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Foreword

The ideas of reliability, or should I say unreliability, in computing began with von

Neumann’s 1963 paper [1]. In the intervening years, we flip-flopped between

thoughts such as “semiconductors are inherently reliable” and “increasing

complexity can lead to error buildup”.

Change over to digital technology was a welcome relief from a variety of

electrical noises generated at home. While we continue to fictionalize the arrival

of extraterrestrial beings, we did not suspected that they would arrive early to affect

our electronic systems. Let me quote from a recent paper, “From the beginning of

recorded history, man has believed in the influence of heavenly bodies on the life on

the Earth. Machines, electronics included, are considered scientific objects whose

fate is controlled by man. So, in spite of the knowledge of the exact date and time of

its manufacture, we do not draft a horoscope for a machine. Lately, however, we

have started noticing certain behaviors in the state of the art electronic circuits whose

causes are traced to be external and to the celestial bodies outside our Earth [2]”.

May and Woods of Intel Corporation reported on alpha particle induced soft

errors in the 2107-series 16-KB DRAMs. They showed that the upsets were

observed at sea level in dynamic RAMs and CCDs. They determined that these

errors were caused by a particles emitted in the radioactive decay of uranium and

thorium present just in few parts per million levels in package materials. Their

paper represents the first public account of radiation-induced upsets in electronic

devices at the sea level and those errors were referred to as “soft errors” [3].

It has been recognized since 1940s that an electromagnetic pulse (EMP) can

cause temporal malfunction or even permanent damage in electronic circuits. The

term EMP refers to high energy electromagnetic radiation typically generated by

lightning or through interaction of charged particles in the upper atmosphere with

g rays or X rays. Carl E. Baum, perhaps the most significant contributor to the EMP

research, traces the history of the EMP phenomenon and reviews a large amount of

published work in his 188-reference survey article [4]. Besides providing techni-

ques of radiation hardening, shielding and fault-tolerance, significant amount

of experimental work has been done on developing EMP simulator hardware.

I particularly mention this because I believe that collaboration between soft error

and EMP research communities is possible and will be beneficial.
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The publication of this book is the latest event in the history I have cited above.

Its contributing editor, Michael Nicolaidis, is a leading authority on soft errors. He

is an original contributor to research and development in the field. Apart from

publishing his research in a large number of papers and patents he cofounded iROC

Technologies. His company provides complete soft-error analysis and design

services for electronic systems.

Nicolaidis has gathered an outstanding team of authors for the ten chapters of

this book that cover the breadth and depth. This is the first book to include almost all

aspects of soft errors. It comprehensively includes historical views, future trends,

the physics of SEU mechanisms, industrial standards and practices of modeling,

error mitigation methods, and results of academic and industry research. There is

really no other published book that has such a complete coverage of soft errors.

This book fills a void that has existed in the technical literature. In the words of

my recently graduated student, Fan Wang, “During the time I was a graduate

student I suffered a lot trying to understand different topics related to soft errors.

I have read over two hundred papers on this topic. Soft error is mentioned in most

books on VLSI reliability, silicon technology, or VLSI defects and testing, however,

there is no book specifically on soft errors. Surprisingly, the reported measurements

and estimated results in the scattered literature vary a lot sometimes even seem to

contradict each other. I believe this book will be very useful for academic research

and serve as an industry guide”.

The book provides some interesting reading. The early history of soft errors is

like detective stories. Chapter 1 documents the case of soft errors in the Intel 2107-

series 16-kb DRAMs. Culprits are found to be alpha particles emitted through the

radioactive decay of uranium and thorium impurities in the packaging material. The

1999 case of soft errors in Sun’s Enterprise server results in design reforms leading

to the applications of coding theory and inventions of new design techniques.

A serious reader must go through Chap. 2 to learn the terms and definitions and

Chap. 3 that provides the relevant standards. Chapters 4 and 5 discuss methodol-

ogies for modeling and simulation at gate and system levels, respectively. Hard-

ware fault injection techniques are given in Chap. 6, with accelerated testing

discussed in Chap. 7. Chapters 8 and 9 deal with soft-error mitigation techniques

at hardware and software levels, respectively. Chapter 10 gives techniques for

evaluating the soft-error tolerance of systems.

Let us learn to deal with soft errors before they hurt us.

Vishwani D. Agrawal
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Preface

In the early computer era, unreliable components made fault-tolerant computer

design mandatory. Dramatic reliability gains in the VLSI era restricted the use of

fault-tolerant design in critical applications and hostile environments. However, as

we are approaching the ultimate limits of silicon-based CMOS technologies, these

trends have been reversed. Drastic device shrinking, very low operating voltages,

increasing complexities, and high speeds made circuits increasingly sensitive to

various kinds of failures. Due to these trends, soft errors, considered in the past as a

concern for space applications, became during the past few years a major source of

system failures of electronic products even at ground level. Consequently, soft-error

mitigation is becoming mandatory for an increasing number of application domains,

including networking, servers, avionics, medical, and automotive electronics. To

tackle this problem, chip and system designers may benefit from several decades of

soft error related R&D from the military and space. However, as ground-level

applications concern high-volume production and impose stringent cost and power

dissipation constraints, process-based and massive-redundancy-based approaches

used in military and space applications are not suitable in these markets.

Significant efforts have therefore been made during the recent years in order to

benefit from the fundamental knowledge and engineering solutions developed in

the past and at the same time develop new solutions and tools for supporting the

constraints of ground-level applications. After design for test (DFT), design for

manufacturability (DFM), and design for yield (DFY), the design for reliability

(DFR) paradigm is gaining importance starting with design for soft error mitigation.

Dealing with soft errors is a complex task that may involve high area and power

penalties, as copying with failures occurring randomly during system operation

may require significant amounts of redundancy. As a consequence, a compendium

of approaches is needed for achieving product reliability requirements at low area

and power penalties. Such approaches include:

l Test standards for characterizing the soft-error rate (SER) of the final product

and of circuit prototypes in the terrestrial environment. Such standards are

mandatory for guarantying the accuracy of test results and for having a common
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reference when comparing the SER, measured in terms of Failure in Time (FIT),

of devices provided by different suppliers.
l SER-accelerated testing platforms, approaches, and algorithms for different

devices, including SRAMs, DRAMs, TCAMs, FPGAs, processors, SoCs, and

complete systems.
l SER-accelerated testing platforms, approaches, and algorithms for cell libraries.
l Software/hardware methodologies and tools for evaluating SER during the

design phase. Such tools become increasingly important for two major reasons.

Characterizing SER during the design phase is the only way for avoiding bad

surprises when the circuit prototype or the final product is tested, which could

lead to extra design and fabrication cycles and loss of market opportunities.

Interactive SER estimation during the design cycle is the only way for making

the necessary tradeoffs, determining the circuit critical parts and selecting the

most efficient mitigation approaches for meeting a reliability target at minimal

cost in terms of power, speed, and area. Software and hardware tools at various

levels are required such as:

‐ TCAD tools for characterizing the transient current pulses produced by alpha

particles and secondary particles.

‐ Cell FIT estimation tools to guide the designers of memory cells and cell

libraries for meeting their SER budget at minimal cost, and for providing the

cell FIT to the higher level SER estimation tools.

‐ Spice-level FIT estimation, usually for evaluating the impact of transient

pulses in sequential cells and in combinational logic.

‐ Gate-level FIT estimation tools for characterizing IP blocks: based on exact,

statistical or probabilistic approaches; considering the logic function only (for

logic derating computation) or both the logic function and the SDF files (for

combined logic and time derating computation).

‐ RTL FIT estimation.

‐ SoC FIT estimation, for taking into account the functional derating at the SoC

level.

‐ Fault injection in hardware platforms for accelerating the FIT estimation task

at IP level and SoC level.

l Soft-error mitigation approaches at hardware level including: error detecting and

correcting codes, hardened cells, self-checking circuits, double sampling

approaches, instruction-level retry.
l Soft-error mitigation approaches at software level, operating system level, as

well as check-pointing and rollback recovery.

Grenoble, France Michael Nicolaidis

February 2010
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Purpose

The purpose of this book is to provide a comprehensive description of the highly

complex chain of physical processes that lead to the occurrence of soft errors.

Mastering soft errors and the related chain of physical processes requires mastering

numerous technological domains, including: nuclear reactions of cosmic rays with

the atmosphere (neutron and proton generation at ground level); nuclear reactions

of atmospheric neutrons and protons with die atoms (secondary particles genera-

tion); coulomb interaction (ionization); device physics (charge collection); electri-

cal simulation (SEU creation, SET propagation); event-driven simulation (for

combined logic and time derating estimation); logic domain simulation (for logic

derating estimation); RTL simulation; and hardware emulation. Most of these

domains are extremely challenging and may lead to unacceptable simulation time

for achieving good accuracy. Past and recent developments in these domains are

reported in the book.

The book is also aimed at providing a comprehensive description of various

hardware and software techniques enabling soft-error mitigation at moderate cost.

This domain is also challenging, since coping with failures occurring randomly

during system operation is not trivial and usually requires significant amounts of

redundancy. Recent developments dealing with these issues are also reported.

Finally, as other reliability threats, including variability, EMI and accelerating

aging are gaining significance, solutions that could be used to simultaneously address

all of them are also discussed.

To reach its goals, the book is organized in ten chapters following a coherent

sequence, starting with Chap. 1:

l Soft Errors, from Space to Ground: Historical Overview, Empirical Evidence

and Future Trends

and finishing with Chap. 10:

l Specification and Verification of Soft Error Performance in Reliable Electronic

Systems, dealing with Soft-Errors in Complex Industrial Designs
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through eight chapters dealing with:

l Single Event Effects: Mechanisms and Classification
l JEDEC Standards on Measurement and Reporting of Alpha Particles and

Terrestrial Cosmic Ray-Induced Soft Errors
l Gate Level Modeling and Simulation
l Circuit and System Level Single Event Effects Modeling and Simulation
l Hardware Fault Injection
l Integrated circuit qualification for Space and Ground-level Applications: Accel-

erated tests and Error-Rate Predictions
l Circuit-level Soft-Error Mitigation
l Software-Level Soft-Error Mitigation Techniques

The aim of this volume is to be a reference textbook describing: all the basic

knowledge on soft errors for senior undergraduate students, graduate students in

MSc or PhD tracks and teachers; the state-of-the-art developments and open issues

in the field for researchers and professors conducting research in this domain; and a

comprehensive presentation of soft errors-related issues and challenges that may

face circuit and system designers and managers, together with the most efficient

solutions, methodologies, and tools that they can use to deal with.

Grenoble, France Michael Nicolaidis

March 2010
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Celia López Ongil Electronic Technology Department, Carlos III University of

Madrid, Madrid, Spain, celia@ing.uc3m.es

Paul Peronnard TIMA Labs, 46 Avenue Félix Viallet, 38031 Grenoble, France,

paul.peronnard@imag.fr

Ian Perryman Ian Perryman & Associates, 160 Walden Drive, Kanata, Ontario,

K2K-2K8, Canada, ian_perryman@primus.ca

Maurizio Rebaudengo Politecnico di Torino, Dip. di Automatica e Informatica,

Corso Duca degli Abruzzi 24, 10129 Torino, Italy, maurizio.rebaudengo@polito.it

Matteo Sonza Reorda Politecnico di Torino, Dip. di Automatica e Informatica,

Corso Duca degli Abruzzi 24, 10129 Torino, Italy, matteo.sonzareorda@polito.it

Allan L. Silburt Cisco Systems, SSE Silicon Group, 3000 Innovation Drive,

Kanata, Ontario, K2K-3E8, Canada, asilburt@cisco.com

Charles Slayman Ops A La Carte, 990 Richard Ave. Suite 101, Santa Clara, CA

95050, USA, charlies@opsalacarte.com

Mario Garcı́a Valderas Electronic Technology Department, Carlos III

University of Madrid, Madrid, Spain, mgvalder@ing.uc3m.es

Raoul Velazco Director of Researches at CNRS (French Research Agency),

TIMA Labs, 46 Avenue Félix Viallet, 38031 Grenoble, France, raoul.velazco@

imag.fr

Massimo Violante Politecnico di Torino, Dip. di Automatica e Informatica,

Corso Duca degli Abruzzi 24, 10129 Torino, Italy, massimo.violante@polito.it

David Ward Juniper Networks, 1194 North Mathilda Avenue, Sunnyvale,

California 94089, USA, dward@juniper.net

Shi-Jie Wen Cisco Systems, Advanced Manufacturing Technology Centre, 170

West Tasman Drive, San Jose, California 95134, USA, shwen@cisco.com

xviii Contributors



Chapter 1

Soft Errors from Space to Ground:
Historical Overview, Empirical Evidence,
and Future Trends

Tino Heijmen

Soft errors induced by radiation, which started as a rather exotic failure mechanism

causing anomalies in satellite equipment, have become one of the most challenging

issues that impact the reliability of modern electronic systems, also in ground-level

applications. Many efforts have been spent in the last decades to measure, model,

and mitigate radiation effects, applying numerous techniques approaching the

problem at various abstraction levels. This chapter presents a historical overview

of the soft-error subject and treats several “disaster stories” from the past. Further-

more, scaling trends are discussed for the most sensitive circuit types.

1.1 Introduction

Radiation-induced soft errors are an increasingly important threat to the reliability

of integrated circuits (ICs) fabricated in advanced CMOS technologies. Soft errors

are events in which data is corrupted, but the device itself is not permanently

damaged. In contrast, a permanent device failure is called a hard error. Soft errors

can have different effects on applications. On the one hand, they may result in data

corruption at the system level, which may or may not be detected. On the other

hand, soft errors can cause a malfunctioning of a circuit or even a system crash.

Soft errors are a subset of single-event effects (SEEs) and can be classified into

the following categories [1] (see also Chaps. 2 and 3 of this book):

l Single-bit upset (SBU). A particle strike causes a bit-flip (upset) in a memory cell

or a latch
l Multiple-cell upset (MCU). The event causes the upset of two or more memory

cells or latches

T. Heijmen (*)
Regional Quality Center Europe, NXP Semiconductors, Nijmegen, The Netherlands
e-mail: tino.heijmen@nxp.com

M. Nicolaidis (ed.), Soft Errors in Modern Electronic Systems,
Frontiers in Electronic Testing 41, DOI 10.1007/978-1-4419-6993-4_1,
# Springer ScienceþBusiness Media, LLC 2011
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l Multiple-bit upset (MBU). The event causes the upset of two or more bits in the

same word
l Single-event transient (SET). The event causes a voltage glitch in a circuit,

which becomes a bit error when captured in a storage element
l Single-event functional interrupt (SEFI). The event causes loss of functionality

due to the perturbation of control registers, clock signals, reset signals, lockup,

etc.
l Single-event latchup (SEL). The event creates an abnormal high-current state by

triggering a parasitic dual bipolar circuit, which requires a power reset. It can

possibly cause permanent damage to the device, in which case the result is a hard

error

The term SEU is also used, but unfortunately often in an ambiguous way. SEU is

frequently applied as a synonym for soft error, but occasionally it is also used to

describe all effects that are caused by a single strike of an energetic particle,

including both soft and hard errors. Although strictly speaking it is not correct,

the term “soft error” (or SEU) is often used to cover both SBUs and MBUs, which

are the most common types of soft errors.

In terrestrial applications, soft errors are caused by either of two radiation

sources:

l Neutrons generated by cosmic radiation interacting with the earth’s atmosphere
l Alpha particles emitted by radioactive impurities that are present in low con-

centrations in chip and package materials

Before 1978, radiation was considered to be a reliability issue for space applica-

tions, but not for electronics operating at sea level. In space, radiation conditions are

much more severe than on earth, in particular due to high-energy proton and heavy-

ion rays. Under these conditions, not only soft errors occur, but also device

degradation, especially if the total ionization dose (TID) is high. As will be

discussed below, in 1978 it was demonstrated that radiation-induced soft errors

are also present in electronic systems at sea level. TID effects, however, are unusual

for terrestrial applications.

Usually, the soft-error rate (SER) is measured in FIT units (failures in time),

where 1 FIT denotes one failure per billion device hours (i.e., one failure per

114,077 years). Typical SER values for electronic systems range between a few

100 and about 100,000 FIT (i.e., roughly one soft error per year).

In electronic components, the failure rate induced by soft errors can be relatively

high compared to other reliability issues. Product monitoring shows that the hard-

error failure rate, due to external events (such as electrical latchup), is maximally

10 FIT but usually much less. In contrast, the SER of 1 Mbit of SRAM, one of the

most vulnerable types of circuits, is typically in the order of 1,000 FIT for modern

process technologies. For a product that contains multiple Mbits of SRAM, the SER

may be higher than the combined failure rate due to all other mechanisms. How-

ever, the effect of soft and hard errors is very different. In the case of a soft error, the

product is not permanently damaged, and usually the error will disappear when

2 T. Heijmen



the corrupted data is overwritten. Furthermore, architectural and timing derating

factors cause that the failure rate observed at the system level may be orders of

magnitude lower than the combined SER of the memories in the product. Also, if a

soft error occurs, in many cases it will manifest itself as a rather benign disturbance

of the system without serious consequences. However, the occurrence of soft errors

can have a serious effect on the perception that the customer has of the product’s

reliability.

The remainder of the current chapter is organized as follows: in Sect. 1.2, the

history of soft errors is discussed, based on milestone reports. Section 1.3 treats

the impact that soft errors can have on electronic systems, using some example

“disaster stories.” Finally, in Sect. 1.4, the scaling trends are discussed, with a focus

on the most vulnerable circuit elements, i.e., volatile memories (SRAM and

DRAM), sequential elements, and combinational logic.

1.2 History

In 1975, Binder et al. published the first report of soft errors in space applications

[2]. The authors discussed four “anomalies” that had occurred in satellite electron-

ics during an operational period of 17 years. According to their analysis, these four

anomalies could not be attributed to the charging of the satellite by the solar wind.

Instead, triggering of flip-flop circuits had caused the anomalies. The authors

suggested that the failure mechanism was the charging of the base-emitter capaci-

tance of critical transistors to the turn-voltage. The charges were produced by the

dense ionization tracks of electron-hole pairs, generated by cosmic ray particles

with high atomic numbers and high energy. Analysis showed that 100-MeV iron

atoms could be responsible for producing the anomalies. It was assumed that this

failure mechanism was not a serious problem because the corresponding failure rate

was low (about one fail in 4 years). Heavy ion rays, such as the 100-MeV iron

particles, are not capable of crossing the earth’s atmosphere. Therefore, these

radiation-induced anomalies were assumed to be absent in terrestrial electronics.

In 1978, May and Woods of Intel presented a paper at the International Reliabil-

ity Physics Symposium (IRPS) on a new physical mechanism for soft errors in

DRAMs [3]. This publication introduced the definition of “soft errors” as random,

nonrecurring, single-bit errors in memory elements, not caused by electrical noise

or electromagnetic interference but by radiation. The paper reported on soft errors

in the Intel 2107-series 16-kb DRAMs, which were caused by alpha particles

emitted in the radioactive decay of uranium and thorium impurities in the package

materials. It was the first public account of radiation-induced soft errors in elec-

tronic devices at sea level.

The authors discussed that electron-hole pairs are generated when alpha particles

interact with silicon. Depletion layers can collect these charges, and the generated

electrons can end up in the storage wells of the memory elements. If the amount of

collected charge exceeds a critical value Qcrit, a soft error occurs, see Fig. 1.1.
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The story of the SER problem in the Intel 2107-series has been discussed in

detail in the well-known special issue of IBM Journal of Research and Develop-

ment of January 1996 [4]. Because it was an important industrial problem for Intel,

investigations were continued until the root cause was discovered. It was found that

the ceramic package of the product was contaminated with radioactive impurities

from the water that was used in the manufacturing process. The package factory had

Fig. 1.1 Alpha particles
creating soft errors in
DRAMs (figure from [3])
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been built along a river, downstream from an old uranium mine. Waste from the

mine had contaminated the water and, indirectly, the packages.

The paper by May and Woods has become famous and started a tradition of

research on soft errors in sea-level applications. The preprint of the paper circulated

in the reliability community of the semiconductor industry and even newspapers

spent articles on this subject. Three decades later, an increasing number of research-

ers and engineers are working on soft errors, and numerous papers on this subject

are published than ever before.

In 1978, Ziegler of IBM had the idea that if alpha particles can induce soft errors,

possibly also cosmic radiation may have the same effect [5]. In particular, cosmic

ray particles might interact with chip materials and cause the fragmentation of

silicon nuclei. The fragments could induce a local burst of electronic charges,

resulting in a soft error. The physical mechanisms behind these events are described

in Chap. 2 of this book. Ziegler worked on this problem together with Lanford of

Yale University for about a year. They found that cosmic particles in the solar wind

were not able to penetrate the earth’s atmosphere. Only intergalactic particles with

energies of more than 2 GeV can cause soft errors in sea-level electronics, albeit in

an indirect way. The high-energy cosmic rays interact with particles in the atmo-

sphere and cause a cascade of nuclear reactions, see Fig. 1.2. It is only the sixth

generation of particles that will reach sea level. This generation consists of neu-

trons, protons, electrons, and transient particles such as muons and pions. Ziegler

and Lanford showed how these particles interact with silicon, combining the

Fig. 1.2 Schematic view of cosmic rays causing cascades of particles (figure from [4])
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particle flux with the probability that such a particle can cause a sufficiently large

burst of charge.

This paper was followed by a more detailed study that also addressed the amount

of charge that was needed to upset a circuit [6]. Because of the usage of materials

with low alpha emission rates, cosmic neutrons replaced alpha particles as the main

source of memory SER during the 1990s. However, due to the reduction of critical

charges, the SER contribution from alpha particles has gained importance again

during the last years.

IBM started unaccelerated real-time SER tests in 1983, using a portable tester

with several hundreds of chips. Real-time SER testing is also named field-testing or

system SER (SSER) testing. The IBM measurements provided evidence that even

at sea level cosmic radiation contributes significantly to the SER, and its effect

increases exponentially with altitude [7, 8]. It was also shown that there is a close

correlation between the SER and the neutron flux. The test results further indicated

that cosmic rays generate a relatively large number of multiple bit errors, because

the generated charge is in general much larger than for an alpha-particle event.

Lage et al. of Motorola provided further evidence that the SER of circuits is not

exclusively caused by alpha particles [9]. The authors collected data for various

SRAM types, obtained from real-time SER measurements in which a large number

of memory devices were tested for a long time and the occurring soft errors were

logged. These data were compared with the corresponding accelerated SER mea-

surements, where memories were exposed to a high flux of alpha particles. If alpha

particles were the only source of soft errors, the correlation between the two sets of

experimental data would be linear. However, when the real-time SER results are

plotted against data from accelerated measurements, as shown in Fig. 1.3, there is a

clear discrepancy from the linear correlation. The real-time SER is larger than that

would be expected from the results of the accelerated tests with alpha sources, in

particular for low SER values. The difference can be explained if the contribution

from neutrons is included.

In 1995, Baumann et al. from Texas Instruments presented a study that showed

that boron compounds are a nonnegligible source of soft errors [10]. Two isotopes

of boron exist, 10B (19.1% abundance) and 11B (80.1% abundance). Different from

other isotopes 10B is highly unstable when exposed to neutrons. Furthermore, while

other isotopes emit only gamma photons after absorbing a neutron, the 10B nucleus

fissions (i.e., breaks apart), producing an excited 7Li recoil nucleus and an alpha

particle. Both particles generate charges in silicon and can therefore cause soft

errors. Although neutrons with any energy can induce fission, the probability

decreases rapidly with increasing neutron energy. Therefore, only thermal (i.e.,

low-energy) neutrons need to be considered. It has been shown that neutrons with

energies below 15 eV cause 90% of the reactions [11]. Because thermal neutrons

are easily scattered, the local environment has a large influence on the flux.

Therefore, the background flux for low-energy neutrons is not well defined.

Boron is used extensively both as a p-type dopant and in boron phosphosilicate

glass (BPSG) layers. Boron is added to PSG to improve the step coverage and

contact reflow at lower processing temperatures. Typically, the 10B concentration in
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BPSG is thousands of times higher than in diffusion and implant layers. For

conventional Al-based processes, BPSG is the dominant source of boron fission

and, in some cases, the primary source of soft errors [12]. Only BPSG in close

proximity to the silicon substrate is a threat because the range of both the alpha

particle and the lithium recoil is less than 3 mm. In most cases, the emitted particles

have insufficient energy beyond 0.5 mm to create a soft error. BPSG is generally

applied in process technologies using aluminum backend. In copper-based technol-

ogies, metal layers are processed in a different manner, using chemical-mechanical

polishing, which does not require the specific properties of BPSG. Because of this,

thermal neutron-induced boron fission is not a major source of soft errors in

advanced CMOS technologies using copper interconnect.

1.3 Soft Errors in Electronic Systems

Whether or not soft errors impose a reliability risk for electronic systems strongly

depends on the application. Soft-error rate is generally not an issue for single-user

consumer applications such as mobile phones. However, it can be a problem for

applications that either contain huge amounts of memories, or have very severe

reliability requirements.

Fig. 1.3 Correlation between data from unaccelerated real-time SER measurements, denoted
system SER (SSER), and alpha-accelerated SER measurements on SRAMs (figure from [9])
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If the effect of soft errors is manifested at the system level, it is generally in

the form of a sudden malfunctioning of the electronic equipment, which cannot be

readily attributed to a specific cause. Soft errors are untraceable once new data

have been written into the memory that stored the corrupted bits or when the power

of the device has been reset. Therefore, failure analysis is not capable of identifying

soft errors as the root cause of the problem. Furthermore, the problem is not

reproducible, due to its stochastic nature. Because of this, it is usually very difficult

to show that soft errors are causing the observed failures. In the semiconductor

industry, several examples are known that confirm this. In the case of the 2107-

series DRAM of Intel, discussed in Sect. 1.2, it took many efforts to find out that the

water used in the package factory was causing the contamination with radioactive

impurities and that this was the root cause of the problem.

An even more spectacular example is what is now known as the “Hera” problem

of IBM [4]. During 1986, IBM observed an increase in failures of their LSI

memories manufactured in the USA. Surprisingly, identical memories that were

produced in Europe did not show this problem. Knowing the case of the 2107-series

DRAM of Intel, the ceramic package was identified as a possible cause of the fails.

Therefore, the U.S. chips were assembled in European packages and vice versa.

It was found that the U.S. chips (in the European packages) gave a high failure

rate, whereas the European chips (with the U.S. packages) did not show failures.

Fig. 1.4 Chip radioactivity and memory failure rate of the IBM LSI memory during the “Hera”
problem (figure from [4])
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This clearly demonstrated that the problem was not in the package but in the

memory die.

While the problem was becoming very serious from a business point of view,

further analysis showed that the chips had a significantly high radioactivity. The

problem was then to find the root cause. Traces of radioactivity were found in

different processing units, and it appeared that 210Po was the radioactive contami-

nant. Surprisingly, the investigators found that the chip radioactivity that appeared

in 1986 had increased up to a factor of 1,000 in May 22, 1987 and then disappeared

(see Fig. 1.4)! After this discovery, it took months of investigation to identify a

bottle of nitric acid that was used in the wafer processing as a contamination source.

At the supplier’s factory, it was found that a machine that was used to clean the

bottles caused the radioactivity. This machine used an air jet that was ionized with
210Po to remove electrostatic dust inside the bottles after washing. The radioactive
210Po in the air jet capsule were sealed. Because the supplier of the equipment had

changed the epoxy that was used for this seal, the jets were occasionally and

randomly leaking radioactivity. As a result, a few out of thousands of acid bottles

were contaminated. Once the root cause was identified, all contaminated acid

bottles were removed and the problem completely disappeared.

In the end, it appeared that what seems a rather trivial issue with a bottle-

cleaning machine had caused a serious problem for IBM that had lasted for more

than a year. Many man-hours had been spent to solve the issue, and the problem had

affected IBM’s business.

The two examples discussed above were caused by a sudden contamination with

radioactive impurities. However, also if the background radiation does not exceed

the usual level, soft errors can cause serious problems in electronic equipment. In

the last decade, this has been demonstrated by two major issues related to radiation-

induced soft errors.

The first case is the problem in the high-end server line “Enterprise” of Sun in

1999/2000. This problem has been reported in a legendary article in Forbes

magazine [13]. The Enterprise was the flagship in Sun’s server line and was used

by many companies, including major ones such as America Online and Ebay. The

cost price ranged from $50,000 to more than $1 million. During 1999, some of

the customers reported that occasionally the server crashed for no apparent reason.

For a Web-based company, which is supposed to be online 24 h/d, this is a serious

problem. One company reported that their server had crashed and rebooted four

times within a few months.

It took Sun months of tedious investigations to identify that soft errors in the

cache memory of the server were the root cause. Until then, long tests had been run

without problems on machines that had crashed in the field. The cache modules of

these machines contain SRAM chips vulnerable to soft errors. Over the years, from

generation to generation the number of SRAM chips per server and the bit count per

SRAM chip had increased. Furthermore, the soft-error vulnerability of the SRAMs

had become worse, due to technology scaling. As a result, the SER of the complete

system increased from one product generation to the next, until the point where soft

errors became the dominant source of system failures and the mean time between
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failures (MTBF) became unacceptably high. Because of this, other suppliers pro-

tected their cache memories with error-correction coding, but Sun had simply

missed it.

When the root cause had been identified, the caches in the server were replaced

by “mirrored” ones, where if the first cache fails, the second one is a back up. Sun

stated that the issue had cost tens of millions of dollars and a huge amount of man-

hours, both at the technical level and in briefings with customers. Furthermore,

Sun’s brand image was damaged and the company was criticized for the treatment

of their customers. The statement by one of their customers: “It’s ridiculous. I’ve

got a $300,000 server that doesn’t work. The thing should be bulletproof!” has

become a famous one-liner in the industry. From a technical point of view, this case

demonstrated that soft-errors could cause problems for systems that contain large

amounts of memory and that the expected SER should be analyzed carefully during

the development stage.

Another company that encountered a major SER issue was Cisco systems in

2003 [14]. Router line cards of the 12000 series, with a selling price of about

$200,000, showed failures caused by radiation-induced soft errors. Parity errors in

the memories and ASICs resulted in a reset, during which the card was reloaded.

This reloading took 2–3 min of recovery time. After the card reloaded, data was

passing normally. The problem was solved by a new release of the Internetwork

operating system (IOS) software, which included several improvements for error

recovery. These improvements reduced the probability that a card has to reload due

to a soft error, reduced the reload time if necessary, and provided better text

messaging about the failures.

1.4 Scaling Trends

At the time when SER was discovered as a significant reliability issue for terrestrial

applications, DRAMs were the most vulnerable circuit elements. SRAMs were

more robust then because pull-up and pull-down transistors stabilize the charges

representing the memory state. However, due to major technology changes,

DRAMs have become more robust against soft errors with every generation. In

contrast, SRAMs have become more vulnerable with technology scaling. This is

mainly caused by the downscaling of the supply voltage and by the reduction of the

minimum feature sizes. Because of these trends the number of electrons that

represent a bit in an SRAM bit cell has decreased from about one million to a

few thousands.

Since a few technology generations, however, the SER vulnerability of an

SRAM bit cell has saturated or is even decreasing. This is because not only the

so-called critical charge Qcrit that must be injected in order to generate a soft error

has decreased, but also the silicon volume from which induced charges can be

collected. The latter trend is dominating over the former one for the most advanced
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CMOS nodes, resulting in a decrease in the SER per bit. An important factor is that

the reduction of the supply voltage is much less aggressive than before.

In the current section, the SER scaling trends for different types of circuits

(SRAM, DRAM, sequential logic, and combinational logic) are discussed.

1.4.1 Scaling of SRAM SER

Early SRAM was significantly more robust against radiation-induced soft errors

than DRAM. This was because in an SRAM bit cell the data is stored in a feedback

loop of two cross-coupled inverters. This feedback loop is forcing the bit cell to stay

in its programmed state. However, with technology scaling the supply voltage and

the node capacitance decreased, which resulted in a lower critical charge Qcrit with

every SRAM generation.

Cohen et al. published one of the first SER trends [15]. They determined

experimentally the alpha-particle-induced SER of both SRAM and dynamic logic

arrays. The authors found that the SER decreased exponentially with decreasing

supply voltage at 2.1–2.2 decades/V. Based on the SIA roadmap projections for

operating voltages, they predicted the scaling trend for the FIT/Mbit, see Fig. 1.5.

The error bars account for the range of supply voltages reported by the SIA road-

map. The impact of the reduction in feature sizes was not taken into account.

Fig. 1.5 Scaling trend for the FIT/Mbit of SRAM and dynamic logic arrays, predicted in 1999
(figure from [15])
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The authors estimated that the FIT/Mbit would increase with nearly 100� within

one decade.

When feature sizes were scaled down further and further into the deep submi-

cron regime, the SRAM SER/bit trend started to saturate. This was mainly caused

by the fact that the downscaling of the supply voltage was saturating. A typical

SRAM SER per bit scaling trend is shown in Fig. 1.6, reproduced from a Baumann’s

publication [16]. For the processes applied by TI, it was found that a major part of

the soft errors were caused by low-energy cosmic neutrons interacting with 10B in

the BPSG. When this material was removed from the process flow, the SRAM SER

per bit showed a significant decrease. The dotted line in Fig. 1.6 represents the

SRAM SER per bit trend assuming that BPSG has not been removed.

For the most advanced technology nodes, the SRAM SER per bit shows a

decrease. An example is shown in Fig. 1.7, where the SER per bit of SRAM caches

is depicted, as published by Seifert et al. of Intel [17]. The trend shows a peak at the

130-nm node and is decreasing since then. This decrease is caused by the fact that

the average collected charge is downscaling in the same pace as the critical charge.

Because the ratio of these two parameters is fairly constant, it is the reduction in

vulnerable junction diffusion area that is driving the decrease in SRAM SER per bit.

Due to this decrease in vulnerable area, the probability that an SRAM bit cell is hit

by a particle is lower. Although the SRAM SER is dependent on the details of the

process technology, the common trend in the industry is that the SRAM SER per bit

peaks at 130–90 nm and shows a decrease after that node.

SRAMs manufactured in silicon-on-insulator (SOI) technologies generally have

a lower SER than their counterparts processed in bulk CMOS in the same technol-

ogy node. This is because the presence of a buried oxide (BOX) layer reduces the

sensitive volume of a transistor in SOI. A data analysis by Roche and Gasiot of

STMicroelectronics showed that partially depleted (PD) SOI has a 2–6� lower

SER than bulk CMOS [18]. Recent work of Cannon et al. of IBM showed that

SRAMs processed in 65-nm SOI technology have a 3–5� lower SER than SRAMs

Fig. 1.6 SRAM SER per bit
as a function of technology
node (black diamonds). The
dotted line represents the
scaling trend if BPSG would
not have been removed from
the process flow. The gray
triangles show the
downscaling of the supply
voltage (figure from [16])
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manufactured in 65-nm bulk CMOS, in agreement with results from previous

technology nodes [19]. The SER vulnerability in fully depleted (FD) SOI is even

lower than in PD SOI.

SRAMs manufactured in advanced technologies show a spread in SER

caused by variations in the process parameters. Experimental results of Heijmen

and Kruseman of Philips demonstrated that if two chip designs contain embedded

SRAM instances of the same type, then the SER can be different with as much as

40% [20]. Additionally, significant batch-to-batch and sample-to-sample variations

in SER have been observed. Furthermore, process variability causes that the SER

vulnerability of an SRAM bit cell is not the same for its two data states. Experimen-

tal results for a 90-nm embedded SRAM showed that the differences can be almost

a factor of 4 [21]. In general, however, this data dependency is hidden because it is

common that the mapping of logical on physical states in memories is interchanged

column-by-column. That is, if a logical “1” corresponds to one physical state in

one column, it corresponds to the complementary state in the next column.

Ongoing reduction of feature sizes has increased the probability that a single

particle causes an MCU. The percentage of MCU events is rapidly increasing with

technology scaling and can be several tens of percent in 65- and 45-nm processes.

Two mechanisms are known that can produce MCUs. On the one hand, radiation-

induced charges can be shared by neighboring bit cells. On the other hand, the

injected charge can trigger a parasitic bipolar transistor, which results in an increase

in the amount of charge collected by these neighboring bit cells. In the case of

bipolar amplification, also known as the “battery effect” [22], the MCU rate

increases with increasing supply voltage, whereas in the case of charge sharing

the MCU rate decreases if the voltage is raised. In general, the relative MCU rate is

higher for neutrons than for alpha particles because a neutron generates more

charges in silicon and also because a neutron hitting an atom in a semiconductor

device often produces multiple ionizing particles. It has been observed that a single

Fig. 1.7 Normalized SER per bit trend for SRAM caches of Intel products (updated figure
from [17])
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neutron caused more than 50 bit flips in an SRAM. During neutron-accelerated SER

tests of SRAMs in advanced processes, it is not unusual to observe that more than

50% of the events are MCUs. In contrast, during alpha-accelerated SER tests

typically the majority of the observed events are SBUs, with only a few percent

MCUs.

AnMCU is called MBU if the affected bits are in the same word. The occurrence

of MBUs affects the error-correction coding (ECC) that is used to protect the

SRAM. The most generally applied ECC techniques use single-error correct,

double-error detect (SEC-DED) schemes, which implies that they are not capable

of correcting MBUs. Physical interleaving strongly reduces the MBU rate. With

interleaving, also named scrambling, bits from the same logical word are physically

separated over the memory. As a result, in the case of an MCU the corrupted bits

generally belong to different words. Because of this hampering of the protection

with ECC, many research projects in the field of radiation effects currently focus on

MCUs. An overview of ECC approaches can be found in Chap. 8 of this book.

1.4.2 Scaling of DRAM SER

Although in the first report by May and Woods soft errors in dynamic memories

were caused by alpha particles [3], in deep submicron CMOS process technologies

neutrons dominate over alpha particles as the main cause of soft errors in dynamic

random access memories (DRAMs). As process technology scales down below

100-nm, SETs in the address and control logic of the memories are becoming more

important, compared to the upsets of the memory bit cells. This is because the

capacitance of the bit cells is not decreasing with technology scaling. Whereas

initially planar 2D capacitors with large junction areas were used, 3D capacitors

were developed. These were not only beneficial for SER, but also improved the

refresh performance of the DRAMs. Because the cell capacitance is hardly affected

by technology scaling, the critical charge of a bit cell remains roughly constant also.

Another advantage of the introduction of 3D capacitance was that the charge

collection efficiency was significantly reduced because the vulnerable junction

volume is much smaller. With technology scaling, this junction volume is decreas-

ing further, which results in a lower SER per bit. In contrast, address and control

logic circuitry in the periphery of the memory is becoming more susceptible to soft

errors because their node capacitances are decreasing with technology scaling.

These so-called logic upsets result in massive amounts of bit errors (typically

several thousands) because a wrong part of the memory is addressed. The rate of

logic errors per bit is not scaling down with DRAM process technology.

The cell-upset rate of DRAMs strongly depends on the type of technology that is

applied for the bit cell. In a 1998 paper Ziegler and coauthors investigated the SER

of DRAMs with stacked-capacitor (SC) cells, trench cells with external charge

(TEC cells), and trench cells with internal charge (TIC cells) [23]. The cosmic-ray-

induced SER in 26 different chips with 16 Mbit of DRAM was evaluated. The SER
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of the TEC cells appeared to be about 1,500� higher than the SER of the TIC cells,

with the SC cells having an intermediate SER, see Fig. 1.8.

In a dynamic memory, only the charged bit cells are susceptible to upsets, cf.,

Fig. 1.1. However, in most DRAMs the SER is independent of the stored data

pattern. This is because a logical “1” (“0”) does not mean that the data is stored as a

charged (uncharged) bit cell. Instead, different translation schemes from the logical

to the physical level are generally used in different parts of the memory. Therefore,

the probability that a “1” is stored as a charged cell is typically equal to the

probability that it is stored as an uncharged cell. The cell upset rate is typically

independent of the frequency of the memory. However, in a recent publication

Borocki et al. of Infineon observed a decreasing trend with frequency for the logic

upset rate [24].

At the system level, the bit error rate (BER) is what is observed. Therefore,

the number of events is less important than the number of detected errors, i.e., the

effective BER at the system level. Whereas the event rate per bit is decreasing with

technology scaling, there is not a clear trend for the BER, see Fig. 1.9 [24]. The

trend is that DRAM chips with an increasing density are used and that more DRAM

chips are applied in a system. Because of this, the BER at the system level will

increase. Also, the logic error rate of a system is growing. Therefore, the impor-

tance of using error-correcting coding (ECC) to detect and correct soft errors in

DRAMs is increasing for the applications that require a high reliability. Because

logic errors often result in a multiple-bit error observed by the system, it will be

necessary to develop error correction codes that are more advanced than single-

error correct, double-error detect (SEC–DED) schemes.

Fig. 1.8 Correlation between cosmic-ray-induced DRAM SER and bit cell technology: TEC (up),
SC (middle), and TIC (low) (figure from [23])
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1.4.3 SER of Latches and Flip-Flops

Sequential elements, such as latches and flip-flops, are digital logic circuits that are

used for temporary data storage. This type of circuitry is also denoted sequential

logic because the output depends not only on the input, but also on the history of the

input. A flip-flop basically contains two latches connected in series. Similar to

SRAMs the memory function in sequential elements is based on a feedback loop

Fig. 1.9 DRAM event (a) and bit error (b) rate. Data have been normalized to the neutron flux at
New York City for a 1-Gb chip (figures from [24])
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formed by two cross-coupled inverters. However, with respect to SER vulnerabil-

ity, there are some essential differences between SRAM, on the one hand, and

latches and flip-flops, on the other hand:

l In general, SRAM bit cells are symmetric by design and latches are not. As a

result, the SER of a latch depends on the data that is stored. In contrast, the SER

of an SRAM bit cell is the same when a “1” or a “0” is stored, except for the

impact of process variability, as discussed in Sect. 1.4.1
l A latch is vulnerable to upsets only if its internal clock state is such that the latch

is storing data. In the complementary clock state, when the latch is transparent,

no bit flip can be generated because no data is stored. For example, in a D-type

flip-flop, the master latch is vulnerable to upsets for one clock state and the slave

latch for the complementary state. In contrast, SRAM bit cells are not connected

to clock signals, and therefore SRAM SER is not dependent on the clock state
l Most SRAMs use 6-transistor (6-T) bit cells. These bit cells are designed such

that their area is minimal, with additional constraints especially on speed and

power dissipation. For a given process technology in general, only a limited set

of SRAM bit cells are available, e.g., a high-density, a high-performance, and a

low-power variant, with relatively small differences in cell layout. In contrast,

dozens of design styles are used to construct sequential elements. Area is much

less a concern here because in general the number of latches and/or flip-flops in

an IC is orders of magnitude less than the amount of SRAM bit cells. As a result,

latch and flip-flop SER shows a much larger variation between different cell

designs

Heijmen et al. of Philips, STMicroelectronics, and Freescale Semiconductor

published measured alpha- and neutron-SER data of five different flip-flops from

a standard-cell library [25]. The flip-flop cells differed in threshold voltage, circuit

schematic, cell height, drive strength, and/or functionality. The results, illustrating

the dependencies of the flip-flop SER on data state, clock state, and cell type, are

shown in Fig. 1.10.

The anomalies in satellite electronics, reported by Binder et al. [2] in 1975, were

due to upsets of flip-flops. However, in sea-level applications, the SER contribution

from sequential logic used to be negligible in older process technologies, compared

to SRAM and DRAM. This was because logic circuits are generally much larger

than memory bit cells and therefore have relatively large critical charges, which

made logic circuitry virtually immune to soft errors in old processes. But with

technology scaling Qcrit reduced and as a result, the SER vulnerability of latches

and flip-flops increased. At about the 0.13 mm technology node, the FIT/Mbit of

sequential elements became large enough to contribute substantially to the chip-

level SER, depending on the amount of cells. Some scaling trends for the average

latch and flip-flop SER, reported by Seifert et al. of Intel [17], Baumann of TI [26],

and Heijmen and Ngan of NXP Semiconductors [27] are shown in Fig. 1.11. Most

scaling trends for the SER of latches and of flip-flops show saturation, followed by a

decrease in the SER/bit beyond the 90-nm. In modern CMOS processes, the

average SER/bit of a flip-flop/latch is comparable to the one of SRAM.
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Different from memories, logic circuits cannot be efficiently protected against

soft errors with the use of ECC, due to the lack of a regular structure. Instead, many

latches and flip-flops with an improved SER performance have been published in

the literature. However, these solutions often suffer from severe penalties in terms

of area, power dissipation, and speed. Often radiation-hardened latches apply

Fig. 1.10 Alpha-SER (a) and neutron-SER (b) of five different flip-flops from a 90-nm library as a
function of clock and data state (figures from [25])
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redundancy in order to reduce the SER vulnerability. As a result, such cells

generally have a large amount of internal interconnect, which makes that in many

cases the lower metal layers are blocked for routing. Furthermore, the effectiveness

of redundancy-based radiation-hardened latches is decreasing with technology

Fig. 1.11 Scaling trends for
(a) latches [17]; (b) flip-flops
and latches [26]; and (c) flip-
flops [27]
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scaling, as charge sharing and upsets at internal clock nodes become more impor-

tant, as discussed by Seifert et al. of Intel [28].

1.4.4 SER of Combinational Logic

Soft errors in combinational logic are generated by a different mechanism than in

memories or logic storage cells. First, an ionizing particle causes an SET, i.e., a

voltage glitch. The SET propagates through the circuit and results in a soft error if it

is captured by a storage element. Three masking effects reduce the probability that

an SET is captured:

l Timing masking: the SET arrives too soon or too late at the input of the storage

element to be captured.
l Electrical masking: the pulse is attenuated during its propagation such that its

amplitude is too small for the SET to be captured.
l Logicalmasking: the inputs of the combinational circuit are such that the logical

path for the propagation of the SET is blocked.

Another difference with SER in memories and flip-flops/latches is that SER in

combinational logic is increasing with the operational frequency. This is because

the probability that an SET is captured increases with the number of capturing

moments per time unit. Furthermore, the design of the circuit and the algorithm that

is performed both strongly impact the probability that a SET in the combinational

logic will affect the operation of the system.

It has been calculated (Mitra et al. of Intel [29]) that for high-frequency applica-

tions, such as microprocessors, network processor, and network storage controllers

implemented in modern processes, about 10% of the soft errors originate in the

combinational logic, see Fig. 1.12. Typically, in such applications, the larger

memory modules are protected with ECC. The smaller memories are not protected

Fig. 1.12 Contributions to
chip-level SER for
applications such as
microprocessors (recreated
figure from [29])
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because the penalties for using ECC are unacceptably high for such small blocks.

These unprotected memory modules contribute to the chip-level SER. In a recent

publication, Gill et al. from Intel showed that at the 32-nm node SER in combina-

tional logic is not a dominant contributor at the chip-level [30].

1.4.5 Scaling of Single-Event Latchup

Alpha particles and cosmic neutrons cannot only generate soft errors, but also cause

SEL. The mechanism that causes SEL is similar to the mechanism for electrical

latchup, the difference being that SEL is triggered by radiation-induced charges.

Because a CMOS process contains both NMOS and PMOS transistors, parasitic

thyristors are present, which can be switched on if their voltage levels meet certain

conditions. The consequences of an SEL are often more severe than that of a soft

error because a power-reset is required, and the IC can be permanently damaged if it

is not protected with current delimiters. Also, SEL can impact the long-term

reliability of the IC.

SEL rates exceeding 500 FIT/Mbit have been reported by Dodd et al. of Sandia

for SRAMs processed in a 0.25 mm technology [31]. The voltage and temperature

dependencies of the SEL rate are different than for SER. This is because the

underlying upset mechanisms are different. The SEL rate significantly increases

with increasing supply voltage. Also an increase in operating temperature results in

an increase in SEL rate, see Fig. 1.13. In contrast, SER decreases with increasing

supply voltage and generally does not show a significant temperature dependency.

Because the supply voltage has been reduced to levels below 1.3 V, SEL has

Fig. 1.13 Neutron-induced latchup rate of a 3.3-V SRAM in 0.25-mm (figure from [31])
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become a much less severe risk for the most advanced process technologies. For

processes with higher supply voltages than about 1.3 V, the SEL risk can be

controlled by technology modifications and by applying dedicated design rules.

An advantage of SOI, compared to bulk CMOS, is that it is immune to both

electrical and radiation-induced latchup. This is because the parasitic thyristor

structure that is vulnerable to latchup does not exist in SOI, since the BOX layer

is isolating the transistor from the substrate.

1.4.6 Future Trends

Until about one decade ago, system-level SER was growing mainly due to an

increase in the FIT/Mbit of SRAM and DRAM modules in the system, either

embedded or stand-alone. This increase was driven by the reduction in feature

sizes and especially by the lowering of the supply voltage. With ongoing technol-

ogy scaling, the FIT/Mbit of SRAMs and sequential elements, the most vulnerable

parts in modern process technologies, started to saturate. As a result, the increase in

chip-level SER was more and more driven by the increase in the bit count from one

product generation to the next. As discussed above, in the most advanced process

the FIT/Mbit is actually decreasing. This may result in a saturation of the system-

level SER in the future. However, this will depend on the scaling of the SER of

sequential and combinational logic. If these contributions do not level off suffi-

ciently, they may dominate the system-level SER in future product generations.

However, recent findings do not seem to support this assumption [30]. Compared

with memories, which have regular structures that are suitable for protection,

reducing SER in logic circuitry is more complicated and generally comes with

relatively large design overheads.

Another issue is the ratio between the alpha-particle- and neutron-induced

contributions to the SER. In the late 1970s and early 1980s, most of the SER-

related industrial problems were caused by alpha particles, often due to a contami-

nation source that had not been anticipated. Since then, careful material engineering

has generally resulted in a better control of the contamination risk. Also, the

typical concentration of radioactive impurities has been significantly reduced for

the products for which SER is a potential reliability risk. Because of material

improvements, the alpha-particle emission rates went down from levels as high as

100 a/h cm2 to levels below 0.001 a/h cm2 [26]. However, with decreasing critical

charges, the alpha-particle-induced contribution may return as a dominant source of

SER. This is illustrated in Fig. 1.14: the contribution from alpha particles to the

SER is relatively large if the critical charge is small. This is because alpha particles

on average generate much less charges in silicon than neutrons. Therefore, when

technology scaling results in a lower Qcrit, the alpha-SER contribution becomes

more important. As a result, alpha particles could increase the contributions of

combinational logic, which used to be vulnerable to neutrons only because critical

charges are scaling down into the alpha regime.
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During the last years, the focus of research on soft errors is more and more

shifting from the cell or module level to the chip or system level. The FIT/Mbit of

the design elements is important, but it is not the only factor determining the failure

rate that is observed at the system level. In order to perform a proper risk assess-

ment, SER should be investigated at all abstraction levels of a system design,

including both hardware and software. The same is true for mitigating the SER

risk with design changes, if analysis shows that this is necessary. An overview of

hardware- and software-based mitigation techniques can be found in Chaps. 8 and 9

of this book, respectively. Whether the SER of a system is an important reliability

risk or not strongly depends on its application. For a mobile phone or a car radio,

different SER levels are acceptable than for a server or a safety-critical application.

Therefore, the application mission profile of the system plays an essential role in the

risk assessment. The refresh rate of the applied memories and registers is an

important factor. To guarantee the reliable operations of modern products, a

built-in reliability (BiR) approach is necessary. Chapter 10 of this book discusses

an approach to build a reliable electronic system and to verify its SER performance.

In the last 30 years, many investigations have been spent to study the soft-error

subject and many successes have been booked. This trend will continue in the

coming years, as SER is becoming a potential reliability risk for more and more

applications at sea level. Continuous research is needed on solutions to reduce SER.

Such studies have to be performed at different abstraction levels, in order to be able

to select the solution with the highest return on investment for a specific product. In

the future, it will be increasingly important to have solutions that not only reduce

SER, but also address other risks, such as process variability and transistor aging.

For example, wear-out mechanisms may cause an increase in the threshold voltages

Fig. 1.14 Alpha-particle- and neutron-induced SER contributions as a function of the critical
charge (figure from [17])
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of the transistors and a reduction of their drive currents. As a result, critical charges

decrease and circuits become more susceptible to soft errors.

1.5 Conclusions

Radiation effects, until then an issue affecting space applications only, were

catapulted into the world of reliability physics of electronic systems by a milestone

paper byMay andWoods in the late 1970s. Since then, much empirical evidence for

these failure mechanisms has been provided, not seldom related to problems

observed in commercial products. Nowadays, future trends seem less dramatic

than what was predicted in the past. The soft-error rates per bit of the most sensitive

components (SRAM, DRAM, sequential logic) have saturated or even decrease in

the most advanced process technologies. However, because of the increasing

system sizes and complexities, ongoing investigations will be necessary to reduce

the reliability risk for electronic systems.
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Chapter 2

Single Event Effects: Mechanisms
and Classification

Rémi Gaillard

Single Event Effects (SEEs) induced by heavy ions, protons, and neutrons become

an increasing limitation of the reliability of electronic components, circuits, and

systems, and have stimulated abundant past and undergoing work for improving our

understanding and developing mitigation techniques. Therefore, compiling the

knowledge cumulated in an abundant literature, and reporting the open issues and

ongoing efforts, is a challenging task. Such a tentative should start by discussing the

fundamental aspects of SEEs before reviewing the different steps that are necessary

for creating comprehensive prediction models and developing efficient mitigation

techniques.

SEE occurs when the charge resulting from the carriers (holes and electrons)

liberated by an ionizing particle (heavy ion, alpha particle, recoils of nuclear

interaction between a neutron and an atom of the die, . . .), and collected at a

junction or contact, is greater than the charge carrying an elementary information

in the component.

One way to understand the effects is to use a top-down approach to describe the

successive steps involved in the perturbation mechanism:

– Interaction of radiation with matter

– Ionization mechanisms and track structure

– Collection of charges

– Description and calculation of effects on semiconductor structure (junction,

device)

– Description and calculation of effects on semiconductor circuits and systems

The main difficulty is that each step is situated in a different physical/description

domain and involves different people with different skills (nuclear and solid state

physicists, process engineers, circuit designers, system engineers. . .). So bridges
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between these domains must be built to allow an efficient collaboration between

the experts mastering them.

This chapter presents a review of the main aspects of SEEs on digital electronics.

Analog and power electronics are not considered in this chapter.

2.1 Introduction

Single Event Effects (SEEs) are induced by the interaction of an ionizing particle

with electronic components. Ionizing particles can be primary (such as heavy ions

in space environment or alpha particles produced by radioactive isotopes contained

in the die or its packaging), or secondary (recoils) created by the nuclear interaction

of a particle, like a neutron or a proton with silicon, oxygen or any other atom of the

die. SEEs become possible when the collected fraction of the charge liberated by

the ionizing particle is larger than the electric charge stored on a sensitive node.

A sensitive node is defined as a node in a circuit whose electrical potential can be

modified by internal injection or collection of electrical charges. Usually, an

information bit is associated with a voltage level.

Today, these effects are considered as an important challenge, which is strongly

limiting the reliability and availability of electronic systems, and have motivated

abundant research and development efforts in both the industry and academia.

These studies involve a broad domain of physics such as natural radiation

environment modeling, radiation interaction mechanisms, ion energy depositions

in insulators and semiconductors, charge transport and collection in elementary

semiconductor devices such as PN junctions or elementary MOS transistors. The

studies involve also electronic engineers that analyze perturbation mechanisms and

effects in various cells (gates, flip-flops, registers, and memory cells), perturbation

effects in complex integrated circuits with the possibility of multiple errors and

single event functional interrupt (SEFI).

Designers must also consider analog components either CMOS or Bipolar that

can also be upset (operational amplifiers, regulators, comparators, oscillators).

Finally, system level engineers must investigate the global effects of single

events on electronic systems and develop mitigation techniques and test methods

to establish and verify the robustness of these systems.

The aim of this chapter is to describe the physical mechanisms that induce SEEs

and to define and classify the different ways they alter circuit operation. A top-down

presentation will be given from environment to effects in complex function.

First, the natural radiation environment at ground level and in the atmosphere

will be quickly recalled. A recall of nuclear physics, interaction mechanisms, and

energy deposition, is given.

Then, solid-state physics and semiconductor physics are considered in order

to develop transient photocurrent models related to the collection of carriers in

junctions.

Finally, the effects observed in electronic devices will be defined and classified.

28 R. Gaillard



2.2 Background on Environment, Interaction Mechanisms,
and Recoil Energy Loss

2.2.1 Natural Radiation Environment

At high altitudes in the atmosphere and at ground level, nuclear radiation can be

found within a broad domain of energies. This radiation includes primary radiation

from galactic or extragalactic origin with a low flux and secondary radiation

resulting from the interaction of the primary radiation with the atmosphere content

(nitrogen, oxygen, carbon dioxide, rare gas).

When galactic cosmic ray (GCR) particles reach the earth’s atmosphere, they

collide with the nuclei of nitrogen and oxygen atoms and create cascades of

secondary radiation of different kinds, including leptons, photons, and hadrons.

At the time of writing this book, the neutrons are considered as the most

important source of radiation as far as SEEs are considered. Nevertheless, we

must also remember that protons and pions can also induce SEEs, and direct

ionization of protons may be a concern in future electronics as circuits are further

shrinking and become increasingly sensitive to SEE.

The flux of neutrons varies with altitude (the atmosphere attenuates both the

cosmic rays and the neutron flux), latitude (due to the variation of the earth’s

magnetic field shielding efficiency from equator to the poles), and to a lesser extent

with longitude. The flux of neutrons can be modulated by solar activity and solar

eruptions.

Recently, analytical models describing these variations have been presented in

Jedec JESD89A [1] and discussed in Chap. 3.

Measurements have been performed using different monitors or spectrometers.

The energy spectrum is generally considered to be independent of altitude. It

extends from thermal energies up to 10 GeV. In first approximation, the differential

energy spectrum dn/dE can be considered to be proportional to 1/E. This means that

we get about the same number of neutrons in the energy range 1–10 MeV,

10–100 MeV, and 100 MeV–1 GeV. For E > 1 GeV, the slope dn/dE can be

considered with a good approximation to be proportional to E�2.

More precisely, the neutron spectrum has three major peaks, thermal energy

peak, evaporation peak around 1 MeV, and cascade peak around 100 MeV.

More information on the shape of the spectrum can be found in [2, 3]. The

recently developed QARM model is described in [4].

The reference flux is taken at New York City at sea level [1] to be 13 n/cm2 for

E > 10 MeV. More details are given in Chap. 3.

An other important contribution to soft errors comes from alpha particles

(helium nucleus built with two neutrons and two protons) emitted by radioactive

elements found at trace levels in different materials close to the sensitive

nodes of the electronic devices. These alpha emitters are elements from the three

natural decay chains called Thorium, Radium, and Actinium decay chains. Secular
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equilibrium1 is sometimes assumed, but this hypothesis may not apply in practical

cases if purification methods are applied to eliminate some elements in the radio-

active chain. The energy of alpha particles is in a domain between 3 MeV and

9 MeV. Alpha emitters from the Thorium decay chain are given in the following

table.

Elements 232Th 228Th 224Ra 220Rn 216Po 212Bi 212Po

Energy (MeV) 4.08 5.52 5.79 6.40 6.91 6.21 8.95

Half lifetime 1.41010 years 6.75 years 3.63 days 55.6 s 0.145 s 60.55 mn 299 ns

Important efforts are involved in reducing the impurities concentration and

characterizing the alpha emission rate from materials used in packaging. Alpha

sensitivity is calculated for a flux of 10�3 alpha/cm2/h.

2.2.2 Neutron Interaction with Matter: Production

of Energetic Recoils

Neutrons can interact with the nucleus either by elastic and nonelastic interaction

and give a part of its energy as kinetic energy to the recoils. In some materials such

as 10B low energy neutron capture will give an exoenergetic reaction, but generally

energy is either conserved (elastic collisions) or a fraction of it is changed in mass

so that the total kinetic energy of the recoils is lower than the kinetic energy of the

incident neutron.

2.2.2.1 Interaction Probability

The interaction probability per nucleus is given by the cross-section expressed

usually in barn/nucleus. The cross-section is the effective area of the nucleus for

interaction with a neutron. One barn equals 10�24 cm2. In silicon, the total neutron

cross-section decreases from 1.95 barn at E ¼ 40 MeV–0.6 barn at E ¼ 200 MeV.

To obtain the mean free path without interaction of neutrons in silicon, the

number n of nucleus per cm3 is first calculated. By considering the density d in

g/cm3, the atomic mass 28 g of 1 Avogadro of nucleus d ¼ 2.33 g/cm3, and

the Avogadro number N ¼ 6.02 � 1023, we find n ¼ 6.02�1023/(28/2.33) ¼
5 � 1022 A/cm3.

For an interaction cross-section value of one barn the mean free-range is:

1 10�24 � 51022
� ��

¼ 20 cm:

1The state where the quantity of a radioactive isotope remains constant because its production rate

(due, e.g., to decay of a parent isotope) is equal to its decay rate.
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So, as it is well known, neutrons can cross an important thickness of matter

without interacting. The cross-section of interaction of one neutron with an energy

of about 100 MeV (with s ¼ 1 barn), in a small cube with a side of 1 mm is then:

V � n� s ¼ 10�12 � 51022 � 10�24 ¼ 510�14 cm2:

This value gives the order of magnitude of the upset cross-section per bit that

will be obtained for SEU in SRAMs.

Because silicon is the main constituent of electronic devices, we can consider

that silicon is the main target material. But for more accurate estimations, we need

to take into account all the materials that may exist in the structure of an electronic

device. As it is discussed later, we need to consider all the recoils that may come

close to or pass through a sensitive node. These recoils must be produced at a

distance from the sensitive node that is lower than their range.

2.2.2.2 Elastic Interaction

In the elastic process, the recoil nucleus is identical to the target nucleus. In the

collision, the total kinetic energy and the momentum of the neutron-target nucleus

system are conserved. A fraction of the energy of the neutron is given to the

nucleus. The maximum energy that can be given to the recoil is:

Emax ¼ 4� E�
A

Aþ 1ð Þ2
;

where A is the atomic number of the target nucleus. The probability to give a given

energy between 0 and Emax is obtained by the differential elastic cross-section.

Most of the silicon recoils produced by elastic collisions have a low energy. For

example, with an initial neutron energy En ¼ 125 MeV, only 5% of the interactions

give a recoil with energy larger than 0.27 MeV and 0.1% give a recoil energy larger

than 1.5 MeV.

2.2.2.3 Nonelastic Interaction

Nonelastic interactions group all the interactions that result in a fragmentation

of the nucleus in two or more recoil fragments. Generally, the lighter recoil

is indicated to describe the reaction: (n,p), (n,a), (n,d). The heavier element is

obtained by the equilibrium of the number of neutrons and protons before and after

the reaction. With 28Si as the target nucleus, (n,p) reaction results in a proton and

Al recoil, (n,a) reaction results in He and Mg recoils.

The incident energy of the neutron diminished by the mass variation is shared

between the secondary particles and the main recoil nucleus. These reactions

require that the incident neutron energy is larger than the threshold energy of
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each reaction. For a given neutron energy, different reactions are possible but their

relative probability varies with the neutron energy.

2.2.2.4 Inelastic Collision: (n,n0)

In this reaction, the incident neutron is absorbed in the target nucleus and a short

time later a neutron is ejected with a lower energy, sharing a part of the total kinetic

energy with the recoil target nucleus. The emission is considered to be isotropic.

Most of recoils with Er>2MeV come from nonelastic collision as shown by

Chadwick [5, 6].

2.2.2.5 Pion Creation

Above about 250 MeV, neutrons can interact directly with nucleons in the silicon

nucleus to form pions. Charged pions lose energy through ionization and by

reacting with additional silicon nuclei or decaying in about 10�28 s to form charged

secondary particles that also deposit charge in the silicon.

When more than two fragments are created, the repartition of energies and

angles can be difficult to evaluate (multibody reactions). More details are given

in Chap. 4.

2.2.2.6 Nuclear Data Base

The atmospheric neutron energy spectrum covers a broad energy range from meV

(10�3 eV) to 10 GeV. A detailed knowledge of the recoil products is needed to

calculate the range and density of ionization. So the energy spectrum is divided in

different energy bins. For each neutron energy, the distribution of the nature and the

energy of the different recoils are calculated.

In this way, a database is built to allow further use by Monte–Carlo Sampling in

this distribution.

To build the database, a Monte–Carlo interaction code is needed. These codes

must calculate the energy and direction of all the recoils. Wrobel [7] has developed

the code MC-RED to develop such a data base. Chadwick [5, 6] has performed the

extension of MCNP code previously limited to 20–150 MeV.

Data bases must be built for all the materials that can be met in the vicinity of the

sensitive node. In each SEEs prediction codes, the data base is one of the most

important parts that define the precision of the prediction. Usually, Si and O target

nucleus are considered, but W used in vias and Cu used in metalization layers are

also considered.

Tukamoto [8] has detailed in such a way that database can be obtained in

the full spectrum energy domain. He used the JENDL-3.3 library to obtain the

double-differential cross-sections (DDXs) for light charged particles (p and a) and
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all recoils(24,25Mg, 27,28Al, and 27,28Si) in the n+ 28Si reaction at energies between

2 and 20 MeV. The data for energies between 20 and 150 MeV were taken from the

LA150 library [5, 6] in which the DDXs of all recoils are included. Tukamoto has

calculated the cross-sections for energies above 150 MeV using the QMD code [9]

plus statistical decay model (GEM [10]) calculation.

The total deposited energy, in terms of kinetic energy transferred to recoils, is

also an important parameter. This term was considered initially in the Burst

generation rate (BGR) method to predict the Soft Error Rate (SER) [11]. It

represents a worst case approach for SER calculation because all the energy

transferred to recoils is assumed to be transformed in ionization and totally col-

lected at the sensitive node.

The energies of the recoils are for a large part lower than 5 MeV.

If for 100 MeV neutrons, 28Si recoil due to nonelastic collision is considered, it

can be shown that 90% of the silicon recoils have their energy lower than 2.5 MeV

and 99% their energy lower than 5 MeV. But light particles such as He nucleus

(Alpha particles) have a higher energy. For 100 MeV neutrons, 10% of recoils have

their energy greater than 16 MeV, and 1% have their energy greater than 31 MeV.

For En ¼ 20 MeV, the emitted recoils are separated in light recoils (protons

(n,p), deutons (n,d), tritons(n,t), 3He, 4He (n,a)), and heavy recoils (21Ne, 27Al,
28Al, 24Mg, 25Mg, 26Mg, 28Si, 24Na). No recoils with 5 < A < 21 are produced. For

higher energies, most of the isotopes with A values from 1 to 28 are present.

The creation of a nuclear data base is one of the most important steps in

establishing a prediction tool to calculate the sensitivity of devices.

The nuclear data base gives also the angle of emissions when multiple particles

are generated in a single interaction. The energies and emission directions are

correlated to the incident neutron energy and direction.

A complete nuclear data base would give information on recoils resulting from

all the materials that are at a distance from the sensitive zone lower than the

maximum range of the recoils.

In particular recoils from oxygen (in SiO2), W used in plugs, Cu in metalization,

and also high K dielectrics used in the gate of MOS transistors, must be considered.

Their relative contribution to the SER of a device is related to the technology used

(number and thickness of metalization levels, structure of the cells, . . .).

One important problem is the way to use the important volume of data generated

in the data base and to calculate the sensitivity of the devices.

2.2.3 Recoils: Ionization and Ranges

The different recoils produced in an interaction extend from proton or neutron to the

nucleus of the target atom. Neutrons produced in the reaction are not considered

since their probability of interaction in the vicinity of their creation is very small.

The ions lose their energy by coulomb interaction with the electrons of the target

atoms and at the end of their range by elastic collisions with the atoms [48].
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The energy loss as a function of energy is given by codes such as SRIM [12] or

MSTAR [13].

The most important parameters are the total or projected range of the ion, the

energy loss by unit length, the velocity of the ion and finally the transverse profile of

the ionization density in the ion track.

The ion range will determine the volume around a sensitive node where a

neutron interaction may create a recoil able to reach this node.

The energy loss per unit length gives the density of the electron-hole pairs that

can be collected in the space-charge layer and diffusion length of a PN junction

The transverse profile of the track is to be compared to the junction width or the

channel length of a device.

2.2.3.1 Ranges of Recoils

We must separate the light ions (alpha, protons) which have generally a higher

energy and a very long range from the heaviest ions (Si, Al, Mg). Range of silicon

recoils, in a silicon lattice, with an energy <10 MeV, calculated with SRIM2008

[12] is given below. For E < 5 MeV, the range is less than 3 mm.

This range is short but much larger than the dimensions of transistor dimensions

in recent technology nodes so that even heavy recoils can reach several sensitive

nodes (Fig. 2.1).
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Fig. 2.1 Range of silicon recoil in a silicon lattice
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2.2.3.2 Velocity of Ions

In the energy range of recoils produced by atmospheric neutrons, classical theory

can apply and the velocity is related to energy by v ¼ SQRT(2E/m) with m ¼ A

� AMU, A being the atomic number and AMU the Atomic Mass Unit.

1 AMU ¼ 1.66054 � 10�27 Kg.

For 1 MeV Si ion, v ¼ 1.3 mm/ps, and for 1 MeV alpha particle v ¼ 3.47 mm/ps.

2.2.4 Ionization

Ionization is due to coulomb interaction with the electrons of silicon atoms of the

recoil ions with effective charge Zeff. High energy electrons (d rays) are created

which lose their energy by further ionization or phonon excitation in times of

1–100 fs.

Finally, a mean of 3.6 eV (1 eV ¼ 10�19J) is needed to create a free hole-

electron pair in silicon. The energy transfer (LET) is the energy deposited per unit

length given in MeV � cm2/mg, and describes the average energy loss by the ion

per unit length of the transverse material. The LET can be converted in charge per

unit length (pC/mm or fC/mm) to use units more convenient to the electronic

designer because they can be compared to physical dimensions of the device and

to the charge stored at critical nodes.

To perform this conversion, first the energy loss per unit length is calculated. In

silicon (silicon density equals 2.32 g/cm3), we have:

1MeV mm= ¼ 4:31MeV=mg=cm2:

Then, substituting 1 MeV/mg/cm2 by 10 fC/mm we obtain:

1MeV 1:610�19
�

� 106 3:6C= =mm ¼ 44 fC mm:=

For each recoil, the LET varies with its energy. First, the LET increases with

recoil energy until reaching a maximum called the Bragg peak and then decreases

with increasing energy. For the different ions that may result from the spallation

of silicon atoms, the highest LET is obtained for silicon which is the heaviest

possible recoil in a silicon target. The max LET can reach 15 MeV/mg/cm2 at the

Bragg peak. This value is often used as a rough criteria to separate devices

sensitive to neutrons (threshold LET < 15) from devices that are not sensitive

(threshold LET > 15), by using heavy ions test results. But this approach can

be in error if heavier recoils (from Cu metalization or W plugs) can reach the

sensitive nodes (Fig. 2.2).

LET is an important parameter to quantify the sensitivity of devices.
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The range is related to the initial energy E and the LET by the relation:

R ¼

ð

0

Emax

dx

dE
dE

When a recoil is created at a distance d from a sensitive node, the energy of the

particle when it reaches the vicinity of the node is given by:

Ed ¼ E0 �

ð

d

0

dE

dx
dx

If the initial energy is greater than the Bragg peak energy, the LET increases

along the track until the Bragg peak energy is reached and then decreases.
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Fig. 2.2 LET(E) in MeV � cm2/mg of recoils (Z ¼ 1, 15) in silicon for E < 10 MeV
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This effect can be important for protection layers against alpha particles. If the

layer is not thick enough to stop the particle, the LET may be greater near a

sensitive node than without protective layer.

The energy of different recoils at the Bragg peak in silicon and the associated

LET are given in Table 2.1.

For protons (H nucleus), at the Bragg peak (situated at very low energy near

50 keV), the LET reaches 5.5 fC/mm. Then, it decreases rapidly to 2.6 fC/mm at

500 keV and 1.8 fC/mm at 1 MeV. So protons may contribute to upset by direct

ionization at low energy when the collection length is greater enough (>200 nm)

and when the critical charge is less than 1 fC. This point will be discussed for

SRAM devices.

2.2.4.1 Track Diameter

The initial radial variation of electron-hole pair density along the ion track is an

important input in the semiconductor-simulation codes to calculate the collected

charge at the sensitive nodes. Generally, a Gaussian shape is assumed with an initial

diameter that will broaden with time. In the past, when devices dimensions were in

the micron range, the precise knowledge of the track diameter at 1/e2 value was not

necessary. But with 60 nm or 45 nm design rules a precise knowledge of the radial

variation becomes mandatory.

In a recent work, Murat et al. [14] use Monte–Carlo techniques to study ion

transport and secondary electron transport up to a remaining kinetic energy of

1.5 eV (very close to the energy gap of 1.12 eV) but their work concerns high

energies >10 MeV/AMU, that is >280 MeV for silicon recoils and > 40MeV for

alpha particles. Kobayashi [15] performed similar calculations with the code

GEANT4 but with a higher value for electron energy cut-off limit. Zhu [16] has

found that the maximum range of secondary electrons (d rays) is about 20 nm for

1.5 MeV alpha particles. More work is needed in this domain to accurately describe

the ionization track from its creation to the first picoseconds.

2.2.4.2 Generation Time Profile

The generation of free carriers follows the ion penetration (at a velocity related to

its energy and its mass), but sometimes it is considered as instantaneous with the

implicit assumption that the response of the device is much slower than the carrier

generation time. As shown by Zhu [16], this assumption must be verified and

Table 2.1 Energy and LET at the Bragg peak for recoils with Z ¼ 1–8

Element H He Li Be B C N O

Energy (MeV) 0.05 0.45 1.65 2 2.1 2.8 3.9 5

LET (MeV � cm2/mg) 0.538 1.45 2.26 3.24 4.19 5.13 6.04 7.17

LET (fC/mm) 5.49 14.8 23.1 33.1 42.8 52.4 61.6 73.2
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eventually modified for low energy ions for recoils generated by 10B fission with

thermal neutrons.

2.2.5 Conclusion

Radiation is present in the natural environment. The flux of particles varies with

altitude, latitude, and to a lesser extent with longitude. The particles have a broad

energy spectrum and present several interaction mechanisms that result in energy

deposition in the materials. Some impurities present in semiconductors or package

materials are radioactive and emit alpha particles that can reach sensitive zones.

In electronic devices, single particles may deposit enough ionizing energy to

upset components. To understand SEEs, the particle interaction mechanisms must

be quantified and the recoils that are produced by the nuclear spallation reactions

must be well identified by their nature, energy, and direction. The loss of energy of

these recoils per unit length and the ionization density along the radius of the track

are important input parameters for accurate modeling of SEEs.

2.3 Single Event Effects in Electronic Devices and Systems

2.3.1 Single Event Effects Definition

SEEs in Electronic Devices group all the possible effects induced by the interaction

of one nuclear particle with electronic components.

These effects are classified in hard errors and soft errors as already presented in

Chap. 1.

Hard errors are non-recoverable errors. Soft errors may be recovered by a reset, a

power cycle or simply a rewrite of the information.

Hard errors concern Single Event Burnout (SEB ) in power MOS, IGBT or

power bipolar transistors, dielectric breakdown in gates (SEGR) or in capacitors,

microdose-induced threshold voltage variation in MOS transistors.

These hard errors are not discussed in this chapter, but they represent also an

important issue in SEEs. These effects were recently reviewed by Sexton [17].

Soft errors include a great variety of manifestations depending upon the device

considered.

In analog devices, Single Event Transients (SETs) also called Analog Single

Event Transients (ASETs) are mainly transient pulses in operational amplifiers,

comparators or reference voltage circuits.

In combinatorial logic, SETs are transient pulses generated in a gate that may

propagate in a combinatorial circuit path and eventually be latched in a storage cell

(e.g., a latch or a flip-flop).

In memory devices, latches, and registers, single events are mainly called Single

Event Upsets (SEU). This corresponds to a flip of the cell state. When for one
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particle interaction many storage cells are upset, a Multi-Cell Upset (MCU) is

obtained. If more than one bit in a word is upset by a single event, a (Multi-Bit

Upset (MBU) is obtained.

For complex integrated circuits, loss of functionality due to perturbation of

control registers or clocks is called SEFI. These SEFIs may give burst of errors or

long duration loss of functionality. Functionality may be recovered either by a

power cycle, a reset or a reload of a configuration register.

In bulk CMOS technology, PNPN parasitic structures may be triggered giving a

Single Event Latch-up (SEL). SEL is associated with a strong increase of power

supply current. SEL can be destructive by over heating of the structure and

localized metal fusion. A SEL needs a power cycle to be deactivated.

2.3.2 Soft Error Rate

The SER is the rate at which soft errors appear in a device for a given environment.

When the particular environment is known or for a reference environment (NYC

latitude at sea level), the SER rate can be given in FIT. In semiconductor memory,

the sensitivity is often given in FIT/Mb or in FIT/device. One FIT (Failure In Time)

is equal to a failure in 109 h.

The FIT value is either predicted by simulation or is the result of an experimental

error measurement near a neutron generator representing as accurately as possible

the real neutron energy spectrum.

The cross-section can be used to calculate SER. If, with a total fluence of N

neutrons/cm2, n errors are obtained in one device, the cross-section is s ¼ n/N.

With f the particle flux in the real environment, expressed in n/cm2/h, the FIT value

is: FIT value ¼ (n/N) � f � 109.

With a cross-section of 5 � 10�14 cm2 per bit, and f ¼ 13 n/cm2/h, the number

of FIT/Mb is 5 � 10�14 � 106 � 13 � 109 ¼ 650 FIT.

2.3.3 Critical Charge Criteria

The sensitivity of a device must be described by a parameter that allows to simply

evaluate the sort of recoils that can disturb the electronic function.

The simplest parameter to consider is the charge collected at a given node and

to compare its value to the minimum charge needed to upset the function. This

minimum charge is called the critical charge.

The simplest approach is to consider the critical charge as the product of the total

capacity Ci at a given node by the power supply voltage Vdd: Qc ¼ Ci � Vdd.

This approach is very useful to obtain a rough estimation of the critical charge.

In this crude approximation, the collection of charges is considered as instanta-

neous and the rest of the circuit has no time to react. This approximation can be

wrong in particular when carrier collection occurs by a diffusion process.
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Considering an inverter, during the time of collection, the ON transistor delivers

some current that partially compensates the collected current. This effect was first

taken into account by Palau [18] to develop an enhanced model.

A more precise approach to obtain the critical charge is to use a circuit simulator

such as SPICE Code and to describe the collected charge by a double exponential

current generator of short duration applied at the sensitive node:

Iexp ¼
Qtot

tf � tr
� exp �

t

tf

� �

� exp �
t

tr

� �� �

:

But this current pulse has peak amplitude independent of the voltage at the

sensitive node and thus the free carrier collection and function of the voltage is not

accurately described.

A best approach but much more complex and time consuming is to use a device

simulator working either in full 3D for the complete circuit to be simulated (e.g., 6T

SRAM cell) or mixed mode simulation with only one transistor described with a

device simulator and the remaining transistors described with a circuit simulator.

These approaches to obtain the critical charge have been described in detail by

Dodd [24, 19] and Yamagushi [20].

The charge is calculated by integration of the current pulse crossing the junction.

The time limits for the integration are related to the circuit upset mode and the

charge must be integrated to a time value that is either the recovery time (when no

upset occurs) or the upset time when the device changes state.

The critical charge variation as a function of the time duration of the current

pulse has been considered by Jain [21] for a rectangular waveform (Fig. 2.3).

Fig. 2.3 From Jain [21] variation of the critical charge and the flip time as a function of pulse

duration. For this particular technology node, the critical charge and flip time increase for t > 100 ps
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2.3.3.1 Orders of Magnitude of Critical Charge

The total capacity at a given node is related to the technology. In CMOS technol-

ogy, this capacity at the drain-substrate junction is the sum of gate-drain capacity

and drain-substrate capacity. As will be seen later for SRAM devices, the critical

charge is reduced to 1–2 fC in most recent technology nodes.

For DRAM and SDRAM, the critical charge remains roughly constant due to

sense amplifier limits to 20–30 fC.

2.3.4 Description of Current Pulses for Circuit Simulation

A mathematical equation with a double exponential was given above to describe

the waveform of the current pulse in circuit analysis codes. This waveform is

arbitrary and mostly adapted to facilitate convergence in the codes. In practice,

several waveforms can be obtained depending upon the location and length of the

track.

The effects of the free carrier generation along the recoil(s) track(s) can be

investigated by studying device response from the simple PN junction to complex

devices response with device simulators.

In a PN Junction (such as drain-substrate or drain-well), the current pulse is due

to separation of hole-electron pairs by the electric field of the space charge layer

(drift component) and by the diffusion of minority carriers toward the space charge

layer boundaries where they are accelerated by the electric field.

When the recoil track crosses the depletion layer, some field modification along

the track may enhance the collection length by extending the space charge layer in

the neutral zone. The so called funneling effect is only important for high LET and

low doped neutral zones.

When the track does not cross the depletion layer, only diffusion process occurs

and gives a slower current pulse. Diffusion is related to the gradient of carriers, and

so diffusion of carriers is effective toward all the junctions for which the neutral

zone where the track is located is one side of the junction. Analytical expressions of

the diffusion component are detailed in Chap. 4.

During diffusion time, a fraction of the generated free carriers recombine before

reaching the limits of space charge layers.

To perform a detailed calculation of the current pulse waveform a device

simulator is needed. Presently, most of the device simulators use the conventional

drift-diffusion equation but more complex treatment will be required in future

devices as outlined by Munteanu [22].

The shape of the current pulse varies with the extent of funneling and diffusion

present in the charge collection at any given junction.

A double exponential pulse shape is often used to fit the pulses with a character-

istic rise time (about 1 ps) and a varying decay time. For example, Bajura [23]

presents the comparison of current pulses obtained from 3D device simulation and
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the classical double exponential pulse injected at critical nodes in a 90 nm technol-

ogy in the Off NMOS transistor (Fig. 2.4).

For older technologies, the charge collection was accurately modeled by a

double exponential current waveform (Fig. 2.5a). However, for advanced technol-

ogies the current pulse shape becomes much more complex as shown in Fig. 2.5b,

as discussed by Dodd [24, 25].

2.4 Sensitivity of Devices

The sensitivity of devices can be investigated by considering the effect of the

ionization track on devices with increasing complexity. The simplest device is a

reverse-bias PN junction. The current waveforms in PN junctions were discussed

Fig. 2.4 Comparison of 3D simulation pulses with double exponential pulse (From Bajura [23])

Fig. 2.5 Comparison of double exponential waveform with current waveforms obtained in 3D

simulation. (After Dodd [24, 25])
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previously. These junctions are often parasitic (drain-substrate, drain-well, well-

substrate in bulk CMOS technology) that must be described accurately.

Due to the different locations of impact, track direction, track length, ionization

density, and many waveform shapes are expected. So empirical models, taking into

account these parameters, must be developed for a given technology, in order to

allow the prediction of the behavior of the elementary logic functions such as

combinational gates [26].

2.4.1 SET

DSETs (Digital SET) are momentary voltage or current disturbances affecting

combinational gates. Although an SET does cause a transient in the gate output

struck by the recoil ion, it may propagate through subsequent gates and eventually

cause an SEU when it reaches a memory element. Dodd [25] recalls that at least

four criteria must be met for a DSET to result in a circuit error.

– The particle strike must generate a transient capable of propagating through the

circuit.

– There must be an open logic path through which the DSET can propagate to

arrive at a latch or other memory element.

– The DSET must be of sufficient amplitude and duration to change the state of

the latch or memory element.

– In synchronous logic, the DSET must arrive at the latch during the latching edge

of the clock.

The probability that transient glitches will be captured as valid data in combina-

tional logic increases linearly with frequency because the frequency of clock edges

increases. As circuit speeds increase, it is also expected that the ability of a given

transient to propagate increases (high speed means faster gates and/or less logic

levels per pipeline stage); however, one might also conjecture that the duration of

transients decreases. Due to both their greater ability to propagate in high-speed

circuits and their higher probability of capture by subsequent storage elements, such

as latches, DSETs have been predicted to become a very important issue in deep

submicron digital ICs [27, 28].

Mixed-level simulations have been used to study the production and propagation

of DSETs in scaled silicon CMOS digital logic circuits [25]. The modeling tech-

nique is illustrated in Fig. 2.6. In this figure, the production of SETs in the off-

biased n-channel transistor in the struck CMOS inverter is modeled in the 3D

device domain, and propagation through an ensuing ten-inverter delay chain is

modeled in the circuit domain within the mixed-level simulator. Transients that can

propagate without attenuation are obviously a concern, although it must be

reminded that propagation of the DSET is only the first of a set of conditions that

must be met for a DSET to become an SEU.
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An important advantage of 3D mixed-level simulations compared to circuit

simulations is that they can directly predict the ion-induced transients in response

to a given particle strike.

At the same time, the simulations calculate the propagation of the transient

through the inverter delay chain.

Shuming [29] has investigated the temperature effects on SET in a chain of

inverters in 180 nm bulk by using mixed simulation on the structure given below.

Dodd [25] uses nearly the same approach. This approach can be used in all

combinatorial logics with more complex gates (Fig. 2.7).

2.4.2 SEU

An SEU occurs when an ionizing particle strike modifies the electrical state of a

storage cell, such that an error is produced when the cell is read. In an SRAM or

Fig. 2.7 An other example of mixed simulation used to study DSET propagation. Note that an

inverter is placed before the inverter described with 3D simulation code (after Dodd [25])

Fig. 2.6 Mixed mode simulation used to study SET propagation in an inverter chain (after

Shuming [29])

44 R. Gaillard



a flip-flop, the state of the memory is reversed. In a DRAM, the charge stored can be

slightly modified and interpreted as a wrong value by the read circuitry. In logic

circuits, SEUs can also be obtained when a SET propagates through the combina-

tional logic and is captured by a latch or a flip-flop.

SEU is experimentally studied in memories or registers by writing a known

content, irradiating the device at a given particle flux and recording the variation of

the contents.

Different tests algorithms can be used from the simple write-irradiate-read called

also static test to much more complex dynamic test sequences.

2.4.2.1 SRAM

In 6T SRAM cells with two coupled CMOS inverters and two NMOS access

transistors, SEUs have been studied by means of full 3D simulations as well as

mixed-mode simulations, in order to evaluate the critical charge needed to obtain an

upset.

Bajura [23] has studied the minimal-sized SEU-inducing pulses, when applied to

the drains of the “off ” NMOS and “off ” PMOS transistors. He has found a total

integrated charge of 1.1 fC and 2.4 fC, respectively. He explains that the difference

in minimum injected total charge required for a bit upset to occur is due to the

design of the 6T cell. The cross-coupled inverters are highly asymmetric with

the pull-down NMOS transistors having much stronger drive strength than the

PMOS pull-ups. Under normal operating conditions, this asymmetric design

improves the speed at which the SRAM can flip states.

The following figure illustrates the two cross-coupled inverters and the pulse

current injected at the drain of the off NMOS in a circuit simulation (Fig. 2.8a, b).

The two inverters output are obtained for the two limiting ionization density just

below the upset level and just above the upset level (Fig. 2.9).

On the one hand, critical charge of SRAM is decreasing in successive process

nodes due to the shrink in dimensions and the decrease of the power supply voltage.

But on the other hand, the area of elementary cells is also decreasing as indicated

below (data presented by Bai et al. [30]), resulting in a compensation of the two

effects. The decrease of the critical charge implies that an increasing number of

interactions produce recoils that can induce SEU. It results that an increasing

fraction of recoils becomes effective. For older technologies, only a small part of

the reactions were efficient to give SEU, and so a strong increase of the sensitivity

was obtained when the critical charge was decreasing for two successive technol-

ogy nodes. For more recent technologies, the fraction of effective interactions

reaches 90% so only a small effect of reduction of critical charge is expected in

the future.

The diminution of the cell area will then be the dominant effect and a global

reduction of the sensitivity per Mb is expected in the future. The sensitivity trends

are more deeply discussed in Chap. 1 (Fig. 2.10).
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2.4.2.2 Upset by Direct Proton Ionization

Low energy protons (E < 1MeV) have a LET that varies between 1.8 fC/mm at

1 MeV and 5.5 fC/mm at 50 keV. In SRAM with very low critical charge (<1 fC)

Fig. 2.9 Drain voltage waveforms for ionization density slightly lower (no upset) and slightly

larger (upset) than the ionization upset threshold

Fig. 2.8 (a) Schematic of two cross-coupled inverters in CMOS technology. A current pulse is

injected at the drain of the off NMOS transistor. (b) Mixed Mode simulation is used to simulate

SEU. The Off NMOS is studied by means of device simulation and the remaining transistors are

studied with the coupled circuit simulator (after Munteanu [22])
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and for particular proton incident directions where the collection length is greater

than 200 nm, upsets are expected. These upsets have recently been observed

experimentally [45, 46] in 65 nm SOI SRAMs at high incidence angles.

2.4.2.3 DRAM and SDRAM

A DRAM cell consists of a capacitor and a transistor. The capacitor stores the bit of

information, and the transistor isolates the capacitor during nonread or nonwrite

times, which is approximately 99% of the time [32]. During this time, the cell

experiences subthreshold leakage that causes the DRAM cell to lose its pro-

grammed state. Thus, the cell needs to be refreshed, i.e., rewritten, occasionally.

During a READ operation, the word-line potential is raised to access the storage

node. A sense amplifier compares the potential on the bit line to the potential of a

reference bit line on the other side of the sense-amp, and the sense-amp latch sets

depending on whether there charge stored in the capacitor exceeds a certain

threshold. At the end of the operation, the bit is restored to the cell and the bit

lines are charged up to a high level for the next cycle. The bit lines are then allowed

to float, making them sensitive to charge collection about 99% of the time.

O’Gorman [33] reported soft errors at ground level in 288 k DRAM and clearly

separated the contributions from alpha particles and neutrons.

The critical charge of the cell, defined as theminimum amount of charge that must

be collected by the cell to cause a soft error, was in the range of about 70–100 fC.

Scheick [32] indicated that half of the cells have 0 charge on the capacitor when

programmed to 1, while the other half have a charge stored when programmed to 1.

Now, since a DRAM can only upset by discharge of the capacitor, a DRAM

programmed with all ones or zeros will have about half of the cells vulnerable

to SEU.

Fig. 2.10 From Bai [30]. SRAM cell areas and contact gate pitch decrease with each technology

node. At 65 nm, cell area is about 0.6 mm2
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The DRAM vulnerability is related to the technology of the capacitor that stores

the information (see Chap. 1).

As clearly indicated by Massengill [34], a degradation of the stored signal to a

level outside the noise margin of the supporting circuitry is considered an upset, as

it will lead to erroneous interpretation and a resultant error. In a DRAM cell, the

current in the source of the NMOS transistor may discharge the capacitor.

In 1987, Hisamoto et al. [35] reported a direct source-drain penetration effect

due to alpha-particle strikes in scaled (short channel MOS) DRAM structures. This

alpha-particle induced source-drain penetration (ALPEN) effect causes current

flow across the normally off access transistor, due to a source-drain shunt effect.

While the normal SEE mechanism is to deplete charge from a DRAM cell storage

capacitance, the ALPEN mechanism causes the opposite result: the shunting of

charge onto the storage node. Thus, a 0 ! 1 versus a 1 ! 0 mechanism is

introduced. In this early study, the ALPEN effect was found to be important for

device gate lengths less than 0.3 mm.

2.4.3 MCU and MBU in SRAM and DRAM

SEU is a perturbation of one bit by a single particle. Single Error Correction Codes

(ECC) such as Hamming codes that can detect two errors and correct one in a word

can be used to mitigate these errors. But if two or more errors are present in a single

word, a more elaborated and complex ECC is needed. Multiple errors can be

created in devices when a particle crosses the sensitive zones of different cells

(drains of blocked MOS transistors) or when the free carriers of the ion track can be

collected by different junctions of transistors of several memory cells.

As the elementary cell area is continuously decreasing for successive technology

nodes, the probability that recoils have a range long enough to reach different cells

increases. So the probability of multiple cell upsets increases. This probability also

increases due to an increasing charge sharing probability: neighbor circuit nodes in

advanced technologies are closer to each other and can collect charges from a single

particle track. The ratio of MCU to SEU and the probability to have a given number

or errors in a MCU are important parameters because they allow to determine the

efficiency of an ECC and to choose the most appropriate one for meeting the SER

requirements of the target application. The geometrical repartition of bits in a word

is also an important parameter for determining the fraction of the errors produced

by an MCU that are located in the same word (MBU). In particular to avoid MBU,

bits in same word are placed as far as possible one from each other by using

appropriate scrambling in the memory design.

2.4.4 SEFI

SEFI is an anomalous behavior observed in complex devices. It can be the result of

the upset of some registers or latches that are used in the configuration of the

working modes of these complex devices.
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Koga [36] was among the first to define SEFI from observations in SDRAM,

EEPROMS, and microprocessors. Dodd [37] defines SEFI as a triggering of an IC

test mode, a reset mode or some other mode that causes the IC to temporarily lose

its functionality.

SEFIs were reported in flash nonvolatile memories, SDRAM, SRAM based

FPGA, microprocessors, and microcontrollers.

2.4.4.1 SEFI in Flash Memories

Bagatin et al. [38] studied 1 Gb Nand Flash and could identify different SEFIs.

They classify SEFI in different ways:

– SEFI that gives a full page or block read-errors and SEFI that slows down or

disables the capability of the device to program and/or to erase.

– SEFI can be also classified depending on the way the functionality was restored

after the event: a power cycle can be necessary or a reset command is sufficient,

or a spontaneous recovery is observed.

– Supply current increase is also observed, and nominal value is restored by reset

or by power cycle. In this latter case, SEFI is difficult to separate from SEL.

2.4.4.2 SEFI in FPGA

In SRAM based Field Programmable Arrays (FPGA), such as Virtex, George [39]

expected to find SEFI due to upsets in particular circuits that involve Power-on-

reset (POR), failures in the JTAG or Select-Map communications port or others.

2.4.4.3 SEFI in SDRAM

In SDRAM, the block diagram shows that mode registers, address registers, refresh

counter, are used to control the device. A SEU in one of these registers may modify

the refresh period, or induce other sorts of SEFI.

SEFI is a complex effect that needs a special treatment in a system. Fortunately,

the cross-section is generally very low.

2.4.5 Single Event Latch-Up

SEL is related to the activity of parasitic structures in bulk CMOS technology.

Some PNPN structures can switch from a high impedance state to a low impedance

one. Latch-up can be induced also by electrical transients or by high dose rate X-ray
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pulse. The possibility of a PNPN structure to switch depends upon the following

factors:

– Bias of the structure.

– Activity of the structure.

– Triggering energy delivered by the recoil.

The PNPN structure can be described by two cross-coupled bipolar transistors

(one PNP and one NPN) as indicated in Fig. 2.11. Resistors are included in series

with emitters and between base and emitters. In some equivalent schematics,

resistors in series with collectors can be included.

The relation with the CMOS structure of an inverter in a CMOS bulk N Well

Technology is given in Fig. 2.12 (after Puchner [40]).

The N-Well/P-Substrate junction is the base collector junction of both PNP and

NPN junction. The emitter-base junctions are N+Source-PSubstrate and P+source-

NWell junctions. The current gain of a bipolar transistor is related to the base width

and the injection efficiency of the emitter-base junction. The base width varies with

design rules and the position of the source relative to the Well-Substrate junction.

Fig. 2.11 Two bipolar

transistors equivalent

structure of a PNPN parasitic

structure found in bulk

CMOS technology

Fig. 2.12 PNPN parasitic structure in an N-Well bulk CMOS Inverter structure
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An ideal PNPN structure is active if the gain product of the NPN and PNP

transistors is b1 � b2 > 1, where b1 and b2 are the current gains Ic/Ib of the

bipolar transistors.

Other important parameters that influence the sensitivity are the resistivity and

depth of the well and the resistivity of the substrate. To reduce the base-emitter

resistor a thin epitaxial layer on a high doped substrate can be used. Multiple

substrate and well contacts also reduce the base-emitter resistors.

2.4.5.1 Latch-Up Triggering Mechanisms

The triggering mechanism can be understood by considering the equivalent scheme

with cross-coupled NPN and PNP bipolar transistors.

When active the PNPN structure has two stable states: Off-state where both

bipolar transistors are Off- and On-state where both bipolar transistors are On.

The minimum voltage and current needed to sustain the On-state are called

respectively holding current and holding voltage.

The holding voltage must be compared to the power supply voltage: When

the PNPN structure is On, both base-emitter junctions are On and the collector-

base junctions are also On (saturated structure). So the minimum holding voltage

between Vdd and Vss is about 0.6 V. In practice, voltage drops in series resistors

increases this minimum value that may reach 0.8–1 V. In most advanced tech-

nology nodes, this holding voltage is close or greater than the power supply

value. So the reduction of power supply voltage limits the occurrence of SEL

(Fig. 2.13).

Fig. 2.13 PNPN structure

trigger: The ion track crosses

the N-Well/P-Substrate

junction: The current is

amplified in the positive

feedback structure. After

Useinov [41]
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2.4.5.2 Design Rules Effects on SEL Sensitivity

The reduction of the base width increases the current gain and the cutoff frequency

of the bipolar transistors. The junction capacitance decreases so the charge needed

to bias the junction at +0.6 V is reduced. These parameters enhance the sensitivity

because the trigger energy is reduced and the structure can switch with very short

duration transients. But, as indicated above, at each new technology generation, the

power supply decreases, the space-charge layer width and the free carrier lifetime

decreases, and so the collected charge is reduced.

So a global compensation exists and SEL occurrence is difficult to predict

without a detailed knowledge of the topology of the design.

SEL must be imperatively avoided by the designers. Several ways exists for

eliminating it. The more drastic one is to use SOI technology that eliminates the

PNPN structure. In bulk CMOS, as previously discussed, a thin epitaxial layer on a

heavily doped substrate is efficient to reduce the shunt resistors in parallel with

base-emitter junctions, and then a strong increase of a triggering current is needed.

SEL has been widely studied in the literature mainly for heavy ions [41, 42],

but also for neutrons [43, 44]. For atmospheric neutrons-induced SEL, Dodd [43]

has clearly shown that the sensitivity increases with temperature and power supply

voltage. FIT values from 10 FIT to more than 300 FIT/Mb have been measured

in SRAMs.

2.5 Conclusion

At ground level and in the atmosphere, SEEs are mainly due to neutrons and to

alpha particles emitted by radioactive impurities. The recoils, created by neutron

interaction with the nucleus of the different materials used to build the components,

ionize the semiconductor and charges are collected at sensitive nodes. Soft errors

(recoverable) and hard errors (non recoverable) can be induced in semiconductor

devices. The basic mechanisms are rather well known, but a lot of work is still

needed to accurately predict the sensitivity of the devices. For successive technol-

ogy nodes, the relative importance of different effects varies. SEE prediction is a

multidisciplinary task that involves nuclear and solid state physics, simulation

tools, semiconductor technology, devices, and system architecture.
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Chapter 3

JEDEC Standards on Measurement and
Reporting of Alpha Particle and Terrestrial
Cosmic Ray Induced Soft Errors

Charles Slayman

While the history of soft errors in commercial semiconductor devices spans over

three decades, it has only been relatively recently that specifications have been

created to standardize the characterization of the effects of alpha particles and

neutrons on ICs. Some of the first standards developed for devices used in commer-

cial applications come from one of the premier semiconductor industry standards

body, JEDEC, formerly known as Joint Electron Device Engineering Council. The

JEDEC JESD89 standards are now widely referenced in most technical publica-

tions on soft errors in commercial ICs. This chapter gives an overview of the

JEDEC JESD89 series of standards, describes the technical background for their

development and details the areas for future improvement.

3.1 Introduction

The Joint Electron Device Engineering Council (JEDEC) was formed in 1958 as

a part of the Electronic Industries Association (EIA). In 1999, JEDEC was

incorporated as an independent association under the name, JEDEC Solid State

Technology Association (thereby abandoning any reference to the original acro-

nym). This new organization then became a recognized sector of EIA and maintains

that relationship today [1].

JEDEC is the leading developer of standards for the solid-state industry. Almost

3,300 participants, appointed by some 295 companies work together in 50 JEDEC

committees to meet the needs of every segment of the industry, manufacturers and

consumers alike. The publications and standards that they generate are accepted

throughout the world. All JEDEC standards are available online, at no charge [2].
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3.1.1 Purpose of the JESD89 Series Standards

While the history of soft errors commerical in microelectronics dates back to 1979

[3–5], it is somewhat surprising that as recently as 2000, no test standards existed to

make the characterization of soft errors uniform in a terrestrial environment, even

though a significant amount of knowledge had been gained in the military, aero-

space and space environments. This situation led to considerable confusion among

commercial design and system engineers in terms of what error rates they could

expect. To that end, a task group of commercial and aerospace semiconductor

experts was assembled at the request of NASA to determine the best way to

standardize SER testing. It was decided that JEDEC would be the appropriate

technical body for publication and maintenance of the standards that were primarily

targeted for commercial devices.

The purpose of the JESD89 standards is to provide a procedure to characterize

the soft error rate of ICs in a terrestrial environment. The sources of errors include

radiation from (1) alpha particles within the IC package as well as the IC itself and

(2) high energy and thermal neutrons resulting from cosmic rays impinging on the

earth’s atmosphere. JESD89A Measurement and Reporting of Alpha Particle and

Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices is the over-

arching standard that covers all three (alpha, thermal neutron and high energy

neutron) sources of soft errors in detail. JESD89-1A Method for Real-Time Soft

Error Rate focuses on the technique of using a large number of devices over an

extended period of time to measure soft errors. JESD89-2A Test Method for Alpha

Source-Accelerated Soft Error Rate deals with the use of alpha particle sources to

characterize the soft error rate of unpackaged or de-lidded devices. JESD89-3A

Test Method for Beam-Accelerated Soft Error Rate details the error rate characteri-

zation of devices under neutron or proton beam irradiation. A comprehensive

characterization of alpha, high-energy neutron and thermal neutron effects are

required in order to fully characterize the soft-error rate of an IC. The most recent

version of all four standards can be found at www.jedec.org/download/default.cfm

by using JESD89 in the Search by Document Number box.

3.1.2 Terms and Definitions

The JESD89 standards give definitions of many of the terms commonly used in soft

error measurement and characterization. These can be found in JESD89A Sect. 2,

JESD89-1A Sect. 3, JESD89-2A Sect. 3 and JESD89-3A Sect. 4. The following is a

list of some of the key terms.

Alpha activity the number of alpha particles that decay in an alpha source per unit

time. The SI unit is Becquerel (Bq) which is one disintegration per second.

1 curie ¼ 3.7 � 1010 Bq.
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Critical charge (Qc) the minimum amount of collected charge that will cause the

node of a circuit to change state.

Differential flux the rate of particles incident on a surface per unit energy per unit

area. Example of units – cm�2 s�1 eV�1.

DUT device under test.

Fluence the number of radiant energy particles emitted from (or incident on) a

surface over a given period of time divided by the surface area. Example of

units – cm�2.

Flux density the rate of radiant energy particles emitted from (or incident on) a

surface per unit area. Example of units – cm�2 s�1.

Golden part a sample used to monitor the consistency of a radiation beam and test

setup.

Hard error an irreversible change in the operation of a device that is typically

associated with permanent damage to one or more elements of the device (e.g.

gate oxide rupture destructive latch-up events, interconnect opens or shorts, etc.)

Multiple-bit upset (MBU) a multi-cell upset (MCU) in which two or more error bits

occur in the same word.

Multiple-cell upset (MCU) a single event that induces several bits in a memory

array to fail at the same time.

Single-event burnout (SEB) an event in which a single energetic particle strike

induces a localized high current state that results in catastrophic failure.

Single-event effect (SEE) any measureable or observable change in the state or

performance of a device resulting from an energetic particle strike.

Single-event functional interrupt (SEFI) an SEE that causes a device reset lock-

up or otherwise malfunction, but does not require power cycling to restore

operability.

Single-event hard error (SHE) an irreversible change in the operation of a device

due to an SEE.

Single-event latch-up (SEL) an abnormally high-current state in a device or circuit

of a device caused by the passage of an energetic particle and leading to

localized latch-up in that region.

Single-event transient (SET) a momentary voltage or current spike at a node of a

circuit caused by the passage of a single energetic particle.

Single-event upset (SEU) the change in state of a circuit caused by a single energetic

particle.

Soft error (SE) an erroneous output signal from a latch or memory cell that can be

corrected by performing one or more normal device functions.

Power cycle soft error (PCSE) a soft error that cannot be corrected by simple re-

write operations but requires the removal and restoration of power to the device

(e.g. non-destructive latch-up).

Static soft error a soft error that is not corrected by repeated reading but can be

corrected by rewriting without the removal of power.

Transient soft error a soft error that can be corrected by repeated reading without

rewriting or the removal of power.
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3.1.3 Devices Covered by the Standards

JESD89A is relatively general and can be applied to both memory and logic

components. JESD89-1A, 2A and 3A focus on solid state volatile memory arrays

(e.g. DRAM and SRAM) and bistable logic elements (e.g. flip-flops) for errors that

require no more than a re-read or re-write/read to determine if the error is noise

induced, soft error or hard error.

3.1.4 Reporting Requirements

An important part of any test standard is the requirement of how the data is

presented. Each of the JESD89 standards lays out a detailed list of what information

is required and must be included in the final report. Alpha particle and neutron

events can depend on many external environmental and internal semiconductor

parameters, the physics of which might be only partially understood. For example,

generation and attenuation of alpha particles in an IC package or generation and

decay of thermal neutrons from the high-energy neutron background are difficult to

predict in real field applications. The JESD89 standards attempt to model these

effects, but in the end it is important to state the details of soft error measurements

in the final report to allow for future interpretation and correction as knowledge of

these effects improve.

The preferred unit of reporting is FIT per device or a normalized FIT per bit. A

FIT is defined as 1 failure (or more properly for soft errors, 1 event) per 109 h. If

there are different types of soft error events observed, then they should be reported

separately. For example, it is not appropriate to combine soft error latch-up events

with cell upset events.

3.2 Accelerated Alpha Particle SER Testing
(JESD89A Sect. 4 and JESD89-2A)

3.2.1 Alpha Particle Energy Spectra and Emissivity

(JESD89A Annex D)

The energy spectra of alpha particles emitted from radioactive decay is a function of

the isotope that contaminates the package or device. The activity of an isotope is

proportional to its natural abundance and inversely related to its half-life (the time

required for half the original population of atoms to decay). 238U, 235U and 232Th

have the highest activities of naturally occurring radioactive contamination. If the

half-life of the daughter products is less than the half-life of the parent isotope, then

these will also contribute to the alpha energy spectra.

Figure 3.1 shows the alpha energy spectra of 238U, 235U and 232Th.
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Since alpha particles are charged, they lose energy as they penetrate through the

package and device. So the discrete energy spectra in Fig. 3.1 is broadened and

attenuated in thick films. Figure 3.2 shows the energy spectra of a thick 232Th film.

Alpha particles have a limited range due to their energy loss. Elastic coulomb

scattering of the alpha particle with electrons generates electron-hole pairs. In

silicon, each electron-hole pair generated represents an average energy loss of

3.6 eV. Figure 3.3 shows the linear energy transfer measured in charge transfer

Fig. 3.1 Emission spectra from thin-film 238U, 235U and 232Th. (Reprinted from JESD89A p 75)

Fig. 3.2 Emission spectrum of a thick-film 232Th source. (Reprinted from JESD89A p 76)
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per unit distance (fC/mm) in silicon as a function of alpha energy. It is maximum

around 1 MeV and drops off at higher alpha energies. As shown in Fig. 3.3,

the range of an alpha particle in silicon is also a function of its energy. A 1 MeV

alpha particle can only penetrate a few mm, whereas a 5 MeV particle can penetrate

over 20 mm.

A useful guideline is given in JESD89A Annex D and shown in Table 3.1 below as

to what range of alpha emissivity to expect from various materials used in IC

technology. It should be noted that the examples are for a well controlled and

monitored manufacturing environment. If contamination occurs from uncontrolled

sources, the emissivities can increase by orders of magnitude. Emissivities below

Fig. 3.3 Charge transfer (solid boxes) and range (open boxes) of alpha particles in silicon.

(Reprinted from JESD89A p 77)

Table 3.1 Alpha emissivity of various electronic materials. (Reprinted

from JESD89A, p. 78)

Material Alpha emissivity (cm�2 h�1)

Fully processed wafers <4 � 10�4

30 mm thick Cu interconnect <3 � 10�4

20 mm thick AlCu interconnect <3�10�4

Mold compound <5 � 10�4 to <2.4 � 10�2

Flip-chip underfill <7 � 10�4 to <4 � 10�3

Eutectic Pb-based solder <9 � 10�4 to <7.2
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0.001 counts/(cm2 h) are approaching the particle counter detection limit and require

well-controlled laboratory techniques.

3.2.2 Alpha Source Selection (JESD89A Sect. 5.4.1

and JESD89-2A Sect. 4.2.2.1)

Selection of the alpha source species should depend upon the appropriate impurity

expected in the package and device. Americium (Am) sources have similar spectra

to 210Po that would be found in flip-chip solder bumps using lead. Thorium (Th)

sources have similar spectra to uranium impurities found in moulding compound.

Thorium itself can also be an impurity in moulding compounds.

As noted above, thin film or metal foil sources have discrete energy spectra. This

is a representative spectrum if the real life source of alpha particles in the product

is coming from a thin layer at the die surface. However, this is not the typical source

of alpha particles in a device where the moulding compound is responsible for the

alpha particles. Solid sources that are physically thicker will broaden the alpha

spectra. This is representative of alpha particles being emitted throughout the bulk

of the device package. These factors should be taken into account along with the

source species when selecting the proper source for accelerated alpha particle

testing.

3.2.3 Packaging/Sample Preparation (JESD89A Sect. 5.3

and 5.4.5, JESD89-2A Sect. 4.4)

Since the penetration depth of alpha particles is very short, accelerated alpha testing

must be done with bare die in either wafer form with special probe cards or in

specially modified dual-in-line (CERDIP) or pin-grid array (CERPGA) packages.

Alpha source to die spacing must be minimized to prevent attenuation of alpha flux

from air: a spacing of less than 1 mm is recommended.

If a protective overcoat and alpha blocking layer (e.g. polyimide) is used in the

product, it should remain intact for the testing. If it is removed, an estimation of its

attenuation factor must be noted in the final report in order to translate between an

accelerated alpha particle SER and the normal alpha particle SER.

3.2.4 Extrapolating Accelerated Failure Rate to Field Use

Conditions (JESD89A Sect. 5.6.4)

Extrapolation from the accelerated alpha soft error rate (Racc) to the normal alpha

particle soft error rate expected in field (Ra) use is given by
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Ra ¼ Racc

fpkgFgeopkgFshieldpkg

fdutFgeodutFshielddut

(3.1)

where fpkg is the background alpha flux from the actual product package and device

impurities, fdut is the flux from the alpha particle source on the device under test

(DUT). Fgeopkg and Fgeodut are geometrical factors to account the reduction of flux

due spacing from the source. If the source to device spacing rule of <1 mm is

followed, then Fgeopkg ¼ Fgeodut. Fshieldpkg and Fshieldut account for the shielding

layers (e.g. polyimide, inter-level dielectrics and metal interconnects) between the

source and device. If the device used for accelerated testing is the same as the

product device (i.e. same top layers and coating), the Fshieldpkg ¼ Fshieldut. Other-

wise, difference in alpha particle attenuation between the test device and the

product must be calculated.

3.2.5 Limitations and Strengths of the Accelerated Alpha

Particle Test

The strong point of accelerated alpha particle SER testing is that sources are readily

available and test times can be relatively short to collect a statistically significant

number of errors. This enables rapid determination of which circuits are sensitive to

alpha upset (independent of neutron effects) and allows for added design cycles to

improve alpha particle SER performance if required.

One of the drawbacks of the test is that it can be complicated to produce the

actual energy spectra at the surface of the device due to the shielding and

attenuation that occurs within the package material itself. (Solid alpha sources

are preferred over foil sources for this reason.) The self-shielding of the package

material will tend to shift the peak of the energy deposition (Bragg peak)

within the device. Some devices might be more sensitive at the surface, and

other devices might be more sensitive deeper into the silicon. So shifting of the

Bragg peak into the sensitive area by added shielding can actually cause an

increase in the aSER. The only way to determine this effect would be to do

multiple accelerated alpha particle experiments with different amounts of

shielding.

For flip-chip packaged devices, the standard does not cover how to calculate the

effects of localized alpha sources coming from the lead bumps. These geometrical

effects are very different than radiation from a uniform alpha source. In addition,

there are severe limitations on the speed the device can be tested if it is not in a

flip-chip package. So predicting real life SER rates from accelerated alpha SER

in flip-chip devices is less accurate than more conventional devices packaged in

moulded compounds.
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3.3 Accelerated High Energy Neutron SER Testing
(JESD89A Sect. 6 and JESD89-3A)

3.3.1 Terrestrial High Energy Neutron Flux and Spectra

(JESD89A Sect. 6.6.2.4)

Interaction of high-energy galactic cosmic rays with atomic nuclei in the earth’s

upper atmosphere lead to a cascade of every kind of fundamental particle. High

energy neutrons (>1 MeV) are the dominant particles that can (1) reach terrestrial

levels (0 to ~10,000 ft above sea level), (2) penetrate an IC package and (3) induce

electron-hole pair generation in sufficient quantities to upset a circuit.

The actual neutron flux depends on several factors:

– Geographical Location (latitude and longitude) due to the influence of the

earth’s magnetic fields on the charged particles that lead to the generation of

free neutrons.

– Altitude and Barometric Pressure because the earth’s atmosphere attenuates the

neutron flux.

– Solar Activity, which has an effect on the earth’s magnetic field.

The neutron flux is also highly energy dependent – f(E). The differential flux

is the neutron flux per unit of energy – df(E)/dE. JESD89A uses New York City as

Fig. 3.4 Differential high-energy neutron spectra at New York City. Data points are the reference

spectrum provided in Table A.2.A of JESD89A and the solid line is from (3.2). The dashed line

is from the original version of JESD89 (Aug. 2001). (Reprinted from JESD89A p 58 and [8]

#2004 IEEE)
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the reference neutron spectrum. Table A.2.A of JESD89A Annex A tabulates

reference spectrum from 1 MeV to 150 GeV. An analytic expression for the

differential flux at New York City is also provided to fit the reference spectrum.

dfNYCðEÞ

dE
¼ 1:006� 10�6e�0:35ðlnðEÞÞ2þ2:1451 lnðEÞ þ 1:011

� 10�3e�0:4106ðlnðEÞÞ2�0:667 lnðEÞ (3.2)

Figure 3.4 shows the outdoor differential high energy neutron spectra referenced

to New York City during a period of mid-level solar activity. Note that both axes of

the figure are logarithmic scale. The differential flux of low energy neutrons is

orders of magnitude higher than higher energy neutrons. This dominance of low

energy neutrons can be misleading because the higher energies (100 MeV–10 GeV)

are compressed in comparison to the lower energies (1–100 MeV) due to the

logarithmic nature of the plot. In addition, the higher energy neutrons generate

more charge when they strike a silicon nucleus, and therefore play a more signifi-

cant role in soft errors.

3.3.2 Scaling of Reference Spectrum to Other Locations

and Conditions (JESD89A Annex A.3)

The shape of the outdoor neutron spectra above a few MeV does not change

significantly as a function of barometric pressure, altitude, geomagnetic rigidity

or solar activity. This makes it straightforward to calculate the outdoor neutron flux

at any terrestrial location. Analytic equations are provided in JESD89A Annex A.3

to account for the effects of altitude, geomagnetic cutoff and solar activity. The

differential flux at any given location (dfloc(E)/dE) is

dflocðEÞ

dE
¼

dfNYC

dE
FAðdÞFBðRc; I; dÞ (3.3)

where d is the atmospheric depth, Rc is the vertical geomagnetic cutoff rigidity and I

is the relative count rate of a neutron monitor measuring solar activity. FA(d) is a

function describing the principle dependence on altitude and barometric pressure

and FB(R,I,d) is the function depending on geomagnetic location and solar activity.

The detailed dependence of FA and FB can be found in JESD89A Annex A.3. All of

these effects are captured in the flux calculation tool that can be found at http://

www.seutest.com/cgi-bin/FluxCalculator.cgi.

3.3.3 Test Facilities (JESD89A Sect. 6.2)

Three different types of facilities are appropriate for accelerated high energy

neutron testing: (1) spallation neutron sources, (2) quasi-mono-energetic neutron
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sources and (3) mono-energetic proton sources. Spallation neutron sources generate

neutrons over a wide spectrum similar to terrestrial neutrons. The advantage is that

one beam can act as an extremely intense source of neutrons with the correct energy

spectrum.

Since there are a limited number of these sources worldwide, mono-energetic

neutron and proton sources provide a viable alternative. Above 50 MeV, protons

interaction with matter is essentially the same as neutrons with the same energy.

Since proton beams are easier to produce and control, mono-energetic protons

>50 MeV can be substituted for neutrons. Use of quasi-mono-energetic neutron

sources requires unfolding techniques (i.e. deconvolving the SEU cross-section as a

function of energy) that are not firmly established in JESD89A at this point. An

added advantage of the mono-energetic and quasi-mono-energetic sources is that

they allow more insight into the parts of the neutron energy spectra that are

contributing to a devices soft error rate.

An up to date list of all the neutron and proton facilities can be found at http://

www.seutest.com/mwiki/index.php?title¼Facilities. As new facilities come on

line, they are added to the Web site.

3.3.4 Packaging/Sample Preparation and Secondary Ion

Effects (JESD89-3A Sect. 5.4 and Annex A)

Since high-energy neutrons pass through IC packages virtually unattenuated, no

special packaging is required. Devices should be tested in their production

packages. However, neutrons are more likely to be scattered by high Z materials

and generate secondary ions. With high Z materials, such as Cu used in heatsinks, it

is advisable to characterize the device soft error rate with and without the heatsink

(or with the heatsink in front of the device and behind the device) to quantify the

interaction of the neutron beam with package. Likewise, for flip-chip packages

using Pb bumps, the impact of neutron spallation will depend on whether the bumps

are in front or behind the beam. In real system applications, devices are likely to be

oriented in all directions. So it is useful to determine the impact of heatsink or Pb

bump orientation on soft error rates.

If a high-energy proton source is used, both flux attenuation and energy dissipa-

tion of the package must be considered. Annex A of JESD89-3A gives useful tables

of proton energy transfer and projected range in Al, Cu, Si, SiO2 and epoxy using

the SRIM program [6]. For example, a 90 MeV proton in epoxy (JESD89-3A

Table 3) has an energy loss of 1.42 MeV/mm and projected range of 35.33 mm.

A 3 mm thick epoxy layer will reduce the energy by 4.3 MeV (~5%), but the flux

attenuation will be insignificant because the thickness is much less than the range.

More detailed calculations of package effects can be determined using TRIM/SRIM

codes [6] available at http://www.srim.org/.

JESD89-3A Sect. 5.4 makes note that finned heatsinks should be avoided due to

unpredictable beam attenuation. In addition, secondary ions effects can be
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minimized by spacing multiple DUTs farther apart in the beamline to allow the flux

per unit area to decrease. If detailed calculations of neutron flux under various

shielding conditions are required, JESD89A refers to other sources for high-energy

radiation transport codes – Mcnpx [http://mcnpx.lanl.gov/], Fluka [http://pcfluka.

mi.infn.it] or Geant [http:wwwasd.web.cern.ch/wwasd/geant/].

3.3.5 Beam Characteristics (JESD89A Sect. 6.5)

The facility operating the neutron or proton beam must provide expertise on

several critical factors, such as the techniques to measure beam flux, temporal

stability, spatial uniformity and collimation, energy spectrum and stray species. In

addition, care must be taken that the devices are not in saturation due to high

upset rates. If beam attenuation is required, proper techniques and materials are

required to maintain the energy spectrum, spatial uniformity and spectral purity.

In addition, a golden unit (i.e. a device with a previously characterized soft error

rate) can be used to validate the results or determine if there are reproducibility

problems.

3.3.6 Soft Error Rate for Mono-energetic Beams

(JESD89A Sect. 6.6)

The nuclear interactions of protons and neutrons with the low Z materials in ICs

(primarily Si and O) are the same above 50 MeV. Therefore, mono-energetic

protons can be substituted for neutrons in determining the component of the soft

error cross-section above 50 MeV.

The energy dependent single event cross-section is defined as

sðEÞseu ¼
Nseu

fðEÞT
(3.4)

where Nseu is the number of events (not bits), f(E) is the flux at energy E (particles/

cm2) and T is the exposure time. The soft error rate due to high energy neutrons,

Rnhe is related to SEU cross-section, sseu(E), by the integral

Rnhe ¼

ðEmax

Emin

dfðEÞ

dE
sseuðEÞdE (3.5)

Emin is the cut-off energy below which no upsets occur. Emax is the maximum

neutron energy. The cross-section, sseu(E), drops off rapidly below 10 Mev and is

relatively flat above 200 MeV. Therefore, a sampling of sseu(E) between 10 and

200 MeV is sufficient to predict the soft error rate. JESD89A recommends a four-

parameter Weibull function to fit the cross-section:
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sweib�seu ¼ sp=n�l 1� e�
E�E0
Wð Þ

S
� �

(3.6)

where sp/n�l is the high-energy asymptotic proton or neutron cross-section (i.e.

>200 MeV), E0 is the cut-off energy below which the cross-section is zero,W is the

width parameter and S is the shape factor. In order to obtain a good fit of these four

parameters, a minimum of four different energies are recommended: (1) 14 MeV

mono-energetic neutron, (2) 50–60 MeV proton, (3) 90–100 MeV proton and (4)

>200 MeV proton. As the cut-off energy scales down with device technology,

lower mono-energetic neutron energies might be required in the future.

The soft error rate (3.5) can be approximated using a linear-log algorithm

because the terrestrial differential flux (df(E)/dE) drops by several orders of

magnitude from 10 MeV to 1 GeV:

Rnhe ¼
X

N�1

j¼1

ðFjþ1 � FjÞðEjþ1 � EjÞ

ln
Fjþ1

Fj

� � (3.7)

where Fj is defined as

Fj ¼ sseuðEjÞ
dfðEjÞ

dE
(3.8)

j ¼ 1 corresponds to the lowest energy point and j + 1 ¼ N is the highest (asymptotic)

energy point.

3.3.7 Soft Error Rate from Broad Spectrum Neutron Beam

(JESD89A 6.6.2.4)

The SEU cross-section of a device, snhe, determined by using a broad spectrum

neutron source is given by

snhe ¼
Nnhe

fspecT
(3.9)

where Nnhe is the number of events per device during the test, fspec is the JESD89A

specified (energy) integrated flux of neutrons (cm�2) with energies>10 MeV and T

is the duration of the test time (s). Note that this cross-section is not per unit energy

because it is already averaged over neutron energies. >10 MeV is selected as the

lower cut-off because neutrons below 10 MeV will not contribute to soft errors, and

so they should not be counted. If multiple devices are in the beam during the test,

then Nnhe is the total number of upsets divided by the number of devices. This

assumes all the devices that are uniformly radiated and the error rates from device to
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device are consistent. Note that this is an energy averaged cross-section since the

beam is a broad energy spectrum and it is not known which neutron energies

contribute to the upsets.

Using the integrated neutron flux>10MeV at the reference New York City level

of 3.6 � 10�3 cm�2 s�1 (13 cm�2 h�1), the soft error rate of a device due to high-

energy neutrons is

Rnhe ¼ 3:6� 10�3snhe ¼ 3:6� 10�3 Nnhe

fspecT
(3.10)

The simplicity of the broad spectrum technique compared to the mono-energetic

technique can be seen immediately by comparing (3.10) with (3.7). Equation (3.10) is

valid as long as the cut-off energy, E0, remains above 10 MeV. If scaling technology

below 90 nm causes E0 to drop below 10MeV, then corrections will need to be made

in the (energy) integration of terrestrial neutron flux.

3.3.8 Limitations and Strengths of the Accelerated

High-Energy Neutron Test

The strong point of accelerated high energy neutron testing is that it allows for

rapid device testing because neutron fluxes are 107–108 greater than terrestrial rates.

A single facility can be used for a broad-spectrum spallation source. However, the

contributions of the various segments of the neutron spectrum to the overall soft

error rate will not be known. For example, knowledge of the cut-off energy (E0)

trend with device scaling is important to understand for future product designs. But

E0, cannot be determined by this technique. In addition, if the high-energy spectrum

of the spallation source drops off more rapidly than the actual terrestrial neutron

spectrum, then this technique will underestimate the soft error rate.

In the case of mono-energetic techniques, several facilities might be required

order to obtain four different cross-sections. But this technique will give a better

understanding to the energy dependence of the soft error rate. Recent studies [7]

have shown relatively modest discrepancy (13–35%) between SER FIT calculated

using the Los Alamos ICE House neutron beam and mono-energetic proton beam

measurements and simulations. This agreement between techniques is actually

quite good and confirms the validity of the various accelerated neutron and proton

beam techniques.

Since the high-energy neutron spectrum is well understood as a function of

geographical location, results from accelerated high energy neutron testing

can be translated to any location in the world. However, these results are only

applicable to the high-energy neutron contribution to a device’s total soft error rate.

The major drawback to this technique is the availability of facilities throughout

the world.
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3.4 Accelerated Thermal Neutron SER Testing

3.4.1 Background (JESD89A Sect. 7.1)

Thermal neutrons (nth) are the result of high-energy neutron scattering and energy

loss along with nuclear decay processes. The enhanced cross-section of thermal

neutrons with 10B nuclei present in the IC or the IC package creates energetic Li and

He particles as well as gamma rays, which can lead to soft errors. The reaction is

nthþ10B!7Li 0:84MeVð Þ þ 4He 1:47MeVð Þ þ g 0:48MeVð Þ (3.11)

In cases where the composition of the materials used in the device are unknown

(i.e. the presence of 10B in borophosphosilicate glass or BPSG, polysilicon doping,

substrate doping, ion implantation, etc.), then a test should be done to assess the

impact of thermal neutrons on the soft error rate.

Less is known about the actual background flux of thermal neutrons than high-

energy neutrons and alpha particles due to the interaction of neutrons with the

surrounding environment. Materials present in the local environment will effect

both generation and decay of thermal neutrons. Therefore, it is not straightforward

to develop a thermal neutron reference flux level as is done for high-energy

neutrons. And an analytical expression for thermal neutron flux, like (3.2) for the

high-energy flux, is not possible. So the standard focuses on determining a relative

soft error sensitivity using accelerated thermal neutron sources.

Fig. 3.5 Low and high-energy neutron spectra at five different locations. Each spectrum has been

scaled to sea level and the cut-off of New York City. (Reprinted from JESD89A p 67 and [8]

# 2004 IEEE)
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3.4.2 Thermal Neutron Spectra (JESD89A Annex A.4)

Figure 3.5 shows the lethargy plot (energy � differential flux) of neutrons from

1 meV to 10 GeV. (Note that the range from 1 to 10,000 MeV is expanded in

Fig. 3.4). The peak between 10 and 100 MeV are the thermal neutrons. The large

variation in the thermal neutron flux is due to local environmental effects discussed in

Sect. 3.4.1.

3.4.3 Packaging/Sample Preparation (JESD89A Sect. 7.3)

Like high-energy neutrons, there is little interaction with the IC package materials.

Therefore, standard production packaging can be used for accelerated thermal

neutron testing. The only exception is large metal heatsinks that might scatter the

thermal neutron beam (JESD89A Sect. 7.7.5).

3.4.4 Thermal Neutron Sources: Selection, Calibration

and Shielding Effects (JESD89A Sect. 7.4)

High flux thermal neutrons can be obtained from nuclear reactors and particle

accelerators (JESD89A Sect. 7.4.1). An up to date listing of thermal neutron user

facilities can be found at http://www.seutest.com/mwiki/index.php?title¼Facili-

ties. Calibration of the flux and energy measurements of thermal neutrons generated

from an accelerator are critical because SER cross-sections can vary significantly

with small changes in neutron energy. Since low energy neutrons are easily

scattered, the concept of a well defined beam is not applicable – so the term

“beam” is used loosely. Flux calibration of thermal neutrons from a reactor might

already exist, but the impact of background gamma radiation on the device should

be taken into consideration. ASTM E262-03 Standard Method for Determining

Thermal Neutron Reaction and Fluence Rates by Radioactivation Techniques [9]

addresses the issue of thermal neutron flux measurement.

Thermal neutrons can be shielded by using materials with high thermal neutron

cross-sections – 10B, 113Cd and 157Gd. Table 7.1 of JESD89A gives examples

of thermal neutron attenuation for these three materials. Attenuation of orders of

magnitude can be obtained with films as thin as 1 mm.

3.4.5 SEU Cross-Section and SEU Rate (JESD89A Sect. 7.6.2)

The thermal neutron soft error averaged cross-section (snth) of a device is defined as

snth ¼
Nnth

faccT
(3.12)
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where Nnth is the number of errors induced by the accelerated thermal neutron

source, facc is the thermal neutron flux of the source in units of neutrons cm�2 s�1

averaged over the energy range of 0–20 eV and T is the test time duration (s�1). It is

assumed that the spectral distribution of the source is the same as the terrestrial

thermal spectrum shown in Fig. 3.5. This is a difficult assumption to validate

because the shape of the lower energy spectrum depends on how local materials

scatter neutrons. Relative flux at thermal energies (<0.4 eV) does not correlate well

with relative fluxes at higher energies as discussed in Sect. 3.4.1.

The thermal neutron soft error rate is given in JESD89A Sect. 7.6.2 as

Rnhe ¼ fnthsnth (3.13)

where fnth ¼ 1.8 � 10�3 cm�2 s�1 is defined as the integrated reference level

thermal neutron flux. This rate can be adjusted for specific locations and environ-

mental conditions discussed in JESD89 Sect. A.4. The flux of thermal neutrons can

be estimated within a factor of 2.3 by using this integrated reference value and

scaling it with the high-energy neutron flux given by (3.2). But the actual thermal

neutron flux in the field might differ from this estimation.

3.4.6 Limitations and Strengths of the Accelerated Thermal

Neutron Test

The strong point of accelerated thermal neutron testing is that it allows for rapid

determination if thermal neutrons play a role in the device soft error rate. If this is

the case, special techniques can be used to mitigate the problem (e.g. elimination of

BPSG films or isotopic replacement of 10B with 11B).

Measurement of thermal neutron cross-section (3.11) can be used to determine a

soft error rate referenced to a flux of 1.8 � 10�3 cm�2 s�1. However, the difficulty

is translating this to an actual field soft error rate at other locations. No quantitative

expression is known for the thermal neutron flux as it is for high-energy neutrons

(3.2) due to the interaction of the high-energy spectra with surrounding materials.

Measurement of the thermal neutron flux at the desired location is required to

translate the measured cross-section to an actual field use situation.

3.5 Real-Time (or Unaccelerated) Soft Error Testing

3.5.1 Goal of the Test Method

The term System Soft Error Rate (SSER) has also been used for real-time SER

testing. The intent of the test is to characterize the error rate of a device in its real

environment. This means that neutrons and alpha particles are present in quantities

comparable to what the device would see in actual operating conditions. The total

measure soft error rate (Rtotal) is given by
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Rtotal ¼ Ra þ Rnhe þ Rnth (3.14)

The alpha particle contribution is independent of environment and solely depen-

dent upon packaging materials and manufacturing processes. The high energy and

thermal neutron contributions are a function of the location and environment.

3.5.2 Large Sample Size and Long Test Period Required

Since the soft error rates can be quite low (100–10,000 FIT per chip for example),

measurement of a large number of devices over a long period of time are required.

A device showing a 1,000 FIT would have an error rate of 103 errors/109 h ¼ 10�6

error/h. It would take 1,000 devices running for 1,000 h to see just one error. So the

drawback of Real-Time Soft Error Testing becomes immediately obvious for

devices that show moderate to low soft error rates.

3.5.3 Separating the Alpha and Neutron Contributions to SER

Since alpha particle flux is independent of environment, underground testing can be

used to shield the devices from the cosmic-ray neutron background. In this case,

(3.14) simplifies to

Rtotal ¼ Ra (3.15)

So underground testing allows for the determination of the alpha contribution to

SER independent of neutron effects. The effects of thermal neutrons can be

eliminated by shielding the device with 10B, 113Cd or 157Gd. Equation (3.14) then

becomes

Rtotal ¼ Ra þ Rnhe (3.16)

Table 7.1 of JESD89A provides thermal neutron attenuation for several film

thicknesses. Once Ra and Rnhe are known, the thermal neutron contribution can

be determined by removing the shield material and measuring the total soft error

rate (3.14).

3.5.4 Altitude Testing to Increase Neutron SER Contribution

Since the high-energy neutron flux is dependent on altitude (JESD89A Annex A),

real-time SER testing can be done at high altitudes to increase error counting.

Thermal neutrons flux will also scale with the high-energy flux, but building effects

will add uncertainty to thermal neutron flux. Nevertheless, high-altitude testing has

proved to be useful to many IC vendors in speeding up test times and reducing

device count.
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3.5.5 Building Shielding Effects (JESD89 Annex A.5)

Sections 3.1 and 3.2 cover the neutron spectra outdoors. However, with the possible

exception of handheld mobile devices, almost all commercial IC applications

reside inside buildings and equipment chassis, which can partially shield neutrons.

Low-energy neutrons can be scattered and thermalized by these intervening mate-

rials, primarily concrete and steel. High-energy neutrons can be attenuated by

interactions with the nuclei in the shielding material, causing emission of neutrons

at lower energies. JESD89A Annex A.5 states that a 30 cm slab of concrete will

attenuate the high-energy (>10 MeV) portion of the spectra by a factor of 2.3,

but will only attenuate the total spectra by 1.6. However, recent studies [10]

indicate that neutrons in the 1–10 MeV range can be attenuated by a CPU/heat-

sink/motherboard stack by as much as 50–60%, whereas higher energy neutrons

(100 MeV–1 GeV) are only attenuated by 20%. Part of this discrepancy might be

due to the techniques used to measure the transmitted neutrons. If scattering takes

place, the integration angle of neutron detector is important in measuring the total

flux. Another factor could be the high Z materials (e.g. Cu and Pb) present in the

stack, causing distortion of the neutron spectra.

Building materials such as concrete floors will tend to scatter low energy

neutrons and attenuate high-energy (>10 MeV) neutron flux. An estimate of

attenuated high-energy flux is

f ¼ f0e
�2:7x (3.17)

where f0 is the unattenuated outdoor flux and x is the concrete thickness in meters.

For a concrete density of 2.3 g cm�3, the mass attenuation length of a concrete floor

is 85 g cm�2.

Large amounts of steel or other materials with high atomic number can distort

the neutron spectra. Incident high-energy neutrons can liberate several lower

energy neutrons, causing an actual increase in the low energy flux. Steel also

absorbs thermal neutron. So a room with a significant content of steel in the floor

and walls with have a significantly reduced thermal neutron flux. Several radiation

transport codes exist to more accurately model the effects of thick concrete walls

and other building materials (see Sect. 3.3.4).

3.5.6 Minimum FIT and Confidence Levels

(JESD89A Annex C)

It is expected that the number of errors counted in a real-time SER test will be

significantly less than any of the accelerated SER techniques. So quantifying the

statistical uncertainty of the test is important. Annex C of JESD89 gives guidelines

assuming a Poisson distribution

f ðtÞ ¼ Nle�Nlt (3.18)
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where l is the mean error rate, N is the number of devices in test and t is the

test time. The upper and lower limit of the soft error rate expressed in FIT is given

by

Rlower ¼
X2

1�ða=2Þ;2ðrþ1Þ

2NT
(3.19)

Rupper ¼
X2

a=2;2ðrþ1Þ

2NT
(3.20)

where X2 is the chisquare distribution, a is the confidence interval and r is the total

number of errors counted in the time T. Table 3.2 shows a hypothetical result of a

real-time soft error test using 1,000 components tested over a 10,000 h period for a

10% lower and 90% upper confidence limit (i.e. there is only a 10% probability

the true error rate is below Rlower and a 90% probability that it is below Rupper). With

an average error rate of 1 per 1,000 h from 1,000 devices, the table shows a

simplified situation, where an error occurs every 100 h. A real error count would

not be so predictable, but the purpose of Table 3.2 is to show how the upper and

lower estimates of the soft error rate converge to the mean as more errors are

accumulated.

3.5.7 Limitations and Strengths of the Real-Time Test

The primary strength of real-time SER testing is that it bears a well-defined

correlation with real life use of the devices, since all three radiation sources

(alpha, high energy and thermal neutrons) are present. However, translation of

the soft error rates from one geographical location to another is not possible unless

the contribution of each radiation source is known (Sect. 3.5.3). This requires

accelerated alpha and neutron testing (or real-time testing in an underground

Table 3.2 Example of estimate of soft error FIT at a 10% lower limit and 90% upper limit

T (h) Number of devices Errors (r) Ravg (FIT) Rlower (FIT) Rupper (FIT)

1,000 1,000 1 1,000 355 4,744

2,000 1,000 2 1,000 409 3,148

3,000 1,000 3 1,000 455 2,585

4,000 1,000 4 1,000 493 2,288

5,000 1,000 5 1,000 523 2,103

6,000 1,000 6 1,000 548 1,974

7,000 1,000 7 1,000 569 1,878

8,000 1,000 8 1,000 587 1,804

9,000 1,000 9 1,000 603 1,745

10,000 1,000 10 1,000 617 1,696
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location with no neutron flux in addition to two different locations with different

high energy and thermal neutron fluxes).

The primary drawback of real-time SER test is the amount of time and number of

devices required to obtain an accurate estimate of the soft error rate. Devices that

have low soft error rates require a larger number of devices over a longer period of

time. Since the results of a single test provide no insight as to the primary source of

soft errors – alpha particles, high-energy or thermal neutrons, it would be difficult to

determine the best approach needed to reduce the soft error rate of a device if the

specifications require it.

3.6 Conclusions

The purpose of the JESD89 series standards is to provide comprehensive proce-

dures to characterize the soft error rate of ICs in terrestrial environments. The

sources of these errors include radiation from alpha particles, high-energy neutrons

and thermal neutrons. JESD89A is the over-arching standard that covers all three

causes of soft errors and their origins in detail. JESD89-1A, JESD89-2A and

JESD89-3A target-specific soft error test techniques. Their intent is to provide

simplified test techniques that allow IC vendors (or IC consumers) with limited

resources the ability to partially characterize a devices soft error rate. In order to

characterize the complete soft error rate of an IC, the effects of alpha particles,

high-energy neutrons and thermal neutrons must be measured. A real-time soft

error test (JESD89A Sect. 4 and JESD89-1A) is sufficient to capture all three

sources assuming enough device hours can be accumulated to render a statistically

meaningful measurement. However, these results alone do not allow for the trans-

lation of the soft error rate to different locations and environments. An independent

measurement of each of the individual components of the soft error rate is required

to do this. Alpha particle SER is independent of location. High-energy neutron SER

scales with the location and JESD89A provides methods for this scaling (JESD89A

Annex A). Thermal neutron SER will also scale with location, but there is an added

uncertainty in flux due to environmental effects on generation and absorption (see

JESD89A Fig. A.4.1).

These standards are relatively new (the first revision of JESD89 was released by

JEDEC in August 2001) even though the history of soft errors in commercial

semiconductor devices spans over three decades. The standards have been lever-

aged off of considerable knowledge gained in the aerospace community and

semiconductor industry over the past several decades. The JESD89 standards are

now widely referenced in technical publications on soft error rates in commercial

ICs. It is safe to say that these standards will continue to undergo further revisions

as the knowledge base of the IC industry increases and devices scale into the

sub-100 nm region.
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Chapter 4

Gate Level Modeling and Simulation

Nadine Buard and Lorena Anghel

This chapter presents an overview of a methodology for analyzing the behavior of

combinational and sequential cells regarding “Single-Event Multiple-Transients”

(SEMT) caused by nuclear reactions induced by atmospheric neutrons. The meth-

odology uses a combination of Monte Carlo-based selection of nuclear reactions,

simulation of the carriers transport in the device, and SPICE simulation. The effects

of nuclear particles on the gates are monitored at the gate output by means of

transient duration, amplitude, and associated occurrence probability.

4.1 Introduction

Heavy ions and protons interactions have been considered in the past as one of the

most important challenges in space electronics as they induced an increased number

of application failures. In nowadays race for smaller device and wire silicon

technologies, transients induced by neutrons interactions with silicon are a serious

concern, not only for space and avionic applications [1, 2], but also for ground level

commercial ones [3, 4]. Transients may flip the content of latches, flip-flops and

SRAMmemory cells (we call this phenomenon SEU or Single Event Upset), or they

may provoke Single Event Transient (SET) or Single-Event Multiple-Transients

(SEMT) within combinational cells, which can be propagated through the combi-

national logic and be captured by sequential cells (i.e., latches or flip-flops).

Because of the statistical nature of the nuclear interactions, electrical attenuation,

and logic and architectural masking, the computation of Soft Error Rate (SER) is

still a challenge, especially in complex ICs. Early estimation of SER is mandatory

in order to propose efficient resilience techniques to protect vulnerable designs.
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An accurate system SER modeling of a chip or its components require an in-depth

knowledge of the constituent latches, memory arrays, and combinational logic with

respect to their associated sensitivity to soft errors. On the basis of the SER

computation are the transient pulse generation and propagation within a gate,

which can be accurately analyzed by combined Monte Carlo device simulations

and SPICE simulations.

Neutrons are well identified to be responsible of single events in many types of

electronic components. Though neutrons are not able to induce direct ionization,

their nuclear reactions with the die materials produce secondary particles (Fig. 4.1),

which induce charge deposition and subsequently charge collection and transient

currents.

Another source of single events is the alpha particles emitted by radioactive

impurities contained in packages and materials of the chip.

To be able to predict the sensitivity of memory arrays, sequential and logic gates

in a specific technology, different steps have to be taken into account (Figs. 4.2

and 4.3).

1. Nuclear interactions, perturbations-induced and associated probabilities:

Several methods were developed to compute the error rate induced by neutron or

proton environment in CMOS logic devices, either analytical or semi analytical,

or based on Monte Carlo selection of nuclear reactions. The computation code

consists in coupling the nuclear reaction databases (neutron or proton with

silicon) with a technological description, and then to calculate the transient

current pulse produced in the drain of a MOS transistor thanks to a diffusion–

collection model. Monte Carlo selection applied to nuclear reaction location and

types allows obtaining current pulses library associated to a given transistor and

its probabilities.

2. Selection of the transient currents able to disturb the output of the gate:

The next step is to select only the statistically relevant transient currents by using

some criteria. SPICE simulations at transistor level are used to inject each

current pulse from the current pulse library in the different sensitive zones of

the design and obtain a realistic transient behavior in terms of amplitude and

duration at the output of circuit with corresponding probabilities.

Each step of the simulation and the corresponding results is described in details

in the following paragraphs.

+ - + -

- + - +

Nuclear reaction

+-+-+-+-+-

drain

I(t) transient pulse

Carrier diffusion

Electron-hole 

generation

Fig. 4.1 Physical

mechanisms responsible of

transient pulses
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4.2 From Nuclear Interactions to Transient Current
Computation by Monte Carlo Selection of Nuclear
Reactions and Device Simulation

As described in the Introduction, neutrons in the atmosphere have a very wide

spectrum in energy, from MeV to GeV, and flux is isotropic in direction. Any of

these neutrons coming from a given direction is able to interact with any of the

atoms from the electronic devices, with different nuclear reactions possible, each of

them producing several types of ionizing ions in several directions.

Given the statistical properties of the phenomena, we need to compute the

probability to have a given type of event. Thus, Monte Carlo simulation is neces-

sary to compute SER (Fig. 4.4).

One possibility is to use nuclear interaction code like GEANT4, able to follow

the history of one particular particle among its interactions with matter, then,

compute the impact of such interactions on the cell under investigation.

Simpler methods have been proposed, combining nuclear codes and device

simulations or semiempirical coupling of nuclear physics and experimental data

[5–7], especially the famous BGR method proposed by Ziegler, Lanford, and

Normand. In 1998, Vial et al. [8] built a neutron–silicon nuclear database and in

Atomic specie
H, He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P

Incident neutron cha-

racteristics ?

Atmospheric 

spectrum 

Associated prob-

LET 

 ion energy 

Range

Ion energy 

Neutron energy 

Ion energy 

 Different neutron energies 

(meV to GeV) 

 n/Si interaction probability and 

all possible location of interaction 

 Many types of nuclear reaction 

possible, many types of ions pro-

duced in many directions, with many 

different properties  Secondary ions produced ?

Isotopes  

(seven in average)

Fig. 4.4 Schematic of the possible secondary ions created by atmospheric neutron spectrum in

Silicon
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2001, Hubert et al. [9] proposed a new approach based on nuclear database coupling

with occurrence criteria deduced from a Detailed Analysis of Secondary Ion Effect

(DASIE). This method was first dedicated to SEU investigations in SRAMmemory

cells. Since 2001, different DASIE methods were derived, especially one method

allowing Multiple Cell Upset (MCU) prediction, called SMC DASIE [10, 11],

dedicated to SRAM device simulation. Similar methods have been developed by

Ibe et al. from Hitachi [12] (SECIS, Self-consistent Integrated system for terrestrial

neutron soft error) and Murley et al. from IBM [13, 14] (SEMM, Soft-error Monte

Carlo modeling).

But the most efficient way to simulate such physics was shown to be Monte

Carlo selection of possible nuclear reactions in a nuclear database performed,

thanks to nuclear physics code. This selection, done only once, allows the reduction

computation time by several orders of magnitude. The last version of IBM software,

called SEMM2 is based on this principle, as well as the Transient Monte Carlo

Detailed Analysis of Secondary Ions Effects (TMC DASIE) software from EADS

whose results are used below for demonstration.

4.2.1 Database of Neutrons/Matter Nuclear Interactions

Nuclear reactions between neutron (or proton) and silicon nuclei can appear

anywhere in the volume. Thus, the position of the nuclear reaction has to be

Monte Carlo selected. A nuclear reaction is characterized by a probability which

depends on the nucleon energy.

For example, nuclear databases of neutron–silicon interactions were built by

using a Monte Carlo code, called MC-RED1.2 developed by F. Wrobel [15], for

neutrons in the 1–200 MeV energy range. This code treats nonelastic reactions with

the exciton model (pre-equilibrium step) and the Hauser–Feschbach formulation

(equilibrium step). Elastic reactions are treated with the ECIS code by inputting

an optical model from Recommended Input Parameters Library (RIPL). Nuclear

databases comprise:

l The detail of the nuclear reactions, that is, the atomic and mass number of the

secondary ions, their energies and directions
l The nuclear cross-section values relative to the elastic (selastic) and nonelastic

(snonelastic) reaction types

In silicon, secondary particles created by nuclear interactions can range from

H to P, including several isotopes, and several secondary ions are simultaneously

generated by a specific nuclear reaction. The number of secondary ions produced

depends (but not only) on the nucleon energy, for example, a 63 MeV neutron can

create 1–4 secondary ions when 14 MeV neutron creates only 1–2.

Depending on its energy and atomic and mass number, each of these ions has a

specific ionizing power in silicon, called Linear Energy Transfer (LET). Those

values are tabulated in “Ziegler” tables and can be accessed, thanks to the SRIM
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software. Large variations in the secondary ions properties generated by nuclear

reactions are observed, but one has to consider both heavy and light ions. For

example, for the same energy, a heavy secondary ion, which has a high LET and a

short range, is more likely to cause a transient pulse than a light one, whose LET is

smaller and range greater. But to observe a single event effect, the heavy ion

requires to be generated close to the sensitive region while the light ion can be

generated even farther with respect to the sensitive region. Silicon recoils provoke

transient close to their generation point, while light ions, particularly He and H, can

be created several tens or hundreds of micrometers away from the collection point

(Fig. 4.5).

Nuclear interactions database can be generated with other elements compared to

silicon. Indeed, other types of atoms than silicon are present inside electronic

components. One of the major ones is not only Oxygen (SiO2 for dielectrics and

STI), but also Tungsten for plots, Copper for contacts. . . The relative importance of

the different constituents was investigated by different authors, and depends on the

technology of the chip. Nuclear reactions with oxygen atoms are usually not

considered separately since they are very similar to the ones with silicon atoms.

4.2.2 Transient Currents Induced by Secondary Ions

Secondary ions created by nuclear reactions induce electron-hole pairs along their

track by Coulombian interactions with electrons [16].

Reaction n.2

Reaction n.3

Reaction n.4

Reaction n.5

Reaction n.6

Reaction n.7

ZA Energy
Angle

Reaction n.1

.

.

.

Reaction n.1E5

1 1 35.716197 0.5553239 -0.19152668 0.80927925

27 13 1.0527068 -0.72592564 0.21600247 0.65297389

28 14 0.32140786 0.16505668 0.86145195 0.48026745

1 1 4.6670238 -0.78903027 -0.31864736 0.52525717

1 1 3.1638424 0.60223712 -0.3086832 0.73622356

26 12 7.5125566e-002 0.75397569 -0.28900143 0.58991427

1 1 2.1810132 0.64681762 0.69866609 -0.30576568

27 13 1.6931279 -0.11748162 0.55400652 0.82418132

1 1 7.1216641 0.2470587 0.28025365 -0.92758821

26 13 5.8148175 -1.3500547e-002 -5.6288002e-002 0.99832329

1 1 38.842124 0.19809158 -0.34338335 0.91806732

28 13 0.29360033 -0.43679733 0.75716963 0.48569769

4 2 13.721004 0.46724656 -0.19308608 0.86278527

24 12 0.75840499 -0.561092 0.43116927 -0.70658958

4 2 9.6824548 0.58840911 -6.8708606e-003 0.80853418

23 11 0.78754302 -0.75813812 -0.62047341 -0.20059746

1 1 22.697227 0.20776 0.15732681 0.96544501

Fig. 4.5 Example of the nuclear database, reactions induced by neutrons of a given energy
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3D full-cell device simulations were performed with various track configura-

tions [17, 18]. These 3D device simulations show that transient current pulses are

due to the collection of charges by junctions. Those charges are the result of

ambipolar diffusion of the original charges created by the heavy ion tracks.

When the ion track is sufficiently far from the space charge zone of the drain

junction, the carriers generated in the tracks mainly move by diffusion. We consider

that recombination is negligible and that the space charge zone of the drain collects

all the carriers that cross it. Let us consider some simple geometry cases for which

the pure diffusion equation can be solved analytically.

@n

@t
¼ DDn (4.1)

where n is the density of electrons in the conduction band, obviously equal to the

hole density p andD the ambipolar diffusion constant. The simple case is the case of

spherical diffusion, i.e. electron-hole pairs deposited in a very small volume.

An ion track can be considered as a collection of a large number of punctual

carrier densities niD. The location of each punctual carrier density is characterized

by a distance ri from the drain. Each punctual carrier density is governed by a

spherical diffusion law allowing the calculation of the carriers density arriving in

the collection area. This carrier density is given by:

nðdx; dy; tÞ ¼
X

i

niD
e�

r
2
i

4Dt

ð4pDtÞ3=2
(4.2)

The current collected by the drain is calculated with the following formula:

IðtÞ ¼

ð ð

drain

qnðdx; dy; tÞvdxdy (4.3)

where q is the electrical charge (1.6E-19 C), dxdy the elementary surface, and v the

collection velocity. Figure 4.6 presents the I(t) transient calculation method.

The current pulse is delayed with respect to the impact time, and the delay depends

on the distance between the track and collecting drain (Fig. 4.7). The delayed arrival

of the current peak is basically due to the time needed for the excess carriers to reach

the collecting areas. Obviously, there is no delay when a ion shunts the electrodes and

the charge collection can begin immediately, resulting in a very short transient.

The drain currents induced by secondary ions and obtained by 3D device

simulation were compared with a diffusion collection model based on ambipolar

diffusion laws and good agreement was obtained [17]. As a conclusion, diffusion

phenomenon was clearly identified as the main mechanism in transient pulse

generation.
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4.2.3 Example: SEU and MCU Induced by High-Energy

Neutrons in SRAM

As an illustration, these methods can be used to compute the upset rate of SRAM

cells in order to explore the sensitivity trends of integrated technologies. In this

case, the upset criteria is linked to the quantity of charges in the current pulse.
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Fig. 4.7 Some currents (SET) obtained by TMC DASIE calculation applied to 350-nm

technology and for 63-MeV neutron
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Ion n. 2

Collection area dx
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n(dx,dy,t )

Nuclear interaction volume Vint

Fig. 4.6 Current pulse calculation method
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The Fig. 4.8 presents the library of pulse magnitude versus the pulse duration for

a given energy applied to the NMOS sensitive zone of a 130-nm SRAM. The

currents which induce a SEU are represented in black.

In Fig. 4.9 simulation results on SRAM are compared with published simulation

data [19] and proprietary experimental results. Input parameters (given in Table 4.1)

vary according to process scaling.

Flips events are the total number of bit flips cumulated for SEU and MCU

events.

Fig. 4.8 Pulse magnitude versus duration. In black, currents which induce an upset. Results

obtained on the NMOS sensitive zone of a 130-nm SRAM for 100-MeV neutrons

Fig. 4.9 Flips SER as a function of voltage induced in a SRAM by neutrons at ground level (in

gray, normalized data from [19]; in black, SMC DASIE data)
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4.3 Monte Carlo Simulation of SET and SEMT in Logic Gates

4.3.1 The Necessity to Take into Account Multiple Transient

Currents Induced by a Single Event

In an ASIC library, physical designs vary drastically for every cell in terms of

sensitive zone number, size, and geometry. As an example, an OAI22 (four input

OR AND INVERTED) gate is made of 8 transistors and 13 sensitive zones.

For comparison, a nuclear reaction can induce alpha particles (atomic number

Z ¼ 2). If this particle has 2 MeV energy, it would have a range of 7.5 mm.

Compared to OAI22 size, this particle would be able to induce charges simulta-

neously in all of the 13 sensitive zones (see Fig. 4.10). As technology is scaling

down, sensitive zones become closer, and so cells are more vulnerable to SEMT.

To be able to characterize the sensitivity of complex cells, it is necessary to

perform simulations for each gate at layout level, and to inject collected charges

simultaneously in every sensitive zone of the gate.

The charges induced by the nuclear reaction and collected by the different cell

sensitive zones can be computed by adequate Monte Carlo-based software that

combines the nuclear databases with the layout view and some technological

parameters.

Table 4.1 Reference values for technological parameters

Gate length (nm) Critical charge (fC) Critical LET (fC/mm) Drain length (mm)

350 12 25 1

250 7 16 0.65

180 4.5 13 0.5

130 3 11 0.3

90 2 8 0.15

Fig. 4.10 Generic 130 nm four input OR AND INVERTED gate
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4.3.2 Topological and Technological Description

The methodology used to extract sensitive zone geometries and organization is

described below.

Starting from the layout view of the cell, every drain (or source) is located. As

charges collected on zones tied to the power supply (VDD or GND) are evacuated

and will not provoke any effect, they are discarded from analysis. Figure 4.11 is an

example of NAND2 gate in 130-nm technology. From the layout view, six zones

are identified. Both PMOS sources are connected to the VDD rail, thanks to tungsten

plots, and the zone on the bottom left hand side is connected to the GND rail,

with the same kind of plot. Thus, there are three remaining zones, which have a

non-VDD or non-GND voltage that can be potentially disturbed by the collection of

additional charges.

The cell description obtained from layout view gives for each sensitive

zone the transistor type (NMOS or PMOS), its dimensions (lx, ly), as well as the

distance between the different sensitive zones. The depletion depth value, given by

the manufacturer, is also required to model the volume.

Sensitive zones are surrounded by a semiconductor layer and an insulator layer,

with almost the same depth. Sensitive zones are on the top of the semiconductor

layer (Si), and the insulator layer (SiO2) is above them (see Fig. 4.11). As particles

(especially light ones) created by a nuclear reaction can travel through several

micrometers, it is necessary to model an environment which is large enough:

12 � 12 � 12 mm in the following examples. To model accurately actual ICs

structures, a small insulator layer is considered between sensitive zones, which

represents shallow trench insulators (STI).

Inside SiO2, secondary ions can be created but their charges are trapped in

the insulator, and so they do not diffuse. It is true for insulator layer of SOI, and

for STI.

Fig. 4.11 Sensitive zone extraction of ATMEL 130-nm NAND2 gate and simulated environment

around sensitive zones
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4.3.3 Nuclear Reaction Example

The following example shows a nuclear reaction produced by a neutron with an

initial energy of 63 MeV. The case is an inelastic reaction occurring in the SiO2

layer. Three particles are created (see Fig. 4.12):

– One 0.3 MeV proton (Z ¼ 1, range ¼ 2.9 mm)

– One 4.8 MeV proton (Z ¼ 1, range ¼ 200 mm)

– One 2 MeV magnesium ion (Z ¼ 12, range ¼ 2.2 mm)

The recoil neutron is not taken into account because it has a very low probability

to induce a second nuclear reaction.

The first proton goes in the insulator part. On the other hand, the two other

particles cross the silicon through several micrometers and their carriers diffuse

inside, following a spherical diffusion law.

Figure 4.13 shows the collected current pulses on each of the three zones of

Fig. 4.12. As ionizing particle trajectories are closely located to zone 2, it is the first

one to collect charges (I2(t)). Zone 3 is very close to the reaction and has a larger

volume than zone 2, and so it also collects an important amount of charge, with a

small delay (I3(t)).

Zone 1 is too far from particle trajectories, and so it collects less charges, which

are delayed by several picoseconds after the others (I1(t)).

Since the zone 3 is larger than zone 2, it collects more charges during a longer

time (51fC and 41fC, respectively), even if current amplitude is smaller. Zone 1

collects only 11fC.

Fig. 4.12 Nuclear reaction example from 63-MeV neutron
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4.3.4 Transient Pulse Calculation

Transient pulse calculation is based on two different methods, depending on

whether or not ion tracks cross-sensitive zones. On the first case, carriers are

collected by drift phenomenon, and we consider that the space charge areas of

the sensitive zones collect all the carriers that cross it. On the other case, carriers

diffuse in the semiconductor material, and we use the spherical diffusion law [9],

considering that recombination phenomenon is negligible.

Ion tracks are modeled as a multitude of punctual carrier densities niD. The

location of each punctual carrier density is characterized by a distance ri from

the collected area. Each punctual carrier density is governed by a spherical diffu-

sion law allowing the calculation of the carrier density arriving in the collected area.

As discussed in Sect. 4.2.2, this carrier density is given by (4.4):

nðdx; dy; tÞ ¼
X

i

niD
e�

r
2
i

4Dt

ð4pDtÞ3=2

0

@

1

A (4.4)

where D is the diffusion coefficient (20 cm2/s).

Current collected for the different zones are calculated with these following

formulas (4.5):

I1ðtÞ ¼ qv
ÐÐ

x1; y1 nðdx; dy; tÞdxdyþ . . .þ
ÐÐ

y1; z1 nðdy; dz; tÞdydz
� �

I2ðtÞ ¼ qv
ÐÐ

x2; y2 nðdx; dy; tÞdxdyþ . . .þ
ÐÐ

y2; z2 nðdy; dz; tÞdydz
� �

I3ðtÞ ¼ qv
ÐÐ

x3; y3 nðdx; dy; tÞdxdyþ . . .þ
ÐÐ

y3; z3 nðdy; dz; tÞdydz
� �

(4.5)

Fig. 4.13 Collected current pulses for each zone from 63-MeV neutron reaction
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where q is the electrical charge (1.6E-19 C), dx, dy, and dz the elementary surfaces

of each sensitive zone sides, and v the collection velocity.

Only collected currents with at least 10 mA of amplitude are recorded. For each

zone, a library of several thousand current pulses, with the associate occurrence

probability can be generated.

Each transient is associated with an occurrence probability depending on the

nuclear reaction type and calculated by (4.6),

stransient ¼ snuclNatVint

nbtransient

nbnucl react
(4.6)

with Nat the atomic density in atoms/cm3, Vint the interaction volume in cm3, snucl
the elastic or nonelastic nuclear cross-section in cm2, nbtransient the number of

transients observed, and nbnulc.react the total number of nuclear reactions.

4.3.5 Current Pulse Statistics

The largest sensitive volumes are able to collect the maximum amount of charges.

Indeed, if the same calculation is done with the whole library, it shows that the

largest sensitive volume (zone 1) is most often the one which collect the maximum

charge. For the three sensitive zones of the NAND2 gate, Table 4.2 presents the

collected charge and the percentage of the associated volume to each sensitive zone.

The frequency distribution of collected charge on each zone shows that most of

them are below 3fC (Fig. 4.14). This histogram also shows that the maximum

amount of charge collected by the sensitive zones depends on their volume.

4.4 SPICE Analysis Methodology to Estimate SER Probability
for Sequential and Combinational Cells

The current pulse library generated for each specific gate is used during SPICE

simulation in order to inject the current pulses and determine the duration of the

corresponding voltage pulses produced at the output of the gate together with their

occurrence probabilities.

The simulation methodology is presented below (Fig. 4.15).

Table 4.2 Maximum charge collected on a 130-nm NAND2 gate

Zone # Maximum charge collected (%) Volume (%)

Zone 1 46 43

Zone 2 23 21

Zone 3 31 36
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For this analysis, (1) the cell SPICE netlist, (2) the sensitive zone list or the

injection list, and (3) optimized (collapsed) libraries of the transient pulses, have to

be considered.

By taking into account circuit layout characteristics, the different sensitive zones

are identified by TMC DASIE v1.1, and libraries of several thousand transient

pulses are generated. For a given design, transient currents may vary drastically in

terms of shape, duration, and amplitude. To obtain a faster evaluation, the total

number of currents considered for the injection campaign has to be reduced. By a

careful analysis of currents parameters and characteristics (shape, amplitude, and

duration), currents are classified in several classes and a Collapsed Current Library

is obtained.

Collapsed Mul-

tiple Transient 

Currents 

List of Circuit 

Sensitive Nodes  

Automated Mul-

tiple Current Injec-

tions 

Results Analysis 

Circuit SPICE  

Netlist  

Fig. 4.15 Multiple transient currents simulation

Fig. 4.14 Collected charge histogram obtained on the 130-nm NAND2 gate
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The Automated Multiple Current Injections module implements several mod-

ifications of the original SPICE netlist of the circuit consisting in automatically

adding current sources for the identified sensitive zones. In order to be closer to the

reality, the SPICE piecewise linear waveform (PWL) current format is used to

allow the injection of more realistic currents. The reason we use current injection

simulation by means of PWL files is not only the automation process and easiness

of fault injection simulation, but also computation accuracy. Indeed, so far,

researchers have considered that transient currents obey double exponential for-

mula [20], which is not always the case for currents induced by the secondary ions

of neutrons and protons reactions.

The Result Analysismodule processes and analyses the simulation results. In the

following, we detail each part of the analysis methodology.

4.4.1 Collapsed Transient Currents Analysis

Analyzing and collapsing multiple transient currents is very important, especially

when the list of transient currents generated by TMC DASIE has an important size,

which is generally the case for neutrons and protons interactions. Collapsing allows

drastic reduction of the simulation time, as it reduces drastically the number of

transient currents to inject and simulate. For performing transient currents classifica-

tion, several steps have to be considered: because we have to considermultiple current

pulses induced by a single event, we will have to treat n-tuples of current pulses.

Before creating classes for the n-tuples of currents, we first classify the individ-

ual current pulses. The first classification is based on the shape of the transient

currents. Examples of current shapes can be seen in Fig. 4.7. Several types of

current shapes are first defined. Then, for each type of shape, we consider different

characteristics of the transient current (amplitude, slope, and duration at 30% of the

amplitude). Using these criteria, we classify the pulses of a given type by specifying

the intervals of amplitude, slope, and duration of each class.

This step allows a fast and flexible customization of the equivalence classes.

Each class of transient currents will be represented by a single transient current.

Thus, we can reduce drastically the number of currents to be simulated. The user

will select the number of equivalence classes and will also select for each class the

three parameters of the equivalence criterion (by considering simulation time

versus accuracy tradeoffs). If the user selects a large number of classes and

attributes narrow intervals of values to each of the parameters defining a class, a

higher accuracy will be obtained at the cost of a higher simulation time. If a small

number of classes is selected and large intervals of values are set for each of the

parameters defining a class, the simulation time is reduced drastically at the cost of

lower accuracy. Usually, a middle solution is the most suitable.

Once the currents are individually classified, we further classify the current

n-tuples. The n-tuples that have their individual components belonging to the

same classes are grouped in the same n-tuple class.
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As an example, for the NAND2 gate presented in Fig. 4.11 with three sensitive

zones, the initial currents data base generated by DASIE tool contained 88,755

triplets of currents. Three types of current shapes were defined. Then, we created 16

current classes for each shape. Finally, we used these current classes to group the

n-tuples. Thanks to this process, the number of currents was reduced to 3,399,

which represents only 3.83% of the total number.

4.4.2 List of Sensitive Nodes

To illustrate the analysis, we have considered an example of a NAND2 gate.

Figure 4.16 shows the three sensitive zones for this gate at layout (a) and schematic

(b) levels identified by TMC DASIE tool.

Fault injection of multiple transient currents is performed in the identified

sensitive nodes. For example, if zone 1, zone 2, and zone 3 are concerned, for a

specific neutron of a given energy, the three currents obtained by TMC DASIE will

be injected simultaneously in the three sensitive zones, regardless their biasing

conditions. In the case of heavy ions, only blocked drains are considered as

sensitive nodes; therefore, it is important to identify circuit input vectors that will

block a drain and perform transient fault injection only for that specific input

combination. This is done by performing a normal simulation with all possible

input combinations and considering the voltage value of the gate of each transistor

to determine if its drain is blocked. Thus, for each input combination, the list of the

blocked drains is created.

As an example, for heavy ions sensitivity analysis, the blocked (thus sensitive)

zones for NAND2 gate are shown in the Table 4.3.

layout 

a b

corresponding schematic  

zone 1

zone 2 zone 3GND

VDDVDD

a1

a2

out
zone 3 

zone 2 

zone 1 

p0 p1

n3

n2

Fig. 4.16 Sensitive zones for the NAND2 gate
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Also, in this stage, we identify for each zone the type of the corresponding

transistor PMOS or NMOS to establish the sign of the current to be injected.

4.4.3 Automated Multiple Transient Currents Simulation

Thanks to the automated simulation, we could simulate thousands of n-tuple of

currents for all the possible input combinations of complex logic gates in a single

simulation session.

The simulation algorithm is presented below

for each analyzed design

add stimuli and fault sources in the netlist

for each n-tuple of currents

for each input combination

      multiple injection in sensitive zones

save outputs

Figure 4.17 presents the automated simulation process. Different stages of netlist

processing are performed before the effective simulations. First a golden simulation

is performed, where only the input stimuli are added. Then, current sources are

added. For each n-tuple current simulation, a new netlist is generated by replacing

in the golden netlist the template fault sources with the actual ones.

4.4.4 Results Analysis

For each fault injection, the voltage pulse at the output of the cell is stored in PWL

format, thus allowing an easy comparison between golden results and fault injection

simulation results.

During the comparison phase, the duration of the voltage pulse produced at the

cell output is measured at VDD/2 (see Fig. 4.18).

Table 4.3 Blocked sensitive zones for NAND2

Input combination Blocked zones

a1 a2

0 0 Zones 2 and 3

0 1 Zone 3

1 0 Zone 2

1 1 Zone 1
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In fact, the duration of transients is computed for each input combination and

each fault injection simulation.

4.4.5 Example of Application on an Inverter Case

For simplicity, the simulation mechanism for an inverter is shown. This cell

contains only two transistors. Thus, two sensitive zones will be considered as

injection points: the PMOS transistor drain and the NMOS transistor drain. For

this gate, there is one input (two input values) and one output.

The currents are injected only on the sensitive zones of the blocked transistors,

and so there are two possible injection simulations (see Fig. 4.19)

V

t 

‘1’ (correct

logic value)

VDD/2

‘0’ (incorrect

transient value)
t1 t2

Fig. 4.18 Transient fault duration measurement

Add stimuli

Gate SPICE netlist 

Simulation 

Simulation 

Compare 

Results 

Specify/Add current  

Add fault sources 

Golden SPICE 

netlist 

SPICE injection 

netlist 

Multiple transient 

currents database 

next current  

Golden results 

Injection results 

Fig. 4.17 Automated simulation methodology
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1. In ¼ “0”, injection in NMOS drain

2. In ¼ “1”, injection in PMOS drain

The transient faults are injected as current sources connected to each sensitive

zone as shown in Fig. 4.20, where na14e33_001 and pa14e34_149 are SPICE PWL

files describing the transient current.

a) normal operation

Out

‘1’ / ‘0’

In

‘0’ / ‘1’

Out ? In‘0’

a b

1. 

In‘1’ Out? 

2.

b) transient faults operation

Fig. 4.19 Inverter behavior situations

current file 

na14e33_001 

‘0’ ,’1’
?

current file  

pa14e34_149 

In Out 

Ip

In

p 

n 

Fig. 4.20 Transient fault implementation
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The simulation algorithm is detailed below: 

for each cell to analyze

for each transient current n-tuple

for each input combination

for each transistor P

{

inject Ip in the drain of the transistor

get outputs 

}

for each transistor N

{

inject In in the drain of the transistor

get outputs

}

launch a si-

mulation 

The whole simulation mechanism is the following 

time (s)  Out (A) 

136.15p  

0 1.2

na14e33_001 

u1 (n1 …) pmos_12 

u2 (n2 …) nmos_12 

… 

SPICE netlist of gate 

Add the stimuli
u1 (n1 …) pmos_12 

u2 (n2 …) nmos_12 

… 

golden netlist

golden results

time (s)  Out (A) 

136.15p   1.20177 

… 

Compare  

results
pa14e33_002 

Add fault 

sources

u1 (n1 …) pmos_12 

u2 (n2 …) nmos_12 

Ip (n2 0) isource file=“na14e33_001” 

In (n2 0) isource file=“pa14e33_001” 

… 

VI (I 0) vsource …

SPICE netlist with fault injection

Transient pulses files
simulation

injection results

simulation

0 1.2

4.4.6 Multiple Transient Fault Injection Results

In the following, we present some results obtained after simulating a few combina-

tional and sequential logic cells (90-nm technology) with multiple transient injec-

tions. The currents used for injection were produced by neutrons with energies
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ranging from 1 to 200 MeV. To compute the SER, we are interested only for the

cases where the voltage pulse produced at the output of the cell has amplitude

higher than VDD/2. We present here the results for several gates: two inverters

(INV0 and INV8), a NAND gate (NAND2), an XNOR gate, a more complex gate,

an eight input OAI (OAI8), and a D-latch. The characteristics of combinational

cells and the simulation results for these gates for 63-MeV neutrons reactions are

presented in Table 4.4.

In Table 4.4, “inputs,” “outputs,” “Transistor count,” and “sensitive zones” rows

show respectively the number of gate inputs, gate outputs, number of transistors in

the gate, and number of sensitive zones. The transient currents used for injection are

produced by neutrons having 63MeV. “Ratio of TF” row shows the ratio of injected

currents that produce output voltage pulses, which at VDD/2 have duration higher

than the shorter logic transition time of the cell library (in practice, when simulating

a netlist, we will consider the logic transition time of the fanout gates of the gate

under simulation). The last row provides the computed SER (or the cross-section).

To compute the SER, we multiply the ratio of injected currents that produce

transient faults (TF) by the occurrence probability of the transient currents com-

puted by TMC DASIE. For a NAND2 gate, only 3.86% of the transient currents

injected have produced transient faults at the output of the gate. For a simple

inverter this probability is higher. As a general rule, the ratio of currents that give

transient faults decreases as the cell complexity increases (see also Figs. 4.21 and

4.22 where results of Inverter, NAND, XOR, and AOI gates are compared).

Figure 4.23 presents the probability distributions of the transient pulse durations

occurring at the NAND gate output. The results are obtained by injection of multiple

transient currents produced by neutrons with energy ranging from 1 to 200 MeV.

We observe that very few pulses have duration larger than 150 ps, and this

happens for high energy neutrons, while most of the currents produced at the output

of the gate have durations in the range of (50–150 ps).

Another type of analysis concerns the impact of multiple transient currents on a

gate with respect to the input combinations. Considering as an example the multiple

transient currents produced by neutrons having an energy of 63 MeV, we can

observe that the input combination (a1, a2) ¼ “10” is the most sensitive one

(Table 4.5). This information is very important for system soft error analysis. The

same type of analysis can be realized for the ensemble of neutron energies consid-

ered (see Table 4.6, for atmospheric spectrum).

Table 4.4 Gate characteristics and simulation results for combinational cells and 63MeV neutron

reaction

Gate parameter INV0 NAND2 INV8 XNOR2 OAI8

Inputs 1 2 1 2 8

Outputs 1 1 1 1 1

Transistor count 2 4 2 10 12

Sensitive zones 2 3 4 12 12

Ratio of TF (%) 13.66 3.86 0.01 2.34 4.83

SER (cm2/cell) 4.03E-14 1.32E-14 1.23E-16 2.07E-14 8.24E-14
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4.5 Conclusion

In this chapter, we presented a methodology for estimating probability of failures in

combinational and sequential cells induced by neutrons and protons. Contrary to

previous approaches, we have considered the realistic case of charge sharing,

where charge can be collected by several sensitive nodes of a cell. It results in
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Fig. 4.23 Transient fault duration relative probability distribution for NAND2 gate

Table 4.5 Failure rate probability for different input combinations and currents produced by

63 MeV neutrons (NAND2)

a1 a2 Failure rate (%)

0 0 6.97E-14

0 1 7.61E-14

1 0 1E-13

1 1 6.31E-14

Table 4.6 Failure rate probability for different input combinations and all neutron energies

(1–200 MeV, atmospheric spectrum), for NAND2

a1 a2 Failure rate (%)

0 0 6.43E-13

0 1 6.98E-13

1 0 9.28E-13

1 1 5.70E-13
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multiple transient current pulses induced in a cell by a single event. The approach

includes Monte Carlo-based selection of nuclear reactions (neutrons or protons with

silicon), and physical simulation of the carriers transport in the device based on a

diffusion–collection model. An automated SPICE level simulation tool is presented

and used to simulate the obtained realistic current pulses, which in most complex

gates are multiple. Statistics can be obtained regarding the failure probability of

each gate, considering different parameters (particle energy, input combination,

duration of the transient pulse required for inducing a fault). The results can be

further exploited at logic and system levels for performing soft error vulnerability

analysis and soft-error mitigation.
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Chapter 5

Circuit and System Level Single-Event Effects
Modeling and Simulation

Dan Alexandrescu

This chapter covers the behavior of complex circuits and systems in the presence of

single-event effects, and the transformation of the related faults to errors and errors

to functional failures. In addition, an overview of practical methods and techniques

for single-event effects analysis is presented, attempting to help the reliability

engineers to cope with the single-event rate constraints of modern designs.

5.1 Introduction

The technological scaling allows building increasingly complex electronic devices

integrating more and more functions. This evolution is not free of problems. As

presented in the previous chapters, single-event effects (SEEs) represent the most

important cause of reliability reduction in nanometric CMOS [1].

Originally, SEE issues were limited to electronic systems deployed in radiation

hostile environments like space [2] and nuclear plants. Other applications were

affected by SEEs much later, starting with some safety critical systems, such as

implantable medical devices [3], and followed by a growing number of application

domains as nanometric scaling was accompanied with increasing sensitivity to

SEEs. As the failure in time (FIT) per chip increases (due to the combined effects

of device size and voltage level reduction, growing complexity, and increasing

integration levels), an increasing number of systems cannot meet reliability levels

acceptable for their target application unless special care is taken during their

design. Established solutions from space and military applications are available,

however at a high cost, which may drastically limit their suitability to commercial

applications.
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Multiple approaches are possible: a less sensitive process such as SOI, hardened

cells, circuit and system-error mitigation techniques, etc. Most of these solutions

come at some added costs; thus, some trade-offs must be found between error

handling capability and cost.

Memory devices are almost always the first circuits to be implemented in a new

process. Their highly regular structure makes them perfect candidates and a highly

effective benchmark for any technological evolution. In addition, there are some

efficient error-mitigation techniques such as Error Detecting and Correcting

(EDAC) codes enabling reduction of the effects of soft errors (SES) at low cost.

Thus, protecting memory blocks is an effective and affordable way to reduce the

soft-error sensitivity of a design.

In contrast, logic networks have a much more complex structure that allows the

SEEs to manifest in very diverse ways with varying levels of criticality. In opposi-

tion to soft errors in memories, where it is relatively easy to constraint errors to affect

a single bit per memory word, it is practically impossible to impose such constraints

in logic. Furthermore, implementing code prediction circuitry in logic is expensive.

Thus, protecting logic blocks is a difficult task and may introduce important penal-

ties in terms of area, speed, and power. To determine the best compromise between

protection level and costs, the first task that must be accomplished consists in

estimating the SEE sensitivity of the circuit. As soon as soft-error rate (SER) figures

are associated with the various blocks of the circuit, the designer can decide which

blocks need protection, and what mitigation techniques are most adapted.

However, evaluating the SER of a complex circuit with respect to SEEs is not an

easy task. Intrinsic (raw) cell sensitivity figures must be provided as a starting point.

This is a challenge by itself [4–6]. Then, the circuit description must be provided in

some format and used to determine its SER. Thus, the SER analysis should be able

to work with different circuit representations: architecture, block-level diagram, a

high-level Hardware Description Language, RTL, gate-level netlist, transistor, etc.

An accurate analysis requires working on a circuit description that is closest to

the final implementation. However, this is not always practical or possible. An SEE

expert will have to work closely with the design engineers in order to better

understand the behavior of the circuit and also to propose improvements and

error-mitigation techniques that have a better chance at implementation. Thus, it

will be most beneficial to use the same files, techniques, and tools as those used by

the design engineers. RTL files and a design simulation and validation environment

will be critical for evaluating the contribution of single-event upsets (SEU) to SER

at the SoC level. The contribution to the SER of single-event transients (SET)

cannot be done at this level. Structural gate-level netlist and timing information will

be needed in this case. Lastly, the usage of the circuit in the actual working

conditions must also be taken in account, since different workloads/applications

may behave differently in the presence of perturbations.

However, evaluating these effects is just the beginning of the process. Follow-

ing the analysis [7], the circuit will have to be protected versus SEEs. Several

techniques are possible and the SEE expert must accompany the designers in

devising the best protection methodology for the given circuit/application.
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Given the complexity of the circuit and the task at hand, SEE-specific EDA tools

can be very helpful. In addition, SEE constraints can be added very early in the

design flow to better integrate and respect them during the design phase. It should

be quite beneficial if the standard design tools are able to consider and optimize

SER performances in addition to “classic” figures such as speed, area, power

consumption, yield, etc. Adequate EDA tools and methodologies can help tremen-

dously to minimize the SEEs’ impact, to avoid unnecessary design iterations, and to

diminish the time-to-market.

Dealing with all these subjects, this chapter hopes to improve the SEE awareness

during the design flow and to offer practical solutions, helping both SER analysis

and improvement efforts. We will start by looking at the most straightforward

approach consisting of simulating SET and SEU faults in netlist and RTL circuits.

Improvements to this approach will be proposed aiming at reducing the analysis

time and/or a more complete coverage. Inspired by the simulation approach, we

will then present faster, static approaches that help the designer to analyze complex

ASICs in reduced time with much simplified setup.

5.2 Definition of Scope and Objectives

5.2.1 Single-Event Effects Models and Metrics

5.2.1.1 The Single-Event Transient

The SET is a direct consequence of an SEE. The production mechanism (Fig. 5.1a)

and its manifestation at the output of the affected cell (Fig. 5.1b) have been

presented extensively in the previous chapters and in the literature [8–15].

Fig. 5.1 Single-event transient – production and modeling. (a) Interaction of a charged particle

with the transistor. (b) SET: Analog transient and logic model
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In the context of this chapter, the most effective way to represent the SET

consists in transient logic fault that flips the logic value of the affected signal

during a time interval. This type of phenomenon appears with a very low probabil-

ity for a natural working environment. We call this probability as the SET SER and

can be expressed in FIT. One FIT corresponds to one SET during a billion working

hours. In memories, we usually compute the FIT for a megabit. In the following, we

consider the SET FIT for 220 logic cells (a MegaCell).1

During the analysis, we only consider transient pulses that have sufficient voltage

amplitude to switch the transistors of the fan-out cell(s) (VSET > VTHRESHOLD).

Additionally, the transient pulse duration (PW – pulse width) should be large

enough to be able to propagate at least through a few levels of combinational

cells. A necessary but not sufficient condition is that the PW is larger than the delays

of the following cells. These conditions are equivalent to considering the initial

phenomenon and applying an electrical derating (EDR) factor. In this chapter, we

consider that all SETs are purely logical (already derated). In this context, the

model that we can use is a short logical glitch (transient fault), with a known

duration – pulse width (Fig. 5.1b).

However, not all events are equal; the SET PWs may vary considerably from one

event to the other. The electrical environment (neighborhood) of the affected cell

has a very strong impact. Thus, several factors may have to be considered:

l The state of the cell. The actual electrical configuration at the impact time

determines the sensitive volumes of the various transistors of the cell. Accord-

ingly, the charge deposited by the particle will cause a perturbation or not, with

varying intensity.
l Supply voltage. A lower supply voltage will make the cell more sensitive to

SEEs and vice versa.
l The capacitive load on the charge collection node. The collection of the depos-

ited charge is dependent on the capacitance seen at the collection site, which is

generally dependent on the cell output load. Furthermore, the capacitive load of

the cell output has an impact on the voltage pulse produced on this output for a

given current pulse generated on the charge collection node(s).
l Threshold voltages of the downstream cell. The actual shape of the analog SET

pulse has specific slopes for the two signal transitions. The analog transients may

be quite short and of lesser amplitude than normal signal transitions. The cells

connected at the affected output will switch according to their own threshold

1We have improperly adopted the notion of SER and FIT (Chap. 3) to this context. SER actually

means Soft Error Rate and should measure the number of genuine soft errors, that is, errors whose

effects on the circuit operation are only determined by the function of the circuit. But an SET is a

transient perturbation of a combinational circuit node, whose effect on the circuit depends on its

occurrence time and its duration, as well as the structural implementation (net-list) and the

temporal characteristics of the circuit. This is also the case for an SEU affecting a sequential

element, as its impact on the circuit operation depends on the time of its occurrence and on the

temporal characteristics of the circuit. Remember also that FIT means failure in time, while an

SET or an SEU does not necessarily induce a failure.
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voltage for the input affected by the transient. One satisfactory approximation is

that the threshold voltage is considered equal across all cells (Vdd/2).
l Short/feeble analog transient propagation. On the output of the downstream

cell, we may witness either a definite and clear logic transient with fast slopes

(regeneration effect) or a further attenuating transient that will quickly disappear

during the propagation through the logic combinational network. These effects

are difficult to analyze using a strict logic analysis or simulation. The most

precise solution consists in using analog (SPICE) simulation for evaluating the

effects of the SET on the neighborhood of the affected cell, until we can clearly

observe the normalization or the masking of the fault. One practical approach is

to consider that transient pulses with long enough duration are propagated

correctly, and the usual timing analysis or simulation methods are satisfactory

for dealing with them (Logic SET). Shorter pulses will also be taken into

account, but any corresponding results should be seen as worst case. What

exactly are the criteria for deciding whether the pulse is long enough or not

depends on the actual cell implementation. One reasonable assumption is to

consider the threshold value as three times the delay of the basic inverter. Of

course, this assumption will be optimistic for some nodes and pessimistic for

other nodes, but will give good results after the optimistic and pessimistic cases

are averaged over a large number of transient simulations.

Beyond the above simplifications, a more accurate approach will use SPICE

simulations to determine the voltage pulses created at the output of each cell for a

selected set of output loads. These pulses are stored in a pulse library. During circuit

simulation, the pulse produced on the output of a cell for the actual load is

computed from the stored pulses using a linear extrapolation. Similarly, we can

simulate the propagation, through each cell of a library, of a few pulses having

selected durations, and store the results in a pulse-propagation library. Then, during

circuit simulation, the propagation of an actual pulse through a cell will be extra-

polated from this library using linear approximation.

Regardless of the approach used for evaluating the SET SER of a combinational

cell, the SET SER of the cell for a given output load is described by a table

containing the FIT values for different PWs and for each state (i.e., input value)

of the cell. An example of an SET SER characterization table for an inverter (�1

90 nm inverter), a given load (7 pF), working in a natural environment (atmospheric

neutrons, sea level) is shown below:

PW (ps) 10 20 50 100 150 200 250 300 350

SER (FITs) 200 175 100 50 10 – – – –

In ¼ 1 Out ¼ 0

SER (FITs) 300 250 200 150 100 50 25 10 –

In ¼ 0 Out ¼ 1

SET type Analog Analog Logic Logic Logic Logic Logic Logic –

The distribution of the transient pulses can be obtained by radiation experiments

over specific structures able to measure the PWs [14, 16], or by using dedicated

tools. One possibility is to use TCAD simulation, but the task is intractable as each
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simulation at the TCAD level may take several hours, while there are a huge

number of particle types, energies, particle interaction sites, and particle trajectories

to simulate. Fast tools working with simpler physical models than TCAD, such

as TMC-DASIE presented in Chap. 4, or using preliminary TCAD simulation to

create transient pulse models taking into account detailed process information such

as TFIT [17, 18], are more suitable for this task.

5.2.1.2 The Single-Event Upset

The production mechanism of an SEU in a sequential cell consists in the propaga-

tion of an SET affecting a node of the cell through the cell’s memorization loop

[19, 20]. As a consequence of this propagation, the stored value is flipped and kept

in the loop until the next latching event (e.g., the latching edge of the clock). It can

be safely modeled as a logic fault since the output of the cell changes firmly.

Latches (Fig. 5.2a) are transparent for one phase of the clock and closed for the

opposite phase. During the transparent phase (Fig. 5.2b), their behavior is purely

combinational and an SEU is not possible. The cell is still affected by SETs that can

be propagated to the next stage of sequential elements, and the reasoning from

the previous paragraph is applicable. During the closed (memorization) state

(Fig. 5.2c), the latch memorization loop is sensitive to an SEU. In this case, the

only parameter of interests is the SEU SER (FIT) for the different states of the cell.

The most common implementation of flip-flop (Fig. 5.3a) consists of two latches

(master and slave).

During one phase of the clock, the master latch is closed (Fig. 5.3b) and the slave

is transparent, propagating the value of the master to the output. In the case of

standard flip-flops, the memorizing is triggered by the positive edge of the clock and

the master stores the value during the first clock phase. An SEU may affect the

master latch and the slave will immediately propagate the value to the flip-flop

output. Since in the second phase the slave will latch the incorrect value, the cell

output will continue to be affected until the next clock activation. The most

important parameter is the event rate (SER) or the sensitivity of the master latch.

In the case where the SEU affects the slave latch (only possible during the

second phase of the clock), the fault will obviously propagate to the output. The

Fig. 5.2 Latch configurations. (a) Equivalent latch structure. (b) Open (transparent) latch. (c)
Closed (memorizing) latch
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most important parameter is again the event rate (SER) of the slave latch.

Please note that the sensitivities of the master and the slave latches may be different.

Also, as the SEU in the master occurs earlier, its impact may be much more critical

from a timing perspective than that of the later arriving SEU in the slave latch.

These considerations will be discussed in a following sub-chapter.

Single-Event Transients may also affect latches and flip-flops during the trans-

parent phase of the master latch or the slave latch of a flip-flop, or directly in the

output stages. Their effects may be analyzed similarly to an SET in a combinational

cell. We can discard the SET that appears in the memorizing phase and does not

cause any SEU, since these effects are very weak and will not propagate as transients

through the combinational circuit. One possible simplification that can be reason-

ably applied for current technologies (65–130 nm) is that the SET on the output of a

sequential cell is strongly de-rated from an electrical and timing perspective. Thus,

the SEU contribution on the SER of the sequential cell is much more important than

the SET contribution.

SER data for sequential cells can be obtained by means of radiation tests or

dedicated tools such as TMC-DASIE [21] or TFIT [17, 18].

5.2.1.3 The Single Bit Upset, Multiple Cell Upset, and Multiple Bit Upset
in Memory Blocks

Single bit upsets (SBUs) are the single bit flips induced in a memory by SEEs

[22–33]. The interaction of an ionizing particle with the memory is obviously

dependent on the type of the memory. As an example, the production mechanism

of the SBU in an SRAM device (Fig. 5.4a) is similar to the SEU mechanism

described earlier for sequential cells. For the SRAM cell, this mechanism is

illustrated in Fig. 5.4b. For DRAMs, the production mechanism is totally different.

The deposited charge is injected in the storage capacitor, and may flip the value

stored in the capacitor. The manifestation of the SBU is a single faulty bit in the data

read from the affected address.

A single particle or several secondary particles produced by the interaction of an

energetic neutron or proton with the devices’ atoms may affect several neighborhood

Fig. 5.3 Flip-Flop configurations. (a) Equivalent Flip-Flop structure with the master and slave

latches. (b) Master is memorizing, slave is transparent
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cells at the same time, causing a multiple cell upset (MCU) [34, 35]. Thus, several

bits of the memory will be affected by the fault. This is an increasingly critical

problem for latest processes (45 and 32 nm at the time of writing this book). As an

example, the Fig. 5.5 shows the relative distribution of MCUs versus SBUs for a

45-nm process. The external manifestation of the MCU, as seen from the read port,

depends on the internal organization of the memory. If physically neighborhood

cells belong to the same logical word, then MBUs are produced. Most “sanely”

designed memories have a sparse topology: bits belonging to the same logical word

are not placed physically close. However, MCUs with large multiplicity are still

possible, although with a low probability. Thus, even if the memory is designed

with a carefully selected cell interleaving, MBUs are still possible, although with a

very low FIT.

The MCU/MBU analysis is particularly interesting when considering the even-

tual error protection mechanisms. SBUs are corrected by the most common error-

mitigation technique – the Single Error Correcting, Double Error Detecting

(SECDED) codes, such as the Hamming code. Thus, the SBUs in SECDED

protected memories will not need particular care. However, the MBUs will not be

corrected by this code, causing further errors in the circuit. The actual response of

the circuit will have to be analyzed.

In any case, the model that we can use when dealing with consequences of an

SBU or a MBU is a logic value flip on one or more bits in the value read from the

memory, as in the following example:

Fault type Correct data (binary/hex) Faulty data (binary/hex)

0�000002 0b01010101/0�55 0�01110101/0�65

0�000003 0b01010101/0�55 0�00110101/0�35

The occurrence probability of an SBU/MBU can be expressed in FITs per

megabit. One FIT is one SBU/MBU during a billion working hours for a megabit

of memory ¼ 220 (1,048,576) bits.

Fig. 5.4 SEEs on a Standard 6T Memory. (a) Equivalent structure of a 6T SRAM. (b) The effect
of an SEE on the SRAM cell
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SER figures for SBUs, MCUs, and MBUs can be obtained by means of radiation

tests or dedicated tools such as TMC-DASIE [21] or TFIT [17, 18].

5.2.1.4 The Single-Event Functional Interrupt for Memories

The single event functional interrupts (SEFIs) are a class of failures where the

addressing/decoding/control logic of a memory is affected by a single event [36].

The manifestations can be very varied: address ranges replying with incorrect data,

semi-permanent stuck bits on data read from the memory, device not responding/

not outputting data, etc. Thus, the exact error model to be used should be chosen

according to the type of behavior we want to simulate.

5.2.1.5 The Soft Error

Both transients (SETs) and upsets (SEUs) are the direct results of SEEs. As an SEE

may appear at any time during the clock period, a first condition that determines the

effect of the SET/SEU on the circuit operation concerns the relationship between

the instant it reaches a sequential element and the clock edges. Indeed, the transient

pulse has a short lifetime: if it is not latched in a sequential cell or a memory

element, it will disappear from the circuit without traces. For example, an SET

arriving on the data input of a flip-flop should affect this input during the latching

window of the flip-flop (the time interval during which a transient should reach

the input of a sequential cell in order to be latched). It corresponds to the setup and

the hold time. According to the delay between the node of its occurrence and the

sequential elements, an upset should occur early enough in the clock period in order

to reach these elements before the end of this window and late enough in order to

reach them after the beginning of this window.

In logic circuits, we will define as soft error (SE) an error produced by an SET

affecting a combinational cell or an SEU affecting a sequential cell, and latched by

the next stage of sequential/memory cells. Thus, an SET or an SEU is transformed
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Fig. 5.5 Relative SBU/MCU distributions for a 45-nm process (averaged from iRoC technologies

radiation testing results over a large number of memories)
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into an SE after it is propagated through the subsequent combinational logic and is

latched by the subsequent stage of sequential/memory cells. It may seem paradoxi-

cal that an SEU occurring in a sequential cell is not considered as an SE, though it is

latched by this element. So, a clarification is needed. In fact, we consider as SE, an

error induced by an SEE and whose impact on the system operation does not depend

on the temporal characteristics of the fault (duration or instant of its occurrence), on

the temporal characteristics of the circuit, or on the structural characteristics such as

the netlist implementation of a logic function, but only on circuit functionality. In

this regard, an SEU in a sequential cell cannot be considered as an SE, because an

SEU can affect a sequential element at any time during the clock cycle and may or

may not affect the subsequent sequential elements according to its time of occur-

rence and the temporal characteristics of the circuit. From the above definition, an

important difference between SEUs and SEs is that the later can be analyzed by a

high level simulation, while this is not the case for the former.

SBUs/MBUS in memories can be considered as SEs, as they do not disappear at

the end of the current clock cycle whatever their instant of occurrence and the

temporal or structural characteristics of the design. Furthermore, there is a signifi-

cant difference between errors affecting the logic and errors affecting the mem-

ories. SEs induced by SETs and SEUs modify the state of one or more sequential

elements (latches or flip-flops) at the end of the clock cycle in which they occur. In

the subsequent clock cycles, they will be propagated through the next circuit stages

(or eventually masked). On the contrary, SBUs/MBUs will remain silent in the

memory and will not be propagated through the logic until the next read of the

affected memory cells. Also, they will never affect the computation if after their

occurrence the first operation over the affected cells is a write.

5.2.2 The Functional Failure

We can provide clear and quite precise definitions for SEEs, SETs, SEUs, and SEs,

whereas the Functional Failure is somewhat more difficult to define. The name

suggests that the circuit or device failed to fill the function for which it was

designed. However, there is a lot of wiggling room for how to qualify/define the

consequence of the failure on the final application.

The failure mode definition should be left to whoever is competent or has the

responsibility to perform this task. For each failure mode, the behavior of the circuit

should be clearly described, allowing the SE expert to evaluate whether SEEs can

cause each of them and determine the corresponding probabilities for a given working

environment.

5.2.2.1 The Soft Error Rate

The SER represents the occurrence probability/rate of SE or SE-induced functional

failures in a given working environment.
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The SER can be expressed in FITs. One FIT is one SE or functional failure for a

billion working hours.

As the SER (measured in FIT) can be given per bit; per megabit of memory; per

MegaCell of logic gates; or per whole chip, board, or system, to avoid confusion, it

is important to specify each time the amount of circuit for which a FIT figure is

given. The FIT can also be given separately for SEs induced by SETs, SBUs,

MBUs, MCUs, SEFIs, etc., or for a combination of them. This also has to be clearly

indicated. Similarly it has to be indicated whether we provide an SER induced by

alpha particles, by neutrons, etc., or by a combination of different kinds of particles.

For a complete circuit, the SER usually describes the occurrence probabilities of

functional failures induced by all possible SEs affecting its constituent blocks

(which is different from the sum of the FIT of these blocks). This can be extended

to a whole board or system.

5.2.3 Circuit Representation and Abstraction Levels

5.2.3.1 Introduction

As stated earlier, SER analysis is most effective when used as an integral part of the

design flow, using standard design files and tools. Of course, the primary concern

should be the adequacy of any type of available information for the specific task of

evaluating the effects of SEEs on complex circuits. Thus, the circuit representation

could be subject to the following considerations:

l The description should be similar to the final implementation of the circuit from

a structural perspective. The kind of SEEs affecting a cell is strongly dependent

on the cell’s structure. In addition, the characteristics of SETs are affected by the

neighborhood (fan-out) of the source cell, since the characteristics of the tran-

sient pulse are affected by the capacity load of the cell’s output.
l Timing information (delays of cells) is useful for evaluating the transient pulse

deformation of SETs, induced during their propagation by unequal 0-to-1 and

1-to-0 intrinsic cell delay. In addition, timing information (path delay/slack,

setup/hold time) is useful for analyzing the propagation of SETs/SEUs; deter-

mining the instant they reach the sequential elements and the width of the

opportunity window (the time interval during which a transient should occur

on a circuit node in order to be captured by a subsequent sequential cell); and

calculating their latching probability (i.e., the probability that the SET/SEU is

captured by a sequential cell and thus transformed into an SE).
l Higher level circuit representations (such as register transfer level (RTL)/block/

architecture) can be still useful for determining the SER figures, but the estima-

tion will be intrinsically less precise when the abstraction level is further away

from the final implementation. Still, this kind of representation is critical for
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SER budgetary purposes very early in the design flow and can also be used for

deciding on mitigation measures.

5.2.3.2 Gate-Level Netlist Circuit Description

Based on these considerations, a gate-level netlist accompanied by timing informa-

tion (e.g. a SDF – Standard Delay Format file) is well adapted to the purpose of

performing SER analysis and can be obtained fairly easily at the later stages of the

design flow. The netlist can be generated easily by a synthesis tool, thus allowing an

early analysis. Timing information is available with increasing accuracy at different

instants during the design flow: post-synthesis, post-layout, etc. Fast prototyping

platforms or Physically Knowledgeable Synthesis may be helpful in providing

earlier timing and more accurate timing information.

Specific SER improvements at the gate-level netlist/backend are possible: vari-

ous In-Place-Optimization methods, implementing critical nodes in the netlist by

using cells with low SER or hardened equivalents, TMR on selected cells/blocks,

etc. These modifications are performed on the post-synthesis circuit, and may be

considered as low level as the function of the circuit is not modified.

5.2.3.3 RTL/HLS Circuit Description

SER analysis may be required earlier in the design flow. The designer of a specific

block may want to quickly assess the sensitivity of his block as soon as the (usually

high-level) description is ready. Thus, waiting for a long logic synthesis flow that

integrates contributions from other designers and teams is not always possible.

Even if a partial synthesis is possible, this particular designer feels that he is most

comfortable in working with his tools-of-trade: High-Level Synthesis (HLS), RTL/

SystemC/SystemVerilog, functional simulators, etc. In addition, he may want to

look for clever higher level error-mitigation techniques applied on the input circuit

description. These improvements will then be carried over the lower level descrip-

tions to the final implementation.

The quality of the SER analysis of a high-level circuit description is tributary to

several factors:

Circuit structural information: It is quite important to understand howwell the final

implementation can be derived from the input description. Since the SEEs are strongly

physical in nature, the event rate is strongly dependent on the actual cell types that will

be used in the circuit. There are some types of representationswhere it ismore difficult

to retrieve structural data (SystemC) and others more appropriate for this purpose.

An RTL approach can be quite interesting, since memory elements (memory

blocks and sequential cells) in the RTL description can be found relatively

unchanged in the final implementation of the circuit. After some efforts, the

contribution of the SEUs to the sensitivity of the circuit may be taken in account
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with a satisfactory level of accuracy. The difficulty consists in identifying the RTL

signals that will later be synthesized as memory elements. Syntactical rules or

generic synthesis may help. Also important is the exact final cell type since

different flip-flops or latches may have different SEU sensitivities. A manual,

preliminary mapping can be performed in order to approximate the final circuit

implementation. In addition, since most of the development effort is made at this

level, any existing Design Validation (DV) environments can be successfully used

to simulate the effect of the faults in the circuit. Such tools enable simulating a

whole SoC (though for a moderate number of fault injections) and provide func-

tional derating figures, which is not possible at lower description levels.

Fault model: The fault representation should match the physical phenomenon

and be relevant to the chosen abstraction level. For example, for a RTL design, an

SEU can be modeled as a logic fault (inversion of a logic value) that is applied on

the affected register output until the next latching clock edge. However, SETs

cannot be accurately described in this context since no timing information (delay)

or combinational cell description is available at the RTL.

5.2.3.4 Architecture/Block-Level Circuit Description

Very early in the design flow, the system architect proposes a system architecture

that will answer the initial specifications and constraints. In this architecture, the

function and interface of the main blocks of the circuit/system are already identi-

fied. In addition, blocks also receive preliminary attributes that specify functional,

performance, and reliability parameters. As the SE sensitivity has an impact on

the reliability of the circuit, system architects started to associate SER targets to the

various blocks of the design (budgeting) in order to respect an overall SER

constraint. These constraints will be later propagated to the design team. The next

step consists in checking the requirements against very preliminary SER figures.

This initial assessment is based on assumptions and estimations about the structure

and function of the circuit, previous experience, and ultimately some guesswork.

If the actual SER estimations are much worse than the requirements, the system

architect has the choice of letting the design team to deal with the problem (at an

unknown cost and efficiency) or establish a set of recommendations concerning the

error-mitigation techniques that will be applied on specific blocks or circuit fea-

tures. As an example, memory blocks can be protected using ECC with a well-

known area overhead and protection efficiency. This way, the system architect can

revise the SER figures and include the effects of the error mitigation, both bad (area/

time overheads) and good (decreased sensitivity).

5.2.3.5 Overview

Figure 5.6 illustrates how the SER analysis can be included in a typical design flow,

by integrating SER requirements as a part of the overall reliability picture of the

circuit:
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5.3 SEE Analysis Methods and Concepts

5.3.1 Quantitative SEE Analysis

Single-Event Effects are a part of the overall reliability of the system/circuit.

Indeed, SEEs as other types of faults may cause temporary or permanent loss of

Circuit Architecture/Block RTL/HLS 
Gate-Level Netlist + 

Timing 

Main interest SER Budgeting 
SER Assessment for 
mitigation purposes 

Accurate SER As-
sessment 

Design Flow 

SEE 
Analysis 
Accuracy 

SET 

SEU 

SE 

Very Early Medium Late 

Poor/NA Poor/NA Very Good 

Satisfactory Good Very Good 

Good Very Good Very Good 

Positive aspects 

Budgeting 
Ability to set SER tar-

gets 
Error mitigation strate-

gy 
Implementation tech/lib 
may be decided early 

wrt SER 

Adequate circuit repre-
sentation 

Functional SER assess-
ment and improvements 
Early cell/library choic-

es 
Fast simulation, existing 

DV env. 

Best accuracy 
SER of the actual im-

plementation 
Specific SER optimiza-

tions 

Negative aspects 

Very approximate, final 
circuit may be widely 

different, 
No functional SER 

Final circuit implem. 
not known 

Poor SET handling 
No timing considera-

tions 

Some SER improve-
ments may arrive too 

late/unpractical 
Netlist & Timing files 
may be cumbersome to 
use (long simulations, 

big SDF files, etc) 

Fig. 5.6 Soft error rate analysis during the design flow
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function, or data corruption. “Classical” reliability notions may be applied and used

by the reliability engineer to model and integrate the effects of the SEEs on the

behavior of the circuit [5, 37].

The Mean Time Between Failures (MTBF) can be directly computed from the

functional SER (FIT) rate. The Mean Time To Repair (MTTR) can be computed by

computing the downtime associated with each type of SEE-induced failure. As an

example, depending on the implementation, the ECC correction of an SBU has

either no downtime (since most ECC implementations always detect and correct the

error transparently in the same clock cycle) or one clock cycle delay (see Chap. 8).

However, a MBU detected but not corrected by the ECC may have a stronger

impact on the circuit, requiring a time-expensive higher level error handling

protocol. Thus, the downtime associated with the different SEE-induced failures

can be computed as for any other type of failures, and their effects can be evaluated

quantitatively. For performing this computation, the SEE analysis can be broken

down in to a series of steps, echoing the concepts from standard design flows. At

each step, the user should employ the appropriate tools and concepts. More

importantly, various steps could be tackled by expert users and the SER knowledge

and expertise freely shared and exchanged during the SER analysis flow (Fig. 5.7).

The first step is to consider the physical phenomenon and the behavior of

individual cells. This is a costly analysis and requires dedicated experts as well as

time-consuming and costly test circuit design and radiation test experiments or

dedicated tools [14, 16–18]. However, this is required only once for a given

standard cell library. The outcome of this step is a rate/probability (SER) of

occurrence of SET and SEU for combinational, sequential, and memory cells for

a given environment. For the completeness sake, PW distributions should be

provided for the transients. This is where the concept of “Electrical Derating”

(EDR) is used to determine the percentage of SETs that will not have any impact on

the circuit due to the low amplitude or duration of the transient pulse produced on

the output of the affected cell. The results of the SER characterization of the cells

will be associated with the standard cell library and will be used by the design

engineers to evaluate the sensitivity of their design and to improve the circuit.

Thus, the second step is to consider the fault propagation from the output of the

affected cell through the paths of the circuit [38, 39]. We must remember that an

SEE may arrive at any instant during the clock period. The position of this instant

Fig. 5.7 Practical steps to evaluate single event effects on complex devices
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with respect to the clock edge will determine if the fault will reach some sequential

cells within their latching window and will be transformed into an error. This

phenomenon is taken into account by the “Temporal Derating.” Also, the fault

may or may not be propagated from a logical perspective, as any other signal. This

effect is taken into account by the “Logic Derating” [40]. This step determines the

probability that the initial SEU or SET is propagated through the combinational

logic and is captured by the sequential elements of the pipe-line stage in which it

occurs, to produce an SE. Thus, this step analyzes the impact of the SEU or SET

only during the clock cycle in which it occurs. A further analysis is required to

determine the effects of the SE as it propagates through the whole design during the

subsequent clock cycles.

Thus, the third step deals with the higher level consequences of the SE. The

errors may be discarded (dropped) resulting in no effect on the circuit, may stay in

the circuit (latent) without causing any observable failures during the considered

time interval, or may cause failures with various degrees of criticality. The percent-

age of errors that become failures is represented by the “Functional Derating.”

We would like to stress the difference between the “initial clock cycle” derating

(electrical, temporal, and logic) and “many clock cycle” derating (functional

derating). The propagation and latching of the fault in the initial clock cycle depend

strongly on process, standard cell library, and circuit netlist implementation. Thus,

starting from the same RTL/HLS/higher level representation, several implementa-

tions of the circuit are possible, with different inherent behavior in the presence of

faults. However, the functional derating is invariable across different circuit imple-

mentations as long as the RTL description remains unchanged. Thus, electrical,

temporal, and logic derating requires a circuit representation that matches the final

implementation, although the functional derating accepts a higher level description.

In the following, we will present these derating factors and practical ways to

compute them and take them in account according to the circuit purpose, imple-

mentation, and application.

5.3.2 Electrical Derating

As presented in Sect. 5.2.3, an SET can be modeled at the gate level as an inversion

of a logic value during a specified duration. The duration should be chosen in such a

way that the simulation of the fault will cause the same effects in the circuit as when

a more precise simulation method (e.g. analog) is used. This may not be always

possible since the circuit and signal propagation models that are available at the

gate level may not be accurate enough for the simulation of short transient pulses

with possible small amplitudes and durations. A more precise approach consists in

using analog (SPICE) simulations to evaluate the SET propagation through the

combinational cell network until we can safely decide whether the SET has

disappeared or conclusively become wide and strong enough to be fully evaluated

using only logic simulation.
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Thus, EDR consists in evaluating the effective logic pulse that has the same

effects in the circuit as the original analog pulse. The following aspects will have to

be evaluated:

l Capacitive load on the output of the affected cell. The transient current pulse(s)

resulting by the charge collection on the cell node(s) struck by the particle

produces a voltage pulse on the cell output. This pulse can be computed by

injecting the current pulse in the struck node(s) and simulating the cell at SPICE

level. For a given current pulse, the characteristics of the voltage pulse occurring

on the cell output depend on the cell load. Note also that the cell load may also

have an impact on the transient current pulse. Indeed, if the struck node is

isolated from the output load by a buffer, this load will not affect the charge

collection and thus the transient current pulse. However, if no such buffer exists

in the cell, the cell load has a strong impact on the current pulse. Tools such as

TFIT [17, 18].

– Practical approach: when characterizing the combinational cells at the physi-

cal level, consider several values for the load (e.g. �1,�2,�3,�4,�8,�16)

and store the SET PW values in the SER database. Then during SET

simulations, analyze the actual load on the cell and use linear extrapolation

to determine the SET PW value from the stored data.
l SET Slopes wrt. the linear behavior of the downstream cells. In most cases, the

SET on the output of the cell is not formatted (i.e., regenerated by an output

buffer). Generally, the rising edge of the voltage pulse corresponds to a fast

rising current pulse and will be faster than the falling edge, which corresponds to

a slow falling current pulse. Since the slow slope will cause the downstream cell

to work in the linear analog zone, there is no guarantee of linearization either.

After the propagation through a few combinational cells, the SET will become

either weaker and disappear or be formatted and become close to rectangular

pulse.

– Practical approach: simulate the transformation of a few slopes by each cell

and store the result in the SER database. During circuit simulation, use the

database to extrapolate the result for other slopes. Also, consider that the SET

becomes rectangular after propagation through three logic levels to stop the

extrapolations after the third level.
l SET Amplitude wrt. the threshold voltages of the downstream cells. The

pulse seen by the cells connected to the output of the struck cell (fan-out

cells) will be dependent on the relationship between the pulse amplitude and

the input threshold voltages of these cells. Additionally, the non-rectangular

SET shape will exacerbate the problem since the slow slopes will drive the

following cells to switch at different instants according to their threshold

voltages. This is not a very critical phenomenon and can be safely ignored

most of the times.

– Practical approach: considering that all cells have an identical Vthreshold ¼
Vdd/2 gives a good approximation. This rule also eliminates the consideration
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of the impact of the pulse slope. It simplifies the computations significantly,

while giving results of sufficient accuracy most of the time.

Single-Event Upsets affecting an inner memorization loop of a sequential cell do

not require considering cell load, since these cells have an output buffer that isolates

the memorization loop from the load. Thus, the SEU SER value will not depend on

the fan-out of the sequential cell. Memory cells exhibit the same behavior when in

storage (non-access) mode.

5.3.3 Temporal Derating

Temporal or timing derating deals with two different phenomena related to tempo-

ral aspects. The first consists in evaluating the effects of the SEE fault (SEU or SET)

with respect to its occurrence time within the clock cycle. The second aspect only

concerns SETs and treats the relevance of the pulse duration versus the clock

period.

5.3.3.1 Temporal Derating for Single-Event Upsets

D-type flip-flops which constitute the backbone of most ASICs are usually con-

trolled by a clock signal. The latching edge of the clock will trigger the flip-flop to

memorize the value present in its data input. The data on the output of the flip-flop

will change a short time afterwards and will act as an input to the combinational

network. The outputs of the combinational network will be connected to another

stage of flip-flops and so on. Combinational logic is sandwiched between stages of

sequential logic. The clock period is larger than the delay of the combinational

network placed between two stages of sequential logic, in order, to provide suffi-

cient time to the circuit for computing new outputs in response to new inputs

applied at each clock cycle. Some constraints such as the (tsetup, thold) parameters

also have to be fulfilled for safe operations. Essentially, the data applied to the input

of a flip-flop must be stable during a latching window determined by tsetup and thold.

An SEU may occur at any instant in the clock period. Following the event, the

value stored in the flip-flop and applied to its output changes This value will be

propagated through the logic network, as any other signal, and will reach the data

input of the subsequent flip-flops at some time later. If the erroneous value arrives

before the latching window of these flip-flops, the error will be present on the data

input during the whole latching window, and will cause an error. The condition for

this to happen is that the SEU occurs in the struck flip-flop early enough in the clock

period (Fig. 5.8a). The opportunity window can be computed as a function of the

delay (or slack) of the activated path between the source (struck) flip-flop and

the destination flip-flops and the (tsetup, thold) parameters. If the SEU occurs after the
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opportunity window (Fig. 5.8b), then it will not have enough time to propagate

through the logic network and to affect the destination flip-flops in time.

Particle strikes are random events totally uncorrelated with the clock period.

Thus an SEU affecting a flip-flop can occur at any time in the clock period

with a uniform distribution probability. The instant of its occurrence within the

clock cycle together with the delay of the paths through which the induced error is

propagated determines the instant of arrival of the error to the next stage flip-flops.

This arrival instant determines the probability for the error to be captured by a flip-

flop. Let tSEU be the instant of occurrence of an SEU within the clock period

[0, TCLK] and delay be the delay of the activated path. Then, the probability that

the induced error is captured by the flip-flop placed at the end of this path is

given by

pi ¼
1 0 � tSEU � TCLK � tsetup � delay

Unknown TCLK � tsetup � delay< tSEU< TCLK þ thold � delay

0 TCLK � delayþ thold � tSEU

8

<

:

(5.1)

For 0 � tSEU � TCLK � delay � tsetup the probability is 1, since in this case the

erroneous value is present on the flip-flop input all along the setup and the hold

time, while for TCLK – delay þ thold � tSEU, the probability is 0 because the correct

value is present on the flip-flop input all along the setup and the hold time.

In the other cases (TCLK � tsetup � delay < tSEU < TCLK þ thold � delay), the

erroneous value is present during a part of the setup and the hold time, and

the correct value is present for the remaining part. In these cases, the behavior

of the flip-flop is undetermined and the probability for latching the erroneous value

Fig. 5.8 Propagation of an SEU from the affected cell through the logic combinational network
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is set as unknown. However, this probability starts from the value 1 for tSEU ¼
TCLK � tsetup � delay (when the whole latching window is covered), and progres-

sively decreases to 0 for tSEU ¼ TCLK þ thold � delay (when there is no overlap

between the transient pulse and the latching window). We can consider with a good

accuracy that this decrease is linear along the time interval [(TCLK � tsetup �
delay), (TCLK þ thold � delay)].2 In this case, the cumulative probability that an

SEU occurring during this interval is latched by the next stage flip-flop will be equal

to 0.5. Thanks to this assumption and from (1) we easily obtain the following value

for the TDR factor:

SEU TemporalDerating ¼

Z TCLK

0

pi ¼ 1�
delayþ

tsetup

2
�
thold

2
TCLK

(5.2)

We observe a notable difference between temporal derating (TDR) of master and

slave stages from a flip-flop.

If the delay of the activated paths from the output of the affected flip-flop to the

input of the following flip-flop is larger than the half-period of the clock cycle, only

errors which occur quite early in the clock cycle can be captured in the following

flip-flop. Thus, the upsets must occur in the master latch. Any upsets in the slave

will have to be discarded, since they arrive too late to cause any damage.

If the activated paths are short, then some errors from the slave (when active) and

all errors from the master (when active) will be latched in the downstream flip-flop.

Representing the temporal derating for single-event upsets (TDR-SEU)

(Fig. 5.9), for given values of the delay parameter and of thold � tsetup, shows that

the TDR-SEU is very important (the circuit is more sensitive) for lower working

frequencies. When the circuit works close to the rated maximum speed, the slack of

the considered activated path is very low, thus the opportunity window becomes

very narrow. The flip-flop is sensitive during a short interval of time, thus dimin-

ishing the probability of the occurrence of an SEU at this short time interval. These

results have to be considered carefully as they apply in operation under different

clock frequencies of the same circuit. If a circuit is designed to operate at high speed

(e.g., by increasing the number of pipe-line stages), the impact of the clock

frequency will not be as significant as shown in Fig. 5.8, since in this case not

only the clock period but the circuit delays will also be shorter.

2This means that the latching probability of a pulse will be given by cw/(tsetup þ thold), where cw

is the part of the latching window covered by the pulse. This assumption may not be accurate

enough for individual values of cw. When cw/(tsetup þ thold) is close to 0, the latching probability

of the pulse will be lower than cw/(tsetup þ thold), while for cw/(tsetup þ thold) close to 1, the

latching probability will be larger than cw/(tsetup þ thold). However, when considering the cumu-

lative probability for the interval 0 < cw/(tsetup þ thold) < 1, these differences will cancel one

another at a large extent, resulting in a result of good accuracy.
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5.3.3.2 Temporal Derating for Single-Event Transients

When the current pulse produced in a node of a sequential cell is strong enough to

flip the state of a cell (creating an SEU), the output of the cell is permanently

modified until the end of the clock cycle where a new value is latched. On the

contrary, SETs affecting a combinational cell manifest as short pulses on the output

of the affected cell. Thus, they can disappear before the end of the clock cycle.

From the site of the occurrence of the SET, the transient pulse will propagate

through the subsequent cells of the combinational logic until it reaches the inputs of

some sequential cells (usually flip-flops). If the transient fault is memorized in the

sequential cell, it will cause an error; otherwise, it will disappear without any

effects. In order to be memorized, the fault must be present on the inputs of the

sequential cells during their latching window. For a flip-flop, this window corre-

sponds to the interval (tsetup, thold). The presence of the fault during this time interval

is a function of its occurrence instant, of the delay of the propagation path, and of

the width/waveform of the transient pulse at its arrival at the flip-flop input. This

width/waveform depends on the initial SET PW/waveform and on its deformation

as it propagates through the circuit cells. Since the arrival instant is random, we

have used the notion of TDR for SETs in order to cope with this complexity [41].

Let’s consider the case of a transient fault reaching the data input of a flip-flop

(Fig. 5.10–5.12). Similar to the TDR-SEU, we will compute the probability that the

error is latched in the flip-flop. For a given duration PWSET of the transient pulse, this

probability is determined by the instant of the arrival of the fault with respect to an

opportunity window [�tsetup – PWSET; thold], defined around the latching edge tLE of

the clock (i.e., tLE is considered as instant 0). In addition to the arrival time, the

duration of the transient pulse is an important parameter as it will determine if the

pulse could cover fully or only partially the latching window (tsetup, thold). Thus, if

PWSET < tsetup þ thold, the transient pulse will never fully cover the latching win-

dow. In this case, according to its arrival time, the pulse will partially cover the

latching window, giving an unknown latching probability; or it will not overlap with

it, giving a latching probability equal to 0. On the contrary, if PWSET � tsetup þ
thold, then, according to its arrival time, the pulse will fully cover the latching

window, giving a latching probability equal to 1; it will partially cover the latching

window, giving an unknown latching probability; or it will not at all overlap with it,

giving a latching probability equal to 0. The detailed results are reported in (5.3).

Fig. 5.9 TDR-SEU versus

working frequency for a flip-

flop (1.72-ns activated path)
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piðtÞ ¼

1 thold � PW � t � �tsetup

Unknown �tsetup � PW � t<thold � PW;�tsetup<t � thold

0 �tsetup � PW<t; t>thold

8

>

<

>

:

If PW � tsetup þ thold

piðtÞ ¼
Unknown �tsetup � PW � t<thold

0 �tsetup � PW<t; t>thold

�

If PW<tsetup þ thold (5.3)

As in the case of SEUs, we will consider that the latching probability of a pulse

will be proportional to the fraction of the latching window it covers.3 Thanks to this

assumption, we can cope with the unknown probability values in (5.3). Then, we

easily obtain the following value for the TDR factor:

SET TemporalDerating ¼

Z

TCLK

0

piðtÞdt ¼
PW

TCLK
(5.4)
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3For PWSET < tsetup þ thold, the cancellation of the variances from this assumption may not work

as well as was discussed in the case of SEUs.
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In these formulas, we have used the PW term as the effective SET pulse width

seen by the input of the flip-flop. However, the SET is deformed during the

propagation through the logic network. The basic mechanisms that will modify

the duration of the fault are various intrinsic cell delays, re-convergence of different

paths on a common node, and progressive pulse shortening and filtering during the

propagation through the logic paths.

The differences between the delays of a cell for different signal transition are

able to lengthen or shorten the SET when the transient propagates through the cell

(e.g. Fig. 5.13).

The re-convergent paths are very critical for the transient fault since the same

fault may emerge in a single convergence node at several instants by propagating

through different paths with various delays (Fig. 5.14). This way, the original SET

becomes a burst of pulses with much larger total duration and, therefore, much

higher probability to be memorized by some sequential cells.

Another phenomenon that affects the propagation of SETs consists in the

progressive attenuation of the PW. Any SET shorter than the delay of a cell will

be attenuated, or completely eliminated SETs which are not considerably larger

than the intrinsic cell delays will propagate through few cells but they will be

inevitably attenuated and then eliminated few stages later (Figs. 5.14 and 5.15).

Only long enough SETs (a few times the cell delays) will survive through the

propagation in the combinational network.

All these aspects should be considered during the TDR computation for SETs. It

may require an important effort to be spent by the reliability engineer that wants to

take in account the contribution of the SET to the global SER of the circuit. As a

much more friendly method, we recommend using (5.4) as a simplified way to

compute the SET TDR quickly.

By applying (5.4), we obtain the graphs from the Fig. 5.16 for SET TDR. The

interpretation of these graphs shows that the TDR is higher (thus the circuit is more

sensitive) for longer SET PWs (more energetic particles or a more aggressive

working environment) or higher working frequencies (i.e., the SET becomes

increasingly important with regard to ever-decreasing clock periods).

5.3.4 Logic Derating

Logic derating (LDR) consists in evaluating the propagation of the logic fault from

the output of the affected cell to the inputs of a sequential/memory cell. According

Fig. 5.13 SET propagation through a 130-nm inverter
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to the state of the circuit (the values of the signals and cell outputs), the propagation

of the fault is subject to logic blocking. As an example, an AND gate with a “low”

input will block any faults on the other inputs.

The evaluation of the LDR is a common and well-researched subject in the

reliability community [42–44]. Many research papers, methodologies, and tools are

available to help the designer in evaluating the LDR of circuits. Standard simulators

(compiler-driven, table-driven, or event-driven) are perfectly able to inject and

simulate faults in very complex circuits and designs. Specific fault simulation

Fig. 5.16 TDR-SET evolution as a function of PW and working frequency. TDR versus SET

pulse width (ps) for a 500-MHz working frequency. TDR versus working frequency (MHz) for a

SET pulse width of 200 ps
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Fig. 5.14 Fault re-convergence and aggravation
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Fig. 5.15 Progressive SET attenuation
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techniques such as Parallel Fault Simulation, Single Pattern Parallel Fault Propa-

gation, Parallel Pattern Single Fault Propagation, and others have been devised

for an optimized fault propagation evaluation [45–56]. Other techniques that do not

require simulation, such as static LDR based on a probabilistic approach, are also

available. In the Sect. 5.5, we will enumerate some of the actual techniques and

tools that can be used for LDR.

5.3.5 Functional Derating

As mentioned earlier, the purpose of functional derating (FDR) is to evaluate

whether the SE has any observable impact on the operation of the circuit, board,

or system. It takes into account the actual usage of the circuit and the function of the

system. Also, the criteria for deciding whether or not a failure has occurred should

be set by someone knowledgeable about the architecture and the function of the

system. Thus, FDR requires a strong collaboration between the reliability engineer

(the SER expert) and the system engineers.

Additionally, the failure classification implies some degree of subjectivity, since

a criticality parameter can also be added to the fault classes. Moreover, the usage of

the circuit will have a strong impact on the failure analysis, since different modes/

applications will exhibit different SE-related failures. If the considered circuit has a

clearly stated function, then the FDR will have to consider this specific function and

the effect of any relevant function-specific parameters. However, for general-

purpose circuits such as CPUs, the possible application field is quite large, thus

rendering the FDR analysis much more complex.

As stated, the FDR computation takes into account the propagation of the SE

during several clock cycles. The goal is to evaluate whether (a) the SE has been

silently discarded (dropped), without any further impact on the operation of the

circuit, (b) it remains in the circuit in a latent state without any observable

degradation of the operation (or function for instance in the case of FPGAs) of

the circuit or worst, or (c) it produced a functional failure.

The evaluation of the functional impacts of faults and errors in microelectronic

circuits and systems has also been extensively researched. In the following sub-

chapter, we will present practical techniques and tools to help the reliability

engineer in performing FDR analysis.

5.4 Dynamic SEE Analysis

5.4.1 Overview

This chapter presents simulation-based approaches for evaluating the behavior of

the circuit in the presence of SEEs. The SEE simulation task can benefit from the

rich existing know-how from the Design for Test (DFT) field. Fault simulation
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techniques are widely researched and used in the electronic design practice. One of

the most important challenges consists in dealing with the large number of faults to

be taken into account. This is especially true for SETs that may arrive at any instant

during the activity of the circuit and have widely different PWs.

The approach that is generally used for fault simulation is also useful for SEE

simulation:

l First, the context is specified: the circuit representation and the fault model are

defined according to the availability of circuit design files, validation environ-

ment, and simulation tools, as discussed earlier.
l Then, we proceed at the construction of the fault universe containing an enumer-

ation of the faults that are considered for simulation. The circuit description is

explored in order to find the circuit features that can be used with the appropriate

fault models. A gate-level netlist will contain combinational cells that exhibit

SETs on their outputs and sequential cells for which the SEU model is applied.

A RTL description will produce a list of signals that will be later synthesized as

flip-flops for which the SEU model is again applied. Large circuits will produce

huge numbers of faults, thus some reduction (compaction) is required to diminish

the number of faults to be simulated.
l Then, the simulation of the faults from the fault universe is performed,

generally using some technique to accelerate the simulations. Additional

techniques are used in order to determine if the simulated fault produces

actual failures and to record the relevant error data. One important aspect of

the simulation is the classification of the faults according to their effects on

circuit functionality.
l Lastly, the simulation data are analyzed in order to present the user relevant data

about the circuit behavior in the presence of the injected faults. Additional

treatment of the fault data may be performed in order to extrapolate existing

data for a more complete analysis report.

5.4.2 Gate-Level Netlist SEE Simulation

Simulating the SETs and SEUs using a gate-level netlist is the single method that

generates the most accurate results for a given circuit implementation. Since we can

use a detailed circuit representation containing per-cell structural information

accompanied by timing data, the fault propagation through the circuit is represen-

tative of the real fault. The timing data are critical for SETs for which latching by a

sequential element is a function of the PW, which is strongly affected during the

propagation through the activated paths.

The first task is to explore the circuit netlist and build the fault universe. An

exhaustive fault universe would contain faults on all the outputs of all cells for

every clock cycle. Since SEEs may arrive at any instant in the clock period, we need

to simulate faults whose instant of occurrence is uniformly distributed over the
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clock period. This operation has the potential of greatly increasing the simulation

time. Thus, the first improvement we propose is to simulate just one fault and

use the results to determine the overall latching probability of faults for the

uniform distribution of their occurrence instants. The single fault (an SET of a

given width or an SEU) can be injected on a stable circuit, since the following can

be shown [38]:

– From an SER perspective, the impact of an SET or SEU can be separately

evaluated from the normal transitions activity of the circuit.

– The output waveform relevant for computing the overall fault latching proba-

bility does not depend on the instant of fault occurrence.

Thus, the simulation time is reduced drastically. Furthermore, the compaction of

the fault universe can be performed using many of the existing techniques.

The fault injection is then performed using the fault models presented earlier and

the simulator capabilities.

After the fault injection, we need to propagate the fault accurately through the

circuit under evaluation. As the transient pulse is a very time-dependent pheno-

menon, it is very important to have precise and complete timing information

on the circuit under evaluation. This information is also essential in order to determine

the latching probability of SEUs (their chances to reach the next stage sequential

elements during their latching window). Also, we need a simulator capable of

taking advantage of the timing information and simulating the fault propagation.

As we must inject faults modifying the logic value of a node during a specified time

interval, we can use VHDL or verilog gate-level netlist representation of the circuit

and a logic event-driven simulator. The netlist only offers structural information

about the design. Timing information is usually provided by an SDF file. This is a

very flexible and powerful method for adding delay information to the simulation.

Also, we can take into consideration process variations and operating environ-

ments. The SDF file allows the specification of timings in the circuit in three

scenarios: worst, nominal, or best. We can run the simulation for each scenario

and compare the results.

The effects of SEUs and SETs on the circuit also depend on the values applied on

the circuit inputs. Therefore, we must use a large set of input vectors and a large

number of fault simulations for each vector to be able to compute the probability

to latch a fault.

Accelerated simulation algorithms are available in order to keep the simulation

time at acceptable levels [14, 15, 19]. As we use an event-driven simulator, the

simulation time is proportional to the number of events evaluated by the simulator.

So, we are interested in reducing the number of events using differential or serial

fault simulation techniques. Important reduction is possible, thanks to the result

mentioned earlier [14]. In fact, for each input vector, we simulate the circuit to

determine the steady-state values of its nodes. Then, we inject in this steady state

each fault. As a consequence, the events related to the normal input transitions are

simulated only once. Then, for each fault, only the event induced by it is simulated.
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The full-fledged fault simulation involving timing information is only required

up to the end of the current clock cycle. This will determine whether the fault

disappears or is latched and thus transformed into a soft error, whose simulation

through the rest of the system can be performed at a higher level.

5.4.3 Behavioral/RTL/HLS SEE Simulation

A typical activity during the design flow is to describe the circuit using a higher

level abstraction method such as RTL (in any of the widely used hardware descrip-

tion languages such as VHDL or Verilog). The designer works with the source of

different blocks of the circuit and uses specific tools to write, build, simulate, and

verify the design. During this design stage, most of the effort is spent in implement-

ing the circuit as described in the functional specifications and performing the

necessary validations. Also, the DV engineers will run a large series of simulations

with various test cases in order to check the system function. The simulation

environments used by the DV team is especially conceived to highlight any

functioning errors and is especially optimized to minimize the simulation time in

order to be able to run a large number of simulation campaigns. If any errors are

detected during validation, the design engineers will then correct the problem and

re-launch the validation campaign.

It is at this point that an SER analysis could be very beneficial since any SER-

related effort could have a very important impact. SER-related problems could be

solved during the improvement of the source RTL design; error-mitigation methods

can be selected and/or designed and implemented; and any HW-SW error handling

procedures could be devised [57–59].

Additionally, the DV simulation environment is a very appropriate solution

for performing SER simulation, since the errors and failures induced by SEE faults

will be analyzed by the DV procedures. Furthermore, since the DV tends to be

exhaustive, the SEE impact on the available test cases/applications can be quickly

analyzed.

There are, of course, a number of limitations. The first limitation concerns the

available circuit representation. Most of the implementation effort is made using

higher level source files (RTL). Thus, the implementation of the circuit in terms of

gates is not yet known at this point. SET simulation is not possible and SEU analysis

is hampered by the imprecision in associating register-like RTL signals to the exact

flip-flops that will be used later. Thus, the RTL simulation will not be able to

evaluate whether the SET/SEU fault became an SE, but rather if the SEmay become

a functional failure. In conclusion, this approach will compute the FDR factor.

A practical RTL simulation approach consists in building a fault universe

comprising faults on the RTL signals that will be later synthesized as sequential

cells. Then, several techniques are available for the compaction of this fault

universe to a more manageable size.
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Error injection can be performed using simulator capabilities (force/release,

PLI/VPI procedures, etc.). Then, without any further intervention, the DV simula-

tion environment should detect if the injected error had any impact on the func-

tioning of the device. This approach is very simple to implement since it requires

only an error injection procedure. The disadvantage is that no further effort to

minimize the simulation time is performed, thus we require one full simulation run

per error.

Fault simulation acceleration techniques are readily available and can be used to

simulate several errors per run, or stop the simulation when the injected error has

been classified as failure/latent/discarded. Additionally, with some, generally

important, extra effort to implement the circuit in FPGA together with special

fault injection and diagnosis circuitry, fast emulation methods allow to improve

the simulation time drastically, and to enable emulating drastically larger numbers

of faults (see also Chap. 6).

The outcomes of the RTL SEE simulation campaign are twofold:

l Quantitative results, such as the FDR factors for various cells/signals or blocks.

These results will be useful during the final SER computation stage.
l Qualitative results about the behavior of the circuit in the presence of errors

(classification of the different functional failures, evaluation of their severity,

etc.) that will be used during the error-mitigation stage, especially when devising

error protection strategies.

All these efforts are very consuming in terms of engineer time. Dedicated tools

allow reducing this time substantially.

5.5 Static SEE Analysis

5.5.1 Overview

In the previous chapter, we have presented tools and methodologies for SEE

simulation. These methods allow a precise characterization of the behavior

of the circuit in a radiation environment. The time required for this analysis

may be quite substantial and must be factored when scheduling the project.

Additionally, the degree of interaction between reliability and design engineers

is significant and limits the autonomy of the SER expert and also requires

additional time for feedback to the design engineers for any SER-related improve-

ment and optimization.

The design engineers often need reliable and fast tools to execute quick design

iterations and incremental improvements of the circuit. This is especially true when

performing specific analyses that require expert skills, such as SER evaluation. In

most cases, the SER tools should be integrated in a standard design flow, such as

fast prototyping platform, and use standard file formats and concepts. Additionally,
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a great deal of SER data (such as the cell SER characterization data) should be made

available to the various engineers during the design flow.

A solution to these needs could be offered in the form of SER tools that use static

methods able to evaluate quickly the SER of the circuit or system. The derating

factors are especially useful in this case, since the global SER can be expressed as a

sum of the SER of the different parts of the circuit multiplied by various derating

factors (5.5). This approach is also very flexible since the breakdown of the circuit

in various parts can be made at any representation level. The gate-level netlist (5.6)

allows for computing the contribution of each cell for the exact implementation of

the circuit but requires detailed data. The block-level approach allows the system

architect to evaluate and budget the SER of the whole system quickly in order to

build an adequate error handling methodology and establish SER constraints and

recommendations to the implementation team.

SERSystem ¼
X

parts

RAWSERpart � Derating (5.5)

SERGate�Level Netlist ¼
X

cell

RAWSERcell � TDR � LDR � FDR (5.6)

5.5.2 Gate-Level

As discussed earlier, the gate-level netlist contains all the required structural

information for accurately evaluating the contribution of standard cells and mem-

ory blocks. Each of these components will contribute to the global SER of the

circuit following a formula similar to the (5.6). We will need to evaluate the TDR

and LDR factors in order to assess the transformation of the SET/SEU faults into an

SE. The FDR factor of the SE will be evaluated at a higher level.

5.5.2.1 Combinational Cells

The SER due to SETs in combinational cells can be computed using the (5.6). This

requires the knowledge of the temporal derating for single-event transients (TDR-

SET) and the LDR factors.

The TDR-SET could be evaluated using a simplified equation such as the simpli-

fied forms (5.4). To compute the effective SET PW at its arrival on the input of a

downstream sequential cell, static timing analysis tools can be used. These tools are

able to compute the deformation of the transient pulse during the propagation through

the activated path. Additionally, upper and lower bounds can be set if required.

The LDR can also be evaluated using fast, mathematical methods [6]. These

methods aim at computing a global probability of a fault to propagate through a

logic path, for the whole test case or application, for all test vectors. The techniques
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consist in exploring the whole circuit, and enumerating all the possible activated

paths from the output of every cell to the inputs of sequential cells. Then, every

activated path will be submitted to a mathematical evaluation that computes the

probability of a fault to propagate through this path.

One technique [7, 8] consists in considering the probability of discrete standard

cells to propagate faults on their inputs. As an example, inverters, buffers, and XOR-

type cells will always propagate faults on any inputs. AND/OR gates will propagate

faults on a specific input according to the state of the other inputs of the cell. Thus,

we will need to know the “1” or “0” probabilities of the states of every cell outputs

or signals of the circuit. The state distribution can be computed using several

methods that have been proposed for testing purposes and especially for works

related to the observability of the circuit [9, 10]. Also, a fairly simple technique of

good accuracy, though not as good as a probabilistic analysis since it does not allow

considering conditional probabilities, consists in monitoring the signal waveforms

during a fault-free simulation and counting the occurrences of “1” and “0.”

5.5.2.2 Sequential Cells

The techniques that we have used for combinational cells could also be deployed

successfully for SEUs in sequential cells. Particularly, the computation of the LDR

factor is the same for both types of cells.

The most important difference consists in the computation of the TDR. The

formulas used in this chapter require the knowledge of the slack on various

activated paths between two successive stages of flip-flops. This slack can be

very easily computed using standard synthesis or timing analysis tools. These

tools are able to use a very precise description of the circuit, optionally annotated

with parasitics information, in order to evaluate the timing parameters of the circuit

in a short amount of time.

Again, lower and upper bounds can be set for the computed TDR. From an SER

perspective, the worst case (highest TDR, circuit most sensitive) can be found by

considering the largest possible opportunity window. This is obtained by using the

shortest register-to-register slack to determine this window.

5.5.3 Behavioral/RTL

As discussed earlier, the RTL circuit representation only provides accurate infor-

mation about the memorization elements of the circuit, sequential, or memory cells.

Thus, no implementation-specific SER analysis can be performed, particularly the

SET contribution cannot be considered correctly.
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Thus, the only possible computation is related to the contribution of SE in

sequential cells and in memory blocks. The SEUs in sequential cells must first be

transformed to SE by using the appropriate derating factors. However, computing

the TDR-SEU is not yet possible, since circuit timing data are not yet available.

Thus, the reliability engineer should evaluate a preliminary TDR-SEU based on

previous experience, design synthesis rules and practices, initial performance

estimation, and other factors.

Additionally, the exact type of the actual flip-flop cells that will be used in the final

implementation netlist cannot be known at this point. Since the intrinsic sensitivity of

various flip-flopsmay be different, the SER expert should choose a representative flip-

flop or a representative intrinsic SER value in order to use this value for computing the

SER of a sequential cell as the product of the intrinsic SER, by the preliminary TDR-

SEU, LDRSTAGE(i+1), and FDRSTAGE(i+1). That is SERCELL ¼ SERCELL_INTR �
TDR-SEU � LDRSTAGE(i+1) � FDRSTAGE(i+1). This is because an SEU affecting a

sequential element of stage (stage i) is transformed into a SE after propagation through

the downstream logic until reaching the next stage of sequential elements (stage

i þ 1). Thus, we apply the TDR-SEU and the LDRSTAGE(i+1), corresponding to this

propagation, in order to transform the SEU into a SE. Then, we apply the functional

derating FDRSTAGE(i+1) of stage i þ 1. The FDR of stage i þ 1 can be determined

by multiplying the FDR of stage i by the LDR of stage i þ 1. Thus, we obtain the

simpler expression SERCELL ¼ SERCELL_INTR � TDR-SEU � FDRSTAGE(i), where

the LDR factor is eliminated (absorbed by FDRSTAGE(i)).

The memory blocks’ contribution to the SER can be computed as a product of

the capacity of the memory by the intrinsic SER (per megabit). This process is

facilitated by the fact that at this point in the design flow, the list of memory blocks,

the type, and even implementation details (the internal organization/mux factor)

have been already decided upon by the system architect. Thus, we should have a

fairly accurate perspective of the nominal SER of all the memory blocks. However,

this nominal value should be adjusted by the effect (efficiency) of any error-

mitigation techniques, if implemented. Then, the FDR factor should also be eval-

uated in order to take into account the actual usage of the memory for the given

application.

Thus, the last item on our list concerns the evaluation of the FDR factor. We

have seen earlier that we can compute this factor by using fault simulation techni-

ques. However, the object of this chapter is to present alternative methods that

could be quickly used instead of simulation. We should clearly state from the

beginning that these alternative methods are intrinsically less precise than fault

simulation.

One practical approach is to use a “Utilization Derating (UDR)” factor. This

parameter is nominally a part of the more-encompassing FDR concept and can be

computed using an estimation of how much the specific circuit block is used for a

given application. As an example, a memory block has a nominal capacity. How-

ever, in specific cases, not all the memory is used, thus the percentage of actual used

memory should be taken into account when computing the memory SER.
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Another technique that can be applied for memories is the access profile,

meaning the list of write and read operations in the memory. This information

could be extracted from a single fault-free simulation, or provided by the designer

of the system. This list can be exploited in order to compute the lifetime of the data

stored in the memory (the time interval between a write and the latest read before

the next write). The ratio of the total lifetime for each memory word versus the total

simulation time can be used to further derate the memory SEU.

The UDR factor is also useful for standard cells blocks, in the case where the

designer is able to provide some estimation of the duty factor of specific blocks. As

an example, the FPU block of a CPU may be not used at all for an industrial control

application, thus the designer’s contribution to the SER could be ignored or mini-

mized. However, for a mathematically intensive application, the FPU could be one

of the most intensively used parts of the circuit.

In addition, preliminary FDR factors can be estimated by the SER engineer using

expertise acquired from previous projects or manual estimations about the inner

workings of the circuit.

5.5.4 Architecture/Block

This circuit representation is the poorest in terms of actual circuit structure. As

the SEEs are strongly dependent on the type of cells and the topology of the

circuit, the summary information available for a block-level circuit is not enough

to perform an accurate SER analysis. However, since SEEs are a part of the

global reliability of the system, the design flow will surely benefit from an early

analysis of the overall sensitivity of the system. The architect will be able to

decide whether the computed SER is reasonable with regard to reliability con-

straints that are set by the end user or the application. Furthermore, SER-required

decisions can be made at an early stage in the design flow, with a minimal impact

on the implementation effort.

A practical block-level SER analysis approach consists in enumerating all the

blocks of the design that can be reasonably foreseen at this point. Then, quantitative

structural information is estimated for each block. The information should consist

in a very preliminary quantity of standard cells, memory blocks, IP blocks, and

other features. Intrinsic raw SER is associated with each type of feature, and

derating factors are then evaluated. The derating factors could be computed based

on previous SER experience, reliability and design engineers feedback, data from

similar circuits, etc. Then, the overall sensitivity of the system is evaluated using

the (5.5).

An example of such flow is illustrated in the Fig. 5.17.

The results of this analysis should allow the system architect to check the

computed SER against initial specifications and to take relevant and informed

actions in order to improve the reliability of the design.
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In the case where the preliminary estimations shows a risk to exceed the SER

specifications, the architect could decide on an error-mitigation strategy by recom-

mending the implementation engineers to use error handling mechanisms on critical

parts of the circuit. SRAM memories are prime candidates for ECC or parity

protection. The error-mitigation recommendations could target individual compo-

nents (memory instances) or whole blocks.

Another action is to choose a different standard cell library or founder (if

feasible) containing cells with improved SER characteristics. Else, some critical

blocks could be implemented using lower sensitivity flip-flops (or even hardened

flip-flops), again if available and if other considerations (power dissipation, area,

and timing) are also met. At some point, tradeoffs between reliability, area, speed,

and power may be necessary.

Lastly, the system architect, together with the implementation engineers,

both hardware and software, should elaborate a common strategy and goals

for handling errors. According to the circuit function, correcting an error has a

certain downside (either hardware – silicon overhead, or performance decrease

when correcting) [60]. With respect to the application, different types of errors

have specific costs (downtime) and impact (ranging from none to show-stopper).

Each error can be optimally handled with specific techniques (hardware or

software); thus the collaboration of all the actors involved in the design of the

system is required.

The following table presents a synthesis of the possible abstraction levels and the

elements that must be evaluated during SER analysis:

Block Feature Size Raw SER TDR LDR FDR ECC MBU% SER

CPU.ALU
Seq 100000 800 40% 80% 90% No 22

Comb 500000 100 10% 40% 80% No 2

CPU.CTRL
Seq 25000 800 90% 70% 90% No 11

Comb 100000 100 10% 40% 80% No 0

CPU.L1 SRAM 32768 800 100% 100% 100% No 25

CPU.L2 SRAM 2097152 600 100% 100% 80% Yes 3% 24

SystemRAM SRAM 16777216 1000 100% 100% 25% Yes 1% 40

SystemROM FLASH 33554432 1 100% 100% 50% No 16

IOInterface
Seq 1000000 300 80% 80% 20% No 37

Comb 5000000 50 5% 40% 80% No 4

Buffer DPSRAM 65536 1000 100% 100% 25% No 16

Total 196

Fig. 5.17 An example of an architecture SER analysis
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Abstraction

level

Feature type Fault Fault to

error

derating

Error Error to

failure

derating

Failure

Netlist Combinational cell SET LDR TDR SE FDR Functional

failureSequential cells SEU LDR TDR SE

Memory instances ! SE

RTL/behavior Sequential cells SEU TDR SE

Memory instances ! SE Estimated

FDRArchitecture Standard cell blocks SET, SEU Estimated

LDR,

TDR

SE

Memory instances ! SE

5.6 Conclusion

The various SER computation approaches, at cell and macro-block level, netlist,

RTL, and architecture levels, based on dynamic or static techniques, using various

derating factors, probabilistic or simulation approaches, are very consuming in

terms of engineer time. Given the complexity of today’s‘ circuits and the difficulty

of accurate SER analysis, the reliability engineer will greatly benefit from dedicated

SEE EDA tools. Also, selecting the most adequate analysis approach and making

the mitigation decisions at the most adequate abstraction level may have an

important impact on the design time and the SER mitigation cost. Finally, having

access to accurate SER data for standard cells, memories, and other IPs, coming

from radiation test results or from dedicated cell and IP level, SER estimation tools

are another burden for the designers.

Furthermore, SEE constraints can be added very early in the system architecture

to better disseminate and propagate SER constraints to all the actors of the design

flow. In addition, the overall system reliability will be improved by optimizing

system resilience to SEEs at the same time as “classic” metrics such as speed, area,

timing, power consumption, and yield. Adequate EDA tools and methodologies can

help tremendously in minimizing the SEEs’ impact, avoiding unnecessary design

iterations, and reducing time-to-market.

We hope that this chapter offers a comprehensive presentation of the risks,

solutions and possible benefits when correctly addressing the SER evaluation

challenge and will be useful for people from academia interested in establishing

new classes or starting a new research in the SER domain as well as for engineers

having to deal with increased SER constraints in their designs.
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Chapter 6

Hardware Fault Injection

Luis Entrena, Celia López-Ongil, Mario Garcı́a-Valderas,
Marta Portela-Garcı́a, and Michael Nicolaidis

Hardware fault injection is the widely accepted approach to evaluate the behavior

of a circuit in the presence of faults. Thus, it plays a key role in the design of robust

circuits. This chapter presents a comprehensive review of hardware fault injection

techniques, including physical and logical approaches. The implementation of

effective fault injection systems is also analyzed. Particular emphasis is made

on the recently developed emulation-based techniques, which can provide large

flexibility along with unprecedented levels of performance. These capabilities

provide a way to tackle reliability evaluation of complex circuits.

6.1 Introduction

As technology progresses into nanometric scale, the concern for reliability is

growing. The introduction of new materials, processes, and novel devices along

with increasing complexity, power, performance, and die size affect reliability

negatively. On the contrary, the reduction in dimensions, capacitance, and voltage

results in less node critical charge, bringing up the soft-error threat. Actually, taking

into account all these trends, the soft-error rate (SER) per bit is expected to keep

stable, according to recent studies [1]. However, since the memory bit count and the

functionality integrated in logic components are increasing rapidly, the threat of

soft errors is becoming a reality for many applications where it was not a concern in

the past. The increasing use of electronic systems in safety critical applications,
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where human life is at stake, forces to ensure dependability and makes it an important

challenge today.

Providing quality of service in the presence of faults is the purpose of fault

tolerance. But before a fault-tolerant system is deployed, it must be tested and

validated. Thus, dependability evaluation plays an important role in the design of

fault-tolerant circuits. Fault injection, i.e., the deliberate injection of faults into a

circuit under test, is the widely accepted approach to evaluate fault tolerance. Fault

injection is intended to provide information about circuit reliability covering three

main goals: validate the circuit under test with respect to reliability requirements;

detect weak areas that require fault-tolerance enhancements; and forecast the

expected circuit behavior in the occurrence of faults.

From a general point of view, we can distinguish between hardware and software

fault injection, although the frontier between them is not well defined. Software

fault injection deals with software reliability and will not be treated here. Hardware

fault injection is related to hardware faults, which are generally modeled at lower

levels (e.g., logical or electrical) and are injected into a piece of hardware.

In spite of the work made over many years, hardware fault injection is still a

challenging area. New types of faults and effects come to place or achieve increas-

ing relevance. In addition to permanent stuck-at faults or transient faults affecting

memory bits, such as single-event upsets (SEUs), today designers must face the

possibility of timing faults, single-event transients (SETs) affecting combinational

logic, and multiple bit upsets (MBUs) affecting memories. More complex circuits

need to be evaluated as a consequence of technology scaling and increasing density.

In particular, Systems on Chip (SoCs) include a variety of components, such as

microprocessors, memories, and peripherals, which pose different fault injection

requirements. The widespread use of field-programmable technology confronts the

need to evaluate the effect of errors on the configuration bits. As complexity

increases, the number of faults to be injected in order to achieve statistical signifi-

cance also increases. Thus, there is a need for new approaches and solutions in order

to accurately reproduce fault effects, increase fault injection performance, and

support the variety of existing technologies and components.

This chapter summarizes the current state of the art in hardware fault injection

techniques and optimizations of the hardware fault injection process. It must be

noted that the fault injection process is not only concerned with the means to inject

faults. A complete environment is required for initialization of the circuit under test,

selection and application of appropriate workloads, collection of information about

faulty circuit behavior, comparison with the correct behavior, classification of fault

effects, and monitoring of the overall process. The importance of each of these tasks

must not be neglected, because all of them are relevant for a successful evaluation.

The remaining of the chapter is organized as follows. Section 6.2 reviews the

most relevant hardware fault injection techniques and the existing approaches to

inject faults. Section 6.3 describes the fault injection environments. Section 6.4

describes optimizations that contribute to increase fault injection performance.

Finally, Sect. 6.5 contains the conclusion of this chapter.
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6.2 Hardware Fault Injection Techniques

Dependability evaluation of modern VLSI circuits entails the need of injecting

realistic faults at internal locations, and observing in an efficient way the circuit

behavior in the presence of these faults. Indeed, with the generalization of deep

submicron technologies, there can be a much greater number of faults in digital

systems, and a significant proportion of them occur internally in the chip [2]. There

are different methods for injecting faults in integrated circuits mimicking hard or

soft errors. Some of these methods have been used for several years, while others

are being proposed in recent research works.

In every fault injection method, there are some common elements that may be

defined at different abstractions levels. First of all, faults to be injected in the

evaluation process should be selected. The possibility of provoking real faults

within the device or just modeling the effect they cause (fault model) in the circuit

elements must be considered. Second, the circuit to be checked, usually named

device under test (DUT) or circuit under test (CUT), could be a commercial-off-the-

shelf (COTS), a prototype, or a design model. The level of abstraction for the DUT

is related to the type of fault to be injected. Third, a collection of workloads should

be available in order to get a representative subset of the circuit functionality.

Circuit robustness should be checked when working as closely as possible to

normal operation in its final application. Finally, the most important element in

every fault injection method is the expected result, which corresponds mainly to a

measure of device robustness against faults.

Furthermore, any fault injection method requires a specific setup for the fault

injection campaign. In particular, a dedicated PCB with the DUT must be devel-

oped. Also, a system for workload application and processing of the test results,

including hardware, software, communication links, etc., should be implemented

for results processing.

Faults are typically classified according to their duration into permanent, inter-

mittent or transient faults. Permanent faults are related to manufacturing defects

and circuit aging. Transient faults are mainly caused by the environment, such as

cosmic radiation or electrical noise. They do not produce a permanent damage and

their effects are known as soft errors.

Cosmic radiation is the main source of single-event effects (SEEs) in integrated

circuits. SEEs are caused by single energetic particles and take many forms, with

permanent or transient effects. Thus, in this case, injected faults range from real

faults coming from natural cosmic radiation to fault models of SEEs; circuits to be

tested range from COTS to design descriptions. The result of a fault injection

campaign is the probability a device will fail when working. Typically, this

measure is the failure in time (FIT), which stands for the number of circuit failures

per 109 h, and it is referred to a given radiation environment.

The main hardware fault injection cases will be summarized in the following

subsections. Some of them are also addressed in detail in other chapters.
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6.2.1 Physical Fault Injection

Physical fault injection methods use external perturbation sources, such as natural

and accelerated particle radiation, laser beam, pin forcing, etc. The objective of this

test is the analysis of circuit robustness in the presence of faults affecting a device.

These methods are applied on COTS or prototypes for qualifying new technologies

or existing chips for a new application environment.

These methods can cause a wide range of internal damages in the circuit under

test: SEEs, displacement damage (DD) and total ionization dose (TID). Typically,

studied SEEs are SEUs, SETs and single-event latchups (SELs).

6.2.1.1 Radiation Methods

The most traditional method for provoking internal soft errors in the circuit under

test is the use of particle radiation. Cosmic radiation is the main source of SEEs in

integrated circuits. Therefore, testing a device in its real environment (space, high

altitude, etc.) is the most realistic way of evaluating its sensitivity with respect

to SEEs. There are some practical disadvantages for this solution that are related to

cost and time-to-market. Due to the low probability of error, weeks or months are

generally required, as well as hundreds or thousands of samples, for obtaining valid

measures. Another disadvantage is the unknown relationship between failures and

the energy of particles striking the samples.

When shorter testing times and more controlled experiment setup are required,

accelerated radiation tests are used for qualifying new technologies. The DUT

receives a beam of particles, coming from a specific accelerator facility [3] or from

a radioactive source [2]. In this case, few samples are needed (typically in the order

of ten) as well as less time for testing (hours or days). Also, an energy or intensity

sweep can be applied on the particle beam affecting the circuit under test. In this

case, it is easy to know the SER with respect to the energy of particles.

In accelerated radiation tests, several types of particles are used for evaluating

circuit robustness in harsh environments. Particles coming from cosmic radiation

(primary or secondary radiation) are heavy ions, protons, and neutrons. Also, shells

of devices emit alpha particles that provoke SEEs in the circuit.

The main origin of cosmic radiation is the sun [4]; it provokes ionizing

particles (heavy ions and protons), known as primary radiation, in deep

space and stratospheric orbits, and non-ionizing particles (neutrons), known as

secondary radiation, in atmospheric applications. The IEEE standard for testing

space-borne components [5] indicates the type of particles present in different

environments. This information is used together with the final location of the

circuit for stating the work environment and deciding the type of radiation test to

be performed. When checking the dependability of circuits in aircrafts or in earth

surface, neutron and alpha particles are used for accelerated radiation tests [6].

Alpha particles affect circuits, especially at earth surface. On the contrary, heavy
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ions are used for testing circuits working in nuclear or spatial applications [7].

Finally, protons are employed for testing components of terrestrial satellites

[8, 9].

Standards developed by space agencies [8, 9] or by JEDEC association [6, 7]

regulate radiation test procedures. In any case, simulation software tools are used

together with these tests in order to obtain a more accurate knowledge of damage

effect in devices. Material, type of particle, orbit, etc., are key elements in these

calculations.

In these experiments, the setup task is a heavy process. Flux, fluence, and energy

of particles must be set accurately (dosimetry is a key factor) for achieving a

significant number of events and avoiding TID damage. The final result obtained

is the cross-section, which is a function of particle energy or linear energy transfer

(LET) and gives the number of events detected with respect to the particle fluence

applied.

Static and dynamic tests should be performed on the DUT. While static tests

qualify the technology of a device, dynamic tests measure the robustness of a circuit

running in that device with a given workload. It is possible to disaggregate both

tests and avoid dynamic test under radiation. Velazco et al. [10] proved that

dynamic test results can be obtained by combining static test results (static cross-

section) and results obtained with another fault injection method.

The main disadvantages of fault injection based on accelerated radiation ground

testing are the high cost of the test campaigns and the relative small number of

events achieved per run, which may lead to results that are not statistically signifi-

cant. Also, controllability and observability are very limited. In any case, this type

of test is currently mandatory for qualifying a technology in aerospace applications.

6.2.1.2 Laser Methods

A relatively recent approach for injecting faults from an external source is the use of

laser beams. Laser incidence in the internal elements of the circuit causes effects

similar to the ones provoked by particles issued from cosmic radiation. Indeed, this

method is associated with bit-flip fault model for SEU effects. It is able to inject

faults in a very accurate way, with the help of a microscope and a laser beam spot

control.

There are research works [11–13] that prove the correlation between the results

obtained from accelerated radiation test and laser test. Although there is a

slight difference between the particle–material interaction and the photon–material

interaction, SERs obtained from laser beam exposure are commonly accepted

nowadays [13].

Laser test provides a high level of accessibility to locate the circuit elements

where faults are injected. Also, this method implies less expensive equipment than

radiation ground test facilities and less complex experiment setup (e.g., it is not

necessary to separate the DUT in another PCB).
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6.2.1.3 Pin Forcing

Another solution for fault injection from external sources is pin forcing [14, 15].

It was proposed for testing relatively simple ICs. Some authors considered that

forcing values at input/output pins of a device could provoke the same effect as

SEEs in very simple circuits. There are several CAD tools developed for helping

designers to execute fault injection campaigns, such as RIFLE [16], SCIFI [17], FIST

[18], or Messaline[19]. Considering current complexities in ICs, this method is very

limited. Currently, it is employed for testing other external aspects of reliability

(vibrations, electrical noise, etc.), but it is not intended for SEU fault injection.

Although it is a really cheap solution, possible circuit damage due to values

forced onto device pins, together with the poor controllability and observability

provided in the increasingly complex ICs, makes this method unattractive for

dependability analysis of current technologies.

Physical fault injection methods provide realistic measures of SERs, but they are

very expensive. They are considered the best methods available for qualifying new

technologies. Nevertheless, better solutions are required for testing circuits during

the design process where re-design is possible and cheaper. Furthermore, very

complex designs require testing large amounts of faults in order to obtain statisti-

cally valid results. When thinking of large fault sets for current designs, fault

injection can be accomplished at higher abstraction levels.

6.2.2 Logical Fault Injection

Logical fault injection methods use logic resources of the circuit to access internal

elements and insert the effect a fault provokes (fault model). These extra logic

resources are originally intended for other purposes, such as the IEEE standard for

Boundary Scan 1149.1 (JTAG) that provides an easy way for accessing internal

scan path chains through a serial interface. Also, some commercial microprocessors

include on-chip debugging (OCD) capabilities that enable access to internal mem-

ory elements (program counter, user registers, etc.). Finally, reconfiguration

resources for programmable devices enable to control and observe internal config-

uration nodes and, therefore, injecting faults and observing their effects.

The undertaken fault models depend on the robustness analysis under execution.

Therefore, bit-flip model is applied for SEUs and MBUs, stuck-at model is applied

for permanent faults, voltage pulses are used for SETs, etc.

6.2.2.1 Software Implemented Fault Injection

SWIFI is intended for testing hardware by means of executing specific software that

modifies internal memory elements (user accessible) according to a fault model.

146 L. Entrena et al.



Fault injection can be performed during compilation time or during execution time

[20]. In this last group, typical approaches use timers, such as FERRARI tool [21],

or interruption routines, such as XCEPTION tool [22] or CEU tool [10]. More

recently, new solutions have been presented [23] combining software-based tech-

niques with previous approaches.

6.2.2.2 On-Chip Debugging for Microprocessors

Debugging resources provide direct access to internal registers, program counter,

and other key elements in microprocessor architectures. This access can enable

fault injection and fault effects observation in a rapid and effective way. Further-

more, the external accessibility of these capabilities makes the automation of fault

injection campaigns easier. The use of OCD resources for testing purposes has

been studied by some authors in recent years. FIMBUL tool uses JTAG interface

for injecting bit-flip faults into memory elements of a microprocessor [17].

Rebaudengo et al. use the Motorola OCD, named background debugging mode

(BDM), to execute fault injection through a serial port [24]. Also, NEXUS

debugging standard is being used to enhance this fault injection method [25]. In

[26] and [27], solutions are proposed by implementing specific hardware modules

for interfacing between DUT (microprocessor) and host machine.

Recently, Portela et al. [28] have proposed another enhancement in the use of

OCD capabilities, implementing in a hardware module the host in charge of

injecting faults and analyzing obtained results. By reducing communication delays

between hardware and software, fault injection process can be easily accelerated

and automated.

6.2.2.3 Reconfiguration Resources

Reconfiguration resources in programmable devices make possible a direct fault

injection within memory elements in prototyped designs. This method is widely

used to evaluate the effect of faults in the configuration memory of FPGAs (field

programmable gate arrays), which is a very important issue in these devices.

Partial reconfiguration reduces the time needed for performing fault injection in

the configuration memory of FPGAs. Ref. [29] presents a solution based on

reconfiguring by means of the Xilinx software JBits. In [30], a tool for injecting

SEU faults in a Virtex1 FPGA is proposed. This tool is able to inject faults in

programmable interconnections, which are not accessible through commercial soft-

ware tools (JBits). In recent contributions, Alderighi et al. proposed the FLIPPER

fault injection platform which enables the fault-tolerance evaluation of hardened

prototypes in FPGAs [31].
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6.2.3 Logical Fault Injection by Circuit Emulation

As FPGA-based prototyping becomes popular for ASIC verification, it can also be

exploited for hardware fault injection. In this case, the circuit under test is proto-

typed in one or several FPGAs. This approach is generally known as emulation-

based fault injection. Contrary to the approaches mentioned in the previous section,

FPGAs are used here just as a means to support fault injection, and the final circuit

is to be implemented in some ASIC technology.

Fault injection in an FPGA-based prototype can take advantage from the flexi-

bility of field-programmable hardware. Fault injection requires high controllability

of each circuit node in order to modify its logic state. This can be obtained by using

the FPGA reconfiguration mechanisms to modify the circuit or the contents of

accessible memory elements. Another approach consists in inserting some addi-

tional hardware blocks in the prototype to support fault injection. These hardware

blocks are called instruments.

Emulation-based fault injection was originally developed for permanent faults.

In [32], a fault injection method is proposed for stuck-at faults. This method

consists in modifying the circuit by connecting a signal to a constant logic value.

Therefore, the FPGAmust be resynthesized and reconfigured for each fault. Several

techniques to emulate faults in parallel are proposed to alleviate the resynthesis and

reconfiguration effort.

A fault injection technique for SEUs (bit-flips) based on run-time reconfigura-

tion of the FPGA is proposed in [33]. In this technique, flip-flop (FF) contents are

modified by controlling the asynchronous set/reset of each FF through the FPGA

configuration bitstream. Injection of a fault is performed with the following steps:

(a) at injection time, read the states of FFs; (b) reconfigure FPGA to set the

asynchronous set/reset switch of each FF as to keep the current state, except for

the faulty FF, that will be set in the opposite way; (c) pulse global set/reset line

(state of faulty FF is modified); and (d) reconfigure FPGA again to set the

asynchronous set/reset switches to the original value. The first step is performed

by readback of the configuration bitstream, which includes the states of FFs.

Readback is also used to check the results of each fault injection experiment and

classify fault effects. This idea is also followed up in the FT_UNSHADES

platform [34].

Note that this approach requires reconfiguring twice the FPGA for each fault.

Although partial reconfiguration can be used, the reconfiguration process is slow.

Fault injection rates range between 0.1 s and more than 1 s per fault, depending on

the length of the partial reconfiguration bitstream.

Circuit instrumentation is a means to overcome the limitations of FPGA recon-

figuration. It consists in inserting some pieces of hardware or instruments that can

provide external controllability and observability to inject a fault and observe its

effects. Then, the circuit is prototyped in an FPGA including the instruments. It is

important that circuit instrumentation can be automated in order to avoid handling

the circuit and to make the instrumentation process effective. On the contrary, the
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instruments should be small enough to obtain an acceptable overhead in the

prototype.

In one of the earlier works [35], Hong et al. proposed a technique to avoid

reconfiguring for each fault by adding some specialized hardware blocks. Each

block is attached to a target node and contains a flip-flop that stores the injection

signal value. These flip-flops are arranged in a chain, so that faults can be injected

by shifting in the desired injection values in the chain.

A circuit instrumentation technique for the injection of non-permanent faults is

proposed in [36]. This technique is intended to emulate SEUs by injecting faults in

the circuit flip-flops. For this purpose, the circuit under test is modified by sub-

stituting each flip-flop by the instrument shown in Fig. 6.1. This instrument contains

an additional flip-flop, called the mask flip-flop, and two gates that implement the

mask logic. The mask flip-flop is used to select the fault injection target. At

injection time, the inject signal is asserted to all instruments. Then, the input

value at the nodes where the mask flip-flop is set will flip and the fault is injected.

More elaborated instruments have been proposed by Lopez et al. [37] that will be

described in Sect. 6.4.

The mask flip-flops are arranged in a scan chain that can be loaded serially. Once

the mask scan chain is loaded, the inject signal is asserted at the required time to

inject a fault. Faults can be injected at different nodes by shifting in the mask scan

chain. MBUs are supported by setting more than 1 bit in the mask. Eventually, the

contents of the functional flip-flops can be loaded into the mask flip-flops. This

operation captures the internal state of the circuit, which can be observed by

shifting out the mask chain.

The circuit instrumentation technique is very efficient, as it does not require

reconfiguring the circuit for every fault. Also, setting the fault injection mask is

much faster than FPGA reconfiguration. In addition, latent faults can be detected by

checking the circuit state as obtained through the scan chain after the fault injection

process. Experimental results [36] show a fault injection rate of 10,000 faults/s by

MASK
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Inject

Q

Clk

ScanIn

ScanOut

Fig. 6.1 Fault injection instrument in [36]
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using a 20-MHz clock and a short workload (100 test vectors). For large workloads,

the fault injection rate is inversely proportional to the workload length.

Injecting and propagating SETs is much more difficult, since it requires proto-

typing the logic delays of the circuit under test. Synthesizing the circuit under test

for an FPGA would produce an equivalent functional circuit model, but with

different gate delays. Existing approaches for SET emulation are based on embed-

ding timing information in some way, such as the topology of the circuit [38].

Recently, an efficient approach has been proposed using a quantized delay model

[39]. In this model, gate delays are rounded to a multiple of a small amount of

time, addressed as time quantum. Quantized delays can be implemented in an

FPGA using shift registers where the time quantum corresponds to a clock cycle.

Experimental results show a fault injection rate in excess of one million faults/s,

representing an improvement of three orders of magnitude with respect to a

simulation-based approach.

The flexibility provided by FPGAs can be used to support some fault injection

functions. For example, the FPGA prototype can include two instances of the circuit

under test that are dedicated, respectively, to prototype the golden (fault-free) and

the faulty circuit. Both instances run in parallel and the outputs can be compared

inside the FPGA at the end of the execution to detect failures [34, 40]. A refined

solution consists in duplicating just the sequential elements, sharing the combina-

tional logic [37]. In this case, the golden and faulty instances run in alternate clock

cycles.

Most of the work on emulation-based hardware fault injection focuses on

general-purpose logic, but circuits may also include embedded memories. As the

number of storage elements in memories is generally very large, memories are in

fact very relevant. However, the controllability and observability are limited to a

memory access per memory port and clock cycle.

Memories can be emulated by forcing the synthesizer to treat them as flip-flops.

This approach would usually produce emulation circuits much larger than commer-

cially available FPGAs. Therefore, embedded memories must be instrumented in a

particular way to support fault injection.

A memory can be implemented in an FPGA using FPGA memory blocks. In this

case, fault injection is performed by instrumenting the memory buses [28]. In [40],

memories are implemented using dual-port FPGAmemory blocks, where one of the

ports is specifically devoted to fault injection. At the fault injection time, the target

memory position is read, XORed with the fault mask, and then written back. A

monitor circuit is included to clear all the internal memory after an experiment, in

order to avoid accumulation of errors, and to read serially all the internal memory

in order to compare it and detect faults. These two operations take a lot of time, just

in proportion to memory size, and must be performed for every fault injection

experiment. Thus, injecting a fault in a memory position can be achieved by

instrumenting the memory buses, but the initialization of the memory and the

extraction and comparison of the fault injection results for analysis are the major

problems of memory fault injection.
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6.3 Fault Injection System

A hardware fault injection system is able to execute a circuit with a workload in the

presence of faults, and compare the faulty behavior with the fault-free behavior. A

fault injection system is typically composed of the following elements:

l The CUT
l A fault injection mechanism, which can be physical or logical
l A test environment, in charge of the following tasks:

– Supply the vectors required for the workload

– Check the effect of faults in the CUT

– Collect results

– Classify faults

– Control the whole process

Fault injection systems are used to perform fault injection campaigns, which are

experiments intended for obtaining a measurement of the circuit reliability. Some

examples of this measurement are the fault dictionary, the circuit cross-section, the

SER, the mean time between failures, etc.

Fault injection systems using physical fault injection require a prototype of the

DUT, which is exposed to the fault provoking element (radiation, laser).

The system has to be built in such a way that the DUT is correctly exposed, but

the rest of the system is not affected by the fault source. In accelerated radiation

experiments, the CUT must be separated from the rest of the system, in order to

receive the beam without affecting the test environment. For example, the THESIC

system [41] consists of a motherboard as test environment, and a mezzanine board

for the CUT. For laser campaign, the circuit package must be removed for the laser

beam to be effective, and the CUT must also be visible through a microscope to

locate the laser incidence point [42].

Systems using logical fault injection have a similar structure but use a different

fault injection mechanism, so there are no restrictions related to physical exposure

aspects. The only additional part to add is a fault injection method, for example, a

host-controlled JTAG interface connected to the OCD of the CUT.

The rest of this section will cover the implementation of systems using logical

fault injection by circuit emulation. This kind of system uses FPGA-based proto-

typing to implement the CUT. As this is the most general and flexible scenario,

there is a large variety of solutions. Building these systems represent a very

challenging task as far as the process performance is concerned.

There is a wide range of possibilities to build emulation-based fault injection

systems, as there are many tasks that can be executed in a host computer or in the

hardware. Fig. 6.2 shows the main required tasks. The user interaction takes place at

the host computer and the circuit emulation is performed in the hardware (circuit

core). The rest of the tasks may be executed either by the host computer or by the

hardware.

6 Hardware Fault Injection 151



There are a lot of intermediate possibilities, depending on the tasks assigned to

the host computer and to the hardware. The speed of the communication channel is

critical when considering the amount of information to transfer.

In general, the tasks required to perform a fault injection campaign comprise

fault list management, workload application, fault injection, fault classification and

result analysis. These tasks are analyzed in the following paragraphs.

6.3.1 Workload

A workload must be provided to the circuit under evaluation for execution. The

implementation of this task must consider a trade-off between flexibility, perfor-

mance, and resource usage. Several approaches can be considered. Test vectors can

be generated at the host computer and sent to the hardware when they are going to

be applied. This method is very flexible, as the workload can be changed very

easily, but implies a continuous host–hardware communication which slows down

the execution.

On the contrary, a stimulus generation block can be implemented in the hard-

ware, next to the circuit core, so it can supply vectors at the speed they are required.

A simple approach is to use some BIST-like vector generation circuit, like an

LFSR. This kind of implementation is very fast and uses very little resources, but

the workload obtained may not be very representative.

An intermediate solution is to store test vectors in the FPGA memory. This

solution is flexible, as the workload can be easily changed by downloading a new

Fig. 6.2 Emulation-based fault injection system components
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one or by reconfiguring the FPGA, and it is also fast, because test vectors are fed to

the circuit core by hardware. However, FPGA devices usually have a limited

amount of internal memory, representing a drawback for this method. In order to

improve resource usage, test vectors may be compressed, or external memory may

be used if it is available on the FPGA board.

6.3.2 Fault List

The fault list management task has some important aspects, both in design and

implementation. The ideal case is to generate a fault list including faults at every

location and every time instant, for a given workload. Considering bit-flip fault

model for SEUs, the complete single fault list would include a fault in every

memory element and every clock cycle of the workload. This approach is practical

only if the circuit is either very small or the fault injection system is very efficient,

like Autonomous Emulation [37].

Usually, the system is not so efficient to perform a fault injection campaign with

all possible faults in a reasonable time. In these cases, the fault space must be

sampled to obtain a statistically representative subset. There are several approaches

to create the fault list. The simplest one is to use random fault list generation, both

in fault localization and time instant, although it must be taken into account that a

computer or a hardware generated list is not really random, but pseudo-random.

Other proposals include the use of Poisson distribution for the generation of the

time instants, in order to reproduce the results of a radiation experiment. A deeper

discussion on these aspects can be found in [43].

Regarding implementation, the fault list can be generated at the host computer or

in the hardware. If it is generated at the host computer, it must then be transferred to

the hardware. It is advisable to implement an intermediate storage mechanism, so

that the emulator does not need to wait for the new fault when it has already finished

processing the previous one. This mechanism can make use of internal FPGA

memory or on-board memory.

In this case, the impact in performance is not as high as for the workload case.

For the workload, a test vector is required every clock cycle, but a new fault is

required only when the previous one has already been processed.

6.3.3 Fault Classification

The classification of a fault can be made out of the comparison of the faulty and the

golden executions.

If a fault is injected and after some time it produces a result different than

expected, it is called a failure. If the fault effect completely disappears from the

circuit after some execution time, the fault is called silent. If the faulty circuit shows
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differences with the golden one after the execution of the workload, but it did not

produce any error in the results, the fault is called latent. If the circuit has some

built-in fault detection mechanism, the faults can also be classified as detected or

not detected. In microprocessor-based circuits, a fault could also be classified as lost

of sequence, when the effect of the fault is modifying the normal instruction

sequence, preventing the circuit to reach the end of the workload.

Concerning failures, the condition of producing an erroneous result is different

for every case. For a control circuit, an error can be a value in the outputs that is

different than expected. For an algorithm processor, the calculation results must be

checked and they can be written at the circuit outputs or stored in memory. Failures

could also be sub-classified by a criticality-based criteria. For example, some errors

could produce physical damage in the system (e.g., an electronically controlled

mechanical engine) or produce a dangerous situation (a brake system), while others

may be irrelevant (a wrong pixel in an image).

Latent faults represent an additional problem. The system must have a mecha-

nism to compare the golden and the faulty circuit states to decide if the fault is still

present. For example, two instances of the circuit can be implemented, and a

mechanism to compare them must be included. If partial reconfiguration is used,

readback of the circuit flip-flops can be used for this purpose with a high penalty on

performance [34]. With instrumented circuit technique, flip-flops are duplicated

and compared [37], so that latent faults can be detected online.

Performance will profit from an early fault classification mechanism. Being able

to stop the execution immediately after the fault is classified will allow saving some

time. If the classification is made in hardware, it is easier to implement a fast

classification mechanism. This aspect will be explained in more detail in the next

section.

6.3.4 Result Analysis

The results of a fault injection campaign can be expressed in several ways. In terms

of circuit qualification, it is usually required to obtain a single figure for the circuit

reliability, like the SER, expressed by either number of FIT, or Mean Time Between

Failures (MTBF). These figures are calculated using information from fault injec-

tion campaigns and taking into account the environment where the circuit will

operate. Emulation-based fault injection campaigns are useful to obtain information

about the consequences of faults. Information about fault occurrence probabilities

and other aspects must be obtained using other methods.

The most complete result information that can be obtained from a fault injection

campaign is the fault dictionary, which is the list that holds the classification of

every injected fault. The complete fault dictionary is very useful to locate weak

areas in the circuit or critical tasks in the workload.

The implementation problems for this task are quite similar to those of the fault

list. A new result is generated for every processed fault. Results can be transferred
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immediately after processing to the host, or they can be temporally stored in the

hardware to improve performance.

In case result generation is very fast or there is no temporal storage available,

statistical measures may be collected in the hardware. For example, results can be

classified per location, or per injection instant, or just percentages can be calculated.

6.3.5 Communication

Emulator–host communication has a great impact on the system performance. In

order to improve the performance, we can either increase the speed of the commu-

nication channel or decrease the amount or the frequency of the transmitted data.

Commonly used communication mechanisms are serial ports, USB, Ethernet, or

PCI.

Obviously, an increment in the channel speed will result in an overall speed

improvement, but several aspects must be taken into account. For example, com-

munication channels like USB can be very fast, but only in burst mode, transmitting

big amounts of data in a single pack.

In the case of a fault injection system, the information to transmit (test vectors,

fault list, fault dictionary, and control commands) can be sparse in time. This

approach is not very efficient for high speed communication channels, so it is

advisable to design the emulator, including data compaction or communication

buffers. In order to obtain the maximum performance, the objective is to maintain

the core emulation circuit running as much time as possible, and avoid the time gaps

due to communication.

6.4 Fault Injection Optimizations

Emulation-based fault injection techniques have the capability of notably speeding

up the fault-tolerance evaluation process regarding other methods. Injecting

millions of faults in a few hours is possible using these techniques. However,

reducing this time is a very interesting goal, since fault-tolerance evaluation is a

task performed many times during the circuit development. Furthermore, current

circuits have large complexity, including an increasing count of sensitive areas that

can be affected by faults. Therefore, the higher the number of possible faults, the

higher the number of faults that must be injected to obtain a significant measure-

ment of the circuit robustness. Definitely, speeding up the fault-tolerance evaluation

process is required.

Several approaches exist to speed up the fault injection process using emulation-

based techniques. In the following sections, we will describe the main sources of

fault injection inefficiency and solutions to overcome them.

6 Hardware Fault Injection 155



6.4.1 Autonomous Emulation

Emulation-based techniques profit from the capability of an FPGA to emulate

circuit behavior at hardware speed. Using typical emulation-based fault injection

solutions, the emulation process is interrupted every time the emulator needs to wait

for the host to apply the stimuli, to inject a fault, or to check the output values. Then,

a very intensive interaction is required between the emulator and the host computer.

The host controls the injection and evaluation of every fault. This introduces a

performance bottleneck due to the communication between the emulator and the

host computer, which prevents taking full advantage of the FPGA capabilities for

fast hardware emulation.

Autonomous emulation [37] is a fault injection solution aimed at avoiding the

intensive communication between host and emulation platform. It consists in

implementing the whole injection system in the FPGA by making use of the

instrumentation mechanism to insert faults in the circuit under test (Fig. 6.4). The

FPGA is in charge of performing the following tasks:

1. Managing the whole fault injection process.

2. Applying the input stimuli to the circuit under test.

3. Activating the fault injection.

4. Watching the circuit behavior under faults and classifying the injected fault

depending on its effect on the circuit functionality.

Using autonomous emulation, access to any circuit-sensitive element is simple

and straightforward, and the required time necessary to perform the different

injection tasks can be significantly reduced. Figure 6.3 shows the typical emula-

tion-based solutions scheme and Fig. 6.4 the autonomous emulation scheme with

the purpose of illustrating the differences between both systems. The autonomous

emulation system benefits from the available resources in current FPGA platforms,

like memory blocks, in order to implement more tasks close to the circuit under test,

which minimizes the required interaction with the host computer. The enhance-

ments provided by the autonomous emulation solution are as follows:

Fig. 6.3 Typical scheme for an emulation-based fault injection system
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l The required communication between host computer and the emulation platform

is minimized, being established only twice, at the beginning of the evaluation

process to configure the FPGA from the PC, and at the end of the fault injection

campaign to collect the obtained results, that is, to download the fault dictionary.
l Observability and controllability are significantly enhanced, since access to the

memory elements does not require a particular communication channel and then

it is straightforward and easier. In general, the typical emulation-based techni-

ques set a trade-off between the process speed and the observability of the

internal circuit resources, because higher observability requires more informa-

tion exchange and, therefore, more time to spend in the evaluation process. The

autonomous emulation system provides a high observability without penalty in

the injection process speed, since the injection system and the circuit under test

are implemented in the same device.
l Hardware implementation makes the parallel execution of different injection

tasks and it speeds up the whole process with respect to a software implementa-

tion.

Once the PC-FPGA communication, that is, the main limitation in fault emula-

tion techniques, has been minimized, the fault injection process is much more

efficient. Moreover, the access to the circuit internal resources does not require

exchange of information between the host computer and the FPGA. This feature

allows the application of new optimizations to reduce the time spent per fault.

6.4.2 Fault Evaluation Process

The fault injection process can be optimized by applying techniques to reduce the

time spent in the different steps needed to evaluate the consequences of a fault. For

a given workload these steps are the following (Fig. 6.5):

Fig. 6.4 Autonomous Emulation scheme
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1. Reach the circuit state corresponding to the injection instant. The most common

way to do it consists of running the workload from the beginning until the

injection instant.

2. Inject the fault.

3. Classify the fault according to its effect on the circuit behavior. For this purpose,

the circuit under test resumes the workload execution since the injection instant

until the fault is classified or the workload finishes.

In the worst case, emulating the complete workload for each fault can be

required. A fault injection campaign with a large number of injected faults and

long workloads may involve excessive time to complete the evaluation process.

With the instrumentation-based mechanism, the fault injection task takes just one

clock cycle and so possible time optimization should be applied to the other steps

(1 and 3). The time required for reaching the circuit state at the injection instant can

be optimized by applying techniques to save fault-free emulation time. A solution

consists in doing a previous storage of the circuit state and a posterior reloading of

this state in the next fault injection (state restoration). Regarding fault classification,

techniques can be applied to speed up fault emulation by aborting execution as soon

as the fault can be classified, profiting from the higher observability available in an

Autonomous Emulation system. In the following sections, these optimizations are

detailed for SEU faults.

6.4.3 State Restoration

The circuit under test can get to the state corresponding to the injection instant in

two different ways:

l Emulating the workload until the injection instant is reached.
l Storing the required state in memory elements of the circuit and restoring it just

before the fault injection instant (state restoration). In this case, additional

hardware to store the corresponding state is necessary.

State restoration avoids the fault-free circuit emulation for every injected fault.

Required states are easily obtained from the golden execution, run just once.
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The obtained benefit will depend on the time required to perform the restoration

and, therefore, on the technique used to implement this optimization. Figure 6.6

presents a possible scheme to replace every original flip-flop in order to support the

state restoration in just one clock cycle. It includes an additional flip-flop that

contains the injection state to be restored in the circuit when the fault is going to

be emulated.

Let us suppose that the state restoration requires only one clock cycle, the

workload consists of C clock cycles, and the circuit under test contains F sensitive

memory elements. Considering that all the memory elements have the same

probability to be affected by a fault in any workload cycle, the number of possible

single faults is F·C. In the worst case, with no optimizations, C clock cycles are

necessary to emulate each fault. Taking into account all the possible single faults,

the total time spent during the fault injection campaign in emulating the circuit

without faults is (1þ 2þ 3þ � � � þ C� 1) clock cycles. When the state restoration

is performed in just one cycle, this optimization avoids the emulation of CS clock

cycles, where

CS ¼ F
CðC� 1Þ

2

For example, for a circuit with F ¼ 103, a workload with C ¼ 105 clock cycles,

and CS ~ 0.5 � 1013 clock cycles, the total saved time at 100 MHz would be 14 h.

6.4.4 Early Fault Classification

Emulation of a fault finishes when the fault is classified or when the end of the

workload is reached. A typical fault classification consists in considering three
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to support injection state

restoration in one clock cycle
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categories: failure, latent, and silent faults. In order to detect a failure, the faulty

circuit outputs must be compared with the golden behavior. To distinguish between

silent and latent faults, internal resources must be observed. Reducing the time to

classify faults introduces an important optimization in the evaluation process speed.

In general, fault injection techniques stop the fault evaluation as soon as a failure is

detected, since outputs observation and comparison with expected values are

usually straightforward. Due to the limited observability of the internal resources,

in most of the hardware fault injection techniques, classifying a fault as either silent

or latent is not feasible or, otherwise the classification is performed at the end of the

workload execution, which is very time-consuming. However, silent faults can be

detected as soon as the fault effect disappears if the internal elements are observed

continuously.

Speeding up silent fault classification requires access to every memory element

within the circuit under test in a fast and continuous way, comparing their content

with the golden circuit state. Additional hardware is used to store the golden state

and to perform the comparison. This extra hardware is shown in Fig. 6.7 and

consists of two flip-flops to run the golden and the faulty execution at every

workload instant. This optimization is possible in an Autonomous Emulation

system with a low cost, since the complete system is implemented in the same

hardware device.

Early silent fault classification enhances the fault injection process speed,

especially in circuits with fault-tolerant structures that correct or mask faults,

where the percentage of silent faults is high. Therefore, applying both optimiza-

tions, state restoration (described in the previous section) and early silent fault

classification, the time spent in emulating one fault can be drastically reduced

(Fig. 6.8).

Putting it all together, [37] describes an instrument to replace every original flip-

flop that supports Autonomous Emulation, state restoration, and early silent fault

classification. Such instrument is shown in Fig. 6.9. In this case, combinational

logic is shared, avoiding the duplication of the complete circuit. Then, the faulty

and golden emulation are executed alternately. This implementation for an Auton-

omous Emulation system is named Time-Multiplexed technique.
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For failure and silent faults, the time elapsed between fault injection and fault

classification is usually a few clock cycles in circuits with fault-tolerant mechan-

isms. Only faults with long latencies require the execution of most of the workload,

in case of latent faults until the end of the workload. Therefore, if fault latencies and

the number of latent faults are small, which is the usual case in a well-defined

experiment, the reduction in execution time is proportional to the workload length.

Experimental results reported in [37] show that using the described optimiza-

tions, the fault-tolerance evaluation process can achieve fault injection rates in the

order of one million faults per second.

6.4.5 Embedded Memories

Embedded memories are common components in modern digital circuits. SRAM

memories are sensitive to SEU in the same manner as flip-flops, and then, fault
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injection must be performed not only to evaluate flip-flops but also to evaluate

effects in the circuit behavior when an SEU affects a memory cell.

Fault injection in embedded memories using emulation-based techniques is a

complex task due to the limited observability of the memory cells, since only a

memory word can be accessed in a clock cycle. For example, in order to know if

there is an error in a memory, the complete memory content should be read, which

is very time-consuming.

Few works have been published about emulation-based fault injection in circuits

with embedded memories [28, 40, 44, 45]. Civera et al. [44] proposed the fault

injection in memory controlling the control and data memory buses to insert a fault

in a given memory bit, but it does not propose a solution to analyze faults inside the

memory. Lima et al. [40] presents a memory model that consists of a dual-port

memory; one port is used to perform the golden emulation, while the other port is

used to inject faults. However, the result analysis is very time-consuming since it

consists in reading every memory word, comparing obtained data to expected ones.

Portela-Garcı́a et al. [28] describes an Autonomous Emulation system with

optimizations in a circuit with embedded memories. Autonomous Emulation speeds

up the injection process by minimizing PC-FPGA communication requirements and

including optimizations previously described (state restoration and early silent fault

classification). In order to apply the Autonomous Emulation concept in complex

circuits, solving the fault injection in embedded memories in a fast and cost-

effective way is mandatory.

Autonomous Emulation solution is based in an instrumentation mechanism, so a

memory instrument is necessary. It is assumed that embedded memories are

synchronous, i.e., they can be prototyped in current FPGAs using the available

block RAMs components, and they do not contain useful information before

starting the execution. The objective is to achieve a memory model that supports

state restoration and early silent fault classification [45].

The proposed solution is based on controlling and observing memory access

buses (address, data, and control signals). On the one hand, fault classification

requires distinguishing between silent and latent faults. For this purpose, input data

bus and control access signals (like write enable, output enable, etc.) in golden and

faulty execution are compared (Fig. 6.10). The emulation controller detects the

insertion of faulty data in the memory and checks if fault effect is cancelled by

writing the correct data during workload execution. As soon as the fault disappears,

it is classified as silent.

On the other hand, fault injection to emulate an SEU in a memory cell is

performed only in read data, since faults in other memory words do not affect the

circuit behavior and they would be classified as latent faults. Therefore, the number

of faults to evaluate is reduced significantly.

A possible implementation of the faulty memory in this model consists in storing

just the faulty memory words. In order to access Faulty Memory in a fast way,

spending just one clock cycle, it is implemented using a Content Addressable

Memory (CAM) [45]. Therefore, the faulty memory contains the addresses that

store a fault and the faulty data itself. If a given address is stored in the faulty
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memory, the corresponding memory word contains a fault. Otherwise, the data are

stored only in golden memory. This implementation is named Error Content

Addressable Memory (ECAM), see Fig. 6.11. ECAM implementation is very

suitable to perform the required Autonomous Emulation tasks, such as state resto-

ration or silent fault classification (if faulty memory is empty).

The size of an ECAM implementation fixes the maximum number of errors

that can be considered. In practice, the probability that N faults in memory are

cancelled (writing a correct value) is very low for just a small value of N. Therefore,

Golden
Memory

Faulty
Memory

Error 
Checker

Restoring
Module

Error

Golden/Faulty

Fig. 6.10 Memory instrument to support Autonomous Emulation in complex circuits with

embedded memories
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Fig. 6.11 ECAM model is a

possible implementation for

the memory instrument

compliant to Autonomous

Emulation
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this solution implies less area overhead than other possible implementations

(like memory duplication).

Portela-Garcı́a et al. [28] and Valderas et al. [46] present experimental results on

a LEON2 microprocessor. The experiments consist in injecting millions of faults in

flip-flops and memories by means of an Autonomous Emulation system.

6.5 Conclusions

Hardware fault injection plays a key role in the design and validation of robust

circuits. As hardware reliability is becoming an increasing concern in many appli-

cation areas, there is a need for new approaches and solutions that can deal with

more complex circuits and reproduce fault effects accurately and efficiently.

Hardware fault injection methods have significantly evolved in the last years.

Among the physical fault injection methods, accelerated radiation tests are the most

used, but laser fault injection has gone through substantial developments. On the

contrary, FPGAs can support very efficient logical fault injection methods, such as

Autonomous Emulation. These methods can provide unprecedented levels of per-

formance and fault injection capabilities, and represent suitable fault injection

mechanisms to complement physical methods.
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Chapter 7

Integrated Circuit Qualification for Space
and Ground-Level Applications: Accelerated
Tests and Error-Rate Predictions

Raoul Velazco, Gilles Foucard, and Paul Peronnard

Integrated circuits (analog, digital or mixed) sensitivity evaluation to Single Event

Effects (SEE) requires specific methodologies and dedicated tools. Indeed, such

evaluation is based on data gathered from on-line tests performed in a suitable

facility (cyclotron, linear accelerator, laser , etc.). The target circuit is exposed to

particles fluxes having features (energy and range in Silicon) somewhat represen-

tative of the ones the circuit will encounter in its final environment. This chapter

will describe and illustrate with experimental results, the methodologies and the

hardware and software developments required for the evaluation of the sensitivity

to SEE of integrated circuits. Those techniques will be applied to a SRAM-based

FPGA and to a complex processor. In case of sequential circuits such as processors,

the sensitivity to SEE will strongly depend on the executed program. Hardware/

software fault-injection experiments, performed either on the circuit or on an

available model, are proved as being complementary of radiation ground testing.

Indeed, data issued from fault injection combined with data issued from radiation

ground testing allow in accurately predicting the error rate of any program.

7.1 Introduction

Constant progress of manufacturing technologies and processes, results in an

increase of integrated circuits sensitivity to the effects of natural radiation. This

problem, which in the past years was a concern only for space applications, must

nowadays be considered for any application requiring reliability or dependability,

devoted to operate in earth’s atmosphere, even at ground level. Indeed, an energetic

particle (heavy ion, neutron, proton, etc.) hitting a sensitive area of a circuit may
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induce failures with potentially serious consequences. Among radiation’s effects on

integrated circuits, the so-called SEU (Single Event Upset) phenomenon is consid-

ered critical as its consequence is a memory cell content modification randomly in

time and location [1, 2].

At the system level, an SEU, also called bit-flip, upset or soft error, may

propagate with different kinds of consequences depending on the final application

criticality. This makes the system error-rate evaluation a mandatory task. To

achieve such an evaluation, usually adopted strategies are based on radiation

ground testing results, also called accelerated tests. Those experiments are per-

formed in facilities such as cyclotrons or linear accelerators and consist in exposing

target circuits to suitable particle beams, while they are performing an activity

considered as representative of the one they will carry out in the final application.

As present applications require more and more data processing power, this

entails the use of complex advanced integrated circuits, such as processors and

reconfigurable circuits. The complexity of these devices makes the evaluation of

sensitivity to soft errors difficult to achieve due to the constant progress of

manufacturing technologies. Indeed, hardware and software requirements needed

to set up radiation ground testing experiments and high costs related to the use of

particle accelerator facilities to simulate radiation environment make this kind of

testing reserved to few specialized research and development teams. Moreover, any

change in the application software would imply extra radiation ground testing

campaigns, thus increasing the development costs.

In this chapter, ionizing radiation effects on integrated circuits are briefly

reviewed. Test methods and tools required to perform experiments, using suitable

radiation facilities in which the target circuit is exposed to representative radiation

beams, are described. The test methodology must be adapted to the target circuit

nature. Indeed, advanced complex digital circuits such as processors cannot be

tested using the same methods than the ones required for Application Specific

Integrated Circuits (ASICs), memories (SRAMs, DRAMs, MRAMs, etc.), or

reconfigurable circuits such as Field Programmable Gate Arrays (FPGAs). Case

studies will illustrate the different methods applied to representative circuits.

Most of digital system architectures include processors (or processors imple-

mented by means of FPGAs). For these architectures, a methodology will be

described that allows to predict SEU error rates by combining results issued from

radiation ground testing with those obtained from hardware/software fault injection

experiments performed off-beam. The goal of this strategy is to obtain accurate

results about different applications’ error rates without using particle accelerator

facilities, thus significantly reducing the cost of such tests. This will be illustrated

for a complex processor, the Power PC 7448, executing a program issued from a

real space application.1 Results are confronted to the ones obtained from exposure

to radiation of the same architecture and configuration.

1An AOCS (Attitude and Orbit Control Subsystem) module provided by the French Space Agency

CNES (Centre National d’Etudes Spatiales).
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7.2 Single Event Effects Due to Radiation and Their
Consequences on Integrated Circuits

Energetic particles hitting Silicon lose energy along their tracks. This energy is

absorbed by the matter creating electron-hole pairs. Their charge may be collected

by diffusion and drift mechanisms resulting in a spurious current pulse at the

impacted node. This current pulse has a duration and amplitude which depend on

both the incident particle features (energy and mass) and the circuit’s technology.

The phenomena caused by this current pulse are gathered under the acronym SEE.

SEEs are generally classified according to their consequences. Destructive SEEs

include Single Event Latchup (SEL), Single Event Gate Rupture (SEGR), and

Single Event Burnouts (SEB). Among non-destructive SEEs can be mentioned

Single Event Upset (SEU), Multiple Bit Upset (MBU), Multiple Cell Upset

(MCU), and Single Event Transient (SET). In Chapter 2 are described in detail

all these events. References 1 and 2 address the consequences of these events.

A SET is a spurious current pulse propagating into combinational nodes and may

become an SEU if, when captured, it alters the content of a memory cell (flip-flop,

latch, etc.).

SEUs occur when the current pulse resulting from ionization changes one of the

considered circuit’s memory cell content. Its consequences depend on both the

corrupted information nature and the occurrence instant. For complex devices such

as processors, FPGAs, etc., the SEU occurrence may lead to a critical misbehavior.

Such phenomenon called SEFI (Soft Error Functional Interrupt) can only be

recovered by a soft or hard reset.

With the transistor’s dimensions shrinking, the charge collected after a particle

strike may be distributed to several adjacent nodes, leading to MBU if perturbed

bits are in the same memory word or to MCU in other cases.

A SEL occurs when the collected charges provoke a short circuit between

ground and power by triggering the parasitic thyristor present in all CMOS circuits.

Single Event Latch-ups can be detected by measuring on-line the circuit (or system)

power consumption, and shutting down the power supply if the consumption is

higher than a predetermined limit. At the opposite, consequences of SEUs might be

difficult to detect or predict, as they depend on the future use of the modified

information after a SEU occurrence.

This rough analysis of the consequences of spurious modifications of complex

circuits’ memory cell contents aims at showing that the SEU phenomenon con-

sequences are potentially critical for any application devoted to operate in space, or

even in the earth’s atmosphere, and must thus be considered with care while

selecting parts and developing the system architecture.

SEEs can be mitigated by several techniques performed at different levels [3]:

l Technology process: SOI (Silicon On Insulator) eliminates SEL and reduces

SEU rate.
l Design process: Pþ guard rings for SEL. Replacement of memory cells by

hardened ones deals with SEU, thus providing time or space redundancy.
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l Software level: Error correcting and/or detecting codes.
l System level: HW/SW redundancy.

To ensure a system meets its dependability requirements, various types of

experiments are mandatory. These experiments, when related with SEE must be

performed in particle accelerator facilities (cyclotron, linear accelerators, etc.).

Methodologies and tools needed to achieve such experiments are described in the

following chapters.

7.3 Accelerated Tests: Methodologies and Related Results

SEE radiation ground testing consists in exposing the Device Under Test (DUT) to

energetic particles (neutrons, heavy ions, protons, etc.), while it performs an activity

which strongly depends on the experimenter expected results. Thus, such tests are

performed on-line, i.e., the DUT is powered and active in its nominal operating

conditions. The main goal of the accelerated test is the evaluation of the device

sensitivity to radiation in terms of the particles average number required to provoke

an event. This measure is called cross-section and is obtained from a static test

approach.

At a system level, the DUT individual sensitivity contribution requires

performing the so called dynamic testing, i.e., the target device which is exposed

to the beam will be implemented in its final hardware/software environment. Only

SEU faults will be taken into account in the following.

7.3.1 Notion of Cross-Section

SEEs’ occur when a particle hitting a circuit meets the following conditions [4]:

l It has the sufficient energy and it will deposit the minimum charge required to

generate the considered event.
l The impact takes place within a sensitive area (drain of an off-transistor).

Radiation test facilities such as cyclotron, linear accelerator, etc., provide vari-

ous beams (neutrons heavy ions, protons, etc.), allowing the analysis of the SEE

impact on micro-electronic devices. However, these particles are issued as a broad

beam, thus they do not allow studying precisely the impact of a single particle

directed on a selected node of the circuit. Moreover, the DUT has many sensitive

volumes, and so it is not possible to know which particle beam will interact with a

given device-sensitive volume. As a consequence, radiation ground testing data

have a statistical nature, and are function of the beam features (flux and particle

energy), and the device features: Sensitive volume (SV) size, number of SV per

surface unit. The cross-section concept allows removing geometrical parameters

and provides a particle/device dynamic interaction measure.
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Let us imagine an interaction between an incoming energetic particle and a

device with a sensitive volume array. Moreover, let us assume that the particle

strikes the device with a normal incidence and has enough energy to depose a

charge that is able to trigger a single event if it passes through the sensitive volume.

The energy transferred to the silicon is called LET2 (Linear Energy Transfer). The

end-result of this experiment is the single event rate by unit of time (Rb). This

virtual set-up is given in Fig. 7.1.

We can forecast that we will be able to observe a single event each time an

impinging particle enters the top face of a sensitive volume (noted s). If the device

surface seen by the beam is S, and Nb is the number of sensitive volumes in S, the

total sensitive surface of S is s � Nb and we have

s� Nb

S
¼

Rb

Ra

;

Ra is the incoming particle number crossing the surface S by unit of time, so

s ¼
Rb

Ra S= � Nb

¼
Rb

fa� Nb

;

where Fa ¼ Ra/S is the beam flux (number of particles per unit of surface and time).

Fig. 7.1 Virtual experiment set up

2The LET (Linear Energy Transfer) is the ionization measurement caused as the incoming particle

looses energy along its path. For instance, in Silicon, a particle having a LET of 97MeV cm2/mg is

depositing about 1 pC/mm.
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If we introduce the experiment duration T,

s ¼
Rb � T

fa� Nb � T

¼
Number of single event recorded during the experiment

Fluence of the experiment � number of sensitive volumes exposed
:

s is called the interaction cross-section and is a direct measure of the sensitive

volume top surface. Its unit is cm2 or it is expressed in barn (1 barn ¼ 10�24 cm2).

Often the number of sensitive volumes is not known, and s is given as an interaction

cross-section per device (or per bit).

sdev ¼
Number of single event recorded during the experiment

Fluence of the experiment
:

sbit ¼
Number of single event recorder during the experiment

Fluence of the experiment� number of bits
:

As a consequence, the SEU radiation ground testing end-product will be a plot of the

interaction cross-section vs. particles’ LETs. In a typical cross-section curve, such as the

one given in Fig. 7.2, two important magnitudes must be noticed: the LET threshold,

Fig. 7.2 A typical cross-section curve
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which is the first LET provoking an event, and the saturation cross-section, which

corresponds to the whole sensitive area.

From the LET threshold and the final environment nature, a decision can be made

regarding the assessment needed to use the tested circuit in a reliable way. Table 7.1

summarizes LET threshold typical values and their corresponding assessment. The

LET threshold obtained measures allow in determining a first diagnosis about the

DUT that suitably fits the final radiation environment with the requirements.

To derive the SEU cross-section, the circuit must be active during its exposure to

the selected particle beam. One important methodological aspect is the choice of the

activity the DUT will achieve during the radiation experiment. This strongly depends

on the circuit type, being quite straightforward for circuits having a single function,

such as memories, and quite difficult for circuits, such as processors, capable of

executing a set of instructions or commands. The next section will briefly expose

some trends about main strategies usually adopted for representative circuits.

7.3.2 Static and Dynamic SEU Test Strategies

For chips such as memories (SRAMs, DRAMs, etc.), the sensitivity estimation to

SEUs can easily be done by loading them with a predetermined pattern, whose

corruption by SEUs is identified by periodically reading out the target memory area

and comparing it with expected values.

Such a strategy is generally called static test, because all accessible targets are

exposed at the same time to SEUs, a situation which is far from the real circuit

activity. When used during radiation ground testing, a static test strategy will

provide worst-case memory sensitivity estimation to SEUs. Indeed, when included

into an equipment, the memory will be used to store information. Some of them (a

program code or a data area for instance) stay unmodified during the whole system

operation, but some other zones are used more dynamically. A way to determine a

sensitivity closer to one of the final equipment consists in evaluating the average

number of used bits and estimating the sensitivity as the product of this number by

the per-bit sensitivity (derived from the memory cross-section issued from radiation

testing divided by the number of bits).

When the DUT is a processor, attempts of adopting the static strategy were made

by considering the target memory area accessible by the instruction set. This area

includes all DUT registers and internal memory. A program implementing a static

test strategy can be easily written using mainly LOAD and STORE instructions

targeting all those processor’s memory elements accessible to the instruction set

Table 7.1 Environments to be assessed vs. LET threshold

Device sensitivity threshold Environment to be assessed

LETth < 10 MeV cm2/mg Cosmic rays, trapped protons, solar flares

LETth ¼ 10–100 MeV cm2/mg Cosmic rays

LETth > 100 MeV cm2/mg No analysis required
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(registers, internal SRAM, etc.). Running this program when the processor is

exposed to radiation will provide a worst-case estimation of the cross-section,

which does not correspond to the real DUT sensitivity when running a real

application. Indeed, registers and various memory zones are used in a dynamic

and uncontrollable manner when running a given program: data stored in a register,

for instance, will be sensitive to radiation only during the period the data will have a

meaning for the program.

Extrapolating memory testing strategy to processors was shown to significantly

overestimate the error rate. Indeed, in [5, 6], authors performed ground testing with

both a static test strategy (in which the program executed by the processor under test

is restricted to loading and observing the register set and internal memory) and a set

of programs intended to be somewhat “representative.” Application’s results of

such an approach to different processors, including 16-bit processors (the Motorola

68000 and 68882) and a reduced instruction set processor with parallel capabilities

(the Inmos Transputer T400), showed that measured error rates for those programs

and processors were between one or two orders of magnitude less than those

derived from ground tests performed with static test strategy.

Those results are not surprising. Indeed, to induce a wrong result at a program

output, one or more upsets must occur during the target sensitive period. Moreover,

many registers and memory elements are not used by the program; upsets affecting

those latches will have no effect on the program outputs, and consequently will not

contribute to the final error rate. Unfortunately, there is little published work

comparing error rates derived from ground testing using benchmark programs to

error rates obtained either during ground testing or observed in flight.

Ideally, the final application program should be used during radiation experi-

ments to get realistic cross-section measurements, but often it is not available at the

time of the radiation test campaign. An interesting approach to deal with this

difficulty was proposed in [7]. In this study, the authors stress the importance of

evaluating the application’s cross-section and calculate the duty factors for various

processor elements used by the software. The time between loading a given register

or memory location and writing it to memory is the period during which the register

is sensitive to upsets. When this period is expressed as a percentage of the total

execution time, it is called the duty factor of that particular register or memory

element.

In this way, calculating a program error rate will provide good estimations

requiring limited ground test experiments in order to calculate the DUT cross-

section. Duty cycles calculated from an analysis performed on assembly language

source code can be used to follow the future evolution of any application program.

Nevertheless, the main difficulty comes from the diversity of processors and

instruction sets, making it very difficult in practice to develop a tool automating

the duty period calculation. Indeed, since the first presentation of this approach in

1988, no automated tool allowing duty factor derivation for a given application was

published in the literature. The development of such a tool is seriously impeded by

the combinatorial explosion of execution paths (induced by software construction

such as loops and conditional statements) making the analysis intractable.
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Moreover, variations in program inputs can result in different instruction paths,

different duty factors, and thus different SEU vulnerability. Another limitation

comes from the fact that not all SEU targets are accessible through the instruction

set. Many temporary registers and flip-flops existing in a processor are not known at

the architectural level, and thus their contribution to the global error rate cannot be

included in the calculations. Despite this intrinsic limitation, the error rates by

calculated taking into account duty periods of SEU accessible targets are generally

considered as being quite close to the expected error rates when the circuit operates

in the final application.

7.4 Test Facilities: Heavy Ion, Neutron, Proton
Accelerators, and Laser

Actual available particle accelerator facilities are not able to reproduce the exact

space environment because of its wide particle species distribution, high energies,

and multi-directional incidence. Galactic cosmic rays in space have energies dis-

tributed with a peak around a few 100 MeV/nucleon, but ions of interest for the

SEU issue cover the 0.1–100 MeV/mg/cm2 LET domain. Only few accelerators are

capable of delivering such high energy particles. However, “low” energy beams can

reproduce an equivalent charge deposition by means of LET’s parameter.

Unlike heavy ions, protons with energies similar to the ones observed in space

are available for accelerated ground test experiments.

Next paragraphs briefly present a non-exhaustive list of representative particle

accelerators available in Europe for integrated circuits and systems radiation

ground testing [8].

7.4.1 Heavy Ions

In Table 7.2 are given the most commonly used heavy ion facilities subdivided in

three groups according to their energy ranges.

Due to its high energy beam, the GANIL facility allows “in air” irradiation, but the

disadvantage is a long beam setup time. For the other facilities, tests are performed in

vacuum chambers.

Table 7.2 Facilities available in Europe for heavy ion ground testing

High energy (100 MeV/amu) France – GANIL

Medium energy (�10 MeV/amu) Belgium – CYCLONE/Finland – JYFL

Low energy (�10 MeV/amu) France – IPN/Italy – LNL
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7.4.2 Protons

In Table 7.3 is given a list of European proton facilities. As energy losses by

protons in air are low, all irradiation are performed in air avoiding vacuum system

complexity.

7.4.3 Neutrons

Neutron tests, which mainly concerned the avionics community in the past years,

are presently becoming a major concern for any electronic equipment built from

advanced sub-micron chips, devoted to operate in the atmosphere. The JEDEC

JESD89 [9] specification states that the preferred facility to perform neutron tests is

WNL (Los Alamos – USA), because its energy spectrum matches the neutron

energy spectrum at sea level. However, the same regulation explains how to

obtain data using the quasi-mono energetic neutron beams available in Europe.

Two accelerators in Europe are equipped with neutron beam lines: CYCLONE

(Belgium) and Svedberg Laboratory (Uppsala, Sweden).

7.4.4 Micro-Beam and Laser

SEE characterization using particle beams (heavy ions, protons, or neutrons) is a

global approach. Such test provides a number of events for a particular fluency,

without any information about the detected faults location. Testing with laser or

micro-beam overcomes this problem. A small spot and precise beam localization

allow sensitive device nodes to be pinpointed with submicron accuracy. Similar to

that for heavy ion macro-beam tests, experiments must be placed in a vacuum

chamber for micro-beam irradiation. Although the laser is not affected by such a

problem, it has the disadvantage of having its beam reflected by metallization

layers, thus complex circuits must be irradiated from the back side. Another laser

limitation is that its energy cannot be correlated with the ions energy. Table 7.4

depicts advantages and drawbacks of heavy ion macro- and micro-beams and laser

beams.

Table 7.3 Facilities available in Europe for proton ground testing

CYCLONE – Belgium Up to 70 MeV

JYFL – Finland Up to 45 MeV

CPO – France Up to 200 MeV

IPN – France Up to 20 MeV

SIRAD – Italy Up to 28 MeV

PSI/OPTIS – Switzerland Up to 63 MeV

PSI/PIF – Switzerland Up to 300 MeV
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In Europe, only one facility is equipped with a micro-beam: GSI (Darmstadt,

Germany). This facility uses its linear accelerator to produce ions from Carbon to

Uranium with energies between 1.4 and 11.4 MeV/amu. These kinds of facilities

are not suitable to characterize a device (measure of the cross-section sensitivity

curve) but they are very useful to help in understanding failure modes.

7.5 Required Test Platforms and Description
of a Generic Testbed

7.5.1 Introduction

Evaluating the error rate of equipments designed to operate during radiation

exposure is a major concern. A general approach for such estimations is based on

both the final environment features and the sensitivity to radiation of parts included

in the system. Among those parts, memories and processors present in almost all

complex digital systems can be identified as major contributors to the global error

rate. Indeed, the large number of memory elements they include makes them

potentially sensitive to SEUs, which as stated before is one of the critical effects.

As a consequence of a single particle impact, either the data having crucial

importance for the application can be corrupted, or the processor program sequenc-

ing may be lost, thus provoking unexpected and possible critical system behaviors.

As stated before, estimating the circuit sensitivity to SEE phenomena needs to

expose the target circuit to suitable particle fluxes using radiation facilities such as

particle accelerators (cyclotrons, linear accelerators, etc.). To provide incident

particles’ energy precise measurements, those tests are usually performed in

vacuum chambers.

The main difficulty entailed by such tests, usually called accelerated radiation

tests, is the fact that the circuit under test must be active during the experiment

duration. This means that the DUT must operate within a typical electronic/digital

environment allowing both to make the circuit capable of executing the selected

program and detecting the SEEs’ effects. In case the DUT is a processor, this

includes external memory and all required circuits.

Table 7.4 Comparison of three different types of beams

Heavy ion beams Laser Heavy ion micro

beam

Beam diameter on DUT A few centimeter Down to 1 mm Down to 1 mm

Limitations Range several tenths

of micrometer

Small penetration

depth

Range several tenths

of micrometer

Localization of sensitive areas No Yes Yes

Study of rare phenomena No Yes Yes

Cross-section determination Yes No Yes
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From a hardware point of view, a specific test platform must be developed. In

addition to the above-mentioned capabilities, such a platform should provide means

of communication for storing the detected error information in an external PC for

the purpose of further analysis. A tester based on a motherboard/daughterboard

architecture can be designed to reuse some functionalities with different DUTs. The

following requirements must be taken into account to design the tester:

l Control the DUT power consumption to detect SELs and switch off the power

supply in order to avoid DUT damages.
l Start and stop daughterboard activity; detecting and recovering from SEUs; and

provoking processors program sequence-loss (by means of a programmable

timer usually called watchdog).
l Detect SEUs on-line and recover related information. This last aspect is

achieved for those SEUs resulting in an erroneous DUT output, by reading the

content of a memory space shared by the motherboard and the DUT board,

in which the DUT is supposed to write the program execution results. SEUs

resulting in program sequence-loss are detected by means of a timer, which will

indicate that the program duration is different than the expected one, and stop the

program execution by asserting an asynchronous interrupt signal.

7.5.2 The ASTERICS Test Platform

7.5.2.1 Overview

The ASTERICS (Advanced System for TEst under Radiation of Integrated Circuits

and Systems) is a major evolution of the THESIC þ test platform presented in [10].

The idea is to implement the digital environment needed by DUTs, by means of an

FPGA whose configuration is obtained from compiling this environment descrip-

tion in a hardware description language such as Verilog or VHDL. This way, the

user task is limited to wire the relevant DUT signals to the tester ones, so as to adapt

the DUT to the test platform. This test platform’s architecture was successfully used

to qualify many kinds of DUTs such as processors (PowerPC, SPARC, etc.),

memories, and mixed analog-digital circuits.

7.5.2.2 Technical Description

In the past, different versions of test systems devoted to radiation ground test were

prototyped [11] with the following characteristics:

l The DUT operates in its standard digital environment, i.e., it is interfaced to

a suitable architecture. In case of a processor, such architecture involves memories

to store test program instructions and data, glue logic, clock, and power supply.
l A daughterboard connected to the testbed embeds the DUT.
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l The whole system communicates with the user through a computer by means of

a serial or Ethernet link.

As an example, the following describes the ASTERICS architecture, which is

based on the same principles, but takes into account the high performance require-

ments of nowadays ICs. This platform is built around two Xilinx Virtex4 FPGAs.

One named Control FPGA and the other named Chipset FPGA. Figure 7.3 depicts

this architecture.

l Control FPGA: A Xilinx Virtex4 FX, embedding a PowerPC processor in charge

of the communication between the user and the tester via a gigabit Ethernet link.

The PowerPC runs at 300 MHz allowing a good data rate transfer.
l Chipset FPGA: A Xilinx Virtex4 FX, optimized for logic resources, embeds the

user’s design needed by the DUT to operate in its rated condition. In case of a

processor, this chipset acts as a memory controller. This FPGA allows operating

frequencies about 200 MHz depending on the user’s design complexity.

The DUT is connected to the tester via a high-speed connector. Up to 180 I/Os

are available with standard selectable by software LVCMOS voltages ranging from

1.2 to 3.3 V. Obviously, different kinds of memories (SRAM and DDR-SDRAM)

are available to match different data rate requirements. For latchup sensitive

circuits, a current monitoring circuit protects the DUT against destructive latchup

phenomena. Figure 7.4 gives a tester overview.

Fig. 7.3 ASTERICS architecture
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To facilitate communication with the tester, an API (Application Programming

Interface) is user available. This API embeds a set of functions like memory read/

write, setting the DUT current consumption limit, resetting the DUT, etc.

The tester Ethernet link allows users to remotely control experiments anywhere

in the world whenever an internet connection is available.

7.6 Radiation Ground Testing: Case Studies

In this section are briefly described the methodologies to perform radiation ground

testing on typical advanced digital circuits. SRAMs, FPGAs, and processors are

considered to illustrate hardware/software developments required to perform radi-

ation ground testing.

7.6.1 SRAM Memory

Radiation ground testing methods for memories are quite straightforward. Indeed, it

consists in loading the memory with a predefined pattern. The component is then

left under the beam and its memory content is periodically checked to detect upsets

created by impinging particles. Implementation of such a test can be done either by

a specific hardware or by adapting existing test platforms like the one described in

the previous section.

7.6.2 Processor and Microcontrollers

SEU sensitive area in processors-like devices may include registers, internal

SRAM, and data and instruction memory caches. Generally, the used approach is

based on the static cross-section evaluation, from which the dynamic cross-section

Fig. 7.4 ASTERICS testbed
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of any application can be estimated by fault injection experiments, as described in

the following section. The methodology to perform SEU radiation ground testing

on two generations of an advanced Power PC processor is hereafter described for

both heavy ion and neutron tests.

7.6.2.1 Heavy Ions Tests

Heavy Ion Test Conditions

Tested Devices

Heavy ion tests were performed on two Power PC 7448 devices issued from two

different diffusion lots.

Considering the DUTs are “flip chip” packaged, i.e., the devices’ active zone is

facing the solder side, to reach the sensitive areas, the particle beam must pass

through the substrate. This obliges to thin the DUT’s substrate in order to allow the

particle beam deposing enough energy for provoking SEEs in the DUT. Tested

devices were thinned down to 70 mm and then tested to guarantee their correct

operation.

Test Conditions

In Table 7.5 are summarized the test conditions adopted for heavy ion experiments.

The test strategy applied here consists in initializing with predetermined patterns all

memory elements accessible through the instruction set. After this step the proces-

sor enters in a waiting loop whose duration can be adapted to the tested memory

elements sensitivity to guarantee a good statistic of detected events. Generally used

patterns are alternating “0” and “1” called Checkerboard (CHB), the inverted

Checkerboard (CHBn), the “all at 0” or “all at 1” patterns known, respectively, as

All 0 and All 1.

To avoid significant thermal dissipation, clock frequencies were set at 33 MHz.

The core frequency was 600 MHz, which is the rated operating frequency.

The used static test program targets the Power PC accessible sensitive regions:

The register file (8,928 bits) and the memory data cache L1 (262,144 bits).

Table 7.5 Test conditions for heavy ion experiments

POWER PC 7448

Number of tested devices Issued from two different diffusion lots

Core power supply 1 V

I/Os power supply 2.5 V

Temperature Room temperature

Type of test Static

Test pattern CHB, CHBn, All0, All1

Tilt angle 0 and 45�

Operating frequencies 33 MHz SYSCLK, 18� for the multiplier, ~600 MHz for the core
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The following registers were tested:

General purpose registers: GPR2 ! GPR31 32 � 32 ¼ 1,024 bits

Floating point unit registers: FPR0 ! FPR31 32 � 64 ¼ 2,048 bits

Special registers: SPRG0 ! SPRG7 8 � 32 ¼ 256 bits

Virtual memory: IBAT0 ! IBAT7, DBAT0 ! DBAT7 16 � 32 ¼ 512 bits

State registers: SR0 ! SR15 16 � 32 ¼ 512 bits

Vector operation registers: VR0 ! VR31 32 � 128 ¼ 4,096 bits

14 registers used for fault injection in L2 14 � 32 ¼ 448 bits

Instruction cache control registers: ICTRL 32 bits

Heavy ion experimentswere performed at theCYCLONE cyclotron ofHIF (Heavy

Ion Facility), available at UCL (Université Catholique de Louvain-la-Neuve). A “high

penetration particle cocktail” was used to give access to the tested device sensitive

areas. As described in Table 7.6, this cocktail makes available a set of ions covering a

large scope of energies. Heavy ion tests can be performed with the beam hitting the

DUT at different incidence angles, thus allowing an increase in the resulting LET,

which is inversely proportional to the cosine of the angle between the beam and the

target board including the DUT. Heavy ion tests must be performed with beams

having a penetration higher than the substrate’s thickness after thinning (~70 mm).

Neon, Argon, and Krypton were the selected particles for the experiments

presented in the following. Their use with the DUT board at 0� (normal incidence)

and tilted at 45� incidence angles allowed to get cross-section measurements for

LETs comprised between 3.3 and 47 MeV/mg/cm2. It is important to note that the

LET at the DUT active zone, generally called effective LET or LETeff, will be

lower than the one measured in the used facility, because incident beam particles

lose energy while traveling across the substrate. This also applies in case of tilted

beams where the particle trajectory is not perpendicular to the target circuit surface.

The POWER PC 7448 was exposed to those beams to get its static cross-section

measurement, which, as said before, corresponds to the particle average number

needed to provoke one SEE. We recall that the most significant SEE to be

considered in the frame of this kind of experiments, are SEUs, SELs, and SEFIs.

SEU detection during operation under radiation is done by comparing the memory

cells observed content to reference values. The SEFIs can be detected by the so-called

watchdogs. Indeed, they return a timeout error whenever the application misses a

check point. Finally, SEL detection is ensured by comparing the power consumption

to rated values (with a 10% margin). In case a SEL is detected, the power supply is

cut during some milliseconds, after which the DUT is reinitialized.

Table 7.6 Details of high penetration heavy ion cocktail available at CYCLONE

Ion DUT energy

(MeV)

Penetration

(mm Si)

LET (MeV/

mg/1312cm2)
13C4+ 131 266 1.2
22Ne7+ 235 199 3.3
28Si8+ 236 106 6.8
40Ar12+ 372 119 10.1
58Ni17+ 500 85 21.9
83Kr25+ 756 92 32.4
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The tested processors being manufactured with SOI technology are in principle

immunes to SEL. In case of static tests, SEFIs are not counted. Indeed, even if

SEFIs can be detected, it is not possible to identify the perturbed memory element

as it can be provoked by corruption of many different memory elements’ values, not

accessible to users, through the instruction set.

Heavy Ion Tests Results

In Table 7.7 are provided the processor Power PC 7448 cache memory L1 and the

registers static cross-sections (given in cm2/bit). Test experiments were performed

with a fluency of 5 � 105 particles.

Main conclusions about heavy ion tests are:

l The PC 7448 processor is immune to latchup (SEL). Immunity to SEL of the

circuits manufactured in SOI technology is confirmed.
l Neither MCU nor MBU were observed.
l Sequence loss (timeout) faults were observed by means of a mechanism

controlling the execution flow. In principle, it is not possible to identify the

origin of such faults, which can be the consequence of a SEFI, a SEU in one of

the registers monitoring the program sequence, or a bitflip in a processor’s

control unit memory cell.

The Power PC 7448 cross-sections, calculated from the average number of

events observed in the processors issued from two different diffusion lots, are

given in Figs. 7.5 and 7.6.

7.6.2.2 Neutron Testing

Neutron Test Conditions

Tested Devices

Neutron tests were performed on two Power PC 7447 and two Power PC 7448

devices, each one issued from two different diffusion lots.3

As neutrons have high penetration, thinning the DUTs was not necessary.

Table 7.7 Cross-sections, in cm2/bit, of L1 cache memory and registers

Particle Tilt (�) Effective LET

(MeV/mg/cm2)

L1 cache Registers

Ne 0 3.3 4.07E�09 3.12E�09

Ne 45 4.6 6.09E�09 9.09E�09

Ar 0 10 5.11E�09 1.30E�08

Ar 45 14 6.88E�09 1.87E�08

Kr 0 33 5.51E�09 1.73E�08

Kr 45 47 3.54E�09 8.10E�09

3Manufacturer is e2v semiconductors.
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Test Conditions

In Table 7.8 are summarized test conditions adopted for neutron test experiments.

The test strategy was the same as the one adopted for heavy ion testing.

The used static test program targets the Power PC accessible sensitive area:

Register file and L1 cache memory, which represents a total of 8,929 bits for

registers and 262,144 bits for cache memory.

Fig. 7.6 Power PC 7448 accessible resources cross-sections curves (in cm2/bit)

Fig. 7.5 Registers and L1 cache memory cross-section curves (in cm2/bit)
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The same set of registers was tested as the ones considered for heavy ions test

(Section “Heavy Ion Tests Conditions”):

Neutron tests were performed at LANSCE (Los Alamos Neutron Science

Centre), a facility which proposes a very powerful linear accelerator, capable of

accelerating protons at 84% of the light’s speed. Neutrons are produced when these

protons collide with a tungsten target. These neutrons are used for a large scope of

experiments; among them, the static cross-section of micro- and nano-electronic

device measurements has a major place. The experiment’s goal performed at

LANSCE was to obtain the Power PC 7447A and 7448 cross-section measurement,

from which the error rates in the atmosphere will be derived and evaluated as

a function of the operation’s number of hours. Such evaluation is generally per-

formed in terms of FIT (Failure In Time), 1 FIT being equal to 1 error every 109 h of

operation.

Neutron Test Results

Tables 7.9 and 7.10 report the measured cross-sections for the L1 cache and

registers of the Power PC 7447A and 7448 processors. In these tables are reported

different types of single events that can be observed during a radiation ground

testing experiment: SBU (Single Bit Upset), MCU (Multiple Cell Upset), and SEL.

When no errors are observed, during a particular experiment, the JEDEC JESD89A

standard advises to calculate the cross-section considering an upper confidence

level of 95%, which corresponds to a 3.7 errors upper limit. Used neutron beam was

a high energy neutron with a spectrum close to the one at ground level, and a flux of

1.7 � 105 neutrons � cm�2/s.

In Table 7.9, the rated cross-section is issued from the error rate observed while

the DUT operates under rated conditions. The global cross-section corresponds to

the cross-section average observed when performing tests under the following

conditions: Vmin, Vnom, and Vmax using the checkboard (CHB) test pattern and

Vnominal with the “all to 0” and “all to 1” (All0 and All 1) test patterns.

Table 7.8 Neutron test conditions

PC 7447A PC 7448

Number of tested

parts

Two parts issued from the

same diffusion lot

Two parts issued from the

same diffusion lot

Core power supply 1 V 1 V

I/Os power supply 2.5 V 2.5 V

Temperature Room temperature Room temperature

Type of test Static Static

Test pattern CHB, CHBn, All0, All1 CHB, CHBn, All0, All1

Orientation 0 and 45� 0 and 45�

Operating frequency 33 MHz System Clock, 18�

for the multiplier,

~600 MHz for the core

33 MHz System Clock, 18�

for the multiplier,

~600 MHz for the core
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It is important to notice that no errors were observed for the two tested processor

registers, despite 4 full days’ test duration. This is due to the fact that the registers’

sensitive area (magnitude directly related with the total bit number) is too weak

compared to the one to the cache memory. This entails a very long test under

neutron beam, and so a very high cost to obtain a statistically representative number

of errors. Absence of events on registers also shows that those blocks have a very

low neutron sensitivity.

During neutron tests, the PC 7447A and 7448 were exposed to the neutron beam

at room temperature, while they executed a checkboard algorithm. Results given in

Tables 7.9 and 7.10 show the absence of latchup (SEL) events and MCU events. As

the “Flip cross-section” is the sum of the “SBU cross-section” and the “MCU cross-

section,” this explains the cross-section values corresponding to the columns

entitled “Flip cross-section” and “SBU cross-section” are the same. Indeed, these

values will differ when MCUs are detected in case a single particle is perturbing

more than one memory cell.

In Figs. 7.7 and 7.8 are given details about FIT vs test conditions (power supply)

in the case where tested processors execute the Checkboard algorithm and consider

the neutron flux in New York city (13 neutrons/cm2/h). In these curves, the FIT is

given per Megabit.

Neutron Tests Conclusions

Measurements issued from neutron test experiments are in the same order of magni-

tude than those obtained from other processors manufactured with SOI technologies.

The absence of events on registers is justified by both the weak sensitivity and the

total number of register bits, which is low compared to the tested L1 cache memory

(about 8 Kbits vs. 256 Kbits) ones. Getting their cross-section under neutrons will

thus require an unaffordable number of beam hours.

Table 7.10 PC 7448 L1 cache and registers neutron cross-sections, in cm2/bit

DUT Conditions

du test

Flips cross-

section

SBU cross-

section

MCU cross-

section

SEL cross-

section

PC 7448

Cache L1

Nominal 1.14E�14 1.14E�14 0 (UL ¼ 5E�16) 0 (UL ¼ 5E�16)

Global 1.17E�14 1.17E�14 0 (UL ¼ 8E�17) 0 (UL ¼ 8E�17)

PC 7448

registers

Global 0 (UL ¼ 1.35E�14)

Table 7.9 PC 7447A L1 cache and registers neutron cross-sections, in cm2/bit

DUT Test

condition

Flips cross-

section

SBU cross-

section

MCU cross-section SEL cross-section

PC 7447A L1

Cache

Rated 1.25E�14 1.25E�14 0 (UL ¼ 3E�16) 0 (UL ¼ 3E�16)

Global 1.05E�14 1.05E�14 0 (UL ¼ 6.5E�17) 0 (UL ¼ 6.5E�17)

PC 7447A

registers

Global 0 (upper limit ¼ 1.1E�14)
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It is important to notice that those measures are given with a 95% confidence

interval according to the JEDEC standard. Considering the absence of multiple bit

events (MBU), protection like ECC (Error Correcting Codes) can be adopted in

case the measured FIT is not acceptable.

Fig. 7.7 FIT per Mbit of PC 7447A for different values of power supply and considering the New

York City neutron flux

Fig. 7.8 FIT per Mbit of PC 7448 for different algorithms and considering the New York City

neutron flux
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7.6.3 SRAM-Based Field Programmable Gate Arrays (FPGAs)

7.6.3.1 SRAM-Based FPGA Sensitive Areas

FPGAs use a logic gate grid similar to standard gate array, but programming is done

by the customer, not by the manufacturer. FPGAs are usually programmed after

being soldered down to the circuit board. In larger FPGAs, the configuration is

volatile and must be re-loaded into the device whenever power is applied, or a

different functionality is required. In this case, the configuration is typically stored

in a SRAM memory. This memory is physically spread all over the die so that each

configuration bit is placed next to the resource it configures.

Although those devices are convenient for developers, they are not well suited for

applications devoted to operate in harsh environments. Indeed, some of the embed-

ded user logic resources (RAM, flip-flops, Look-Up Tables, etc.) are sensitive to

radiation. Moreover, the SRAM-based configuration memory is also sensitive

because it is built with standard SRAMcells. The big threat of configurationmemory

is that a SEU in those cells may provoke a fault, which will remain until the

component is re-configured. At the opposite, a fault in the user’s memory will be

temporary, an application reset is sufficient to erase it. So, when testing such a

component, special care must be brought to the configuration memory as it is several

times bigger than the sum of user’s memory resources. Thus, the SEU occurrence

probability in this memory is significantly higher than in any other memory cells.

Configuration is done by providing the FPGA an appropriate bitstream generated

by the manufacturer’s development tool software. This bitstream shall be stored in

an external non-volatile memory. It is important to note that for use in harsh

environment, this memory must be immune to radiation; otherwise, the FPGA

will not be configured properly in case upset faults occur. Moreover, the readback

function embedded in the FPGA allows reading the configuration memory content

once it is configured. During radiation ground testing, this function allows the

detection of faults in the configuration memory by comparing the bitstream after

irradiation to a reference bitstream usually called golden bitstream. It is then

possible to know the FPGA impacted resources by decoding the configuration

bitstream obtained after radiation exposure. It is important to note than not all

manufacturers provide full and detailed information for decoding the bitstreams.

7.6.3.2 Testing Procedures With Macro-Beams

Macro-beams such as heavy ions, protons, neutrons, etc., allow irradiating the

whole component die at the same time. It is thus possible to obtain the whole

component sensitivity within a few hours of test. Considering used fluxes are quite

high (between hundred and thousand particles per cm2/s) from such experiments,

it is not possible to get the relationship between the upset location and its con-

sequences at the application level. Indeed, the user has no information about the
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resource mapping in the SRAM configuration memory. The only way to deal with

this challenge is to use either heavy-ion micro-beams or laser beams.

Static Test

A static test is done in three phases. First, the FPGA must be configured without

being exposed to particle fluxes. Then, the component is left idle (being only

powered) under radiation for a certain time. This amount of time depends on the

number of upsets generated per second. Indeed, the probability of having several

upsets on the same bit, and thus not detecting them, increases drastically with the

upset number. Finally, the beam is stopped to retrieve the configuration memory in

order to compare it to the golden bitstream (Fig. 7.9).

Examples of results obtained for two SRAM-based FPGAs are given in

Figs. 7.10 and 7.11. The first figure depicts the SEL cross-section vs LET of an

Altera Stratix-II [12], while the second one depicts the SEU cross-section vs LET of

a Xilinx Virtex-II [13].

Configuration Radiation 

exposure 

Fault detection 

Fig. 7.9 SRAM-based FPGA static test procedure

Fig. 7.10 Altera Stratix-II SEL cross-section vs. LET
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Dynamic Test

A dynamic test is basically done in the same way as the static one. It also has three

phases: Configuration, exposure to radiation, and error detection. The first difference

is the fact that during radiation exposure, the FPGA is running the target application

instead of being idle. The second difference is that the application outputs are

monitored and when an error is detected, it will end the test. Similar to that in the

static test, the configuration memory is then read to detect faults (Fig. 7.12).

7.6.3.3 Laser-Beam Test Procedure

Laser beams can be used to get a very accurate mapping of the sensitive areas of the

component under test. Their single shot ability allows injecting a fault at any

Fig. 7.11 SEU cross-section vs. effective LET for Virtex-II configuration memory cells

Configuration Radiation exposure while 

application is running 

Fault detection 

Error detected on 

application outputs 

Fig. 7.12 FPGA dynamic test procedure
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application clock cycle. This type of experiment is in general devoted to test a

design critical function.

Static Test

A static test can be done in two ways, depending on the desired results type. The

FPGA memory configuration can be retrieved, either after each shoot, or after

having scanned a complete area (Fig. 7.13).

Dynamic Test

A dynamic test consists in injecting a fault at the desired chip location and clock

cycle. A full geographical and temporal SEUmapping of the application is possible,

but can be very time consuming. As an example, assuming a cycle (configuration-

application run-memory readback-fault detection) takes around 1 s, the area to be

mapped could be 1 mm2, and the laser step is 1 mm; thus, the exhaustive scan would

take almost 12 days. This corresponds to the scan for one application clock cycle,

and must be repeated for all the remaining clock cycles (Fig. 7.14).

In conclusion, SRAM-based FPGAs are complex integrated circuits, and their

current architecture makes them sensitive to natural radiation effects. However,

available test platforms allow to predict the application behavior in radiation

environments. Macro-beams provide the sensitivity of the whole device/application

couple whereas laser beams are able to give exhaustive mapping of potential critical

areas of an application. It is important to note that FPGA manufacturers do not

follow the same confidentiality policy concerning the information they provide on

their devices. Thus, deep analysis will be difficult for some parts.

Configuration Single laser shoot or multiple 

shoots + DUT displacement 

Fault detection 

Fig. 7.13 FPGA static test using a laser beam procedure

Configuration Application running Fault detection in bitstream 

& application outputs 

Laser shoot 

Fig. 7.14 FPGA dynamic test procedure
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A new emergent technology based on flash memory cells, to replace their SRAM

counterparts, might give good results in increasing the configuration memory

robustness to radiation.

7.7 HW/SW Fault Injection Method for the Prediction
of Dynamic Cross-Sections of Processor-Based
Architectures: A Case Study

The dynamic cross-section, providing the particles average number required to get

an error on an integrated circuit or system application outputs, is the final goal of the

error-rate evaluation approach. Such a measure can be obtained from accelerated

tests, but the whole process should be repeated each time the application is

modified, and thus implies consequent development cost. HW/SW fault injection

was proved being a suitable method to get dynamic cross-sections without

performing radiation ground testing, and so it constitutes a good alternative dealing

with the significant cost/effort required by such tests.

Fault injection can be applied at several levels. Software level fault-injection

requires suitable target circuit models (SPICE, HDL). Such models allow having

access to all the DUT potential target resources, which are often kept confidential

by manufacturers. Moreover, the full software fault injection method’s main draw-

back is the time required for its completion. Indeed, for a complex architecture,

several weeks may be necessary to achieve the desired number of events. On the

other hand, fault injection performed on a physical circuit can be run at the target

application with full speed, thus significantly improving performances. In this case,

the drawback is the limited access to some of potential target resources.

As most architectures are organized around processor-like devices, a generic

strategy so-called CEU (Code Emulated Upset), which allows to estimate accu-

rately the sensitivity to SEUs of any application running on such architecture, will

be detailed in the following. This method, presented for the first time in [14], is

described and then applied as a case study to a Power PC complex processor.

7.7.1 Error-Rate Prediction for an Application, a Case Study:

The PPC7448

The expected result, when estimating an application error rate, is the average number

of particles needed to get an observable application erroneous behavior. The applica-

tion error rate can be calculated as follows from a fault injection experiment:

Tinj ¼
Number of errors

Number of upsets
:

Considering the static cross-section gives the particles average number needed

to provoke one SEU in the target circuit; static cross-section multiplication by
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error rate issued from fault-injection experiments allows predicting an applica-

tion dynamic cross-section. Indeed, the dynamic cross-section, called sSEU in the

following, corresponds to the particle’s average number needed to provoke one

erroneous result in the considered application. It is clear from the previous equation

that sSEU can be predicted from the product of the error rate issued from fault

injection experiments and the static cross-section:

TSEU ¼ sstatic � Tinj ¼
Number of errors

Number of particles
:

The key point of such an approach is the simulation of upsets occurring during

the execution of the considered application, a step that can be realized in different

ways depending on the available model of the target processor. In cases where only

a hardware version and the corresponding datasheet are available, the CEU method

offers a good alternative to simulate errors induced on an application executed by a

processor, resulting from the impact of energetic particles.

The CEU approach is based on the activation, at randomly chosen instants, of

asynchronous interrupt signals which are available in most processor-like devices.

After saving the context, the execution routine associated with the selected interrupt

signal allows the modification of the content of a bit selected among those accessi-

ble through the processor’s instruction set, thus simulating a SEU occurrence. The

limitations of such a technique are related with the injection instant accuracy and

the impossibility to access the whole set of target memory cells. Indeed, a SEU may

occur at any instant, while interrupt signals are asserted once the instruction being

executed is completed.

The CEU fault injection mechanism, illustrated in Fig. 7.15, is applied through

the following steps:

l Processor Reset.
l Start program execution.
l Interrupt signal activation at a selected instant.
l Processor interrupts the main program and branches to the address where the

interrupt routine is stored.
l Interrupt routine execution provokes the selected memory cell bit-flip.
l Return to the main program.
l Resume the main program execution with a bit having a wrong value.
l End of execution. Compare the provided results with the expected ones.

Unlike radiation ground test experiments, whose cost forces shortening their

duration as much as possible and to stop them as soon as a “reasonable” number of

events are detected, the CEU method can be applied without time constraints and

thus allows injecting a very large number of SEUs. As an example, injection of

150,000 SEUs in PPC 7448 register bits required 2 days with the THESIC platform.

Obtaining the same number of events with a particle accelerator would take around

4 complete days, resulting in a very high cost (around 600 Euros/h).
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Three different types of situations were observed in the PPC 7448 as conse-

quence of the injected SEUs:

l SEU has no consequence.
l SEFI: Program sequence loss, or exception assertion.
l SEU provokes an error in output data calculated by the program.

7.7.1.1 Implementing a CEU Approach for the POWER PC 7448 Processor

THESIC þ Daughterboard for Power PC

A daughterboard allowing pigging back Power PC processors on the THESIC þ

tester [10] was developed in a way such that it can host either a PC 7447A or a PC

7448. The tester’s architecture allows significant time and effort reduction to develop

the required HW/SW when building a new daughterboard. Indeed, the design is

limited to routing the processor’s I/O to the motherboard’s connector. Daughterboard

also includes core and processor’s I/O voltage regulators. Figure 7.16 shows the

platform used to qualify the target Power PC processors under heavy ions. Those tests

are performed in a vacuum chamber and the processor’s thermal dissipation is

achieved through a copper cover connected to the board’s ground plane.

Software Developments

It is important to remind that the resources needed to provide tested processors with

a suitable analog/digital environment are in principle all present in the THESIC’s

motherboard. Thus, using THESIC for a new processor test only requires a memory

Fig. 7.15 Fault injection mechanism using interruption assertions

194 R. Velazco et al.



controller implementation in the Chipset FPGA, this is to allow the tested processor

to access its program code and data, both stored in THESIC’s embedded SRAM.

In the Power PC processor’s case, such a memory controller was written in

Verilog HDL (Hardware Description Language). A control flow checker allowing

different verification phases in the test program execution was also implemented in

the THESIC Chipset FPGA.

A computer executing a program written in C language is used to control the

Power PC during the experiment. It allows the Power PC to start the benchmark

program execution and to check the generated data while being exposed to radiation

particle flux.

Memory Controller

A memory controller module must be developed to suitably interface the DUT to

the test platform. Such a module must take in charge the memory access cycle

decoding at the address bus level. It must also share the access to the SRAM

memory between the Power PC and the computer.

Execution Flow Control

For the two test strategies (static and dynamic), the test program executed by the

target processor during its exposure to a particle beam, or during fault-injection

sessions performed by HW/SW means, can be organized in many phases, each of

them being associated with a counter implemented in the FPGA testbed. They are as

follows:

l Booting: The tested processor configuration.
l Writing: Initialization with predetermined patterns the memory elements that

must be tested.

Fig. 7.16 Power PC’s daughterboard plugged on THESIC þ tester
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l Waiting: Power PC processor exposure time to the particle beam during a static

test.
l Dumping: Writing results in the tester memory.

Figure 7.17 illustrates the different steps in a static test execution. PIO[n] signals

were implemented in the FPGA and are decoded when the processor accesses to a

particular memory area. In case of a dynamic test, which is a typical application

case execution, waiting and writing phases correspond to the calculation time

needed to execute the application under test.

At the program execution end, each counter’s content is compared to reference

values which are obtained during the program execution without exposure to

radiation. If these values are different from the expected one, a sequence-loss

error will be detected. In that case, results associated with this execution are not

exploited to avoid data misinterpretation problems. THESIC’s architecture flexi-

bility makes it possible to control a shutter (physical device allowing to stop the

particles before they reach the DUT) in order to adjust the beam fluency; a step

which is mandatory to guarantee the measured error rates validity. It is important to

note that boards used to perform complex devices radiation ground testing, are

generally based on commercially available boards developed around the tested

device, and do not offer the possibility of implementing such an adjustment.

The developed control flow execution also allows the accurate measure of the

exposure time to radiation beam, and thus to derive the exact particle fluency (flux

integrated in time) to which the studied application was exposed.

The exposure time for n executions is:

E ¼
Xn

i¼0

runningi:

The running counter in the THESIC’s memory covers result initialization time,

waiting time and writing time. To guarantee the accuracy of these estimations,

Fig. 7.17 Tested processor’s execution flow
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initialization and writing times must be negligible with respect to beam exposure

time.

The real fluency seen by the tested processor is given by:

FR ¼
F

T
� E;

where F is the fluency (flux integrated in the test time) provided by the beam

facility, while T is the total exposure time during the performed experiment. The

average flux (number of particles per units of surface and time) is adjusted by

coefficient E, in order to retrieve the number of particles to which the DUT was

exposed during the application’s execution.

Dynamic Cross-Section Measures

As stated before, in programs used to evaluate static cross-sections, the tested

processor does not perform calculations; the goal being to get the sensitivity

measurements to heavy ion effects for different memory areas accessible through

the instruction set. Results about the studied processor’s sensitivity were obtained

by performing radiation ground testing with the same particle beams used for static

tests. A realistic program, called SAC,4 devoted to the orbit calculation was exe-

cuted during this campaign. SAC aims at providing a stratospheric balloon gondola

stabilization, having as payload a telescope for the Cold Universe observation

within the submillimetric domain (wavelength comprised between 200 mm and

1.2 mm). The stabilization is ensured by a controller based on a Kalman filter,

taking into account data issued from different measures provided by sensors

(inertial computer, stellar sensor, and GPS data).

From the SAC program, an executable code executed in the THESIC platform

was obtained to get reference results. A set of data emulating the sensors’ measures

was used during the SCA program execution.

During the heavy ion tests performed in Louvain-la-Neuve HIF cyclotron, the

Power PC 7448 processor was exposed to heavy ion beams during the SCA

program execution (in a looped way). Dynamic cross-sections were measured for

two different configurations of the tested Power PC: L1 cache memory activated

and L1 cache memory deactivated.

Experimental Results

Table 7.11 summarizes the experimental results obtained as a consequence of

150.000 SEUs injected using THESICþ.

4That program, provided by CNES, is issued from the software “SCA TAFT/PRONAOS”. This

software is a System of Attitude Control (SAC) developed for CNES in the PRONAOS (PROjet

National d’AstrOnomie Submillimétrique) project frame.
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In Tables 7.12 and 7.13 are confronted measures and error-rate predictions

issued from fault injections performed following the CEU approach on the PPC

7448 for the two cache memory configurations.

These results clearly show the pertinence of the adopted method to predict

application error-rates, even when executed by advanced processors having com-

plex architectures including cache memories and parallel execution of instructions.

Error-Rate Prediction from Different Orbits

Table 7.14 summarizes the SEU error-rate results in orbit for the L1 cache and the

registers of the PC 7448 due to heavy ions, calculated5 for GEO, Polar and ISS

(International Space Station) orbits. These calculations were performed with the

software OMERE6 using the CREME86 model with M ¼ 3 configuration (90%

worst case).

It is important to note that the “TOTAL” lines do not take into account the

L2 cache of 8 Mbits, which was not considered during radiation ground test

experiments.

From these results, it is clear that the PC 7448 processor presents a weak error

rate for the different considered orbits:

l GEO orbit: around 1 error per month
l Polar orbit: about 1 error every 2 months
l ISS orbit: around 1 error every 2 years

Table 7.11 Error rates obtained as the consequence of 150,000 SEUs

injected using THESICþ

Type

Program sequence loss 2.2%

Exception 0.9%

Error observed 80%

Corrected results 16.9%

Table 7.12 Predictions vs. measures (cache memory is disabled)

Ions Predicted sSEU Measured sSEU

Argon 1.96E�06 1.84E�06

Krypton 3.82E�06 3.56E�06

Table 7.13 Predictions vs. measures (cache memory enabled)

Ions Predicted sSEU Measured sSEU

Argon 2,12E�05 2.04E�05

Krypton 3.24E�05 3.17E�05

5By the French Space Agency (CNES).
6Version 3.1.2.0 by TRAD-CNES.
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Heavy Ion Test Conclusions

From the presented results, it may be concluded that the PC 7448 processor is not

sensitive to latchups events, and has a weak sensitivity to upsets (except the L2

cache which was not tested), and thus it can be a suitable candidate for space

applications needing a huge calculation power. Nevertheless, it is not advised to use

it for critical functions or in functions which can integrate hardware and/or software

mechanisms to detect, or detect and correct errors. As an example of suitable

applications for the PC 7448, it can be mentioned intensive data processing in

satellite’s payload.

7.8 Conclusions

This chapter dealt with the application of an approach to complex integrated

devices to predict error rates due to soft-errors induced by ionizing radiation. It

combines the intrinsic sensitivity to soft errors of the tested device issued from

radiation ground testing performed with suitable particle accelerator facilities with

results issued from soft-errors fault injection experiments performed by hardware/

software means by using suitable test platforms.

Such an approach allows in dealing with bit flips that occur in any memory cell

of an advanced processor as long that they are accessible through the instruction set.

In such devices, the huge sensitive area corresponding to register files, cache

memories, and any other memory cells accessible by means of the instruction set

makes the predictions based on the presented approach particularly accurate.

Table 7.14 PC 7448 Predicted error rate for different orbits

Number of bits Errors/bit/day Errors/device/day Orbits

L1 cache 589,824 5.50E�08 3.24E�02 GEO (35,870 km)

GP registers 1,024 7.05E�08 7.22E�05

V registers 4,096 1.30E�08 5.32E�05

S registers 512 4.41E�08 2.26E�05

SP registers 3,264 2.37E�07 7.74E�04

Total 598,720 4.20E�07 3.34E�02

L1 cache 589,824 2.56E�08 1.51E�02 LEO1 Pol

(98�, 800 km,

800 km)

GP registers 1,024 3.20E�08 3.28E�05

V registers 4,096 5.14E�09 2.11E�05

S registers 512 1.17E�08 5.99E�06

SP registers 3,264 1.36E�07 4.44E�04

Total 598,720 2.10E�07 1.56E�02

L1 cache 589,824 2.47E�09 1.46E�03 LEO2 ISS (51.5�,

400 km,

400 km)

GP registers 1,024 4.79E�09 4.90E�06

V registers 4,096 6.77E�10 2.77E�06

S registers 512 1.46E�09 7.48E�07

SP registers 3,264 2.20E�08 7.18E�05

Total 598,720 3.14E�08 1.54E�03
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The proposed approach was applied to the Power PC 7448 processor, one of the

most recent commercial 32-bits processors having a superscalar RISC architecture.

Obtained results proved the validity of the application error-rate prediction validity.

Those predictions were proved to be very close from error rates measured in a

cyclotron facility, while the studied processor was executing the selected applica-

tion: a flight software devoted to a satellite orbital control.

A current trend to get an objective feedback about advanced integrated devices

sensitivity to the effects of energetic particles present in the Earth’s atmosphere, is to

perform real life experiments in which large sets of target devices are monitored for a

long period of time (months, years, etc.). This gives a chance to get potential statistics

about error rates induced by atmospheric neutrons. In order to decrease the time

required to get significant results, such experiments can either be installed in high

altitude sites, or be embedded in stratospheric balloon payloads, or even installed in

deep underground sites in order to eliminate SEUs due to alpha particles and only

keep the ones induced by neutrons. A representative experiment is the Rosetta project

[15, 16], which deals with different generation of SRAM-based FPGAs.
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Chapter 8

Circuit-Level Soft-Error Mitigation

Michael Nicolaidis

In nanometric technologies, circuits are increasingly sensitive to various kinds of

perturbations. Soft errors, a concern in the past for space applications, became a

reliability issue at ground level. Alpha particles and atmospheric neutrons induce

single-event upsets (SEUs) affecting memory cells, latches, and flip-flops, and

single-event transients (SETs) initiated in the combinational logic and captured

by the associated latches and flip-flops. To face this challenge, a designer must

dispose a variety of soft-error mitigation schemes adapted to various circuit struc-

tures, design architectures, and design constraints. In this chapter, we describe

several SEU and SET mitigation schemes that could help designers to meet their

reliability constraints.

8.1 Introduction

In the past, progress in VLSI technologies improved dramatically the reliability of

electronic components, restricting the use of fault tolerance in a small number of

application domains. We recently reached a point where these trends are reversed.

Drastic device shrinking, power supply reduction, and increasing operating speeds

that accompanied the technological evolution to nanometric technologies have

drastically reduced the reliability of deep submicron ICs. A significant problem is

related to soft errors induced, on the one hand, by alpha particles produced by

radioactive isotope traces found in packaging, bonding, and die materials and, on

the other hand, by atmospheric neutrons created by the interaction of cosmic rays

with the atmosphere [1]. While alpha particles are electrically charged and create
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a track of electron–hole pairs when they pass through an IC, neutrons are electri-

cally neutral and create soft errors in an indirect manner: energetic neutrons may

interact with silicon, oxygen, or other atoms of the chip to create electrically

charged secondary particles able to induce soft errors, as described in Chaps. 1

and 2. It is to note that the interaction can create numerous secondary particles that

could simultaneously affect several circuit nodes. Multiple nodes can also be

affected by a single particle, as technology shrinking reduces the size of cells and

bring sensitive nodes closer to each other. Thermal neutrons may also represent a

major source of soft errors, but this source is significantly reduced by BPSG

removal in recent technologies [2].

When a sensitive node, typically the drain of an off transistor, is in the proximity

of the ionization track of an electrically charged particle, it collects a significant part

of carriers (holes or electrons), resulting in a transient current pulse on this node.

The effect of this pulse depends on the type of the cell to which the stricken node

belongs. In a storage cell (e.g., a memory cell, a latch, or a flip-flop), a sufficiently

strong pulse will reverse the cell state, resulting in a single-event upset (SEU). This

is the most typical case of soft errors. When the collecting node belongs to a logic

gate, the transient current pulse is transformed to a voltage pulse (single-event

transient, SET), whose characteristics depend on the characteristics of the current

pulse and on the electrical characteristics of the collecting node (load, strength of

the transistors driving the node). Then, if the duration of the voltage pulse is larger

than the logic transition time of the subsequent gates, it can be propagated through

one or more paths of the combinational logic to reach some latches or flip-flops.

Such a path is composed of a succession of input–output pairs of a set of gates

connected in series. The pulse propagation is conditioned by the state of the

combinational logic. Indeed, a controlling value on one input of a gate (e.g.,

a 0 on a NAND input or a 1 on a NOR input) will block the propagation of an

error from another input of the gate to the gate output. Thus, a transient pulse can be

propagated only through a sensitized path, that is, through a path such that all the

inputs of the gates traversed by the path, excepting their inputs belonging to the path

have non-controlling values. Finally, when the pulse reaches a latch or a flip-flop, it

will be captured to produce a soft error only if it overlaps with the clock event.

These conditions make soft errors induced by SETs more rare than SEUs induced

when a particle strikes a node of a storage cell. However, the situation is changing

for two reasons, as the logic-transition time of logic gates becomes extremely short,

the durations of transient pulses become larger than this time and they are no more

filtered by the electrical characteristics of the gates [3–5]. In addition, as the clock

frequencies increase, the probability that the transient pulse overlaps with the clock

event also increases [3–5]. Finally, in many situations, the path sensitization

condition may not have a significant impact on reducing circuit sensitivity to

SEUs, since a node of a combinational circuit is usually connected to the circuit

outputs through several paths. So, the probability that none of these paths is

sensitized can be low. Also, pulse propagation through several paths may result

on several pulses that reach several circuit outputs at different times. This increases
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the probability that at least one of these pulses overlaps with the clock event when

it reaches a latch/flip-flop.

The soft-error rate (SER) produced by these effects may exceed the failure in

time (FIT) specifications in various application domains. In such applications, soft-

error mitigation schemes should be employed for memories and eventually for

logic, while the continuous technological scaling also introduces new reliability

issues due to PVT (power-voltage-process) variability, increasing sensitivity to

EMI (electromagnetic interferences), and accelerating aging. The necessity for

nanometric technologies (below 100 nm) and for low supply voltages, to use error

correcting codes (ECC) in memories, hardened latches and (flip-flops and concur-

rent error detection and retry in logic, in order to mitigate soft errors and other

issues making devices to behave statistically, and the increasing needs for such

solutions as we move below 30–50 nm, was predicted more than one decade ago

[6–10].

Soft-error mitigation techniques include approaches using process modifica-

tions, such as for instance the removal of BPSG for mitigating soft errors produced

by thermal neutrons [1, 2]; approaches adding extra process steps, such as for

instance the addition of DRAM-type capacitance to the nodes of memory or latch

cells [11]; and design-based approaches. In this chapter, we only address design

solutions. These solutions include electrical-level, gate-level, and architectural-

level approaches.

Error correcting codes is the conventional solution used to reduce SER in

memories. It may incur a moderate area, power and speed penalties acceptable by

most designers. But in some designs, the speed and/or area penalty incurred by ECC

may be unacceptable. In addition, in some types of memories, ECC may be inap-

plicable or may incur very high cost. Duplication and comparison or triple modular

redundancy (TMR) and majority voting are the most commonly used solutions for

reducing SER induced by SEUs and SETs in logic parts. But they incur excessive

area and power penalties, making them unacceptable in most designs.

In this paper, we discuss various alternative design solutions for soft-error

mitigation, aimed to cope with some shortcomings of conventional solutions.

8.2 Design for Soft-Error Mitigation in Memories

Memories represent the largest parts of modern designs. In addition, they are

more sensitive to ionizing particles than logic, since they are designed to reach

the highest possible density. As a matter of fact, the SER of modern designs is

dominated by the SER of their memories. Therefore, protecting memories is the

first priority in designs requiring SER reduction. While permanent faults in mem-

ories can be fixed by various Built-In Self-Repair (BISR) techniques (see for

instance [12]), this not possible for soft errors. For these faults, on-line fault

masking approaches are needed.
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8.2.1 Single-Error Correcting Double-Error Detecting Codes

Various error detecting and error correcting codes have been developed for mem-

ories. The most commonly used code is the Hamming code [101]. This code is able

to correct a single error and also detect double errors if it is extended with an

additional parity bit. To encode a set of information bits (to be also referred as data

bits), this code uses r check bits, where r is the smaller integer verifying the relation

r � log2ðk þ r þ 1Þd e, with k the number of information (data) bits and n ¼ k þ r

the total number of bits of the code. For instance, for 8 information bits, we need 4

check bits and for 16 information bits, we need 5 check bits. The code locates any

single error by means of a syndrome that encodes the error position. For doing so, a

word comporting information bits and check bits is created. In this word, each bit

position j, such that j is a power of 2, is occupied by a check bit, and the other bit

positions are occupied by the information bits. For instance, for 8 information bits

(D7, D6, D5, D4, D3, D2, D1, D0), 4 check bits C3, C2, C1, C0 are added. The code

words are formed as (B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2, B1) ¼ (D7, D6,D5,

D4, C3, D3, D2, D1, C2, D0, C1, C0). That is, C0 occupies position B20(i.e., B1), C1

occupies position B21 (i.e., B2), C2 occupies position B22 (i.e., B4), and C3 occupies

position B23 (i.e., B8).

The check bits are computed as follows: each bit position j in the code word

corresponding to an information bit (i.e., j is not a power of 2) is expressed in binary

code, that is, j ¼ ar�1; j2
r�1 þ ar�2; j2

r�2 þ � � � þ a1; j2
1 þ a0; j2

0, where the term ai,j

takes the value 0 or 1 (for instance, 9 ¼ a3;92
3 þ a2;92

2 þ a1;92
1 þ a0;92

0 ¼

1:23 þ 0:22 þ 0:21 þ 1:20, thus a3,9 ¼ 1, a2,92 ¼ 0, a1,9 ¼ 0, a0,9 ¼ 1). Then, the

check bit B2i ¼ Ci is computed as the sum modulo 2 (XOR) of the information bits

Bj for all j, such that the coefficient ai, j in the above expressions is 1. That is,

B2i ¼ Ci ¼
X

kþr

j¼1; j6¼2q

ai; jBj; 8i 2 f0; 1; . . . ; r � 1g; (8.1)

For instance, for the case of 8 information bits considered above, we find

C3 ¼ B23 ¼ 1 � B12 � 1 � B11 � 1 � B10 � 1 � B9 � 0 � B7 � 0 � B6 � 0 � B5, 0 � B3 ¼
B12 � B11 � B10 � B9, since we find a3,12 ¼ 1, a3,11 ¼ 1, a3,10 ¼ 1, a3,9 ¼ 1,

a3,7 ¼ 1, a3,6 ¼ 0, a3,5 ¼ 0, a3,3 ¼ 0, as the binary representations of 12, 11, 10,

and 9 contain the term 23, while the binary representations of 7, 6, 5, and 3 do not

contain it.

Similarly, we can compute the other check bits, resulting in the relationships:

B1 ¼ C0 ¼ B3 � B5 � B7 � B9 � B11 ¼ D0 � D1 � D3 � D4 � D6;

B2 ¼ C1 ¼ B3 � B6 � B7 � B10 � B11 ¼ D0 � D2 � D3 � D5 � D6;

B4 ¼ C2 ¼ B5 � B6 � B7 � B12 ¼ D1 � D2 � D3 � D7;

B8 ¼ C3 ¼ B9 � B10 � B11 � B12 ¼ D4 � D5 � D6 � D7:

(8.2)
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Let (B0
rþk; . . . ;B

0
j; . . . ;B

0
2;B

0
1) be the word (Brþk; . . . ;Bj; . . . ;B2;B1) received

after transmission or read after storage in a memory. This word may contain errors.

The correction of errors in (B0
rþk; . . . ;B

0
j; . . . ;B

0
2;B

0
1) is performed by generating

a syndrome comporting r bits. To compute this syndrome, we first use (8.1) to

generate the check bits from the data bits B0
j (i.e., from the bits B0

j with j 6¼ 2i), and

then we bit-wise XOR each of the newly computed check bit B00
2i

with the

corresponding bit B0
2i
. Thus, the bit Si of the syndrome is computed as

Si ¼ B0
2i �

X

kþr

j¼1; j 6¼2q

ai; jB
0
j ¼

X

kþr

j¼1

ai; jB
0
j; 8i 2 f0; 1; . . . ; r � 1g: (8.3)

If there is a single error, then B0
j ¼ Bj for each bit B0

j, excepting for the bit B0
m

affected by the error. For this bit, it will be B0
m ¼ Bm � 1. By using these relation-

ships to substitute the bits B0
j in (8.3) and then by substituting the bits B2i from

(8.1), we find Si ¼ ai;m. As ai;j are the coefficients of the binary representation of

position j, the relation Si ¼ ai;m shows that the r-bits syndrome indicates in binary

code the faulty position m. Thus, the error is corrected by inverting the bit B0
m,

which in this way recovers its correct value Bm. If there is no error in the bits B0
j

(i.e., B0
j ¼ Bj for all j), then all bits Si of the syndrome will be 0, indicating an

error-free word.

Relationships (8.1) and (8.3) lead on a memory error correction architecture

shown in Fig. 8.1. On the write side, the check bits are generated from the data to

be written in the memory. Once the check bits are generated, both data and check bits

are written in the memory. On the read side, new check bits are generated from the

read data. The new check bits are bit-wise XORed (XOR1 block) with the read check

bits, to compute the syndrome. The r-bit syndrome encoded in binary is mapped into

an n-bit syndrome encoded in the 1-out-of-n code (1-hot code). This mapping is

realized by the block referred in Fig. 8.1 as 1-hot (a decoder circuit similar to the

address decoders of memories). In case of a single error, the unique 1 in the 1-hot

syndrome indicates the erroneous bit position. Thus, the 1-hot syndrome is bit-wise

XORed with the code word composed of the read data and the read check bits, to

provide the corrected data and check bits on the output of the XOR2 block.

Relationships (8.1) and (8.3) can be expressed in a more compact form by means

of parity matrixes. For computing the r Hamming check bits from k data bits, we
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Fig. 8.1 Memory architecture for Hamming error correction
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will use the relationship CT ¼ PcDT, where C and D are the row matrixes of check

bits and data bits C ¼ ½Cr�1; . . . ;C1;C0�, D ¼ ½Dk�1; . . . ;D1;D0�; C
T and DT are

the transpose of C and D; and Pc a k � r parity matrix, whose terms are the k � r
coefficients ai;j used in (8.1). More precisely, from (8.1) we can find that at each

data bit Bj ( j 6¼ 2q) corresponds a column of matrix Pc. The terms of this column are

the r coefficients ai; j of the binary representation of j. All sums involved in the

relationship CT ¼ PcDT are considered modulo 2. The parity matrix Pc for gen-

erating the Hamming check bits corresponding to 8 information bits can be obtained

from (8.2):

B12 B11 B10 B9 B7 B6 B5 B3

0 1 0 1 1 0 1 1

0 1 1 0 1 1 0 1

1 0 0 0 1 1 1 0

1 1 1 1 0 0 0 0

0

B

B

B

@

1

C

C

C

A

:

For easier reference, we show on the top of each column the corresponding bit

Bj. We easily check that the terms of column labeled by Bj are the coefficients ai;j of

the binary representation of j.

For computing the r bits composing the Hamming syndrome from the k data

bits and the r check bits, we will use the relationship ST ¼ PsBT, with

S ¼ ½Sr�1; . . . ; S1; S0�, B ¼ ½Bkþr; . . . ;B2;B1�, S
T and BT the transpose of S and B,

and Ps a (k + r)xr parity matrix Ps (often referred in the literature as H matrix),

whose terms are the (k + r)r coefficients ai;j used in (8.3). All sums involved in the

relationship ST ¼ PsBT are considered modulo 2. Matrix Ps is easily determined by

adding three new columns in matrix Pc. Each of these columns is formed by the r

coefficients ai;2q of the binary representation of the position 2q of check bit B2q .

Obviously, each of these columns contains exactly one 1 (placed in the q + 1 row).

For k ¼ 8, the parity matrix Ps (the H matrix) is obtained from the matrix Pc by

adding r ¼ 4 columns (shown in bold characters) corresponding to the coefficients

of positions j ¼ 2q. The bit Bj is placed on the top of the corresponding column j for

easier reference:

B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1

0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0
1 0 0 0 0 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0

0

B

B

@

1

C

C

A

:

8.2.1.1 Detection of Double Errors

If there is a double error, then B0
j ¼ Bj for each bit B

0
j, excepting for two bits B

0
p and

B0
q of two different positions p and q affected by the error. For these bits, it will be
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B0
p ¼ Bp � 1, B0

q ¼ Bq � 1. By using these relationships to substitute the bits B0
j in

(8.3) and then by substituting the bits B2i from (8.1), we find Si ¼ ai;q � ai;r. Since

q 6¼ p and ai,q are the coefficients of the binary representation of q and ai,p are the

coefficients of the binary representation of p, ai,q and ai,p cannot be equal for all i.

Thus, S0i cannot be 0 for all i. As a consequence under any double error, the

syndrome is different than zero and the error is detected. However, a syndrome

different than zero will activate an error correction. But this action will give an

incorrect result, as the code is not able to correct double errors. By adding a bit that

computes the parity of the data and check bits, it is possible to distinguish single

from double errors affecting the data and/or the check bits. This is because the

parity bit will detect the single errors but not the double ones. The Hamming code

extended with a parity bit is known as modified Hamming code.

8.2.1.2 Other SEC-DED Codes

The Hamming code has a unique characteristic: its syndrome indicates in binary

code the position of the erroneous bit. However, its capability to correct single

errors is not unique. Indeed, any parity code using an Hmatrix (the parity matrix Ps

computing its syndrome) with distinct columns corrects single errors. This is

because the bit i of the syndrome Sq corresponding to an error affecting the bit

position q is Si;q ¼ ai;q, where ai;q is the ith row element of column q of the H

matrix. That is, the syndrome Sq corresponding to an error affecting the bit position

q is equal to the column q of the H matrix. Thus, a parity matrix with distinct

columns produces a unique syndrome for each single error.

By carefully designing the H matrix, we can optimize the code with respect to

area, power, and speed. Such codes were proposed by Hsiao [13]. The parity matrix

Pc generating the check bits for a Hsiao code has the following properties:

1. The columns of the matrix are distinct. This guarantees the single-error correction

capability of the code.

2. Every column contains an odd number of 1s. This guarantees that the code has

also double-error detecting capabilities. Indeed, this property guarantees that the

syndrome of any single error has an odd number of 1s (the syndromes for single

errors are done by the columns of the matrix). The syndrome for a double error is

equal to the bit-wise XOR of the syndromes of the single errors composing it.

Thus, it will contain an even number of 1s, allowing the distinction of double

from single errors.

3. The total number of 1s in the matrix reaches is minimized. This property

minimizes the number of XOR gates in the encoder and the decoder, minimizing

area and power.

4. The difference of the number of 1s in any two rows is not greater than 1. The

number of 1s in each row of the parity matrix Pc determines the number of inputs

of the XOR tree generating the check bits. Thus, the delay of the encoder and the

decoder is determined by the row comprising the maximum number of 1s.
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Therefore, property (4) minimizes this maximum number as it evenly distributes

the number of 1s over the rows. The work by Hsiao [13] also addresses the

problem of triple-error miscorrection and quadruple-error detection, showing

that the new codes behave better that the modified Hamming code. Reducing the

miscorrection probability of triple errors is specifically addressed in [14]. The

proposed codes minimize the triple-error miscorrection probability for the same

number of check bits as the Hamming and Hsiao codes. They also feature

adjacent double bit error correction capabilities.

While numerous ECC with multiple-error correction capabilities exist, the

incurred area, speed and power penalties for implementing them, especially in

embedded RAMS, can be quite high. As a matter of fact, codes enabling single-

error correction, like Hamming or Hsiao codes, are the most used in practice for

protecting memories. Such codes will be sufficient in most practical situations,

since the probability that a single-event flips several cells is low. However, as we

move to higher device densities, the probability of this situation increases, since

memory cells are closer to each other and can be flipped by a single ionizing

particle. In addition, the interaction of a neutron with silicon, oxygen, or another

atom usually creates several secondary particles which may also induce multi-cell

upsets. Thus, in designs targeting quite high levels of reliability, protection against

multi-cell upsets has to be considered carefully. In such designs, it is still possible

to use single-error correcting codes, but we must select memories using a large

column multiplexing. Thus, by interleaving cells of several words in the RAM row,

we increase the distance between cells of the same word and prevent multi-cell

upsets affecting more than one bit in the same memory word.

8.2.1.3 Error Detection Only

The cheapest solution for protecting a memory is to add a parity bit to each memory

word. During each write operation, a parity generator computes the parity bit of the

data to be written. The data together with the computed parity bit are written in the

memory. If a particle strike alters the state of one bit of a memory word, the error is

discovered by checking the parity code during each read operation. Because this

scheme detects but does not fix the error, it must be combined with a system-level

approach for error recovery. This reduces the interest of the scheme, since it

increases the complexity of the system design. However, in some situations, error

recovery can be very simple. For instance, if the memory is an instruction cache or a

write-through data cache, all the data in the cache can also be found in the main

memory. Thus, the erroneous data can be recovered from this memory by simply

activating the miss signal of the cache each time the parity checker detects an error.

But, in situations where error recovery is more complex, it may be preferable to

protect the memory by means of codes enabling error correction.

Coming back to the single-error correcting codes, for protecting a memory

storing words of k data bits, these codes add r check bits, where r is the smallest
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integer verifying the relation r � log2ðk þ r þ 1Þ. It is obvious that these codes will
incur high area and power penalties for memories with short words, and moderate

or low area and power penalties for memories with larger words. For instance, for

4-bit word length, the area and power penalty is roughly 75%. This goes down

to 50% for 8-bit word length, 31% for 16-bit word length, 19% for 32-bit word

length, and 11% for 64-bit word length. This is without counting the parity bit for

distinguishing single from double errors.

From the above discussion, we observe that single-error correcting codes are

very convenient for modern designs using large data widths, since their cost for

large word widths becomes moderate. However, some other shortcomings may

make their use problematic. The first one is the speed penalty introduced by the

circuitry performing check-bit computation during a write operation and error

correction during a read operation. This penalty increases as the word width

increases and can be a real problem, especially to those memories where ECC is

most suitable, since it introduces low area and power penalty. Solutions allowing

coping with this problem are therefore mandatory.

8.2.2 Removing Speed Penalty in Memories Protected by ECC

ECC introduces extra delays:

l In the path of write data due to the circuitry used to compute the check bits
l In the path of read data due to the circuitry used to compute the check bits and

correct the error in the read data

It may be suitable in a design to remove the extra delay from one or both of these

paths.

Figure 8.2 depicts the block diagram of an implementation eliminating extra

delay in the path of the write data [15]. As shown in this figure, the data bits and the

check bits are stored in two separate memories (data-memory and code-memory).

We can see in the figure the block generating the check bits from the data bits to be

written in the data-memory, as well as the block generating the check bits from the
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data bits read from the data-memory. The later check bits are bit-wise XORed with

the check bits read from the code-memory by a stage of XOR gates (XOR1), which

produces the error syndrome. This syndrome indicates the position of the erroneous

bit in a binary-code form. A combinational block transforms this form into a 1-hot

code (1-hot block). Finally, a second block of XOR gates (XOR2) bit-wise XORs

the 1-hot form of the syndrome with the data bits read from the data-memory and

the check bits read from the code-memory to correct eventual errors affecting these

bits. In this scheme, the data bits are written in the data-memory as soon as they are

ready. Thus, the frequency of the clock signal Ck is the same as that in the case of a

system which does not implement ECC. This way, the speed penalty on the write

operations is eliminated. However, an extra delay is added on the inputs of the code-

memory by the code generation block. To manage this delay, the code-memory uses

a clock signal Ck + d, which has the same frequency as the signal Ck, but it is

delayed with respect to this signal by a delay d equal to the delay of the code

generation block. As a matter of fact, the check bits are ready when the signal

Ck + d enables writing these check bits in the code-memory. But, since the signal

Ck + d enables both the write and the read operations from the code-memory, then,

during a read operation, the check bits will be read with a delay dwith respect to the

data bits read from the data-memory. However, this delay does not increase the

delay of the error correction process, because the check bits read from the code-

memory are applied directly to the XOR block, while the data bits read from the

data-memory have to traverse the code generation block, which has a delay equal to

d (same as the code generation block used in the write side).

The delayed clock signal Ck + d can be generated locally, by adding a delay

element on the Ck signal of the data-memory. This local generation minimizes

skews between the clock signals of the data-memory and the code-memory. Careful

implementation of the delay element will consider worst-case delay of the code-

generation block as well as best-case (minimum) delay of this element. Another

possibility is to use a single clock signal for both memories, but use one edge of this

signal (e.g., the rising edge) as the active edge for the data-memory, and its second

edge (e.g., the falling edge) as the active edge for the code-memory. This will work

if the delay of the code generation block does not exceed the time interval that

separates these edges. From the synchronization point of view, this approach is

similar to the time redundancy approach using duplicated flip-flops with shifted

clocks (see Sect. 8.2.3, Fig. 8.13). For the same reasons as the ones discussed in

Sect. 8.2.3, the code generation block may by padded to guarantee that no path

between FF1 and Code-memory has delay lower than d.

Another implementation consists of adding a pipe-line stage in the code genera-

tion block. With this solution, the operations in the check-memory will be per-

formed one clock cycle later than in the data-memory. This solution will work if the

delay of the code generation block does not exceed one clock cycle. If this delay is

larger than the clock cycle, more pipe-line stages are added. This means that a write

in the code-memory will be performed more than one clock cycle after a write in the

data-memory. This large delay is balanced by the delay of the code generation

block placed on the read data, since, in this block, a similar number of pipe-line
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stages are added. Long delays in the later block will be handled by the scheme that

removes speed penalty on the read data, as described below.

Figure 8.3 depicts the block diagram of a system where the data are read from a

memory pass through a combinational logic block (Logic1) and are stored in a stage

of latches/flip-flops (FF1). The block Logic1 can eventually be empty. This corre-

sponds to the case where the data read from the memory are stored directly in the

FF1 stage of flip-flops. In this figure, the memory is not protected by an ECC. If

ECC is used, the error detection and correction circuitry will be placed between the

memory and the combinational block Logic1, increasing significantly the signal

delay and decreasing accordingly the clock frequency.

In many designs, it may be required to maintain the clock frequency of the initial

(unprotected) design. For doing so, one solution consists of adding a pipe-line stage

(i.e., a stage of flip-flops) between the memory and the flip-flops-stage FF1 in

Fig. 8.3. This solution could reach the desirable clock frequency if the delay of

the detection and correction logic does not exceed the clock cycle. But the system

performance will still be impacted, as the data read from the memory will reach the

flip-flops-stage FF1 one clock cycle later than in the unprotected design. This may

not be desirable in many designs.

A second solution is based on the observation that generating an error detection

signal is faster than correcting the error. Based on this observation, the clock

frequency can be determined to account only for the delay of the error detection

signal. The data read from the memory are supplied to the system through a MUX.

The first inputs of the MUX come directly from the memory and the second inputs

from the error correction block. In error-free operation, the first inputs of the MUX

are supplied to the system. When the error detection signal detects an error, the

system is halted for one clock cycle to provide some extra time for performing

the error correction. In the next cycle, the second inputs of the MUX are supplied to

the system. While this solution reduces the speed penalty, the designer may yet not

achieve its target speed due to the delay added by the error detection signal.

In processor-based systems, error recovery can be implemented at architectural

level. In this case, the ECC can be checked in parallel with the operation of the

pipeline, avoiding speed penalty related to error detection and correction. Then, in

the absence of errors, the ECC implementation will not affect the system speed.

Thus, the system operation will be delayed only when an error is detected, and the

recovery mechanism is activated to resume operation after error correction.

Another scheme [15] implemented at circuit level is able to eliminate all the

delays from the read port of the memory (error detection, code generation, and error
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unprotected memory
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correction delays). This scheme is applicable in any kind of circuits, that is, even if

the logic interacting with the memory is not a processor. It is illustrated in Fig. 8.4.

This figure corresponds to the design of Fig. 8.3, but considers that the memory is

protected by an ECC. For easier illustration, the detection and correction blocks are

shown to be distinct, but in reality they share the code generation block and the

XOR1 block. The idea here is to supply, through a MUX, the data to the system as

soon as they are read from the memory. Thus, we can use a clock period duration

that does not account for the error detection and error correction delays. In this case,

the system will work properly as far as no errors are present in the data read from

the memory. During this time, the MUX supplies to the system the data coming

directly from the memory. But, when an error is present in the read-data, it is

propagated and contaminates the system before the error detection signal indicates

its presence. In this case, when the error detection signal is activated, it activates

during the next clock cycle the hold signal of all the latches of the system but

Latch1. It also enables the MUX to supply to the system the data coming from the

error correction block. Thus, during one clock cycle all the latches but Latch1 are

hold, maintaining their previous state, while Latch1 is decontaminated during the

same cycle, since it receives the corrected data. The system restarts from a correct

state on the next clock cycle. In the above, we consider that the erroneous data

propagate to a single stage of latches (Latch1). But if the clock is very fast and/or

the data width is large (resulting in large delay for the detection block), and/or the

system is large (long interconnections for distributing the hold signal), and/or the

code is complex, it may take more than one clock cycle for detecting the error and

holding the system latches. In such cases, the erroneous data will be propagated in

more than one pipe-line stages before the system latches are hold and the decon-

tamination process is activated. To handle this case, the detection and correction

blocks are pipelined to make them compatible with the clock cycle. The number of

pipe-line stages used in the detection block also accounts for the delay of the

interconnections that distribute the hold signal along the circuit. Then, as described

in [15], the decontamination process will take several clock cycles (as many as the

number of contaminated pipe-line stages). In addition, the number of cycles during

which the latches are hold is variable. For a given latch, this number is equal to the

number of pipe-line stages that separate this latch-stage from the memory.
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Fig. 8.4 Elimination of error detection and correction delays
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The case where the logic block placed between the memory and Latch1 receives

inputs from other circuits in addition to the read data is also treated in [15].

The implementations shown in Fig. 8.2 for eliminating speed penalty on the

write side of the memory and in Fig. 8.4 for eliminating speed penalty from the read

side were experimented over a telecoms design performing orthogonal frequency

division multiplexing (OFDM).1 Table 8.1 presents the results. Column 1 presents

the different codes that were evaluated: Hamming (22, 16), Hsiao (22, 16), BCH

(31, 16, 3), RS (56, 16, 17), and RS (20, 8, 17), where the third parameter in BCH

(31, 16, 3), RS (56, 16, 17), and RS (20, 8, 17) gives the number of correctable

bits, not the number of correctable symbols. Column 2 in the table presents the

maximum operating frequency obtained with the standard implementation of these

codes, and column 3 the maximum operating frequency obtained with the new

implementation. Columns 4 and 5 present the extra area and extra power required

by the new implementation in comparison with the standard implementation. In all

cases, the frequency allowed by the new implementation is equal to 278MHz, which

is the frequency of the unprotected OFDM circuit (no ECC for memories). We

observe drastic speed improvements with respect to the standard code implemen-

tations (40% for Hamming, 42% for HSIAO, and up to 329% for Reed–Solomon

(56, 16, 17), while the area and power penalties with respect to the same imple-

mentations are low. Note also that for the Hamming and HSIAO codes, the

erroneous data contaminate one flip-flop level before error detection and activation

of the hold signal. Thus, we used one clock cycle for performing decontamination.

For BCH (31, 16, 3) and RS (20, 8, 4), the erroneous data contaminate two flip-flop

levels before the activation of the hold signal. Thus, we used two clock cycles for

performing decontamination. Finally, for RS (56, 16, 17), the erroneous data

contaminate three flip-flop levels before the activation of the hold signal. Thus,

we used three clock cycles for performing decontamination. In addition, for this

code, error correction delay requires inserting one wait cycle before starting decon-

tamination. This means that at each error detection, computations will take one,

two, or four extra clock cycles. However, this represents insignificant performance

penalty, as error occurrences are rare (MTBF of several weeks, months, or years

according to the system complexity). Thus, performance penalty is insignificant

Table 8.1 Elimination of error detection and correction delays in an OFDM circuit

OFDM design Fr standard (MHz) Fr new (MHz) Area new (%) Power new (%)

Hamming (22, 16) 198 278 +2.64 +6.01

Hsiao (22, 16) 196 278 +2.69 +3.62

BCH (31, 16, 3) 151 278 +2.15 +9.04

RS (56, 16, 17) 64.7 278 +2.24 +8.27

RS (20, 8, 4) 171 278 +1.91 +6.75

1The implementation of the circuit and the evaluation of the technique are done by Thierry

Bonnoit, Ph.D. student at TIMA lab.
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even for complex codes like BCH [102, 103] or Reed–Solomon [20]. Such codes gain

interest as multiple-cell upsets (MCUs) become increasingly frequent and affect

increasingly distant memory cells, making increasingly difficult to handle them by

column interleaving. Furthermore in recent memory designs (e.g., 8-bit SRAM cells)

used to cope with process variability, interleaving is not possible.

8.2.3 ECC Versus Non-Standard Memories

The above discussions consider memories performing read and write operation in

the conventional manner. Implementing ECC in some memories performing read

and write operations in non-conventional manner, such as memories with maskable

operations and content addressable memories (CAMs), can be more difficult.

In a memory allowing maskable operations, some write operations will write

data on all bits of the word selected by the current memory address, but some other

writes may write data only on a subset of bits of the memory word. This subset of

bits is determined by setting the bits of a mask. When a subset of bits of a word is

written, the contents of the remaining bits are unknown. Thus, it is not possible to

compute the new check bits for this word [16]. To cope with this problem, several

solutions are possible [16].

The first one consists of coding separately several subsets of the bits of each

word. This is possible because usually the maskable writes are not performed over

any random collection of bits of a word. For instance, for a memory using 64-bit

words, the word can be divided into eight fields of 8 bits and the maskable writes are

performed over one of these fields. In this example, instead of implementing a

single code for the whole word, we can implement one code for each one of the

above eight fields. Because during a maskable or a non-maskable write, all the bits

of each written field are known, the check bits for each written field can be com-

puted. While this solution enables implementing the code, the area and power cost

can be significant because the size of the encoded data is small. For instance, in the

above example, we will need to add 50% extra bits to store the check bits in the

memory (4 check bits for every 8 data bits). The cost is even higher if we use a code

able to differentiate between single errors and double errors (5 check bits). The

worst case corresponds to memories where each maskable write is performed over a

single bit. In this case, the above solution leads on triplication of the memory bits.

Another solution, which allows eliminating this high cost, consists of performing

a read before each maskable write, correct the error in the read data, if any, and

combine the read and the written data to compute the new check bits. This solution

reduces the cost for protecting memories with maskable operations to the cost

required for regular memories. However, performing an extra read implies a

performance penalty which may not be acceptable in many systems.

A third solution consists of exploiting the following fact: when a maskable write

is performed, the bit-lines of the bits which are not affected by this write are

precharged and the amplifiers of these bits are in the read mode. In this situation,
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a simple modification of the memory allows reading these bits simultaneously with

the write operation performed over the bits selected by the maskable write. In this

manner, we dispose the values of all the bits of the memory word (i.e., the values

written in the bits selected by the maskable write and the values of the non-selected

bits). Thus, we can compute the check bits for the actual data stored in this word and

write these check bits in a separate memory (code-memory). Because the write of

certain bits of the word and the read of certain other bits are performed in parallel,

there is no performance penalty. However, we need to cope with a major difficulty:

the read bits may include errors. These errors must be corrected before computing

the new check bits, otherwise the check bits computation will mask the errors. For

detecting and correcting these errors, we need to know the values stored in every bit

of the word before performing the maskable write. This means that we need to read

all the bits of the word, but as described above, we only read the bits not selected by

the maskable write. So, detecting and correcting an error on these bits are not

possible by using conventional coding schemes. A non-conventional solution is

proposed in [16]. The simplest implementation corresponds to memories which

perform maskable writes over fields composed of a single bit. In this case, using a

single-error correcting/double-error detecting code (e.g., the Hamming code and a

parity bit) and a special error correction circuitry allows correcting any single error

in the read bits. So, in this case, the cost of the check bits is the same as that for the

conventional codes. When the maskable operations use larger bit fields, a more

complex code is required. This code adds p + 2 extra check bits, where p is the

size of the field on which a maskable operation is performed. The details can be

found in [16].

This approach can also be used in memories where maskable writes can be

performed over random collections of bits, in which case the scheme implement-

ing one code per bit field is not applicable. For such memories, the use of the

approach performing parallel reads and writes of the bits of a word requires

implementing the memory in a manner that several words can be read in parallel.

This can be done by selecting an appropriate memory size. For instance, for a

memory with 16-bit words, we can use a memory with 64-bit words but having a

number of words four times less than the initial memory. Operations in the new

memory are performed in a tricky manner that makes them equivalent to the

operations performed in the initial 16-bits memory, and at the same time, it allows

proper code computation for maskable and non-maskable operations. The scheme

allows a drastic reduction of the check bits. For instance, for a memory using

16-bit words and performing maskable writes over random bits, the only alternative

solution to the new codes is triplication (i.e., 200% of extra bits). If we implement

the new code by using a memory that allows reading in parallel 64 bits (four 16-bit

words), the extra bits represent 39% of the bits of the unprotected memory. But this

number has to be considered carefully, since the area overhead will be higher than

39%. In fact, with this scheme, in order to perform the code computation process

properly, the check bits have to be stored in a separate dual-port memory allowing

simultaneous read and write of two words. The higher area occupied by such

memories will lead for this example to a total extra area of 60–70%. But still, this
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area remains much lower than the 200% extra area required if we use the only other

alternative solution.

Content addressable memories are another kind of memories that are difficult to

protect. Each word in such memories comprises a data field and an address field (or

tag field). The address field of each word includes a comparator which allows

comparing in parallel all the addresses stored in the CAM against an address

applied on the address inputs of the CAM (associative search). When the address

stored in one of the CAM words matches the externally applied address, a hit is

activated and the data stored in the data field of this word are read or new data are

written. While many varieties of CAMs exist, including ternary CAMs or TCAMS

that allow masking a selected set of bits of the address field of a word or of the

externally applied address, all varieties share a common characteristic that makes

difficult the complete protection of a CAM. Indeed, when an error affects the

address stored in a CAM word, an associative search of the correct address value

will produce an incorrect miss. This error cannot be detected, since, as a conse-

quence of the incorrect miss, the word containing the erroneous address is not read

to check for its integrity. As a matter of fact, we can use parity or ECC to protect the

data field and the address field of a CAM. However, while the data field will be

completely protected, the address field will be protected only when the error leads

to an incorrect hit, since in this case, the hit word can be read and checked, but it

will not be protected when the error leads to an incorrect miss. An incorrect miss

will not be a problem in systems where the CAM is used as a cache. In this case, a

miss enables retrieving the data from the main memory. Unfortunately, there are

numerous systems employing CAMs where this is not the case.

The above discussions illustrate that for some memory types, it may be quite

expensive or even impossible to achieve protection against soft errors by means of

ECC. In addition, ECC may introduce a non-negligible area cost and significant

speed penalty even for standard SRAM memories. Also, the reach of multiple-cell

upsets (MCUs) is widening and their FIT is steadily increasing. Thus, it becomes

increasingly difficult to avoid multiple-bit upsets (MBUs) by using interleaving.

Also, interleaving is not possible in some recent SRAMs using specific 8-transistor

cells for mitigating process variability. In this context, alternative approaches could

be used, including multiple-error correcting codes like Reed–Solomon. As these

codes require a large number of check bits, alternative solutions can be used like

Built-In Current Sensors (BICSs) to detect and correct single and multiple errors in

memories [17–19], and hardened cells to avoid SEUs in memories and in sequential

logic cells such as latches and flip-flops. These techniques are presented next.

8.3 CRC Codes

Cyclic redundancy check (CRC) codes are best suited and commonly used for

protecting data packets in transmission channels (e.g., CRC-32-IEEE 802.3 stan-

dard) and mass storage devices (e.g., encoding of disc sectors by means of the
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CRC-CCITT). CRC codes have mathematical properties, allowing easy and

efficient design of codes with desirable error detection capabilities. Another interest

is that they require very simple circuit for encoding and decoding. Beyond error

detection, any standard CRC code could theoretically be used for correcting single

errors (any two different single errors have different syndrome). But in practice,

CRC codes are commonly used for error detection purposes, while error correction

is done by different means. For instance, to perform error correction in transmission

channels, after CRC-based error detection, the receiver can send a retransmission

request to the transmitter, whereas in systems where the lack of acknowledgment

leads to a retransmission, the receiver just omits sending a receipt acknowledgment

(a technique known as Automatic Repeat reQuest – ARQ).

On the contrary, in mass storage devices, error detection is performed by some

other ECC (e.g., other parity codes, Reed–Solomon, etc.). In addition, CRC can also

be used either for signaling uncorrectable errors that could result in miscorrections,

or for indicating the location of the erroneous symbols (erasures) and increasing the

error correcting capability of the ECC (e.g., Reed–Solomon codes correct twice as

many erasures as errors affecting unknown locations).

CRC in mass storage devices and transmission channels is not used for protec-

tion against radiation-induced soft errors, as these media are insensitive to this

issue. But as a by-product of the protection of transmission channel/mass storage

media, CRC can also be used to protect temporal storage hardware (e.g., FIFO

buffers) on the emission/write port and reception/read port of transmission chan-

nels/storage media at almost no cost. This kind of hardware is of course sensitive to

soft errors.

CRC and Reed–Solomon codes are linear codes and can be described by means

of parity matrixes. In the following, we will describe their underlying theory,

based on Galois field GF(2m) algebra without presenting their representation with

parity matrixes. Interested readers can find more details on these codes in the

literature [20–22].

A CRC code is computed by representing k-bit binary words as polynomials of

degree k � 1 over GF(2) (i.e., polynomials with coefficients equal to 0 or 1). More

precisely, the coefficients of the polynomial are equal to the bits of the binary word.

That is, the polynomial corresponding to the binary word Dk�12
k�1;Dk�22

k�2; . . . ;

D12
1;D02

0, is Dk�1X
k�1 þ Dk�2X

k�2 þ � � � þ D1X
1 þ D0X

0. For instance, the poly-

nomial corresponding to the binary word 10100101 is X7 + X5 + X2 + X0. The

CRC code is determined by its generator polynomial G(x). To form the code for a

data word, we extend this word by a check part determined as the reminder R(x) of

the division of D(X)Xr by G(x), where D(X) is the polynomial associated to the data

word and r is the degree of G(X).

As an example, let us consider the binary word 10100101. Then, the corres-

ponding polynomial is DðXÞ ¼ X7 þ X5 þ X2 þ X0. Let GðXÞ ¼ X3 þ X2 þ X0 be

the generator polynomial (1101 in binary). Then, D(X)Xr is written in binary as

10100101000. To perform the division of D(X)Xr by G(x), we need only the

coefficients of the polynomials. Thus, we can work on their binary representations.

In GF(2), the sum of two binary values corresponds to their XOR. Then, the
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division of 10100101000 by 1101 shown below gives R(X) ¼ 0001, which is the

check part of the binary word 10100101.

10100101000 ½1101  

1101 11010101 Q(X) 

01110

1101

001110

1101

1101 

1101 

001110

001100

0001 R(X)

The message transmitted comprises k + r bits and consists of the concatena-

tion of the data bits with the check bits. This corresponds to the polynomial

TðXÞ ¼ DðXÞXr þ RðXÞ. But, since in modulo 2 sum, addition and subtraction are

equivalent, we find TðXÞ ¼ DðXÞXr � RðXÞ ¼ GðXÞQðXÞ. On the reception side,

the received message is checked by computing the reminder of the division of T(X)

by G(X). If there are no errors in the transmitted message, this reminder will be zero

as T(X) was found to be equal to G(X)Q(X).

One of the major interests of the CRC codes is the easy encoding and decoding, by

means of a linear feedback shift register (LFSR). This encoding is of serial nature,

thus it fits well with serial data transmission. An LFSR comprising r flip-flops can be

associated to any polynomial of degree r that has non-0 coefficient for the term X0

(i.e., a polynomial of the form GðXÞ ¼ Xr þ gr�1X
r�1 þ gr�2X

r�2 þ � � � þ

g1X
1 þ X0). Figure 8.5 presents the LFSR corresponding to this polynomial. In this

figure, gi ¼ 0 means that there is no feedback from the output (signal Out) to the ith

stage (the corresponding XOR gate and its input from Out are omitted), while gi ¼ 1

means that there is a feedback from Out to the ith stage (the corresponding XOR gate

and its input coming from Out are effectively realized). Each of the coefficients g1
through to gr�1 is either 0 or 1. It can be shown that shifting k + r times a k-bit data

word in the LFSR from its external input “In” computes the division D(X)Xr/G(X),

with the quotient of the division appearing in the output “Out” during the last k shifts,

while the LFSR at the end of the k + r shifts contains the reminder R(X). Thus, if we

use an LFSR corresponding to the generator polynomial of a CRC code, the content

of the LFSR at the end of the k + r shifts will provide the check part of the code. The

LFSR shown in Fig. 8.5 is referred as internal XOR LFSR. There is also another type

g1

⊕⊕ ⊕

gr=1 gr–2gr–1

In 
⊕

g0=1

Out
01r–2r–1

Fig. 8.5 Internal XOR LFSR

for characteristic polynomial

Xr þ gr�1X
r�1 þ gr�2X

r�2þ

� � � þ g1X
1 þ X0
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of LFSR referred as external XOR LFSR. This LFSR type is slower as its XOR gates

are connected serially and involve larger delays.

It is easy to check that polynomial division defined above is linear. Thus, the

reminder of a polynomial TðXÞ � EðXÞ is equal to RtðXÞ � ReðXÞ, where Rt(X) is

the reminder of the division of T(X) by G(X) and Re(X) is the reminder of the

division of E(X) by G(X). Thus, if the transmitted message is affected by an error

represented by the polynomial E(X), the error is detected if and only ifG(X) does not

divide E(X). Thus, the error detection capabilities of the CRC code depend on the

properties of the generator polynomial used. An interesting class of polynomials

consists of primitive ones. A primitive polynomial is a prime polynomial of degree r

which divides the polynomial XT + 1 (with T ¼ 2r � 1) and does not divide any

other polynomial Xs + 1, 0 � s < T. Primitive polynomials over GF(2) of degree up

to 34 can be found in [23]. It follows directly from this property that a linear cyclic

code whose generator polynomial G(X) is primitive detects all single errors and all

double errors within a message of length 2r � 1. Indeed, a primitive polynomial

G(X) of degree r has always the form Xr þ gr�1X
r�1 þ gr�2X

r�2 þ � � � þ g1X
1 þ X0

(the coefficient of Xr is not 0 since the degree of G(X) is r, and the coefficient of

X0 is not 0 since in this case G(X) will be divided by X, which is not possible

since G(X) is prime). From this form it follows that all multiples of G(X) have at

least two terms. Thus, G(X) cannot divide an error polynomial E(X) ¼ Xj, mean-

ing that the corresponding CRC detects all single errors in a transmitted message of

any length.

The polynomial of a double error within a string of length 2r � 1 can be written

as EðXÞ ¼ Xi þ Xj, with j < i, i < 2r � 1. Then, EðXÞ ¼ ðXi�j þ 1ÞXj. We have

i � j < 2r � 1, and from the definition of primitive polynomials, Xi�j + 1 is not

divided by E(X). We have also found that Xj is not divided by G(X). Hence, E(X) is

not divided by G(X) and the code detects any double error within any message of

length 2r � 1 bits or less. This means that in order to detect all single and double

errors in a message of k information bits, we can select as generator polynomial a

primitive polynomial of degree r, with r � log2ðk þ 1Þ.
Concerning errors affecting t consecutive bits (i.e., burst errors of length t), their

error polynomial can be written as B(X)Xj, where the degree of B(X) is equal to

t � 1. As the reminder of the division of B(X)Xj by G(X), for any value of j, cannot

be 0 if the degree of B(X) is lower than r (since G(X) will not divide B(X) or Xj), the

code detects all burst errors of length lower than or equal to r.

Another interesting property is that any multiple of X + 1 (X + 1 is often

referred as parity polynomial) has an even number of terms. Thus, by selecting as

generator polynomial GðXÞ ¼ ðX þ 1ÞHðXÞ, with H(X) a primitive polynomial of

degree r, we can detect all single errors, all double errors within a message of length

2r � 1 bits or less, all burst errors of length r or less, and all errors of odd

multiplicity. These error detection capabilities are common in any well-constructed

CRC generator polynomial. But other types of errors may go undetected. The

probability for a random error affecting a message of n bits to go undetected by

a generator polynomial of length r is ð2n�r � 1Þ=ð2n � 1Þ 	 2�r. For a generator

polynomial of degree 16, this probability is 	1/65,536 	 1.5 � 10�5. The number
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of errors that can go undetected by a generator polynomial is referred to as

Hamming weight. Efforts for improving error detection probability of CRC codes

consist of determining generator polynomials with low (possibly zero) Hamming

weight for errors of certain multiplicity affecting a message of a given length.

Indeed errors of even multiplicity higher than 3 are of interest, as single and double

errors are detected by selecting a primitive generator polynomial and all odd

multiplicity errors are detected by multiplying it with the parity polynomial

X þ 1. A comprehensive study concerning the error detection capabilities of

CRC codes and the selection of the most efficient generator polynomials can be

found in [24].

8.4 Reed–Solomon Codes

Reed–Solomon codes [20] compose a class of powerful codes correcting errors

over symbols taking 2m values rather than errors over single bits. A Reed–

Solomon code is defined by three parameters n, k, and t, and any positive integer

m > 2 such that ðn; kÞ ¼ ð2m � 1; 2m � 1� 2tÞ, where the total length of the code

word is n ¼ 2m � 1 symbols, k is the number of data symbols, n � k ¼ 2t is the

number of check symbols, and the symbol-error correcting capability of the code

is equal to t. For instance, a (7, 3) Reed–Solomon code has three data symbols

and four check symbols, and can correct up to two erroneous symbols

(t ¼ ð7� 3Þ=2 ¼ 2).

The definition of Reed–Solomon codes uses Galois field GF(2m) algebra. GF(2m)

has 2m elements 0; a0; a1; a2; . . . ; a2
m�2

� �

. The element a
i is associated to the

polynomial Xi modulo f(X), where f(X) is a primitive polynomial of degree m

defined in the Galois field GF(2).

Since by definition a primitive polynomial of degree m does not divide any

polynomial Xs + 1, for 0 � s < 2m � 1, f(X) will not divide any polynomial Xp þ
Xq for 0 � p < 2m � 1, 0 � q < 2m � 1 (as we have seen earlier). Therefore,

Xp modulo f ðXÞ 6¼ Xq modulo f ðXÞ, for p 6¼ q, 0 � p < 2m � 1, 0 � q < 2m � 1.

From this property, we find easily the following properties for the elements of

GF(2m):

1. The elements a
0; a1; a2; . . . ; a2

m�2, produced by the operation Xi modulo f(X),

are distinct.

2. Each of these elements corresponds to one of the 2m � 1 distinct polynomials of

degree lower than m.

3. The first m elements are the monomials a0 ¼ X0 ¼ 1; a1 ¼ X1; a2 ¼ X2; . . . ;

a
m�1 ¼ Xm�1.

4. Since the remaining elements a
m; amþ1; . . . ; a2

m�2 are polynomials of degree

lower than m, they can be expressed as sums of the first m ones.

5. The addition of any two elements a
p + a

q is obtained by adding the corres-

ponding polynomials. The result can always be reduced into a single element ai.
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This is because the addition of two polynomials of degree lower than m is a

polynomial of degree lower than m. Since to each polynomial of degree lower

than m corresponds an element ai (property 2), ap + a
q can always be reduced

into a single element ai. This property determines the operation of addition of the

elements of GF(2m).

6. The multiplication apaq of any two elements ap and aq is obtained by multiplying

the corresponding polynomials and taking the modulo f(X) of the result. We find

that apaq is equal to a
p+q. The powers aq with q higher than 2m � 2 are defined

as a
q ¼ a

qmodulo 2m�1. That is, a2
m�1 ¼ a

0, a2
m

¼ a
1, etc. This property allows

completely defining the multiplication between the elements of GF(2m).

Example. Let us consider the Galois field GF(23) corresponding to the primitive

polynomial X3 þ X þ 1:

– From the previous discussion, we will have a0 ¼ X0 ¼ 1; a ¼ X; a2 ¼ X2; a3 ¼

X3 moduloðX3 þ X þ 1Þ ¼ 1þ X ¼ 1þ a; a4 ¼ X4 moduloðX3 þ X þ 1Þ ¼ Xþ

X2 ¼ aþ a2; a5 ¼ X5 moduloðX3 þ X þ 1Þ ¼ 1þ X þ X2 ¼ 1þ aþ a2; a6 ¼

X6 moduloðX3 þ X þ 1Þ ¼ 1þ X2 ¼ 1þ a
2. We can rewrite these relationships

together with the 3-tuple corresponding to each polynomial. Thus, we obtain the

relationships: a
0 ¼ X0 ¼ 1; a ¼ X; a

2 ¼ X2; a3 ¼ 1þ X ¼ 1þ a; a4 ¼

X þ X2 ¼ aþ a
2; a

5 ¼ 1þ X þ X2 ¼ 1þ aþ a
2; a

6 ¼ 1þ X2 ¼ 1þ a
2,

which verify the properties 1–4.

– Some illustrations for property 5: a
5 þ a

2 ¼ 1þ aþ a
2 þ a

2 ¼ 1þ a ¼ a
3;

a
6 þ a

3 ¼ 1þ a
2 þ 1þ a ¼ a

2 þ a ¼ a
4; aþ a

4 ¼ aþ aþ a
2 ¼ a

2; etc.

– Some illustrations for property 6: a
3
a
2 ¼ ð1þ XÞX2 ¼ X2 þ X3 ¼ X2 þ 1þ

X ¼ a
5 ¼ a

3þ2; a
5
a
2 ¼ ð1þ X þ X2ÞX2 ¼ X2 þ X3 þ X4 ¼ X2 þ 1þ X þ Xþ

X2 ¼ 1 ¼ a
0 ¼ a

ð5þ2Þmodulo 7; a
6
a
3 ¼ ð1þ X2Þð1þ XÞ ¼ 1þ X2 þ X þ X3 ¼

1þ X2 þ X þ 1þ X ¼ X2 ¼ a
2 ¼ a

ð6þ3Þmodulo 7.

A convenient way is to represent the elements a0; a1; a2; . . . ; a2
m�2 as m-bit

symbols, by using the m-tuples describing their associated polynomials. For the

above example, we will have a0 ¼ X0 ¼ (100); a ¼ X ¼ (010); a2 ¼ X2 ¼ (001);

a
3 ¼ 1 + X ¼ (110); a4 ¼ X + X2 ¼ (011); a5 ¼ 1 + X + X2 ¼ (111); a6 ¼ 1 +

X2 ¼ (101).

8.4.1 Encoding

Once a GF(2m) field is determined as above (i.e., its elements as well as the addition

and multiplication operations), we can define Reed–Solomon codes in this field by

defining their generator polynomial g(X). The degree of this polynomial is equal to

the number of check symbols (2t) of the code and its roots are a; a2; . . . ; a2t. This
determines g(X) as gðXÞ ¼ ðX þ aÞðX þ a

2Þ � � � ðX þ a
2tÞ, considering that in mod-

ulo 2 arithmetic addition and subtraction are equivalent. Then, we can obtain

trivially the coefficients gi of gðXÞ ¼ g0 þ g1X þ � � � þ g2t�1X
2t�1 þ X2t.
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For instance, to generate a (7, 3) Reed–Solomon code using the GF(23) defined

above, we will have 2t ¼ 7 � 3 ¼ 4. Thus, gðXÞ ¼ ðX þ aÞðX þ a
2ÞðX þ a

3Þ

ðX þ a
4Þ ¼ a

3 þ a
1X þ a

0X2 þ a
3X3 þ X4.

The check part of the code (composed of 2t m-bit check symbols) for a message

D(X) composed of k m-bit data symbols is generated by computing the reminder of

the division of X2tD(X) by g(X). That is, pðXÞ ¼ X2tDðXÞmodulo gðXÞ. This can be

performed by a generalized LFSR implementing the polynomial g(X) as shown in

Fig. 8.6. This is similar to the generation of CRC codes discussed earlier. The

difference is that the coefficients of the polynomials and of the LFSR are m-bit

symbols instead of single bits, and each stage of the LFSR comprises m flip-flops

instead of 1 flip-flop in the GF(2) LFSR. Also, instead of the modulo 2 arithmetic

used in GF(2), the more complex arithmetic of GF(2m) fields defined above is used.

The check part of the code is the remainder R(X) of the division of X2tD(X) by

f(X) (it is computed by shifting in the LFSR the polynomial X2tD(X)). The code

word U(X) is obtained by concatenating the X2tD(X) with R(X). This code word is

transmitted to the receiver (transmission channel application) or written to the

memory (mass memory protection application).

8.4.2 Syndrome Computation

In the receiver/memory read side, the received/read message is U0ðXÞ ¼ UðXÞþ
EðXÞ, where E(X) is the error signal. From the encoding principle, we have UðXÞ ¼

X2tDðXÞ þ RðXÞ and X2tDðXÞ ¼ gðXÞQðXÞ þ RðXÞ. Thus, U(X) ¼ g(X)Q(X),

giving U0ðXÞ ¼ gðXÞQðXÞ þ EðXÞ. From the definition of g(X) as gðXÞ ¼

ðX þ aÞðX þ a2Þ � � � ðX þ a2tÞ, we have g(ai) ¼ 0, 8i: 0 � i � 2t. Thus, we obtain

2t syndrome equations involving the error polynomial E(X): SðaiÞ ¼ U0ðaiÞ ¼

EðaiÞ, 8i: 0 � i � 2t, which defines 2t syndromes. E(X) can be expressed as

eq1X
q1 þ eq2X

q2 þ � � � þ eqsX
qs , where s is the number of erroneous symbols in the

received message U0ðXÞ, Xqi determines the position of the ith erroneous symbol,

and eqi is the error in this symbol. Thus, we have 2s unknowns (s error positions and

s erroneous symbol values). If s � t, we can resolve the 2t syndrome equations

to compute them. The techniques used for resolving these equations can be found

in [21, 25].

g1

⊕ ⊕ ⊕

g2t–2g2t–1

In 
⊕

g0=1

Out
0 1 2t-22t-1

Fig. 8.6 Generalized LFSR for polynomial division in GF(2m)
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8.5 Memory Protection Using Built-In Current Sensors

Amemory cell being in the steady state drives a very small current. But when its state is

reversed due to the impact of an ionized particle, abnormal activity will be observed in

the cell and abnormal current will flow through the Vdd and Gnd lines of the cell. It is

then possible to detect the occurrence of an SEU by implementing one current sensor

(BICS) on each vertical power line of the memory cell array [17–19] as shown in

Fig. 8.7. In this figure, the primary power line (Gnd or Vdd) is connected to the vertical

(secondary) power lines of the memory through several transistors (NMOS if we work

with Gnd lines, PMOS if we work with Vdd lines). Note that such transistors are often

used to reduce static power dissipation during the idle periods of the memory (sleep

transistors). Thus, they can be used for both power reduction and BICS implementa-

tion. The gates of the NMOS/PMOS transistors are set to 1/0. Each BICS monitors

vertical power lines and detects SEUs affecting cells connected to these lines.

Because the BICSs monitor the vertical power lines of the memory, the detection of

an SEU also indicates the position of the affected bit. This will also be true when two

neighbor columns share the same power line if the memory uses some interleaving

(1-out-of-k column multiplexing, k > 2). In such a case, neighbor cells belong to

different words and an error signaled by a BICS determines which bit is possibly

affected in each of these words. It is then possible to add a parity bit to each memory

word, and use it for error detection each time a faulty word is read. Then the error is

corrected by flipping the value of the bit indicated by the active BICS. Double errors

can also be corrected if we use a single error-detecting double-error correcting (SED-

DEC) code, like the Hamming or HSIAO codes. Indeed, single errors are corrected by

the SED-DEC code. Furthermore, if a word containing a double error is read from the

CONTROL LOGIC 

Secondary 

power line 

Memory cell 

Current-limiting 

transistor

DetectionBICS

Principal 

power line

BICS BICS BICS BICS

Fig. 8.7 Memory protection using Built-In Current Sensors
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memory, the SED-DEC code will signal its presence. In addition, the erroneous bit

positions will be known, as two BICSswill be activated at the time of occurrence of the

upsets affecting these bits. Thus, these positions are flipped to correct the double error

and the correctness of the resulting word can be cross-checked by the SED-DEC code.

The BICS approach can be used for standard SRAMs as well as for memories

difficult to protect by ECC, such as memories using maskable operations or CAMs.

In particular, in the case of CAMs, during associative searches, the address field is

neither read nor written. Thus, it cannot be protected by ECC. To address this

problem, we can protect the address field of a CAM by means of BICS and ECC.

Each time a BICS is activated, we read the address fields of the CAM, and correct

them by means of ECC. In large CAMs composed of several smaller CAM blocks,

the activation of a BICS will also indicate the affected CAM block, allowing for a

faster location of the erroneous word.

The BICS scheme shown in Fig. 8.7 is also efficient for detecting and eliminating

single-event latchups (SEL), and correcting the induced errors [26, 27]. A latchup

activates a parasitic PNPN structure (thyristor) and creates a short between the Vdd

and ground lines. Thus, it will drive a large current and the BICS connected to the

affected secondary power line (see Fig. 8.7) will detect the event. Then, the control

logic will drive to the off state the sleep transistor associated to the active BICS and

will cut the current flowing through the activated thyristor. Thus, the latchup is

eliminated and the circuit can be driven back to its normal state (the control logic

will drive the sleep transistor back to the on state). Furthermore, as there is a transistor

between the principal power line and the secondary one affected by the latchup, the

current flowing through this transistor cannot affect the voltage level of the principal

power line adversely. Thus, the state of cells connected to different secondary power

lines will not be affected. Therefore, only single errors will affect the words of the

memory. These errors are correctable by an ECC or by the combination of the BICS’s

indications and a parity bit, as discussed earlier. The technique can be used for

correcting errors due to both SEUs and latchups. However, in this case, it will be

useful to implement a BICS able to differentiate errors due to SEUs from errors due to

latchups (to initiate scrubbingwhen a latchup is detected). This distinction is feasible,

since the current driven by a latchup is much stronger. Also, in this case, correction of

double errors due to the combination of latchups and SEUs is possible by combining

the BICS indications with a SED-DEC code as discussed earlier.

It is alsoworth noting that the principles of this scheme can also be used to eliminate

latchup and correct the related errors in logic [28]. As in the case of memories, the

scheme can be combined with sleep transistors employed to reduce static power.

8.6 Error Mitigation in Logic

As stated earlier in this chapter and discussed in more details in Chaps. 1 and 2,

logic is affected by SEU- and SET-related soft errors. SEUs occur when an ionizing

particle striking a sensitive node of a flip-flop or a latch cell flips the state of the cell.
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SET-related soft errors occur when a transient pulse, initiated by an ionizing

particle striking a sensitive node of a logic gate, is propagated through the gates

of the combinational logic and is captured by a sequential element such as a latch or

a flip-flop. The largest contributor to logic SER comes from SEUs, though SETs’

contribution is gaining importance as we move to higher integration densities. As a

matter of fact, if in a design the logic SER exceeds the maximum allocated FIT,

protecting latches and/or flip-flops may be sufficient to achieve acceptable FIT.

This could be done by replacing a set of selected latches/flip-flops by hardened

ones. However, if SEU mitigation is not enough for meeting the target FIT, a more

complete soft-error mitigation approach has to be used to protect logic parts from

both SEUs and SETs. This approach can be based on hardware (space) redundancy

and/or time redundancy.

Note also that soft errors may have a severe impact on designs implemented in

SRAM-based FPGAs. In this case, the function of the design is determined by the

values stored in the configuration SRAM cells of the FPGA. Thus, an SEU

affecting such a cell has a much more severe impact than SEUs affecting mem-

ories, latches, and flip-flops, as it modifies the very function of the design.

A solution for fixing this problem consists of reading periodically the configuration

memory, checking its contents, and reprograming the FPGA when an error is

detected (read-reprogram approach). This technique is acceptable only if the

application tolerates long error latencies. If this is not acceptable, TMR is neces-

sary. TMR can also be combined with the read-reprogram scheme to avoid error

accumulation in the configuration memory. The interest of the TMR approach is its

flexibility, as every designer can employ it. But its major drawback is a large

hardware overhead, which significantly exceeds 200%. Using hardened SRAM

cells to implement the configuration memory of FPGAs is the less area and power

consuming solution for solving this problem. Its major drawback is a low flexibi-

lity, since it cannot be implemented on a standard FPGA family by a designer.

Instead, it requires the commercialization by FPGA providers of FPGAs using

hardened configuration SRAM cells.

8.6.1 Hardened Storage Cells

Hardened storage cells (SRAM cells, latches, and flip-flops) preserve their state

even if the state of one of their nodes is altered by an ionizing particle strike.

Various hardened storage cells have been proposed in the literature. We can

consider three kinds of hardened storage cells.

The robustness of the first kind relies on adding resistors or capacitances on the

feedback loop of the cell to increase its critical charge. Adding extra resistors can be

realized by passive components (for instance, highly resistive polysilicon) [29].

This option allows realizing resistors of high value at low silicon area. Increasing

the coupling capacitance between the storage nodes of a cell can be done without

significant area impact by adding DRAM-like stacked capacitors on top of memory
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cells [11]. The drawback of the above hardening approaches is that they require

extra process steps that can have an impact on fabrication cost. In addition to the

cost issue, such techniques may also have an impact on cell speed and power. These

issues may reduce the interest of the above approaches for some commercial

applications. Extra capacitances can also be added by using extra transistors and

connecting their gates to the cell nodes (exploiting this way the gate capacitance of

CMOS transistors), or by adding metal–metal capacitances on top of the cells. In

addition to the impact on performance, the drawbacks of the later approaches are a

limited reduction of the SER and the consumption of a significant area and/or the

loss of two metal layers on the top of the cells.

The second kind of hardened cells uses extra active transistors in the cell, but its

robustness relies on specific transistor sizing. As a result, these cells do not scale

easily as the device size is shrinking. The area cost of these cells may also be high.

The early hardened cells [30, 31] belong to this kind.

Figure 8.8 presents the hardened cell proposed in [30]. To modify the value of

the cell, signal C (the clock signal of a latch or the world-line of a memory) is set

high. This turns on transistors N3 and N4 and sets nodes X1 and X2 on their new

values. For instance, to write a 1 in the cell, X1 is set to 1, and X2 to 0. This sets the

cross-coupled inverters composed of transistors N1, P1, N2, and P2 to their new

state, in a similar manner as in a conventional memory cell. The other nodes are set

to their new state after C is turned low. In this state, the value 0 of C drives X4 to

0 (X2 was set to 0, thus P4 is on). This turns P7 on, and sets X3 high. It also turns P5

on, which is compatible with the on state of P1 (both drive X1 high). X3 high turns

P6 and P8 off, which is compatible with the low value of X2 and X4. Symmetrical

situation holds when writing the opposite value. When C is 0, the cell should

maintain its state, even if a transient pulse affects any of the nodes X1, X2, X3,

and X4. Consider the case X1 ¼ 1, X2 ¼ 0, X3 ¼ 1, and X4 ¼ 0 (the other case is

symmetrical and can be treated similarly). A transient pulse on X3 can be produced

by a particle striking transistor P3 or P7. As particles striking a p-type transistor can

produce only positive pulses and X3 is at 1, particle strikes cannot affect the state of

N1 N2

N4

P1 P2

P5 P6 

P3 P4 

P7 P8

N3 X1
X2

X3
X4

1
0

0

1

0

0

1

C 
Fig. 8.8 A hardened cell [30]
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X3. A negative pulse on X1 is problematic as it turns P2 on and N2 off, driving X2 to 1,

which turns P1 off and N1 on and reinforces the value change of X2. Also, P3 is

turned on as X1 goes low, thus driving X3 low. The later turns P6 on and reinforces the

high level on X2. X3 low also turns P8 on, which drives X4 high and turns P5 off. To

improve the robustness of the cell, transistor P7 is designed much larger than P3.

Thus, X3 is maintained high, transistor P6 is maintained off and P5 on. The current

flowing through the on transistor P5 drives node X1 back to 1 and subsequently node

X2 back to 0, restoring the cell state. The cell is even more robust for the positive

pulse affecting X2. This is because, in order to turn off transistor P5, the pulse needs to

be propagated one extra stage with respect to the previous case (dive X1 low through N1,

P1). A positive pulse on X4 drives P5 and P7 off and leaves the values of nodes X3,

X1, and X2 unaffected. The signal C drives X4 back to 0 through the on transistor P4.

The third kind of hardened cells does not rely on transistor sizing, thus allowing

easier scaling. They also induce lower area and power penalties. The principle used

in the DICE cell [32] is of this kind. It achieves immunity against transients

affecting any single node without requiring any particular transistor sizing. There-

fore, its scaling does not require particular care and can be implemented by using

minimum transistor size and in any process generation. This makes the DICE cell

more suitable for protecting storage cells against SEUs in advanced nanometric

technologies. The transistor diagram of this cell is shown in Fig. 8.9. The cell has

two states, the 0 state (X1 ¼ 0, X2 ¼ 1, X3 ¼ 0, and X4 ¼ 1) and the 1 state

(X1 ¼ 1, X2 ¼ 0, X3 ¼ 1, and X4 ¼ 0). In any of these two states, and whichever

is the node affected by a transient pulse, we can always find among the remaining

three nodes two consecutive nodes having the values 1 and 0. We call these two

nodes the hold nodes and the two other nodes the affected nodes. For instance, in the

0 state, if the node struck by a particle is X2, the hold nodes are the nodes X4, X1. In

the same state, if the struck node is X3, the hold nodes are again X4, X1, while if the

struck node is X1 or X4, the hold nodes are X2, X3. We can find similarly the hold

nodes for the 1 state of the DICE cell and for any struck node. In any of these

situations, we can check easily that the states of the hold nodes either are not

affected by the effects of the particle strike or, in the worst case, they are driven to

the high-impedance state. Thus, the hold nodes preserve their correct values.

CK

D

X1 X2 X3 X4

Fig. 8.9 A hardened storage

cell
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The state of the other two nodes can be modified by the particle strike, but the gate

of one transistor of each inverter driving each of these nodes is controlled by one

hold node. As a consequence, currents flowing through the transistors of these

inverters quickly restore the correct values in the affected nodes.

By using the DICE cell, it is easy to built hardened SRAM cells, latches, and flip-

flops. Thus, the DICE cell can be used to protect storage arrays like SRAMs,

caches, register files, or CAMs; the configuration memory of FPGAs; and the

latches or flip-flops in logic designs.

Comparison between a standard industrial flip-flop design and DICE-based flip-

flop performed for a 90-nm process node shows 81% area overhead, identical rise

time (0.13 ns in both cases), and a 20% fall time increase (0.12 vs. 0.10 ns). The

20 ps increase of the fall time will represent a small amount of the delay of a pipe-

line stage and will have a small effect on the clock frequency.

During static operation, the cell presents complete immunity for any transient

affecting a single node of the cell and regardless of the transient strength. During

dynamic operation (which is mostly of no concern for memory cells but cannot be

neglected for latches and flip-flops), a transient affecting a single node of the cell

could induce an erroneous state, but this can only happen if the cell is operating

with stringent timing conditions, and even in this case, the particle strike should

happen at specific time frames to induce an error. Its protection level can, however,

be affected by multi-node upsets, which are gaining importance as technology

moves deeper in the nanometric domain.

On the whole, the cell presents excellent hardening characteristics, but its

practical use can be impacted by non-negligible extra area and power with respect

to standard storage cells. Several other hardened cells can be found in the literature

(e.g., [31, 33–35]). Their interest should be analyzed with respect to the goals and

constraints of the target design. Some of them require lower area and/or power than

DICE and can be preferred in certain situations. Some new hardened principles

were proposed in [35] and used to design several hardened latch and memory cells.

Figure 8.10 presents a fast hardened latch implementation from [35]. In [36], this

design was adapted to implement a memory cell. The cell was shown to provide

similar protection against SEUs as DICE, while requiring 20% less area and a 55%

reduction of speed-power product.

8.6.2 SET Mitigation

Protecting combinational logic is more complex than protecting memories or

latches and flip-flops, and may involve quite high hardware and power cost. It

is, therefore, mandatory to select properly the protection scheme in order to

meet design requirements in terms of area, speed, power, and reliability. Some

approaches reduce SET sensitivity by using gate resizing to increase signal strength

or node capacitance, [37–40]. These techniques may require moderate hardware

cost. However, as they target only SETs, an additional solution is needed for SEUs,
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increasing hardware cost. Furthermore, resizing becomes increasingly inefficient as

we move down to the nanometer scale.

Some other schemes allow mitigating both SEUs and SETs and are therefore

more attractive. This chapter is mostly dedicated to these schemes.

Basically there are two approaches for protecting logic: error masking and error

detection. A typical example of error masking is TMR, where the circuit under

protection is triplicated and a majority voter determines the circuit output. A typical

example of error detection is duplication and comparison. Excepting some systems

in which the fail-stop concept can be used (the system operation is stopped upon

error detection), in the majority of systems, error detection should be combined

with a recovery scheme that brings the system into a correct state from which the

operation can be resumed. Since soft errors are transient faults, the recovery could

consist of reexecuting the latest operation (e.g., instruction replay). Another possi-

bility consists on using checkpoints, that is, particular points of the system opera-

tion in which the system state is saved in a mass storage media. When an error is

detected, the system operation resumes from the state saved during the last check-

point (rollback recovery) [22, 41].

Because massive redundancy schemes such as TMR and duplication involve

excessive hardware cost and power dissipation, in the following we discuss alter-

native schemes aimed at reducing this cost.

8.6.2.1 Time Redundancy Implemented in Software

These approaches are presented extensively in Chap. 9. Thus, we will briefly report

some of them. A first software-based soft-error mitigation technique executes dupli-

cated instructions over duplicated data and compares the results to check their

integrity [42, 43]. This protection does not detect control-flow errors, which are

often the most dangerous. To detect such errors, extra instructions are added in

strategic points of the program to check its flow correctness [44]. Software roll-

back can also be implemented to achieve error recovery [45]. The interest of the
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Fig. 8.10 A fast hardened
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software-implemented approach is its flexibility, since it does not require any hard-

ware modification. The counterpart is a high memory overhead (5� for error detec-

tion, 6� for error detection and recovery), high speed penalty (3� for error detection,

4� for error detection and recovery) [46], and high power penalty for executing a

given task. The costs can be reduced if control-flow checking [44, 47, 48] alone is

used, but the protection is incomplete. Evaluation of the cost of these approaches

reported in [44] for four different benchmark programs shows a speed penalty varying

from 107 to 185% for [48], from 120 to 426% for [47], and from 110 to 354% for [44].

The memory overhead varies, respectively, from 124 to 338% for [48], from 153 to

630% for [47], and from 129 to 496% for [44]. The significant differences between the

costs incurred by these methods are reflected in important differences of their error

detection efficiencies.

Multithreading is another software-based transient fault detection and recovery

approach [49, 50] that reduces memory and speed cost by exploiting the capabilities

of modern processors to execute multiple threads of computation. The performance

penalty of this approach is only 40% [51], but it is less flexible than the first

approach as it requires some hardware modifications.

The applicability of both approaches is limited to processor cores, so, for designs

of different nature, only hardware-based approaches can be used.

8.6.2.2 Self-Checking Design

Self-checking (S-C) design is used to achieve concurrent error detection by means

of hardware redundancy. A complex circuit is partitioned into its constituent

functional blocks and each of these blocks is implemented according to the struc-

ture of Fig. 8.11. This structure implements functional blocks that deliver outputs

belonging to an error detecting code, and thus introduces an invariant property that

can be checked concurrently with circuit operation. A checker monitoring this code

performs the concurrent error detection.

The desirable goal to be achieved by self-checking circuits is often stated as

Totally Self-Checking (TSC) goal. This goal requires that under any modeled fault,

the first erroneous output of the functional block is signaled on the outputs of the

checker. To achieve this goal, some properties must be verified by the functional

block and the checker. These properties are introduced by Carter [52] and forma-

lized by Anderson [53].
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Concerning the functional block, the following properties are required.

Fault Secure Property

A circuit is fault secure if under each modeled fault the produced erroneous outputs

do not belong to the output code.

The reason for this property is obvious; if an erroneous output belongs to the code,

the error is not detected and the TSC goal is lost. Thus, the fault secure property is the

most important property required for the functional blocks. Another property used in

the theory of self-checking systems is the self-testing one. This property stipulates that

for each fault, there is at least one input vector, occurring during the circuit normal

operation, that detects it. This property avoids the existence of redundant faults. Such

faults remain undetectable forever and could be combined with new faults occurring

later in the circuit, resulting in multiple faults that could destroy the fault secure

property. Implementing this property requires removing redundancies during circuit

design as such redundancies imply the existence of permanent faults that cannot be

detected whatever are the stimuli applied on the circuit. As soft errors are not

permanent faults, the self-testing property is less important in logic designs (errors

disappear quickly as data in latches and flip-flops usually change in every clock

cycle). In memories, scrubbing used to avoid accumulation of SEUs could be consid-

ered as a variant of this property.

The most obvious way for achieving the fault secure property is to duplicate the

functional block and use a comparator to check for equality in the delivered outputs.

Since this solution appeals for hardware and power penalties higher than 100%,

more elaborated techniques are developed for reducing this cost. These techniques

use error detection codes with cost lower than that for the duplication code. The

most useful of these codes are as follows:

l Parity code. It detects all single errors and more generally all errors of odd

multiplicity. It is the cheapest code since it adds only one check bit to the

information bits. This check bit is computed to make the parity of each code

word constant. We can use an odd parity code (odd number of 1s in each code

word) or an even parity code (even number of 1s in each code word).
l Dual-rail code. It is a variety of the duplication code where the check bits are

equal to the complements of the information bits. This code has very strong error

detection capabilities since it detects any error affecting either the information

part or its complement. But of course it is quite expensive since it duplicates the

information part and usually the hardware.
l Unordered codes. In such codes, there are no two different code words x and z

such that x covers z (to be written x > z), where x covers zmeans that x has a 1 in

each bit position z has a 1. For instance, if x ¼ 10010 and z ¼ 10001, then

neither x covers z nor z covers x and these words can both belong to an unordered

code. On the contrary, if x ¼ 10010 and z ¼ 10000, then x covers z and these

words cannot both belong to an unordered code. From this property, if an error

8 Circuit-Level Soft-Error Mitigation 233



which includes only bit errors of the type 1 ! 0 affects a code word x, then the

resulting word z is covered by x, and z cannot belong to the unordered code.

Thus, the error is detected. Similarly, if an error which includes only bit errors of

the type 0 ! 1 affects a code word x, the resulting word z will cover x and the

error is again detectable. As a matter of fact, unordered codes detect all uni-

directional errors. The most interesting unordered codes are the m-out-of-n code

and the Berger code.

An m-out-of-n code [54] is a non-separable code (information and check bits are

merged). It is composed of code words that have exactly m 1s, (e.g., 2-out-of-4

code: 1100, 1010, 1001, etc.). This code is an optimal non-separable unordered

code (minimal redundancy for unordered coding).

The Berger code [55] is a separable (usually referred to as systematic) unordered

code. The check part of this code represents the number of 0s in the information

part. For instance, for an information part I ¼ 100101, the check part will be

C ¼ 011. In the second variance of this code, the check part is equal to the

complement of the number of 1s in the information part. For instance, for an

information part I ¼ 100101, the check part will be C ¼ 100. This code is an

optimal separable unordered code. For k information bits, the number of check

bits is equal to log2ðk þ 1Þd e.
l Arithmetic codes [56, 57]. These codes are divided into separable and non-

separable (systematic).

In separable arithmetic codes of base A, the code words are obtained by

associating to an information part X a check part X0 equal to the modulo A of

the information part, that is, X0 ¼ jXjA (residue code), or X0 ¼ A� jXjA (inverse

residue code).

In non-separable arithmetic codes of base A (or AN codes), the code words are

equal to the product of the original (i.e., non-coded) word by the base A.

Arithmetic codes are interesting for checking arithmetic operations, because

they are preserved under such operations. The most useful arithmetic codes

are the separable ones, and they are most often implemented as low-cost

arithmetic codes [58], where the check base A is equal to 2m � 1. In this case,

an m-bit modulo A adder can be realized as an m-bit adder having the carry-out

signal feeding back the carry-in signal (carry end-around adder). Then, the check

part generator for the low-cost arithmetic codes is realized as a modular network

using these adders as building blocks. Low-cost arithmetic codes detect various

types of arithmetic errors according to the value of the check base. For A ¼ 3,

corresponding to 2 check bits, all single arithmetic errors (i.e., when the arith-

metic value of the error is a power of 2) are detected.

Design of Fault Secure Functional Blocks

The design of fault secure functional blocks is a difficult problem. For a given

output code, one must guarantee that each modeled fault affecting a component of

the circuit creates local errors that propagate to the circuit outputs as errors
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detectable by the output code. The choice of the output code is a very critical task.

Selecting a code with high error detection capabilities makes easier the achieve-

ment of the fault secure property but adds a large number of output signals, thus

increasing hardware cost. On the contrary, selecting a code with low error detection

capabilities will add less extra outputs but, for achieving fault secureness, it may

require significant modifications of the circuit structure (and thus extra cost). As a

matter of fact, the selection of the output code is made by taking into account the

particular circuit structure, in order to obtain the best result.

Fault Secure Design Using Parity Codes

If a node of a circuit is connected with multiple circuit outputs, then a fault affecting

this node may produce multiple output faults undetectable by the parity code. Thus,

the parity code will be used in circuits where each internal node is connected with a

single output (circuits with maximum divergent degree equal to 1). This is the case

of circuits having a bit-slice structure in which there are no interactions between

different slices. Such circuits naturally propagate internal errors due to single faults

into single output errors, which are detected by the parity. Such blocks are for

instance cell arrays of memories, register files, and buses. The parity code can still

be efficient for circuits in which some logic is shared by several outputs. For

instance, if only small parts of the logic are shared by several outputs, one can

replicate these parts in a way that each replicate belongs to the cone of a single

output. In other situations (e.g., PLAs), the circuit can be partitioned into sub-

blocks such that each sub-block verifies the above structure [59].

A further possibility is to partition the circuit outputs into several groups such

that any two outputs sharing some logic belong to different groups [60]. Then, a

parity bit is used for each group, as shown in Fig. 8.12. In this figure, the functional

outputs are partitioned into three groups: group 1 (S1, S4, S7, S10); group 2 (S2, S5,

S8, S11); and group 3 (S3, S6, S9). No outputs belonging to the same group share

some logic. Thus, we can achieve the fault secure property by generating a parity bit

for each of these groups (P1 for group 1, P2 for group 2, and P3 for group 3).

Attention has to be paid during the synthesis of the parity bits in order to ensure that

P3P2P1S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Fig. 8.12 Group parity coding
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they do not share logic with their associated group of circuit outputs. Output

partitioning and logic replication can also be combined [60, 61]. Experiments

presented in [61] over 14 MCNC combinational benchmark circuits show an area

overhead for the technique varying from 35 to 171%. Thus, this approach can be

efficient for some blocks of a design and inefficient for some other blocks. For the

later, the designer can select another scheme to protect them. In particular, this

scheme is inefficient for arithmetic circuits, since the cones of any two outputs are

overlapping.

The above approach is generic and can be used for any combinational

functional block, but it often incurs high area penalty. Nevertheless, for some

standard building blocks of VLSI circuits, such as adders, multipliers, dividers,

and shifters, a thorough analysis may lead to specific fault secure solutions using

parity codes. For instance, such solutions may constrain errors to propagate always

on an odd number of outputs, may use specific detection means for some difficult

faults, etc. Such techniques were used in [62–67], to protect various types of

adders, ALUs, multipliers, and shifters. These solutions often achieve a low or

moderate area cost (e.g., 15–24% for adders, 16–20% for shifters, and 40–50%

for multipliers).

Fault Secure Design Using Unordered Codes

Unordered codes guarantee fault secureness in circuit structures where for each

node of the circuit, all the paths between the node and the circuit outputs have the

same inversion parity [68]. In this case, when a fault affecting a circuit node is

propagated to the circuit outputs, it will be always inverted (if the inversion parity

of the paths is 1) or always not inverted (inversion parity 0), resulting in unidirec-

tional errors. This structure corresponds to unate functions. As a matter of fact,

unordered codes can guarantee the fault secure property for a limited class of

functions. Fortunately, it has been shown that if the inputs of a function belong to

an unordered code, then the function can always be implemented as a unate one by

exploiting the don’t care input vectors [69]. Another possibility is to move all the

inversions to the inputs of the circuit and implement the rest of the circuit as a unate

function [59]. Thus, the errors produced in the inverter-free part are detected by any

unordered code. On the other hand, the errors produced by faults in the primary

inputs are checked by the input checker. This checker will be the checker of the

previous functional block generating the input code of the current block, and does

not require additional hardware overhead for checking the inputs of the current

block. Fault secure solutions based on unordered codes have been proposed for

various circuit structures including sequential circuits [70–72], PLAs [73], and

ROMs [74]. Self-checking adders and ALUs based on unordered codes have also

been proposed [75]. Another paper [76] presents a synthesis tool for fault secure

finite state machines (FSMs) using unordered codes. However, unordered codes

usually lead to higher area cost than the parity codes, principally due to the signi-

ficantly higher complexity of their checkers.
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Fault Secure Design Using Arithmetic Codes

Arithmetic codes are used to implement self-checking arithmetic operators. In

modular arithmetic operators such as adders and multipliers built by using full

and half adder cells, single faults in a cell produce single arithmetic errors on the

cell outputs (error of the form 2i). These errors are added to or subtracted from

the final result, resulting in single arithmetic error on the outputs. Thus, using an

arithmetic code of base A ¼ 3 achieves fault secureness. In arithmetic operators

using non-regular structures (e.g., using carry lookahead adders), a thorough analy-

sis is required to determine the check base ensuring fault secureness [77–79].

Arithmetic codes are very efficient for protecting parallel multipliers, especially

if the operant size is large. Experiments using the automation tool presented in [79]

show a 10% area overhead for a 32 � 32 multiplier and a 6% area overhead for

a 64 � 64 multiplier.

Fault Secure Designs Versus Transient Faults

The solutions described above detect both permanent and transient faults. However,

these solutions were originally proposed to cover stuck-at faults and it was shown

that the fault secure property holds for these faults. Various studies also show that

the fault secure property holds also for other faults (like shorts [80]), under the

condition that they produce logic errors. However, if the errors take intermediate

values (i.e., analog values between the logic 0 and the logic 1 levels), or they a

the timing characteristics of the circuit (like transient faults and timing faults),

the fault secure property may not be valid. In this subsection, we are interested

about SETs.

Stuck-at faults modify the value of the affected node during the whole duration of

the clock cycle. Then, all the outputs connected to the affected node through sensitized

paths are erroneous. On the contrary, an SETwill produce an error on an output only if

the transient pulse overlaps with the clock event when it reaches this output. Thus, an

SET initiated from a circuit node may affect only a subset of the outputs affected by a

stuck-at fault initiated from the same node. Therefore, the errors produced by tran-

sients are different than the errors produced by stuck-at faults. As a matter of fact, the

detection of the later does not guarantee the detection of the former. Indeed, the fault

secure property for transient faults is guaranteed only for a certain class of circuits

designed to be fault secure for stuck-at faults [81]. These circuits are referred to as

path-secure circuits. They achieve the fault secure property by means of structural

constraints: the circuit structure is such that the propagation of an error from an

internal node to the circuit outputs, through any collection of paths, gives errors

detected by the output code. Among the fault secure designs described above, those

checked by the parity code and using parity groups and those checked by unordered

codes and using inversion-free functions are path secure. The other designs, that is,

those using parity codes to implement adders, ALUs,multipliers, and shifters [62–67],

and those using arithmetic codes to implement adders and multipliers [58, 77–79], are
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not path secure. As the fault secure property for transient faults is not achieved for

these designs, before selecting any of them, its efficiency should be evaluated by

means of a fault injection tool considering circuit timing constraints, like the one

described in [82].

8.6.2.3 Requirements and Implementation of Efficient Fault-Tolerant Logic

While concurrent error detection and fault tolerance are natural means for improv-

ing reliability and yield, they may incur significant area and power penalties. Self-

checking techniques as the ones described in the previous section often incur high

area and power penalties, and in certain cases (non-path-secure circuits), their

efficiency against soft errors and other faults that gain significance in nanometric

technologies can be compromised. The traditional fault-tolerant approaches based

on duplication or TMR incur even higher area and power penalties (respectively,

more than twice or three times the area and power of a non-protected design).

Similarly, software-implemented time redundancy schemes, which repeat each

operation and compare the results to detect temporary faults, multiply by almost

three times power dissipation and have a similar impact on performance [45].

While massive (hardware or software) redundancy approaches, as the ones

discussed above, are still necessary for safety critical applications and also for

fail-safe systems [83], their large power and/or area and/or speed penalties make

them undesirable for many applications. More importantly, as low power dis-

sipation is a stringent requirement in advanced technologies, a breakthrough is

required with respect to the traditional concurrent error detection and fault-tolerant

approaches, in order to improve at the same time power, reliability, and yield in

advanced nanometric technologies without excessive area and speed penalties.

Efficient Circuit-Level Time Redundancy

To achieve concurrent error detection or fault tolerance, the approaches discussed

above either use hardware redundancy or replicate the operations of the circuit,

leading to high power dissipation and high area or speed penalties. More recent

schemes [84–86] avoid both hardware redundancy and operations redundancy.

Instead, they detect or tolerate faults by observing the output signals of logic blocks

at different instants.

A first scheme proposed in [84–86] observes the outputs of a combinational

circuit at two different instants. This can be done by adding a redundant latch to

each circuit output and driving the redundant latches by means of a delayed clock

signal, as shown in Fig. 8.13a. The delayed clock signal could be produced by

adding some delay elements on the normal clock signal. Another more efficient

alternative is to use the two edges (rising and falling) and/or the two levels (high

and low) of the clock signal to activate the regular and the redundant sampling

element [87]. Because it samples the circuit outputs at two different instants, more
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recently this scheme is also referred to as double sampling. Upon error detection,

the latest operation has to be repeated (retry). Also, as suggested in [84, 87], to

avoid the occurrence of the same error in case of timing faults, the clock frequency

is reduced during retry. Furthermore, in case of frequent error detections, the clock

frequency is permanently reduced [84]. The method was proposed in [84] to

improve reliability (against SEUs, SETs, and timing faults) and/or to increase the

operating frequency by detecting and correcting errors produced when a clock cycle

shorter than the worst case circuit delay is used [84].

This scheme was later extended [88, 89] to introduce local error correction

circuitry: upon error detection, the content of the redundant latch is used to replace

the content of the functional flip-flop, as shown in Fig. 8.13b. This architecture was

used by the University of Illinois and ARM to implement a dynamic voltage scaling

approach in which supply voltage is reduced aggressively and the errors induced by

this action are detected and corrected. The approach was shown to achieve 44%

power dissipation reduction [90].

Another technique proposed in [84, 85] is shown in Fig. 8.14a. In this double-

sampling scheme, a delay d is added on the combinational circuit output rather than

on the clock. This creates a second sampling instant that precedes by d the regular

sampling instant. The approach proposed in [91, 92] protects designs against

accelerating aging affecting advanced nanometric process nodes, by monitoring

the delay margins on the outputs of the combinational circuit. If the delay of the

circuit is degraded due to aging, then the reduction of delay margins is detected

before the occurrence of a timing fault and the clock frequency is reduced to
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same technique extended in the RAZOR architecture [88, 89] to perform error correction

8 Circuit-Level Soft-Error Mitigation 239



maintain delay margins constant. This scheme is shown in Fig. 8.14b. The circuit in

Fig. 8.14a [84] is used as a possible implementation of the aging detector.

Yet another technique proposed in [84] is shown in Fig. 8.15a. It uses an invert-

ing gate composed of four transistors (known as c-element) in order to eliminate

transient faults. The technique is later adapted in [93] to protect flip-flops against

soft errors, as shown in Fig. 8.15b. The later technique exploits the existence of

duplicated flip-flops in certain types of scan-chains, to reduce area cost.
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In order to cope with both aging-induced delay faults and SEUs, Intel researchers

combine the implementations presented in Figs. 8.14b and 8.15b, leading to the

AVERA architecture [94].

While the idea introduced in [84] and the related schemes shown in

Figs. 8.13–8.15, avoid massive redundancy, all these schemes require duplicating

the system flip-flops. This duplication results in significant area and power penalties

and makes necessary tradeoffs between protection level on the one hand and area

and power penalties on the other hand (e.g., protecting only the subset of most

sensitive flip-flops to avoid excessive area and power penalties). Furthermore, the

schemes of Fig. 8.13a, b suffer from the following drawbacks:

– To avoid false alarms (and miscorrections in Fig. 8.13b), all path delays of the

combinational circuits must exceed the delay d of the delayed clock signal. This

condition may require padding to increase the delay of short paths and may

induce a significant cost. Also, as process variations worsen, it becomes increas-

ingly difficult to guarantee that delays of short paths exceed the value d in all

circumstances. In addition, false alarms may be activated by clock skews, which

may be even more difficult to fix.

– Due to a similar problem, we are obliged to use moderate values for the delay d,

limiting the duration of detectable delay faults.

Furthermore, the scheme in Fig. 8.13b corrects timing faults but not transient

faults (SETs) and SEUs, neither latch/FF transition nor retention faults that may

occur in low supply voltage modes. This is because these faults may alter indistin-

guishably the values of the regular flip-flops and the redundant latches. Thus, upon

detection of an error that occurred in a redundant latch, the use of its content for

performing error correction introduces errors in the functional flip-flops.

As for the scheme of Fig. 8.14b, as well as the combination of this scheme with

the scheme of Fig. 8.15b in AVERA [94], they are designed to detect incremental

delay increases developed slowly due to aging. Thus, they may not be efficient

against large delay faults occurring due to variability, spot defects, and other

causes. For the same reasons, these schemes may not be efficient against SETs.

Finally, the schemes in Fig. 8.15 allow copying with soft errors but not with

delay faults.

Hence a new fault-tolerant architecture resolving these problems is of great

importance for addressing reliability, yield, and power issues in upcoming nano-

metric process nodes. The reason for which the above schemes could not cope with

large delay faults, and also require adding a redundant latch, is that all the stages of

a flip-flop-based design make computations at the same time and as soon as data are

fetched in the flip-flops, a new computation cycle starts. The consequence is that the

combinational circuit outputs are stable for short time durations, leaving a short

time that we could exploit for error checking purposes.

A FF-based design is illustrated in Fig. 8.16a. By analyzing more carefully

the operation of the flip-flops, we observe that when the master part of a flip-flop

is transparent, the slave part is on memorization and vice versa. Thus, if we

transform a flip-flop-based design (Fig. 8.16a) into its equivalent latch-based design
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(Fig. 8.16b), by moving the slave latches from the outputs of the master latches to

the middle of the combinational circuits as shown in Fig. 8.16b (where Ck and Ckb

are replaced by non-overlapping clocks F1 and F2), we obtain a design that can

operate at the same clock frequency as the original one. In addition, as observed

above, the master and slave latches operate at different phases. This implies that in

the modified design, the output signals of any combinational block (inputs of the

latches) remain stable during the period in which its adjacent blocks are in compu-

tation. Thus, we can compare the outputs of the latches against their inputs (as

proposed in the GRAAL architecture [95] and illustrated in Fig. 8.17), to detect

delay faults of large duration. The scheme also detects SETs, SEUs, and all kinds of
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latch faults including latch transition faults and latch retention faults. Therefore,

this scheme demonstrates powerful error detection capabilities for all fault types of

interest for nanometric designs (SEUs, SETs, delay faults, and latch faults).

Considering that the delay of each latch-based pipe-line stage will be roughly

half of that of the FF-based pipe-line stage, the delays of each latch-based pipe-line

stage will not exceed a half of those of the clock period (considering the same clock

period for the FF-based and the latch-based case). In this case, the outputs of each

pipe-line stage will be ready at the rising edge of the corresponding clock. Based on

these assumptions, and using a more accurate estimation than that in [95], we can

show that the scheme of Fig. 8.17 detects delay faults of duration up to 100% of the

critical path delays (50% of the clock period T), without imposing any constraint on

short paths. Thus, it offers very comfortable timing margins that can be employed

for detecting large delay faults induced by spot defects, variability, and circuit

aging, and at the same time reduce power dissipation by means of the idea

introduced in [90] (i.e., reduce Vdd level and detect and correct the induced timing

errors). If we add short path constraints, the detectable delay faults are further

increased. For instance, we can impose short paths to have delays larger than the

high level of the clock signals. Then, we can detect timing faults of duration much

higher than the circuit delays (up to T/2 + Th, where Th is the duration of the high

level of the clock). In the typical case, Th ¼ T/4, this will result in the detection of

delays up to 150% of the clock cycle. We can also find that all transient faults

(SETs) of duration not exceeding T/2 � Th are detected by the scheme that does not

use short path constraints, while the scheme using short path constraints detects all

transient faults of duration not exceeding T/2.

The circuit of Fig. 8.17 also tolerates clock skews of up to Th, as an inherent

property of latch-based designs [96]. In addition, a thorough analysis shows that,

thanks to the detection capabilities of the architecture of Fig. 8.17, larger clock

skews that are not tolerated are always detected.

While these properties make the proposed architecture very robust to clock

skews, in complex SoCs composed of several tens or hundreds of processing

nodes, global clock skews may become larger than the tolerant skew duration,

thus inducing frequent error detections. For such complex designs the proposed

scheme may have to be combined with a globally asynchronous, locally synchro-

nous architecture (GALS) approach. In other designs, a globally single-clock

locally double-clock architecture could be used.

The individual error detection signals are compacted by means of OR trees into a

global error detection signal for each odd and each even pipe-line stage. A single

global error detection signal for all odd and for all even pipe-line stages could also

be generated. In the case where no short path constraints are enforced, the global

error detection signal of each odd/even stage is latched at the rising edge of F2=F1.

In the case where short path constraints are enforced (the delay of any path exceeds

the time duration of the high level of the clock signals), the global error detection

signal of each odd/even stage is latched at the falling edge of F2=F1. The actual

checking of a pipe-line stage will be accomplished at an instant preceding the rising

or the falling edge of F2=F1 by a time equal to the delay of the corresponding OR
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tree. Delays can be added on F2=F1 signals used to latch the global error signals if

the designer desires to compensate this effect.

The implementation employing short path constraints offers a higher protection

not only for timing faults (as we have already discussed), but also for soft errors. An

SEU may occur in a latch at any time within the clock cycle. If the odd/even global

error signals are latched at the rising edge of F2=F1 (which is the case if no short-

path constraints are enforced), an SEU occurring after this edge in an odd/even latch

will not be detected. Thus, since the delays of short paths are not guaranteed to be

larger than the high-level duration of the clock signals, the error may have time to

propagate until the latches of this stage before the falling edge of F2=F1, resulting

in undetectable error. The probability of this situation depends not only on the

delays of short paths, but also on the delays of the OR trees, if these delays are not

compensated as suggested in the previous paragraph. This situation will not happen

in the case where short path constraints are enforced, guarantying detection of any

harmful SEU.

Concerning speed, some of the comfortable timing margins of the error detec-

tion described above could also be used to trade error detection capabilities with

speed (e.g., sacrifice a part of these margins to increase speed by means of time

borrowing).

Last but not least, thanks to the long duration of signal stability in latch-based

designs, error detection in Fig. 8.17 does not duplicate the system latches. Only

comparators are added to compare the inputs of latches against their outputs. As a

matter of fact, the scheme of Fig. 8.17 is expected to induce lower area and most

importantly drastically lower power penalties with respect to the schemes of

Figs. 8.13–8.15, which introduce extra clocked cells (latches) that are gourmand

in power. As power penalty is one of the stronger constraints in nanometric designs,

it makes inacceptable the use of these schemes for protecting all the signals of the

circuit, which is necessary for SEUs and SETs.

A problem related with the scheme of Fig. 8.17, as well as with the schemes of

Fig. 8.13a, b, is the occurrence of metastability. Metastability can lead to unde-

tected errors as metastable values could be interpreted differently by the next pipe-

line stage and by the error detection circuitry. Thus, it may reduce the mean time to

undetected failure. According to the mean time to failure and the target mean time

to undetected failure, metastability detectors, as the ones described in [88, 89], may

be required.

Note that Fig. 8.17 achieves error detection only. Error correction can also be

implemented locally. However, this scheme will require duplicating the circuit

latches and will induce significant area and power costs. Instruction replay

schemes, as the one implemented in the IBM power6 processor [97], are much

more efficient for this purpose.

The double-sampling approach of Fig. 8.13 can also be used to protect inter-

connections. This is straightforward, as interconnections can be seen as combina-

tional circuits implementing an identity function, whose delay may be affected by

delay faults due to variability, aging, and most importantly crosstalk. Figure 8.18a

shows this implementation. The shadow latches are rated by Ckb. If we consider a
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50% clock duty cycle, the scheme detects delay faults that increase the circuit

delays by a half clock period. The short paths constraint is not a problem as far as

the min delays of the interconnections (i.e., in the favorable crosstalk conditions

where neighbor signals make transitions in the same direction) are not shorter than

half clock period. This condition is not difficult to achieve unless we use quite slow

clocks. But it may be a problem in a complex circuit where some interconnections

are shorter than the other, or if we increase the clock period when some parts of the

circuit are affected by delay faults. It the later case, we have to use a clock

generation circuit that does not increase the duration of the high level of the

clock when it increases the clock period.

The GRAAL approach can be used for the same purpose, as shown in Fig. 8.18b.

The interconnections are divided in two parts of equal lengths by inserting a latch at

half length of the interconnections. For latches clocked by F1, the error signals can

be observed at the rising edge or the falling edge of F2, while for latches clocked by

F2, the error signals can be observed at the rising edge or the falling edge of F1.

Using the rising edge allows detecting delay faults of duration up to the half of the

clock period, which is larger than 100% of the delays of the checked interconnec-

tion parts (half lengths), while using the falling edge of the clock allows detecting
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delay faults of duration up to 75% of the clock period, which is larger than 150% of

the delays of the checked interconnection parts. The constraint for using the later

approach is that the min delays of the divided interconnection parts (i.e., in the

favorable crosstalk conditions where neighbor signals make transitions in the same

direction) are not shorter than 25% of the clock period. This will not be difficult to

achieve unless we use quite slow clocks. We observe that without introducing any

short delay constraints, the GRAAL approach detects twice larger delay faults (as

percentage of the interconnection delays) than the flip-flop-based double-sampling

scheme. It detects three times larger delay faults when it introduces equivalent short

delay constraints as the flip-flop-based double-sampling scheme. In particular,

GRAAL achieves these excellent error detection capabilities at negligible (a few

percent) area and power penalties.

Recently, improvements of the scheme given in Fig. 8.13 were proposed and

evaluated by Intel [98]. The proposed solutions referred to as transition detection

time borrowing (TDTB) and double-sampling time borrowing (DSTB) exploit the

fact that in the double-sampling approach of Fig. 8.13a, b, all path delays exceed the

time duration of the high clock level. Thus, the data on the combinational block

outputs are stable until the falling edge of the clock. As a consequence, we do not

need to latch these data on the rising edge of the clock and the master latch of the

output flip-flop can be eliminated. This is shown in Fig. 8.19a, b, where a transpar-

ent latch is connected to the combinational block output. This latch samples the data

present on this output during the rising edge of the clock. Furthermore, for any

timing fault whose extra delay does not exceed the time duration of the high clock

level, there is no risk of metastability on the latch output. Metastability is possible

on the detection signal’s path, but the probability that an erroneous output goes

undetected due to this problem is relatively low [98].

Two kinds of detection circuits were used. The first (Fig. 8.19a) is a transition

detector [99, 100], which detects any signal transition occurring during the high

clock level. The second (Fig. 8.19b) is a shadow flip-flop used to implement a

double-sampling scheme as proposed in [84, 85]. The flip-flop samples data at the

rising edge of the clock and the latch at the falling edge of the clock. Comparison of

the flip-flop and latch outputs detects timing faults whose delay does not exceed the

time duration of the high clock level. The scheme in Fig. 8.19a induces lower power
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Fig. 8.19 (a) Transition detection time borrowing (TDTB) scheme [98]. (b) Double-sampling

time borrowing (DSTB) scheme [98]
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dissipation than the scheme in Fig. 8.19b (the transition detector consumes less

power than the shadow flip-flop). Figure 8.19a also consumes less power than a

traditional flip-flop design, as the transition detector and the latch dissipate less

power than a flip-flop.

The drawbacks of the scheme in Fig. 8.19a are a more difficult design with respect

to Fig. 8.19b (in particular, under variability and aging issues) and a protection of the

output latch against SEUs during a limited period of the clock cycle. The scheme

given in Fig. 8.19b can protect the output latch against SEUs during the entire clock

cycle if the comparator output is validated at the end of this cycle.

Comparing TDTB and DSTB schemes with GRAAL, we find that these schemes

are compatible with more traditional design, while GRAAL is used with non-

overlapping clocks. Also, TDTB could dissipate less power than GRAAL. In fact,

GRAAL uses an output latch and an XOR gate in each pipe-line stage, while TDTB

uses an output latch and a transition detector. The transition detector will dissipate

more power than the XOR gate, in particular as it loads the clock tree. However, a

latch-based architecture, as the one used in GRAAL, will have more pipe-line

stages to achieve the same speed as a FF-based architecture.

Compared with DSTB, GRAAL should dissipate less due to the shadow FF

added in the DSTB scheme. Also, GRAAL detects timing faults up to 100% of the

pipe-line stage delay, which represents a much larger percentage of circuit delay

with respect to the faults detected by TDTB and DSTB. Most importantly, in this

case, we do not need to enforce short path constraints as is required in TDTB and

DSTB. Such constraints further increase area and power, and may be difficult to

enforce due to variability and clock skews. Finally, if we impose short path

constraints, the detection capabilities of GRAAL can reach 150% of the delay of

each pipe-line stage. On the contrary, GRAAL will exhibit data-path metastability.

But this will happen if metastable values occur during the falling edge of the clock.

This will correspond to timing faults of duration at least equal to the high level of

the clock cycle. This represents a percentage of the pipe-line stage delay much

higher than the faults detected by TDTB and DSTB (equal to the high level of the

clock cycle too, but representing a smaller percentage of the pipe-line stage delay).

In addition, the metastability issue will affect only partially the detection capabil-

ities of GRAAL for faults of larger duration. A decision to use metastability

detectors can be taken following an analysis of the intrinsic FIT of the design, the

FIT improvements achieved by GRAAL without using metastability detectors, and

the target FIT.

8.7 Conclusions

As soft errors become a stringent reliability issue in nanometric technologies,

design for soft-error mitigation is gaining importance. As for any fault-tolerant

approach, soft-error mitigation may significantly impact area, speed, and power, so

the selection of the best approach is a complex tradeoff between these parameters

8 Circuit-Level Soft-Error Mitigation 247



and the target level of reliability. It is, therefore, suitable to dispose a variety of

solutions that can meet various constraints of the design, such as minimal area,

minimum power, minimum speed, maximum reliability, or a trade-off between

these parameters. We presented various schemes that exhibit such characteristics

and could help the designer to meet product requirements. Active work in this area

in various research centers should enrich the scope of solutions and improve our

ability to face the soft-error and other reliability threats that accompany nanometric

scaling.
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Chapter 9

Software-Level Soft-Error Mitigation
Techniques

Maurizio Rebaudengo, Matteo Sonza Reorda, and Massimo Violante

Several application domains exist, where the effects of Soft Errors on processor-

based systems cannot be faced by acting on the hardware (either by changing the

technology, or the components, or the architecture, or whatever else). In these

cases, an attractive solution lies in just modifying the software: the ability to detect

and possibly correct errors is obtained by introducing redundancy in the code and in

the data, without modifying the underlying hardware. This chapter provides an

overview of the methods resorting to this technique, outlining their characteristics

and summarizing their advantages and limitations.

9.1 Introduction

The adoption of processor-based systems even in safety- and mission-critical

applications, where misbehaviors can endanger the users or cause significant

economical losses, is raising new challenges for designers, who are asked to face

at the same time the safety constraints with the stringent cost requirements that are

typical of many application domains.

Several techniques are known since decades to meet safety constraints, which

are based on a massive use of redundant (hardware and/or software) modules, and

which have been developed to cope with the stringent dependability requirements

of developers of traditional mission- or safety-critical applications, such as those

belonging to the nuclear, military, and space domains.

However, these techniques can hardly be exploited today (at least in their original

version) due to a number of constraints coming either from the new safety-critical
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application domains where processor-based systems are used, or from new technolog-

ical or commercial issues that designers cannot neglect.

On one hand, the budget available to developers of mission- or safety-critical

applications (especially in new market domains such as automotive, biomedical, or

telecom) is shrinking constantly, to the point that commercial-off-the-shelf compo-

nents, which are not specifically designed, manufactured, and validated for being

deployed in critical applications, are nowadays mandatory to cut costs.

On the other hand, the advancements in manufacturing technologies have made

available deep-sub-micron circuits that pack tens of millions of transistors, operate

in the GHz domain, and are powered by low voltage supplies: these advancements

open the frontiers for unprecedented low-cost computing power, but whose noise

margins are so reduced that the obtained products (if not suitably modified) are

expected to experience serious reliability problems when deployed in the field, even

if they are designed, manufactured, and operated correctly. In fact, for such a kind

of systems, the correct behavior has to be guaranteed taking into account the high

chance that soft errors may occur while they are operating in the field. For such a

kind of commodity applications, cost is one of the primary concerns, and therefore

the techniques for guaranteeing high dependability coming from traditional critical

domains are not affordable.

Finally, developers of mission- or safety-critical applications can benefit from

the usage of commercial-off-the-shelf components not only for reasons related

to component’s cost, but also for performance reason. Indeed, commercial-off-

the-shelf components are often one generation behind their hardened counterparts

(i.e., components that are certified for being deployed in critical applications),

which means that they are in general more powerful, less power demanding, etc.

As a result, developers of mission- or safety-critical applications can produce better

designs by using commercial-off-the-shelf components, provided that they have a

low-cost way to design dependable systems from unreliable components.

The quest for reducing development costs, while meeting high dependability

requirements, has seen the rise of a new design paradigm known as software-

implemented hardware fault tolerance (SIHFT) for developing processor-based

systems the user can reasonably rely on. According to this paradigm, commercial-

off-the-shelf processors are used in combination with specially crafted software. This

software is suitably developed, so that it can accomplish two tasks. From one side, it

performs the original functionalities the designers implemented to satisfy the user’s

requirements, and from the other, it supports special functionalities that detect, signal,

and possibly correct the occurrence of both permanent and transient hardware errors.

By using commercial-off-the-shelf processors, the designers can use the state-of-

the-art components that guarantee the best performance available at the moment.

Moreover, designers can cut costs significantly: commercial-off-the-shelf compo-

nents come indeed at much lower costs than their hardened counterparts. Moreover,

hardware redundancy is not used, since all the tasks needed to provide dependabil-

ity are demanded to the software.

According to the SIHFT paradigm, the software becomes the most critical part of

the system, since it is its duty to supervise the correct behavior of the whole system,
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and possibly intervene to mitigate the effects of errors. On the one hand, the software

must be correct, i.e., it should implement the specifications correctly. Moreover, it

should be effective in coping with errors affecting the underlying hardware.

Software-implemented hardware fault tolerance may represent a viable solution to

the problem of developing processor-based systems that balance costs with depend-

ability requirements. Since many different approaches are available, designers will-

ing to adopt them may have difficulties in selecting the approach (or the approaches)

that best fits with the design’s requirements.

This chapter aims at providing an overview of the most important available

techniques, showing their advantages and underlining their disadvantages. We

organized it as follows: Sect. 9.2 presents the approaches that are available for

hardening the data that a processor-based system elaborates. This section deals with

all those errors that modify the results a program computes, but that do not modify

the sequence in which instructions are executed: several techniques are presented to

guarantee that the system is able to detect the occurrence of these errors. Sect. 9.3

concentrates on the many approaches dealing with the problems of identifying the

errors that may affect the execution flow of a program, thus changing the sequence

in which the instructions are executed. Sect. 9.4 illustrates the approaches that allow

developing fault-tolerant systems, where errors are both detected and corrected.

Finally, Sect. 9.5 draws some conclusions.

9.2 Addressing Faults Affecting the Data

When considering the possible effects of faults that can arise in a processor-based

system, a common categorization distinguishes between faults that simply change the

data the application works on (thus forcing the code to produce wrong results, while

following the same execution flow), and faults that affect the control flow, e.g., by

changing the op-code of an instruction just before it is decoded and executed. This

section focuses on the methods for facing faults belonging to the former category.

The adoption of these techniques is generally rather expensive in terms of

memory size, execution slow down, and programming limitations. On the other

side, they generally offer a very high coverage of the addressed faults.

The methods considered in this section mainly belong to two categories:

1. Those based on computation duplication;

2. Those based on assertions.

9.2.1 Computation Duplication

The basic idea behind this group of techniques is that the operations performed by

the code can be duplicated, and the produced results compared, thus allowing the
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detection of possible faults. Duplication may be implemented at four levels of

granularity: instruction, instructions block, procedure, or program.

Starting from the smallest granularity, duplication can be adopted at the instruc-

tion-level, where an individual instruction is duplicated. For example, the dup-

licated instruction is executed immediately after the original instruction; the

duplicated instruction may perform the same computation carried out by the

original instruction, or it can perform a modified version of the original operation.

The coarsest level of duplication is the program level, in which the whole

program is duplicated: the duplicated program may be executed after the original

program completes its execution, or it can be executed concurrently.

Whatever the level of granularity adopted, the technique is able to detect faults

by executing a check after the duplicated code is executed. With the instruction-

level duplication, a check compares the results coming from the original instruction

and its duplication; with the procedure-level duplication, the results of the dupli-

cated procedures are compared; with the program-level duplication, a comparison

among the outputs of the programs is executed in order to detect possible faults.

In order to give the reader an idea of this group of methods, we will first focus on

instruction-level duplication. A simple method belonging to this category, and able

to achieve a satisfactory error detection capability, has been originally proposed in

[1]; it is based on introducing data and code redundancy according to a set of

transformations to be performed on the high-level source code. The transformed

code is able to detect errors affecting both data and code: the goal is achieved by

duplicating each variable and adding consistency checks after every read operation.

Other transformations focus on errors affecting the code, and correspond from one

side to duplicating the code implementing each write operation, and from the other,

to adding checks for verifying the consistency of the executed operations.

The main advantage of the method lies in the fact that it can be automatically

applied to a high-level source code [2], thus freeing the programmer from the

burden of guaranteeing its correctness and effectiveness (e.g., by selecting what

to duplicate and where to insert the checks). The method is completely independent

on the underlying hardware, and it possibly complements other already existing

error detection mechanisms.

The rules mainly concern the variables defined and used by the program. The

method refers to high-level code only and does not care whether the variables are

stored in the main memory, in a cache, or in a processor register. The proposed rules

may complement other Error Detection Mechanisms that can possibly exist in the

system (e.g., based on parity bits or on error correction codes stored in memory).

It is important to note that the detection capabilities of the rules are significantly

high, since they address any error affecting the data, without any limitation on the

number of modified bits or on the physical location of the bits themselves.

The basic rules can be formulated as follows:

l Rule 1. Every variable x must be duplicated: let x0 and x1 be the names of the

two copies.
l Rule 2. Every write operation performed on x must be performed on x0 and x1.
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l Rule 3. After each read operation on x, the two copies x0 and x1 must be checked

for consistency, and an error detection procedure should be activated if an

inconsistency is detected.

The check must be performed immediately after the read operation, in order to

block the fault effect propagation. Please note that variables should also be checked

when they appear in any expression used as a condition for branches or loops, thus

allowing a detection of errors that corrupt the correct execution flow of the program.

Every fault that occurs in any variable during the program execution can be

detected as soon as the variable is the source operand of an instruction, i.e., when

the variable is read, thus resulting in minimum error latency, which is approxi-

mately equal to the temporal distance between the fault occurrence and the first read

operation. Errors affecting variables after their last usage are not detected (but do

not provoke any failure, too).

Two simple examples are reported in Fig. 9.1, which shows the code modifica-

tions for an assignment operation and for a sum operation involving three variables

a, b, and c.

Experimental results reported in [3] show that the method is able to provide a

nearly complete fault detection capability; on the other side, it introduces a signifi-

cant memory overhead (about 3 times with respect to the original program) and a

comparable slow-down factor.

In [4], a method has been introduced that is able to select a subset of variables to

be duplicated; in this way, the cost of the method can be significantly improved, at

the expense of a small reduction in the fault detection capabilities.

An interesting method based on similar concepts and named EDDI (Error-

Detection by Duplicated Instructions) has been presented in [5]. EDDI aims at

exploiting the architecture of modern superscalar processors to achieve fault detec-

tion capabilities. In particular, the authors of EDDI propose to duplicate the original

instructions in the original assembly source code using duplicated registers and

variables, too. When executed by a superscalar architecture, it is likely that the cost

for executing the hardened code is less than doubled with respect to the original

one, since they eventually exploit the idle functional units within the pipeline.

Original code Modified Code

a = b; a0 = b0; 
a1 = b1; 
if (b0 != b1)  

error ();

a = b + c; a0 = b0 + c0;
a1 = b1 + c1; 
if ((b0!=b1) || (c0!=c1))

error (); 

Fig. 9.1 Example of code modification
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Following a similar idea, detection capability can also be obtained exploiting

idle cycles of a fine-grain parallel architecture composed of multiple pipelined

functional units, where each functional unit is capable of accepting an instruction in

every clock cycle. This approach is called instruction re-execution [6], and it

addresses the performance degradation caused by time redundancy. With instruc-

tion re-execution, the program is not explicitly duplicated. Rather, when an instruc-

tion reaches the execution stage of the processor pipeline, two copies of the

instruction are formed and issued to the execution units. Since instructions are

duplicated within the processor itself, the processor has flexible control over the

scheduling of redundant computations. Dynamic scheduling logic combined with a

highly parallel execution core allows the processor to exploit idle execution cycles

and execution units to perform the redundant computations.

Devising instruction duplication techniques for Very Long Instruction Word

(VLIW) processors has been explored by Bolchini [7]. The experimental results

showed the performance degradation ranges from 2 to 25% with respect to the

nominal application code. The limited impact can be related to the low average

number of operations per clock cycle, which leaves several empty slots for dupli-

cated operations.

9.2.2 Procedure-Level Duplication

9.2.2.1 Selective Procedure Call

The Selective Procedure Call Duplication (SPCD) [8] technique is based on the

duplication of the procedure execution. Every procedure (or a selected subset of

them) is called twice with the same parameters; the results produced by the two

executions are stored and compared, thus allowing for error detection. Figure 9.2

shows an example where procedure B is called twice.

The main goal of this approach is the improvement of the systems’ reliability by

detecting transient errors in hardware, taking into account the reduction of the

energy consumption and of the overhead.

SPCD minimizes energy dissipation by reducing the number of clock cycles,

cache accesses, and memory accesses by selectively duplicating procedure calls

instead of duplicating every instruction. The number of additional clock cycles is

reduced because the number of comparisons is reduced by checking the computa-

tion results only after the original and duplicated procedure execution (instead

of checking the results immediately after executing every duplicated instruction).

The code size is also reduced because the procedure code is not duplicated. The

probability of an instruction cache miss can also be lowered in this way (since

the data and code of a procedure may remain in the caches from one call to the

following) and energy consumption can be reduced for fetching instructions

from the cache to the processor, or moving instructions from the memory to the

cache. Moreover, reducing the number of comparisons decreases the number of
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data accesses to the data cache and the memory, resulting in reduced energy

consumption.

However, there is a trade-off between energy saving and error detection latency:

longer error detection latency reduces the number of comparisons inside the

procedure, and therefore, saves energy. The shortest error detection latency can

be achieved by instruction-level duplication. In procedure-level duplication, com-

parison of the results is postponed until after executing the called procedure twice;

then, the worst case error detection latency corresponds to the execution time of the

original and duplicated procedures and the comparison time.

The adoption of the SPCD technique may require some additional attention to

deal with special cases. As an example, if a procedure modifies a global variable,

duplicating its execution can introduce an incorrect behavior. This may require

changing the procedure code to avoid the problem.

SPCD was simulated with some benchmark programs.

Fault injection experiments were executed injecting single-bit flip faults in the

adder unit. Experimental results show the following:

l As the error detection latency increases, the energy consumption is reduced.
l The data integrity (i.e., the correctness of the outputs) reported is always 100%.
l The number of detected faults decreases as the error detection latency increases,

but the undetected faults do not cause any failure because they do not affect the

final results.

In order to evaluate the feasibility of the approach in terms of energy consump-

tion saving, SPCD is compared with the hardened program obtained by applying an

instruction-level duplication approach [5]. The obtained results show that SPCD

allows an energy saving of 25% with respect to the energy consumption required by

an instruction-level duplication approach.

int a, a1, b, c, c1;
void A2 ()
{

a = B(b);
a1 = B(b);
if (a <> a1) errorHandler();
c = c + a;
c1 = c1 + a1;
if (c <> c1) errorHandler();

}
int B(int b)
{
int d;

d = 2 * b;
return(d);

}

Fig. 9.2 Procedure-level duplication
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9.2.3 Program-Level Duplication

9.2.3.1 Time Redundancy

When time redundancy is adopted, the same computation is performed multiple

times (possibly in different forms) on the same hardware. A particular application

of time redundancy is the duplication of the processing activity as a proper

technique to detect faults of the underlying hardware. A particular form of such

duplication is the Virtual Duplex System (VDS) architecture, where the duplicity is

achieved by temporal redundancy, which is obtained by executing two programs

performing the same task with the same input data. Virtual duplex systems provide

a cost advantage over duplex systems because of reduced hardware requirements.

VDS only needs a single processor, which executes the same program twice, or two

programs in sequence implementing the same algorithm. In the former case,

transient hardware errors are covered due to time redundancy, as only a single

execution is affected. In the latter case also, permanent hardware errors can be

detected due to design diversity. For these reasons, the programs of a VDS are

diversified in order to reduce the probability that both of them are affected in the

same way.

The disadvantage of time redundancy is the performance degradation caused by

repetition of tasks.

There are different kinds of duplication: one option consists in running entire

programs twice, whereby another option is to execute the duplicated processes in

short rounds and switch between them. The switching introduces extra overhead,

but can be used to compare intermediate results more frequently in order to reduce

the fault latency.

The structure of a VDS is reported in Fig. 9.3. Each version of a program is

called variant. A VDS built to calculate a specified function f consists of two

diversified program variants Pa and Pb calculating the functions fa and fb, respec-

tively, on the same input values i. In absence of faults, f ¼ fa ¼ fb holds. If a fault

affects only one of the two variants or both of them in different ways, then the fault

can be detected comparing the results fa(i) and fb(i).

VDS

Variant Pa

Result

Comparison

fa(i)

fb(i)

fa(i) = fb(i) 

fa(i) ≠ fb(i) 
Variant Pb

fa(i)

error

Input i

Fig. 9.3 Structure of a VDS
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The kind of faults detected by a VDS highly depends on the diversity techniques

used to generate the VDS.

For example, if two independent teams develop different variants of a program,

then the resulting VDS may have the ability to detect both specification and imple-

mentation faults. If, as a second example, two different compilers are used to

compile the same source code, then the resulting VDS may have the ability to

detect faults stemming from compiler faults. The capability of diversified program

variants to detect hardware faults has been mentioned and investigated in [9]. The

basic idea is that two diversified programs often use different parts of the processor

hardware in different ways with different data.

Variants can also be generated by manually applying different diversity techni-

ques. However, some algorithmic approaches have been proposed in order to

properly generate effective software variants.

In [10], a systematic method is presented based on the transformation of every

instruction of a given program into a modified instruction or sequence of instruc-

tions, keeping the algorithm fixed. The transformations are based on a diverse

data representation. Since a diverse data representation also requires a modifica-

tion of the instructions that have to be executed, new sequences of instruction

must be generated, that calculate the result of the original instruction in the

modified representation. The transformations can be generated at the assembly

level as well as in at a higher level. Some examples of the modification rules are

as follows:

l Logical instructions can be modified according to the de Morgan Rules (e.g., a or

b ¼ NOT (NOT (A) AND NOT (B))).
l Arithmetic instructions can be modified according to the two’s complement

properties (a þ b ¼ � (�a) þ (�b)).

In [11], a method for the automated generation of variants is proposed. The tool

is able to generate two different, but semantically equivalent, pieces of assembly

code, exploiting a set of modification rules. Some examples of modification rules

are as follows:

l Replacement of jump instructions (e.g., replacement of conditional jump

instructions by appropriate combinations of other jump instructions);
l A consistent register permutation;
l Substitution of a multiplication statement by a subroutine that performs multi-

plication in a different way.

9.2.3.2 Simultaneous Multithreading

Simultaneous multithreading (SMT) is a novel technique to improve the performance

of a superscalar microprocessor. A SMT machine allows multiple independent

threads to execute simultaneously, i.e., in the same cycle, in different functional

units. VDS can be effectively exploited on a SMT machine, executing two threads in
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parallel, shifting time redundancy to spatial redundancy [12]. Because of the

improved processor utilization and the absence of a context switch, the time execu-

tion is reduced with respect to the correspondent duplicated implementation on a

conventional processor.

With the Active-Stream/Redundant-Stream Simultaneous multithreading (AR-SMT)

[13] approach, two explicit copies of the program run concurrently on the same

processor resources as completely independent programs, each having its own state

or program context. The entire pipeline of the processor is conceptually duplicated.

As already mentioned before, in superscalar processors often there are phases of a

single program that do not fully utilize the microprocessor architecture, so sharing

the processor resources among multiple programs will increase the overall utiliza-

tion. Improved utilization reduces the total time required to execute all program

threads, despite possibly slowing down single thread performance. AR-SMT is

based on two streams: active stream (A-stream) and redundant instruction stream

(R-stream). The active stream corresponds to the original program thread and as

instructions from the A-stream are fetched and executed, and their results com-

mitted to the program’s state, the results of each instruction are also pushed on a

FIFO queue called Delay Buffer. Results include modifications to the Program

Counter by branches and any modifications to both registers and memory. The

second stream (R-stream) is executed simultaneously with the A-stream. As the

R-stream is fetched and executed, its committed results are compared to those

stored in the Delay Buffer. A fault is detected if the comparison fails, and the

committed state of the R-stream can be used as a checkpoint for recovery. Simula-

tions made on a processor composed of 8 Processing Elements show that AR-SMT

increases execution time by only 10–40% over a single thread, thanks to the

optimized utilization of the highly parallel microprocessor.

9.2.3.3 Data Diversity

The method exploits data diversity by executing two different programs with the

same functionality, but with different data sets and comparing their outputs. This

technique is able to detect both permanent and transient faults.

This approach produces two different programs starting from the original one; a

new version is generated by multiplying all variables and constants by a diversity

factor k. Depending on the factor k, the original and the transformed program may

use different parts of the underlying hardware, and propagate fault effects in

different ways. If the two programs produce different outputs due to a fault, the

fault can be detected by examining if the results of the transformed program are also

k times greater than the results of the original program. The check between the two

programs can be executed in two different ways:

1. Another concurrent running program compares the results.

2. The main program that spawns the original program and the transformed program

checks their results after they are completed.
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In Fig. 9.4, a sample program is transformed into a diverse program, where

k ¼ �2.

The choice of the most suitable value for k is performed by trying to maximize

the probability that the two programs produce different outputs for the same

hardware fault. However, the factor k should also not cause an overflow in the

functional units. The overflow problem can be solved by scaling: scaling up the data

of the modified program to higher precision, or scaling down the original data.

Scaling up may cause performance overhead because the size of the data is doubled.

On the other hand, scaling down the original data (the same effect as dividing the

original data by k instead of multiplying by k) will not cause any performance

overhead. However, there is a possibility that scaling down data may cause compu-

tation inaccuracy during the execution of the program. In this case, when the scaled

down values are compared with the original values, only the higher order bits that

are not affected by scaling down have to be compared.

A first method [10] proposed to consider k ¼ �1, i.e., data are negated.

The method proposed in [14], called ED4I (Error Detection by Diverse Data and

Duplicated Instructions), demonstrated that in different functional units, different

values of k maximize the fault detection probability and data integrity (e.g., the bus

has the highest fault detection probability when k ¼ �1, but the array multiplier

has the highest fault detection probability when k ¼ �4). Therefore, programs that

use a particular functional unit extensively need preferably a certain diversity factor

k. Considering six benchmark programs (Hanoi, Shuffle, Fibonacci, Lzw compres-

sion, Quick sort, and Insert sort), the most frequently used functional units are

adders and k ¼ �2 is the optimum value. On the other hand, the matrix multiplica-

tion program extensively uses the multiplier and the optimum value is k ¼ �4.

This hardening technique introduces a memory overhead higher than two times

the memory required for the original program and the performance overhead is also

higher than 2.

ED4I is applicable only to programs containing assignments, arithmetic opera-

tions, procedure calls, and control flow structures, and cannot be applied to statements

executing logic operations (e.g., Boolean functions, shift or rotate operations) or

exponential or logarithmic functions.

Transformed versionOriginal version

x = 1;

y = 5;

i = 0;

while (i < 5){ 

z = x + i * y;

i = i + 1;

}

i = 2 * z;

x = -2;

y = -10;

i = 0;

while (i > -10) {

z = x + i * y /(-2);

i = i + (-2);

}

i = (-4) * z / (-2);

Fig. 9.4 Sample program in the original and transformed version
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9.2.4 Executable Assertions

This method is based on the execution of additional statements that check the

validity and correctness of the data corresponding to the program variables.

The effectiveness of executable assertions method is highly application depen-

dent. Moreover, in order to identify the most suitable executable assertions, the

developers require extensive knowledge of the system.

Error detection in the form of executable assertions can potentially detect any

error in internal data caused by software faults or hardware faults.

The approach proposed in [15] describes a rigorous way of classifying the data to

be tested. The two main categories in the classification scheme are continuous and

discrete signals. These categories have subcategories that further classify the signal

(e.g., the continuous signals can be divided into monotonic and random signals).

For every signal class, a specific set of constraints is set up, such as boundary values

(maximum and minimum values) and rate limitations (minimum and maximum

increase or decrease rate), which are then used in the executable assertions. Error

detection is performed as a test of the constraints. A violation of a constraint is

interpreted as the detection of an error.

Executable Assertion and best effort recovery are proposed in [16], considering a

control application. The state variables and outputs are protected by executable

assertions to detect errors using the physical constraints of the controlled object.

The following erroneous cases can be detected:

l If an incorrect state of the input variable is detected by an executable assertion

during one iteration of the control algorithm, a recovery is made by using

the state backed-up, during the previous iteration of the computation. This is

not a true recovery, since the input variable may differ from the value used in

the previous iteration. This may result in the output being slightly different

from the fault-free output, thus creating a minor value failure (best effort

recovery).
l If an incorrect output is detected by an executable assertion, recovery is made by

delivering the output produced in the previous iteration. The state variable is also

set to the state of the previous iteration that corresponds to the delivered output.

This is a best effort recovery too, since the output could be slightly different

from the fault-free value.

The approach based on executable assertions with best effort recovery has been

experimentally applied on an embedded engine controller [16]. Fault injection

experiments executed on the original program showed that 10.7% of the bit-flips

injected into data cache and internal register of a CPU caused a failure in the

system. Fault injection experiments run on the hardened program modified with the

executable assertions with best effort recovery showed that the percentage of

failures decreased to 3.2%, demonstrating that software assertions with best effort

recovery can be effective in reducing the number of critical failures for control

algorithms.
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9.3 Addressing Faults Affecting the Execution Flow

This section presents the main software-implemented techniques for hardening a

processor-based system against control flow (CF) errors (CFEs). A CFE is an error

that causes a processor to fetch and execute an instruction different than expected.

First of all, we will introduce some general concepts and definitions. Afterwards,

the most representative methods among those proposed to face CFEs will be

overviewed.

9.3.1 Background

The program code can be partitioned into basic blocks (BBs). A BB (sometimes also

named branch free interval) of a program is a maximal sequence of consecutive

program instructions that, in absence of faults, are always executed altogether from

the first one up to the last one.

So, a BB does not contain any instruction that may change the sequential

execution, such as jump or call instructions, except for the last one, possibly.

Furthermore, no instructions within the BB can be the destination of a branch,

jump or call instruction, except for the first one, possibly.

The BB body is the BB without the last jump instruction. If the last BB instruction

is not a jump instruction, then the BB body coincides with the BB. It may happen that

a BB body is empty if the BB consists of one jump instruction only.

A program P can be represented with a CF Graph (CFG) composed of a set of

nodes V and a set of edges B, P ¼ fV;Bg, where V ¼ fv1; v2; . . . ; vng and

B ¼ fbi1; j1; bi2; j2; . . . ; bim; jmg. Each node vi 2 V represents a program section,

which can correspond to a single instruction or a BB. Each edge bi;j 2 B represents

the branch from node vi to node vj [17].

As an example, let us consider the sample program fragment shown in Fig. 9.5

(where the BBs are numbered, and the corresponding program CFG is shown).

Considering the program CFG P ¼ fV;Bg, for each node vi, it is possible to

define suc(vi) as the set of nodes successor of vi and pred(vi) as the set of nodes

predecessor of vi [18]. A node vj belongs to suc(vi) if and only if bi,j is included in B.

i = 0;
while(i < n) { 
if (a[i] < b[i])

x[i] = a[i];
else

x
i++;

}

0

1

2

3

4
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0

2 3

4

1

5

b
0,5

b
0,1

b
1,2
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a b

Fig. 9.5 Example of

program source code and

its CFG
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Similarly, vj belongs to pred(vi) if and only if bj,i is included in B. For example, in

the CFG from Fig. 9.5b sucð1Þ ¼ f2; 3g and predð1Þ ¼ f0; 4g.
Let a program be represented by its CFG P ¼ fV;Bg. A branch bi,j is illegal for

P if bi,j is not included in B [17]. If a program, due to a fault, executes a branch

bi;k 2 B instead of the correct branch bi,j, then the branch bi,k is wrong. Illegal and

wrong branches correspond to CFEs.

CFEs can be divided into intra-block errors, which cause erroneous branches

having as their source and destination different blocks, and inter-block errors,

which cause erroneous branches not crossing the blocks boundaries. Correspond-

ingly, intra-block Control Flow Check (CFC) techniques control that instructions

inside a block are executed in the correct order, and inter-block CFC techniques

detect inter-block CFEs.

A common approach for the software-implemented detection of CFEs, causing

erroneous branches inside program area, is the signature-monitoring technique. In

this approach, monitoring is performed by regular processor instructions (called

monitoring or checking code) embedded into the program under execution. A

signature (or identifier) is associated to program structure (it can be a singular

instruction, a block of instructions, a path of the program CFG, or other) during the

compile time or by special program prior to program execution. During the program

execution, a run-time signature is computed. Periodically, checks for consistency

between the reference signature and the run-time signature are performed. The

mismatch signals the CFE. The run time signature computed during the program

execution is usually stored in a special area (e.g., a processor register).

In this section, we considered the fault models proposed in literature (e.g.,

[18–20]) including the following types of CFEs:

l Type 1: a fault causing an illegal branch from the end of a BB to the beginning of

another BB;
l Type 2: a fault causing a legal but wrong branch from the end of a BB to the

beginning of another BB;
l Type 3: a fault causing a branch from the end of a BB to any point of another BB

body;
l Type 4: a fault causing a branch from any point of a BB body to any point of

different BB body;
l Type 5: a fault causing a branch from any point of a BB body to any point in the

same BB body.

The first four types represent inter-block CFEs, while type 5 represents intra-block

CFEs. The considered fault model includes only CFEs, which lead to erroneous

branches inside the program memory.

9.3.2 ECCA

In order to reduce the overhead, the method known as Enhanced Control flow

Checking using Assertions (ECCA) [19] divides the program into a set of blocks,
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where the block is a collection of consecutive BBs (BBs are called Branch Free

Interval or BFI in [19], but we will hold on the accepted terminology) with single

entry and single exit. The shorter the block is, the higher the fault coverage is and

the lower the error detection latency is, whereas the memory and performance

overhead is higher. By properly choosing the block length, it is possible to find the

most suitable trade-off for the user purposes.

Error detection in ECCA is performed resorting to the exception handler. ECCA

assigns a unique prime number identifier (called Block Identifier or BID) greater

than 2 to each block of a program. During program execution, the global integer

variable id is updated to contain the currently traversed block identifier.

Two assertions are added to each block:

1. A SET assertion is added at the beginning of the block, which executes two

tasks: it assigns the BID of the current block to the id variable and it checks if the

block from which the execution came from is a predecessor block, according to

the CFG. A divide by zero error signals a CFE. The SET assertion implements

the following formula:

id ¼
BID

ðidmod BIDÞ � ðidmod 2Þ
; (9.1)

where,

ðidmodBIDÞ ¼
1; if ðidmodBIDÞ ¼ 0;
0; if ðidmodBIDÞ 6¼ 0:

�

2. A TEST assignment is executed at the end of the block and executes two tasks: it

updates the id variable taking into account the whole set of successor according

to CFG blocks and checks if the current value of the id variable is equal to BID.

The TEST assertion implements the following formula:

id ¼ NEXT þ ðid � BIDÞ: (9.2)

The variable NEXT is equal to the product of BIDs of all successors according to

the CFG blocks of the current block, i.e.,

NEXT ¼
Y

BIDsuccessor; (9.3)

ðid � BIDÞ ¼
1; if ðid � BIDÞ 6¼ 0;
0; if ðid � BIDÞ ¼ 0:

�

The NEXT and BID variables are generated once before the program execution,

whereas the id variable is updated during the program execution.

Experimental analysis demonstrates that the main merit of the approach is its

high CFE coverage. ECCA covers all single CFEs of types 1, 3, and 4. Legal but
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wrong branches (errors of type 2) as well as intra-block CFEs (errors of type 5) are

not considered by the method.

The drawback of the method is the quite high memory and performance over-

head: although only two instructions for block are added in ECCA, these instruc-

tions are rather complex and are translated in a high number of instructions in the

executable assembly code.

9.3.3 CFCSS

In [18], an assembly-level CFC approach named Control Flow Checking by Software

Signatures (CFCSS) is proposed.

CFCSS assigns a unique arbitrary number (signature) si to each BB. During

program execution, a run-time signature G is computed in each BB and compared

with the assigned signature. In the case of discrepancy, a CFE is detected. A run-

time signature G is stored in one of the general-purpose registers (GSR).

At the beginning of the program, G is initialized with the signature of the first

block of the program. When a branch is taken the signature G is updated in the

destination BB vi using the signature function f. The signature function f is com-

puted resorting to the following formula:

f ðG; diÞ ¼ G� di; (9.4)

where,

di ¼ sj � si; (9.5)

and sj is the signature of the predecessor of the BB vi. di is calculated in advance

during the compilation and stored in the BB vi.

For example, if the currently traversed BB is sj, then G ¼ sj; when the control is

passed to the BB si, G is updated as follows:

G ¼ G� di:

Substituting the values of G and di, we have

G ¼ sj � sj � si ¼ si:

Therefore, in the absence of CFEs the variable G contains the signature of the

currently traversed BB.

If a CFE happened, leading to an illegal branch from BB vk to vi (whose

predecessor is the BB vj), then G ¼ G� di ¼ sk � sj � si 6¼ si.

At the top of each BB vi (before the original instructions of the BB) some new

code is added, which updates the signature G using the signature function f and

compares the computed run-time signature with the assigned one (Fig. 9.6). In the
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case of mismatch, the error is detected and the control is transferred to an error

handling routing.

If the BB vi has more than one predecessor (i.e., vi is a branch-fan-in BB), an

adjusting signature D is defined in each predecessor BB of vi and used in the BB vi
to compute the signature. The adjusting signature D is set to 0 for one arbitrary

chosen predecessor BB of vi (let it be vj); for each BB vk, k 6¼ j the predecessor of vi,

the adjusting signature D is defined as D ¼ sj � sk. For the BB vk (predecessor of

the branch-fan-in BB), the checking code is presented in Fig. 9.7. For the branch-

fan-in BB vi, the checking code is presented in Fig. 9.8.

Once the CFE corrupted the CF, causing the discrepancy between run-time

signature and the expected one in some program BBs, the run-time signature

remains different than the expected signature also in subsequent BBs. Basing on

this property, the authors of the CFCSS technique propose to perform consistency

checks only in some of the program BBs, which allows to reduce the technique

overhead. Postponing the check is possible only in case the error detection latency

is acceptable for the application.

Experimental analysis demonstrates that the approach is capable of detecting

most of CFEs of types 1, 3, and 4. It does not detect CFEs of types 2 and 5 and those

CFEs of type 4, which lead from inside of some BB to the beginning of some its

successor BB.

As it is shown in [18], aliasing errors are also possible for CFEs of type 1 in the case

where multiple BBs share multiple BBs as their destination nodes. For example, given

a program CFG with the set of edges B containing the subset fb1;4; b1;5; b2;5;
b2;6; b3;5; b3;6g, an erroneous illegal branch b1,6 is not detectable by the method.

9.3.4 YACCA

The Yet Another Control flow Checking Approach (YACCA) [20] assigns to each

program BB vi two unique identifiers I1i and I2i. The identifier I1i is associated to

the BB vi entry and the identifier I2i is assigned to the BB vi exit.

G = G ⊕ dk; 

if (G != sk) error();

D = sj ⊕ sk; 

Fig. 9.7 Checking code for

predecessor BB of the branch-

fan-in BB

G = G ⊕ di; 

G = G ⊕ D; 

if (G != si) error();

Fig. 9.8 Checking code for

the branch-fan-in BB.

Signatures are embedded in

the program during

compilation or preprocessing

G = G ⊕ di; 

if(G != si) error();

Fig. 9.6 Checking code
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An integer variable code is introduced in the program, which stores a run-time

CF signature during the program execution. The code variable is updated by means

of the set assertion to the value of the entry identifier I1i at the beginning of the BB

vi, and to the value of the exit identifier I2i at the end of the BB vi.

Before each set assertion, a test assertion is performed. At the beginning of the

BB vi, a test assertion verifies if the run-time value of the code variable corresponds

to the identifier I2j of some BB belonging to the pred(vi) set, while at the end of

the BB vi, a test assertion verifies if the run-time value of the code variable

corresponds to I1i.

The update of the variable code value is performed according to the following

formula:

code ¼ ðcode & M1Þ �M2; (9.6)

where M1 represents a constant mask whose value depends on the set of possible

predecessor values of the code variable, whereas M2 represents a constant mask

depending both on the identifier which should be assigned to the code variable and

on the possible predecessor values of the code variable. For example, the valuesM1

and M2 can be defined as follows:

l For the set assertion at the beginning of the generic BB vi:

M1 ¼ &
j:vj 2 predðviÞ

I2j

� �

� _
j:vj 2 predðviÞ

I2j

� �

; (9.7)

M2 ¼ ðI2j & M1Þ � I1i: (9.8)

l For the set assertion at the end of the generic BB vi:

M1 ¼ 1;

M2 ¼ I1i � I2i: (9.9)

The binary representation of M1 obtained by (9.7) contains the value 1 in the bits

having the same values in all identifiers I2j of BBs from pred(vi), and the value 0 in

the bits having different values in these identifiers. The operation (code & M1)

allows to set the code variable to the same value I from any possible predecessor

value of the code variable. Therefore, performing the XOR operation of I and M2

allows to obtain the value I1i.

To avoid the aliasing effect, the identifiers of the BBs should be chosen in such a

way that the new value of the code variable is equal to the targeted value if and only

if the old value of the code variable is possible according to the program CFG, i.e.,

the operation (I2j & M1) should not return the value I if BB vj does not belong to

pred(vi).
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The test assertion introduced at the beginning of the BB vi with pred

ðviÞ ¼ fvj1; vj2; . . . ; vjng is implemented as follows:

ERR CODEj ¼ ðcode! ¼ I2j1Þ && ðcode! ¼ I2j2Þ && ð� � �Þ && ðcode! ¼ I2jnÞ
� �

;

(9.10)

where the ERR_CODE variable is a special program variable containing the value 1

if the CFE is detected and 0 otherwise. The ERR_CODE variable is initialized with

the value 0 at the very beginning of the program execution.

The test assertion introduced at the end of the BB vi is implemented as follows:

ERR CODEj ¼ ðcode! ¼ I1iÞ: (9.11)

In order to identify the wrong branches, the test is repeated for each conditional

branch at the beginning of both the true and the false clause. In order to identify all

wrong branches, each condition should contain the “else” clause; if the “else”

clause is absent, it should be introduced and the corresponding BB should contain

test and set assertions.

An experimental analysis demonstrated the effectiveness of the YACCAmethod

as far as the fault coverage is considered. A very limited number of CFEs cause a

failure, and the method shows itself to be more powerful than the considered

alternative approaches. The method covers all single errors of the types 1–4.

Elaboration time is limited since the set and test assertions do not involve divisions

or multiplications.

9.3.5 CEDA

The Control-flow Error Detection through Assertions (CEDA) [21] approach con-

siders two different node types (NT):

1. NT ¼ A: if it has multiple predecessors and at least one of its predecessors has

multiple successors.

2. NT ¼ X: otherwise.

A register contains the value of a signature S, which is continuously updated to

monitor the execution of the program.

For each node, two different signatures are statically assigned:

1. NS: the expected value of S at any point within the node on correct execution of

the program

2. NES: the expected value of S on exiting the node on correct execution of the

program

Two parameters (d1 and d2) are associated statically with each node, and are used

to update S in order to match the expected values NS and NES.
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At run-time, S is updated at the entry and at the exit of each node.

At the beginning of execution of a node vi, S is updated as follows:

l S ¼ SANDd1ðviÞ, if NTðviÞ ¼ A.
l S ¼ SXORd1ðviÞ, if NTðviÞ ¼ X.

According to this update, the value of S should match the expected valued

assigned to the signature of the node, NS(vi).

At the end of each node vi, S is updated as follows:

S ¼ SXOR d2ðviÞ

According to this update, the value of S should match the expected value assigned

to the exiting signature of the node, NES(vi).

Check instructions are inserted at certain points in the program (called check

points). A check instruction S is compared against its expected value at that point.

Experimental analysis demonstrates that the achieved fault coverage is compa-

rable with respect to that reached by the other state-of-the-art approaches, while a

lower performance overhead is introduced by the method.

In order to further reduce the memory and performance overheads for real-time

embedded systems, the following techniques have been introduced in [22]:

l The frequency of signature updates can be reduced by adopting the concept of

supernode that corresponds to a collection of nodes; the program code modifica-

tions (whichever they are) are applied to the supernodes, instead of to the nodes.
l Exploiting the principle of locality, it is possible to demonstrate that each

program spends a majority of time executing a small number of functions;

thus it is possible to tightly protect the few functions which are executed for

the majority of time and loosely protect the rest of functions.

The application of this technique reduces the fault coverage by a negligible value

(i.e., from 99.3 to 99%), but the memory and performance overheads can be

reduced by as much as 50%.

9.4 Addressing Fault Tolerance

When fault tolerance (and not only fault detection) capabilities are the target, the

approaches presented so far are not enough. Some of them can be extended (at a

higher cost in terms of memory, performance, and development cost) to cope with

the more stringent requirements, and new approaches can be devised to address

these requirements. Obviously, the same assumptions holding for the previous

sections are valid here: therefore, we will focus on techniques that allow reaching

fault tolerance resorting only to changes in the software. The techniques that are

covered in this section are design diversity, checkpointing, algorithm-based fault

tolerance, and duplication.

272 M. Rebaudengo et al.



9.4.1 Design Diversity

The concept of design diversity is very old. At the beginning of the XIX century

Charles Babbage has suggested that “the most certain and effectual check upon

errors which arise in the process of computation is to cause the same computation to

be made by separate and independent computers; this check is rendered still more

decisive if they make their computations by different methods” [23]. This theory

can be transferred and adapted easily to the modern computer science.

The use of redundant copies of hardware, data and programs’ instruction has

proven to be quite effective in the detection of physical faults and in subsequent

system recovery. However, design faults – which are introduced by human mistakes

or defective design tools – are reproduced when redundant copies are made. Design

diversity is the approach in which the hardware and software elements that are to be

used for multiple computations are not copied, but are independently designed to

fulfill the same function through implementations based on different technologies.

A definition of design diversity has been given in [24] as “production of two or

more systems aimed at delivering the same service through separate designs and

realizations.”

Design diversity is the common technique adopted to achieve software fault

tolerance. Two or more versions of software are developed by independent teams of

programmers and software engineers, and by using different techniques, methodol-

ogies, algorithms, programming languages and programming compilers. However,

all the different implementations of the software meet the common requirements

and specifications.

The versions of software produced through the design diversity approach are

called (as already introduced in Sect. 9.2.3) variants (or versions or alternates).

Besides the existence of at least two variants of a system, tolerance of faults needs a

decider (or acceptance test), aimed at providing an error-free result from the

variants execution; the variants execution have to be performed from consistent

initial conditions and inputs. The common specification has to address explicitly the

decision points defined as follows:

l The time when the decisions have to be performed
l The data processed by the decider

The two most common techniques implementing design diversity are N-Version

Programming (NVP) [25] and Recovery Blocks (RB) [26]. These techniques have

mainly been introduced to face the effects of software bugs. However, they can also be

adopted to address hardware faults; they do not depend on any particular error model

and are able to detect (and in some cases correct) both transient and permanent errors.

N-version programming requires the separate, independent preparation of mul-

tiple (i.e., N) versions of a program for some applications. These versions are

executed in parallel. At the system level, an application environment controls

their execution. Each one receives identical inputs and each produces its version

of the required outputs. A voter collects the outputs that should, in principle, all be

the same (consensus). If the outputs disagree, the system detects the error and can
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tolerate it using the results of the majority, provided there is one. N-version

programming is easily classified as a static redundant scheme and presents many

analogies with the triple modular redundancy (TMR) and the N-modular redun-

dancy (NMR) approaches used for tolerating hardware failures [27].

The decision mechanism is defined as follows:

l A set of program-state variables is to be included in a comparison vector

(c-vector); each program stores its c-vector.
l The N programs possess all the necessary attributes for concurrent execution.
l At a specified cross-check point, each program generates its comparison vector

and a decider executes the decision algorithm comparing the c-vectors and looks

for the consensus of two or more c-vectors among the N versions.

The N independent versions of the software can be run in sequence (i.e., one after

another) on a single computer; alternatively, they could be run simultaneously on

independent computers.

This method has been widely exploited to target possible software errors, i.e.,

design faults or software bugs [28], but can be effectively adapted to detect possible

hardware errors. A transient error in a hardware component has the same effect as a

software one. If any of the hardware components experiences an error, it causes the

software version running on that hardware to produce inaccurate results. If all of the

other hardware and software modules are functioning properly, the system will still

produce a correct result, since the majority (e.g., 2 of 3 versions) is correct. If a

hardware component and the software component running on it both have errors, the

system can again continue to correctly function, if all the other hardware and software

components are functioning properly. If less than N=2d e software or hardware

components behave correctly, the system may fail, since the majority does

not produce the correct result. The Fault-Tolerant Processor-Attached Processor

(FTP-AP) architecture proposed in [29] may be seen as an implementation of this

hardware–software fault-tolerant architecture. A quadruple configuration of a core

architecture is used as a support for the management of the execution of four

diversified software modules running on four distinct processors. N-version program-

ming has been exploited in many industrial applications, such as the NASA Space

Shuttle [30], the Airbus A320/A330/A340 [31] and Boeing 777 aircraft control

systems [32] and various railway signaling and control systems [33–35].

Another major evolution of hardware and software fault-tolerance has been the

recovery block approach [26], which consists of three software elements:

l A primary module which normally executes the critical software function;
l An acceptance test which checks the outputs for correctness;
l An alternate1 module which performs the same function as the primary module,

and is invoked by the acceptance test upon detection of a failure in the primary

module.

1The term alternate reflects sequential execution, which is a feature specific to the recovery block

approach.
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In this approach, the above elements are organized in a manner similar to the

passive dynamic redundancy (standby sparing) technique adopted for the hardware

fault tolerance. The recovery block approach attempts to prevent software faults

from impacting on the system environment, and it is aimed at providing fault-

tolerant functional components which may be nested within a sequential program.

On entry to a recovery block, the state of the system must be saved to permit

rollback error recovery. RB performs run-time software, as well as hardware, error

detection by applying the acceptance test to the outcome delivered by the primary

alternate. If the acceptance test is passed, the outcome is regarded as successful and

the recovery block can be exited, discarding the information on the state of the

system taken on entry. However, if the acceptance test is not passed (or if any errors

are detected by other means during the execution of an alternate), recovery is

implemented by state restoration: the system rolls back and starts executing an

alternate module from the previously established correct intermediate point or

system state, known as recovery point. Recovery is considered complete when

the acceptance test is passed or all the modules are exhausted. If all the alternates

either fail the test or result in an exception (due to an internal error being detected),

a failure exception is signaled to the environment of the recovery block. Since the

recovery block can be nested, then the raising of such an exception from an inner

recovery block would invoke recovery in the enclosing block. In general, multiple

alternate procedures can be used. Each procedure must be deliberately designed to

be as independent as possible, so as to minimize the probability of having correlated

errors in the primary and in the alternate modules. This may be achieved by

enforcing design diversity with independently written program specifications, dif-

ferent program languages, algorithms, etc. The acceptance test must be simple,

otherwise there will be a significant chance that it contains a fault itself, and so

either fails to detect some errors, or falsely identifies some good conditions as being

erroneous. Moreover, the test introduces a run-time overhead which could be

unacceptable. A number of possible methods for designing acceptance test have

been proposed (more details can be found in [9]), but none has been defined as the

golden method. Generally speaking, the application test is dependent on the appli-

cation. As an example, in [36] Algorithm-Based Fault Tolerance (ABFT), error

detection techniques are exploited to provide cheap and effective acceptance tests.

ABFT has been used in numerical processing for the detection of errors. The ABFT

technique provides a transparent error checking method embedded into the func-

tional procedure that can be effectively applied in a recovery block scheme. This

method can be applied whenever ABFT is applicable. Indeed, in many real-time

applications, the majority of which involve control systems, the numerical proces-

sing involved can be adapted to an ABFT solution. Although each of the alternates

within a recovery block has to satisfy the same acceptance test, there is no

requirement that they all must produce the same results. The only constraint is

that the results must be acceptable as determined by the test. Thus, while the

primary alternate should attempt to produce the desired outcome, the further

alternate may only attempt to provide a degraded service. This is particularly useful

in real-time systems, since there may be insufficient time available for complete
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functional alternates to be executed when a fault is encountered. The extreme case

corresponds to a recovery block which contains a primary module and a null

alternate. Under these conditions, the role of the recovery block is simply to detect

and recover from errors. In the normal (and most likely case), only the primary

alternate of the recovery block is executed as well as the acceptance test, and the

run-time overhead of the recovery block is kept to a minimum.

9.4.2 Checkpointing

Checkpointing is a commonly used technique for reducing the execution time for

long-running programs in the presence of failures. With checkpointing, the status of

the program under execution is saved intermittently in a reliable storage. Upon the

occurrence of a failure, the program execution is restarted from the most recent

checkpoint rather than from the beginning.

In checkpointing schemes, the task is divided into n intervals. At the end of each

interval, a checkpoint is added either by the programmer [37] or by the compiler

[38, 39]. Fault detection is obtained exploiting hardware redundancy by duplicating

the task into two or more processors and comparing the states of the processors at

the checkpoints. The probability of two faults resulting in identical states is

negligible, so that two matching states indicate a correct execution. By saving at

each checkpoint, the state of the task in a reliable storage, the need to restart the task

after each fault is avoided.2 Instead, the task can be rolled back to the last correct

checkpoint, and execution resumed from there, thereby shortening fault recovery.

Reducing the task execution time is very important in many applications like real-

time systems, with hard deadlines, and transactions systems, where high availability

is required.

Different recovery techniques can be used to shorten the fault recovery time:

l Rollback recovery [37]: both processors are set back to the state of the last

checkpoint and the processing interval is retried. If two equal states are reached

afterwards, the processing is continued
l Stop and retry recovery [37]: if a state comparison mismatches, both processors

are stopped until a third processor computes a third status for the mismatching

round. Then a two-out-of-three decision is made to identify the fault free version

that is used to continue duplex processing
l Roll-forward checkpoint [40]: if a state comparison mismatches, the two differ-

ent states are both stored. The state at the preceding checkpoint, where both

2Task duplication [40] was introduced to detect transient faults, based on duplicating the compu-

tation of a task on two processors. If the results of the two executions do not match, the task is

executed again in another processor until a pair of processors produces identical results. This

scheme does not use checkpoints, and every time a fault is detected, the task has to be started from

its beginning.
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processing modules had agreed, is loaded into a spare module and the checkpoint

interval is retried on the spare module. Concurrently, the task continues forward

on the two active modules, beyond the checkpoint where the disagreement

occurred. At the next checkpoint, the state of the spare module is compared

with the stored states of the two active modules. The active module, which

disagrees with the spare module, is identified to be faulty and its state is restored

to the correct one by copying the state from the other active module, which is

fault free. The spare is released after recovery is completed. The spare can be

shared among many processor pairs and used temporarily when fault occurs.

In checkpointing schemes, a checkpointing overhead is introduced due to the time

to store the processors’ states and the time to compare these states. The time spent

for compare and store operations may vary significantly, depending on the system,

and thus the checkpointing overhead is determined mainly by the operation that

takes a longer time. As an example, in a cluster of workstations connected by a

LAN, the bandwidth of the communication subsystem is usually lower than the

bandwidth of the local storage subsystem. On the other hand, in multiprocessor

supercomputers without local disks at the computing nodes, the bandwidth of the

communication subsystem is usually higher than the bandwidth of the local storage

subsystem.

Different methods have been proposed to reduce checkpointing overhead. The

first method is to tune the scheme to the specific system that is implemented on, and

use both the compare and the state operations efficiently [41]. Using two types of

checkpoint (compare-checkpoints and store-checkpoints) allows tuning the scheme

to the system. The compare-checkpoints are used to compare the states of the

processors without storing them, while in the store-checkpoints, the processors

store their states without comparison. Using two types of checkpoints enables

choosing different frequencies for the two checkpoint operations, and utilizing

both operations in an efficient way. When the checkpoints that are associated

with the operation that takes less time are used more frequently than the check-

points associated with the operation that takes more time, the recovery time after

fault can be reduced without increasing the checkpoint overhead. This leads to a

significant reduction in the average execution time of a task. The second method

is to reduce the comparison time by using signatures [40], instead of comparing the

whole states of the processors. In systems with high comparison time, signatures

can significantly reduce the checkpoint overhead, and hence reduce the execution

time of a task.

The tradeoffs involved in choosing an appropriate checkpoint frequency are the

following. Very frequent checkpoints may cause high overhead due to checkpoint-

ing durations, while too rare checkpoints cause longer fault latency and may cause a

more probable failure. The effects of varied check intervals and checkpoint periods

have been studied in [41]. A main result from that study is that shortening test

intervals improves dependability, because the likeliness of two processes affected

by a fault is decreased. Thus, it is advised to test states more often than saving

checkpoints.
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9.4.3 Algorithm-Based Fault Tolerance

The technique presented by Huang and Abraham [42] is aimed at hardening pro-

cessors when executing matrix applications, such as multiplication, inversion, and

LU decomposition. Hardening is obtained by adding coding information to matri-

ces; however, while other approaches introduce coding information (to detect and

possibly correct errors) to each byte or word, these coding information are added to

whole data structures (in this case to each matrix) or, according to the authors

definition, at the algorithm level. In the following, the application of ABFT to

matrix multiplication will be discussed.

The algorithm is based on modifying the matrices the application is working on

according to the definitions introduced in the following.

Definition 9.1. Given a matrix A composed of n � m elements, the corresponding

column checksum matrix Ac is an (n þ 1) � m matrix, which consists of the matrix

A in the first n rows and a column summation vector in the (n þ 1)th row. Each

element of the column summation vector corresponds to the sum of the elements of

the corresponding column.

Definition 9.2. Given a matrix A composed of n � m elements, the corresponding

row checksum matrix Ar is an n � (m þ 1) matrix, which consists of the matrix A in

the first m columns and a row summation vector in the (m þ 1)th column. Each

element of the row summation vector corresponds to the sum of the elements of the

corresponding row.

Definition 9.3. Given a matrix A composed of n � m elements, the corresponding

full checksum matrix Af is an (n þ 1) � (m þ 1) matrix, which is the column

checksum matrix of the row checksum matrix Ar of A.

The technique proposed in [42] is based on the observation that some matrix

operations (matrix by matrix multiplication, LU decomposition, addition, matrix by

scalar multiplication, and transposition) preserve the checksum property, according

to the following theorems (whose proof can be found in [42])

Theorem 9.1. When multiplying a column checksum matrix Ac by a row checksum

matrix Br, the result is a full checksum matrix Cf. Moreover, the following relation

holds among the corresponding information matrices: A � B ¼ C.

Theorem 9.2. When a matrix C is LU decomposable, the corresponding full

checksum matrix Cf can be decomposed into a column checksum lower matrix

and a row checksum upper matrix.

Theorem 9.3.When adding two full checksum matrices Af and Bf, the result is a full

checksum matrix Cf. Moreover, the following relation holds among the

corresponding information matrices: Aþ B ¼ C.

Theorem 9.4. The product of a full checksum matrix and a scalar value is a full

checksum matrix.
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Theorem 9.5. The transpose of a full checksum matrix is a full checksum matrix.

In order to harden an application performing a matrix operation, one can

therefore proceed as follows:

l The operand matrices are transformed into the corresponding row, column, or

full checksum matrices, depending on the operation.
l The operation is performed on the checksum matrices.
l A check is performed to detect possible errors, corresponding to the following

steps:

– The sum of all the elements on each row and column is computed.

– The resulting value is compared with that stored in the row or column

summation vector; if a difference is observed, an error is detected.

If we assume that the detected error affected a single element in the result matrix,

the identification of the affected element can be performed resorting to the follow-

ing sequence of operations:

l If a mismatch on both a row and a column summation vector element is detected,

the error affected the information element at the intersection of the inconsistent

row and column.
l If a mismatch is detected on a row or column summation vector element only,

the error affected the summation vector.

After the identification of the faulty element, its correction can be performed

resorting to the following sequence of operations:

l If the error affected an information element, the error can be corrected by

computing its fault-free value subtracting the sum of the values of the other

elements on the same row or column from the corresponding element in the row

or column summation vector.
l If the error affected an element of a row or column summation vector, the fault-free

value of element can be computed by adding all the elements of the row or column.

It is important to note that in the case of matrices composed of floating point

elements, round-off errors could create problems to comparison operations. In this

case, some false alarms could be raised. A method to compute the thresholds to be

used for distinguishing between round-off errors and errors stemming from faults is

outlined in [43] for a similar case.

The ABFT technique is particularly attracting because it introduces a memory

and performance overhead that, when compared with other techniques (e.g., TMR),

is relatively limited. The introduced memory overhead mainly corresponds to an

additional row and column, and it grows linearly with the matrix size as O(N), but

the percentage overhead decreases when the matrix size increases, because the

memory size grows as O(N2).

The error detection and correction capabilities of the method are very high when

faults affecting the matrices elements during the computation are considered. The

method is able to detect and correct any error affecting a single element in the final
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matrix. On the other side, the correction capabilities are limited if an error affects

more than one element in the resulting matrix.

On the other side, the method is rather weak in detecting and correcting other

kinds of faults, e.g., those affecting the memory elements in a microprocessor

control unit. If errors in the application code are considered, the method shows

some detection capabilities, corresponding to data alterations, although it is defi-

nitely unable to detect all the errors of this category.

9.4.4 Duplication

The method first proposed in [44] and then fully described in [45] extends the one

proposed by the same authors in [3], in such a way that not only detection, but also

fault tolerance is achieved.

The method focuses on computing-intensive applications. Therefore, it is

assumed that the program to be hardened begins with an initialization phase, during

which the data to be elaborated are acquired. This phase is then followed by a data

manipulation phase, where an algorithm is executed over the acquired data. At the

end of the computation, the computed results are committed to the program user,

through a result presentation phase. The proposed code transformation rules are

meant to be applied on the algorithm executed during the data manipulation phase.

The approach exploits code transformation rules providing fault detection and,

for most cases, fault correction. The rules are intended for being automatically

applied to the program source high-level code and can be classified in two broad

categories: rules for detecting and correcting faults affecting data and rules for

detecting and (when possible) correcting faults affecting code.

9.4.4.1 Detecting and Correcting Transient Faults Affecting Data

Data hardening is performed according to the following rules:

l Every variable xmust be duplicated: let x0 and x1 be the names of the two copies.

Every write operation performed on x must be performed on x0 and x1. Two sets

of variables are thus obtained, the former (set 0) holding all the variables with

footer 0 and the latter (set 1) holding all the variables with footer 1.
l After each read operation on x, the two copies x0 and x1 must be checked, and if

an inconsistency is detected, a recovery procedure is activated.
l One checksum c associated to one set of variables is defined. The initial value of

the checksum is equal to the exor of all the already initialized variables in the

associated set.
l Before every write operation on x, the checksum is re-computed, thus canceling

the previous value of x (c0 ¼ c ^ x0).
l After every write operation on x, the checksum is updated with the new value x0

(c0 ¼ c ^ x00).
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The recovery procedure re-computes the exor on the set of variables associated

to the checksum (set 0, for example), and compares it with the stored one. Then, if

the re-computed checksum matches the stored one, the associated set of variables is

copied over the other one; otherwise, the second set is copied over the first one (e.g.,

set 0 is copied over set 1, otherwise set 1 is copied over set 0).

9.4.4.2 Detecting and Correcting Transient Faults Affecting the Code

To detect faults affecting the code, the method exploits the techniques introduced in

[20]. The first technique consists in executing any operation twice, and then

verifying the coherency of the resulting execution flow. Since most operations are

already duplicated due to the application of the rules described in the previous

subsection, this idea mainly requires the duplication of the jump instructions. In the

case of conditional statements, this can be accomplished by repeating twice the

evaluation of the condition.

The second technique aims at detecting those faults modifying the code so that

incorrect jumps are executed, resulting in a faulty execution flow. This is obtained

by associating an identifier to each basic block in the code. An additional instruc-

tion is added at the beginning of each block of instructions. The added instruction

writes the identifier associated to the block in an ad hoc variable, whose value is

then checked for consistency at the end of the block.

The recovery procedure consists in a rollback scheme: as soon as a fault

affecting the program execution flow is detected, the program is restarted (i.e.,

the program execution is restarted from the data manipulation phase, or from a safe

point which has been previously recorded). Thanks to this solution, it is possible to:

l Detect and correct transient faults located in the processor internal memory

elements (e.g., program counter, stack pointer, and stack memory elements)

that temporarily modify the program execution flow.
l Detect transient faults originated in the processor code segment (where the

program binary code is stored) that permanently modify the program execution

flow. As soon as a fault affects the program code memory, the bit-flip it produces

is indeed permanently stored in the memory, causing permanent modification to

the program binary code. Restarting the program execution when such a kind of

fault is detected is insufficient for removing the fault from the system. As a

result, the program enters in an end-less loop, since it is restarted every time the

fault is detected. This situation can be easily identified by a watch-dog timer that

monitors the program operations.

9.4.4.3 Duplication and Hamming Code

The method (which was first proposed in [46]) exploits the properties of the error

correcting codes for achieving fault-tolerance. Error correcting code introduces
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information redundancy into the source code. These transformations, which were

automatically performed, introduce data and code devoted to detect, and eventually

correct, possible errors corrupting information stored in the memory area.

The basic idea is to associate an extra code information to every variable in the

code. This extra code (Hamming corrector) is computed according to Hamming

codes. This code is able to correct a single error and detect a double error. A

detailed description of how this code is computed is out of the scope of this chapter.

Every time a variable is modified, its correspondent Hamming corrector has to

be updated. On the other hand, in a read operation, the Hamming corrector is used

for the decoding operation. Two parameters are needed for this operation: the

variable’s value and the variable’s Hamming corrector code. In the case of the

corruption of one of these two values, the decoding procedure will take one of

the possible following decisions:

l If one bit is corrupted, the decision is a correction of the corrupted bit.
l It two bits are damaged, then the decision is the detection, without correction

possibility.
l If more than two bits are affected, the decision is an erroneous correction.

Experimental results demonstrate the feasibility of the approach and its detection

and correction capability. As far as fault affecting data are considered, 0.7% of

faults produce a failure, but 36% of faults are detected and 32% of faults are

detected and corrected. As far as faults affecting code are considered, 3% of faults

produce a failure, but 53% of them are detected, and 0.2% are detected and

corrected.

The major drawback of error detection and correction methods based in Ham-

ming codes comes from the resulting memory area overhead (due to hamming

corrector codes and decoding operations) and the increase in execution time due to

hamming corrector code update and decoding operation execution. The overhead

factors obtained considering a benchmark program corresponds to an execution

time 12 times higher than the one required for the unhardened program and a

memory size 3 times higher than the one for the original unhardened program.

These overhead factors show that this method can only be applied when the fault

tolerance requirements justify high overhead penalty.

9.5 Conclusions

In the last years, both industry and academia devoted significant resources to

explore the area of software-level mitigation techniques, with the goal of develop-

ing solutions that are able to cope effectively with the effects of permanent and

temporary faults, while matching the strict design and cost constraints existing in

areas such as automotive, biomedical, and telecom. Several techniques have been

proposed, which have been overviewed in this chapter, and some of them have been

already adopted for products deployed on the field. Interestingly, these techniques
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are now used even for products working in harsh environments (such as the space

one), thus also proving their flexibility.
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Chapter 10

Specification and Verification of Soft Error
Performance in Reliable Electronic Systems

Allan L. Silburt, Adrian Evans, Ana Burghelea, Shi-Jie Wen, David Ward,
Ron Norrish, Dean Hogle, and Ian Perryman

This chapter describes the modeling, analysis, and verification methods used to

achieve a reliability target set for transient outages in equipment used to build the

backbone routing infrastructure of the Internet. We focus on ASIC design and

analysis techniques that were undertaken to achieve the targeted behavior using

the 65-nm technology. Considerable attention is paid to Single Event Upset in flip-

flops and their potential to produce network impacting events that are not systema-

tically detected and controlled. Using random fault injection in large-scale RTL

simulations, and slack time distributions from static timing analysis, estimates of

functional and temporal soft error masking effects were applied to a system soft

error model to drive decisions on interventions such as the choice of flip-flops,

parity protection of registers groupings, and designed responses to detected upsets.

Central to the design process is a modeling framework that accounts for the upset

effects and relates them to the target specification. This enables the final system to

be tested using large area neutron beam radiation to confirm the specification has

been met.
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10.1 Introduction

Earlier chapters of the book have dealt with methods to model, measure and

mitigate soft error effects in electronic systems. This chapter deals with the

challenge of building a highly reliable ASIC intensive product where the mitigation

strategies applied at the most fundamental circuit level combine to achieve a

desired outcome for system performance. There is a cost associated with the various

circuit level strategies in terms of silicon area, power, and increased design com-

plexity. Decisions on when and where to use ECC (Error Correcting Code) protec-

tion on memories, to replicate logic or to use larger, SEU resistant flip-flops must be

made during chip design, years ahead of the system’s deployment. Architectural

features such as localized reset islands, table scrubs, and other techniques involving

software and hardware cooperation must also be designed in up-front. At this early

stage, experimental data on SEU rates for many of the technologies are often

lacking since they are in parallel development. All of these factors contribute to

an uncertain decision-making process regarding which features must be implemen-

ted to achieve the end result of a customer experience of reliability that meets their

expectations. This chapter defines a comprehensive specification, modeling, and

experimental verification methodology for the soft error performance of a hardware

assembly (referred to as a FRU – Field Replaceable Unit) in an Internet core router

system. It can be applied to any integrated system that is required to meet a

particular high availability target and must link design tradeoffs at the ASIC and

system design phase to end-user experience.

10.2 System Soft Error Specification

System soft error performance analysis requires a convergence of failure rate

metrics and outage impact. Failure rates are measured in FIT (Failures in Time)

defined by

1 FIT ¼ 1 Failure 109 Hours
�

¼ 109 MTBF,=
(10.1)

where the MTBF (Mean Time Between Failures) is measured in hours. It is most

common to see component hard and soft failure rates in FIT and permanent failure

rate of hardware assemblies in units of MTBF.

System outages are measured in DPM (Defects per million) where for a given

time period,

DPM ¼ 106 �

P

outage durations

period duration

� �

(10.2)
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The popular term “5 9’s” availability refers to 99.999% uptime and translates

to 10 DPM. For a given component, c, with a soft failure rate of fc FIT, and each

failure causing an outage of tc seconds, its DPM contribution would be

DPMc ¼
tc � fc

3:6� 106
: (10.3)

DPM is a convenient measure to work with when analyzing network reliability,

since independent component contributions to outage can be simply added together.

Quality of Service (QoS) for a particular Internet application such as video

conferencing is typically quoted in Packet Loss Ratio (PLR). Under the assumption

of full bandwidth utilization by the target application, this is related to DPM

according to

PLR ¼ DPM� 10�6 (10.4)

10.2.1 Internet Core Network Requirements

When looking at a hardware assembly from an Internet service provider perspec-

tive, they will view their network elements against three independent expectations.

The first is the general service availability of the network in the order of 10 DPM.

This is targeted to meet service level agreements that network providers commit to

their clients. The second is a hard (permanent) failure rate in the order of 100,000 h

MTBF that is targeted toward their own network operating costs (sparing ratios,

maintenance contracts, cost amortization periods, etc.). The third is the QoS

requirement for the most demanding target application for which the network is

being designed. Although each of these three expectations could be expressed in the

same units, they rarely are. For example, the hardware failure rate target of

100,000 h MTBF could be represented as an availability target by factoring in the

time to replace or route around a failed unit. What distinguishes each of these is the

scale in time in which the network is affected. The 10 DPM service availability

target is a long-term average over which a client is expected never to be denied

access to the network. The QoS specification refers to very brief outages that

may affect user experience in a particular session. The hardware failure rate is a

long-term average occurrence rate which factors into an operations and mainte-

nance cost for the equipment that would only be apparent to a user through their

service fees.

Outages due to soft errors do not fit cleanly into any of these targets. When a soft

error causes a larger outage, forcing a line card or system reboot time of many

minutes, for example, it may become indistinguishable from a hardware failure

from a network operator’s perspective. In these cases, diagnostic information may

be insufficient or at best non-persuasive in proving that there is no underlying
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hardware fault, perhaps intermittent, that caused such an uncontrolled outage. So,

the response is often to replace the unit and consider the event a contribution to the

hard failure rate. On the contrary, a controlled outage of a few seconds’ duration

and good diagnostic presentation would be considered only to contribute to general

network availability and not result in any hardware replacement. An outage in the

range of a few milliseconds is only relevant to a QoS target since the session may

not be lost, yet the end-user experience may be affected.

A framework for tying these requirements together is illustrated in Fig. 10.1.

This chart plots error rate against outage time. The vertical axis is calibrated both in

FIT and in outage frequency for a group of 100 units to represent what a service

provider might observe in monitoring a large network. A line representing 10 DPM

illustrates a set of operating points on this graph that would satisfy the 5 “9”’s

requirement if this network element were the only contributor to network outage.

Other lines showing 0.0001 and 1 DPM are shown and discussed further below.

The general approach to this specification is to categorize failure mechanisms

according to the class of outage they generate in a working system. Binning in this

way allows us to define a FIT target for each of the categories well enough to make

design decisions and later to verify performance. The horizontal axis shows

the outage time in seconds, and groups the axis into four regions that classify the

severity of the outage as “low”, “medium”, “high”, and “unrecoverable” where

the latter is an undetected/unbounded outage. An additional category “no outage” is

effectively compressed into left hand vertical axis to account for soft errors that are

corrected with zero impact. Individual hardware components can be placed on this

chart based on available soft error FIT rate data and the response of the system to
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Fig. 10.1 FIT rate versus recovery time performance metric chart. The vertical axis is the

aggregated component FIT rate for a hardware assembly and the horizontal axis is outage time

associated with a transient fault

290 A.L. Silburt et al.



upset events. Single bit errors (SBE), multiple bit errors (MBE), single event

latchup, and hard failures are each considered so that each component would

contribute a unique point for each failure mechanism. Summing up all of the

contributing effects for each category constitutes a model for the transient outage

performance of the card.

The outage categories defined on the chart are large – each covering an order of

magnitude or more in outage time. Experience has shown that this is sufficient since

outage times are not predictable with great precision during the design phase and

will vary in the final product depending on how the router is configured in a

network. What is important is to target a maximum tolerable outage time for a

class of effects so that the appropriate response can be designed. Hence, it is the

outage time thresholds separating the regions that are important design targets.

These thresholds are intended to capture the impact of an outage on the network

operator as well as an end-user’s experience. It should be noted that the outage

effect on service availability may be a loss of packets or a fault in how packets are

routed, classified, prioritized, or counted. Only the duration is specified and for the

purposes of this chapter we will consider all effects to be simply an outage. This

conservative assumption simplifies the model considerably. In addition, an outage

is assumed to affect 100% of the traffic passing through the unit. If the impact of an

error is less than the full bandwidth, the FIT contribution for that element is scaled

down accordingly.

The “low-severity” category is defined as an outage that has no impact on any

routing protocol and has an impact to an end-user voice, video, or data application

that is imperceptible. In 2002, the Internet2 QoS working group [1] surveyed

several sources and concluded that delays of less than 150 ms in Voice over IP

sessions were not perceptible and that up to 2% packet loss is acceptable when the

150-ms delay target is met. In 2003, the International Telecommunications Union

published Recommendation G.114 [2] which also illustrated 150 ms “mouth-

to-ear” delay as a critical target not to exceed for interactive voice applications.

The study of human perception of video quality is complex and the existence of

different video standards, compression algorithms, and distribution protocols make

the choice of a single number difficult. Some early informal experiments at our

laboratories indicated that random drops inserted into MPEG streams became

impossible to detect at around 150 ms in duration, which was surprisingly consis-

tent with the above specifications for voice and may have to do with basic human

perceptual processing time.

In addition to human perception thresholds, data networks also have their

own rhythms that a router must support. Connections across an IP network are

managed by several layers of protocols that monitor the health of the connection

path. These protocols are designed to detect and respond to failures in any segment

by re-transmitting or re-routing traffic through alternate paths. As IP-based data

networks are being constructed for ever more demanding applications in finance

and high-quality video distribution, faster response to network outages are required.

The Bidirectional Forwarding Distribution (BFD) protocol [3] that operates

between line cards on adjacent hops across an IP network represents the most
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demanding requirement. BFD timers may be set as low as 10 ms in next generation

equipment deployments. Hence, the threshold for avoidance of any outage detec-

tion for the “low-severity” category is 10 ms.

The “medium-severity” category covers the range where outages will cause

noticeable effects to an end user with increasing severity at the upper end of the

range. Since routing protocols are now affected, the network may route around a

node that stops forwarding over this interval. These routing changes propagate

through the network as adjacent nodes spread the new topology and they are highly

visible to the network provider as a “route flap.” The upper end of this bin is set at 3 s,

which has historically been the threshold for call drop in legacy voice networks. Data

file transfers across the Internet that are not time sensitive typically use the Trans-

mission Control Protocol (TCP). This highly resilient method operates between end

points and is capable of ensuring high data quality by signaling re-transmission of

segments of a file when an error is detected. The Internet Engineering Task Force

(IETF) NetworkWorking Group’s published recommendation [4] specifies 3 s as the

default interval for a TCP session to wait prior to re-transmission. This provides

additional support for the 3 s “medium-severity” threshold.

The “high-severity” category begins at 3 s and ends at the time required for

the FRU to perform a full reboot and return to active service. This covers outages

that have been detected by the hardware but have no controlled response other than

a complete restoration of state under software control. The upper bound will be

specific to a particular hardware unit. It is distinguished from the “unrecoverable”

category which represents an undetected error where the damaged state causes

some behavior to persist without the awareness of the system’s controller and as

such the software does not respond. In Fig. 10.1, the upper bound for “high” is set at

3 min; however, there is considerable uncertainty in this number during the

hardware development stage and it will depend substantially on the router configu-

ration, size of tables etc. In practice, this value of this upper bound is not important.

The “high-severity” category represents all outages that are detected by the system

with recovery time larger than 3 s. The “unrecoverable” category represents all

outages that are not detectable by the system and hence may have an unbounded

outage time. Without well-defined outage time maximums, it is clear that these

categories cannot be specified using a DPMmetric. In practice, these two categories

are also the most difficult specifications to meet.

In order to achieve demanding targets for network availability, providers will

often implement one of several forms of hardware redundancy and supporting

mechanism to detect a fault and initiate switchover from the main to the spare.

Although this does not change the basic performance of the FRU itself, it does

permit a decoupling of end-user experience from some of the outage behaviors

described in the specification. For example, an effective mechanism for detecting

faults and switching traffic to a hot standby network element in 200 ms allows all

detectable faults causing larger outages to be mapped to x ¼ 200 ms and summed

to the medium-severity category from the point of view of end-user service impact.

This replaces, for example, the length of time allocated for a technician to swap a

faulty line card with 200 ms in the calculation of service availability impact of the
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100,000 hMTBF hardware failure rate. However, it is important to note that for soft

errors, there is more to consider. An FRU that experiences an outage due to a soft

error must not be replaced since it is not faulty. It is expected to recover and return

to active status perhaps as the new hot standby unit and it is desirable that this

period of vulnerability to a second fault be as brief as possible. Therefore, when

constructing a specification for soft error performance of a hardware unit, it is

important to look at its complete behavior under worst case conditions considering

that it may be used in applications with and without redundancy.

10.2.2 Constructing the Specification

We construct the soft error performance specification by considering each of the

following three reference points:

1. The overall network availability target (10 DPM/ 5“9”’s);

2. The most demanding application’s QOS requirements;

3. The 100,000 h MTBF hardware failure rate.

We also consider that the products built from the chip set under design may be

used in stand-alone configurations or in networks that include redundant hardware

that can be switched into service based on some detection mechanism.

1. First, we consider the 5 9’s (10 DPM) availability target for an end-to-end

service traversing a network. A service provider will have a number of pieces

of equipment along a path between hand-off points covered in a service level

agreement with a client. We assume that the router is allocated 1/10 of the

budget or 1 DPM. Within the router, the 1 DPM must be apportioned to the

major outage generating mechanisms in hardware and software. The calculation

is made from the perspective of a path transiting through the equipment and all

infrastructures that affect that path.

A simplified diagram of the major hardware components of an Internet core

router is shown in Fig. 10.2.

The Line Card receives the signal from one or several fiber optic links in the

network, performs the optical to electrical conversion, parses the data into

packets, and makes a number of decisions on routing, traffic management,

filtering, statistics gathering, priority, and many other features prior to forward-

ing packets via the switch fabric. The route processor handles special packets

used to manage the network and build a global view of connectivity which can

be mapped to each line card and provide supervisory functions for the system.

Each of these units can be operated in redundant configurations.

A path through the router for this analysis would constitute an ingress line

card, egress line card, and switch fabric on the data path as well as route

processors (control plane) and general infrastructure (chassis, power supply,

fans, etc.). We consider the worst case scenario in which there is no line card

10 Specification and Verification of Soft Error Performance 293



redundancy features implemented and split the 1 DPM into contributions from

SW failures, HW failures, and soft errors. Assuming for simplicity an equal

distribution among these three categories, the soft error share would be approxi-

mately 0.3 DPM to split among the major hardware units (line card, route

processor, and switch fabric) or roughly 0.1 DPM for a line card. If we consider

just the high-severity errors alone, availability in the order of 0.1 DPM would

correspond to occurrence rates on the order of 100,000 FIT (~2 occurrences per

week in 100 FRUs), which is well beyond the tolerance level of large network

operators. Hence, analysis of network availability provides a very weak con-

straint on soft error performance. The specification must be more strict than that

inferred from 5 9’s availability.

2. The International Telecommunications Union published recommendation

Y.1541 [5] in 2006. This document specifies an end-to-end PLR requirement

of 1 � 10�3 and a packet error ratio (PER) of 1 � 10�4 for what was considered

the most demanding class of services required for voice over Internet proto-

col (VoIP) and Video Teleconferencing. A provisional target of PLR and

PER < 1 � 10�5 and IPER < 1 � 10�5 was also listed. Using the worst case

assumption of 100% bandwidth utilization by this service as noted in Sect. 10.1,

this corresponds to 10 DPM which is again a very weak constraint.

The recent rapid growth of the Internet as a video distribution medium has

introduced applications with more demanding QOS targets. These were foresha-

dowed in Appendix VIII of [5], where PLR as low as 4 � 10�11 was reported but

acknowledged to be outside that specification. New protocols such as BFD [3] and

improved performance in routing table reconvergence after a fault is discovered

have made it possible to build IP networks for high-quality broadcast video

distribution. In the absence of a formal ITU-T or IETF QOS requirement, we

have adopted a PLR of 1 � 10�10 (one performance hit per day) corresponding to

the 0.0001 DPM line in Fig. 10.1. This is most relevant in networks that have
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implemented redundancy and a fast detection protocol such as BFD. In this case,

all outages in the medium to high-severity category map to the detection/switch-

over time interval. In today’s systems, this is about 50 ms. This limits the

occurrence rate for these outages to 10,000 FIT, which is equivalent to the

hardware failure rate which sets the maximum for the medium-severity category.

Note that this 0.0001 DPM target is applied to the line card being modeled here

and does not capture the end-to-end QOS performance as there are other hops in

that path to consider as in the 5 “9”’s analysis above. However, in this case, we are

able to take advantage of other network features such as receiver host buffering at

end points, say a set top box, which combined with a re-transmit capability, enable

the target end-to-end performance to be met.

3. The third constraint on soft error performance is derived from the hard failure

rate target of 10,000 FIT (100,000 h MTBF). This represents an independent

network operator requirement. Transient outages in the “high-severity” class

often result in the unit being replaced as discussed earlier. This sets the floor

for tolerable soft error FIT rates for each of the “High” and “Unrecoverable”

categories. Permanent component failures follow a “bathtub curve” clustered at

the beginning and end of their operating life, whereas soft error transients follow

a uniform distribution in time. As a result, during the middle part of the

equipment lifetime, the transient error rate will appear more pronounced relative

to hard failures. For these reasons, we set the maximum high-severity and

undetectable soft failure rate at 10% of the long-term average hardware failure

rate or 1,000 FIT. This ensures that hardware field returns with “no fault found”

diagnosis and attributable to transient errors never become a significant statistic

at our repair depots over the lifetime of the product. It also avoids the situation

where we over-design our ASIC soft error performance at the price of compo-

nent cost and system complexity without delivering any real benefit to customers

beyond the hardware MTBF.

Figure 10.3 shows the target specification derived from these three con-

straints. The shaded region represents the maximum FIT rate allowed in each

of the outage classes. The most demanding requirement is in the “high” and

“unrecoverable” classes set at 10% of the target hardware failure rate. The

“medium-severity” category is given a target equal to the hardware failure

rate. Since a medium-severity outage represents a software managed response,

it will be easily distinguished from any hardware issue and can, therefore, be

treated independently of the hard failure rate. However, since the effects will be

very visible as route flaps, an occurrence rate of more than 10,000 FIT will not

be tolerated by network operators. The low-severity outage category is set by the

0.0001 DPM QOS requirement at 30,000 FIT; although considering that outages

below 10 ms may not be perceptible in any application, it is difficult to establish

a strong justification for the limit of these short disruptions.

The specification is summarized in Table 10.1 along with the calculated

outage contribution in seconds per year for each of the outage categories. Note

that the outage time for the “unrecoverable” category is not deterministic. The

1,000 s value in the table is shown to illustrate the sensitivity of the overall soft
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error performance to this category as well as the “high” category. In practice,

these two categories are also the most difficult specifications to meet. As will be

discussed later, outages of this type below 1,000 FIT are made up of hundreds of

thousands of very small contributors that are, at this time, at the limits of our

ability to measure and model with sufficient accuracy.

10.3 Designing a System to Meet the Specification

Designing a hardware assembly and chip set to meet the specification involves

building a comprehensive soft error model. This is a bottom-up process that simply

counts every instance of every hardware element – typically in a spreadsheet

format. A modern line card for an Internet core router contains hundreds of highly

integrated silicon components susceptible to soft error effects, including custom

ASICs, third party application specific chips, standard microprocessors and micro

Table 10.1 Soft error target specification summary (single field replaceable unit)

Class Maximum recovery

time (s)

Maximum outage

rate (KFIT)

DPM Maximum

(s/year)

No outage 0 Unlimited 0 N/A

Low 0.01 30 0.000 0.00

Medium 3 10 0.008 0.26

High 180 1 0.050 1.58

Unrecoverable 1000 1 0.278 8.77

Total 0.336 10.61
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controllers, SRAMs, DRAMs, Ternary Content Addressable Memories (TCAM),

and Field Programmable Gate Arrays (FPGA).

For a case study, we will take a specific FRU in a next generation router that has

multiple instances of four different ASICs using 65-nm process technologies. A

summary of the major soft error producing components by cell type is shown in

Table 10.2 along with the single and multi-bit error rates.

The raw single bit soft error rate of these components combined exceeds

550,000 FIT, which is about 5 errors per year per line card or a little over 1 error

per day in a 100-card network. It is worth noting that ASIC embedded SRAM

contributes the largest share of the FIT rate and that DRAM FIT rates per MBit are

so low that DRAM is significant only due to the sheer volume of bits on the card.

All of the single and multi-bit error calculations are based ultimately on data

supplied by silicon vendors. The quality of this data can vary substantially and

particularly for the second order effects such as flip-floperror rates and SRAM

multi-bit error rates. At the time of this writing, most silicon component vendors do

not provide data on these second order effects at all and many ASIC vendors, when

they can provide it, are lacking measured data to support it.

For our case study, the critical design decisions affecting soft error rates are

made in the HW architecture and ASIC micro architectures. For example, the

choice of an off-the-shelf microprocessor will bring with it whatever mechanism

for cache error correction that was designed in. We include the contributions of the

processor but we can do little to change its error rate contributions. Most of the

memory on this card will be controlled by ASICs and ASICs will constitute most of

the flip-flop-based storage as well. All of the error contributions listed in Table 10.2

must be individually accounted for with a method for detection, correction, soft-

ware notification as appropriate, or an argument for self-correcting behavior. In

addition, a means for injecting the error is required to verify the expected response

in the laboratory.

10.3.1 Memories

Extensive application of single error correction double error detection (SECDED)

ECC [6] to all SRAMs and DRAMs places 75% of the single bit errors in Table 10.1

Table 10.2 Internet core line card aggregated component single and multi-bit error

rates. Raw FIT rate refers to the rate before any de-rating factors have been applied

Mbits Raw SBE

FIT rate

Raw MBE

FIT rate

Embedded SRAM 219 223,190 1,063

External SRAM 370 148,000 0

External DRAM 45,440 45,440 0

TCAM 80 112,000 0

Flip-flops 7 14,205 0

Total 46,116 552,835 1,063
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in the “no outage” category. Most of the remainder is made up of TCAM single bit

errors. Generally, since TCAMs cannot have error correction built into their search

operation, TCAM error detection and correction are performed using a background

table scrub operation. Embedded hardware performs these scans and raises an

interrupt when a parity check fails, and the software must respond and correct the

error. A complete scan of the array along with the SW response to repair an error

takes on the order of 10–20 ms, which places this in the medium-severity category.

However, since a single bit upset in the TCAM impacts less than 1% of the total

traffic load on average, we can de-rate this contribution by a factor of 100.

Some embedded SRAM structures are not protected by ECC due to the cost,

complexity, or performance impact of the added gates. These are exceptions that

are justified using detailed analysis that traces the impact of an error and proves that

it is benign. For example, data structures traversing a chip may have an end-to-end

error detection mechanism (e.g., CRC and Reed-Solomon code) along a data path.

An error in any storage element that carries the structure can be detected at an

appropriate check point where the structure is either discarded according to strict

rules or reconstructed from the redundant data. Either way, the outage transient is

limited to the transit time of this particular structure and as such is clearly of “low

severity.” It is worth noting that some packets may be considered highly critical and

their loss may lead to larger outage. These statistical occurrence rates must be

added to the “high-severity” category.

It is important to note that virtually every mitigation involves a HW and a SW

component. A dropped packet must be accounted for. While an ECC detection/

correction block in an ASIC can operate at data path speeds, there still remains the

outstanding problem of having the software distinguish an upset from a persistent

hardware bit fault. This requires an interrupt, counter and timer in SW. In addition,

if the data is in a static table, SW must rewrite the correct value back so that the

error will not appear persistent if the table is accessed frequently. A different

interrupt will be required if a double bit error is detected, since this cannot be

corrected by SECDED ECC. All of this functionality must be testable in the

laboratory, so an error injection capability is required with supporting SW for a

controlled test procedure. A fault in one of these SW handlers can make a single

bit memory upset appear as a “high-severity” error if it causes the SW to crash.

Although a system may have only a handful of discrete SRAM components, it is not

uncommon for ASICs to have many hundred embedded SRAMs. This represents a

significant amount of SW and HW behavior to create and verify. As a result, we rely

heavily on internal design automation tools for automatic generation of ECC

encoding and checking logic, error injection functionality, design verification test

benches, documentation, and machine descriptions that generate driver code and

diagnostic tests.

With all of the single bit memory upset accounted for, the remaining 2.5% of the

total (about 14,000 FIT) presents a significant challenge. It is constituted mainly of

single bit upsets in flip-flops (97%) and multi-bit upsets in embedded SRAM (3%).

Predicted error rates provided by silicon manufacturers and in the literature have

indicated that multicell memory error rates are becoming significant [7–9].
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Adjacent SRAM cell upsets as high as 20% of the single bit FIT rate have been

measured. All discrete SRAM components employ column multiplexing to ensure

that logical bits of a word are not physically adjacent, so a multicell upset translates

to multiple single bit errors that will be corrected by ECC. This same multiplexing

technique is the best defense for embedded memories as well. However, limitations

in the ASIC memory compilers and the unique requirements of an embedded

application can pose limits on the physical distances of bits in a word. As a result,

the only significant multi-bit SRAM error contribution to the model is from

embedded SRAMs with limited or no column multiplexing.

At the present time, embedded SRAM multicell FIT rate estimation is very

coarse due to the limited experimental and simulated data characterizing multicell

error probabilities versus distance and its dependence on the particular topology of

the memory cell and the fabrication process. Although the total multi-bit soft error

rate is significant relative to the target “high-severity” specification limit, it is made

up of hundreds of small contributions from the many embedded SRAMs. Our

approach is to maximize the column multiplex ratio to obtain the maximum

possible logical bit separation and then take advantage of the double error detection

capability of the SECDED ECC function to trigger a reset as a common generic

response. We support this with localized reset islands, in which a subset of

hardware can be isolated and reset under software control without impacting the

active state of the surrounding circuitry. Focusing our design effort into a generic,

fast, localized reset for each chip avoids the complexity explosion of dealing with

the many unique memory instances. The target for the fast reset is less than 10 ms

(to achieve the “low-severity” outage class), although this cannot be verified until

the entire software system is in place. Hence, it is conservatively allocated to the

“medium-severity” class during the design phase.

10.3.2 Flip-Flops

Flip-flop soft error rates are receiving considerable attention in the industry as they

have been steadily increasing with each step in ASIC technology evolution. Flip-

Flop upsets result in unpredictable system behaviors and are likely responsible for

the observations often described as single event functional interrupts (SEFI). At

approximately 14,000 FIT for the line card, they represent a significant challenge to

eliminate since they are to a first approximation contributed by millions of unstruc-

tured unique storage elements. Simply providing detection of an error is a huge

challenge. A first pass analysis can identify some regular structures such as state

machines and software configuration registers that can have parity detection added.

Another pass can identify state storage that is included in other forms of detection

such as packet check sequences (additional bits that accompany packets for error

recovery) and parity protected buses. Maximizing the use of this type of circuitry is

part of our design guidelines. These techniques can make approximately 1–5% of

the flip-flop soft errors detectable. The generic local reset response (as used to
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respond to multi-bit memory errors) is used to contain the outage to the low or

medium classification bin.

Further reduction in flip-flop error rates requires more invasive strategies. Add-

ing redundant logic such as TMR (triple modular redundancy) can triple the gate

count required to implement a function. The remaining mitigation strategy is to

substitute flop-flops with reduced soft error rates such as the DICE latch [10] into the

design. Unfortunately, DICE latches are significantly larger than normal flip-flops

and may also bring timing performance and power dissipation penalties. However,

the total circuit impact is much less than the full triplication of voting circuits.

DICE latch soft error rates are difficult to predict today, as accurate tools for

carrying out the 3D charge collection analysis on complex structures are not

mature, and measured data are very rare. Other novel flip-flop structures have

been proposed [11] that make use of scan test circuitry residing in some flip-flop

cell designs. In mission mode, these extra latch elements can be configured into

shadow storage to provide the reference state to detect and, with some additional

circuitry, correct an upset. Since these approaches would require significant

changes in ASIC test and clocking methodology, they are not yet available to us

in a standard design flow. It is hoped that research in this area will yield more

resilient and low impact methodologies that can be deployed.

10.3.2.1 Flip-Flop Error Masking

Another important area of research has been the analysis in which upsets predicted

from an elemental circuit model actually result in an impact on system behavior

[12, 13]. It turns out that there are many reasons why a flip-flop state upset may not

affect system operation. These are summarized as follows:

Temporal masking: If an upset occurs in the slave stage of a flip-flop while it

is transparent, then the value is immediately corrected by the master. Also, if an error

occurs late in the clock cycle, then the incorrect value may not have time to propagate

through the downstream logic and be captured by the next stage flip-flops.

Logical masking: If the state of a flip-flop is changed, the downstream combina-

torial logic which is dependent on other state variables may prevent the incorrect

value from propagating. For example, a multiplexer selects only one of its input

branches, so an error on one of the other inputs would not propagate.

Functional masking: In a complex integrated circuit, even if an upset in one flip-

flop is captured by downstream flip-flops, this may not result in observable change

on the outputs. Even if the outputs do change, the system response may be benign.

For example, a soft error in the random-number generator in a RED (Random Early

Discard) circuit would be considered benign since it would result only in a different

random sequence. The possibility that all the features within a chip are enabled is

rare, so soft errors that occur in a disabled unit are functionally masked.

Predicting system reliability and making decisions regarding mitigation techni-

ques require these masking factors to be accurately quantified. For general purpose

ASICs, large parts of the design come from synthesized RTL (register transfer
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level) code specific to the application, thus it is not generally possible to obtain the

masking factors by extrapolation from existing circuits. Furthermore, masking

factors can vary significantly depending on the type of circuit and its mode of

operation. Fault injection simulation is a practical means for determining the flip-

flop SER masking factors for an ASIC. Since digital simulation is the workhorse

tool for the functional verification of ASICs, it is often possible, with a small

incremental investment, to overlay fault injection simulations on top of the existing

verification environment.

For a large digital ASIC, with simulation-based techniques, it is not possible to

perform exhaustive fault injection – neither in time (every clock cycle) nor in space

(every flip-flop). Statistically valid results can be obtained through sub-sampling in

both dimensions (time and space). With care, these statistical masking results can

be used in de-rating raw flip-flop FIT rates and predicting system reliability.

Furthermore, statistical masking data can be helpful in optimizing mitigation

strategies.

10.3.2.2 Error Classification

In order to discuss the effect of flip-flop upsets, it is helpful to further de-compose

the possible effects of a soft error event in terms of the observed effect and the

associated outage.

It is important to note that in many of the cases where the effect of an SEU is

benign (rows 3–5 in Table 10.3), the sequence of vectors at the output pins of the

device may be very different due to the effect of the SEU (e.g., an interrupt may be

triggered, results may be delayed or re-ordered). Any approach that attempts to

determine masking factors through a purely structural or static analysis of the

circuit is unable to identify these opportunities for masking because it lacks

application knowledge.

10.3.2.3 Device Model, Fault Model, and Stimulus

Fortunately, the logical and functional masking effects of SEUs can accurately

be determined by simulating RTL level models. The gate-level mapping of any

combinatorial cloud must be equivalent to the RTL description, thus the effect of an

upset on any of its inputs will be the same. Of course, temporal masking effects and

SET (single event transient) masking effects can only be determined accurately

with detailed gate-level models. Generally, RTL simulations run an order of mag-

nitude faster than gate-level simulations and require significantly less workstation

memory, thus making it possible to perform a larger number of runs.

During logic synthesis, flip-flops are inferred from the RTL code. In order to

perform fault injection simulations on an RTL model, the actual flip-flops in the

design must be identified in the RTL code. One way of doing this is to extract

the list of flip-flops from a matching gate-level netlist and then map them back to
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Table 10.3 Classification of the effects of SEUs in ASICs

Masking effect Outage Description

1 Logically masked None The value in the upset flip-flop does not propagate to any

other flip-flops in the design. The state of the inputs

to downstream combinatorial logic causes the upset

value to be masked. For example, the upset flip-flop

could be feeding an unselected branch of a mux

2 Functionally

masked

None The value in the upset flip-flop does propagate to some

number of downstream flip-flops in the design;

however, the sequence at the primary outputs was

identical to that which it would have been had no

upset occurred. Certain internal state points may be

temporarily or permanently modified, but they do not

affect any of the outputs for the given application

(during the period of time under consideration)

3 Corrected None The upset was detected and corrected by mitigation

circuitry such as ECC. There may be a log of the

event and software intervention may be required to

remove the corrupted data. The exact output

sequence at the output pins may be different due to

the error logging and in some cases temporary

reduced performance; however, in the context of the

application, the result is equivalent

4 System benign Low The upset caused the circuit to temporarily operate

outside of its specification; however, the effect of this

deviation is acceptable in the context of the system

(at the low frequency of soft error events). For

example, in a video application a single pixel in a

video stream may be corrupted, in a routing

application, the quality of service (QoS) guarantees

are temporarily violated or in a micro-processor, a

speculative branch may be mis-predicted causing a

minor performance degradation

5 Detected – low

outage

Low The upset was detected and caused a minor outage (e.g.,

single packet drop in a router). This might arise when

non-critical data are protected by parity. This type of

event would generally be logged or counted and

recovery might require software intervention

6 Detected – medium

outage

Medium The upset was detected and the recovery requires a

medium-severity outage (e.g., the reset of a part of or

a whole chip). This might arise when critical data are

protected with parity or a hardware consistency

check fails but the effect is well contained

7 Detected – high

outage

High The upset was detected and the recovery requires a high-

severity outage (e.g., the reset of an entire card or

major unit). This might arise when critical data are

protected with parity or a hardware consistency

check fails and multiple components are affected

8 Undetected fault Unrecoverable The effect of the upset was not detected by the circuit

and resulted in a failure (data corruption, stuck

network traffic). In a router, this might be the case of

a device causing all incoming traffic to be silently

dropped (“black hole”)
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the RTL model. Obtaining a complete correspondence between the flip-flops in a

final gate netlist and the RTL model can be difficult because sequential logic may

be added as part of the back-end processing (Design for Test), flip-flops may be

hidden in hard macros, and synthesis tools may prune flip-flops through logic opti-

mization. So long as the purpose of the simulations is to draw statistical conclusions

about the masking factors, if the number of unmapped flip-flops remains a small

fraction of the total, this is still possible.

When considering the effect of SEUs on flip-flops, the basic fault model is that

the value in a single flip-flop is inverted (e.g., changed from 1 to 0, or vice versa) at

a point in time when the device is operating in its typical mode. In an ASIC, the

physical location of flip-flops is determined by a placement tool and it is possible

for multiple flip-flops to be adjacent such that a single event would upset multiple

bits. With placement information, it is possible to refine the fault model to consider

the effect of an event on adjacent flip-flops in close proximity; however, this is

beyond the scope of what is considered in this section.

Care is required when selecting stimulus for fault injection simulations. To

obtain results that correspond to what will be observed when a large population

of systems is deployed in the field, the stimulus must be representative of “typical”

applications. Often, the stimulus used for functional validation is crafted to exercise

stressful logic states and may not be representative of typical system usage. A safe

lower bound on the masking factors can be obtained by selecting a stimulus that

represents a maximum level of activity. When compute capacity permits, a suite of

simulations can be run to determine the variance of the masking factor due to

application and load.

10.3.2.4 Results Checking

There are two broad approaches to determining the effect of an injected SEU in

simulation. One of these is to compare the output pattern to a reference copy of the

design where no upset occurs as shown in Fig. 10.4. Although this approach is easy

to implement and can be generalized, it is not possible to differentiate between

cases where the output sequence was different but benign in the system context

(rows 3–5) in Table 10.3. One can only establish that the upset produced an

observable difference, but not whether the different behavior was acceptable.

The alternative approach relies on a self-checking functional simulation envi-

ronment to detect and report errors as shown in Fig. 10.5. Generally, the checking in

a complex ASIC simulation environment is done using a combination of techniques

(Table 10.4).

The advantage of using a functional simulation environment is that the correct-

ness of the device is verified at a higher level of abstraction. This means that at the

vector level on the outputs, the sequence may be significantly different as the result

of the SEU, but the behavioral model has the knowledge to determine whether the

modified sequence was acceptable.
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Fig. 10.5 Fault injection with a functional simulation environment

Fig. 10.4 Fault injection with a reference copy of design
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When performing fault injection simulations, the thoroughness of checking in

the simulation environment can influence the measured functional masking. Care

must be taken to ensure that the simulation checking is sufficiently strict to detect

any deviation from normal behavior that would be detected in the real system. The

implicit assumption when performing simulation-based masking analysis is that

simulations which “pass” represent logical or functional masking and that they do

not represent undetected faults.

If the simulation environment contains local checkers and embedded assertions,

care must be taken not to equate all failures flagged by these checkers as observable

SEUs. Failures must be analyzed in order to classify the actual outcome in the

system. In most cases, if the only result of a fault injection is an error from a local

checker, the fault is likely functionally masked downstream in the circuit (row 2 in

Table 10.3).

10.3.2.5 ASIC Case Study

In this section, we show some results obtained from performing fault injection

simulations on a large digital ASIC (1.2 M flip-flops, 25 Mbits of embedded

memory) in a router application. Almost all the embedded memory on this

device have SECDED ECC protection so that memory SEUs produce no outage.

Certain large embedded memories representing approximately 75% of the mem-

ory bits can gracefully handle MBEs. A small set of memories are parity pro-

tected; however, the handling of parity errors is graceful. The MBE failure rate

for the remaining memories is very small, thus flip-flop soft errors represent

the primary failure mechanism. The raw flip-flop failure rate is relatively large

and thus accurate determination of masking factors is critical to meeting system

reliability targets.

Some basic techniques for flip-flop SER mitigation are used:

l Static configuration information is parity protected.
l The encoding of state-machines allows SEU detection.
l The payloads are protected by a CRC code as they transit through the device.

Table 10.4 Typical components of an ASIC functional simulation environment

Component Description

Behavioral

model

A model containing a scoreboard that validates the correctness of the outputs at

a higher level of abstraction (e.g., transactions and packets). Usually, this

type of model treats the device under test (DUT) as a black box

Local checkers Checkers that monitor signals internal to the DUT and ensures that the behavior

of a small portion of the circuit is correct

Embedded

assertions

These assertions generally specify low-level rules that must hold true inside the

design (e.g., if there is a request, it must be acknowledged within N clocks)

End of test

checks

Certain aspects of design behavior can best be checked at the end of a

simulation (e.g., performance and checking for memory leaks)
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The benefit of these design techniques can only be quantified with fault injection

simulations. The simulations were performed using the full-chip simulation envi-

ronment, which consisted of behavioral models that check the contents of the data

and control interfaces. Extensive end-of-test checks provide good detectability of

latent errors (e.g., memory leaks and incorrect accounting).

Thousands of simulations were performed. During each simulation run, a flip-

flop was selected randomly (spatial sub-sampling) and the time of the injection was

selected randomly during the window of time when the device was fully active

(temporal sub-sampling). If the simulation ran to completion without any difference

being observed by the simulation environment, then the SEU was deemed to be

either logically or functionally masked. The masking factor converged quickly and

the result obtained after hundreds of simulations was the same as that obtained after

thousands of simulations: only one out of seven fault injections resulted in differ-

ence detected by the simulation environment.

The set of runs where a difference was detected by the simulation environment

was studied in further detail and the results were classified by the categories shown

in Table 10.3. These results are shown in the following pie chart. The process of

classifying failing runs was manual and thus not every failing run could be

analyzed. When performing system level analysis, in order to be safe, all simula-

tions which were not successfully classified were assumed to produce a high-

severity outage.

It is interesting to note that of the runs where the simulation environment

observed a difference in behavior, nearly half of these (48% from the System Benign

and Detected – Low Outage categories) result in either no outage or a low-severity

outage. Using static circuit analysis techniques, it would not be possible to identify

those outcomes where the output sequence is significantly different after the upset.

The fault injection simulations provide two key pieces of data. First, an overall

SEU de-rating factor showing that, in this particular case, six out of seven flip-flop

SEUs produce no measurable change to the device behavior when it is operating in

mission mode. Second, of the one in seven of the SEU upsets that produces a

perturbation in the behavior, half of these are detected by an existing mechanism

and results in a low-severity outage.

10.3.2.6 Temporal Masking Analysis

In addition, we have carried out a slack time analysis on flip-flop fan in. The

methodology used to perform this analysis was based on analyzing the gate-netlist

to determine the connectivity and standard delay format (SDF) files to extract the

timing. The ratio of the maximum slack path to the clock period for each flip-flop

fan in tree is then summed across the chip. The results indicated that approximately

10% of SEUs fail to meet the next stage setup window for the best case timing

corner. At the worst case timing corner, our analysis showed that about 20% of the

upsets are temporally masked. An upset is only considered to be temporally masked

if it does not propagate to any of the downstream flops, thus the effect is limited by
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the timing on the fastest path. The reality is more complex, because an upset may

actually propagate to some downstream flops and be temporally masked to others;

however, this quickly becomes difficult to analyze. Thus, we chose a conservative

definition of temporal masking using best case timing on the shortest paths for a

masking factor of 0.9.

We recognize that these masking factors cannot be generalized to all our ASICs

and so we are continuing to refine our analysis of functional and temporal masking

with additional chips representing different design applications. Ultimately, we

expect this type of analysis to become part of our regular design flow. Applying

these masking factors to the remaining flip-flops provided sufficient confidence that

we would meet our soft error target without further design changes.

10.3.3 Model Results

The model results are summarized in Table 10.5 with temporal masking of 0.9 and

functional masking of 0.16 applied. The rate predicted from the “Unrecoverable”

class is slightly above specification but does not warrant any design intervention

based on the results from fault injection simulation, which show that approximately

half of the flip-flop SEUs that are visible actually result in a low-severity outage. As

Not Classified 29%

Detected – Medium 23%Detected – Low 20%

System Benign 28%

Not Classified

System Benign

Detected – Low

Detected – Medium

Fig. 10.6 Classification of failure types resulting from fault injection

Table 10.5 Predicted soft error rates relative to the target specification

Class Maximum

recovery time (s)

Maximum

outage rate (FIT)

Predicted

outage rate (FIT)

No outage 0 Unlimited 533,000

Low 0.01 30,000 1,480

Medium 3 10,000 4,770

High 180 1,000 820

Unrecoverable 1,000 1,000 1,120
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mentioned earlier, the second order effects that dominate the FIT rate calculation in

the “high” and “unrecoverable” category have very little hard experimental data to

establish confidence intervals. Obtaining greater accuracy in flip-flop and multi-bit

memory soft error rates from ASIC vendors is highly important.

10.4 Verifying Soft Error Performance

The combination of modeling uncertainties and the considerable hardware and

software complexity that make up the prediction of the soft error performance of

a system mandate some kind of verification strategy to ensure that a new product is

not deployed with a significant vulnerability. The nature of soft error behavior is

such that if a problem exists, you may not discover it until a significant number of

systems have been shipped and in service. To avoid this, we employ accelerated

testing using a neutron beam facility. The goals of this test are as follows:

l Identify bugs in the detection and response mechanisms;
l Identify rogue components that do not meet their specified FIT rates or display

latch-up behavior, which would eliminate them as eligible components;
l Verify that the system level soft error performance specification has been met –

particularly for the “high-severity” class.

Neutron irradiation is a convenient method for performing this type of system

analysis since neutrons are a dominant source of upset in nature at ground level, and

it is possible to obtain industrial access to several facilities in the world that can

generate a large area beam of fairly uniform flux density. Since neutrons have very

high penetration, a beam that is wide enough to expose the entire active portion of

the system can have all of its hardware bombarded simultaneously. By placing

supporting test equipment outside the test area, we can effectively measure the

behavior of a router passing traffic in its native operating state. We can then adjust

the beam flux in order to generate an accelerated test of the order of 106 (~1 year

per minute of beam time) relative to an assumed neutron flux rate of 14 neutrons/

cm2/h at sea level. This is sufficient to measure the relatively small failure rates

targeted for “high-severity” errors in a reasonable time interval while keeping the

more frequent “low-severity” rate below one event per second, so that we do not

overload the control path with interrupts. For our measurements, we have used

both the quasi-monoenergetic neutron beam facilities at the Svedberg Research Lab

at the University of Uppsala, Sweden, and the broad spectrum facility at TRIUMF

at the University of British Columbia, Canada.

We prepared two sets of software loads. The first is a diagnostic test that simply

runs continuous patterns on all memories on a card and detects, counts, and corrects

all errors. Statistics gathered from this test verify that the anticipated component

error rates are as expected and helps isolate any rogue components not performing

as expected. The second SW load is the mission mode operating system of the

router. Traffic is run and features are turned on that attempt to load and stress as
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much of the hardware as possible in a realistic application scenario. The beam is

turned on and the system is monitored for SW crashes and any other system error

messages. Log files are gathered for diagnosis and isolation of SW problems that

need to be fixed.

Since there are many thousands of recovery routines required to respond to the

possible soft error interrupts generated by the hardware, and some are quite difficult

to test in a normal test laboratory environment even with the error injection

functions built into the ASICs, it is not uncommon for SW bugs to hide in these

areas of the code. Many may be associated with very rare error syndromes. With

this methodology, we are able to detect the most important bugs and continuously

improve the performance of the system in subsequent runs.

Figure 10.7 shows the results from a particular run for a group of CISCO 12000

SIP 600/601 series line cards measured at the TRIUMF test facility. The chart

shows the results for the same hardware running the two different operating

systems, IOS and IOS-XR, which are available on the product. Error bars are

used to illustrate the 90% certainty range in the FIT rate measurements based on

chi square statistics. When fewer failures are seen over a given exposure time, the

uncertainty in the measurements rise.

The difference in the two measurements in Fig. 10.4 illustrates the role that the

SW plays. Both software loads were configured to perform the same network tests

and both were clearly demonstrating very high reliability (less than 1,000 FIT), at

the time these measurements were performed. However, the IOS-XR software load

was a new product on the SIP600/601 and this was its first exposure to neutron

beam testing, whereas the more mature IOS load was in its third test campaign.

Failures found in the tests are used to drive software improvements that continually
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Fig. 10.7 Measured Cisco 12000 SIP 600/601 accelerated soft error rates. Soft error rates are

normalized to New York City sea level reference for the “high-severity” category running the IOS

and IOS-XR operating systems. Error bars show 90 confidence levels
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lower the high-severity outage frequencies with successive test campaigns. Since

the hardware is identical, we can expect both operating systems to achieve ulti-

mately the same performance as the IOS-XR software catches up in its maturity.

It is important to note that these measurements are only for the neutron compo-

nent of the full system soft error rate. Since this product is constructed largely of

silicon from the 130-nm generation technology node, we expect an additional 30%

contribution from alpha-induced errors based on vendor supplied component data.

If we assume that the errors found in neutron testing are statistically representative

of the errors that would be induced by alpha particles, then we would need to

multiply the above results by 1.3 to obtain a total high-severity error rate in the field.

Therefore, this line card is achieving the target specification running IOS and is

slightly above specification running IOS-XR. We expect the IOS-XR rate to drop

in subsequent measurements as we fix the problem sources that were observed

in this run.

10.5 Conclusions

We have presented a methodology for relating single event upset rates to high

availability requirements for a complex system of ASICs and software. By consid-

ering component soft error FIT rates and resulting outage times in the system

together, we are able to construct a unified specification that can be used to drive

design decisions. This provides clarity in responding to issues such as where and in

what quantity to deploy resilient flip-flops, or whether a targeted fast recovery

mechanism or a slower generic reset is sufficient to respond to a particular error

when it is detected. This supports both ASIC and software design during the

product development stage.

For the case of an Internet core router, we have examined the end-user metrics of

network availability, quality of service, and the service lifetime of a replaceable

component such as a line card to develop the specification. We identified important

breakpoints in outage time intervals that are relevant to the end-user experience that

enable the error rate contributions from different hardware components to be

binned according to the error recovery mechanism that they trigger. We found

that in each of the bins, a different aspect of the end-user requirement applies, with

the most demanding requirement being for outages greater than 3 s.

To meet this requirement in a next-generation line card, the analysis required a

detailed model including what were previously considered second-order effects

(multi-bit memory errors and flip-flop upsets). Further, a deeper analysis of tempo-

ral, logical, and functional masking of flip-flop upsets was required to determine if

millions of flip-flops would have to be replaced by larger and more power hungry

DICE latch cells. The result was that the specification could be met without these

substitutions for this level of integration at 65 nm. However, it is clear that we will

need much better tools to support this analysis in future product developments.
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Finally, we presented a measurement technique using large area neutron beam

radiation to provide an accelerated test of the hardware and software together

executing their mission mode application. Using this method, we can directly mea-

sure the performance against the key metrics in the specification as well as identify

and fix problems long before they are seen in Internet service provider networks.

With this technique, we are able to demonstrate that systems that were previously

designed to this requirement have indeed achieved their intended performance.
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