithmetic. Signed arith-

metic was added in Verilog2001 and can be a bit tricky. Hopefully the guidelines 

below will help designers to avoid problems.

Signed Arithmetic

•฀ Rule: Use type ’signed’ (Verilog 2001, SystemVerilog) for signed/2’s comple-

ment arithmetic (that is, do not emulate signed arithmetic using unsigned oper-

ands/operations). Also, do not use the ’integer’ type except for constant values.

•฀ Rationale: Simpler, cleaner code and provides better QOR.

•฀ Example: Signed multiplication.

Not฀Recommended Recommended฀

input   [7:0] a, b;
output [15:0] z;

//฀a,฀b฀sign-extended฀to฀฀

width฀of฀z

assign z =  {{8{a[7]}}, a[7:0]} *  
{{8{b[7]}}, b[7:0]}; 

//฀->฀unsigned฀16x16=฀16฀bit฀multiply

input  signed  [7:0] a, b; 
output signed [15:0] z; 
 

assign z = a * b; 

//฀->฀signed฀8x8=16฀bit฀multiply

input   [7:0] a, b; 
output [15:0] z; 
 
//฀emulate฀signed฀a,฀b

assign z = (a[6:0] - (a[7]<<7)) * 
           (b[6:0] - (b[7]<<7)); 

//฀->฀two฀subtract฀+฀฀

unsigned฀//16x16=16฀bit฀multiply

input           [7:0] a, b; 
output         [15:0] z; 
wire   signed [15:0] z_sgn; 

assign z_sgn = $signed(a) * 
               $signed(b); 
assign z     = $unsigned (z_sgn); 

//฀->฀signed฀8x8=฀16฀bit฀multiply฀

Sign-/Zero-extension

•฀ Rule: Do not manually sign-/zero-extend operands if possible. By using the 

appropriate unsigned/signed types, correct extension is done automatically.
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•฀ Rationale: Simpler, cleaner code and better QoR because synthesis can more 

easily/reliably detect extended operands for optimal implementation.

•฀ Example:

Mixed Unsigned/Signed Expression

•฀ Rule: Do not mix unsigned and signed types in one expression.

•฀ Rationale: Unexpected behavior / functional incorrectness because Verilog 

interprets the entire expression as unsigned if one operand is unsigned.

•฀ Example: Multiplication of unsigned operand with signed operand

Recommended

input  signed [7:0] a, b; 
output signed [8:0] z; 
 
//฀a,฀b฀implicitly฀sign-extended

 
assign z = a + b;

Functionally฀incorrect Functionally฀correct฀

input          [7:0] a; 
input  signed  [7:0] b; 
output signed [15:0] z; 
 
//฀expression฀becomes฀unsigned

 
assign z = a * b;
 

//฀->฀unsigned฀multiply

input          [7:0] a; 
input  signed  [7:0] b; 
output signed [15:0] z; 
 
//฀zero-extended,฀cast฀to฀signed฀(add฀ǿ0’฀

//฀as฀sign฀bit)฀

assign z = $signed 
           ({1’b0, a}) * b; 

//฀->฀signed฀multiply฀

input  signed  [7:0] a; 
output signed [11:0] z; 
 
//฀constant฀is฀unsigned฀

 

assign z = a * 4’b1011; 

//฀->฀unsigned฀multiply฀

input  signed  [7:0] a; 
output signed [15:0] z1, z2; 
 
//฀cast฀constant฀into฀signed

assign z1 = a * $signed 
           (4’b1011); 

//฀mark฀constant฀as฀signed

assign z2 = a * 4’sb1011; 
//฀->฀signed฀multiply฀
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Signed part-select / concatenation

•฀ Note: Part-select results are unsigned, regardless of the operands. Therefore, 

part-selects of signed vectors (for example, “a[6:0]” of “input signed [7:0] a”) 

become unsigned, even if part-select specifies the entire vector (for example, 

“a[7:0]” of “input signed [7:0] a”).

•฀ Rule: Do not use part-selects that specify the entire vector.

•฀ Note: Concatenation results are unsigned, regardless of the operands.

•฀ Example:

Expression Widths

•฀ Note: The width of an expression in Verilog is determined as follows:

 ° Context-determined expression: In an assignment, the left-hand side provides 

the context that determines the width of the right-hand side expression (that 

is, the expression has the width of the vector it is assigned to).

Example:

Functionally฀incorrect Functionally฀correct

input  signed  [7:0] a, b; 
output signed [15:0] z1, z2;

//฀a[7:0]฀is฀unsigned฀->฀zero-extended

 
assign z1 = a[7:0];
 
//฀a[6:0]฀is฀unsigned฀->฀unsigned฀

multiply

 

assign z2 = a[6:0] * b;

input  signed  [7:0] a, b; 
output signed [15:0] z1, z2; 
 
//฀a฀is฀signed฀->฀sign-extended฀

assign z1 = a;
 
//฀cast฀a[6:0]฀to฀signed฀->฀signed

//฀multiply

assign z2 = $signed(a[6:0]) * b;

input  [7:0] a, b; 
output [8:0] z;

assign z = a + b;  //฀expression฀width฀is฀9฀bits฀

input  [3:0] a; 
input  [7:0] b; 
output [9:0] z;

assign z = a * b;  //฀expression฀width฀is฀10฀bits
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 ° Special cases: Some expressions are not self-determined even though they 

seem to be. Then the expression takes the width of the higher-level context 

(for example, the left-hand side of an assignment).

Example: Concatenation expression

Cluster Datapath Portions

•฀ Rule: Cluster related datapath portions in the RTL code into a single combina-

tional block. Do not separate them into different blocks. In particular, 

 ° Self-determined expression: Expressions without context (for example, 

expressions in parentheses) determine their width from the operand widths. 

For arithmetic operations, the width of a self-determined expression is the 

width of the widest operand.

Example:

Unintended฀behavior Intended฀behavior

input  signed  [3:0] a; 
input  signed  [7:0] b; 
output        [11:0] z; 
 
 
//฀product฀width฀is฀8฀bits฀฀

(not฀12!)

 
assign z = $unsigned(a * b);
 
//฀->฀4x8=8฀bit฀multiply฀

input  signed  [3:0] a; 
input  signed  [7:0] b; 
output        [11:0] z; 
wire   signed [11:0] z_sgn; 
 
//฀product฀width฀is฀12฀bits฀฀

assign z_sgn = a * b; 
assign z     = $unsigned(z_sgn);
//฀->฀4x8=12฀bit฀multiply฀

input   [7:0] a, b, c, d; 
output        z; 
 
 
 
assign z = (a + b) > (c * d);
 
//฀->฀8+8=8฀bit฀add฀+฀8x8=8฀bit

//฀multiply฀+฀8>8=1฀bit฀compare

input   [7:0] a, b, c, d; 
output        z; 
wire    [8:0] s; 
wire   [15:0] p; 
 
assign s = a + b;//฀->฀8+8=9฀bit฀add

 
assign p = c * d;฀฀//฀->฀8x8=16฀bit

                   //฀฀฀multiply

 
assign z = s > p;  //฀->฀9>16=1฀bit

                  //฀฀฀compare

input  [15:0] a, b; 
output [31:0] z; 
 
 
assign z = {a[15:8] *  
b[15:8], a[ 7:0] * b[ 7:0]}; 

//฀->฀two฀8x8=8฀bit฀multiplies,

//฀bits฀z[31:16]฀are฀0฀

input  [15:0] a, b; 
output [31:0] z; 
wire   [15:0] zh, zl; 
 
assign zh = a[15:8] * b[15:8]; 
assign zl = a[ 7:0] * b[ 7:0]; 
assign z  = {zh, zl}; 

//฀->฀two฀8x8=16฀bit฀multiplies฀
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Keep related datapath portions within  ° one single hierarchical component. Do not 

distribute them into different levels or subcomponents of your design hierarchy.

Do  ◦ not place registers between related datapath portions. If registers are 

required inside a datapath block to meet QoR requirements, use retiming to 

move the registers to the optimal requirements, use retiming to move the 

registers to the optimal location after the entire datapath block has been 

implemented (see [28] for more details).

•฀ Rationale: Simpler, cleaner code and better QoR because bigger datapath 

blocks can be extracted and synthesized.

Component Instantiation

•฀ Rule: Do not instantiate arithmetic DesignWare components if possible (for 

example, for explicitly forcing carry-save format on intermediate results). Write 

arithmetic expressions in RTL instead.

•฀ Rationale: Simpler, higher level code. Better QoR can be obtained by exploiting 

the full potential of datapath extraction and synthesis.

•฀ Example: Multiply-accumulate unit

Bad฀QoR Good฀QoR

input   [7:0] a, b; 
input  [15:0] c0, c1; 
output [15:0] z0, z1; 
wire   [17:0] p0, p1; 
wire   [15:0] s00, s01, s10, s11; 
 
//฀shared฀multiply฀with฀explicit฀carry-

//฀save฀output 
DW02_multp #(8, 8, 18) mult ( 
  .a(a), .b(b), .tc(1’b0), 
  .out0(p0), .out1(p1)); 
 
//฀add฀with฀explicit฀carry-save฀output 
DW01_csa #(16) csa0 ( 
  .a(p0[15:0]), .b(p1[15:0]), .c(c0), 
  .ci(1’b0), .sum(s00), .carry(s01)); 
DW01_csa #(16) csa1 ( 
  .a(p0[15:0]), .b(p1[15:0]), .c(c1), 
  .ci(1’b0), .sum(s10), .carry(s11)); 
 
//฀carry-save฀to฀binary฀conversion฀฀

(final฀adder) 
DW01_add #(16) add0 ( 
  .A(s00), .B(s01), .CI(1’b0), 
.SUM(z0)); 
DW01_add #(16) add1 ( 
  .A(s10), .B(s11), .CI(1’b0), 
.SUM(z1));

input   [7:0] a, b; 
input  [15:0] c0, c1; 
output [15:0] z0, z1; 
 
//฀single฀datapath฀with:฀

//฀-฀automatic฀sharing฀of฀

//฀multiplier฀

//฀-฀implicit฀usage฀of฀carry-

//฀save฀internally 

assign z0 = a * b + c0; 
assign z1 = a * b + c1;
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Complementing an Operand

•฀ Rule: Do not complement (negate) operands manually by inverting all bits and 

adding a ’1’ (for example, “a_neg = ~a + 1”). Instead, arithmetically comple-

ment operands by using the ’-’ operator (for example, “a_neg = -a”).

•฀ Rationale: Simpler, higher level code. Manual complementing is not always 

recognized as an arithmetic operation and therefore can limit datapath extraction 

and result in worse QoR. Arithmetically complemented operands can easily be 

extracted as part of a bigger datapath.

•฀ Example:

Bad฀QoR Good฀QoR

input  signed  [7:0] a, b; 
input  signed [15:0] c; 
input                sign; 
output signed [15:0] z; 
wire   signed [15:0] p; 
 
//฀manual฀complement฀prevents฀

//฀SOP฀extraction 

assign p = a * b;
 
assign z = (sign ? ~p : p) + 
  $signed({1’b0, sign}) + c; 

//฀->฀multiply฀+฀select฀+฀3-

//฀operand฀add

input  signed  [7:0] a, b; 
input  signed [15:0] c; 
input                sign; 
output signed [15:0] z; 
wire   signed  [8:0] a_int; 
 
//฀complement฀multiplier฀instead฀of

//฀product฀(cheaper)

 
assign a_int = sign ? -a : a;
 
assign z     = a_int * b + c; 

//฀->฀complement฀+฀SOP฀(multiply฀+฀฀

//฀add)
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This chapter contains more complete versions of some of the sample code 

 mentioned in the text.

State Machine Example

Simple Hierarchical State Machine in synthesizable SystemVerilog

This example shows how to code a hierarchical finite state machine in synthesiz-

able SystemVerilog using tasks. Please see the notes following the code.

Appendix B

Examples

module foo (
  input bit clk, resetn, pkt_avail, pkt_out_fifo_full,
  input bit [31:0] data_in,
  output bit [15:0] data_out,
  output bit in_pkt_pop) ;

  struct packed {
    bit [7:0] destination ;
    bit [7:0] payload ;
  } input_packet ;

  enum { IDLE, GET_PKT, SEND_PKT} tx_state ;
  enum { GP_READ, GP_DONE } get_pkt_state ;
  enum { SP_DESTINATION, SP_PAYLOAD, SP_DONE } send_pkt_state;
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always @ (posedge clk or negedge resetn) begin
   if (! resetn)begin
     in_pkt_pop <= 0;
     data_out <= 0;
     tx_state <= IDLE;
     get_pkt_state <= GP_READ;
     send_pkt_state <= SP_DESTINATION;
   end else begin
     case (tx_state)
       IDLE : if (pkt_avail) tx_state <= GET_PKT ;
       GET_PKT : begin
         get_pkt () ;
          if (get_pkt_state == GP_DONE) tx_state <= SEND_PKT ;
       end
         SEND_PKT : begin
           send_pkt () ;
          if (send_pkt_state == SP_DONE) tx_state <= IDLE ;
       end
     endcase
   end
end

// ---------- get_pkt sub state machine -------------

  task get_pkt() ;
    case (get_pkt_state)
      GP_READ : begin
        input_packet.destination <= data_in[31:16] ;
        input_packet.payload <= data_in[15:0] ;
        in_pkt_pop <= 1 ;
        get_pkt_state <= GP_DONE ;
      end
      GP_DONE : begin
        in_pkt_pop <= 0 ;
        get_pkt_state <= GP_READ ;
      end
    endcase
  endtask

// ------------ main state machine -----------------
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Notes on the HSMF example: 

 1) There are many styles for writing hierarchical state machines in SystemVerilog, 

none of them right for every application. In general, there is a tradeoff between 

simplicity (ease of understanding) and optimality (minimum latency). This 

example was coded for simplicity.

 2) The check for a sub state machine being done is of the form: if (get_pkt_
state == GP_DONE).This approach works only if we know that the state 

GP_DONE will take exactly one cycle. It is generally a good idea to keep the 

DONE state very simple as shown in this example.

 3) The GP_DONE and SP_DONE cycles could be eliminated to save a cycle of 

latency, but at the cost of making the code more complex and prone to errors. 

The de-assertion of in_pkt_pop would need to be moved to the main state 

machine (GET_PKT section). And the testing to see if the sub state machines 

are done would become much more complex.

The goal of our proposed SystemVerilog state machine primitive is to resolve these 

problems and provide a structure that provides for simple code and minimum 

latency.

// ---------- send_pkt sub state machine ------------

  task send_pkt() ;
    case (send_pkt_state)
      SP_DESTINATION : begin
        if ((!pkt_out_fifo_full)) begin
          data_out <= input_packet.destination ;
          send_pkt_state <= SP_PAYLOAD ;
        end
      end
      SP_PAYLOAD : begin
        if ((!pkt_out_fifo_full)) begin
          data_out <= input_packet.payload ;
          send_pkt_state <= SP_DONE ;
        end
      end
      SP_DONE : begin
        send_pkt_state <= SP_DESTINATION ;
      end
    endcase
  endtask

endmodule
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DCT Example Code:

C Version

The following is the original behavioral C code for the DCT:

//(C) COPYRIGHT 2001 INSILICON CORPORATION
//ALL RIGHTS RESERVED

#include<stdlib.h>

int block[8][8];

int c[8][8]={
{23168, 32144, 30272, 27248, 23168, 18208, 12544, 6400},
{23168, 27248, 12544, 6400, 23168, 32144, 30272, 18208},
{23168, 18208, 12544, 32144, 23168, 6400, 30272, 27248},
{23168, 6400, 30272, 18208, 23168, 27248, 12544, 32144},
{23168, 6400, 30272, 18208, 23168, 27248, 12544, 32144},
{23168, 18208, 12544, 32144, 23168, 6400, 30272, 27248},
{23168, 27248, 12544, 6400, 23168, 32144, 30272, 18208},
{23168, 32144, 30272, 27248, 23168, 18208, 12544, 6400}
};

int s[8][8]={
{0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 1, 1, 1, 1, 1},
{0, 0, 1, 1, 1, 0, 0, 0},
{0, 0, 1, 1, 0, 0, 1, 1},
{0, 1, 1, 0, 0, 1, 1, 0},
{0, 1, 1, 0, 1, 1, 0, 1},
{0, 1, 0, 0, 1, 0, 1, 0},
{0, 1, 0, 1, 0, 1, 0, 1}
};

int pixout;

void dct(){
  int y,x,u,v;
  int reg[8];

/* Horizontal */
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for(y=0;y<8;y++){
    for(x=0;x<8;x++)
      reg[x]=0;
    
    for(x=0;x<8;x++){
      for(u=0;u<8;u++){
        v=block[y][x]*c[x][u];
        v+=2048;
        v>>=12;
        if(s[x][u]) v=-v;
        reg[u]+=v;
      }
    }

    for(x=0;x<8;x++) {
      block[y][x]=reg[x];
    }
  }

/* Vertical */
  for(y=0;y<8;y++){
    for(x=0;x<8;x++)
      reg[x]=0;

    for(x=0;x<8;x++)
      for(u=0;u<8;u++){
        v=block[x][y]*c[x][u];
        v+=131072;
        v>>=18;
        if(s[x][u])v=-v;
        reg[u]+=v;
      }
    
    for(x=0;x<8;x++){
      v=reg[x];
      v+=2;
      v>>=2;
      block[x][y]=v;
    }
  }
}
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Final RTL Version

The following is the RTL Version of the DCT, condensed aggressively using 

SystemVerilog, including signed arithmetic, multi-dimensional arrays, functions 

and tasks:

//-----------------------------------------------------
//
// (C) COPYRIGHT 2002-2009 SYNOPSYS, INC.
// ALL RIGHTS RESERVED
//
//-----------------------------------------------------
`timescale 1 ns / 1 ns // timescale for following modules

module dct (
  input clk,
  input start,
  input en, // enable
  input idct,
  input clr,
  input cend, // End of processing signal
  input signed [7:0] pixin, // Input pixel - DCT mode
  input signed [14:0] xv, // Input from DCTRam Vertical port
  output bit [14:0] yh, // Output to DCTRam Horizontal port
  output bit [10:0] zd, // pixel output - DCT mode
  output bit [5:0] memh, // DCTRam address - horizontal write
  output bit [5:0] memv, // DCTRam address - veritical read
  output bit ready); // Ready synchronization pulse

  bit [14:0] yv; // DCT vertical output before truncation
  bit [2:0] index;

//--Generate addresses for DCTRAM and increment index counter --
  bit fliph;
  bit flipv;

  task update_addr();
    if (start ) begin
      index <= 0;
      fliph <= 1;
      flipv <= 0;
      memh <= 6’b000111;
      memv <= 6’b000010;
    end else begin
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      index <= index + 1;
      memh <= incr_addr (fliph, memh);
      memv <= incr_addr (flipv, memv);
      if (memh == 6’b111111) fliph <= ~fliph;
      if (memv == 6’b111111) flipv <= ~flipv;
    end
  endtask

  function automatic bit [5:0] incr_addr (bit flip,  
    bit[5:0] addr); bit [5:0] addr_rev;

    if (!flip) incr_addr = addr + 1;
    else begin
      addr_rev = {addr[2:0], addr[5:3]};
      addr_rev++;
      incr_addr = {addr_rev[2:0], addr_rev[5:3]};
    end
  endfunction

//--------------- calculate sign ---------------------
function automatic bit [7:0] get_sgn ();
  bit [7:0] sgn;
  sgn[0] = 0;
  case (index)
    3’b 000: sgn[7:1] = 7’b 0000000;
    3’b 001: sgn[7:1] = 7’b 1111100;
    3’b 010: sgn[7:1] = 7’b 0001110;
    3’b 011: sgn[7:1] = 7’b 1100110;
    3’b 100: sgn[7:1] = 7’b 0110011;
    3’b 101: sgn[7:1] = 7’b 1011011;
    3’b 110: sgn[7:1] = 7’b 0101001;
    3’b 111: sgn[7:1] = 7’b 1010101;
  endcase
  get_sgn = sgn;
endfunction

  //-------- declarations for pixel processing --------
  typedef bit [16:0] bit17;
  typedef bit [15:0] bit16;
  typedef bit [14:0] bit15;
  typedef bit [12:0] bit13;
  typedef bit [10:0] bit11;
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  // horizontal variables
  bit15 [7:0] reg_x; // Accumulation registers
  bit15 [7:1] sh; // Output shift registers
  bit signed [10:0] x; // registered version of input pixel
  // vertical variables
  bit17 [7:0] reg_xv;
  bit17 [7:1] shv ;
  bit signed [14:0] xv_in;
  bit en_p; // enable piped 1 cycle

  //---------------- horizontal ----------------------
  // Note: outputs are truncated to 13 bits
  function bit13 [7:0] get_y (bit signed [10:0] x);
    bit signed [15:0] k7;
    bit signed [16:0] k6;
    bit signed [20:0] k5;
    bit signed [21:0] k3;
    bit signed [19:0] k2;
    bit signed [21:0] k1;
    bit signed [18:0] k0;

    k7 = x * 25 ;
    k6 = x * 49;
    k5 = k7 + (x * 544);
    k3 = x * 1703;
    k2 = k7 + (x * 448);
    k1 = k7 + (x * 1984);
    k0 = x * 181;

    get_y[0] = k0[18:6];
    get_y[1] = k1[21:9];
    get_y[2] = k2[19:7];
    get_y[3] = k3[21:9];
    get_y[5] = k5[20:8];
    get_y[6] = {k6[16], k6[16:5]};
    get_y[7] = {k7[15], k7[15], k7[15:5]};
    get_y[4] = 0;
  endfunction
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//----------- Map the vector for accumulation --------

function bit13 [7:0] get_crossh ( bit13 [7:0] y);
  case (index)
    3’d0: get_crossh[7:0] = { y[7],y[6],y[5],y[0],y[3], 

y[2],y[1],y[0]};
    3’d1: get_crossh[7:0] = { y[5],y[2],y[1],y[0],y[7], 

y[6],y[3],y[0]};
    3’d2: get_crossh[7:0] = { y[3],y[2],y[7],y[0],y[1], 

y[6],y[5],y[0]};
    3’d3: get_crossh[7:0] = { y[1],y[6],y[3],y[0],y[5], 

y[2],y[7],y[0]};
    3’d4: get_crossh[7:0] = { y[1],y[6],y[3],y[0],y[5], 

y[2],y[7],y[0]};
    3’d5: get_crossh[7:0] = { y[3],y[2],y[7],y[0],y[1], 

y[6],y[5],y[0]};
    3’d6: get_crossh[7:0] = { y[5],y[2],y[1],y[0],y[7], 

y[6],y[3],y[0]};
    3’d7: get_crossh[7:0] = { y[7],y[6],y[5],y[0],y[3], 

y[2],y[1],y[0]};
  endcase
endfunction

//---------------- Accumulate -----------------------
function bit15 [7:0] get_reg_x (bit signed [10:0] x);
  bit15 [7:0] tmp;
  bit13 bx[7:0];
  bit16 b[7:0];
  bit13 [7:0] sel;
  bit [7:0] sgn;

  sel = get_crossh (get_y(x));

  sgn = get_sgn();

  for (int i=0;i<8;i++) bx[i] = sgn[i] ? ~sel[i] : sel[i];
  for (int i=0;i<8;i++) b[i] =  {bx[i][12],bx[i][12], 

bx[i][12],bx[i]};

  if (index == 0) for (int i=0;i<8;i++) tmp[i] = b[i] 
              [15:1] + b[i][0];
  else for (int i=0;i<8;i++) tmp[i] = reg_x[i] + b[i] 
                  [15:1] + b[i][0];
  get_reg_x = tmp;

endfunction
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task update_sr();
  reg_x <= get_reg_x(x);
  if (index == 0) for (int i=1;i<8;i++) sh[i]<= reg_x[i];
  else for (int i=1;i<7;i++) sh[i]<= sh[i+1];
endtask

//------------------ vertical ------------------------
// Note: outputs are truncated to 16 bits
function bit16 [7:0] get_y_vert (bit signed [14:0] x);
  bit signed [19:0] k7;
  bit signed [20:0] k6;
  bit signed [24:0] k5;
  bit signed [25:0] k3;
  bit signed [23:0] k2;
  bit signed [25:0] k1;
  bit signed [22:0] k0;

  k7 = x * 25 ;
  k6 = x * 49;
  k5 = k7 + (x * 544);
  k3 = x * 1703;
  k2 = k7 + (x * 448);
  k1 = k7 + (x * 1984);
  k0 = x * 181;

  get_y_vert = 0;
  get_y_vert[0] = {k0[22], k0[22], k0[22], k0[22:10]};
  get_y_vert[1] = {k1[25], k1[25], k1[25], k1[25:13]};
  get_y_vert[2] = {k2[23], k2[23], k2[23], k2[23:11]};
  get_y_vert[3] = {k3[25], k3[25], k3[25], k3[25:13]};
  get_y_vert[5] = {k5[24], k5[24], k5[24], k5[24:12]};
  get_y_vert[6] = {k6[20], k6[20], k6[20],  
                  k6[20],k6[20:9]};
  get_y_vert[7] = {k7[19], k7[19], k7[19], k7[19],  
                   k7[19], k7[19:9]};
endfunction
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/---------- Map the vector for accumulation ----------
function bit16 [7:0] get_crossv ( bit16 [7:0] y);
  case (index)
    3’d0: get_crossv[7:0] = { y[7],y[6],y[5],y[0],y[3], 

y[2],y[1],y[0]};
    3’d1: get_crossv[7:0] = { y[5],y[2],y[1],y[0],y[7], 

y[6],y[3],y[0]};
    3’d2: get_crossv[7:0] = { y[3],y[2],y[7],y[0],y[1], 

y[6],y[5],y[0]};
    3’d3: get_crossv[7:0] = { y[1],y[6],y[3],y[0],y[5], 

y[2],y[7],y[0]};
    3’d4: get_crossv[7:0] = { y[1],y[6],y[3],y[0],y[5], 

y[2],y[7],y[0]};
    3’d5: get_crossv[7:0] = { y[3],y[2],y[7],y[0],y[1], 

y[6],y[5],y[0]};
    3’d6: get_crossv[7:0] = { y[5],y[2],y[1],y[0],y[7], 

y[6],y[3],y[0]};
    3’d7: get_crossv[7:0] = { y[7],y[6],y[5],y[0],y[3], 

y[2],y[1],y[0]};
  endcase
endfunction

//------------- Accumulate and shift out -------------
function bit17 [7:0] get_reg_xv (bit signed [14:0] xv_in);
  bit17 [7:0] tmp;
  bit16 [7:0] bx;
  bit17 [7:0] b;
  bit16 [7:0] sel1;
  bit [7:0] sgn;

  sel1 = get_crossv (get_y_vert(xv_in));

  sgn = get_sgn();

  for (int i=0;i<8;i++) bx[i] = sgn[i] ? ~sel1[i] : sel1[i];
  for (int i=0;i<8;i++) b[i] = {bx[i][15], bx[i]};
  
  if (index == 0)for(int i=0;i<8;i++) 
    tmp[i] = {b[i][16],b[i][16:1]} + b[i][0];
  else for (int i=0;i<8;i++) 
    tmp[i] = reg_xv[i] +{b[i][16],b[i][16:1]} + b[i][0];

  get_reg_xv = tmp;

endfunction
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DCT Using Proposed SystemVerilog Extensions

This version is very close to the original C version, but becomes synthesizable with 

the use of the proposed SystemVerilog extensions. Note that the constant-handling 

optimizations from the RTL are not used, and that all variables are integers. This is 

just to keep the code as simple as possible, and allow focus on the SystemVerilog 

extensions. The constant-handling optimizations could certainly be added to this 

code; it would just make the code a bit larger.

task update_srv ();
  reg_xv <= get_reg_xv (xv_in);
  if (index == 0) for (int i=1;i<8;i++) shv[i]<= reg_xv[i];
  else for (int i=1;i<7;i++) shv[i] <= shv[i+1];
endtask

//--------------------- MAIN -------------------------
task main ();
  x <= {~pixin[7], (~pixin[7]), pixin[6:0], 2’b 00};
  en_p <= en;
  if (en) update_addr();
  if (en_p) update_sr();
  xv_in <= xv;
  if (en) update_srv();
endtask

always_comb

  if (index == 0) yh = reg_x[0];
  else yh = sh[1];

always_comb begin

  if (index == 0) yv = (reg_xv[0]+ 2) >>> 2;
  else yv = (shv[1]+ 2) >>> 2;
  zd = yv[10:0];
end

always_ff @(posedge clk) main();

endmodule

//-----------------------------------------------------
//
// (C) COPYRIGHT 2002-2009 SYNOPSYS, INC.
// ALL RIGHTS RESERVED
//
//
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//-----------------------------------------------------
module dct_top (
  input bit clk, resetn,
  input bit run,
  input bit mem_read_rdy,
  input int pixin,
  output int pixout);

  $clock posedge (clk);

  int c[8][8]=’{
    ‘{23168, 32144, 30272, 27248, 23168, 18208, 12544, 6400 },
    ‘{23168, 27248, 12544, 6400, 23168, 32144, 30272, 18208},
    ‘{23168, 18208, 12544, 32144, 23168, 6400, 30272, 27248},
    ‘{23168, 6400, 30272, 18208, 23168, 27248, 12544, 32144},
    ‘{23168, 6400, 30272, 18208, 23168, 27248, 12544, 32144},
    ‘{23168, 18208, 12544, 32144, 23168, 6400, 30272, 27248},
    ‘{23168, 27248, 12544, 6400, 23168, 32144, 30272, 18208},
    ‘{23168, 32144, 30272, 27248, 23168, 18208, 12544, 6400 }
  };

  int s[8][8]=’{
    ‘{0, 0, 0, 0, 0, 0, 0, 0},
    ‘{0, 0, 0, 1, 1, 1, 1, 1},
    ‘{0, 0, 1, 1, 1, 0, 0, 0},
    ‘{0, 0, 1, 1, 0, 0, 1, 1},
    ‘{0, 1, 1, 0, 0, 1, 1, 0},
    ‘{0, 1, 1, 0, 1, 1, 0, 1},
    ‘{0, 1, 0, 0, 1, 0, 1, 0},
    ‘{0, 1, 0, 1, 0, 1, 0, 1}
  };

int v_pixin;
  int tmp_x[8];
  int reg_x[8];
  int tmp_y[8];
  int reg_y[8];
  int mem[8][8];

//------------------ top (main) ------------------
state_machine dct();
  begin
    if (run) horizontal_dct();
  endstate_machine
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//-------------- horizontal processing ---------------
state_machine horizontal_dct();
  done = 0;
  while (run) begin
    for (state_var y=0;y<8;y++) begin
      for(state_var x=0;x<8;x++) begin
        for(int u=0;u<8;u++) begin
          v=pixin*c[x][u];
          v+=2048;
          v>>>12;
          if(s[x][u]) v=-v;
          if (x ==0) reg_x[u]<=v;
          else if (x < 7) reg_x[u]<=reg_x[u]+v;
          else tmp_x[u] <= reg_x[u] + v;
        end
      end
      fork mem_write(y); join_none // can’t fork again until 
complete
    end
  end
  done = 1;
endstate_machine

//------------- write scratchpad memory ---------------
state_machine mem_write(int y);
  bit_ff flip;
  for(state_var x=0;x<8;x++) begin
    if (!flip) mem[y][x]<=tmp_x[x];
    else mem[x][y]<=tmp_x[x];
    if ((y == 7) && (x == 0) fork mem_read(); join_none
    if ((y == 7) && (x == 7) flip <= ~flip;
  end
endstate_machine

//--------------- read scratchpad memory --------------
state_machine mem_read();
  bit_ff flip = 0;
  bit_ff v_pixin_available = 0;
  for (state_var y=0;y<8;y++) begin
    for(state_var x=0;x<8;x++) begin
      if (!flip) v_pixin <= mem[y][x];
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      else v_pixin <= mem[x][y];
      if ((y == 7) && (x == 7) flip <= ~flip;
      v_pixin_available <= mem_read_rdy;
      if ((y == 0) && (x == 0)) fork vertical_dct; join_none
    end
  end
endstate_machine

//--------------- vertical processing -----------------
state_machine vertical_dct();
  int v;
  for(state_var y=0;y<8;y++) begin
    for(state_var x=0;x<8;x++) begin
      wait (mem_read.v_pixin_available);
      for(int u=0;u<8;u++) begin
        v=v_pixin*c[x][u];
        v+=131072;
        v>>>18;
        if(s[x][u]) v=-v;
        reg_y[u]+=v;
        if (x == 0) reg_y[u]<=v;
        else if (x < 7) reg_y[u]<=reg_y[u]+v;
        else tmp_y[u] <= reg_y[u} + v;
      end
      fork output_pixels(); join_none
    end
  end
endstate_machine

//------------------ output results ------------------
state_machine output_pixels();
  for(state_var x=0;x<8;x++) begin
    v=tmp_y[x];
    v+=2;
    v>>>2;
    pixout <= v;
  end
endstate_machine

//------------------ invoke main state machine --------
dct();

endmodule
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This appendix includes preliminary specifications for some proposed extensions to 

the synthesizable subset of SystemVerilog. The first section addresses the issue of 

data types in SystemVerilog. The second section describes a hierarchical state 

machine construct.

Data Types in System Verilog

Overview

The most basic objects of digital design are:

The flip-flop•฀

The combinational gate•฀

The latch•฀

The special signals clock and reset•฀

None of these types are explicitly supported by SystemVerilog. The supported data 

types of bit, logic, reg and wire do not exactly map onto the design primitives listed 

above. 

SystemVerilog introduced always_ff, always_comb, and always_latch to enable 

designers to specify exactly how assignments in these processes should be inter-

preted. Quoting from the LRM:

Appendix C

Preliminary Specification  
for Extensions to SystemVerilog

M. Keating, The Simple Art of SoC Design: Closing the Gap between RTL and ESL, 
DOI 10.1007/978-1-4419-8586-6, © Synopsys, Inc. 2011

Because of the possibility of human or mechanical error, neither the author, Synopsys, Inc., nor
any of its affiliates, including but not limited to Springer Science+Business Media, LLC guarantees 
the accuracy, adequacy or completeness of any information contained herein. In no event shall 
the authors, Synopsys, Inc. or their affiliates be liable for any damages in connection with the 
information provided herein. Full disclaimer available at: pg. v of Frontmatter.
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The SystemVerilog always_ff procedure can be used to model synthesizable 

sequential logic behavior. For example:

always_ff @(posedge clock iff reset == 0 or posedge reset) 

begin

r1 <= reset ? 0 : r2 + 1;
…
end

SystemVerilog provides a special always_comb procedure for modeling 

 combinational logic behavior. For example:

always_comb

a = b & c;

SystemVerilog also provides a special always_latch procedure for  modeling 

latched logic behavior. For example:

always_latch

if (ck) q <= d;

Limitation of SystemVerilog

These three new process types provide greatly improved simulation and synthesis 

semantics over Verilog. But they take the somewhat convoluted approach of defining a 

data type (a flop or combinational signal) by the process in which it is assigned a value.

A more straight-forward approach is to define SystemVerilog variables to be of 

the appropriate primitive type.

Proposal – New Module Type

We propose a special kind of module, called an smodule, which is exactly the same 

as a module in SystemVerilog except that the new data types are allowed in an 

smodule and only in an smodule. Because the new data types introduce some sig-

nificant changes in assignment statements, a separate kind of module allows the 

user to specify exactly when and where these new data types and rules apply.

Having a separate kind of module also allows a stricter set of rules within an 

smodule, since we no longer need to allow mixing and matching syntaxes.

Proposal – New Data Types

We propose to use a similar syntax to define the following signal types:

bit_ff: A variable of type bit which can only be simulated/synthesized as an edge-

triggered flop.
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bit_comb: A variable of type bit which can only be simulated/synthesized as a 

combinational variable.

bit_latch: A variable of type bit which can only be simulated/synthesized as an 

level sensitive latch.

Similarly, we define logic_ff, logic_comb, and logic_latch as equivalent variables 

of type logic.

For types bit_ff, bit_latch, logic_ff, and logic_latch we allow initialization values 

to indicate the reset value of the variable. For example:

bit_ff [31:0] foo = 32’b0;

In addition, we provide for the specification of a default clock and a default reset 

to be used in a module.

$clock posedge clk specifies that the posedge of signal clk is the default clock for 

all flops and latches in this module.

$reset async negedge reset_n specifies that the signal reset_n is the default reset 

for all flops and latches in this module, that reset is asynchronous and occurs on the 

negedge of the signal reset_n.

$reset sync !reset_n specifies that the signal reset_n is the default reset for all flops 

and latches in this module, that reset is synchronous and occurs when the signal 

reset_n is low.

Usage

For the purpose of this section, we refer to bit_ff, bit_comb, bit_latch, logic_ff, 

logic_comb, logic_latch as extended bit/logic types.

The extended bit/logic types can be used only in an smodule. They can be used 

anywhere bit/logic can be used. That is, any object than can be declared to be of 

type bit (or logic) in a normal module can be declared to be an extended bit(or 

logic) type in an smodule. But the distinction between extended bit/logic types and 

normal bit/logic types becomes meaningful only when the variable appears on the 

left hand side of an assignment. That is, the compiler treats extended bit/logic data 

types exactly like normal bit/logic types except when they appear on the left hand 

side of an assignment operator.

Sequential and Combinational Processes

Explicit processes are not allowed in smodules. That is, no kind of always state-

ment or assign statement is allowed. Since we have the extended data types, 

always_ff and always_comb are not required to disambiguate what an assignment 

means in terms of behavior and hardware structures that will be synthesized.
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Operators

It will be an error if:

 1. A variable of type bit_ff, bit_latch, logic_ff or logic_latch is on the left hand side 

of any assignment operator except the non-blocking assignment operator (<=).

 2. A variable of type bit_comb or logic_comb is on the left hand side of any assign-

ment operator except the blocking assignment operator (=).

Assignments Outside of Processes

In smodules, an assignment to an extended bit/logic type implies the appropriate 

process.

For example:

smodule foo (input bit [7:0] a,b );

   bit_comb [7:0] bar;

   bar = a && b;

endmodule

Is the equivalent of:

module foo (input bit [7:0] a,b );
bit [7:0] bar;

  always_comb bar = a && b;

endmodule

Sequential Assignments:

For implied sequential processes, it is necessary to know the clock, reset signal, and 

reset value. These are provided by $clock, $reset, and variable initialization.

For example:
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Is the equivalent of:

smodule foo (
input bit clk, reset_n,
input bit [7:0] a,b );

$clock posedge(clk); //all flops are clocked     
             // by this clock

$reset sync negedge resetn; //all flops are reset  
             // by this signal

bit_ff [7:0] bar = 8’h1f;

  bar <= a && b;

endmodule

module foo (
   input bit clk, reset_n,
   input bit [7:0] a,b );

bit [7:0] bar;

always_ff @ (posedge clk or negedge resetn) begin
    if (!resetn) begin
      bar <= 8’b1f; 
    end else begin
      bar <= a && b;
    end
  end

endmodule

$clock

It will be an error if:

 1. More than one $clock statement occurs in an smodule.

 2. A $clock statement occurs after any assignment in the smodule. That is, the 

$clock is part of the declaration section at the beginning of the module, before 

any executable statement.

 3. A $clock statement occurs in a task or function.
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The $clock statement specifies the signal used for the clock and which edge is to 

be used:

$clock posedge|negedge signal_name

$reset

The same limitations described for $clock above apply also to the $reset 

statement.

The $reset statement consists of :

$reset sync|async posedge|negedge signal_name

For an implied sequential process, the reset value of the bit_ff or bit_latch is specified 

when the variable is declared:

bit_ff [7:0] foo = 8’hff;

 if (cond) begin
   v1   = a || b;
   foo <= 8'b0; 
   bar  = c + d; 
 end else begin
   bar  = c - d;
   foo <= 8'bff;
   v1   = a && b;
 end

v1   = a || b 

If no reset value is specified in the declaration, the reset value of 0 will be used.

Semantics of Extended Data Types

Extended data types allow assignments to flip-flops and combinational logic to be 

mixed freely. For example:

Since we can mix assignments, it makes no sense to view these as blocking or 

non-blocking assignments. In no sense does
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block

foo <= 8'b0 or bar  = c + d. 

always_ff @ (posedge clk or negedge resetn) begin
  if (!resetn) begin
    foo <= (reset_value_of_foo); 
  end else begin
    if (cond) begin
      foo <= 8'b0;
    end else begin
      foo <= 8'bff;
    end
  end
end

always_comb begin 
  if (cond) begin
    v1   = a || b;
  end else begin
    v1   = a && b;
  end
end

always_comb begin 
  if (cond) begin
    bar  = c + d; 
  end else begin
    bar  = c - d;
  end
end

if (cond) foo <= 8'b0;   else foo <= 8'bff;

if (cond) v1   = a || b; else v1   = a && b;

if (cond) bar  = c + d;  else begin bar  = c - d;

Instead, we think of combinational assignments as occurring immediately, and 

sequential assignments occurring at the next clock. Thus the above code is equiva-

lent to:

Or, in our more succinct extended data types:
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Tasks

A standalone invocation of a task is considered an implied sequential process. So:

bit_comb [7:0] a;

if (condition1) begin
   a = 0;
   if (condition2)      a[0] = 1;
   else if (condition3) a[1] = 1;
end

That is, objects of type bit_comb act like logic gates.

The classic example of blocking assignments is:

b = a;
a = c;

In a regular module, or in a function in an smodule, the result of this code is that 

b gets the old value of a, a’s new value after it is assigned the value of c.

In an smodule, this code results in

b = c;
Which is what happens in real hardware.

The other classic case is:

a = 0;
c = 1;
b = a;
a = c;

In real hardware, and in smodules, this code makes no sense and is an error 

because it assigns “a” two different values.

In smodules, we allow one exception to this rule that combinational assignments 

always work exactly like real hardware. The exception is a default value within a 

scope (begin/end pair).

a = 7’b00000001

In this case, the increased specificity of “a[0] = 1;” overrides the default “a = 0;”

So if condition1 and condition2 are true,
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smodule foo (input bit clk, reset_n,);

$clock posedge(clk);
$reset sync negedge resetn;

task bar();
  a <= b + c;
endtask ;

bar ();

endmodule

module foo (input bit clk, reset_n);

task bar();
  a <= b + c;
endtask ;

always_ff @ (posedge clk) begin
   bar (); 
end

 
endmodule

Is the equivalent of:

Functions

The behavior and rule governing functions are not changed.

Structure in SModules

One advantage of explicit processes like always_ff is that they allow a scope to be 

defined where local variables can be declared and related statements grouped 

together. This kind of mechanism for localizing information and hiding it from the 

rest of the code is important for writing good code.
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For this reason, smodules allow (named or unnamed) begin/end blocks within 

the module.

Note: although most simulators support this feature, it is not part of the current 

SystemVerilog Language Reference Manual and is not supported by synthesis 

tools.

Example:

smodule foo (input bit clk, reset_n,
             input bit [7:0] in1,
             output bit_ff [7:0] out1);

$clock posedge(clk);
$reset sync negedge resetn;

begin: my_local_scope

  enum { id1, id2 } my_var;

  bit_ff current_id;

  
  if (input[0]) current_id <= id1;
  else current_id <= id2;

  out1 <= current_id + 3;
end

endmodule

Limitations:

The following limitations are a result of the definitions give above:

 1. If an input to a smodule is declared to be an extended bit/logic type, no checking 

will be done on how that signal is driven. For example:

smodule foo (input bit_ff [7:0] a,b);
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  The fact that a and b are defined as bit_ff has no effect – we don’t check that the 

module driving these inputs drives them from a flip-flop. (Note – this could be 

an interesting check in the future).

 2. If a function is declared as type bit_ff, it is the same as declaring it as bit, since 

a function/task can never be the left hand side of an assignment.

Examples

Reference for Examples

The following (legal SystemVerilog) code serves as a reference for the following 

examples which use extended data types.

module foo ( 
  input bit            clk, resetn,
  input bit            data_valid,
  input bit [31:0]     data_in,
  output bit [35:0]    output_data ,
  output bit           hdr_dword_push
  );

  always_ff @ (posedge clk or negedge resetn) begin
    if (!resetn) begin
      output_data <= 36’h0; 
    end else begin
      output_data <= data_in;
    end
  end

  always_comb hdr_dword_push = data_valid;  

endmodule
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Example 1 – Extended data types in processes

smodule foo ( 
  input bit            clk, resetn,
  input bit            data_valid,
  input bit [31:0]     data_in,
  output bit_ff [35:0] output_data = 36'h0,
  output bit_comb      hdr_dword_push
  );

  $clock posedge(clk); 

  $reset async negedge(resetn); 

  always_ff output_data <= data_in; // simpler

  always_comb hdr_dword_push = data_valid;  
endmodule

Example 2 – Extended data types outside of processes

The always_ff and always_comb are unnecessary in the previous example, 

because the signal declarations convey the same information.

smodule foo ( 
  input bit            clk, resetn,
  input bit            data_valid,
  input bit [31:0]     data_in,
  output bit_ff [35:0] output_data = 36'h0,
  output bit_comb      hdr_dword_push
  );

  $clock posedge(clk);
  $reset async negedge(resetn);

  output_data <= data_in;

  hdr_dword_push = data_valid;
endmodule
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Example 3 - A slightly more complex example

smodule foo ( 
  input bit            clk, resetn,
  input bit            data_valid,
  input bit [31:0]     data_in,
  output bit_ff [35:0] output_data = 36'h0,
  output bit_comb      hdr_dword_push
  );

  $clock posedge(clk);
  $reset async negedge(resetn);

  if (data_valid) output_data <= data_in;
  else for (int i=0; i<8; i++) output_data <= i;

  hdr_dword_push = data_valid;  
endmodule

Hierarchical State Machine Primitive

Overview

The state machine is the most important element in control code. Today engineers 

code state machines in many different styles. This limits the optimizations synthesis 

can do and the analysis that verification tools can do. It also leads to state machines 

that are more complex and difficult for humans to understand. Although about 

5-10% of RTL designers have used hierarchical state machines, the difficulty in cod-

ing them limits the adoption of this very effective tool for structuring control code.

The proposed hierarchical state machine (HSM) mechanism is similar to a func-

tion or a task, in that it is a scope. This allows local variables and types to be 

defined. Like functions and tasks, state machines can call other state machines, 

leading to hierarchical state machines.

Fundamental Characteristics of a State Machine

 1. A state machine is a fully static object. State is persistent and (can be declared to 

be) local to the state machine.

 2. State is a primitive design concept, so the state machine is not a function or task, 

although it can be coded using functions and tasks.
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 3. State is a property of a module – a module is in exactly one state at any time 

during operation.

 4. State transitions are synchronous events. All state transitions in a given state 

machine occur on the same edge (pos or neg) of the same clock.

 5. In a given state, both synchronous and combinational outputs are driven to new 

values. The synchronous events occur on the same edge (pos or neg) of the same 

clock as the state transitions.

 6. The state machine primitive must support hierarchical state machines.

Translation Example – Simple State Machine

The features of the state machine primitive are described in Chapter 11. Here we 

give an example of a very simple state machine and how it might be translated into 

legal SystemVerilog. The following state machine:

state_machine  tctrl();
  bit flag1;
  state_type { TX_IDLE, TX_MPKT, TX_SKP } state;
  
  begin
    flag1 = 0;
    case (state)
      TX_IDLE: begin
        output_data <= 0;
        state <= TX_SKP;
      end
      TX_SKP: begin
        flag1 = 1;
        skp_sm();
        if (skp_sm.done) state <= TX_IDLE;
      end
      default: ;
    endcase
  end
endstate_machine

(continued)
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Gets translated to:

  bit tctrl_flag1;
  enum { TX_IDLE, TX_MPKT, TX_SKP } tctrl_state;

  task tctrl(); //body of sm
    case (tctrl_state)
      TX_IDLE: begin
        output_data <= 0;
        tctrl_state <= TX_SKP;
      end
      TX_SKP: begin
        skp_sm.main();
        if (skp_sm.done) tctrl_state <= TX_IDLE;
      end
      default: ;
    endcase
  endtask

(continued)

state_machine skp_sm 
  enum { IDLE, NEXT, DONE } state;
  bit done ;
  bit flag2;
  
  begin
    done = 0;
    flag2 = 0;
    case (state)
      IDLE: state <= NEXT;
      NEXT: begin
        flag2 = 1;
        state <= DONE;
      end
      DONE: begin
        done = 1;
        state <= IDLE;
      end
    endcase
  end

endstate_machine

(continued)
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  always_comb if (tctrl_state == TX_SKP) 
    tctrl_flag1 = 1; 
  else 
    tctrl_flag1 = 0;

  always @(posedge clk) tctrl();

  enum {SKP_IDLE,SKP_NEXT,SKP_DONE} skp_sm_state;
  bit skp_done ;
  bit skp_flag2;

  task skp_sm();
    case (skp_sm_state)
     SKP_IDLE: skp_sm_state <= SKP_NEXT;
     SKP_NEXT: skp_sm_state <= SKP_DONE;
     SKP_DONE: skp_sm_state <= SKP_IDLE;
    endcase
  endtask

  always_comb if (skp_sm_state == SKP_NEXT) 
   skp_flag2 = 1; 
  else
   skp_flag2 = 0;

  always_comb if (skp_sm_state == SKP_DONE) 
   skp_done = 1; 
  else 
   skp_done = 0;

(continued)
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This chapter describes some additional high-level constructs in SystemVerilog and 

their potential role in raising the level of abstraction in design.

Interfaces

The interface construct in SystemVerilog can be a useful tool in creating more 

structured code.  The interface construct is described in detail in [15] and [16].

The idea behind interfaces is that we can go beyond grouping interface signals 

together – which is easily and efficiently done using structs. With interfaces, we 

can move some functionality, especially functionality that is communication-

dependent, from the module into an interface.

Appendix D

More on High Level SystemVerilog

Figure D-1 Using the interface construct to encapsulate the memory and FIFO read/write tasks.

M. Keating, The Simple Art of SoC Design: Closing the Gap between RTL and ESL, 
DOI 10.1007/978-1-4419-8586-6, © Synopsys, Inc. 2011

Because of the possibility of human or mechanical error, neither the author, Synopsys, Inc., nor
any of its affiliates, including but not limited to Springer Science+Business Media, LLC guarantees 
the accuracy, adequacy or completeness of any information contained herein. In no event shall 
the authors, Synopsys, Inc. or their affiliates be liable for any damages in connection with the 
information provided herein. Full disclaimer available at: pg. v of Frontmatter.
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Figure D-1 illustrates this idea. Imagine we are in the early stages of a design, 

and we don’t yet know if we are going to interface to a memory or a FIFO. We can 

use a SystemVerilog interface to encapsulate the read and write functions. We can 

then code the module using generalized read and write functions, which call func-

tions (tasks) in the interface. Now we can change our minds about whether to use 

a FIFO or memory, and we need only change the code in the interface. The module 

itself remains unchanged.

This approach has proven very useful in writing test benches and behavioral 

code. With the current synthesizable subset, however, it is not possible to put 

sequential code in the interface block. This means that if the read or write takes 

multiple clock cycles, it is not really possible to isolate this behavior in the inter-

face. This is another case where, hopefully, the synthesizable subset of SystemVerilog 

will be extended.

Parameters of Type Type

Another interesting high-level capability of SystemVerilog is the parameter of type 

type. Here we can specify the type of an object via a parameter. As in the case of 

the interface, this construct allows us to defer decisions. For instance, if we are not 

sure whether an interface is going to be a DMA interface or a register read-write 

interface, we can use parameters of type type to defer the decision but carry on with 

writing the rest of the code.

Example D-1 shows a (very simple) example of using parameters of type type.

Example D1: Parameters of type type are synthesizable in the Synopsys synthesis 

tools.

typedef enum bit {READ, WRITE} rw_type;

typedef struct packed{
    bit [14:0] target_addr;
    bit [7:0] length;
} dma_inst_type ;

typedef struct packed {
    rw_type read_write;
    bit [14:0] addr;
    bit [15:0] data;
 } rw_instr_type;

interface automatic instruction_intf
    #(parameter type fifo_type = dma_inst_type)
    (input clk);

(continued)
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FIFOs

The rest of this appendix explores using the queue construct in SystemVerilog to 

create a synthesizable fifo primitive for SystemVerilog.

    bit fifo_empty;
    bit fifo_pop;
    bit instr_avail;
    fifo_type instruction;

    modport fifo (input fifo_pop, clk,
                  output fifo_empty, instruction);

    modport master(input instruction, instr_avail, 
                         clk,
                   import task get_instruction());

    task get_instruction ();
        if (!fifo_empty && !fifo_pop) begin
            fifo_pop <= 1'b1;
            instr_avail <= 1'b1;
        end else begin
            fifo_pop <= 1'b0;
            instr_avail <= 1'b0;
        end
    endtask
endinterface : instruction_intf

module main
 #(parameter type instruction_type = dma_inst_type)
  (instruction_intf.master di);

  instruction_type instruction;

  always @(posedge di.clk) begin
    di.get_instruction();
    if (di.instr_avail) 
      instruction <= di.instruction;
    end
endmodule

Example D-1 (continued)
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Queue Overview

The proposed FIFO primitive is built on the (fixed size) queue feature of 

SystemVerilog. The queue is not currently synthesizable. The goal of this project is 

define a subset/extension of the queue that provides a synthesizable FIFO primitive.  

In SystemVerilog, the queue in general is defined by:

byte q1[$]; // A queue of bytes

A fifo requires a fixed size queue, which is defined by:

bit q2[$:255]; // A queue whose maximum size is 256 bits

The queue in SV allows operators to operate directly on queues. The queue also 

comes with the following methods.

size()

The size() method returns the number of items in the queue. If the queue is empty, 

it returns 0.

insert()

The insert() method inserts the given item at the specified index position. For 

instance, Q.insert(i, e) is equivalent to: Q = {Q[0:i-1], e, Q[i,$]}

delete()

The delete() method deletes the item at the specified index position.

pop_front()

The pop_front() method removes and returns the first element of the queue.

pop_back()

The pop_back() method removes and returns the last element of the queue.

push_front()

The push_front() method inserts the given element at the front of the queue.



227Appendix D

push_back()

The push_back() method inserts the given element at the end of the queue.

FIFO Definition

The synthesizable FIFO is:

A fixed size queue•฀

No direct operations are allowed on the queue. The data in a fifo can only be •฀

accessed through its methods.

The supported queue methods are:

size()•฀

pop_back()•฀

push_front()•฀

In addition, the following new methods are provided:

push (equivalent to push_front)•฀

pop (equivalent to pop_back)•฀

empty (equivalent to size() == 0)•฀

full (equivalent to size() == depth of fifo)•฀

move_write_pointer(count): moves the write pointer by count (so it moves the •฀

pointer forward if count is positive, moves it back if it is negative)

move_read_pointer(count): moves the read pointer by count (so it moves the •฀

pointer forward if count is positive, moves it back if it is negative)

FIFO Examples

module fifo_test (
  input bit clk, reset_n,
  input data_valid,
  input byte inbyte);

  byte fifo [$:8];  // fifo is the variable name 
                    // not a reserved word
  byte outbyte[3:0];

always_ff @(posedge clk) begin

(continued)
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Example D-2 shows the use of a bounded queue as a fifo. This is completely legal 

SystemVerilog code – it simulates correctly. But it is not currently 

synthesizable.

Example D-3 shows how to use a queue as a fifo in the case where it is read and 

written by two different modules.

module fifo_test (
  input bit clk, reset_n,
  input data_valid,
  input byte inbyte);

    byte fifo [$:8]; 

  fifo_writer U_fifo_writer(.*);
  fifo_reader U_fifo_reader(.*);
endmodule

module fifo_writer (
  input bit clk, reset_n,
  input data_valid,
  input byte inbyte);

  always_ff @(posedge clk) begin
    if (data_valid &&(fifo_test.fifo.size < 8))  
      fifo_test.fifo.push_front(inbyte);

(continued)

Example D-2 (continued)

  if (data_valid && (fifo.size < 8))
    fifo.push_front(inbyte);
end

always_ff @(posedge clk) begin
  if (fifo.size > 4) 
     for (int i = 0; i < 4; i++) 
       outbyte[i] <= fifo.pop_back();
end

endmodule
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Example D-4 shows a queue used as a fifo with the fifo in the interface.

interface fifo_interface ();
  byte fifo [$:8]; 

  modport master (import full, push);
  modport slave (import empty, half_full, pop);

  function empty ();
    empty = (fifo.size() == 0);
  endfunction

  function full ();
    full = (fifo.size() == 8);
  endfunction

  task push (byte inbyte);
    fifo.push_front(inbyte);
  endtask

  function byte pop ();
    pop = fifo.pop_back();
  endfunction

(continued)

Example D-3 (continued)

  end
endmodule

module fifo_reader (
  input bit clk, reset_n,
  input data_valid,
  input byte inbyte);

  byte outbyte[3:0];

  always_ff @(posedge clk) begin
    if (fifo_test.fifo.size > 4)
      for (int i = 0; i < 4; i++) 
        outbyte[i] <= fifo_test.fifo.pop_back();
  end
endmodule
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Example D-4 (continued)

  function half_full ();
    half_full = (fifo.size() >= 4);
  endfunction
endinterface : fifo_interface

module fifo_writer (
  input bit clk, reset_n,
  input data_valid,
  input byte inbyte,
  fifo_interface.master fifo);

  always_ff @(posedge clk)
    if (data_valid && !fifo.full())fifo.push(inbyte);

endmodule

module fifo_reader (
  input bit clk, reset_n,
  input data_valid,
  input byte inbyte,
  fifo_interface.slave fifo);

  byte outbyte;

  always_ff @(posedge clk) 
    if (fifo.half_full())outbyte <= fifo.pop();

endmodule

module fifo_test (
  input bit clk, reset_n,
  input data_valid,
  input byte inbyte);

  fifo_interface fifo();

  fifo_writer U_fifo_writer(.*);
  fifo_reader U_fifo_reader(.*);

endmodule
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