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Preface 

Motto:  We need to develop  

thinking, rather than  

too much knowledge. 

Democritus 

This book represents my 30 years continuing education courses for graduate and 

master degree students at the Electronics and Telecommunications Faculty from 

the Technical University of Cluj Napoca, Romania and partially my research ac-

tivity too. The presented topics are useful for engineers, M.Sc. and PhD students 

who need basics in information theory and coding.  

The work, organized in five Chapters and four Appendices, presents the fun-

damentals of Information Theory and Coding. 

Chapter 1 (Information Transmission Systems - ITS) is the introductory part and 

deals with terminology and definition of an ITS in its general sense (telecommuni-

cation or storage system) and its role. 

Chapter 2 (Statistical and Informational Model of an ITS) deals with the mathe-

matical and informational modeling of the main components of a digital ITS: the 

source (destination) and the transmission channel (storage medium). Both  

memoryless and memory (Markov) sources are analyzed and illustrated with ap-

plications. 

Chapter 3 (Source Coding) treats information representation codes (from the nu-

meral system to the genetic code), lossless and lossy (DPCM and Delta) compres-

sion algorithms. The main efficiency compression parameters are defined and a 

detailed presentation, illustrated with many examples, of the most important com-

pression algorithms is provided, starting with the classical Shannon-Fano or 

Huffman until the modern Lempel Ziv or arithmetic type. 

Chapter 4 (Cryptography Basics) is presenting basics of classic and modern sym-

metric and public key cryptography. Introduction in DNA cryptography and in 

digital watermarking are ending the chapter. Examples are illustrating all the pre-

sented chipers.  

Chapter 5 (Channel Coding) is the most extended part of the work dealing with  

error control coding: error detecting and forward error correcting codes. After de-

fining the aim of channel coding and ways to reach it as established by Shannon 

second theorem, the elements of the theory of block codes are given and Hamming 

group codes are presented in detail. 
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Cyclic codes are a main part of Chapter 5. From this class, a detailed presenta-

tion of BCH, Reed-Solomon, Golay and Fire codes is given, with linear feedback 

shift register implementation. The algebraic decoding algorithms, Peterson and 

Berlekamp, are presented. 

Concerning the convolutional codes, after a short comparison with block codes, 

a detailed description of encoding and graphical representation as well as decod-

ing algorithms are given.  

Principles of interleaving and concatenation are also presented and exemplified 

with the CIRC standard used in audio CD error control. 

The principles of the modern and powerful Turbo Codes are ending the presen-

tation of error control codes. Channel Coding chapter also includes a presentation 

of Base-Band coding.  

The work also includes four Appendices (A, B, C and D) presenting: A – Alge-

bra elements and tables concerning some Galois fields and generator polynomials 

of BCH and RS codes; B – Tables for information and entropy computing; C – 

Signal detection elements and D – Synthesis example.  

I tried to reduce as much as possible the mathematical demonstrations, focusing 

on the conditions of theorems validity and on their interpretation. The examples 

were selected to be as simple as possible, but pointing out the essential aspects of 

the processing. Some of them are classic, others are taken from the literature, be-

ing currently standards in many real applications, but most of them are original 

and are based on typical examples taken from my lectures.  

The understanding of the phenomenon, of the aims of processing (compression, 

encryption and error control) in its generality, not necessarily linked to a specific 

application, the criteria of selecting a solution, the development of the “technical 

good sense”, is the logic thread guiding the whole work. 
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Chapter 1 

Information Transmission Systems 

Motto: When desiring to master  

science, nothing is worst 

than arrogance and more 

necessary than time. 

Zenon 

1.1   Terminology 

We call information “any message that brings a specification in a problem which 

involves a certain degree of uncertainty” [9]. The word information derived from 

the ancient Greek words “eidos” (idea) and “morphe” (shape, form), have thus, the 

meaning of form/shape of the mind. 

Taking this definition into consideration we may say that information is a fun-

damental, abstract notion, as energy in physics. 

Information has sense only when involves two correspondents: one generating 

it (the information source S) and another receiving it (the destination D, or the 

user U). Information can be transmitted at distance or stored (memorized) for later 

reading. The physical medium, including the contained equipment, that achieves 

the remote transmission of the information from S to D, is called transmission 

channel C; in the case of storage systems the channel is replaced by the storage 

medium, e.g. CD, tape etc. 

Information is an abstract notion. This is why, when stored or transmitted, it 

must be embedded into a physical form (current, voltage, electromagnetic wave) 

able to propagate through the channel or to be stored. What we call signal is pre-

cisely this physical embodiment carrying information. 

 

Remark 

Generally speaking, by signal we understand any physical phenomenon able to 

propagate itself through a medium. One should notice that this definition is restric-

tive: it rules out the signal that interferes with the information-carrying signal 

(useful signal); this signal is known as noise or perturbation (N). 

The information source can be discrete (digital source), or continuous (signal 

source). The discrete source generates a finite number of symbols (e.g. 0 and 1 

used in digital communications) while the continuous source, an infinite number 

of symbols (e.g. voice, television signal, measurement and control signals). 
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Remark 

The sources, as well the destinations, are supposed to have transducers included. 

By Information Transmission System (ITS) we will understand the ensemble of in-

terdependent elements (blocks) that are used to transfer the information from 

source to destination. 
 

Remarks 

• When transmitting the information from source to a remote destination through a 

channel, we deal with a transmission system; on the other hand, when storing the 

information, we deal with a storage system. The problems met in information 

processing for storage are similar in many aspects to those from transmission sys-

tems; therefore in the present work the term information transmission system 

(ITS) will be used for the general case (transmission as well storage system). 

• The signal, as well as the noise, are assumed to be random. 

1.2   Role of an ITS 

The role of an ITS is to ensure a high degree of fidelity for the information at destina-

tion, regardless to the imperfections and interferences occurring in the channel or stor-

age medium. The accuracy degree is estimated using a fidelity criterion, as follows: 

For analogue systems: 
 

• mean squared error ε: 

[ ]2
y(t)x(t):ε −=                                                (1.1) 

where x(t), y(t) are the signals generated by the source respectively received at 

destination;  the symbol “______” indicates the time averaging. 

• signal/noise ratio (SNR) ξ:  

[ ]

[ ]2

2

n(t)

y(t)
:ξ =                                                  (1.2) 

where n(t) indicates the noise.  
 

For digital systems: 

• bit error rate (BER): the probability of receiving an erroneous  bit 

The degree of signal processing for transmission or storage, depends on the 

source, destination, channel (storage medium), the required accuracy degree, and 

the system cost. 

When the source and destination are human beings, the processing may be re-

duced due to the physiological thresholds (hearing and vision), and also to the 

human brain processing, requiring a lower degree of fidelity. 

When dealing with data transmissions (machines as source and destination), the 

complexity of processing increases in order to achieve the required fidelity. 

For high quality data transmission/storage we may as well improve the channel 

(storage medium), the choice of the used method being made after comparing the 
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price of the receiver (the equipment used for processing) with the price of the  

channel (storage medium). The constant decrease of the LSI and VLSI circuits 

prices justifies the more and more increasing complexity of the terminal equipment, 

the ultimate purpose being the achievement of high quality transmission/storage. 

 

Remark 

In what follows we will exclusively analyze the numerical (digital) transmission 

systems taking into consideration their present evolution and the future perspec-

tives that show their absolute supremacy even for applications in which the source 

and the destination are analogue (e.g. digital television and telephony). 

1.3   Model of an ITS 

The general block scheme of an ITS is presented in Fig. 1.1 which shows the general 

processing involving information: coding, modulation, synchronization, detection. 

 

Fig. 1.1 Block scheme of a general digital ITS 

Legend: 

• S/D – source/destination;  

• CS/ DCS – source encoding/decoding blocks; 

• E/D – source encryption/decryption blocks; 
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• CC/DCC – channel encoding/decoding blocks; 

• i – information (signal) 

• v – encoded word 

•  n – noise 

•  r – received signal 

•  î – estimated information. 

The process named coding stands for both encoding and decoding and is used 

to achieve the followings: 

• matching the source to the channel/storage medium (if different as nature), us-

ing the source encoding block (CS) 

• ensuring efficiency in transmission/storage, which means minimum transmis-

sion time/minimal storage space, all these defining source compression (CS) 

• reliable transmission/storage despite channel/storage medium noise (error pro-

tection performed by the channel coding block  CC) 

• preserving information secrecy from unauthorized users, using the source en-

cryption/decryption blocks (E/D) 

Modulation is used to ensure propagation, to perform multiple access and to 

enhance the SNR (for angle modulation), as well as to achieve bandwidth com-

pression [8], [25].  

For digital systems, synchronization between transmitter and receiver is neces-

sary, and also signal detection, meaning that the receiver must decide, using the 

received signal, which of the digital signals has been sent [10]. 

In real applications, all the above-mentioned processes or only some of them 

could appear, depending on the processing degree required by the application. 
 

Why digital? 
 

There are several reasons why digital systems are widely used. Their main advan-

tage is high noise immunity, explained by signal regeneration: a digital signal, 

having only two levels corresponding to “0” and “1”, allows an easy regeneration 

of the original signal, even from a badly damaged signal (fig.1.2), without accu-

mulation of regenerative errors in transmission (in contrast to analogue transmis-

sion) [5], [18]. 

 
Fig. 1.2 Illustration of signal regeneration in digital communications: a) original signal, b) 

slightly distorted signal, c) distorted signal, d) intense distorted signal, e) regenerated signal 

(l - distance in transmission). 
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In analogue systems, the distortions, however small, cannot be eliminated by 

amplifiers (repeaters), the noise accumulating during transmission; therefore in 

order to ensure the required fidelity for a specific application, we must use a high 

SNR, unlike for digital systems in which (taking into account the possibility of er-

ror protection) we may use a very low SNR (lower than 10 dB, near Shannon limit 

[2]). 

Other advantages of digital systems are: 
 

• possibility of more flexible implementation using LSI and VLSI technologies 

• reliability and lower price than for analogue systems 

• identical analysis in transmission and switching for different information 

sources: data, telegraph, telephone, television, measurement and control signals 

(the principle of ISDN – Integrated Switching Digital Network) 

• good interference and jamming protection and also the possibility of ensuring 

information confidentiality. 

The main disadvantage of digital systems is the increased bandwidth compared 

to analogue ones. This disadvantage can be diminished through compression as 

well as through modulations, for spectrum compression.  
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Chapter 2 

Statistical and Informational Model of an ITS 

Motto: Measure is the  

supreme well.  

(from the  wisdom of the peoples) 

2.1   Memoryless Information Sources 

Let us consider a discrete information source that generates a number of m dis-

tinct symbols (messages). The set of all distinct symbols generated by the source 

forms the source alphabet. 

A discrete source is called memoryless (discrete memoryless source DMS) if 

the emission of a symbol does not depend on the previous transmitted symbols. 

The statistical model of a DMS is a discrete random variable (r.v.) X; the val-

ues of this r.v. will be noted as xi, m1,i = . By X=xi we understand the emission 

of xi from m possible. 

The m symbols of a DMS constitute a complete system of events, hence: 

jiΦ,xxandΩx ji

m

1i
i ≠∀=∩=

=
∪                               (2.1)  

In the previous formula, Ω signifies the certain event or the sample space and Φ 

the impossible event. 

Consider p(xi) = pi the emission probability of the symbol xi. All these prob-

abilities can be included in the emission probability matrix P(X): 

[ ] ∑ ==
=

m

1i
imi1 1p  where,pppP(X) ""                              (2.2) 

For a memoryless source we have: 

)p(x)x,/xp(x i2i1ii =−− …                                     (2.3) 

For the r.v. X, which represents the statistical model for a DMS, we have the 

probability mass function (PMF) of r.v. X: 

∑ ==⎟⎟⎠
⎞⎜⎜⎝

⎛
=

m

1i
i

i

i
1p ,m1,i ,

p

x
:X                                     (2.4) 
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Starting from a DMS, X, we can obtain a new source, having messages which 

are sequences of n symbols of the initial source X. This new source, X
n
  , is called 

the n-th order extension of the source X. 

⎪⎩
⎪⎨⎧

=

=

∑ ==⎟⎟⎠
⎞

⎜⎜⎝
⎛

∑ ==⎟⎟⎠
⎞⎜⎜⎝

⎛

=

=

)p(x))p(xp(xp

xxxm
 where

1p ,m1,j ,
p

m
:X

1p ,m1,i ,
p

x
:X

n21

n21

n

jjjj

jjjj

m

1j
j

n

j

jn

m

1i
i

i

i

…

…

                           (2.5) 

The source X
n
 contains a number of m

n
 distinct mj messages formed with al-

phabet X. 

 

Example 2.1 

Consider a binary memoryless source X: 

1pp ,
p p

 xx
:X 21

21

21 =+⎟⎟⎠
⎞⎜⎜⎝

⎛
 

The 2nd
 
order extension (n=2) of the binary source X is: 

∑ =⎟⎟⎠
⎞⎜⎜⎝

⎛
=⎟⎟⎠

⎞⎜⎜⎝
⎛

=

4

1j

*
*
4

*
3

*
2

*
1

4321
2
21221

2
1

221221112 1p , 
pppp

mmmm
 

p     pp   pp   p

x xx xx xxx
:X

j
 

2.2   Measure of Discrete Information 

As shown in 1.1, information is conditioned by uncertainty (non-determination). 

Consider the DMS, ∑ ==⎟⎟⎠
⎞⎜⎜⎝

⎛
=

m

1i
i

i

i
1p ,m1,i ,

p

x
:X . Prior to the emission of a sym-

bol xi there is an uncertainty regarding its occurrence. After the emission of xi this 

uncertainty disappears, resulting the information about the emitted symbol. Infor-

mation and uncertainty are closely connected, but not identical. They are inversely 

proportional measures, information being a removed uncertainty. It results that the 

information varies oppositely to the uncertainty. 

The uncertainty regarding the occurrence of xi depends on its occurrence prob-

ability: pi, the both measures being connected through a function F(pi) that in-

creases as pi decreases.  

Defining the information i(xi) as a measure of the a priori uncertainty regarding 

the realization of xi, we can write: 

i(xi) = F(pi )                                              (2.6)  

In order to find a formula for the function F we impose that F carries all the 

properties that the information must have: 
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• information is positive or at least equal to 0 ( 0F(p) ≥ ); we cannot get any in-

formation if the event is certain (p=1) or impossible (p=0) 

• information is additive: consider an event xi composed of two independent events 

xi1 and xi2; we have i2i1i xxx ∩= ; based on the additivity of information:  

 i(xi) = i(xi1) + i(xi2)  and therefore 

F[p(xi)] = F[p(xi1)] + F[p(xi2)]                                     (2.7) 

Due to the fact that xi1 and xi2 are independent events, we have: 

 ))p(xp(x)xp(x i2i1i2i1 =∩  

Relation (2.7) becomes: 

)]F[p(x)]F[p(x))p(xF[p(x i2i1i2i1 +=                           (2.8) 

Taking into account the positivity of information, we obtain for the functional 

equation (2.8) the solution: 

)i(xp log-)F(p iii == λ                                      (2.9) 

where λ is a positive constant. 

The information provided by relation (2.9) is called self information of xi. 

 

Units of information 
 

The unit of information was defined starting from the simplest choice, that of 

choosing one from two equally probable: 

1
2

1
log-)i(x)i(x ,

1/2  1/2

     xx
:X 21

21 ===⎟⎟⎠
⎞⎜⎜⎝

⎛
λ  

If the logarithm is in base 2 and λ=1 we have:  

bit 1
2

1
log)i(x)i(x 221 ===                                      (2.10) 

The unit previously defined is known as bit. According to this, relation (2.10) 

becomes: 

i2i p-log)i(x =                                               (2.11) 

The name of bit comes from the contraction of the words binary digit, made in 

1947 by J.W.Tuckey in a Bell Labs memorial and in 1948, Cl.E.Shannon first 

used the term in his famous paper “A Mathematical Theory of Communications” 

[31]. Apart from log2, other bases have been used at the beginnings of the infor-

mation theory: e and 10. In these cases the units are: 

- ln
e

1
 = ln e = 1 nit = 1 natural unit (Hartley)  
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and represents the choice of 1 from e; this name was given in the memory of R. V. 

Hartley who first introduced the notion of information measure (1928). 

- lg
10

1
= lg10 = 1dit = 1 decimal unit, 

representing the choice of 1 from 10. 

The relations between these three units, using the logarithm base conversion: 

xlogblogxlog baa ⋅= , are: 
 

1 nit = 1.44 bits 

1 dit = 3.32 bits 
 

In computing and telecommunications, another unit for information is com-

monly used: the byte (B), introduced in 1956 by W. Buchholz from IBM. A byte is 

an ordered set of bits, historically being the number of bits (typically 6, 7, 8 or 9), 

used to encode a character text in computer. The modern standard is 8 bits (byte). 

1 byte= 1 B= 8 bits 

Prefixes and multiples for bit and byte are given in Tab 2.1. 

Table 2.1 Prefixes and multiples for bit and byte 

Prefixes for bit and byte multiples 

Decimal Binary 

     Value         SI      Value        IEC JEDEC 

      1000       K  kilo       1024      Ki kibi K kilo 

      1000
2 

      M mega       1024
2      Mi mebi M mega 

      1000
3 

      G giga       1024
3      Gi gibi G giga 

      1000
4 

      T tera       1024
4      Ti tebi  

      1000
5 

      P peta       1024
5      Pi pebi  

      1000
6 

      E exa       1024
6      Ei exbi  

      1000
7 

      Z zetta       1024
7      Zi zebi  

      1000
8 

      Y yotta       1024
8      Yi yobi   

 
where the designation of the used acronyms is:  

 

SI- International System of Units 

IEC- International Electrotechnical Commission 

JEDEC- Joint Electronic Device Engineering Council (the voice of semicon-

ductor industry) 
 

The binary multiples of bit and byte are linked to 2
10 

=1024, because digital 

systems are based on multiples of power of 2. However its usage was discouraged 

by the major standard organisations and a new prefix system was defined by IEC, 

which defines kibi, mebi, etc., for binary multiples. 
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2.3   Information Entropy for a DMS (Shannon Entropy) 

The self information corresponding to a symbol xi can be computed using relation 

(2.11) as we have already seen. The average information per emitted symbol is 

called information entropy and is denoted with H(X): 

{ } ∑=∑==
==

m

1i
i2i

m

1i
iii plogp-)i(xp)i(xE:H(X)                         (2.12) 

where E designates the average operator (expected value) of the self information 

of r.v. X. 

The entropy H(X) represents the average uncertainty that a priory exists con-

cerning the emission. 

 

Remarks 

• Equation (2.12), given by Claude E. Shannon in 1948 in his paper “A Mathe-

matical Theory of Communication”, has a perfect analogy with the entropy in 

thermodynamics, established by Boltzmann and J.W.Gibbs in 1870, therefore it 

was called information entropy. 

• Boltzmann-Gibbs formula represents the probabilistic interpretation of the sec-

ond principle of thermodynamics:  

∑=
=

n

1i
ii p logp-kS                                            (2.13) 

where k=1.38·10
-23

 J/K is Boltzmann constant, and pi are the system probabilities 

to be in the micro state i taken from an equilibrium ensemble of n possible. The 

thermodynamic entropy expresses the disorder degree of the particles in a physical 

system. 

Shannon formula indicates the system non-determination degree from an in-

formational point of view. 

• A. N. Kolmogorov [12] showed that the mathematical expression of the infor-

mation entropy is identical as form with the entropy in physics, but it would be 

an exaggeration to consider that all the theories from physics related to entropy 

contain, by themselves, elements of the information theory. Both notions have 

in common the fact that they measure the non-determination degree of a sys-

tem, but their applications can be found in completely different spheres of 

knowledge.   

– Relation (2.12) is a quantitative expression of the information. Besides the 

quantitative aspect, information has qualitative aspects as well, not empha-

sized in Shannon formula, very important for applications in the area of ar-

tificial intelligence [26]. 

– Formula (2.12) was given under some hypotheses: the source is a DMS, so 

from a mathematical point of view we have a complete system of events 

and there is a final equilibrium of states (events). These conditions are 

usually fulfilled in technical systems that have been used as models by 
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Shannon, but are not always achieved in the biological, social, economic 

systems; therefore the information theory must be used with extreme care.  

 

Properties of the entropy 

• The entropy is a continuous function with respect to each variable pi because it 

is a sum of continuous functions. 

• Additivity: self information is additive and so it is H(X), which represents the 

mean value of self information. 

• Entropy is maximum when the symbols have equal probabilities; this maximum 

value is also called decision quantity, D(X): 

( ) ( ) m logXD:XH 2max ==                                   (2.14) 

• Symmetry: H(X) is unchanged if the events xi are reordered. 

The maximum value of the entropy can be obtained calculating the maximum 

value of the function (2.12) with the constraint: 

∑ =
=

m

1i
i 1p  

Using the Lagrange multipliers method it results: 

⎭⎬
⎫

⎩⎨
⎧ ∑ ⎟⎟⎠

⎞⎜⎜⎝
⎛ ∑+==

= =

m

1i

m

1i
ii2ii 1-pλp log p-)Φ(pmax H(X)max                   (2.15) 

The maximum value of the function F(pi) is achieved for: 

, m1,i  0,
p

)Φ(p

i

i =∀=
∂

∂
                                      (2.16) 

⎪⎪⎩

⎪⎪⎨
⎧

=+=
∂

∂

=+=
∂

∂

0λ  e log-p -log
p

)Φ(p

0λ  e log-p -log
p

)Φ(p

2j2
j

j

2i2
i

i

 

It follows that j2i2 plogplog = , hence pi=pj,  m1,i  =∀ . Therefore, Hmax(X) is 

obtained if: 

p1 = p2 =…= pm = 
m

1
  

and so  

Hmax(X) = D(X) = log2 m 

where D(X) is the decision quantity of X. 
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This result can be deduced also intuitively; the average uncertainty corresponding 

to the transmission of a symbol is maximum when all the m symbols are equally 

probable, so when it is the hardest to predict which symbol will be transmitted. 

 

Example 2.2 
Compute and draw the entropy of a memoryless binary source: 

⎟⎟⎠
⎞⎜⎜⎝

⎛
p-1   p

1     0
:X , p)-(1p)log-(1-p-plogH(X) 22=                     (2.17) 

The graphical representation of the entropy of a binary memoryless source is 

given in Fig. 2.1. 

 

Fig. 2.1 Graphical representation of the entropy corresponding to a binary source  

From Fig 2.1 we can see that H(X)max  = 1 bit/symbol is obtained for p = 1/2. 

For p ≠ ½,  H(X)<1; for p=0 or p=1, H(X)=0, because in these cases the a priori 

uncertainty is zero, being known exactly that 1 will be emitted  in the first situa-

tion  and 0 in the second, meaning that the information in these cases is zero. 

2.4   Source Redundancy and Efficiency 

The source entropy deviation from its maximum value is called source redun-

dancy. This deviation can be absolute or relative, resulting an absolute or relative 

redundancy: 

Absolute redundancy: 

H(X)-D(X):R X =                                          (2.18) 

Relative redundancy: 

D(X)

H(X)
1

D(X)

R(X)
:ρx −==                                        (2.19) 
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Source efficiency (ηx) is the ratio between the source entropy and its decision 

quantity: 

D(X)

H(X)
:ηX =                                                 (2.20) 

2.5   Entropy of an Extended Discrete Memoryless Source: H(Xn) 

We consider the source X
n
 given by (2.5). 

The entropy of this source, H(X
n
), is given by: 

∑ ∑=

∑ ∑ ===

= =

= =

n n

nn2iin21

n n

n21n21

m

1i

m

1i
j2jjjj2jjj

m

1j

m

1j
jjj2jjjj2j

n

plogppp--plogppp-

ppplogppp-plogp-)H(X

………

……
         (2.21) 

in which:  

∑ ∑ ∑ =∑=∑=

∑ ∑ ∑ =∑=

= = = ==

= = = =

m

1j

m

1j

m

1j

m

1j
j2j2jjjjj2

m

1j
j

m

1j

m

1j

m

1j

m

1j
j2jjjj2j

1 2 m i
iiim21i

i
i

n

1 2 n
in21i

H(S)plogplogp-pppplogp-

plogppp-plogp-

…

……
(2.22) 

Relation (2.21) contains n (2.22) terms, hence: 

nH(X))H(X n =                                         (2.23) 

Example 2.3 
The entropy of the second order extension of a memoryless binary source. 

Be the binary source from Example 2.1 and its X
2
 extension. Applying (2.12) 

for X
2
 we obtain: 

( )
( ) ( ) 2H(X).plogpplogppp-2

plogppplogp2pplogp-)H(X

22212121

2
22

2
221221

2
12

2
1

2

=+⋅+=

=++=
 

2.6   Moments and Moment Rate 

The signals used for carrying the numerical information are composed of time 

elementary signals, called moments. 

The characteristic parameter of any moment (amplitude, frequency, phase), re-

mains constant during the moment duration (TM) and represents the numerical in-

formation carried by that moment. This parameter can take m values. 
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Fig 2.2 shows some examples of information sources emphasizing the moments. 

 

Fig. 2.2 Discrete information sources: a) unipolar binary source (m=2), b) polar binary 

source (m=2), c) quaternary source (m=4). 

The decision quantity corresponding to a moment is: 

D = ld m                                                   (2.24)  

The moment rate 
•

M  (signalling speed / modulation speed / telegraphic speed) 

represents the number of moments transmitted in each time unit. 

MT

1
:M =

•
                                               (2.25) 

The unit for the moment rate is Baud (Bd), named after E. Baudot, the inventor 

of Baudot code for telegraphy.  

Bd]M[ =
•

 

2.7   Information Rate, Decision Rate 

Information rate ( )XH
•

of a source is the average information quantity generated 

by the source in time unit, or the information transmission speed. 

H(X)M
T

H(X)
:(X)H

M

••
==                                          (2.26) 
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and its unit is:  

( ) dbits/seconXH =
•

 

Decision rate (X)D
•

of a source, also known, as bit rate, is the decision quantity 

generated by the source in time unit. 

 m logMD(X)M
T

D(X)
:(X)D 2

M

•••
===                           (2.27) 

Remarks 

• 
•

M expresses the speed changes of the signal physical parameters. As we will 

see in the 2.8, it is directly linked to the required channel bandwidth: 
•

M ∼B. 

• 
••

= MD  only for binary sources (m=2). From (2.25) it can be seen that we can 

obtain the same 
•
D  in two cases: working with a higher 

•
M  and a smaller m 

(high speed, reduced alphabet) or inversely. 

2.8   Discrete Transmission Channels 

2.8.1   Probabilities and Entropies in Discrete Channels 

As shown in 1.1 the transmission channel is the medium (including the equip-

ment) used for transmitting information from the source (transmitter) to the desti-

nation (receiver) (Fig 1.1). 

The channel is discrete if the symbols that are passing through it are discrete. 

A transmission channel is characterized by the followings: 
 

• input (transmission) alphabet: X={xi}, is the set of distinct symbols  transmit-

ted  by the source and which are accepted by the channel; P(X) is the transmis-

sion probability matrix. 

( ) [ ]i

m

1i
i

i

i

pXP

1p ,m1,i ,
p

x
:X

=

∑ ==⎟⎟⎠
⎞⎜⎜⎝

⎛
=                                     (2.28) 

• output(receiving) alphabet: Y={yj}, being the set of all distinct symbols re-

ceived at channel output; one should notice that the two alphabets are not al-

ways identical. 

( ) [ ]j

n

1i
j

j

j

qYP

1q ,n1,j ,
q

y
:Y

=

∑ ==⎟⎟⎠
⎞

⎜⎜⎝
⎛

=                                  (2.29) 
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The probability of receiving the symbol yj is qj=p(yj). P(Y) is the reception 

probability matrix. 

• the transition (noise) matrix of the channel, containing the conditional prob-

abilities: P(Y/X). 

( ) [ ] ∑ =∀==
=

n

1i
j/ij,i m1,i 1,q , qY/XP                               (2.30) 

The element qj/i situated at the intersection of row i and column j, represents the 

reception probability of receiving yj conditioned by the emission of xi: qj/i = 

p(yj/xi). 

The transition matrix is a stochastic matrix, meaning that the sum of the ele-

ments on any row is 1: 

∑ =∀=
=

n

1j
j/i m1,i 1,q                                         (2.31) 

which intuitively represents the certainty in receiving a symbol yj, n1,j =∀ if  xi 

was emitted, m1,i =∀ . 

The matrix P(Y/X) represents the statistical model of the channel and is ob-

tained experimentally. 

Therefore the channel achieves the transition [X]→[Y]: 

P(X)→P(Y/X)→P(Y) 

The graph in Fig 2.3 presents this transition:  

 

Fig. 2.3 Discrete channel: a) graph representation, b) matrix representation 
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If we the source is known by P(X) and the channel by its noise matrix P(Y/X), 

the receiving is found as: 

P(Y) = P(X) P(Y/X)                                          (2.32) 

In the previous relations the matrices P(X), P(Y), P(Y/X) have the dimensions 

as given in (2.28), (2.29), (2.30) respectively. 

One should notice that P(Y) depends on the source through P(X) and on the 

channel through P(Y/X). 

Having received the symbol yj and knowing P(X) and P(Y/X), all the a-

posteriori probabilities of the input symbols conditioned by yj may be computed, 

using Bayes formula: 

( ) j

j/ii

i

iji
i/jji

q

qp

yp

)/x)p(yx(p
p)/yp(x ===                              (2.33) 

All pi/j probabilities will give the conditional probability matrix )/( YXP  

( )
( ) ( ) ( )

( ) ( ) ( )⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
==

nm2m1m

n12111

i/j

/yxp       /yxp  /yxp

/yxp        /yxp   /yxp

][pX/YP

…
#

…
               (2.34) 

Remark 

The matrix P(X/Y) is obtained by calculus, unlike P(Y/X) which is determined 

experimentally and represents the channel model. 

The input (X) and the output (Y) of a channel can be seen as a joint r.v. (XY): 

the joint input–output, described by the joint probability mass function P(XY).  

P(X/Y) can be computed from P(X) and P(Y/X) using the relation: 

( )

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
⋅

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

==

mnm1

ij

1n11

n/m1/m

j/i

n/11/1

m

i

1

p...p

...p...

p...p

q...q

...q...

q...q

p...0

0p0

0...p

P(X)P(Y/X)XYP

           (2.35) 

Remark 

In (2.35), unlike (2.32), P(X) is written as a diagonal matrix. Multiplying the two 

matrices from (2.35), we obtain: 

( ) j/iiijji qppy,xp ==                                         (2.36) 

Using the joint (XY) PMF, we can calculate the PMF of r.v. X and Y as mar-

ginal probabilities, as shown in Fig. 2.3.b. 

∑ =∀=
=

n

1j
iji m1,i  ,pp                                        (2.37) 
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∑ =∀=
=

m

1i
ijj n1,j  ,pq                                           (2.38) 

The five probability matrices used for statistical description of the channel will 

generate the corresponding entropies: 
 

• input entropy: 

( ) ( ) ∑=→
=

m

1i
i2i p logp-XHXP                                   (2.39) 

• output entropy: 

( ) ( ) ∑=→
=

m

1i
i2i q logq-XHXP                                   (2.40) 

• conditional entropy (output conditioned by input) / average error: 

P(Y/X) → H(Y/X) 

• conditional entropy (input conditioned by output) / equivocation: 

P(X/Y) → H(X/Y) 

• joint input – output entropy: 

∑ ∑=→
= =

m

1i

n

1j
ijijldpp-:H(XY)P(XY)                                    (2.41) 

Knowing the received symbols yj, we cannot state that the uncertainty regard-

ing the transmitted symbols was totally eliminated, because of the channel noise. 

Uncertainty still exists even after receiving the yj symbols. The average value of 

this residual uncertainty is denoted by H(X/Y) and signifies the input conditioned 

by output entropy; it is also called equivocation, being a measure of the equivocal 

that still exists regarding the input, when the output is known. 

The information quantity obtained about xi, when yj has been received is, ac-

cording to (2.11): 

i/j2ji p-log)/yi(x =                                        (2.42) 

The average quantity of information obtained about the input, when yj was re-

ceived will be: 

∑ ∑−==
= =

m

1i

m

1i
i/j2i/jjii/jj plogp)/yi(xp)H(X/y  

The average quantity of information obtained about the input X, when we know 

the whole output Y, is: 

( ) ∑ ∑ ∑−==
= = =

n

1j

m

1i

n

1j
i/j2i/jjjj plogpq)X/y(HqX/YH , 
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which, by taking into consideration (2.36) becomes: 

( ) ∑ ∑−=
= =

m

1i

n

1j
i/j2ij plogpX/YH                                       (2.43) 

Knowing the input symbols P(X), we cannot know with certainty the symbols 

that will be received, due to channel noise. It will always be an uncertainty whose 

average value is denoted with H(Y/X) and it represents the output conditioned by 

input entropy; it is also called average error. 

Using a similar reasoning with the one used to deduce (2.43), we obtain: 

( ) ∑ ∑−=
= =

m

1i

n

1j
j/i2ij qlogpY/XH                                        (2.44) 

In the case of a noiseless channel, i.e. no interference or perturbation, the struc-

ture of the noise matrix is: 

( )
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

0      0   0

0      1   0

0      0   1

Y/XP

…
#

…
…

,                                         (2.45) 

having only 0 and 1 as elements; when we transmit the symbol xi we know with 

certainty the received symbol. As a result: 

⎩⎨
⎧

=

=

0H(Y/X)

0H(X/Y)
                                               (2.46) 

For a very noisy channel (independent), no relation can be established between 

transmission and receiver, these being independent: 

⎪⎩
⎪⎨⎧

=

=

jj/i

ii/j

qq

pp
                                               (2.47) 

It follows that: 

⎩⎨
⎧

=

=

H(Y)H(Y/X)

H(X)H(X/Y)
                                         (2.48) 

For a real channel, when the noise exists, but is not so high, the entropies will 

have values between the two extreme limits: 

⎩⎨
⎧

≤≤

≤≤

H(Y)H(Y/X)0

H(X)H(X/Y)0
                                     (2.49)  
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2.8.2   Mutual Information and Transinformation 

Mutual information between xi and yj, denoted with i(xi;yj), represents the non-

determination that remains about the transmission of xi after receiving yj. 

)/yx(i)x(i:)y;i(x jiiji −=                                      (2.50) 

The a priori non-determination about the transmission of xi is i(xi). The receiv-

ing of yi removes part of this non-determination: i(xi/yj), the difference, given by 

the (2.50), being the mutual information. 

Replacing in (2.50) the corresponding expressions of i(xi), respectively i(xi/yj),  

and taking into consideration (2.33), we obtain: 

ji

ij
2

i

i/j
2i/j2i2ji

qp

p
log

p

p
logplogplog)y;x(i ==+−=                (2.51) 

The mutual information between xi and yj is reciprocal: 

)x;i(y)y;i(x ijji =                                          (2.52) 

We invite the reader, as an exercise, to demonstrate the relation (2.52). 

The average value of the mutual information is called transinformation and it is 

denoted with I(X;Y); it represents the useful average quantity of information 

transmitted through the channel: 

( ) ∑ ∑=
= =

m

1i

n

1j ji

ij
2ij

qp

p
logpYX;I                                  (2.53) 

Remark 

Even though i(xi;yj) can be negative, I(X;Y) is always positive (I(X;Y)≥0). 

2.8.3   Relationships between Entropies 

Relation (2.41) is: 

∑ ∑=
= =

m

1i

n

1j
ij2ij plogp-H(XY)  

Using (2.36) and (2.41), we obtain: 

∑ ∑ ∑=
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Consequently, we obtain the following relation: 

H(XY)=H(X)+H(Y/X)                                     (2.54) 

Using a similar procedure, we obtain the result: 

H(XY)=H(Y)+H(X/Y)                                       (2.55) 

Remark 

The reader is invited to demonstrate the following relations (2.55), (2.57), (2.58). 

From (2.53) we obtain: 

( ) ∑ ∑ ∑ ∑ ⎟⎟⎠
⎞⎜⎜⎝

⎛ ∑−⎟⎟⎠
⎞

⎜⎜⎝
⎛ ∑−=

= = = = ==

m

1i

n

1j

m

1i

n

1j
j2

m

1i
iji2

n

1j
ijij2ij qlogpplogpplogpYX;I    

I(X;Y)=H(X)+H(Y)-H(X,Y)                                (2.56) 

I(X;Y)=H(X)-H(X/Y)                                     (2.57) 

I(X;Y)=H(Y)-H(Y/X)                                     (2.58) 

The relationships established between different entropies have particular ex-

pressions for distinct types of channel: 
 

• Noiseless channel; from (2.46) and (2.57) we obtain: 

I(X;Y)=H(X)=H(Y)                                        (2.59) 

• Independent channel; from (2.48), (2.55), (2.57), (2.58) we get: 

H(X,Y)=H(X)+H(Y)                                      (2.60) 

I(X;Y)=0                                              (2.61) 

The relationships between entropies can be graphically represented using 

Venns diagram: 

We associate to the input r.v. X, the set A and to the output r.v. Y, the set B. 

We define the measure of the two sets: m(A); respectively  m(B) as the area of 

these sets. Now we make the following correspondences: 

 

• ( ) ( )XHAm →  

• ( ) ( )YHBm →  

• ( ) ( )XYHBAm →∪  

• H(X/Y))Bm(A →∩  

• ( ) ( )Y/XHBAm →∩  

• ( ) ( )YX,IBAm →∩  

 

which are given in Fig. 2.4. 
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Fig. 2.4 Graphical representation of the relationships between entropies: a) ordinary chan-

nel, b) noiseless channel, c) independent channel 

2.8.4   Channel Capacity Using the Noise Matrix 

In order to find a measure of efficiency in transmitting the information through a 

channel, Cl.E. Shannon introduced the concept of channel capacity, C: 

( ) [ ]lbits/symbo  YX;ImaxC
ioi pp →

=                                  (2.62) 

The maximum value of the transinformation is obtained for a certain set of 

probabilities [pi0] that defines a secondary source, which will be the channel input. 

Therefore, in order to transmit the maximum transinformation (which is, in fact 

the channel capacity) through the channel, it is compulsory that the primary source 

be transformed (through encoding) into a secondary source according to the opti-

mal PMF: [pi0]; which maximize (2.62). The entire process is called statistical ad-

aptation of the source to the channel.   

The maximum transinformation rate that can be transmitted through the  

channel is: 

[ ]bits/s  ;
T

C
C

M
t =                                          (2.63) 

Remark 

In many cases the channel capacity has the meaning of maximum information rate 

that can be transmitted through the channel (Ct → C). 

 

 



24 2   Statistical and Informational Model of an ITS 

 

Channel redundancy and efficiency 
 

By analogy with source redundancy and efficiency we can define the followings: 
 

• channel redundancy, which expresses the deviation of the transinformation 

from its maximum value, in relative or absolute value: 

• channel absolute redundancy, Rc: 

( )YX;IC:R C −=                                            (2.64) 

• channel relative redundancy, ρc: 

( )
C

YX;I
1:ρC −=                                             (2.65) 

• channel efficiency, ηc: 

( )
C

YX;I
:ηC =                                             (2.66) 

 

Binary symmetric channel (BSC) capacity 
 

A binary symmetric channel, BSC, is a channel for which the error probability p is 

the same for each symbol. As a result, the noise matrix has the following structure: 

( ) ⎥⎦
⎤⎢⎣

⎡
−

−
=

p1        p

p    p1
Y/XPBSC                                    (2.67) 

The capacity of a BSC can be computed starting from (2.62); expressing I(X;Y) 

by (2.58), we get: 

( ) ( )[ ]Y/XHYHmaxC
ip

−=                                    (2.68) 

Considering a binary source as input: 

1pp  ,
p    p

    xx
:X 21

21

21 =+⎟⎟⎠
⎞⎜⎜⎝

⎛
       

we compute H(Y/X) using (2.44), where the elements pij are calculated using 

(2.35): 

⎥⎦
⎤⎢⎣

⎡
−

−
=⎥⎦

⎤⎢⎣
⎡ −⎥⎦
⎤⎢⎣

⎡
==

p)(1p              pp

pp       p)(1p

p-1        p

p   p1

p    0

0  p
P(X)P(Y/X)P(XY)

22

11

2

1
    (2.69) 

and we obtain: 

( )
[ ]
[ ] )p1(log)p1(pplog)pp(pplog)p1(p)log1(

)p1(p)log1(ppplogppplogp)p1(p)log1(p

Y/XH

222122

22222121

−−−−=++−−−=

=−−+++−−−=

=

   (2.70) 
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One may notice that, for a BSC, the average error, H(Y/X), does not depend on 

the source, P(X), but only on channel noise matrix P(Y/X). 

Replacing H(Y/X) with (2.70) in (2.68) we get: 

( ) ( ) ( )p1logp1pplogYHmaxC 22
p

BSC
i

−−++=                 (2.68.a) 

The maximum value for H(Y) is obtained if all the received symbols have equal 

probabilities: q1=q2=1/2. These values are obtained as marginal probabilities from 

(2.69) as follows: 

( )

( )
2

1
p1pppq

2

1
ppp1pq

212

211

=−+=

=+−=

 

gives p1=p2=1/2. It means that the maximum value of the transinformation is ob-

tained when the symbols are used with equal probabilities and: 

ol][bits/symb   p)(1p)log(1pplog1C 22BCS −−++=                 (2.71) 

 

Symmetric channel capacity 
 

Symmetric channel is a channel that is symmetric at the input as well at the output. 

The noise matrix is as follows: 

( ) m1,j  ,m1,i   ,]q[Y/XP j/i ===  

where: 

⎪⎩
⎪⎨
⎧

≠

=−

==
ji   ,

1-m

p

ji    p,1

)/xy(pq ijj/i                              (2.72) 

Using (2.62) we have: 

( ) ( )   
1-m

p
log pp-1logp1m logC 222SC +−+=                      (2.73) 

The reader is invited to demonstrate the relation. 

 
Binary erasure channel (BEC) capacity 

 

A BEC is a binary channel symmetric at the input, but asymmetric at the output. 

The graph corresponding to such a channel is shown in Fig. 2.5. When y3 is re-

ceived, the input signal can be 0 or 1 with the same probability. 
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0=1x

1=2x

0=1y

1=2y

3y

 

Fig. 2.5 The graph corresponding to a binary erasure channel 

The noise matrix is: 

⎥⎦
⎤⎢⎣

⎡
−−

−−
=

q       qp1               p

q             p        qp1
(Y/X)PBEC                            (2.74) 

Using (2.62) the reader is invited to demonstrate: 

pplogq)p(1q)logp(1q)](1logq)[1(1C 222BEC +−−−−+−−−=        (2.75) 

Remark 

The errors that occur in memoryless channels are independent errors, caused by 

thermal noise. The formulae of error distribution are very complex and difficult to 

be computed; however, these formulae can be obtained by modelling the experi-

mental results [1], [14]. 

For a BSC, with given p, the binomial law [9], [24] allows to calculate the 

probability of having t independent errors in an n length word: 

( ) ( ) tntt
n p1pCtP

−−=                                           (2.76) 

The probability of occurrence of t and less then t errors is given by: 

( ) ( ) ( )∑ ∑ −==≤
= =

−t

0e

t

0e

enee
n p1pCepteP                            (2.77) 

 

Example 2.4 

The symbols 0 and 1 are emitted at the input of a binary transmission channel. Sta-

tistical measurements show that, because of channel noise, both symbols are 10% 

erroneous, the process being time invariant. Knowing that the symbols 0 and 1 are 

transmitted in a ratio of 3/7, the transmission of a symbol is independent of the 

previously transmitted symbols and that 1000 symbols per second are being emit-

ted (the duration of each symbol is the same), find: 
 

a) the statistical characterization of the transmission system 

b) the quantity of information obtained when 0 is emitted and the source aver-

age quantity of information  
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c) source redundancy and efficiency 

d) rate of useful information transmitted through the channel 

e) channel efficiency. 

 

Solution 

The source and the receiver are modelled by the discrete r.v. X and Y, respec-

tively, described by the following PMFs: 

 1qq   ,
q    q

y   y
:Y   1,pp   ,

p   p

   xx
:X

2
1

21

21
21

21

21 =+⎟⎟⎠
⎞⎜⎜⎝

⎛
=+⎟⎟⎠

⎞⎜⎜⎝
⎛

 

where x1 and x2 are the emission of  0 and 1 respectively, and p1 and p2 their cor-

responding emission probabilities. In the same way, y1 and y2 are the received 0 

and 1 and q1, q2 the corresponding probabilities at receiver. 

The modelling of the transmission channel is accomplished after computing the 

transition (noise) matrix ( ) [ ]j/iqY/XP = . The graphical representation of this 

transmission system is given in Fig 2.6. 

( )1

2x

( )0

1x

( )1

2y

( )0

1y

2/2q

1/1q

2/1q1/2q

 

Fig. 2.6 Graphical representation of a binary transmission system  

From the problem hypothesis we have: 

⎪⎩
⎪⎨
⎧

=+

=

1pp

7

3

p

p

21

2

1

 

It follows: [ ]0,70,3P(X) =  

The given data of the problem indicate a transmission error of 10 % for both 

symbols  ( )0.1qq 1/22/1 == and subsequently a correct transmission in 90% of the 

cases: 0.9qq 2/21/1 == . The transition (noise) matrix of the channel will be: 

⎥⎦
⎤⎢⎣

⎡
=

0,90,1

0,10,9
P(Y/X)  
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Notice that P(Y/X) is a stochastic matrix (the sum on each line is 1), which in 

practice means that if a symbol xi is emitted, a symbol yj is received, correct or er-

roneous. We can easily recognize the binary symmetric type of channel with 

p=0,1.  

Knowing the source through P(X) and the channel through P(Y/X) we can eas-

ily calculate all the other PMFs. 

Using (2.35) we obtain the joint probability matrix: 

⎥⎦
⎤⎢⎣

⎡
=⎥⎦

⎤⎢⎣
⎡⎥⎦
⎤⎢⎣

⎡
==

0,63   0,07

0,03   0,27

0,9     0,1

0,1    9,0

0,7      0

0   3,0
P(Y/X)P(X)P(XY)  

We invite the reader to check the calculus, calculating as marginal probabilities 

P(X). 

The received PMF can be calculated, according to (2.38), by summation on 

columns: [ ]0,660,34P(Y) = . 

 

Remark 

P(Y) can be calculated also using (2.32), as follows: 

( ) ( ) ( ) [ ] [ ]0,66   0,34
0,9   0,1

0,1   0,9
0,7  0,3Y/XPXPYP =⎥⎦

⎤⎢⎣
⎡

⋅==  

In order to find the matrix P(X/Y), we use (2.33) to obtain pi/j elements. It  

results:  

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

0,66

0,63

0,34

0,07

0,66

0,03

0,34

0,27

P(X/Y)  

It may be noticed that P(X/Y), unlike P(Y/X), is not a stochastic matrix. It was 

obtained through calculus and not experimentally, like P(Y/X).  

Using (2.11) (the definition of the self information), we have: 

1,737bitsplog)x(i 121 =−=  

The source average quantity of information defines its entropy and is computed 

using (2.12):  

( ) ( )∑ =+−=−=
=

2

1i
22i2i lbits/symbo  0,880,70,7log0,30,3logplogpXH  

c) Using the definitions, we have: 

• source absolute redundancy: 

( ) ( ) ( ) lbits/symbo 0,120,881XHldmXHXDR x =−=−=−=  

• source relative redundancy : 

( )
12%or     0,12

XD

R
ρ X

X ==  
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• source efficiency: 

( )
( )

88%or    0,88
XD

XHηx ==  

d) The transinformation rate through the channel is: 

( ) ( )YX;IMYX;I
••

=  

where 
•

M  = 10
3
 symbols/second = 10

3
 Bd. 

The transinformation can be calculated using (2.53) or the relationships be-

tween entropies, the last one being used as follows: 

I(X;Y)=H(Y)-H(Y/X) 

The binary channel is symmetric, so we have the following equations: 

H(Y/X)=-pldp-(1-p)ld(1-p),      

hence 
 

I(X;Y)=-(0,34ld0,34+0,66ld0,66)+0,1ld0,1+0,9ld0,9 =  

= 0,456 bits/symbol 

( ) bits/sec   4560,45610YX;I 3 =⋅=
•

 

e)  

( )
86%or     0,86

0,531

0,456

0,4691

0,456

C

YX;IηC ≈=
−

==  

The maximum efficiency 1ηC = , corresponding to a transformation that equals 

the channel capacity, can be obtained only when the source X is equally probable, 

which means (for the given system) that a source processing (encoding) must be 

performed before the transmission. 

 

Example 2.5 

Two binary symmetric channels given by  p1=10
-1

 and p2=10
-2

 are cascaded. Find 

the: 
 

a) equivalent noise matrix of the cascade 

b) equivalent channel capacity 

 

Solution 
 

a) The noise matrices of two BSC are: 

⎥⎦
⎤⎢⎣

⎡
−

−
=⎥⎦

⎤⎢⎣
⎡

−

−
=

22

22

11

11

p1         p

p       p1
P(W/Z)    ,

p1         p

p    p1
P(Y/X)  
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The equivalent noise matrix of the cascade is 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )⎥⎦

⎤⎢⎣
⎡

−⋅−+−+−

−+−+−⋅−
=

=⎥⎦
⎤⎢⎣

⎡
−

−
⋅⎥⎦
⎤⎢⎣

⎡
−

−
=⋅=

21211221

21122121

22

22

11

11

p1p1pp    p1pp1p

p1pp1p    ppp1p1

p1         p

p     p1

p1        p

p     p1
P(W/Z)P(Y/X)P(W/X)

  

It follows that:  

( ) ( ) ( )

⎩⎨
⎧

−+==

++−=−⋅−+==

21212/11/2

212121212/21/1

p2pppqq

p2ppp1p1p1ppqq
 

meaning that the equivalent channel is BSC too, with   

pech=q2/1=q1/2=p1+p2-2p1p2 

The quality of the equivalent channel is worst than the worst channels in the 

cascade: 

pech=p1+p2-2p1p2≈p1+p2=10
-1

+10
-2 

b)   

 

symboly bits/binar  0,49740,19960,35031       

0,890,89log0,110,11log1       

)p1(log)p1(plogp1C

22

ech2echech2echech

=−−=

=++=

=−−++=

 

2.8.5   Shannon Capacity 

Capacity of a transmission channel, modelled by P(Y/X) – the noise matrix, was 

defined in 2.8.4. In most practical cases the noise matrix is not known, the channel 

being specified by some parameters which can be measured experimentally much 

easier, like the bandwidth (B) and the signal/noise ratio (SNR - ξ). 

Theoretically it is possible to transmit any quantity of information on a channel. 

The maximum information rate that can be transmitted in real time is limited, and 

this limit defines the channel capacity. This limitation is determined by channel 

characteristics and it stands in both digital and analogue transmissions. We will 

compute channel capacity (without trying to impose it as a demonstration) for digital 

systems, as they are the most used [6]; as a matter of fact, the analogue information 

can be considered a limit case of the digital information (må∞) [32], [9]. 

At channel input we consider a discrete source described by: 

• decision rate: 
•
D  [bits/s], therefore the source is assumed to be equally probable 

(in practice this is obtained after encoding) 

• moment rate: 
•

M [Bd], which shows how fast the carrier signal varies. 

• source alphabet, formed by m specific states of a moment (these can be levels, 

frequencies or phases). 
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As previously shown in 2.7, these three parameters are linked by: 

mlogMD 2

••
=                                                 (2.27) 

In real cases the receiver should be able to distinguish, in the presence of noise, 

two successive moments for which the characteristic parameter takes, in the worst 

case, two consecutive values from the m possible. 

In order to be able to transmit a decision rate
•
D , the channel must provide: 

 

• a time resolution, meaning it should allow the signals characteristic parameter 

to vary from one moment to another, or during one moment. 

• an amplitude resolution, such as the m possible values of the characteristic pa-

rameter may be distinguished even in the presence of noise. 

Figure 2.7 shows a graphical illustration of these two requirements: 
 

 
Fig. 2.7 Illustration of time and amplitude resolutions  

Time resolution 
 

Any real transmission channel contains reactance that oppose to fast signal varia-

tions, leading to an inertial behaviour of the channel. This phenomenon exists both 

in frequency and in time. 

In frequency: channel attenuation is a function of frequency, channel behaving 

as low-pass filter (LPF). 

In time: channel unit-step signal response has a finite slope defined by the rise 

time (tr) [15], [27]. When talking about real and ideal channels, the following em-

pirical relation stands between tr and B:   

0,450,35Bt c ÷≅                                        (2.78) 
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which shows that for a channel of bandwidth B, the parameters cannot vary at any 

speed, being limited by tr. Therefore the moment duration 
•

= M/1TM is also lim-

ited by tr: 

B~M
B

0,4
~

M

1
t~T rM

•

•
⇒⇒                                    (2.79) 

In 1928, H. Nyquist has proved the required relation between
•

M and B in order 

to achieve a time resolution (no inter-symbol interference) 

filter, idealan for  2B,Mmax =
•

                                  (2.80) 

known in literature as the Nyquist theorem [20], [23]. 

For real channels, which are not ideal low-pass filters we have: 

rM 2tT ≅                                                    (2.81) 

From (2.78) we get tc = 0.4/B and (2.81) becomes: 

B

0.8
TM = , and for real channels, we have: 

B1.25M max ⋅=
•

                                            (2.80a) 

 

Amplitude resolution 
 

Besides channel inertia that gives its low-pass filter behaviour, the noise on the 

channel added to the transmitted symbols, deteriorates the detection of the m val-

ues corresponding to a moment.  

The signal power PS being limited, it is impossible to recognize an infinity of 

different values of m in the presence of noise (the noise power is PN). 

In 1948, Shannon demonstrated that the theoretical limit for m in the presence 

of additive white Gaussian noise (AWGN), is: 

ξ1
P

PP
m

N

NS
max +=

+
=                                    (2.82) 

where NS /PPξ =  is the signal/noise (SNR). 
 

Channel capacity 
 

Channel capacity is defined as the maximum decision rate that can be error free 

transmitted through that channel, assumed an ideal Low Pass Filter (LPF) with 

bandwidth B: 

( ) ( )ξ1logBξ1log2BmlogMD:C 22max2maxmax +⋅=+⋅===
••

        (2.83) 

and is known as Shannon capacity formula (Shannon 3rd theorem). 
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Remark 

If SNR( ξ ) is given in dB: 

[ ] 10lgξξ dB =  

the relation (2.83) becomes: 

[ ]dBBξ
3

1
C ≅                                             (2.83.a) 

Shannon capacity formula (2.83), given by Shannon in 1948, shows the theo-

retical limit of the maximum information rate through the channel in error free 

transmission.  

Despite the relation (2.83) is a theoretical limit, impossible to be reached in real 

transmissions, it is remarkably useful in applications, allowing a comparison and 

an evaluation of different transmission systems. 

Fig. 2.8 shows the graphical representation of this equation. 

 

Fig. 2.8 Graphical representation of channel capacity 

Interpretations of Shannon capacity formula 

 
1) C~B and C~log2(1+ ξ) , which means that reducing the bandwidth and keep-

ing C constant, ξ must be seriously improved, given the logarithmic dependence 

between C and ξ.  
2) Given the proportionality between capacity and bandwidth, the following 

question arises: is it possible to increase the capacity to infinity based on the in-

creasing of bandwidth? The answer is negative, the reason being obvious: increas-

ing the bandwidth, the noise power PN, increases too, causing a decrease of 

SNR( ξ ), for constant PS. The proof is immediate: the calculations is made under 

the assumption of AWGN with spectral density power N0 constant: 

( ) ctln2
N

P

BN

P
1BloglimC

0

S

0

S
2

B
==+=

∞→
∞                        (2.84) 
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Fig. 2.9 Bandwidth - capacity dependency 

Therefore, increasing the capacity beyond a certain limit is not rational, the cor-

responding capacity gain being very low (Fig 2.9). 

3) The formula (2.83), under the assumption of AWGN can be written as: 

⎟⎟⎠
⎞⎜⎜⎝

⎛
+⋅=

0

S
2

BN

P
1logBC  

If the power of the signal is expressed as: 

M

b
S

T

E
P =  

where Eb is the average value of the bit energy and we assume 

• binary transmission  (m=2): 
••

=⇒ MD  

• transmission at capacity (ideal transmission ) : CD =⇒ •
, the former formula 

becomes : 

B

C

12

N

E
or   

N

E

B

 C
1log

B

C B

C

0

b

0

b
2

−
=⎟⎟⎠

⎞⎜⎜⎝
⎛

⋅+=  

At limit Bå∞, it gives :  

0,693ln2

B

C

12
lim

N

E
lim

B

C

B0

b

B
==

−
=

∞→∞→
. 

If expressed in dB, we obtain : 

-1,6dB-1,59dB
N

E
lim

0

b

B
≅=

∞→
                                  (2.85) 
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known as Shannon limit for an AWGN and gives the minimum required 
0

b

N

E
 ratio 

for error- free transmission 

The ratio: 

B

Dη
•

=  [bits/sec/Hz]                                        (2.86) 

is defined as spectral efficiency (bandwidth efficiency) [34]. 
 

Interpretations of Shannon limit 

• it is a theoretical limit ( CD =
•

), showing that for infinite bandwidth ( ∞→B ), 

the ratio  
0

b

N

E
approaches the limit of -1,6 dB (in this case ln2

N

P
CC

0

S== ∞  ) 

• the capacity boundary [9], defined by the curve for the critical bit rate CD =
•

, 

separates combinations of system parameters that have the possibility for sup-

porting real-time error-free transmissions ( CD <
•

), from those for which real-

time error-free transmissions are impossible ( CD >
•

). 

η

][
0

dB
N

Eb

 
Fig. 2.10 Bandwidth-efficiency diagram  
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Remark 

Turbo codes, invented in 1993 [3], with iterative decoding have almost closed the 

gap between capacity limit and real code performances. They get BER=10
-5

 at 

dB 0,7
N

E

0

b =  with spectral efficiency of 0,5 bit/second/Hz [34]. 

4) The same capacity can be obtained using different values for ξ and B: we can 

use a narrow bandwidth B1 and a channel with a very good SNR ξ1 (this case cor-

responds to system 1 shown in Fig. 2.8); a noisy channel with a small ξ2 requires a 

wider bandwidth B2 (system 2, Fig. 2.8) to provide the same capacity. 

5) Relation (2.83) gives a theoretical limit of the maximum transmissible deci-

sion rate. On real channels: CD realmax <
•

. This limit is not obtained automati-

cally; it can be obtained by processing the source before transmission, that is, by 

matching the source to the channel (described by B and ξ) through coding and 

modulation. 

 

A suggestive graphical representation of the relations between the information 

source and the channel is provided in Fig. 2.11 [6]. 

If CD >
•

, a real time transmission is no longer possible; in this case the same 

decision quantity TDD ⋅=
•

 can be transmitted using an initial processing; the de-

cision quantity D is stored in a memory and then transmitted through a compatible 

channel ( CD ≤
•

). It is obvious that the transmission time T increases, the trans-

mission not being performed in real time. In practice this situation occurs when 

images are transmitted by space probes and the channel capacity is much smaller 

compared to the source information rate. 

 

 

Fig. 2.11 Graphical representation of the relations between the information source and the 

channel 
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Table 2.2 Illustration of time and amplitude resolution requirements  

Time resolution Moment rate                             Bandwidth 

MT

1
M =
•

           B2M ≤
•

              B

Amplitude resolution m values/moment              Signal/noise ratio 

( )1logldm2

P

P
1m

2

N

S

+≤

=+≤

  Decision rate                               Capacity 

( )1logBCCDmlogMD 22 +=≤=
•••

 

 
Example 2.6 [21] 

A black-and-white still image (a picture) is decomposed into 5104.8n ⋅=  ele-

ments (pixels). Experiments have shown that if 100 levels quantify the brightness 

intensity of each pixel, the reconstructed image seems natural. The 100 levels of 

grey are assumed to be equally probable. Find the: 
 

a) average quantity of information supplied by one pixel and that of the whole  

image. 

b) minimum value of the required signal/noise ratio, and the transmission time for  

one picture on a voice channel with bandwidth (300 -  3400 )Hz . 

c) transmission time compared to b) if the transmission line has the same ξ but a 

double bandwidth. 

d) minimum bandwidth necessary for transmitting a dynamic image (video), 

knowing that 25 images/s (
•

M ) are needed by the human visual system in order 

to obtain a  moving image sensation; is it possible such a transmission on the 

voice channel used at point b)? 

 

Solution 

a) the information corresponding to one pixel is contained in its brightness; the 

100 levels being equally probable, the average information quantity for a pixel is 

maximum and using (2.13): 

Dpixel = log2 m = log2 100 = 6,64 bits/element (pixel) 

The average quantity of information of the entire image is: 

Dimage = n Dpixel = 4,8 ·10
5
 ·6,64 = 3,2 Mb 

b) for the amplitude resolution, from (2.82) we have: 

40dB10lgξξ  :dBin or   ,10ξξ1m dB
4 ==≅⇒+=  
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Assuming that the transmission is made at channel full capacity, from (2.83a) 

we get: 

[ ]dBb
b

b ξB
3

1

T

D
DC ===
•

 

where Tb represents the transmission time and 3
b 103,13003400B ⋅=−=  Hz the 

bandwidth of the telephone line. From (2.83a) we obtain: 

77s
40103,1

103,23

Bξ
3D

T
3

6

[dB]
b ≅

⋅⋅

⋅⋅
==  

c) from (2.83), replacing B with 2B, we get: 

Tc = Tb / 2 = 38,5 s. 

d) decision rate corresponding to a dynamic image (video) is: 

Mb/s80103,225DMD 6
d =⋅⋅=⋅=

•••
 

Assuming that the channel is used at full capacity, this rate becomes: 

[dB]ddd ξB
3

1
CD ==

•
 

giving: 

[ ]
MHz6

40

10803

ξ
D3

B
6

dB

d
d =

⋅⋅
==

•

 

Capacity of the telephone channel from point b) is: 

41kb/s40103,1
3

1ξB
3

1
C

3
[dB]bb ≅⋅⋅⋅==     

whereas: 

41kb/sC80Mb/sD bd =>=
•

, 

therefore, the real-time transmission is not possible. 

2.9   Memory Sources (Markov Sources) 

Taking into account the definition given in 2.1 we may say that most of the real 

information sources such as voice signals, TV signals a. s. o. are not memoryless 

sources. For all these sources the emission of a symbol depends on one or more 

previously emitted symbols. 

A source is an m-order memory source, if the generation of the (m+1) order 

symbol depends on the previously m generated symbols. 

The mathematical theory of memory sources is Markov chains theory [11], 

[20], [23], [24]. 
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2.9.1   Finite and Homogeneous Markov Chains  

Only few mathematical concepts share potentialities comparable to those offered 

by the concept of markovian dependency. Some fields where this theory has been 

applied are listed below: 
 

• biology  

• medicine  

• demography 

• meteorology 

• economy  

• reliability studies 

• research on pollution 

• marketing 

• financial transactions 

• pattern recognition theories 

• natural language modelling  

 

Brief historical overview 
 

The concept of markovian dependency appears explicitly for the first time in 1906 

in one of A. Markov papers, a Russian mathematician. He studied sequences of 

dependent variables that are named, in his memory, Markov chains. Markov him-

self studied the succession of vowels and consonants in Pushkin’s novel “Evgeni 

Onegin” and reached the conclusion that this succession may be seen as a two 

state, homogenous dependent chain. 

Nowadays there are an enormous number of papers that deal with Markov 

chains. It is necessary to emphasize the significant contribution brought to the the-

ory of finite Markov chains and its generalization by the godfathers of the Roma-

nian school of statistics and probability: academicians Octav Onicescu and Gheor-

ghe Mihoc. They initiated the research of generalizing the concepts of markovian 

dependency. 

Be a system (source) S with a finite alphabet { }M21 s,,s,sS "= . The genera-

tion of a symbol is dependent of the m previous symbols. This source can be mod-

elled by a dependent random variable X(n), with values in S, where n indicates the 

time moment. Time evolution of the source is known statistically as: 

)sn)(X,,sX(i),,s0)(X(P kji === ……  

We call a finite and homogenous Markov chain a sequence of dependent r.v. 

X(n) with the following properties:     

==−==

==−=−=

)s1)/X(nsX(n)(P

)sX(1),,s2)X(n,s1)/X(nsX(n)(P

ij

pkij …

              

(2.87.a) 

n,p)/sP(s                    j/iij ∀==                                      (2.87.b) 



40 2   Statistical and Informational Model of an ITS 

 

Relation (2.87.a) defines the Markov property, revealing the one-step memory, 

meaning that the entire source history is contained in its most recent memory. 

Relation (2.87.b) indicates the homogeneity, that is, transitions from one state to 

another are not time dependent. 

All conditional probabilities j/iij p)/sp(s =  generate the transition probability 

matrix (Markov matrix) as: 

⎥⎥
⎥⎥
⎦

⎤

⎢⎢
⎢⎢
⎣

⎡
==

M/Mj/M1/M

j/i

M/1j/11/1

ij

ppp

  p    

ppp

M)/sP(s

……

…………

……

                               (2.88) 

Markov matrix is a stochastic, squared matrix: 

∑ =∀=
=

M

1j
j/i M1,i  1,p                                           (2.89) 

For a Markov source we may also know the initial PMF (probabilities at zero 

moment): 

[ ] ∑ ===
=

M

1i
i

(0)
i

(0)
1p  and  ,M1,i  , pP                               (2.90) 

A Markov chain can be illustrated by a graph made up of nodes, that represent 

the states, and arrows, that connect the nodes, representing transition probabilities. 

 

Fig. 2.12 The graph corresponding to a Markov chain with two states  

 

Transition probabilities 
 

The probability of transitioning from the state si to the state sj in m steps is given 

by 

n  ,)sn)(/Xsm)n(p(Xp ij
(m)
j/i

∀==+=                          (2.91) 

One may notice that the homogeneity also extends to the m-step transition. 

Let us consider two states si and sj that can be reached in two steps m=2 on the 

links shown in Fig. 2.13. 
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Fig. 2.13 Transition from si to sj in two steps 

For the way shown in Fig. 2.13, the transition probability from si to sj in two 

steps is given by: 

j/kk/i
(2)
j/i

ppp ⋅=                                             (2.92) 

The transition probability from si to sj in two steps on any way is given by: 

∑ ⋅=
=

M

1k
j/kk/i

(2)
j/i

ppp                                       (2.93.a) 

We must notice that 
(2)
j/i

p  are the elements of the second order power of the 

transition matrix M: 

2(2) MP =                                              (2.93.b) 

By induction it can be demonstrated that: 

∑ ∈∀∈∀⋅=
=

+ M

1k

(m)
j/k

(n)
k/i

m)(n
j/i

Sji,  N,mn,  ,ppp                     (2.94.a) 

Remark 

These equations are known as Chapman-Kolmogorov relations and can be written 

as follows: 

mnm)(n MMP ⋅=+
                                       (2.94.b) 

Markov chain evolution  
 

Given a Markov chain by the initial PMF, P
(0)

 and the transition matrix M, the 

probability of the system to pass to a certain state in n steps starting from the ini-

tial state is: 

n(0)(n) MPP ⋅=                                            (2.95) 

 

Markov chains classification 
 

A Markov chain is called regular if there is an n0∈N (natural set) such that 

on
M is a regular matrix (all its elements are strictly positive). 
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A Markov chain is called stationary if the n-step transition probabilities con-

verge, when ∞→n , towards limits independent of the initial state. 

( ) *
j

n

ijn
pplim =

∞→
                                              (2.96) 

pj
*
 indicates that the starting state is of no importance. The stationary state PMF is: 

[ ] ∑ ===
=

M

1j

*
j

*
j

*
1p  ;M1,j   ,pP                                      (2.97) 

and represents 

Π

P

P

MP

*

*

n(n) =

⎥⎥
⎥⎥
⎦

⎤

⎢⎢
⎢⎢
⎣

⎡
== #                                          (2.98) 

Relation (2.98) indicates that we obtained a matrix having all the rows identical 

with the PMF of the stationary state. 

We compute this stationary state by solving the following system: 

⎪⎩
⎪⎨
⎧
∑ =

=

=

M

j
j

M

p

PMP

1

*

**

1
                                              (2.99) 

In [11], [24] is demonstrated that: 
 

• for a stationary Markov chain, the stationary state PMF is unique. 

• a regular Markov chain accepts a stationary state. 
 

A Markov chain is called absorbent if it has at least an absorbent state for 

which 1p i/i = . In [11] is demonstrated that an absorbent chain is not regular. 

 

Fig. 2.14 Absorbent Markov chain 
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The transition matrix for the chain shown in Fig. 2.14 is: 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

0  0.5  0.5     0

0.5   0    0   0,5

0    0    1      0

0    0    0      1

M  

We must notice that s1 and s2 are absorbent states meaning that if the system 

reaches one of these states it “hangs” on to it. 
 

Example 2.7 

One classical example of using Markov chains is weather forecasting. In meteoro-

logical stations the weather is observed and classified daily at the same hour, as 

follows: 
 

s1= S (sun) 

s2= C (clouds) 

s3= R (rain) 
 

Based on daily measurements, meteorologists computed the transition probabil-

ity matrix: 

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

0,6  0,2  0,2

0,3  0,4  0,3

0,2  0,2  0,6

M  

Some questions raised:  

• knowing that today is a sunny day, what is the probability that the forecast for 

the next seven days is: s1 s1 s2 s1 s2 s3 s1? 

The answer is: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
4-

312312211211111

102,5920,20,30,20,30,20,60,61

/ssp/ssp/ssp/ssp/ssp/ssp/sspsp

⋅=⋅⋅⋅⋅⋅⋅⋅=

=⋅⋅⋅⋅⋅⋅
 

• what is the probability that the weather becomes and remains sunny for three days, 

knowing that the previous day it had rained? 

( ) ( ) ( ) ( ) ( )[ ]

( ) 2

111111313

102,880,610,60,60,21

/ssp1/ssp/ssp/sspsp

−⋅=−⋅⋅⋅⋅=

=−⋅⋅⋅⋅
 

2.9.2   Entropy of m-th Order Markov Source 

Consider a source having a finite alphabet: A= {a1…aM} and assume that the oc-

currence of the (m+1)th symbol depends on the previously m: imi2i1j aa/aa … . 

We denote the sequence imi2i1 aaa …  by ( )iimi2i1i saaa  s =… . The total 

number of different sequences that can be created using an M size alphabet is M
m
, 

so 
m

M1,i = . 
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The quantity of information obtained at the emission of aj conditioned by the 

sequence si, is: 

)/sa(plog)/sa(i ij2ij −=                                     (2.100) 

The average quantity of information obtained at the emission of any aj condi-

tioned by si will be the conditional entropy: 

( ) ∑−=
=

M

1j
ij2iji )/sa(p)log/sp(aA/sH                                 (2.101) 

The average quantity of information obtained at the emission of any symbol aj 

conditioned by any sequence si of m-symbols, represents the entropy of m-step 

memory source 

∑ ∑=

∑ ∑ ∑ ===

= =

= = =

m

m m

M

1i

M

1j
ij2ji

M

1i

M

1i

M

1j
ij2ijiiim

)/sp(a)logp(s-

)/sp(a)log/s)p(ap(s-))H(A/sp(s(A)H

       (2.102) 

where   
i

jimi1
ji

s

aaa
s

…
= . 

 

Remarks 

• In the particular case )p(a)/sa(p jij =  corresponding to a memoryless source, 

we obtain (2.12) relation corresponding to a memoryless discrete source 

(MDS). 

• Hm(A) is always smaller compared to the one corresponding to the same source, 

but memoryless: the average non-determination quantity per symbol ai de-

creases because of the symbol correlation. 
 

Example 2.8 

Find the corresponding graph for a two-step binary source (second order memory 

source) and calculate its entropy if p(si) are the ones corresponding to the station-

ary state and the elements p(aj/si) are chosen randomly. 
 

Solution 

Consider the binary (M=2) source having the alphabet: 

A={0,1} 

The m = 2-step memory source will have M
m 

= 4 states: 

s1 = 00, s2 = 01, s3 = 10, s4 = 11. 

The graph corresponding to the source can be found taking into consideration 

that at the emission of symbol aj, from a state si only certain states can be 

reached.(Fig 2.15) 
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Fig. 2.15 Graph corresponding to a 2-step memory binary source  

We choose the transition matrix of this source as: 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

1/2   1/2    0         0

0     0    1/2     1/2

1/2   1/2    0        0

0     0    3/4   1/4

M  

Notice that the matrix M contains zero elements, therefore in order to calculate 

the stationary distribution, we should first be certain it exists. Based on the theo-

rems stated in 2.9.1, we verify if the source is regular. For n0=2, M
2
 has all the 

elements strictly positive, so the source is regular, therefore it accepts a stationary 

state which can be established by solving the system (2.49). 

[ ] [ ]
⎪⎩
⎪⎨⎧

=+++

=

1pppp

p  p  p  pMp  p  p  p

*
4

*
3

*
2

*
1

*
4

*
3

*
2

*
1

*
4

*
3

*
2

*
1

 

We obtain: 

 P * = [ ]
11
3

11
3

11
3

11
2  

The elements of this source, necessary for entropy computation are contained in 

the table: 
 

si   

ai1 ai2 aj p(si) = pi
*
 p(aj/si) 

0 0 0 2/11 1/4 

0 0 1 2/11 3/4 

0 1 0 3/11 1/2 

0 1 1 3/11 1/2 

1 0 0 3/11 1/2 

1 0 1 3/11 1/2 

1 1 0 3/11 1/2 

1 1 1 3/11 1/2 
 

Replacing in (2.52) we find: H2(A) = 0,549 bits/binary symbol. 
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Example 2.9 

A computer game implies the use of only two keys (a1, a2). If the pressing of a key 

depends on the key pressed before, a Markov chain may model the game, its tran-

sition matrix being: 

⎥⎦
⎤⎢⎣

⎡
=

1/4   3/4

2/3  1/3
M  

a) Which is the average quantity of information obtained at one key pressing? 

Assume that p(a1) and p(a2) are the stationary state probabilities. Compare this 

value with the one obtained for a memoryless source model. 

b) Draw the graph corresponding to the 2-nd order Markov source model. How 

will be the average quantity of information obtained at a key pressing compared to 

that from a)?  

 

Solution 

The stationary state PMF can be established by solving the system: 

[ ] [ ]̀
1pp

p   pMp  p

*
2

*
1

*
2

*
1

*
2

*
1

⎪⎩
⎪⎨⎧

=+

=
. 

We obtain:  [ ]8/17  9/17P
* = . The average quantity of information obtained for 

a key pressing represents the first order Markov entropy of the source. Using (2.102) 

we obtain: 

( )

lbits/symbo 0.867

4

1
log

4

1

17

8

4

3
log

4

3

17

8

3

2
log

3

2

17

9

3

1
log

3

1

17

9
-

)/sp(a)log/s)p(ap(s-SH

2222

2

1i

2

1j
ij2iji1

=

=⎟⎠
⎞⎜⎝

⎛
⋅⋅+⋅⋅+⋅⋅+⋅⋅=

∑ =∑=
= =

 

In the case of a memoryless source modelling of the game, we have: 

( ) ∑ =⋅−⋅−=−=
=

2

1i
22i2i /symbol0,9974bits

17

8
log

17

8

17

9
log

17

9
plogpSH

 

so H1(S) < H(S), as expected. 

A two step memory binary source is modelled as shown in Fig. 2.14. The aver-

age quantity of information obtained at a key pressing will be the entropy of second 

order Markov source and will be smaller than the one corresponding to the first 

order Markov source model. 

2.9.3   Applications 

From the huge number of Markov chains applications we will choose some from 

the artificial intelligence and pattern recognition fields. 
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Natural language modelling [5] 
 

Any natural language has an alphabet, a dictionary and a syntax. Take for instance 

the Latin alphabet: it contains 26 letters and a space between words, so a total of 

27 symbols. The simplest model associated to such a language is the one corre-

sponding to a discrete memoryless source (the zero order approximation) in which 

all symbols are equally probable. The average quantity of information correspond-

ing to a symbol will be:  

( ) ymbol4,75bits/sld27SD ==
•

. 

A sequence of symbols emitted by such a model will not mirror the structure of 

a certain language (French, English, Italian, Romanian etc). 

Considering the frequencies of the alphabet letters for a certain language, a slight 

reflection of the language can be obtained. It means the first order approximation, 

which leads to the average quantity of information per letter (for French [5]). 

( ) lbits/symbo4,7527ldSD ==
•

 

A better approximation of this information source is made with a first order 

Markov source in which case the joint probabilities  jiij aas =   and the condi-

tioned probabilities ( )ij/aap  must be known. In this case, in a letter sequence, we 

may recognize with certainty the language type. 

Better models of a natural language can be achieved using second order 

Markov sources. If there are constraints regarding the word length, if the symbols 

are replaced by words and the alphabet by the language dictionary, and if the syn-

tax is taken into consideration, we can find complex sentences in that language, 

with no special signification. 

Acting this way and imposing even more strict constraints, poems can be elabo-

rated on the computer, or literary works can be authenticated etc. 

The more constraints, the less system uncertainty and the number of expressible 

messages is reduced. The constraint degree in a system (language) can be esti-

mated by its redundancy R:  

u2

i

u2

u2p2

Mlog

I

Mlog

MlogMlog
R =

−
=                                (2.103) 

where Mp represents the number of possible messages without constraints and Mu 

the number of useful messages taking into consideration the constraints. Internal 

information of the system is defined (Ii) 

U2p2i MlogMlogI −= .                                      (2.104) 

In [5] it is shown that, for the French language, the average number of letters 

per word being 5, the number of 5-letter messages that can be achieved using 26 

symbols is:
65

p 101226M ⋅≈= . The French dictionary contains approximately 

7000 5-letter words, so Mu=7000, from which using (2.103) and (2.104) results 
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that the French language redundancy is ≈ 45% and the internal information is 2,15 

bits/letter. 

 

Voice modelling 

 

The voice average rate [6] is 80…200 words/minute. For 5-leter average length 

words, in a zero order approximation memoryless, results rbits/lette  4,7D ≅  

therefore a rate 100bits/s40D …≅
•

. The real rate for a better approximation (supe-

rior order Markov sources), in which ( ) rbits/lette  1,5SH ≅ , is much lower: 

( ) bits/s3012SH …=
•

. It is necessary to emphasize that this value represents only 

the semantic rate of the voice (the literal signification of the words). In reality the 

voice signal also bears subjective information (identity, quality, emotional state), 

which cannot be evaluated using the relations established by now [26]. 

 

Image modelling [17] [35] 

 

As previously shown in example 2.2 the brightness of each black-and-white TV 

image element (pixel) is quantified with m levels of grey assumed to be equally 

probable and then the average quantity of information contained in a pixel, in the 

independent elements approximation, was: 

D = Hmax = log2 m [bits/element pixel]  

In practice the pixels are not independent and the m levels of grey are not 

equally probable. If only the statistical relations between neighbouring elements 

are taken into consideration, the conditioned entropy will be: 

∑ ∑−=
= =

m

1i

m

1j
ij2iji1 )/ap(a)log/a)p(ap(aH  

where p(ai) represents the i-level probability, p(aj/ai) is the probability of level j af-

ter level i. 

Calculations of this entropy have shown that, for typical television images, and 

considering only the image space statistics, two times lower values on average are 

obtained compared to the case when modelling with a discrete memoryless source 

(the image elements are considered independent) and for which we have:    

( ) ( ) [ ]∑−=
=

m

0i
i2i0 bits/pixel   aplogapH  

H2 and H3 have also been calculated; they correspond to 2nd
 
and 3rd

 
order 

Markov models. But it was found that the decrease in entropy for these models is 

too little, being hence unpractical. 

A method for establishing conditional entropy is to process the correlated 

memory source in order to become independent (de-correlation). As we will see in 

chapter 3, statistical independence is a condition for an optimal coding.  
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A simple and efficient method for physical achievement of this condition is to 

use differential modulation [35] (see also 2.8). 

 

 

Fig. 2.16 Differential Pulse Code Modulation for a black-and-white video signal  

The analogue black-and-white video signal is converted into a digital signal in-

side PCM (Pulse Code Modulation) block so that each sample will be transmitted 

using n=5 bits. Assuming that samples are independent and using entropy formula 

for a discrete memoryless source we obtain: 

( ) ebits/sampl  5AH ≅ . 

In fact video signal samples are strongly correlated, PCM output being in fact a 

memory source. For monochrome video signals it can be assumed that the differ-

ences between two successive samples dj are approximately independents, there-

fore the entropy corresponding to this differences, calculated with relation (2.12) 

will be close to the conditioned entropy of PCM signal. In this case 

( ) ebits/sampl  3AHd ≅ , a value twice lower than that of  PCM source. 

 

Remarks 

• The actual value of source entropy is very important when trying to achieve 

source compression, as we will see in chapter 3. 

• The differential transmission for colour video signals is thought similarly [35]. 

• Other important applications for Markov chains are: 

– synchronisation in digital telephony equipment [2], [29] 

– voice recognition [13], [28]. 

 

Memory channels 
 

A transmission channel is a memory channel if the output signals depend on the 

previously transmitted ones. 

Typical examples of memory channels are: 
 

• radio channels with burst errors caused by fading phenomenon   

• transmission wires and cables; transmitted sequences of symbols through the 

channel are affected by burst noise caused by switching and inter-modulation 

• magnetic recording media where recording gaps may appear because impurities 

and dust particles. 
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Typical for these memory channels is the fact that noise does not affect inde-

pendently each transmitted symbol, but burst errors occur and that is why these 

channels are also called burst-error channels. 

We call a burst error a sequence of symbols (accurate or not) in which the first 

and last one are erroneous and the successive accurate symbols occur in groups 

smaller than r. 

Parameters characterizing burst error are: 
 

• r: between last erroneous symbol of a burst and the first erroneous symbol of 

the next burst there are more than r accurate successive symbols 

• l: burst error length is given by total number of symbols (erroneous and accu-

rate) forming the burst error 

• D: error density is defined as the ratio between the number of erroneous sym-

bols of the burst (t)  and the length of the burst(l) 

Here is a sample of a burst of length l = 7: 

 

Fig. 2.17 Example of burst 

Poisson law approximates burst error distribution. In order to obtain a better 

approximation of experimental curves, in channels where burst errors have a 

grouping tendency, other distribution laws have been searched for: hyperbolic law, 

Pareto distribution [1], [24]. 

A simplified model of a memory channel may be the one represented in Fig. 

2.18 [14]. 

 

Fig. 2.18 The simplified model of a memory channel 
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This model has two states: s1 and s2, s1 being a “good state” in which there are 

few errors (p1=0), and s2 a “bad state” when errors occur very frequently (p2=1/2). 

The channel remains in state s1 almost all the time, its transition to state s2 are 

caused by transmission characteristics modifications, for instance strong fading. 

As a consequence errors occur in bursts, because of the high value of p2 (p2≈0.5). 

The study of these memory channels presents great interest because of their ap-

plications in mobile communications and satellite transmissions. 
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Chapter 3 
Source Coding 

Motto: To defeat yourself is the first 

and the most beautiful of 

all victories. 

Democritus 

3.1   What Is Coding and Why Is It Necessary? 

Information is rarely transmitted directly to the receiver, without any processing, 
due to the followings: 

 

• source alphabet is different from channel one, therefore some  adaptation of the 
source to the channel is needed (information representation codes). 

• channel must be very efficiently used (close as possible to its full capacity), 
meaning that the source must be converted into an optimal one (pio) (statistical 

adaptation of the source to the channel from information theory point of view); 
keeping in mind the coding theory, we may say that for an efficient use of the 
channel - in order to minimize transmission time and/or storage space - source 
compression is needed (compression codes). 

• it is also necessary to adapt the source to the channel in order to match the 
spectrum to channels characteristics and also to ensure synchronization be-
tween transmitter and receiver (base band codes / line codes).  

• information transmitted over a noisy channel is distorted by channel noise; this 
is why error detecting and correcting codes are used in error control procedures 
(error control codes).  

• information confidentiality from unauthorized persons must be provided in 
some applications (encryption).  

The need for source processing prior to transmission (or storage) is leading to 
the processing known as coding. 

For a better understanding of coding, we will divide it into three main parts: 
 

1. source coding (Cs) or coding for noiseless channels. 
2. encryption (E), i.e. coding for keeping information confidentiality. 
3. channel coding (Cc) – protection to channel noise (error control) and channel 

adaptation (base band codes). 

In real transmission, one, two or all these aspects arise, the necessary process-
ing degree being imposed by the application itself. 
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Coding is the process of finding a bijective correspondence between source (S) 
messages and codewords set (C) obtained using the alphabet X. 

Be a discreet memoryless source S and the corresponding codewords set C: 
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where ci is a codeword and represents a finite row of symbols xj belonging to code 
alphabet X, assumed memoryless too: 
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By encoding, the initial source S is transformed into a secondary one X, enter-
ing the channel (Fig. 3.1) 

 

Fig. 3.1 Illustration of the transformation SåX realized through encoding  

For a source S and a given alphabet X, we may create a multitude of codes.  
Table 3.1 shows some binary codes put into correspondence with a quaternary  
(M = 4) source S. 

Table 3.1 Binary codes associated to a quaternary source (M=4)  

S A B C D E 

S1 00 0 0 0 0 

S2 01 01 10 10 100 

S3 10 011 110 110 11 

S4 11 0111 1110 111 110 

 
Next, we will define some codes frequently used in applications: 

• Uniform code is a code with same lengths of codewords (e.g.: code A). 

• Non-uniform code is a code with different lengths of codewords (e.g.: codes B, 
C, D, and E). 



3.2   Aim of Source Coding 55

 

• Uniquely decodable code (UDC) is a code with a unique succession of source 
symbols for each codewords succession (e.g.: A, B, C, D are UDC). Code E is a 
not a UDC because the codeword c4, 110, can be decoded either s4 or s3s1. 

• Comma code is a UDC using demarcation symbols between words (e.g.: B – 
‘0’ indicates codewords beginning; C – ‘0’ indicates codewords ending). 

• Instantaneous code (IC) is a UDC for which a codeword is not the prefix of an-
other codeword (e.g.: A, C, D). Code B is not instantaneous because ‘0’ is pre-
fix for other words. 

Any code can be represented using the coding tree associated to codewords set. 
Such a tree is represented in Fig.3.2 for code D from table 3.1: 

 

Fig. 3.2 Coding tree associated to code D from Table 3.1 

3.2   Aim of Source Coding 

As shown in section 3.1 source coding aim reduces to: 
 

• adapting the source to the channel, if different as nature 

• ensuring channel most rational use by compression  (from coding theory point 
of view) and statistical adaptation of the source to the channel (from informa-
tion theory point of view); the latter is achieved by maximizing the transinfor-

mation which implies equally probable symbols m1,j,p,x m
1

joj =∀=  for 

symmetric channels; therefore the channel must be used at its full capacity: 

m ld D(X) (X)H C max channel  noiseless ===                            (3.4) 

3.3   Information Representation Codes 

These codes are used for adapting the source to the channel as nature, in order to 
be able to transmit or store information. 

3.3.1   Short History 

Codes for information representation have been known since ancient times. Thus a 
series of symbols used in myths and legends, in heraldry and worship objects, are 
sending messages from long time-gone worlds. 
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We illustrate this by quoting the symbol of the olive tree: 
”Olive tree [9]: A tree of many symbolic resources: peace, fertility, purity, 

power, victory and reward…. It has similar significance in all European and Ori-
ental countries. In Rome, it was dedicated to Jupiter and Minerva. According to a 
Chinese legend, the olive tree wood would neutralize certain poisons and venom; 
therefore it was highly valued for its curing properties. In Japan it symbolizes 
amiability as well as success in studies and war: it is the tree of victory. In Jewish 
and Christian traditions the olive tree is a symbol of peace: the pigeon brought to 
Noach an olive tree branch at the end of the Great Flood. According to an ancient 
legend, the cross on which Jesus was crucified was manufactured from olive and 
cedar wood. Furthermore, in the Middle Ages language, it also stands for a symbol 
for gold and love. In Islam the olive tree is a central tree, the “axis mundi”, a sym-
bol of the Universal Man, of the Prophet. Blessed tree, it is associated to Light, as 
the olive oil lightens the lamps… The olive tree symbolizes after all, the Heaven 
of the chosen ones.”    

In ancient Greece [41], for remote messages transmission, a kind of “telegraph” 
was made using torches, without compression, as later in Morse code.  

In 18th century, the Royal British Navy had used for transmission, signals on 6 
bits, a system of cabins with 6 shutters and some lamps inside, which allowed the 

coding of 642M  6 ==  messages. These were used to encode 26 letters, 10 num-

bers and some other special commands, common words or phrases. In this way, 
they achieved, beside information representation, some sort of compression. In 
[41] it is shown that two of the 28 combinations, represented the command to  
execute or acquit a convict. It is mentioned the case of a convict executed due to a 
fatal transmission error of the message. This example emphasis compression 
weakness to error in transmission and/or storage.     

The acronyms used since ancient times are, in fact, compressed ways of repre-
senting information. Thus, on Roman funeral graves, for which the engraving cost 
was very high, it is frequently met STL (Sit Tibi Terra Levis), acronym corre-
sponding in English to ”May the earth rest lightly on you”. Regarding acronyms 
utilization in present times, we can refer to our era as ”civilization of acronyms”; 
each domain uses real dictionaries of acronyms. Lets take for example ITC (In-
formation Theory and Coding), SR (Shift Register), AOC (Absolute Optimal 
Code) a. s. o. But same acronyms could represent many other things: Informa-
tional Trade Center, Security Report, Airline Operation Center etc., illustrating in 
fact its vulnerability to errors. 

In what follows we will present some of the most used codes for information 
representation in data transmissions, analogue to digital converters including 
numbering systems and finally the genetic code, taking into account its universal-
ity and actuality. 

3.3.2   Numeral Systems 

A numeral system is a mathematical notation for representing numbers of a given 
set, using distinct symbols (a finite alphabet b). 
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There is a diversity of numeral systems developed from ancient time to modern 
days.  

Unary system, is the simplest numeral system and it uses only one letter alpha-
bet: b=1, for example a symbol x. The representation of n symbols is n times x 
(e.g. three is represented: xxx). It was used in early days of human civilization. 

Sign – value system is a variation of unary system. It uses an enhanced alphabet 
by introducing different symbols for certain new values, for example for power of 
10, - , for power of 100, +. The number 213 could be represented: 

213ĺ ++–XXX 

The Egyptian numeral system was of this type and the Roman numeral system 
was a modification of this idea. 

System using special abbreviations for repetitions of symbols; for example: A – 
one occurrence, B – two occurrence,… , I – nine occurrence. In this case the num-
ber 205 will be written: B+EX.  

Positional systems (place – value notation) using base b. A number N in base b 
is represented using b symbols (digits) corresponding to the first b natural num-
bers, including zero: 

{ } { } 1b0,i ,a  1b..., 2, 1, 0,A i −==−=                                (3.5) 

( ) 0
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Fractions in the positional system are written dividing the digits into two 
groups: 
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The numbers  ib  and  ib−  are the weights of the corresponding digits. The po-

sition i is the logarithm of the corresponding weight: 

i
bblogi =                                                    (3.8) 

According to the value of b, a lot of different numeral systems can be obtained, 
the most used in today life and in data communications and computing being: 

 

• decimal numeral system (dec) : b=10 , with the alphabet:  

{ }9 8, 7, 6, 5, 4, 3, 2, 1, 0,A =  

• octal numeral system (oct) : b=8 and the alphabet: 

{ }7 6, 5, 4, 3, 2, 1, 0,A =  

• hexadecimal numeral system (hex) : b=16 and the alphabet: 

{ }F E, D, C, B, A, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,A =  
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Conversion between bases: can be done using the method of successive  
division by b. 

Table 3.2 Conversion between hex, dec, oct and binary numeral systems  

Binary Nb hex dec oct 

b3 b2 b1 b0 

0 0 0 0 0 0 0 0 

1 1 1 1 0 0 0 1 

2 2 2 2 0 0 1 0 

3 3 3 3 0 0 1 1 

4 4 4 4 0 1 0 0 

5 5 5 5 0 1 0 1 

6 6 6 6 0 1 1 0 

7 7 7 7 0 1 1 1 

8 8 8 10 1 0 0 0 

9 9 9 11 1 0 0 1 

10 A 10 12 1 0 1 0 

11 B 11 13 1 0 1 1 

12 C 12 14 1 1 0 0 

13 D 13 15 1 1 0 1 

14 E 14 16 1 1 1 0 

15 F 15 17 1 1 1 1 

 
Remark 

The numeral systems used from ancient times to nowadays, show strong compres-
sion features, meaning less time in transmission and/or space in storage (writing, 
reading). 

3.3.3   Binary Codes Used in Data Transmission, Storage or 

Computing 

• Morse Code 

Although this code invented by Samuel Morse in 1837 for electric telegraph is not 
anymore actual, it still remains the universal code of amateur or professional radio 
operators (maritime links), especially in manually operating systems. 

Alphanumeric characters (26 letters of the Latin alphabet and 10 decimal num-
bers) are encoded using three symbols: dot, line and space. Morse alphabet also 
makes an ad-lib compression putting into correspondence the shortest words to 
letters with maximal frequency (from English language).      

The tree corresponding to Morse alphabet is shown in Table3.3. 
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Table 3.3 Tree corresponding to Morse code  

● H ● S 
▬ V 
● F 

● I 
▬ U 

▬ Ü 
● L ● R 
▬ Ä 
● P 

● E 

▬ A 
▬ W 

▬ J 
● B ● D 
▬ X 
● C 

● N 
▬ K 

▬ Y 
● Z ● G 
▬ Q 
● Ö 

▬ T 

▬ M 
▬ O 

▬ Ch 

 
The “SOS” message in Morse code is “. . .  - - -  . . .” 

 
• Baudot Code 

Morse code, a non-uniform code, has the drawback of a difficult automatic decod-
ing. That is why Emile Baudot proposed in 1870 for telegraphic transmissions a 
five letters long uniform code (teleprinter code), known as ITA1 / CCITT2 / ITU3 
code (Table. 3.4). The 56 characters (26 letters, 10 numbers, 12 signs and 8 com-
mands) used in telegraphy cannot be uniquely encoded with 5 bits: 

563225 <==M . That is why the 56 character set was divided in two subsets: a 

lower set containing the letters and an upper set containing the numbers and other 
figures; commands are uniquely decodable. 

The same binary sequence is assigned to two different characters, but belonging 
to different sets.  

Any change from one set to the other, during a message, is preceded by an es-

cape codeword: 

 
1 1 1 1 1 indicates the lower set 
1 1 0 1 1 indicates the upper set. 

 

                                                           
1 ITA – International Telegraph Alphabet. 
2 CCITT – Comité Consultatif International Télephonique et Télegraphique. 
3 ITU – International Telecommunication Union. 
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Remark 
The escape codes generally obtain a decrease in length of encoded message (there-
fore a compression), if there are not too many inter-sets changes in the message 
(condition achieved in most telegraphic transmissions). 

Table 3.4 Baudot Code  

The number 

of the combi-
nation 

Letters 

 

Numbers 

and special 
signs 

Code 

combina-
tion 

The

number 
of the 

combi-

nation

Letters Numbers 

and special 
signs 

Code 

combina-
tion 

1 A - 11000 17 Q 1 11101 

2 B ? 10011 18 R 4 01010 

3 C : 01110 19 S ; 10100 

4 D who are 
you 

10010 20 T 5 00001 

5 E 3 10000 21 U 7 11100 

6 F ! 10110 22 V = 01111 

7 G & 01011 23 W 2 11001 

8 H £ 00101 24 X / 10111 

9 I 8 01100 25 Y 6 10101 

10 J ringer 11010 26 Z + 10001 

11 K ( 11110 27 Carriage Return (CR) 00010 

12 L ) 01001 28 New Letter (NL) 01000 

13 M . 00111 29 Letter shift 11111 

14 N , 00110 30 Figure shift 11011 

15 O 9 00011 31 Space (SP) 00010 

16 P 0 01101 32 Unusable 00000 

• ASCII Code 
ASCII (American Standard Code for International Interchange) known also as 
CCITT 5 or ISO4 code is a 7 bit length code which allows letters, numbers and 
numerous special commands representation without escape code character as in 

Boudot code ( 3312827 == non – printing (control) characters + 94 printable +1 

space). It was proposed in 1960 and from then it is the most used code in data en-
coding. The code is given in Table. 3.5 

                                                           
4 ISO - International Organization for Standardization. 
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Table 3.5 The 7-bit ISO code (CCITT No 5, ASCII). Command characters:          - for na-
tional symbols, SP – Space, CR - Carriage Return, LF - Line Feed, EOT - End of Transmis-
sion, ESC – Escape, DEL -  Delete. 

bit 7 0 0 0 0 1 1 1 1 

bit 6 0 0 1 1 0 0 1 1 

 

bit 5 0 1 0 1 0 1 0 1 

bit 4 bit 3 bit 2 bit 1  0 1 2 3 4 5 6 7 

0 0 0 0 0 NUL DLE SP 0  P ’ p 

0 0 0 1 1 SOH DC1 ! 1 A Q a q 

0 0 1 0 2 STX DC2 ” 2 B R b r 

0 0 1 1 3 ETX DC3 # 3 C S c s 

0 1 0 0 4 EOT DC4 ¤ 4 D T d t 

0 1 0 1 5 ENQ NAK % 5 E U e u 

0 1 1 0 6 ACK SYN & 6 F V f v 

0 1 1 1 7 BEL ETB , 7 G W g w 

1 0 0 0 8 BS CAN ( 8 H X h x 

1 0 0 1 9 HT EM ) 9 I Y i y 

1 0 1 0 10 LF SUB * : J Z j z 

1 0 1 1 11 VT ESC + ; K  k  

1 1 0 0 12 FF FS , < L  l  

1 1 0 1 13 CR GS - = M  m  

1 1 1 0 14 SO RS . > N ^ n - 

1 1 1 1 15 SI US / ? O - o DEL 

Decimal format of ASCII code is easily obtained taking into consideration the 
weights of the bits; as example: 

Letter s ĺ binary: 1110011 ĺ decimal: 26+25+24+21+20 = 115 

In many cases to the 7 data bits is added one more (the 8th bit), the parity con-
trol bit (optional); it results the ASCII-8 code able to detect odd errors (see 
5.7.10). 

• BCD Code 

BCD ( Binary Coded Decimal ) code, known sometimes NBCD (Natural BCD ) is 
a 4 – bits code for decimal numbers, in which each digit is represented by its own 
binary natural sequence. It allows easy conversion from decimal to binary for 
printing and display. This code is used in electronics in 7 – segments displays, as 
well in financial, commercial and industrial computing using decimal fixed point 
or floating – point calculus.  

IBM (International Business Machines Corporation), in its early computers 
used a BCD – 6 bits length code (Table. 3.6) 
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Table 3.6 IBM BCD code – 6 bits length  

Information (characters) Code combination Information

(characters)

Code combination 

0 00 0000 BLANK 01 0000

1 00  0001 / 01  0001

2 00  0010 S 01 0010

3 00  0011 T 01  0011

4 00  0100 U 01  0100

5 00  0101 V 01  0101

6 00  0110 W 01  0110

7 00  0111 X 01  0111

8 00  1000 Y 01  1000

9 00  1001 Z 01  1001

SPACE 00  1010 = | 01  1010

= 00  1011 , 01  1011

, 00  1100 ( 01  1100

 00  1101 - 01  1101

√ 00  1110 , 01  1110

> 00  1110 CANCEL 01  1110

- 10  0000 + 11  0000

J 10  0001 A 11  0001

K 10  0010 B 11  0010

L 10  0011 C 11  0011

M 10  0100 D 11  0100

N 10  0101 E 11  0101

O 10  0110 F 11  0110

P 10  0111 G 11  0111

Q 10  1000 H 11  1000

R 10  1001 I 11  1001

! 10  1010 ? 11  1010

S 10  1011 . 11  1011

* 10  1100 ) 11  1100

] 10  1101 [ 11  1101

; 10  1110 < 11  1110

Δ 10  1110 ≠ 11  1110

 
• EBCDIC code 

EBCDIC (Extended Binary Coded Decimal Interchange Code) is an extension of 
the BCD code to 8 bits length being proposed by IBM in the operating systems of 
its computers in the years of 1963 – 1964 (Table 3.7). 
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Table 3.7 EBCDIC code 

b0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

b1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

b2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
 

b3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

b4 b5 b6 b7  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 0 0 NUL DLE DS  blk & -         0 

0 0 0 1 1 SOH DC1 SOS    /  a j   A J  1 

0 0 1 0 2 STX DC2 FS SYN     b k s  B K S 2 

0 0 1 1 3 ETX DC3       c l t  C L T 3 

0 1 0 0 4 PF RES BYP PN     d m u  D M U 4 

0 1 0 1 5 HT NL LF RS     e n v  E N V 5 

0 1 1 0 6 LC BS EOB UC     f o w  F O W 6 

0 1 1 1 7 DEL IDL PRE EOT     g p x  G P X 7 

1 0 0 0 8  CAN       h q y  H Q Y 8 

1 0 0 1 9  EM       i r z  I R Z 9 

1 0 1 0 10 SMM CC SM  Ç !           

1 0 1 1 11 VT    . $ , Ü         

1 1 0 0 12 FF IFS  DC4 < * % @         

1 1 0 1 13 CR IGS ENQ NAK ( ) - ,         

1 1 1 0 14 SO IRS ACK  + ; > =         

1 1 1 1 15 SI IUS BEL SUB | ¬ ? “         

 
• Gray Code 

In 1947, Frank Gray from Bell Laboratories introduced the term reflected binary 

code in a patent application, based on the fact that it may be built up from the con-
ventional binary code by a sort of reflexion process. 

The main feature of this code is that a transition from one state to a consecutive 
one, involves only one bit change (Table 3.8). 

The conversion procedure from binary natural to Gray is the following: the 
most significant bit (MSB) from the binary code is the same with the MSB from 
the Gray code.  Starting from the MSB towards the least significant bit (LSB) any 

bit change (0→1 or 1→0) in binary natural, generates an ’1’ and any lack of 
change generates a ’0’, in Gray code.  

The conversion from Gray to binary natural is the reverse: the MSB is the same 
in binary natural code as well as in Gray code. Further on, from MSB to LSB, the 
next bit in binary natural code will be the complement of the previous bit if the 
corresponding bit from Gray code is 1 or it will be identical with the previous bit 
if the corresponding bit from Gray code is 0. 
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Table 3.8 Binary natural and Gray 4 bits length codes representation  

Decimal 

Binary 

Natural Code 
(BN) 

Gray Code Decimal 
Binary 

Natural Code 
Gray Code 

 B3 B2 B1 B0 G3 G2 G1 G0  B3 B2 B1 B0 G3 G2 G1 G0 

0 0  0  0  0 0  0  0  0 8 1  0  0  0 1  1  0  0 

1 0  0  0  1 0  0  0  1 9 1  0  0  1 1  1  0  1 

2 0  0  1  0 0  0  1  1 10 1  0  1  0 1  1  1  1 

3 0  0  1  1 0  0  1  0 11 1  0  1  1 1  1  1  0 

4 0  1  0  0 0  1  1  0 12 1  1  0  0 1  0  1  0 

5 0  1  0  1 0  1  1  1 13 1  1  0  1 1  0  1  1 

6 0  1  1  0 0  1  0  1 14 1  1  1  0 1  0  0  1 

7 0  1  1  1 0  1  0  0 15 1  1  1  1 1  0  0  0 

 
Gray code is used in position encoders (linear encoders, rotary encoders) that 

generate numerical code corresponding to a certain angle. Such transducer is made 
up with optical slot disks and for this reason it is impossible to modify simultane-
ously all the bits that could change between two consecutive values. This explains 
why the optical system that generates the number corresponding to a certain angle 
is encoded in Gray. 

In fast converters that generate continuous conversions, Gray code is used due 
to the same reasons. For these converters the problem that arises is storing the re-
sults; if the storage command arrives before all bits settle at final value, the errors 
in binary natural code are great, whereas the Gray code maximal error equals the 
LSB value.                

This code is also frequently used in modulation systems. Let us suppose we deal 
with an 8 levels amplitude modulation. Thus amplitude levels are assigned to each 
three bits, levels which are than transmitted in sequences. Let us see two examples, 
one with the binary natural code and other one using the Gray code (Table 3.9): 

Table 3.9 Example of 3 bit code in BN and Gray representation 

BN Code Assigned Level Gray Code

0  0  0 1V 0  0  0 

0  0  1 2V 0  0  1 

0  1  0 3V 0  1  1 

0  1  1 4V 0  1  0 

1  0  0 5V 1  1  0 

1  0  1 6V 1  1  1 

1  1  0 7V 1  0  1 

1  1  1 8V 1  0  0 
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When errors occur, the transition to an adjacent level is most likely to occur. 
For example: a 4V level is transmitted and the receiver shows 5V.  Using binary 
natural code we have 3 errors whereas in case of Gray code we have only one er-
ror that can easily be corrected with one error-correcting code. 

3.3.4   Pulse Code Modulation (PCM) 

The concept of PCM was given in 1938 by Alec Reeves, 10 years before Shannon 
theory of communications and transistor invention, too early to demonstrate its 
importance. This is the basic principle of digital communications which involves 
an analog to digital conversion (ADC) of the carrying information signal x(t). The 
generated signal is a digital one, characterized by a decision rate (bit rate), thus 
PCM is an information representation code; it is a digital representation of an ana-
log signal x(t). 

PCM generation is illustrated by the block scheme given in Fig 3.3.  

Band 

limiting 

filter quantizer

Digital 

encoder

n-bits

ADC

nqfs>=2fMfM

xk xkq

PAMx(t)

Analog 

signal

DPCM=fsn

y(t)=PCM

sampler

●

 

Fig. 3.3 Block scheme illustrating the generation of PCM signal (PCM modulator and 
coder) 

At the receiver the processing is reversed, as illustrated in Fig 3.4 and repre-
sents a digital to analog conversion (DAC) followed by a low pass filtering (LPF) 

of recovered samples 'x qk . 

⊗

 

Fig. 3.4 Block scheme illustrating the receiving PCM process (PCM demodulator / decoder) 
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Remark 

In transmission, the distorted PCM signal is regenerated using regenerative repe-
tor, allowing the complete regeneration of the digital signal for very small SNR 
(<15dB), without cumulative distortions, as in analog transmissions (main advan-
tage of digital).  

As illustrated in Fig 3.3, the generation of PCM implies:  
 

• low-pass filtering the analog signal x(t) by an antialiasing analog filter whose func-
tion is to remove all the frequencies above  fM (the maximum frequency of x(t)) 

• sampling the LP filtered signal at a rate a MS f2f ≥ (sampling theorem); in this 

point, the analog signal x(t) is discretized in time, resulting PAM (Pulse Ampli-
tude Modulation) signal xk being the values of x(t) at discrete moments kTS , 

where, 
Sf

1
ST = is the sampling period. 

• quantization: each sample Kx is converted into one of a finite number of possi-

ble values of the amplitude (q signifies the number of quantization levels) qkx  

• encoding: the quantitized samples qkx are encoded using a binary alphabet 

(m=2), each quantized sample being represented, usually, by a binary code 
word of length n, called PCM word. 

Thus, the infinite number of possible amplitude levels of the sampled signal is 
converted into a finite number of possible PCM words. If n represents the length 
of PCM word, the total number of possible distinct words that can be generated 
(possible amplitude values of the quantized samples) are: 

q=2n                                                       (3.9) 

An example of PCM generation is illustrated in Fig 3.5. 
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0 Ts 2Ts 3Ts

4Ts
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sampling x(t)

xq(t)

nq3

quantization

 

Fig. 3.5 Example of PCM generation 
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We may ask: which are the causes of distortions in PCM systems? If the sam-

pling frequency is MS ff 2≥ , theoretically, sampling do not introduce distortions 

(in reality, this is not true, because the sampling is not ideal, Dirac distributions 
being impossible to be realized). Quantization, always introduces distortions be-
cause the real amplitude of a sample is quantized by a unique amplitude value (the 
reconstruction level), generally being the average value of the quantized interval. 
The difference between the real value of a sample and its quantized value is called 
quantization noise: nq. 

)(kTx)x(kT:n SqSq −=                                      (3.10) 

The step size (quantum) Δ, under the assumption of uniform quantization 
(Δ=ct), is: 

q

XΔ u =                                                 (3.11) 

for unipolar signal : x(t)∈[0, X] , and  

q

2XΔ b =                                              (3.12) 

for polar signal: : x(t)∈[-X, X], where |X|  is the maximum level of x(t) and q in-
dicates the quantization levels. 

If the number of quantization levels is high (fine quantization) the probability den-
sity function (pdf) of the quantization noise, f(nq), is considered uniform. (Fig 3.6) 

nqi

K

f(nqi)

0

2

Δ
+

2

Δ
−

 
Fig. 3.6 Representation of quantisation noise pdf 

In Fig 3.6 the index i is designating the i-th quantization interval. 
Since, any random sample lies somewhere between – Δ/2 and + Δ/2 with prob-

ability 1, the pdf must satisfy: 

1dn)f(n qi

2Δ

2Δ-
qi =∫  /

 /
                                         (3.13) 
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For a constant pdf: 

f(nq)=K                                                 (3.14) 

we obtain: 

f(nqi)=K=1/ Δ                                           (3.15)  

Encoding means to express in a binary code the quantized samples . The code 
could be: Binary Natural (BN), Binary Coded Decimal (BCD), Gray etc. 

If the quantization levels q are chosen, the length of the PCM word is:  

n=ld q∈Z                                             (3.16) 

Z meaning the integer set. 
Concluding, PCM generation implies: 
 

• band limiting filtering 

• sampling of x(t) with fS ≥ 2fM 

• quantization of samples with q levels  

• encoding (for uniform encoding) the q levels using words of length n=log2q €€  Z 

Thus, an analog signal x(t), band limited fM, is transformed into a binary stream 
of bit rate: 

nfD SPCM ⋅=
•

                                              (3.17) 

PCM is thus an information representation code: the analog signal x(t) is  repre-

sented through PCM as a binary stream  nfD SPCM ⋅=
•

: 

nfDfx(t), SPCM
ADC

M ⋅=⎯⎯ →⎯
•

 

The main advantage of PCM is its great immunity to noise: the required SNR 
in transmission is much lower compared to analogue transmission because at the 
receiver, the decision concerns only two levels and not infinity as in the analogue 
case. Beside this, digital offers many other facilities: compression, error control, 
encryption etc. 

For example: a SNR of 50dB at the user, in telephony is ensured with only ap-
proximately 15dB in transmission using PCM (for aprox. 15dB of SNR, a BER of 
10-5 is obtained without error control coding – see Appendix C).  

The main disadvantage of PCM is the increase of the requested bandwidth. Ex-
ample: for telephony, the bandwidth is [300, 3400]Hz; in digital telephony, the 
sampling frequency is fS =8KHz and the length of the PCM word is n=8. Conse-
quently, the PCM bit rate is: 64Kbps. The required bandwidth (baseband) is,  

according to Nyquist theorem: 51,12KHzD0,8B PCMPCM =⋅≈
•

, which is almost 

twenty times greater than that one corresponding to the analog signal (3,1KHz).  
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Despite this disadvantage, which can be reduced, by processing (compression, 
modulation), PCM is widely used being the basic principle in digital communica-
tions (transmission and storage). 

The main advantages of the digital, compared to the analog, are: 
 

• high quality transmission/storage in channel/storage media with very poor sig-
nal/noise ratio (SNR) 

• multiple access by multiplexing (time division multiplex access - TDMA or 
code division multiplex access - CDMA) 

• digital facilities as: compression, error control coding, encryption etc. 
 

Noise in PCM systems 

 

In PCM systems, the noise has two main sources:  quantization (during PCM gen-
eration) and decision (made at the receiver, when a decision is made concerning 
the received value: 0 or 1) 

 
a) Quantization noise  [12] 
This noise is defined by relation (3.10): 

)(kTx)x(kT:n SqSq −=                                        (3.10) 

The power of the quantitizing noise qN is: 

2
qq n

R

1
N =                                                   (3.18) 

2
qn   meaning the expected value of the noise power for q quantitizing levels: 

∑ ∫ ⋅=
=

−

q

1i

Δ/2
Δ/2 iqiqi

2
qi

2
q P)dnf(nnn                                  (3.19) 

where Pi is the probability that the sample xk falls within the i-th interval. Assum-
ing that all the intervals are equally probable, we have: 

q1,i,
q

1
Pi =∀=                                               (3.20) 

Replacing f(nqi) with (3.15) in (3.19), we obtain: 

( )
12

Δ
q

1
q

Δ
1

12

Δ
q

1

Δ
1

dnnn
23q

1i

Δ/2
Δ/2 qi

2
qi

2
q =⋅⋅⋅=⋅⋅∑ ∫=

=
−                     (3.19.a) 

Consequently the power of the quantitizing noise for uniform quantization is: 

12

Δ
R

1
P)dnf(nn

R

1
N

2q

1i

Δ/2
Δ/2 iqiqi

2
qiq ⋅=∑ ∫ ⋅⋅=

=
−

                         

(3.18.a) 
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The quantitizing SNR is: 

q

S
q

N

P
:SNR =                                             (3.21) 

SP   defining the signal power: 

2
rmsS X

R

1
P =                                             (3.22) 

which finally gives: 

2

2
rms

q
Δ

X
12SNR =                                     (3.21.a) 

Using (3.21.a), some other formulae can be obtained for SNRq. Replacing Δ 
with relation (3.12) – the bipolar case, we have: 

2
2

rms

2

2
rms

q q
X

X
3

4X

X
12SNR ⋅⎟⎟⎠

⎞⎜⎜⎝
⎛

==                              (3.21.b) 

If q is replaced with (3.9), (3.21.b) becomes: 

2n
2

rms
q 2

X

X
3SNR ⋅⎟⎠

⎞⎜⎝
⎛

=                                        (3.21.c) 

Defining as crest factor C the ratio: 

rmsX

X
:C =                                                     (3.23) 

it is possible to write: 

2

2

q
C

q
3SNR =                                             (3.21.d) 

If the SNRq is expressed in dB, the relation (3.21.c) can be written as: 

[ ]
X

X
20lg6n4,7dBdBSNR rms

q ++=                             (3.21.e) 

Relation (3.21.e) is very practical, indicating that each supplementary bit of a 
PCM word enhance with 6dB the SNRq. 
 

Remarks 

Relation (3.21.a) shows that for an uniform quantization (Δ=ct), the quantization 
SNR is signal dependent, being an important disadvantage of uniform quantizers. 
The solutions to make a SNRq signal x(t) independent, are: 
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• non-uniform quantization, meaning the use of small steps (ΔĻ) for weak signals 
(x(t) Ļ) and large steps(ΔĹ) for strong signals (x(t) Ĺ) 

• companding the signal dynamic range: it makes a compression before quantiza-
tion and an expansion after DAC in order to obtain the original dynamic range 
(Fig. 3.7) 

compression ADC DAC expanssion
x(t) z(t)y(t) y*(t)

f1 f
-1

Uniform quantization

Non-uniform quantization
 

Fig. 3.7 Companding illustration 

Companding means: 
 

• compression 

y=f1(x)                                                   (3.24)  

• uniform quantization with q intervals 

y*=f2(y)=f2(f1(x))                                           (3.25) 

• extension: 

z=f-1(y*)=f-1(f2(f1(x)))=f3(x),                                   (3.26) 

representing the non-uniform quantization characteristic. The quantization step Δ 
is signal dependent and is given by the compression characteristic: 

Δ(x)

Δ
dy

dx D=                                               (3.27) 

An ideal non-uniform quantization implies: 

Δ(x)=ct|x|                                               (3.28) 

Replacing Δ(x) in (3.27), we have: 

|x|

dxΔKdx
|x|ct

Δ
dy D

D ⋅==                                    (3.29) 

This differential equation has as solution a logarithmic characteristic 

X

|x|
lgKΔX|y| D+= ,                                         (3.30) 

graphically represented in Fig 3.8. 
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x

y

 
Fig. 3.8 Ideal compression characteristic 

Remark 

The characteristic (3.30) is impossible to be practically implemented because if 
xĺ0 => yĺ∞. The technical solutions for a non uniform quantization are ap-
proximations of this ideal characteristic. 

In PCM systems, the compression characteristics (standards) are [3]: A law – for 
Europe, μ law – for North America, Japan, with the corresponding characteristics: 

⎪⎪⎩
⎪⎪⎨
⎧
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y                                      (3.31) 

( )
( )μ1ln

μx1ln
y

+

+
=                                                (3.32) 

b) Decision noise 

This noise occurs if PCM words are erroneous, meaning that the corresponding 
quantized samples will be erroneous too. We will discuss this problem under the 
following hypotheses: 

 

• independent errors 

• p is the BER of the channel. 
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• the noise corrupts only one bit in a word of length n (fulfilled in usual  
application) 

• the code is BN (the worst from this point of view, but the most used) 
 

Example 3.1 
Be the correct PCM word: (1 1 1 1), the first left bit being MSB. 

The corresponding quantized sample is: 

15VΔ)21212121( 0123 =⋅⋅+⋅+⋅+⋅  

if Δ is assumed to be 1V. 
Assume that 1 error occurs in a four bits length; the errors are very different, 

according the affected bit, as follows: 

 
Received word 

MSB       LSB 
kqx  Error 

1   1   1   0 14V 1V 

1   1   0   1 13V 2V 

1   0   1   1 11V 3V 

0   1   1   1 7V 8V 

 

Decision noise dn is defined as: 

'xx:n kqkqd −=                                              (3.33) 

where kqx  designates the correct quantized sample and 'x kq  the erroneous one. 

Under the given hypotheses, we have the probability of the erroneous word: 

npp)p(1Cp 1ni
nw ≈−= −                                     (3.34) 

Decision noise if the error is situated on the i-th position, 1n0,i −= , is 

⎪⎩
⎪⎨
⎧
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−

−
−
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Δ)2a...2a...qa(x

0
0

i
i

1n
1nkq

0
0

i
i

1n
1nkq

                          (3.35) 

Δ)2a(an i
iidi ⋅−=                                          (3.36) 

Decision noise power Nd is: 

w
2
dd pn

R

1
N =                                            (3.37) 
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where 2
d

n means the expected value of the decision noise power: 

( )di

1n

0i

2
di

2
d

nfnn ∑=
−

=
                                          (3.38) 

where ( )dinf indicates the pdf of the decision noise, assumed equally probable for 

each position:  

( )
n

1
nf di =                                                  (3.39) 

Based on (3.36), (3.38), and (3.31), we obtain: 
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and  

np
3

12

n

Δ
R

1
N

2n2

d ⋅
−

⋅⋅=                                      (3.37.a) 

or 

( ) 2
2

2
2

d q
3

Δ
p

R

1
1q

3

Δ
p

R

1
N ⋅⋅⋅≈−⋅⋅=                           (3.37.b) 

The total noise in the PCM systems is: 

;q
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Δ
p
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Δ
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1
NNN 2

22
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⎞

⎜⎜⎝
⎛

+=+=                              (3.40) 

with the mention that the two noise sources are independent. 
The total SNR in the PCM systems is: 
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If we replace Δ  with (3.12) we obtain: 

)4pq(1C

q
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22
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Remarks 

• In PCM systems the total SNR (the detected SNR) is determined by: 
a) quantization noise and 
b) decision noise 

• The quantization noise is PCM is word length (n) dependent and can be re-
duced increasing the number of bits. Decision noise is channel dependent and 
can be reduced increasing the SNR input in the channel (SNRi). At low level of 
SNRi, the value of p is large and SNRt is dependent of the SNRi. This is the 
decision noise limited region, operating under a threshold (SNRi0 ≈ 15 dB). 
Over this threshold p is negligible and SNRt is limited to a value given by the 
quantization noise, based on the PCM codeword length. This is the quantization 

noise limited region (see Fig 3.9). 

 

Fig. 3.9 Threshold effect in PCM systems 

• Quantization noise in PCM cannot be eliminated, being linked to the quantiza-

tion process. The reconstructed signal (t)x′ , obtained after the final lowpass fil-

tering of the received quantized samples ( kqx ) assumed error free in transmis-

sion (without decision noise) is only an approximation of the original signal 

x(t) . The difference (t)x - x(t) ′  is called distortion. It can be reduced if n, the 

length of PCM word, is increased, which implies bandwidth increase also. A 
trade is made between fidelity and quality, known as the acceptable loss and 
described by rate distortion theory [4].   

 
Example 3.2 
Consider a 1kHz sinusoidal voltage of 1V amplitude. Determine the minimum 
number of quantizing levels required for a SNR of 33dB. Which is the length of 

the corresponding PCM word, assuming that in transmission BER is 210− . Calcu-

late the total SNR. 
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Solution 

The signal: 

t10sin2ftXsin2x(t) 3ππ ==  

The quantizing SNR given by (3.23.e) is: 
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X
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15.64dB
)21042(1

2
3

)4p22(1

2
3

)4pqc(1

q
3SNR

102

10

2n

2n

2

2

t =
⋅⋅+

=
+

=
+

=
−

 

3.3.5   Genetic Code 

Genetic information, meaning all the set of instructions necessary and sufficient to 
create life, is stored in the DNA (DeoxyriboNucleic Acid) of a cell [7]. 

Gene, located in DNA, is the basic unit of heredity and contains both coding 
sequences (exons) and non-coding sequences (introns), that determine when a 
gene is active (expressed). 

Gene expression [32] is given by the central dogma of molecular biology 
(given by Francis Crick in 1958): 

 

 
 

DNA, is a huge molecule (macro-molecule of more than 3,2*109 bp long for 
homo-sapiens), composed of two twisted complementary strands of nucleotides, 
linked in a double-helix structure, based on the hydrogen bonds: A=T and G≡T. 
This structure was discovered by J. Watson, F. Crick, M. Wilkins and Rosalind 
Franklyn in 1953 and priced with Nobel Prise in 1962.  

DNA mRNA tRNA protein 

transcription translation
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Fig. 3.10 DNA structure 

 

DNA is a very stable medium, allowing long term storage of genetic informa-
tion, based on the lack of hydroxyl group OH and on the complementarity of 
bonds A=T, G≡T, offering thus error control properties (if a mutation occurs in 
one strand, it could be corrected based on the complementarity of strands). 

A nucleotide is composed of three groups: 
 

• a phosphate P group, linked to 

• a pentose sugar (D-deoxyribose) linked to 

• one of four nitrogenous N base: A – Adenine, C – Cytosine, G – Guanine and T 
– Thymine. 
 

The four nucleotides making DNA have different bodies, but all have the same 
pair of terminations: 5’ - P – phosphoryl and 3’ – OH – hydroxyl. 

The nucleotide stream is encoding the information necessary to generate 20  
distinct amino-acids, which are the building blocks of proteins. The identity of a 
protein is given not only by its composition, but also by the precise order of its 
constituent amino-acids. 

RNA (RiboNucleicAcid) is a polymer very similar to DNA, but having some 
main differences: 

 

• sugar deoxyribose (D) is replaced with ribose (R); it explains the great instabil-
ity of RNA: alcohol groups OH are highly instable to enzymes, allowing a 
quick adaptation of RNA molecule to the environment stimuli (hormones, nu-
trients). This explains its use for gene expression. 

• base Thymine (T) is replaced by Uracil (U); 

• its structure is simple stranded, having the capacity of making secondary struc-
tures like DNA (tRNA - transfer RNA), if the simple strand has polyndromic 
structure (that reads the same in both directions) regions [10].  
 

During transcription, when a gene is expressed, the coding information found 
in exons is copied in messenger RNA (mRNA).  

By translation, the genetic information of mRNA is decoded, using ribosomes 
as reading units, each codon being translated into an aminoacid (tRNA) and an 
aminoacid chain is giving a protein. 

Thus genetic code is defined either as DNA or RNA, using base T or U  
respectively. 

Proteins are macromolecules of 100 – 500 amino-acids known as residuus.  
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In order to be able to encode 20 distinct aminoacids, using a 4 letter alphabet 
(A, T/U, C, G), a minimum 3 nucleotides sequence, called codon is necessary 
(42=16<20, 43=64>20). 

Genetic code [10] defines the mapping between the 64 codons and amino-acids. 
Table 3.10 represents the encoding table: codons – amino-acids and Table 3.11 the 
decoding table: amino-acids – codons. 

Table 3.10 Genetic code – encoding table 

 U C A G 

 
U

UUU Phe (F) 
UUC Phe (F) 
UUA Leu (L) 
UUG Leu (L) 

UCU Ser (S) 
UCC Ser (S) 
UCA Ser (S) 
UCG Ser (S) 

UAU Tyr (T) 
UAC Tyr (T) 
UAA  Stop 
UAG  Stop 

UGU Cys (C) 
UGC Cys (C) 
UGA  Stop 
UGG Trp (W) 

 
C

CUU Leu (L) 
CUC Leu (L) 
CUA Leu (L) 
CUG Leu (L) 

CCU Pro (P) 
CCC Pro (P) 
CCA Pro (P) 
CCG Pro (P) 

CAU His (H) 
CAC His (H) 
CAA Gln (Q) 
CAG Gln (Q) 

CGU Arg (R) 
CGC Arg (R) 
CGA Arg (R) 
CGG Arg (R) 

 
A

AUU Ile (I) 
AUC Ile (I) 
AUA Ile (I) 
AUG Met (M) 

ACU Thr (T) 
ACC Thr (T) 
ACA Thr (T) 
ACG Thr (T) 

AAU Asn (N) 
AAC Asn (N) 
AAA Lys (K) 
AAG Lys (K) 

AGU Ser (S) 
AGC Ser (S) 
AGA Arg (R) 
AGG Arg (R) 

 
G

GUU Val (V) 
GUC Val (V) 
GUA Val (V) 
GUG Val (V) 

GCU Ala (A) 
GCC Ala (A) 
GCA Ala (A) 
GCG Ala (A)

GAU Asp (D) 
GAC Asp (D) 
GAA Glu (E) 
GAG Glu (E) 

GGU Gly (G) 
GGC Gly (G) 
GGA Gly (G) 
GGG Gly (G) 

 

Table 3.11 Genetic code – decoding table 

Ala/A GCU, GCC, GCA, GCG Leu/L  UUA, UUG, CUU, CUC, 
CUA, CUG 

Arg/R CGU, CGC, CGA, CGG, 
AGA,AGG 

Lys/K AAA, AAG 

Asn/N AAU, AAC Met/M AUG 

Asp/D GAU, GAC Phe/F UUU, UUC 

Cys/C UGU, UGC Pro/P CCU, CCC, CCA, CCG 

Gln/Q CAA, CAG Ser/S UCU, UCC, UCA, UCG, 
AGU, AGC 

Glu/E GAA, GAG Thr/T ACU, ACC, ACA, ACG 

Gly/G GGU, GGC, GGA, GGG Trp/W UGG 

His/H CAU, CAC Tyr/Y UAU, UAC 

Ile/T AUU, AUC, AUA Val/V GUU, GUC, GUA, GUG 

START AUG STOP UAA, UGA, UAG 

Legend: A – Alanine, F – Phenylanine, S – Serine, Y – Tyrosine, C – Cysteine, L – Leucine, W 

– Tryptophan, P – Proline, H – Histidine, R – Arginine, Q - Glutamine, I – Isoleucine, T – 
Threonine, N – Asparagine, K – Lysine, M - Methionine, V – Valine, D – Aspartic acid, G – 

Glycine, E – Glutamic acid. 
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Table 3.9 and 3.10 represent the standard canonical genetic code. It is not uni-
versal: there are organisms where the synthesis of proteins relies on a genetic code 
that varies from the standard one. The discovery of genetic code, based on a triplet 
codon brought to A. Sanger the second Nobel Prize in 1970.  

The main features of the genetic code are: 
 

• Redundancy or degeneracy: the same aminoacid can be encoded by distinct 
codons: e.g. Alanine/A is specified by codons: GCU, GCC, GCA and GCG.  

X This situation defines the four fold degenerate site: the third position 

can be any of the four possible (A, C, G, U) and all the four codons are 

giving the same aminoacid. 

X A two-fold degenerate site is defined if only two of four possible nu-

cleotides in that position give the same aminoacid.  

E.g.: Asparagine (Asn/N) is specified by: AAU, AAC (two pyrimidi-

nes C/U) 

Aspartic acid (Asp/D) is specified by: GAU, GAC (two purines 

A/G) 

X Three-fold degenerate site is defined when changing 3 of four nucleo-

tides, the same aminoacid is obtained. 

E.g.: (the only one) Isoleucine (Ile/I) – AUU, AUC, AUA. 

X Six codons define the same aminoacid: 

e.g.: Arg/R, Ser/S, Leu/L. 

X Three STOP codons: UAA, UGA, UAG called also termination or non-

sense codons, which signal ending of polypeptide (protein) generated 

by translation. 

X Only two codons define a unique aminoacid: AUG – Methionine which 

also specify the START of translation and UGG – Tryptophane. 

• From coding point of view, redundancy means that the number of code words 
(codons): 43 = 64 is larger than the number of the messages to be encoded: M = 
20 amino-acids + 1 START + 1 STOP = 22. 

• The difference: 64 – 22 = 42 combinations (codons) are redundant and define 
the degeneracy of the code. Redundancy (see Cap. 5) allows error protection. 
Degeneracy of the genetic code makes it fault-tolerant for point mutations. 

e.g. four fold degenerate codons tolerate any point mutation on the third po-
sition meaning that an error (silent mutation) would not affect the protein. 

• Since 2004, 40 non-natural amino-acids has been added into protein, creating a 
uniquely decodable genetic code in order to be used as a tool in exploring pro-
teins structure and functions or to create novel enhanced proteins [44], [42]. 

Bioinformatics, the “computational branch of molecular biology” or “in silico-
biology [10], started 40 years ago when the early computers were used to analyse 
molecular segments as texts, has tremendously evolved since than, being at the 
centre of the greatest development in biology and other connected fields: deci-
phering of human genome, new biotechnologies, personalized medicine, bioar-
cheology, anthropology, evolution and human migration. 
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3.4   Coding Efficiency: Compression Ratio 

The correspondence between si and ci achieved by coding can be accomplished in 
various ways using the alphabet X. To choose a code from more possible ones can 
be done if an optimisation criterion is used. The optimisation criterion for a noise-
less channel is the transmission cost, which is desired to be minimal, thus a mini-
mum number of symbols entering the channel. For information storage systems, 
the optimisation criterion is the storage space, which as in the transmissions case, 
is desired to be minimal. 

We define the length of a word (li) as the number of letters that compose a 
codeword, in order to be able to make remarks upon this criterion. Each letter is 
assumed to have the same duration, supposed 1. 

Average length of the codewords ( l ), is the average value of these lengths: 

∑=
=

M

1i
iilpl                                                    (3.43) 

Taking into account that, by encoding, to every message si a correspondent 
codeword ci is made, we have: 

( ) ( ) M1,i   ,pcpsp ii ===i                                      (3.44) 

The transmission cost is proportional to l ; therefore it is desirable to get minl  

by encoding. 

The question that raises now is: ?min =l  

Under the assumption of a DMS, the average information quantity per symbol 
is H(S) and it is equal to the average information quantity per codeword ci; hence: 

∑−==
=

M

1i
i2i plogpH(C)H(S)                                     (3.45) 

The average quantity of information per each code letter is H(X): 

∑ ∑−=−=
= =

m

1j

m

1j
j2jj2j plogp)p(x)logp(xH(X)                        (3.46) 

It follows  

H(X)lH(S) ⋅=                                           (3.47) 

known as entropic or lossless compression relation. 
Finally, we get: 

H(X)

H(S)
l =                                                (3.48) 
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The minimal value for l  is obtained for D(X)(X)HH(X) max == , meaning 

the use of the alphabet X with equal probability: m1,i ,p m
1

io =∀= , which leads 

to: 

m log

H(S)
l

2
min =                                           (3.49) 

Remark 

1. The same condition m1,i ,p m
1

io =∀= , known as statistical adaptation of the 

source to the channel (see relation 3.4) is obtained, this time from coding the-

ory point of view.   
2. Relation (3.49) is valid only when the alphabet X is memoryless; however, this 

is not always the case [6].  
3. Equations (3.47) and (3.49) show that encoding a DMS, its entropy is pre-

served, the source being changed into another one, X, with maximum entropy. 
This justifies the denomination of this type of compression as entropic or loss-
less compression. 

Coding efficiency (η ) is defined as: 

m ld l

H(S)

l

lη min ==                                             (3.50) 

Another measure, more often used in compression techniques that also empha-
sises the coding efficiency, is the compression ratio RC defined as the ratio be-
tween the length of the codewords in uniform encoding lu and the average length 
of the codewords obtained by encoding: 

l

l
R u

C =                                                (3.51) 

The codes for which minll =  are named absolute optimal codes (AOC). For 

AOC we have 

ldmD(X)(X)Hmax ==  

so the symbols xj have equal probabilities: m1,j  1/m,)p(x j =∀= . 

Taking into account that )p(c)p(s ii = , it follows that for a DMS (symbols xj 

are assumed independent) we have: 

( )
il

i
m

1
cp ⎟⎠

⎞⎜⎝
⎛

=                                            (3.52) 

Using the following equalities 

( ) ( )∑ ∑ ∑ =∑=⎟⎠
⎞⎜⎝

⎛
==

= = = =

−M

1i

M

1i

M

1i

M

1i

l
l

ii 1m
m

1
cpsp i
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we also get: 

1m
M

1i

il =∑
=

−                                             (3.53) 

This relation is valid for AOC and it shows the connection that must exist be-
tween the lengths li and the code alphabet m for absolute optimal codes. 

 
Remark 
If (3.53) is fulfilled for a particular code, it does not necessarily mean that the 
code is an absolute optimal one; however, it states that for a given alphabet m, for 
words of lengths li that fulfils (3.53), an AOC can always be built. 

 

Example 3.3 
Source S is encoded in two different ways as follows: 

⎟⎟⎠
⎞⎜⎜⎝

⎛
0,125     0,125     0,25    0,5

s           s         s       s
:S

4321
 

⎟⎟⎠
⎞⎜⎜⎝

⎛
1     2     3    3

0      10      110     111:

1

1

il

C
 ⎟⎟⎠

⎞⎜⎜⎝
⎛

3     3     2   1

111      110      10     0:

2

2

il

C
 

One must notice that (3.53) is fulfilled for both C1 and C2: 

2-1 + 2-2 + 2-3 + 2-3 = 1, 

but even so, only C2 is an AOC 

1η

1
2,6

1,75

2ld l

H(S)η

2

1

=

<==
 

3.5   Existence Theorem for Instantaneous and Uniquely 
Decodable Codes (Kraft and McMillan Inequalities) 

3.5   Ex istence Theorem for Instantaneous and U niquely Decodable Codes 

Theorem T1 
The necessary and sufficient condition for instantaneous codes existence is: 

1m
M

1i

il ≤∑
=

−                                                   (3.54) 

This relationship is also known as Kraft inequality. 
 

Proof 
 

a) necessity: 
We will show that (3.54) is fulfilled for an instantaneous code of base m with 

words of length l1 ≤ l2 ≤....... ≤ lM . 
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The code can be drawn as a graph of order m and size lM. Being an instantane-
ous code, it means that no codeword must be a prefix of another codeword, so that 
once a codeword is identified on the tree, it is impossible that another codeword 
exist on the incident branches representing the identified codeword. 

This mean that for every codeword of length li, m ilMl −  ends of the tree are  

excluded. 
For the given code, the total number of excluded ends is: 

∑
=

−M

1i

ll iMm  

and taking into account that the number of ends for a tree of size lM is mlM , one 

of the following two inequalities must be true: 
 

MiM l
M

1i

ll mm ≤∑
=

− , or: 

1m
M

1i

li ≤∑
=

−  

b) sufficiency: 

It will be shown that using an m base alphabet and taking lengths li so that l1 ≤ 

l2 ≤....... ≤ lM, an instantaneous code can be built, under the assumption that Kraft 
inequality holds. 

Let us imagine an m order graph of size lM. An end of this graph is considered 

to be a codeword of length l1, and thus m 1M ll −  ends eliminated. But taking into 

consideration that MiM l
M

1i

ll mm ≤∑
=

− , at least one end that can be considered a 

codeword of length l2 still remains; therefore we have: 

mmm M2M1M lllll ≤−+−  

The algorithm is applied for codeword of lengths l3, l4, …. 
 

Theorem T2  
Existence theorem for uniquely decodable codes, McMillan theorem: Kraft ine-
quality, (3.54), is a necessary and sufficient condition for UDC existence. 

 

The proof of this theorem is similar to the one made for Kraft theorem [33]. 
 

Theorems T1 and T2, given by (3.54) are existence theorems; they show that for a 
given alphabet m, with lengths li, obeying (3.54), instantaneous or uniquely de-
codable codes can be built: notice that these theorems do not give algorithms for 
IC or UDC codes. 
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3.6   Shannon First Theorem (1948) 

As shown in 3.4 (AOC), for the special case when source messages have certain 
particular values as: 

( ) ( ) il
iii mcpspp −===                                       (3.55) 

the coding efficiency is maximum (η=1). From (3.55) it follows that: 

set)(integer  Z
mlog

plog
l

2

i2
i ∈−=                                   (3.56) 

For a source with a random set of probabilities, the ratio given by (3.56) is not 
an integer and therefore will be rounded upwards until obtaining the closest supe-
rior integer: 

i
2

i2
i

2

i2 p1
mlog

plog
l

mlog

plog
⋅+−<≤−                                 (3.57) 

∑+−<≤−
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1i
i

2

i2i
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2

i2i p
mlog

plogp
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M
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M

1i

M

1i
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M
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i2i
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2

i2i p
mlog

plogp
pl

mlog

plogp
 

1
mlog

H(S)
l

mlog

H(S)

22

+<≤                                     (3.58) 

Relationship (3.58) is valid for any DMS, and in particular for the n-th exten-

sion of the source S, for which nH(S))H(Sn = ; it follows that:  

1
mlog

nH(S)
l

mlog

nH(S)

2
n

2

+<≤ ,  

where ln  is the average length obtained encoding the source extension Sn. 

n

1

mlog

H(S)
l

n

l

mlog

H(S)

2

n

2

+<=≤                               (3.59) 

For ∞→n , we obtain: 

min
2

n

n
l

mlog

H(S)
l

n

l
lim ===

∞→
                                    (3.60) 

Relation (3.60) represents Shannon first theorem or noiseless channels coding 

theorem; it shows that when coding on groups of n symbols, an absolute optimal 
encoding can be achieved for any source S, under the assumption: ∞→n . This 
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was expected due to the fact that when coding on groups of symbols, rounding 
upwards refers to the entire group and thus the rounding corresponding to only 
one symbol is smaller than the one obtained when coding symbol by symbol, so 

we will approach as much as possible to minl .    
 

Example 3.4 

Be ⎟⎟⎠
⎞⎜⎜⎝

⎛
0.30.7

ss
:S

21
 encoded with Ca={0;1}.  

It follows that: 
 

 
0,88η 1,l

lbits/symbo  0,88H(S)l

aa

min

==

==
 

 The 2nd order extension of the source is: 

 ⎟⎟⎠
⎞⎜⎜⎝

⎛
0.090.210.210.49

ssssssss
:S

221221112 encoded with  

Cb : (1 01 000 001) 

In this case we get: 8,1lb =  

Relationship (3.21) becomes: a
bn

l0,9
2

1,8

n

l

n

l
<=== ; one may notice a de-

crease of the average length per symbol when coding on groups of two symbols. 
We invite the reader to check coding efficiency improvements when coding on 
groups of n=3 symbols. 

3.7   Losseless Compression Algorithms 

Shannon first theorem shows that for any source S, an absolute optimal coding is 
possible, if performed on the n-th order extension, with ∞→n .  

In practice n is finite. The algorithms called optimal algorithms are ensuring an 

encoding for which minll → . 

The basic idea when dealing with optimal algorithms is to associate to high 
probabilities pi, short codewords (small li), and conversely fulfilling, obviously, 
Kraft inequality. 

 

Remark 
This basic idea for optimal codes is not new, a relevant example being Morse 
code, dating from 1837. 

3.7.1   Shannon-Fano Binary Coding 

Shortly after stating its first theorem, Shannon gave the first optimal coding algo-
rithm, in 1949; R.M. Fano, simultaneously, proposed the same algorithm and this 
is why the algorithm is known as Shannon – Fano algorithm. 
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Although efficient, this algorithm was proved not to be the best for any kind  
of source; Huffman algorithm, invented later, proved to be the best one, and thus 
optimal. 

The main steps of Shannon-Fano algorithm are: 
 

1. Put the set M1,i},{sS i ==  in decreasing order of probabilities. 

2. Partition S into two subsets (S0, S1) of equal or almost equal probabilities 

2/1)P(S)P(S 10 ≅≅ . 

3. Repeat step 2 for subsets S0 and S1 and get new subsets S00, S01 and S10, S11 re-
spectively, of probabilities as close to 1/4. Repeat until each subset contains 
only one message si. 

4. Assign 0 to S0 and 1 to S1 or vice versa such that the codewords assigned to the 
symbols corresponding to S0 begin with 0 and the codewords assigned to the 
symbols corresponding to S1 begin with 1. 

5. Repeat step 4 until the last subsets that contain one message. 
 

Example 3.5 
Be a DMS given by the probability mass function: 

⎟⎟⎠
⎞⎜⎜⎝

⎛
1/8    1/8     1/4    1/2

s     s      s     s
:S

4321
 

Determine: 
a) binary Shannon-Fano code corresponding to the source. 
b) the code tree. 
c) encoding efficiency and the compression ratio. 
d) statistical adaptation of the source to the channel, made by encoding. 

 

Solution 

a) 

si pi Partitions  ci li li0 li1 

s1 1/2 0 0 1 1 0 

s2 1/4 0 10 2 1 1 

s3 1/8 0 110 3 1 2 

s4 1/8 

 

1 
1 

1 111 3 0 3 

 

b) The graph corresponding to the code is given in Fig. 3.11 

 
 10 110

111 
1

0 

11 

0 0 0

111 

 

Fig. 3.11 The coding tree of Example 3.5 
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One may notice that an instantaneous code is obtained. 
 

c) ∑ =×+×+×+×==
=

M

1i
ii 1,7531/831/821/411/2lpl  

1.75plogpH(S)
mlog

H(S)
l i2

M

1i
i

2
min =∑−===

=
 

100%,1
1.75

1.75

l

l
η min

c ====  

 

therefore the code is absolute optimal; this could have been easily noticed even 
from the beginning as the source probabilities lead to integer lengths li: 

 

- log2 p1= - log2 1/2=1=l1 

- log2 p2= - log2 1/4=2=l2 
- log2 p3= - log2 1/8=3=l3 
- log2 p4= - log2 1/8=3=l4 

 

l

l
R u

C =   

where lu is determined from: 

Mm ul ≥                                                (3.61) 

It follows that: 

ldm

ldM
lu =                                              (3.62) 

We get lu = 2, therefore RC = 2 / 1,75 = 1,14 
 

d) Statistical adaptation of the source to the channel involves the determination 
of the probabilities corresponding to the code alphabet, therefore of p(0) and p(1), 
which must be as close as possible; for an AOC we must have p(0)=p(1)=1/2. The 
two probabilities are computed using the equations: 

∑ ∑+

∑
=

+
=

= =

=
M

1i

M

1i
1ii0ii

M

1i
0ii

10

0

lplp
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NN

N
p(1)                              (3.63) 
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1i
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1ii0ii

M

1i
1ii

10

1

lplp

lp

NN

N
p(1)                             (3.64) 

where N0 and N1 are the average number of zeros and ones used in source coding. 
We obtain p(0)=p(1)=1/2 and therefore the statistical adaptation of the source to 

the channel was accomplished through encoding point of view; this means that 
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such a source will use the binary symmetric channel at its full capacity (informa-
tion theory point of view). 

3.7.2   Huffman Algorithms 

Binary static Huffman coding (1952) 
 

Huffman algorithm (1952) is an optimal one, meaning that no other algorithm en-
sures a shorter average length. There are cases when other algorithms can provide 
an average length equal to Huffman one, but never smaller. 

The steps of this algorithm are: 
 

1. Put the source S={si} messages in decreasing order of probabilities. 
2. Combine the two least probable messages into a reduced message 

M1M1 ssr ∪= −  having the probability: 

)p(s)p(s)p(r M1M1 += − . 

3. Include the message r1 into the remaining messages set and put this set in de-
creasing order of probabilities, obtaining the ordered stream R1. 

4. Repeat the reduction algorithm until the last ordered stream Rk contains only 
two messages Rk={rk-1 ,rk}. 

5. The codewords corresponding to each message are obtained as follows: 

– assign ‘0’ to the symbol rk-1 and ‘1’ to rk 

– assign ‘0’s and ‘1’s to each restriction until singular messages (si) are  

obtained. 

Example 3.6 
 

a) Encode using Huffman binary algorithm the source S: 

⎟⎟⎠
⎞⎜⎜⎝

⎛
0.050.100.150.150.250.3

ssssss
:S

654321
 

b) Calculate the compression efficiency and the compression ratio  
 
c) Show the fulfilment of lossless compression relation. Discussion. 

 

Solution 

a) 

    Restrictions 

si pi ci li R1 R2 R3 R4 

s1 0,3 00 2 0,3 0,3 0,4   0,6  0 

s2 0,25 10 2 0,25 0,3 0,3  00   0,4  1 

s3 0,15 11 2 0.15 0,25 10 0,3  01  

s4 0,15 010 3 0,15    010 0,15 11   

s5 0,10 0110 4 0,15    011    

s6 0,05 0111 4     
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b)   ∑ ==
=

6

1i
ii 452.lpl  

∑ =−=
=

6

1i
i2i 2.39plogpH(S)  

98%0.98
2.45

92.3η ===  

1.225
2.45

3

l

l
R u

c ===  

c) Using (3.63) and (3.64), we obtain: p(0)≈0.6, p(1)≈0.4 and H(X)=0.9785.  
The lossless compression relation (3.47) becomes:  

2.3973.0.97852.45H(X)lH(S)2.39 =⋅=⋅==  

Discussion: 
Relation (3.47) was given under the assumption of S and X memoryless 

sources. Encoding introduces a slight memory, meaning that X is not com-
pletely memoryless. 

 
Non-binary static Huffman encoding (m>2) 

 

Huffman also presented the general case of its algorithm for a channel with an al-
phabet containing more than two symbols (m>2). Unlike for binary coding, when 
coding in a larger m base, each reduction will be formed from m symbols. In this 
case, after the first reduction we obtain a new source having M-(m-1) symbols, 
and after the last reduction (of order k) it has M-k(m-1) symbols. It must be under-
lined, that for an accurate encoding, the last reduction must contain exactly m 
elements, therefore: 

M-k(m-1)=m                                              (3.65) 

When the number of source messages does not allow an accurate encoding in 
the sense given by (3.65), this number is increased, the new messages having zero 
probabilities and therefore not affecting the initial source. 

 
Example 3.7 
Encode the source from Example 3.6 using a ternary alphabet (m=3) and deter-
mine the efficiency and the compression ratio. 

 
Solution 

The number of messages must check (3.65). 

Zk7,32231)k(3m1)k(mM ∈=+×=+−=+−=  
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Note that a supplementary symbol s7 of zero probability must be added. 
 

si pi ci R1 R2 

s1 0,3 1 

s2 0,25 2 

s3 0,15 00 

s4 0,15 01 

s5 0,10 020 

s6 0,05 021 

s7 0,0 022 

0,3 

0,25 

0,15   00 

0,15   01 

0,15   02 

    0,45    0 

    0,3      1 

    0,25    2 

 

1.8530.0530.1020.1510.2510.3l =×+×+×+×+×=  

1.5
1.584

2.39

mlog

H(S)
l

2
min ===  

81%0.81
1.85

1.5η ===  

l

l
R u

C =  where lu is   1.63
1.584

2.584

3log

6log

mlog

Mlog
l

2

2

2

2
u ====  

therefore we choose lu=2. 
Replacing lu=2 in the compression ratio formula, we get: 

1.33
1.5

2
RC ==  

 
Remarks concerning static Huffman algorithm 
 

• The obtained codes are not unique. Interchanging 0 with 1 (for binary codes) 
we obtain a complementary code. Similarly, for messages with equal probabili-
ties, assigning the codewords is arbitrarily. However, even though the code is 
not unique, all the codes obtained with the same algorithm provide same aver-
age length, therefore same efficiency and compression ratio. 

• The last m codewords length is the same, if m-ary alphabet is used. 

• The codes, obtained using the described algorithms, are instantaneous; there-
fore no codeword is prefix for another codeword. 

• Symbol by symbol Huffman coding, in the case when the highest probability is 
close to 1, has as result a code efficiency decrease. This drawback can be over-
come using Huffman coding for streams of symbols (see Shannon’s first theo-
rem for n>1). In this case the information is divided in fixed length blocks that 
are then encoded. 

• Huffman coding is frequently used as the final processing (back-end coder), in 
a series of compression schemes. 
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Multi-group Huffman coding [41] 
 

This type of coding is used for sources that generate streams of characters belong-
ing to disjunctive classes, for example sources generating burst letters followed by 
numbers and then by blank spaces. When designing such an encoder a tree is set 
up for each class of symbols. A failure symbol is then added to each tree. Each 
character is coded taking into consideration the current Huffman tree. In the case 
when the character can be found in that particular tree, its corresponding code is 
transmitted; otherwise the code corresponding to the failure character is transmit-
ted pointing to another tree. 

Advanced applications of this type can be found in database system drivers. 
 

Dynamic Huffman coding (1978) 
 

All Huffman-type algorithms that have been presented so far bear one major dis-
advantage: all require the source statistics (static algorithms). This drawback can 
be overcome using an adaptive (dynamic) algorithm. R.G. Gallager  [14] pre-
sented in 1978 three new theorems on dynamic Huffman codes. D.E. Knuth [24], 
using Gallager theorems, presented a Huffman algorithm with the capability of 
dynamically changing its own tree. 

The basic idea of dynamic Huffman algorithm is to use, for coding the symbol 
si+1, a coding tree (a coding dictionary set up as a binary tree) constructed using 
the first i symbols of the message. After transmitting the symbol si+1 the coding 
tree must be revised in order to code the next symbol si+2. There are more dynamic 
Huffman versions (FGK, ∆) [2] each of them using a different method for setting 
up the tree. 

In what follows we will introduce the pseudo-code corresponding to the dy-
namic Huffman compression algorithm. 

The general compression procedure for dynamic Huffman coding has the fol-
lowing pseudo-code: 

 

- initialise the coding tree with a root node; 

- transmit the first symbol as it is (using, for example, its ASCII code); 

- add 2 leafs to the root node (a left leaf,  empty leaf of weight 0, a right leaf 

of weight 1, which contains the current symbol) 

 

while (end of message)  

{   

 - read a message symbol; 

if(the letter already belongs to the tree) 

 -  transmit its code from the tree;   

 else  

{  

-  transmit the empty leaf code; 

     -  transmit the ASCII code of the letter; 

} 

       update tree; 

} 
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after ’c’ tree: 

after ’b’ tree: 

 

Fig. 3.12 Evolution of dynamic Huffman FGK tree for the message ‘abcbb’ 
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Remark 
The only difference between the numerous versions of dynamic coding is the way 
the coding tree is updated.  

One version of updating the tree is the FGK (Faller, Gallager, and Knuth) algo-
rithm. The basic idea for this method is the minimisation of 

∑
j

jjw 1   (sum equivalent to the bit-length of the coded message), 

where wj represents the weight of the leaf j associated to the symbol j (the number 
of appearances of the j symbol) and lj is the code length associated to that leaf. 

This method is used in the MNP5 (Microcom Network Protocol 5) data com-
pression standard for modems. 

The pseudo-code corresponding to the FGK updating procedure is: 
 

- q = the leaf corresponding to the symbol si if this symbol can be found in 

the tree, or an empty leaf if it doesn’t belong to the tree; 

if (q is a 0 leaf)  

{  

- substitute the 0 leaf with a parent node with two 0 leafs sons num-

bered: 1 the left son, 2 the right son, 3 the parent; 

- increment the order of the other nodes; 

- q = the new created right son; 

} 

while (q is not a root node) 

{ 

- increment the weigh of the node q; 

  - replace q with the highest ranked and smallest weighted node; 

- q = q node parent; 

   } 
 

Huffman coding for Markov sources 
 

Until now Huffman coding was applied only for memoryless discrete sources. A 
question rises: how to apply this algorithm for memory sources? The answer to 
this question can be given in two ways: 
 

• the probability mass function of the stationary state P* is encoded obtaining a 
unique code. 

• the Markov source is encoded for all M states from where the source can 
evolve, therefore determining M codes. 
Let us now code the Markov source from Example 2.7 for which we have:  

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

0,6    0,2   0,2

0,3    0,4   0,3

0,2    0,2   0,6

M  

and the stationary state probability mass function is: 

[ ]8/3   4/1   8/3P* =  
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a. Stationary state Huffman coding: 
 

si pi ci 

s1 

s2 

s3 

3/8 

3/8 

1/4 

1 

00 

01 

 
The average length of the codewords is: 

1.6224/128/318/3l =×+×+×=  

b1. Huffman coding, the source starting from state s1: 
 

si pi ci 

s1 

s2 

s3 

0,6

0,2

0,2

0 

10 

11 

1.420.220.210.6l1 =×+×+×=  

b2. Huffman coding, the source starting from state s2: 
 

si pi ci 

s1 

s2 

s3 

0,4 

0,3 

0,3 

1 

00 

01 

61.230.230.140.l2 =×+×+×=  

b3. Huffman coding, the source starting from state s3: 
 

si pi ci 

s1 

s2 

s3 

0,6 

0,2 

0,2 

0 

10 

11 

41.20.220.210.6l3 =×+×+×=  

The average length of Huffman code applied to this source will be determined 
as the average value of the lengths determined previously: 

1.451.48/31.64/11.48/3lplplpl 3
*
32

*
22

*
1M =×+×+×=×+×+×=  

Remark 
If the number of states is high, the average length decreases slower and slower and 
the number of distinct codes increases so that coding the stationary state becomes 
more practical [16]. 
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Conclusions concerning Huffman coding 
 

• This algorithm is probably one of the most used compression algorithms. 

• It is a rigorous, simple and elegant algorithm appreciated both by theorists and prac-
titioners. Despite its “age”, experimental studies in which it is used still appear. 

• The algorithm can be applied in three distinct versions: 

– static: knowledge of the source statistics P(S) is compulsory 

– quasi-dynamic (half-adaptive): as a first step finds the source PMF and 

then uses static encoding 

– dynamic (adaptive): it does not require the knowledge of source statistics 

in advance as the tree is constructed with each read symbol  

• The use of the static version of this compression algorithm in transmissions is 
limited to known sources for which the PMF is known: P(S) (e.g. for com-
pressed transmissions of texts written in different languages, the encoder-
decoder can be designed according to a well known statistic P(S)). 

• Huffman algorithm – being optimal at message level – was thought to be the 
best compression algorithm. However, in practical applications, this statement 
has limitations; it is forgotten that it was defined in restrictive conditions: 

– memoryless source 

– symbol by symbol encoding 

Most of the real sources are not memoryless and the encoding can be done on 
groups (using Shannon first theorem) therefore it is possible to achieve better 
compression ratios RC than the ones given by Huffman algorithms, although the 
former compressions are not optimal. 

Between 1952 and 1980, after Huffman work publication and computer spread-
ing, data compression had a major development both theoretically and practically. 
Some data compression techniques occurred and were named, although not always 
accurately, ad-hoc compression techniques. 

Many researches in this field have focused on coding source extensions for 
which each symbol corresponds to a stream of symbols of the initial source. 

3.7.3   Run Length Coding (RLC) 

The basic idea of run length coding consists in replacing a stream of repeating 
characters with a compressed stream containing fewer characters. This type of 
coding is especially used for memory sources (repetition means memory). 

Principle of run length coding: 
 

• successive samples are analysed and if a number of r successive samples differ 
with less than α quanta, it is said that we have a r-length step (α is named the 
compression algorithm aperture; identical samples implies α=0) 

• for transmissions or storage, it is enough to provide only the first sample ampli-
tude and the step length ‘r’, in binary. 

Huffman coding of steps (offers the best compression): 

• the first sample from every step is stored together with the codeword which 
represents the step length (ri) 

• the data statistics p(ri), necessary for encoding, is obtained experimentally. 
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Example 3.8 [38] 
Consider a fax transmission (black and white image). Taking into consideration 
streams of the same type (black or white) with length ri, we can determine their 
PMF, for the whole image. 

In this case, the source alphabet will be: 

A = {r1, r2, …, rM }, 

where ri indicate streams of the same length ri (black or white).  
The corresponding PMF, obtained as a result of a statistical analysis of the im-

age, is given by: 

( ) ∑ ===
=

M

1i
iii 1p  ,m1,i  ],[prP  

Assuming independent steps, the average information quantity per step is: 

( ) ∑−=
=

M

1i
i2i ][bits/step   plogpAH                                 (3.66) 

These steps can be optimally encoded using the binary Huffman algorithm; it 
results, for A, the following average length: 

( ) ( ) 1AHlAH +<≤                                           (3.67) 

Dividing (3.67) by the average number of samples per step ( r ) we get: 

∑=
=

M

1i
ii /step]ixels)[samples(p ,rpr                                  (3.68)  

It follows that: 

( ) ( )
r

1AH
D

r

l

r

AH
b

+
<=≤

•
                                    (3.69) 

where  bD
•

 is the binary rate [bits/pixel (sample)]. 

r

l
Db =
•

                                                (3.70) 

For a typical fax image, corresponding to a weather forecast image [38], for this 

type of compression we get: 
( )

l][bits/pixe  0.2
r

AH
≅  compared to ‘1’ obtained 

without compression. 
 

Remark 
A better modelling of this information source can be made using a first order 
Markov model, in which case the compression is even better. 
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Example 3.9 [38] 
The fax standard, proposed by the 3rd research group from CCITT, (Hunter and Rob-
inson, 1980) has a resolution of 1728 [samples/line] for A4 documents so the maxi-
mum number of codewords/line is 1728. Due to this great number of codewords the 
‘classic’ Huffman code becomes useless, therefore a modified Huffman code has been 
introduced; each step with length ri > 63 is divided in 2 steps: one having the value N 
x 64 (N is an integer) - “the root word”, and the other one - “the terminal part”, made 
of steps with values between 0 and 63. The black and white streams are encoded 
separately as they are independent, obtaining a lower rate (and thus a better compres-
sion). Table 3.12 shows the modified Huffman code used in facsimiles. 

Table 3.12 Modified Huffman code used in fax 

Codewords 

ri White Black ri White Black 

0 00110101 0000110111 32 00011011 000001101010 

1 000111 010 33 00010010 000001101011 

2 0111 11 34 00010011 000011010010 

3 1000 10 35 00010100 000011010011 

4 1011 011 36 00010101 000011010100 

5 1100 0011 37 00010110 000011010101 

6 1110 0010 38 00010111 000011010110 

7 1111 00011 39 00101000 000011010111 

8 10011 000101 40 00101001 000001101100 

9 10100 000100 41 00101010 000001101101 

10 00111 0000100 42 00101011 000011011010 

11 01000 0000101 43 00101100 000011011011 

12 001000 0000111 44 00101101 000001010100 

13 000011 00000100 45 00000100 000001010101 

14 110100 00000111 46 00000101 000001010110 

15 110101 000011000 47 00001010 000001010111 

16 101010 0000010111 48 00001011 000001100100 

17 101011 000011000 49 01010010 000001100101 

18 0100111 0000001000 50 01010011 000001010010 

19 0001100 00001100111 51 01010100 000001010011 

20 0001000 00001101000 52 01010101 000000100100 

21 0010111 00001101100 53 00100100 000000110111 

22 0000011 000001101111 54 00100101 000000111000 

23 0000100 00000101000 55 01011000 000000100111 

24 0101000 00000010111 56 01011001 000000101000 

25 0101011 00000011000 57 01011010 000001011000 



98 3   Source Coding 

 

Table 3.12 (continued) 

26 0010011 000011001010 58 01011011 000001011001 

27 0100100 000011001011 59 01001010 000000101011 

28 001000 000011001100 60 01001011 000000101100 

29 00000010 000011001101 61 00110010 000001011010 

30 00000011 000001101000 62 00110011 000001100110 

31 00011010 000001101001 63 00110100 000001100111 

“Root” codewords 

ri White Black ri White Black 

64 11011 0000001111 960 011010100 0000001110011 

128 10010 000011001000 1024 011010101 0000001110100 

192 0010111 000011001001 1088 011010110 0000001110101 

256 0110111 000001011011 1152 011010111 0000001110110 

320 00110110 000000110011 1216 011011000 0000001110111 

384 00110111 000000110100 1280 011011001 0000001010010 

448 01100100 000000110101 1344 011011010 0000001010011 

512 01100101 0000001101100 1408 011011011 0000001010100 

576 01101000 0000001101101 1472 010011000 0000001010101 

640 01100111 0000001001010 1536 010011001 0000001011010 

704 011001100 0000001001011 1600 010011010 0000001011011 

768 011001101 0000001001100 1664 011000 0000001100100 

832 011010010 0000001001101 1728 010011011 0000001100101 

896 011010011 0000001110010 EOL 000000000001 000000000001 

 
Remark 
If the compression is made using variable-length coding (Huffman coding), re-
moving the redundancy, the transmission becomes vulnerable to errors. In general 
(but not in all the cases) an error occurred in transmission will spread, leading to 
synchronisation loss and, implicitly, to an incorrect decoding. 
 

5W 2B 2W 3B 25W  

1 1 0 0 1 1 0 1 1 1 1 0 0 1 0 1 0 1 1 -a 

                    

5W 3B 2W 3B 25W  

1 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 -b 

                    

5W 1B 7W 6B 4W  

1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 1 1 -c 
 

Fig. 3.13 The effect of one error on the modified Huffman code: a) transmitted sequence, b) 
and c) received sequence affected by one error 
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Coding using a limited set if step lengths 
 

Another way of compressing identical streams, although not optimal as in Huff-
man coding, can be achieved using a limited set of codewords lengths correspond-
ing to each step. 

 
Example 3.10 [38] 
 

• Images in the visible and infrared spectrum taken by the weather forecast satel-
lites can be classified in three classes, according to the homogeneous areas they 
represent: the first class (water and land surfaces) and two classes of clouds 
(C1, C2). The homogenous regions are suitable for run length coding before 
transmission. Two sets of lengths, of 8 and 16 bits are used. 

• If the steps length ri<64=26, the images are coded using a word of 11=8 bits, the 
first two bits indicating the region: 

 

b1b2  = 00 indicates water + land 

01→C1 

 10→C2 

 

b1 b2 b3 b4 b5 b6 b7 b8 

indicate the region 6 bits for uniform coding of ri steps 

 

• If the steps length 64ri ≥ , the extended code is used, therefore l2=16 bits; the 

16 bits are used as shown below: 
 

b1 b2 b3 b4 b5 b6 ..... b16 

11           
extended code 

indicate the region
12 bits for uniformly 

coding the steps ri 

 
It has been determined that, for this application, approximately 94% of streams 

have ri<64, therefore 8 bit coding is used. Average length of the codewords is  

8.5 bits/stream. For regular weather images a compression ratio of 4R c ≅ was  

obtained. 
 

Uniform step coding 
 

The third type of RLC, the poorest in quality, is using uniform step coding. For a 
given source, be r1,…,rM the steps lengths, where rM is the maximum length. All 
these steps will be uniformly encoded, the codewords length being determined by: 
l=log2 rM. 

At the beginning of each step a k-bit word is transmitted (stored) representing 
the value of each sample from the step; next we transmit the l bits representing the 
length of the step. 
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Example 3.11 
In what follows we will present a method used in compressing facsimile black and 
white images; this method is extremely simple and quite efficient, although infe-
rior to Huffman coding. A facsimile system with 1728 samples/line generates 
identical streams having ri = 100 or higher (generally for white streams), therefore 
the steps are encoded with l = 8 bits (Fig. 3.14). 

 

Fig. 3.14 Uniform steps coding for black and white images 

Streams coding for texts 
 

When we are interested in processing texts, a stream of repeating characters can be 
transmitted in a compressed form following the algorithm: a special symbol S is 
transmitted at the beginning of the repeating characters stream to indicate repeti-
tion, next the repeating character X and finally a character C which is counting the 
repetitions (Fig. 3.15). 

 

Fig. 3.15 Text compression  

The stream of seven zeros was compressed transmitting CXS. 

3.7.4   Comma Coding 

Comma code is a uniquely decodable code which indicates through a symbol (0 or 
1) the ending of every codeword. 
 
Example 3.12 

The source ⎟⎟⎠
⎞⎜⎜⎝

⎛
1/81/71/41/2

ssss
:S

4321
, is encoded using a comma code as: 

 

Si pi ciC ciH 

S1 1/2 0 0 

S2 1/4 10 10 

S3 1/8 110 110 

S4 1/8 1110 111 
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We get the average length and the compression ratio: 

1.07
1.87

2

l

l
R

1.874
8

1
3

8

1
2

4

1
1

2

1
lpl

C

u
cC

m

1i
iiC

≅==

=∑ ⋅+⋅+⋅+⋅==
=

 

The corresponding Huffman code is presented in the last column of the coding 
table (CiH). In this case we have: 

cHcH

H

R1.14
1.75

2
R

1.75l

≅=

=
 

It must be noticed that for the source under discussion the compression ratio is 
good enough compared to the maximum value obtained by Huffman coding. 

 
Remark 
For certain applications, comma coding can be more advantageous than Huffman 
coding due to the implementation simplicity and its robustness to errors (comma 
code is much more robust to errors unlike Huffman code). These advantages are 
paid by reducing coding efficiency (the compression ratio, respectively) in com-
parison to optimal codes, although in many cases the decrease can be small. 

3.7.5   Dictionary Techniques [41] 

Text files are characterised by the frequent repetition of some sub-streams. Nu-
merous compression algorithms perform detection and removal of the repeating 
sub-stream. 

The dictionary techniques build the dictionary of common sub-streams either at 
the same time with their detection or as a distinct step. Each dictionary sub-stream 
is put into correspondence with a codeword and the message is then transmitted 
through encoded sub-streams from the dictionary. 

According to the input/output messages dimension, the dictionary techniques 
can be classified in: 

 

• fixed – fixed: dictionary sub-streams have the same length and are uniformly 
encoded 

• fixed – variable: sub-streams are uniform but are not uniformly encoded, for 
example using a Huffman code 

• variable – fixed: at the compressor input the sub-streams are not uniform but 
are uniformly encoded 

• variable – variable: lengths of the dictionary sub-streams and the coding is not 
uniform 
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After the dictionary has been built and the message encoded, the dictionary and 
the encoded message must be transmitted. 

The compression efficiency is better when the dictionary is also compressed. 
This is possible if the compressor and the de-compressor simultaneously build up 
their dictionaries, in the ongoing compression process. This idea can be found in 
LZ -type algorithms.  

3.7.6   Lempel-Ziv Type Algorithms (LZ) 

Adaptive dictionary techniques 
 

Dictionary techniques must allow the transmission of the dictionary from the 
compressor (transmitter), to the de-compressor (receiver). If the dictionary is 
static, it is not transmitted (static compression techniques). When using semi-
adaptive dictionary algorithms, the first step is to transmit the dictionary and then 
to compress the message. 

Adaptive dictionary techniques do not require explicit transmission of the dic-
tionary. Both transmitter and the receiver simultaneously build their dictionary as 
the message is transmitted. At each moment of the encoding process the current 
dictionary is used for transmitting the next part of the message. 

From adaptive dictionary techniques category, the most used ones are the algo-
rithms presented by J. Ziv and A. Lempel in two papers published in 1977 and 
1978; these algorithms are known as “LZ algorithms”. 

The basic idea of LZ algorithms is to replace some sub-streams of the message 
with codewords so that for their each new occurence only the associated codeword 
will be transmitted. 

“Lempel and Ziv have hidden this brilliant idea in a sea of math” [41]. The 
works of these two mathematicians were extremely theoretical, becoming accessi-
ble due to other authors descriptions, so that LZ coding is in fact a family of algo-
rithms built upon the same idea. 

 
LZ-77 algorithm 

 
LZ-77 algorithm uses the following two parameters: 
 

• ]Z[1,N ∞∈ , a window buffer length, which will move upon the transmitted 

message. 

• 1]NZ[1,F −∈ , the maximum length of encoded stream with F << N 

Typical values used in practice are 132N ≅ and 42F ≅ , both expressed as pow-

ers of two and making the algorithm easier for implementation. 
The algorithm involves a window shifting register (buffer) of length N through 

which the message is shifted from right to left. The first N-F elements form the  
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Lempel block, containing the most recently N-F transmitted letters, and the next F 
elements form Ziv block containing the next F letters to be transmitted (Fig. 3.16).  
 

 

Fig. 3.16 The LZ-77 algorithm illustration 

At the beginning, the algorithm initialises Lempel block with a predefined 
stream and loads Ziv block with message’s first characters. Encoding means to 
find the longest sub-stream from the register which has the first element in Lampel 
block and is identical to the stream starting from position N-F+1. This finding 

means to transmit a triplet (S, L, A), where [ ]FN1,S −∈  is the position in the 

Lempel block from where the stream begins, [ ]F1,L ∈  represents the length of the 

stream just found and A represents the letter where the similarity stopped. Next, 
the message is shifted from right to left in the shift register until the next letter, 
which has to be encoded, becomes the farthest element at the left from Ziv. 

Some remarks regarding the algorithm ingenuity: 
 

•  the third element from the transmitted triplet A makes possible to avoid the 
situation when a letter does not exist in the Lempel block (L = 0) 

• the stream from Lempel found to be similar to one from Ziv must start in Lem-
pel block but could be able to extended into Ziv block 

• the “dictionary” used in this technique is made up of every sub-stream from 
Lempel block; it must not be transmitted because it is dynamically resized both 
in encoder and decoder blocks 

• the algorithm is locally adaptive because it uses N-F previously transmitted let-
ters, at most 

• the search inside the table is linear and as a result, the encoding time is also de-
pendent on the lengths N and F 

• the decoding process is fast, because it doesn’t involve a linear search inside 
the buffer  

• due to the fact that N and F are finite numbers, S, L, A can be transmitted using 
an exact number of bits. 
 

Example 3.13 
An LZ77 coding example, starting from an empty Lempel buffer; the message is: 
”aabaabacabadadad” 
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Lempel Buffer Ziv Transmitted 

code (S,L,A) 

1 2 3 4 5 6 7 8 9 10 11 12 S L A 

0 0 0 0 0 0 0 0 a a b a 0 0 a 

0 0 0 0 0 0 0 a a b a a 8 1 b 

0 0 0 0 0 a a b a a b a 6 4 0 

0 a a b a a b a c a b a 0 0 c 

a a b a a b a c a b a d 2 3 d 

a b a c a b a d a d a d 7 4 0 
 

Fig. 3.17 Illustration of LZ-77 algorithm 

LZ-78 algorithm 
 

LZ-78 version is similar to LZ-77, the difference being that the Lempel block is a 

continuously growing ‘dictionary’; having the dimension Zd ∈  theoretically 

unlimited and the strings are numbered from 0 to d-1. Furthermore, there is no 
limit imposed to the Ziv block length. 

For better understanding of the algorithm, let us consider Fig. 3.18: 

 

Fig. 3.18 Illustration of LZ-78 algorithm  

At the beginning, the algorithm initialises the dictionary with an all zero stream 
and sets d=1. At each step, the algorithm sends the longest stream from Lempel 
which is identical to the one from Ziv (actually its associated code) and adds the 
next letter from Ziv where the similarity has been lost. This way, p=‘ma’ is trans-
mitted by the equivalent of ‘m’ from the dictionary using [log2d] bits and by ‘a’ 
which is transmitted as it is. Next, the new stream (ma) is added to the dictionary, 
the message shifts in the Ziv block and the process starts all over again. 

The decoder must decode k+1 streams to be able to add the k-th stream to the 
dictionary.  
 

LZW algorithm (Lempel – Ziv – Welch ‘84) 

 
In 1984, T. Welch published a version of LZ-78 algorithm. This version abandons 
the idea of transmitting the letter at which the similarity between the message  
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sub-streams and those from the ‘dictionary’ breaks. Explicit transmission of each 
stream last letter can be avoided by initialising the dictionary with all the symbols 
used in the message (e.g. the ASCII characters). This way, the letter that had to be 
transmitted explicitly will be the next stream first letter. The most important 
change of LZ-78 version is removing the explicit letter transmission. An improved 
version of the algorithm forms the base of the Compress Program under UNIX. 

LZW algorithm is based on the idea of transforming stream symbols 
S=s1s2s3s4… in sub-streams succession S=S1S2S3... Each sub-stream Si (sub-stream 
containing more si symbols) will be associated to a fixed length codeword. Ini-
tially, we will have a coding table where a codeword is associated to each symbol 

of the source alphabet: ii cs → . Next, the message will be read and when groups 

of symbols occur for the first time, they are added to the table (additional table) so 
that at a new occurrence they will be replaced with the codeword associated to 
their first occurrence. 

LZW algorithm has the following steps: 
 

• Encoding: 
 

– Initialise streams table with singular symbols (source alphabet) 

M1,i},{sS i == , and encodes them with fixed length words: ii cs → . 

– Read the first symbol s1 and sets P=s1, where P is the prefix (found in the 

prefixes stream) 

– Read the next symbol: E=sk 

̇ if PE can be found in the prefixes table, P=PE is made 
̇ if PE is not in the prefixes table, PE is added to the streams table 

(supplementary table), and E=P is added to the prefixes stream P 

• Decoding: 

– the decoder will build the same streams table as the one from encoding 

– each word received is shifted, using the table from encoding, in a prefixes 

stream and the extension symbol PE (which is stored), and this is recur-

sively repeated until the prefixes stream contains only one symbol 

 

Example 3.14 
Consider the source alphabet S={a,b,c,d}, so that the streams table is initialised 
with: 
 

si ci 

a 1 

b 2 

c 3 

d 4 
 

Encoder is fed with stream S = ”ababcbababaadaa”. 
Encoding begins by reading the first symbol s1=a and setting P=a. 
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Next, the symbol s2 is read, E=b but because PE=ab is not in the table of 
streams, the stream PE=ab is added to the supplementary streams table, and 
P=E=b is added to the prefixes stream P. The third symbol s3=E=a is read, but PE 
= ba not being in the streams table, the stream PE is added to the supplementary 
streams table and P=E=a is added to the prefixes stream P. For the fourth symbol 
s4=b=E, we have PE=ab in the additional streams table, therefore P=PE and ab is 
added to the prefixes stream P a. s. o. 

Decoding: the decoder will use the same streams table as the one used for com-
pression. Each received codeword is moved from the similar prefixes table and an 
extension symbol (which is extracted and stored) is recursively repeated until the 
prefixes stream contains only one symbol. 

Let us consider, for example, the case when we receive “9”: 
 

9 = 6b → stores b 

6 = 2a → stores a       ⇒  the decoded sequence is bab 

2 = b   → stores b 
 

Table 3.13 shows how the LZW algorithm works for the sequence given in  
Example 3.14. 

Table 3.13 LZW algorithm applied to Example 3.14  

Input message a b a b c b a b a b a a d a a 

Stream added (to the 
coding table – PE) 

 ab ba  abc cb  bab   baba aa ad da  

Code added (to the 
coding table) 

 5 6  7 8  9   10 11 12 13  

Transmitted stream P  a b  ab c  ba   bab a a d aa 

Transmitted code  1 2  5 3  6   9 1 1 4 11 

 
Conclusions regarding the LZW algorithm 
 

• LZW is an universal compression algorithm which can be applied to any 
source, without even knowing it in advance (it is an adaptive algorithm) 

• coding/decoding are interleaved with a learning process developed while en-
coder/decoder builds and dynamically modifies the streams table; the decoder 
does not need coding tables, because it builds an identical table while receiving 
the compressed data. 

• dividing the input message S into sub-streams Si is not optimal (it doesn’t take 
into consideration the source statistics), due to which LZW is not optimal; the 
idea of Shannon first theorem is used here, the coding being performed on 
symbols groups (on sub-streams). 

• improved versions of LZW algorithm can be obtained making the followings:  

– setting a limit to the length of the streams included in the coding table  

– using a variable number of bits for codeword length (l), smaller at the be-

ginning, then higher as the transmitted codewords number is increased, 

which implies the use of a signalling character. 
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• when coding table is full, there are two options: either to erase the table and 
start the process all over again or to continue with the same table but stopping 
the process of adding new characters. 

• like other compression algorithms, LZW is sensitive to transmission errors; the 
most used method to ensure protection when saving compressed data on disks 
or magnetic tape is to apply the CRC (Cyclic Redundancy Check). 

3.7.7   Arithmetic Coding 

Before getting into details of arithmetic compression, let us present a new point of 
view upon the source coding process. As we have already shown, the information 
given by a symbol si is -log2pi where pi is symbol probability. Now let us imagine 
that this information is a cube of volume –log2pi. In this context, the codeword ci 
associated to the symbol si will be a box through which that volume will be sent 
(transmitted through the channel). The problem is that we have only boxes of cer-
tain capacities and we want to work as efficiently possible (to avoid using big 
boxes for small volumes). In comparison with the uniform and entropic coding, in 
the first case we have boxes of fixed capacity (obviously a big waste of space), 
and in the second case we have boxes of different sizes. Looking at compression 
from this point of view, we get the idea of using boxes of the same capacity but 
filled with more cubes (the information of a symbol), in the order of their arrival. 

From an informational point of view, the basic idea is to encode more symbols 
using only one codeword, of fixed length. However, the problem that must be 
dealt with is how to extract the symbols from the received codeword. 

One solution to this problem is given by the arithmetic coding. 
The steps of arithmetic coding algorithm are: 
 

1. Put the symbols in decreasing order of probabilities: n21 ppp ≤≤≤ … . 

2. Divide the interval [0; 1) into n intervals of dimensions n21 p,,p,p … . 

3. Read the first symbol of the message and memorise its associated interval.  

4. Divide this interval into n intervals, each of them proportional to n21 p,,p,p … . 

5. Read the next symbol and memorise the interval associated to it.  
6. Continue the process following the same algorithm. 
7. Transmit one number from the last memorised interval. 
 

Example 3.15 
Encode the message “abac” using an arithmetical code designed for the source S: 

⎟⎟⎠
⎞⎜⎜⎝

⎛
6/1      3/1      2/1

c       b          a
:S  

A new problem that must be solved is how to encode the sub-unitary numbers that 
must be transmitted. One way to tackle this problem may be the following: choose a 
minimum of the memorised interval and when this interval becomes smaller than that 
minimum, transmit a number contained in the previous interval. The transmitted 
number will not be a sub-unitary one, but an integer representing a multiple of the 
minimum quantum, multiple which can be found in the memorised interval. In this 
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way, for example, if we consider the minimum interval 1/128, for the previous encod-
ing, we transmit 40 (40/128 is in the interval [23/72, 1/3]) in binary on 5 bits. 

Processed Interval Read 

symbol 

Memorized 

Interval 
1/2 (1-0) 1/3 (1-0) 1/6 (1-0) a [0,1/2) 

0 
a 

1/2 
b 

5/6 
1 
c 

  

1/2 (1/2 -0)=1/4 1/3 (1/2-0)=1/6 1/12 b [1/4,5/12) 
0 

a 

1/4 

b 

5/12 

1/2 
c 

  

1/2(5/12-1/4)=1/12 1/18 1/36 a [1/4,5/3) 

1/4 

a 

1/3 

b 

7/18 

5/12 
c 

  

1/2(1/3-1/4)=1/24 1/36 1/72 c [23/72,1/3) 

1/4 
a 

7/24 
b 

23/72 
1/3 
c 

  

  
We transmit a number from the interval [23/72; 1/3), for example 23/72. 

Processed Interval Interval  
containing

23/72 

Associated 
symbol    

1/2 (1-0) 1/3 (1-0) 1/6 (1-0)   

0 
a 

1/2 
b 

5/6 
1 
c 

[0,1/2) a 

1/2 (1/2 -0)=1/4 1/3 (1/2-0)=1/6 1/12   

0 
a 

1/4 
b 

5/12 
1/2 
c 

[1/4,5/12) b 

1/2(5/12-1/4)=1/12 1/18 1/36   

1/4 

a 

1/3 

b 

7/18 

5/12 
c 

[1/4,1/3) a 

1/2(1/3-1/4)=1/24 1/36 1/72   

1/4 
a 

7/24 
b 

23/72 
1/3 

c 

[23/72,1/3) c 
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3.8   Lossy Compression in Differential Coding 

3.8.1   Differential Pulse Code Modulation (DPCM) 

In PCM, a signal x(t), voice, video signal or else is sampled at a rate slightly 
higher than the Nyquist rate: fS = 2fM. For example, in digital telephony with 
maximum frequency fM=3.4 kHz the sampling frequency is fS = 8k Hz. These 
samples are very correlated, the signal x(t), not changing fast from a sample to the 
next one (it is a memory source). The corresponding PCM signal is therefore 
highly redundant. The removal of this redundancy before encoding is the basic 

idea of differential PCM (DPCM). This principle is illustrated in Fig. 3.19. 
 

>

 
Fig. 3.19 Illustration of DPCM principle  

In DPCM it is quantized the difference kΔ between the sample kx and the es-

timated value of it kx
∧

 obtained from prediction from the previous samples of the 

signal x(t). The prediction is possible only if x(t) has memory, its statistical char-
acteristics being known. For a pure random signal the prediction is impossible. 

kkk xxΔ
∧

−=                                              (3.71) 

Further we will use the following notations: 

kkk Δ,x,x
∧

for analogic sizes 

'Δ,'x,'x kkk

∧
for digital sizes. 
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The pair DPCM modulator (encoder)-demodulator DPCM (decoder) is known 
as DPCM codec. 
 
Remark 

DPCM makes a lossy source compression, caused by the quantizing noise; this 
loss, for human users, if is under the thresholds of human audio sense (HAS) or 
human visual sense (HVS), is without quality loss. 

Schemes for DPCM codecs are hundreds, thousands, depending on application 
and technology. Fig. 3.20 presents one block-scheme, illustrating the DPCM gen-
eration and detection. 
 

 

Fig. 3.20 DPCM codec: a) DPCM encoder; b) DPCM decoder 

For a linear prediction we have: 

i1k

r

0i
ik xax −−

=

∧ ∑=                                              (3.72) 

r being the prediction order and ia  coefficients chosen to minimize the prediction 

mean square error: 

−
2
kmin
Δ . 

If r=0 (zero order prediction) we have: 

1kk xx −

∧
=    and   1kkk xxΔ −−=                                 (3.73) 

 

Remark 

DPCM is advantageous only if: 

XΔ
maxk 〈  
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E.g.: suppose a zero order prediction and two values corresponding to two con-
secutive samples: 

Xx k =   Xor − and   Xx 1k −=−   or  X ; 

it results that : 

,X2Δk =  

meaning that for the same quantization noise, the length of the corresponding digi-

tal word DPCMn  is higher than that one required in PCM ( PCMn ). 

The degree of compression is appreciated by the compression ratio: 

DPCM

PCM

DPCM

PCM
c

D

D

n

n
:R

•

•

==                                     (3.74) 

with the mention that the sampling frequency is equal for both modulations:  
Another quality parameter practically used is prediction gain: 

2
krms

2
rms

diffrence

x
p

Δ

X

P

P
G ==                                      (3.75) 

A better compression is realized if adaptive DPCM is used (ADPCM). A fully 
adaptive DPCM system will adapt both the predictor and quantizer from the ADC. 

DPCM is widely used for voice and video compression. For example, in digital 

telephony, a standard channel has kbpsD PCM 64=
D

. Using a linear prediction 

coding (LPC [3]) the bit rate is diminished to 2.4 kbps, meaning a compression ra-
tio of: 

27.
kbps2.4

kbps64

D

D
R

DPCM

PCM
c ≈==

•

•

 

3.8.2   Delta Modulation (DM) 

Delta modulation is 1 bit DPCM of a zero order prediction, r = 0: 

ΔxxΔ 1kkk =−= −                                            (3.76) 

Being quantized with q = 2 number of levels (n=1): 

⎩⎨
⎧

−<

+>
=

−

−

Δ)(xxif0,

Δ)(xxif1,
'Δ

1kk

1kk
k                                    (3.77) 

Consequently, the corresponding bit rate is: 

SDM fD =
•

                                            (3.78) 



112 3   Source Coding 

 

Remark 

The sampling frequency ( Sf ) used in DM is much higher that the one used in 

PCM and DPCM in order to avoid an acceptable quantized SNR. The greatest ad-
vantage of the DM is its simplicity. 

Slope overload 

distorsion 
x(t) xq(t)

granular 

noise

A

x(t)

t

1111111010000100010 – Binary sequence at modulation output
 

Fig. 3.21 Illustration of the DM  

We have the following notations: 
 

-x(t) is the input signal 

- )(txq is the stare case approximation of the x(t) signal 

 

Noise in Delta Modulation 
 

In any differential PCM modulation, occur two types of noise: the slope overload 
noise, meaning difficulties of following the signal (put into evidence by long se-
ries of “0” or “1”), and granular noise corresponding to constant segments of x(t) 
and acting when 101010… occur. 

Both types of noise will be illustrated for DM. 
 

a) Slope-overload noise (Fig. 3.22) 
 

 
Fig. 3.22 Slope-overload noise  
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In order to eliminate this type of noise, the necessary condition is: 

S
S

fΔ
T

Δ
dt

dx
max ⋅=≤

                                        

(3.79) 

The relation (3.79) indicates that the slope-overload condition requires large 
steps Δ . 

 

Example 3.16 
Assume a sinusoidal signal x(t): 

ftXsin2πx(t) =                                              (3.80) 

The slope-overload condition in this case will be: πft2πfXcos2
dt

dx
=  

S
max

fΔπfX2
dt

dx
⋅<=                                      (3.81) 

The relation shows the dependency of the slope-overload condition on fre-
quency. This relation shows the limitations that differential modulations have at 
high frequencies. 

 
b) Granular noise (Fig. 3.23) 

 
Fig. 3.23 Illustration of granular noise  

Under the assumption of lack of the slope overload, the quantization noise qn is 

a random signal with maximum amplitude Δ± and with uniform pdf.  

Δ
=

2

1
)( qnf  
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2Δ
1

K =

 
Fig. 3.24 Granular noise in DM - pdf representation  

The power of the quantization noise is: 

3

Δ
R

1
)dnf(nn

R

1
N

2Δ

Δ
qq

2
qq =∫=

+

−
                              (3.82) 

Remarks 
 

• 2Δ≈qN , meaning that to reduce the noise, a small Δ  is required. This re-

quirement to reduce the granular noise is opposite to the condition necessary 

for the slope overload condition ( Δ  large). A possible solution for both situa-
tions is the use of adaptive differential modulations [Jayant, Song..], in which 

Δ  is the adapted to the signal x(t), thus, the qSNR  remains independent of 

x(t). 

• Comparing the quantized noise power in DM and PCM, it is obvious that: 

12

Δ
R

1
N

3

Δ
R

1
N qPCM

2

qDM =>=  

but it is important to remember that in DM, MS 2ff >> meaning that at the re-

ceiver, after the final low-pas filtering at Mf , only a part of qDMN  is deliv-

ered to the user ( qDMN' ) [12]: 

3

Δ
f

f
N

f

f
N

2

S

M
qDM

S

M/
qDM =≅

                                    

(3.83) 

Consequently, at the user, the quantized SNR is: 

2

2
rms

M

S

2

S

M

2
rms

qDM

X
qDM

Δ

X

f

f
3

3

Δ
f

f

X

N

P
SNR ===                         (3.84) 
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According to the relation (3.84), the following remarks could be done: 
 

    

M

S
qDM

2qDM

2
rmsqDM

f

f
~SNR

Δ
1

~SNR

X~SNR

 

 

Example 3.17 
Assuming a sinusoidal signal (3.80), the slope-overload condition (3.81), fulfilled 
at limit, will give: 

Sf

πXf2Δ =                                                (3.85) 

Consequently, the quantizing SNR (3.84) will be: 

2
M

2
S

2qDM
f

1

f

f

π8

3
SNR =                                    (3.86) 

The relation (3.86) indicates the reverse proportionality of the quantized SNR 
with frequency, showing that the differential modulations are disadvantageous at 

high frequencies: ↓↑⇒ qDMSNRf . 

3.8.3   Delta-Sigma Modulation 

One solution to eliminate the already mentioned disadvantage of differential 
modulations is to use delta-sigma modulation, which allow a quantized SNR inde-
pendent of the signal frequency. 

Before delta modulation, the signal x(t) is integrated, and after delta modula-
tion, by derivation, the initial spectrum of x(t) is recovered. 

The principle of delta-sigma modulation is illustrated in Fig. 3.25. 

 

Fig. 3.25 Delta-Sigma modulation - demodulation block scheme  
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3.8.4   Comparison and Applications of Digital Modulations 

Comparison of digital modulation is made always for the same signal x(t). It is a 
non-sense to compare a voice codec with a television one. Comparison can be 
done in two ways: 

• same bit rate ( ct.D =
•

): the best modulation will ensure the greatest quantized 

SNR (the highest quality) 

• same quality ( ct.SNR q = ): the best modulation is that one which has the 

smallest bit rate (
•
D ) – best compression. 

According to these criteria, the following remarks can be made: 

• PCM is the most general digital modulation 

• DPCM is the best for both criteria: highest qSNR  at minimum bit rate
•
D . 

• DM is the simplest and obviously the cheapest, useful for applications in which 
the quality is not essential, but requiring robustness as military communications. 

3.9   Conclusions on Compression 

As showed in 3.2, the main purpose of source coding is the compression. This is 
accomplished by reducing the source’s decision rate as a consequence of decreas-
ing the redundancy.  

One classification of compression can be made as shown in figure 3.26. 

 

Fig. 3.26 Classification of compression   



3.9   Conclusions on Compression 117

 

Reversible compression (lossless) is the compression that uses transforms that 
preserve the source entropy but decreases the redundancy.  

Irreversible compression (lossy) is the compression that uses entropy-reducing 
transforms. To this category belong digital modulations (differential pulse-code 
modulation, delta modulation) and orthogonal transforms; in the present book 
were described only the digital modulations. 

Statistic compression is the compression that requires the knowledge of 
source’s statistics, P(s); in this case the algorithms are also known as static algo-

rithms. If P(s) is determined as the first step and effective coding is performed af-
ter, the algorithm is semi-adaptive (quasi-dynamic). Thus, for unknown sources 
the use of statistic algorithms like Huffman, Shannon-Fano, implies, as a first step, 
to determine P(s). 

For memory sources, the lossless compression algorithms used are Run Length 
Coding and LZ. In these cases, streams are generated using groups of symbols, 
which act as a memoryless source and can be optimally encoded (e.g. run length 
coding with Huffman coding of the streams).  

Dynamic algorithms (adaptive) such as dynamic Huffman or LZ are used for 
compressing unknown sources. 

For memory sources, Markov models can also be used. 
 
Some real applications of compression 

 

Until quite recently the practitioner point of view [41] was to ignore data com-
pression due to the following reasons: 

 

• most compression techniques are unable to compress different data types.  

• it is impossible to predict the compression degree.  

• some of them “narrow-minded” and “afraid” of the “mysticism” that surrounds 
the maths incorporated in compression. 

• “fear” of the complexity introduced by the level of compression. 
 
All these have led to a big gap between research and practice which can be 

filled either by commercial pressure (the case of fax compression) or by a research 
effort to provide as simple as possible, more concrete aspects of the data compres-
sion techniques. 

Current trends indicate a rapid expansion of the compression techniques, taking 
into consideration their applications: multimedia, HDTV, disk drivers, compres-
sion software, CD recordings etc. A comprehensive description of the domain is 
done in [31]. 

However, it must not be forgotten that besides its great advantages (decreasing 
the bit rate in transmission and reducing the space in storage), compression is ex-
tremely vulnerable to errors; this is the reason why, applications including com-
pression require error protection. 
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Chapter 4 

Cryptography Basics 

Motto:   Get to know yourself. 

  (aphorism written on 

   the frontispiece of 

   Apollo Temple in 

   Delphi) 

4.1   Short History of Cryptography 

Information (religious, military, economic, etc) was always power, this is why the 
desire to protect it in order to be accessible only to some elites, dates since ancient 
times. There were discovered ciphertexts older then 4000 years, coming from the 
Ancient Egypt. There are records that ciphered writings were used since the 5th 
century BC in Ancient Greece. Thus the Spartan military used a stick (scytalae) 
around which narrow ribbon lather, papyrus or parchment was rolled, spiral by 
spiral, on which the clear text was written along the axis. After finishing the writ-
ing, the ribbon was unrolled, the message becoming meaningless. Only the person 
who had an identical stick (playing the role of secret key) with the one used at 
writing, could have read it. 

The Greek historian Polybius (2nd century BC) is the inventor of a ciphering 
square table size 5x5, table found at the origin of a large number of ciphers, used 
in modern times. 

Steganography (from the Greek words steganos, which means covered and 
graphein, meaning to write), the technique of hiding secret messages, has its ori-
gin in the same time. Herodotus, the ancient Greek historian (5th century BC), 
tells in “The Histories” that the tyrant of Miletus shaved the head of a trusty slave 
and tattooed it with a  secret message and, after hair regrown, sent him to Athens 
to instigate a rebellion against the Persians [42]. 

In Ancient Rome the secrecy of political and military information was ensured 
by encryption, the most famous being Caesar cipher, used since the Gallic Wars 
(58-51 BC). 

All the Sacred Books of each religion contain parables and encrypted messages. 
Less known, the Arabian contribution to the development of cryptology is re-

markably important. David Kahn one of the greatest historians in the domain, under-
lines in his book [41], that cryptology is born in the Arabic world. The first three  
centuries of Islamic civilization (700- 1000 AC), besides a great political and military 
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extension, are a period of intensive translations in Arabic of the greatest works of 
Greek, Roman, Indian, Armenian, Hebrew and Syriac Antiquity. Some of them were 
written in already dead languages, meaning that they represented in fact ciphertexts. 
To read such texts is noting else than cryptanalysis. Al Kindi, an Arab scientist from 
9th century is considered the father of cryptology, his book on this subject being, at 
this moment, the oldest available [41]. That time, the scientific language was Arabic. 
The Arabs took over the Greek and Indian knowledge and introduced the decimal 
numeral system with the Arabic numbers (numerals). The terms zero, cipher, algo-

rithm, algebra are due to Arabs. Cipher comes from the Arabian “şifr” which is the 
Arabic translation of number, “zero” from Sanskrit language. When the concept 
“zero” was introduced in Europe, using that time the Roman numerals, it produced a 
great ambiguity. For this reason, those speaking unclear were baptised as “cipher 
speakers”. This meaningless sense of a message is known even today as cipher. 

During the Renaissance, besides the revival of the interest of the ancient civili-
sations, ancient cryptography was discovered. The expansion of diplomatic rela-
tions among different feudal states determined the progress of cryptography. To 
that period belong: 

 

• Leon Battista Alberti (1404- 1472), the inventor of the polyalphabetic cipher 
(Alberti cipher), using a cipher disk, considered the most important advance in 
cryptography since Antiquity. 

• Johannes Trithemius (1462- 1516), the author of the famous encrypted book 
Steganographia, in three volumes. 

• Giovani Batista Bellaso (1505- ?), the inventor of the polyalphabetic substitu-
tion with mixed alphabets, known later as the Vigénère cipher. 

• Giambattista della Porta (1535- 1615), the inventor of the digramic substitu-
tion cipher. 
 

The telegraph and radio inventions in the 19th century, as well the two World 
Wars from the past century, have been strongly stimulating the development of 
cryptographic algorithms and techniques [41]. 

The continuous development and spreading of computer use in our life, the exis-
tence and fast growing of communications networks, the existence of powerful  
databases, the introduction and development of e-commerce and web mail accounts 
indicate an uncommonly growth of the volume and importance of transmitted or 
stored data and implicitly of their vulnerability. Security, in these systems, refers to: 

 

• eliminate the possibility of deliberately or accidentally data destruction 
• guarantee communication confidentiality in order to prevent data leakage to 

unauthorized persons 
• authentication of data and entity in order to prevent unauthorized person from 

introducing or modifying data into the system 
• in some particular cases such as electronic funds transfers, contracts negotia-

tions, the existence of an electronic signature is important to avoid disputes be-
tween the transmitter and receiver about the sent message. 
 

All these objectives show a great expansion of cryptography from diplomatic, mili-
tary, political domains to the civil area, with strong economical and social features. 
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4.2   Terminology 

Cryptography from Greek kryptos meaning hidden, secret and graph whide means 
writing is the science of secret writings. 

Plaintext/ cleartext (M) is the message requiring to be protected. In cryptogra-
phy it is known as text, however its nature: voice, image, video, data. 

Ciphertext (C) is the nonsense shape of the protected plaintext, inaccessible for 
adversaries. 

Encryption/ enciphering is the transformation (E) of the plaintext M into ci-
phertext: E(M)=C.  

Decryption/ deciphering is the reverse transformation (D) of encryption, i.e. the 
determination of the cleartext from the ciphertext: D(C)=D(E(M))=M. 

Both encryption and decryption are controlled by one or more cryptographic 

keys (ki). 
Cryptographic algorithm/ cipher is the mathematical function or functions used 

for encryption (E)/ decryption (D). 
Cryptanalysis is the art of breaking ciphers, the process of obtaining the plain-

text or the decryption key from the ciphertext only. 
Cryptology is the science of both cryptography and cryptanalysis. 
Cryptographer is the person dealing with cryptography. 
Cryptanalyst is the person dealing with cryptanalysis. 
Cryptologist is the person dealing with cryptology. 
Attack is the cryptanalytic attempt. 
Cryptosystem is the system where an encryption/ decryption process takes 

place. 
Steganography is the technique of hiding secret messages into harmless messages 

(hosts), such that the very existence of the secret message is hidden (invisible). 

4.3   Cryptosystems: Role and Classification 

The block- scheme of a cryptosystem is presented in Fig. 4.1. 

 

 

Fig. 4.1 Block-scheme of a cryptosystem where: A, B - entities which transmit, receive the 
information, E - encryption block, D - decryption block, M- plaintext, C - ciphertext, K - 
cryptographic key block,  ek - encryption key, dk  - decryption key 
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Role of a cryptosystem 
 

The main tasks that a cryptosystem need to accomplish are: 
 

• Confidentiality/ secrecy/ privacy: an unauthorized user should not be able to de-
terminate dk  from the ciphertext C even knowing the plaintext M. (Fig. 4.2); it 

means that the decryption (D) is protected. 

 

Fig. 4.2 Illustration of confidentiality 

• Authentication (Fig. 4.3) is applied to: 
 

– entities (persons, terminals, credit cards, etc) and in this case is known as 
entity authentication/ identification. 

– information: the transmitted or stored information need to be authentic as 
origin, content, time of transmission or storage and defines data. authenti-

cation/ data integrity. 

 

Fig. 4.3 Illustration of authentication  

• Digital signature  (S) is a mutual  authentication (both data and entity authenti-
cation) User B must be certain that the received message comes precisely from 
A, being signed by A and A must be certain that nobody will be able to forge 
his signature. 

 
Besides these three main objectives, the cryptosystem may ensure also, nonre-

pudiation, authorization, cancellation, access control, certification, confirmation, 

anonymity, etc. [64], [68]. 
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Cryptosystems classification 

According to the type of keys used for encryption ( ek ), respectively for decryp-

tion ( dk ), the cryptosystems are: 
 

• symmetric (conventional): use the same key for encryption and decryption. 

kkk de ==                                                 (4.1) 

and thus the key (k) is secret and requires a secure channel for transmission.  

C(M)E k =                                                (4.2) 

M(M))(ED(C)D kkk ==                                       (4.3) 

Remark 

For simplicity the key is not always mentioned, thus is written: 

E(M)=C                                                (4.2.a) 

D(C)=D(E(M))=M                                         (4.2.b) 

• asymmetric (public-key) use distinct keys for encryption ( ek ) and decryption 

( dk ): 

de kk ≠                                                    (4.4) 

The encryption key, ek , is public, whereas the decryption key, kd, is private 

(secret). Encryption is done with the public key of the correspondent X ( exk ) and 

decryption is made using the private key of the correspondent X ( dxk ). For sim-

plicity the notation will be: 

keXX EE =                                               (4.5) 

kdXX DD =                                               (4.6) 

Thus, if A wants to communicate confidentially with B using a public key cryp-

tography (PKC), the protocol will be: 
 

1) A will encrypt the message M with the public key of B 

C(M)E B =                                                 (4.7) 

2) B will decrypt the cryptogram C using its private key 

M(M))(ED(C)D BBB ==                                     (4.8) 

4.4   Cryptanalytic Attacks and Algorithms Security 

Cryptanalytic attack is the attack made on the ciphertext in order to obtain the 
cleartext or the key necessary for decryption. Basically there are six types [64]: 
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1. ciphertext only attack: the cryptanalyst has the ciphertext )(MEC iki =  and 

must obtain the plaintext iM  or the decryption key. 

2. known plaintext attack: the cryptanalyst has the ciphertexts iC  and the corre-

sponding plaintexts iM  and needs to find the key k or the algorithm to obtain 

1iM +  from )(MEC 1ik1i ++ = . 

3. chosen plaintext attack:  it is possible to choose some plaintexts iM  and to 

know the corresponding cryptograms: )(MEC iki = ; the cryptanalyst must  

find the key k or the algorithm of giving 1iM +  from )(MEC 1ik1i ++ = . 

4. adaptive chosen plaintext attack: the plaintexts iM  can be chosen and are 

adaptive to the previous cryptanalitic attacks results and the ciphertexts 
)(MEC iki =  are known. It is required the key k or the algorithm to obtain 

1iM +  from )(MEC 1ik1i ++ = . 

5. chosen ciphertext attack: the cryptanalyst can choose ciphertexts iC  and plain-

texts )(CDM iki = , his task being that of finding the decryption key k; this at-

tack is used mainly in PKC (Public Key Cryptography). 
6. rubber-hose cryptanalysis/ purchase key attack, when the key is obtained with-

out cryptanalysis (blackmail and robbery being the main ways); this is one of 
the most powerful attacks. 
 

Algorithms security 
 

In 19th century, the Dutch Auguste Kerckhoffs stated the fundamental concept of 
cryptanalysis, known as Kerckhoffs low: the security of a cryptosystem need to lie 

only in the key, the algorithm and the implementation being known. It was refor-
mulated later [66] by Claude Shannon “as the enemy knows the system” and is 
opposite to the principle “security by obscurity”. 

Different algorithms provide different degree of security, according to the diffi-
culty of breaking them [64]. 

 

1. total break (zero security): the key is known 
2. global deduction: a cryptanalyst finds an alternative algorithm equivalent to 

D(C) without the knowledge of the key. 
3. local deduction: the cryptanalyst finds the cleartext from the intercepted cipher-

text. 
4. information deduction: the cryptanalyst gets some information about the key or 

the cleartext. 
5. computationally secure (strong) is the algorithm that cannot be broken with 

available resources in present and in the near future. 
6. unconditionally secure is the algorithm impossible to be broken.  

One time pad (OTP) is the only unconditionally secure algorithm. It was in-
vented in 1917 by Gilbert Vernam and in 1949 Claude Shannon proved OTP en-
sures perfect secrecy [66]:  

H(M)=H(M/C)                                               (4.9) 
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where H(M) is the a priory entropy of the planetext and H(M/C) is the a posteriory 
entropy (conditional entropy of M). 

OTP is a random key with at least the same length as the plaintext (M) and is 
used only once. 

All other algorithms are breakable trying all the possible keys for a given ci-
phertext, until the plaintext is meaningful. This is the brute force attack (ex. If the 

key is n long, the number of possible keys is n2 ). 
Complexity of an attack [64] can be expressed in different ways: 
 

a) data complexity represents the amount of data required to fulfil the attack. 
b) processing complexity (work factor) is the time necessary to perform the attack.  
c) storage complexity is given by the required memory to do the attack. 

Rule: Complexity of an attack= min{a, b, c}  
 
Remark 

Many attacks are suitable for parallelisation, meaning that the complexity can be 
substantially reduced (see the possibility to use the graphics processor units - 
GPU, for cryptanalytic purposes, based on its parallelism). 

In cryptanalysis, when appreciating the size of an attack, we need to keep in 
mind Moore law [64]: computing power doubles approximately at 18 months and 

the costs diminish 10 times every five years. 

4.5   Classic Cryptography 

4.5.1   Definition and Classification 

By classic cryptography usually is understood the cryptography since Antiquity 
until modern times, defined by Shannon work “Communication Theory of Secrecy 
Systems” published in 1949 in the Bell System Technical Journal. 

Classic ciphers are symmetric ciphers, meaning the use of the same key, which 
is secret, for encryption and decryption. Basically they are hiding the plaintext us-
ing some elementary transformations. 

 
• substitutions, in order to create confusion (a very complex relation between the 

plaintext and the ciphertext) 
• transpositions, made by permutations, in order to diffuse the plaintext redun-

dancy into the statistics of the ciphertext. 
 
Some algorithms (ciphers) are applying these transformations iteratively in or-

der to enhance the security. 
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According to the type of transformation, classic ciphers are classified as given 
in Table 4.1: 

Table 4.1 Classification of classic ciphers  

Type of transformation Variety Cipher name 

Caesar monoalphabetic 

Polybius 

omophonic Example: 

E     ĺ B 

      ĺ J 

        ĺ Q 

polygramic Playfair 

Trithemius 

Substitution 

polyalphabetic 

Vigénère 

Transposition Ex: 

V E N I 

V I D I 

V I C I 

 

ĺVVVEIINDCIII 

ADFGVX 

 

C 

L 

A 

S 

S 

I 

C 

 

 

C 

I 

P 

H 

E 

R 

S 

 Rotor machines electro-mechanical devices implementing Vigé-
nère versions 

Enigma 

 
Substitution ciphers: a character or a group of characters of the plaintext is sub-

stitute for another character or group of characters in the ciphertext. 
Transposition ciphers: the plaintext remains unchanged in the ciphertext, only 

the order of the characters is changed (a permutation is done). 
Rotor machines is an electro-medical device, invented in 1920 (a continuation 

of Leon Battista Alberti idea used in his cipher disk) used to automatize the com-
plicated iterated substitutions and permutations. Such a device contains a key-
board and a set of rotors, each one allowing the implementation of a Vigénère ver-
sion. The most famous rotor machine is Enigma, used during World War II [41]. 

In what follows, the most famous classic ciphers will be presented. 

4.5.2   Caesar Cipher 

Caesar cipher is a monoalphabetic substitution cipher. Each letter of the plaintext 
is replaced by a new one obtained shifting three positions to right. The encryption 
is given by the relation: 

3)mod26(M)E(MC iii +==                               (4.10) 
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and decryption is given by: 

3)mod26(C)D(CM iii −== ,                             (4.11) 

26 being the dimension of the Latin alphabet. 
Caesar cipher is represented in Table 4.2. 

Table 4.2 Caesar cipher  

Clear 
text 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Cipher 
text 

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C 

 
Example 4.1 

Using Table 4.2, the well known sentence becomes the ciphertext:  
 

Cleartext: V E N I              V I D I  V I C I 
Ciphertext Y H Q L  Y LG L   Y L F L 

 

Using the same Table 4.2, the deciphering is at once: ciphertextĺ plaintext. 
Caesar cipher can be generalized: 

k)mod26(MC ii +=                                         (4.12) 

k)mod26(CM ii −=                                        (4.13) 

where k, the shifting, can take 25 values: 

1,25k =                                                (4.14) 

meaning 25 possible keys. 
 

Remarks 
 

1. Caesar cipher is a simple linear congruential generator [64]: 

b)modN(aXX 1nn += −                                       (4.15) 

A linear congruential generator is a pseudo-random generator given by relation 
(4.15), where a, b, N are constants and signify: 
 

a- multiplier (1 for Caesar cipher) 
b- increment (3 for Caser cipher) 
N- modulus (26 for Caesar cipher) 
 

2. Caesar and generalized Caesar ciphers are not at all secure, the cryptanalysis being 
very quick. The brute force attack consists of trying all the 25 keys (generalized 
Caesar), until the message becomes meaningful. If the alphabet of the plaintext is 
not known, the cryptanalysis is not easy. If the encryption is applied after com-
pression, cryptanalysis is much harder. For example if the plaintext is in the first 
step compressed using ZIP file format [68] which has an alphabet completely  
different (Latin letters, Greek letters, geometric symbols, etc.), and then encrypted 
using a simple substitution cipher, the brute force attack will not be successful. 
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3. monoalphabetic substitution ciphers, for which the alphabets of the plaintext 
and ciphertext are known, are very sensitive to relative frequency analysis [68]. 
For them, the relative frequency of letters in the ciphertext is the same with that 
of the plaintext (which is known if the language is known), meaning that the 
cryptanalysis is quite simple, and the steps are: 

 

– determination of relative frequency of letters in the a ciphertext. 
– comparison with the relative frequency of letters from the plaintext 

(known), resulting a sort of “skeleton” of the cleartext. 
– refinement of the analysis by search, until the result is a meaningful plaintext. 

4. ways to avoid the relative frequency analysis, so to make more difficult the 
cryptanalysis, are: to use omophonic substitutions, polygramic or polyalpha-
betic in order to make as possible, an uniform relative frequency for letters in 
the ciphertext (maximum entropy). 

5. a particular case of generalized Caesar cipher is ROT13, having k=13; thus 
ROT13 is its own inverse: applied twice, it gives the clear text. 

C=ROT13(C)                                               (4.16) 

M=ROT13(C)=ROT13(ROT13(M))                             (4.17) 

 

Remark 

This cipher is not used for security purposes (which is extremely poor), but for 
hiding potentially offensive messages (at users stations, in networks); it was in use 
in the early 1980, in the net.jokes newsgroup. 

4.5.3   Polybius Cipher 

The Ancient Greek historian Polybius (203-120 BC), being responsible with the 
operation of a “telegraph” used to send at distance messages, invented a substitu-
tion cipher, known since that as Polybius square (Table 4.3). The letters of the 
Latin alphabet (26) are arranged in a square of size 5x5. The letters I and J are 
combined in a unique character because the choice between them can be easily 
decided from the text meaning. The encryption consists of replacing each letter 
with the corresponding pair of numbers (the line and column crossing point). 

Table 4.3 Polybius square  

 1 2 3 4 5 

1 A B C D E 

2 F G H I/J K 

3 L M N O P 

4 Q R S T U 

5 V W X Y Z 
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Example 4.2 

Using Polybius square (Table 4.3), the message S O S is encrypted 43 34 43. 
 

Remarks 
 

• this substitution cipher is using distinct alphabets for plaintext (letters) and ci-
phertext (numerals). 

• the cipher can be changed, changing the disposal of letters in the square, which 
plays the role of key (see Playfair cipher). 

4.5.4   Playfair Cipher 

Playfair cipher is one of the most famous polygramic ciphers. 
A polygramic cipher is using substitution of a group of characters in the plain-

text alphabet, known as “poligram”, with other groups of characters, for example: 

ABA ĺ RTQ, 

in order to obtain uniform relative frequencies for all the letters in the ciphertext, 
and thus to heavier the cryptanalysis. 

Playfair cipher was invented by Sir Charles Wheatstone in 1854, but is carrying 
the name of Lord Playfair, who was the promoter of its application [67]. 

• It uses a square of dimension 5x5 (as Polybius square), made using a keyword. 
• The square is filled with the letters of the keyword (without repeating  letters) 

downwards, from left to right; the letters I,J are put in the same box, as in Poly-
bius square. 
Encryption is done on groups of two letters, known as “digram”: 

• if the letters of the diagram are in the same line (l), the right side character is 
taken. 

• if the letters are in the same column (c) the bottom neighbour is taken. 
• if they are on different lines and columns the character found at the crossing 

point of line (l) and column (c) is chosen. 
 

Example 4.3 

Using Playfair cipher, encrypt the plaintext CRYPTOGRAPHY, using the key-
word LEONARD. 

 

Solution 
 

Table 4.4 Illustration of Playfair cipher  
 

CR YP TO GR AP HY       plaintext 
.       .            .     .     . 
.       .     Ļ     .     .     . 
.       .            .     .     . 
 
FD VT SN PG LU KW      ciphertext 

L E O N A 

R D B C F 

G H IJ K M 

P Q S T U 

V W X Y Z 
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Playfair cipher advantages 
 

Playfair cipher has some advantages compared to the monoalphabetic substitution 
ciphers: 
 

• the alphabet is the same  (N=26 letters), but the number of digrams is: 
26x26=676, meaning that the identification of distinct digrams is harder. 

• the relative frequency analysis is made more difficult 
• reasonably fast 
• requires no special equipment. 

 

For his advantages, long time Playfair cipher was thought unbreakable. 
The first break of Playfair cipher was given in 1914 by Joseph O. Maubergne, 

officer in US Army, and coinventor with Gilbert Vernam of OTP. 
Playfair cipher was extensively used by British Empire in the Second Boer War 

(1879- 1915) and World War I, and also by Australians and Germans in World 
War II [41]. 

4.5.5   Trithemius Cipher 

Trithemius cipher belongs to polyalphabetic substitution ciphers. 
A polyalphabetic substitution cipher is composed of more simple substitution 

ciphers. It was invented by Leon Battista Alberti (1404- 1472), one of the greatest 
Renaissance humanist polymaths (from the Greek polymates meaning “having 
learned much”): architect, poet, priest, linguist, philosopher and cryptographer. He 
is also the inventor of the cipher disk, named also formula. This device, the pre-
cursor of rotor machine, is the first polyalphabetic substitution example, using 
mixed alphabet and variable period. It consists of two concentric disks, fixed to-
gether by a pine and able to rotate one with respect to the other. 

 
Fig. 4.4 Alberti cipher disk (formula) 

 
Johannes Trithemius (1462- 1516), born in Trittenheim, Germany, was a Bene-

dictionne abbot, historian, cryptographer and occultist. As cryptographer he is  
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famous for the cipher caring his name and for his work Steganographia in three 
volumes, written in 1499 and published in Frankfurt in 1606, an encrypted work, 
the last volume being recently decrypted, this is why a great aura of occultism sur-
rounded his author. After being totally decrypted, it showed that the whole book 
deals with cryptography and steganography. 

Trithemius cipher is a polyalphabetic substitution cipher. The 26 letter Latin al-
phabet is disposed in a rectangular square of dimension 25x25, known as tabula 

recta (Tab. 4.5). Each row, numbered from 0 to 25, contains the 26 letters alpha-
bet cyclically shifted to the right. The row numbered with 0 is the alphabet in ini-
tial order (without shifting). The row numbered with 1 is a cyclic shifting of the 
previous row (0), with one position to the right, and so on. The encryption is as 
follows: the first character of the plaintext is encrypted selecting it from the first 
row, the second character from the second row and so on. 

Table 4.5 Tabula recta of Trithemius cipher  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

0 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

1 B C D E F G H I J K L M N O P Q R S T U V W X Y Z A 

2 C D E F G H I J K L M N O P Q R S T U V W X Y Z A B 

3 D E F G H I J K L M N O P Q R S T U V W X Y Z A B C 

4 E F G H I J K L M N O P Q R S T U V W X Y Z A B C D 

5 F G H I J K L M N O P Q R S T U V W X Y Z A B C D E 

6 G H I J K L M N O P Q R S T U V W X Y Z A B C D E F 

7 H I J K L M N O P Q R S T U V W X Y Z A B C D E F G 

8 I J K L M N O P Q R S T U V W X Y Z A B C D E F G H 

9 J K L M N O P Q R S T U V W X Y Z A B C D E F G H I 

10 K L M N O P Q R S T U V W X Y Z A B C D E F G H I J 

11 L M N O P Q R S T U V W X Y Z A B C D E F G H I J K 

12 M N O P Q R S T U V W X Y Z A B C D E F G H I J K L 

13 N O P Q R S T U V W X Y Z A B C D E F G H I J K L M 

14 O P Q R S T U V W X Y Z A B C D E F G H I J K L M N 

15 P Q R S T U V W X Y Z A B C D E F G H I J K L M N O 

16 Q R S T U V W X Y Z A B C D E F G H I J K L M N O P 

17 R S T U V W X Y Z A B C D E F G H I J K L M N O P Q 

18 S T U V W X Y Z A B C D E F G H I J K L M N O P Q R 

19 T U V W X Y Z A B C D E F G H I J K L M N O P Q R S 

20 U V W X Y Z A B C D E F G H I J K L M N O P Q R S T 

21 V W X Y Z A B C D E F G H I J K L M N O P Q R S T U 

22 W X Y Z A B C D E F G H I J K L M N O P Q R S T U V 

23 X Y Z A B C D E F G H I J K L M N O P Q R S T U V W 

24 Y Z A B C D E F G H I J K L M N O P Q R S T U V W X 

25 Z A B C D E F G H I J K L M N O P Q R S T U V W X Y 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 
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Example 4.4 

 1 2  3 4   5  6 7 8    9 10 11 12 
Plaintext:    V E N I  V I D I     V  I  C   I 
Ciphertext:  W G O M A O K Q    E  S  N  U 
 

4.5.6   Vigénère Cipher 

Vigénère cipher is a polyalpahbetic substitution cipher using Trithemius tabula 
recta and a keyword which command row selection for encryption and decryption. 

This method belongs in fact to the Italian cryptologist Giovan Basttista Bellaso 
(1505- ?) and in 19th century was assigned to Blaise de Vigénère (1523- 1596), a 
French diplomat and cryptographer. Vigénère published the original cipher of Bat-
tista Bellaso and proposed a much stronger key, such that this cipher was consid-
ered unbreakable (le chiffre indéchiffrable) till 19th century when the first break 
was published. 

Being strong and simple enough, if used with cipher disks, it was used even 
during the American Civil War (1861- 1865). 

Gilbert Vernam tried to repair the broken Vigénère cipher (creating the Ver-
nam- Vigénère cipher (1918), unfortunately still vulnerable to cryptanalysis. But 
Vernan work led to the OTP, the unbreakable cipher, as demonstrated by Cl. 
Shannon [66]. 
 

Example 4.5 

A Vigénère encryption of the plaintext VENI VIDI VICI using the key MONA is 
presented in Table 4.6. 

Table 4.6 Vigénère encryption with key word  

Keyword M O N A M O N A M O N A 

Plaintext V E N I V I D I V I C I 

Ciphertext H S A I H W Q I H W P I 

 
An improved version of the presented Vigénère cipher is using a trial key. The 

trial key indicates the beginning line or lines for the first character or characters of 
the plaintext. Afterwards, the characters of the plaintext are used as keys. This 
means a feedback in the encryption process, the ciphertext being conditioned by 
the message itself. 
 

Example 4.6 

A Vigénère encryption with trial key: letter D and plaintext key word of the  
message: 

VENI VIDI VICI, 
is presented in Table 4.7 
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Table 4.7 Vigénère encryption with trial- key letter and plaintext keyword  

Keyword D V E N I V I D I V I C 

Plaintext V E N I V I D I V I C I 

Ciphertext Y Z R V D D L L D D K K 

 
Another version of Vigénère cipher is Vigénère ciphertext keyword. A trial-key 

is selected and afterward the characters of the ciphertext become keywords. 
 

Example 4.7 

A Vigénère encryption with trial-key letter D and ciphertext keyword of plaintext: 

VENI VIDI VICI, 

is given in Table 4.8. 

Table 4.8 Vigénère encryption with trial-key and ciphertext keyword 

Keyword D Y C P X S A D L G O Q 

Plaintext V E N I V I D I V I C I 

CiphertextY C P X S A D L G O Q Y 

 
Remarks 
 

• even though every character used as key can be found from the previous char-
acter of the ciphertext, it is functionally dependent on all the previous plaintext 
characters, including the trial key; the result is the diffusion effect of the statisti-
cal properties of the plaintext over the ciphertext, making thus the cryptanalysis 
very hard. 

• for present security requirements, Vigénère  cipher schemes are not very reliable; 
Vigénère important role lies in the discovery of non-repetition sequences genera-
tion (as key) using the message itself (plaintext or ciphertext) or parts of it. 

4.6   Modern Symmetric (Conventional) Cryptography 

4.6.1   Definitions and Classification 

The modern cryptography is considered to start with Claude Shannon work 
“Communication Theory of Secrecy Systems”, published in 1949 in Bell System 
Technical Journal, based on a classified version of “A Mathematical Theory of 

Cryptography” presented in September 1945 for Bell Telephone Labs [65]. 
In these works he gave the mathematical model of a cryptosystem, the conditions 

for a perfect secrecy, the mathematical definition of the basic processing in encryp-
tion: confusion and diffusion, the mathematical description of a product cipher. 
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Assume that all the plaintexts iM , with m1,i =  and their a priori, probabilities 

ip  are known. By encryption, each iM  is transformed in a ciphertext iC . Crypt-

analysis tries to calculate from iC  the aposteriori probabilities of different plain-

texts: )CMp( ii . 

A cryptosystem is perfectly secret if: 

)p(C)MCp( iii = ,   m1,i =∀                                   (4.18) 

)p(M)CMp( iii = ,   m1,i =∀                                  (4.19) 

m being the number of distinct plaintexts ( iM ), respectively ciphertexts ( iC ). It 

means that the aposteriori probabilities equal the a priori ones. 
These conditions imply the followings: 
 

1) the number of keys ( ik ) ≥ the number of plaintexts ( iM ) (4.20.a) 

2) the length of keys ( ik ) ≥ the length of plaintext ( iM ) (4.20.b) 

3) a key need to be used only once (4.20.c) 
 
These three conditions define the one time pad (OTP) principle. 
The average quantity of information per plaintext iM , respectively ciphertext 

iC  is the corresponding entropy: 

∑−=
=

m

1i
i2i )p(M)logp(MH(M)                                (4.21) 

∑−=
=

m

1i
i2i )p(C)logp(CH(C)                                (4.22) 

As shown in chapter 2, the maximum value of the entropy (the decision quan-
tity D, (2.14)) is obtained when the messages are equally probable: 

mlogD(M)H(M) 2=≤                                     (4.23) 

This information is completely hidden [3], [65] when the non-determination of 
the key is the greatest, which means that: 

mlogH(C) 2=                                           (4.24) 

Relation (4.24) shows that the maximum non-determination introduced in a 
cryptosystem cannot be greater than the size of the key space: mlog2 . It means 

that a cryptosystem using n bits length key will give n2m =  distinct keys (the 
brute force attack dimension). As H(C) is grater, meaning m, respectively n 
greater, the breaking of a cryptosystem is harder. 
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Notice 
Cryptanalysis is using redundancy of the plaintext (see 2.9.3). As known (see 
chapter 3), compression removes redundancy, this is why in real cryptographic 
implementation [3], [64], the first step is to compress the plaintext and only after 
that to encrypt it. 

The basic processing in cryptography was defined mathematically also by 
Shannon: 

 
• confusion defines the relation between the plaintext iM , and ciphertext  

iC  which need to be as much possible complex and confused (chaotic);  

substitution (S box in modern ciphers) was identified as a primary confusion 
mechanism. 

• diffusion [64] refers to the property of diffusing the redundancy of the plaintext 

iM  into the statistics of the ciphertext iC ; transposition, made by permutation 

(P box in modern ciphers), and linear transformations in finite fields were iden-
tified as diffusion mechanisms. 

Product cipher (SPN- Substitution- Permutation- Network) defines the alterna-
tion of S and P boxes during r rounds (iterations) were explained mathematically 
also by Shannon [3], [65]. 

Classification of modern symmetric ciphers, is made according to the type of 
information processing (as in error control coding - see chapter 5): 

 
• block ciphers: the cleartext M is processed in blocks iM  of constant length n, 

each block iM  being encrypted once; the result is the ciphertext iC  of the 

same length n. 
• stream ciphers: the encryption is character oriented (n=1 character), being in 

fact modern Vigénère versions. 

4.6.2   Block Ciphers 

4.6.2.1   Main Features 

• the cleartext M is divided in blocks of constant length n (usually 32 ÷ 128 bits), 
each block iM  being independently encrypted. 

• each block cipher is a product cipher of S and P boxes, iterated r times; the 
number of iterations (rounds) r varies: 1 in classic ciphers, 16 in DES, Blow-
fish, 8 in IDEA, 10, 12 or 14 in AES, 48 in T-DES, etc. As r is greater, the 
cryptanalysis is harder, but also the speed of execution is greater. This is why a 
trade between security and speed of executing is done, the accepted value in 
most applications being 16r0 = . 
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P box (Fig. 4.5) ensures the diffusion by permutation. 

0
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M
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M
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M

7
M

0
C
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C

2
C

3
C

7
C

 

Fig. 4.5 Example of P box with n=7  

The transformations made by a P box are linear; the internal links (permutations) 
being easily determined putting a binary “1” at each input and finding the corre-

sponding output; if the input is of size n, the possible permutations of P box are ( n2 )! 
S box, which ensures the confusion, is usually composed of a binary to decimal 

converter (BDC) at the input, followed by a P box making the transposition be-
tween decimal positions and having a decimal to binary converter (DBC) at the 
output. An example is given in Fig. 4.6. 

 

0
M

1
M

2
M

0
C

1
C

2
C

 
 

Input M0 M1 M2 C0 C1 C2 Output

0 0 0 0 0 1 0 3 

1 1 0 0 1 1 1 7 

2 0 1 0 0 0 0 0 

3 1 1 0 0 1 1 6 

4 0 0 1 0 1 0 2 

5 1 0 1 0 0 1 4 

6 0 1 1 1 0 1 5 

7 1 1 1 1 0 0 1 

      b)  
Fig. 4.6 Example of  S box with n = 3: a) block scheme, b) truth table  
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The operation of such a box is as follows: 

• the plaintext is expressed in binary in n bits and is applied to the input of binary 
to decimal converter (BDC) 

• the P box, situated between the two converters, make a permutation of the n2  

inputs, the total number of combinations being ( n2 )! 

In our example (Fig. 4.6), n being 3, there are )2( 3 != 40320 possibilities.  

If n is great, for example 128, the cryptanalysis is, with conventional technology, 
impossible today. 

A typical block cipher is a product cipher, made of an alternation of P and S 
boxes, known as SPN (Substitution Permutation Network) is given in Fig. 4.7: 
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Fig. 4.7 Example of a product cipher (alternation of P and S boxes)  

As illustrated in Fig. 4.7, P boxes are fixed (without key) and are used to im-
plement the diffusion by permutation. S boxes receive the permuted text (for each 
box 4 bits) and also a key of 2 bits long to command one of the four possible sub-
stitutions. Thus the key for all the four S boxes )K,(K 21 is 8 bits long and the 

whole key of Fig. 4.7 is 21 KKK +=  of 16 bits long. 

Block ciphers, based on SPN principles, proposed by Shannon, are using prod-
ucts of type r21 P...SPSS , P being a permutation without key and r1 S,....,S a sim-

ple cryptographic transform based on a cryptographic key ( rK ). Each iteration 

(round) is repeated r times using the same routine. The output of the round i is in-
put to the round (i+1). At decryption the process is the same as for encryption, but 
in reverse order. 

In what follows, DES (Data Encryption Standard) the most studied and used 
until his replacement in May 2002 will be presented. 

4.6.2.2   DES (Data Encryption Standard) 

A very good presentation of DES history is made in [64] and samples of it will be 
presented in what follows, because that history represents an important step in the 
open / non-military / civilian cryptography development. 
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At the beginnings of 70th the non-military cryptography almost did not exist, 
despite a very good market for cryptographic products (especially governments of 
different outside countries), impossible to be interconnected and certified by an 
independent organisation. 

Besides this necessity, the development of computers and data communications 
at large scale for civilians too, required urgently security in processing and trans-
mission. It is true, IBM the greatest producer in the domain, had a group of valu-
able cryptographers who created Lucifer, a straightward algorithm for IBM, but 
the necessity to have a standard was imperative. 

This is why NBS (National Bureau of Standards) of USA, today NIST (Na-
tional Institute of Standards and Technology) initiated a programme to develop a 
standard for cryptographic algorithms; the requirements were to be easy to analyse 
and certify and the equipments using it could interoperate. It launched the public 
call in 1973, but the submissions were very far to the requirements. 

The second call was done in 1974, when they had the promise that IBM will 
submit Lucifer (this one fulfilled the requirements). 

NBS asked NSA (National Security Agency) to evaluate the algorithm and to 
determine if it is suitable as federal standard. 

In March 1975, the Federal Register published the details of the algorithm and 
the IBM requirements for nonexclusivity and in August it requested comments on 
it from agencies and the general public. As a consequence, in 1976 were organised 
two workshops, one for specialists, to debate the mathematics and the possibility 
of a trap in it and  the second one to discuss the problem of increasing the length 
of the key from 56 (NSA reduced the original length from 128 bits to 56). 

This was the first and until now the last “democratic” choice of a security stan-
dard. The “voice of designers, evaluators, implementers, vendors, users and crit-
ics” [65] was heard. 

Despite the criticism, especially related to the key size (56 bits plus 8 parity 
check), in 26.11.1976, DES was adopted as a federal standard and authorised for 
unclassified government communications. In 1977 was given the official descrip-
tion of the standard. 

DES was thought by NSA for hardware implementation because of real time 
applications, but the published details were enough for software implementation 
(despite 1000 times slower [64]). 

DES was the first, and until now the last cryptographic algorithm publicly 
evaluated by NSA, being thus an important catalyser of  civilian cryptography, be-
ing available for study a secure algorithm, certified by NSA. 

The main characteristics of DES are: 
 

• block size: n=64 
• key size: 85664n k +==  
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• number of rounds: r=16 
• SPN type 

 
In what follows we will present DES encryption standard, more precisely  

one of its versions. For a better understanding of the ciphering scheme we will  
explain:  

 
• round keys generation 
• encryption routine  
• encryption/decryption function f. 

 
Round keys generation 

 
The round keys are generated starting from a 64 bits key, 8 being parity-check 
bits. In this way the 8th bit is the parity-check bit for the first 7 bits, the 16th bit is 
the parity-check bit for the bits 9 to 15 bit and s. o. until the 64th bit which is the 
parity-check bit for the bits 57 to 63. 

The key generation is presented in Fig.  4.8. 
Key generation is obtained as follows: 
 

• the key (64 bits from which 8 are parity bits) provided by the user, is delivered 
to the permutation box P1, which provides at the output 56 bits, and then this 
stream is split in two: C0, D0 of 28 bits each. 

• C0 structure is: 
 

57 49 41 33 25 17 09 01 58 50 42 34 26 18 

10 02 59 51 43 35 27 19 11 03 60 52 44 36 

 
(bit 57 from the initial matrix will be the first bit from the C0 matrix, and bit 58 

will be bit 9 from C0 etc.) 
• D0 structure is: 

 

63 55 47 39 31 23 15 07 62 54 46 38 30 22 

14 06 61 53 45 37 29 21 13 05 28 20 12 04 

 
(bit 63 from the initial matrix will be the first from D0, bit 7 will be bit 8 in D0 
etc.) 
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Key
(64 bits)

Permutation
P1 (56 bits)

C0
(28 bits)

D0
(28 bits)

LCS LCS

C1 D1

LCS LCS

Permutation
P2 

K1
48

C15 D15

K15
48

LCS LCS

C16 D16

Permutation
P2 

K16
48

Permutation
P2 

 

Fig. 4.8 Generation of round keys in DES  
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• the elements of C1…C16 and D1…D16 are obtained shifting to the left (LCS- 
left cyclic shift) the previous  inputs as given bellow:  

 

Round Number of

 shifted bits

Round Number of 

shifted bits

01 1 09 1 

02 1 10 2 

03 2 11 2 

04 2 12 2 

05 2 13 2 

06 2 14 2 

07 2 15 2 

08 2 16 1 

• the 16 keys Ki , 1...16i =  are obtained from matrices Ci and Di. The two matri-
ces Ci and Di form a new matrix (the first 28 bits come from Ci and the next 
from Di), which is introduced in a permutation box (P2) delivering at the output 
48 bits with the following structure: 
 

14 17 11 24 01 05 03 28 15 06 21 10 

23 19 12 04 26 08 16 07 27 20 13 02 

41 52 31 37 47 55 30 40 51 45 33 48 

44 49 39 56 34 53 46 42 50 36 29 32 

     (the 14th bit of the input is the first at the output). 
 

Encryption routine 
 
Encryption routine is given in Fig. 4.9 and it has the following steps: 
 

• the initial transposition matrix IP has the structure: 

58 50 42 34 26 18 10 02 60 52 44 36 28 20 12 04 

62 54 46 38 30 22 14 06 64 56 48 40 32 24 16 08 

57 49 41 33 25 17 09 01 59 51 43 35 27 19 11 03 

61 53 45 37 29 21 13 05 63 55 47 39 31 23 15 07 

• L0 contains the first 32 bits and R0 the next 32 
• XOR is a block that performs an exclusive OR between the bits of the two input 

blocks 
• DES function f is a two variable function. Its representation is given in  

figure 4.11output transposition matrix (IP-1) is the inverse of IP 
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Final transposition matrix IP-1 

Encrypted output 
block (64 bits)

DES f function XOR K3 

Input block in clear (64 
bits)

Initial transposition 
matrix IP

R0L0 

 DES f functionXOR K1 

R1=L0 XOR f(R0,K1) 
L1=R0 

DES f function XOR 
K2 

R2=L1 XOR f(R1,K2) L2=R1 

R15=L14 XOR f(R14,K15) 

R16=L15 XOR f(R15,K16)

L15=R14 

L16=R14 

DES f function XOR K16 

 

Fig. 4.9 DES encryption routine  

 
 
 



4.6   Modern Symmetric (Conventional) Cryptography 145
 

DES encryption/decryption function f 
 

The analysis of function f is done following Fig. 4.10:  

 

Fig. 4.10 DES encryption/decryption function f  

The processing steps in function f are:  
 

• inputs of function f are the (Ri, Ki+1) pairs (see fig.4.10) 
• the keys Ki  correspond to 48 bits blocks, whereas Ri are 32 bits blocks; in order 

to correlate the two blocks dimensions, an extension of Ri is performed to a 48 
bits block, according to the following extension matrix E: 

32 01 02 03 04 05 04 05 06 07 08 09 

08 09 10 11 12 13 12 13 14 15 16 17 

16 17 18 19 20 21 20 21 22 23 24 25 

24 25 26 27 28 29 28 29 30 31 32 01 
 

• the block corresponding to key Ki+1 and the one corresponding to extended Ri 
are the inputs into an XOR block. The new block is divided into 8 sub-blocks 

of 6 bits each, sub-blocks processed through Si blocks, 8...1=i . The substitu-
tion blocks Si are distinct and correspond to the following matrices: 
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S1: 

14 04 13 01 02 15 11 08 03 10 06 12 05 09 00 07 

00 15 07 04 14 02 13 01 10 06 12 11 09 05 03 08 

04 01 14 08 13 06 02 11 15 12 09 07 03 10 05 00 

15 12 08 02 04 09 01 07 05 11 03 14 10 00 06 13 
 

S2: 

15 01 08 14 06 11 03 04 09 07 02 13 12 00 05 10 

03 13 04 07 15 02 08 14 12 00 01 10 06 09 11 05 

00 14 07 11 10 04 13 01 05 08 12 06 09 03 02 15 

13 08 10 01 03 15 04 02 11 06 07 12 00 05 14 09 
 

S3: 

10 00 09 14 06 03 15 05 01 13 12 07 11 04 02 08 

13 07 00 09 03 04 06 10 02 08 05 14 12 11 15 01 

13 06 04 09 08 15 03 00 11 01 02 12 05 10 14 07 

01 10 13 00 06 09 08 07 04 15 14 03 11 05 02 12 
 

S4: 

07 13 14 03 00 06 09 10 01 02 08 05 11 12 04 15 

13 08 11 05 06 15 00 03 04 07 02 12 01 10 14 09 

10 06 09 00 12 11 07 13 15 01 03 14 05 02 08 04 

03 15 00 06 10 01 13 08 09 04 05 11 12 07 02 14 
 

S5: 

02 12 04 01 07 10 11 06 08 05 03 15 13 00 14 09 

14 11 02 12 04 07 13 01 05 00 15 10 03 09 08 06 

04 02 01 11 10 13 07 08 15 09 12 05 06 03 00 14 

11 08 12 07 01 14 02 13 06 15 00 09 10 04 05 03 
 

S6: 

12 01 10 15 09 02 06 08 00 13 03 04 14 07 05 11 

10 15 04 02 07 12 09 05 06 01 13 14 00 11 03 08 

09 14 15 05 02 08 12 03 07 00 04 10 01 13 11 06 

04 03 02 12 09 05 15 10 11 14 01 04 06 00 08 13 

 
S7: 

04 11 02 14 15 00 08 13 03 12 09 07 05 10 06 01 

13 00 11 07 04 09 01 10 14 03 05 12 02 15 08 06 

01 04 11 13 12 03 07 14 10 15 06 08 00 05 09 02 

06 11 13 08 01 04 10 07 09 05 00 15 14 02 03 12 
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S8: 

13 02 08 04 06 15 11 01 10 09 03 14 05 00 12 07 

01 15 13 08 10 03 07 04 12 05 06 11 00 14 09 02 

07 11 04 01 09 12 14 02 00 06 10 13 15 03 05 08 

02 01 14 07 04 10 08 13 15 12 09 00 03 05 06 11 

• the algorithm corresponding to a block S is the following: the first and last bit 
from the 6 bits input block defines the row in the matrix and the others 4 the 
column. The element selected this way is a number between 0 and 15. The out-
put of block S provides the binary code of that number (4 bits). 

• the output transposition matrix P is: 

16 07 20 21 29 12 28 17 

01 05 23 26 05 18 31 10 

02 08 24 14 32 27 03 09 

19 13 30 06 22 11 04 25 

 
DES decrypting routine 

 
Concerning decryption, the same algorithm is used, the only difference being that 
the 16 keys are used in reverse order than for encryption. 

4.6.2.3   Some Other Block Ciphers 

• AES (Advanced Encryption Standard) was selected in 26 May 2002 to replace 
the old standard DES. 
 
It was the winner of NIST call for a new standard, being selected from 15 can-

didates. 
The algorithm, designed by the Belgian cryptographers Joan Daemen and  

Vincent Rijmen was presented in 1998 as Rijndael cipher, from the names of its 
authors. 

The main characteristics of the cipher are: 
 
– block size: n=128 (2x64) 
– key size: 128n k = , or 192, or 256 (at choice) 

– number of rounds: r=10, or 12, or 14 (at choice) 

– SPN structure:-S boxes are based on multiplicative inverse over GF ( 82 ) 
(see finite fields in Annex A) with good non-linearity properties; P boxes 
are based on permutations of lines and columns, treated as polynomial in 

GF ( 82 ). 
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The USA government certified in June 2003 that AES can be used for classified 
information of level SECRET (with key of size 128) and TOP SECRET (with 
keys of size 192 and 256). 

Soon after becoming the official standard for symmetric cryptography, were re-
ported attacks on AES: at round 7 for key size 128, at round 8 for key size 192 and 
round 9 for key size 256 (it looks that strong debates as those made for DES, are 
important despite our rushing times). 

 
• IDEA (International Data Encryption Algorithm), invented in 1990 by X. Lai 

and J. Massay in Switzerland, is a very secure, flexible and quick cipher [64]; it 
was one of the most promising candidates for the new standard. Its main fea-
tures are: 

 

– block size: n=64 (as for DES) 
– key size: 128n k =  

– number of rounds: r=8( less than DES which has 16, meaning that is much 
faster) 

– flexible and cheap software implementation  and very fast operation time 
in hardware implementation using FPGA facilities 

– the principle is based on modulo 162  summation and modulo ( 162 +1) 
multiplication, operations which are not distributive and associative, mak-
ing thus difficult the cryptanalysis. 

Despite IDEA lost the battle for the new standard, it remains a very secure, fast, 
flexible and cheap cipher, being widely used in PGP (Pretty Good Privacy) 
[64]. 

• Multiple DES [64], [68] 

The time when DES become wick because of his small size key (56 bits), alter-
natives were investigated, in order to preserve the existing equipment, but to en-
hance the security. A solution was to use multiple encryption with DES and multi-
ple keys. The most common are: Double- DES with two keys, using an equivalent 
key size of 56x2=112 bits and Triple- DES (T- DES) with two or three keys and 
an equivalent key size of 56x3=168 bits. 

 
Applications of T- DES with two keys: PEM (Privacy Enhanced Mail), ANSI 

(American National Standard Institute) and ISO 8732 for key generation. 
Applications of T- DES with three keys are in PGP and S/MIME (Secure/ Mul-

tiple purpose Internet Mail Extension). 
 

DES-X [64] is a DES improvement proposed by Ron Rivest from RSA Data 
Security; it uses the whitening technique, a cheep way to improve the security hid-
ing the input and the output of a cryptosystem (Fig. 4.11). 
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Fig. 4.11 Illustration of whitening technique: a- encryption, b- decryption  

Remark 

In practice: KKK 21 == . 

 
• CAST- 128 or 256 is a symmetric block cipher used in Canada and invented in 

1997 by Carlisle Adams and Stafford Tavares. It was between the 15 candi-
dates for the selection of the new standard. The main features are: 

 
– block size: n=64 bits 
– key size is variable, being a multiple of 8 : 40 ÷ 256 bits 
– number of rounds: r=16 

• SAFER [64] (Secure and Fast Encryption Routine) invented by J. Massay, was 
a candidate too for AES. Its main characteristics are: 

 
– block size: n=128 bits 
– key size is variable: 128, 192 or 256 bits 
– is based on modular arithmetic. 

• FEAL [64] is the equivalent DES of Japan, having almost the same characteris-
tics as size: 

 
– block size: n=64 bits 
– key size: 64n k = bits 

but operating in modular arithmetic: mod ( 82 ). 
 

• GOST (Gosudarstvenîi Standard) is the governmental standard of Russia. It was 
adopted in 1989 as an equivalent for DES. Its characteristics are: 

 
– block size: n=64 bits (as DES) 
– key size: 256n k =  (much greater than DES- 56, and obviously longer 

life) 
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– number of rounds: r=32 (greater than DES- 16) 
– the S and P boxes are secret, despite Kerckhoffs law. 

4.6.2.4   Block Cipher Operation Modes 

An operation mode of a block cipher is defined by the used algorithm (cipher), the 
feedback and some elementary transformations. The most used algorithm is DES, 
but the modes act the same for any block cipher. 

Basically there are four operation modes. 
 

1. Electronic Codebook (ECB) 
 
Each plaintext block iM  is encoded independently using the same key K and 

giving the ciphertext iC  (Fig. 4.12). Because the transformation ii CM ↔ is bi-

univoc it is theoretically possible to create a code book of plaintexts iM  and the 

correspondente ciphertexts iC . If the size of the block is n, there will be n2  dis-

tinct iM ; if n is great, this code book will be much too large to be stored and fur-

ther, for each key a distinct code book is obtained. 

 

Fig. 4.12 ECB mode: a) encryption; b) decryption  
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Advantages 

• the encryption of blocks being independent, is suitable for randomly accessed 
encrypted files (as an encrypted database); any record could be added, deleted, 
encrypted or decrypted independently [64]. 

• the process suit to parallelization, using multiple processors for encryption and 
decryption of distinct blocks. 

• each block is independently affected by errors 
 

Drawbacks 

• if the block iM  is repeated, the ciphertext iC  is repeating too, giving thus in-

formation to the cryptanalyst. Ways to avoid this is to have distinct block iM  

(to avoid stereotyped beginnings and endings). 
• padding occurs when the block is smaller than n. 
• the most serious problem in ECB is when an adversary could modify the  

encrypted files (block reply [64]); to avoid this situation, block chaining is  
required. 
 

2. Cipher Block Chaining (CBC)(Fig. 4.13) 

 

Is used precisely for long plaintext (>n), where there are blocks  iM  which are 

repeated. In order to obtain distinct iC  for identical iM , a feedback is introduced, 

such that the input of the encryption block will be the current plaintext iM  added 

modulo two with the ciphertext of the previous encryption block (Fig. 4.13) 

1ii1ii CCCM −− ≠=⊕  if 1ii MM −= . 

 

Advantages 

• CBC mode, in order to have distinct ciphertexts iC  for identical iM , starting 

from the first block, is using in the first block an initialization vector (IV), 
which plays also an authentication role, but it can be transmitted in clear, only 
the key k requiring secure channel in transmission. 

 

Drawbacks 

• error propagation: errors in the ciphertext propagate, affecting more blocks in 
the recovered plaintext (error extension). 

• security problems, such birthday attack is discussed in [64]. 
• padding remains a problem as in ECB. 
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Fig. 4.13 CBC mode : a) encryption, b) decryption  

3. Cipher Feedback( CFB) 
 

CFB is used to transform a block cipher into a stream cipher. The encryption is 
done on j bits at once (j=1, 8, 32), thus the size of iM  being also j. It requires in 

the first block an initialization vector (IV), as in CBC (Fig. 4.14). Decryption fol-
lows the same steps, but in reverse order. 

 

 

Fig. 4.14 CFB mode: encryption 
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As stated in previous chain modes, the existence of an identification vector 
(IV), in the first block, is used also for authentication. 

 
4. Output Feedback (OFB) 

 
OFB is identical with CFB as structure (Fig. 4.15), the difference being that for 

chaining are used the j bits and not iC  as in CFB, which ensure that errors in 

transmission do not propagate. Decryption follows the same steps, but in reverse 
order. 

 

 

Fig. 4.15 OFB mode : encryption  

4.6.3   Stream Ciphers 

4.6.3.1   General Features 

Stream ciphers are modern versions of Vigénère cipher, using as basic transforma-
tion substitutions, to make confusion. 

 

• They process the information continuously bit by bit or character by character. 
• Are fast in hardware implementation (using linear feedback shift registers – 

LFSR, see chapter 5). 
• Are used in noisy applications, based on their advantage of do not propagate 

the errors, such radio channels. 
• They can simulate OTP principles, meaning the generation of long pseudo- 

random keys in two ways: 
 

1. Linear congruential generators 
 

A linear congruential generator is a generator of a pseudo- random (noise)  
sequence. 

b)modm(aXX 1-nn +=                                       (4.15) 
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where nX  is the n-th term of the sequence, 1nX −  the (n-1)-th term, and 
 

a- multiplier 
b- increment 
m- modulus 

 

The seed (key) is the value 0X . 

The sequence generated by relation (4.15) is a sequence with a period no 
greater than m, which is the maximal period and is obtained if b is relatively prime 
to m. Details concerning such generators are given in [64]. 
 

2. LFSR as pseudo- random (noise) generators 

 
A pseudo-random sequence can be generated using a linear feedback shift reg-

ister (LFSR) having the connections in correspondence to the coefficients of 
primitive polynomials g(x), such that generated sequence length is maximum (see 
also 5.8.5). 

 

Fig. 4.16 Block scheme of a pseudo-noise generator using LFSR 

The sequence at the output, k, of the register will be: 

12n],...aa[ak m
1n10 −== −                                      (4.25) 

Each symbol ai is given by: 

0
i

i SσTa =                                                   (4.26) 

where 

• σ is the output selection matrix of the pseudo-random sequence (the output can 
be taken from any of the m LFSR cells); in Fig. 4.16 the expression of σ is: 

LSB

[10...0]σ
↑

=

                                                 (4.27) 

• T is the register characteristic matrix  

• 01
1m

1m
m

m gxg...xgxgg(x) ++++= −
− is LFSR generator polynomial 

• So is initial state of LFSR; obviously, it cannot be zero 
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Changing the coefficients of the generator polynomial and the initial state of 
the shift register, we can modify the generated sequence and subsequently the 
keys k. 

At the receiver, an identical generator and synchronised with the one used at 
emission, generates the same pseudo-random sequence k, which added modulo 2 
with the received sequence gives the message in clear. 

 
Example 4.8 

Let us consider a pseudo-random sequence generator with the generator polyno-

mial: 1xxg(x) 23 ++= . The block scheme of this generator is presented in  

Fig. 4.17. 

 

Fig. 4.17 Pseudo-noise generator with LFSR and g(x)=x3+ x2 +1 

Considering the shift register initial state as 101, the pseudo-random sequence 
can be obtained by register time evolution: 

 

Clock tn SR tn+1 Pseudo-noise se-
quence (PNS) tn 

 C2 C1 C0 PNS2 PNS1 PNS0

1 1 0 1 1 0 1 

2 0 1 0 0 1 0 

3 0 0 1 0 0 1 

4 1 0 0 1 0 0 

5 1 1 0 1 1 0 

6 1 1 1 1 1 1 

7 0 1 1 0 1 1 

 

Remarks 

• at the 8th clock, the register will contain the initial sequence 101, so the process 
will be repeated 

• the pseudo-noise sequence is 7 bits long: n=2m-1=7 
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Longer keys can be obtained easily multiplexing two or more LFSR of small 
lengths (Fig. 4.18). 

 

Fig. 4.18 Pseudo noise sequences generator implemented with two LFSRs  

According to (4.26), any element ai of the pseudo noise sequence k, will be: 

ai=σ1T1
i S01+σ2T2

i S02                                             (4.28) 

If n is the length of the k-th generated sequence (the period), then:  

02
i

2201
i

1102
ni

2201
ni

11 STσSTσSTσSTσ +=+ ++                       (4.29) 

2
n

21
n

1 IT,IT 21 ==                                          (4.30) 

12n1,2n 21 m
2

m
1 −=−=                                      (4.31) 

In order to fulfil relation (4.28) we need to have: 

2
n

21
n

1 ITandIT ==                                       (4.32) 

The smallest n that satisfies this condition is the least common multiple of 
numbers n1 and n2: 

n=l.c.m.{n1; n2}                                              (4.33)  

If n1 and n2 are prime numbers:  

21 nnn ⋅=                                               (4.33.a) 

The difficulty of the cryptanalysis is increased if a certain non-linearity is in-
troduced (Fig. 4.19). 
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Fig. 4.19 Nonlinear multiplexed system for generating pseudo-noise sequences  

Example 4.9 
 

For the particular case when p1 = 3 and p2 = 8 the output k of the multiplexing cir-
cuit is expressed, underlining the non-linearity introduced by multiplexing. 

 

3x 2x 1x Y 

0 0 0 1y

0 0 1 2y

0 1 0 3y

0 1 1 4y

1 0 0 5y

1 0 1 6y

1 1 0 7y

1 1 1 8y

 

832173216321

53214321332123211321

yxxxyxxxyxxx

yxxxyxxxyxxxyxxxyxxxk

+++

+++++=
 

4.6.3.2   Some Stream Ciphers 

A wider presentation of stream ciphers is given in [64], [68]. Some of them will be 
mentioned in what follows: 

 
A5 is used in GSM (Group Special Mobile) to encrypt the link between base 

station and subscribers. It was designed by French cryptographers in 1980 and 
contains three LFSRs with 19m1 = , 22m2 = , 23m3 = . In this way, using the 

principle described above, the length of the key, obtained by multiplexing (rela-
tion (4.33.a)) is: 

321 nnnn ⋅⋅= , 

where 12n 19
1 −= , 12n 22

2 −= , 12n 23
3 −= . 



158 4   Cryptography Basics
 

The security is medium, but it is quick, error resistant and chip. 
 
RC-4 was invented by Ron Rivest in 1987. It is a block cipher operating in 

OFB mode. In 1994 its source code was put on the internet, and for this reason it 
is extremely studied and used. 

 
SEAL is a stream cipher created at IBM, very fast in software implementation. 
 
Hughes XPD/ KPD was created in 1986 to protect portable devices (XPD) and 

is used by Hughes Aircraft Corporation for kinetic protection device (KPD). It is 
basically composed by a single LFSR of 61 bits long (m=61); at this degree, the 

number of primitive polynomials (see Appendix A) is great: 102 , meaning that the 
key is composed of two subkeys the choice of the characteristic polynomial ( one 

from 102  possible) and the initial state 0S  of the LFSR (there are ( 1261 − )). 

 
NANOTWO was used by the South African police for fax transmission pro-

tection. The principle is similar to the one used in Hughes XPD/ KPD: a unique 
LFSR 127 bits long, meaning that 0S  and g(x) are selected from greater sets. 

4.6.4   Authentication with Symmetric Cryptography 

In networks with several users and several data bases, a user must be convinced 
that he entered into the desired data-base, and the computer (database) has to be 
sure that that person is authorised to have access to these databases. In this case, 
between user A and computer C an authentication protocol is established: 

 

• the user gives his clear identity A and randomly composes a short data se-
quence X which is ciphered with his own key (kA):  

 (X⊕kA)                                                 (4.34) 

• the computer knows the key corresponding to A and deciphers the sequence X 
with the same key (kA):  

 (X⊕ kA) ⊕ kA =X                                         (4.35) 

• to this deciphered sequence, the computer adds its own random sequence Y and 
ciphers both sequences with key kA, transmitting the sequences to A:  

 (XY) ⊕kA                                             (4.36) 

• when deciphering the message, A compares the received sequence X to the trans-
mitted sequence X and makes sure of computer identity data (authentication):  

 [(XY) ⊕kA] ⊕kA=XY                                     (4.37) 
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• in the next messages transmitted by A, it adds the deciphered sequence Y, ci-
phers everything with its own key and transmits it to the computer:  

 (MXY) ⊕ kA                                               (4.38) 

• the computer compares the deciphered sequence Y with the sequence sent  
for the first time and makes sure that the correspondent is the right one (entity 
authentication):   

 (MXY) ⊕kA] ⊕kA=MXY                                      (4.39) 

4.7   Public Key Cryptography 

4.7.1   Principle of the Public Key Cryptography 

The year 1976 is considered the starting point of modern cryptography. In  
November 1976, W. Diffie and M. Hellman published in IEEE Transaction on  
Information Theory the paper: “New Direction in Cryptography” in which they  
introduced the PKC (Public Key Cryptography) concept. 

The principle of this concept is shown in fig. 4.20: 

 

Fig. 4.20 Block scheme of a public key system  

Each user has for encryption a public transform
1kE , that can be memorized in 

a public folder and a transform for secret decryption
2kD . 

The requirements of public key cryptography are: 
 

• for each pair of keys (k1,k2), the decryption function with key k2: 2kD  is the 

reverse of the encryption function with key k1 : 1kE   

• for any pair (k1,k2) and any M, the computation algorithms for 
1kE and  

2kD are easy and fast 

• for any pair (k1,k2), the computation algorithm for 
2kD  cannot be obtained in 

reasonable  time starting from 
1kE ; decryption 

2kD  (which is secret) is de-

rived from 
1kE  through a transformation that cannot be easily reversed (one 

way function) 
• any pair (k1,k2) must be easily obtained starting from a unique and secret key 
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In public key systems, confidentiality and authentication are done by distinct 
transform. 

 

Fig. 4.21 Confidentiality in public key cryptosystems  

Let us assume that user A wants to transmit a message M to another user B.  
In this case, A, knowing the public transformof B (EB), transmits the following  
ciphertext:  

(M)EC B=                                                 (4.40) 

ensuring confidentiality (Fig 4.21) 
When receiving the message, B decrypts the ciphertext C using the secret trans-

form DB:  

M(M))(ED(C)D BBB ==                                    (4.41) 

Such a system does not allow any authentication because any user has access to 
the public transform of B (EB) and can transmit a fake messages (M’): 

)M(EC B ′=′                                               (4.42) 

For authentication (Fig.4.22) we apply to M the secret transform DA of A. A 
will transmitte to B:  

(M)DC A=                                               (4.43) 

When receives the encrypted message, B will apply the public transform EA 
corresponding to A: 

 

Fig. 4.22 Authentication in public key cryptosystems  

Authentication is done, because fake messages cannot be transmitted to B: 
C’=DA(M’), only A knows DA (the secret key). In this case, however, the confi-
dentiality is not ensured, due to the fact that M can be obtained by anyone just ap-
plying EA to C, EA being public. 

In order to simultaneously ensure confidentiality and authentication (Fig 4.23), 
the space M must be equivalent to the space C, so that any pair (EA,DA), (EB,DB) 
can operate not only on clear text but also on ciphered one. It is necessary for 
(EA,DA) and (EB,DB) to be mutually inverse: 
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M(M))(ED(M))(DE AAAA ==                                (4.44) 

M(M))(ED(M))(DE BBBB ==                                (4.45) 

 

Fig. 4.23 Confidentiality and authentication in public key cryptosystems  

User A will sign using his private key DA the message M and than will encrypt 
it using the public key of B:  

(M))(DEC AB=                                           (4.46) 

B will obtain M applying to the received cipher text its own private key DB and 
than the public key of A (EA) to check his signature:  

M(M))(DE(M)))))(D((E(DE(C))(DE AAABBABA ===            (4.47) 

 
Digital signature in public key cryptosystems 

 

Let us consider that B is receiving a signed message from A. The signature of A 
needs to have the following proprieties: 
 

• B is able to validate A signature 
• it must be impossible for enyone, including B, to fake A signature 
• when A does not recognize the message M signature, it has to be a “judge” 

(Trusted Person - TP) to solve the argue between A and B 

The implementation of digital signature is very simple in public key systems. In 
this case DA can serve as a digital signature for A. The receiver B of the message 
M signed by A knows that transmitter and data are authentic. Because EA trans-
form is public, the receiver B can validate the signature. 

The protocol of digital signature can be developed as follows: 
 

• A signes M:   

S = DA(M)                                               (4.48) 

• A sends to B the cryptogram:   

C = EB(S)                                               (4.49) 

• B validates A signature, verifying if  

EA(S) = M                                             (4.50) 
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S(S))(ED(C))(D BBB ==                                   (4.51) 

M(M))(DE(S)E AAA ==                                  (4.52) 

• a “judge”(TP) solves the dispute that may occur between A and B checking if 
EA(S) belongs to M, in the same manner as B does. 

4.7.2   Public Keys Ciphers 

Rivest – Shamir - Adleman (RSA) cipher 

 
This algorithm was published in 1978. The security of the cipher is based on the 
fact that the factorisation of the product of two high prime numbers is, at least for 
now, unsolvable. Related to this aspect, Fermat and Legendre developed same fac-
torisation algorithms. The most efficient ones, used even now, are the ones devel-
oped by Legendre[96]. 

Encryption method implies exponential computation in a Galois Field (GF(n)).  
Ciphertext can be obtained from the cleartext through a block transform (encod-
ing). Be M such a cleartext block, having the property M∈(0,n-1). The encrypted 
block C corresponding to the cleartext block can be obtained computing the expo-

nential: n)(modMC E= , E and n representing the public key. Decryption is done 

as: n)(modCM D= , D being the secret decryption key (private key). 

The two keys, E and D, must satisfy the following relations: 

n)(modMn)(modCM EDD ==                                  (4.53) 

This algorithm is based on Euler-Fermat Theorem: if n is prime number and a a 

positive integer, non divisible, with n, then n)1(moda 1n =−  for any a∈[1,n). 

If we chose n a prime number, for any block 1)n(0,M −∈ we have:   

1n) (modM (n) =ϕ                                            (4.54) 

where  

ϕ (n) = n-1                                                (4.55)  

is Euler totient. 
If E and D satisfy the relation: 

1(n))ED(mod =ϕ                                           (4.56) 

then we may write: 

1(n)...(n)(n)1(n)kED ++++=+= ϕϕϕϕ                         (4.57) 

n)...M(modMMMM (n)(n)1(n)...(n)(n)ED ϕϕϕϕϕ ⋅== ++++             (4.58) 
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It follows: 

n)M(modM1(n))ED(mod ED =⇒=ϕ                             (4.59) 

In this way we made a reversible transform based on exponential finite fields. 
We still have to solve the problem concerning the security of the decryption key. 
This key D must be almost impossible to be determined from the encryption key, 
but in the given case it is easy to determine this key using E and n and knowing 
that 1n(n)and1(n))ED(mod −== ϕϕ . 

The security is based on high number factorization. Starting from this idea the 
number n can be obtained from the product of two high prime numbers p and q: 

qpn ⋅= , such that Euler totient, in this case: 

1)1)(q(p(n) −−=ϕ ,                                           (4.60) 

becomes harder to be found using only n. 
Using this method we can obtain a secure public key system. Such a system 

which ensures confidentiality has as elements the following pairs: 

(E,n) the public key 
(D,n) the private key 

A cryptanalyst who knows the pair (E, n) must determine D taking into account 
that 1(n))ED(mod =ϕ . For this purpose he has to determine (n)ϕ  from 

1)1)(q(p(n) −−=ϕ , i.e. p and q; this problem reduces to a high number factori-

zation and it is very difficult to be solved.  
 

Example 4.10 

 
We choose two prime numbers: p = 47 and q = 97. 

n = p·q = 3713 

Choosing D = 97, E will be 37, to satisfy: 

1]/D1)1)(q[(pE

11))1)(q(pD(mod

+−−=

=−−
 

In order to encode the message “A SOSIT TIMPUL”, first we must transform 
the letters of the alphabet in numbers. For example A = 00, B = 01, …. 

The message becomes: 

001814180819190802152011 

In what follows we encode each 4 numbers smaller than n: 

0943mod(3713)1418mod(n)1418

3019mod(3713)0018mod(n)0018
37E

37E

==

==
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The encrypted message becomes:  

309109433366254501072965 

At the decryption we compute: 

0018mod(3713)3091mod(n)3091 97D ==  

thus obtaining the original message. 
Once the method is understood, it may easily hint its broad field of applications 

in authentication and digital signatures. 
However a problem that still may appear in developing such an algorithm is 

computing systems values: the number n and the two keys E and D; the computa-
tion is done at tens digits level in order to assume a high level of security. Until 
now lengths of (512 – 1024) bits are considered enough for current applications. 

The encryption system with public keys RSA is the most important among  
public key algorithms, offering a high level of security and being a standard in 
digital signatures field. RSA is known as the safest PKC algorithm of encryption 
and authentication commercially available, impossible to be broken even by gov-
ernmental agencies. The method has a great advantage because, compared to some 
other encryption methods, there are no traps for system breaking. The algorithm is 
used for confidentiality and data authentication, passwords, being used by a lot  
of companies as: DEC, Lotus, Novell, Motorola, and also a series of important  
institutions (the USA Defence Department, Boeing, the bank network SWIFT - 
Society for Worldwide Interbank Financial Telecommunication, the Belgium 
Government, etc). 

4.8   Digital Watermarking 

4.8.1   Introduction 

In the last 20 years we were witnesses of an outbreak of the digital multimedia 
technologies. The digital audio/ video information has several advantages over its 
analogical counterpart: 

 

• superior quality in transmission, processing and storage 
• simpler editing facilities, the desired fragments of the initial data  can be lo-

cated  with precision and modified  
• simpler lossless copying : the copy of a digital document is identical with the 

original.    
 

For producers and distributors of multimedia products, several of the above  
mentioned advantages are handicaps, leading to important financial losses. Unau-
thorized copying of CDs, DVDs is currently a major problem. Also the information  
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contained in WebPages, books, and the broadcasted information, are frequently  
copied and used without any permission from the “editor”.   

The copyright in this domain is a problem of maximum urgency. Several at-
tempts in this sense exist, but we cannot speak of a generalized corresponding leg-
islation. In 28 Oct. 1998, the president of the United States signed an act [79] 
(Digital Millennium Copyright Act) that contains recommendations to be followed 
in order to protect the intellectual property and also the customers rights.  At its 
turn, the European Community is preparing several protection measures for digital 
multimedia products such as CDs and DVDs. 

The most important technologies used in copyright protection for authors or 
distributors are: encryption and watermarking.  

Encryption is used for protecting data in transmission and storage. Once the in-
formation was decrypted,  it is no longer protected  and can be copied without any 
restriction.  

Watermarking is an operation, which consists in embedding an imperceptible 
signal called watermark (WM) into the host information. The host information can 
be text, audio signal, still image or video. 

The name watermark comes form the words “water” and “mark” and designates 
a transparent, invisible mark like the water transparency. 

In general, the watermark contains information about the origin and destination 
of the host information. Event though it is not directly used in intellectual property 
protection, it helps identifying the host and the receiver, being useful in disputes 
over authors / distributors rights. 

From a theoretical point of view the watermark has to permanently protect the 
information, so it has to be robust, in such a way that any unauthorized removal 
will automatically lead to quality degradation. The watermark resembles to a sig-
nature, at the beginning it was called signature, but in order to eliminate the con-
fusions with the digital signatures from cryptography the original name was-
dropped . Taking into account the fact that it has to be transparent, imperceptible 
for hearing or seeing, the resemblance with the “invisible tattoo”, made by A. 
Tewfik [76], is suggestive.  

In order to insure copyright protection, the watermarking technologies need two 
operations (Fig. 4.24):  

 

• watermark insertion in host data, before transmission or storage; 
• watermark extraction from the received data and comparison between the 

original watermark and the extracted one, in case of dispute. 
• Watermarking is used especially for  information protection such as: 
•  Copyright protection. The owner inserts  a watermark containing information 

related to its intellectual rights. The watermarks resembles to ISBN (Interna-

tional Standard Book Numbering) - 10 characters or ISRC (International Stan-

dard Recording Code) - 12 alphanumerical characters.  
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Fig. 4.24 Watermark principle block scheme: a) insertion (embedding), b) retrieval / detection 

The information inserted could be related to license rights, distribution agree-
ments, etc., in these cases watermark length being usually 60 ÷ 70 bits. 

 

• Copy protection; in this case the watermark is a single bit that allows (forbids) 
copying; this bit is computed in watermark detectors in storage devices and ac-
cordingly, information copying will be allowed (forbidden) [47]. 

• Fingerprinting, used for unauthorized copy detection. The data owner inserts 
information related to the customers that bought the license in the watermark. 
This information is like a serial number. When illegal copies are found, the 
source can be easily identified using the information embedded into the water-
mark.  

• Broadcast monitoring: using watermarking on commercials, a monitoring sys-
tem for commercials broadcasting according to the license agreements can be 
implemented. 

•  Data authentication: when the watermark is used for identification, it is called 
fragile watermark and it shows if the data have been altered, together with the 
place where the modification was done [87].  

 

Beside these protection goals, watermarking can be used also for: 
 

• Characteristic enrichment for the host signal, e.g. several language subtitling; 
there are several services that use this property. 

• Medicine applications: using watermarking techniques, patient data are inserted 
into the medical images. 

• Secret message transmission: there are countries where cryptographically ser-
vices are restricted; it follows that secret (private) messages can be inserted 
through watermarking.  
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4.8.2   Short History 

Nowadays digital watermarking is a modern version of steganography (form the 
Greek words “stegano” which means covered and “graphos” meaning writing) - 
signifying covered writing. 

Steganography is a technique used for secret message hiding into other mes-
sages in such a way that the existence of the secret messages is hidden. The sender 
writes a secret message and hides it into an inoffensive one.  

Among the techniques used during the history of steganography we remind: 
 

• use  of invisible inks  
• thin holes for some characters, fine modifications of the space between words 
• the use of semagrams (from the Greek words  “sema” meaning sign and 

“gramma” meaning writing, drawing). 
 

These techniques were recently resumed and put into digital context for text 
watermarking [20]. 

Audio watermarking (audiosteganography) and still / dynamic image water-
marking (videosteganography) are using the same ideas as steganography. 

As an example for audiosteganography, we can remind Bach. He used invisible 
watermarks for copyright protection, writing  his name in several  works using in-
visible watermarking; for example he counted the  number of appearances of a 
musical note ( one appearance for A, two for B , three for C and eight for H). 

As for steganography, for graphical images for instance, using the least signifi-
cant bit, several secret messages can be hidden. The image rests almost the same 
and the secret message can be extracted at the receiver.  Proceeding like that for a 
1024x1024 black and white image one can insert 64 KB of secret messages (sev-
eral modern services are using this capacity). 

For digital imaging, the first invisible marks were used in 1990 in Japan [73] 
and independently, in  1993 in  Europe [23] and [77].  At the beginning the ter-
minology used for such invisible marks was “label” or “signature”; around 1993 
the words water mark were used , signifying a transparent,  invisible  mark. The 
combination of the two words, gave the word “watermark”, which will be used 
henceforward. 

Applications of digital watermarking for audio domain are known since 1996 
[11]. 

In 1995 the first applications for uncompressed and compressed still images 
are done [24]. 

1996 [33], 1997 [46] are marking the beginning for uncompressed, respectively 
compressed video signals.  

After several breakthroughs between 1995 and 1998 it seems that the last years 
can be viewed as a plateau in watermarking research. Simultaneously the industry 
had an increasing role in standards and recommendations elaboration. This phe-
nomenon resembles to the development of modern cryptography and the elabora-
tion of standards for civil applications. 
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4.8.3   Watermarking Requirements 

Each watermarking application has specific demands. However there are some 
general, intuitive requirements. 

 

• Perceptual transparency.  It is related to the fact that the watermark insertion 
must not affect the quality of the host data. The mark is invisible if one cannot 
distinguish between the original signal and the marked one, e.g. if the changes 
in the data are below the thresholds of human senses (hearing, seeing). Percep-
tual transparency test are made without knowing the input data. Original or 
marked data are presented independently to the subjects. If the selection per-
centage is equal for the two cases, this means that perceptual transparency is 
achieved. In real perceptual transparency applications, the subjects do not know 
the original data, having therefore correct testing conditions.  

• Robustness is the watermark property to resist to unintentional changes, due to 
the  inherent processing  related to the transmission / storage (unintentional   
attacks) or to intentional changes (intentional attacks) aiming to remove the  
watermark. 

There are some applications when robustness is not required. For data authenti-
cation for example, the fragile watermark needs not to be robust, an impossible 
watermark detection proving the fact that the data is altered, being no longer  
authentic. 

However, for most applications the watermark has to be robust, its extraction 
from the host data leading to a significant quality loss, making the host data  
unusable.  

 

• Watermark payload; the watermark payload is also known as watermark in-

formation. The watermark payload is defined as the information quantity in-
cluded in the watermark. It is application dependent [47] and some usual values 
are: 

 

• 1 bit for copy protection  
• 20 bits for audio signals 
• 60 ÷ 70 bits for video signals 

Another important parameter related to the payload is the watermark granular-

ity. This parameter shows the required quantity of data necessary for the insertion 
of a single watermark information unit. In the above-mentioned example a water-
mark information unit has 20 bits for audio signals and, 60 ÷ 70 bits for video sig-
nals. These bits are inserted in 1 or 5 seconds for audio segments. For video sig-
nals the watermark information unit is inserted in a single frame or is spread over 
multiple frames.    

Watermark spreading improves the detection robustness [33]. For most video 
applications, the watermark information is inserted in less then a second for video 
signals (approx. 25 frames).  
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• Detection with and without original signal. Depending on the presence of the 
original signal there are two methods for watermark detection [47]: 

 

– with the presence of the original signal : nonoblivious (informed) water-
marking  

– without original signal: oblivious (public, blind)  watermarking.  

The first type of detection that needs the original signal or a copy of it is used in 
copyright protection applications restraining the inversion attack [25], [84]. 

The second detection modality, not needing the original, is used in application 
where the presence of the original at detection is impossible, for example in copy 
protection. 

 

• Security in watermarking can be seen as in cryptography: contained in the en-
cryption key. Consequently the watermarking is robust if some unauthorized 
person cannot eliminate the watermark although this person knows the insertion 
and detection algorithm. Subsequently the watermark insertion process uses 
one or several cryptographic robust keys. The keys are used also in the water-
mark detection process.  There are applications, like covered communications, 
where encryption is necessary before marking. 

• Ownership deadlock. The ownership deadlock is known as the inversion attack, 
or IBM attack, [10]. Such an attack appears whenever in the same data there are 
several watermarks claiming the same copyright. Someone can easily insert his 
own watermark in the data already marked. 

Watermarking schemes capable of solving this problem (who is the “right” 
owner or who was the first that made the mark), without using at detection the 
original or a copy of it, are not known until now. 

Such a situation can be solved if the watermark is author and host dependent.  
In such a case the author will use at insertion and detection two keys: k1 - author 
dependent and k2 - signal/ host dependent. Using the keys he will generate a 
pseudo-random sequence k. The key k2, signal dependent, can be generated using 
one-way hash (OWH) functions. Such generators are including: RSA, MD4, SHA, 
Rabin, Blum/Blum/Shub [64]. The watermark extraction at the receiver is impos-
sible without knowing the keys k1 and k2. The k2 key, being host dependent, the 
counterfeiting   is extremely difficult. In copyright protection, the pirate will be 
able to give to a judge only his secret key k1 and not k2.  The last key is computed 
automatically using the original signal by the insertion algorithm. The hash func-
tion being noninvertible the pirate will not be able to produce a counterfeit identi-
cal with the original.  

4.8.4   Basic Principles of Watermarking 

As shown in the Introduction, watermarking has two basic processing: one at the 
sender and the other at the receiver: 

 

• Watermark insertion in the host data. The insertion is done respecting the per-
ceptual transparency and robustness requirements. 
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• Watermark extraction (detection) from the marked received signals (possibly 
altered) and the comparison between the extracted watermark and the original 
one, in case of deadlock. 
 

For the robustness demand the watermark will be inserted using one or several 
robust cryptographic keys (secret or public). The keys will be further used at wa-
termark detection. 

The perceptual transparency is done according to a perceptible criterion, the 
last one being implicit or explicit. Therefore the individual samples of the host 
signal (audio signals, pixels or transform coefficients) used for the insertion of the 
watermark information will be changed only between some limits situated below 
the perceptiveness thresholds of the human senses (seeing, hearing). 

Transparent insertion of the watermark in the digital host signal is possible only 
because the final user is a human being. His senses (hearing, seeing ) are imperfect 
detectors characterized by certain minimal perceptiveness thresholds and by the 
masquerade phenomenon. By masquerade, a component of a given signal may be-
come imperceptible in the presence of another signal called masquerading signal. 
Most of the coding techniques for audio and video signals are using directly or in-
directly the characteristics of the HAS - human audio system or HVS - human vis-

ual system [72].   
The watermarking techniques cannot, therefore, be used for data representing 

software or numbers, perceived by a computer (machines, not humans). 
According to the robustness demand the watermarking signal (despite the small 

amplitude required by the perceptual transparency demand) is spread over several 
samples according to the granularity demands. This makes possible the detection 
of the watermark signal although the data is noise affected.  

Fig. 4.25 and Fig. 4.26 are showing the bloc schemes of watermark insertion 
and detection. 

 

Fig. 4.25 Bloc scheme for watermark insertion  
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Fig. 4.26 Bloc scheme for watermark extraction and comparison  

Watermarking (Fig. 4.25) consists in: 
 

• Watermark information (I) generation (payload) 
• Watermark generation (distinct from I – watermark information): W, that will 

be inserted into the host signal X; usually W depends on the watermark infor-
mation (I) and on the key K:  

W = E1 (I, K),                                           (4.61) 

where E1 is a function (in most cases modulation and  spreading). 
There are applications where, in order to limit the IBM attack, the watermark 

signal can be host signal X dependent): 

W = E1 (I, X, K)                                          (4.62) 

• Key generation; the key can be public or secret, leading to a possible classifica-
tion of the watermarking techniques in public keys systems and private keys 
systems.   

• Watermark signal (W)  insertion in the host signal (X). The insertion is made 
with respect to the robustness and perceptual transparency demands, giving the 
watermarked signal Y: 

Y = E2 (X, W),                                          (4.63) 

where E2 is a function (which usually makes a modulo 2 summation between  W 
and  X). 

As a conclusion, in order to fulfil the perceptual transparency demands, the two 
models HAS or HVS, are taken into account directly or indirectly for watermark-
ing. For the robustness requirements, the watermark information I is spread over 
the host data (see the granularity concept).   

Watermarking can be done in the transform domain or in the spatial domain.  
It follows that, before watermark insertion or extraction, the host data needs to be 
converted in the domain where the processing will take place: spatial, wavelet, DCT 
(Discrete Cosine Transform), DFT (Discrete Fourier Transform), fractals. Each  
domain has specific properties that can be used in the watermarking process [47]. 
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Watermarking can also be done for compressed or uncompressed host data; 
most applications are, however, for uncompressed data [34]. 

 
Remark 
Due to the perceptual transparency demands, the changes in the host data are rela-
tively small, so the watermark signal W, will be error vulnerable.  In order to 
overcome this drawback, in transmission or storage, several protection measures 
can be taken using error correcting codes before watermark insertion, [2] and [32]. 

 

Watermark extraction (Fig. 4.26) 
 

The watermark detector input signal is Y’ and it can be the result of a watermarked 
signal with errors or not. In order to extract the watermark information Î, the original 
signal X is necessary – or not - depending on the detection type: (Fig. 4.26): 

Î = D (X, Y′, K) - nonoblivious detection                         (4.64) 

Î = D (Y′, K)  - oblivious detection                              (4.65) 

In copyright applications, the detected watermark information Î is compared 
with the ownership original I: 

C (I, Î) = ⎩⎨
⎧

<

≥

γcifno,

γcifyes,
                                        (4.66) 

In practice, the comparison is made by a correlator that computes the cross-
correlation c between I and Î, and a threshold detector with γ  threshold value.  

Most watermarking techniques are based on the principle of spread-spectrum 
[80], [32]. 

The idea of a spread spectrum system is to transmit a low bandwidth signal (in 
this case the watermark information I) on a large bandwidth channel with interfer-
ences (the audio or the video signal X).  

The major advantages of a spread spectrum transmission are: 
 

– the interferences are reduced  
– the signal is hidden against interceptions.  

 

• Watermark insertion: 

The watermark information I is spread using a modulation with a pseudo-
random noise, the watermarked regions being hidden in this way. In order to avoid 
processing that can eliminate the watermark information the insertion regions 
must be known (or at least recognizable). The spread spectrum techniques ensure 
an efficient protection of the watermark especially against usual, non-intentional 
data manipulation in transmission or storage (compression, scaling etc). 

• Watermark extraction: 

In spread spectrum based watermarking, the authorized detection ( K is known) 
is easy to implement, even in the absence of the original X, using a correlator  
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receiver. The lack of synchronization can be eliminated using a sliding correlator. 
The maximum value of the correlation functions – the true value of the watermark 
information I- is found in this case by sliding. 

We will illustrate the spread spectrum based watermarking principle for video 
signal in the spatial domain [32]. 

A video sequence can be represented as three-dimensional signal. Such a signal 
has two dimensions in the x-y axis and the third one is the time. For line scanning 
systems the signal can be viewed as a signal with a single dimension. 

 

Fig. 4.27 Line - scanning video signal  

• Video signal watermark insertion (Fig.4.28) 

Let I be the watermark information with 1N  bits ja : 

{ } { }.11,a,N1,j,aI j1j −∈==                                   (4.67) 

1N  is the watermark payload and as we have seen its maximal value is 60 ÷ 70 

bits. 
In order to make the watermark more robust this sequence I is spread over a 

large number of bits according to the chip rate (or spreading factor) m . Typical 
values for m are between (103 ÷ 106) [81]. The spread sequence is then: 

( ) Nij,1mijm,ab ji ∈+<≤=                                (4.68) 

The spread spectrum sequence, amplified with a local factor 0Ȝ i ≥ , modulates 

a pseudo-random signal, the key K with ip bits, }{pK i= : 

{ } Ni,11,p i ∈−∈                                            (4.69) 

The watermarked spread sequence { }iwW =  

Ni,pbȜw iiii ∈=                                            (4.70) 
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is summed  with the video signal ix . The video watermarked sequence is obtained:  

{ } Ni,yY i ∈=                                           (4.71) 

Ni,pbȜxy iiiii ∈+=                                   (4.72) 
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Fig. 4.28 Video sequence watermark insertion model  

The pseudo-random sequence { }ipK =  and the corresponding spread water-

marked sequence { }iwW = ) are pseudo-random  signals being therefore difficult 

to detect, localize and eliminate. 
The security of a watermarking system depends on the key K. The key is cho-

sen in order to insure the cryptographic security. Besides this, for correlative de-
tection, the key must have good correlation and orthogonality properties. In such a 
way several watermarks can be embedded in the same host signal and these dis-
tinct watermarks can be detected without ambiguity at the receiver [80], [81]. 

The amplification factor iȜ , depends on the local properties of the video signal. 

In order to make the amplitude of the local watermark amplitude maximal, with 
respect to the perceptual transparency demands, the amplification factor iȜ  can 

use HV spatial and temporal masquerade phenomena. 
The watermark information is inserted in the least visible regions, for example 

in regions with fine details or contours. 
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• Video signal watermark extraction (Fig. 4.29) 
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Fig. 4.29 Video sequence watermark extraction model  

When the spread spectrum principle is used, the authorized extraction (the key 
K is known) can be easily done without knowing the original X, using a correlator. 

Before demodulation (correlator based), the watermarked video sequence Y´ 
(identical or different form the original one due to attacks or transmission process-
ing) is high-pass filtered. The high pass filtering eliminates the major components 
from the video signal. High pass filtering is not compulsory but enhances the per-
formances of the whole system, reducing the interferences between the video sig-
nal and the watermark signal.  

Watermark detection consists in a multiplication between the watermarked 
video signal (Y´) with the same key (K) used in the insertion process, followed by 
a correlation sum computation, jd for each inserted bit  and by a thresholding op-

eration. An estimate (âj) for the watermark information bit ja is thus obtained. 

( )
( )( )∑ ∑ +==

−+

=

−+

=

1m1j

jmi

1m1j

jmi
iiiiiiij pbȜxpypd                         (4.73) 

where 
_

iy   is the value of the i - th high pass filtered video bit, supposed not af-

fected by errors. Consequently:  

iiii wxyy +==′                                            (4.74) 
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21 S,S  are describing the contribution in the correlation sum of the filtered video 

signal and the filtered watermarked signal. 
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Considering that by high pass filtering the video signal ix  has been practically 

eliminated from iy , the assumption 0S1 =  is correct. Considering also that the 

influence of the high pass filtering on the watermarking signal is negligible, we 
have: 

iiiiii pbȜpbȜ ≅                                            (4.76) 

Under these assumptions: 

[ ]
( )∑ =≅

−+

=

1m1j

jmi
ij

2
pii

2
ij ȜmEaσbȜpd ,                             (4.77) 

where  2
pσ  is the variance  of the pseudo-random noise (K), and  [ ]iȜE  is the m 

pixels based average value of the coefficients iȜ . 

The sign of the correlation sum gives the value of the watermark bit ja  in hard 

decision schemes: 

)(asign)Ȝmσ(asigndsign j

0

i
2
pjj ==

>
)('

                               (4.78) 

As seen from (4.78) the transmitted information bit is +1 if the correlation be-
tween the video signal containing the watermark bit and the pseudo-random se-
quence is positive, and –1 if the correlation  is negative.  

If the pseudo-random sequence used for the watermark extraction is different 
from the one used for watermark insertion (or if we do not have a synchronism be-
tween the two sequences) such a scheme will not work and the computed bits are 
random.  

The lack of synchronization between the two sequences can be eliminated using 
a sliding correlator: every single possible sliding is done experimentally, the true 
value for ja corresponds to the maximum value of the correlation js , obtained for 

a specific sliding. 
 

Remark 
The scheme given in Fig. 4.29 is an oblivious one, not needing the presence of the 
original X for watermark extraction. For a nonoblivious scheme, the use of the 
original, subtracted from Y before the demodulation – instead of filtering- will 
eliminate any interference between the video signal Y and the watermark W. The 
watermarking extraction in this case is much more robust. 

The performances of this scheme can be estimated by computing the bit error 
rate BER  (Bit Error Rate). One bit is in error if: 

( ) ( )221 SsignSSsign ≠+                                       (4.79) 

This situation corresponds to: 

21 SsignSsign ≠  and 21 SS >                                 (4.80) 
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In [32] it is shown that the bit error rate is:  

[ ]
⎟⎟
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⎠
⎞
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+
=

2
x

2
x

ip

ȝσ2

ȜEmσ
erfc

2

1
BER ,                                (4.81) 

where 2
xσ  and  xȝ  are the variance and the average value of the video signal, re-

spectively. 
From (4.81) we can see that the BER is small if m , pσ  and [ ]iȜE  have high 

values.  
In [32] - Table. 2. gives several examples of BER  computed and measured for 

different values of m , and iȜ ,  with/without filtering.  

The watermark information bit rate is: 

factor spreading

 secondper  pixels luminance ofnumber 
R WM =                      (4.82) 

Remarks 
In order to maintain a certain value for the BER, even when attacks occur, the ar-
gument of the BER has to be raised using an insurance factor [32]. 

If m increases, WMR  decreases. If the number of the information bits per sec-

ond is lowered correspondingly the watermark still rests robust to intentional or 
non-intentional attacks. The robustness can be explained by the fact that each in-
formation bit ja  is spread over a larger number of bits ib . 

If the spreading factor m decreases, the BER also decreases. In order to keep 
the BER between some admissible limits, even if m is small and  WMR  relatively 

big, soft decoding error correcting codes can be used [72]. 
The method shown above for spatial domain video signals watermarking, can 

be used in any transformed domain of the video signal. Every transformed domain 
has its own advantages and drawbacks. A very good presentation of the state of 
the art in watermarking is made in [47]. 

4.8.5   Specific Attacks 

4.8.5.1   Attack Definition and Classification 

The causes leading to errors in the watermark extraction process are called  
attacks. 

According to the way they were produced, the attacks can be classified in two 
major categories: 

 

– Unintentional attacks, due to the usual signal processing in transmission or 
storage: linear (nonlinear) filtering, JPEG compression, MPEG-2 compres-
sion, pixel quantisation , analog to digital conversions, digital to analog 
conversions for recording processes, γ correction. A detailed description of 
these attacks is done in [26]. 
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– Intentional attacks intentionally made in order to eliminate the watermark 
or to insert false watermark, keeping also the perceptual fidelity. 

There is other attacks classifications among them we refer to: [81], [34]: 
 

A. Simple attacks, the watermarked signal sustains some distortions, how-
ever the intention being not to eliminate the watermark. The majority of these at-
tacks are unintentional attacks described above. 

B. Detection disabling attacks, including the synchronization attack. These 
attacks are oriented towards the watermark extraction devices; the purpose of such  
an attack is to avoid watermark detection. A common characteristic for such  
attacks is the signal decorrelation, making the correlation based watermark extrac-
tion impossible.  In this case the most important distortions are geometric distor-

tions: zooming, frame rotation, sub-sampling, the insertion or extraction of a pixel 
or a group of pixels, pixel interchanges, spatial or temporal shifts. 

In the case of the Stir Mark [69], the jitter attack consists in the elimination  
of some columns and the multiplication of others, keeping unchanged the image 
dimensions. 

On the same category, frame modifications are included: frame removal, frame 
insertion or swapping. 

C. Ambiguity attacks, also known as confusion, deadlock/ inversion-IBM/ 
fake watermark/ fake original attacks. These attacks are trying to create some con-
fusion by producing a fake original. 

D. Removal attacks are trying to decompose the watermarked image Y in a 
watermark W and an original X, in order to eliminate the watermark. In this cate-
gory we mention the collusion attack, noise extraction and nonlinear filtering. 
 

In multimedia MPEG compression based applications the attacks can be done 
in the compressed domain (frequency - DCT), or in the spatial domain.  The most 
important attacks are done in the spatial domain, for uncompressed signals.  

There are computer programs for several kinds of attacks, among them we 
mention: 

 

– Stir - Mark, from Cambridge University, 
– Attack, from University of Essex, 

still images oriented useful also for dynamic images too. 
In the following paragraphs we will expose the principle for two of the most 

powerful attacks: the inversion (IBM) attack, and the collusion attack. 

4.8.5.2   The Inversion Attack / IBM / Confusion / Deadlock / Fake 

Watermark / Fake Original 

The goal of this attack is the insertion, by faking, of some watermarks in an al-
ready watermarked signal, followed by a copyright claim of the fake owners. 

The resulted signal contains several watermarks creating therefore a confusion 
related to the right owner (the first person who watermarked the document). 
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From a mathematics point of view this situation can be modeled as follows: 
Let X be an original document watermarked by its owner (p): 

Yp = X + Wp                                               (4.83) 

and Yf  the fake document, obtained by the forger by adding its own watermark 
Wf  to the original already watermarked: 

Yf = Yp + Wf = X + Wp +Wf                                 (4.84) 

By proceeding on this manner, a new document with two watermarks is cre-
ated, for the new document both the right owner and the forger could claim the 
copyright, each one having its own watermark inserted. 

The question is, who is the right owner of the document X ?    
A simple solution consists in using the arbitrated protocol. Let Dp and Df be 

the watermark extraction algorithms used by the owner and the forger. 
The judge verifies Yp and Yf using at the time the two extraction algorithms: 
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and: 
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The forger is identified, and thus, the problem posed in [72], is solved.  
The above-mentioned problem becomes more difficult when the forger is able 

to produce a false (counterfeit) original: Xf - this case is known as the inversion 
attack or IBM attack. 

Starting from a watermarked original: 

Yp = X + Wp ,                                           (4.87) 

a false original Xf  is created by the forger, by extracting a false watermark Wf:  

Xf  = Yp - Wf                                            (4.88) 

It follows that: 

Yp = Xf +Wf ,                                           (4.89) 

Consequently the already marked image contains the forger’s watermark; the 
forger can pretend now that Yp is his, being created from the counterfeit original 
Xf and his watermark. 

The above-described arbitrated protocol can no longer tell who is the right 
owner: 

( ) ( )
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,                         (4.90) 

because Yp is the same and it contains both watermarks. 
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This attack cannot be avoided in oblivious schemes (needing the presence of 
the original for extraction). 

A necessary condition - but not sufficient - for avoiding the inversion attack is 
the use of nonoblivious watermark extraction schemes.  

Basically there are two major nonoblivious extractions schemes:  
 

1. the watermark has to be original dependent, using for example hash functions  
2. the original signal X has to be time stamped at creation, the time stamp will 

permit to establish who is the right owner according to the temporal stamp’s 
date. 

 

1. Oblivious watermark extraction schemes using hash functions. 
An original dependent watermark can be produced using one way hash func-

tions, so that: 

H(X)=h,                                               (4.91) 

h represents the value of the hash function (hash value). Some robust hash func-
tions based algorithms are MD4, MD5 and SHA [64]. It imposes the demand that 
any watermarking system has to be oblivious; it is evident that such a demand has 
to be also legally established in order to counterattack the IBM attack. In this case 
the forger can no longer generate a false original Xf because the watermark Wf 
cannot be dependent on the false original Xf.  

2. Time stamping means that the watermark information has to contain some 
time stamp with information related to the certified original X, the certification 
date T, and also the name of the owner P, so such a time stamp is: 

S = (h, T, P),                                            (4.92) 

where h is the hash value of the function H(X). Consequently the watermarked 
image is: 

Y = X + W(S)                                           (4.93) 

In this case the IBM attack is impossible, due to the fact that it is impossible to 
obtain: 

Xf  = Y - W(Sf)                                         (4.94) 

4.8.5.3   The Collusion Attack 

The goal of this attack is to eliminate the watermark, therefore to obtain an un-
marked signal X. 

Conditions: the existence of at least two copies of the same original differently 
watermarked: 
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where W1, W2 are two digital fingerprints. 
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Actions 

1. Collusion by subtraction. The difference between the two copies is done, so the 
watermarks are localized and therefore eliminated: 

Y1  - Y2 = W1 - W2                                         (4.96) 

2. Collusion by addition. This is the general case for this type of attack; in this 
case the collusion is viewed as a mean operation performed on the same origi-
nal marked with several different watermarks: 
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The mean of the copies is: 
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From the above relation it can be seen that the watermark is half reduced; for a 
larger number of watermarked versions of the same signal, the original X can be 
obtained. 

4.8.6   Applications 

The main applications of the watermarking were mentioned in introduction. As 
shown in 4.8.3, each application has specific demandes concerning the watermark-
ing requirements. However, three important features define watermarking from 
other solutions: 

 

• watermarks are perceptually transparent (imperceptible), 
• watermarks are inseparable from the host data in which they are inserted, mean-

ing that support the same processing as the host data. 
 

The quality of the watermarking system is mainly evaluated by its: 

• robustness, which indicates the capability of the watermark to “survive” to un-
intentional or intentional attacks, 

• fidelity, describing how transparent (imperceptible) a watermark is. 
 

The value of these quality parameters is highly dependent on the application. 
We will proceed presenting the most important applications, their requirements, 
the limitations of alternate techniques, emphasizing the necessity and advantage of 
the watermarking solution [27]. 

4.8.6.1   Broadcast Monitoring 

• Who is interested in it? 

– advertisers, which are paying to broadcasters for the airtime; in 1997 a 
huge scandal,  broke out in the Japanese television advertising (some sta-
tions usually had been overbooking air time), 
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– performers, to  receive the royalties due them by advertising firms; in 1999 
the Screen Actor Guild, after a check, found that the unpaid royalties in US 
television programs is aprox. 1000   USD/hour, 

– owners of copyrighted works, who want to be sure that their property is not 
illegally rebroadcast (major events, catastrophes, exclusive interviews, etc). 

 

• Broadcast monitoring ways: 

– using human observers to watch the broadcast and record what they see 
and hear; these techniques is expansive, low tech and predisposed to errors. 

– automated monitoring: 

- passive monitoring: the humans are replaced by a computer  that moni-
tors broadcasts and compares the received data with those found in a data 
base with known works; in case of matching the work is identified. The ad-
vantages of this system are: do not require cooperation between advertisers 
and broadcasters and is the least intrusive. Unfortunately it has major disad-
vantages related to the implementation (need of huge data base, impractical to 
search); if signatures of the works are used, the data base diminishes a lot, but 
the broadcast altering the work, will make the signature of  the received work 
different as those corresponding to the original (an exact matching is impossi-
ble). This system is applied for marketing, but not for verification services, 
because its error rate. 

 - active monitoring: it removes the main disadvantages of the passive 
monitoring. There are two ways to accomplish this aim: using computer rec-
ognizable identifiers (e.g. Vertical Blanking Interval for analog TV or file 
headers for digital format) along with the work or the watermarking. The 
first solution has as main disadvantage the miss of guarantee in transmission 
and the lack of resistance to format changes. The watermarking solution, 
even more complicated to be embedded (compared to file headers or VBI), 
has not any more the risk to be lost as identifiers are. 

4.8.6.2   Owner Identification: Proof of Ownership 

Textual Copyright notices, placed in visible places of the work, are the most used 
solutions for owner identification. An exemplification for visual works is: 

 

 “Copyright data owner” 
 “© data owner” (© 2002 by Academic Press) the textual copyright notice 

for “Copr. data owner” [27]. 
 

Unfortunately this widespread technique has some important limitations: the 
copyright notice is easily omitted when copied the document (e.g. photocopy of a 
book without the page containing the copyright notice), or cropped (Lena is a 
cropped version of November 1972 Playboy cover) and, if not removed, it is un-

aesthetic. The watermarking is a superior solution, eliminating the mentioned 
limitations due its proprieties of inseparability from the work (ca not be easily re-
moved) and imperceptibility (it is aesthetic). 
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A practical implementation of a watermarking system for this application is 
Digimarc, distributed with Adobe Photoshop image processing software; when 
Digimarc’s detector recognize a watermark, it contacts a central data base over the 
Internet and uses this information to find the image owner. This available practical 
system is useful only for honest people. 

When malicious attacks are done, as collusion for removal and IBM for creat-
ing a fake owner, the proof of ownership is a major task. In a copyrighted work a 
forgery is very easy to be done in both cases presented before. As example: 

“© 2000 Alice” can easily be transformed by an adversary (pirate, traitor) Bob 
as: “© 2000 Bob” by a simple replacement of owner’s. Using the Digimarc sys-
tem, the replacement of Alice watermark with Bob watermark is not difficult (if a 
watermark can be detected, probably can be removed to). For this situation there 
are some solutions as using an arbitrated protocol (which is costly) or using work 
dependent watermark, as presented in chapter 4.8.5. 

4.8.6.3   Fingerprinting (Transaction Tracking) 

The digital technology allows making quickly cheap and identical (same quality) 
copies of the original and to distribute them easily and widely. Distribution of ille-
gal copies is a major problem of our days, implying always money (huge amount) 
loses of copyright owners. 

Fingerprinting is a new application, aiming to catch the illegal distributors or at 
least making its probability greater. A legal distributor distributes to a number of 
users some copies, each one being uniquely marked with a mark named finger-

print (like a serial number). A number of legal users, called pirates, cooperate in 
creating illegal copies for distribution. If an illegal copy is finding, the fingerprint 
could be extracted and traced back to the legal owner of that copy. 

The idea of transaction tracking is old, being used to unveil spies. To suspects 
were given different information, some of them false, and by the action of enemy 
those who revealed the information were caught. 

A practical implementation of a fingerprinting system was done by DIVX Cor-

poration, now defunct [27]. Each DIVX player placed a unique watermark (fin-
gerprint) into every played video. If such a video was recorded and than copies 
sold on the black market, the DIVX Corporation could identify the pirate by de-
coding the fingerprint. Unfortunately no transaction tracking was done during the 
life of DIVX Corporation. 

Transaction tracking in the distribution of movie dailies is another application. 
These dailies are very confidential, being not allowed to the press. Studios prefer 
to use fingerprinting, and not visible texts for marking, because the last one are 
very easily removed. The quality (fidelity) is not necessary to be very high in this 
application. 

4.8.6.4   Content Authentication (Fragile Watermarking) 

The aim of this application is to detect data tampering and to localize the  
modification. 
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Why is it so important? 

Because in digital, tampering is very easy and very hard to detect (see image 
modification with Adobe Photoshop). Consequences of such tampering could be 
dramatically in a police investigation! 

Message authentication [64] is a basically problem of cryptography, a classical 
solution being the digital signature, which is an encrypted summary of the message. 

This solution was used in “trustworthy digital camera” [27] by computing a 
signature inside the camera. These signatures act as a header (identifier) necessary 
to be transmitted along with the work. Unfortunately the integrity of this header is 
not guaranteed if format changes occur. As in broadcast monitoring, instead of a 
header, which could be lost, an incorporated signature in the work is preferred, re-
alized using watermarking. These embedded signatures are authentication marks. 
These marks become invalid at the smallest modification of the work and for this 
reason they are named fragile watermarks. 

In this application, robustness is not anymore a requirement; the watermark de-
signed for authentication should be fragile, as nominated. A detailed presentation 
of this application is done in [27], chapter 10. 

4.8.6.5   Copy Control 

If the former described applications had effects after an intentional forgery, the 
copy control is aimed to prevent people to make illegal copies of copyrighted 
works. The ways for this type of protection mentioned in the Introduction are en-
cryption and watermarking. The both, without an appropriate legislation will not 
solve the problem. 

In the next chapter the first trial for an appropriate standard proposal is  
presented. 

4.8.7   The Millennium Watermark System [53] 

4.8.7.1   Introduction 

The first attempt of standardization for the DVD`s copy protection is the Millen-
nium watermarking system introduced by Philips, Macrovision and Digimarc in 
USA; it was submitted to the approval of the USA Congress, and the result was 
the   “Digital Millennium Copyright Act” signed by the president of the USA in 
28. 10.1998. 

The main cause was the market explosion of digital products like DVDs, digital 
broadcasting of multimedia products and the producers’ exposure to potential 
huge financial losses, in case of the non-authorized copying. 

The standardization of the video DVD`s provoked unusual debates in copy pro-
tection (like the 1970 ÷ 1975 years for the DES standardization) influencing the 
whole multimedia world. 

On a DVD the information is encrypted (with secret algorithms) but in order to 
assure the copy protection the encryption is not enough. Using encryption on a 
storage device: CD, DVD, or in transmission on communication channels or open 
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interfaces copy protection can be realized using an authentication system and a 
session key generating mechanism for all interfaces (end to end encryption). En-
cryption used on DVDs supposes that the players or recorders have incorporated 
compliant devices. When the content is displayed in clear on a monitor or played 
on speaker (to the human consumer) the encryption-based protection disappears. It 
is now when the need for watermarking becomes clear; the watermark assures that 
copying is allowed for a restricted number of copies (one copy) or prohibited 
(never copy).  

The basic demands for the DVD copy protection watermark system are:  
 

• invisible and hard to remove 
• fast watermark extraction (maximum 10 s), therefore real time processing  
• cheap watermark detector, with minimum additional hardware required for 

players and recorders  
• robust detection , the watermark has to resist  when usual processing of the  

signal are performed: compression, noise adding, shifts, format conversions etc. 
• the watermark ` s payload has to be at least  8 bits/ detection interval 
• the false alarm probability - watermark detection without watermark signal-  

has to be below 10-12. 

4.8.7.2   Basic Principle of the Millennium System 

For any practical implementation solution of the system, the basic demands are:  
 

- cheap and simple, 
- robustness with perceptual transparency fulfilled. 

 

According to these demands, from the wide spectrum of technical solutions, the 
following one has been chosen: the real time detection in the spatial domain using 
a simple spatial correlator. Even if the transformed domain (DCT or wavelet) of-
fers several advantages, the needed processing cannot be done in real time.  

In order to reduce the complexity, pure spatial watermarking is used, each wa-
termark sequence W is repeatedly inserted in each frame of the video signal. By 
proceeding on this manner one can view the video signal as a time accumulated 
still image. Watermark detection can be described consequently: 

i
i t
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d ∑ ⎟⎟⎠
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⎛∑= ,                                      (4.99) 

where: t  is the temporal position of a pixel 
 i is the spatial position of a pixel 

           N is the number of pixel from an image (frame), 
      T is the number of frames used in the detection process. 
 

Using time accumulation, the number of multiplying is reduced, and conse-
quently the complexity and also the processing time are also reduced.  
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Block schemes for the watermark insertion and watermark detection are given 
in Fig. 4.30.a and Fig. 4.30.b, respectively. Both schemes are using the principle 
illustrated in Fig. 4.28 and Fig. 4.29:  
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Fig. 4.30 Millennium Watermark block schemes: a) insertion, b) detection  

N1 = 720, N2 = 480, T = 27, M = 128. 
 

Watermark insertion (fig. 4.30.a) 
The insertion of the same watermark in a given number of consecutive video 
frames is a 1 bit (mark) information for a video sequence. 

A watermarked image Y = {yi} is obtained using: 

yi = xi + sλiwi ,                                           (4.100) 

s being a global scaling parameter, and  Λ = {λi} a local image dependent scaling 
factor.  The values for λi are smaller in the ``quiet`` regions within the image and 
bigger in the `` active`` ones (contours, peaks). A satisfactory local scaling factor 
is obtained when the image is Laplace high pass filtered and taking the absolute 
value: 

Λ = ⎪L⊗X⎪                                            (4.101) 

the sign ⊗ represents the cyclic convolution , and   
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From (4.100) we can see that the (spread) watermark sequence W is a simple 
additive noise. Being formed using a pseudo-random sequence, its spectrum repre-
sents a white noise. 

 
Watermark detection (fig. 4.30.b) 

As shown above, the watermark detection is done using a spatial correlation, it 
follows that the watermarked image is: 

Y = X + s × Λ × W                                        (4.103) 

Then the correlation sum used for the detection is: 
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Remark 
In (4.104) it is assumed that during detection there is synchronization between the 
image and the watermark.  For a correct aligning, the correct position is searched 
taking into consideration all the allowed spatial shifts, the decision variable dk  
being: 
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For a real time detection the search for all the possible shifts is computationally 
prohibitive. The solution used in Millennium is the insertion of translation symme-
try in the structure of the watermark:  

wi+k = wi ,                                            (4.106) 

for any vector k, which components are, multiplies of M , M being the dimension 
(tile)  of the processing window support. The chosen practical value is M = 128. 

Under these hypotheses the exhaustive search for all the possible shifts greatly 
simplifies. Due to the fact that the watermark is repeated over values that are mul-
tiplies of M, the watermarked image is superposed on an M × M matrix B={bi}. In 
this case  

∑= −
i

kii2k wb
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d                                        (4.107) 

Actually (4.107) represents a cyclic two-dimensional convolution. 

D = B ⊗ W *                                              (4.108) 

(4.108) can be easily computed in the frequency domain [53]:  

D = IFFT (FFT(B) × FFT ( W )* )                               (4.109) 

In (4.109) FFT (Fast Fourier Transform) and IFFT (Inverse FFT) are the dis-
crete Fourier transform and the inverse discrete Fourier transform, computed 
through a fast algorithm. 
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Remark 
The detection performances can be improved if an adaptive filtering precedes the 
convolution.  

From an experimental point of view the best detection is obtained by ignoring 
the amplitude information from W  and retaining only the phase information: 

D = IFFT (phase (FFT(B)) × phase (FFT ( W ))* )                   (4.110) 

Such a detection method is known in pattern recognition, as the symmetrical 
phase only filtering - SPOMF. 

4.8.7.3   Millennium Standard Implementation 

The real time watermark detector was built on three separate platforms: 
 

• on a high-end Silicon Graphics workstation, 
• on a Tri Media processor based board 
• on a  FPGA board. 

The author shows in [53] that for DVD the best implementation is the FPGA 
based one. The costs associated with the implementation of the Millennium stan-
dard are given below: 

 

 IC ROM RAM 

FPGA 17kG 34kB 36kB 

Silicon 14kG 1kB 36kB/3,6mm2 

 

Remarks 

• the data from Table 1 are related  to a single watermark detector  
• in general the watermark detector has to be implemented on a MPEG decoder 

or a host-interface chip of a DVD-drive ; in both cases the functioning of the 
IC`s  - (MPEG - decoding and PCI - bus streaming integrated circuits) needing 
huge memory buffers.  
 

Even though there are no written information about the robustness of the Mil-
lennium system some conclusions tells that it fulfils the desired goal. 

4.8.7.4   Unsolved Problems 

The watermark detector can be placed in two places: 
 

• From a security point of view the place of the copy control is in the driver of 
the DVD player, in the closest place to the storage medium (DVD). The PC 
data bus receives data from these DVD drivers, writing them into sectors with-
out any interpretation possibility (audio, video or other). 
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For such a placement of the watermark detector, the data written into sector 
has to be recognized: 

 

– data concatenation from different sectors  
– decryption 
– demultiplexing  
– partial MPEG decompression. 

The above-mentioned processing   are nor usually done in the driver. 

• The second solution is the MPEG decoder; in such a case the line between the 
driver and decoder has to be secure (encrypted). It seems that this solution is 
preferred. 

4.8.7.5   Copy Control [53] 

There are two basic principles: 
 

a) The remarking concept, consisting in the insertion of a second watermark 
by the recorder. 

b) The ticket concept, consisting in volatile information, lost in the copying 
process, like in the case of a bus ticket that looses its validity by obliteration.   

The ``ticket`` acts like an authorized identifier. In order to assure that the ticket 
is specific to certain information, and to a certain transfer - for example copying- 
the ticket is encryptionally tied with the payload.  

4.8.7.6   Media Type Recognition 

According to the usage type, several media types can be used: 
 

– pressed storage media (ROM), that can not be recorded  
– recordable storage media. 

The media type recognition can be regarded as a solution used in order to pre-
vent ROM type discs recording.   

4.8.8   Some Remarks 

Digital watermarking was presented as a solution for copyright protection and espe-
cially for multimedia product unauthorized copying. In fact, even though several so-
lutions were proposed, actually the domain rests untested, not experimented. 

Among the great lacks shown, we can remind in the first place: 
 

– the lack of standardization in algorithm testing and evaluation (lacks of 
benchmarking) (something like StirMark)  

– the lack of a suitable legislation.  
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The copyright protection problem [72] shows that watermarking is by no means 
an unfailing method. Any research teams (even the whole technical community) 
will not solve copyright protection, because it is related to several legal aspects in-
cluding a concise definition for similarity and subsequent work. Now we are in a 
period of great interdisciplinary efforts for national and international recommen-
dations and standard elaboration for ownership protection in the digital era, in 
which both the multimedia products manufacturers and the legislation (the politi-
cal factors) have to arrive to an agreement. 

4.9   DNA Cryptography 

4.9.1   Introduction 

DNA cryptography and steganography is a new field, born from L. M. Adleman 
research [1] and Viviana Risca project on DNA steganography [74]. 

The huge advantages that DNA structure offers for efficient parallel computation 
and its enormous storage capabilities, made from this field a very promising one for 
various applications despite today limitations: expensive or time consuming. 

For cryptographic purposes the interest is to generate very long one time pads 
(OTP) as cryptographic keys, which ensures the unbreakability of a crypto-system 
[66], to convert the classical cryptographic algorithms to DNA format and to find 
new algorithms for biomolecular computation. 

Taking into account the huge advances in DNA technology, especially in mi-
croarray, the bio-processor [63], obeying an accelerated Moor’s law [64], we must 
expect a faster repetition of microprocessor evolution and at larger scale. 

4.9.2   Backgrounds of Biomolecular Technologies 

The deoxyribonucleic acid (DNA), the major support part of genetic information 
of any organism in the biosphere, is composed by two long strands of nucleotides, 
each of them containing one of four bases (A – adenine, G -  guanine, C – cyto-
sine, T – thymine), a deoxyribose sugar and a phosphate group. The DNA strand 
leave chemical polarity, meaning that on each end of a molecule there are different 
groups (5’- top end and 3’- bottom end) [63]. 

A DNA molecule has double stranded structure obtained from two single-
stranded DNA chains, bonded together by hydrogen bonds: A=T double bond and 
C≡G triple bonds. The double helix structure is configured by two single antipar-
allel strands (Fig. 3.10 paragraph 3.3.5). 

The DNA strands can be chemically synthesized using a machine known as 
DNA synthesiser. The single stranded chains obtained artificially with the DNA 
synthesiser are called oligonucleotides, having usually 50-100 nucleotides in 
length. In what follows, the individual strands will be referenced as single  
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stranded DNA (ssDNA) and the double helix as double-stranded DNA (dsDNA). 
Individual ssDNA can, under certain conditions, form dsDNA with complemen-
tary ssDNA. This process is named hybridization, because the double stranded 
molecules are hybrids of strands coming from different sources (Fig. 4.31). 
 

 

Fig. 4.31 Hybridization process  

Ribonucleic acid (RNA) is a single strand of ribonucleotides, identical with 
ssDNA strands expect thymine (T) which is replaced with uracil (U). 

The genetic information flows from DNA into mRNA (messenger RNA) proc-
ess known as transcription and from mRNA to protein, process called translation, 
defining what is known as the central dogma of molecular biology (Fig. 3.9 from 
paragraph 3.3.5) [63]. 

Gene is a segment of DNA that contains coding sequences (exons) and non-
coding sequences (introns). 

 

 
Fig. 4.32 Gene representation  

When a gene is active, the coding sequence is copied in the transcription proc-
ess in mRNA and, in the translation process, the mRNA directs the protein seg-
ments via genetic code (see 3.3.5). Transcription is governed by regulatory ele-

ments (enhancer, promoter), which are short (10 – 100 bp) DNA sequences that 
control gene expression. 

Chromosome is a large organized structure of DNA coiled around proteins, 
containing genes, regulatory elements and other nucleotide sequences. It replicates 
autonomously in the cell and segregates during cell division (Fig. 4.33). 
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Fig. 4.33 Chromosome representation (http://www.ohiohealth.com/)  

The entire DNA content of a cell, including nucleotides, genes and chromo-
somes, are known as the genome. Each organism contains a unique genomic se-
quence, with a unique structure.  

Polymerase chain reaction (PCR) is a molecular biology technique used to ex-
ponentially amplify certain regions of DNA using enzymatic replication and start-
ing with the DNA fragment (primer) to be amplified (Fig. 4.34). 

 

Fig. 4.34 Amplifying process in PCR technique  

Recombinant DNA technology (gene splicing, genetic engineering) uses en-
zymes to cut and paste DNA “recombinant” molecules. Recombinant DNA en-
ables the isolation and cloning of a gene and PCR its amplification (Fig. 4.35). 
dsDNA is cut with restriction enzymes (e. q. E.coli) that recognise specific nu-
cleotides (recognition sequence) in it and cleave its double strand in precise loca-
tion, leaving uncompleted “sticky ends” [63]. 
 



4.9   DNA Cryptography 193
 

 
Fig. 4.35 Illustration of DNA recombinant process  

Gel electrophoresis is a technique used to separate charged and labelled parti-
cles located in the gel (DNA, RNA etc) when electric current is applied. The DNA 
fragments of interest can be cut out of the gel and extracted or can be removed 
from the gel using Southern Blotting [4]. 

Microarray is the biological microprocessor. It is an ordered array of micro-
scopic elements (spots) arranged in rows and columns on a planar substrate (glass 
or silicon). Each spot contains ssDNA molecules attached to the glass substrate 
(target). These molecules allow binding to them, by hybridization the fluorescent 
probe molecules. The gene expression information is measured by the fluorescent 
intensity of each spot (Fig. 4.36) [63]. 
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Fig. 4.36 Illustration of microarray experiment  

This new concept presented in 1994, represents the collaboration of Mark 
Schena and Ron Davis (Stanford University and Affymetrix company). It is a 
revolutionary technique allowing an enormous increase in speed and precision of 
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gene quantitative analyses. A single microarray can be used to analyse the entire 
human genome (aprox. 25000 genes) in a single step of few minutes! 

4.9.3   Elements of Biomolecular Computation (BMC) 

BMC methods were proposed by Adleman [1] to solve difficult combinatorial 
search problems using the great available parallelism to the combinatorial search 
among a large number of possible solutions represented by DNA strands. In 1995 
there were proposals to use BMC methods for breaking DES [9]. Besides the com-
binatorial search, BMC has many other exciting applications, due to the exceptional 
storage capacity of DNA. In cryptography the interest is for long OTP, for classic 
cryptographic algorithms in DNA format and also for new BMC algorithms. 

4.9.3.1   DNA OTP Generation 

A OTP in DNA format can be generated in two main ways:  
 

• Assembling randomly long sequences from short oligonucleotide sequences. 
The ssDNA segments are bound together using a special protein (ligase) and 
a short complementary template (Fig. 4.37) 

 
Fig. 4.37 Binding process between two ssDNA segments 

• Using the chromosome sequence which is very large (thousands, millions 
bases), or segments of chromosomes delimitated by primers (short length; 
20 bp, DNA sequences) the distinct number of possible primers is 420, indi-
cating the order of the brut force attack in this case. 

4.9.3.2   Conversion of Binary Data to DNA Format and Vice Versa 

In order to use the classic cryptographic algorithms in DNA format, conversion from 
binary to DNA format are required. DNA alphabet being of four letters (A, C, G, T), 
it is obvious that two bits are needed for encoding the four letters (Table. 4.9).  

Table 4.9 DNA to binary conversion 

DNA Binary ACSII - 7bits 
Decimal 

ASCII - 8 bits 
Decimal 

A 

C 

G 

T 

00 

01 

10 

11 

0 

1 

2 

3 

0+1 = 1 

1+1 = 2 

2+1 = 3 

3+1 = 4 
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The plain text message is transformed in bits and after, in DNA format. If the 
message is a text, then the encryption unit is a character and it will be repre-
sented on ASCII code on 7 bits. If the message is an image than a pixel is the 
encryption unit and can be represented on 8 bits at least. Taking into account 
that each DNA letter (A, C, G, T) is represented with 2 bits, it means that an 
ASCII character or a pixel will be represented on 4 letters, being equivalent to  
a byte. 

 
Example 4.11 

Convert the message secret in ASCII, binary and DNA formats. 
 

Solution: 

 

ASCII Message 

Decimal Binary 7 bits Binary 8 bits 

DNA 

s 115 1110011 01 11 00 11 CTAT 

e 101 1100101 01 10 01 01 CGCC 

c 99 1100011 01 10 00 11 CGAT 

r 114 1110010 01 11 00 10 CTAG 

e 101 1100101 01 10 01 01 CGCC 

t 116 1110100 01 11 01 00 CTCA 

 

Remark 

This example was given to understand the ASCII ĺ binary ĺ DNA conversion 
and it is not used for cryptographic purposes (it would be too easy to be broken). 

4.9.3.3   DNA Tiles and XOR with DNA Tiles 

DNA tiles [30] were synthetically designed after Wang tiles [82], using individual 
oligonucleotide chains which might hybridize in one helix, than cross-over and 
hybridize in another helix (Fig. 4.38). 

 

Fig. 4.38 Triple-helix tile  
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Upper and lower helixes end with uncompleted sticky ends, used for binding 
other tiles with complementary sticky ends (Fig. 4.39). 

 

tile 1

tile 2

T C G A

A G C T

 

Fig. 4.39 Tiles assembling through complementary sticky ends  

Binary data can be encoded using a single tile for each bit. The difference be-
tween 0 and 1 is given by the group of nucleotides on sticky ends. 

 
Example 4.12 

Tiles binding in a string will be discussed. 
In order to make a string with DNA tiles, two steps are required: 
 

• Selection of START tiles (Fig. 4.40) 

 
Fig. 4.40 Tiles for START bits in a string  

• Selection of stacks with tiles for the rest of the bits in the string (Fig. 4.41). 

 

Fig. 4.41 Stacks with tiles for the rest of the bits in a string 
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• DNA XOR with tiles 

In order to perform bit-wise XOR operation between two messages of given 
length (in cryptography it is XOR between the plain text and OTP key), a linear 
structure is obtained (Fig. 4.42) 

 

Fig. 4.42 XOR computation with tiles  

 

The truth table of XOR function is given in Table 4.10. 

Table 4.10 Truth table of XOR function 

Inputs Output 

x1 x2 y = x1 XOR x2 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

1 

0 
 

4.9.4   DNA Based Steganography and Cryptographic Algorithms 

4.9.4.1   Steganography Technique Using DNA Hybridization 

The technique of hiding a message in a DNA medium (microdot) was presented in 
1999 in [74].  

Based on sticker model for DNA computation [62] and on the technique of hid-
ing a message in DNA microdots [74], a DNA encryption algorithm is presented 
[18]. A ssDNA OTP key is used to encode a text (plaintext). The technique to hide 
the encrypted message (ciphertext) could be the one presented in [74]. The steps 
of the algorithms are: 
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a) Conversion of the plain text in binary 

Message (TEXT) ĺ ASCII ĺ binary (n bits) 
b) Generation of ssDNA OTP 

–   each bit will be encoded with 10 nucleotides, chosen randomly; the 
length of OTP will be greater than 10xn. 

c) Encryption 

–   for a binary “1” in the message, a strand of 10 bases long, complemen-
tary to the ssDNA OTP created at b) is made. 

–   For a binary “0” in the message, neither operation is performed. 

d) Hiding the ciphertext using DNA steganography techniques; the ciphertext 
is placed between two primers and hidden in microdot, for example, as in 
[74], using as background fragmented and denaturated DNA (fig 4.13). 

 

Fig. 4.43 Cipher text hiding: a) structure of cipher text inserted between two primers; b) 
dsDNA containing (hidden) the cipher text  

e) Message recovery (decryption) 

The intended recipient requires the knowledge of the: 
–   medium containing the hidden message 
–   primers and OTP used for encryption 
Steps performed for the message recovery are: 
–   PCR performing using right primers to amplify the hidden ciphertext 
–   analyses of PCR product by gel electrophoresis or microarray analyses 
–   cleavage of the obtained strand in segments of 10 bases long, using re-

striction enzymes, in order to cut the strand 
–   hybridization between the obtained segments and the original OTP 
–   reading the message: hybridized segments are “1” and ssDNA are “0” 
–   OTP destruction. 

Example 4.13 
The previous algorithm will be exemplified for the message ZOO (except the steps 
requiring biomolecular technologies). 
 

a) Conversion from text ĺ binary 
ZOO ĺ ASCII:  90 79 79 ĺ binary: 10110101100111111001111 – 21 bits = n 
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b) Generation of ssDNA OTP: for each binary digit 10 nucleotides, randomly 
selected (eq. using function “randseq (length)” from MatLab Bioinformatics 
Toolbox). The sequence can be generated in DNA, RNA or amino alphabet. 
In our example sequence of 220 bases (> 210 bases) was generated: 

TAAATATGTAACCCCCTGTAGCCAGCTTCCCTCCTCTACTGAGAG
TCGGTAGTCGGCCTAACGTCACTCCTCAGCCTTGTTCAGTAACAGTC
GACCCCTAAGTGTCCCGATCGTCGGGAGTGTATGAGAGAGCAAACT
TGTGATTAGCGCTAGCCCGAGTCCTTGCTTCTCACGCAATCAAGGAA
TTGGTGTGTATATGCACTCGCGGGGTAATAGAGCA 
c) Encryption: for binary “1”s, complementary ssDNA are created and for bi-

nary “0”s neither operation is performed. In our case the encoded stream ( 
corresponding to the 14 “1”s) is: 

TGGGGGACAT, GAGGAGATGA, CTCTCAGCCA, 
TGCAGTGAGG, AGTCATTGTC, AGCAGCCCTC, ACATACTCTC, 
TCGTTTGAAC, ACTAATCGCG, ATCGGGCTCA, TCCTTAACCA, 
CACATATACG, TGAGCGCCCC, ATTATCTCGT 

 
and the OTP containing the hybridized parts is: 

 

d) Message recovery (decryption). The decryption of the first “101101” bits 
from the encrypted message ZOO is:  

 

TAAATATGTA ACCCCCTGTA GCCAGCTTCC CTCCTCTACT

GAGAGTCGGT AGTCGGCCTA ACGTCACTCC

TGGGGGACAT GAGGAGATGA

CTCTCAGCCA TGCAGTGAGG

0 0

0

1 1

1 1  

4.9.4.2   Chromosome DNA Indexing Algorithm 

As shown in 4.9.3.1, OTP can be generated using chromosomes segments, situated 
between two primers, 20 bps long. 
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The steps of the algorithm are: 
 

a) Generation of OTP as session key for symmetric encryption, using a se-
quence of DNA chromosomes selected from an available public data base 
[38] 

b) Encryption 

–   The plaintext, if text, is converted in ASCII code (on 8 bits: 0+7 bits), 
and, if image, in 8 bits at least; than the binary stream is converted in 
DNA format , as indicated in 4.6.3.2, meaning that each 8 bit character 
is transformed in 4 letters (A, C, G, T). 

The OTP sequence is analyzed in steps of 4 bases long and compared to the plain-
text in DNA format (Fig. 4.44). 

 

T T C C A A T A G ...
Step 1

Step 2

Step 3

i=1

i=2

i=2  

Fig. 4.44 Illustration of OTP scanning process for message encryption 

–   If 4-letters sequence, representing a character of the plaintext was re-
trieved in the chromosomal sequence, then the starting point (index in 
chromosome) of identical 4-letters is memorized in an array. For each 4-
letters character an array of indexes in the chromosomal sequence is ob-
tained. The number of indexes allocated to a character depends on the 
number of occurrences of the character in the chromosomal sequence. 
From this index array, a number is selected randomly and will be the 
encrypted character. Thus, the ciphertext is an array of random indexes. 

c) Message recovery (decryption) 

–   The same OTP along with the primers used for encryption are required 
to decrypt the message. The steps at decryption, as for any symmetric 
algorithm are identical with those used for encryption, but made in re-
verse order. 

–   This algorithm is using OTP key, meaning that a key is used only once. 
It is necessary to be able to generate great number of very long keys in 
order to leave a truly OTP. Chromosomes indexing offers a huge variety 
of possible genes and chromosomes itself can be selected from different 
organism, being thus excellent materials for cryptography, offering ran-

domness and non-repeating OTPs. 
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–   Transmission of the required OTP chromosome and primers, in fact the 
key management, which is the hardest problem in the symmetric cryp-
tography, becomes much easier. Only the type of the chromosome and 
primers are needed to be known, which, being extremely small in 
length, could be transmitted using classic PKC for example. 

The last two features look to be two great advantages of this algorithm. In fact 
this is not properly a DNA cryptographic algorithm because it is not using to DNA 
medium, but is using the huge randomness that DNA medium is offering. Serious 
studies to compare the classic algorithms towards this new one, will validate or 
not the efficiency for practical applications. 
 

Example 4.14 

Apply chromosome DNA indexing algorithm using Homo sapiens FOSMID clone 
ABC145190700J6 from chromosome X, available in NCBI database [38] for the 
message: secret. 

 
Solution 

a) A fragment from sequence file in FASTA format is: 
 

 

b) Encryption 
Be the plaintext: secret ĺ ASCII: 115 101 99 114 101 116 
 s ĺ 115 ĺ 01110011 ĺ CTAT ĺ indexes: 
166    258   789 927 1295 2954  3045 
 3098 3181 3207 3361 3763 4436  

4559 5242 5443 5794 5938 5966  
7392 7698 7762 7789 7832   8128 
8627 9918 11871 12240 12332 12383  
12581 13107 13128 13324 14919  15169  
15177 15494 15602 15844 16073 16369 
16829 16891 16939 17227 17342 17718  
17818 18564 19530 20022 20437 20619  
21145 21411 21419 21725 22030 22051  
23157 23180 23231 23311 23367 23430 
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23434 23556 23811 24005 24038 24182  
24568 25871 27176 27208 27896 29321  
29642 29848 30087 30097 30110 30438  
30472 31090 31487 33204 33226  33321  
33378 33612 35520 35530 35646 35768 

For each character was chosen a random index from its array of indexes. Below 
are established positions of random indexes inside character’s arrays: 

115 å 70th index 23811 
101 å 26th index 13981 
99 å 7th index 8011 
114 å 57th index 21195 
101 å 57th index 32741 
116 å 158th index 25264 

Final encrypted message is:  

23811       13981        8011       21195       32741       25264 
 
c) Message decryption 
The key is Homo sapiens FOSMID clone ABC14-50190700J6, from chromo-

some x complete sequence. First we read this sequence using functions from Bio-
informatics Toolbox: 

FASTAData = fastaread('homo_sapiensFosmid_clone.fasta') 

Each index from received encrypted message was used to point in chromoso-
mal sequence: 

SeqNT=FASTAData.Sequence(i:i+3) 

Using these pointers we extracted for each character a 4-bases DNA sequence. 
This variable was transformed in numerical value, using transformation offered by 
Matlab Bioinformatics Toolbox (A-1, C-2, G-3, T-4). As transformation starts 
with 1, at encryption to each digit was added a unit and after that it was trans-
formed in base (example, “00” binary ĺ 0 digit ĺ 0+1 ĺ A). At decryption from 
each obtained digit was subtracted a unit and after that transformed in 2 bits, for 
example: 

CCCA (bases) ĺ 2221(digits) ĺ 2-1, 2-1, 2-1, 1-1 ĺ 1110 (digits) ĺ 01 01 
01 00 (bits) 

Obtained binary numbers are the ASCII cods of the recovered message characters.   

4.9.4.3   DNA XOR OTP Using Tiles 

Based on principle described on 4.9.3.3 and using the idea presented in [30] an 
encryption algorithm is presented in [78]. The steps of the algorithm are: 
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a) Message tiles binding in a string. 
b) XOR operation between message (plaintext) and OTP (encryption key) 

(Fig. 4.45). 

otp 0

otp
1

 

Fig. 4.45 Design of the One Time Pad tiles  

c) Encrypted message results: the tiles as result of DNA XOR operation will 
have a pair of sticky ends for binding between them and a pair for binding to en-
cryption key tiles (Fig. 8). 

d) Cleavage process to keep the ciphertext only. In order to cut the cipher-
text from the rest of tiles, we propose to use restrictive enzymes. Then the cipher-
text will be stored in a compact form and sent to the destination together with the 
string of labels.  

Since XOR is its own inverse; decryption is made using the same key and op-
erations. The receiver needs an identical pad and use the received string of labels 
in order to extract from this pad the encryption key. After self assembling of the 
same tiles used for encryption, but in reverse order, the plaintext is extracted. 

 
Example 4.15 

 
DNA XOR OTP using tiles algorithm: 

 
a) Message tiles binding in a string 

For the START tiles and the stacks for message binding the selection given 
in Example 4.2 is used. 
b) Microcontroller for tiles binding 

• acknowledgement of the message beginning  
• decision concerning the next bit from the message 
• verification of message ending 
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1

0

ACTG

TACC

ACTG

GTCA

otp

otpTGAC

0

ACTG

GTCA
otpTGAC

actual

next

next +1

 

Fig. 4.46 Example of message tiles binding  

c) XOR operation between message and OTP 
OTP is a great set of labeled tiles representing 0 and 1. Labeling could be a 

certain order of nucleotides from the inside structure of the tile.  

 

Fig. 4.47 Design of the one-time-pad tiles  
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Chapter 5 

Channel Coding 

Motto: The way towards truth is strewn 

with errors. Who does not make 

them, who does not touch them, 

does not fight with them and fi-

nally doesn’t obviate them with 

his own forces, does not reach 

the truth. 

     Constantin Tsatsos 

5.1   Shannon Second Theorem (Noisy Channels Coding 

Theorem) 

When transmitting (storing) information via noisy channels (storage media), the 

noise may alter the signals. This is why protection against this unwanted effect 

must be taken. This problem occurred since the very beginnings of communica-

tions, but it became a huge problem with the development of high speed networks 

and globalisations of digital communications. The advent of electronic era re-

quires high reliability in data transmission and/or storage, taking into account its 

impact in economical and social life. The history of error control coding shows 

how the field was born (mid 20th century) and grown from the one error correct-

ing codes (Hamming codes - 1950) until the most powerful (turbo-codes - 1993), 

trying to limit technically errors effect in applications. 

The answer to the question: how is it possible to achieve error protection when 

transmitting or storing information? was given by Cl. E. Shannon in his work “A 

mathematical theory of communication” (1948) and represents what is now known 

under the name of Shannon second theorem (noisy channels coding theorem). He 

proved that: 

• on any noisy channel of capacity C, a real time transmission can be performed 

( CD <
•

) with an error probability P(E) as small as wanted, using uniform codes 

with length n, such that: 

( ) )Dne(2EP

•
−≤                                             (5.1) 
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where: 

– n is the codewords length (uniform encoding) 

– )De(
•

is a positive function of 
•
D , completely determined by channel  

characteristics; it is called error exponent (see Fig. 5.1). 

– 2 – binary channel 

Remarks 

• the theorem was given under the assumption of binary channel, but it stands for 

any alphabet (>2)  

• the demonstration of (5.1) is found in [41] 

 
Fig. 5.1 Error exponent graphic  

Interpretations of Shannon second theorem 

• the theorem underlines a very surprising fact: no matter how noisy the channel 

is, a transmission with an error probability however small is always possible 

• without giving any algorithms, the theorem shows the ways to obtain P(E) 

however small: 

– transmission at low rate: in this case (see Fig. 5.1) if )De(
•

 increases, P(E) 

decreases; this method is not used in practice because the channel is not ef-

ficiently used ( CD <<
•

); 

– using large codewords (great n), which means deliberately introducing  

redundancy before transmission; this method is used in practice for error 

protection: redundant codes for error protection - error control codes 

• in real transmission channels (noisy), the error probability P(E) can not be 0, 

because it means n→∞, meaning infinite bandwidths (see 2.8.5 – Interpreta-

tions of Shannon limit).  

A simple example will be given to explain the necessity of introducing redun-

dancy in order to detect and correct errors. 
 

Example 5.1 
 

Let us consider }s;{sS 21=  an equally probable binary source. Considering the 

transmission in a binary symmetric channel with p known, we shall analyze the 

two following cases: 
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• Non-redundant coding: it follows that the codewords length is 1mn == , where 

m designate the number of information symbols, necessary to encode the informa-

tion of the source S and so we have the code }1;0{C1 = . Transmitting over a  

binary symmetric channel BSC, we receive the same symbols {0; 1} without 

knowing if one of them is erroneous; the error probability in this case will be:  

.p(E)P1 =   

• Redundant coding: instead of transmitting one symbol, we transmit 3n =  sym-

bols, introducing 213mnk =−=−=  redundant symbols (control symbols), 

the code becoming: }111;000{C2 =  

 

Fig. 5.2 Input/output representation of a BSC obtained for C2. 

When transmitting over a BSC we obtained the situation shown in Fig. 5.2. 

From 8 possible output sequences only 2 correspond to the codewards and the re-

maining 6 perform the error detection. If we chose as rule the majority criterion 

(that means we consider reliable sequences those containing two “0”s and a “1” or 

two “1”s and one “0” corresponding to the sequences 000 and 111), the correction 

is also possible. 

Obviously, the decisions taken at the receiver are exposed to a risk that can also 

be evaluated. Even when receiving the codewards 000 and 111 there is a risk that 

all the three bits are erroneous. For independent errors, this risk becomes 3
3 pp = . 

Similarly the probability of two errors in a word of length 3 is: 

p)-(13p)p-(1pC=p 2222
n2 = . 

The total error probability after decoding becomes in this case: 

2232
322 p3p)2(3ppp)(1p3pp(E)P ≅−=+−=+=  

The initial risk has decreased from  p  (E)P1 = to 2
2 3p(E)P = . 
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A second question rises: which is the price paid to obtain an error probability 

however small on the account of the redundancy increase? 

The answer to this question may be obtained reasoning as follows:  

If we want to keep unmodified the information source decision rate )(Di

•
: 

bi

i
T

1
D =
•

                                                 (5.2) 

where Tbi is the information bit duration, than adding k redundant symbols  

(Fig. 5.3) we obtain: 

bibc mTnT =                                             (5.3) 

where Tbe is the coded bit duration. 

 
Fig. 5.3 Illustration of the relations between information bits and coded ones  

From (5.3) we obtain: 

bibc T
n

m
T =                                                 (5.4) 

The ratio: 

n

m
R =                                                      (5.5) 

is named the coding rate.  

Equation (5.3) can be written also as: 

•
•

•
>== i

i

bc

c D
R

D

T

1
D                                          (5.6) 
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so, encoding and keeping  ctDi =
•

, we obtain an increase of the coded decision 

rate 
•

cD . Knowing that 
•

cD and the required bandwidth B are directly proportional 

(see relation (2.82)), it results that the price paid for error protection when 

ctDi =
•

, is an increase in the transmission bandwidth (the storing space) and con-

sequently an increased noise at the receiver. When the bandwidth enhancement is 

not possible, some coding and modulation procedures for bandwidth compression 

(m-ary phase modulations, trellis modulation [42]) are used. 

 

Remark 

The entire discussion in this paragraph has been done under constant power as-

sumption at transmission and without analyzing the modulation system effect and 

that of the input signal waveform.  

In a complete information transmission (storage) system, the channel coding 

(Cc) block is located as shown in Fig 5.4. 

sC cC

cDCsDC

 

Fig. 5.4 Location of channel coding block in a complete transmission (storage) system.  

5.2   Error Control Strategies 

Error control in transmission or storage can be achieved mainly in three ways: 
 

• Error detection: in this case the system requires a return channel through which 

the transmitter is informed about error detection and a repetition is necessary 

(ARQ – automatic repeat request) 

• Forward error correction (FEC) – the error correcting code automatically cor-

rects an amount of errors. The corresponding system is a unidirectional one 

(Fig. 5.4.); this type of transmission is used in storage systems, space commu-

nications etc.  
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• Error correction and detection (ARQ hybrid systems): the error correcting code 

will correct the erroneous combinations according to its correcting capacity, the 

rest of erroneous combinations being corrected by the ARQ system; these sys-

tems are used in radio transmissions (satellite, mobile communications) 

The most frequently used ARQ procedures are the three ones (Fig. 5.5): 

• Stop and wait (SW) system: the transmitter sends a code sequence to the re-

ceiver and waits for the positive confirmation signal-acknowledge (ACK), 

which means that no errors were detected; when receiving the ACK signal, the 

transmitter sends the next sequence. When receiving a negative confirmation – 

not acknowledge (NAK) corresponding to an erroneous block, the transmitter 

repeats the NAK block until it receives a positive confirmation (ACK). This is 

a half-duplex-type communication. 

This system is extremely simple and it is used in numerous data transmission 

system such as binary symmetrical communication protocol (BISYNC). Even if it 

is extremely simple, this system is inefficient because of the break between the 

transmission and reception of the confirmation. 

• Go-back N blocks system (GBN) corresponds to a continuous blocks transmis-

sion, therefore full duplex communication. The transmitter does not wait for the 

transmitted block confirmation. This confirmation is received after a number of 

N blocks. During this interval the transmitter has already transmitted another 

N-1 blocks. When receiving a NAK, the transmitter returns to the not acknowl-

edged block and repeats this block and another N-1 blocks. 

This system is more efficient then SW system and it is less costly. The ARQ 

system is used in SDLC (Synchronous Data Link Control) and ADCCP (Ad-

vanced Data Communication Control Procedure). The inefficiency occurs because 

of numerous correct blocks that must be repeated. 

• Selective repeat system (SR) corresponds to a continuous transmission (full du-

plex communication) just like GBN system, with the difference that, for the 

former, only the negatively confirmed (NAK) blocks are repeated. This kind of 

system is the most efficient from the three presented, but the most expensive, in 

implementation; it is used in satellite communications.  

An ARQ system makes decoding errors if it accepts received words affected by 

non-detectable errors enPP(E) = . 

The performance of an ARQ system can be estimated by its total efficiency (η) 

defined as the ratio between the total number of information bits accepted by the 

receiver in time unit and the total number of transmitted bits in a time unit. 
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Fig. 5.5 ARQ systems for N = 5: a) SW(Stop and Wait); b) GBN(go back N); c) 

SR(selective repeat). 

Remarks 

• all the three ARQ methods have the same P(E), but different efficiencies. 

• expression of ARQ systems efficiency are determined in [28] under an error-

free feedback-channel assumption and in [3] for the case of feedback-channel is 

noisy too.  

 
Comparison between error control strategies  

 

A detailed analysis of this issue is made in [28]. 

Compared to FECs, ARQ systems are much simpler. ARQ systems are adap-

tive, meaning that the information is repeated every time when errors occur. If the 

channel is very noisy, repetitions became very frequent and justify, in this case, 

the use of hybrid ARQ + FEC systems. 
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5.3   Classification of Error Control Codes 

Classification of error control codes can be done using many criteria; some of 

them are listed bellow: 

 

• according to the nature of the processed information: 
 

– block codes: the information at the input is divided into blocks of  m symbols 

to which, by encoding, k control symbols are added resulting an encoded 

block of length n. 

– continuous (convolutional) codes: the information is processed continuously 

• according to channel errors type: 
 

– codes for independent error control 

– codes for burst error  

• according to the control strategy: 
 

– error detecting codes (ARQ) 

– error correcting codes (FEC) 

• according to the possibility of separating the information symbols from the con-

trol ones: 
 

– separable codes, in which the redundant symbols can be separated from 

the information symbols 

– non-separable codes (with implicit redundancy) in which the separation is 

not possible, for example the (m, n) codes 

• according to the possibility of having or not, the information and control sym-

bols in clear in a codeword, the separable codes can be classified in: 
 

– systematic codes: ][ c iv = , where i is the matrix of information symbols 

and c the control symbol matrix 

– non-systematic codes: ]uu[ (n)(1) …=v  the information and the control 

symbols are not given in clear in the encoded structure. 

5.4   Representation of Binary Code Sequences 

The most frequent representations used for binary code sequences are matrix, vec-

tor, polynomial and geometrical representations. 

Matrix representation is in fact a matrix containing all the code words, with the 

exception of the all zero components. 
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If M is the number of n length codewords, than the matrix in which the whole 

code is included is: 

M

2

1

v

v

v

C

⇒
⇒
⇒

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

...

a...aa

............

a...aa

a...aa

MnM2M1

2n2221

1n1211

 

where }1;0{a ij ∈  for binary codes.  

The matrix representation allows a compact writing by selecting the lines 

(codewords) that are linearly independent; all the other codewords vi can be ob-

tained as linear combinations of the linearly independent lines. 

Vector representation of a code is based on the fact that the set of all n-length 

words forms a vector space Vn. Each sequence of length n is represented by a  

vector: 

( )a...aa n21=v  

where }1;0{a i ∈  for binary codes. 

The vector space Vn has, in the binary case, n2 code vectors formed by “0”s 

and “1”s. A group of vectors that have a common propriety form a vector sub-

space Vm with nm < . Such a mathematical model applied for a code allows, 

when studying the codes, to use the vector spaces properties. We remind some ba-

sic notions from the vector space theory used to study linear codes, the most im-

portant codes used in communication systems (see also Appendix A). 

The vector space order is given by the number of linearly independent vectors; 

they form a base of the vector space if any vector which belongs to the space can 

be expressed as a linear combination of linearly independent vectors.  

There is a strong dependency between matrix and vector representation as the 

lines of the matrix can be vectors in a vector space. 

The polynomial representation: a word of length n: 1n0 a,...,a − can be repre-

sented as an )( 1n−  or smaller degree polynomial with the unknown x: 

01
2n

2n
1n

1n axa...xaxav(x) ++++= −
−

−
−  

where }1;0{a i ∈  in the binary codes case; the power of the unknown x is used to 

locate symbol ai in the sequence. 

The polynomial representation allows using, when studying codes, the proprie-

ties of algebraic structures built in polynomials theory (see Appendix A – finite 

fields). 

Geometric representation: every word of length n can be considered as a point, 

which defines the peaks of a geometrical shape in a n-dimensional space. It allows 

using a series of well known proprieties of geometric figures to the codes. 
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5.5   Parameters of Detecting and Error Correcting Codes 

In what follows we will define parameters that allow us to compare the performances 

of error detecting and correcting codes. 

 

Redundancy 

As it was shown in Shannon second
 
theorem, error protection can be achieved 

only using redundancy. When coding, redundancy can be defined in absolute or 

relative value, for separable and non-separable codes. 
 

• absolute redundancy Ra: for separable codes it represents the number of redun-

dant symbols from a codeword 

]bitsk[Ra =                                               (5.7) 

• relative redundancy Rr : for separable codes it is the ratio between the number 

of redundant symbols k and the length of code word n:  

100[%]
n

k
R

n

k
R rr =⇔=                                    (5.8) 

For non-separable codes (implicit redundancy codes) the two parameters can 

be defined as:  

[ ] [ ]codewords of no.ldsequenceslength -n of no. totalldR a −=  (5.9) 

[ ]sequenceslength -n ofnumber  totalld

R
R a

r =                        (5.10) 

Remark 

Equations (5.9) and (5.10) are more general than (5.7) and (5.8), the last two being 

obtained for a particular case of the former equations. The reader is invited to ob-

tained Ra and Rr for separable codes, starting from the equivalent definitions of the 

non-separable ones. 

 

Detection and correction capacity  
 

The ratio of detectable/correctable errors from the total number of possible errors 

is estimated using the detection/correction capacity cd /CC defined as: 

sequences  erroneus  ofnumber  total

sequences  erroneus  detectable ofnumber 
dC =                       (5.11)  

sequences  erroneus  ofnumber  total

sequences  erroneus  ecorrectabl ofnumber 
cC =                     (5.12) 
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Hamming weight and code distance 

• Hamming weight w of a word v is defined by the number of non-zero symbols 

of that word. 

 

Example 

5)(1011011 =⇒= vv w  

• Hamming distance between two word iv  and jv  denoted by ),(d ji vv  is de-

fined as the number of positions for which iv  and jv  differ: 

( ) ∑
=

⊕=
n

1k
kjkiji aa:,d vv                                       (5.13) 

where  )a ..., ,a ,(a  ni2i1ii =v ,  )a ..., ,a ,(a  nj2j1jj =v and ⊕  is modulo two  

summation. 

 

Example 

 (1011011)  i =v  

 (0111101)  j =v  

The distance between iv  and jv  is: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
40110011

111011111001,d ji

=++++++=

=⊕+⊕+⊕+⊕+⊕+⊕=vv
 

For linear block codes modulo two summation of two binary words iv  and jv  

is another word with “1”s on the positions in which iv  and jv  differ. 

 

Theorem 

Hamming distance between two words iv  and jv   equals the weight of the 

modulo two summation of the given words: 

( ) ( ) ( )kjiji ww,d vvvvv =⊕=                                      (5.14) 

For a code C having M codewords the code distance d is defined as the mini-

mum distance between any two codewords: 

( ) C, ,,dmin d jiji ∈∀= vvvv                                     (5.15) 
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According to (5.14) the distance between two codewords equals to another 

codeword weight; therefore it results that the code distance d equals the minimum 

weight of that code: 

minwd =                                                   (5.16) 

Remarks 

• equation (5.16) is very useful in practice due to the fact that it is very easy to 

compute the weights 

• the all zero codewords are not taken into consideration when calculating the 

weights and code distances. 

5.6   Maximum Likelihood Decoding (MLD) 

At the receiver the decoder must decide, based on the received sequence r, which 

was the transmitted sequence and so it estimates the transmission of v̂  based on the 

reception. If  vv =ˆ  (code sequence), than there are no decoding errors. If the esti-

mated sequence v̂  differs from the transmitted one v the decoding is erroneous. The 

probability of having errors after decoding, when r is received, )p(E/r , is: 

)/ˆp(:)p(E/ rvvr ≠=                                         (5.17) 

The decoder error probability can also be expressed as:  

)p()/p()p(
r

rr∑ Ε=Ε                                      (5.18) 

derived as marginal probability from the joint probability of )(E,r :  

)p()/p(),p( rrr Ε=Ε  

According to (5.18), we will have a minimum decoding error probability, if 

)P(E,r  is minimum, p(r) being independent of the coding process. Due to the fact 

that the minimization of p(E/r) is equivalent to the maximization of )/(p rvv =  it 

results that p(E) min can be obtained for )/(p rv max; )/(p rv  can be expressed, 

according to Bayes formula:  

)p(

))p(p(
)p(

r

r/vv
v/r =                                           (5.19) 

It results that the maximization of )/(p rv  is equivalent to the maximization of 

)/(p rv , in the hypothesis of equally probable codewords. For a memory-less 

channel, each received symbol depends only on the transmitted one; it follows: 

∏
=

=
n

1i
ii )/vp(r)/p( vr                                         (5.20) 
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where ri and vi, are the received/transmitted word components. The decoder that 

estimates the received sequence by maximizing (5.20) is called MLD, i.e. maxi-

mum likelihood decoder. 

∏
=

=
n

i 1
ii )/vp(rmax)/p(max vr

                                

(5.21) 

where vi are the components of v. 

Due to the fact that ( )xlog2  is a monotone increasing function of x, the maxi-

mization of (5.21) is equivalent to the maximization of the logarithm: 

∑=
i

ii2 )/vp(rmax)/(logmax  vr                                  (5.22) 

Remark 

• if the codewords are not equally probable, the MLD decoder is not always op-

timal, in equation (5.20) )/vp(r ii  being weighted with p(v); in numerous appli-

cation p(v) is not known; this is the reason why, the MLD decoding remains in 

practice the best, so optimal. 

For a BSC for which ⎩⎨
⎧

=−

≠
=

ii

ii
ii

vr:if   p,1

vr:if   p,
)/vp(r for an n-length word, the 

equation (5.22) becomes: 

]p)-(1logn 
p-1

p
log ),d(max[                         

p)}-(1log )],d(-[nplog ),max{d(])/p(max[log

22

222

+=

=+=

vr

vrvrvr

        (5.23) 

Because 0
p1

p
log2 <

−
 for 2/1p <  and p)-(1logn 2⋅  is constant for any v, the 

MLD decoding rule for a BSC estimates v̂  as that word v that minimizes 

),d( vr and that is why the MLD decoder is also called minimum distance  

decoder. 

]),d(min[)],p([logmax 2 vrvr =                                (5.24) 

Consequently, a MLD decoder determines the distance between r and all the 

possible codewords vi and selects vi for which d(r, vi) is minimum ( M1,i = ). If 

this minimum is not unique, choosing between several vi words becomes arbitrary. 

Fig 5.6 shows the minimum distance MLD principle. Let us consider v1 and v2 

as two codewords for which 5),d( =21 vv . 
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Fig. 5.6 Minimum distance decoder principle (d=5). 

Let us consider four cases a, b, c, and d, corresponding to the reception of the 

words r1, r2, r3, r4 located at distance 1, 2, 3 and 4 from vi. For case a, correspond-

ing to one error in v1 the decoder will decide that r1 comes from v1 due to the fact 

that 4)d(1)d( =<= 2211 r,vr,v . The decoding would have been erroneous if r1 

had come from v2, by setting errors on 4 symbols. For case b, corresponding at 

two errors in v1, the decoder will decide that r2 comes from v1 as 

3),d(2),d( =<= 2221 rvrv ; decoded errors occur if r2 had come from v2 being er-

roneous by three symbols. For case c, the decoder will decide that r3 comes from 

v2 by the occurrence of two errors: 3)d(2)d( =<= 3132 r,vr,v . For case d, the 

decoder will decide that r4 comes from v2 under the assumption of one error: 

4)d(1)d( =<= 4142 r,vr,v . For the last cases the same discussion is possible as in 

cases a and b. Fig. 5.6 shows that error detection is possible when r1, r2, r3, r4 are 

received corresponding to errors on 1, 2, 3 or 4 positions on v1 or v2. Non-

detectable errors occur when the reception is erroneous on 5 positions. 

This example shows that the code distance is a parameter able to indicate the 

code detection and correction capacity. In [28] it is demonstrated that: 
 

• the necessary and sufficient condition for  a code to correct maximum t errors 

is: 

1t2d +≥                                               (5.25) 

• the necessary and sufficient condition for  a code to detect maximum e errors 

is: 

1ed +≥                                               (5.26) 



5.6   Maximum Likelihood Decoding (MLD) 223

 

• the necessary and sufficient condition for  a code to simultaneously correct 

maximum t errors  and detect  maximum e errors is: 

te ,1etd >++≥                                         (5.27) 

Remark 

• Correction implies detection first; for example, for 7d = we may have: 
 

e (detection) t (correction) 

3 3 

4 2 

5 1 

6 0 
 

• if three errors occur, all of them can be detected and corrected 

• if five errors occur, all of them can be detected but only one of them can be  

corrected. 

The same parameter d can be used to estimate the erasure correction capacity 

[42]. For erasure channels the channel output alphabet has a supplementary sym-

bol y3 called erasure symbol. The moment the decoder decides that a symbol is an 

erasure symbol, even though the correct value is unknown, its location is known, 

subsequently the correction of the erasure errors must be simpler than for other er-

rors (for the general case both the position and value must be known). It can be 

demonstrated that for correcting a number of s erasures the following condition 

must be fulfilled [42]: 

1sd +≥                                                   (5.28) 

The condition for simultaneous correction of t errors and s erasures is: 

1s2td ++≥                                               (5.29) 

The simultaneous correction of s erasure errors and t errors is performed as fol-

lows. At the begining, the s erased positions are replaced by “0” and then the 

codeword is decoded with standard methods. The next step is to replace the s 

erased positions with “1” and repeat the decoding algorithm. From the two de-

coded words we select the one corresponding to the minimum number of corrected 

errors except for the s erased positions. 
 

Example 5.2 
Let us consider the code: 0000, 0101, 1010, 1111. It can easily be determined that 

2d = ; according to (5.28) it follows that 1s =  erasure may be corrected. 

Let us transmit the word 0101. At the receiver we assume that an erasure sym-

bol x101=r  is detected. 

Replacing x with 0 we obtain r1=0101=v2, therefore 0),d( =21 vr . Replacing x 

with 1 we obtain r2=1101 ∈ C; it follows 1)d( =22 v,r , 3)d( =32 v,r , 

1)d( =42 v,r 2vr =⇒ ˆ . 
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5.7   Linear Block Codes 

Short time after Shannon gave his second theorem, the first error protection codes 

were invented: the linear block-codes. The main steps in the history of evolution 

of these codes are: 1950 – R. Hamming and M. Golay introduced the systematic 

linear codes, 1957 –1960 – D. Slepian contributed to a unitary theory for linear 

codes; since 1960 many papers studied in detail the linear codes and proposed a 

series of practical codes. 

The binary codes, those having the symbols in GF(2), will be presented in what 

follows [2], [28]. 

5.7.1   Linear Block Codes: Definition and Matrix Description  

As shown in 5.3 - when dealing with block codes - the information originating in a 

binary source is divided into m bits blocks denoted with i (information block); to 

the m information symbols we add k redundant (control) symbols according to a 

certain coding law, thus giving a codeword v of length n; it follows that: 

kmn +=                                                   (5.30) 

The number of messages that can be encoded and also the number of code-

words, for such a structure, is: 

m2M =                                                  (5.31) 

From block codes, the linear structures are very important for practical  

applications. 

We call a linear block code (n,m) the n-length code for which the m2  (for bi-

nary codes) codewords form an m-dimensional subspace C of the n-dimensional 

space Vn that contains all the words of n bits (with coefficients in GF(2)).  

A block code is linear if and only if the modulo 2 summation of two codewords 

is still a code word (see the proprieties of vector spaces – Appendix A8). 

Defining such a structure it results that the n-dimensional vector space Vn con-

taining the set of distinct combinations that can be generated with n bits ( n2 ) is 

divided into two distinct sub-sets: 
 

• C – the set of codewords, having m2
 
elements 

• F – the set of fake words, containing mn 22 −  
elements 

Due to the fact that the linear code C(n,m) is an m-dimensional subspace of Vn, 

the entire set of codewords can be generated the linear combinations of the m lin-

ear independent vectors belonging to C. These linear independent codevectors de-

noted with m1,i , =ig  can be written as a matrix; these vectors form the code 

generating matrix G[mxn]: 
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                               (5.32) 

where gij ∈GF(2), meaning they are binary symbols. 

Subsequently, the encoding law is given by:  

[ ] nn2211m21 ...  i...ii gigigi

g

g

g

iGv

m

2

1

+++=
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⎦

⎤
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⎢⎢

⎣

⎡
==                  (5.33) 

To obtain a systematic structure: 

[ ]civ ='                                                  (5.34.a) 

or 

[ ]Icv ="                                                 (5.34.b) 

the generating matrix G must have one of the two canonical forms: 

[ ]PIG m='                                              (5.32.a) 

[ ]mIPG ="                                            (5.32.b) 

In this case the encoding relation, (5.33), becomes: 

[ ]

[ ]

( ) ( ) ( )

.pi...pipii...ii

p...pp|1...00

....|....

p...pp|0...10

p...pp|0...01

  i...ii

']['

j33j22j11

kxk

ifc

m

1j
jkj

ifc

m

1j
j2j

ifc

m

1j
j1jm21

                                                

mkm2m1

2k2221

1k1211

m21

⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢

⎣

⎡
=

=

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

===

=

↓
=

=

↓
=

=

↓
=

∑∑∑

PIm

iGciv

         (5.33.a) 
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Looking at this equation we notice that the m information symbols are found 

unchanged in the codeword v structure and that the k control symbols (assigned to 

ci) are  linear combinations of information symbols; ∑
=

m

1j

means modulo-two sum. 

m1,j  ,k1,i  ),i(fc jii ===                                        (5.35) 

Equations (5.35) are known as encoding equations or parity-check equations. 
 

Example 5.3 
Let us consider the code C(5,3) with the encoding law: 
 

211 iic ⊕=  

322 iic ⊕=  
 

Taking into consideration the encoding equations, we shall determine the ca-

nonical form of the generating matrix G’ as follows: 
 

i1 i2 i3 c1 c2 gi 

1 0 0 1 0 g1=v1 

0 1 0 1 1 g2=v2 

0 0 1 0 1 g3=v3 
 

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=⇒

10100

11010

01001

G . 

From the linear combinations of the three linear independent vectors of the 

code gi we obtain the other four non-zero codewords:  

   1]  0  0  1  1 [=⊕= 214 ggv  

   1]  1  1  0  1 [=⊕= 315 ggv  

   0]  1  1  1  0 [=⊕= 326 ggv  

   0]  0  1  1  1 [=⊕⊕= 3217 gggv  

From the binary vector spaces properties (Appendix A.8) we know that if we 

consider a space C of dimension m, then always exists a null (orthogonal) space 

C
*
 of dimension m-nk =  such that a codeword v∈C is orthogonal in C

*
. The 

linear independent k vectors belonging to the null space C
*
 can be put in a matrix 

H[kxn] named control matrix (parity check matrix): 

[ ]n21 h...hhH =

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

knk2k1

2n2221

1n1211

h...hh

......

h...hh

h...hh

                      

(5.36) 

where GF(2)h ij ∈ and   n1,i,i =h  are the control matrix columns. 
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Knowing that C and C
*
 are orthogonal spaces, it results that matrices G and H 

are also orthogonal: 

0HGGH TT ==                                           (5.37)  

Remark 

• Superscript T refers to “transposed matrix”. 

When dealing with systematic linear codes, H matrix also requires the corre-

spondent canonical forms: 

]I[PH k
T=′                                             (5.37.a) 

]P[IH T
k=′′                                            (5.37.b) 

The encoding equation (5.33) valid in the space C becomes in C
*
: 

0HvT =                                                  (5.38) 

5.7.2   Error Syndrome 

Let us consider the reception of word r, which is erroneous under the assumption 

of additive noise: 

evr ⊕=                                                 (5.39) 

where v is the transmitted codeword and e is the error word; ⊕  is the modulo two 

summation and indicates additive errors. 

In the case of matrix representation, e can be written as follows: 

[ ]n21 e...ee=e                                         (5.40) 

where ei is “1” if on the position i appears an error and “0” if no error appears on 

the i position (obviously for binary codes). 

At the receiver, the encoding law is checked:  

SHrT =                                                  (5.41) 

where S is the syndrome, in fact a column matrix with k elements. 

Replacing r with (5.39), equation (5.41) can be written as:  

TTTT HeHeHvevHS =⊕=⊕= )(                              (5.42) 

Remarks 

• One may notice that the syndrome does not depend on the transmitted word v, 

but only on the errors e introduced by the channel. 

• No errors or undetectable errors implies 0S = . In the case when v is transformed 

by errors into another codeword, the encoding equation is still fulfilled and the er-

ror cannot be detected. There are a number of 12m −  cases of undetectable errors 

corresponding to other codewords than those transmitted over the channel. 
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• If 0S ≠  the errors are detected and, in the case of ARQ systems, the retrans-

mission is requested. If the goal is to correct errors (FEC) than, in the binary 

codes case, it is necessary to determine the erroneous positions from S. The dis-

tinct and non zero syndromes number (the all zero syndrome corresponds to the 

absence of errors) is 12k − ; it follows that from the total number of possible  

errors ( )12n −  only ( )12k −  can be corrected. 

5.7.3   Dimensioning of Error Correcting Linear Block Codes 

Dimensioning a block code means, in fact, to determine the measures m, k and n 

necessary for encoding a source of M messages in order to correct t errors. 

The number of information symbols m is determined by the number of source 

messages M; for binary codes m is found from the following inequality: 

Μ≥m2                                                       (5.43) 

The necessary condition, however, not sufficient, for generating a t error cor-

recting code is: 

∑
=

≥
t

0i

i
n

k
C2                                                (5.44) 

This inequality is also known as Hamming boundary. 

The sufficient condition, but not necessary, for generating a t error correcting 

code is:  

∑>
=

1-2t

0i

i
1-n

k
C2 ,                                            (5.45) 

known as Varshamov-Gilbert boundary. 

For one error correction, the two boundaries lead to the same equation, which is 

the necessary and sufficient condition for generating a one error correcting code: 

n12k +≥                                                 (5.46) 

Remark 

Demonstrations of the previous relations are given in [2] and [43],[50]. 

5.7.4   Perfect and almost Perfect Codes  

The perfect (tightly packed/lossless) codes are the ones that fulfil the following 

equation [2], [50]: 

12C
t

1i

ki
n −=∑

=
                                                (5.47) 

Perfect codes can correct exactly t errors, but any particular configuration with 

more than t errors results in even more errors. 
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There are only few perfect codes; so far known are: Hamming codes with 

12n k −= , binary code with repetition for even n and two Golay codes [2], [50], 

[54]. 

The almost perfect codes correct all the t errors and some i
nCN ≤  other com-

binations of t +1 errors, under the assumption that (for binary codes): 

12NC
k

t

1i

i
n −=+∑

=
                                            (5.48) 

The perfect and almost perfect codes have a maximum probability of the  

correct reception, when transmitting over symmetrical channel with independent 

errors. 

5.7.5   Detection and Correction Capacity: Decoded BER 

Let us consider the error detecting linear block code C(n,m). The total number of 

errors teN  is: 

12N n
et −=                                               (5.49)  

and the number of undetectable errors is: 

12N m
ue −=                                              (5.50)  

Detection capacity, according to (5.11) will be: 

k

n

m

n

m

te

ue

te

uete

te

de
d 21

2

2
1

12

12
1

N

N
1

N

NN

N

N
C −−=−≅

−

−
−=−=

−
==           (5.51) 

Similarly, using the definition (5.12) we can calculate the correction capacity 

Cc, with the remark that we must take into account if the code is a perfect or an 

almost perfect one. 

In the case of an error detecting code C(n,m) used in a BSC, the undetectable 

error probability Pu is calculated considering that the error is undetectable if an-

other non-zero codeword is obtained. It follows that [28]: 

in
n

1i
iu p)(1ǹP

−

=
−∑=                                           (5.52) 

where by Ai we denoted the codewords number with the weight i belonging to the 

set C. The numbers A0, …, An form the weights distribution of C. 

 

Remark 

• For a code C(n,m) having the code distance d we get  A0= … = Ad-1= 0. 

In theory we can compute weight distribution for any linear code (n,m) by 

evaluating the 
m2 codewords. However, for high n and m the calculus becomes 
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practically impossible; except for some short linear codes the weight distribution 

is not yet determined, so Pu is unknown. 

Even so, it is possible to determine the upper bound of the error probability af-

ter decoding [28] as follows: 

k
n

1i

nkinii
n

k
u 2]p)(1[12p)(1pC2P

−

=

−−− ≅∑ −−=−≤                     (5.53) 

since 1]p)(1[1 n ≤−− . 

Equation (5.53) shows that there exist linear codes (n,m) for which Pu decreases 

exponentially with the number of control bits k. 

 

Remark 

Although if the number of linear block codes is extremely great, only a restrained 

category of codes proved to have Pu satisfying the upper bound -k2 (the Hamming 

codes, for example). 

A t error correcting block code C(n,m), excluding perfect codes, can correct 

numerous combinations of 1t +  errors and even more. The number of correctable 

combinations is 12
k − . When the transmission is performed over a BSC, a block 

decoding error probability has an upper bound given by [28]: 

∑
+=

−−≤
n

1ti

inii
n p)(1pCP                                         (5.54) 

In the previous formula, P represents the block erroneous decoding probability. 

For perfect codes, equation (5.54) is fulfilled at limit. In order to determine the af-

ter decoding bit error rate (pd) we start with the definition of pd: 

p x 
n

Ȗ
px 

n

blockper  bits  erroneus of no.

n x blocks of no. total

blockper  bits  erronated no.of x blocks  erroneus no.of

bits ed transmittof no. total

decodingafter  bits  erroneusno.of
pd

==

=

==

              (5.55) 

where γ is the number of erroneous bits from an erroneous block of length n. The 

value of Ȗ  depends on channel errors statistics and also on the code. For inde-

pendent errors, and one error correcting codes we have 32Ȗ ÷=  while for 2t =  

errors correcting codes, 43Ȗ ÷=  [47]. 

5.7.6   Relations between the Columns of H Matrix for Error 

Detection and Correction  

We have shown in 5.7.2 that in error detection the syndrome S must be non zero. 

Let us now analyze the implications of this condition on the control matrix struc-

ture. Consider an erroneous word ei with t errors: 
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[ ]0   ...   e   ...e...0
t1 iii =e                                     (5.56) 

where 1e ji, = in the positions on which errors occur. 

In this case equation (5.48) can be written as follows: 

[ ] n1,i

0

...

...

...

0

k =∀≠⊕⊕⊕=

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢

⎣

⎡

⋅= 0,h...hh

e

e

h...hhS
t1

t

i2ii

i

i

n21         (5.57) 

This means that for t errors detection, the modulo two summation of any t col-

umns of the H matrix must be non zero. 

In particular, for detecting one error )1(t = , all the control matrix columns 

must be non zero; however, the columns may be equal. 

For correcting maximum t errors we must have distinct syndromes for all the t 

errors possible combinations; in this case equation (5.48) becomes: 

T
jj

T
ii HeSHeS =≠=                                       (5.58) 

where ei and ej are two distinct combinations of t errors. 

Expressing H by its columns, we obtain: 

[ ] [ ]

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
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⎣

⎡

≠
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⎥⎥
⎥

⎦

⎤

⎢⎢
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⎢

⎣

⎡
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e

...

e

...

0

  

0

...

e

...

e

...

0

 

t

1

2

1

j

j

i

i

n21n21 h...hhh...hh  

or: 

n1,j,i, kk =∀⊕⊕⊕≠⊕⊕⊕
t2j1t21 jjiiii h...hhh...hh          (5.58.a) 

Adding on both sides columns hj1, hj2, ... hjt and reordering the columns we  

obtain: 

n1,i,0 k =∀≠⊕⊕⊕
2t21 iii h...hh                            (5.58.b) 

Equation (5.58.b) shows that for t errors correction the modulo two summation 

of any 2t columns of the H matrix must be non zero. 
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For the particular case of one error correcting code, all the columns of the con-

trol matrix must be non zero and distinct from each other. 

5.7.7   Standard Array and Syndrome Decoding 

For linear block codes C(n,m), the codewords number is m2 . No matter what 

word is transmitted, at receiver we can obtain any of the n2 possible combinations 

of Vn. Any decoding algorithm should divide the set Vn into distinct subsets Di, 

each of them containing only one code word vi, 
m2i1 ≤≤ . If the received word r 

is in the subset Di it will be decoded vi. 

This decoding method, which consists in partitioning the received words set Vn 

into distinct subsets Di that contain one codeword, is known as the standard array. 

The standard array represents the operation of partitioning the group Vn after the 

subgroup C by drawing a table with all the n2  received words. The table is filled 

as follows: 
 

• first row (class) will contain all the m2  codewords starting from the all zero 

word placed in the first left column 

• each row forms a class; the first element from each class placed in the first col-

umn of the table is called the coset leader  

• from the remaining nm 22 −  combinations (not used in the first class) 12k −  

elements are chosen to form the coset leaders of the next classes; we choose 

these elements (denoted with ej, 
k1,2j = ) in such a way that the decoding error 

probability is minimized, therefore we chose the error combinations with the 

highest probability of occurence. 

This algorithm is illustrated in table 5.1. 
 

Table 5.1 Standard array for a C(n,m) code. 

 

Coset leader 

e1 = v1= (0,0...,0) 

D2 

v2 

D3 

v3 
... 

Di 

vi 
... 

D2
m 

v2
m

 

e2 e2 ⊕ v2 e2 ⊕ v3 ... e2 ⊕ vi … e2 ⊕ v2
m

 

… … …  …  … 

ej ej ⊕ v2 ej ⊕ v3 ... ej ⊕ vi … ej ⊕ v2
m

 

… … …  …  … 

e2
k
 e2

k
⊕ v2 e2

k
⊕ v3 ... e2

k
⊕ vi … e2

k
⊕ v2

m 

 
For a BSC the error words with minimum weight have a maximum probability 

of occurence, so the coset leaders of each class will be chosen from the n-

dimensional combinations which are not codewords and have a minimum weight 



5.7   Linear Block Codes 233

 

(will be denoted with e2, …, e2
m 

). Each class, i.e. the elements of each row will be 

obtained from ji ev ⊕  , 
m

1,2i = .  

Both the table and the decoding are based on the minimum distance algorithm 

MLD. Decoding errors occur only if the error combinations are not in the table of 

the coset leaders. 

For a BSC the probability of a decoding error (at word level) is [28]:  

ini
n

0i
i p)(1pα1P

−

=
−−= ∑                                           (5.59) 

where the numbers αo,α1,…,αv  form the weight distribution of the main elements 

(from the first left column) and p is the BER of a BSC.  

 

Example 5.4 
Let us draw the table corresponding to the standard array for the code C(5,3) ana-

lysed in Example 5.3. The first class (first line) is made up by eight codewords, 

the first being the one with all zero elements. Next we select  

42222 23-5m-nk ==== possible error combinations with minimum weight. Hav-

ing given e1=(0 0 0 0 0), it results that we must choose another three combinations 

with unit weight: e2=(1 0 0 0 0), e3=(0 1 0 0 0 0) and e4=(0 0 1 0 0). The table cor-

responding to the standard array is given in Table 5.2 

Table 5.2 Standard array for C(5,3) 

00000 10010 01011 00101 11001 10111 01110 11100 

10000 00010 11011 10101 01001 00111 11110 01100 

01000 11010 00011 01101 10001 11111 00110 10100 

00100 10110 01111 00001 11101 10011 01010 11000 

 
Let us consider the reception of sequence r=01101. Looking in the table we es-

timate r as v4=00101, obtained by the erronation of the second left sided bit. 

One may notice that this code can correct only some combinations from the to-

tal possible one error combinations; this was expected as the code distance of this 

code is 2d = , so it does not fulfil the necessary condition to correct at least one 

error ( 3d =  for 1t = ). 

 

Syndrome decoding (using lookup table) 
 

From the table containing the standard array for a linear code C(n,m) one must no-

tice that all the m2  elements from the same class have the same syndrome [28], so 

there are k2  different syndromes corresponding to their classes. Therefore a bi-

univocal correspondence exists between the coset leader of a certain class and its 

syndrome; it results that a lookup table may be determined using the k2  leaders 

(corresponding to the correctable error combinations) and their syndromes. This 
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table can be memorized at receiver. In this case the decoding is performed as fol-

lows (table 5.3): 
 

• compute the syndrome corresponding to r:  

THrS =  

• identify the coset leader ej for  which we have the same syndrome with the one 

determined for r; decide that r comes being erroneous by ej 

• decode r as:  

jerv +=   

Table 5.3 Syndrome decoding for a linear code C(n,m) 

SI ei 

S1 

S2 

… 

S2
m

 

e1 

e2 

… 

e2
m 

Example 5.5 
Use the syndrome decoding algorithm to decode the linear code C(5,3) from  

Example 5.3. 

In order to calculate the syndromes, according to (5.47), we need to generate H. 

The generating matrix has already been determined as: 

[ ]PIG 3

10100

11010

01001

=

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=  

The matrix G is already in a canonical form; according to (5.36), H is: 

⎥⎥
⎥⎥
⎦

⎤

⎢⎢
⎢⎢
⎣

⎡
=

2
T

10

01

110

011

IP

H  

The syndromes corresponding to the three combinations of correctable errors  

e2 = (1 0 0 0 0), e3 = (0 1 0 0 0) and e4 = (0 0 1 0 0) are: 

⎥⎦
⎤⎢⎣

⎡
=

0

1
1S , ⎥⎦

⎤⎢⎣
⎡

=
1

1
2S , ⎥⎦

⎤⎢⎣
⎡

=
1

0
3S . 
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The syndrome decoding table is: 

 

Si ei 

00 00000 

10 10000 

11 01000 

01 00100 

5.7.8   Comparison between Linear Error Detecting and 

Correcting Block Codes 

An estimation of code efficiency is performed from the user point of view, the 

user giving the fidelity degree (either by the maximum error probability or by the 

minimum value of the signal/noise ratio SNR) taking into consideration a series of 

variables, such as: cost, transmission speed, complexity etc. 

The detection/correction capacity Cd/Cc defined in 5.5 as well as the BER equa-

tions defined in the previous paragraphs do not take into consideration the trans-

mission parameters: power of the signal PS, channel noise PN, information bit rate 

at the user )(Di

•
. 

An efficient comparison from a practical point of view must take into account 

all these parameters. 

The hypothesis in which we compare the error detecting and correcting codes 

are: 
 

• same power at transmission: ctPS =  

• a transmission channel with the spectral density power of noise N0 known, as-

sumed to be a BSC with 1p <<  

• information bit rate at the receiver equal to the one of the uncoded source: 

ctDi =
•

 

• receiving and transmission are assumed independent 

Comparison of error correcting codes 

Let us consider two error correcting codes that correct t1, respectively t2 errors. 

Considering perfect codes, equation (5.54) is valid at the limit (the most disadvan-

tageous case): )t,m,n(C  and  )t,m,n(C 22221111 . 

One question raises: which one of these two codes is better? It is not always 

true that the most redundant code is also the best. We have seen in 5.1 that by re-

dundancy increasing we obtain the receiver bandwidth increasing and subse-

quently power noise extension, therefore the error probability increasing. 

The criterion taken into consideration when estimating which one of the two 

codes is better (also taking into account the transmission parameters) is the correct  
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decision probability for the same quantity of information transmitted over the 

channel. In this case:  

2211 mNmN =                                     (5.60)  

where N1, respectively N2, are the number of codewords transmitted though C1, C2 

codes.  

The most efficient code will be the one for which the correct transmission 

probability is greater: 

2
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2

1 N
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C

C

N
1 )P(1)P(1 −

<

>
−                                        (5.61) 

where P1 and P2 are the erroneous decoding probabilities for codes C1 and C2 and 

are determined with (5.54) at the limit: 
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                          (5.62) 

The approximations in (5.62) stand for a BSC with 1p <<  case. 

The fact that the BER in the channel are different for the two codes is due to the 

different bit rates requiring different bandwidths; according to equations (2.80) 

and (5.6) we have: 
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                                     (5.63) 

Relation (5.61) becomes (when 1P1,2 << ): 
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                                              (5.64) 
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Replacing in (5.64) P1 and P2 with the expressions from (5.62) we have: 

1t1t

n1

C

C

1t1t

n2
22

2

1

2

11

1
pCmpCm

++++

<

>
                                  (5.65) 

The BER on the channel depends on the source bit rate (
1cD

•
,

2cD
•

) and on the 

modulation and decision systems used at receiver [15], [28] [Appendix C]. 

Be p given by the relation (C.40) from Appendix C: 

)ξQ(p =                                                 (5.66) 

where  ξ  is the SNR: 

BN

P

P

Pξ
0

S

N

S ==                                            (5.67) 

and Q is the coerror function [Appendix C]. 
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Under these circumstances equation (5.56) becomes: 
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Comparison between error detecting codes 

Judging as in error correcting codes case, we use (5.69) replacing 
1t

n

1t

n
2

2

1

1
C,C

++
 

with N1 and N2 - the number of different sequences that can be received with 

1t1 +  and, respectively 1t2 +  undetectable errors. It is obvious that all sequences 

with t1, t2 error are detected by the two codes. 

 
Coding gain Gc 

In practice, to estimate the code error protection efficiency, is used the parameter 

coding gain Gc, defined as the difference between the SNR necessary for an un-

coded transmission ncξ  and the one corresponding to the encoded transmission 

cξ  for the same BER at the user (Fig. 5.7). 
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Fig. 5.7 Coding gain representation 

cncctpc ξξG −==                                             (5.70) 

From the graphic of Gc one may notice that there is a certain limit value of the 

SNR( limξ )below which the uncoded transmission BER is less than for the coded 

one. One intuitive explanation is that an error protection code is redundant, mean-

ing that for ctDi =
•

, cD
•

 increases; it follows a bandwidth expansion and, subse-

quently a noise increase, therefore a decrease for ξ , having as consequence the 

increase of the error probability (BER). 

Concluding, to have a BER imposed by the application, at the user, we must 

decide upon one of the followings: 

 

• increasing the SNR (increasing the power at transmission, using efficient 

modulation systems) 

• using error protection codes, the price paid being a bandwidth increasing; gen-

erally speaking, this method proves to be more efficient in many applications. 

5.7.9   Hamming Group Codes 

Hamming codes are the first error correcting codes proposed after Shannon second 

theorem, by R. Hamming in 1950.  
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One error correcting (t=1) Hamming group codes (perfect)  

 

The characteristics of this code are: 
 

• code length can be determined by:  

12n k −=                                                   (5.71)  

This equation is, in fact, a perfect code existence condition (5.43) for 1t = .  

• the code is separable, and has the structure: 

[ ]n987654321 ...aacaaacacc=v                                  (5.72) 

where by ai we denoted the information symbols and by ci the control (parity 

check) symbols. 

• control symbols are placed on positions  

1k0,i   ,2
i −=                                              (5.73) 

• control matrix H is:  

[ ]ni1 hhhH ......n][k =×                                (5.74) 

where each column hi expresses in binary natural code (BN) its position with the 

less significant bit (LSB) on the k-th line. 

From the control matrix structure one may notice that all the hi columns are dis-

tinct, therefore condition (5.58.b) is fulfilled in the case of one error correcting 

( 1t = ) codes. 

The encoding relations are determined using (5.38): 

0T =Hv  

It follows that the control symbols are expressed as a linear combination of in-

formation symbols: 

( )iii afc =  

 

Remark 

Relationship (5.38) expresses that even parity is checked (=0). 

Be an error on the i-th position: 

[ ] 1e  , 0...e...0e ii ==   

The syndrome is determined using (5.48):  

[ ] in1 hh...hS =

⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢

⎣

⎡
=

0

...

e

...

0

 i                                        (5.75) 
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When only one error occurs, the syndrome indicates the error position in bi-

nary; by a binary-decimal conversion we may determine from S the error word e. 

Error correction is easy: 

vee)(verv =⊕⊕=⊕=                                        (5.76) 

Let us now see what happens when two errors occur ( 2t = ) on the i-th and j-th 

positions: 

[ ]0......ee...0 ji=e  

In this case the error syndrome S is: 

[ ] kji

j

i

0

...

e

...

e
...

0

 hhhh...hS n1 =⊕=

⎥⎥
⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢
⎢⎢

⎣

⎡

=                               (5.77) 

It may be easily noticed that, if two errors occur, the code introduces a third er-

ror on the k-th position.  

For this code, a block error probability is determined with (5.54) for 1t = : 

22n22
n

n

2i

inii
n p

2

1)n(n
p)(1pCp)(1pCP ⋅

−
≅−≅−= −

=

−∑                     (5.78) 

We remind to the reader that (5.78) has been determined under the assumption 

that the errors are independent and the channel is a BSC one with p as BER.  

The BER after Hamming decoding is obtained with (5.55): P
n

Ȗ
pd ⋅= . 

We have seen that for the perfect Hamming code, if two errors ( 2t = ) occur, 

another one is introduced. Therefore, the most probable number of errors is 3Ȗ = , 

such that:  

22
d p1)(n

2

3
p

2

1)n(n

n

3
P

n

3
p ⋅−⋅≅⋅

−
⋅=⋅=                        (5.79) 

Modified Hamming Codes 

As we have already seen, the one error correcting Hamming code (the perfect 

code) introduces supplementary errors when overloaded with more errors than its 

correcting capacity ( 1t > ). In order to eliminate this disadvantage and to make it 

more useful in practical applications, this code has been modified by increasing 

the minimum distance from 3d =  to 4d = , allowing one error correction and 

double error detection. This modification is possible either extending or shorten-

ing the initial code. In what follows we shall briefly present both cases.  
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Extended Hamming Codes 
 

Increasing the code distance from 3 to 4 is performed adding a supplementary 

control symbol (parity control symbol) c0. The codeword structure becomes: 

[ ]n9876543210 a... acaaacaccc=∗
v                                (5.80) 

The control matrix will be: 

⎥⎦
⎤⎢⎣

⎡
=∗

11

H0
H                                                (5.81) 

where H is the Hamming perfect code matrix given by (5.74). 

In this case the syndrome is: 

⎥⎦
⎤⎢⎣

⎡
=

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=⎥⎦

⎤⎢⎣
⎡

== ∗∗

2

n

1

0

S

a

.

c

c

1T S

11

H0
vHS                                 (5.82) 

where S1 keeps its significance from the Hamming perfect code and S2 is a binary 

symbol, “0” or “1”; using S2 we may detect even errors ( 0S2 = ). 

We may have one of the following cases:  

⇒⎭⎬
⎫=

0=S2

0S1
 no errors or the errors are not detectable                 (5.83.a) 

⇒⎭⎬
⎫≠

1=S2

0S1
 one correctable error in the interval n1÷                (5.83.b) 

⇒⎭⎬
⎫=

1=S2

0S1
co symbol is erroneous                                              (5.83.c) 

⇒⎭⎬
⎫≠

0=S2

0S1
two errors are detected                                             (5.83.d) 

The code distance is 4d =  and it corresponds to one error correction and two 

errors detection: 1etd ++≥  (4 = 1+2+1). 
 

Example 5.6 
The odd parity code H(8,4) used in teletext systems is given by the control matrix: 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=∗

11111111

01011100

00110110

11110000

H  
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The structure of a codeword is: 

[ ]76543210 caaacacc=∗v  

Encoding relation, taking into account the odd parity, becomes:  

1T =∗∗vH  

Encoding relations are determined from: 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢

⎣

⎡

⋅

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡

1

1

1

1

c

a

a

a

c

a

c

c

11111111

01011100

00110110

11110000

7

6

5

4

3

2

1

0

 

It follows that:  
 

1aaac 2451 ⊕⊕⊕=  

1aaac 2463 ⊕⊕⊕=  

1aaac 4567 ⊕⊕⊕=  

1caaacacc 76543210 ⊕⊕⊕⊕⊕⊕⊕=  
 

The syndrome is determined from the equation: 

1rHS ⊕= T**  

 

Shortened Hamming Codes  
 

The same increase of the code distance from 3 to 4 can be obtained shortening a 

perfect Hamming code. This can be obtained eliminating from the perfect code 

control matrix H all columns having an even number of ones, that is, the columns 

corresponding to the information positions. The new obtained code corrects one 

error and detects two. If only one error occurs during the transmission, the syn-

drome is not 0 and it contains an odd number of ones. Decoding is performed as 

follows [28]: 
 

• 0S = ⇒ no errors or undetectable errors 

• 0S ≠  and containing an odd number of ones ⇒ one error; correction is per-

formed adding the syndrome corresponding to the error word to the received 

word (erroneous) 

• 0S ≠  and containing an even number of ones ⇒ two errors are detected. 
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Shortened Hamming codes have important applications in computers internal 

memory protection. These codes have been studied and proposed for applications 

in the memory protection field by Hsiao [23]; he also provided an algorithm for 

obtaining the optimal control matrix Ho with the following proprieties: 

• each column has an odd number of “1”s 

• the total number of “1”s is minimum 

• the number of “1”s from each  line in H0 must be equal or as close as possible 

to the average number of ones per line. 

 

Fulfilling these three conditions, an optimal H0 matrix with 4d ≥  and a 

minimum hardware is obtained. 

When dealing with applications in computers field, these codes are encoded 

and decoded in parallel, taking into account that speed is the most critical problem 

of the on-line processing. 

 
Example 5.7 [47] 

For 16 bits memory protection, Hsiao introduced an optimal one error correcting 

and two error detecting ( )4d = code )16,22(H0  obtained as follows: 

• start from the perfect )57,63(H  code with 12n 6 −= . 

• shorten the code eliminating the 31 columns that contain an even number of 

ones, and obtain the code: (32,26)H31)31,57H(63 s=−−  

• for 16 bits memory ( )16m = , eliminate ten more columns, complying the op-

timal conditions for obtaining a minimum hardware [23]. 

Finally the obtained shortened Hamming code is H0(22,16): 

⎥⎥
⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢
⎢⎢

⎣

⎡

=

1111110000100010100000

1110001111001000010000

1000101110000111001000

0000011001110111000100

0101000101111100000010

0011110010011001000001

0H  

Figure 5.8 shows the way to use this code for 16 bits memory protection. 

In a memory writing cycle, 6 parity bits are generated and stored in a check 

memory. 

In a read cycle, new parity bits are generated from the received data and com-

pared to the ones found in the control memory. If errors are detected, the H(22, 

16) block disconnects the central unit (CU). 
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Fig. 5.8 Shortened Hamming code for 16 bits memory protection 

The data format for the )16,22H(  code is: 
 

Data control bits

Byte 1 Byte 0 6 
 

Similarly, for 32 bits memory protection the shortened Hamming code 

)32,39H(  [23] is determined. 
 

Example 5.8 
Let us consider the error protection of a digital transmission performed with a one 

error correcting Hamming code with  4m = . 
 

a. Dimension the code, determine the encoding relations using H and G matrices 

and design the encoding and decoding block schemes for a maximal processing 

speed; which is the code distance and how can it be determined? 

b. Is ]1101101[=r  a codeword? If not, determine the corresponding correct word 

assuming only one error in transmission (LSB is the first value from left in the 

word r). 

c. How much is the BER after decoding if the transmission is performed on a 

BSC with 210p −= ? 

d. Repeat point b) assuming standard array and syndrome-based decoding; discussion. 

e. Analyze the possibility of increasing the code distance from 3 to 4; discussion. 
 

Solution 

a)  For 4m = , determine k using equation (5.71):   

=−= 12n k 3kkm =⇒+  

from where it results the )4,7H( code. 
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According to (5.74) the control matrix has the following expression:   

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

1010101

1100110

1111000

7654321

H  

In order to determine the correspondent generating matrix, it is necessary to de-

termine a canonical form of H matrix and then the correspondent canonical form 

for G; then, by rearranging the columns, one can obtain G matrix. 

P             I      

111

001

101

110

   

1000

0100

0010

0001

1247653

I             P      

100

010

001

   

1011

1101

1110

1247653

4
3

T ⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡
=′⇒

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=′ GH  

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

1001011

0101000

0011001

0000111

7654321

G  

 

Remark 

The computation accuracy is checked if the two matrices are orthogonal (relation 

(5.37)). We advice the reader to check this result. 

The encoding relations (5.38) and (5.33) are giving the control symbols as 

functions of the information symbols. 

According to (5.72), the codeword structure is the following: 

[ ]7654321 aaacacc=v  

The encoding relations using the control matrix (5.38) are the followings: 

⎪⎩
⎪⎨
⎧

⊕⊕=

⊕⊕=

⊕⊕=

⇒=

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢

⎣

⎡

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡

7531

7632

7654

7

6

5

4

3

2

1

aaac

aaac

aaac

0

a

a

a

c

a

c

c

 

1010101

1100110

1111000

 

The encoding relations, using the generating matrix, (5.33), obviously lead to 

the same result: 
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[ ] [ ]76543217653 aaacacc

1001011

0101010

0011001

0000111

 aaaa =

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
 

The code distance can be determined in more ways: 
 

• writing the codewords set C and determining their weights using equation 

(5.16); it is found 3wd min == ; we invite the reader to make this calculus, as 

an exercise.  

• one may notice that all the columns of H matrix are distinct, therefore, accord-

ing to (5.58.b) the code can correct one error; it follows, according to (5.25): 

3112d =+⋅=  

The decoding equation (5.47) becomes: 

THrS = ; from which it follows: 

⎪⎩
⎪⎨
⎧

=⊕⊕⊕

=⊕⊕⊕

=⊕⊕⊕

⇒
⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢

⎣

⎡

⋅

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡

37531

27632

17654

3

2

1

7

6

5

4

3

2

1

srrrr

srrrr

srrrr

s

s

s

r

r

r

r

r

r

r

1010101

1100110

1111000

 

The previously determined encoding and decoding equations lead to the block 

schemes of the encoding/decoding units (Fig 5.9). 

According to (5.76) the error correction consists in:  

erv ⊕=  

where e is determined from S by a binary-natural to decimal conversion. 

For Hamming code, the correction is performed when r has been completely 

received (on a fraction from the duration of the n-th symbol), the seven modulo 

two adders being validated and allowing the writing of the correct word in the 

memory register (MR): erv ⊕= . 

b)  To check whether r is or not a codeword, check the equation (5.47): 

SHr =T  

5

1

0

1

1

0

1

1

0

1

1

 

1010101

1100110

1111000

h=

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢

⎣

⎡

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
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Decoding h5  one can determine the error word:  

]0 0 1 0 0 0 0 0[=e  

Correction consists in: 

] 1 0  0  1  0  1  1[] 0  0  1  0  0  0  0[] 1  0  1  1  0  1  1[ =⊕=⊕= erv  

1c

2c

4c

7a6a5a3a

 

1r

1r

2r

2r

3r

3r

4r

4r 5r

5r 6r

6r 7r

7r

1s

2s

3s

1c
2c 3a

4c 5a 6a 7a

1e 2e 3e
4e 5e 6e

7e

 

Fig. 5.9 Hamming (7,4) code block scheme: a) encoding unit; b) decoding unit 
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c) pd is determined with equation (5.79): 

3422
d 101096p1,51)p(n

2

3
p

−− ≅⋅=⋅=−≅ ,  

so it decreased approximately 10 times, compared to the situation of not using the 

error correction code. 

d) For our code, the codewords set is formed by 162m =  combinations of 7 bits.  

 

[0 0 0 0 0 0 0], [1 1 0 1 0 0 1], [0 1 0 1 0 1 0], [1 0 0 0 0 1 1],  

[1 0 0 1 1 0 0], [0 1 0 0 1 0 1], [1 1 0 0 1 1 0], [0 0 0 1 1 1 1],  

[1 1 1 0 0 0 0], [0 0 1 1 0 0 1], [1 0 1 1 0 1 0], [0 1 1 0 0 1 1],  

[0 1 1 1 1 0 0], [1 0 1 0 1 0 1], [0 0 1 0 1 1 0], [1 1 1 1 1 1 1]. 

 

In order to form the standard array we choose from the rest of  

1122222 47mn =−=−  combinations on 7 bits, a number of 82k =  combina-

tions of minimum weight except the combination with all zero elements; we shall 

choose the 7 combinations with unitary weight (see Table 5.4). 

The sequence ]1101101[=r  is identified at the intersection of line 6 with col-

umn 2, so the decoded word is 1 0 0 1 0 1 1 . 

 

Remark 

Due to the fact that the table contains all possible combinations corresponding to 

one error, any singular error can be corrected. 

For syndrome-based decoding, we fill Table 5.5. 

Table 5.5 Syndrome-decoding table for Hamming (7,4) code. 

S
T
 e 

0 0 0 0 0 0 0 0 0 0 

0 0 1 1 0 0 0 0 0 0 

0 1 0 0 1 0 0 0 0 0 

0 1 1 0 0 1 0 0 0 0 

1 0 0 0 0 0 1 0 0 0 

1 0 1 0 0 0 0 1 0 0 

1 1 0 0 0 0 0 0 1 0 

1 1 1 0 0 0 0 0 0 1 

 

One may notice from the previous table that for ]101[T =S  the error word is 

0] 0 1 0 0 0 [0e = . The correction is done as follows: 

] 1 0  0  1  0  1  1[] 0  0  1  0  0  0  0[] 1  0  1  1  0  1  1[ =⊕=⊕= erv  

e).  Increasing the code distance from 3 to 4 can be done in two ways: ex-

tending or shortening the code. 
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The H(7,4)  code extension is obtained using matrix *H  given by (5.81) and a 

structure codeword (5.80). 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

11111111

10101010

11001100

11110000

*
H ,  [ ]76543210

* aaacaccc=v  

The encoding relations for c1, c2, c4 are identical to the basic H(7.4) code, along 

with:  

76543210 aaacaccc ⊕⊕⊕⊕⊕⊕=  

Let us consider the following sequences are received: 
 

1  0  0  1  0  1  1  0=1r    

1  0  0  1  0  1  0  0=2r  

1  0  0  1  0  1  1  1=3r   

1  0  0  1  0  0  0  0=4r  
 

Determine, if possible, the correct sequences. 

11
*

0

...

0

0

0

rrH ⇒
⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢

⎣

⎡
= is a codeword, meaning that no errors or the errors are 

not detectable. 

1S  ,

1

0

0

1

...

1

0

0

212
* =

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=⇒

⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢

⎣

⎡
= SrH , it follows that there is a correctable er-

ror on the first position.  

It results that: 

]1  0  0  1  0  1  1  0[]0  0  0  0  0  0  1  0[2 =⊕= rv  

erroneous. is c ore    theref1S   ,0

1

...

0

0

0

0213
* ==⇒

⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢

⎣

⎡
= SrH  
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It results: 

]1  0  0  1  0  1  1  0[]0  0  0  0  0  0  0  1[3 =⊕= rv  

 

,0S  ,

1

1

0

0

...

1

1

0

214
* =

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=⇒

⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢

⎣

⎡
= SrH  it results that there are two uncorrect-

able errors. However, the even errors have been detected. 

 
Code shortening 

 
It is well known that shortening a basic H(n,m) code is performed by reducing the 

information symbols number, so in our case, where m is fixed (4) we cannot start 

from the H(7,4) code but from the perfect )11,15(H code that follows immediately 

after: 
 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

101010101010101

110011001100110

111100001111000

111111110000000

H  

                     ×         ×    ×              ×    ×         ×              × 
 

Eliminating the columns that contain an even number of ones we obtain:  

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

01101001

10101010

11001100

11110000

0H  

One may notice that this matrix has dimensions compatible to the data format 

( 4m = )and ensures 4d = requirement. In this case the structure of the codeword 

is: 

[ ]876543210 aaacaccc=v  
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The encoding relations can be determined with: 

00vH =

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢

⎣

⎡

⋅

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
⇔=

8

7

6

5

4

3

2

1

T
00

a

a

a

c

a

c

c

c

101010101010101

110011001100110

111100001111000

111111110000000

 

⎪⎪⎩
⎪⎪⎨
⎧

⊕⊕=

⊕⊕=

⊕⊕=

⊕⊕=

⇒
7641

8642

8743

8765

aaac

aaac

aaac

aaac

 

 

Let us consider that the following sequences are received: 
 

0]  0  0  0  1  1  1  1[1 =r  

0]  0  0  0  1  1  1  0[2 =r  

0]  0  0  0  1  1  0  0[3 =r  
 

An estimation of the received sequences can be done checking the following 

equation: 
 

SrH =T
0  

 

 

0

...

0

0

0

T
10

⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢

⎣

⎡
=rH , it follows that r1 is either correct or the errors can not be 

detected 0)S 0,( 21 ==S . 

 

1

...

0

0

0

T
20

⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢

⎣

⎡
=rH , it results that there is one error ) 1  S 0,  ( 21 ==S . 
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The syndrome value shows that it is located on the position c1, so the correct 

word is: 
 

]11110000[]10000000[2 =⊕= rv  

 

1

...

1

0

0

T
30

⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢

⎣

⎡
=rH , the errors are double and can not be corrected 

) 1  S 0,  ( 21 =≠S , however the errors have been detected.  

5.7.10   Some Other Linear Block Codes 

Simple parity check codes 
 

These codes are among the most used error detection codes in data transmission 

systems; a simple parity code adds one supplementary bit (parity check bit) to the 

information bits of the code word. It follows that:  

1mn +=                                                     (5.84) 

The parity check bit is determined depending on the used parity criterion: 

 

Odd parity criterion: 

1a
n

1i
i =∑

=
                                                   (5.85) 

Even parity criterion: 

0a
n

1i
i =∑

=
                                                 (5.86) 

Remark 
 

summation 2 modulo  thegdesignatin is - 
n

1i
∑
=

 

 

This code can detect all the odd errors. The code relative redundancy is: 

n

1

n

k
R ==  

Using the two parity criteria, determine the parity bit for the following se-

quence: 1011011. 

Using the odd parity criterion: 1c1101101 =⊕⊕⊕⊕⊕⊕⊕ ; it results that 

0c = . 
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Using the even parity criterion: 1c1101101 =⊕⊕⊕⊕⊕⊕⊕ ; it results that 

1c = . 

The codewords will be 10110110][  and 10110111][ . 

Cross parity check code 
 

It is obtained iterating two simple parity check error detecting codes. 

The information received from the transmitter is arranged in blocks of informa-

tion sequences: a parity check bit is associated to each row and to each column 

(Ri), resulting a transversal parity check word (Table 5.6). 
 

Table 5.6 Encoding table for the cross parity check code. 

 R1 R2 … Rm Cio 

v1 i11 i12 … i1m C1o 

v2 i21 i22 … i2m C2o 

 … … … … … 

      

vp ip1 ip2 … ipm Cpo 

Cjv C1v C2v … Cmv  

 
The receiver checks the parity for each received word and then builds a trans-

versal parity check word of its own, which is compared to the received word. If 

the two words are identical and if the horizontal parity is checked for each word, 

the block is validated. 

This code can correct any singular error occurred inside the block, due to the 

fact that this error affects both the horizontal and vertical parity check. There are 

some cases in which the horizontal and vertical errors can be detected.  A detailed 

analysis of these particular cases is performed in [24]. This code was used for in-

formation protection in recording the information on magnetic tape or paper. 

 

Example 5.9 
Let us consider the block: 

 

 R1 R2 R3 R4 R5 R6 R7 Cio 

v1 1 0 1 1 0 0 1 1 

v2 0 1 1 0 1 1 0 1 

v3 1 1 0 0 1 0 0 0⇒ 1

v4 0 0 1 0 1 0 1 0 

v5 0 1 1 0 0 1 1 1 

Ckv 1 0 1 0⇒ 1 0 1 0 1 

 

The odd parity criterion was used for encoding. We assume that an error occurs 

on position (v3, R4). It will affect C30 and C4v, therefore it will be corrected. 
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Constant weight code (m, n) 

 

Unlike all the codes we have already studied, the constant weight code is a non 

separable code, i.e. with implicit redundancy. The length of the code words is n. 

The encoding law stipulates that all the words have the same weight mw = , al-

lowing the all odd errors detection. This code is used in information alpha numeric 

representations, for example code (3, 7) in telex. 

We will determine the redundancy and detection capacity taking into account 

relation (5.10): 

n

ldCn

ld2

ldCld2
R

m
n

n

m
n

n

r
−

=
−

=                               (5.87) 

te

ue

te

uete
d

N

N
1

N

NN
C −=

−
=  

where 1CN m
nue −=  represents the number of undetectable erroneous combina-

tions and 12N n
te −=  is the total number of possible erroneous words. The total 

codewords number is m
nCM = . In this case Cd is expressed as: 

12

1C
1C

n

m
n

d
−

−
−=                                          (5.88) 

 

Example 5.10 
Let us consider the code C(2, 5): 11000, 00011, 00110, 01010, 01100, 10001, 

10010, 10100. It follows that maximum ten messages can be encoded 

10)C(M 2
5 == . 

The redundancy and code detection capacity are computed using (5.87) and 

(5.88). 
 

%6,33336,0
5

32,35

5

105
==

−
=

−
=

ld
Rr  

70%0,7
31

22

12

110
1C

5d ===
−

−
−= . 

5.8   Cyclic Codes 

Cyclic codes are an important sub-set of linear block codes. They are very used in 

practice due to the simplicity in implementation using linear feedback shift regis-

ters (LFSR); the algebraic structure of these codes made possible a lot of practical 

decoding algorithms. 

From the history of this codes we mention: 1957- E. Prange is the first to study 

the cyclic codes, 1959 – A. Hocquenghem and 1960 – R. Bose and P. Chauduri 
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are giving multiple errors correcting cyclic codes also known as BCH (Bose-

Chauduri- Hocquenghem) codes, 1960 – J. Reed and G. Solomon give the cyclic 

non-binary codes known as RS (Reed-Solomon) codes. W. Peterson wrote a 

monography about cyclic codes in 1961. Other important contributions in devel-

oping these codes belong to: G. Fornay, Y. Massey, R. Blahut, E. Berlekamp, T. 

Kasammi, L. Chen, S. Lin. 

5.8.1   Definition and Representation 

A linear block code ),( mnC  is cyclic if any cyclic permutation of a codeword is 

also a codeword. 

If: 

C)a...a(a n10 ∈=v  

then any cyclic permutation of v is still a codeword:  

C)a...aaa...a(a

...

C)a...a(a

1i-n101-n1i-ni-n
i)(

1-n01-n
)1(

∈=

∈=

++v

v

 

For cyclic codes the words are represented by polynomials; for an n symbols 

sequence the corresponding polynomial is of degree 1-n or smaller: 

( ) 1-n
1-n

2
210 xa...xaxaaxv +++=                               (5.89)  

The encoding relation, giving the codewords set C, is to form codewords, poly-

nomially represented as multiples of k-th degree polynomial, known as the gen-

erator polynomial.  

From the cyclic codes definition we get that for any information polynomial 

i(x) of degree 1-m , the codewords are chosen multiples of a m-nk =  degree 

polynomial known as the generator polynomial of the code.  

( ) 1-m
1-m10 xi...xiixi +++=                                   (5.90) 

( ) 1gg,xg...xggxg 0k
k

k10 ==+++=                         (5.91)  

( ) i(x)g(x)xv =                                            (5.92) 

All distinct combinations set that can be formed with n symbols (codewords) 

forms an algebra. This set comprises the set of the residue classes of an n degree 

polynomial c(x) with coefficients in GF(2). 

The polynomial c(x) of degree n can be chosen randomly, but for obtaining a 

similar expression with the scalar product between two vectors [43], [53] it is cho-

sen as follows: 

01xc(x) n =+=                                          (5.93) 
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For binary codes the set residue classes of 01xc(x) n =+=  has n2 elements. 

From this algebra we can choose m2 elements subset (the codewords set), that are 

multiples of the generator polynomial (the ideal generated by g(x)). 

Due to the fact that the zero element belongs to the ideal, it results that exists a 

polynomial h(x) such that 

01xc(x)h(x)g(x) n =+==⋅                                  (5.94) 

It follows that ( )xg  is chosen from the divisors of 01xc(x) n =+= , hence: 

g(x)

1x
h(x)

n +
=                                              (5.95) 

5.8.2   Algebraic Encoding of Cyclic Codes 

The codeword formed with relation (5.92) leads to a non-systematic cyclic code 

(the information is modified in the encoded structure)  

Relation (5.92) can be rewritten as follows: 

g(x)xi...xg(x)ig(x)i        

g(x))xi...xi(ig(x)i(x)v(x)

1m
1-m10

1-m
1-m10

−+++=

=×+++=×=
                   (5.96) 

Equation (5.96) shows that v(x) is formed by the linear combinations set of the 

generator G matrix line vectors, where: 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
= −

−
k10

k1k0

k10

1m

[mxn]

ggg00

0ggg0

00ggg

(x)x

(x)x

(x)

""
#######

""
""

#
g

g

g

G              (5.97) 

In order to obtain a systematic structure, i.e. the information to be unmodified 

on the most significant positions, we follow the next steps: 
 

1. ( ) 1-n
1-m

1k
1

k
0

k xi...xixixix +++= +   

2. 
g(x)

r(x)
q(x)

g(x)

i(x)xk

+=   

3.   
1n

1n
k

k
1k

1k10

k

xa...xaxa...xaa        

q(x)g(x)r(x)i(x)xv(x)

−
−

−
− ++++++=

==+=

                           

(5.98) 
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Therefore we obtain a cyclic codeword, multiple of g(x), with the information 

symbols placed on the most significant m positions: i(x)xk  and k control symbols 

given by r(x), the remainder after the division of  i(x)xk  to ( )xg , a polynomial of 

maximum degree 1k− . 

The encoding relationship (5.98) used to obtain a systematic cyclic code can be 

rewritten in such a way to obtain an equation similar to 0T =Hv . Equation (5.98) 

is multiplied with h(x) and due to the fact that h(x) and g(x) are orthogonal (rela-

tionship (5.94)) we get: 

0x)q(x)g(x)h(v(x)h(x) ==                                  (5.99) 

The product 0v(x)h(x) =  can be written as the scalar product between two  

vectors: 

⎪⎪⎩
⎪⎪⎨
⎧

=

=

=

−−

−−−

−−

00)0hh(h)aa(a

00)hhhhh0(0)aaa(            

0)hhhh00(0)aa(a

01mm1n10

012m1mm1n10

011mm1n10

"""
#

"""
"""

            (5.100) 

Remark 

From the n equations given by the cyclic permutations we have written only the 

m-nk =  linear independent ones. 

The system (5.100) can be written also: 

0

a

a

a

0000hhh

0hhhh00

hhhh000

1n

1

0

01mm

02m1mm

011mm

=

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
⋅

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡

−−

−−

−

#
""

#########
""
""

       (5.101) 

One may easily notice that this system is of 0T =Hv  type, where H is identi-

fied as:     

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

−

−−

−

×

0000hhh

0hhhh00

hhhh000

01mm

02m1mm

011mm

n][k

""
#########

""
""

H           (5.102)  

 

Example 5.11 

Let us consider code C(7,4) with the generator polynomial 1xxg(x) 3 ++= . 
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According to (5.96), the generator matrix of this code is: 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

1011000

0101100

0010110

0001011

G  

the polynomial h(x) is determined from: 

1xxx
g(x)

1x
h(x)

24
7

+++=
+

=  

where, according to (5.102), it results the control matrix structure.    

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

0011101

0111010

1110100

H  

Using relation (5.101) we determine the encoding relations: 

 

⎪⎩
⎪⎨
⎧

++=

++=

++=

⇒=

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢

⎣

⎡

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡

4320

5431

6542

6

5

4

3

2

1

0

aaaa

aaaa

aaaa

0

a

a

a

a

a

a

a

 

0011101

0111010

1110100

 

 

The entire discussion regarding cyclic codes encoding was done supposing the 

existence of a generator polynomial g(x) of degree k. A question raises: 

 

How should be g(x) in order to correct a maximum number of t independent  

errors? 

 

The answer can be given taking into consideration the finite fields theory (Ga-

lois and extended Galois fields [Appendix A]), which represent the mathematical 

support for cyclic codes. 

From the encoding law, we know that v(x) must be a multiple of g(x), which, at 

its turn, according to (5.94), must divide 01xn =+ . 

In order to accomplish these requirements we proceed as follows: 
 

• We choose r roots of  01xn =+  noted as: 

( ) r0,  ior    1-r0, i ,2GF   ki
i ==∈= αβ                          (5.103) 



260 5   Channel Coding

 

These βi roots are primitive elements (α) of the k-th order extension of the binary 

Galois field GF(2
k
). The order k of the extension is found from (Appendix A):   

( )kk 2GF andk 12n ⇒−=                                      (5.104) 

GF( k2 ) extension is generated by a primitive polynomial p(x) of degree k de-

termined with (5.104) (Table 5.7). Tables containing primitive polynomials for 

different degree until 100 can be found in Appendix A.9. 
 

Table 5.7 Table of primitive polynomials up to degree 5k = . 
 

k 
01 ...aaa kk −  

1 

2 

3 

 

4 

 

5 

1 1 

1 1 1 

1 0 1 1  

1 1 0 1 

1 0 0 1 1 

1 1 0 0 1 

1 0 0 1 0 1 

1 0 1 0 0 1 

1 0 1 1 1 1 

1 1 0 1 1 1 

1 1 1 1 0 1 

 

Remark: k from equation (5.104) represents the extension order of GF( k2 ) field 

and not the number of the control symbols: mnk −= , which will be denoted as 

k′  from this point on. As a consequence of this remark, there will be no misun-

derstandings regarding the use of k in these two cases. 
 

• We determine g(x) as the smallest common multiple of the minimal polynomi-

als corresponding to βi roots: 

} (x)m(x),...,s.c.m{mg(x) r1=                                (5.105) 

If all the r polynomials are primes, then: 

∏=
=

r

1i
i (x)mg(x)                                          (5.105.a) 

A minimal polynomial corresponding to βi is defined as the irreducible poly-

nomial m(x) of minimal degree for which 0)(m ii =β ; it is obtained as: 

( ) ( ) ⎟⎠
⎞⎜⎝

⎛ ++⋅+=
1-k2

i
2
iii xxx)x( βββm                             (5.106) 



5.8   Cyclic Codes 261

 

• In order to obtain a t errors correcting code, we choose 2tr =  roots 

( )k
i 2GF∈β  and the code distance of the obtained code has the minimal dis-

tance 12td +≥ [Appendix A] [29] [52]. 

• Based on the theorem (Appendix A) that states: for binary cyclic codes, if α  is 

a root 
1k2 222

,,,
−

ααα …  are also roots, to obtain the generator polynomial it is 

enough to select only the odd roots: 

1-t2
12t

3
31 ,...,, αβαβαβ === −                                (5.107) 

In what follows we will enounce some theorems (without demonstration) useful 

in checking the calculus made for determining the polynomial g(x) [2], [29]: 

• The degree of any minimal polynomial )x(mi  is smaller than or equal to k (the 

extension order) 

( ) kxm of degree i ≤                                         (5.108) 

• The degree of the generator polynomial g(x) is smaller than or equal to k⋅t (we 

remind that the generator polynomial degree is equal to the control symbols. 

tkm-nnumber   symbols   controlg(x) of degreek ⋅≤===′         (5.109) 

in which k signifies the GF( k2 ) extension order 

• The number of non-zero terms of g(x) equal to the code distance: 

Non-zero terms [g(x)] = 12td +≥                           (5.110) 

The codes obtained as shown above (binary cyclic t errors correcting codes) are 

known as BCH codes (Bose–Chauduri–Hocquenghem). Tables with generator poly-

nomials for BCH codes for different n and t may be determined [28], [Appendix A]: 

Table 5.8 BCH codes generator polynomials up to 31n =  

n m t gk’ gk’-1… g0 

7 

 

15 

 

 

 

31 

4 

1 

11

7 

5 

1 

26

21

16

11

6 

1 

2 

1 

2 

3 

7 

1 

2 

3 

5 

7 

1 3 

1 7 7 

2 3 

7 2 1 

2 4 6 7 

7 7 7 7 7 

4 5 

3 5 5 1 

1 0 7 6 5 7 

5 4 2 3 3 2 5 

3 1 3 3 6 5 0 4 7
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Remark 

The generator polynomial coefficients are given in octal for compression purposes. 

BCH encoding can be done in several ways: 
 

• using relation (5.92) for a non-systematic code  

• using relation (5.101) in which the control matrix structure is determined im-

posing v(x) to have as roots: 

,,...,, 1-t2
12t

3
31 αβαβαβ === −                                (5.111) 

in this case we have: 

( )
1-2t ..., 5, 3, 1,i

0aaav
1n

i1n
1
i1

0
i0i

=

=+++= −
− ββββ "

                         (5.112) 

We obtain: 

( )

( ) ( )( )⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢

⎣

⎡
=

−−− 1n12t1-2t12t0

1-n3630

1-n210

2

 

             

              

αα αα

αααα

αααα

H

"

#
"

"

                           (5.113) 

Remark 

Each element α is expressed in k digits, therefore the control matrix dimension is 

n][tk ×  

 

• using relation (5.98), for a systematic structure g(x) being determined as previ-

ously described, or chosen from available tables. 

 

Example 5.12 

Dimension the BCH error correcting codes of length 15n =  for 1t = , 2t =  and 

3t = . Determine the generator polynomials and the encoding relationships. De-

termine the codewords for a random information sequence. 

 

Solution 

Galois field is dimensioned using (5.104) 

)GF(24k1215

12n

4k

k

⇒=⇒−=

−=
 

The elements belonging to GF )2( 4  are the residues of polynomial p(x), a 

primitive polynomial of degree 4k = . From Table 5.7 we choose: 

( ) 1xxxp 4 ++=  

as the generator polynomial of GF(2
k
). 
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The primitive elements of the GF )2( 4  field can be represented using polynomi-

als or matrices. We bear in mind that for any Galois field we have (Appendix A.5): 

1n =α  

The elements of the GF )2( 4  field generated by ( ) 1xxxp 4 ++=  are given in 

Table 5.9. 

For 1t =  we choose αβ =1  ( )42GF∈ . The minimal polynomial of this root is, 

according to (5.106): 

( ) ( )( )( )( ) 1xxxxxxxm 4842
1 ++=++++= αααα  

and g(x) according to (5.105) is: 

( ) ( ) 1xxxmxg 4
1 ++==  

One may notice that we obtained a polynomial of degree 4, so the number of 

control symbols will be k4k ==′ , the order of the extension, because for 1t =  

g(x) is equal to p(x). Code dimensions for 15n =  and 1t =  are: BCH(15,11,4) 

where n=15 represents the length of the codeword, 11m =  represents the informa-

tion symbols, and k’=4=n-m the control symbols. 

Table 5.9 GF(24) generated by p(x)= x4+x+1 

0 and αi
 Polynomial representation  Matrix representation 

 

0 0       0 0 0 0 

1 1       1 0 0 0 

α   α     0 1 0 0 

α2     α2   
0 0 1 0 

α3       α3 0 0 0 1 

α4 1 + α     1 1 0 0 

α5   α + α2   
0 1 1 0 

α6     α2 + α3 0 0 1 1 

α7 1
 + α  

 
+ α3 1 1 0 1 

α8 1
 +   α2  

 
1 0 1 0 

α9   α + 
  α3 0 1 0 1 

α10 1
 + α + α2   

1 1 1 0 

α11   α + α2 + α3 0 1 1 1 

α12 1
 + α + α2 + α3 1 1 1 1 

α13 1
 +  

 α2 + α3 1 0 1 1 

α14 1
 + 

    α3 1 0 0 1 
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The control matrix is expressed with (5.113) 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

111101011001000

011110101100100

001111010110010

111010110010001

H  

The structure of a codeword is: 

⎥⎥
⎥
⎦
⎤

⎢⎢
⎢
⎣
⎡

=

=′
������ 
������ 	��
�	�

symbolsn informatio  1m

1413121110987654

symbols  control 4=k

3210 aaaaaaaaaaaaaaav  

The encoding relation obtained with (5.101) are: 

141312119763

131211108652

12111097541

141312108740

aaaaaaaa 

aaaaaaaa 

aaaaaaaa

aaaaaaaa 

⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕=

 

In order to determine the codeword we choose the following information  

sequence: 

⎥⎦
⎤⎢⎣

⎡=   0  0  0  0  0  0  0  0  0  0  1
LSB   

i  

The codeword can be determined either using the encoding relations already 

found or using (5.98): 

( )
( )
( ) ( ) ( )1xx/xxg/xix

xxix

1xi

44k

4k

++=

=

=

 

It results: ( ) 1xxr += , so ( ) ( ) ( ) 1xxxrxixxv 4k ++=+= , or in polynomial 

representation:  

⎥⎦
⎤⎢⎣

⎡= 1  1  0  0  1  0  0  0  0  0  0  0  0  00
MSB

v  

For 2t =  we choose the following roots: 
 

( ) ( )( )( )( )
( ) ( )( )( )( ) 1xxxxxxxxx

1xxxxxxx

   and   α

234241263
3

4842
1

3
31

++++=++++=

++=++++=

==

ααααm

ααααm

αββ
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It can be noticed that both minimal polynomials are of degree 4, meaning that 

(5.109) is fulfilled. The two polynomials being relatively primes, g(x) is deter-

mined with (5.105.a) as: 

( ) ( ) 1xxxxxmxmg(x) 4678
31 ++++==  

and in binary:  

N ⎟⎟⎠
⎞

⎜⎜⎝
⎛


	�
	�
1

1  0  0  

2

0  1  0  

7

1  1  1=g  

The corresponding octal notation is: g = 721. 

Condition (5.110) is fulfilled for g(x) too: 248 ×≤ . The non-zero terms of 

g(x) is 5, so according to (5.25) the code corrects two errors (the calculus is cor-

rect). The code dimensions are H(15,7,2) and the codeword structure is: 

⎥⎥⎦
⎤

⎢⎢⎣
⎡

=

′
��� 
��� 	���� 
��� 	�
bitsn  informatio  7=m

141312111098

bits  control  8=k

76543210 aaaaaaaaaaaaaaav  

The control matrix is: 

( ) ⎥⎥⎦
⎤

⎢⎢⎣
⎡

=
52630

14210

15,7,2H
αααα

αααα

"

"
 

We ask the reader, as an exercise, to determine the encoding relations, the di-

mensions of the correcting code for 3t =  as well g(x). 

Choosing the following information sequence: 

⎥⎦
⎤⎢⎣

⎡= 1   0   0   0   0    00
MSB

i  

we determine the systematic codeword similar for 1t = . 

( )
( )

⎥⎦
⎤⎢⎣

⎡
++++=

++++=

=

=

1   0   0   0   1   0   1   1   1   0   0   0   0   00or  

  1xxxxxv

1xxxx/xi(x)/g(x)x

xi(x)x

1i(x)

MSB

4678

46788k

8k

 

5.8.3   Syndrome Calculation and Error Detection  

Assuming we deal with additive errors, at receiver we get: 

( ) ( ) ( )xexvxr +=                                                (5.114) 
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The encoding rule is checked, i.e. r(x) divides by g(x):  

( )
( )

( ) ( )
( )

( )
( )

( )
( )xg

xe
rem

xg

xe
rem

xg

xv
remxs

xg

xr
rem =+==                    (5.115) 

where s(x) is the error syndrome. 

From relation (5.115) it follows that: 
 

• the syndrome does not depend on the transmitted codeword v(x), but only on 

the error word e(x); 

• if  ( ) 0xs = , it means that there are not errors or the errors are not detectable; 

• if ( ) 0xs ≠ , the error is detected; 

• the syndrome s(x) is a polynomial of maximum degree 1k −′ , meaning that for 

binary codes there are k'2  distinct combinations; it means that from 12n − pos-

sible errors combinations, maximum 12k' −  will be corrected. (zero combina-

tion is used for showing the lack of errors). 

Cyclic codes are the most used codes for detection of independent errors as 

well as burst errors. 

In what follows we will express the cyclic codes detection capacity starting 

from the definition (5.11): 
te

en

te

ente

te

ed
d

N

N
1

N

NN

N

N
C −=

−
== , where Nue is deter-

mined by the undetectable errors combinations, so, for which the error word is a 

multiple (M) of g(x):  

( ) ( )xgMxe ⋅=  

Let us consider a burst of errors of length p, located between positions i and j: 

ijp −=  

( ) ( )i
ij

j
ii

i
j

j exexxexexe ++=++= − ""                      (5.116) 

Further on, we analyze the three situations that may arise: p smaller, equal and 

higher than the generator polynomial degree, k′ . 
 

• kp ′<  means that e(x) cannot be a multiple of g(x), so 0Nue = ; it results 

1Cd = ; all burst errors, having lengths smaller than k′ will be detected. 

• if kp ′= , there is only one error combination that may correspond to the gen-

erator polynomial:  

( ) ( ) 1N  so  ,xgxe ue ==  

In this case 

kp1p

1pd

ji
1p

te

2121
2

1
1C

1ee  because  ,2N

′−+−
−

−

−=−=−=

===
                         (5.117) 
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• if kp ′> , the errors multiples of g(x) will not be detected: 

( ) ( ) ( ) ( )xgxmxgMxe ⋅=⋅=  

where m(x) is a polynomial of maximum degree kp ′− ; we calculate: 

1p
te

1kp
ue

2N

2N

−

−′−

=

=
 

k

1p

1kp

d 21
2

2
1C

′−
−

−′−
−=−=                                   (5.118) 

Remark 

Cyclic codes detection capacity depends only on the generator polynomial degree, 

no other condition being imposed on g(x). The notations used are: kmn ′+= , 

where n is the length of the codeword, m the length of the information block and 

k′ is the number of redundant symbols, equal to the degree of the generator  

polynomial. 
 

Cyclic codes for error detection 
 

Cyclic codes are the most used codes in ARQ systems. A block of data forming a 

message M(x) is cyclically encoded using a generator polynomial of degree k’ de-

termined by the number of detectable errors. At receiver the block r(x) is divided 

to g(x). If the remainder is non zero, the error detection is performed and the re-

transmission is requested. This technique extremely often used in practice is 

known as CRC (Cyclic Redundancy Check). 

Some of its applications are given below: 
 

• In data transmissions, the CCITT V41 notification recommends CRC 

with ( ) 1xxxxg 51216 +++= . Data block lengths are 3860 900, 500, 260,n = . 

The control symbols (CRC sequence) are two bytes long (15 degree polynomi-

als). In the IBM/360 network, the polynomial used in CRC–16 is 

1xxxg(x) 21516 +++= . 

• Error protection in digital telephony - European Standard for data synchroniza-

tion is done with CRC–4. 

• 22469/1–80 standard, equivalent to ISO 4335–79 for data transmission with 

high level connection control procedures (HDLC–High Data Link Control), es-

tablishes the message and check sequence structure (Fig. 5.10) which is ex-

plained further on. 
 

The m information bits (data + command + address) are represented by the 

polynomial i(x) and are included between the delimitation byte ant FCS The con-

trol sequence CRC–16 in the HDLC frame is called “frame checking sequence” 

and denoted with FCS (Frame Checking Sequence). The sequences formed by two 

control bytes at the frame level FLC (Frame Level Control) are used for protocol 

implementation at link level. 



268 5   Channel Coding

 

 

Fig. 5.10 HDLC frame format 

The delimitation bytes are giving the length of the frame. If a delimitation se-

quence is not placed correctly between two frames, the receiver will assign them 

as a single frame. If the reception of the first frame is error free, the state of the 

LFSR (used for cyclic encoding and decoding) is 0, so the receiver will not detect 

the lack of the delimitation sequence for separating the frames. This problem oc-

curs because the LFSR state is the same (zero) before a frame error free reception 

and after its check. To avoid this problem we need to modify the FCS so that the 

two configurations of the LFSR are different for the two previously mentioned 

cases. 

The generator polynomial g(x) is used for dividing the polynomial M(x):  

( ) 1xxxxg 51216 +++=                                    (5.119) 

( ) ( ) ( )xLxxixxM m16 +=                                  (5.120) 

where: 

( ) ∑=
=

15

0j

j
xxL                                            (5.121) 

is used for the inversion of the first 16 most significant bits from i(x)x16 , determin-

ing the initialisation of the LFSR with “1”, in all binary positions. At the transmitter 

the original message i(x) is transmitted and concatenated with the complemented 

remainder of the division of i(x)xk  to g(x) (FCS): 

( ) ( ) FCSxixxv 16 +=                                       (5.122) 

where FCS is the complement with respect to “1” of the remainder r(x) obtained 

from: 

( ) ( )
( )

( ) ( )
( )xg

xr
xq

xg

xLxxix
m16

+=
+

                               (5.123) 
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so 

( ) ( ) ( )xLxrxrFCS +==                                     (5.124) 

Adding the polynomial L(x)xm  to i(x)x16  is equivalent to setting the initial 

remainder as 1. By complementing with respect to 1 the r(x) by the transmitter, af-

ter performing the division, the error free received message will generate a unique 

non zero remainder; this ensures the protection in the case when there is no de-

limitation sequence at the message end. 

At receiver the division is done: 

( ) ( )
( )

( ) ( ) ( )[ ]
( )

( )
( )

( ) ( )
( )xg

xL
xxqx

xg

xLx

xg

xrxLxxixx

xg

xLxxvx

1616

16m1616m1616

+=

=+
++

=
+ +

      (5.125) 

If the transmission is not affected by errors, the receiver remainder is exactly 

( )
( )xg

xLx
16

, which is 1.xxxxxxx 238101112 +++++++  

Using this method, the transmitter and the receiver, invert the first 16 most sig-

nificant bits by initialising the LFSR with “1” in all binary position. The remain-

der, after the reception of an error free block, is different from 0 and it has the 

configuration: 1   1   1   1   0   0   0   0   1   0   1   1   1   0   00
MSB

, allowing the receiving 

of two correct frames with their FCS concatenated because of the lack of delimita-

tion sequence, without being considered as a unique frame. 

5.8.4   Algebraic Decoding of Cyclic Codes 

In what follows we will present the most used algorithm for cyclic decoding: Pe-

terson algorithm with Chien search [47]. 

As shown in 5.8.2, a cyclic t errors correcting code has codewords (vi) with 

2tr =  roots i
i

k
i  ,)GF(2 αββ =∈ as given in (5.112). 

For BCH codes we take into consideration only the odd roots: 11,2ti −=  (see 

relation (5.111)). 

At receiver, the encoding relation is checked (5.112), which, for additive errors 

is written as follows: 

( ) ( ) ( ) ( ) ( ) 1-1,3,...,2t  i ,eeevr i
i

iiii ====+= Sαββββ                  (5.126)  

For 2t roots, the syndrome S is: 

( )12t31 SS SS −= …                                           (5.127) 
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For binary codes it is sufficient to determine the error positions from the  

syndrome. 

Let us now see how Si indicates the error position. For this we take randomly 

an error-word, with two errors, on positions 2 and 4: 

( ) 42 xxxe +=  

The syndrome S, according to (5.126), is: 

( ) ( ) ( ) ( ) ( ) i
2

i
1

i4i24i2ii
i e XXαααααS +=+=+==  

where by Xk  we  denoted the error locator, expression that indicates the error  

position: 

1-n0,j  andt1,k  ,jk === αX                                 (5.128) 

Therefore, it can be seen that the syndrome Si can be expressed as: 

∑=
=

t

1k

i
ki XS                                                  (5.129) 

which means that the error positions determination is nothing else but solving a 

system of non-linear equations with unknowns Xk. There are numerous methods to 

solve non-linear equation systems and all of them could be algebraic decoding al-

gorithms for cyclic codes. In what follows, we will show one of the first and most 

efficient decoding algorithms: Peterson algorithm with Chien search. 

 

Remark 

Encoding and decoding for cyclic codes can be done in time as well as in fre-

quency. Now we deal with the time approach, continuing to discuss the second 

method for Reed–Solomon codes (R S). 

Peterson algorithm with Chien search has the following steps: 
 

1. Error syndrome calculation 

( ) ( ) ∑===
=

−
t

1k

i
k

i
i12t31 1-3,...,2t 1,=i    ,r        ;,,, XαSSSSS "  

2. Finding the error polynomial ( )xσ  with roots the Xk locators. 

( ) ( )∏ +++=+=
=

−t

1k
t

1t
1

t
k xxxx σσXσ "                      (5.130) 

The coefficients 1σ  will be determined taking into account the Si syndromes 

previously calculated. 

The Xk locators are the roots of ( )xσ  polynomial, so: 

( ) t1,k,k =∀= 0Xσ                                      (5.131) 
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Replacing in (5.131) x with Xk we obtain: 

0σXσX =+++ t
1-t

k1
t
k "                                     (5.132) 

Multiplying (5.132) with i
kX  and summing for t1,=k , we have: 

0XσXσX =∑++∑+∑
==

+

=

+ t

1k

i
kt

t

1k

1-it
k1

t

1k

it
k "                        (5.133) 

Identifying Si (relationship (5.129)) we can write: 

t1,=i   , it1it1it 0SσSσS =+++ −++ "                         (5.134) 

It can be noticed that (5.134) is, in fact, a linear system of t equations with t un-

knowns. We can solve this system applying Cramer rule: 

• Compute the determinant: 

t2t12t

2t1t

11tt

D

SSS

SSS

SSS

"
#

"
"

−

+

−

=                                    (5.135) 

• If  0D ≠ , then the system has a unique solution, given by: 

⎟⎟⎠
⎞⎜⎜⎝

⎛
=

D

D
,,

D

D
,,

D

Dı tj1
t ""                                   (5.136) 

where t1,j  ,D j = , are characteristic determinants, obtained replacing in D the 

column j with the column formed by the free terms of the system (5.134). 

 

Remarks 

• If 0D = , the solution is not determined, it is supposed that the received word 

contains less than t errors. 

• If 0D = , we search for an integer as large as possible, but te ≤ , such that 

0De ≠ ; it is supposed that in this case, the transmission was affected by e er-

rors. 

• If such an integer e does not exist, we may say that the transmission was not af-

fected by errors; this case is easily illustrated by 0i =S , 11,2ti −= . 

• For the BCH codes we must take into account that, according to theorem 

(5.108), 2
k2k SS = . 
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Table 5.10 Coefficients of the error polynomials for BCH codes. 

t iσ  

1 11 Sσ =  

2 ( ) 1
3
132

11

SSSσ

Sσ

+=

=
 

3 ( ) ( )
( ) 213

3
13

3
3
153

2
12

11

σSSSσ

SSSSSσ

Sσ

++=

++=

=

 

 

Table 5.10 contains the coefficients ( )ii f Sσ =  for 3  and  2 1,t = ; the table 

can be easily filled in for 3t >  (practically up to 5t = , the limit case for a practi-

cal usage of the algorithm). 

 

3. Chien Search 

Chien search algorithm indicates the error position at the moment when one er-

roneous symbol reaches the last cell of a memory register in which the received 

word is loaded. 

If the erroneous position is Xk, the error polynomial is given by (5.132). Divid-

ing (5.132) by 
t

kX we obtain: 

1
t

1i

i
ki =∑

=

−
Xσ                                             (5.137) 

index i showing the erroneous position. The error may occur on all n position, the 

maximum number of correctable errors being t. 

In Chien search, the search of erroneous symbol begins with rn–1, and in this 

case Xk is replaced with 
( )1n−α . 

( ) i1i
i

n

1ini1ni 1 αα
α

ααα =⎟⎟⎠
⎞⎜⎜⎝

⎛
=⋅= ⋅⋅⋅−−−

 

The symbol rn – j will occur in the search equation (5.137) as follows:  

( ) jijinijni ⋅⋅⋅−−− =⋅= αααα  

Finally, Chien search equation (5.137) will be: 

n1,=j ,       1
?t

1i

ji
i =∑

=

⋅ασ                                       (5.138) 

where to index 1j = corresponds rn–1 and to nj =  corresponds r0 (the reception is 

done beginning with rn–1).  
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The j value for which equation (5.138) is satisfied will provide Xk 

jn
k

−= αX                                             (5.139) 

Example 5.13 
Let us assume the reception of a BCH(15,7) word: 

⎥⎦
⎤⎢⎣

⎡= 1   0   0   0   1   0   1   1   1   0   0   0   1   01
MSB

r  

Using Peterson algorithm with Chien search find the decoded sequence. 
 

Solution 

( ) 1xxxxxxxr 46781214 ++++++=  

We apply the presented algorithm: 

• Calculating the error syndrome: 

( )
( ) 41218212436423

3

546781214
1

r

r

α1αααααααS

α1αααααααS

=++++++==

=++++++==
 

• Determining the coefficients iσ : 

From table 5.10, for 2t = , we obtain the formulas for 1σ  and 2σ : 

11

55

154

1

3
13

2

5
11

α
α
α

α
αα

S

SSσ

αSσ

==
+

=
+

=

==

 

• Chien search beginning with r14 using relationship (5.138): 

,          1j 211512
2

11
1 1ααααασασ =⋅+⋅=+→= ⋅⋅  

This means that the symbol rn–j is erroneous, so 141-15 rr = is erroneous. 

1ασασ

1ασασ

1ασασ

rrr

1ααααααασασ

1αασασ

≠→=

≠→=

≠→

==

=+=⋅+⋅=+→=

≠=→=

⋅⋅

⋅⋅

⋅⋅

−

⋅⋅

⋅⋅

 +          14j

 +            5j

 +           4=j

erronated is   so

,            3j

 +            2j

52
2

51
1

52
2

51
1

42
2

41
1

12315j-n

1786113532
2

31
1

922
2

21
1

#

 

 



274 5   Channel Coding

 

It follows that the error word is: 

[ ] 0  0  0  0  0  0  0  0  0  0  0  0  1  0  1=e  

The decoded word will be:  

[ ]
[ ]

⎥⎦
⎤⎢⎣

⎡
=+

+=⊕=

1  0  0  0  1  0  1  1  1  0  0  0  0  00 =             

 0  0  0  0  0  0  0  0  0  0  0  0  1  0  1

1  0  0  0  1  0  1  1  1  0  0  0  1  0  1

MSB

erv

 

The information sequence at the decoder output is:  

[ ]1  0 0  0  0  0  0=i . 

5.8.5   Circuits for Cyclic Encoding and Decoding 

As shown in 5.8.1 and 5.8.3, coding and decoding for systematic cyclic codes are 

done by division: i(x)xk
 and r(x) respectively, to g(x). 

In what follows we will focus on two methods of dividing the polynomials, im-

plying two methods of coding and decoding: using linear feedback shift registers 

(LFSR) with external or internal modulo two adders. 

 
LFSR with external modulo two adders 

 

A LFSR is a linear sequential circuit that can operate independently, without any 

input signal except the feedback signal. The register connections depend on the 

characteristic (generator) polynomial: 

( ) 01
1k

1k
k

k gxgxgxgxg ++++= −
− "  

in which { }0;1gi ∈  except for kg which is always “1”. The block scheme of a 

LFSR with external modulo two adders is given in figure 5.11. 

Ck-1 C0C1Ck-2

gk=1 gk-1 gk-2 g2 g1 g0

� � �

 

Fig. 5.11 LFSR with external modulo 2 adders 
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The register operation is described by the equations (5.140), where jiCst , 

j1-i Cst  respectively, are the cell Cj states at the moment i, i-1 respectively. 

⎪⎪⎩

⎪⎪⎨
⎧

+++=

=

=

−−−−−−

−

−

1k1i1k11i101i01ki

21i1i

11i0i

CstgCstgCstgCst

Cst              Cst

Cst   Cst

"
#

              (5.140) 

In a matrix description we have: 

1ii −= TSS                                                (5.140.a) 

where  

⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢

⎣

⎡
=

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

−

−−

−

−

−

1k210

1k1i

01i

1i

1ki

0i

i

g...ggg

1...000

0...100

0...010

    and , 

Cst

Cst

    , 

Cst

Cst

####### TSS     (5.141) 

T being the register characteristic matrix. 
 

If the initial state of the LFSR is 00 ≠S , its evolution in time will be the fol-

lowing: 00
n 

00 ,...,, SSTTSS = , so after a number of n steps it loads again the ini-

tial state; n is the register period. In order to have distinct states, 1−T must exist, 

this being equivalent to have 1g0 = . The total number of 12k −  non-zero states of 

the LFSR can be generated in one cycle or more. 

The characteristic polynomial of the matrix T is defined by: 

( )

k1k
1k10

1k210

xxg...xgg

xg...ggg

1x...000

00...1x0

00...01x

xdetxΦ

++++=

=

−

−

−

−

=−=

−
−

−

#IT
                 (5.142) 

It can be seen that the characteristic polynomial of the matrix T is the generator 

polynomial g(x) such that the LFSR is uniquely determined. 

The characteristic matrix T is a root of the generator polynomial: 

( ) 0g =T                                                    (5.143) 
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The period of the characteristic matrix T, in other words the cycle length, is the 

smallest integer n for which: 

ITT == 0n                                            (5.144) 

If U is the matrix:  

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

1

0

0

#
U                                                (5.145) 

The n non-zero states of the LFSR are: 

UUTUTTUUUT == n20
,...,,,                             (5.146) 

Using the notation: 

UTα ii =                                              (5.147) 

and if T is a root of g(x) and iα  is a root of g(x), we get: 

( ) ( ) 0gg ii == UTα                                      (5.148) 

From the theory of residues modulo g(x) of degree k, we know that n is maxi-

mum if g(x) is primitive (T is called a primitive element of the field GF )(2k  gen-

erated by g(x) of degree k, primitive) 

12n k −=  

It follows that the LFSR generates all the non-zero states in one cycle, under 

the assumption that g(x) is primitive. 
 

LFSR with internal modulo two adders  
 

The block scheme of LFSR with internal modulo 2 adders is given in Fig. 5.12. 

 

Fig. 5.12 LFSR with internal modulo 2 adders 
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In this case the characteristic matrix is: 

⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢

⎣

⎡
=

−

−

0...00g

1...00g

0...10g

0...01g

0

1

2k

1k

#####T                                   (5.149) 

LFSRs from Fig. 5.11 and Fig. 5.12 are equivalents as they have the same char-

acteristic polynomial. 
 

Encoders for systematic cyclic codes implemented with LFSR 
 

The process of encoding systematic cycle codes can be realized using LFSR with 

internal or external modulo two adders. 

 

Encoder with LFSR  
 

The block scheme of a cyclic encoder with LFSR (with external ⊕ ) is shown in 

Fig 5.13: 

 

Fig. 5.13 Cyclic systematic encoder with LFSR and external modulo two adders 

Comparing this scheme with Fig. 5.11 it can be easily observed that there is an 

input signal for the information symbols: ]a  a[ m-n1-n …i , a modulo two adder S2 

and the switch K. 

The input signal modifies the LFSR operating equation as follows: 

UTSS i1ii a+ = −                                        (5.150) 

where ai is the  input symbol at the moment i. 



278 5   Channel Coding

 

The switch K is on position 1 for m clocks, while the information symbols are 

delivered to the register; after m clocks it switches to position 2 for k clocks and 

the LFSR calculates the control symbols dividing i(x)xk  to g(x). At the output we 

obtain the systematic cyclic code word: r(x)i(x)xv(x) k += , where r(x) is the  

remainder of /g(x)i(x)xk . 

Due to the fact that, during the last k clocks the switch K is on position 2, the S2 

output will be 0 (its two input signals are identical). This means that at the end of 

n clocks the LFSR will be in the 0 state (all the cells will be 0). 

Table 5.11 Cyclic encoder with LFSR and external modulo two adders 

Ck K input i Si Output v 

1 
1-na  U1-na  1-na  

2 
2n

a
−

 TUU 1-n2-n aa +  
2n

a
−

 

… …   

m 

 

 

1 

mn
a

−
 UTU 1m

1-nm-n aa −++…  mn
a

−
 

m+1  
UTU m

1-n1-m-n aa ++…  1-mn
a

−
 

…    

m+k = n 

 

2 

 
UTTUU 1-n

1-n10 aaa +++ … 0a  

 

As it was already explained, at moment n the LFSR state will be zero: 

[ ]UTTUUS 1n
1n10n a++a+a0 −

−== "                                (5.151) 

Relation (5.151) can also be written as a matrix product: 

[ ] 0

a

a

a

1n

1

0

1n =

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
⋅

−

−

#
U...T TU  U                                    (5.151.a) 

and more generally: 

0T =⋅ vH  

By identification we get for the control matrix the following structure: 

[ ]UT ... TU U=H 1n−                                           (5.152) 

where 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

1

0

0

#
U and T is determined by (5.141). 
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Encoder with LFSR and internal modulo two adders 
 

The block scheme of the cyclic systematic encoder with LFSR and internal 

modulo two adders is given in figure 5.14. 

 

Fig. 5.14 Cyclic systematic encoder with LFSR and internal modulo two adders 

Comparing this scheme with the one from Fig. 5.12, there are some changes: 

the modulo two adder S which allows us to supply the encoder with information 

symbols during the first m time periods, the gate P which is open during the first 

m periods and blocked during the last k periods, the switch K which is on position 

1 during the first m clocks and on 2 during the last k clocks. 

The encoder operation is given by relation (5.150):  

UTSS i1ii a+= −  

At the end of the m clocks (as long we have information symbols) the register 

cells will be loaded with the remainder r(x)/g(x)]i(x)[xk = ; it follows that after 

the next k clocks the register will be in the zero state: 

0S =n . 

Similar to the case described in figure 5.13, the encoding relation 0S =n  leads 

to 0vH =⋅ T ; at this point we identify H with expression (5.152). 

 

Example 5.14 
We will illustrate a systematic cyclic encoder with LFSR and external modulo two 

adders, for H(7,4) and 1xxg(x) 3 ++= . We will calculate the encoding relations 

and solve them for ⎥⎦
⎤⎢⎣

⎡= 1  0  00
MSB

i . 

For a given sequence i, the systematic cyclic codeword, according to (5.98), is: 

( )
( )

( ) ( ) or   1xxxv  so 1,x
1xx

x
remxr

xxix

1xi

3

3

3

3k

++=+=
++

=

=

=
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in a matrix form: 

⎥⎦
⎤⎢⎣

⎡
1   1   0   1   0   00=

MSB
v  

The block scheme of a cyclic encoder with LFSR and external modulo two ad-

ders LFSR and its operation are given in figure 5.15. 

 

 
 

tn tn+1 tn 

Ck K input i C2 C1 C0 output v 

1 a6 0 0 0 a6 

2 a5 a5 a6 0 a5 

3 a4 a4+a6 a5 a6 a4 

4 

 

1 

 

a3 a3+a5+a6 a4+a6 a5 a3 

5  0 a3+a5+a6 a4+a6 a2=a4+a5+a6 

6  0 0 a3+a5+a6 a1=a3+a4+a5 

7 

 

2 

 0 0 0 a0=a3+a5+a6 

 b)      

Fig. 5.15 Cyclic encoder with LFSR and external ⊕ : a) block scheme; b) operation table 

for g(x)= x3 + x + 1 and  m = 4. 

The scheme from Fig. 5.15.a) operates according to table from Fig. 5.15.b); we 

have already seen that equation 0vH =⋅ T  describes the scheme behaviour where 

H is given by (5.152) and T and U are by (5.141) and (5.145). 

The register characteristic matrix T is: 

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

011

100

010

ggg

100

010

210

T  and 

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

1

0

0

U .  
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It follows easily H: 
 

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

0011101

0111010

1110100

H   and then, 0Hv =T   leads to: 

⎪⎩
⎪⎨
⎧

⊕⊕=⊕⊕⊕⊕=⊕⊕=

⊕⊕=

⊕⊕=

653436544320

5431

6542

aaaaaaaaaaaa

aaaa

aaaa

, 

 

obviously identical with those previously determined. 

For ] 1  0  0  0[=i one can easily check (either using the operation table or tak-

ing into account the encoding system) that  1]  1  0  1  0  0  [0=v . 

The block scheme of a cyclic encoder with LFSR and internal modulo two ad-

ders and its operation table are given in Fig. 5.16. 

 

 
 

 tn   tn+1  tn 

Ck input i P C0 C1 C2 Output v 

1 a6  a6 a6 0 a6 

2 a5 ON a5 a5+ a6 a6 a5 

3 a4  a4+ a6 a4 + a6+ a5 a5+ a6 a4 

4 a3  a3 + a5+ a6 a3 + a4+ a5 a4 + a5+ a6 a3 

5   0 a3 + a5+ a6 a3 + a4+ a5 a2 = a4 + a5+ a6 

6  OFF 0 0 a3 + a5+ a6 a1 = a3 + a4+ a5 

7   0 0 0 a0 = a3 + a5+ a6 

b)       

Fig. 5.16 Cyclic encoder with LFSR and internal ⊕ : a) block scheme; b) operation table 

for g(x)= x3 + x + 1 and  m = 4. 

From the operation table it can be seen that r(x), the remainder of /g(x)i(x)xk  

is calculated by the LFSR at the end of 4m =  clocks, being downloaded from the 

register during the last 3k =  clocks, when the gate P is OFF. 
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The register characteristic matrix is given by (5.149): 

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢

⎣

⎡
=

−

−

001

101

010

0...0g

1...0g

0...0g

0...1g

0

1

2k

1k

####T , 

U is calculated according to (5.145), and the control matrix (5.152) will be:  

[ ]
⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

0011101

0100111

1001110

            = 65432 UTUTUTUTUTTUUH  

 

⎪⎩
⎪⎨
⎧

=⊕⊕⊕

=⊕⊕⊕

=⊕⊕⊕

⇒=

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢

⎣

⎡

⋅

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

0aaaa

0aaaa

0aaaa

0

a

a

a

a

a

a

a

0011101

0100111

1001110

4320

5210

6321

6

5

4

3

2

1

0

THv  

Processing the last equations one can obtain the encoding relationships for a0, 

a1, and a2. 
 

Error detection cyclic decoders  
 

As shown in 5.8.3, relation (5.115), the error detection condition is that the syndrome 

s(x) (the remainder of /g(x)r(x) ) is non-zero. This state has to be underlined by the 

decoder. We have already seen, when encoding, that the LFSR divides i(x)xk to 

g(x), so it can also be used for decoding. In both cases we saw that, at the end of the n 

clocks, the LFSR state is zero; it follows that, when detecting the error, it is enough to 

test the LFSR final state.  If this state is non-zero, the error is detected (see Fig. 5.17). 
 

 

Fig. 5.17 Error detection cyclic decoder with LFSR and external ⊕  
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The syndrome S, determined by the LFSR state at the moment n: 0n ≠S  is not 

the remainder of /g(x)r(x) , but a modified form of it which allows the error  

detection. 

Ck-1C0 C1 Ck-2

gk=1gk-1gk-2g2g1g0=1

Detector Sn ≠ 0

� � �

r

 

Fig. 5.18 Error detection cyclic decoder with LFSR and internal ⊕  

For this decoder, the syndrome S is calculated as the remainder of /g(x)r(x)  

and is determined by the LFSR state at the moment n. 

 
Example 5.15 

Consider the cyclic code H(7,4) with 1xxg(x) 3 ++=  and the received words: 

]1  1  0  1  0  0  1[1 =r  and ]1  1  0  1  0  0  0[2 =r . Using a LFSR with external ⊕ , 

check if the two words have been correctly received. 

 
Solution 

( )
( ) 1xxxr

1xxxxr

3
2

36
1

++=

+++=
 

It can be seen that ( )xr2  is the codeword ( )xg= . 

( ) ( ) ( ) ( )
( ) ( )

  ,
xg

1x
1xx1xx/1xxxx/gxr

2

xq

3336
1

+
+++=+++++= �
�	�  
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so ( ) 1xxr 2 += ; this means that r1(x) is erroneous. It can be emphasized also by 

the LFSR state )0(≠  at the moment 7n = . The block scheme and the operation 

table of the decoder are given in Fig. 5.19: 

 

 

 
 

tn tn+1 

r C2 C1 C0 
T 

1 2 1 2 1 2 1 2 

1 1 0 1 0 0 0 0 0 

2 0 0 0 0 1 0 0 0 

3 0 0 1 0 0 0 1 0 

4 1 1 0 1 1 0 0 0 

5 0 0 1 0 0 1 1 0 

6 1 1 0 0 1 0 0 1 

7 1 1 0 0 0 0 1 0 

           b) 

 

Fig. 5.19 a) Block scheme and b) the operating table of the cyclic decoder for  

g(x) = x3 + x + 1 

From the operating table we see that at the moment 7n = , for r1, the register 

state is ( ) 0S ≠= n1 0 0 ; this state is not that one corresponding to the remainder 

)1  0  (1 . 

The block scheme and the operation table of a cyclic error detection decoder 

with LFSR and internal modulo two adders is given in Fig. 5.20. 
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 tn     tn + 1   

T    r            C0            C1                 C2  

 1 2 1 2 1 2 1 2 

1 1 0 1 0 0 0 0 0 

2 0 0 0 0 1 0 0 0 

3 0 0 0 0 0 0 1 0 

4 1 1 0 1 1 0 0 0 

5 0 0 0 0 0 1 1 0 

6 1 1 0 1 1 0 0 1 

7 1 1 1 0 0 0 1 0 

                               b) 

Fig. 5.20 a) Block scheme and b) the operation table of a cyclic error detection decoder 

with LFSR and internal ⊕  

Error Correction Cyclic Decoder (Meggitt Decoder) 
 

Decoding for binary error correction must allow determining the erroneous  

position from the syndrome expression.  

As we have already seen, error detection is possible at the end of the entire 

word reception, i.e. after n clocks. For binary codes correction it is necessary to 

know the position of the error. If it is possible to determine a fixed state of the 

syndrome register (SR) during )2n  1;n( + , when the erroneous bit is found in the 

last cell of an n-bit memory register (MR) in which the received word is serially 

loaded, the correction is immediately done summating modulo a “1” on the deter-

mined position. The correction is possible during )2n  1;n( + , therefore, the error 

correction with cyclic codes takes 2n clocks. One word length breaks are avoided 

during transmission using two identical decoders that operate in push-pull. The 

block scheme of an error correction cyclic decoder is given in Fig. 5.21. 

The legend for Fig. 5.21 is: 
 

• MR – memory register (n cells) 

• LFSR (SR) – syndrome register (a LFSR identical with that one used for  

encoding) 
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• D – fix state detector: detects the SR unique state (fix state) when the erroneous 

bit is in the last cell (n) of the MR. 

• C – correction cell (modulo two adder) 

• 
*
2

*
121 P,P,P,P - gates ensuring the decoders push-pull operation. 

 

 

Fig. 5.21 General block scheme of an error correction cyclic decoder 

The way this block scheme operates is described below: 

• During (1÷n):  
ONPOFFP  

OFFP ONP
*
22

*
11

−−

−−
.  

the received word enters the MR and simultaneously the first decoder. 

• During )2n 1n( ÷+ : 
OFFP ONP

ONPOFFP 
*
22

*
11

−−

−−
 

it is possible to correct the received word during )2n  1;n( +  in the correction cell 

C, detecting the SR fix state. The next word is received and simultaneously loaded 

in the second decoder and in the MR too, as this register becomes available when 

the previous word has been corrected too. 

5.8.6   Cyclic One Error Correcting Hamming Code 

The Hamming perfect code, studied in 5.4.5 can be cyclically encoded too. The re-

lation (5.71) defining the perfect one error correcting code remains: 12n k −= .  
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The differences between this code and the Hamming group code studied in 

5.7.9 are the codeword structure and the encoding / decoding relations.  

The structure of the cyclic Hamming code is:  

]aaaaa[

symbols
ninformatio m

1nk

symbols
control k

1k10 �
�	�"��
��	� " −−=v , (see relation (5.98) ) 

For encoding, a primitive generator polynomial g(x) of degree k is chosen. The 

encoding can be done using LFSR, as shown in the Fig. 5.13, respectively Fig. 

5.14. The encoding relations are obtained with: 

,0
T =⋅ vH  

where [ ]UT  TU  U=H 1n... −  (see relation (5.152)), with T and U determined as 

indicated in 5.8.5. 

In what follows we will present in detail the error correction decoding proce-

dures, determining that the syndrome register fix state is highlighted by the detec-

tor D, when the erroneous bit reaches the MR last cell of the decoder presented in 

Fig. 5.21.  

Decoder with LFSR and external modulo 2 adders 

Suppose an error occurred on position 1n0,i  ,ri −= during transmission: 

[ ]0e0 i""=e  

At moment n, the syndrome Sn is: 

[ ] UTUT TU  U=He=Hr=S
i

i
1nTT

0

e

0

 ... =

⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢

⎣

⎡
⋅−

#

#
                       (5.153) 

At this moment (n), the erroneous bit is in the ( 1i + )th cell of the MR: 

 

      MR 

t = n r0 r1 … ri … rn–1 

 

 1 2 … i+1 … n 

 

The symbol ri will reach the MR last cell after 1) - i -(n  clocks, therefore taking 

into account also the n clocks necessary to charge r in MR, at the moment 

1) - i -(n  n + . We are interested to find out the SR state at that moment. For this 

purpose, the SR will freely operate (without input, P1 being blocked): 
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( )
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
−−+

+

−−−−−−−

+

0

0

1

=====:1inn

=   :1n

=          :n

111ni1in1in

1i

i

#

#

UTUITUTTUTTST

UTTS

UTS

    (5.154) 

nT being the k-th order unit matrix and UT-1  = T]0 ... 0  1[ , T indicating the 

transposition. 

So, for a decoder with LFSR with external ⊕ , the SR fix state is ]0 ... 0  1[ , 

meaning that all the k cells, except C0, will be 0. This state will be detected by D 

which will provide a ‘1’, added in the correction cell C with ri: 

( ) iii a11a1r =++=+                                        (5.155) 

implying the complementation of the bit value, so correcting  ri.  

 

Remark 

The occurence of this state ]0 ... 0  1[  during ( n,1 ) would cause false corrections, 

therefore it is necessary to block P2 for all this period. 

 

Decoder with LFSR and internal modulo two adders 
 

For LFSR with internal ⊕ the state of the LFSR indicates precisely the remainder, 

meaning that when the erroneous symbol reaches the last cell of the MR, the error 

word e(x) corresponds to 1-nx , meaning that the state of the SR is given by: 

( )
statefix  SR

xg

x
rem

1n

=
−

                                  (5.156) 

Example 5.16 
Consider the cyclic one error correcting Hamming code H(7,4) with 

1xxg(x) 3 ++= ; its encoding was analysed in example 5.15. 

We choose the following transmitted word:  

⎥⎦
⎤⎢⎣

⎡
=

0123456 aaaaaaa
110100 0v  

and assume that a4 (i = 4) is erroneous, so the reception is: 

[ ].1  1  0  1  1  0  0=r  
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We will illustrate for this r the error correction procedure using LFSR  

(figure 5.22). 

                    SR                                                  MR                                         D0

Ck r C2 C1 C0   1 2 3 4 5 6 7    

1 0 0 0 0   0 - - - - - -   - 

2 0 0 0 0   0 0 - - - - -   - 

3 1 1 0 0   1 0 0 - - - -   - 

4 1 1 1 0   1 1 0 0 - - -   - 

5 0 1 1 1   0 1 1 0 0 - -   - 

6 1 1 1 1   1 0 1 1 0 0 -   - 

7 1 1 1 1   1 1 0 1 1 0 0   - 

8 - 0 1 1   - 1 1 0 1 1 0   0 

9 - 0 0 1   - - 1 1 0 1 1   1 

 b)                
 

Fig. 5.22 a) SR block scheme and b) operation of the cyclic decoder from Fig. 5.21, for the 

cyclic Hamming code (7,4) with g(x) = x3 + x + 1; LFSR with external ⊕  
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  SR    MR              D0

Ck r C0 C1 C2  1 2 3 4 5 6 7   

1 0 0 0 0  0 - - - - - -  - 

2 0 0 0 0  0 0 - - - - -  - 

3 1 1 0 0  1 0 0 - - - -  - 

4 1 1 1 0  1 1 0 0 - - -  - 

5 0 0 1 1  0 1 1 0 0 - -  - 

6 1 0 1 1  1 0 1 1 0 0 -  - 

7 1 0 1 1  1 1 0 1 1 0 0  - 

8 - 1 1 1  - 1 1 0 1 1 0  0 

9 - 1 0 1  - - 1 1 0 1 1  1 

b)               
 

Fig. 5.23 a) SR block scheme and b) operation of the cyclic decoder from Fig. 5.21, for the 

cyclic Hamming code (7,4) with g(x) = x3 + x + 1; LFSR with internal ⊕  

5.8.7   Golay Code 

The Golay codes are binary perfect codes, as Hamming codes. 

The parameters of the Golay code are: 

3  t11,k  12,m  23,n ====                                 (5.157) 

Being a perfect code, the number of non–zero syndromes is equal to that of the 

correctable errors; therefore relation (5.47): 12C
k

t

1i

i
n −=∑

=
  is satisfied for 3t = . 

N12CCC 113
23

2
23

1
23 =−=++                                (5.158)  

It results that the codeword roots are primitive elements α of GF(2
11

) generated 

by a primitive polynomial p(x) of degree 11k =  for which: 

11 N =α                                             (5.159) 
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Due to the fact that the codeword length is 23n = , the generator polynomial of 

degree 11 must have the same period 23n = , so all its α roots must be of the 

same order 23. 

From 12N 11 −=  elements of GF (2
11

), we will choose a root αi
 to be a root of: 

01Xn =+                                                  (5.160) 

and at the same time root of g(x). Replacing αi
 in (5.160) and taking into account 

(5.159), we obtain: 

1 Nni ==⋅ αα                                              (5.161) 

from which results: 

89
23

12

n

N
i

11

=
−

==                                        (5.162) 

In order to obtain a minimum number of control symbols, g(x) must be a mini-

mal polynomial of 89 αβ = . Depending on how we choose p(x) as generator for 

GF )2( 11 , we obtain [43], [54]: 

( ) 11106542
1 xxxxxx1xg ++++++=                          (5.163) 

or: 

( ) 119765
2 xxxxxx1xg ++++++=                            (5.164) 

It is obvious that the two polynomials are dividers of 1x23 + : 

( ) ( ) ( )xgxgx11x 21
23 +=+                                      (5.165) 

Decoding can be done using the correspondence table, (the syndrome based  

decoding table), or applying: 

0vH =⋅ T  

where  

[ ]1n10    −= βββH …                                            (5.166) 

Elements i β are represented by the table of modulo p(x) residue, p(x) polyno-

mial of degree 11, and each element being an 11 bits matrix. 

Observing the generator polynomials g1(x) and g2(x), it can be seen that the 

non-zero terms is 7, so according (5.110), the code distance is: 

3t12td =⇒+=  

It follows that this code can correct maximum 3 errors. 
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5.8.8   Fire Codes 

Fire codes (1959) are the first error correcting cyclic codes used for burst error 

correction [28], [43]. 

An error correcting Fire code for bursts of length p is generated by the  

polynomial: 

( ) (x)1)g(xxg 1
12p += −                                          (5.167) 

where g1(x) is a primitive polynomial of degree m over GF(2). By nm we denote 

the period of g1(x). The length n of the code is: 

n = smallest common multiplier { }pn1,p2 −                          (5.168) 

The number of control symbols is: 

1p2mk −+=                                              (5.169) 

Fire encoding is done using LFSRs with external or internal modulo two  

adders. 

Let us consider a burst error of length p: 

]eεεe[e tn1tnin1ptn1 ………… −−−−+−−=              (5.170) 

or, written polynomially: 

]xexε           

xεxe[(x)e

tn
tn

1tn
1tn

in
in

1ptn
1ptnl

−
−

−−
−−

−
−

+−−
+−−

+++

+++=

…

…
                    (5.170.a) 

where 1ei = represents the error position i. jε  can be an erroneous position 

)1ε( j =  or an error free position )0ε( j = . 

In order to include the case 1p = , when the burst has one error, we put: 

⎩⎨
⎧

>

=
== +−−+−−

1pfor    ,1

1pfor    ,0
εe 1prn1ptn                               (5.171) 

In this case the error burst is: 

)xxε(εx

xxεxεxe(x)e

1p2p
1tn1ptn

1ptn

tn1tn
1tn

in
in

1ptn
1ptnl

−−
−−+−−

+−−

−−−
−−

−
−

+−−
+−−

+++=

=+++++=

…

……
  (5.172) 
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The syndrome is: 

UTIT

UITTT

UTUTUTS

)e+(=

=)e(e=

=+ee=

j
1l

1j
jtn

t-

1
1tn

1p
1ptn

t-

tni-n
in

1ptn
1ptn

−−

=
−−

−
−−

+−
+−−

−
−

+−−
+−−

∑
+++

++

…

…

               (5.173) 

where T is the LFSR characteristic matrix used for encoding, and U the SR input 

matrix (both depending on the type of LFSR). 

When the first erroneous symbol 1-nr  reaches the MR last cell, which is after 

1-t  clocks, the SR state is: 

∑−
=

−
−−

−− 1l

1j

j
jtn

11t
)ε+(= UTITST                              (5.174) 

 

Example 5.17 

Design a Fire error correcting code for burst errors of length 3p =  and determine 

the block schemes for the encoding and decoding unites with LFSR and external 

modulo two adders. 

 

Solution 

We choose a primitive polynomial, ( )xg1 , of degree 5m = : 

( ) 52
1 xx1xg ++=  

The code generator polynomial, according to (5.167), will be: 

( ) ( )( ) 1072525
1

12p xxx1xx11x(x)1)g(xxg +++=+++=+= −  

Polynomial g1(x) is a primitive one; it follows that its period is maximum and 

equals to: 

311212n 5m =−=−=  

From (5.168), the code length n is: 

155315{5;31} multipliercommon smallest n =⋅==  

The control symbols number being (5.169): 

10551p2mk =+=−+= , 

it follows that 145 is the number of  information symbols. 
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The block schemes of Fire encoder and decoder implemented with LFSR and 

external adders are: 

 

 
 

 
 

Fig. 5.24 Block schemes for Fire code with g(x) = x10 + x7 + x2 + 1 and p = 3: a) encoder 

and b) decoder 

We will analyze the expression of the syndrome, given by (5.174), for bursts of 

lengths 1p = , 2p =  and 3p = . 
 

• 1p =  

The syndrome register state when the error is in the MR last cell (155) is: 

⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢

⎣

⎡
=

⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢

⎣

⎡

⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢

⎣

⎡
=−

0

0

0

1

1

0

0

0

0010000101

11000

00100

00010

1 ##
""

#######
""
""

UT  

Therefore, the detector D detects the state 1 of the cell C0 and the 0 states of all 

the other cells. 

• 2p =   

The SR state that must be detected when the first erroneous symbol of the burst 

is in the last MR cell: 

⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡
=

⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡
+

⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡
=+ −−

0

0
1

1

0

0
1

0

0

0
0

1

21

###
UTUT  
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so the detector D detects the states 1 of the cells C0 and C1, all the other cells being 

in 0. 

• 3p =  

The SR state that must be detected is: 

⎥⎥
⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢
⎢⎢

⎣

⎡

=

⎥⎥
⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢
⎢⎢

⎣

⎡

+

⎥⎥
⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢
⎢⎢

⎣

⎡

+

⎥⎥
⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢
⎢⎢

⎣

⎡

=++ −−−

0

0

1

ε
0

0

0

1

0

1

0

0

0

1

0

ε

0

0

0

0

1

ε 321

####

UTUTUT  

which means that for a burst as 1  0  1 , the symbol 0ε = , so the state detected by 

the SR is:  

T0]   ...   0   1   0   [0  

and for the burst 1  1  1 , 0ε = , and the detected state is:  

T0]   ...   0   1   1   [0 . 

5.8.9   Reed–Solomon Codes 

Reed-Solomon (RS) codes, proposed in 1960, are a variety of non-binary cyclic 

codes (the bits are replaced with characters), extremely convenient in many charac-

ter oriented applications; they are used for independent and burst errors correction. 

A RS word (block) of length n can be expressed as a vector: 

)v,...,v,v,(vv 1n210 −=                                     (5.175) 

or as a polynomial: 

01
1n

1n x...xv(x) vvv +++= −
−                              (5.176) 

where each character vi is an element of Galois field GF ( k2q = ), so it can be ex-

pressed with k bits. 

We can associate decimals to GF( k2 ) elements, as follows: 

⎟⎟⎠
⎞

⎜⎜⎝
⎛

−
=

−

1n3210

10)GF(2
222

k
k

"
" ααα                             (5.177) 

where α is a primitive element of the GF( k2 ) field. 

The parameters of a t errors correcting RS code are: 

• codeword length n given by: 

12n k −=                                            (5.178) 

where k represents the binary Galois field extension: GF(2
k
). 
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We have: 

kmn ′+=                                          (5.179) 

where m is the information characters number and k′  the control characters  

number.  
 

• control characters number )k( ′  can be determined with: 

t2k =′                                            (5.180) 

and the code distance is: 12td += . 
Relation (5.180) indicates the high efficiency of these codes, compared to the bi-

nary BCH codes; at the same relative redundancy the correction capacity is higher.  
 

Example 5.18 

The BCH code (15,7) can correct 48/2/kkt ==′=  errors (see relation (5.110)). 

According to (5.180), the RS code (15,7) can correct 48/2/kkt ==′=  errone-

ous characters, at the same relative redundancy 8/15/nk =′ . 

RS encoding and decoding are very much similar to the binary BCH ones, the 

last one being a particular case of RS codes for 2q = . 

We will analyse RS encoding and decoding both in time and in frequency [6]. 
 

Encoding 
 

• Time encoding 

The t errors correcting RS codes, as well as the BCH codes, are based on the 

existence of a generator polynomial, defined as the smallest common multiple as-

sociated to a number of 2t consecutive elements of the field GF )2( k .  

The encoding algorithm is based on the fact that v(x) is divisible with g(x), so 

the two polynomials have the same 2t roots: 

)x)...(x)(x(x)(g 1-2tp1pp ++ +++= ααα                          (5.181) 

where p is an arbitrary integer, usually 0 or 1. 

The encoding process, as for all cyclic codes, can lead to a systematic or non-

systematic code. Systematic encoding results in obtaining code words v(x), in 

which the information symbols are on the first m most significant positions and 

the control symbols are on the last k'  positions. 
 

Example 5.19 

Design a RS code having length 7n = , error correcting capacity 2t =  and sys-

tematically encode an arbitrary information sequence. 
 

Solution 

GF( k2 ) is determined with (5.178): 

)GF(23k12n 3k ⇒=⇒−=  
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The representation of the GF( 32 ) field is given in table found in Appendix A.10. 

The number of control characters using (5.180) is: 

42tk ==′  

It follows RS(7,3), where 3 represents the information characters number (m). 

The generator polynomial is determined using relationship (5.184): 

4x2xx4x        

xxxx)x)()(xx)(x(g(x)

234

32344321

++++=

=++++=++++= ααααααα
 

In order to perform the encoding we choose an information sequence:  

⎟⎠
⎞⎜⎝

⎛= 1   53
MSC

i  

with polynomial representation: 

1αα ++=++= xx1x5x3i(x) 4222  . 

Using (5.98) we determine the systematic codeword:  

4546242242tk' xxx)xx(xi(x)xi(x)x ++=++== αα1αα  

g(x)/)xxx(xx                    

)xxxx/()xx(g(x)/i(x)x

22333422

323344622t

1ααααα

ααα1αα

++++++=

=++++++=
 

( )
( ) ( )

( )

( ) ( )xgxqxxxxxxxv

xg

xix
 reamind

22333

xix

45462

2t2t

=++++++= ���� 
���� 	���� 
��� 	� 1ααααα  

( )1344153 
2334

MSC

2 =⎟⎠
⎞⎜⎝

⎛= 1ααα1ααv  

 

Remark 

Tables for RS generator polynomials having different lengths n and t can be found 

in Appendix A.12. 
 

• Frequency encoding [6] 

All the frequency expressions are obtained using the Fourier transform in the 

Galois field. The frequency domain offers, in certain situations (especially when 

decoding), a series of advantages: easier computing and simpler implementation 

(we use fast computation algorithms for the Fourier transform and also digital sig-

nal processors DSPs). 

The discrete Fourier transform (DFT) of v is a vector V of length n with sym-

bols )GF(2V k
k ∈  given by: 

∑=
−

=

1n

0i
i

ik
k : vαV                                          (5.182) 

where α is a primitive element of )GF(2k . 
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The polynomial associated to an n length word is, in frequency: 

∑=
−

=

1n

0k

k
k x(x) VV                                       (5.183) 

The Reverse Discrete Fourier Transform (RDFT) is defined as follows: 

k

1n

0k

ik
i

n

1
: Vαv ∑=

−

=

−
                                    (5.184) 

so, taking into consideration (5.183) we can write: 

)V(
n

1 i
i

−= αv                           (5.185)  

g(x) must divide the codeword, so they have the same roots: 

0ααα

0ααα

==+++=

=+++=

+
−+++

−

1-2tp
1)1)(n-2t(p

1-n
1-2tp

10
1-2tp

1n
1-n10

p

Vv...vv)v(

...

v...vv)v(

      (5.186) 

It follows that the first 2t components of V are zero. 

 

Example 5.20 
For RS(7,3) from example 5.19 we determined: 

1ααααα ++++++= xxxxxx(x)v 2233345466  

The frequency expressions of the n components are:   

6917242839447
7

6815212434386
6

713182029325
5

611151624264
4

59121219203
3

379414142
2

3564981
1

)(vV

)(vV

)(vV

)(vV

)(vV

)(vV

)v(V

α1ααααααα

α1ααααααα

α1ααααααα

01ααααααα

01ααααααα

01ααααααα

01ααααααα

=++++++==

=++++++==

=++++++==

=++++++==

=++++++==

=++++++==

=++++++==

 

 

Algebraic decoding for RS codes 
 

For RS codes, besides the knowledge of error position given by the locators Xk 

(sufficient for BCH decoding) it is also necessary to determine the error value Yk. 

The error value, added to the erroneous value allows its correction. 
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In what follows we will present two of the most efficient decoding algorithms: 

Peterson with Chien search and Berlekamp. The first algorithm will be presented 

in time domain, while the second in frequency. 

Peterson algorithm with Chien search was described at BCH decoding. How-

ever there are some differences between RS and BCH decoding algorithms, and 

all these differences will be emphasised step by step. 
 

1. Error syndrome calculation:  

),...,,( 2t21 SSSS =  

2ti1;)r(
i
k

t

1k
k

i
i ≤≤∑==

=
XYαS                               (5.187) 

2. Determination of tσ coefficients of the error polynomial (x)σ  as functions of 

the syndromes Sj calculated to 1: 

t1,i,... it1it1it ==+++ −++ 0SσSσS  

The coefficients table )f( it Sσ =  valid for BCH codes can not be used for RS 

codes because the equality 2
k2k αα =  is not valid any more. We give a coeffi-

cients table for 1t =  and 2t = , and the reader can easily determine the coeffi-

cients tα  for 2t > . 

Table 5.12 tσ  coefficients of the error polynomial for RS codes 

t 
iσ  

1 
211 SSσ =  

2 ( ) ( )
( ) ( )31

2
2

2
3422

31
2
223411

SSSSSSσ

SSSSSSSσ

++=

++=
 

 
3. Determination of locators using Chien search, identical for BCH and RS codes: 

jn
k

?
ij

t

1i
i     n1,j   1, −

=
===∑ αXασ  

4. Determination of  kY  – the error values  

The value kY  is found starting from (5.187): 

i
k

t

1k
k

i
i )( XYαrS ∑==

=
        

where the locators kX  were determined at 3 and the syndromes Si calculated at 1. 
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This relation represents a linear system of t equations with t unknowns Yk: 

t
t
tt

t
22

t
11

2
2
tt

2
22

2
11

1
1
tt

1
22

1
11

...

...

...

...

SXYXYXY

SXYXYXY

SXYXYXY

=++

=++

=++

⎪⎪⎩
⎪⎪⎨
⎧

                             (5.188) 

Using Cramer rule, the solution is determined as follows:  

⎟⎟⎠
⎞⎜⎜⎝

⎛
′

′

′

′

′

′
=

D

D

D

D

D

D
Y t21 ...                                    (5.189) 

in which: 

t
t

t
2

t
1

2
t

2
2

2
1

t21

...

....

...

...

XXX

XXX

XXX

D =′                                      (5.190) 

and t1,j , j =′D  are characteristic determinants of the system (5.188). 

The expressions for the coefficients kY  are given in table 5.13, for 1k =  and 

2k = ; the table can be easily completed for 2k >  using (5.188) to (5.190). 

Table 5.13 Yk coefficients for RS codes (t=1,2) 

t 
kY  

1 

2

2
1

1
S

S
Y =  

2 

2
221

211
2

2
121

221
1

XXX

SXS
Y

XXX

SXS
Y

+

+
=

+

+
=

 

 
5. Error correction 

Correcting the character jn−r  whose position kX  was determined at step 3 is 

performed with: 

kj-nj-n Yrv ⊕=                                        (5.191) 
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Example 5.21 
Let us consider RS(7,3) with g(x) determined in example 5.19 and the received 

word:  

⎟⎠
⎞⎜⎝

⎛= 1  3  4  4  2  5  0 
MSC

r   

Determine whether r is erroneous or not. If errors do exist, apply Peterson algo-

rithm with Chien search and determine the correct word. 

 

Solution 

( ) 1αααααr +++++= xxxxxx 22333454  

1. 

( )
( )
( )
( ) ( )0αα αS0

α

α

α

5534
4

53
3

52
2

3
1

=⇒==

==

==

==

αrS

αrS

αrS

αrS

 

 

2.  ( ) ( ) ( ) 3531055
31

2
223411 αααα/αα/ =+=++= SSSSSSSσ  

( ) ( ) ( ) 3531010
31

2
2

2
3422 αααα/α/ =+=++= SSSSSSσ  

3.  6
1

12
2

11
1 α :erroneous is 61-7  j-nposition  so   1   1j ====+= ⋅⋅ Xασασ

 

1    7 j

1    6 j

1    5 j

1    4 j

α   :erroneous is 4  3- 7  j -n position  so  1   3 j

α  2j

72
2

71
1

62
2

61
1

52
2

51
1

42
2

41
1

4
1

32
2

31
1

222
2

21
1

≠+=

≠+=

≠+=

≠+=

====+=

=+=

⋅⋅

⋅⋅

⋅⋅

⋅⋅

⋅⋅

⋅⋅

ασασ

ασασ

ασασ

ασασ

Xασασ

ασασ

 

4. 2

2
221

221
1 α

XXX

SXS
Y =

+

+
=   

2

2
221

211
2 α

XXX

SXS
Y =

+

+
=  

5.  
1

3

3
244

2
166

=⊕=⊕=

=⊕=⊕=

ααYrv

α0Yrv
 

 

The correct word is ( )1  3  4  4  1  5  3=v . 
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Berlekamp – Massey algorithm 
 

Improvements of Peterson algorithm were brought by Berlekamp and Massey [6]. 

The algorithm can be implemented in time as well as in frequency, being preferred 

the frequency approach for powerful correcting codes 5)(t > , because of its high 

processing speed. As we will see later on, in the frequency domain we deal with 

vectors having the dimension 2t, whereas in time the vectors dimension is n; n is 

usually much larger than 2t, resulting a higher processing volume and subse-

quently, a longer decoding time. 

In what follows we give a brief presentation of Berlekamp algorithm in fre-

quency omitting the demonstrations, which can be found in [6]. 

Let us consider a received word affected by t additive errors: 

1-ni0 ;iii ≤≤+= evr                                         (5.192) 

where 0e ≠i  on the t erroneous positions and zero elsewhere. 

Applying the DFT (see 5.182), we obtain: 

1ni0  ;iii −≤≤+= EVR                                    (5.193) 

As shown in (5.186), the first 2t components of the vector V are zero, so: 

12tk0  ;kkk −≤≤== ERS                                 (5.194) 

This relation shows that, at receiver, one can easily determine the 2t compo-

nents of the error word from the received word transposed in the frequency  

domain. 

The idea used in Berlekamp algorithm is to generate the other t2n−  compo-

nents of the error word from the free evolution of a feedback shift register initial-

ized with the first 2t components of this error word. 

The algorithm allows determining the error locator polynomial ( )xΛ  which is 

exactly the polynomial of the LFSR initialized with the first 2t components Sk: 

∏ +=
=

t

1i

i
)(x:(x) 1αΛ                                          (5.195) 

If i is an erroneous position, than -iα  is a root of the locator polynomial: 

( ) 0α =−iΛ                                                (5.196) 

According to (5.184), the time components of the error vector are: 

0αEαe ≠=∑= −−

=

⋅−
)E(

n

1 i
k

1n

0k

ki
i                                (5.197) 

If i is not an erroneous position, -iα  is not a root of the locator polynomial, so: 

( ) 0α ≠−iΛ                                               (5.198) 
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and the error value, in time, will be: 

0αe == − )E( i
i                                           (5.199) 

It results: 

1n0,i;))E(Λ( ii −==−− 0αα                                  (5.200) 

so ( ) ( )xExΛ  must be a multiple of the polynomial: 

)(x1x
n

0i

in ∏ +=+
=

−α                                         (5.201) 

or: 

( ) ( ) ( )1x  mod  0xEx n +=Λ                                     (5.202) 

Starting from (5.202) we get the following equation system: 

1n0,j,E
t

1k
kjkj −=∑=

=
−EΛ                                  (5.203) 

The system (5.203) can be divided into two sub-systems: 

10,2tj,
t

1k
kjkj −=∑=

=
−EΛE                               (5.203.a) 

a system with t known coefficients iE  and as unknowns the locator polynomial 

coefficients kΛ , respectively: 

1n2t,j,
t

1k
kjkj −=∑=

=
−EΛE                             (5.203.b) 

The subsystem (5.203.b) determines the other t2n−  components of the error 

vector in the frequency domain, obtained by the free evolution of the feedback 

shift register. 

The free evolution of this LFSR leads to extremely long computation time for 

large codeword lengths. 

This can be overcome in the following way: 
 

• re-write relation (5.202) as: 

1)Γ(x)(xΛ(x)E(x) n +=                                       (5.204) 

• computing (5.204) at i−α , index i expressing the erroneous position, we obtain 

a non-determination which can be removed by derivation: 

(x)Γ'Γ(x)nx1)(x)(xΓ'(x)Λ(x)E'(x)E(x)Λ' 1nn +++=+ −             (5.205) 
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Replacing x with i−α , it results: 

)Γ(n))E((Λ' iiii −−− = αααα                                    (5.206) 

and according to (5.184), we have: 

)(Λ'

)Γ(
)E(

n

1

i

ii
i

i −

−
− ==

α
αααe                                    (5.207) 

These are exactly the error vector components in time domain. 

The polynomials ( )xΛ  and ( )xΓ  are calculated applying Berlekamp and 

Massey theorem, which states the followings: 
 

• Let us consider 1-2t10  v..., ,v,v  given and A(x), B(x) two polynomials. For the 

following initial conditions:  

0r 0,L,x(x)A0,(x)Γ1,(x)B1,(x)Λ 0
1(0)(0)(0)(0) ==−==== − ,  

the next 2t iterations:  

⎥⎥⎦
⎤

⎢⎢⎣
⎡⎥⎦
⎤⎢⎣

⎡
∂−∂

=⎥⎥⎦
⎤

⎢⎢⎣
⎡

⎥⎥⎦
⎤

⎢⎢⎣
⎡⎥⎦
⎤⎢⎣

⎡
∂−∂

=⎥⎥⎦
⎤

⎢⎢⎣
⎡

−

−

−

−

−

−

(x)A

(x)Γ
)x(1Δ

Δx1

(x)A

(x)Γ

(x)B

(x)Λ
)x(1Δ

Δx1

(x)B

(x)Λ

1)(r

1)(r

r
1

r
(r)

(r)

1)(r

1)(r

r
1

r
(r)

(r)

                        (5.208) 

where 

⎩⎨
⎧ −≤≠

=∂ −

                   otherwise   0,

1r2Lor  0,Δ if 1, 1rr
r                               (5.209) 

∑=
=

−−

r

0k
k1rrΔ EΛ                                         (5.210) 

Δ  is also known as the discrepancy between the calculated LFSR output and the 

known values of this output: 

( )1r1rr Lr,LmaxL −− −=                                     (5.211) 

determine the two polynomials. 

In other words, we have: Λ(x)(x)Λ(2t) =  and Γ(x)(x)Γ(2t) = . 

Although we have already discussed the case in which 0p = , this algorithm 

can also be implemented in the general case, when 0p ≠ , but with some minor 

changes: 
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– when initializing: ( )( ) 1--p0 xxA −=  

– when computing the discrepancy: ∑=
=

+−−
r

0k
pk1rrr EΛΔ . 

The flow-chart of Berlekamp-Massey algorithm is presented in Fig. 5.25. 

 

Example 5.22 
We will decode the word r from example 5.21, using Berlekamp–Massey algorithm. 

⎟⎠
⎞⎜⎝

⎛= 1  3  4  4  2  5  0 
MSC

r  

1. Syndrome calculation: 1,2ti   ,ES ii ==  

( ) 3
1 ααrS ==  

 ( ) 52
2 ααrS ==  

( ) 53
3 ααrS ==  

( ) 0αrS == 4
4  

( )0αααS ,,, 553=  

 

Initializing the algorithm: 
 3

11 αSΕ ==  
 5

22 αSΕ ==  
 5

33 αSΕ ==  

0SΕ == 44  

( ) 1xxǹ 1p == − , ( ) 1xΛ = , ( ) 0xΓ = , ( ) 1xǺ =  

0r0,L ==  

 

Iteration 1r =  

⎥⎥⎦
⎤

⎢⎢⎣
⎡

=⎥⎦
⎤⎢⎣

⎡
⎥⎥⎦
⎤

⎢⎢⎣
⎡

=⎥⎦
⎤⎢⎣

⎡
⎥⎥⎦
⎤

⎢⎢⎣
⎡ +

=⎥⎦
⎤⎢⎣

⎡
⎥⎥⎦
⎤

⎢⎢⎣
⎡

=⎥⎦
⎤⎢⎣

⎡
=∂

=−=≠

==

0

α
0α
α1

α
α1

0α
α1

0

αE

x

B(x)

Λ(x)x

A(x)

Γ(x)

x

B(x)

Λ(x)x

B(x)

Λ(x)

1

1LrL ;Δ
ΛΔ

3

4

3

4

3

4

3

1

3
10
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Iteration 2r =  

⎥⎥⎦
⎤

⎢⎢⎣
⎡

=⎥⎦
⎤⎢⎣

⎡⎥⎦
⎤⎢⎣

⎡
=⎥⎦

⎤⎢⎣
⎡

⎥⎥⎦
⎤

⎢⎢⎣
⎡ +

=⎥⎥⎦
⎤

⎢⎢⎣
⎡ ++

=⎥⎦
⎤⎢⎣

⎡⎥⎦
⎤⎢⎣

⎡
=⎥⎦

⎤⎢⎣
⎡

=∂

⇒−>≠

=+=

0

α
0

α1

α
α1

α
αα1

0

α1

0

αEE

x

B(x)

Λ(x)

x

x

A(x)

Γ(x)

x

x

x

xx

B(x)

Λ(x)

x

x

B(x)

Λ(x)

0

1r2L;Δ
ΛΛΔ

3

4

2

4

53

2

1120

 

Iteration 3r =  

4
2130 ΛΛΔ αEE =+=  

2LrL1,

1r2L ;Δ

3 =−==∂

⇒−≤≠ 0
 

⎥⎥⎦
⎤

⎢⎢⎣
⎡

=⎥⎦
⎤⎢⎣

⎡
⎥⎥⎦
⎤

⎢⎢⎣
⎡

=⎥⎦
⎤⎢⎣

⎡
⎥⎥⎦
⎤

⎢⎢⎣
⎡

+

++
=⎥⎦

⎤⎢⎣
⎡
⎥⎥⎦
⎤

⎢⎢⎣
⎡

=⎥⎦
⎤⎢⎣

⎡

x

x

B(x)

Λ(x)x

A(x)

Γ(x)

x

xx

B(x)

Λ(x)x

B(x)

Λ(x)

6

3

3

4

53

23

3

4

α
α

0α
α1

αα
αα1

0α
α1

 

Iteration 4r =  

⎥⎥⎦
⎤

⎢⎢⎣
⎡ +

=⎥⎦
⎤⎢⎣

⎡
⎥⎥⎦
⎤

⎢⎢⎣
⎡

=⎥⎦
⎤⎢⎣

⎡
⎥⎥⎦
⎤

⎢⎢⎣
⎡

+

++
=⎥⎦

⎤⎢⎣
⎡
⎥⎥⎦
⎤

⎢⎢⎣
⎡

=⎥⎦
⎤⎢⎣

⎡
=∂

⇒−>≠

=+=

26

232

253

2332

3

2
2231

x

xx

B(x)

Λ(x)

x

x

A(x)

Γ(x)

xx

xx

B(x)

Λ(x)

x

x

B(x)

Λ(x)

0

1r2L ;Δ
ΛΛΔ

α
αα

0

α1

αα
αα1

0

α1

0

αEE
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0L,x(x)A0,(x)Γ1,(x)B1,(x)Λ 0

1(0)(0)(0)(0) =−==== −

0r;10,2tk;SE kk =−==

∑
=

−−=
r

0k

k1rrr EΛΔ

⎥⎦
⎤⎢⎣

⎡⎥⎦
⎤⎢⎣

⎡
∂

=⎥⎦
⎤⎢⎣

⎡
−

−

−
(x)B

(x)Λ
0Δ
Δx1

(x)B

(x)Λ
1)(r

1)(r

1

r
(r)

(r)

⎥⎦
⎤⎢⎣

⎡⎥⎦
⎤⎢⎣

⎡
∂−∂

=⎥⎦
⎤⎢⎣

⎡
−

−

−
(x)A

(x)Γ
)x(1Δ

Δx1

(x)A

(x)Γ
1)(r

1)(r

r
1

r
(r)

(r)

0)Λ(α i =−

)(α)/Λ/Γ(ααrv tii
ii

−−+=

 

Fig. 5.25 Flow-chart corresponding to Berlekamp-Massey algorithm.  
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The two polynomials are: 
 

( ) 233 xxxΛ αα1 ++= , 

( ) 23 xxxΓ αα +=  , 

( ) ( ) 0αα1αα =++==− 546 ΛΛ  . 

0α

0α

0α

0α

0αα1α

0α

≠

≠

≠

≠

=++=

≠

−

−

−

−

−

−

)Λ(

)Λ(

)Λ(

)Λ(

)Λ(

)Λ(

0

1

2

3

264

5

 

It follows that the erroneous components are 6r  and 4r ; the set of the errone-

ous positions is }4,6{=Ε . 

The first order formal derivative of the ( )xΛ  polynomial is: 
 

)x((x)Λ'
ji

j

Ei

i 1αα +∏∑=
≠∈

 

3466446 )x()x((x)Λ' ααα1αα1αα =+=+++=  

66 )Γ()Γ( ααα ==−  

24 )Γ( αα =−  

22

3

66

66 αα0
α
αα

rv =+=+=  

1αα
α
αα

rv =+=+= 3

3

24

44  

The corrected word is:  ( )1  3  4  4  1  5  3=v . 

 

RS coding and decoding using linear feedback shift registers LFSR 

 

For binary codes there are various ways of implementing the encoder and decoder 

using LFSRs. 

The RS codes are character oriented and require mathematical operations over 

GF )2( k . The practical implementations require implementing these operations 

and expressing the characters in the Galois fields. All mathematical operations  
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over GF )2( k  are done by specialised circuits that perform additions and multipli-

cation over the same fields. 

 
• Addition circuit over GF(2

k
) 

One possible circuit to realise the summation over GF )2( k
 is given in Fig. 5.26: 

 

Fig. 5.26 Summating circuit over GF(2k) 

The addition of two elements from GF )2( k  is done summating the binary 

numbers on k digit: 

( )
( ).b ... b bb

a ... a aa

k10

k10

=

=
 

The circuit operates as follows:  
 

1. Load the k cells of the register with the binary number on k digits correspond-

ing to the element. 

2. At each clock cycle the register is loaded with the adder parallel output. 

3. Put the results in the register. 
 

Example 5.23 

Let us consider ( )33 2GF , ∈αα . The shift register will have 3 cells. The two ele-

ments are expressed as follows: 

( )
( )0  1  0

1  1  0
3

=

=

α
α

 

Adding the two numbers, the register will contain at step 2 the following array: 

( )1  0  03 =+ αα  
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• Multiplication circuit over GF(2
k
) 

Multiplying two elements in Galois fields is, in fact, multiplying the polyno-

mial representation of the two numbers (i.e. two polynomials of maximum degree 

1-k ) followed by a k-th order the modulo generator polynomial reduction. 

 
Example 5.24 
 

• Multiplication circuit over GF )2( 4  

Let us consider ( ) ( )3210 bbb bxb =  and ( ) xxa = .  

We have  ( ) ( ) xxa  and  xbxbxbbxb 3
3

2
210 =+++=  

The generator polynomial of GF )2( 4  is: ( ) 1xxxp 4 ++=  

( ) ( ) ( )
( ) 3

2
2

1303

3
3

2
2

10
4

3
3

2
2

10

xbxbxbbb                   

1xbxbxbxbxbxbxbxbxbxa

++++=

=++++=+++=⋅
 

This relation determines the following way of implementation: 

⊕
 

Fig. 5.27 Multiplying circuit with α over GF(24) 

There are several steps that need to be followed in order to get the final result: 
 

1. Loading in parallel the register with the bits corresponding to the element b. 

2. Shift to the right the register content. 

3. The register parallel output gives the multiplication result. 

In practice, high speed RS encoders/decoders are implemented using special-

ised circuits by Advanced Hardware Architecture Inc: the AHA 4510 series 

( )5e = , AHA 4010 ( )10e = , AHA 4600 ( )16e = . 

 

Applications 

Reed–Solomon codes are widely used for error protection in satellite transmis-

sions, in storage on CDs and DVDs, applications in which powerful correcting 

codes are required in order to correct both independent and burst errors. In most 

applications RS codes are concatenated with convolutional codes. 
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Example 5.25 
The block scheme of a CD player is given bellow: 

RDD ci ×=
••

R  DD tc /
••

=

 

Fig. 5.28 CD player – block scheme 

Among others, the command computer plays the songs following the options 

selected by the listener on the control panel. 

When recording sounds on CDs, the error protection is realised using a RS(7,3) 

code. 

Knowing that the sound bandwidth is 5Hz–20kHz and that sampling is done at 

Nyquist frequency, determine the information rate of the encoded source (under 

the assumption of equally probable source), as well as the capacity of the trans-

mission channel at the digital output. Which is the capacity of a CD, if it can be 

played for 74 minutes? What is the decoder output sequence if the reading laser 

provides ⎥⎦
⎤⎢⎣

⎡= 0  0  2  4  0  2  0 
MSC

r ? 

 

Solution 
 

a. kHz 40f2f maxs == – sampling frequency 

( )

)GF(2 :extension oforder  k the                           

 and symbolsn informatio of no. m  where,DmkfD

assumption ideal DC

3

csi

i

===

=
••

•

 

Mb/s 0,36C

bits 2137knn

Mb/s 0,84nfD

word

wordsi

=

=⋅=⋅=

==
•
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b. The codeword duration is given by the sampling period, so the transmission 

time for 21n =  bits is 

25μ5
f

1
T

s
s ==  

The memory capacity of a CD is determined by the decision quantity corre-

sponding to the encoded information: 

es)MB(megabyt 466,26074 Mb/s 84,0D  so  
t

D
D c

c
c =⋅⋅==

•
 

c. Having used RS(7,3), one may easily determine that each character 

( )3
i 2GF∈v , so it will be expressed with 3k =  bits 

We determine: 

( ) 3
1 ααrS ==  

( ) 62
2 ααrS ==  

( ) ααrS == 3
3  

   ( ) 54
4 ααrS ==  

Due to the fact that 0ααSSS ≠+=+ 412
31

2
2 , the received sequence is af-

fected by two errors (t = 2). 

Using the formula from Table 5.13 to compute the iσ coefficients, we get: 

ασ
ασ

=

=

2

3
1  

Chien search formula provides the erroneous positions r1 and r2: 
 

αΧ =1  

1αΧ == 0
2  

1Υ =1  

1αΥ == 0
2  

 

It follows that errors occur on control positions; the decoder output (Peterson 

algorithm with Chien search decoding) is: 

[ ] 0 0 0  0 1 0  0 0 0  0  2  0 
MSC

=⎥⎦
⎤⎢⎣

⎡=i  

5.9   Convolutional Codes  

5.9.1   Representation and Properties 

Convolutional codes have been introduced by P. Elias in 1955 as an alternative to 

block codes. Unlike the block codes, convolutional codes have encoding memory, 
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that is, at a certain moment of time, the n encoder outputs depend not only on the 

m inputs at that moment, but also on the previous M information blocks (an in-

formation block contains m bits). Important contributions to the development of 

these codes were brought by: J. Wozencraft who, in 1961, proposed the sequential 

decoding, J. Massay who presented in 1963 the threshold decoding and A. Viterbi 

who proposed in 1967 the minimum distance decoding algorithm, known as 

Viterbi algorithm. 

These codes are used in practice due to some essential advantages: great detec-

tion and correction capacity for both independent and burst errors and, in many 

cases, simplicity in implementation. The disadvantage, due to the great redun-

dancy, imply by the inefficient use of the band, which this is why these codes are 

used in applications for which the bandwidth is not critical, especially for satellite 

transmissions and space communications. 

Figure 5.29 shows an intuitive presentation of these codes, in comparison with 

the block ones. 

 

Convolutional codes – characteristic parameters 
 

Constraint (M) represents the number of information blocks needed for determin-

ing a control symbol. 

Constraint length (K) represents the number of information symbols needed for 

determining a control symbol. 

mMK ⋅=                                             (5.212) 

The code distance has the same significance as for block codes, with the re-

mark that it is defined on a number of frames (blocks) N (used notation dN instead 

of d). 

Coding rate (R) has the same significance as for block codes (5.5), and it repre-

sents the relation between the number of information bits (m) and the length of an 

encoded block (n). 

Code type

block

convo-

lutional

systematic

non-

systematic

systematic

non-

systematic

Encoder-

input

Encoder-

output

m+k=n

n

m+k=n  n

M

M

...

......

...

Decoder-

input

Decoder-

output

m+k=n

n

n          n

...

...
N≥M

n n

N≥M

m

m

m  m     m

m  m     m

n n

m  m     m

m  m     m

m

m

M

M
 

Fig. 5.29 Comparison between block and convolutional codes 
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Remarks 

The value of R is different for the two types of codes; for block codes R is big 

(>0.95) due to the low relative redundancy; for the convolutional codes R is  

usually small (typical values are 1/2, 1/3, 3/4) reflecting their high relative  

redundancy. 

As we have already shown in 5.1, the coded bit rate )D( c

•
depends on R: 

R

D
D i

c

•
•

=  

This justifies the need for a larger bandwidth, from where the possibility to  

use such encoding for transmissions on channels for which the bandwidth is not 

critical. 

If the information sequence is of finite length, containing a number of L  

blocks, the encoded sequence is of length: M)n(L + . In this case the coding rate 

will be: 

( )MLn

Lm
R

+

⋅
=                                            (5.213) 

If L>>M, then 1M)L/(L ≅+ , so (5.213), valid for convolutional codes is iden-

tical with expression (5.5) for block codes. 

If 1/2R = , it results 1m = , so basically, at the input the information is not  

divided in blocks but processed continuously, hence the name of continuous 

codes. 

The name of convolutional codes comes from the fact that the k control sym-

bols for systematic codes (the n symbols for non–systematic structures) are ob-

tained from the digital convolution between the information sequence (i) and the 

generator polynomial (g). 

5.9.2   Convolutional Codes Encoding 

For convolutional codes each of the k control symbols (systematic codes) and each 

of the n symbols (for the non-systematic type) are obtained from K information 

symbols by multiplying the information sequence with the corresponding genera-

tor polynomials (Fig. 5.30). 
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(x)i(1)

(x)i(2)

(x)i(m) (x)c (1)

(x)c (2)

(x)c (k)

 
(x)i(1)

(x)i(2)

(x)i(m)

(x)u(1) (x)u(2) (x)u(n)

 
 

Fig. 5.30 Block scheme of: a) systematic and b) non systematic convolutional encoder; 

(ISR - Information Shift Register) 

Unlike for block codes, for convolutional codes the information as well as the 

encoding process take place continuously; it follows that, for polynomial represen-

tation, the polynomials will be continuous. 
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For this representation the bits succession at encoder input and output will be: 

(Fig. 5.31) 
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Fig. 5.31 Representation of the information at: a) encoder input; b) systematic encoder out-

put; c) non-systematic encoder output 

The control symbols (x)c(j)  and the encoded symbols (x)u(i) are determined 

multiplying the information polynomial i(x)  with a generator polynomial (x)g(j) , 

multiplication which represents the numerical convolution between © and (j)g . 

The number of generator polynomials necessary for encoding is: 

km×                                                (5.216) 

for systematic codes and 

nm×                                               (5.217) 

for non-systematic codes. 

From these generator polynomials, at least one must be of degree K–1, due to the 

fact that we must use K information symbols to determine one (j)c or (j)u symbol: 

( )( ) ( ) ( ) ( )
1-Kk  ...,xgxggxg kj

k
j

1
j

0
j ≤++++= "                      (5.218) 

In this case, for a systematic code, we have: 

( )( ) ( ) ( )( )xgxixc jj =                                          (5.219) 

or 

( ) ( )jj gic ∗=                                            (5.219.a) 

where ∗  represents the numerical convolution between © and g, all the operations 

being modulo 2.The term of order j of the convolution is: 

( ) ( ) ( ) ( ) ( )j
kkl

j
11l

j
0l

k

0i

j
iil

j
l gigigigic −−

=
− +++=∑= "                       (5.220) 

where i1  for    0:i i-1 <∀= . 



5.9   Convolutional Codes 317

 

In the same way, for a non-systematic code, we have: 

( )( ) ( ) ( )( )xgxixu jj =                                            (5.221) 

( ) ( )jj giu ∗=                                              (5.221.a) 

Encoding relations (5.219) and (5.221) as well as their corresponding convolu-

tions are linear, justifying why convolutional codes are linear codes. 

One can easily built a convolutional encoder using a LSR with K cells and 

modulo two adders with inputs connected to the LSR according to the generator 

polynomials (x)g(j) . 

 

Example 5.26 

Be the convolutional code with parameters 2/1R =  and  3K = ; encode the fol-

lowing information sequence in both cases, systematic and non-systematic:  

]0010110[=
LSB

i . 

 

Solution 

2/1m/nR == , so the codeword contains two symbols: one information symbol 

( 1m = ) and one control symbol ( 1k = ) (for the systematic code). 

Knowing that the constraint length is 3MmK =×= and 1m = , it results that 

in order to perform the encoding we need 3 information bits (blocks). The genera-

tor polynomials will have the maximum degree:  

2131K =−=−  

• systematic code: we have only one generator polynomial 111km =×=×  and it 

must be of degree 2; we choose: 

22 xx1or    x1g(x) +++=  

• non-systematic code: we have 221nm =×=× generator polynomials, from 

which at least one must be of degree 2;  

x1or     xx1(x)g

  x1(x)g

2(2)

2(1)

+++=

+=
 

Remarks 

• For non-systematic codes, depending on how we choose the generator polyno-

mials, catastrophic errors may occur. An error is defined as being catastrophic 

if a finite number of errors in transmission produce an infinite decoding errors. 

One sufficient and necessary condition [42] to determine catastrophic errors 

(for codes with /n1R = ) is that generator polynomials have a common divisor; 

x1(x)g  and  x1(x)g (2)2(1) +=+=  have x1+  as their common divisor, so 

this determines a catastrophic code. 

( )( ).x1x1x1 2 ++=+  
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• Systematic codes can never be catastrophic and this is another advantage, be-

sides their simplicity. 

In what follows we will determine the encoded sequence for the given © in 

both encoding types using the encoding relations (5.219) and (5.221). 

( )
( ) ( ) ( ) ( )( ) 632242

42

xxxxx1xxxxgxixc

xxxxi

+++=+++==

++=
 

The vector expression of the control sequence is: 

[ ]1001110=c  

For the systematic code, the encoded sequence is: 

⎥⎦
⎤⎢⎣

⎡
10 | 00 | 01 | 10 | 11 | 11|0 0=

00 ci
v  

Using relation (5.222.a), we will determine the control sequence by numerical 

convolution: 

( )1001110

1010010110==
2106543210 gggiiiiiii

=

=⎟⎟⎠
⎞

⎜⎜⎝
⎛

∗⎟⎟⎠
⎞

⎜⎜⎝
⎛

∗ gic
 

The components of the control sequence are determined with (5.220): 

1gigigic

0gigigic

0gigigic

1gigigic

1gigigic

1gigic

0gic

2415066

2314055

2213044

2112033

2011022

10011

000

=++=

=++=

=++=

=++=

=++=

=+=

==

 

 

Similarly, we encode in the non-systematic case: 

( )( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( )( ) ( )( ) 6524222

63224211

xxxxx1xxxxgxixu

xxxxx1xxxxgxixu

++=++++==

+++=+++==
 

The code sequence will be: 

( ) ( ) ⎥⎥⎦
⎤

⎢⎢⎣
⎡

11 | 10 | 00 | 01 | 01 | 11|00=
2

0
1
0

uu

v  

We suggest to the reader to determine the sequence v using the convolution 

(see 5.221.a). 
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The encoders with LSRs and their operation is given in Fig. 5.32 a), and  

respectively 5.32 b). 
 

Tn tn+1 Tn

V
i C1 C2

1(i) 2©

1 0 0 0 0 0

2 1 1 0 1 1

3 1 1 1 1 1

4 0 0 1 0 1

5 1 1 0 1 0

6 0 0 1 0 0

7 0 0 0 0 1

a)

V
T I C1 C2

1(u
(1)

) 2(u
(2)

)

1 0 0 0 0 0 

2 1 1 0 1 1 

3 1 1 1 1 0 

4 0 0 1 1 0 

5 1 1 0 0 0 

6 0 0 1 0 1 

7 0 0 0 1 1 

b)      
 

Fig. 5.32 a) Convolutional systematic encoder - block scheme and operation; b) Convolu-

tional non-systematic encoder - block scheme and operation 
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Remarks 

• All the information sequences must be ended with ( 1K− ) zeros, necessary to 

decode the last frame corresponding to the given sequence as well as for flush-

ing the encoding register (trellis termination). 

• From the given example, one may notice the extreme simplicity of the convolu-

tional encoders, a real advantage in their implementation. 

In this example the information sequence length is small: 5L =  and for this 

reason the encoding rate R can not be calculated with (5.5), but with (5.213): 

( ) ( ) 2

1

n

m
R0,31

16

5

352

51

MLn

mL
R ==<==

+

⋅
=

+
=  

If we had a bigger length for the information sequence, for example 500L = , 

then the two relations would have been identical: 

( ) ( ) n

m

2

1

35002

500

MLn

mL
R =≅

+
=

+
=  

A matrix description of the convolutional codes, using the control matrix H or 

the generator matrix G is given in [2], [28] and [43]. 

5.9.3   Graphic Representation of Convolutional Codes 

A convolutional code can be graphically represented in many ways: with state 

diagrams, tree diagrams and trellis diagrams. 

 

State diagram 

 

A convolutional encoder is made up with a shift register having 1K−  cells which 

define at one moment of time ti, the encoder state  ( )(i)
1K

(i)
2

(i)
1

(i) CCCX −= "  

(
(i)
j

C  denotes the state of the cell Cj at the moment i). Knowing the register state at 

moment i and the information symbol transmitted at ( 1i+ ) we may determine the 

shift register state at the moment ( 1i+ ). The code sequence generated at the mo-

ment i is completely determined the register state at the moment i: (i)X  and by the 

information symbol ii, so the state (i)X  represents the encoder history: 

( ) ( )1Ki2i1i
i iiiX +−−−= "                                  (5.222) 

The register evolution is a Markov chain, meaning that the transition from one 

state to another is determined only by the previous state: 

( ) ( ) ( ) ( )( ) ( ) ( )( )i1i01ii1i /XXPX,,X,/XXP +−+ ="                        (5.223) 

The state diagram includes all possible states of the shift register as well as the 

encoded structure when transitioning from one state to another. There are only two 
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possible transitions from any state, corresponding to the emission of 0 or 1; it fol-

lows that it is not possible that during one transition to jump from a certain state in 

any other state. 

 

Example 5.27 
We will determine the state diagrams corresponding to the two codes given in  

Example 5.26. 

The shift register used for encoding has 21K =−  cells, so it will have four dis-

tinct states:  a =  00, b = 10, c = 01, d = 11 

On each branch connecting two states are written the information symbol and 

the encoded structure: i/v. 

 

Fig. 5.33 State diagram of the convolutional code with R = 1/2, K = 3 for a) systematic and 

b) non-systematic type 

Tree Diagram (Encoding Graph) 
 

Although the state diagram completely describes the encoder, it does not give any 

information about its history. The encoding graph adds to the state diagram the 

time dimension. 

The graph is drown beginning with the initial state (t0) zero of the shift register 

(state a). From this state two branches emerge, ongoing up and corresponding to 

the emission of a 0, and another one going down, corresponding to the emission of 

a 1. At the moment t1 from each branch two other branches will emerge, corre-

sponding to the emission of a 0 or 1 and so on. Adding the time dimension to the 

state diagram one may also know the decoder time evolution. 

If the length of the information sequence (L) is big, the branches number grows 

exponentially: L2 , and limits the use of the graph in practice. 

 

Example 5.28 
We will draw the graph corresponding to the systematic code from example 5.26 

emphasizing the evolution of the encoder for the following information sequence: 

[ ]1  0  1  1  0=i  
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Fig. 5.34 The graph corresponding to the systematic convolutional code R = 1/2, K = 3; ― 

the encoded structure for i = [0 1 1 0 1] 
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Trellis Diagram 
 

One may notice in Fig. 5.34 that the graph is repeating beginning with t4; for the 

general case, the diagram repeats after K frames (K being the constraint length). 

The first ramification (at moment t1) leads to nodes a and b. At each next rami-

fication the number of nodes doubles; four nodes occur at t2: a, b, c and d and 

eight at t3: 2 nodes a, 2 b, 2 c and 2 nodes d. It can be easily noticed that all the 

branches which emerge from the same state generate the same code sequences and 

this is the reason why the two diagram halves (superior and inferior) are identical. 

It follows that, in Example 5.28 ( 3K = ), the 4-th bit is fed to the encoder from the 

left, while the first bit (i0) is removed from the register without having any influ-

ence on the codeword. 

 

 

Fig. 5.35 Trellis corresponding to the convolutional code R = 1/2, K = 3: a) systematic with 

g(x) = 1 + x2; b) systematic with g(x) = 1 + x + x2; c) non-systematic with g1(x) = 1 + x2, 

g(x) = 1 + x + x2 
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Fig. 5.35 (continued) 

Subsequently, the sequences 0 1 1 x y and 1 1 1 x y generate the same code-

words after 3K =  ramifications (frames). This means that any two nodes that 

have the same state at the same moment )Ki(ti > can be connected as they gener-

ate identical sequences. 

In this way, starting from the encoding graph we obtain another graphic repre-

sentation called trellis diagram, from the trellis aspect of the diagram. In the trellis 

representation the encoded sequence will be marked with a continuous line when 

we apply “0”, and with a dot line if the input is “1”. The trellis nodes show the en-

coding register state. At a certain moment of time ti the trellis contains 1K2 −  

nodes, determined by all register distinct states at encoding. Two branches enter 

each node starting with moment tk (Fig. 5.35). 

5.9.4   Code Distance and d ∞  

Compared to block codes, for convolutional codes the code distance depends on 

the number of frames N used during the decoding process. 

For a convolutional code the N-th order code distance (dN) represents the 

minimum value of Hamming distance between any two possible code sequences 

on N frames and different in the initial frame. 

( )      ,   ,dmin  :d 11NNHN vuvu ≠=                               (5.224) 

where uN and vN are two code sequences on N frames. 

 

Remarks 

• As for block codes, the branches containing exclusively zeros in the first frame 

are not taken into consideration 

• Relation (5.16): minwd = is valid 

• dN  provides the same information about the code control capacity  

The relation: 

1t2dN +≥                                                (5.225) 
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shows that the code will correct any combination of t errors and less than t errors 

on N successive frames. 

The minimum number of frames used in the decoding process is M (the con-

straint). In this case: 

minMN ddd ==                                         (5.226) 

represents the minimum code distance. 

Unlike for block codes, the decoding process of a convolutional code can be re-

alized using a number of frames N higher than the number of frames used during 

encoding (M); at limit ∞→N The code distance defined for convolutional codes 

in this last case is ∞d  or d free and it is used for Viterbi or sequential decoding, 

where the decoding memory is basically, unlimited. 

In order to define ∞d  [47], we search branches that start from the zero state 

and return to the same state (except for all zero branch in the first frame). The way 

with the minimum Hamming weight will be ∞d . Obviously, Ndd ≥∞ , which jus-

tifies the advantage of decoding on the number of frames on which ∞d  operates. 

For most codes (with average or small K), ∞d is obtained in several constraints 

or even in the first constraint. Practically, ∞d  (for high values of K) is obtained 

for ( )K54 ÷ . 

 

Example 5.29 

We will determine Kmin dd =  and ∞d for the convolutional codes represented in 

Fig. 5.35. 
 

• For the systematic code (a) we have: 2/1R = , 3K = ,  2x1g(x) +=  and we 

determine: 

 

Frame  N 1 2 K = 3 Weight dK d∞ 

Sequence v v1 v2 v3 wi   

11 00 01 3

11 00 10 3

11 11 01 5

 

11 11 10 5

3 3 

 

• For the systematic code (b) : 2/1R = , 3K = , 2
1 xx1(x)g ++=  

 

Frame  N 1 2 K = 3 Weight dK d∞ 

Sequence v v1 v2 v3 wi   

11 01 01 4 

11 01 10 4 

11 10 00 3 
 

11 10 11 5 

3 4 
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• For the non-systematic code (c): 2/1R = , 3K = , 2
1 x1(x)g +=  and 

2
2 xx1(x)g ++=  

 

Frame  N 1 2 K = 3 Weight dK d∞ 

Sequence v v1 v2 v3 wi   

 11 01 11 5 

 11 01 00 3 

 11 10 10 4 

 11 10 01 4 

3 5 

 

One must notice that in all three cases, ∞d  is reached in the first constraint 

length 3K = . 

For systematic codes, d∞  is smaller than for non-systematic codes with identi-

cal parameters (R, K). Table 5.14 [42] presents a comparison between these codes 

from ∞d  point of view: 

Table 5.14 d∞ for the systematic and non-systematic codes: R = 1/2 and K∈ [2, 8] 

K d∞ 

 systematic non-systematic 

2 3 3 

3 4 5 

4 4 6 

5 5 7 

6 6 8 

7 6 10 

8 7 10 

5.9.5   Decoding (Viterbi Algorithm, Threshold Decoding) 

Viterbi algorithm (1967) 

 
This algorithm is based on the principle of minimum distance, which was shown 

in 5.6 that is obtained from maximum likelihood decoding (MLD), so it is an op-

timal algorithm. 

Assume i is a message encoded as vi (the code sequence) and received as r. If 

all messages i are equally probable, subsequently vi are equally probable, the error 

probability is minimum if the principle of maximum likelihood decoding is used. 
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If  

( ) ( ) ji   ,pp ji ≠> r/vr/v                                      (5.227) 

then the receiver decides that r comes from vi. 

This decoding rule may be implemented quite easily. In 1967, Viterbi showed 

that for a BSC (a hard decoder), the decoding can be achieved by choosing for r 

the sequence vi that has the minimum Hamming distance, thus using a minimum 

Hamming distance decoder. In 1969, Omura demonstrated that Viterbi algorithm 

is, in fact, the maximum likelihood decision (MLD) algorithm. In this case, rela-

tion (5.227) is equivalent to: 

( ) ( ) ji  ,,d,d jHiH ≠< vrvr                                    (5.228) 

Viterbi algorithm operates on the trellis frame by frame, on a finite number of 

frames, in order to find the encoding path. At each node it calculates the distances 

between the received sequence and all the sequences on the trellis, cumulating the 

distance from one node to another (cumulated distance). In frame K, each node 

has two branches, so there will be two cumulated distances for each node; from 

these we keep the path with the minimum distance (survivor). If in a node there 

are two ways with equal distances, one of them is chosen randomly (the survivor). 

The frame K+1 is analyzed with the survivors from the node K, and so on. The 

analysis is continued on so many frames until there is only one path left; this path 

is considered the correct sequence. 

The number of frames on which the decoding process takes place is called de-

coding window (W). W must be high enough in order to ensure the correct deci-

sion on the oldest transmitted frame. 

Obtaining a unique route is a random variable. Computer simulations have 

shown that: 

( )K54W ÷≅                                           (5.229) 

gives negligible inaccuracies compared to an infinite memory )W( ∞→  of the 

decoder; this is the reason for dimensioning the decoding windows of Viterbi de-

coders with relation (5.229).  

 

Example 5.30 
Applying Viterbi algorithm, decode the sequence r given by: 

( )0000110100110001001111=r  

and knowing that the code parameters are: 2/1R = , 3K = , 
 2

1 x1(x)g +=  
and 

2
2 xx1(x)g ++= . Suppose r contains two errors situated on the underlined  

positions. 
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Fig. 5.36 Viterbi algorithm example for non-systematic convolutional code with R=1/2, 

K=3, g1(x)=1+x2, g2(x)=1+x+x2 , on variable number of frames: N=3÷12. 
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Fig. 5.36 (continued) 
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Fig. 5.36 (continued) 
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Fig. 5.36 (continued) 

 

Solution 

We will consider the trellis from Fig. 5.35.c. The decoding process will start by 

calculating the cumulated distances in each node between the received sequence 

and all the sequences on the trellis. After 3K =  frames, each node will contain 

two branches, from which only the survivors will be selected for the frame 1K+  

(corresponding to the minimum distances in each node). One must notice that in 

Fig. 5.36.c, there are two nodes that contain paths of equal distances, the survivor 

being chosen randomly. The same situation occurs in f, g, h, i; for Fig.5.36.h we 

illustrated two possible choices. 

In Fig. 5.36.h, a unique route is obtained, after the first 5 frames, and 9 frames, 

respectively, in Fig.5.36.k. In this example, we analyzed the possibility of correct-

ing two errors on twelve frames. The decoding window W has 12 frames, so 

5d =∞  may be used; this implies that it is possible to correct any combination of 

two errors or less than two errors occurred on ( ) 1512K54W ÷=÷≅ frames. 

 



332 5   Channel Coding

 

Example 5.31 
In what follows assume the occurrence of three errors in the first constraint length. 
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Fig. 5.37 Viterbi decoding process for a three error sequence in the first constraint length 

From Fig. 5.37.c, we may notice that it is impossible to correct three errors on 

the first constraint length. For convolutional codes, the correction capacity cannot 

be expressed as easily as for block codes, due to the fact that it depends on the er-

ror distribution. 

 

Soft Decision Decoding 
 

The algorithm that has just been described corresponds to the transmission on a 

BSC, so on a memoryless channel. This model (BSC) corresponds to a hard deci-

sion channel, which means that, although the signals received by the demodulator 

are continuous (Gaussian variables, due to the Gaussian noise), at the demodulator 

output the signals are binary (the decision is binary or hard [28], [43]). If the  
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demodulator output is quantified by more than two levels, the decoding process is 

called soft (decision) decoding process (Fig. 5.38). 

N000N001 N010 N011 N100N101N110N111

)p(z/s0 )p(z/s1

 

Fig. 5.38 Graphical illustration of the hard decision (with 2 levels) and the soft decision 

(with 8 levels) 

For hard decoding process, the demodulator sends to the decoder only one 

symbol (0 or 1). For soft decoding with 8 quantizing levels, the demodulator sends 

to the decoder 3 bits, for each T time sample, which is equivalent with transmit-

ting to the decoder a measure of the trust/confidence degree. Thus, transmitting 

the code 111 is equivalent with the transmission of a “1” with a very high degree 

of confidence, while transmitting 100 signifies the fact that “1” has a very low 

confidence. For the soft decoding process, Hamming distances are replaced with 

Euclidian distances between the received word and all possible code words [47]. 

Examples are given in 5.11 (turbo codes). 

For a Gaussian channel and 8 levels (3 bits) soft decoding, the encoding gain is 

increased by 2 dB, compared to hard decoding; the coding gain for analog deci-

sion (with an infinite number of quantizing levels) is 2,2 dB, which means that for 

soft decision with 8 levels there is a loss of only 0,2 dB. This argument justifies, in 

the soft decision case, the use of maximum 8 levels. The price paid for 2 dB gain 

is the increased dimension of the memory needed in the decoding process (and 

possible speed losses as well) [42]. Soft decoding is frequently used in the Viterbi 

algorithm because it produces a slight increase in the computations volume [47]. 

 

Conclusions regarding Viterbi decoding algorithm 
 

– it is an optimal algorithm 

– it can be applied to any convolutional  code (systematic or non-systematic) 

– it can be used with hard decision or 8 quantizing levels (the encoding gain 

obtained in this case is of 2 dB compared to the hard decoding) 

– there are VLSI specialized circuits: for example the Q 1401 circuit manu-

factured by Qualcomm [38] is a Viterbi decoder for a convolutional code 

with 2/1R =  and 7K = , operating with hard or soft decoding with 8 
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quantification levels, ensuring a 17Mb/sDi =
•

, Gc=5,2 dB at 510p −=  

with BPSK or QPSK modulator and 8 levels soft decoding. 

– the practical implementation is limited by K up to maximum values of 

approx. 10 (the calculation volume increases exponentially with K). 

 

Threshold decoding (1963)  
 

Threshold decoding, although not optimal compared to the Viterbi decoding, is an 

algebraic method of decoding, conceptually closer to block codes (the error syn-

drome is calculated in a similar manner), having the advantage of a very simple 

implementation. At the beginning it was used for BCH decoding and it was pro-

posed by Massay in 1963 for convolutional decoding.  

The decoding process takes place at the end of the constraint length K, which 

leads to inferior performances than those obtained with Viterbi algorithm (we re-

mind that ∞< ddK , so  the code control capacity on length K is reduced too). 

The implementation great simplicity imposed this method in a series of applica-

tions that accept lower coding gains, but also low cost: in telephony and satellite 

radio transmissions [28].  

The algorithm can be applied only to systematic convolutional codes. 

The block-scheme of a threshold decoding system is presented in Fig. 5.39. 

2

J
A

J

1j

j >∑
=

i0,ê

 

Fig. 5.39 Block-scheme of a threshold decoding system 

The transmission was represented in parallel for information i(x) and control 

c(x) sequences in order to enable an easier understanding of the decoding process 

(in real serial transmission, the information and control bits are affected by errors 

independently). 
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In Fig. 5.39 are illustrated the followings: 
 

– ISR - information shift register with K cells in which the information sym-

bols are loaded; these symbols are then used for determining the control 

symbols 

– )x(ei - error polynomial that alters the information symbols in the encoded 

sequence 

– )x(ec - error polynomial that changes the control symbols in the encoded 

sequence 

– )x(c ′′ - polynomial corresponding to the control symbols determined from 

the received information symbols )x(i′  

– )x(s  - error syndrome polynomial 

– )x(i′  - polynomial corresponding to the received information 

– )x(c′  - polynomial corresponding to the received control bits 

– TLD- threshold logic device (majority logic device); its output is “1” if the 

most of the inputs A1, ..., AJ  are “1”. If: 

2

J
A

J

1j
j >∑

=
                                           (5.230) 

then the output is “1”. 

SR - syndrome register; it is a K cells shift register 

Correction starts from the first symbol introduced in ISR (i0), the TLD output 

being “1” if i0 is erroneous. 

The equations describing the operation of the scheme are the followings: 

( ) ( ) ( )xexixi i+=′                                           (5.231) 

( ) ( ) ( )xexcxc c+=′                                          (5.232) 

( ) ( ) ( ) ( ) ( ) ( )[ ]xexixgxixgxc i+=′=′′                              (5.233) 

( ) ( ) ( )xixgxc =                                             (5.234) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )xexgxexs

xexgxcxexcxcxcxs

ci

ic

+=

+++=′′+′=
                 (5.235) 

From (5.235), we notice that the error syndrome does not depend on the trans-

mitted word, but only on the error word: ei (x) and ec (x) and on g(x). 

The convolutional codes, as we have already seen, are continuous codes so 

their polynomial representation will be made with infinite polynomials: 

( ) ∑=
∞

=0n

n
nxsxs                                            (5.236) 
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Depending on g(x), the convolutional codes are divided into direct orthogonal 

codes (DOC) and indirect orthogonal codes (IOC). 

We call direct orthogonal codes (DOC) the codes that allow to directly deter-

mine a set of J equations si that are orthogonal on a given symbol. 

A set of J equations is orthogonal on a given symbol if all the equations con-

tain that symbol and any other symbol cannot be found in more than one equation, 

at the most. 

 

Example 5.32 
 

Analyze the threshold decoding algorithm for the convolutional code given by the 

following parameters: 2/1R = , 7K = , ( ) 652 xxx1xg +++=  

 

Solution 

We express the error syndrome in polynomial form, according to relation (5.235): 

( ) ( ) ( ) ( )xexexxx1xs ci
652 ++++=                                (5.237) 

The n-th order coefficient of the polynomial s(x) will be: 

cn,i6,ni5,ni2,nin,n eeeees ++++= −−−                           (5.238) 

The first 7 coefficients: 60 s ..., ,s will be loaded in SR (syndrome register). 

We determine the following system: 

⎪⎪
⎪⎪
⎪

⎩

⎪⎪
⎪⎪
⎪

⎨

⎧

++++=

+++=

++=

++=

++=

+=

+=

c6,i0,i1,i4,i6,6

c5,i0,i3,i5,5

c4,i2,i4,4

c3,i1,i`3,3

c2,i0,i2,2

c1,i1,1

c0,i0,0

eeeees

eeees

eees

eees

eees

ees

ees

                           (5.238.a) 

From the 7 equations of this system we identify equations s0, s2, s5, s6 being or-

thogonal on i0; all of them contain e0,i and any other symbol is not found in more 

than one equation: 

⎪⎪⎩

⎪⎪⎨
⎧

++++==

+++==

++==

+==

c6,i6,i4,i1,i0,64

c5,i5,i3,i0,53

c2,i2,i0,22

c0,i0,01

eeeeesA

eeeesA

eeesA

eesA

                        (5.239) 
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The terms 41 A ..., ,A are the 4J =  inputs of the threshold logic device TLD. 

We wish to evaluate the correction capability of this code. 
 

• Assume one error on position 1e:i i0,0 =′ . We get 1AAAA 4321 ==== , so 

the TLD output, according to (5.230), is “1”; it follows that 0i′  will be cor-

rected. 

• Assume two errors: one on 0i′  and another position, either information or con-

trol; in this case, one of the equations 0A j = , the other three are “1”, so 0i′  

will be corrected. 

• If three errors occur: 0i′  and another two on either information or control sym-

bols, only one or two jA  inputs will be “1”; the output of the majority logic 

device will be “0”, therefore i0’ will not be corrected. 

Resuming, we may say that the maximum number of errors that can be cor-

rected (tmax) is: 

2

J
tmax =                                               (5.240) 

Remark 

g(x) must be carefully chosen, such that it does not decrease the code correction 

capacity given by (5.241): 

12tdK +≥                                            (5.241) 

It follows that: 

1dJ K −=                                            (5.242) 

The block scheme of the threshold decoder is the following: 

 

Fig. 5.40 Threshold decoder for the direct orthogonal code R = 1/2, g2(x)=1 + x2  + x5 + x6 
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The generator polynomials for direct orthogonal codes DOC can be easily de-

termined using the control triangles [2], [47]. 

Table 5.19 contains the most important DOCs for 1/2R = : 

Indirect orthogonal codes (IOC) are the codes for which the orthogonal system 

of equations on a given symbol cannot be obtained directly, but by linear combi-

nations of the syndrome equations. These codes are more efficient than the DOCs 

in the way that the same J (so the same power of correction) is ensured by a lower 

K (these polynomials are determined by computer trials - 1963 Massey). It must 

be underlined the fact that the syndrome register SR must be used with feedback. 

Table 5.15 The most important direct orthogonal codes [47] for R = 1/2 

J K g(x) 

2 

4 

6 

8 

2 

7 

18 

36 

1+x 

1+x
2
+x

5
+x

6
 

1+x
2
+x

7
+x

13
+x

16
+x

17
 

1+x
7
+x

10
+x

16
+x

18
+x

30
+x

31
+x

35
 

 
Example 5.33 
Analyze the threshold decoding for the indirect orthogonal code given by 

2/1R = , 6K = , 
 ( ) 543 xxx1xg +++= . 

 

Solution 

The n-th order coefficient of the polynomial s(x) is: 

cn,i5,ni4,ni3,nin,n eeeees ++++= −−−                             (5.243) 

The first six coefficients loaded in the syndrome register are: 
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eeeees
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                              (5.244) 

The system (5.244) is not an orthogonal system on 0i , although the equations 

5430 s ands,s,s  all contain i0,e   and 54 s ands  contain i1,e . In order to make it 

orthogonal, we combine equations s1 and s5. Thus we obtain an orthogonal system 

on 0i : 
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⎪⎪
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                      (5.245) 

The block-scheme of the decoding unit is that illustrated in Fig.5.41 and the 

most important indirect orthogonal codes for 2/1R =  are given in Table 5.16 

[47]. 

 

Fig. 5.41 Threshold decoder for indirect orthogonal code R = 1/2, g2(x)=1 + x3 + x4 + x5 

Table 5.16 The most important indirect orthogonal codes for R = 1/2 

J K AI g(x) 
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6 
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22 

s0, s3, s4, s1+ s5 

s0, s6, s7, s9 

s1+ s3+ s10 

s4+ s8+ s11 

s0, s11, s13, s16, s17 

s2+ s3+ s6+ s19 

s4+ s14+ s20 

s1+ s5+ s8+ s15+ s21 
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Remark 

Comparing Table 5.15 and Table 5.16, we remark the advantage of the indirect or-

thogonal codes: at the same correction capacity J, their K values are much lower. 
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The convolutional codes can also be decoded sequentially. This method is in 

fact the first proposed method for convolutional codes decoding and was proposed 

in 1957 by J. M. Wozencraft. Basically, a sequential decoder works by generating 

hypotheses regarding the transmitted code sequences; it measures the distances be-

tween these hypotheses and the received signal and goes on until the distances re-

main reasonable. When these are too high, there is a turn back, so a modification 

of the hypotheses, until, through attempts, the suitable hypotheses are found [28], 

[42]. From the sequential decoding process advantages, we mention the independ-

ence from the constraint length, which enables the use of this method for high K 

values ( 41K = ) [42]. The main disadvantage is that the number of the “weak” 

hypotheses and the turn backs depend on the channel signal/noise ratio (SNR). For 

low SNRs, the number of hypotheses that have to be tested is higher than for high 

values of this ratio, which in certain cases lead to exceeding the decoding storage 

capacity. 

5.10   Code Interleaving and Concatenation 

5.10.1   Interleaving 

The process of interleaving allows the use of independent error correction codes 

for burst error correction of lengths much higher than the number of independent 

errors which occur in a received word. 

The idea is to send the codeword symbols interleaved with other codewords 

symbols, such that the distance between two successive symbols of the same 

codeword is higher than the length of the burst (b). In this way, a burst of errors 

cannot affect more symbols in the same word and subsequently, a certain code-

word symbols are erroneous due to different bursts (independent bursts); their ef-

fect is that of the independent errors (Fig. 5.42). 

a1a1a1a1a0a0a0a0 a2a2a2a2

a3a2a1a0 a2a1a0a4 a3 a4

a3a2a1a0 a2a1a0a4 a3 a4

b)

a)

X            X         X         X

b

(1) (1) (1) (1)

(1) (1) (1)

(2) (2) (2) (2) (2)

(2)(2)(2)

(1)

(3) (4)(3) (3) (3) (3) (4) (4) (4) (4)

(4) (4) (4)(3) (3) (3)

 

Fig. 5.42 Interleaving example: a) 4 codewords (of length 5) non-interleaved succession; b) 

interleaved succession (b = burst error length) 

Interleaving can be made in two ways: block interleaving and convolutional in-

terleaving [42]. 
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Block interleaving 
 

When transmiting, the symbols of an independent error correcting block code are 

disposed column by column (or line by line) in a block of N lines and M columns 

and then sent to the modulator on lines (or columns). At the receiver the opera-

tions occur in reverse order: the received symbols enter the demodulator by lines 

and are sent to the decoder by columns (or viceversa). 

 

Fig. 5.43 Block interleaving 

Block interleaving characteristics are: 
 

• Any burst error of length Mb ≤  will lead to singular errors at the decoder  

input. 

• The delay caused by interleaving (taking into account the processing that takes 

place both at transmission and receiver) is approximately TMN2 ⋅⋅⋅ (T is the 

symbol duration). More precisely, in order to initiate the transmission (immedi-

ately after loading the first symbol of the last column: 31 in Fig. 5.43), it is 

enough to load the memory in 11)-N(M + cells. The same minimum number of 

cells is necessary to initiate the decoding at the reception. It results that the en-

tire minimum delay (at the transmission and reception) is: 22N-2NM +  

• The necessary memory must have MN ⋅  cells; generally, the memory imple-

mented both at the transmission and receiver is double: MN2 ⋅⋅ , allowing to 

simultaneously load one block and flush another. 

• If the block code corrects only singular errors, the number of block columns M 

is chosen higher than the error burst length: bM ≥  

• The number of lines (N) depends on the type of code used: for block codes: 

nN >  (the block code length), and for convolutional codes KN >  (the con-

straint length). In this way, a burst error of length Mb =  will determine one er-

ror, at the most, in one code word, or in any constraint length K. If we use t er-

rors correcting codes, M is chosen such that: b/tM >  
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The convolutional interleaving was proposed by Ramsey (1970) [59] and For-

nay (1971) [60]. The structure proposed by Fornay is presented in Fig. 5.44. 

 

Fig. 5.44 Block-scheme of a convolutional interleaving made with shift registers ( C-

encoder for independent errors; dC-decoder for independent errors; I – interleaver; dI – de-

interleaver). 

The characteristics of convolutional interleaving are similar to those of block 

interleaving. The essential advantage of convolutional interleaving is that the total 

delay (transmission-receiver) is half of the block interleaving delay: 2/1)N(M− , 

so the memory is reduced to half as well. 

5.10.2   Concatenated Codes 

Concatenated codes are using two levels: an inner C1 and an outer C2 (Fig. 5.45). 

 
Fig. 5.45 Block scheme of a concatenated system 

The resulting code is of dimension (n1n2,m1m2), and its code distance is 

21ddd ≥ , where d1 and d2 are the corresponding code distances for C1 and C2 

[28]. 

Generally, the outer code C2 is a RS (Reed-Solomon) code, and C1 is binary 

(usually a convolutional code) or RS as well. 

Concatenated codes are useful when dealing with mixed errors: independent 

and burst errors. The inner code C1 is usually dimensioned such that it corrects 

most of the independent errors on the channel. The outer code C2 reduces the error 

probability to the desired value (it corrects some of the errors missed by C1). 

The purpose of concatenating is to obtain a low bit error rate with simplicity in 

implementation (lower than the complexity required by the use of a single code), 

and higher redundancy, i.e. a more powerful code. 
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One of the most popular concatenated systems is C2 RS code, C1- convolutional 

code (implemented with Viterbi soft decoding) [28] (Fig. 5.46), for which 
510p −= corresponding to 2,5)dB(2/NE 0b ÷= (the planetary NASA standard for 

codes). 

 

Fig. 5.46 Block-scheme of an interleaved concatenated system (C2 - RS + C1 - convolutional) 

Example 5.34  
The digital audio encoding system for CD (CIRC) [42] 

 

In 1979, Philips Corporation from Netherlands and Sony from Japan defined a 

standard for the audio digital system using CDs. 

The CD is a plastic disc of 120 mm used for audio signals storage. The sam-

pling is performed at kHz 1.44fs = (corresponding to an audio bandwidth of 20 

kHz). Each audio sample is quantized with 162  levels (16 bits or 2B bytes per 

sample); it results a dynamic of 96dB/s and harmonic distortions of 0,005% . One 

disc ( ≅ 70 minutes) contains 1010  bits. The disc is laser written and read. 

The error sources on a CD are: 
 

• small, unwanted air bubbles inside the plastic or irregularities in recording; 

• fingerprints or scratches when handling the disc 
 

These errors are similar to burst errors, as they affect more bits. The high fidel-

ity of the system is due to a correction scheme based on concatenating two inter-

leaved RS codes (CIRC - Cross Interleave Reed-Solomon Codes). By interleaving, 

data are redistributed such that the digits belonging to neighbouring samples are 

spread in space; subsequently, the burst errors will occur as independent (singular) 

errors. The error protection is ensured by shortened RS codes. 

In digital audio applications, an undetected error is very important because it 

generates cracking noises, whereas detected errors are not so annoying as they can 

be “hidden”. 
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The block-scheme of the CIRC system is presented in Fig. 5.47 

 

Fig. 5.47 Block scheme of CIRC system 

The CIRC system controls the errors in a hierarchical structure: 
 

1. The decoder provides a certain level of correctable errors; 

2. If the error correction capacity is exceeded, the decoder provides a correction 

level of erasures; 

3. If the level of erasures is exceeded, the decoder tries to mask the erroneous 

samples by interpolating the neighbouring unaltered samples; 

4. If the interpolation capacity is exceeded, the decoder turns on the mute option 

during the deteriorated samples. 

Fig. 5.48 and Fig. 5.49 illustrate the processes that occur at encoding and de-

coding, respectively. 

 

 
Fig. 5.48 Encoding and interleaving in CIRC system: a) I1 - even samples B2p are separated 

from the odd ones B2p+1 with 2Tf ; b) C2 - RS (28,24) encoding; c) I2 - samples are delayed 

with different time periods to spread the errors; d) C1 -RS (32, 28) encoding; e) I3 - even 

samples (B2p,i) cross interleaving with the next frame odd samples (B2p+1,i+1) 
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Fig. 5.48 (a) shows that a frame includes six sampling sequences, each sample 

made up of a stereo pair (left L, right R) quantized on 16 bits (2B). This results in 

a frame length of 24B. At encoding, the processing has five steps, as follows: 

 

a. I1 - even samples are separated from the odd ones with two frame lengths (2Tf) 

to “mask” the detectable but not correctable errors without difficulty, by inter-

polation (due to the correct neighbouring samples). 

b. C2 - it is an RS (28,24) encoder: 4 control bytes (4BC) are added to 24B. The 

RS (28,24) code is a shortened code: 2551212n 8k =−=−= : RS(255,251). 

We remind that by shortening, the code maintains its control capacity )5(d = , 

which corresponds to the correction of maximum 2 erroneous characters 

(bytes). 

c. I2 - each of the 28B is differently delayed, so that the errors in one word are 

spread into different words (interleaving I2). C2 and I2 have the function of cor-

recting burst and independent errors that cannot be corrected by C1. 

d. C1 - is an RS(32,28) encoder, derived just like C2 by shortening the 

RS(255,251) code; therefore the codes have the same distance 5d = . 

e. I3 – performs the cross interleaving between the even bytes (B2p,i) of one frame 

and the odd bytes of the next frame (B2p+1,i+1). Using this method, two consecu-

tive bytes belong to different codewords. 

C1 and I3 will correct most of the singular errors and will detect the long burst 

errors. 

The processing that takes place at the decoder (player) is shown in Fig. 5.49. 

 

Fig. 5.49 Illustration of the decoding process in CIRC system 
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At receiver, the processing has also five steps, as follows: 

 

a. dI3 – de-interleaving  is accomplished by the alternate introduction of delay 

cells D. The 32 inputs (B1 ÷  B32) are loaded in parallel at the input of the  

de-interleaving circuit. The delays D take one byte. 

b. dC1 - RS(28) decoder; dI3 and dC1 are designed for correcting one character in a 

block of 32B and detecting long burst errors. If multiple errors occur, the dC1 de-

coder leaves them uncorrected, attaching to the 28B an erasure flag transmitted 

with dotted lines (see Fig. 5.49). 

c. dI2 - the delay lines D1, ..., D27 spread the errors on a number of words at the 

dC2 decoder input, which reduces the number of errors on a C2 codeword, so 

that C2 can correct them. 

d. dC2 - corrects the burst errors missed by dC1. If the errors cannot be corrected 

but only detected by dC2, the errors pass unchanged through dI1; however, dI1 

associates them an erasure flag (dotted lines B1, ... B24). 

e. dI1 - the uncorrected but detected errors (flagged errors) will be masked by  

interpolation from the correct neighbouring samples. 

Interpolation and mute interpolation 

 

The samples uncorrected by dC2 cause distortions that can be heard as cracks. 

The interpolator dI1 inserts new samples from the unaltered neighbouring samples, 

replacing the incorrect ones. If burst errors with 48b >  frames occur and two or 

more successive samples are not corrected, the system goes mute for several ms, 

undetectable by the human ear [32], [42]. 

5.11   Turbo Codes 

5.11.1   Definition and Encoding 

Turbo-codes (TC), invented in 1993 by Claude Berrou and Alain Glavieux [5] at 

ENST (Telecomme) Bretagne, France, are a novel and revolutionary error- control 

coding technique, almost closing the gap between Shannon limit and real code 

performance. 

Turbo code consists of a parallel concatenation of two recursive systematic 

convolutional codes. 

A recursive convolutional code is a convolutional code (with feed forward) 

provided with feedback too. 

A recursive systematic convolutional (RSC) code is a systematic recursive con-

volutional code of rate R=1/n. A RSC with R=1/2 is given in Fig. 5.50. 
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0g
1g

1 ... K-1i

0v

1v

[ ]10 v vv

MR

 
 

Fig. 5.50 Basic RSC code: R=1/2, g0 - feedback polynomial, g1- feed forward polynomial 

In a polynomial representation, we have: 

i(x)(x)v0 =                                              (5.246) 

(x)g

(x)g
i(x)(x)v

0

1
1 =                                         (5.247) 

or: 

[ ]

)x(i(x)
(x)g

(x)g
1, i(x) 

(x)g

(x)g
i(x) i(x),(x) v(x),vv(x)

0

1

0

1
10

G=⎥⎦
⎤⎢⎣

⎡
=

=⎥⎦
⎤⎢⎣

⎡
==

                       (5.248) 

where G(x), the generator matrix, is identified as : 

⎥⎦
⎤⎢⎣

⎡
=

(x)g

(x)g
 1,(x)

0

1G                                            (5.249) 

The variable x is representing the delay operator (D). 

If the coding rate is 
n

1
R = , the generator matrix of the corresponding 

n

1
RSC 

code is: 

⎥⎦
⎤⎢⎣

⎡
= −

(x)g

(x)g
,,

(x)g

(x)g
1,(x)

0

1n

0

1 …G                                   (5.250) 

If the polynomials (x)gi  1)(i ≥ and (x)g0 are relatively prime (no common 

factor), the ratio (x)gi , (x)g0  can be written as [48]: 

...xaxaa
(x)g

(x)g 2
210

0

i +++=                                 (5.251) 

and corresponds to the encoded sequence (x)vi , 0)(i ≠ , the control sequence. 
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For iterative decoding, (x)g0 - the feedback polynomial is selected to be a 

primitive polynomial of degree K-1 (the memory of the encoder). 

In this parallel concatenation a random interleaver is used exploating Forney 

concatenation idea. The information bits for the second code are not transmitted, 

thus incrementing the code rate (R). 

The main reason to use a long interleaver is to generate a concatenated code 

with a large block length which leads to a large coding gain [46]. 

A basic turbo coder of R=1/3 with BPSK (Binary Phase Shift Keying) modula-

tion and AWGN noise is presented in Fig 5.51. 
 

RSC

Encoder 1

RSC

Encoder 2
BPSK

BPSK

BPSK

+

++

Interliever

+

0
r

1
r

2
r

0x

AWGN

AWGN

AWGN

1x

2x

0v

1v

2v

i

turbo-encoder modulator channel

^

i

 

Fig. 5.51 Basic turbo transmitter: turbo encoder with R=1/3, BPSK modulation and AWGN 

channel. 

5.11.2   Decoding 

5.11.2.1   Basic Principles 

A turbo decoder (Fig. 5.52) consists of two serially concatenated decoders sepa-

rated by the same interleaver. The decoding algorithm is an iterative one (MAP or 

SOVA- soft output Viterbi algorithm). The iterative process performs information 

exchange between the two decoders. Increasing the number of iterations in turbo-

decoding, a BER as low ( 75 1010 −− ÷ ) can be achieved at a SNR very close to 

Shannon limit (-1.6 dB). 
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1

Decoder

2

Interliever
Deinterliever

Interliever

Interliever

^

i
0Λ

1Λ

2Λ
I ex 12

I ex 21

r0
~

r0

r1

r2

 

Fig. 5.52 Basic turbo-decoder 

The first decoder has as inputs 0r  and 1r . The decoder 1 produces a soft output 

1Λ  which is interleaved and used to produce an improved estimate of the a priori 

probabilities of the information sequence (Iex12 extrinsic information of the first 

decoder is the priori probability estimate of the second decoder). The decoder per-

formance can be improved by this iterative operation relative to a single operation 

of the serial concatenated decoder. After a number of iterations, the soft outputs of 

both decoders stop to produce further performance improvements and the last de-

coding stage makes a hard decision after deinterleaving. 

The feedback loop is a distinguishing feature to the decoder and the name 

“turbo” is given precisely to the similarities, as concept and performance, with the 

thermodynamic turbo engine [19]. The two decoders cooperate similar with the 

pistons of a turbo engine: each decoder supplies its pair with extrinsic information, 

as the pistons supply each other with mechanical energy through the turbine. 

Iterative decoding algorithms are numerous and complex: Viterbi, SOVA, 

MAP, LOG-MAP and Max-LOG-MAP [46], [21]. Brifley they will be presented 

in what follows. 

5.11.2.2   Viterbi Algorithm (VA) [46], [48] 

This algorithm, presented in 5.9.5, was originally proposed for convolutional 

codes decoding. 

Decoding time is assumed Ĳ, and the sequence starts from zero state (at moment 

0) and reach the same state at the final moment (this is why the trellis termination 

is required). 

0)S,S,...,S0,(SS 01Ĳ10 === −  

VA estimate the information î that corresponds to the modulated sequence x̂  in 

the trellis, such that the word (sequence) error probability: sP  is minimized. 

cs P1P −=                                                 (5.252) 
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where cP  is the probability of a correct sequence decoding: 

∫=
r

rrir )d/)p(p(Pc                                         (5.253) 

r being the space of received sequences. 

sP minimum, implies cP  maximum, and according to (5.253) p(i/r), the a pos-

teriori probability maximum. The algorithm which Maximizes the Aposteriori 

Probability is known as MAP decoding algorithm. 

Using Bayes formula (see relation (2.32)) we have: 

)p(
)p(

))p(p(
)p( r/i

r

r/ii
i/r ==                                       (5.254) 

based on the fact that the a priori probability of the information sequence )p(i is 

equal with )p(r  (encoding is a biunivoque correspondence: )p()p( ri = ). 

A decoder which maximizes )p(r/i  is called maximum likelihood decoder 

(MLD) (see also 5.6). Under the assumption of equally probable r (equally prob-

able sequences), MAP and MLD are equivalent in terms of word (sequence) error 

probability. 

Under the assumption of AWGN with 2
nı  dispersion (see Appendix D), and Ĳ 

length sequence, we have: 

2
n

2
kt,kt,

2ı

)x(r

Ĳ

1t

1n

0k 2
n

Ĳ

1t

e

2π

1
)p()p()p(

−
−

=

−

==
∑ ∏=∑==

ı
tt /irr/ii/r                 (5.255) 

Taking into account that in relation (5.255) there are exponentials, the 

)p(log i/r  will be used: 

∑ ∑ −
−−−=

=∑ ∏=

=

−

=

−
−

=

−

=

Ĳ

1t

1n

0k
2
n

2
kt,kt,

n

2ı

)x(r

Ĳ

1t

1n

0k 2
n

2ı

)x(r
logılog2

2

n

e

2π

1
log)logp(

2
n

2
kt,kt,

nĲ

ı

π
τ

i/r

                      (5.256) 

Maximizing )p(r/i is equivalent, based on (5.256) to minimizing the Euclidian 

distance: 

∑ −=
=

1-n

0k

2
kt,kt,E )x(rd                                     (5.257) 
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It follows that, for AWGN channels, the MLD (maximum likelihood decoder) 

and obviously MAP and VA, reduce to a minimum distance (Euclidian) decoder 

(the same demonstration, but for hard decoding, using Hamming distance, is given 

in 5.6, relation (5.24)). 

The squared Euclidian distance is called branch metric ( x
tmb ) and is: 

∑ −=
=

1-n

0k

2
kt,kt,

x
t )x(r:mb                                       (5.258) 

The path metric ( x
tmp ) corresponding to the sequence x is: 

x
t

t

1j

x
1t

x
j

x
t mbmpmbmp +∑ ==

=
−                                  (5.259) 

Thus, VA is an effective way of finding a path in the trellis with the minimum 

path metric. The computation is based on keeping only one path per node, the one 

with the minimum metric at each time instant (the survivor). 

The decision on the message estimation î is made at the final time Ĳ. The 

maximum likelihood path is chosen as the survivor in the final node. If the mini-

mum path metric corresponds to a path x̂  , the decoder will select the binary se-

quence î on this path as the hard estimate of the transmitted sequence i. 

 

Example 5.35 
 

a) Design a RSC encoder with coding rate R=1/2 and constraint length K=2. 

b) Encode the information sequence: i=[0 1 0 0 1] 

c) Draw the state diagram and the trellis 

d) If the received sequence is: r=|1,-1|0.8,1|-1,1|-1,1|1,-1|, applying VA with 

Euclidian distance, find the maximum likelihood path. 
 

Solution 

a) From the input data RSC
2

1
 with K=2, we identify: 

n

m
R = => m=1, n=2 => k=1 

According to (5.216) it follows that only one generator polynomial is required 

and K being 2, it means that its degree is 1: 

x1(x)g0 +=  and ⎥⎦
⎤⎢⎣

⎡
+

=
x1

1
 1,G(x)  

The block scheme of the RSC encoder is given in Fig. 5.53a. 
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b) The encoding can be done algebraically, using (5.246), (5.247) or (5.248); the 

same result is obtain using the encoder operation (Fig. 5.53). 

– Algebraic encoding: 

(x)vxxi(x) 0
4 =+=  

32
4

0
1 xxx

1x

xx

(x)g

1
i(x)(x)v ++=

+

+
==  

10]|01|01|11|00 []v[vv 10 ==  
 

The encoder operation (Fig. 5.53) is: 

 

nt  nt  1nt +  

]v[vv 10=  

i 
1C  n0 iv =  1n1,n1 Civ −⊕=  

0 

1 

0 

0 

1 

0 

1 

1 

1 

0 

0 

1 

0 

0 

1 

0 

1 

1 

1 

0 

 

Remark: the encoder starts and ends at zero state ( 0S ) 

 

c) The state diagram and the trellis are represented in Fig. 5.53.b, respectively c. 

 

1c

0v

1v

[ ]10 v vv =

 

Fig. 5.53 RSC encoder with R = 1/2 and K=2: a) block- scheme; b) state-diagram;  

c) trellis: — i=0 input, ····· i=1 input 
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Fig. 5.53 (continued) 

 

d) We calculate the branch metric x
tmb  in each frame and starting with the sec-

ond frame, the path metric x
tmp . Taking into account that from the second 

frame in each node enter two path metrics, the survivor will be selected based 

on its minimum Euclidian distance: 

– In the first frame, the branch metrics are: 

4

4

0t
0S 00

11

1t

(1,-1)

 

1
1

221
1 mp41)](1[1)]([1mb ==−−−+−−=  

2
1

222
1 mp41]1[1][1mb ==−−+−=  

 

• In the second frame, the branch metrics and the path metrics are: 
 

7.241)]([11)]([0.8mb 221
2 =−−+−−=  

0.041)]([11][0.8mb 222
2 =+−+−=  
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4.041)]([11][0.8mb 223
2 =−−+−=  

3.241][11)]([0.8mb 224
2 =−+−−=  

0t0S
1t 2t

 

11.247.244mp1
2 =+=  

4.040.044mp2
2 =+=  

8.044.044mp3
2 =+=  

7.243.244mp4
2 =+=  

In each node the survivor is selected accordingly to the minimum path metric: 

8.04, respectively 4.04. 

 

– In the third frame the branch metrics and the path metrics are: 

0t0S
00

11

1t 00

01

11

10

12.04

2t
10

11

8.04

4.04

3t

12.04

4.04

12.04

r: (1, -1)          (0.8, 1)            (-1, 1)

 



5.11   Turbo Codes 355

 

41)]([11)](1[mb 221
3 =−−+−−−=  

41][11]1[mb 222
3 =−+−−=  

81)]([11]1[mb 223
3 =−−+−−=  

01][11)](1[mb 224
3 =−+−−−=  

 

12.0448.04mp1
3 =+=  

12.0448.04mp2
3 =+=  

12.0484.04mp3
3 =+=  

4.0404.04mp4
3 =+=  

Selection of the survivors: in the first node the path metrics being the same 

(12.04) for the both branches, the selection is random; in the second node the sur-

vivor has the path metric 4.04. The remained ways are: 

12.04

4.04

00

11 10

01

0S

r: (1, -1)          (0.8, 1)         (-1, 1)

 

– In the fourth frame we have: 

41)]([11)](1[mb 221
4 =−−+−−−=  

41][11]1[mb 222
4 =−+−−=  

81)]([11]1[mb 223
4 =−−+−−=  

01][11)](1[mb 224
4 =−+−−−=  

0S
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16.04412.04mp1
4 =+=  

16.04412.04mp2
4 =+=  

12.0484.04mp3
4 =+=  

4.0404.04mp4
4 =+=  

 

After the choice of survivor, the remaining ways are: 

12.04

4.04

00

11
10

01 01

0S

r: (1, -1)          (0.8, 1)         (-1, 1)             (-1, 1)

 

– In the fifth frame we have: 

8.04

16.04

12.04

16.04

12.04

4.04

00

11
10

01

0S

01

00

01

10 11

r: (1, -1)           (0.8, 1)            (-1, 1)           (-1, 1)            (1, -1)

 

41)](1[1)]([1mb 221
5 =−−−+−−=  

41]1[1][1mb 222
5 =−−+−=  

41]1[1][1mb 223
5 =−−+−=  

81]1[1)]([1mb 224
5 =−−+−−=  

  

16.04412.04mp1
5 =+=  

16.04412.04mp2
5 =+=  

8.0444.04mp3
5 =+=  

12.0484.04mp4
5 =+=  
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After the choice of the way with the minimum path distance, we obtain: 

0S

 
 

thus the information sequence at the output of VA decoder is: 

î= [0 1 0 0 1]. 

5.11.2.3   Bidirectional Soft Output Viterbi Algorithm (SOVA) [46] 

The main disadvantage of VA is its output is binary (hard estimation), meaning 

that performance loss occurs in multistage decoding. In order to avoid this, soft 

outputs are required. SOVA is able to deliver soft outputs estimating for each 

transmitted binary symbol ( ti ) the log- likelihood function )Λ(i t . If the decision 

is made on finite length blocks (as for block codes), SOVA can be implemented 

bidirectionally, with forward and backward recursions. 
 

• SOVA estimates the soft output information calculating the log - likelihood 

function )Λ(i t . 

)0/P(

)1/P(
log)Λ(i Ĳ

t

Ĳ
t

t
ri

ri

=

=
=                                       (5.260) 

where )j/P(i Ĳ
t r= with j=1,0, is the aposteriori probability of the transmitted 

symbol, and 
τr  is the received sequence of length Ĳ. 

• SOVA compares )Λ(i t  with a zero threshold (hard decision): 

⎩⎨
⎧ ≥

=
otherwise 0,

0)Λ(i  if  1,
i

t
t                                          (5.261) 

• The decoder selects the path x̂  (respectively î) with the minimum path metric 

(mp) as the maximum likelihood path (ML) similar with VA. 

The probability of selecting x̂  is proportional with )/P(i Ĳ
t r , and based on rela-

tion (5.255), to Ĳmin,mp
e

−
, where Ĳmin,mp  represents the minimum path metric 

on Ĳ frames. For 1i t = , respectively 0 (the complementary symbol) we have. 

Ĳmin,mpĲ
t e~)1/P(i

−
= r                                     (5.262) 

ct,mpĲ
t e~)0/P(i

−
= r                                       (5.263) 
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where ct,mp  represents the minimum path metric of the paths with complemen-

tary symbol to the ML symbol at time t. 

In this case, the log-likelihood function (5.260) becomes: 

Ĳmin,ct,mp

mp

Ĳ
t

Ĳ
t

t mpmp
e

e
~

)0/P(i

)1/P(i
log)Λ(

ct,

Ĳmin,

−=
=

=
=

−

−

r

r
i                  (5.264) 

If we introduce the notations: 

⎪⎩
⎪⎨⎧

=

=

ct,
0
t

Ĳmin,
1
t

mpmp

mpmp
                                        (5.265) 

it follows that (5.264) can be written as: 

0
t

1
tĲ

t

Ĳ
t

t mpmp~
)0/P(i

)1/P(i
log)Λ(i −

=

=
=

r

r
                            (5.266) 

If the ML estimate at time t is 0, we have the relations: 

⎪⎩
⎪⎨⎧

=

=

ct,
1
t

Ĳmin,
0
t

mpmp

mpmp
                                           (5.267) 

and log-likelihood relation becomes: 

a,mpmp

mpmp
e

e
~

)0/P(i

)1/P(i
log)Λ(i

1
t

0
t

ct,Ĳmin,mp

mp

Ĳ
t

Ĳ
t

t Ĳmin,

ct,

−=

=−=
=

=
=

−

−

r

r

            (5.268) 

meaning that the soft output of the decoder is obtained as the difference of the 

minimum path metric ( Ĳmin,mp ) among the paths having 0 information at the time 

t and the minimum path metric ( ct,mp ) among all paths with symbol 1 at time t. 

The sign of )Λ(i t  determines the hard estimate at time t and its absolute value 

represents the soft output information which can be used in a next stage. 

If the decision is made at the end of the finite block length (as in block codes), 

SOVA can be implemented as a bidirectional recursive method with forward and 

backward recursions 

 

Bidirectional SOVA steps: 
 

a.  Forward recursion 

1) set the initial value: t=0, 0S0 = , 00)(Smp 0
x
0 == , 0SĲ =  (the infor-

mation block of length Ĳ starts from S0 and reaches 0 state at t = Ĳ; it has 

trellis termination) 
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2) apply Euclidian VA until the frame Ĳ ( 0SĲ = ) 

3) the survivor in frame Ĳ is the maximum likelihood path and its metric is 

Ĳmin,mp  

b. Backward recursion: it applies the same steps as in forward recursion, but in 

opposite sense, from t = Ĳ to t = 0. 

1) set the initial values: t= Ĳ, 0SĲ = , 00)(Smp 0
x
Ĳ == , 0S0 =  

2) apply Euclidian VA from t= Ĳ to t=0. 

c. Soft decision 

1) start at t = 0 and continue until t = Ĳ 
2) at moment t, identify the ML estimate 

• 0i t =  or 1 

• determine: Ĳmin,
i
t mpmp =  

• find the path metric of its best competitor, the complementary 

one: :1i ⊕  

)}(Smp)S,(Smb)(Smin{mpmp j
b
tjk

c
tk

f
1t

c
t ++= −                    (5.269) 

where kS , jS  are the distinct states of the trellis 1)(20,1,...,S,S
1K

jk −= −
 

– )(Smp k
f

1t − - the path metric of the forward survivor at time t-1 and node 

kS  

– )S,(Smb jk
c
t - the branch metric at time t for complementary symbols from 

node kS to  jS  

– )(Smp j
b
t - the backward survivor path metric at time t and node jS . 

• compute   

1
t

0
tt mpmp)Λ(i −=                                        (5.270) 

 

Remarks concerning bidirectional SOVA 
 

• the complexity of forward recursion is the same to that of VA. 

• the complexity of backward recursion is less than VA because the survivors are 

not stored. 
 

Example 5.36 
Using the RSC code given in Example 5.35: R=1/2 and K=2, find the output of the 

decoder for the received sequence: 

1)]1,( 1),(0.8, 1,1),( (1,1), [rr 4Ĳ −−−−==  

1. using Viterbi algorithm (VA) 

2. using a bidirectional SOVA 
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Solution 
 

1. The trellis of the code is given in Fig. 5.53.c and will be used for both decoding. 

00

11

10

01 01

0S

11 11 11

00 00 00

01

10 10

1 2 3 40

r:   (1, 1)             (-1, 1)          (0.8, -1)          (-1, -1)

 
Fig. 5.54 Trellis representation on Ĳ=4 frames of RSC code with R=1/2 and K=2 

 

• In the first frame: t=1 

8

0

8

0

(1, 1)

 
1
1

221
1 mp81)]([11)]([1mb ==−−+−−=  

2
1

222
1 mp01][11][1mb ==−+−=  

• In the second frame: t=2 
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41)]([11)](1[mb 221
2 =−−+−−−=  

1248mp1
2 =+=  

81)]([11]1[mb 222
2 =−−+−−=  

1880mp2
2 =+=  

41][11]1[mb 223
2 =−+−−=  

1248mp3
2 =+=  

01][11)](1[mb 224
2 =−+−−−=

 
 

• In the third frame: t=3 

 

3.241)](1[1)]([0.8mb 221
3 =−−−+−−=  

11.243.248mp1
3 =+=  

0.041)](1[1][0.8mb 222
3 =−−−+−=  

0.040.040mp2
3 =+=  

4.041]1[1][0.8mb 223
3 =−−+−=  

12.044.048mp3
3 =+=  

7.241]1[1)]([0.8mb 224
3 =−−+−−=  

7.247.240mp4
3 =+=  
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• In the fourth frame: t=4 

 

01)]([11)](1[mb 221
4 =−−+−−−=  

4.0440.04mp1
4 =+=  

41)](1[1]1[mb 222
4 =−−−+−−=  

11.2447.24mp2
4 =+=  

 

The ML path, with the minimum path metric is: 00]|10|01|[11  v̂ =  corre-

sponding to the estimation: 

î= [1 0 1 0] 
 

2. SOVA 

a. Forward recursion is obtained applying VA starting from 0S0 =  until 

4SĲ =  

The result of VA for the forward recursion is presented in Fig. 5.55. 
 

 
Fig. 5.55 Forward recursion; the thick line is representing the ML path (with minimum path 

metric 0.04) 
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The survivor path metrics are indicated above each node. The final survivor is 

the ML path with the metric 0.04mp 4Ĳmin, == . 

 

b. Backward recursion 

VA is applied starting with t = Ĳ = 4, until t = 0, in reverse sense. The backward 

recursion is shown in Fig. 5.56. The first number above each node indicates the 

forward survivor path metric and the second one the backward path metrics. 
 

r: (1,1) (-1,1) (0.8,-1) (-1,-1) 

0.04/0

01

10

0.04/08/4.04 8/3.24

0.04/00.04/0 7.24/4

 
Fig. 5.56 The backward recursion; ML path is presented with thick line. 

Remark: we propose to the reader to apply VA in the reverse sense and to check 

the results with the ones given in Fig. 5.56. 
 

c. Soft decision 

• We start at t = 0 

• At moment t = 1, we identify the ML estimate (hard estimate): 1i1 =  and 

thus 0.04mpmp min,4
1
1 ==  

The complementary path metric is 0
1mp  and is the minimum path metric of the 

path that have 0 at time t = 1; its path metrics is calculated from Fig. 5.56 as the 

sum of the forward and backward survivor path metrics at node 0: 

12.044.048mp0
1 =+=  

Accordingly to (5.270), the log-likelihood ratio at time t = 1 is: 

120.0412.04mpmp)Λ(i 1
1

0
11 =−=−=  

• at moment t = 2, the ML estimate is 0i2 = and the minimum path metric is 

0.04mpmp min,4
0
2 ==  

- the best complementary competitor path at time t = 2, noted 1
2mp , is 

according to (5.269): 

)}(Smp)S,(Smb)(S{mpminmp j
b
2jk

1
2k

f
1

S,S

1
2

jk

++=  
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where {0,1}S,S ji = , )(Smp k
f
1 is the forward survivor path metric at time 1 and 

node 0} {1,Sk = , )S,(Smb jk
1
2 is the branch metric at time t = 2 for the input in-

formation 1 and )(Smp j
b
2 is the backward survivor path metric at moment t = 2 

and node {0,1}S j =
 

 

11.240.04)}4(83.24),8min{(0mp1
2 =++++=  

- the log-likelihood ratio at time t = 2 is: 

11.211.240.04mpmp)Λ(i 1
2

0
22 −=−=−=  

In the same way we obtain: 

- at t = 3: 

0.040)}0.04(04),4.04min{(8mp1
3 =++++=  

11.240)}3.24(84),7.24min{(0mp0
3 =++++=  

11.20.0411.24mpmp)Λ(i 1
3

0
33 =−=−=  

- at t = 4: 

0.040)}0min{(0.04mp0
4 =++=  

11.240)}4min{(7.24mp1
4 =++=  

11.211.240.04mpmp)Λ(i 1
4

0
44 −=−=−=  

Thus, comparing )Λ(i t with zero threshold, the estimated analogue outputs are: 

}2.11,2.11,2.12,12{ −− , corresponding to the digital outputs : { 1 0 1 0 }. 

We check easily that, if hard decision would be used, the decoded sequence is 

the same with the one obtained previously using VA: î= [1 0 1 0]. 

5.11.2.4   MAP Algorithm 

MAP is an optimal decoding algorithm which minimizes the symbol or bit error 

probability. It computes the log-likelihood ratio (5.260), which is a soft informa-

tion and can be used in further decoding stages. This value is used to generate a 

hard estimate using a comparison with zero threshold as in relation (5.261). 

We intend to illustrate MAP decoding using an example. 

 

Example 5.37 
MAP decoding for a RSC code with R = 1/2 and K = 3 

The block-scheme of the system is presented in Fig. 5.57. 
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00

11

00

1111 11

00 00

1010

10
10 10

1111

00 00

01 01 01 01 01

S0=00

S1=10

S2=01

S3=11

c)
 

Fig. 5.57 MAP decoding illustration: a) block scheme of a transmission system with RSC 

(R = 1/2, K = 3, G = [1, (1 + x2)/ (1 + x + x2)]) and MAP decoding; b) state transition dia-

gram of RSC encoder with R = 1/2, K = 3, G = [1, (1 + x2)/ (1 + x + x2)]; c) trellis diagram 

of RSC code from b). 
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We assume that the generated bits 
(1)(0)

 , vv  are BPSK modulated 

( )1 x1,x (1)(0) +=−=  before entering the channel (AWGN with dispersion 2
nı ). 

The decoding is block mode, meaning that decoding starts after a complete 

block of length Ĳ receiving )( Ĳr . It is assumed that decoding starts from all zero 

state of the encoder )( 0S  and at the end of decoding (after Ĳ frames), it reaches 

the same state 0S . 

The transition probabilities of the AWGN channel are: 

( ) ( )∏=
=

Ĳ

1j
jj

ĲĲ
xrPP xr                                         (5.271) 

( ) ( )∏=
=

1-n

0k
kj,kj,jj xrPP xr                                     (5.272) 

( )
( )

2
n

2
kj,

2ı

1r

2
n

kj,kj, e

2π

1
1xrP

+
−

=−=
ı

                          (5.273) 

( )
( )

2
n

2
kj,

2ı

1r

2
n

kj,kj, e

2π

1
1xrP

−
−

=+=
ı

                         (5.274) 

Be ti  the information bit associated with the transition t1t S  toS −  and produc-

ing the output vt. The decoder will give an estimate tî , examining Ĳ
tr . 

The MAP algorithm calculates for each ti  the log likelihood ratio ( ( )tiΛ ) 

based on the received sequence Ĳr , according to the relation (5.260). MAP de-

coder makes a decision comparing ( )tiΛ  to a threshold equal to zero (relation 

(5.261)).  

The aposteriori probabilities (APP) can be calculated using Bayes relations 

(5.19): 

( ) ( )
( )

( )
( )
∑ =′=

=

=∑ =′===

∈′

−

∈′
−

0
t

0
t

l,l
Ĳ

Ĳ
t1t

l,l

Ĳ
t1t

Ĳ
t

)P(

 l,,lP

l/ ,lP0iP

T

T

r

rSS

rSSr

                       (5.275) 

where 0
tT  is the set of transitions l  tol t1t =′=− SS  that are caused by informa-

tion bit 0i t = . 
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Analogue is calculated the APP of the information 1i t = : 

( ) ( )
( )

( )
( )
∑ =′=

=

=∑ =′===

∈′

−

∈′
−

1
t

1
t

l,l
Ĳ

Ĳ
t1t

l,l

Ĳ
t1t

Ĳ
t

)P(

 l, ,lP

 l, ,lP1iP

T

T

r

rSS

rSSr

                         (5.276) 

where 1
tT  is the set of transitions lS  tolS t1t =′=−  that are caused by information 

bit 1i t = . 

The joint probabilities will be noted with  

( ) ( )Ĳt1tt  l, ,lPl,lı rSS =′==′ −                                      (5.277) 

and (5.275) and (5.276) will be: 

( ) ( )
( )
∑ ′

==
∈′ 0

tl,l
Ĳ

tĲ
t

)P(

l,lı
0iP

T r
r                                     (5.275a) 

( ) ( )
( )
∑ ′

==
∈′ 1

tl,l
Ĳ

tĲ
t

)P(

l,lı
1iP

T r
r                                     (5.276a) 

The log-likelihood ratio can be expressed as: 

( )
( )

( )
( )

( )
∑ ′

∑ ′

=Λ

∈′

∈′

0
t

1
t

l,l

t

l,l

t

t
l,lı

l,lı

logi

T

T
                                         (5.278) 

The calculation of joint probabilities ( )l,lı t ′  can be done introducing the fol-

lowing probabilities: 

( ) ( )Ĳtt  l,Plα rS ==                                          (5.279) 

( ) ( )lPlȕ t
Ĳ

1tt == + Sr                                        (5.280) 

( ) ( ) { }1 0,   ,l l, ,PlȖ 1t
Ĳ

ttt =′==== − iSrSiii                        (5.281) 

According to these notations, tı  and ( )tiΛ  can be written: 

( ) ( ) ( ) ( )∑ ′′=′
=

−
0,1

tt1tt l,lȖlȕlαl,lı
i

i                                    (5.282) 

( ) ( ) ( ) ( )
( ) ( ) ( )( )

∑
′′

′′
=Λ

∈′ −

−

1, t
0
t1t

t
1
t1t

t
lȕl,lȖlα
lȕl,lȖlα

logi

tTll

                             (5.283) 
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and also: 

( ) ( ) ( )
{ }

∑ ∑ ′′=
∈′ =

−
S i

i

l 0,1
t1ti l,lȖlαlα                                     (5.284) 

( ) ( ) ( )
{ }

∑ ∑ ′′=
∈′ =

++
S i

i

l 0,1
1t1ti l,lȖlȕlȕ                                  (5.285) 

( ) ( )
[ ]

( )

⎪⎪
⎪
⎩

⎪⎪
⎪
⎨

⎧
∈′

⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡ ∑ −

−
=′

−

=

−

otherwise  0,  

ll,for  ,
2ı

)l(xr

expP  
l,lȖ t2

n

21n

0j

i
jt,

1n
ji,

t
t

i
i Ti

               (5.286) 

( )iPt  is the apriori probability of information bit at moment t: ii t = , and ( )lxi
t  

is the output of the encoder (after BPSK modulation), associated with transition 

l  tol t1t =′=− SS  and input ii t = . S is representing the distinct states of the en-

coder (in number of 2
K-1

, noted from 0 to 2
K-1

-1). 

In summary, MAP algorithm has the followings routines: 
 

1. Forward recursion (Fig. 5.58.a) 

– initialization of ( )lα  with S∈l  

{ }12 ,1, 0, 1K −= −…S , 

( ) ( ) 0lfor  0lα and 10α 00 ≠== . 

– for S∈= l and Ĳ1,t  calculate for all l branches of the trellis: 

( ) ( ) ( ) { }1 0, ,
2ı

x,d
expPl,lȖ

2
n

tt
2

tt =⎥⎥⎦
⎤

⎢⎢⎣
⎡−

=′ i
r

i
i

                           (5.285a) 

where ( )itP  is the a apriori probabilities of each information bit (in most cases the 

equally probability is assumed), and ( )tt
2 x,d r  is the squared Euclidean distance 

between tt  xand r  (the modulated it). 

– for { } ( ) l,l Ȗstore ,1 0, t ′= ii  

– for S∈= l and Ĳ1,t  calculated and store ( )lα t  given by (5.284). 

A representation of forward recursion is given in Fig. 5.57.a. 
 

2. Backward recursion (Fig. 5.57.b) 

– initialization of ( ) S∈l  ,lȕ Ĳ  

( ) ( ) 0  lfor  0  lȕ and 1  0ȕ ĲĲ ≠==  
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– for S∈= l and Ĳ1,t , calculate ( )lȕĲ  with (5.285) 

– for Ĳt <  calculate the log-likelihood ( )tiΛ  with (5.283) 

 

Fig. 5.58 Graphical MAP representation: a) forward recursion, b) backward recursion 

Example 5.38 

Be the RSC code from Example 5.35 ( ⎥⎦
⎤⎢⎣

⎡
+

==
x1

1
1,G ,

2

1
R ), with BPSK modu-

lation and AWGN channel with 2dB
N

E

0

b = . The information sequence is 

( ) 1  0  0  1  1 i = . 

After Ĳ = 5, the received sequence is: 

( ) 507154,0525812,0744790,038405,0570849,0030041,0r 0 −−−=  

( ) 591323,1904994,1495092,0107597,1753015,0726249,0r 1 −−−−=  

The power of the signal is Ps = 0,5 W. 

Find the soft and hard outputs of a MAP decoder. 

 

Solution 

The encoder is presented in Fig. 5.53a and the state-diagram, respectively the trel-

lis are given in Fig. 5.53b, respectively c. 

In order to apply MAP, we need the trellis, the received sequence and also the 

knowledge of channel dispersion 2
nı . 
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The signal per noise ratio (SNR) can be expressed as: 

0

b

N

S

N

E
R

P

P

N

S
==                                         (5.287) 

for BPSK modulation, where R is the coding rate. Taking into account that the 

length of the sequence 5ĲL ==  is small compared to the constant length (K = 2), 

R is expressed using (5.213): 

0,416
252

51

KnL

mL
R =

+⋅

⋅
=

+
=  

It follows from (5.287) that: 

758,0
10416,0

5,0

NER

P
 ıP

2,0
0b

S2
nN =

⋅
=

⋅
==  

Then, MAP steps are applied: 

 
1. forward recursion 

According to the initialization, we have: 

( ) ( ) 0lfor  0lα and 10α 00 ≠==  

For 5 1,t = , according to (5.284) we have: 

( ) ( ) ( )
{ }
∑ ′∑ ′=

==
−

0,1
t

1

0l
1tt l,lȖlαlα

i

ii  

– for t = 1, we have 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]0 1,Ȗ0 1,Ȗ1α0 0,Ȗ0 0,Ȗ0α0α 1
1

0
10

1
1

0
101 +++=  

We do not have ( )0 0,Ȗ11  and ( )0 1,Ȗ0
1 , because in our case 0

tT  consists of (0, 0) 

and (1, 1) (if at the input is “0” we can have transitions only from 0  l  to0  l ==′ or 

from 1  l  to1  l ==′ ). 

For 1
tT  it consists of (1, 0) and (0, 1), if at the input we have “1” there are tran-

sitions from 0  l  to1  l ==′ or 1  l  to0  l ==′ . 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]1 1,Ȗ1 1,Ȗ1α1 0,Ȗ1 0,Ȗ0α1α 1
1

0
10

1
1

0
101 +++=  

According to the above explanation, we obtain: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )⎪⎩

⎪⎨⎧
+=

+=

1 1,Ȗ1α1 0,Ȗ0α1α
0 1,Ȗ1α0 0,Ȗ0α0α 

0
t1-t

1
t1-tt

1
t1-t

0
t1-tt
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– for ⇒= 6 1,t   

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )⎪⎩

⎪⎨⎧
=+⋅=+=

=+⋅=+=

255655,00255655,011 1,Ȗ1α1 0,Ȗ0α1α
034678,00034678,010 1,Ȗ1α0 0,Ȗ0α0α 

0
10

1
101

1
10

0
101  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )⎪⎪⎩
⎪⎪⎨
⎧

=+=

=⋅+

+⋅=+=

015322,01 1,Ȗ1α1 0,Ȗ0α1α

038815,0094143,0255655,0              

425261,0034678,00 1,Ȗ1α0 0,Ȗ0α0α

0
21

1
212

1
21

0
212

 

and so on, until: 
 

( ) ( ) ( ) ( ) ( )
( )⎪⎩

⎪⎨⎧
=

=+=

001770,01α
00000338,00 1,Ȗ1α0 0,Ȗ0α0α

5

1
54

0
545  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )⎪⎩

⎪⎨⎧
=+=

=+=

000002356,01 1,Ȗ1α1 0,Ȗ0α1α

000599,00 1,Ȗ1α0 0,Ȗ0α0α
0
65

1
656

1
65

0
656

 

2. backward recursion, applying relation (5.285) 

( ) ( ) ( )
{ }
∑ ′∑ ′=

=
+

=
+

0,1

i
1t

1

0l
1tt l,lȖlȕlȕ

i

 

( ) ( ) 0  lfor  0  lȕ and 1  0ȕ ĲĲ ≠==  (initialization) 

In our example: 

( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( )[ ]

( ) ( ) ( ) ( )1 0,Ȗ1ȕ0 0,Ȗ0ȕ                            

1 0,Ȗ1 0,Ȗ1ȕ                             

0 0,Ȗ0 0,Ȗ0ȕ0ȕ0lȕ

1
1t1t

0
1t1t

1
1t

0
1t1t

1
1t

0
1t1ttt

++++

+++

+++

+=

=++

++===

 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )1 1,Ȗ1ȕ0 1,Ȗ0ȕ                            

1 1,Ȗ1 1,Ȗ1ȕ0 1,Ȗ0 1,Ȗ0ȕ1ȕ
0

1t1t
1

1t1t

1
1t

0
1t1t

1
1t

0
1t1tt

++++

++++++

+=

=+++=
 

( )
( ) ⎭⎬

⎫
⎩⎨
⎧

=

=

01ȕ
10ȕ

6

6
 initialization 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )⎪⎩

⎪⎨⎧
=+⋅=+=

=+⋅=+=

338085,00338085,011 1,Ȗ1ȕ0 1,Ȗ0ȕ1ȕ

088558,00088558,011 0,Ȗ1ȕ0 0,Ȗ0ȕ0ȕ
0
66

1
665

1
66

0
665

 

and so, until 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )⎪⎩

⎪⎨⎧
=+=

=+=

001557,01 1,Ȗ1ȕ0 1,Ȗ0ȕ1ȕ

005783,01 0,Ȗ1ȕ0 0,Ȗ0ȕ0ȕ
0
22

1
221

1
22

0
221
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With tt ȕ ,α above calculated, we can calculate log-likelihood ratio according 

with (5.283) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1ȕ 1 1, Ȗ1α0ȕ 0 0, Ȗ0α

0ȕ 0 1, Ȗ1α1ȕ 1 0,Ȗ0α
logi

t
0
t1tt

0
t1t

t
1
t1tt

1
t1t

t

−−

−−

+

+
=Λ  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

685564,0
1ȕ 1 1, Ȗ1α0ȕ 0 0, Ȗ0α

0ȕ 0 1, Ȗ1α1ȕ 1 0,Ȗ0α
lni

1
0
101

0
10

1
1
101

1
10

1 ≈
+

+
=Λ  

and so on, until 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

72990,7
1ȕ 1 1, Ȗ1α0ȕ 0 0, Ȗ0α
0ȕ 0 1, Ȗ1α1ȕ 1 0,Ȗ0α

lni

6
0
656

0
65

6
1
656

1
65

6 ≈
+

+
=Λ  

Comparing the soft outputs ( )tiΛ  to the threshold 0, we obtain the hard  

estimates: 

( ) 1 0 0 1 1 î = . 

5.11.2.5   MAX-LOG-MAP Algorithm 

MAP decoding algorithm is considered too complex for implementation in many 

applications because of the required large memory and of the large time necessary 

to calculate a numerous multiplications and exponentials.  

A solution to avoid these drawbacks of MAP is to use the logarithms of 

( ) ( ) ( )lȕ ,lα ,l,lȖ tt
i
t ′ : 

( ) ( )l,lȖl,l Ȗlog i
t

i
t ′=′                                            (5.288) 

( ) ( ) ( ) ( )
{ }

∑ ∑==
∈′ =

′+′

S il 0,1

l,lȖlα
tt

i
t1-te loglαlα log                       (5.289) 

with initial conditions ( ) ( ) 0l if ,lα and 00α 00 ≠−∞== . 

( ) ( ) ( ) ( )
{ }

∑ ∑==
∈′ =

′+ ++

S il 0,1

l,lȖlȕ
tt

1t1te loglȕlȕ log                      (5.290) 

with initial conditions ( ) ( ) 0l if ,lȕ and 00ȕ ĲĲ ≠−∞== . 

The relation (5.283) can be written as: 

( )
( ) ( ) ( )

( ) ( ) ( )∑
∑

=Λ

∈

+′+′

∈

+′+′

−

−

S

Si

l

lȕl,lȖlα

l

lȕl,lȖlα

t
t

0
t1t

t
1
t1t

e

e

log                                (5.291) 
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The above expression can be simplified using the approximation  

( ) i
n1,i

xxx
xmaxeeelog n21

=
≈+++ …                                (5.292) 

The relation (5.291) can be approximated by: 

( ) ( ) ( ) ( ) ( ) ( ) ( )⎥⎦⎤⎢⎣⎡ +′+′−⎥⎦⎤⎢⎣⎡ +′+′≅Λ −
∈

−
∈

lȕl,lȖlαmaxlȕl,lȖlαmax t
0
t1t

l
t

1
t1t

l
t

SS
i      (5.293) 

The computation of ( ) ( )lȕ and lα tt ′  in (5.293) is equivalent to the computation 

of forward and backward recursion from Viterbi algorithm, since they can be  

written as: 

( ) ( ) ( ) { }1 0, i ,l ,l ,lȖlαmaxlα i
t1t

l
t =∈⎥⎦⎤⎢⎣⎡ ′+′= −

∈
S

S
                      (5.294) 

( ) ( ) ( ) { }1 0, i ,l,l ,l ,lȖlȕmaxlȕ i
1t1t

l
t =∈′⎥⎦⎤⎢⎣⎡ ′+′= ++

∈
S

S
                  (5.295) 

For each bit, the MAX-LOG-MAP algorithm calculates two Viterbi metrics and 

takes the largest one.  

5.11.2.6   LOG-MAP Algorithm 

Using the approximation relation (5.293), MAX-LOG-MAP algorithm is not 

anymore optimal, as MAP it is. An improvement can be obtained if Jacobian algo-

rithm [13] is used.  

It is based on a better approximation of logarithm of a sum of exponentials: 

( ) ( )

( ) ( )1221

zz
21

zz

zzfcz ,zmax                      

e1logz ,zmaxeelog 1221

−+=

=⎟⎠⎞⎜⎝⎛ ++=+ −−

                   (5.296) 

where ( )12 zzfc −  is a correction function, that can be implemented using look-up 

table. 

For a sum of n exponentials, the approximation relation (5.296) can be com-

puted by a recursive relation: 

( ) ( )nn1 zzz
elogeelog +Δ=++…                            (5.297) 

with 

zzz
eee 1-n1 =++=Δ …                                  (5.298) 

such that: 

( ) ( ) ( )
( ) ( ) z-logzfcz logz,max                                

z-logfcz ,logmax  eelog

nn

nn
zz n1

+=

=Δ+Δ=++…
                 (5.299) 
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Such a recursive relation (5.299) can be used to evaluate ( )tiΛ  in relation 

(5.293). We identify zn: 

( ) ( ) ( ) { }1 0,  i and   l ,l aren  ,n  where,nȕn,nȖnαz t
i
t1tn =∈′′+′+′= − S        (5.300) 

The performance of LOG-MAP is the same with MAP algorithm, but the com-

plexity is higher than that of MAX-LOG-MAP [46]. 

5.11.2.7   Comparison of Decoding Algorithms 

A very good comparison of all decoding algorithms is made in [46]. Some of these 

ideas will be presented in what follows: 
 

• MAP, the optimal decoding algorithm, in order to calculate ( )tiΛ , for each ti , 

considers all paths in the trellis, divided in two complementation sets (one that 

has 1i t =  and the second which has 0i t = ). 

• MAX-LOG-MAP considers only two paths for each ti : the best path with 

0i t =  and the best path with 1i t = . It computes ( )tiΛ  for each paths and re-

turns its difference. 

• SOVA takes two paths for each ti : one is the ML path and the other one is the 

best path with ti  (complementary ti ) to ML path, meaning that these two 

paths are identical to those considered by MAX-LOG-MAP. 

A comparison of complexity between all these algorithms is given in [46]. 

 

Remarks 
 

– the performance of soft output algorithms cannot be done in only one itera-

tion of decoding (BER); BER is defined only for hard estimation; 

– in [46], [21] are given performance comparison of distinct decoding  

algorithms. 

5.12   Line (baseband) Codes 

Baseband (BB) is defined as the bandwidth of the message signal, without fre-

quency transform, whereas the radiofrequency (RF) bandwidth refers to the band-

width of the band pass modulation. 

Baseband codes are called also line codes, transmission modes, baseband for-

mats/wave formats. These codes where developed for digital transmission over 

telephone cables(coaxial twisted pairs) or digital recording on magnetic media(in 

the 60’s) and recently for optic fiber transmission systems. In this category are in-

cluded also the codes used on free space optics (infrared remote control), codebase 

for paper printing, magnetic and optic recording, but these one will not be  

presented on the present book. 

Line codes acts as clothes that information wears in transmission or storage in 

different media (cables, wireless, optic fibber, magnetic tape, CD, DVD, etc.) 
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The choice of a line code from a large family (line codes wardrobe) is done tak-

ing into account several aspects, which need to be appropriate to the application (it 

is analog to put a beautiful dressing for a wedding and not to take a swim suit): 
 

• signal spectrum (in fact the PSD - power spectral density): are important the 

bandwidth and the absence of the DC component. 

The presence of DC component requires DC couplings, meanwhile its absence 

allows AC couplings (transformers), the latter one ensures electrical isolation, this 

minimizing interferences. In storage, for magnetic recordings, the absence of DC 

component is also desired. 

The bandwidth of line codes need to be small compared to channel bandwidth 

to avoid ISI (intersymbol interference –see 2.8.5). 

PSD of distinct line codes is obtained as Fourier transform of the autocorrelation 

function ( )ĲR , and their graphical representation is given in [31], [39] and [49]. 

A coarse estimation of the bandwidth can be done using relation (2.32):  

1,25BM
T

1
==

•
 

it follows that narrow pulses in the encoded sequence require larger bandwidth 

and vice versa. 

• bit or symbol synchronization (timing) is done using the received signal, based 

on signal transitions from high to low or low to high levels, meaning that line 

code format providing enough transition density in the coded sequence will be 

preferred. 

• code efficiency [49], η is defined as: 

[ ]100x 
raten informatiomaximum ltheoretica

raten informatio actual
:η =                     (5.301) 

• ratio ⎟⎟⎠
⎞⎜⎜⎝

⎛••

 speed signalling

 ratedecision 
MD ; certain codes provide an increase of 

•
D  for the 

same signalling speed, so without increasing the frequency bandwidth of the 

signal 

• error performance: BER expressed as a function of SNR 

• error detection capacity: without being error control codes (as presented in 5), 

certain BB codes have features that can be used in error detection. 

• immunity to polarity inversion: same BB codes, the differential ones, are im-

mune to the accidental inversion of the wires in a pair, causing the inversion of  

“0” and “1” 

• complexity and costs of the encoding-decoding equipment 

Terminology used for these codes states that to a binary unit we assign a volt-

age or current level: mark (M) and to a binary zero we assign zero level: space(S): 

S0 M,1 →→ . 
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Differential coding is a technique used in BB coding as well as band pass 

modulation in order to obtain immunity to polarity inversion of the signal. 

The block-schemes of the differential encoder and decoder are presented in  

Fig. 5.59 

 

 

Fig. 5.59 Differential a) encoder and b) decoder;  

where:  
 

– ak – the original binary data; 

– dk – the differentially encoded data;  

– ⊕  – modulo 2 adder 

– kd′  – received differentially encoded data 

– ka′  – decoded data 

An example of differential coding is given in Table 5.17 
 

Table 5.17 Example of differential coding. 

ka   1 0 0 1 1 0 1 0 0 1 

k1kk dda =⊕ −  1 0 0 0 1 0 0 1 1 1 0 

kd′ correct polarity 1 0 0 0 1 0 0 1 1 1 0 

k1kk add ′=⊕′ −   1 0 0 1 1 0 1 0 0 1 

kd′ inverse polarity 0 1 1 1 0 1 1 0 0 0 1 

k1kk add ′=⊕′ −   1 0 0 1 1 0 1 0 0 1 

 
In differential decoding the signal is decoded pointing out the transitions, and 

not the absolute values of the signals, which allow high noise immunity. Another 

great advantage of differential coding is its insensitivity to the absolute polarity of 

the signal, meaning that an accurate decoding is possible although the polarity of a 

pair is accidentally converted. 
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Majority of BB codes can be classified in the following groups: 
 

a. non-return to zero(NRZ;NRZ-L,NRZ-M,NRZ-S) 

b. return to zero(RZ) 

c. biphase(B, BL, BM, BS, Miller) 

d. pseudoternary(AMI, twined binary: dicode NRZ, dicode RZ) 

e. substitution(BNZS,HDBn,CMI,DMI ) 

In the followings the most important BB codes will be described. 

a. NON-Return to Zero: NRZ-L, NRZ-M,NRZ-S 

• NRZ-L (Non Return to Zero Level): “1” is represented by a constant level dur-

ing the bit duration T, and “0” by another constant level during T; the code can 

be unipolar (0, A), (0, -A) or polar/antipodal signal (-A, +A); 

• NRZ-M (Non Return to Zero Mark) for a “1” there is a transition at the begin-

ning of the bit interval: for “0” there is not level change; 

• NRZ-S (Non Return to Zero Space): for a “0” there is a transition at the begin-

ning of the bit interval; for “1” there is not level change; 

• NRZ-M and NRZ-S are differential versions of NRZ-L and have the advan-

tages of any differential code over NRZ-L; 

– if the “0”, and “1” are equally probable in the signal and the signalling is 

polar (+A, -A), NRZ has no DC component; if the signal is unipolar (0,A), 

DC component is A/2. 

– applications of NRZ codes: NRZ-L is the basic code for digital logic (the 

terminals, for example); NRZ-M-is used in magnetic tape recording; 

– the lack of transitions for long strings of “0”  or “1” means poor bit syn-

chronization capacity and therefore, NRZ codes have limited applications 

in telecommunications. 

b. Return to Zero (RZ): for a “1” a positive pulse of T/2 width is transmitted, thus 

the name of Return to Zero; for a “0”, zero level is transmitted during T, the bit 

duration, in a unipolar RZ code, or a negative pulse of T/2 width is transmitted 

for a polar RZ code 

– if “0”and “1” are equally probable, no DC component for a polar RZ and 

A/4 DC component for unipolar RZ; 

– synchronization capacity is good for polar RZ (there are two transitions per 

bit) but poor for unipolar RZ, when for long strings of “0” there are not 

transitions; 

– the pulse duration being T/2, and not T as for NRZ codes it means that the 

bandwidth of RZ codes is doubled compared to NRZ 

c. Biphase codes  

• B-L (Biphase Level-Manchester): a ”0” is represented by 01 and a ”1” by 10; it 

means that each bit contains two states of T/2 duration. At each bit the signal 

phase changes with π, therefore the name biphase. This code is known also as 

Manchester code; 
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• B-M (Biphase Mark): there is a transition at the beginning of each bit. For”1” 

the second transition occurs after T/2 and for “0”, there is not the second transi-

tion until the beginning of the next bit. 

• B-S (Biphase Space): there is a transition at the beginning of each bit. For “0” 

the second transition occurs after T/2 and for “1” there is not the second transi-

tion until the beginning of the next bit. 

• Differential BL: a transition takes place in the middle of each bit regardless it is 

0 or 1. For “0” the first transition takes place at the beginning of the bit and the 

second occurs after T/2. For “1” the unique transition is at T/2. 

• Delay Modulation (Miller code) is a variety of biphase code; for “1” a transi-

tion occurs at T/2. For “0”, a transition takes place at the end of the bit if it is 

followed by a “0”; if a “1” comes next, there is no transition at the end of the 

bit. As shows in Fig 5.61, Miller code is obtained from BL (Manchester) by 

suppressing each second transition. For Miller code there exist at least one tran-

sition every 2 bits (corresponding to the most unfavorable sequence:101) and 

there is never more than one transition per bit, which means that it has a good 

bit synchronization capacity and very small DC component, making from it an 

excellent code for magnetic recordings [20]. 

Main features of biphase codes: 

– B-M and B-S are differential versions of B-L 

– all the three biphase codes have at least one transition in a bit duration (T), 

this providing a very good bit synchronization; 

– all the three biphase codes have not DC component if the signalling is polar; 

– applications: magnetic recording, optical and satellite communications. 

d. Pseudo ternary line codes 

These binary codes are using three levels: +A, -A and 0, which explains the name 

of pseudo ternary (in telecommunications they are called often bipolar codes).  

• AMI (Alternate Mark Inversion) is the most important code of this group. A “0” 

is encoded with zero level, during the whole bit duration. A “1” is encoded with 

level +A or –A, alternatively, from where the name of alternate mark inversion. 

AMI can be encoded both in NRZ and RZ forms; however the most used form 

is RZ. AMI has no DC component; identifying its use in digital telephony with 

scrambling. 

– scramblers are pseudo noise sequences, generated with LFSR (see 5.8.5) 

used to ensure p(0) ≈ p(1) in any binary  sequence, this improving the bit 

synchronization  capacity of the signal and subsequently eliminating the 

main disadvantage; 

– redundancy in the waveform allows the possibility to monitor the quality 

of the line without knowing the nature of the traffic being transmitted. 

Since the “1”s alternate as polarity it means that any violation of this rule 

implies an error. In this way, the line code, without being properly an error 

control code (see cap.5), acts for error detection. The numbers of bipolar 
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violation are counted and if the frequency of their occurrence exceeds 

some threshold, an alarm is set. This error detection is done in the traffic 

supervising the line code 

– AMI has been widely used in digital coaxial or pair cable systems (in early 

T1-digital multiplex of 1,544 Mbps and E1-European primary multiplex of 

2,048Mbps) [4], [9]; 

• Dicode (twinned binary) [11], [49] are related to differential coding. If the data 

sequence to be encoded is {ak}, a dicode is obtained encoding AMI the se-

quence {dk}, where dk=ak-1-ak. 

 
Example: {ak}={ 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 1 } and a0=1 

        {dk}={ 0 , 1 , -1 , 1 , -1 , 1 , 0 , 0 , 0 , -1 , 0 , 1 , 0 , 0 , 0 , -1 } 

– Dicode can be represented in NRZ or RZ (Fig. 5.61) 

e. Substitution line codes 

AMI code, despite its great advantages: no DC component and error detection 

capacity has a great draw-back: without scrambler, bit synchronization capacity is 

very poor; long strings of “0”s, which is very frequent in telephony, means no bit 

timing recovery. In order to avoid this major disadvantages without scrambling 

there are two popular zero substitution codes: binary N-zero substitution (BNZS) 

and high density bipolar n( HDB n) codes. 

 

– Binary N-Zero Substitution Codes (BNZS), were proposed by V.I.Johannes 

in 1969 [25]. It replaces a string of N zeros in AMI format with a special 

N-bit waveform with at least one bipolar violation. Thus density of pulses 

is increased while the original data are obtained recognizing the bipolar 

violation and replacing them at receiver with N zeros. 

Example: B3ZS, a code of three zero substitution, used in DS-3 signal interface 

in North America standard and in LD-4 coaxial transmission system in Canada [4]. 

 

0 0 0 → 000V, where V means bipolar violation 

→ B0V, where B means a single pulse with bipolar alternation 

 

In both substitution, the bipolar violation occurs in the last position of the three 

zeros replaced by the code, and this position is easily identified. The decision to 

substitute with 00V or B0V is made according to the number of bipolar pulses (B) 

transmitted since the last substitution: 

 

• if odd  → 0 0 V 

• if even  → B 0 V 
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In this way the encoded signal has an odd number of bipolar violation. Also, 

bipolar violation alternate in polarity, so the DC component is missing. 

An even number of bipolar pulses between bipolar violations occurs only as a 

result of channel error. 

Other BNZS used in telephony are: B6ZS [4], B8ZS [4]. 

• HDBn (High Density Bipolar n) was proposed by A.Croisier [11] in 1970. 

These codes limit the number of consecutive zeros to n, replacing the (n+1) 

consecutive zeros by a sequence with bipolar violation. 

 

Example HDB-3: 
 

• 0000 → 0 0 0 V if m is odd 

• 0000 → B 0 0 V if m is even 

where m represents the number of consecutive marks since the last substitution. 

HDB3 is used in 2.048Mbps, 8.448Mbps and 34.368 Mbps multiplex within the 

European digital hierarchy [9]. 

In optical communication systems a symbol is represented by the intensity of 

the light given by the optical source, the laser diode. This is why a ternary code (as 

AMI), can not be used. A solution to avoid this difficulty was to replace the zero 

level of AMI with two-level waveforms. 
 

• Coded Mark Inversion (CMI), proposed by Takasaki [44] in 1976, uses alter-

nate signalling (A, -A) for “1”s in NRZ format, and for “0” a sequence 01. CMI 

enhances the transition density and thus the timing capacity and based on the 

alternation of “1”s, has error detection capacity through the monitoring of po-

larity violation (as AMI). It is used in the 139.246 Mbps multiplex within the 

European digital hierarchy [9].  

• Differential Mode Inversion Code (DMI), proposed also by Takasaki [44] is 

similar to CMI for coding “1”s and for “0”s differ in such a way to avoid pulses 

larger than T: 0->01 or 10. 

f. Multilevel Signalling 

Many of the baseband codes presented so far are binary, using two-levels 

(
••

= MD ). There are applications with limited bandwidth and higher data rates re-

quirements. Data rate can be enhanced increasing the number of signalling levels 

(increasing the alphabet m>2) while keeping the same signalling rate 
T

1
M =
•

. 

Data rate (
•
D ) of a multilevel system is (2.27): 

mlog
T

1
mlogMD 22 =⋅=

••
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In this case the moment rate 
•

M  is known as symbol rate. An example of qua-

ternary signalling: m=4 is achieved by 2 bits per signal interval (T): 0 0 → -3A, 0 

1 → -A, 10 → +A  and  1 1 → + 3 A. 

Error performance of line codes. Each application requires a minimum BER at 

the user. In transmission systems, if this value is obtained at lower SNR, the re-

generative repeaters can be spaced farther, this reducing installation and mainte-

nance costs [4]. 

A thorough analysis and demonstrations of BER for most line codes can be 

found in [49]. 

Further we present a short description of signal detection at receiver. Basiscs of 

signal detection are found in Appendix C. For binary symbols, detection means to 

take decision of which signal was transmitted, by comparing at the appropriate 

time (at T/2, T, according to the type of decision) the measurement with a thresh-

old located halfway between the two levels (0 in polar case, A/2 for unipolar and 

0, +A/2, -A/2 for bipolar signalling). The BER, after detections is a function of 

SNR. 

 

 

0μ

)p(r/s1 )p(r/s0

)/sP(D 10
)/sP(D 01

+⋅== )/sP(DPPBER 010e

Q(SNR))/sP(DP 101 =⋅+

 

Fig. 5.60 Signal detection: a) block-scheme and b) illustration of BER 

 

 

 



382 5   Channel Coding

 

The significance of the notations in Fig. 5.60 is: 
 

– ( ) ( )
( ) symbolsbinary   the- 
ts

ts
ts

0

1
i ⎩⎨

⎧
=  

– n(t)=noise, assumed AWGN (Additive White Gaussian Noise) 

– r(t) = si(t) + n(t) – received signal 

– Eb = energy per bit 

– N0 = spectral density power of AWGN 

– V
2
 = power of the signal at the decision block (comparator) 

– 2
nı  = power of the noise (R is assumed unitary) 

– p(r/si) = probability density function of r/si 

– D0, D1 = decision 0ŝ , respectively 1ŝ  

– 0ŝ , 1ŝ = estimated binary signals after decision 

– Pe = bit error rate (BER) 

– Q = erfc (see Appendix C) 

The optimal receiver for binary signals is using a continuous observation and can 

be implemented using a correlated or a matched filter [27], [45] and (Appendix C). 

Polar signalling ( A, -A) is optimal because it maximizes the SNR; in this case 

the two signals are identical, but opposite(antipodal signalling). For this reason it 

is used often as basis for comparisons. The line codes with polar signalling are 

NRZ and biphase. 

Unipolar signalling codes use the same detector as for polar signal detection. 

The only difference is that the decision threshold is moved from 0 to A/2. To keep 

the same BER as in polar case, the power of the signal need to be doubled, mean-

ing that unipolar signalling is 3dB less with respect to polar performance (see  

Appendix C). 

Bipolar signalling (AMI and derived: decode, BNZS, HDBn) from error per-

formance point of view is identical to unipolar code. During any interval the re-

ceiver must decide between 0 and ±A/2. A slightly higher BER than in unipolar 

signalling occurs because both positive and negative noise may cause an errone-

ous threshold, crossing when a zero-level signal is transmitted. A graphical repre-

sentation of BER for these three types of signalling is given in Fig. 4.25, pag. 198 

from [4]. 

Multilevel signalling requires the same bandwidth as binary systems (
T

1
M =
•

 is 

the same), but uses m > 2 levels instead of two. The penalty is the increase of sig-

nal power in order to keep the same BER (see quaternary signalling Fig.5.61, 

which uses ±3A levels in addition). A graphical representation is given in Fig. 

4.26, pag.201 from [4]. 
 

Comparative analysis of line codes 
 

Comparison of line codes is made having in mind the aspects mentioned at the  

beginning of this chapter: 
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• signal spectrum 

– no DC component (advantage): biphase codes, AMI, dicode, HDB-n, 

BNZS, CMI, DMI 

– with DC component (drawback): NRZ, RZ 

– bandwidth in increasing order: multilevel coding, Miller, NRZ, biphase, 

RZ, dicode, CMI, DMI, BNZS 

• bit synchronization capacity:  

– good: biphase codes, BNZS, CMI, DMI 

– poor: NRZ, RZ, AMI 

• code efficiency (η), defined by (5.301);  

– NRZ: 1 bit is encoded into 1 binary symbol 

(100%) 1
2log

2logη
2

2
NRZ ==  

– Manchester:1 bit is encoded into 2 binary symbols 

(50%) 0,5  
2

1

2log2

2logη
2

2
M ==

⋅
=  

– AMI:1 bit is encoded into 1 ternary symbol 

(63%) 0,63  
59,1

1

3log

2logη
2

2
AMI ≈==  

• error performance, as presented before, is the best for polar (antipodal) codes, 

than follow unipolar codes and bipolar codes. 

• error detection capacity is possible for AMI, HDBn, CMI, and DMI, based on 

the violation of encoding laws, without being properly error control codes. 

• immunity to polarity inversion is given by all differential codes. 

 

Example 5.38 
Encode in all presented base-band codes the sequence:  

 

101010100001100001 

 

The encoding is presented in Fig. 5.61. 
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Fig. 5.61 Examples of Base Band encoding 
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Appendix A: Algebra Elements 

A1   Composition Laws 

A1.1   Compositions Law Elements 

Let us consider M a non empty set. An application ϕ defined on the Cartesian 

product M x M with values in M: 

( ) ( )yx,yx, Ȃ,Ȃ x Ȃ ϕ→→                                    (A.1) 

is called composition law on M; it defines the effective law by which to any or-

dered pair (x, y) of M elements is associated a unique element y)(x,ϕ , which be-

longs to the set M as well. 

The mathematical operation in such a law can be noted in different ways: 

0 , , , ∗−+  etc. We underline the fact that the operations may have no link with the 

addition or the multiplication of numbers. 

A1.2   Stable Part 

Let us consider M a set for which a composition law is defined and H a subset of 

M. The set H is a stable part of M related to the composition law, or is closed to-

wards that law if: 

Hy)(x,:Hyx, ∈∈∀ ϕ  

where ϕ  is the composition law. 

 

Example 

• The set Z of integer numbers is a stable part of the real numbers set R towards 

addition and multiplication. 

• The natural numbers set N is not a stable part of the real numbers set R towards 

subtraction. 

A1.3   Properties 

The notion of composition law presents a high degree of generality by the fact that 

the elements nature upon which we act and the effective way in which we act are 

ignored. 
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The study of composition laws based only on their definition has poor results. 

The idea of studying composition laws with certain properties proved to be useful, 

and these properties will be presented further on. For the future, we will assume 

the fulfilment of the law: 

( ) yxyx, Ȃ,Ȃ x Ȃ ∗→→  

Associativity: the law is associative if for Mzy,x, ∈∀ : 

z)(yxzy)(x ∗∗=∗∗                                           (A.2) 

If the law is additive, we have: 

z)(yxzy)(x ++=++  

and if it is multiplicative, we have: 

( ) ( )yxxzxy =  

Commutativity: the law is commutative if for Mzy,x, ∈∀ : 

xyyx ∗=∗                                                   (A.3) 

Neutral element: the element Me∈ is called neutral element if: 

xexxe =∗=∗ , Mx ∈∀                                       (A.4) 

It can be demonstrated that if it exists, then it is unique. 

For real numbers, the neutral element is 0 in addition and 1 in multiplication 

and we have: 

xx11    xx;00x =⋅=⋅+=+  

Symmetrical element: an element Mx ∈  has a symmetrical element referred to 

the composition law ∗ , if there is an  Mx ∈′  such that: 

exxxx =′∗=∗′                                             (A.5) 

where e is the neutral element. 

The element x′  is the symmetrical (with respect to x) of x. 

From the operation table (a table with n rows and n columns for a set M with n 

elements, we can easily deduce whether the law is commutative, whether it has 

neutral element or whether it has symmetrical element. Thus: 

 

• if the table is symmetrical to the main diagonal, the law is commutative 

• if the line of an element is identical with the title line, the element is neutral one 

• if the line of an element contains the neutral element, the symmetrical of that 

element is to be found on the title line on that column where the neutral element 

belongs. 
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Example 

Be the operation table: 
 

* 1 2 3 4 

1 1 2 3 4 

2 2 4 1 3 

3 3 1 4 2 

4 4 3 2 1 

 

– neutral element is 1 

– operation is commutative 

– symmetrical of 2 is 3 and so on. 

A2   Modular Arithmetic 

In technical applications, the necessity of grouping integer numbers in setss accord-

ing to remainders obtained by division to a natural number n, frequently occurs. 

Thus, it is known that for any Z∈a , there is a q, Z∈r , uniquely determined, 

so that: 

rqna +⋅= ,  1-n ..., 1, 0,r =                                      (A.6) 

The set of numbers divisible to n, contains the numbers which have the remain-

ders 1, …, the remainder n-1, and they are noted with 1n̂...,1̂,0̂ − ; they are giving 

the congruence modulo n classes, denoted with nZ . 

The addition and multiplication are usually noted with ⊕  and ⊗ . The addition 

and multiplication are done as in regular arithmetic. 

 

Example 

For 5Z , we have: 
 

⊕ 0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 0 

2 2 3 4 0 1 

3 3 4 0 1 2 

4 4 0 1 2 3 

 

⊗ 0 1 2 3 4 

0 0 1 2 3 4 

1 1 1 2 3 4 

2 2 2 4 1 3 

3 3 3 1 4 2 

4 4 4 3 2 1 
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For subtraction, the additive inverse is added: 31242 =+=− , because the in-

verse of 4 is 1. It is similar for division: 4223/123/2 =⋅=⋅= , because the 

multiplicative inverse of 3 is 2. 

 

Remark 

These procedures will be used for more general sets than the integer numbers. 

A3   Algebraic Structures 

By algebraic structure, we understand a non zero set M characterized by one or 

more composition laws and which satisfy several properties, from the above men-

tioned ones, known as structure axioms. For the problems that we are interested in, 

we will used two structures, one with a composition law called group and the 

other one with two composition laws, called field. Some other related structures 

will be mentioned too. 

A3.1   Group 

A joint ( )∗G, formed by a non empty set G and with a composition law on G: 

Gy  y with x,xy)(x,  G,GG ∈∗→→×  

is called group if the following axioms are met: 
 

• associativity: z)(yxzy)(x ∗∗=∗∗ , Gzy,x, ∈∀  

• neutral element: 

Gxxexxe,Ge ∈∀=∗=∗∈∃                                 (A.7) 

• symmetrical element; when the commutativity axiom is valid as well: 

G y   x,x,yyx ∈∀∗=∗ the group is called commutative or Abelian group. 
 

If G has a finite number of elements, the group is called finite group of order m, 

where m represents the elements number. 
 

Remarks 

1. In a group, we have the simplification rules to the right and to the left: 

cbcaba =⇒∗=∗                                          (A.8) 

cbacab =⇒∗=∗                                          (A.9) 

2. If in a group ( )∗G, , there is a set GH ⊂ , so that ( )∗H,  should at its turn form 

a group, this is called subgroup of G, having the same neutral element and in-

verse as G. 

3. If the structure contains only the associative axiom and the neutral element, it is 

called monoid. 
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Example 
The integer numbers form a group related to addition, but not related to multipli-

cation, because the inverse of integer k is /k1 , which is not an integer for 1k ≠ . 

The congruence modulo any n classes, are Abelian groups related to addition, 

and the ones related to multiplication are not Abelian groups unless the module n 

is prime, as we see in table for 5Z . When the module is not prime, the neutral 

element is 1 as well, but there are elements that do not have symmetrical number, 

for example element 2 in 4Z : 

 

⊗ 1 2 3 

1 1 2 3 

2 2 0 2 

3 3 2 1 
 

A3.2   Field 

A non empty set A with two composition laws (conventionally named addition 

and multiplication), and symbolised with +  and •  , is called field if: 
 

• ( )+Α,  is an Abelian group 

• ( )•Α ,1 is an  Abelian group, { }0ǹ/ǹ1 =  where “0” is the neutral element of 

( )+Α,  

• Distributivity of multiplication related to addition: xzxyz)x(y +=+        

Remarks: 

• if ( )•Α ,1  is a group, without being Abelian, the structure is called body; so the 

field is a commutative body. If ( )•Α ,1 is monoid only, then the structure is ring.  

• the congruence modulo p classes, with p prime, form a ring. Rings may contain 

divisors of 0, so non zero elements with zero product. In the multiplication ex-

ample 4Z  we have 022 =∗ , so 2 is a divisor of 0. These divisors of 0 do not 

appear in bodies. 

A3.3   Galois Field 

A field can have a finite number m of elements in A. In this case, the field is 

called m degree finite field. The minimum number of elements is 2, namely the 

neutral elements of the two operations, so with the additive and multiplicative no-

tations: 0 and 1. In this case, the second group contains a single element, the unit 

element 1. The operation tables for both elements are in 2Z : 

 

⊕ 0 1    ⊗ 0 1 

0 0 1    0 0 0 

1 1 0    1 0 1 
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This is the binary field, noted with GF(2), a very used one in digital processing. 

If p is a prime number, pZ  is a field, because }1-p ..., 2, 1,{ form a group with 

modulo p multiplication. 

So the set }1-p ..., 2, 1,{ forms a field related to modulo p addition and multipli-

cation. 

This field is called prime field and is noted by GF(p). 

There is a generalisation which says that, for each positive integer m, we should 

extend the previous field into a field with p
m
 elements, called the extension of the 

field GF(p), noted by GF(
mp ). 

Finite fields are also called Galois fields, which justifies the initials of the nota-

tion GF (Galois Field). 

A great part of the algebraic coding theory is built around finite fields. We will 

examine some of the basic structures of these fields, their arithmetic, as well as the 

field construction and extension, starting from prime fields.  

A.3.3.1   Field Characteristic 

We consider the finite field with q elements GF(q), where q is a natural number. 

If 1 is the neutral element for addition, be the summations: 

k terms

1111,2,111 1,1
k

1i

2

1i

1

1i ↓===
+++=∑=+=∑=∑ ……  

As the field is closed with respect to addition, these summations must be ele-

ments of the field. 

The field having a finite number of elements, these summations cannot all be 

distinct, so they must repeat somewhere; there are two integers m and n ( )nm < , 

so that 

∑ =∑⇒∑=
=

−

==

m

1i

mn

1i

n

1i

0111  

There is the smallest integer Ȝ  so that 01
Ȝ

1i

=∑
=

. This integer is called the char-

acteristic of the field GF(q).  

The characteristic of the binary field GF(2) is 2, because the smallest Ȝ  for 

which         

01
Ȝ

1i

=∑
=

 is 2, meaning 011 =+  

The characteristic of the prime field GF(p) is p. It results that: 
 

• the characteristic of a finite field is a prime number 

• for n, Ȝm <  ,  ∑
=

n

1i

1 ≠ ∑
=

m

1i

1  
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• the summations: 1, ∑
=

2

1i

1 , ∑
=

3

1i

1 , . . . , ∑−
=

1Ȝ

1i

1  , 01
Ȝ

1i

=∑
=

 : are Ȝ  distinct elements in 

GF(q), which form a field with Ȝ  elements GF( Ȝ ), called subfield of GF(q). 

Subsequently, any finite field GF(q) of characteristic Ȝ  contains a subfield 

with Ȝ  elements and it can be shown that if Ȝq ≠  then q is an exponent of Ȝ . 

A.3.3.2   Order of an Element 

We proceed in a similar manner for multiplication: if a is a non zero element in 

GF(q), the smallest positive integer, n, so that 1an =  gives the order of the  

element a. 

This means that 1a , . . . ,a  a,
n2 = are all distinct, so they form a multiplicative 

group in GF(q). 

A group is called cyclic group if it contains an element whose successive expo-

nents should give all the elements of the group. If in the multiplicative group, 

there are q-1 elements, we have 1a 1-q = for any element, so the order n of the 

group divides 1-q . 

In a finite field GF(q) an element a is called primitive element if its order is 

1-q . The exponents of such an element generate all the non zero elements of 

GF(q). Any finite field has a primitive element. 

 

Example 

Let us consider the field GF(5), we have: 
 

12,32,42,22 4321 ==== so 2 is primitive 

13,23,43,33 4321 ==== so 3 is primitive 

14,44 21 == , so 4 is not primitive. 

A4   Arithmetics of Binary Fields 

We may build a power of p. We will use only binary codes in GF(2) or in the ex-

tension GF( m2 ). Solving equations and equation systems in 2Z  is not a problem, 

as 011 =+ , so 11 −= . 

The calculations with polynomials in GF(2) are simple too, as the coefficients 

are only 0 and 1. 

The first degree polynomials are X and 1X + , the second degree ones are 
2222 XX1,XX,X1  ,X ++++ . Generally, there are n2  polynomials of degree 

n, the general form of the n degree polynomial being: 
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n
n

1n
1-n10 ΧfΧf...Χff ++++ − , meaning n coefficients, so that: 

n0
n

1n
n

n
n 2C...CC =+++ −                                         (A.10) 

We notice that a polynomial is divisible by 1+Χ  only if it has an even number 

of non zero terms. An m degree polynomial is irreducible polynomial on GF(2) 

only if it does not have any divisor with a smaller degree than m, but bigger than 

zero. From the four second degree polynomials, only the last one is irreducible; 

the others being divided by X or 1+Χ . The polynomial 1XX3 ++  is irreducible, 

as it does not have roots 0 or 1, it cannot have a second degree divisor; 
32 XX1 ++  is also irreducible. 

We present further 4th and 5th degree irreducible polynomials.  

The polynomial 1XX4 ++  is not divided by X or 1+Χ , so it does not have 

first degree factors. It is obvious that it is not divided by
 2X  either. If it should be 

divided by 12 +Χ , it should be zero for 12 =Χ , which, by replacement, leads to 

0X1X1 ≠=++ ; it cannot be divided by XΧ2 + either, as this one is 1)X(X + . 

Finally, when we divide it by  1X2 ++Χ  we find the remainder 1.There is no 

need for us to look for 3rd degree divisors, because then it should also have first 

degree divisors. So the polynomial 1XX4 ++  is irreducible. 

There is a theorem stating that any irreducible polynomial on GF(2) of degree 

m divides 1X 12m

+− . 

We can easily check whether the polynomial 1XX3 ++ divides 

1X1X 7123

+=+− ; as 1XX3 =+  we have 1XX 26 += and 

1X1XXXX 37 =++=+= , so 01X7 =+  

An irreducible polynomial p(X) of degree m is primitive, if the smallest positive 

integer n for which p(X) divides 1X n +  is 12m − . In other words, p(X) must be 

the simultaneous solution of the binomial equations 01X 12m

=+−  and 

01Xn =+ , with 12n m −≤ . This does not occur except if n is a proper divisor of  

12m − , as we shall show further on. If 12m −  is prime, it does not have own divi-

sors (except 12m − and 1), so any irreducible polynomial is primitive as well. 

Thus we may see that 1XX4 ++ divides 1X15 + , but it does not divide any 

polynomial 1Xn + , with 15n1 ≤≤ , so it is primitive. The irreducible polynomial 

1XXXX 234 ++++  is not primitive because it divides 1X5 + . But if 5m =  , 

we have 31125 =− , which is prime number, so all irreducible polynomials of 5th 

degree are primitive as well. 

For a certain m there are several primitive polynomials. Sometimes (for cod-

ing), the tables mention only one that has the smallest number of terms. 
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We will demonstrate the affirmation that the binomial equations  01Xm =+  

and 01Xn =+  with nm < , do not have common roots unless m divides n. In 

fact, it is known that the m degree roots, n respectively, of the unit are: 

m

2kπ
sini

m

2kπ
cosX ⋅+= , 1m0,k −=                             (A.11) 

m

π2k
sini

m

π2k
cosX 11

1 ⋅+= , 1m0,k1 −=                          (A.12) 

In order to have a common root, besides 1=Χ , we should have: 

n

mk
k,

m

π2k

m

2kπ 11 ⋅
=→=                                    (A.13) 

But k∈Z, which is possible only if m and n have a common divisor noted d. 

The common roots are the roots of the binomial equation 01Xd =+ , the other 

ones are distinct, d being the biggest common divisor of m and n. 

In order to find the irreducible polynomials related to a polynomial, these ones 

must be irreducible in the modulo-two arithmetic, so they should not have a divi-

sor smaller than them. 

The fist degree irreducible polynomials are X and 1+Χ . In order that a polyno-

mial be not divisible to X, the free term must be 1, and in order not to be divisible to 

1+Χ , it should have an odd number of terms. 

For the 2nd degree polynomials, the only irreducible one is 1X2 ++Χ . 

For the 3rd, 4th and 5th degree polynomials, we shall take into account the pre-

vious notes and we shall look for those polynomials which are not divided by 

1X2 ++Χ . 

The remainder of the division is obtained replacing in the polynomial: 

1X2 ++Χ ,  13 =Χ , XΧ4 = , etc. 

For the 3rd degree irreducible polynomials, which should divide:  

1ȕXαΧX 23 +++ , one of the coefficients must be zero, otherwise the total num-

ber of terms would be even. Similarly, taking into account the previous notes, the 

remainder of the polynomial divided by 1X2 ++Χ  is: αȕ)X(α ++ . 

We will have the following table: 
 

α β (α+β)X+α Polynomial Irreducible Primitive 

1 0 X+1≠0 X
3
+X

2
+1 YES YES 

0 1 X≠0 X
3
+X+1 YES YES 

 

For each of the two cases, as the remainder is non zero, the polynomial is irre-

ducible. It is obtained by replacing in the general form the corresponding values of 

the coefficients α and β. 
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For the 4th degree irreducible polynomials, we note the polynomial by: 

1ȖXȕXαΧX 234 ++++ .  

In order to have the total number of terms odd, all coefficients, or only one of 

them, must equal 1. As the remainder of the division by 1X2 ++Χ  is: 

1ȕαȖ)ȕX(1 +++++ , we have the following table: 

 

α β γ X(1+β+γ)+α+β+1 Polynomial Irreducible Primitive 

1 1 1 X+1≠0 X
4
+X

3
+X

2
+X+1 YES NO 

1 0 0 X≠0 X
4
+X

3
+1 YES YES 

0 1 0 X•2+2= 0 
X

4
+X

2
+1 =  

(X
2
+X+1)

2
 

NO NO 

0 0 1 X≠0 X
4
+X+1 YES YES 

 

The first and the third are not primitive, as they divide 1X5 −  and 1X3 − , re-

spectively, with a lower degree than 1X15 − . Indeed, 3 and 5 are divisors of 15.  

Further on, we will present an important property of the polynomials on GF(2): 

( )[ ] ( )22
XfXf =                                              (A.14) 

Proof 

Be n
n10 X...fXfff(X) ++= , we will have: 

,)f(X)(Xf...)(XfXffX...fXff(X)f 2n2
n

22
2

2
10

2n2
n

22
1

2
0

2 =++++=++=   

as 011 =+  and i
2
i ff = . 

A5   Construction of Galois Fields GF(2
m

) 

We want to set up a Galois field with m2  elements ( )1m >  in the binary field 

GF(2), starting from its elements 0, 1 with the help of a new symbol α, as follows: 

jiijji

  timesj

j2  ,  ,,

  ,    ,  , ,

+=⋅=⋅⋅⋅⋅=⋅=

=⋅=⋅=⋅=⋅=⋅=⋅=⋅

αααααααααααα

α1αα10α011100110000

�
�	� ……                  (A.15) 

We will consider the set: 

{ } . . . , , . . . , , , F jαα10=                                         (A.16) 

Be the set F={0, 1, α,…, α
j
,…} to contain m2  elements and to be closed re-

lated to the above multiplication. Be p(X) a primitive polynomial of degree m with 

coefficients in GF(2). We suppose that ( ) 0p =α  . As p(X)  divides: 1X 12m

+−   
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( ) ( ) ( )XpXq1X  :Xq 12m

=+∃ −                                  (A.17) 

Replacing X by α in the relationship (A.17), we will obtain: 

( ) ( ) 0pq112m

=⋅=+− ααα                                     (A.18) 

so: 

112m

=−α                                                (A.19) 

With the condition ( ) 0p =α , the set F becomes finite and will contain the  

elements: 

⎭⎬
⎫

⎩⎨
⎧= −∗ 222 m

F ααα10 "                             (A.20) 

The non zero elements of *F are closed to the previously defined multiplica-

tion, which is easily demonstrated as follows: 

Be  12ji  if    1;2   j  i,      ,F   , mmji −>+−<∈ ∗αα  we have: 

( ) 12  ,  r,12ji mr1)(2jijim m

−<=+==⋅+−=+ −+ rαrαααα           (A.21) 

The set F is thus closed with respect to multiplication. In order that this set to 

be field, it needs to fulfil the field axioms.  

From (A.15) and (A.16), we can see that the multiplication is commutative and 

associative having the neutral element 1. The inverse of α
i
 is i1)(2m −−α . 

The elements 
222 m

 , ,,
−ααα1  being distinct, they determine a group with the 

operation •. 

We will further define the addition operation "+" on *F , so that the elements 

should form a group with the operation "+". 

In order to facilitate the definition, we will first express the elements of the set 
*F  with the help of polynomials, checking the group axioms. 

Be p(X) a primitive polynomial of degree m and  12i0 m −≤≤ , where i is the 

degree of a polynomial iX . We divide the polynomial by p(X): 

( ) ( ) ( )ΧaΧpΧqΧ ii
i += , 1madeg i −≤                            (A.22) 

The form of the remainder ai(X) is: 

( ) ( )
1m

1mi1i0ii Χa...ΧaaΧa
−

−+++=  
                             (A.23) 

Since iX  and p(X) are relatively prime (from the definition of primitive poly-

nomials), we have: 

( ) 0ai ≠Χ                                                  (A.24) 
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For 12j  ,i0 m −<≤  and ji ≠ , we can show that: ( ) ( )ΧaΧa ji ≠ . If they should 

be equal: 

( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] ( )Xp XqXqXaXaXp XqXqXX jijiji
ji +=+++=+       (A.25) 

It results that p(X) should divide ( )i-jiji X1XXX +=+ . 

Since p(X) and iX  are relatively prime, p(X) should divide i-jX1+ , which 

contradicts the definition of the prime polynomial p(X), not to divide any polyno-

mial with a smaller degree than 12m − , or 12ij m −≤− . The hypothesis is fake, 

so for any 12j  ,i0 m −<≤  and ji ≠   we must have: 

( ) ( )ΧaΧa ji ≠                                            (A.26) 

For 22 ,1, 0,
m −… , we obtain 12m −  non zero distinct polynomials ai(X) of 

degree m-1 or smaller. 

Replacing X by α, in the relation (A.22), and taking into account the fact that 

( ) 0αp =  , we obtain: 

( ) ( )
1m

1mi1i0ii
i

a...aaa
−

−+++== αααα                       (A.27) 

The 12m −  non zero elements
22210 m

  . . .  ,   ,  ,
−αααα of *F  may be repre-

sented by 12m −  distinct non zero polynomials over GF(2) of degree (m – 1) or 

smaller. The 0 element in *F  may be represented by the null polynomial. 

In the following, we will define addition “+” on *F : 

000 =+                                                (A.28) 

and for 12j  ,i0 m −<≤  

iii α0αα0 =+=+                                        (A.29) 

( ) ( )
1m

1)j(m1mi1j1i0j0i
ji

)a(a...)a(aaa
−

−− ++++++=+ αααα         (A.30) 

the additions jeie aa +  being modulo-two summations. 

From above, for ji = , it results 0ii =+ αα  and for ji ≠ , we have: 

( ) ( )
1m

1)j(m1mi1j1i0j0i )a(a...)a(aaa
−

−− ++++++ αα , non zero.  

The relation (A.29) must be the polynomial expression for a certain 
kα  in *F . 

So the set F is closed to addition operation “+”, previously defined. 
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We can immediately check that *F  is a commutative group for “+” operation. 

We notice that 0 is the additive identity; the addition modulo two being commuta-

tive and associative, the same thing happens for F
*
. From (A.29) for ji =  we no-

tice that the additive inverse (the opposite) is the element itself in *F . 

It was shown that ⎭⎬
⎫

⎩⎨
⎧= −∗ 222 m

  . . .           F ααα10  is a commutative group for 

addition “+” and that the non zero elements in *F  form a commutative group for 

multiplication “•”. Using the polynomial representation for the elements in *F  and 

taking into account the fact that the polynomial multiplication satisfies the law of 

distributivity related to addition, it is easily shown that multiplication in *F  is dis-

tributive towards to addition in *F . 

So, the set *F  is a Galois field with m2  elements, GF )2( m . All the addition 

and multiplication operations defined in *F =GF )2( m  are done modulo two. It is 

thus noticed that (0, 1) form a subfield of GF )2( m , so GF(2) is a subfield of 

GF )2( m , the first one being called the basic field of GF )2( m . The characteristic 

of GF )2( m is 2.  

When constructing GF )2( m from GF(2), we have developed two representa-

tions for the non zero elements in GF )2( m , an exponential representation and a 

polynomial one. The first one is convenient for multiplication, and the second one, 

for addition. There is also a third representation, matrix-type, as the following  

examples will show. 

 

Remarks 

In determining GF )2( m , we act as follows: 
 

• we set the degree m of the primitive polynomial p(X) 

• we calculate 22m − , which will give the maximum number of powers of α ob-

tained from the primitive polynomial, after which this one is repeated 

112m

=−α  

• from the equation ( ) 0p =α we obtain mα , after which any exponent is obtained 

from the previous one, taking into consideration the reduction ( ) 0p =α  

 

Example 

We will determine the elements of GF )2( 3
, generated by the primitive polyno-

mial 3XX1p(X) ++= . 
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We have 3m =  and 622m =− , so 17 =α , α being a root of p(X) for which  

0αα1 =++ 3
 so: 

 

1α1αααα

α1αααα

αα1ααα

ααα

α1α

=++=+=

+=++=

++=+=

+=

+=

37

2326

2325

24

3

 

 

For the matrix representation, we consider a linear matrix (a1 a2 a3) in which a1, 

a2, a3 are the coefficients of the terms α
0
, α

1
, and α

2
, respectively. So, for 

α1α +=3 , we will have the matrix representation (1 1 0). Similarly for the other 

exponents of α.The table below presents the elements of the field GF )2( 3 , gener-

ated by the polynomial 3XX1p(X) ++= . 

 

α 

power representation 

Polynomial 

representation 

Matrix 

representation 

0 0 0    0    0 

1 1 1    0    0 

α          α 0    1    0 

α
2
                     α

2
 0    0    1 

α
3
 1  +   α 1    1    0 

α
4
      α  +    α

2
 0    1    1 

α
5
 1  +  α  +    α

2
 1    1    1 

α
6
 1  +              α

2
 1    0    1 

α
7
 1 1    0    0 

 

Appendix A10 includes the tables for the representation of the fields GF )2( 3  

GF )2( 4 , GF )2( 5 , GF )2( 6 . 

A6   Basic Properties of Galois Fields, GF(2
m

)  

In the common algebra, we have seen that a polynomial with real coefficients does 

not have roots in the field of real numbers, but in that of complex numbers, which 

contains the previous one as a subfield. This observation is true as well for the 

polynomials with coefficients in GF(2) which may not have roots from this one, 

but from an extension of the field GF )2( m . 
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Example 

The polynomial 1XX 34 ++  is irreducible on GF(2), so it does not have roots in 

GF(2). Nevertheless, it has 4 roots in the extension GF )2( 4 , namely, by replacing 

the exponents of α (see A.10), in the polynomial, we find that 
284

  ,  ,  , αααα   are 

roots, so the polynomial can be written: 

( )( )( )( )84234 αXαXαXαX1XX ++++=++  

Let now be p(X), a polynomial with coefficients in GF(2). If β, an element in 

GF )2( m  is a root of p(X), then we question whether p(X) has other roots in 

GF )2( m  and what are those roots. The answer lies in the following property: 

 

Property 1: Be p(X), a polynomial with coefficients in GF(2). Be β an element of 

the extension of GF(2). If β is a root of p(X), then for any 
l20,1 β≥    is also a 

root of p(X). 

This is easily demonstrated taking into account relation (A.14): 

( )[ ] ⎟⎠
⎞⎜⎝

⎛=
ll

22
XpXp  by replacing X by β we have:  

( )[ ] ⎟⎠
⎞⎜⎝

⎛=
ll

22
pp ββ  

So, if ( ) 0β =p , it results that  and so 0β =)p(
l

2  so 
l2β is also root of p(X). 

This can be easily noticed from the previous example. The element 
i2β is called 

the conjugate of β . Property 1 says that if β is an element in GF )2( m  and a root 

of the polynomial p(X) in GF(2), then all the distinct conjugates of β, elements of 

GF )2( m , are roots of p(X). 

For example, the polynomial ( ) 6543 XXXX1Xp ++++=  has 4α  
, as root in 

GF )2( 4 : 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) 0αααααααα11αααα1

αααα1αααα1α

=+++++++++=++++=

=++++=++++=
32929512

24201612464544434

         

p  

The conjugates of  4α  are: 

( ) ( ) ( ) 232241624824
32

,, αααααααα =====  
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We note that ( ) 06424
4

ααα == , so if we go on, we shall see that the values 

found above repeat. It results, according to property 1, that 28   and  , ααα  must 

also be roots of  ( ) 6543 XXXX1Xp ++++= . 

Similarly, the same polynomial has the roots 
5α as well, because indeed  

( ) 0αα1αα11αα11αααα1α =+++++=++++=++++= 22105302520155p  

So, this one and its conjugates ( ) ( ) 520251025
2

  , ααααα ===  are roots of  

( ) 6543 XXXX1Xp ++++= . 

In this way we have obtained all the 6 roots of p(X): 105284   ,  ,  ,, , αααααα . 

If β is an non zero element in the field GF )2( m , we have 

01β1β =+= −− 1212 mm

  e  therefor, , so β is a root of  1X 12m

+− . It follows that 

any non zero element from GF )2( m  is root of  1X 12m

+− . As its degree is 

12m − , it results that the 12m −  non zero elements of GF )2( m  are all roots of 

1X 12m

+− . 

The results lead to: 
 

Property 2: The 12m −  non zero elements of GF )2( m  are all roots of 

1X 12m

+− , or, all the elements of GF )2( m  are all roots of the polynomial   

XX
m2 + . 

Since any β element in GF )2( m  is root of the polynomial XX
m2 + , β can be 

root of a polynomial on GF(2), the degree of which should be smaller that m2 . 

Be ( )XΦ  the smallest degree polynomial on GF(2), so that ( ) 0β =Φ . This poly-

nomial is called minimal polynomial of β . 

 

Example 

The minimal polynomial of  the zero element in GF )2( m  is X, and that of the unit 

element 1, is 1+Χ . 

Further on, we will demonstrate a number of properties of the minimal  

polynomials. 
 

• The minimal polynomial Φ(X) of an element of the field is irreducible. 

We suppose that ( )XΦ  is not irreducible and that 

( ) ( ) ( )ΧΦ⋅ΧΦ=ΧΦ 21 ( ) ( ) ( )βββ 21 ΦΦΦ ⋅=⇒ , so either ( ) 0β =1Φ , or 
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( ) 0ȕΦ2 = , which contradicts the hypothesis that ( )ΧΦ  is the polynomial with the 

smallest degree for which ( ) 0ȕΦ = . It results that the minimal polynomial ( )ΧΦ  

is irreducible. 

• Be ( )Χp  a polynomial on GF(2), and ( )ΧΦ  the minimal polynomial of the 

element β in the field. 

As β is a root of ( )Χp , then ( )Χp  is divisible by ( )ΧΦ . 

After division, it results: ( ) ( ) ( ) ( )XrXΦXaXp += , where the remainder degree 

is smaller than the degree of ( )ΧΦ . After replacing β in the above relation, we 

will obtain: 

( ) ( ) ( ) ( )ββββ rΦap +⋅= ,  ( ) 0β =p , ( ) 0β =Φ  ( ) 0β =⇒ r  

The remainder being zero, it results that ( )ΧΦ   divides p(X). 

• The minimal polynomial Φ(X) of an element β in GF(2
m
) divides XX

m
2 +  

meaning all the roots of ( )ΧΦ  are in GF )(2m . 

Property 3: Let β an element in GF )(2m , and e the smallest non zero integer so 

that  ββ =
e2 . Then: 

( ) ∏ ⎟⎠
⎞⎜⎝

⎛ +=
−

=

1e

0i

2i

xxp β                                        (A.31) 

is an irreducible polynomial on GF(2). 

In order to demonstrate this property, we consider: 

( )[ ]

⎟⎠
⎞⎜⎝

⎛ +⎥⎦
⎤⎢⎣

⎡
∏ ⎟⎠

⎞⎜⎝
⎛ +

=∏ ∏ ∏ ⎟⎠
⎞⎜⎝

⎛ +=⎟⎠
⎞⎜⎝

⎛ +=⎟⎠
⎞⎜⎝

⎛ +=⎥⎦
⎤⎢⎣

⎡
∏ ⎟⎠

⎞⎜⎝
⎛ +=

−

=

−

=

−

= =

−

=

+

ei

i1iii

22
1e

1i

22

1e

0i

1e

0i

e

1i

2222
2

2
2

1e

0i

22

xx=          

xxxxxp

ββ

ββββ
 

As ββ =
e2 , we have: 

( )[ ] ( ) ∑==∏ ⎟⎠
⎞⎜⎝

⎛ +=
=

−

=

e

0i

2i
i

2
1e

0i

222
xpxpxxp

i

β                          (A.32) 

Let the polynomial ( ) 1p,Xp...XppXp e
e

e10 =+++= . Taking A.32 into ac-

count, we have: 

( )[ ] [ ] =+++=
2e

e10
2

Xp...XppXp  ∑
=

e

0i

2i2
i Xp                      (A.33) 
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From the relations (A.32) and (A.33), we obtain: 

∑ ∑=
= =

e

0i

e

0i

2i2
i

2i
i XpXp                                     (A.34) 

In order to have the equality, we must have: 

2
ii pp = , so 1or    0pi = . 

So it is compulsory that p(X) has the coefficients in GF(2). 

We suppose that p(X) would not be irreducible on GF(2) and that 

( ) ( ) ( )XbXaXp ⋅= . If ( ) 0β =p , then automatically ( ) 0β =a  or ( ) 0β =b . 

If ( ) 0β =a , a(X) has the roots 122 e

 , . . ., , −βββ  so its degree is e and ( ) ( )XaXp = . 

Similarly for b(X), so p(X) is irreducible. A direct consequence of the last two 

properties is the following property: 
 

Property 4: Let ( )ΧΦ the minimal polynomial of the element β in GF )(2m
. Let 

e be the smallest integer so that ββ =
e2  . Then we have: 

( ) ∏ ⎟⎠
⎞⎜⎝

⎛ +=
−

=

1e

0i

2i

XXΦ β                                         (A.35) 

Examples 
 

1. Let be the Galois field GF )(24 , given in Appendix A10. 

Let 3αβ =  . The conjugates of β are: 

924212262 32

,, ααβαβαβ ====  

The minimal polynomial of 3αβ =   is: 

( ) ( )( )( )( ) ( )( )
1

αααααααα

++++=

++++=++++=

XXXX        

=XXXXXXXXXΦ
234

68292291263

 

There is also another possibility of obtaining the minimal polynomial of an 

element in the field, as we shall see further on: 

2. We want to find the minimal polynomial, ( )XΦ , of the element 7αβ =  in 

GF )(24  from A10. 

The distinct conjugates are: 

1156213282142 32

,, ααβααβαβ =====  
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As ( )XΦ  must be of 4th degree, it must have the form: 

( ) 43
3

2
210 ΧΧaΧaΧaaΧΦ ++++=  

Replacing X by β we obtain: 

( ) 0βββββ =++++= 43
3

2
210 aaaaΦ  

Using the polynomial representations for 432   and  , , ββββ we obtain: 

0αα1ααα1αα1 =++++++++++ )()(a)(a)(aa 332
3

3
2

3
10  

0α1α1α1 =++++++++++ 3
321

2
31210 )aa(a)(aa)aa(a  

All coefficients must be zero: 

⎪⎩
⎪⎨
⎧

=

==

=

⇒
⎪⎪⎩

⎪⎪⎨
⎧

=+++

=+

=+++

1a

0aa

1a

01aaa

01a              

0=            a       

01aaa

3

21

0

321

3

1

210

 

So for 7αβ =  
the minimal polynomial is: 

( ) 43 ΧΧ1ΧΦ ++=  

In what follows we shall present tables of minimal polynomials in GF )(2m  for 

3m = , 4m = and 5m = . 

Table A.1 Minimal polynomials for GF(23) and generating polynomial 1 + X+ X3 

Conjugated Roots Minimal Polynomials 

0

1

,
 2
,

 4 

 3
,

 6
,

 12
,

 5 

0

X

X
3
+ X + 1 

X
3
+ X

2
+1

 

Table A.2 Minimal polynomials for GF(24) and generating polynomial 1 + X+ X4 

Conjugated Roots Minimal Polynomials 

0

1

,
 2
,

 4
,

 8

 3
,

 6
,

 9
,

 12

 5
,

 10

 7
,

 11
,

 13
,

 14

0

X

X
4
+ X + 1 

X
4
+ X

3
 + X

2
+ 1 

X
2
+ X + 1 

X
4
+ X

3
+1
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Table A.3 Minimal polynomials for GF(25) and generating polynomial 1 + X+ X5 

Conjugated Roots Minimal Polynomials 

0 0 

1 X

,
 2
,

 4
,

 8
 ,

 16
 X

5
+X

2
+1

 3
,

 6
,

 12
,

 24
 ,

 48 
=

 17 
X

5
+X

4
+X

3
+X

2
+1 

 5
,

 10
,

 20
,

 40
 = 

 9
,

 18
 X

5
+X

4
+X

2
+X+1 

 7
,

 14
,

 28
,

 56
 = 

 25
,

 50 
=

 21
 X

5
+X

3
+X

2
+X+1 

 15
,

 30
,

 60 
=

 29
,

 58
 = 

 28
,

 54 
=

 23
X

5
+X

3
+1

 11
,

 22
,

 44 
=

 13
,

 26
,

 52 
=

 21
 X

5
+X

4
+X

3
+X+1 

 

 
Some explanations for Table A.2: α  being root of the polynomial 

( ) 1ΧΧXp 4 ++= , it has the conjugates
 842

 , , ααα  which are also roots, so for all 

of them, the minimal polynomial is : 1ΧΧ4 ++ .  

Among the exponents of α , given above, the smallest one that did not appear is 

α
3
, which has the conjugates 

924126
 , , αααα = and for all of them, the minimal 

polynomial is 1ΧΧΧΧ 234 ++++ . For
 5α  we have only the conjugate 

2010   as αα . The corresponding minimal polynomial is 1ΧΧ2 ++ . Finally, 

for
7α we have the conjugates 11α , 13α , 14α   to which corresponds the minimal 

polynomial 1ΧΧ 34 ++ . 

In order to find the minimal polynomial for root α , we have assumed that the 

other roots are exponents of α . The justification consists in that the primitive 

polynomial divides 1Χ
m2 + . 

But if m is not prime, each roots of the binomial equation (except 1), raised to 

1m− powers repeat all the others. When it is not prime ( 4m = ), some of the 

minimal polynomials can have smaller degrees than the primitive polynomial. As 

the tables for 3m =  and 5m =  (prime numbers) show, the minimal polynomials 

are the primitive polynomials of degree 3 and 5. 

Since the two polynomials in GF )2( m  cannot have a common root (because 

they would coincide), the minimal polynomials must be prime pairs. It results that 

the 12m −  roots must be distributed among m degree polynomials or even smaller 

degree ones. Thus, if 4m =  15124 =− , it results that there will be three 4th de-

gree polynomials, one 2nd degree polynomial and one first degree polynomial. 

For 3m =  7123 =− , we will have two third degree polynomials and one first 

degree polynomial. For  5m =  31125 =− , there will be six fifth degree polyno-

mials and one first degree polynomial. 
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Property 5: It is a direct consequence of the previous one and stipulates that if 

( )XΦ  is the minimal polynomial of an element β in GF )(2m  and if e is the degree 

of ( )XΦ , then e is the smallest integer such that ββ =
e2  Obviously, me ≤ . 

In particular, it can be shown that the minimal polynomial degree of each ele-

ment in GF )(2m  divides m. The tables prove this affirmation. 

When constructing the Galois field GF )(2m , we use a minimal polynomial 

p(X) of m degree and we have the element α which is p(X) root. As the exponents 

of α generate all the non zero elements of GF )(2m , α is a primitive element. 

All the conjugates of α are primitive elements of GF )(2m . In order to see this, 

let n be the order of 01  ,
12 >α , and we have: 

1αα ==⎟⎠
⎞⎜⎝

⎛ ⋅ 11 2n
n

2                                         (A.36) 

As α is a primitive element of GF )(2m , its order is 12m − . From the above re-

lation, it results that
 12 must be divisible to 12m − , ( )12qn m −= . But 

( ) 12n:12kn mm −=−= , so α
2
 is a primitive element of  GF )(2m . 

Generally, if β is a primitive element of GF )(2m , all its conjugates 

...,,
e22 ββ are also primitive elements of GF )(2m . 

Using the tables for GF )(2m , linear equation systems can be solved. Be the 

following system: 
 

⎪⎩
⎪⎨⎧ =+

=+

) of inverse  theis(which   YX

YX
1234812

27

ααααα
αα

 

⎪⎩
⎪⎨⎧

=+

=+
711

27

YX

YX

αα
αα

 

 

By addition and expressing 
711

  , αα and reducing the terms, we obtain:  

322 Υ)(1 ααα1α +++=+ , but 28 α1α +=  and the inverse of  78   is αα  

So, multiplying this equation by 7α , we obtain: 

97387Υ αααα +++= + = 4αα1 =+  

It follows that 4Υ α= . 

Similarly for 9α=Χ . 
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If we want to solve the equation ( ) 0αα =++= XXXf 72 , we cannot do this 

by the regular formula, as we are working in modulo 2. Then, if ( ) 0Xf = , it has a 

solution in GF )2( 4 ; the solution is obtained by replacing X by all the elements 

from A10. We find ( ) 0f 6 =α  and ( ) 0f 10 =α , so 6α  and 10α  are roots. 

A7   Matrices and Linear Equation Systems 

A matrix is a table of elements for which two operations were defined: addition 

and multiplication. If we have m lines and n columns, the matrix is called a 

nm × matrix. 

Two matrices are equal when all the corresponding elements are equal. Matrix 

addition is done only for matrixes having the same dimensions, and the result is 

obtained by adding the corresponding elements. The null matrix is the matrix with 

all elements zero. 

The set of all matrices with identical dimensions forms a commutative group 

related to addition. 

The null element is the null matrix. 

Particular cases of matrices are the linear matrix [ ] . . .  b  a  and column  

matrix

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
#
b

a

. 

Multiplication of two matrices cannot be done unless the columns number  

of the first matrix equals the lines number of the second one. Multiplication is  

not commutative. For square matrixes, mxm of degree m, we have the unit matrix 

that has all elements null, except those ones on the main diagonal which equal 1. 

Its determinant can be defined, according to the known rule, only for these  

ones. For such a matrix, we have the inverse matrix only when its determinant is 

not null. 

For any matrix the notion of rank is defined as follows: by suppressing lines 

and columns in the given matrix and keeping the order of the elements left, we ob-

tain determinants of orders from min (n, m) to 1. From these ones, the maximum 

order of non zero determinants is the matrix rank. 

There are three operations that change the matrix elements, but maintain its 

rank, meaning: switching lines with columns, multiplying a line (column) by an 

non zero number, adding the elements of a line (column) to another line (column). 

These operations allow us to get a matrix for which, on each line and column 

we have one non zero element the most. The number of these elements gives us 

the matrix rank. 
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Example: Calculate the rank of the following matrix: 

 

⎟⎟
⎟
⎠

⎞
⎜⎜
⎜
⎝

⎛
⎟⎟
⎟
⎠

⎞
⎜⎜
⎜
⎝

⎛
⎟⎟
⎟
⎠

⎞
⎜⎜
⎜
⎝

⎛
⎟⎟
⎟
⎠

⎞
⎜⎜
⎜
⎝

⎛
−−

−−⎟⎟
⎟
⎠

⎞
⎜⎜
⎜
⎝

⎛
−−

−−⎟⎟
⎟
⎠

⎞
⎜⎜
⎜
⎝

⎛

0000

0010

0001

~

0000

0010

0001

~

2010

2010

0001

~

~

10050

6030

0001

~

10050

6030

4221

~

2613

10854

4221

 

 

We have two non zero elements, so the rank of the matrix is 2. 

 

Linear equations systems 
 

Be the system: 

⎪⎪⎩
⎪⎪⎨
⎧

=+++

=+++

=+++

2nmn2m21m1

2n2n222121

1n1n212111

bxaxaxa

bxaxaxa

bxaxaxa

…
………………………………

…
…

                            (A.37) 

For such a system, the rank r of the matrix nm × corresponding to the coeffi-

cients of the unknowns n1  x, . . . ,x . At the same time, we choose a non zero de-

terminant of order r, which is called principal determinant. The equations and the 

unknowns that give the elements in this determinant are called principal equa-

tions, and the others, secondary. For each secondary equation, a characteristic de-

terminant is set up, by bounding the principal determinant by a line and a column. 

The line contains the coefficients of the main unknowns, and the column, the free 

terms of the principal and secondary equations. 

We have Rouche theorem, which says that the system is compatible (it has solu-

tions) if and only if all the characteristic determinants are null, the solutions being 

obtained by Cramer rule. Secondary unknowns are considered parameters, case in 

which we have an infinite number of solutions.  

If the rank r equals the number n of the unknowns we have a unique solution; 

on the contrary, we have secondary unknowns, so an infinite number of solutions. 

If n=m and the rank is n, the system is called Cramer system and there is a rule 

for expressing the solution using determinants. But, as calculating the determi-

nants involve a high volume of operations, in application we use Gauss algorithm. 

It starts from the extended matrix of the equation system (the coefficients matrix 

of the unknowns to which the column of free terms is added), on which the de-

scribed operations for determining the rank of a matrix are clearly made, working  
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only on lines. Thus the operations number to be solved is much smaller than the 

one required for calculating the determinants. A simple example will illustrate this 

method which can be applied to any binary field. 

Be the system: 

⎪⎩
⎪⎨
⎧

−=++−

−=+−

−=++

42zyx

1zy2x

33z2yx

 

We have: 

( ) ( ) ( )
( )

( )
( )

( )

( )
( )

( ) ⎟⎟
⎟
⎠

⎞
⎜⎜
⎜
⎝

⎛
−⎟⎟

⎟
⎠

⎞
⎜⎜
⎜
⎝

⎛
−

−

−

⎟⎟
⎟
⎠

⎞
⎜⎜
⎜
⎝

⎛
−

−

−

⎟⎟
⎟
⎠

⎞
⎜⎜
⎜
⎝

⎛
−

−

−

⎟⎟
⎟
⎠

⎞
⎜⎜
⎜
⎝

⎛
−

−−−

−

⎟⎟
⎟
⎠

⎞
⎜⎜
⎜
⎝

⎛
−−

−−

−

2100

1010

1001

~

2100

1110

1101

~

4200

1110

1101

~

~

7530

1110

3321

~

7530

5550

3321

~

4211

1112

3321

 

The solution is  x = 1, y = 1, z = 2. 

A8   Vector Spaces 

A8.1   Defining Vector Space 

Let (V,+) be an Abelian group, with elements called vectors and denoted … ,x ,v . 

Let (F,+,⋅) be a field, with elements called scalars, having as neutral elements 0 

and 1. 

We call vector space over field F, the Abelian group (V,+), on which an  

outer composition law with operators in F is given, called the multiplication of 

vectors by scalars: Vu  and  Va  V,VF ∈∈∀→×  and which satisfies the  

axioms: 

( )
( )

( )

0v0

vv1

)ua(buba

va  uavua

ub  uauba

=

=

=

+=+

+=+

                                       (A.38) 
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Example 

The space vectors and the real numbers form a vector space. The set of vectors in 

the three dimension space is determined by three coordinates, which can be as-

sembled in a linear matrix: 

( )z y, x,v = . 

The set of linear matrices, with a dimension of 31× , forms a vector space. 

More general, the set of matrices with a dimension of n1×  forms a vector space. 

A8.2   Linear Dependency and Independency 

Be the vectors n21 v , . . . ,v ,v  in the vector space VF×  and the scalars 

n21 Ȝ , . . .,Ȝ,Ȝ . Any expression having the form  nn2211 vȜ , . . .,vȜ,vȜ  is called 

linear combination of the respective vectors. If this combination is zero, not all of 

the scalars being null, then: 

0vȜ  . . .,vȜvȜ nn2211 =++                                    (A.39) 

we say that the vectors: n21 v , . . . ,v ,v  are linear independent. In the opposite 

situation, they are called linear dependent. 

Thus, two vectors in the plane can be linear independent, but three cannot. The 

maximum number of linear independent vectors in a vector space is called space 

dimension, and any system of linear independent vectors forms a space base; all 

the other space vectors can be expressed with the base ones. So, if the base vectors 

are noted by n21 e , . . . ,e ,e , any vector from that space can be written as: 

nn2211 eα . . . eα eαV +++=                                     (A.40) 

in which the numbers n21 α, . . . ,α ,α are called vector coordinates. 

If the space dimension is n, then the component matrix of the n vectors that 

form a base has the rank n. 

In an n-dimension space we can always have a number nm < of vectors linear 

independent. Their linear combinations generate only some of the space vectors, 

so they form a subspace of the given space, the dimension of which equals the ma-

trix rank of their components. 

Coming back to the Galois field, the vector space on GF(2) plays a central part 

in the coding theory. We consider the string ( )n21 a, . . . ,a ,a , in which each com-

ponent ai is an element of the binary field GF(2). This string is called n-tuple on 

GF(2). As each element can be 0 or 1, it results that we can set up distinct n-

tuples, which form the set Vn. We define addition "+" on Vn , for     
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( ) ( ) n1-n101-n10 V  v ,u, v, . . . ,v,vv ,u , . . . ,u,uu ∈==   by the relation: 

( )1-n1-n1100 vu , . . . ,vu,vuvu +++=+                         (A.41) 

the additions being made modulo two. 

It is obvious that vu +  is an n-tuple on GF(2) as well. As Vn is closed to addi-

tion, we will easily check that Vn is a commutative group to the above defined  

addition. 

Taking into account that addition modulo two is commutative and associative, 

it results the same thing for the above defined addition. Having in view 

that ( )0 , . . . 0,,0v =  is the additive identity and that:  

( ) ( ) 00 , . . . 0, 0,v v, . . . ,vv,vvvv 1-n1-n1100 ==+++=+ , 

the inverse of each elements being itself, Vn is a commutative group to the above 

defined addition. 

We define the scalar multiplication of an n-tuple, v  in Vn with an element a in 

GF(2), by: ( ) ( )1-n101-n10  va , . . . , va, va v, . . . ,v,va =   modulo two multiplication. 

If 1a =  we have: vva = . It is easy to see that the two identical operations  

defined above satisfy the distributivity and associativity laws. And the set Vn of  

n-tuples on GF(2) forms a vector space over GF(2). 

A8.3   Vector Space 

V being a vector space on field F, it may happen that a subset S of V be vector 

space on F as well. This one will be called a subspace of V. 

So, if S is an non zero subset of space V in the field F, S is subspace of V if: 
 

1. For any two vectors v  and  u  in S, vu +  must be in S. 

2. For any element a ∈  F and any vector in S, a u  must be in S. 

Or, if we have the vector set k21 v , . . . ,v ,v  in the space V, then the set of all 

linear combinations of these vectors form a subspace of V. 

We consider the vector space Vn of all n-tuples on GF(2). We form the follow-

ing n-tuples: 

( )
( )

( )1 , . . . 0, 0,e

...

0 , . . . 1, 0,e

0 , . . . 0, 1,e

1-n

1

0

=

=

=

                                        (A.42) 

Then any n-tuples ( )1-n10 a, . . . ,a ,a in Vn can be expressed with these ones; it 

follows that vectors (A.42) generate the entire space Vn of n-tuples over GF(2). 
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They are linear independent and thus form a base of Vn and its dimension is n. If 

nk < , the linear independent vectors k21 v , . . . ,v ,v  generate a subspace of  Vn. 

Be ( ) ( ) n1-n101-n10 V  v ,u, v, . . . ,v,vv ,u , . . . ,u,uu ∈== . By inner product / dot 

product of u  and v  we understand the scalar:  

1-n1-n1100 vu  . . . vuvuvu +++=                              (A.42) 

all calculated in modulo 2. If 0vu = , u   and v  are orthogonal. 

The inner product / dot product has the properties: 

uvvu =                                                  (A.44) 

wuvu)wv(u +=+                                         (A.45) 

( ) ( )vuavua =                                            (A.46) 

Let be S a subspace of dimension k over Vn and Sd the vector set in Vn, such 

that for dSv  and  Su ∈∈∀  we have  

0vu =                                                   (A.47) 

For any element a in GF(2) and any dSv ∈  we have: 

⎪⎩
⎪⎨⎧

=

=
=

1a  if  v

0a  if  0
va                                           (A.48) 

It follows that va  is also in Sd. 

Let v  and w  two vectors in Sd. For any vector Su ∈ we have: 

000wuvu)wv(u =+=+=+                                 (A.49) 

This means that if v  and w  are orthogonal with u , the sum vector  wu +  is 

also orthogonal with u , so wv + is a vector in Sd. So Sd is also a vector space, be-

sides it is a subspace of Vn. This subspace, Sd, is called dual space (or null) of S. 

Its dimension is k-n , where n is the dimension of the space Vn, and k the dimen-

sion of the space S: 

n)dim(Sdim(S) d =+                                      (A.50) 

In order to determine the space, and the dual subspace, we look for the base of 

orthogonal vectors. Only those vectors which are orthogonal with all the subspace 

vectors from which we have started, are selected as base of the dual space. 
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Example 

From the set of 32 elements of 5-tuples (a1,….,a5), we consider 7 of them and we 

look for the space dimension that they form. We have: 
 

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜

⎝

⎛

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜

⎝

⎛

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜

⎝

⎛

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜

⎝

⎛

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜

⎝

⎛

00000

00000

00000

00000

00001

00010

00100

~

00000

00000

00000

00000

10001

01010

11100

~

~

11100

00000

11100

11100

10001

01010

11100

~

11100

01010

10110

11100

10001

01010

00110

~

11100

11011

10110

01101

10001

01010

00111

 

 

It follows that the rank is 3 and a base is formed by the vectors that correspond 

to the lines that contain 1: (11100), (01010), (10001). 

Now we look for the orthogonal vectors in the subspace considered and we use 

them to form the subspace. 
 

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜

⎝

⎛

⎟⎟
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⎟⎟
⎟⎟
⎟⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜

⎝

⎛

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜

⎝

⎛

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜

⎝

⎛

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜

⎝

⎛

00000

00100

00001

00000

00010

01000

00000

~

00000

00100

01001

11000

01010

11000

01000

~

~

00100

00100

01001

11100

01110

11100

01000

~

01010

00100

01001

10010

01110

11100

01000

~

11100

00100

01001

10010

01110

10101

11000
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We get that the space dimension is 4, and one of its bases is: (10101), (01110), 

(10010), (00100) and (00000). 

A9   Table for Primitive Polynomials of Degree k (k max = 100) 

Remark 

The table lists only one primitive polynomial for each degree k ≤ 100. In this table 

only the degrees of the terms in the polynomial are given; thus 7 1 0 stands for  

x
7
 + x + 1. 

 

1 0       51 6 3 1 0   

2 1 0      52 3 0     

3 1 0      53 6 2 1 0   

4 1 0      54 6 5 4 3 2 0 

5 2 0      55 6 2 1 0   

6 1 0      56 7 4 2 0   

7 1 0      57 5 3 2 0   

8 4 3 2 0    58 6 5 1 0   

9 4 0      59 6 5 4 3 1 0 

10 3 0      60 1 0     

11 2 0      61 5 2 1 0   

12 6 4 1 0    62 5 3 0    

13 4 3 1 0    63 1 0     

14 5 3 1 0    64 4 3 1 0   

15 1 0      65 4 3 1 0   

16 5 3 2 0    66 8 6 5 3 2 0 

17 3 0      67 5 2 1 0   

18 5 2 1 0    68 7 5 1 0   

19 5 2 1 0    69 6 5 2 0   

20 3 0      70 5 3 1 0   

21 2 0      71 5 3 1 0   

22 1 0      72 6 4 3 2 1 0 

23 5 0      73 4 3 2 0   

24 4 3 1 0    74 7 4 3 0   

25 3 0      75 6 3 1 0   

26 6 2 1 0    76 5 4 2 0   

27 5 2 1 0    77 6 5 2 0   

28 3 0      78 7 2 1 0   

29 2 0      79 4 3 2 0   

30 6 4 1 0    80 7 5 3 2 1 0 

31 3 0      81 4 0     
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32 7 5 3 2 1 0  82 8 7 6 4 1 0 

33 6 4 1 0    83 7 4 2 0   

34 7 6 5 2 1 0  84 8 7 5 3 1 0 

35 2 0      85 8 2 1 0   

36 6 5 4 2 1 0  86 6 5 2 0   

37 5 4 3 2 1 0  87 7 5 1 0   

38 6 5 1 0    88 8 5 4 3 1 0 

39 4 0      89 6 5 3 0   

40 5 4 3 0    90 5 3 2 0   

41 3 0      91 7 6 5 3 2 0 

42 5 4 3 2 1 0  92 6 5 2 0   

43 6 4 3 0    93 2 0     

44 6 5 2 0    94 6 5 1 0   

45 4 3 1 0    95 6 5 4 2 1 0 

46 8 5 3 2 1 0  96 7 6 4 3 2 0 

47 5 0      97 6 0     

48 7 5 4 2 1 0  98 7 4 3 2 1 0 

49 6 5 4 0    99 7 5 4 0   

50 4 3 2 0    100 8 7 2 0   

A10   Representative Tables for Galois Fields GF(2
k
) 

Remark 

The tables list the powers of α and the matrix representation for Galois Fields 

GF(2
k
), k ≤ 6. For example, in the first table 3   1 1 0  stands for α1α3 += . 

 

1. GF(2
3
) generated by p(x) = 1+x+x

3
 

 - 000 

 0 100 

 1 010 

 2 001 

 3 110 

 4 011 

 5 111 

 6 101 

 

2. GF(2
4
) generated by p(x) = 1+x+x

4
 

 - 0000  8 1010 

 0 1000  9 0101 

 1 0100  10 1110 

 2 0010  11 0111 

 3 0001  12 1111 
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 4 1100  13 1011 

 5 0110  14 1001 

 6 0011 

 7 1101 

 

3.  GF(2
5
) generated by p(x) = 1+x

2
+x

5
 

- 00000 10 10001 21 00011 

0 10000 11 11100 22 10101 

1 01000 12 01110 23 11110 

2 00100 13 00111 24 01111 

3 00010 14 10111 25 10011 

4 00001 15 11111 26 11101 

5 10100 16 11011 27 11010 

6 01010 17 11001 28 01101 

7 00101 18 11000 29 10010 

8 10110 19 01100 30 01001 

9 01011 20 00110   

 

4. GF(2
6
) generated by p(x) = 1+x+x

6 

 

- 000000 21 101011 43 111011 

0 100000 22 100101 44 101101 

1 010000 23 100101 45 100110 

2 001000 24 100010 46 010011 

3 000100 25 010001 47 111001 

4 000010 26 111000 48 101100 

5 000001 27 011100 49 010110 

6 110000 28 001110 50 001011 

7 011000 29 000111 51 110101 

8 001100 30 110011 52 101010 

9 000110 31 101001 53 010101 

10 000011 32 100100 54 111010 

11 110001 33 010010 55 011101 

12 101000 34 001001 56 111110 

13 010100 35 110100 57 011111 

14 001010 36 011010 58 111111 

15 000101 37 001101 59 101111 

16 110010 38 110110 60 100111 

17 011001 39 011011 61 100011 

18 111100 40 111101 62 100001 

19 011110 41 101110   

20 001111 42 010111   
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A11   Tables of the Generator Polynomials for BCH Codes 

Remark 

The table lists the corresponding generator polynomial coefficients for BCH codes 

of different length n ≤ 127, with different correctable errors (t). The coefficients 

are written in octal.  

For example for a BCH(15,7) code, from the table results: n = 15, m = 7, t = 2 

and g(x) =: 7 2 1 N N N ⇒⇒
127

001010111 g(x) = x
8
 + x

7
 + x

6
 + x

4
 + 1  

 

n  M  t  Generator polynomial coefficients 

gk’ gk’-1 … g1 g0 

7  4  1  13 

15  11  1  23 

15  7  2  721 

15  5  3  2467 

31  26  1  45 

31  21  2  3551 

31  16  3  107657 

31  11  5  5423325 

31  6  7  313365047 

63  57  1  103 

63  51  2  12471 

63  45  3  1701317 

63  39  4  166623567 

63  36  5  1033500423 

63  30  6  157464165547 

63  24  7  17323260404441 

63  18  10  1363026512351725 

63  16  11  6331141367235453 

63  10  13  472622305527250155 

63  7  15  52310455435033271737 

127  120  1  211 

127  113  2  41567 

127  106  3  11554743 

127  99  4  3447023271 

127  92  5  624730022327 

127  85  6  1307044763222273 
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n  M  t  Generator polynomial coefficients 

gk’ gk’-1 … g1 g0 

127  78  7  26230002166130115 

127  71  9  6255010713253127753 

127  64  10  1206534025570773100045 

127  57  11  335265252505705053517721 

127  50  13  54446512523314012421501421 

127  43  14  17721772213651227521220574343 

127  36  15  314607466522075044764574721735 

127  29  21  40311446136767062366753014176155 

127  22  23  123376070404722522435445626637647043 

127  15  27  22057042445604554770523013762217604353 

127  8  31  7047264052751030651476224271567733130217

A12   Table of the Generator Polynomials for RS Codes 

Remark 

The table lists the generator polynomial coefficients for RS codes of different 

lengths n ≤ 511 and different correctable errors (t). The coefficients are given as 

the decimals associated to GF(2
k
) elements and the generator polynomial has the 

expression:  

0
12t

12t
2t1-2tp1pp g...xgxg(x)or    )α)...(xα)(xα(xg(x) +++=+++= −

−
++  

For example, the generator polynomial for RS(7, 3) code with p = 1 is:  
 

( ) ( ) ⇒++++=⇒= 42xx4xxxg42141:xg 234  

( ) 32334 ααxxxαxxg ++++=⇒  

 

RS(7, 3)  t=2 

p=0  1    3     6     6     7  

p=1  1    4     1     2     4   

RS(15, 11) t=2 

p=0  1   13     5     1     7  

p=1  1   14     7     4    11  

RS(15, 9) t=3 

p=0   1   10    13     2     3     5     1  

p=1   1   11    15     5     7    10     7  

RS(15, 7) t=4 

p=0   1   14     1     2    14     9    15     5    14  

p=1   1   15     3     5     3    14     6    12     7  
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RS(15, 5) t=5 

p=0   1    2     2     7     3    10    12    10    14     8     1  

p=1   1    3     4    10     7    15     3     2     7     2    11  

RS(31, 27)  t=2 

p=0   1   24    18    27     7  

p=1   1   25    20    30    11  

RS(31, 25) t=3 

p=0   1   10     8    22    13    20    16  

p=1   1   11    10    25    17    25    22  

RS(31, 23) t=4 

p=0   1    3    21    21    16    28     4    24    29  

p=1   1    4    23    24    20     2    10    31     6 

RS(31, 21) t=5 

p=0   1   18    30    23     7     5    16    10    26    23    15  

p=1   1   19     1    26    11    10    22    17     3     1    25 

RS(31, 19) t=6 

p=0   1    6    21    29     7    29    29     9    29    31     3    30     5  

p=1   1    7    23     1    11     3     4    16     6     9    13    10    17 

RS(31, 17) t=7 

p=0   1   27     6     2    14    20    14    18    27    15    22    23     9    12    30  

p=1   1   28     8     5    18    25    20    25     4    24     1     3    21    25    13 

RS(31, 15) t=8 

p=0   1   23    12    29     5    30    27    15    18    30    26    13     3    11     9     4 

 28  

p=1   1   24    14     1     9     4     2    22    26     8     5    24    15    24    23    19 

 13 

RS(31, 13) t=9 

p=0 1   15    10    23     9    24    16    23    29    25    15    26     5    30     1    1 

 5    27    30  

p=1 1   16    12    26    13    29    22    30     6     3    25     6    17    12    15    16 

 21    13    17 

RS(31, 11) t=10 

p=0  1   22    29     3    26     6     8     5     6    21    14     9    13    31    22     8  

 16    12    26     7     5  

p=1  1   23    31     6    30    11    14    12    14    30    24    20    25    13     5 

 23     1    29    13    26    25 

RS(63, 59) t=2 

p=0 1   19    40    22     7  

p=1 1   20    42    25    11 

RS(63, 57) t=3 

p=0   1   59    47    41    52     6    16  

p=1   1   60    49    44    56    11    22  
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RS(63, 55) t=4 

p=0 1   43    58    29     7    36     9     1    29  

p=1   1   44    60    32    11    41    15     8    37  

RS(63, 53) t=5 

p=0 1   56    27    45    50    56    59    63    54    29    46  

p=1 1   57    29    48    54    61     2     7    62    38    56  

RS(63, 51) t=6 

p=0 1   60    11    42     3    56    23     4    25    12    55    52     4 

p=1 1   61    13    45     7    61    29    11    33    21     2    63    16 

RS(63, 49) t=7 

p=0   1   47     8    43    47    50    36     1    49    13    23    32    10    62    29  

p=1   1  48    10    46    51    55    42     8    57    22    33    43    22    12    43 

RS(63, 47) t=8 

p=0 1   28    40    62    13    20    49    27    31    42    16     2    10    11     4 

 7    58  

p=1 1   29    42     2    17    25    55    34    39    51    26    13    22    24    18 

 22    11 

RS(63, 45) t=9 

p=0 1   22    58    61    63    57    33    15    62    23    16    49    21    62    22 

 37    51    32    28  

p=1 1   23    60     1     4    62    39    22     7    32    26    60    33    12    36     

 52    4    49    46 

RS(63,43) t=10 

p=0 1   54    36    33    59    34    61    30    24    52    25     8    62    24    11     

 3    47    40    62    36     2  

p=1 1   55    38    36    63    39     4    37    32    61    35    19    11    37    25 

 18    63    57    17    55    22 

RS(127, 123) t=2 

p=0   1   94    40    97     7  

p=1   1   95    42   100    11 

RS(127, 121) t=3 

p=0   1  111     5   124    10   121    16  

p=1   1  112     7   127    14   126    22  

RS(127, 119) t=4 

p=0   1   91    33    42     3    49    47   112    29  

p=1   1   92    35    45     7    54    53   119    37  

RS(127, 117) t=5 

p=0   1    7   117   106   115    51   124   124    17    43    46  

p=1   1    8   119   109   119    56     3     4    25    52    56  

RS(127, 115) t=6 

p=0   1  125    98     3    53    96    90   107    75    36    15    53    67  

p=1   1  126   100     6    57   101    96   114    83    45    25    64    79  
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RS(127, 113) t=7 

p=0   1  103     6    29    69    28    63    60    76    54   108    81    71    54    92  

p=1   1  104     8    32    73    33    69    67    84    63   118    92    83    67   106  

RS(127, 111) t=8 

p=0 1   85    87    88    58     8    33    73     3    88    63    53   118    36    50 

 63   121  

p=1   1   86    89    91    62    13    39    80    11    97    73    64     3    49    64 

 78    10  

RS(127, 109) t=9 

p=0 1   58    66    49   118    46     1    32    79    80    96    66    52   114    76 

 24    58    67    27  

p=1 1   59    68    52   122    51     7    39    87    89   106    77    64   127    90 

 39    74    84    45  

RS( 127,107) t=10 

p=0 1   44    89    45   120    30    84    93    70    62    68    81   108    23    33 

 125   107    51   114    88    64  

p=1 1   45    91    48   124    35    90   100    78    71    78    92   120    36    47 

 13   123    68     5   107    84 

RS(255, 251) t=2 

p=0   1  239    27   117     7  

p=1   1   77   252    82    11  

RS(255, 249) t=3 

p=0 1  121   175   178   166    98    16  

p=1 1  168     3   138    10   182    22  

RS(255, 247)  t=4 

p=0   1  235   188   101   201    24     4   117    29  

p=1   1  177   241   212   254   221     4   204    37  

RS(255, 245) t=5 

p=0   1  188    75    73   221   171   112   159     4     2    46  

p=1   1  253    70    50    66   124    77    72   103    42    56  

RS(255, 243) t=6 

p=0   1    7   122    75    16    31   182   251   136   205    85   130    67  

p=1   1  104    46   102   126   193   120   206   152   141    98   169    79 

RS(255, 241) t=7 

p=0 1   52     2     89   156   214    69    82   111   225   158   249   177    87 

 92  

p=1   1   201   252   159   53   196   131   226   146   226    98   219    72    36 

 106 

RS(255, 239) t=8 

p=0 1   167   118    59    63    19    64   167   234   162   223    39     5    21 

 186   149   121  

p=1 1   122  107  111  114  108  168   84    12   101   202   159   182   196 

 209   241   137  
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RS(255, 237) t=9 

p=0 1  236   251   109   105    27   166   202    50   129   225    84    90    24 

 225   195   254   204   154  

p=1   1  217   237   162    99   190   104   126   179    89   198   164   161    11 

 194    21   115   114   172  

RS(255,235) t=10 

p=0   1   36   216   188    10   183   179   197    27   158     5    82   119    38 

 142    49    50    46    46   157   191  

p=1   1   19    63   171    58    67   170   34   196   212   191   233   238    97 

 254   172   181   230   231    208   211  

RS( 511, 507) t=2 

p=0   1  391    41   394     7  

p=1   1  392    43   397    11 

RS(511, 505) t=3 

p=0 1  200   448    39   453   210    16  

p=1 1  201   450    42   457   215    22  

RS(511, 503) t=4 

p=0 1  400   208   119   109   126   222   421    29  

p=1  1  401   210   122   113   131   228   428    37  

RS(511, 501) t=5 

p=0   1  374   119   230   291   117   300   248   146   410    46  

p=1   1  375   121   233   295   122   306   255   154   419    56  

RS(511, 499) t=6 

p=0 1   18   229   314   312   338    81   349   334   347   273    73    67  

p=1 1   19   231   317   316   343    87   356   342   356   283    84    79  

RS(511, 497) t=7 

p=0 1   5  395   124   77    77   268   225   281   103   116   176   460    83    92  

p=1 1   6   397   127   81   82    274   232   289    112   126   187   472    96   106 

RS(511, 495) t=8 

p=0 1  418   285     1   133   288   434   365   358   380   464   333   193    76 

 375    12   121 

p=1 1  419   287     4   137   293   440   372   366   389   474   344   205    89 

 389    27   137 

RS(511, 493) t=9 

p=0 1  390   472    90   210   352   166   252   200   196   217   286   217   420 

 295   192    80    15   154  

p=1   1  391   474    93   214   357   172   259   208   205   227   297   229   433 

 309   207    96    32   172  

RS(511,491) t=10 

p=0 1  366    17   118   453   497   299   372   499   139   115   158    26   429 

 375    81    56   251   169    26   191 

p=1 1  367    19   121   457   502   305   379   507   148   125   169    38   442 

 389    96    72   268   187    45   211 
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Entropy Computing 

B1   Table for Computing Values of -log2(x), 0.01 ≤ x ≤ 0.99 

x -log2(x)  x -log2(x)  x -log2(x)  x -log2(x) 

0.00   0.25 2.0000  0.50 1.0000  0.75 0.4150 

0.01 6.6439  0.26 1.9434  0.51 0.9714  0.76 0.3959 

0.02 5.6439  0.27 1.8890  0.52 0.9434  0.77 0.3771 

0.03 5.0589  0.28 1.8365  0.53 0.9159  0.78 0.3585 

0.04 4.6439  0.29 1.7859  0.54 0.8890  0.79 0.3401 

0.05 4.3219  0.30 1.7370  0.55 0.8625  0.80 0.3219 

0.06 4.0589  0.31 1.6897  0.56 0.8365  0.81 0.3040 

0.07 3.8365  0.32 1.6439  0.57 0.8110  0.82 0.2863 

0.08 3.6439  0.33 1.5995  0.58 0.7859  0.83 0.2688 

0.09 3.4739  0.34 1.5564  0.59 0.7612  0.84 0.2515 

0.10 3.3219  0.35 1.5146  0.60 0.7370  0.85 0.2345 

0.11 3.1844  0.36 1.4739  0.61 0.7131  0.86 0.2176 

0.12 3.0589  0.37 1.4344  0.62 0.6897  0.87 0.2009 

0.13 2.9434  0.38 1.3959  0.63 0.6666  0.88 0.1844 

0.14 2.8365  0.39 1.3585  0.64 0.6439  0.89 0.1681 

0.15 2.7370  0.40 1.3219  0.65 0.6215  0.90 0.1520 

0.16 2.6439  0.41 1.2863  0.66 0.5995  0.91 0.1361 

0.17 2.5564  0.42 1.2515  0.67 0.5778  0.92 0.1203 

0.18 2.4739  0.43 1.2176  0.68 0.5564  0.93 0.1047 

0.19 2.3959  0.44 1.1844  0.69 0.5353  0.94 0.0893 

0.20 2.3219  0.45 1.1520  0.70 0.5146  0.95 0.0740 

0.21 2.2515  0.46 1.1203  0.71 0.4941  0.96 0.0589 

0.22 2.1844  0.47 1.0893  0.72 0.4739  0.97 0.0439 

0.23 2.1203  0.48 1.0589  0.73 0.4540  0.98 0.0291 

0.24 2.0589  0.49 1.0291  0.74 0.4344  0.99 0.0145 
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B2   Table for Computing Values of -x·log2(x), 0.001 ≤ x ≤ 0.999 

x  -xlog2(x)  x  -xlog2(x)  x  -xlog2(x)  x  -xlog2(x) 

0.000 -  0.250 0.5000  0.500 0.5000  0.750 0.3113 

0.001 0.0100  0.251 0.5006  0.501 0.4996  0.751 0.3102 

0.002 0.0179  0.252 0.5011  0.502 0.4991  0.752 0.3092 

0.003 0.0251  0.253 0.5016  0.503 0.4987  0.753 0.3082 

0.004 0.0319  0.254 0.5022  0.504 0.4982  0.754 0.3072 

0.005 0.0382  0.255 0.5027  0.505 0.4978  0.755 0.3061 

0.006 0.0443  0.256 0.5032  0.506 0.4973  0.756 0.3051 

0.007 0.0501  0.257 0.5038  0.507 0.4968  0.757 0.3040 

0.008 0.0557  0.258 0.5043  0.508 0.4964  0.758 0.3030 

0.009 0.0612  0.259 0.5048  0.509 0.4959  0.759 0.3020 

0.010 0.0664  0.260 0.5053  0.510 0.4954  0.760 0.3009 

0.011 0.0716  0.261 0.5058  0.511 0.4950  0.761 0.2999 

0.012 0.0766  0.262 0.5063  0.512 0.4945  0.762 0.2988 

0.013 0.0814  0.263 0.5068  0.513 0.4940  0.763 0.2978 

0.014 0.0862  0.264 0.5072  0.514 0.4935  0.764 0.2967 

0.015 0.0909  0.265 0.5077  0.515 0.4930  0.765 0.2956 

0.016 0.0955  0.266 0.5082  0.516 0.4926  0.766 0.2946 

0.017 0.0999  0.267 0.5087  0.517 0.4921  0.767 0.2935 

0.018 0.1043  0.268 0.5091  0.518 0.4916  0.768 0.2925 

0.019 0.1086  0.269 0.5096  0.519 0.4911  0.769 0.2914 

0.020 0.1129  0.270 0.5100  0.520 0.4906  0.770 0.2903 

0.021 0.1170  0.271 0.5105  0.521 0.4901  0.771 0.2893 

0.022 0.1211  0.272 0.5109  0.522 0.4896  0.772 0.2882 

0.023 0.1252  0.273 0.5113  0.523 0.4891  0.773 0.2871 

0.024 0.1291  0.274 0.5118  0.524 0.4886  0.774 0.2861 

0.025 0.1330  0.275 0.5122  0.525 0.4880  0.775 0.2850 

0.026 0.1369  0.276 0.5126  0.526 0.4875  0.776 0.2839 

0.027 0.1407  0.277 0.5130  0.527 0.4870  0.777 0.2828 

0.028 0.1444  0.278 0.5134  0.528 0.4865  0.778 0.2818 

0.029 0.1481  0.279 0.5138  0.529 0.4860  0.779 0.2807 

0.030 0.1518  0.280 0.5142  0.530 0.4854  0.780 0.2796 

0.031 0.1554  0.281 0.5146  0.531 0.4849  0.781 0.2785 

0.032 0.1589  0.282 0.5150  0.532 0.4844  0.782 0.2774 

0.033 0.1624  0.283 0.5154  0.533 0.4839  0.783 0.2763 

0.034 0.1659  0.284 0.5158  0.534 0.4833  0.784 0.2752 

0.035 0.1693  0.285 0.5161  0.535 0.4828  0.785 0.2741 

0.036 0.1727  0.286 0.5165  0.536 0.4822  0.786 0.2731 

0.037 0.1760  0.287 0.5169  0.537 0.4817  0.787 0.2720 
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x  -xlog2(x)  x  -xlog2(x)  x  -xlog2(x)  x  -xlog2(x) 

0.038 0.1793  0.288 0.5172  0.538 0.4811  0.788 0.2709 

0.039 0.1825  0.289 0.5176  0.539 0.4806  0.789 0.2698 

0.040 0.1858  0.290 0.5179  0.540 0.4800  0.790 0.2687 

0.041 0.1889  0.291 0.5182  0.541 0.4795  0.791 0.2676 

0.042 0.1921  0.292 0.5186  0.542 0.4789  0.792 0.2665 

0.043 0.1952  0.293 0.5189  0.543 0.4784  0.793 0.2653 

0.044 0.1983  0.294 0.5192  0.544 0.4778  0.794 0.2642 

0.045 0.2013  0.295 0.5196  0.545 0.4772  0.795 0.2631 

0.046 0.2043  0.296 0.5199  0.546 0.4767  0.796 0.2620 

0.047 0.2073  0.297 0.5202  0.547 0.4761  0.797 0.2609 

0.048 0.2103  0.298 0.5205  0.548 0.4755  0.798 0.2598 

0.049 0.2132  0.299 0.5208  0.549 0.4750  0.799 0.2587 

0.050 0.2161  0.300 0.5211  0.550 0.4744  0.800 0.2575 

0.051 0.2190  0.301 0.5214  0.551 0.4738  0.801 0.2564 

0.052 0.2218  0.302 0.5217  0.552 0.4732  0.802 0.2553 

0.053 0.2246  0.303 0.5220  0.553 0.4726  0.803 0.2542 

0.054 0.2274  0.304 0.5222  0.554 0.4720  0.804 0.2530 

0.055 0.2301  0.305 0.5225  0.555 0.4714  0.805 0.2519 

0.056 0.2329  0.306 0.5228  0.556 0.4708  0.806 0.2508 

0.057 0.2356  0.307 0.5230  0.557 0.4702  0.807 0.2497 

0.058 0.2383  0.308 0.5233  0.558 0.4696  0.808 0.2485 

0.059 0.2409  0.309 0.5235  0.559 0.4690  0.809 0.2474 

0.060 0.2435  0.310 0.5238  0.560 0.4684  0.810 0.2462 

0.061 0.2461  0.311 0.5240  0.561 0.4678  0.811 0.2451 

0.062 0.2487  0.312 0.5243  0.562 0.4672  0.812 0.2440 

0.063 0.2513  0.313 0.5245  0.563 0.4666  0.813 0.2428 

0.064 0.2538  0.314 0.5247  0.564 0.4660  0.814 0.2417 

0.065 0.2563  0.315 0.5250  0.565 0.4654  0.815 0.2405 

0.066 0.2588  0.316 0.5252  0.566 0.4648  0.816 0.2394 

0.067 0.2613  0.317 0.5254  0.567 0.4641  0.817 0.2382 

0.068 0.2637  0.318 0.5256  0.568 0.4635  0.818 0.2371 

0.069 0.2662  0.319 0.5258  0.569 0.4629  0.819 0.2359 

0.070 0.2686  0.320 0.5260  0.570 0.4623  0.820 0.2348 

0.071 0.2709  0.321 0.5262  0.571 0.4616  0.821 0.2336 

0.072 0.2733  0.322 0.5264  0.572 0.4610  0.822 0.2325 

0.073 0.2756  0.323 0.5266  0.573 0.4603  0.823 0.2313 

0.074 0.2780  0.324 0.5268  0.574 0.4597  0.824 0.2301 

0.075 0.2803  0.325 0.5270  0.575 0.4591  0.825 0.2290 

0.076 0.2826  0.326 0.5272  0.576 0.4584  0.826 0.2278 

0.077 0.2848  0.327 0.5273  0.577 0.4578  0.827 0.2266 
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x  -xlog2(x)  x  -xlog2(x)  x  -xlog2(x)  x  -xlog2(x) 

0.078 0.2871  0.328 0.5275  0.578 0.4571  0.828 0.2255 

0.079 0.2893  0.329 0.5277  0.579 0.4565  0.829 0.2243 

0.080 0.2915  0.330 0.5278  0.580 0.4558  0.830 0.2231 

0.081 0.2937  0.331 0.5280  0.581 0.4551  0.831 0.2219 

0.082 0.2959  0.332 0.5281  0.582 0.4545  0.832 0.2208 

0.083 0.2980  0.333 0.5283  0.583 0.4538  0.833 0.2196 

0.084 0.3002  0.334 0.5284  0.584 0.4532  0.834 0.2184 

0.085 0.3023  0.335 0.5286  0.585 0.4525  0.835 0.2172 

0.086 0.3044  0.336 0.5287  0.586 0.4518  0.836 0.2160 

0.087 0.3065  0.337 0.5288  0.587 0.4511  0.837 0.2149 

0.088 0.3086  0.338 0.5289  0.588 0.4505  0.838 0.2137 

0.089 0.3106  0.339 0.5291  0.589 0.4498  0.839 0.2125 

0.090 0.3127  0.340 0.5292  0.590 0.4491  0.840 0.2113 

0.091 0.3147  0.341 0.5293  0.591 0.4484  0.841 0.2101 

0.092 0.3167  0.342 0.5294  0.592 0.4477  0.842 0.2089 

0.093 0.3187  0.343 0.5295  0.593 0.4471  0.843 0.2077 

0.094 0.3207  0.344 0.5296  0.594 0.4464  0.844 0.2065 

0.095 0.3226  0.345 0.5297  0.595 0.4457  0.845 0.2053 

0.096 0.3246  0.346 0.5298  0.596 0.4450  0.846 0.2041 

0.097 0.3265  0.347 0.5299  0.597 0.4443  0.847 0.2029 

0.098 0.3284  0.348 0.5299  0.598 0.4436  0.848 0.2017 

0.099 0.3303  0.349 0.5300  0.599 0.4429  0.849 0.2005 

0.100 0.3322  0.350 0.5301  0.600 0.4422  0.850 0.1993 

0.101 0.3341  0.351 0.5302  0.601 0.4415  0.851 0.1981 

0.102 0.3359  0.352 0.5302  0.602 0.4408  0.852 0.1969 

0.103 0.3378  0.353 0.5303  0.603 0.4401  0.853 0.1957 

0.104 0.3396  0.354 0.5304  0.604 0.4393  0.854 0.1944 

0.105 0.3414  0.355 0.5304  0.605 0.4386  0.855 0.1932 

0.106 0.3432  0.356 0.5305  0.606 0.4379  0.856 0.1920 

0.107 0.3450  0.357 0.5305  0.607 0.4372  0.857 0.1908 

0.108 0.3468  0.358 0.5305  0.608 0.4365  0.858 0.1896 

0.109 0.3485  0.359 0.5306  0.609 0.4357  0.859 0.1884 

0.110 0.3503  0.360 0.5306  0.610 0.4350  0.860 0.1871 

0.111 0.3520  0.361 0.5306  0.611 0.4343  0.861 0.1859 

0.112 0.3537  0.362 0.5307  0.612 0.4335  0.862 0.1847 

0.113 0.3555  0.363 0.5307  0.613 0.4328  0.863 0.1834 

0.114 0.3571  0.364 0.5307  0.614 0.4321  0.864 0.1822 

0.115 0.3588  0.365 0.5307  0.615 0.4313  0.865 0.1810 

0.116 0.3605  0.366 0.5307  0.616 0.4306  0.866 0.1797 

0.117 0.3622  0.367 0.5307  0.617 0.4298  0.867 0.1785 
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x  -xlog2(x)  x  -xlog2(x)  x  -xlog2(x)  x  -xlog2(x) 

0.118 0.3638  0.368 0.5307  0.618 0.4291  0.868 0.1773 

0.119 0.3654  0.369 0.5307  0.619 0.4283  0.869 0.1760 

0.120 0.3671  0.370 0.5307  0.620 0.4276  0.870 0.1748 

0.121 0.3687  0.371 0.5307  0.621 0.4268  0.871 0.1736 

0.122 0.3703  0.372 0.5307  0.622 0.4261  0.872 0.1723 

0.123 0.3719  0.373 0.5307  0.623 0.4253  0.873 0.1711 

0.124 0.3734  0.374 0.5307  0.624 0.4246  0.874 0.1698 

0.125 0.3750  0.375 0.5306  0.625 0.4238  0.875 0.1686 

0.126 0.3766  0.376 0.5306  0.626 0.4230  0.876 0.1673 

0.127 0.3781  0.377 0.5306  0.627 0.4223  0.877 0.1661 

0.128 0.3796  0.378 0.5305  0.628 0.4215  0.878 0.1648 

0.129 0.3811  0.379 0.5305  0.629 0.4207  0.879 0.1636 

0.130 0.3826  0.380 0.5305  0.630 0.4199  0.880 0.1623 

0.131 0.3841  0.381 0.5304  0.631 0.4192  0.881 0.1610 

0.132 0.3856  0.382 0.5304  0.632 0.4184  0.882 0.1598 

0.133 0.3871  0.383 0.5303  0.633 0.4176  0.883 0.1585 

0.134 0.3886  0.384 0.5302  0.634 0.4168  0.884 0.1572 

0.135 0.3900  0.385 0.5302  0.635 0.4160  0.885 0.1560 

0.136 0.3915  0.386 0.5301  0.636 0.4152  0.886 0.1547 

0.137 0.3929  0.387 0.5300  0.637 0.4145  0.887 0.1534 

0.138 0.3943  0.388 0.5300  0.638 0.4137  0.888 0.1522 

0.139 0.3957  0.389 0.5299  0.639 0.4129  0.889 0.1509 

0.140 0.3971  0.390 0.5298  0.640 0.4121  0.890 0.1496 

0.141 0.3985  0.391 0.5297  0.641 0.4113  0.891 0.1484 

0.142 0.3999  0.392 0.5296  0.642 0.4105  0.892 0.1471 

0.143 0.4012  0.393 0.5295  0.643 0.4097  0.893 0.1458 

0.144 0.4026  0.394 0.5294  0.644 0.4089  0.894 0.1445 

0.145 0.4040  0.395 0.5293  0.645 0.4080  0.895 0.1432 

0.146 0.4053  0.396 0.5292  0.646 0.4072  0.896 0.1420 

0.147 0.4066  0.397 0.5291  0.647 0.4064  0.897 0.1407 

0.148 0.4079  0.398 0.5290  0.648 0.4056  0.898 0.1394 

0.149 0.4092  0.399 0.5289  0.649 0.4048  0.899 0.1381 

0.150 0.4105  0.400 0.5288  0.650 0.4040  0.900 0.1368 

0.151 0.4118  0.401 0.5286  0.651 0.4031  0.901 0.1355 

0.152 0.4131  0.402 0.5285  0.652 0.4023  0.902 0.1342 

0.153 0.4144  0.403 0.5284  0.653 0.4015  0.903 0.1329 

0.154 0.4156  0.404 0.5283  0.654 0.4007  0.904 0.1316 

0.155 0.4169  0.405 0.5281  0.655 0.3998  0.905 0.1303 

0.156 0.4181  0.406 0.5280  0.656 0.3990  0.906 0.1290 

0.157 0.4194  0.407 0.5278  0.657 0.3982  0.907 0.1277 
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x  -xlog2(x)  x  -xlog2(x)  x  -xlog2(x)  x  -xlog2(x) 

0.158 0.4206  0.408 0.5277  0.658 0.3973  0.908 0.1264 

0.159 0.4218  0.409 0.5275  0.659 0.3965  0.909 0.1251 

0.160 0.4230  0.410 0.5274  0.660 0.3956  0.910 0.1238 

0.161 0.4242  0.411 0.5272  0.661 0.3948  0.911 0.1225 

0.162 0.4254  0.412 0.5271  0.662 0.3940  0.912 0.1212 

0.163 0.4266  0.413 0.5269  0.663 0.3931  0.913 0.1199 

0.164 0.4278  0.414 0.5267  0.664 0.3923  0.914 0.1186 

0.165 0.4289  0.415 0.5266  0.665 0.3914  0.915 0.1173 

0.166 0.4301  0.416 0.5264  0.666 0.3905  0.916 0.1159 

0.167 0.4312  0.417 0.5262  0.667 0.3897  0.917 0.1146 

0.168 0.4323  0.418 0.5260  0.668 0.3888  0.918 0.1133 

0.169 0.4335  0.419 0.5258  0.669 0.3880  0.919 0.1120 

0.170 0.4346  0.420 0.5256  0.670 0.3871  0.920 0.1107 

0.171 0.4357  0.421 0.5255  0.671 0.3862  0.921 0.1093 

0.172 0.4368  0.422 0.5253  0.672 0.3854  0.922 0.1080 

0.173 0.4379  0.423 0.5251  0.673 0.3845  0.923 0.1067 

0.174 0.4390  0.424 0.5249  0.674 0.3836  0.924 0.1054 

0.175 0.4401  0.425 0.5246  0.675 0.3828  0.925 0.1040 

0.176 0.4411  0.426 0.5244  0.676 0.3819  0.926 0.1027 

0.177 0.4422  0.427 0.5242  0.677 0.3810  0.927 0.1014 

0.178 0.4432  0.428 0.5240  0.678 0.3801  0.928 0.1000 

0.179 0.4443  0.429 0.5238  0.679 0.3792  0.929 0.0987 

0.180 0.4453  0.430 0.5236  0.680 0.3783  0.930 0.0974 

0.181 0.4463  0.431 0.5233  0.681 0.3775  0.931 0.0960 

0.182 0.4474  0.432 0.5231  0.682 0.3766  0.932 0.0947 

0.183 0.4484  0.433 0.5229  0.683 0.3757  0.933 0.0933 

0.184 0.4494  0.434 0.5226  0.684 0.3748  0.934 0.0920 

0.185 0.4504  0.435 0.5224  0.685 0.3739  0.935 0.0907 

0.186 0.4514  0.436 0.5222  0.686 0.3730  0.936 0.0893 

0.187 0.4523  0.437 0.5219  0.687 0.3721  0.937 0.0880 

0.188 0.4533  0.438 0.5217  0.688 0.3712  0.938 0.0866 

0.189 0.4543  0.439 0.5214  0.689 0.3703  0.939 0.0853 

0.190 0.4552  0.440 0.5211  0.690 0.3694  0.940 0.0839 

0.191 0.4562  0.441 0.5209  0.691 0.3685  0.941 0.0826 

0.192 0.4571  0.442 0.5206  0.692 0.3676  0.942 0.0812 

0.193 0.4581  0.443 0.5204  0.693 0.3666  0.943 0.0798 

0.194 0.4590  0.444 0.5201  0.694 0.3657  0.944 0.0785 

0.195 0.4599  0.445 0.5198  0.695 0.3648  0.945 0.0771 

0.196 0.4608  0.446 0.5195  0.696 0.3639  0.946 0.0758 

0.197 0.4617  0.447 0.5193  0.697 0.3630  0.947 0.0744 
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x  -xlog2(x)  x  -xlog2(x)  x  -xlog2(x)  x  -xlog2(x) 

0.198 0.4626  0.448 0.5190  0.698 0.3621  0.948 0.0730 

0.199 0.4635  0.449 0.5187  0.699 0.3611  0.949 0.0717 

0.200 0.4644  0.450 0.5184  0.700 0.3602  0.950 0.0703 

0.201 0.4653  0.451 0.5181  0.701 0.3593  0.951 0.0689 

0.202 0.4661  0.452 0.5178  0.702 0.3583  0.952 0.0676 

0.203 0.4670  0.453 0.5175  0.703 0.3574  0.953 0.0662 

0.204 0.4678  0.454 0.5172  0.704 0.3565  0.954 0.0648 

0.205 0.4687  0.455 0.5169  0.705 0.3555  0.955 0.0634 

0.206 0.4695  0.456 0.5166  0.706 0.3546  0.956 0.0621 

0.207 0.4704  0.457 0.5163  0.707 0.3537  0.957 0.0607 

0.208 0.4712  0.458 0.5160  0.708 0.3527  0.958 0.0593 

0.209 0.4720  0.459 0.5157  0.709 0.3518  0.959 0.0579 

0.210 0.4728  0.460 0.5153  0.710 0.3508  0.960 0.0565 

0.211 0.4736  0.461 0.5150  0.711 0.3499  0.961 0.0552 

0.212 0.4744  0.462 0.5147  0.712 0.3489  0.962 0.0538 

0.213 0.4752  0.463 0.5144  0.713 0.3480  0.963 0.0524 

0.214 0.4760  0.464 0.5140  0.714 0.3470  0.964 0.0510 

0.215 0.4768  0.465 0.5137  0.715 0.3460  0.965 0.0496 

0.216 0.4776  0.466 0.5133  0.716 0.3451  0.966 0.0482 

0.217 0.4783  0.467 0.5130  0.717 0.3441  0.967 0.0468 

0.218 0.4791  0.468 0.5127  0.718 0.3432  0.968 0.0454 

0.219 0.4798  0.469 0.5123  0.719 0.3422  0.969 0.0440 

0.220 0.4806  0.470 0.5120  0.720 0.3412  0.970 0.0426 

0.221 0.4813  0.471 0.5116  0.721 0.3403  0.971 0.0412 

0.222 0.4820  0.472 0.5112  0.722 0.3393  0.972 0.0398 

0.223 0.4828  0.473 0.5109  0.723 0.3383  0.973 0.0384 

0.224 0.4835  0.474 0.5105  0.724 0.3373  0.974 0.0370 

0.225 0.4842  0.475 0.5102  0.725 0.3364  0.975 0.0356 

0.226 0.4849  0.476 0.5098  0.726 0.3354  0.976 0.0342 

0.227 0.4856  0.477 0.5094  0.727 0.3344  0.977 0.0328 

0.228 0.4863  0.478 0.5090  0.728 0.3334  0.978 0.0314 

0.229 0.4870  0.479 0.5087  0.729 0.3324  0.979 0.0300 

0.230 0.4877  0.480 0.5083  0.730 0.3314  0.980 0.0286 

0.231 0.4883  0.481 0.5079  0.731 0.3305  0.981 0.0271 

0.232 0.4890  0.482 0.5075  0.732 0.3295  0.982 0.0257 

0.233 0.4897  0.483 0.5071  0.733 0.3285  0.983 0.0243 

0.234 0.4903  0.484 0.5067  0.734 0.3275  0.984 0.0229 

0.235 0.4910  0.485 0.5063  0.735 0.3265  0.985 0.0215 

0.236 0.4916  0.486 0.5059  0.736 0.3255  0.986 0.0201 

0.237 0.4923  0.487 0.5055  0.737 0.3245  0.987 0.0186 
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x  -xlog2(x)  x  -xlog2(x)  x  -xlog2(x)  x  -xlog2(x) 

0.238 0.4929  0.488 0.5051  0.738 0.3235  0.988 0.0172 

0.239 0.4935  0.489 0.5047  0.739 0.3225  0.989 0.0158 

0.240 0.4941  0.490 0.5043  0.740 0.3215  0.990 0.0144 

0.241 0.4947  0.491 0.5039  0.741 0.3204  0.991 0.0129 

0.242 0.4954  0.492 0.5034  0.742 0.3194  0.992 0.0115 

0.243 0.4960  0.493 0.5030  0.743 0.3184  0.993 0.0101 

0.244 0.4966  0.494 0.5026  0.744 0.3174  0.994 0.0086 

0.245 0.4971  0.495 0.5022  0.745 0.3164  0.995 0.0072 

0.246 0.4977  0.496 0.5017  0.746 0.3154  0.996 0.0058 

0.247 0.4983  0.497 0.5013  0.747 0.3144  0.997 0.0043 

0.248 0.4989  0.498 0.5009  0.748 0.3133  0.998 0.0029 

0.249 0.4994  0.499 0.5004  0.749 0.3123  0.999 0.0014 

 

 



Appendix C: Signal Detection Elements 

C.1   Detection Problem 

Signal detection is part of the statistical decision theory or hypotheses testing the-

ory. The aim of this processing, made at the receiver, is to decide which was the 

sent signal, based on the observation of the received signal (observation space). A 

block- scheme of a system using signal detection is given in Fig C.1. 

 

Fig. C.1 Block scheme of a transmission system using signal detection. S- source, N- noise 

generator, SD- signal detection block, U- user, si(t) - transmitted signal, r(t) - received sig-

nal, n(t) - noise voltage, ŝi(t) - estimated signal. 

In signal detection block (SD), the received signal r(t) (observation space) is 

observed and, using a decision criterion, a decision is made concerning which is 

the transmitted signal. Decision taken is on thus the affirmation of a hypothesis 

(Hi). The observation of r(t) can be: 
 

• discrete observation: at discrete moments it , N1,i = samples from )(tr are 

taken ( )ir , the decision being taken on ( )N1 r,...,rr = . If N is variable, the de-

tection is called sequential. 

• continuous observation: r(t) is observed continuously during the observation 

time T, and the decision is taken based on dtr(t)
T

0
∫ . It represents the discrete 

case at limit: ∞→N . 

If the source S is binary, the decision is binary, otherwise M-ary (when the 

source is M-ary). We will focus only on binary detection, the M-ary case being a 

generalization of the binary one [1], [4], [6], [7]. 
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The binary source is: 

⎟⎟⎠
⎞⎜⎜⎝

⎛
10

10

PP

(t)s(t)s
:S , 1PP 10 =+                                      (C.1) 

assumed memoryless, 0P and 1P  being the a priori probabilities. 

Under the assumption of AWGN, the received signal (observation space Δ) is: 

000 r/sor  n(t)(t)sr(t)  :H +=                                   (C.2.a) 

111 r/sor  n(t)(t)sr(t)  :H +=                                    (C.2.b) 

 

Fig. C.2 Binary decision splits observation space Δ into two disjoint spaces Δ0 and Δ1. 

We may have four situations: 
 

• )D  ,(s 00 - correct decision in the case of 0s  

• )D  ,(s 11 - correct decision in the case of 1s  

• )D  ,(s 10 - wrong decision in the case of 0s  

• )D  ,(s 01 - wrong decision in the case of 1s  

The consequences of these decisions are different and application linked; they 

can be valued with coefficients named costs, ijC : the cost of deciding iD when js  

was transmitted. For binary decision there are four costs which can be included in 

cost matrix C: 

⎥⎦
⎤⎢⎣

⎡
=

1101

1000

CC

CC
C                                            (C.3) 
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Concerning the costs, always the cost of wrong decisions is higher than those of 

good decisions (we pay for mistakes): 

0010 CC >>  and 1101 CC >>  

In data transmission 0CC 1100 == and 1001 CC =  (the consequence of an er-

ror on ‘0’ or on ‘1’ is the same). 

Then, for binary decision an average cost, named risk can be obtained: 

)/sP(DPC)/sP(DPC)/sP(DPC)/sP(DPC    

)sP(DC)sP(DC)sP(DC)sP(DC    

)sP(DCC:R

01010101011111100000

0110100111110000

1

0i

1

0j
jiij

+++=

=+++=

=∑ ∑==
= =

    (C.4) 

Conditional probabilities )/s(DP ji=  can be calculated based on conditional 

pdfs (probability density functions): )p(r/s j : 

)drp(r/s)/sP(D

0Δ
000 ∫=                                        (C.5.a) 

)drp(r/s)/sP(D

1Δ
001 ∫=                                       (C.5.b) 

)drp(r/s)/sP(D

0Δ
110 ∫=                                       (C.5.c) 

)drp(r/s)/sP(D

1Δ
111 ∫=                                       (C.5.d) 

Taking into account that the domains 0Δ  and 1Δ  are disjoint, we have: 

1)drp(r/s)drp(r/s

10 Δ
0

Δ
0 =∫+∫                                   (C.6.a) 

1)drp(r/s)drp(r/s

10 Δ
1

Δ
1 =∫+∫                                   (C.6.b) 

Replacing the conditional probabilities )/sP(D ji  with (C.5.a÷d), and taking 

into consideration (C.6.a and b), the risk can be expressed only with one domain 

0Δ , or 1Δ : 

)]drC)(Cp(r/s)PC)(C[p(r/sPCPCR 0010011101
Δ

1010111

0

−−−∫++=      (C.4.a) 
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C.2   Signal Detection Criteria 

C.2.1   Bayes Criterion 

Bayes criterion is the minimum risk criterion and is obtained minimising (C.4.a): 

1101

0010

1

0

Δ

Δ
0

1

CC

CC

P

P

)p(r/s

)p(r/s
0

1

−
−

>

<
                                      (C.7) 

where  

ȁ(r):
)p(r/s

)p(r/s

0

1 = =: likelihood ratio                               (C.8) 

)p(r/s1  and )p(r/s0 being known as likelihood functions and  

K
CC

CC

P

P

1101

0010

1

0 =
−
−

 =: threshold                                (C.9) 

Then Bayes criterion can be expressed as: 

Kln  (r)ln or  K  ȁ(r)

1

0

>

<
Λ

>

<

Δ

Δ

                                (C.7.a) 

and it gives the block scheme of an optimal receiver( Fig. C.3) . 

 

Fig. C.3 Block scheme of an optimal receiver (operating according to Bayes criterion, of 

minimum risk) 

The quality of signal detection processing is appreciated by: 
 

• Error probability: EP (BER) 

)/sP(DP)/sP(DPP 101010E +=                                   (C.10) 
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Under the assumption of AWGN, the pdf of the noise is ),0( 2
nN σ : 

2

2
n

n
2ı

1

2
n

e

2π

1
p(n)

−

=
σ

                                      (C.11) 

and the conditional pdf: )p(r/si are also of Gaussian type (Fig. C.4) 

 

Fig. C.4 Binary detection parameters: Pm- probability of miss, PD- probability of detection, 

Pf - probability of false detection 

In engineering, the terminology, originating from radar [1] is: 
 

– probability of false alarm: fP  

)drp(r/sP

1Δ
0f ∫=                                          (C.12) 

– probability of miss: mP  

)drp(r/sP

0Δ
1m ∫=                                         (C.13) 

– probability of detection: DP  

)drp(r/sP

1Δ
1D ∫=                                         (C.14) 

• Integrals from normal pdfs can be calculated in many ways, one of them being 

function Q(y), also called complementary error function (co-error function: erfc). 

∫=
∞

1y
1 f(y)dy:)Q(y                                        (C.15) 
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where f(y) is a normal standard pdf, N(0,1): 

2y
2

1

e
2π
1

:f(y)
−

=  and 1{y}ı2 =                             (C.16) 

with average value E{y} = y = 0 under the assumption of ergodicity [2]. It’s 

graphical representation is given in Fig. C.5. 

 

Fig. C.5 Graphical representation of function Q(y) 

The properties of function Q(y) are: 

( )
( )

( )

( ) ( )yQ - 1yQ

2

1
0Q

0Q

1Q

=−

=

=∞+

=∞−

                                          (C.17) 

If the Gaussian pdf is not normal standard, a variable change is used: 

yı
yy

t
−

= , with E{y} = 0y ≠  and 1ın ≠                         (C.18) 

C.2.2   Minimum Probability of Error Criterion (Kotelnikov- Siegert) 

Under the assumption of: 

⎪⎩
⎪⎨
⎧

==

==

=+=

1CC

0CC

known - 1)P(P  ,PP

1001

1100

1010

                            (C.19) 
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The threshold (C.9) becomes: 

1

0

P

P
K =  

and Bayes risk (C.4), the minimum risk is: 

minEf0m1min PPPPPR =+=  

from where the name of minimum error probability criteria. Bayes test (C.7)  

becomes: 

1

0

D

D

P

Pȁ(r)

0

1

>

<
. 

C.2.3   Maximum a Posteriori Probability Criterion (MAP) 

Using Bayes probability relation (2.32), we have: 

))p(r/sp(s/r)p(r)p(s)p(rs iiii ==                               (C.21) 

which gives: 

1
/r)p(s

/r)p(s

)Pp(r/s

)Pp(r/s
Δ

Δ
0

1

00

11

0

1

>

<
=                                     (C.22) 

It can be written as: 

)p(r/sP)p(r/sP 00

Δ

Δ

11

0

1

>

<
                                    (C.22.a) 

where )p(r/s0  and )p(r/s1  are known as Maximum A Posteriori pdfs. 

 

Remark 

(C.22), respectively (C.22.a) are in fact minimum error probability test, showing 

that MAP for error correction codes is an optimal decoding algorithm: it gives the 

minimum error probability. 

C.2.4   Maximum Likelihood Criterion (R. Fisher) 

If to the assumptions (C.19) we add also: 10 PP = , the threshold (C.9) becomes: 

K = 1 
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and Bayesian test is: 

)p(r/s)p(r/s 0

Δ

Δ

1

0

1

>

<
                                       (C.23) 

 

Remark 

The assumptions 

⎪⎪⎩

⎪⎪⎨
⎧

==

==

==

2

1
PP

1CC

0CC

10

1001

1100

 are basically those form data processing, this is 

why maximum likelihood criterion (K = 1) is the used decision criterion in data 

processing. 

C.3   Signal Detection in Data Processing (K = 1) 

C.3.1   Discrete Detection of a Unipolar Signal 

Hypotheses: 
 

• unipolar signal (in baseband): ⎩⎨
⎧

==

=

ctA(t)s

0(t)s

1

0
 

• AWGN: N(0, 2
nı ); n(t)(t)sr(t) i +=  

• T = bit duration = observation time 

• Discrete observation with N samples per observation time (T) ( )N1 r,...,rr =⇒ G  

• 0CC 1100 == , 1CC 1001 == , 0P , 1P , with 
2

1
PP 10 ==  

a. Likelihood ratio calculation 

n(t)r/sn(t)n(t)(t)sr(t):H 000 =→=+=  

A sample )ıN(0,nr 2
nii ∈=  and the N samples are giving 

( ) ( )N1N1 n,...,nr,...,rr ==
G
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n(t)An(t)(t)sr(t):H 11 +=+=  
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b. Minimum error probability test, applied to the logarithmic relation: 

lnK)r(ln
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                                    (C.24) 

where ∑
=

N

1i
ir represents a sufficient statistics, meaning that it is sufficient to take the 

decisions and 

K
2

AN
lnK

A

ı2
n ′=+                                      (C.25) 

represents a threshold depending on: the power of the noise on the channel ( 2
nı ), the 

level of the signal (A), the number of samples (N) and 0P  , 1P (through 10 PPK = ). 
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Relation (C.24) direction to the block-scheme of an optimal receiver: 

 

Fig. C.6 Block-scheme of the optimal receiver for unipolar signal and discrete observation. 

Remark 

If K=1 and N=1 (one sample per bit, taken at 2T ) and 10 PP =  (K=1), the deci-

sion relation (C.24) becomes: 

2

A
r

Δ

Δ

i

0

0

>

<
                                              (C.24.a) 

c. Error probability of the optimal receiver variable is 

According to (C.24), the decision variable is )ın(E[y],r
N

1i

2
i∑ ∈

=
, E[y] being the 

variable and 2ı  the dispersion. Making the variable change 

Nı

r

y

n

N

1i
i∑

= =                                             (C.26) 

a normalization is obtained: 1[y]ı2 = . 

Using this new variable, the decision relation becomes: 

n
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Δ

Δ
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=                             (C.24.b) 

If we note: 

ȝ
2ı

NA
lnK

NA

ı

n

n =+                                    (C.27) 
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the decision relation (C.24.b) is: 

ȝy

Δ

Δ

0

1

>

<
                                                (C.24.c) 

Under the two assumptions 0H  and 1H , the pdfs of y are: 
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graphically represented in Fig. C.7. 

 

Fig. C.7 Graphical representation of pdfs of decision variables for unipolar decision and 

discrete observation. 
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It is a particular value 0ȝ  for which mf PP = : 
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It follows that: 

n
0 ı
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1ȝ =                                              (C.31) 

and according to (C.27), 0ȝ  is obtained if K=1, which means that 
2

1
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and: 
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or 
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where ξ designates the SNR: 

2
n

2

2
n

2

n

s

ı
A

2

1

R

ı
2R

A

P

PξSNR ====                                 (C.34) 

It follows that the minimum required SNR for 5
E 10P −=  for N=1 (the required 

value in PCM systems, see 3.3.5) is approximately 15dB (15,6 dB), which is the 

threshold value of the required input SNR: ξi0 which separate the regions of deci-

sion noise to that one of quantisation noise- Fig. 3.8. 

C.3.2   Discrete Detection of Polar Signal 

Hypotheses:  
 

• Polar signal in baseband: A-  B A,  B A,(t)s B,(t)s 10 =<==  

• AWGN: )ıN(0, 2
n  

• T- observation time = bit duration 

• Discrete observation with N samples per T 

• 0CC 1100 == , 1CC 1001 ==  

Following the steps similar to those from C.3.1, we obtain: 
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For polar signal: B = -A, and K=1, the threshold of the comparator is 0K =′ ; if 

N=1, the comparator will decide ‘1’ for positive samples and ‘0’ for negative 

ones. 

c. In order to calculate the quality parameters: EP , a variable change for normali-

zation of the decision variable is done: 
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The decision variable pdf under the two hypotheses is: 
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The threshold 0μ  for which mf PP =  is: 

n
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=                                              (C.39) 

which implies K=1 (
2

1
PP 10 == ). 

If B = -A, the polar case, 
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n
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Compared with the unipolar case, relation (C.33), we may notice that the same 

BER ( EP ) is obtained in the polar case with 3dB less SNR. 
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C.3.3   Continuous Detection of Known Signal 

Hypotheses: 
 

• ⎪⎩
⎪⎨
⎧

∫==

=
T

0

2
1

0

(t)dtsEenergy  finite of s(t),(t)s

0(t)s

 

• T- observation time 

• continuous observation: ( )∞→= N1 r,...,rr
G

 

• AWGN: )ıN(0,n(t) 2
n∈ , n(t)(t)sr(t) i +=  

a. Calculation of 
)p(r/s

)p(r/sȁ(r)
0

1=  

Continuous observation means Nĺ∞. We shall express the received signal r(t) 

as a series of orthogonal functions )(tvi  (Karhunen-Loeve expansion [2]) in such 

a way that the decision could be taken using only one function (coordinate), mean-

ing that it represents the sufficient statistics. 
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N
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The functions (t)vi  are chosen to represent an orthonormal (orthogonal and 

normalised) system. 
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The coefficients ir  are given by: 

(t)dtr(t)v:r
T

0
ii ∫=                                             (C.43) 

and represent the coordinates of r(t) on the observation interval [0,T]. In order to 

have (t)v1  as sufficient statistics, we chose: 

E
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(t)v1 =                                                (C.44) 

and 1r  is: 
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We show that higher order coefficients: ir with i > 1, do not affect the likeli-

hood ration: 
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the contribution of higher order coefficients being equal in the likelihood ratio: 
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because ∫ ∫ ==
T

0

T
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i1i 0(t)dt(t)vvE(t)s(t)v , based on the orthogonality of (t)v1  and 

(t)vi . 

Then, Es(t)(t)v1 = is a sufficient statistics. 
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and has a normal pdf. 

The average value of 0/sr:/sr 0101 =  based on )ıN(0,n(t) 2
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b. The decision criterion is: 
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If 1r  is replaced with (C.45), the decision relation becomes: 
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where K
2

E
TlnKı2

n ′=+ . 

The block- scheme of the optimal receiver can be implemented in two ways: 

correlator-base (Fig. C.8.a), or matched filter-based (Fig. C.8.b). 
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Fig. C.8 Block Scheme of an optimal receiver with continuous observation decision for one 

known signal s(t): a) correlator based implementation; b) matched filter implementation 

c. Decision relation is (C.52). Making a variable change to obtain unitary disper-

sion, we get: 
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Using the notations: 
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the pdfs of the new variable z are: 
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which are represented in Fig. C.9. 
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Fig. C.9 Graphical representation of )p(z/s0 and )p(z/s1 . 

The probabilities occurring after decision are: 
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The particular value 0ȝ  for which mf PP =  is: 
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and according to (C.56) is obtained for K=1. 

In this case, K=1, the bit error rate is: 
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which can be expressed also as a function of the ratio 0b NE  
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It follows that the required 0b NE for 510−  BER is 12.6dB, with 3dB less 

than the required ξ in the discrete observation with 1 sample per bit. 

C.3.4   Continuous Detection of Two Known Signals 

Hypotheses: 
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• T- observation time 

• continuous observation : ( )∞→= N1 r,...,rr
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If the first two functions: (t)v1  and (t)v2  are properly chosen, )rȁ(
G

can be ex-

pressed only by the coordinates 1r  and 2r , which represent the sufficient statistics. 
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where ρ is the correlation coefficient. 
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Easily can be checked that: 
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Higher order functions (t)vi , with i > 2, if orthogonal can be any; it means that 

the coordinates ir , with i > 2 do not depend on the hypotheses 0H , 1H  and then 

1r and 2r  are the sufficient statistics. 
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Consequently, the likelihood ratio is: 
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The coordinates 1r and 2r  are: 

∫=
T

0
1

1
1 (t)dtr(t)s

E

1
r                                         (C.69) 

](t)dtr(t)s
E

ρ
(t)dtr(t)s

E

1
[

ρ1

1
(t)r

T

0
1

1

T

0
0

0
2

2 ∫−∫
−

=                   (C.70) 

Under the two hypotheses, we have: 
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where  
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Under the assumption of noise absence: n(t)=0, ( ρE/sr 001 = , 

)ρ1E/sr 2
002 −=  are the coordinate of point 0M , and ( 111 E/sr = , 

0/sr 12 = ) the coordinate of point 1M , represented in the space ( 1r , 2r ), Fig. C.10. 

 

Fig. C.10 Observation space in dimensions (r1, r2). 
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The separation line between 0Δ  and 1Δ  is the line )( xx ′  orthogonal on 

10MM . If we rotate the coordinates such that l be parallel with 10MM , the in-

formation necessary to take the decision is contained only in the coordinate l 

which plays the role of sufficient statistics. Assume that the received vector is the 

point R ( 1r , 2r ). 
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which is a Gaussian, based on the Gaussianity of 1r  and 2r . 
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If we introduce the notation: 

Tı

l
z

2
n

=                                                  (C.80) 

and l is replaced with (C.77), (C.78) and (C.79), we obtain: 
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The likelihood ratio can be written as a function of z, which plays the role of 

sufficient statistics. 
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b. The decision criterion, applied to the logarithmic relation, gives 
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If we note: 
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The decision relation is: 
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which can be written, based on (C.81): 
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and represents the decision relation. 
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represents the threshold of the comparator. 

The implementation of the decision relation (C.87) gives the block - scheme of 

the optimal receiver (Fig. C.11). 

 

Fig. C.11 Block- scheme of an optimal receiver for continuous decision with two known 

signal (correlator based implementation). 
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As presented in Fig. C.8, the correlator can be replaced with matched filters 

(Fig. C.8.b) 

 

c. The decision variable z, under the two hypotheses is represented in Fig. C.12 

 

Fig. C.12 Representation of the decision process in continuous detection of two known  

signals 

The distance between the maxima of )p(z/s0  and )p(z/s1  is: 
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fP  and mP  are decreasing, which means EP  is decreasing, if Ȗ is greater. The 

greatest Ȗ, for ctEE 10 =+ , is obtained when 1ρ −= and  EEE 10 =+ , respec-

tively when the performance of the optimal receiver depends only on its energy. 

(t)s (t)s 10 −=                                               (C.90) 

We can notice that the shape of the signal has no importance, the performance 

of the optimal receiver depending on its energy. 

In this case  
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0ȝ , the value of the threshold corresponding to mf PP =  is: 
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and, based on (C.86), is obtained when K=1; it follows that: 
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In the particular case (C.90) 
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the bit error rate is: 
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and show that the same BER is obtained with 3dB less 0b NE than in the case of 

one signal (0, s(t)) - see relation (C.62). 
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Appendix D: Synthesis Example 

We think that an example, trying to synthesize the main processings exposed in 

the present book: source modelling, compression and error protection, is helpful 

for those who already acquired the basics of information theory and coding and 

also for the very beginners, in order to understand the logic of processing in any 

communication/ storage system. Such examples are also suitable for examination 

from the topic above. 

The message VENI_VIDI_VIVI is compressed using a binary optimal lossless 

algorithm. 

 

1. Calculate the efficiency parameters of the compression and find the binary 

stream at the output of the compression block. 

2. Which are the quantity of information corresponding to letter V, the quantity of 

information per letter and the information of the whole message? 

3. Which is the quantity of information corresponding to a zero, respectively a one 

of the encoded message? Show the fulfilment of lossless compression relation. 

The binary stream from 1, assumed to have 64kbps, is transmitted through a 

BSC with 210p −= . 

4. Determine the channel efficiency and the required bandwidth in transmission. 

Assume that before transmission/storage, the binary stream from 1 is error pro-

tected using different codes. Find the first non-zero codeword and the required 

storage capacity of the encoded stream. The error-protection codes are: 

5. Hamming group with m = 4 (information block length) of all three varieties 

(perfect, extended and shortened). 

6. Cyclic, one error correcting code, with m=4, using LFSR. 

7. BCH with n = 15 and t = 2 (number of correctable errors). 

8. RS with n = 7 and t = 2. 

9. Convolutional non-systematic code with R=1/2 and K=3. 

All the answers need to be argued with hypothesis of the theoretical develop-

ment and comments are suitable. 
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Solution 

A block scheme of the presented processing is given in Fig. D.1. 

 

Fig. D.1 Block-scheme of processing where:  

– S represents the message (its statistical model) 

– SC - compression block 

– CC - channel coding block (error control coding) 

1. The message VENI_VIDI_VICI, under the assumption of being memoryless 

(not true for a language) is modelled by the PMF: 

⎟⎟⎠
⎞

⎜⎜⎝
⎛

14

1

14

1

14

2

14

5

14

1

14

1

14

3

CD_INEV

:S  

For compression is chosen the binary Huffman static algorithm which ful-

fils the requirements: lossless, optimal, binary and PMF known (previously 

determined). 

As described in 3.7.2 (Remarks concerning Huffman algorithm) the obtained 

codes are not unique, meaning that distinct codes could be obtained, but all  

ensure the same efficiency ( l ). 

In what follows two codes are presented, obtained using the same S and  

algorithm. 
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2.57
14

36

14

16695
4

14

1
43

14

2
3

14

3

14

5
lpl

7

1i
iia ==

+++
=⋅⋅+⋅+⋅+=∑=

=
 

2.57
14

36
4

14

1
2

14

2
2

14

3
2

14

5
lb ==⋅+⋅+⋅+⋅=  

 

The output of the compression block ( SC ), using (a) code is: 
 

000 0110 0111 1 001 000 1 0100 1 001 000 1 0111 1 

  V     E      N    I   _     V   I    D    I   _     V   I   C     I 
 

Efficiency parameters: coding efficiency η and compression ratio CR , given by 

(3.46), respectively (3.49) are: 

(97.7%)0.968
2.57

2.49

2.57

H(S)

l

lη min ≅===  

H(S), source entropy, is given by (2.12): 

2.807logD(S)(S)H2.49plogpH(S) 2maxi2

7

1i
i ===<=∑−=

=
 

Remark: Always is good to check the calculus and to compare to limits that are 

known and easy to compute. 

l

l
R u

C = , where ul  is the length in uniform encoding and is obtained using 

(3.58.a) 
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3
1

2.80

2log

7log

mlog

Mlog
l

2

2

2

2
u ≈===  (the first superior integer) 

1.2
2.57

3
R C ≈=  

2. Under the assumption of a memoryless source, we have: 

• the self information of letter V, according to (2.11) is: 

bits 2.2
14

3
logp(V)logi(V) 22 ≈−=−=  

• the average quantity of information  per letter is H(S)=2.49 bits/letter 

• the information of the whole message (14 letters) can be obtained in several 

ways; the simplest way is to multiply the number of letters (N=14) of the mes-

sage with the average quantity of information per letter (H(S)), using the aditiv-

ity property of the information. 

bits 34.86rsbits/lette 2.49*letters 14H(S)NIM ==×=  

Another possibility, longer as calculus, is to calculate the self information of 

each letter and then to multiply with the number of occurrence in the message. 

The result will be the same, or very close (small differences occur because of the 

logarithm calculus, on the rounding we do). The reader is invited to check it. 

 

3. By compression the message (source S) is transformed in a secondary binary 

source (X). Under the assumption that this new source is also memoryless, we 

can model it statistically with the PMF: 
 

1p(1)p(0) ,
p(1)p(0)

10
X =+⎟⎟⎠

⎞⎜⎜⎝
⎛

=  

10

0

NN

N
p(0)

+
=  

10

1

NN

N
p(1)

+
=  

where 0N , respectively 1N  represent the number of “0”s, respectively “1”s in the 

encoded sequence. Counting on the stream determined at 1, we have: 

⎟⎟⎠
⎞⎜⎜⎝

⎛⇒⎪⎭
⎪⎬
⎫

≅=

≅=

0.450.55

10
:X

0.45
36

16
p(1)

0.55
36

20
p(0)

 

• 0.5p(1)p(0) =≈  the condition of statistical adaptation of the source to the 

channel obtained by encoding is only approximately obtained; the encoding al-

gorithm, an optimal one, is introducing, by its rules, a slight memory. 
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• the information corresponding to a zero is: 

bits1.860.55logp(0)logi(0) 22 =−=−=  

• based on the same reason, as in 2, the information of the whole encoded mes-

sage is: 

)H(X)N(NI 10Me +=  

simboly bits/binar 0.99280.51840.4744

0.450.45log0.550.55logp(1)p(1)logp(0)p(0)logH(X) 2222

=+=

=−−=−−=
 

bits 35.640.99*36IMe ==  

 

Remarks 

The equality (approximation in calculus give basically the difference between them) 

between 35.64II35.14 MeM =≈=  shows the conservation of the entropy in loss-

less compression. The same condition can be expressed using relation (3.47): 
 

H(X)lH(S) =  

2.540.992.572.49 =⋅=  

4. Channel efficiency is expressed using (2.66): 

C

Y)I(X;ηC =  

where the transinformation I(X;Y), can be obtained using (2.58): 

H(Y/X)H(Y)Y)I(X; −=  

Taking into account that the average error H(Y/X) for a BSC was calculated in 

(2.70): 

lbits/symbo 0.08220.99)0.99log0.01(0.01log            

p)(1p)log(1pplogH(Y/X)

22

22

=+−=

=−−−−=
 

H(Y) requires the knowledge of PMF. It can be obtained in more ways (see 2.8.1). 

The simplest in this case is using (2.31): 

[ ]

[ ] [ ]0.4510.549
0.990.01

0.010.99
 0.450.55        

p1p

pp1
 p(1)p(0)P(X)P(Y/X)P(Y)

=⎥⎦
⎤⎢⎣

⎡
=

=⎥⎦
⎤⎢⎣

⎡
−

−
==

 0.99310.51810.47500.4510.451log0.5490.549logH(Y) 22 =+=−−=  

It follows that 

0.91090.08220.9931H(Y/X)H(Y)Y)I(X; =−=−=  
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Capacity of BSC is given by (2.71): 

lbits/symbo 0.9178H(Y/X)1         

p)(1p)log(1pplog1C 22BSC

=−=

−−++=
 

Now the channel efficiency can be obtained: 

0.993
0.9178

0.9109

C

Y)I(X;ηC ≈==  

The required bandwidth in transmission assuming base-band transmission, de-

pends of the type of the code is used. In principle there are two main types, con-

cerning BB coding (NRZ- and RZ- see 5.12) 

Using the relation (2.28), real channels, we have: 

⎩⎨
⎧

−

−
=

⎪⎩
⎪⎨⎧=≅

coding) BBRZ(for  102.4Khz

coding) BBNRZ(for  51.2Khz
   

RZ)(for  10*64*0.8*2

NRZ)(for  10*64*0.8
0.8MB

3

3

 

For channel encoding, the binary information from 1 is processed according to 

the type of the code. 

1011110011001000100100010100011001110
MSB

 

5. Encoding being with Hamming group code with m=4, the whole input stream 

(N=36 bits) is split in blocks of length m=4, with the MSB first in the left. If 

necessary, padding (supplementary bits with 0 values) is used. 

In our case: 9
4

36

m

N
NH ===  codewords (no need for padding). 

• Perfect Hamming with m=4 is given by (5.71), (5.72), (5.73) and (5.74). 

12km12n kk −=+=−=  where n = m + k. 

For m=4 it follows that k=3 and n=7. The codeword structure is: 

[ ]7654321 aaacaccv =  

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

1010101

1100110

1111000

H  

The encoding relations, according to (5.38) are: 

7531

7632

7654
T

aaac

aaac

aaac0Hv

⊕⊕=

⊕⊕=

⊕⊕=⇒=
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The first codeword, corresponding to the first 4 bits block, starting from the 

right to left: ]aaa[a1]11[1i 3567==  

[ ]1111111v =  

The required capacity to store the encoded stream is: 

bits 6379nNC HH =×=×=  

• Extended Hamming for m=4 is: 

[ ]76543210
*

aaacacccv =  

⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡
=

11111111

10101010

11001100

11110000

H
*

"""""""
#
#
#

 

0vH
T** =⋅  is giving 124 c,c,c as for the perfect code and 

1aaacaccc 76543210 =⊕⊕⊕⊕⊕⊕= , 

and thus, the first non zero extended codeword is: 

 [ ]11111111v* =  

The required capacity to store the encoded stream is: 

bits 7289nNC *
H

*
H =×=×=  

• Shortened Hamming, with m=4 is (see Example 5.8), obtained starting from the 

perfect Hamming with n=15 and deleting the columns with even “1”s: 

⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡
=

xxxxxxx
101010101010101

110011001100110

111100001111000

111111110000000

H  

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

01101001

10101010

11001100

11110000

HS  

The codeword structure is: 

[ ]87654321S aaacacccv =  
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and the encoding relations, obtained from 

0vH SS =  

are: 
 

8765 aaac ⊕⊕=  

8743 aaac ⊕⊕=  

8642 aaac ⊕⊕=  

7641 aaac ⊕⊕=  
 

For the four information bits: 1]11[1]aaa[ai 8764 == , the first codeword is: 

[ ]11111111vS =  

The storage capacity of the encoded stream is: 

bits 7289nNC SHHS
=×=×=  

6. For a cyclic one error correcting code, meaning a BCH code of m=4, t=1, from 

Table. 5.8 we choose the generator polynomial: 

1xxg(x)011][0013][1g 3 ++=→==  

The block scheme of the encoder, using LFSR is (see Fig. 5.13) given in  

Fig. D.2. 

 

Fig. D.2 Block scheme of cyclic encoder with LFSR with external modulo two sumators 

and g(x) = x3 + x + 1 

 

The structure of the codeword is: 

]aaaaaaa[c][iv

3k':c

012

4m:i

3456 �
�	��
�	�
==

==  
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For the first four information bits: i=[1 1 1 1] the operation of the LFSR is 

given in the following table: 

 

tn tn+1 tn

Ck K i C2 C1 C0 v 

1 1 1 0 0 1 

2 1 1 1 0 1 

3 1 0 1 1 1 

4

1

1 1 0 1 1 

5  0 1 0 1 

6  0 0 1 1 

7

2

 0 0 0 1 
 

 

Concerning the number of codewords for the binary input from 1, this is the 

same as for Hamming codes, m being the same.  

The storage capacity is: 

bits 6379nNC BCH1BCH1BCH1 =×=×=  

7.  For BCH, n=15, t=2 we choose from Table. 5.8: g= [7 2 1]= [111010001] 

7m8k'1xxxxg(x) 4678 =⇒=⇒++++=  

A systematic structure is obtained using the algorithm described by relation 

(5.98); we choose, as information block, the first m=7 bits, starting from right to 

left: 
 

] 1  1  1  1  0  1 0[i
MSB

=  

• 1xxxxi(x) 235 ++++=  

• 891011132358k xxxxx1)xxx(xxi(x)x ++++=++++=′
 

• �� 
�� 	���� 
��� 	�

g(x)

i(x)x
rem

235

q(x)

2345
kk

k'

1xxx1xxxx
g(x)

i(x)x
remq(x)

g(x)

i(x)x
++++++++=+=

′′

 

• =⋅=+=
′

′
 g(x)q(x)

g(x)

i(x)x
remi(x)xv(x)

k
k  

1xxxxxxxx        23589101113 ++++++++=  

In matrix expression: ]  1  0  1  1  0  1  0  0  1  1  1  1  0  1 0[v
MSB

#= . 
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The same result can be obtained using a LFSR with the characteristic polyno-

mial g(x). The reader is invited to check this way too. 

The number of codewords corresponding to the stream 1 for m=7 is: 

5.1
7

36

m

N
NBCH2 ===  meaning that padding is necessary to obtain 6 

codewords: the required padding bits of “0” are 6. 

The storage capacity is: 

bits 90156nNC BCH2BCH2 =×=×=  

8. RS with n=7 and t=2 

The dimensioning of this code was given in Example 5.19. 

)GF(23k712n 3k ⇒=⇒=−=  is the corresponding Galois field of this 

code and it is given in Appendix A.10. 

For t = 2 (the number of correctable symbols), the generator polynomial is: 

3234432 xxxx))(x)(x)(x(xg(x) ααααααα ++++=++++=  

which means that 4k =′  and it represents the corresponding number of control 

characters. It follows that the number of information characters is: 

34-7knm ==′−=  

We notice that each character is expressed in k bits, k being the extension of the 

Galois field )GF(2k , which is in our case 3. It means that for encoding we need 

blocks of: 

bits 933km =×=×  

The first 9 bits corresponding to the binary stream from 1 are: 

] 1  1  1  1  0  1  0  0  0 [

MSC

##
↑

=i  

Using the table giving )GF(23  from A.10 we identify:  

 

000 ĺ 0 

101 ĺ 
6α  

111 ĺ 
5α  
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Now we apply the algebraic encoding for systematic codes (5.98), with the ob-

servation that the calculus is in )GF(23 . 

• 56x(x) ααi +=  

• 4556564k xx)x(x(x)x ααααi +=+=′
 

• ��� 
��� 	��
�	�

(x)

(x)x
rem

3253

(x)

46
k

k

1xxxx
(x)

(x)x

g

iq

ααααα
g

i

′

+++++=
′

 

• 1ααααα
g

i
i +++++=+= ′

xxxxx
(x)

(x)x
rem(x)xv(x) 32534556

k'
k  

In a matrix representation, v is: 

( )
[ ]

binaryin   -   1 0  0  1  1  0  1  1  1  0  1  0  1  1  1  1  0  1  0  0  0     

decimalin   -  1462670    

2GFin   -  ][

LSB

3

⎥⎦
⎤⎢⎣

⎡=

=

=

######

1ααααα0v 3556

 

The number of codewords, corresponding to the binary stream 1 is: 

4
33

36

km

N
NRS =

×
=

×
=  (no necessary for padding) 

The required capacity for storage of the encoded stream 1 is: 

bits 84374knNC RSRSRS =××=××=  

9. Non-systematic convolutional code with R=1/2 and K=3 

The dimensioning and encoding of the code is presented in 5.92. 

• 2n
2

1
R =⇒= : two generator polynomials are required, from which at least 

one need to be of degree K-1=2 

We choose: 
 

2(1) xx1(x)g ++=  

x1(x)g(2) +=
 

 

• the information stream is the binary stream from 1 ending with four “0”s, 

which means that with trellis termination. 

• the simplest way to obtain the encoded stream is to use the SR implementation 

of the encoder (Fig. D.3) 



472 Appendix D: Synthesis Example

 

 

Fig. D.3 Non-systematic convolutional encoder for R=1/2 and K=3 ( g(1)(x) = 1 + x + x2, 

g(2)(x) = 1 + x) 

The result obtained by encoding with the non-systematic convolutional encoder 

from Fig. D.3, for the information stream:  

⎥⎦
⎤⎢⎣

⎡= 1011110011001000100100010100011001110i
MSB

 is shown in the table D1. 

The required capacity to store the encoded stream from 1 is: 

bits 72236nNCconv =×=×=  

Remark 

In our example only the encoding was presented, but we assume that the reverse 

process, decoding, is easily understood by the reader. Many useful examples  

for each type of processing found in chapter 3 and 5 could guide the full  

understanding. 
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Table D.1 Operation of the encoder from Fig. D.1 for the binary stream i (the output of the 

compression block) 

tn tn+1 tn

V

Ck i C1 C2 u
(1)

u
(2)

1 1 1 0 1 1 

2 1 1 1 0 0 

3 1 1 1 1 0 

4 1 1 1 1 0 

5 0 0 1 0 1 

6 1 1 0 0 1 

7 0 0 1 1 1 

8 0 0 0 1 0 

9 0 0 0 0 0 

10 1 1 0 1 1 

11 0 0 1 1 1 

12 0 0 0 1 0 

13 1 1 0 1 1 

14 0 0 1 1 1 

15 0 0 0 1 0 

16 1 1 0 1 1 

17 0 0 1 1 1 

18 1 1 0 0 1 

19 0 0 1 1 1 

20 0 0 0 1 0 

21 0 0 0 0 0 

22 1 1 0 1 1 

23 0 0 1 1 1 

24 0 0 0 1 0 

25 1 1 0 1 1 

26 1 1 1 0 0 

27 1 1 1 1 0 

28 1 1 1 1 0 

29 0 0 1 0 1 

30 0 0 0 1 0 

31 1 1 0 1 1 

32 1 1 1 0 0 

33 0 1 1 0 1 

34 0 0 1 0 1 

35 0 0 0 1 0 

36 0 0 0 0 0 
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