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Angel A. Juan, and Fatos Xhafa (Eds.)
Technology-Enhanced Systems and Tools for Collaborative
Learning Scaffolding, 2011
ISBN 978-3-642-19813-7

Vol. 351. Ngoc Thanh Nguyen, Bogdan Trawiński, and
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Preface

The design of most modern engineering systems entails the consideration of a

good trade-off between the several targets requirements to be satisfied along

the system life such as high reliability, low redundancy and low operational

costs. These aspects are often in conflict with one another, hence a compro-

mise solution has to be sought. Innovative computing techniques, such as

genetic algorithms, swarm intelligence, differential evolution, multi-objective

evolutionary optimization, just to name few, are of great help in founding

effective and reliable solution for many engineering problems.

Each chapter of this book attempts to using an innovative computing tech-

nique in solving a different engineering problem. The contributions of each

and every one are summarized in the following paragraph.

In Chapter 1, the authors approach the traveling salesman using the dis-

crete differential evolution approach. In Chapter 2, the authors solve reliabil-

ity optimization problems of series-parallel, parallel-series and complicated

system, using genetic algorithms. In Chapter 3, the authors present exploit

particle swarm optimization to build fuzzy systems automatically. In Chap-

ter 4, the authors propose a maintenance optimization of wind turbine sys-

tems using intelligent prediction tools. In Chapter 5, the authors apply the

clonal selection algorithm to economic dispatch optimization of electrical en-

ergy. In Chapter 6, the authors present novel methods for multi-objective

evolutionary optimization based on a dynamic aggregation of objectives. In

Chapter 7, the authors solve the problems related to application mapping into

a network-on-chip platform, using multi-objective evolutionary optimization.

In Chapter 8, the authors introduce the theory of chaotic optimization meth-

ods together with some applications.

The editors are very much grateful to the authors of this volume and

to the reviewers for their tremendous service by critically reviewing the

chapters. The editors would like also to thank Prof. Janusz Kacprzyk, the

editor-in-chief of the Studies in Computational Intelligence Book Series and

Dr. Thomas Ditzinger, Springer Verlag, Germany for the editorial assistance
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and excellent cooperative collaboration to produce this important scientific

work. We hope that the reader will share our excitement to present this

volume and will find it useful.

March 2011 Nadia Nedjah

State University of Rio de Janeiro, Brazil

Leandro S. Coelho

Pontifical Catholic University of Parana, Brazil

Viviana C. Mariani

Pontifical Catholic University of Parana, Brazil

Luiza M. Mourelle

State University of Rio de Janeiro, Brazil
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Abstract. Combinatorial optimization problems are very commonly seen in 

scientific research and practical applications. Traveling Salesman Problem (TSP) 

is one nonpolynomial-hard combinatorial optimization problem. It can be describe 

as follows: a salesman, who has to visit clients in different cities, wants to find the 

shortest path starting from his home city, visiting every city exactly once and 

ending back at the starting point. There are exact algorithms, such as cutting-plane 

or facet-finding, are very complex and demanding of computing power to solve 

TSPs. There here, however, metaheuristics based on evolutionary algorithms that 

are useful to finding solutions for a much wider range of optimization problems 

including the TSP. Differential Evolution (DE) is a relatively simple evolutionary 

algorithm, which is an effective adaptive approach to global optimization over 

continuous search spaces. Furthermore, DE has emerged as one of the fast, robust, 

and efficient global search heuristics of current interest. DE shares similarities 

with other evolutionary algorithms, it differs significantly in the sense that 

distance and direction information from the current population is used to guide the 
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search process. Since its invention, DE has been applied with success on many 

numerical optimization problems outperforming other more popular 

metaheuristics such as the genetic algorithms. Recently, some researchers 

extended with success the application of DE to combinatorial optimization 

problems with discrete decision variables. In this paper, the following discrete DE 

approaches for the TSP are proposed and evaluated: i) DE approach without local 

search, ii) DE with local search based on Lin-Kernighan-Heulsgaun (LKH) 

method, and iii) DE with local search based on Variable Neighborhood Search 

(VNS) and together with LKH method. Numerical study is carried out using the 

TSPLIB of test TSP problems. In this context, the computational results are 

compared with the other results in the recent TSP literature. The obtained results 

show that LKH method is the best method to reach optimal results for TSPLIB 

benchmarks, but for largest problems, the DE+VNS improve the quality of 

obtained results.  

 

Keywords: Optimization, Traveling salesman problem, Evolutionary Algorithm, 

Differential Evolution, Variable Neighbor Search, Local Search, Lin-Kernighan-

Heulsgaun.  

1   Introduction 

Combinatorial optimization problems occur in various fields of physics, 

engineering and economics. Many of them are difficult to solve since they are 

nonpolynomial-hard (NP-hard), i.e., there is no known algorithm that finds the 

exact solution with an effort proportional to any power of the problem size.  

The Traveling Salesman Problem (TSP) is a well-known example of a NP-Hard 

combinatorial optimization problem that involves finding the shortest Hamiltonian 

cycle in a complete graph of n nodes (cities). In the TSP, it is given n cities 1, 

2,…, n together with all the pair wise distances dij between cities i and j. The goal 

is to find the shortest tour that visits every city exactly once and in the end returns 

to its starting city.   

TSPs raise important issues because many problems and practical applications 

in science, engineering, and bioinformatics fields, such as vehicle routing 

problems, integrated circuit board chip insertion problems, scheduling problems, 

flexible manufacturing systems, printed circuit board, X-ray crystallography, 

punching sequence problems, routing, job scheduling problems, and phylogenetic 

tree construction can be formulated as TSPs. 

TSP has been extensively studied. A large number of approaches have been 

developed for solving TSPs (see [1]-[8]). In this context, there is a great interest in 

efficient procedures based on heuristics and metaheuristics to solve it. The TSP 

has received considerable attention over the last two decades and various 

approaches are proposed to solve the problem, such as branch-and-bound, cutting 

planes, 2-opt, 3-opt, simulated annealing, artificial neural network, and taboo 

search [1],[2]. Some of these methods are exact algorithms, while the others are  
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near-optimal or approximate algorithms [3]-[5]. Recently, evolutionary algorithm 

approaches are successfully implemented to the TSP [6]-[8]. In other hand, 

evolutionary algorithms perform a typically incomplete search in the space of 

solutions by iteratively creating and evaluating new candidate solutions. 

Differential Evolution (DE) is a relatively new evolutionary algorithm, which is 

an effective adaptive approach to global optimization over continuous search 

spaces. DE as developed by Storn and Price [9] has proven to be a promising 

candidate to solve real-valued optimization problems [10]. DE has emerged as one 

of the fast, robust, and efficient global search heuristics of current interest. The 

computational algorithm of DE is very simple and easy to implement, with only a 

few parameters required to be set by a user. 

Classical DE approaches use the floating-point (real-coded) representation 

randomly generated initial population, differential mutation, probability crossover 

and greedy criterion of search.  

The applications of DE on combinatorial optimization problems are still 

considered limited, but the advantages of DE include a simple structure, speed to 

acquire solutions, and robustness that are sustained in the literature. However, the 

major obstacle of successfully applying a DE algorithm to combinatorial problems 

in the literature is due to its continuous nature [11].  Aiming at the discrete 

problems, novel discrete DE approaches have been proposed in recent literature to 

solve combinatorial optimization problems [12]-[15]. In other hand, in spite of the 

prominent merits, sometimes DES shows the premature convergence and slowing 

down of convergence as the region of global optimum is approached. The 

application of local search in DE is an alternative strategy to improve the 

convergence performance. 

In this paper, the following discrete DE approaches for the TSP are proposed 

and evaluated: i) discrete DE approach without local search, ii) DE with local 

search based on Lin-Kernighan-Heulsgaun (LKH) [16] method, and iii) DE with 

local search based on Variable Neighborhood Search (VNS) [17],[18] and 

together with LKH method. Computational results evaluated in the TSP are based 

on Reinelt’s TSPLIB [19]. In this context, those results are compared with the 

other results in the recent TSP literature. The obtained results show that LKH 

method is the best method to reach optimal results for TSPLIB benchmarks, but 

for largest problems, the DE+VNS improve the quality of obtained results.  

In general terms, the contribution of this paper was the application of an 

extension of DE algorithm using discrete variables and local search mechanisms 

to a set of benchmark problems described in TSPLIB and studied the 

incorporation of different local search schemes to improve the performance of 

discrete DE. Simulation results have been presented to compare the performance 

of different schemes.  

The remainder of this paper is organized as follows. In Section 2, a describtion 

of the fundamentals of TSP is provided. Section 3 presents the features of discrete 

DE approach with local search. Section 4 then describes the TSPLIB benchmark 

problems and evaluates the quality of simulation results. Lastly, section 5 presents 

our conclusion and future research. 
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2   Fundamentals of TSP 

The TSP is one of the most extensively studied problems in combinatorial 

optimization. Problems of combinatorial optimization distinguish themselves by 

their well-structured problem description as well as by their huge number of 

possible action alternatives. 
The task of TSP basically consists of finding the shortest tour through a number 

of cities, visiting every city exactly once. The TSP can be formulated as follows. 

Given matrix D=(d
ij
)

n×n 
and the set Π of permutations of the integers from 1 to n, 

find a permutation π=(π(1), π(2), ..., π(n))∈Π that minimizes  
 

)1(),(

1

1
)1(),()( πππππ n

n

i
ii ddz +∑=

−

=
+                                      (1) 

 

The interpretation of n, D and π is as follows: n is the number of cities; D is the 

matrix of distances between all pairs of these cities; j = π(i) denotes city j to visit 

at step i. Usually, permutations are called tours, and the pairs (π(1), π(2)), ..., (π(i), 
π(i+1)), ..., (π(n), π(1)) are called edges. So, solving the TSP means searching for 

the shortest closed tour in which every city is visited exactly once. In other words, 

our goal is to find an ordering π or tour, of the cities that minimizes the length of 

the tour, given by Eq. (1). 

In this work, we will restrict our attention to the two-dimensional Euclidean 

TSP, which is the special case where the cities are points in the plane and dij is the 

Euclidean distance from city i to city j. 

If the distances satisfy dij = dji for 1 ≤ i, j ≤ N, this case is the symmetric TSP. 

However, it is possible to discard that last condition and allow the distance from 

city i to city j to be different from the distance between city j and city i. We refer 

to that case as the asymmetric TSP. 

3   Differential Evolution Algorithm 

A.   Classical DE algorithm 

DE is a population-based stochastic function to minimize (or maximize) relating 

to evolutionary algorithms, whose simple yet powerful and straightforward 

features make it very attractive for numerical optimization.  

DE combines simple arithmetical operators with the classical operators of 

recombination, mutation and selection to evolve from a randomly generated 

starting population to a final solution. DE uses mutation which is based on the 

distribution of solutions in the current population. In this way, search directions 

and possible step sizes depend on the location of the individuals selected to 

calculate the mutation values [20]. It evolutes generation by generation until the 

termination conditions have been met. 
The different variants of DE are classified using the following notation: 

DE/α/β/δ, where α indicates the method for selecting the parent chromosome that 
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will form the base of the mutated vector, β indicates the number of difference 

vectors used to perturb the base chromosome, and δ indicates the recombination 

mechanism used to create the offspring population. The bin acronym indicates that 

the recombination is controlled by a series of independent binomial experiments. 

The fundamental idea behind DE is a scheme whereby it generates the trial 

parameter vectors. In each step, the DE mutates vectors by adding weighted, 

random vector differentials to them. If the cost of the trial vector is better than that 

of the target, the target vector is replaced by the trial vector in the next generation. 

The variant implemented here was DE/rand/1/bin, which involved the following 

steps and procedures: 

 

Step 1: Initialization of the parameter setup: The user must choose the key 

parameters that control DE, i.e., population size, boundary constraints of 
optimization variables, mutation factor (f

m
), crossover rate (CR), and the stopping 

criterion (t
max

).  
 
Step 2: Initialize the initial population of individuals: Initialize the generation’s 

counter,  t = 0, and also initialize a population of individuals (solution vectors) x(t) 

with random values generated according to a uniform probability distribution in 

the n-dimensional problem space. 

 

Step 3: Evaluate the objective function value: For each individual, evaluate its 

objective function (fitness) value.  

 

Step 4: Mutation operation (or differential operation): Mutate individuals 

according to the following equation: 

 

])()([)()1(
321

txtxftxtz iimii −⋅+=+                                  (2) 

 

where i =1,2,...,N is the individual’s index of population; t is the time (generation); 

[ ]T
21

)(...,),(),()( txtxtxtx
niiii =  stands for the position of the i-th individual of 

population of N real-valued n-dimensional vectors; [ ]T
21

)(...,),(),()( tztztztz
niiii =   

stands for the position of the i-th individual of a mutant vector; fm > 0 is a real 

parameter, called mutation factor, which controls the amplification of the 

difference between two individuals so as to avoid search stagnation. The mutation 

operation randomly select the target vector )(
1

txi , with 1ii ≠ .Then, two 

individuals )(
2

txi  and )(
3

txi  are randomly selected with iiii ≠≠≠ 321 , and the 

difference vector 
32

- ii xx  is calculated. 

 

Step 5: Crossover (recombination) operation: Following the mutation operation, 

crossover is applied in the population. For each mutant vector, zi(t+1), an index 
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{ }nirnbr ,,2,1)( L∈  is randomly chosen using a uniform distribution, and a trial 

vector, [ ]T
niiii )(tu),...,(tu), (tu tu 111)1(

21
+++=+ , is generated via 

 

⎪⎩
⎪⎨⎧ =≤+

=+
otherwise,   )(

),( or   if  )1(
)1(

tx

irnbrjCRrandb(j)tz
tu

ji

ji

ji                       (3)
 

 

where j=1,2,..., n is the parameter index; xij(t) stands for the i-th individual of j-th 

real-valued vector; zij(t)  stands for the i-th individual of j-th real-valued vector of 

a mutant vector; uij(t)   stands for the i-th individual of j-th real-valued vector after 

crossover operation; randb(j) is the j-th evaluation of a uniform random number 

generation with [0, 1]; CR is a crossover rate in the range [0, 1]; 

To decide whether or not the vector ui(t + 1) should be a member of the 

population comprising the next generation, it is compared to the corresponding 

vector  xi( t ). Thus, if f denotes the objective function under minimization, then 
 

⎩⎨
⎧ <++

=+
otherwise,)(

)),(())1((if)1(
)1(

tx

txftuftu
tx

i

iii
i                             (4) 

 

Step 6: Update the generation’s counter: t = t + 1;  

 

Step 7: Verification of the stopping criterion: Loop to Step 3 until a stopping 

criterion is met, usually a maximum number of iterations (generations), tmax. 

B.   Discrete DE algorithm 

DE algorithms are evolutionary algorithms that have already shown appealing 

features as efficient methods for the optimization of continuous space functions. 

The DE algorithms use a floating-point representation for the solutions in the 

population.  

However, the continuous nature of the algorithm prohibits DE to apply to 

combinatorial optimization problems. To compensate this drawback, Tasgetiren et 

al. [21],[22] presented the Smallest Position Value (SPV) rule, barrowed from the 

random key representation of Bean [23], for the particle swarm optimization 

(PSO) algorithm, which is developed by Kennedy and Eberhard [24], to convert a 

continuous position vector to a job permutation. It has been successfully applied to 

the single machine total weighted tardiness problem and the permutation flow-

shop sequencing problem.  

The SPV rule can still be used in DE since smallest position value can be 

replaced by smallest parameter value to convert the continuous parameter values 

to a permutation. Details about the SPV rule for DE’s solutions representation are 

presented in [21], [22]. 

For example, with a problem have 6 cities, the first thing is generate a random 

solution, like 1, 3, 5, 6, 2, 4. After this, it is made a mutation of the continuous 

values and found a third vector. This vector is changed to a possible solution, e.g. 

1, 2, 4, 5, 6, 3. If this solution has less length than the first solution, so, this will be 



A Discrete Differential Evolution Approach with Local Search  7

 

the new best solution. And the process will keep continuing until the stopping 

criterion is reached. 

C.   Discrete DE with Local Search 

The Lin-Kernighan (LK) heuristic [25] is generally considered to be one of the 

most effective methods (state-of-the-art of local search heuristics) for generating 

optimal or near-optimal solutions for the symmetric TSP. 

Domain-specific heuristics, such as 2-opt, 3-opt, and LK, are surprisingly very 

effective for the TSP. The LK algorithm, also referred to as variable-opt, however 

incorporates a limited amount of hill-climbing by searching for a sequence of 

exchanges, some of which may individually increase the tour length, but which 

combine to form a shorter tour. A vast amount has been written about the LK 

algorithm, including much on its efficient implementation. 

Recently, a new and highly effective variant of the LK algorithm has been 

developed by Helsgaun [16]. This scheme employs a number of important 

innovations including sequential 5-opt moves and the use of sensitivity analysis to 

direct the search. 

Other alternative approach is the local search based on VNS [17],[18]. 

Contrary to other heuristics and metaheuristics based on local search methods, 

VNS does not follow a trajectory but explores increasingly distant neighborhoods 

of the current incumbent solution, and jumps form this solution to a new one if 

and only if an improvement has been made. 

In this paper, the following discrete DE approaches for the TSP are validated: 

i) DE approach without local search, ii) DE with local search based on LKH 

(DE+LKH), iii) DE with local search based on VNS (DE+VNS) and iv) DE+VNS 

combined with LKH method (DE+VNS+LKH). The figure 1 show the tests 

realized. 

In DE approaches with local search mentioned (DE approaches with sequential 

hybridization), the DE is used to explore the more promising part of the TSP 

solution space in order to generate “good” initial solutions, which are refined with 

LKH and/or VNS. 

 

 

Fig. 1 Representation of the proposed models. 
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4   Computational Results 

Each optimization method was implemented in DEV-C++ development platform 

with MinGW compiler (ANSI C/C++ compiler) under Windows XP operational 

system. All the programs were tested in Intel Core Due, 1.6 GHz processor with 

1024 MB of random access memory. In each case study, 50 independent runs 

were made for each of the optimization methods involving 50 different initial trial 

solutions for each optimization method.  

In discrete DE, the population size N was 50 and the stopping criterion tmax was 

100 generations (5000 evaluations of the objective function). In the LKH and 

VNS, the stopping criterion tmax was 100 generations or if is found best solution. 

In the VNS, the population size was divided in 6 small groups and it was applied a 

local search 2-opt. This local search uses the same stopping criterion of other 

methods. 

The results found with the techniques proposed in this work for the TSPLIB’s 

symmetrical cases are compared with optimal value for each tested benchmark. In 

this paper, it considers the results of solving the selected four instances in the 

TSPLIB with the number of cities varying between 101 and 7397. In Tables 1 to 7 

are shown the mean errors/deviations of the obtained results in relation to the 

optimal values of objective function )(πz  and also a statistical analysis of results 

for 50 runs. 

Looking the results, it is possible to verify that in all the instances the DE was 

successful in increase the results. All the mean results show a relevant increasing 

in the performance and the time to find the solution was very fast too. 

In the Tables I and II, it is possible to observe the excellent performance of DE 

+ VNS + LKH, DE + LKH, and LKH approaches. In the Table III, it is possible to 

verify that the standard deviation was better than the original result and the time 

running the DE+VNS+LKH was faster than the original. Table IV shows that the 

DE+VNS+LKH obtained 100% of best solution in all runs. And again the result 

obtained was faster than the original. 

Although, the Tables V and VI, the DE+VNS+LKH had an increasing of time, 

but the standard deviation were less than the others. In neither case the mean reach 

100%, but using the DE was possible to verify that the field was get better. 

Finally, the Table VII shows that in big instances the result found using the DE 

was fast, but the standard deviation increase and either using or not the VNS, the 

value was bigger than the original. 

Table 1 Results in terms of minimization of function )(πz  for the EIL101 problem (50 

runs, Optimum Value = 629). 

Optimization  

method 
Minimum % Mean % Maximum % 

Standard  

Deviation 

Mean  

Time (s) 

DE 2189 28.73 2276 27.63 2343 26.84 36.11 1.95 

DE  + VNS 1460 43.08 1612 39.01 1765 35.63 68.35 0.41 

DE+VNS+LKH 629 100 629 100 629 100 0.00 0.02 

DE + LKH 629 100 629 100 629 100 0.00 < 0.01 

LKH 629 100 629 100 629 100 0.00 0.02 
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Table 2 Results in terms of minimization of function )(πz  for the KROA150 problem (50 

runs, Optimum Value = 26524). 

Optimization 

method 
Minimum % Mean % Maximum 

% Standard 

Deviation 

Mean 

Time(s) 

DE 168126 15.77 177449 14.94 182049 14.56 3008.65 2.58 

DE  + VNS 107224 24.73 119526 22.19 127406 20.81 3742.95 0.67 

DE+VNS+LKH 26524 100 26524 100 26524 100 0.00 0.06 

DE + LKH 26524 100 26524 100 26524 100 0.00 0.04 

LKH 26524 100 26524 100 26524 100 0.00 0.04 

Table 3 Results in terms of minimization of function )(πz  for the LIN318 problem (50 

runs, Optimum Value = 42029). 

Optimization 

method 
Minimum % Mean % Maximum % 

Standard 

Deviation 

Mean 

Time(s) 

DE 467121 8.99 476169 8.82 484940 8.66 4353.08 4.97 

DE  + VNS 317948 13.21 337404 12.45 359152 11.70 8242.69 1.56 

DE+VNS+LKH 42029 100 42066 0.99 42143 0.99 53.51 1.48 

DE + LKH 42029 100 42066 0.99 42143 0.99 52.21 0.50 

LKH 42029 100 42067 0.99 42143 0.99 52.91 0.50 

Table 4 Results in terms of minimization of function )(πz  for the ATT532 problem (50 

runs, Optimum Value = 27686). 

Optimization 

method Minimum % Mean % Maximum % 

Standard 

Deviation 

Mean 

Time 

(s) 

DE 1343428 2.06 1372841 2.01 1395667 1.98 10863.05 8.44 

DE  + VNS 901324 3.07 965280 2.86 1013743 2.73 24323.70 2.66 

DE+VNS+LKH 27686 100 27686 100 27706 0.99 3.95 3.34 

DE + LKH 27686 100 27686 100 27703 0.99 2.40 1.18 

LKH 27686 100 27688 0.99 27706 0.99 5.71 1.38 

Table 5 Results in terms of minimization of function )(πz  for the U2152 problem (50 

runs, Optimum Value = 64253). 

Optimization  

method 
Minimum % Mean % Maximum % 

Standard 

Deviation 

Mean 

Time (s) 

DE 2358326 2.72 2387348 2.69 2400930 2.67 9857.27 39.15 

DE  + VNS 1865125 3.44 1909209 3.33 1954569 3.28 17958.15 11.33 

DE+VNS+LKH 64253 100 64281 0.99 64337 0.99 23.15 237.38 

DE + LKH 64253 100 64272 0.99 64324 0.99 22.60 83.08 

LKH 64253 100 64278 0.99 64324 0.99 23.57 86.58 
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Table 6 Results in terms of minimization of function )(πz  for the PCB3038 problem (50 

runs, Optimum Value = 137694). 

Optimization  

method 
Minimum % Mean % Maximum % 

Standard 

Deviation 

Mean 

Time (s) 

DE 5133870 2.68 5170664 2.66 5202107 2.64 16979.24 59.10 

DE  + VNS 4251942 3.23 4302541 3.20 4356353 3.16 26434.48 17.06 

DE+VNS+LKH 137694 100 137704 0.99 137753 0.99 20.78 369.34 

DE + LKH 137694 100 137706 0.99 137753 0.99 23.34 123.10 

LKH 137694 100 137710 0.99 137757 0.99 22.55 142.64 

Table 7 Results in terms of minimization of function )(πz  for the PLA7397 problem (50 

runs, Optimum Value = 23260728). 

Optimization  

method 
Minimum % Mean % Maximum % 

Standard  

Deviation 

Mean Time 

(s) 

DE 2693563800 0.86 2710405086 0.85 2723186572 0.85 6252729.91 193.23 

DE  + VNS 2282677680 1.01 2292893726 1.01 2305226654 1.00 7921297.27 131.94 

DE+VNS+LKH 23260728 100 23261170 0.99 23264711 0.99 1327.66 13636.55 

DE + LKH 23260728 100 23261533 0.99 23265152 0.99 1346.24 6771.52 

LKH 23260728 100 23261000 0.99 23264711 0.99 1294.50 7441.50 

5   Conclusion 

In this paper, hybrid discrete DE approaches with local search based on VNS 

and/or LKH were described and evaluated the quality of solutions on instances of 

TSPLIB, and experiments showed its validity (see Tables 1-7).  

As it is possible to verify in the Tables I to IV, the result obtained only using 

the DE was not enough to find a final solution for the TSP problem. But, after 

applied the result found for an initial solution in the LKH problem, it is clear that 

obtained an increasing in the performance. 

It is possible to analyze that for small instances the code is not worth to use, 

but in big instances the results obtained were good and the time to run fall down to 

15% of the original time running only LKH. 

In all the tables, all the configuration parameters were the same, but this could 

be modified to increase more the results. One parameter that could be modified is 

the DE method used. In this paper, it was used the method 1 (DE/rand/1/bin), but 

there are more 9 possible methods based on [10],[11]. 

Moreover, the computational results of presented hybrid discrete DE 

approaches with VNS and/or LKH are very close to the best-known TSPLIB 

solution values. Effective implementation of these and related neighborhoods in 

discrete DE approaches are topics for further investigation in multi-objective 

TSPs. 
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The objective of this chapter is to develop and solve the reliability opti-
mization problems of series-parallel, parallel-series and complicated system
considering the reliability of each component as interval valued number. For
optimization of system reliability and system cost separately under resource
constraints, the corresponding problems have been formulated as constrained
integer/mixed integer programming problems with interval objectives with
the help of interval arithmetic and interval order relations. Then the prob-
lems have been converted into unconstrained optimization problems by two
different penalty function techniques. To solve these problems, two different
real coded genetic algorithms (GAs) for interval valued fitness function with
tournament selection, whole arithmetical crossover and non-uniform muta-
tion for floating point variables, uniform crossover and uniform mutation for
integer variables and elitism with size one have been developed. To illustrate
the models, some numerical examples have been solved and the results have
been compared. As a special case, taking lower and upper bounds of the inter-
val valued reliabilities of component as same the corresponding problems have
been solved and the results have been compared with the results available
in the existing literature. Finally, to study the stability of the proposed GAs
with respect to the different GA parameters (like, population size, crossover
and mutation rates), sensitivity analyses have been shown graphically.

1 Introduction

While advanced technologies have raised the world to an unprecedented level
of productivity, our modern society has become more delicate and vulnera-
ble due to the increasing dependence on modern technological systems that
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often require complicated operations and highly sophisticated management.
From any respect, the system reliability is a crucial measure to be consid-
ered in systems operation and risk management. When designing a highly
reliable system, there arises an important question as to how to obtain a
balance between reliability and other resources e.g., cost, volume and weight.
In the last few decades, several researchers considered reliability optimiza-
tion problems, like redundancy allocation and cost minimization problems
as integer nonlinear programming problems (INLPP) and/or mixed-integer
nonlinear programming problems (MINLPP) with single or several resource
constraints [1-14]. To solve those problems, different techniques have been
proposed by the several researchers. In their works, the reliability of each
component is known and fixed positive number which lies between zero and
one. However, in real life situations, the reliability of an individual component
may not be fixed. It may vary due to several reasons. There is no technol-
ogy by which different components can be produced with exactly identical
reliabilities. So, the reliability of each component is sensible and it may be
treated as a positive imprecise number instead of a fixed real number. Stud-
ies of the system reliability where the component reliabilities are imprecise
and/or interval valued have already been initiated by some authors [15-19].To
tackle the problem with such imprecise numbers, generally stochastic, fuzzy
and fuzzy- stochastic approaches are applied and the corresponding problems
are converted to deterministic problems for solving them. In the stochastic
approach, the parameters are assumed to be random variables with known
probability distributions. In the fuzzy approach, the parameters, constraints
and goals are considered as fuzzy sets with known membership functions or
fuzzy numbers. On the other hand, in the fuzzy-stochastic approach, some
parameters are viewed as fuzzy sets/fuzzy numbers and others as random
variables. However, it is a formidable task for a decision maker to specify the
appropriate membership function for fuzzy approach and probability distri-
bution for stochastic approach and both for fuzzy -stochastic approach. So,
to avoid these difficulties for handling the imprecise numbers by different ap-
proaches, one may use intervals number to represent an imprecise number, as
this representation is the most significant representation among others. Due
to this representation, the system reliability would be interval valued. Here,
we have considered GA-based approaches for solving reliability optimization
problems with the interval objective. As the objective function of the relia-
bility optimization is interval valued, to solve this type of problem by the GA
method, order relations of interval numbers are essential for selection opera-
tion as well as for finding the best chromosome in each generation. Here we
consider the definition of order relations developed by Mahato and Bhunia
[20] in the context of the optimistic and pessimistic decision maker’s point of
view for maximization and minimization problems.

In this chapter, we have considered the problem of constrained redun-
dancy allocation in the series system, the hierarchical series-parallel system,
the complicated or non-parallel-series system and the network reliability
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system with interval valued reliability components (redundancy allocation
and network cost minimization). The problems are formulated as non-linear
constrained integer programming problems and/or mixed integer program-
ming problems with interval coefficients [21-22] for maximizing the overall
system reliability and system cost under some resource/budget constraints.
During the last few years, several techniques were proposed for solving the
constrained optimization problem with fixed coefficients with the help of GAs
[23-29]. Among these methods, penalty function techniques are very popular
in solving the same by GAs [30-32]. This method transforms the constrained
optimization problem to an unconstrained optimization problem by penal-
izing the objective function corresponding to the infeasible solution. Hence,
to solve the constrained optimization problem the problem is converted to
unconstrained one by two different types of penalty techniques and the re-
sulting objective function would be interval valued. So, to solve this problem
we have developed two different GAs for integer variables with the same GA
operators like tournament selection, uniform crossover for integer variables
and whole arithmetical crossover for floating point variables, uniform muta-
tion for integer variables and boundary mutation for floating point variables
and elitism of size one but different fitness function depending on different
penalty approaches. These methods have been illustrated with some numeri-
cal examples and to test the performance of these methods, results have also
been compared. As a special case considering the lower and upper bounds
of interval valued reliabilities of components as same, the resulting problem
becomes identical with the existing problem available in the literature.

2 Finite Interval Arithmetic

An interval number is a closed interval denoted by A = [aL, aR] and is de-
fined by A = [aL, aR] = {x : aL ≤ x ≤ aR, x ∈ ℜ} where aL and aR are
the left and right limits respectively and ℜ is the set of all real numbers.
A can also be expressed in terms of centre and radius as A = 〈ac, aw〉=
{x : ac−aw ≤ x ≤ ac +aw, x ∈ ℜ}, where ac andaw are the centre and radius
of the interval A respectively, i.e., ac = (aL + aR)/2, and aw = (aR − aL)/2.
Actually, every real number can be treated as an interval, such as for all
x ∈ ℜ, x can be written as an interval [x, x] having zero width. Now we shall
present the definitions of arithmetical operations like addition, subtraction,
multiplication, division and integral power of interval numbers [33] and also
the n-th root as well as the rational powers of interval numbers [34].

Definition 1: Let A = [aL, aR] and B = [bL, bR] be two intervals. Then the
definitions of addition, scalar multiplication, subtraction, multiplication and
division of interval numbers are as follows:
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• Addition: A + B = [aL, aR] + [bL, bR] = [aL + bL, aR + bR]

• Scalar multiplication: For any real number α,αA = α[aL, aR] =
{

[αaL, αaR] if α ≥ 0
[αaR, αaL] if α < 0

• Subtraction: A − B = [aL, aR] − [bL, bR] = [aL, aR] + [−bR,−bL] =
[aL − bR, aR − bL]

• Multiplication: A × B = [aL, aR] × [bL, bR]
= [min(aLbL, aLbR, aRbL, aRbR), max(aLbL, aLbR, aRbL, aRbR)]

• Division
A
B

= A × 1
B

= [aL, aR] × [ 1
bR

, 1
bL

], provided 0 /∈ [bL, bR]

Definition 2: Let A = [aL, aR] be an interval and n be any non-negative
integer, then

An =

⎧

⎪

⎨

⎪

⎩

[1, 1] if n = 0
[an

L, an
R] if aL ≥ 0 or if n is odd

[an
R, an

L] if aR = 0 and n is even
[0, max(an

L, an
R)] if aL ≤ 0 ≤ aR and n(> 0) is even

Definition 3: The n− th root of an interval A = [aL, aR] , n being a positive
integer, is defined as

(A)
1

n = [aL, aR]
1

n =

⎧

⎨

⎩

n
√

[aL, aR] = [ n
√

aL, n
√

aR] if aL ≥ 0 or if n is odd
[0, n

√
aR] if aL ≤ 0, aR ≥ 0 and n is even

φ if aR < 0 and n is even
where φ is the empty interval.

Again, by applying the definitions of power and different roots of an interval,
we can find any rational power of an interval. For example A

p
q obtained by

defining A
p
q as (Ap)

1

q .

3 Order Relation of Interval Numbers

Further, for arriving at the optimum solution involving interval algebra, we
need to define the order relation of interval numbers.

Let A = [aL, aR] and B = [bL, bR] be two intervals. These two intervals
may be one of the following three types:

1. Type-1: Two intervals are disjoint [see Fig.1].
2. Type-2: Two intervals are partially overlapping [see Fig.2].
3. Type-3: One of the intervals contains the other one [see Fig.3].
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Fig. 1 Type-1 interval

Fig. 2 Type-2 intervals

Fig. 3 Type-3 intervals

Here we consider the definitions of order relations developed by Mahato and
Bhunia [20] in the context of optimistic and pessimistic decision makers’ point
of view.

3.1 Optimistic Decision-Making

In optimistic decision-making, decision maker prefers the lowest value for
minimization problems and highest value for maximization problems ignoring
the uncertainty.

Definition 4: Let us define the order relation ≥omax between the intervals
A = [aL, aR] and B = [bL, bR] then for maximization problems A ≥omax B
⇔ aR > bR,A >omax B ⇔ A ≥omax B ∧ A �= B.

According to this definition, the optimistic decision maker accepts A . The
order relation ≥omax is reflexive and transitive but not symmetric.

Definition 5: The order relation ≤omin between the intervals A = [aL, aR]
and B = [bL, bR] then for minimization problems A ≤omin B ⇔ aL ≤ bL,
A <omin B ⇔ A ≤omin B∧A �= B. The order relation ≤omin is not symmetric.
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3.2 Pessimistic Decision-Making

In pessimistic decision making, the decision maker prefers the highest/lowest
value under the principle ”Less uncertainty is better than more uncertainty”
for maximization/minimization problems.

Definition 6: The order relation >pmax between the intervals A = [aL, aR] =
〈ac, aw〉 and B = [bL, bR] = 〈bc, bw〉 , then for maximization problems

(i)A >pmax B ⇔ ac > bc for type − 1 and type − 2 intervals,
(ii)A >pmax B ⇔ ac ≥ bc ∧ aw < bw for type − 3 intervals

However, for Type-3 intervals, pessimistic decision cannot be taken when
ac > bc ∧ aw > bw . In this case, we consider the optimistic decision.

Definition 7: The order relation <pmin between the intervals A = [aL, aR] =
〈ac, aw〉 and B = [bL, bR] = 〈bc, bw〉 , then for minimization problems

(i)A <pmin B ⇔ ac < bc for type − 1and type−2 intervals,
(ii)A <pmin B ⇔ ac ≤ bc ∧ aw < bw for type − 3 intervals

However, for Type-3 intervals, pessimistic decision cannot be taken when
ac < bc ∧ aw > bw. In this case, we consider the optimistic decision.

4 Assumptions and Notations

Witout loss of generality, tet us assume the following:

• The component reliabilities are imprecise and interval valued.
• The failure of any component is independent of that of the other

components.
• All redundancy is active redundancy without repair.

The following notations have been used in the entire paper.

• xj : the number of redundant components in j-th subsystem
• rj : reliability of j-th component
• Rj(x): 1−(1−rj)

xj , j = 1, 2, ..., q, the reliability of j-th parallel subsystem
• x: (x1, x2, ..., xn)
• rjL,rjR: lower and upper limits of rj

• m: number of resource constraints
• n: number of stages of the system
• RjL(x): lower bound of Rj(x)
• RjR(x): upper bound of Rj(x)
• Qj: 1 − Rj

• Rj : the reliability of j-th subsystem, j = q + 1, q + 2, · · ·, n
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• (x, R): (x1, x2, ..., xq, Rq+1, ..., Rn)
• RS(x, R): system reliability
• RSL(x, R): lower bound of RS(x, R)
• RSR(x, R): upper bound of RS(x, R)
• Ci(x, R): consumption of i-th resource (i = 1, 2, ..., m)
• Cw(x, R): weighted cost
• ci: availability of i-th resource (i = 1, 2, ..., m)
• lj,uj : lower and upper bounds of xj

• αj ,βj : lower and upper bounds of Rj , j = q + 1, q + 2, · · ·, n
• R∗: minimum prescribed reliability in case of cost minimization problem
• p size: population size
• p cross: probability of crossover or crossover rate
• p mute: probability of mutation or mutation rate

5 Constrained Redundancy Optimization Problem for
different Systems

5.1 Series System

It is well known that a series system (ref. Fig. 4) with n independent compo-
nents must be operating only if all the components are functioning. In order
to improve the overall reliability of the system; one can use more reliable com-
ponents. However, the expenditure and more often the technological limits
may prohibit an adoption of this strategy. An alternative technique is to add
some redundant components as shown in Fig. 5. The goal of the problem is
to determine an optimal redundancy allocation so as to maximize the overall
system reliability under limited resource constraints. These constraints may
arise out of the size, cost and quantities of the resources. Mathematically, the
constrained redundancy optimization problem for such a system for interval
valued of reliability can be formulated as follows:

Problem-1: Maximize [RSL, RSR]=
q
∏

j=1

[{1 − (1 − rjL)xj}, {1−(1 − rjR)xj}]

subject to gi(x) ≤ ci, i = 1, 2, ..., m and lj ≤ xj ≤ uj , for j = 1, 2, ..., q,
where rj = [rjL, rjR]

This is a constrained nonlinear integer programming problem with interval
valued objective.

Fig. 4 Series System
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Fig. 5 Parallel series system

5.2 Hierarchical Series-Parallel System

A reliability system is called a hierarchical series parallel system (HSP) if
the system can be viewed as a set of subsystems arranged in a series par-
allel; each subsystem has a similar configuration; subsystems of each sub-
system have a similar configuration and so on. For example, let us con-
sider a HSP system (n = 10, m = 2) shown in the Fig.6. This system
has a nonlinear and non separable structure and consists of nested par-
allel and series system. The system reliability of HSP is given by RS =
{1 − 〈1 − [1 − Q3(1 − R1R2)]R4〉(1 − R5R6)}(1 − Q7Q8Q9)R10. Mathemat-
ically; the constrained redundancy optimization problem for this system for
interval valued reliability can be formulated as follows:

Problem-2: Maximize [RSL, RSR] = {1−〈1−(1− [Q3L, Q3R](1− [R1L, R1R]
[R2L, R2R])) [R4L, R4R]〉(1−[R5L, R5R][R6L, R6R])}(1−[Q7L, Q7R][Q8L, Q8R]

Fig. 6 Hierarchical series-parallel system
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[Q9L, Q9R]) [R10L, R10R] subject to gi(x) ≤ ci, i = 1, 2, ..., m and lj ≤ xj ≤
uj for j = 1, 2, ..., q. This is an INLP with interval valued objective.

5.3 Complicated System

When a reliability system can be reduced to series and parallel configura-
tions, there exist combinations of components which are connected neither in
a series nor in parallel. Such systems are called complicated or non parallel
series systems. This system is also called the bridge system. For example, let
us consider a bridge system (n = 5, m = 3) shown in Fig.7. This system con-
sists of five subsystems and three nonlinear and non-separable constraints.
The overall system reliability RS is given by the expression as follows:

RS = R5(1 − Q1Q3)(1 − Q2Q4) + Q5[1 − (1 − R1R2)(1 − R3R4)]

Ri = Ri(xi) and Qi = 1 − Ri for all i = 1, 2, 3, 4, 5 .

Mathematically, the constrained redundancy optimization problem for such
complicated system for interval valued reliability can be formulated as follows:

Problem-3: Maximize [RSL, RSR] = [R5L, R5R](1 − [Q1L, Q1R][Q3L, Q3R])
(1 − [Q2L, Q2R][Q4L, Q4R]) + [Q5L, Q5R]{1 − (1 − [R1L, R1R][R2L, R2R])(1 −
[R3L, R3R][R4L, R4R])} subject to gi(x) ≤ ci, i = 1, 2, ..., m and lj ≤ xj ≤
uj, for j = 1, 2, ..., q

Fig. 7 Complicated system

5.4 k-out-of-n System

A k− out− of −n system is a n-component system which functions when at
least k of its components function. This redundant system is sometimes used
in the place of pure parallel system. It is also referred to as k−out−of−n : G
system. An n-component series system is a n − out − of − n : G system
whereas a parallel system with n-components is a 1−out−of−n : G system.
When all of the components are independent and identical, the reliability of



22 A.K. Bhunia and L. Sahoo

k− out− of −n system can be written as RS =
n
∑

j=k

(

n
j

)

rj(1− r)n−j , where

r is the component reliability.

5.5 Reliability Network System

Let us consider a network with n subsystems. The goal of the redundancy
allocation problem is to determine the number of redundant components in
each of q parallel subsystems and reliability levels of (n − q) general subsys-
tems so as to maximize the overall system reliability subject to the given
resource constraints and also to minimize the overall system cost subject to
the given constraint on system reliability. The corresponding problems are
mixed-integer nonlinear programming problems as follows:

Problem-4: Maximize RS(x, R) = f(R1(x1), R2(x2), ..., Rq(xq), Rq+1, ..., Rn)
subject to Ci(x, R) ≤ ci, i = 1, ...., m, and 1 ≤ lj ≤ xj ≤ uj, xj integer, j =
1, ..., q, 0 < αj ≤ Rj+1 ≤ βj < 1, j = 1, ..., n − q,

Problem-5: MinimizeCw(x, R) subject to RS(x, R) ≥ R∗, where RS(x, R) =
f(R1(x1), R2(x2), ..., Rq(xq), Rq+1, ..., Rn)

6 GA Based Constrained Handling Technique

In the application of GA for solving reliability optimization problem with
interval objective, there arises an important question for handling the con-
straints relating to the problem. During the past, several methods have been
proposed to handle the constraints in evolutionary algorithms [30], [32] for
solving the same problem with fixed objective. These methods can be clas-
sified into several types, viz. penalty function techniques, methods that pre-
serve the feasibility of solutions, methods that clearly distinguish between
feasible and infeasible solutions and hybrid methods. Among these methods,
penalty function technique is very well known and widely applicable. In this
technique, the amount of constraint violations is added /subtracted to the ob-
jective function in different ways. When the objective function is increased/
decreased with a penalty term multiplied by so called penalty coefficient
there arises a difficulty to select the initial value and upgrading strategy for
the penalty coefficient. To overcome this difficulty, Deb [30] proposed a GA
based Parameter Free Penalty (PFP) technique. In this technique, the worst
fitness value of GA for feasible solutions is considered as the fitness value of
infeasible solution without multiplying the penalty coefficient i.e., the fitness
function values of infeasible solutions are independent of the objective func-
tion value for the same solution. Therefore, according to the PFP technique,
the converted problem of problem (1-3) is as follows:
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Maximize [R̂SL(x), R̂SR(x)] = [RSL(x), RSR(x)]

− [

m
∑

i=1

max(0, gi(x) − ci),

m
∑

i=1

max(0, gi(x) − ci)] + θ(x) (1)

where θ(x) =

{

[0, 0] if x ∈ S
−[RSL(x), RSR(x)] + min[RSL, RSR] if x /∈ S

and S = {x : gi(x) ≤ ci, i = 1, 2, ..., m and l ≤ x ≤ u}

Here min[RSL, RSR] is the value of interval valued objective function of the
worst feasible solution in the population. Alternatively, the problem may be
solved with another fitness function by penalizing a large positive number (say
M which can be written in the interval form as[M, M ] ) [18]. This penalty
function method is known as Big-M penalty and its form is as follows:

Maximize [R̂SL(x), R̂SR(x)] = [RSL(x), RSR(x)] + θ(x) (2)

where θ(x) =

{

[0, 0] if x ∈ S
−[RSL(x), RSR(x)] + [−M,−M ] ifx /∈ S

and S = {x : gi(x) ≤ ci, i = 1, 2, ..., m and l ≤ x ≤ u}

The above problems (1) and (2) are nonlinear unconstrained integer pro-
gramming problem with interval coefficients. Also, according to the PFP
technique, the converted problem of problem-4 is as follows:

Maximize R̂S(x, R) = RS(x, R)

−
m

∑

i=1

[max(0, Ci(x, R) − ci), max(0, Ci(x, R) − ci)] + θ(x, R) (3)

where θ(x, R) =

{

[0, 0] , if (x, R) ∈ X
−RS(x, R) + min [RSL(x, R), RSR(x, R)] if (x, R) /∈ X

and X = {(x, R) : Ci(x, R) ≤ ci, i = 1, ..., m and l ≤ x ≤ u, α ≤ R ≤ β}

Here min [RSL(x, R), RSR(x, R)] is the value of the interval valued objective
function of the worst feasible solution in the population.

Alternatively, the problem may also be solved with another fitness function
by penalizing a large positive number. The converted form is as follows:

Maximize R̂S(x, R) = RS(x, R) + θ(x, R) (4)

where θ(x, R) =

{

[0, 0] if (x, R) ∈ X
−RS(x, R) + [−M,−M ] if (x, R) /∈ X

and X = {(x, R) : Ci(x, R) ≤ ci, i = 1, ..., m and l ≤ x ≤ u, α ≤ R ≤ β}
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Similarly, for Problem-5, the converted problem is as follows:

Minimize Ĉw(x, R) = Cw(x, R)

+

m
∑

j=1

[max(0,−RSL(x, R) + R∗)] + θ(x, R) (5)

where θ(x, R) =

{

[0, 0] if (x, R) ∈ X
−Cw(x, R) + max {Cw(x, R)} if (x, R) /∈ X

and X = {(x,R) : −RSL(x, R) + R∗ ≤ 0, i = 1, 2, ..., m and l ≤ x ≤ u, α ≤ R ≤ β}

Here max {Cw(x, R)} is the value of the interval valued objective function of
the worst feasible solution in the population. Alternatively, the problem may
also be solved with another fitness function by penalizing a large positive
number. The converted problem is of the form

Minimize Ĉw(x, R) = Cw(x, R) + θ(x, R) (6)

where θ(x, R) =

{

[0, 0] if(x, R) ∈ X
−Cw(x, R) + M if(x, R) /∈ X

and
X = {(x, R) : −RSL(x, R) + R∗ ≤ 0, i = 1, ..., m and l ≤ x ≤ u, α ≤ R ≤ β}

The above problems (1-2) are non-linear unconstrained integer programming
problem with interval coefficients whereas problems (3-6) are non-linear un-
constrained mixed integer programming problem with interval coefficients.

7 Genetic Algorithm

Genetic Algorithm is a well-known stochastic method of global optimization
based on the evolutionary theory of Darwin: ’ The survival of the fittest’ and
natural genetics (Goldberg [23]). It has successfully been applied in different
real world application problems. This algorithm starts with an initial popu-
lation of chromosomes. These populations will be improved from generation
to generation by an artificial evolution process. During each generation, each
chromosome in the entire population is evaluated using the measure of fit-
ness and the population of the next generation is created through different
genetic operators. This algorithm can be implemented easily with the help
of computer programming. In particular, it is very useful for solving com-
plicated optimization problems which cannot be solved easily by analytical
/direct/gradient based mathematical techniques.
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For implementing the GA in solving the optimization problems, the fol-
lowing basic components are to be considered.

• GA Parameters
• Chromosome representation
• Initialization of population
• Evaluation of fitness function
• Selection process
• Genetic operators (crossover,mutation and elitism)
• Termination criteria

Initially, the chromosomes/individuals are generated randomly. In this work,
each chromosome/individual has n components/genes of which first q genes
are relating to integer variables whereas the last (n−q) are relating to floating
point variable. These chromosomes/individuals compete with each other with
their fitness values. Here, the transformed unconstrained objective function
due to Big-M and PFP penalty are considered as the fitness function. In the
proposed GA, the well-known tournament selection process is employed as
the selection operator. The primary objective of this process is to emphasize
the above average solutions and eliminate the below average solutions from
the population for the next generation under the well-known evolutionary
principle ”Survival of the fittest”. This selection procedure is based on the
following assumptions:

1. When both the chromosomes / individuals are feasible then the one with
better fitness value is selected.

2. When one chromosome/individual is feasible and another is infeasible then
the feasible one is selected.

3. When both the chromosomes/individuals are infeasible with unequal con-
straint violations, then the chromosome with less constraint violation is
selected.

4. When both the chromosomes/individuals are infeasible with equal con-
straint violations, then any one chromosome/individual is selected.

After the selection process, new offspring will be created through crossover
and mutation processes. In this work, we have used uniform crossover and
uniform mutation in the genes corresponding to the integer variables, whole
arithmetical crossover and boundary mutation for the last gene of the
chromosome.

The computational steps of crossover are as follows:

Step-1: Find the integral value of the product of p cross and p size
and store it in N .

Step-2: Select two chromosomes vk and vi randomly from the population.
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Step-3: For first q genes, compute the components x̄kj and x̄ij

(j = 1, 2, ..., q) of two offspring by either x̄kj = xkj − g and
x̄ij = xij + g if xkj > xij or, x̄kj = xkj + g and x̄ij = xij − g,
where g is a random integer number between 0 and |xkj − xij |,
j = 1, 2, ..., q and for the last gene, compute the last components
x′

kj and x′
ij of two offspring will be created by x′

kj = cxkj+

(1 − c)xij and x′
ij = (1 − c)xkj + cxij where c is a random number

between 0 and 1.
Step-4: Repeat step-2 and step-3 for N

2 times.

The computational steps of mutation are as follows:

Step-1: Find the integral value of the product of p mute and p size
and store it in N .

Step-2: Select a chromosome vi randomly from the population.
Step-3: Select a particular gene vik (k = 1, 2, ..., q) of chromosome vi

for mutation and domain of vik is [lik, uik].
Step-4: Create new gene v′ik corresponding to the selected gene vik

by mutation process as follows:
For k = 1, 2, ..., q

v′ik =

{

vik + ∆(uik − vik), if randomdigit is 0
vik − ∆(vik − lik), if randomdigit is 1

∆(y) returns a value in the range [0, y] , is a random integer
between [0, y].

Otherwise v′ik =

{

lik if a randomdigit is 0.
uik if a randomdigit is 1.

Step-5: Repeat Step-2 to Step-4 for N times.

Sometimes, in any generation, there is a chance that the best chromosome
may be lost when a new population is created by crossover and mutation
operations. To remove this situation the worst individual/chromosome is re-
placed by the best individual/chromosome in the current generation. This
process is called elitism. The different steps of this algorithm are described
as follows:

7.1 Algorithm

Step 1: Initialize the parameters of genetic algorithm, bounds of variables
and different parameters of the problem.

Step 2: t = 0 [t represents the number of current generation].
Step 3: Initialize the chromosome of the populationP (t)[ P (t) represents

the population at t − th generation].
Step 4: Evaluate the fitness function of each chromosome of P (t) consider-

ing any one of the objective function from (1-6) as fitness function.
Step 5: Find the best chromosome from the population P (t).
Step 6: t is increased by unity.
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Step 7: If the termination criterion is satisfied go to step-14, otherwise,
go to next step.

Step 8: Select the population P (t) from the populationP (t− 1) of earlier
generation by tournament selection process.

Step 9: Alter the population P (t) by crossover, mutation and elitism
process.

Step 10: Evaluate the fitness function value of each chromosome of P (t).
Step 11: Find the best chromosome from P (t) .
Step 12: Compare the best chromosome of P (t) and P (t − 1) and store

better one.
Step 13: Go to step-6.
Step 14: Print the last found best chromosome (which is the solution of

the optimization problem).
Step 15: End.

8 Numerical Example

To illustrate the proposed GAs (viz. PFP-GA and Big-M-GA) for solving
earlier mentioned optimization problems with interval valued reliabilities of
components, we have solved nine numerical examples. It is to be noted that
for solving the said problem with fixed valued reliabilities of components, the
reliability of each component is taken as interval with the same lower and
upper bounds of interval. For each example, 20 independent runs have been
performed by both the GAs, of which the following measurements have been
collected to compare the performances of PFP-GA and Big-M-GA.

1. Best found system reliability
2. Average generations
3. Average CPU times

The proposed Genetic Algorithms are coded in C programming language
and run in Linux environment. The computational work has been done on
the PC which has Intel core-2 duo processor with 2 GHz. In this computation,
different population size has been taken for different problems. However, the
crossover and mutation rates are taken as 0.95 and 0.15 respectively.

Example 1: (related to Problem-1):

Maximize [RSL, RSR] =
5
∏

j=1

[{1 − (1 − rjL)xj}, {1 − (1 − rjR)xj}] subject to:

5
∑

j=1

pjx
2
j − P ≤ 0,

5
∑

j=1

cj [xj + exp(
xj

4 )] − C ≤ 0,

5
∑

j=1

wjxj exp(
xj

4 ) − W ≤ 0,
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The values of different parameters along with the interval valued reliabilities
of Example-1 are given in Table 1.

Example 2: (related to Problem-2)
Maximize [RSL, RSR] = {1 − 〈1 − (1 − [Q3L, Q3R](1 −
[R1L, R1R][R2L, R2R]))[R4L, R4R]〉 (1 − [R5L, R5R][R6L, R6R])}(1 −
[Q7L, Q7R][Q8L, Q8R][Q9L, Q9R])[R10L, R10R]
subject to
c1 exp(x1

2 )x2 + c2 exp(x3

2 ) + c3x4 + c4[x5 + exp(x5

4 )] + c5x
2
6x7 + c6x8 +

c7x
3
9 exp(x10

2 ) − 120 ≤ 0,
w1x

2
1x2 + w2 exp(x3x4

2 ) + w3x5 exp(x6

4 ) + w4x7x
3
8 + w5[x9 + exp(x9

2 )] +
w6x2 exp(x10

4 ) − 130 ≤ 0,

Table 1 Parameters in Example 1

j [rjL, rjR] pj P cj C wj W

1 [0.76, 0.83] 1 7 7
2 [0.82, 0.87] 2 110 7 175 8 200
3 [0.88, 0.93] 3 5 8
4 [0.61, 0.67] 4 9 6
5 [0.70, 0.80] 2 4 9

The values of different parameters along with the interval valued reliabili-
ties of Example-2 are given in Table 2.

Table 2 Parameters in Example 2

j [rjL, rjR] cj wj lj uj

1 [0.80, 0.84] 8 16 1 4
2 [0.87, 0.90] 4 6 1 5
3 [0.89, 0.93] 2 7 1 6
4 [0.84, 0.86] 2 12 1 7
5 [0.88, 0.90] 1 7 1 5
6 [0.90, 0.95] 6 1 1 5
7 [0.80, 0.85] 2 9 1 3
8 [0.90, 0.95] 8 − 1 3
9 [0.80, 0.83] − − 1 4
10 [0.88, 0.92] − − 1 6

Example 3: (related to Problem 2)
Maximize
[RSL, RSR] = {1 − 〈1 − (1 − [Q3L, Q3R](1 −
[R1L, R1R][R2L, R2R]))[R4L, R4R]〉(1 − [R5L, R5R][R6L, R6R])}(1 −
[Q7L, Q7R][Q8L, Q8R][Q9L, Q9R])[R10L, R10R]
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subject to
c1 exp(x1

2 )x2 + c2 exp(x3

2 ) + c3x4 + c4[x5 + exp(x5

4 )] + c5x
2
6x7 + c6x8 +

c7x
3
9 exp(x10

2 ) − 120 ≤ 0,
w1x

2
1x2 + w2 exp(x3x4

2 ) + w3x5 exp(x6

4 ) + w4x7x
3
8 + w5[x9 + exp(x9

2 )] +
w6x2 exp(x10

4 ) − 130 ≤ 0,

The values of different parameters along with the interval valued reliabilities
of Example-3 are given in Table 3.

Table 3 Parameters in Example -3

j [rjL, rjR] cj wj lj uj

1 [0.83, 0.83] 8 16 1 4
2 [0.89, 0.89] 4 6 1 5
3 [0.92, 0.92] 2 7 1 6
4 [0.85, 0.85] 2 12 1 7
5 [0.89, 0.89] 1 7 1 5
6 [0.93, 0.93] 6 1 1 5
7 [0.83, 0.83] 2 9 1 3
8 [0.94, 0.94] 8 − 1 3
9 [0.82, 0.82] − − 1 4
10 [0.91, 0.91] − − 1 6

Example 4: (related to Problem-3)
Maximize [RSL, RSR] = [R5L, R5R](1− [Q1L, Q1R][Q3L, Q3R])(1− [Q2L, Q2R]
[Q4L, Q4R]) + [Q5L, Q5R]{1 − (1 − [R1L, R1R][R2L, R2R])(1 − [R3L, R3R]
[R4L, R4R])} subject to:

10 exp(x1

2 )x2 + 20x3 + 3x2
4 + 8x5 − 200 ≤ 0,

10 exp(x1

2 ) + 4 exp(x2) + 2x3
3 + 6[x2

4 + exp(x4

4 )] + 7 exp(x5

4 ) − 310 ≤ 0,
12[x2

2 + exp(x2)] + 5x3 exp(x3

4 ) + 3x1x
2
4 + 2x3

5 − 520 ≤ 0,
(1, 1, 1, 1, 1) ≤ (x1, x2, x3, x4, x5) ≤ (6, 3, 5, 6, 6),
where
R1(x1)
={[0.78, 0.82], [0.83, 0.88], [0.89, 0.91], [0.915, 0.935], [0.94, 0.96], [0.965, 0.985]};
R2(x2) = 1 − (1 − [0.73, 0.77])x2;

R3(x3) =
x3+1
∑

k=2

(

x3 + 1
k

)

([0.87, 0.89])k([0.11, 0.13])x3+1−k;

R4(x4) = 1 − (1 − [0.68, 0.72])x4;
R5(x5) = 1 − (1 − [0.83, 0.86])x5;

Example 5: (related to Problem-3)
Maximize [RSL, RSR] = [R5L, R5R](1− [Q1L, Q1R][Q3L, Q3R])(1− [Q2L, Q2R]
[Q4L, Q4R]) + [Q5L, Q5R]{1 − (1 − [R1L, R1R][R2L, R2R])(1 − [R3L, R3R]
[R4L, R4R])} subject to
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10 exp(x1

2 )x2 + 20x3 + 3x2
4 + 8x5 − 200 ≤ 0,

10 exp(x1

2 ) + 4 exp(x2) + 2x3
3 + 6[x2

4 + exp(x4

4 )] + 7 exp(x5

4 ) − 310 ≤ 0,
12[x2

2 + exp(x2)] + 5x3 exp(x3

4 ) + 3x1x
2
4 + 2x3

5 − 520 ≤ 0,
(1, 1, 1, 1, 1) ≤ (x1, x2, x3, x4, x5) ≤ (6, 3, 5, 6, 6),
where
R1(x1)
= {[0.8, 0.8], [0.85, 0.85], [0.9, 0.9], [0.925, 0.925], [0.95, 0.95], [0.975, 0.975]};
R2(x2) = 1 − (1 − [0.75, 0.75])x2;

R3(x3) =
x3+1
∑

k=2

(

x3 + 1
k

)

([0.88, 0.88])k([0.12, 0.12])x3+1−k;

R4(x4) = 1 − (1 − [0.7, 0.7])x4;
R5(x5) = 1 − (1 − [0.85, 0.85])x5;

The examples 1, 2, 3, 4 and 5 have been solved by two different methods
PFP-GA and Big-M-GA and the results have been shown in Table 4.

Table 4 Numerical results for Example 1-5

Method Exam Popul x Best found system Average Average
-ple -ation reliability CPU Genera

size RS seconds -tion

PFP 1 50 (3, 2, 2, 3, 3) [0.860808, 0.930985] 0.0001 12.10
-GA 2 100 (1, 2, 2, 5, 4, 4, 2, 2, 1, 5) [0.999909, 0.999987] 0.0105 17.55

3 100 (1, 2, 2, 5, 4, 4, 2, 2, 1, 5) [0.999975, 0.999975] 0.0100 17.55
4 200 (5, 1, 2, 4, 4) [0.991225, 0.999872] 0.0200 11.20
5 100 (3, 2, 4, 4, 2) [0.999382, 0.999382] 0.0100 12.40

Big-M 1 50 (3, 2, 2, 3, 3) [0.860808, 0.930985] 0.0001 12.80
-GA 2 100 (1, 2, 2, 5, 4, 4, 2, 2, 1, 5) [0.999909, 0.999987] 0.0110 17.75

3 100 (1, 2, 2, 5, 4, 4, 2, 2, 1, 5) [0.999975, 0.999975] 0.0100 17.75
4 200 (5, 1, 2, 4, 4) [0.991225, 0.999872] 0.0200 10.90
5 100 (3, 2, 4, 4, 2) [0.999382, 0.999382] 0.0100 12.55

Example 6: (related to the Problem-4)
Maximize RS(x, R) = R1R2 + Q2R3R4 + Q1R2R3R4 + R1Q2Q3R4R5

+Q1R2R3Q4R5 subject to:

C1(x) = x1x2 + 2.2x2x3 + 1.5x2x4 + 2 exp
(

0.01
1−R5

)

≤ 28,

C2(x) = x1 + 0.1x2 + 2x3 + x4 + 5 exp
(

0.01
1−R5

)

≤ 25,

C3(x) = x2
1 + (x2 − 2)3 + 1.5x3 + x4 + 0.6 exp

(

0.01
1−R5

)

< 21,
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where 1 ≤ xi ≤ 6, and are integers, i = 1, 2, 3, 4, 0.50 ≤ R5 ≤ 0.99,
and Ri = Ri(xi) = 1 − (1 − ri)

xi , i = 1, 2, 3, 4, Qi = 1 − Ri, i = 1, ..., 5
r1 = [0.69, 0.72],r2 = [0.83, 0.86],r3 = [0.73, 0.76],r4 = [0.79, 0.81]

Example 7: (related to the Problem-4)
Maximize RS(x, R) = R1R2 + Q2R3R4 + Q1R2R3R4 + R1Q2Q3R4R5

+Q1R2R3Q4R5 subject to:

C1(x) = x1x2 + 2.2x2x3 + 1.5x2x4 + 2 exp
(

0.01
1−R5

)

≤ 28,

C2(x) = x1 + 0.1x2 + 2x3 + x4 + 5 exp
(

0.01
1−R5

)

≤ 25,

C3(x) = x2
1 + (x2 − 2)3 + 1.5x3 + x4 + 0.6 exp

(

0.01
1−R5

)

< 21,

where 1 ≤ xi ≤ 6, and are integers, i = 1, 2, 3, 4, 0.50 ≤ R5 ≤ 0.99,
and Ri = Ri(xi) = 1 − (1 − ri)

xi , i = 1, 2, 3, 4, Qi = 1 − Ri, i = 1, ..., 5
r1 = [0.70, 0.70],r2 = [0.85, 0.85],r3 = [0.75, 0.75],r4 = [0.80, 0.80]

The examples 6 and 7 have been solved by two different methods PFP-GA
and Big-M-GA and the results have been shown in Table 5.

Table 5 Numerical results for Examples 6-7

Method Example Popu- (x, R) Best found system Average
lation reliability CPU
size RS seconds

PFP 6 150 (2, 3, 1, 2, 0.9900) [0.958412, 0.997223] 0.2705
-GA 7 150 (2, 1, 6, 5, 0.9396) [0.999927, 0.999927] 0.2655

Big-M 6 150 (2, 3, 1, 2, 0.9900) [0.958412, 0.997223] 0.2700
-GA 7 150 (2, 1, 6, 5, 0.9396) [0.999927, 0.999927] 0.2590

Example 8: (related to the Problem-5)
Minimize Cw(x, R) = 0.3C1(x1) + 0.5C2(x2) + 0.2C3(x3) subject to:
RS(x, R) ≥ [0.999, 0.999], where 1 ≤ xi ≤ 6, andare integers, i =
1, 2, 3, 4, 0.50 ≤ R5 ≤ 0.99, and RS(x, R) , Ci(i = 1, 2, 3) are defined in
Example 6.

Example 9: (related to the Problem-5)
Minimize Cw(x, R) = 0.3C1(x1) + 0.5C2(x2) + 0.2C3(x3) subject to:
RS(x, R) ≥ [0.999, 0.999], where 1 ≤ xi ≤ 6, andare integers, i =
1, 2, 3, 4, 0.50 ≤ R5 ≤ 0.99, and RS(x, R) , Ci(i = 1, 2, 3) are defined in
Example 7.

The examples 8 and 9 have been solved by two different methods PFP-GA
and Big-M-GA and the results have been shown in Table 6.
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Table 6 Numerical results for Example 8-9

Method Exam Popu- (x,R) Best found Best found system Average
-ple lation system cost reliability CPU

size Cw RS seconds

PFP 8 150 (6, 4, 2, 1, 0.8601) 33.03866 [0.997290, 0.999885] 0.3675
-GA 9 150 (2, 1, 4, 4, 0.5) 17.97505 [0.999081, 0.999081] 0.3525

Big-M 8 150 (6, 4, 2, 1, 0.8601) 33.03866 [0.997290, 0.999885] 0.3010
-GA 9 150 (2, 1, 4, 4, 0.5) 17.97505 [0.999081, 0.999081] 0.2815

Table 7 Comparison of results of Ha and Kuo [1] and the proposed methods.

Example x System Average
Reliability CPU
Rs seconds

Ha and Kuo [1] 4(E2) (1, 1, 3, 4, 2, 1, 1, 3, 1, 4) 0.999876 –
PFP-GA(this work) 3 (1, 2, 2, 5, 4, 4, 2, 2, 1, 5) 0.999975 0.0100

Big-M-GA(this work) 3 (1, 2, 2, 5, 4, 4, 2, 2, 1, 5) 0.999975 0.0100

Ha and Kuo [1] 4(E1) (1, 3, 4, 3, 3) 0.999373 –
PFP-GA(this work) 5 (3, 2, 4, 4, 2) 0.999382 0.0100

Big-M-GA(this work) 5 (3, 2, 4, 4, 2) 0.999382 0.0100

Table 8 Comparison of results of Sun et al. [9] and the proposed methods.

Example (x, R) System System Average
cost Cw Reliability CPU

Rs seconds

Sun et al.[9] 2 (2, 1, 6, 5, 0.9396) 0.99992653 9.84
PFP-GA(this work) 7 (2, 1, 6, 5, 0.9396) 0.999927 0.2655

Big-M-GA(this work) 7 (2, 1, 6, 5, 0.9396) 0.999927 0.2590

Sun et al.[9] 4 (1, 1, 5, 4, .05) 18.53505 15.97
PFP-GA(this work) 9 (2, 1, 4, 4, 0.5) 17.97505 0.3525

Big-M-GA(this work) 9 (2, 1, 4, 4, 0.5) 17.97505 0.2815

9 Sensitivity Analysis

To study the performance of our proposed GAs like PFP-GA and Big-M-GA
based on two different types of penalty techniques, sensitivity analyses (for
Example-1) have been carried out graphically on the centre of the interval
valued system reliability with respect to GA parameters like, population size,
crossover and mutation rates separately keeping the other parameters at their



Genetic Algorithm Based Reliability Optimization 33

Fig. 8 Population size vs. centre of the objective function value

Fig. 9 Crossover rate vs.centre of the objective function value

Fig. 10 Mutation rate vs.centre of the objective function value
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original values. These are shown in Fig.8–Fig.10. From Fig.8, it is evident
that in case of PFP-GA, smaller population size gives the better system
reliability. However, both the GAs are stable when population size exceeds
the number 30. From Fig.9, it is observed that the system reliability is stable
if we consider the crossover rate between the interval (0.65, 0.95) in case of
PFP-GA. In both GAs, it is stable when crossover rate is greater than 0.8.
In Fig.10, sensitivity analyses have been done with respect to mutation rate.
In both GAs, the value of system reliability be the same.

10 Conclusions

In this chapter, the problems of redundancy allocation problems of series
system, hierarchical series-parallel system, complicated system and reliability
network system with some resource constraints have been solved. In those sys-
tems, reliability of each component has been considered as imprecise number
and this imprecise number has been represented by an interval number which
is more appropriate representation among other representations like, random
variable representation with known probability distribution, fuzzy set with
known fuzzy membership function or fuzzy number. For handling the resource
constraints, the corresponding problem has been converted to unconstrained
optimization problem with the help of two different parameter free penalty
techniques. Therefore, the transformed problem is of unconstrained interval
valued optimization problem with integer and/or mixed integer variables.
To solve the transformed problems, two different real coded GA based on
different fitness functions have been developed for integer and mixed integer
variables with interval valued fitness function, tournament selection, crossover
(uniform crossover for integer variables and whole arithmetical crossover for
floating point variables), mutation (uniform mutation for integer variables
and boundary mutation for floating point variables) and elitism of size one.
In the existing penalty function technique, tuning of penalty parameter is a
formidable task. However, here tuning of parameters is not required as these
are penalty parameter free techniques. From the performance of GAs, it is
observed that the GAs with both fitness functions due to different penalty
techniques take very lesser CPU times with very small generations to solve
the problems. It is clear from the expression of the system reliability that the
system reliability is a monotonically increasing function with respect to the
individual reliabilities of the components. Therefore, there is one optimum
setup irrespective of the choice of the upper bound or lower bound of the com-
ponent reliabilities. As a result, the optimum setup obtained from the upper
bound/lower bound will provide both the upper bound and the lower bound
of the optimum system reliability. These approaches have wider applicabili-
ties in solving the constrained optimization problems arisen in every sector
of real life situation. However, as the proposed techniques are parameter free,
these do not require the tuning of penalty parameter.
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Summary. In this chapter, we take advantage of particle swarm optimiza-
tion to build fuzzy systems automatically for different kinds of problems by
simply providing the objective function and the problem variables. Parti-
cle swarm optimization (PSO) is a technique used in complex problems, in-
cluding multi-objective problems. Fuzzy systems are currently used in many
kinds of applications, such as control, for their effectiveness and efficiency.
However, these characteristics depend primarily on the model yield by hu-
man experts, which may or may not be optimized for the problem. To avoid
dealing with inconsistent during the fuzzy systems generation, we used some
known techniques, such as the WM method, to help evolving meaningful
rules and clustering concepts to generate membership functions. Tests using
three three-dimensional functions have been carried out and show that the
evolutionary process is promising.

1 Introduction

Fuzzy systems [5] form an important tool to model complex problems based
on imprecise informations and/or in situations where a precise result is not
of interest and an approximation is sufficient [16]. The performance of a
fuzzy system depends on the expert’s interpretation, which leads to in the
generation of the rule base and membership functions of the system. To
minimize this dependency, some methods are being used in the attempt to
automatically generate the components required in a fuzzy system. For the
membership functions, clustering-based algorithms, such as Fuzzy C-means
and its generalizations as Pre-shaped C-means [2], are usually used. Other
approaches also exist [10]. The major difficulty in the development of fuzzy
systems consists of the definition of membership functions and rules that
provide the desired behavior of these systems.

Swarm Intelligence is an area of artificial intelligence based on collective
and decentralized behavior of individuals that interact with each other, as
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well as with the environment [1]. PSO is a stochastic evolutionary algorithm,
based on swarm intelligence, that searches for the solution of optimization
problems in a specific search space and is able to predict the social behavior
of individuals according to defined objectives [6].

Methods based on examples, such as the Wang-Mendel or WM method
[15], are usually used for automatic rule generation. Also, there are many
research works that exploit evolutionary algorithms (EA), both to optimize
the rule base and the membership functions. In [3], genetic algorithms (GA)
are used to generate the rule base, with candidate rules pre-selection. In [9],
the authors use EA to generate fuzzy systems that are more compact and
more interpretable by humans. In [13], the authors use clustering techniques
and GA to define good sets of rules for classification problems. In [4], the
authors use evolutionary technique and GA to generate fuzzy systems from
some given knowledge bases.

In this paper, we developed an algorithm based on PSO to generate fuzzy
systems for any kind of problem, provided an objective function that may
be continuous or discrete. Using simple informations, such as variable names,
the corresponding domains and the objective function, this algorithm can
yield an appropriate fuzzy system. Some tests were performed with a known
control surface to validate the effectiveness of the tool.

The rest of this paper is organized in five sections. Firstly, in Section 2,
we explain briefly the principle behind PSO. Then, in Section 3, we describe
the WM method of rules generation. After that, in Section 4, we give details
about the proposed method for the automatic modeling of fuzzy systems
using PSO. For this purpose, we first define the structure of a particle and
the coordinates used to position it within the search space as well as the
fitness function of the represented system. Then, in Section 5, we present
the obtained results to model a commonly used control surface. Last but not
least, in Section 6, we conclude the reported work and give some directions
for future research.

2 Particle Swarm Optimization

During a particle swarm optimization process, each particle is mapped into
a position in the search space, which n-dimensional. The particle position
is updated in each iteration. For the position update particle i, the velocity
related to each of the search space directions is used. The velocity is the
element that promotes the movement of the particles and is calculated as in
(1) [11, 8, 6].

vi(t + 1) = wvi(t) + c1r1(x̂i(t) − xi(t)) + c2r2(x̄(t) − xi(t)), (1)

where w is called inertia coefficient, r1 and r2 are random numbers chosen
in the interval [0,1], c1 and c2 are positives constants called as social and
cognitive coefficients, x̂i(t) identifies the best position achieved by the particle
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in the past and x̄(t) is the best position, among all the particles, achieved in
the past. The position of the particle is updated as described in (2).

xi(t + 1) = xi(t) + vi(t + 1). (2)

The velocity guides the optimization process [6], reflecting both the particle
experience and the information exchange between particles. The experimental
knowledge of a particle refers to the cognitive component, which is propor-
tional to the distance between the particle and its best position, found so far.
The information exchange between particles refers to the social component
of the velocity equation (1).

To avoid that a particle leaves the search space, it is necessary to use
a parameter that bounds the velocity [6]. This is known as the maximum
velocity vma x, it allows a higher granularity on the search control. Therefore,
before executing the update defined in (2), the velocity is analyzed with
respect to the criterion defined in (3).

vi(t + 1) =

⎧

⎨

⎩

vi(t + 1) if vi(t + 1) < vma x

vma x if vi(t + 1) ≥ vma x

(3)

In (1), one can observe three terms that interfere in the velocity computa-
tion [6], which are:

• The previous velocity, wvi(t), is used to prevent particle i to suffer a drastic
change in direction. This component also is called of inertia component.

• The cognitive component, c1r1(x̂i(t) − xi(t)), quantifies the performance
of particle i with respect to previous performances. This component was
defined by Kennedy and Eberhart as the “nostalgia” of the particle [8].

• The social component, c2r2(x̄(t) − xi(t)), quantifies the performance of
particle i with respect to the performance of the set of included particles.
The effect of this term is to attract the particle to the best position found
by the particles set.

The value assigned to each parameter of PSO algorithm is essential in the
search process evolution. Below are related some set of values considered good.

• The inertia coefficient, w, controls the relation between exploration and
exploitation [14]. The values near 1 are considered good, but values bigger
than 1 are not so good so are very small values [6]. Values bigger than 1
tend to leave the particles with a very high acceleration, promoting a high
divergence, while very small values can make the search too slow.

• The cognitive coefficient, c1, and the social coefficient, c2, yield a better
performance when these are balanced, i.e., c1

∼= c2 [6].
• The factors r1 and r2 define the stochastic nature of the cognitive and

social contributions. Random values are selected in the range [0,1] [6] to
each factors.
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• The maximum velocity is defined for each of the dimensions of search space
and can be formulated as a domain percentage [6], vmax = δ(xmax−xmin),
where xmax and xmin are the maximum and minimum domain values
respectively and δ is a value in the range [0, 1].

• The number of particles define the possibility to cover a range of the search
space in every iteration of the algorithm. A high number of particles allows
a better coverage of the search space but requires a considerable computa-
tional power. Empirical studies show that PSO achieves optimal solutions
using ten to thirty particles [6].

LetpBest be the best position found by a particle and gBest be the best
position among those found by all the particles. Algorithm 1 is describes
the PSO optimization process. A given maximal iteration number and the
predefined fitness values can be used as a stop criterion.

Algorithm 1. Particle swarm-based optimization algorithm (PSO)

1: f or i := 1 u n til total particulas do

2: Initialize particle i information;
3: Initialize random position of particle i;
4: Initialize random velocity of particle i;
5: end for

6: repeat

7: for i := 1 until total particulas do

8: Calculate fitness of particle i;
9: if (fitness better than pBesti) then

10: Update pBesti with the new position;
11: end if

12: if (fitness better than gBest) then

13: Update gBest with the new position;
14: end if

15: Update velocity of particle i;
16: Update position of particle i;
17: end for

18: until (stopcriterion = true)

The main characteristic of the PSO algorithm is the social interaction
[6], which makes the individuals able to learn with the group and use the
acquired knowledge. This allows the particles follow the path that leads to
more success, as it happens in nature.

A topology is the way that can be used to understand the interaction
between a particle and the group in which it is inserted. In practical terms, a
topology in PSO is defied by the manner the position update in performed.
Therefore, it is defined by the way the velocity is computed because it through
the velocity the knowledge about the best path is transmitted between the
particles of the swarm [6] [11].
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(a) Ring (b) Star (c) Circle

(d) Cluster (e) Pyramid (f) Von Neumann

Fig. 1 Topologies for PSO

Figure 1(a) shows the ring topology, also known as Local Best PSO. In this
topology, each particle is connected to two others, which are in its immediate
neighborhood. Figure 1(b) shows the star topology, also known as Global Best

PSO. In this topology, each particle is connected to all those of the swarm,
i.e., a particle neighborhood is formed by all existing particles.

Besides these two types of topologies, Figure 1(c) shows all particles con-
nected to central particle that controls the flow of information. In Figure 1(d),
the particles are clustered and a each particle is considered neighbor of all
those of its corresponding cluster, yet some of the cluster particle allow for a
connection with the other in the neighboring clusters. In Figure 1(e), shows
the pyramid topology which connects particles in triangles. Lastly, Figure
1(f) shows the Von Neumann structure, wherein the particles are connected
via a grid structure [6].

3 Rule Generation Methods

The rule generation method referred to as Wang-Mendel (WM) [15] uses
an input-output data set for the problem at hand, to generate a rule set of
fuzzy systems. The input-output data set is usually provided as (xp; yp), p =
1, 2, . . . , N , wherein xp ∈ Rn and yp ∈ R. This method extracts the rules
that best describe how the output variable y ∈ R is influenced by the n input
variables x = (x1, ..., xn) ∈ Rn, based on the provided examples.
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Fig. 2 Example of input-output data set for rules generation

For instance, assuming two data sets to a system with two input variables
x1 and x2 and an output y, that are (x1

1, x1
2, y1) and (x2

1, x2
2, y2), and the

membership functions showed in the graphics of the Fig. 2. To obtain the
rules represented by these two sets, first we must get the degree of confidence
using the membership functions, for each data set. In this case, we have:

• x1
1: degree 0.67 in A1 and 0.11 in A2;

• x1
2: degree 0.16 in B1 and 0.80 in B2;

• y1: degree 0.66 in C1;
• x2

1: degree 0.25 in A2 and 0.68 in A3;
• x2

2: degree 0.10 in B3 and 0.58 in B4;
• y2: degree 0.39 in C2 and 0.51 in C3.

In order to generate the rules, we always keep the membership functions in
which the variable has the highest degree, and so we discard the functions
that have lower degree. So, for the data sets defined in Fig. 2, we have (4).
So the first rule would be “If x1 is A1 and x2 is B2 then y is C1” and the
second, “If x1 is A3 and x2 is B4 then y is C3”.

(x1
1, x

1
2, y

1) = [x1
1(0.67 in A1), x1

2(0.80 in B2), y1(0.66 in C1)]
x2

1, x
2
2, y

2) = [x2
1(0.68 in A3), x2

2(0.58 in B4), y2(0.51 in C3)] (4)
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Note that each data set generates one single rule. Considering a real sys-
tem, it is very possible that these rules can be conflicting rules. To overcome
this problem, one can associate degrees of confidence to each generated rule,
using the degree of relevance of each rule term. Equation 5 shows how this
degree can be computed:

C(Rule) = µ (x1) × µ (x2) × µ (y), (5)

wherein C is degree of Rule and µ (x1), µ (x2) and µ (y) are the degree of rele-
vance of each rule term. In the case of the first rule, the associated confidence
degree would be C(Rule1) = 0.67 × 0.80 × 0.66 = 0.35376.

There are also methods based on genetic algorithms. In [3], the authors
use the WM method to generate the initial rule set and then apply their own
genetic algorithm on some classification rate of the rules. This method is only
used for classification problems.

4 Proposed Automatic Generation

In this work, PSO is used to evolve the fuzzy systems parameters of the
Mamdani type [5], both for rules and membership functions. The search
algorithm is based on these two elements and always tries to improve the
solution at hand. However, the functions are not modified in every iteration,
unlike the rules, whose modification obeys to pre-determined update rate,
that is defined at the beginning of the evolutionary process. The purpose
is to maintain the functions stable for some time, giving more time for the
algorithm to search for more appropriate rules for those functions. At the end
of each execution, when the algorithm reaches the stop criterion, it returns
the best solution found.

There are four important aspect that define the performance of the PSO
search. These are the particle representation, the position coordinates of a
given particle in the search space, the fitness function that allows us to de-
termine how appropriate is the fuzzy system associated with a given particle
and how to update the system represented by the particle at hand.

4.1 Representation

Each particle is associated with a fuzzy system and a position in the search
space, that is represented by an n-position vector, where n depends on the
number of used variables. In this work, the fuzzy system is defined by an
hierarchical structure as described in Fig. 3.
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Fig. 3 Fuzzy representation structure

4.2 Particle Position and Movement

The position vector has one entry for the rules number, another one for
the completeness factor, and m positions for the number of the functions,
where m is the number of the system variables. Thus, the position dimension
is dependent on the number of variables of the problem. The completeness
factor is a criterion that measures the discontinuity between functions in the
variables domain (see Section 4.3). The mutation operator determines how
the update of each one these items is performed. This update promotes the
movement of particles on the search space. In this work, we used three kinds
of mutations:

• If the velocity relating to the number of rules is positive, then we increase
the rules number. Otherwise, we decrease it.

• Changing the number of functions for each variable of the fuzzy system
follows the same criterion, given above.

• The change of the completeness is performed increasing the width of a
function. Thus, the tendency is to reduce the empty space in the domain, if
any. Similarly, reducing the width of the function, we alter the distinctness
between the available ones. The more positive the velocity is, the bigger
the increase in domain of one of the functions. If the more negative the
velocity is, the smaller the decrease in the domain.

4.3 Fitness Function

Inspired by the work reported in [9], the fitness of each particle is defined as
in (6):



PSO in Building Fuzzy Systems 45

F = −100 × ω1 × log(MSE)
+50 × ω2(1 − Cr )
+50 × ω3(1 − Cf )
+50 × ω4(1 − PD )
+50 × ω5(1 − PC ),

(6)

wherein MSE is the mean-square error of the difference between the returned
value by the objective function (yh ) and the returned value by the fuzzy model
(y F

h ), as (7), wherein ND is the number of data.

MSE =
1

ND

N
∑

h =1

(yh − y F
h )2, (7)

The Cr term represents the relation between the amount of rules presents
on the model and the total of possible rules, and Cf represents the relation
between the amount of functions presents on the system and the total of
possible functions, as in (8):

Cr = NR

Nmax
R

Cf = NF

Nmax
F

(8)

Term PD is a criterion that measures the distinctness between the member-
ship functions of the variables, defined in (9):

PD =
1

NV

NV
∑

i=1

⎛

⎝

1

N i
S

Ni
S

∑

h =1

λih

|χi|

⎞

⎠ , (9)

wherein NV is the number of variables, N i
S is the total possible interval of

overlap between functions of the i-th variable, λih is the width of the h-th
overlap and χi is the width of the variable domain. In order to the determine
λih , it is necessary to define the level ξD , drawing a horizontal line, crossing
all the functions, as showed in the Fig. 4(a). Term PC is a criterion that
represents the completeness of the membership functions, in relation to the
domain, and is defined as in (10):

PC =
1

NV

NV
∑

i=1

⎛

⎝

1

N i
D

Ni
D

∑

h =1

γih

|χi|

⎞

⎠ , (10)

wherein N i
D is the total possible number of discontinuity between functions

of the i-th variable, γih is the width of h-th discontinuity and χi is the width
of the variable domain.

In order to determine γih , is necessary to define the level ξC , in a similar
way to ξD , as shown Fig. 4(b).
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Fig. 4 Overlap and discontinuity illustrations

The coefficients ω1, ω2, ω3, ω4 and ω5, control the contribution of each
term of (6) in the evaluation of the fuzzy system associated with the particle.

This evaluation function covers the many required criteria of a fuzzy sys-
tem. These are the precision, by the error quantification; the compactness,
by the relation between the number of the rules and functions of the model
and the total possible number; and the interpretability, by measuring of the
distinctness and completeness, providing a complete model evaluation.

5 Results and Tests

The WM method [15], introduced in Section 3, was used to initialize rules
of the fuzzy systems of each particle. Besides, the concept of clustering was
used in the membership functions generation, to decrease the possibility of
yielding functions that are incompatible with the fuzzy system.

Experiments were performed to prove the effectiveness of the technique.
Table 1 show the used parameters by the PSO-based algorithm. Fig. 5 depicts
the graphics of the original function z = seno(xy). The best result obtained

Table 1 Values of the algorithm parameters

Parameter Value

Social coefficient 1.5
Cognitive coefficient 1.5
Inertia coefficient 1
Number of particles 20
Completeness 0.25
Number of iteration 5000
Total of rules WM 6
Kind of function Gaussian
ω1 – ω5 1
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Fig. 6 Best result obtained for function z = seno(xy)

for the approximation of this function using the fuzzy system generated by
the PSO-based algorithm is shown in Fig. 6.

Figure 7 shows the configuration input and output variables of the one of
the systems yield by the PSO algorithm. The numbering of the membership
function does not follow the order in which these appear in the domain. This
due to the Java system used to program the process.
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Fig. 7 Membership functions of the fuzzy variables used in the generated system
for function seno(xy)

Figure 8 shows the normalized mean square error (NMSE), that was com-
puted for each point used to test the validity of the generated fuzzy systems.
The error is normalized between 0 and 1.

The general average of the introduced error, considering all the points is
∇ = 0.1359. The standard deviation of the error is δ = 0.0537.
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Fig. 8 Error averages for the fuzzy system for function seno(xy)
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Fig. 10 Best result obtained for function z = exsin( πy )

Fig. 9 depicts the graphics of the original function z = exs in(πy). The best
result obtained for the approximation of this function using the fuzzy system
generated by the PSO-based algorithm are shown in Fig. 10.

Figure 11 shows the configuration of the input and output variables of the
resulting fuzzy system.

Figure 12 shows the average of the error introduced. In this case, the
general error average is ∇ = 0.2514, while the standard deviation is δ =
0.1364.
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Fig. 11 Membership functions of the fuzzy variables of the system generated for
the function z = exsin(πy)
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Fig. 12 Error averages for the fuzzy system for the function z = exsin(πy)

Table 2 shows a comparison between the results obtained by automatic
generation of fuzzy systems using genetic algorithms [12] and using the pro-
posed method using PSO. As before, the error is computed using the Nor-
malized Mean Square Error (NMSE).
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Table 2 Comparison of the performance of GA-based vs. PSO-based fuzzy system
automatic generation for functions seno(xy) and exsin(πy)

Function Algorithm Fitness Deviation of fitness Error Deviation of error

seno(xy)
GA 54 8.0 0.0288 0.0007
PSO 275.5 3.8 0.1059 0.0537

exsin(πy) GA 197 35.0 0.006 0.0032
PSO 280.5 16.8 0.176 0.1656

6 Conclusion

In this paper, we illustrated the use of PSO to automatically generate the
fuzzy rules, fuzzy variables together with the corresponding membership func-
tions of fuzzy systems. We described the particle representation, its movement
in the search space and we provided a fitness function that allows us to as-
sess the appropriateness of the evolved fuzzy system. This experience showed
that the performance of the evolutionary process is very much dependent on
the choice of the parameters, such as the number of membership functions
per variable as well as on the number of rules allowed in the system. More
tests are being carried out in order to synthesize discrete functions into fuzzy
systems.
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Wind energy is an important source of renewable energy, and reliability is a
critical issue for operating wind energy systems. The Canadian wind energy
industry has been growing very rapidly. The installed wind energy capacity
in Canada in 2008 was approximately 2,000 mega watts (MW), which is less
than one percent of the total electricity. It is believed that wind energy will
satisfy 20% of Canada’s electricity demand by 2025, by adding 55,000MW
of new generating capacity [1]. Operation and maintenance costs account
for 25-30% of the wind energy generation cost. Currently, the wind turbine
manufacturers and operators are gradually changing the maintenance strat-
egy from time-based preventive maintenance to condition based maintenance
(CBM) [2-5]. In this article, we review the current research status of main-
tenance of wind turbine systems, and discuss the applications of artificial
neural networks (ANN) based health prediction tools in this field. A CBM
method based on ANN health condition prediction is presented.

1 Maintenance Optimization of Wind Turbine Systems

Maintenance management for wind power generation systems aims at re-
ducing the overall maintenance cost and improving the availability of the
systems. The existing maintenance methods for wind energy systems can be
classified into corrective maintenance, preventive maintenance and condition
based maintenance (CBM) [6]. In corrective maintenance, maintenance ac-
tivities are performed after failure occurs. There are generally multiple wind
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turbines in a wind farm, and each wind turbine consists of multiple compo-
nents, such as gearboxes, main bearings and generators, as shown in Fig. 1
[7]. Corrective maintenance actions may be performed for a component after
each failure, or they can be performed after multiple components have failed
to maintain the multiple failed components simultaneously [1]. Mart?nez et
al demonstrated there is great need for corrective maintenance optimization
[5].

The preventive maintenance is classified to time-based maintenance and
age-based maintenance. In time-based preventive maintenance, the mainte-
nance activities are typically carried out based on the predetermined time
interval, say every 6 months. Age-based maintenance is employed when the
component reaches a pre-defined age. However, age-based maintenance is not
suitable for a multiple wind turbines farm due to expensive fixed cost, which
is incurred whenever a preventive maintenance is performed once a com-
ponent reaches the preventive maintenance age values [8]. To further study
fixed-interval preventive maintenance, Andrawus developed the delay-time
approach to optimize scheduled inspection plan, and studied a 26?600kw
wind farm in the case study [9].

Condition based maintenance aims at achieving reliable and cost-effective
operation of engineering systems. In CBM, condition monitoring data, such
as vibration data, oil analysis data and acoustic data, are collected and pro-
cessed to determine the equipment health condition; Future health condi-
tion and thus the remaining useful life (RUL) of the equipment is predicted;

Fig. 1 Wind turbine components [7]
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And optimal maintenance actions are scheduled based on the predicted fu-
ture equipment health condition, so that preventive replacements can be per-
formed to prevent unexpected failures and minimize total maintenance costs.
A life cycle cost approach was adopted to evaluate the financial benefit us-
ing condition monitoring system, a tool for implementing CBM policy [10].
In [11] a multi-state Markov decision mechanism was used to estimate the
wind turbine degradation process based on which the optimal maintenance
scheme is devised. Tian et al. [8] developed a CBM method for wind turbine
systems, based on the health condition prediction information obtained from
ANN prediction models.

ANN methods have been used to investigate various problems in wind
turbine systems. Yurdusev et al. proposed a method for determining the op-
timum tip speed ratio in wind turbines using ANN [12]. Jafarian and Ranjbar
developed a combined method to estimate annual energy output of a wind
turbine based on fuzzy modeling techniques and ANN [13]. Intelligent meth-
ods have also been applied to condition monitoring of wind turbines [14].

2 Critical Wind Turbine Components and Their
Failure Modes

The critical components of a wind turbine system are discussed in this section.
Critical wind turbine components include blades, gearboxes, main bearings
and generators. Wind turbine blades are designed to collect energy from the
wind and then transmit the rotational energy to the gearbox via the hub
and main shaft. The number of blades and total area they cover affect wind
turbine performance. Most wind turbines have only two or three blades on
their rotors, the reason is that the space between blades should be great
enough to avoid turbulence, so that one blade will not encounter the dis-
turbed, weaker air flow caused by the blade which passes before it. In an
offshore environment, where corrosion is a critical factor to be considered,
blade material often preferred is corrosion resistant, also the possibility of
achieving high strength and stiffness-to-weight ratio. Blades failures include
cracks arising from fatigue, materials defects accumulating to critical cracks
and ice build-up are known to cause failure.

All modern wind turbines have spherical roller bearings as main bearings.
Main bearing reduces the frictional resistance between the blades, the main
shaft and the gearbox while it undergoes relative motion. The main bearing
is mounted in the bearing housing bolted to the main frame. Different types
of wind turbines vary the quantity of bearings and bearing seats. The main
bearings ensure that wind turbines withstand high loads during gusts and
braking. Poor lubrication, wear, pitting, deformation of outer race and rolling
elements may cause its failures.

The gearbox is one of the most important and expensive main components
in the wind turbine. It is placed between main shaft and generator, the task
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is to increase the slow rotational speed of the rotor blades to the higher
generator rotation speed. However, the gearbox in the wind turbine does
not change speed just like a normal car gearbox, it always has the constant
speed increasing ratio. So if a wind turbine has different operational speeds,
it is because it has two different sized generators that each one has its own
different rotation speed, or possibly, one generator has two different stator
windings. The gearbox is connected to the generator by the coupling. The
coupling is always a flexible unit made from built-in pieces of rubber, normally
allowing variations of a few millimeters only. The high speed shaft from the
gearbox is connected to the generator by means of a coupling. The coupling is
a flexible unit made from pieces of rubber which allow some slight difference in
alignment between the gearbox and the generator during normal operation.
Gearbox failures include poor lubrication, bearings and gear teeth failures
can cause major failures.

The generator transforms mechanical energy into electrical energy. The
blades transfer the kinetic energy from the wind into rotational energy, and
then generator supply the energy from the wind turbine to the electrical grid.
Generator produces either alternating current (AC) or direct current (DC),
and they are available in a large range of output power ratings. The gener-
ator’s rating, or size, is dependent on the length of the wind turbine blades
because more energy is captured by longer blades. Bearings are the major
cause of failure of generator. Thus, maintenance is mainly restricted to bear-
ing lubrication.

Acronyms

CBM: condition based maintenance,
ANN: artificial neural network.

3 Component Health Condition Prognostics Using
ANN

3.1 Health Condition Prediction

The objective of health condition prognostics is to predict the equipment fu-
ture health conditions and thus the remaining useful life. At each inspection
point, the condition monitoring measurements are collected, and the health
condition prognostics methods can be used to produce the predicted failure
time value or the remaining useful life value, and some prognostics methods
can give the associated prediction uncertainties as well. The health condition
prediction methods can be divided into model-based methods and data-driven
methods. The model-based methods, also known as the physics-of-failure
methods, perform prognostics using equipment physical models and damage
propagation models. Model-based prognostics methods have been reported
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for components such as bearings (Marble et al [15]) and gearboxes (Kacprzyn-
ski et al [16], Li and Lee [17]). The key limitation of the model-based methods
is that for some components and systems, authentic physics-of-failure models
are very difficult to build because equipment damage propagation processes
and dynamic responses are very complex. Data-driven methods directly uti-
lize the collected condition monitoring data for health condition prediction,
and do not require physics-of-failure models. Examples of the data-driven
methods include the proportional hazards model method developed by Ban-
jevic et al [18], the Bayesian prognostics methods [19], and the ANN based
prognostics methods [20-22].

Outputs of the prognostics methods are predicted failure time and the
associated uncertainty. That is, at a certain inspection point, the predicted
failure time distribution can be obtained for the component being monitored.
Among various data-driven methods, ANN based methods have been consid-
ered to be very effective and flexible tools for component health condition
prognostics. In this work, we use the ANN prediction approach developed in
[21]. The ANN model used in this approach is shown in Fig. 2, which is a
feedforward neural network model with one input layer, two hidden layers
and one output layer. The inputs of the ANN are the component age values
and the condition monitoring measurements at the current and previous in-
spection points. In the example of the ANN model shown in Fig. 2, there are
two condition monitoring measurements. Specifically, ti is the age of the com-
ponent at the current inspection point i, and ti−1 is the age at the previous
inspection point i− 1. z1

i and z1
i−1are values of measurement 1 at the current

and previous inspection points, and z2
i and z2

i−1 are values of measurement 2
at the current and previous inspection points. The output of the ANN model
is the life percentage at current inspection time, denoted byPi. For example,
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Fig. 2 Structure of the ANN model for component health condition prediction
[21]
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if the failure time of a component is 850 days and the age of the component
at the current inspection point is 500 days, the life percentage value would
be Pi = 500/850× 100% = 58.82%.

The ANN model utilizes suspension histories as well as failure histories.
A failure history of a unit refers to the period from the beginning of the
component life to the end of its life, a failure, and the inspection data collected
during this period. In a suspension history, though, the unit is taken out of
service before the failure occurs. Once trained, the ANN prediction model can
be used to predict the remaining life based on the age value of the component
and the condition monitoring measurements. As mentioned above, the output
of the ANN model is life percentage, based on which the predicted failure time
can be calculated. For example, at a certain inspection point, if the age of
the component is 400 days and the life percentage predicted using ANN is
80%, the predicted failure time will be 400/80% = 500 days.

3.2 An ANN Health Condition Prediction Method

Now we present the ANN health condition prediction method developed by
Tian et. al [21]. The procedure of the method is shown in Fig. 3. The detailed
explanations of the procedure are given in the remainder of this section.

3.2.1 Constructing the Failure History Training Data Set

The first step of the approach is to construct the failure history training data
set, which will be combined with training data set based on the suspension
histories to train the ANN. Suppose there are J condition monitoring mea-
surements used in the ANN model. An ANN input vector based on failure
history f takes the following form:

IN =
(

tf,i−1, tf,i, z1
f,i−1, z1

f,i, z2
f,i−1, z2

f,i, ?, zJ
f,i−1, zJ

f,i

)

, (1)

where tf,i denotes the equipment age at inspection point i in failure history f,

and zj
f,i represents the measurement j at time tf,i. The input vector contains

the time and the condition monitoring measurements values at the current
and previous inspection points. The corresponding output value is:

Pf,i=
tf,i

TFf

, (2)

where TFfrepresents the failure time for failure history f . Thus, the total
number of input/output pairs based on the failure histories is:

NF=
F

∑

f=1

(NFf− 1), (3)
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Construct the failure 
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Train the ANN based on the suspension histories 

with optimal failure times and the failure histories  

Yes

Fig. 3 Procedure of the remaining life prediction approach [21]
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3.2.2 Finding the Optimal Failure Time for a Suspension History

The optimal failure time for a suspension history corresponds to the low-
est validation MSE if we train the ANN using the training set constructed
based on this suspension history and all the failure histories. For suspension
history s, we specify L discrete possible failure time values, and obtain the
corresponding ANN validation MSE values. The discrete failure time values
are denoted by TSDs,1, TSDs,2, ?, TSDs,L, respectively. These values are
selected based on the suspension time for the history, TSs. Specifically, we
can have TSDs,l ≥ TSs (1 ≤ l ≤ L) for most of the failure time values, and
have 1-2 values smaller than TSs, so that we can find the optimal failure
time based on the validation MSE values at these discrete points.

For a certain failure time value TSDs,l, we can obtain the ANN in-
put/output pairs for suspension history s. The input vectors take the same
form as that for failure histories. The ANN output value corresponding to
the ith inspection point is given as:

Ps, i,l=
ts,i

TSDs,l

, (4)

where ts,i denotes the equipment age at inspection point i in suspension
history s. The ANN input/output set includes the input/output pairs based
on suspension history s and the input/output data set constructed based on
all the failure histories. Thus, the total number of input/output pairs is:

NSs = NSs − 1 +

F
∑

f=1

(NF f − 1), (5)

where NSs represents the total number of inspection points in suspension
history s. The input/output set is further divided into the ANN training set
and the ANN validation set: 2/3 of the input/output pairs for the training
set and 1/3 for the validation set. Specifically, we go through the suspension
history and the failure histories, and select an input/output pair in every
three input/output pairs to construct the ANN validation set. The ANN is
trained using the resilient backpropagation algorithm based on the training
set and the validation set, and the validation MSE can be obtained. Because
of the randomness in the training algorithm, typically we cannot obtain the
exactly same validation MSE value each time. Thus, in this work, we train
the ANN 30 times, and record the 3 lowest, or best, validation MSE values
for future use, which are denoted by ves

l,r (r = 1, 2, 3).
The ANN validation MSE values ves

l,r (r = 1, 2, 3) can be obtained for
all the discrete failure time values TSDs,l (1 ≤ l ≤ L) for suspension history
s. Thus, we can obtain totally 3L data points, each containing a validation
MSE value and the corresponding failure time. In order to find the optimal
failure time based on the discrete validation MSE values, we need to fit these
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validation MSE data points. Considering the flexibility and the ability to
model simple trends, we use the third order polynomial to fit the data points:

y = ax3 + bx2 + cx + d, (6)

where y represents the validation MSE, x represents failure time, and a, b, c, d

represent the polynomial coefficients to be determined. The objective of using
the polynomial function in Equation (6) is to build a continuous function
to represent the change in the validation MSE with respect to the possible
failure time. Once the polynomial function is obtained, it is easy to find
the optimal failure time corresponding to the lowest ANN validation MSE,
using a simple optimization process. The optimal failure time for suspension
history s is denoted by TS∗

s. To enforce the suspension time constraint, let
TS∗

s = TSs if TS∗
s is smaller than the suspension time.

3.2.3 ANN Training Based on the Suspension Histories with

Optimal Failure Times and the Failure Histories

Using the procedure in Section 3.3, we can find the optimal failure times
for all the suspension histories: TS∗

s (1 ≤ s ≤ S). Now we can train the
ANN for remaining useful prediction based on the suspension histories with
optimal failure times and the failure histories. The ANN output value for an
input/output pair from a failure history is given by Equation (4), and that
from a suspension history is given as follows:

Ps, i=
ts,i

TS∗
s

(7)

Thus, the total number of input/output pairs is:

NIO =
S

∑

s=1

(NSs − 1) +
F

∑

f=1

(NF f − 1), (8)

The ANN training set includes 2/3 of the input/output pairs, and the ANN
validation set includes the remaining 1/3 of the input/output pairs. Similarly,
we train the ANN 30 times using the resilient backpropagation algorithm, and
save the ANN with the smallest validation MSE.

3.2.4 Remaining Life Prediction Using Trained ANN

Once the ANN is trained, as discussed in the previous section, it can be
used for RUL prediction for other equipments being monitored. The age
and condition monitoring measurements at the current and previous data
points are used as inputs to the trained ANN, and the current life percentage
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can be obtained. The RUL is obtained by dividing the current age by the
predicted life percentage. When new condition monitoring data is available,
the prediction will be performed again and the RUL will be updated. The
remaining useful life prediction process stops when the equipment fails or
when it is preventively taken out of service.

3.3 Quantification of the ANN Health Condition

Prediction Uncertainty

In this section, we present a method for estimating the predicted failure time
distribution based on the ANN life percentage prediction errors obtained
during the ANN training and testing processes [23].

In the ANN training process, the ANN model is trained based on the
available failure histories and suspension histories. The ANN model inputs
include the age data and the condition monitoring measurements at the cur-
rent and previous inspection points. The output of the ANN model is the
life percentage of the inspected component at the current inspection point,
denoted by Pi. In the training process, the weights and the bias values of
the ANN model are adjusted to minimize the error between the ANN output
and the actual life percentage. After ANN training is completed, the predic-
tion performance of the trained ANN model is tested using testing histories
which are not used in the training process. Here, the ANN prediction error
is defined as the difference between the ANN life percentage output and the
actual life percentage value at an inspection point in the test histories. That
is, the ANN prediction error at inspection point k in a test history is equal to
(P̂k-Pk), where Pk denotes the actual life percentage and P̂k is the predicted
life percentage using ANN. Since a test history contains many inspection
points, with several test histories, we can obtain a set of ANN life percentage
prediction error values.

In this study, it is assumed that the ANN life percentage prediction error
is normally distributed, since the prediction uncertainty is mainly due to
the capability of the ANN prediction model. With the obtained set of ANN
prediction error values, we can estimate the mean µpand standard deviationσp

of the ANN life percentage prediction error. Suppose at a certain inspection
point, the ANN life percentage output is Pt, then the mean of the predicted
life percentage should be Pt − µp, and the standard deviation is still σp. If
the age of the component at the current inspection point is t, the predicted
failure time will be t/ (Pt − µp), and the standard deviation of the predicted
failure time will be σp · t/ (Pt − µp). That is, the predicted failure time Tp

follows the following normal distribution:

Tp ∼ N (t/ (Pt − µp), σp · t/ (Pt − µp)) . (9)
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4 A CBM Approach for Wind Power Generation
Systems

In this section, the CBM method developed by Tian et al. [8] for wind power
generation systems is presented. Suppose there are N wind turbines in the
wind farm, and we consider M critical components for each turbine. In this
work, it is assumed that all the wind turbines under consideration are iden-
tical, and the degradation processes of the wind turbine components are
mutually independent.

4.1 Failure Probability Estimation at the Component

and Turbine Levels

At the wind turbine component level, condition monitoring data, such as vi-
bration data and acoustic emission data, can be collected, and failure time
distribution can be predicted for each component using the prognostics meth-
ods presented in Section 2. It is assumed that the predicted failure time
follows the normal distribution, as discussed in Section 2. The failure proba-
bilities for the wind turbine components, which will be defined later, can be
calculated based on the predicted failure time distributions, and the CBM de-
cisions will be made based on the failure probabilities. The failure probability
for component m in turbine n is defined as follows [23]:

Pr
n,m

=

∫ t+L

t
1

σ
√

2π
e
− 1

2

(

x−tp
σ

)

2

dx

∫ ∞
t

1
σ
√

2π
e
− 1

2

(

x−tp
σ

)

2

dx

(10)

where t is the age of the component at the current inspection point, tp is
the predicted failure time using ANN, and σ is the standard deviation of the
predicted failure time distribution. Based on the discussions in Section 2, we
have the following relationships:

tp = t/ (Pt − µp), σ = σp · t/ (Pt − µp). (11)

L in Equation (10) is the maintenance lead time, which is defined as the
interval between the time maintenance decision is made and the time when
the maintenance actions are performed. The lead time consists of the time
required to assemble the maintenance team, order the replacement parts,
prepare the maintenance equipments to perform the maintenance, and travel
to the wind farm, etc. Thus, the maintenance decisions made at the current
inspection point can affect the wind turbines only when the lead time has
passed, and we have no influence on the failures during the lead time. So, it
is reasonable to base the maintenance decisions on the failure probabilities
during the maintenance lead time L in order to reduce the failure risks. To
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reasonably simplify the problem, we assume L is the same for all maintenance
actions in this studyto simplify our discussion.

If we focus on the critical components in a turbine, such as rotor, main
bearing, gearbox, generator, etc., the turbine can be treated as a series sys-
tem. That is, the failure of any turbine component will cause the failure of
the turbine. Thus, the failure probability of wind turbine n during lead time
L can be calculated as follows:

Pr
n

= 1 −
M
∏

m=1

(

1 − Pr
n,m

)

(12)

4.2 The Proposed CBM Policy

For the purpose of simplifying the descriptions, we use replacement to refer
to a maintenance action, such as the replacement of the main bearing, or the
replacement of a faulty gear within the gearbox. Suppose wind turbine com-
ponents are continuously monitored. Maintenance decisions are made based
on the failure probabilities of the components and the wind turbines, which
can be calculated based on the component health condition monitoring and
prognostics information.

The proposed CBM policy for the wind power generation systems is sum-
marized as follows:

1. Perform failure replacement if a component fails. The maintenance equip-
ments and replacement parts will be scheduled, and the maintenance team
will be sent to the wind farm.

2. Send a maintenance team to the wind farm and perform preventive replace-
ments if any wind turbine in the wind farm is determined to be maintained.

3. Perform preventive replacements on components in wind turbine n if
Prn > d1, where Prn is the failure probability of the wind turbine n,
and d1 is the pre-specified level 1 failure probability threshold value at the
turbine level.

4. If turbine n is to be performed preventive replacement on, perform pre-
ventive replacement on its components in order to bring the turbine failure
probability down to below d2. d2 is called the level 2 failure probability
threshold value at the turbine level.

As can be seen, once the two failure probability threshold values, d1 and d2,
are specified, the CBM policy is determined.

4.3 CBM Optimization Model and Solution Method

Based on the above CBM policy, the CBM optimization model can be briefly
formulated as follows:
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min CE (d1, d2)
s.t.

0 < d2 < d1 < 1
(13)

where CE is the total expected maintenance cost per unit of time for a certain
CBM policy defined by the two failure probability threshold values d1 and
d2. d1 and d2 take real values between 0 and 1, and d2 < d1. The objective
of the CBM optimization to find the optimal d1 and d2 values to minimize
the total maintenance cost. The optimization functions built in Matlab can
be used to solve this optimization problem, and find the optimal threshold
failure probability values.

Before the optimization can be performed, we need to first be able to
calculate the cost value CE given two failure probability threshold values d1

and d2. Due to the complexity of the problem, it is very difficult to develop a
numerical algorithm for the cost evaluation of the CBM policy for the wind
power generation systems. In this paper, we present a simulation method
for the cost evaluation. The flow chart for the procedure of the simulation
method is presented in Fig. 4, and detailed explanations of the procedure are
given in the following paragraphs.

Step 1: Building the ANN prediction model. For each type of wind turbine
component, determine the life time distribution based on the available failure
and suspension data. Weibull distributions are assumed to be appropriate
for components lifetime, and the distribution parameters αm and βm can be
estimated for each component m. For each type of component, based on the
available failure and suspension histories, an ANN prediction model can be
trained, and the mean and standard deviation of the ANN life percentage
prediction error, which are denoted by µp,m and σp,m, respectively, can be
calculated.

Step 2: Simulation initialization. As mentioned earlier, suppose there are
N wind turbines considered in the wind farm, and M critical components
are considered for each turbine. Specify the maximum simulation time TMax,
and the inspection interval TI . TI can be set to be a small value, say 1 day,
so that we can approximately achieve continuous monitoring. Or we can set
TI to be a bigger value, say 10 days, to improve computation efficiency and
achieve reasonably accurate results. For each component m, specify the cost
values, including the failure replacement cost cf,m and the variable preventive
replacement cost cp,m. The fixed cost of maintaining a certain wind turbine,
cp,T , and the fixed cost of sending a maintenance team to the wind farm,
cFarm, also need to be specified. The total replacement cost is set to be
CT = 0, and will be updated during the simulation process. At time set
tABS = 0, generate the real failure times for each component in each turbine.
That is, for component m in turbine n, generate a real failure time TLn,m

by sampling the Weibull distribution for component m with parameters αm

and βm. Thus, at time 0, the age values for all the components are 0.
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Fig. 4 Flow chart for the proposed simulation method for cost evaluation

Step 3: Component health condition prognostics and failure probability cal-
culation. At a certain inspection point when the time is tABS>0, the age
of component m in turbine n is represented by tn,m, and its real failure
time is known at this point, which is TLn,m. For each component, gener-
ate the predicted failure time, TPn,m, by sampling the normal distribution
N (TLn,m, σp · TLn,m). Based on the discussion in Section 2, the predicted
failure time distribution can be obtained as N (TPn,m, σp · TPn,m). Thus,
the current failure probability during the lead time for the component is:

Pr
n,m

=

∫ tn,m+L

tn,m

1
σpTP n,m

√
2π

e
− 1

2

(

x−TP n,m
σpT Pn,m

)

2

dx

∫ ∞
tn,m

1
σpTP n,m

√
2π

e
− 1

2

(

x−T Pn,m
σpTP n,m

)

2

dx

(14)

The failure probabilities of each turbine can be calculated using Equation
(12) based on the failure probabilities of its components.

Step 4: CBM decision making and cost update. At the current inspection
point tABS , the CBM decisions can be made according to the CBM policy,
described in Section 3.2, based on the failure probabilities of the turbines and
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their components. If the current time tABS has not exceeded the maximum
simulation time TMax, repeat Step 3 and Step 4.

Step 5: Total replacement cost calculation. When the maximum simulation
time is reached, that is, tABS = TMax, the simulation process is completed.
The total replacement cost for the wind farm can be calculated as:

CE = CT /TMax. (15)

And the total replacement cost for each turbine is:

CET =
CT

N · TMax
. (16)

5 An Example

In this section, an example is used to demonstrate the proposed CBM ap-
proach for wind power generation systems [8]. Consider a group of 5 wind
turbines, produced and maintained by a certain manufacturer, in a wind farm
at a remote site. To simplify our discussion, in this example, we study 4 key
components in each wind turbine: the rotor (including the blades), the main
bearing, the gearbox and the generator, as shown in Fig. 5 [24].

Assume the Weibull distributions are appropriate to describe the compo-
nent failure times, and the Weibull parameters are given in Table 1. The
component lifetime distribution parameters are specified based on the data
given in Ref. [25] and [26]. The cost data are given in Table 2, including
the failure replacement costs for the components, the fixed and variable

Fig. 5 Key wind turbine components considered in the example [24]
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Table 1 Weibull failure time distribution parameters for major components

Component Scale parameter
α(days)

Shape parameter
β

Rotor 3,000 3.0

Main bearing 3,750 2.0

Gearbox 2,400 3.0

Generator 3,300 2

preventive replacement costs and the cost of sending a maintenance team
to the wind farm. The cost data are specified based on the cost related data
given in Ref. [1] and [27]. The ANN prediction method can be used to predict
the failure time distributions of the wind turbine components, and suppose
the standard deviations of the ANN life percentage prediction errors are 0.12,
0.10, 0.10, and 0.12, respectively, as shown in Table 3. The standard deviation
values are selected by referring to that estimated using the bearing degrada-
tion data in Ref [18] and [28]. The maintenance lead time is assumed to be
30 days, and the inspection interval is set at 10 days.

Table 2 Failure replacement and preventive maintenance costs for major
components

Component Failure
replacement
cost ($1000)

Variable
preventive
maintenance
cost ($1000)

Fixed
preventive
maintenance
cost ($1000)

Fixed cost to
the wind farm
($1000)

Rotor 112 28 50

Main
bearing

60 15 25

Gearbox 152 38

Generator 100 25

The total maintenance cost can be evaluated using the proposed simulation
method presented in Section 3.3. The cost versus failure probability threshold
values plot is given in Fig. 6, where the failure probability threshold values
are given in the logarithm scale. It is found that the total maintenance cost is
affected by the two failure probability threshold values, and the optimal CBM
policy exists which corresponds to the lowest cost. Optimization is performed,
and the optimal CBM policy with respect to the lowest total maintenance cost
can be obtained. The obtained optimal threshold failure probability values
are: d1 = 0.1585, d2 = 3.4145?10−6, and the optimal expected maintenance
cost per unit of time is 577.08 $/day.
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Table 3 ANN life percentage prediction error standard deviation values for major
components

Component Standard deviation

Rotor 0.12

Main bearing 0.10

Gearbox 0.12

Generator 0.10
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Fig. 6 Cost versus failure probability threshold values in the logarithm scale

6 Conclusions

Wind energy is an important source of renewable energy, and reliability is a
critical issue for operating wind energy systems. Maintenance optimization
approaches aiming at improving wind turbine system reliability and reducing
the overall operating costs. Currently, the wind turbine manufacturers and
operators are gradually changing the maintenance strategy from time-based
preventive maintenance to condition based maintenance. Given the failure
probabilities for components and the system, optimal CBM decisions can
be made on target wind turbines to be maintained, the maintenance sched-
ule, and key components to be inspected and fixed. Future research includes
developing wind turbine component health monitoring methods by utiliz-
ing data collected under different conditions, building more accurate wind
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turbine system reliability models considering the degraded system perfor-
mance, and maintenance optimization for farms with heterogeneous wind
turbines, etc.
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Economic dispatch is an important problem in power systems. This chapter
presents how a method of stochastic optimization, a metaheuristic known as
CLONALG (CLONal selection ALGorithm), can be applied to the economic
dispatch problem. The objective function used in the optimization is based
on Karush-Kuhn-Tucker conditions, thus, guaranteeing a convergence to the
global optimum. Examples and results are presented showing the method is
capable of finding the optimum solution while respecting power generation
limits.

1 Fundamentals of CLONal Selection ALGorithm
(CLONALG)

Clonal selection theory [5] is an widely accepted model for acquired immu-
nity. According to the theory, the continuous encounter of lymphocytes and
antigens causes biological triggers that lead to a selection process of the
lymphocytes, causing the antibody population to have a greater affinity for
that antigen. This process is, effectively, a minimization of the error on the
function of antibody encounters with antigens. This theory gave origin, in
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computing, to the class of clonal selection algorithms of immune artificial
systems (IAS).

The theory of clonal selection has the following characteristics: mainte-
nance of a memory set, selection and cloning of the most activated antibodies,
death of non-activated antibodies, affinity maturation through the mutation
process, reselection of clones proportional to the antigen affinity, generation
and maintenance of diversity.

Aiming to create a minimization or classification algorithm with similar
characteristics, the clonal selection algorithm (CSA) was proposed in [6] and
later, with a more developed concept, the new concept of the algorithm was
published by [7] and named clonal selection algorithm (CLONALG). The
pseudo code of the algorithm is detailed in Table 1.

Table 1 Pseudo code of CLONALG

[f ∗ , f , A b] = C L O N A L G (F obj , N abs , N sel , N new , β, ρ,Ngens)

[Ab] = generate(Nabs); {Generate initial population}
for i = 1 : Ngens do

[f ] = evaluate(Fobj, Ab); {Determine population affinity}
[Abn , fn] = select(Ab, f, Nsel); {Select best}
[C, fc] = clone(Abn , fn, β); {Proportional cloning}
[Cmut] = hypermutate(C,fc, ρ); {Affinity maturation}
[fmut] = evaluate(Fobj, Cmut); {Determine clone affinity}
[Abn , fn] = select(Cmut, fmut, Nsel); {Select best}
[Ab, f ] = insert(Ab, Abn , f, fn); {Insert clones}
[Abd

] = generate(Nnew); {Generate new antibodies}
[Ab] = replace(Ab, Abd

, f); {Replace worst}
end for

[f ] = evaluate(Fobj, Ab); {Determine final solutions}
[f∗] = min(f); {Determine best solution}

The algorithm in it’s original version presents affinity proportional cloning,
similar to the biological inspiration. This is achieved by sorting the antibody
population by affinity to the antigen in ascending order and then calculating
the number of clones for each antibody according to:

Nc lones = ro u n d

(

β · Nabs

i
+ 0.5

)

, (1)

where i is the antibody rank, i ∈ [1, Nabs]. However, in the optimization
version of CLONALG the affinity proportional cloning is not effective [10].
The recommended approach is to use the equation given by [7]:

Nclones = round (β · Nabs) . (2)

The mutation, also known as affinity maturation, is given with a rate
inversely proportional to the fitness of each antibody. That is, antibodies
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with a lower affinity to the antigen will suffer more mutations while the
antibodies with a better affinity will suffer less mutations. This is done by
first normalizing the objective function of each antibody, fi, in the range
[0, 1]. Then a random perturbation vector is generated for each clone created
from the antibodies, this vector is scaled by the mutation rate, which is given
by the following equation:

α = e(−ρ ·fi) . (3)

1.1 Parameters

CLONALG’s performance depends heavily on the user defined parameters,
which are: antibody population size, selection pool size, remainder replace-
ment pool size, clonal factor and mutation factor. Basic output parameters
are: Fo b j , the objective function to be minimized; f∗, the best objective
function value found; f , a vector of final values for the objective function;
and A b , a matrix of final solutions.

An tibody population size (Nabs) — The total amount of antibodies to
be used by the algorithm. Antibodies are an analogy to solution vectors for
an objective function.

Selection pool size (Nsel) — The number of best antibodies to be se-
lected by the algorithm for the cloning stage. This is similar to an elitism
approach, like the one used in Genetic Algorithms (GA). Only clones and
new antibodies are passed on to newer generations, thus, the value of Nsel

determines the selective pressure on the population. Greater values soften
the selective pressure, ensuring more members of the population are cloned
and the search is broadened across the search space, causing the population
diversity to increase. On the other hand, lower values can increase the se-
lective pressure by allowing only a few solutions with greater affinity to be
cloned, causing a portion of the antibody population to be dominated by
these solutions, reducing diversity. The trade-off between exploitation, local
search, and exploration, global search, is mainly done by the selection of this
parameter.

Remainder replacement pool size (Nnew) — The number of lower
affinity antibodies to be replaced by random antibodies on each generation.
Essentially, this is a mechanism to ensure a minimum, as in additional, diver-
sity is maintained in the antibody population. In practice, this mechanism
is only useful when the algorithm is stuck on local optima. This additional
diversity can be disabled by setting the value to zero.

Clonal factor (β) — A scaling factor for the number of clones created for
each selected antibody. Common values are β ∈ (0, 1]. Lower values decrease
the clone population while higher values increase it.

Affinity maturation factor (ρ) — A scaling factor for the affinity matu-
ration. Since the affinity maturation is inversely proportional to the affinity of
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antibodies, so is the scaling factor. Higher values decrease mutation diversity
while smaller values increase mutation diversity.

2 Economic Dispatch of Electrical Energy

The economic dispatch problem (EDP) is an important power systems op-
timization problem with the goal of attaining optimum power dispatch for
generators while respecting certain restrictions [31]. Conventional methods
for the dispatch problem use Lagrangian multipliers, which take the prob-
lem’s derivatives into account, yet, the generating unit’s characteristics are
inherently non-linear, creating multiple local minima in the cost function [27],
[26], [34]. In fact, the problem is complex and highly non-linear [9], it is highly
multi-modal in the prohibited zones and the valve-point loading versions [23].
The economic dispatch problem, it’s variants and different solution methods
have been extensively studied with several works like [19], [11], [30], [28], [29],
[1], [2], [16], [3], [12], [15], [21], [4], to name a few.

Economic dispatch is the problem of deciding the most efficient, low-cost,
configuration of a power system, while operational constraints, by dispatch-
ing the available power generation to meet a certain system load. It’s de-
scribed as a minimization problem of the total cost of power generation in
a system while satisfying constraints, power limits, on the system’s genera-
tion resources. There are two basic classes of constraints in the problem: i)
inequality restrictions, where each generator has it’s power restricted to min-
imum and maximum limits; ii) equality restriction,where the total generated
power must be equal to the system load, or in the version with losses, must
be equal to the system load plus losses. In mathematical terms, the simple
version of the problem, which ignores prohibited zones and/or valve-point
loading effects, is described as:

min
P g i

N g
∑

i=1

Ci(Pgi) (4)

subject to:

N g
∑

i=1

Pgi = Pd

Min(Pgi) ≤ Pgi ≤ Max(Pgi),

where Ng is the number of generators, i ∈ [1, Ng], Ci is the cost equation
($/h) of each generator, Pgi is the active generated power (MW) of each
generator and Pd is the active power demand of the system. The cost equation
Ci may assume several forms, however, it’s most common in the literature in
the quadratic matrix equation form:como:

Ci(x) = xT · Q · x + cT · x + α, (5)
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where x is a vector with active generated power of each generator, Q is a
positive-definite symmetric matrix which defines the second order elements,
c is a column vector which defines the first order elements and α a column
vector which defines the constants. Being a minimization problem, methods
based on derivatives of the cost equations will ignore the α term.

Being a non-linear problem, iterative methods are necessary for the so-
lution. Common iterative methods in the literature include the lambda
method [32]; gradient projection [13]; linear programming [24]; dynamic pro-
gramming [25]; primal-dual interior points method [22], [14] and predictor-
corrector method [33]. However, it’s a characteristic of non-linear problems
for the computational cost to increase expressively according to the problem
dimension [8].

The rest of this work is organized as follows. Section 3 describes the eco-
nomic dispatch problem as an optimization problem, detailing the objective
function and search space. Section 4 contains examples and presents the re-
sults of using CLONALG to the minimization of the KKT point error. Finally,
the conclusion is given in section 5.

3 Optimization Problem

Since the economic dispatch problem is essentially defined by Equation 4, the
search space is easily defined as a vector of generated power of each generator,
that is:

search space = [Pg1, ..., P gNg ]. (6)

Many metaheuristics, such as CLONALG, can handle lower and upper lim-
its in the search space. These are defined in the economic dispatch problem
as the inequality constraints, thus, it’s possible to take advantage of CLON-
ALG’s handling of search space limits by removing the inequality constraints
from the problem, changing the problem definition from Equation 4 to:

min
P g i

Ng
∑

i=1

Ci(Pgi) (7)

subject to:

Ng
∑

i=1

Pgi = Pd.

Removing the inequality constraints from the problem definition decreases
the problem complexity, leaving only the equality constraint. A common ap-
proach for metaheuristics to the economic dispatch problem is to minimize
the total generator costs while considering the power demand constraint with
a high valued penalty factor, such as:
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Fo bj =

Ng
∑

i=1

Ci(Pgi) + penalty ·

(

Ng
∑

i=1

Pgi = Pd

)

. (8)

The problem with this approach is it lacks a guarantee of a global mini-
mum. Even if the optimization algorithm, whichever is used, stalls indefinitely
at a minimum, there is no numeric guarantee the global minimum has been
reached. A more clever approach, which guarantees convergence to the global
minimum or at least a measurement of how far away from it, is to seek the
Karush-Kuhn-Tucker (KKT) point [17], [18], ∆ × L(x∗, λ∗) = 0, as it has been
done in [20].

3.1 KKT Point Minimization

Recalling Equation 7 and expanding it, the following is obtained:

min
x∈ℜn

Ng
∑

i=1

PgT
i · Qi · Pgi + cT

i · Pgi (9)

subject to:

Ng
∑

i=1

Pgi = Pd,

then utilizing the Lagrangian method to reach the minima:

L(Pgi, λ) =

Ng
∑

i=1

(

PgT
i · Qi · Pgi + cT

i · Pgi

)

+ λT

(

Pd −

Ng
∑

i=1

Pgi

)

. (10)

The global minimum is the set of generated power of each generator, Pgi,
and the incremental cost, λ, which satisfies the partial derivatives of Equation
10 in the origin. The new search space is then defined by:

search space = [Pg1, ..., P gNg, λ]. (11)

Finally, the objective function for the problem is the error to the KKT
point, given a set of power generation units and an incremental cost:

Fobj =

Ng
∑

i=1

(
∣

∣

∣

∣

dL

dPgi

∣

∣

∣

∣

)

+

∣

∣

∣

∣

dL

dλ

∣

∣

∣

∣

. (12)

For a system with a single generator, the objective function can be visual-
ized in Figure 1, where it’s easy to see how the global minimum is at the end
of a long, narrow, almost flat valley. Finding the minimum region, the valley,
is trivial, but to converge to the global minimum is, however, very difficult.
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Fig. 1 Objective function for a system with a single active power generator, in
logarithmic scale

4 Examples

The examples presented in this section do not take into account prohibited
zones or valve-point loading effects. The maturation process of CLONALG
needs to be slightly modified to increase performance in the economic dispatch
problem. Considering the narrow valley of the objective function, a Gaussian
distribution is more useful in the mutation process to increase local search.
Also, to ensure potential solutions aren’t lost, maturation only takes place in
50% of dimensions in all clones.

Results are presented for 50 runs of CLONALG for each example with
the following parameters: antibody population size, Nabs = 10; selection pool
size, Nsel = 10; remainder replacement pool size, Nnew = 0; clonal factor,
β = 1; affinity maturation factor, ρ = 0.25; maximum generation, Ngens) =
50000.

To assess the efficiency of CLONALG in the minimization to the KKT
point error, two case studies, with and without power loss, of economic dis-
patch problems are analyzed.

4.1 Case Study 1

This case study, presented in Table 2, consists of three generator units with
configuration given in Table 2.

The convergence results in Table 3 are presented for running CLONALG
with 50000 generations, for 50 runs, showing CLONALG’s capability to find
the global optimum. Results for the objective function value, the error to
the KKT point, and for the generation cost are also presented, showing min-
imum, mean, standard deviation and maximum values. Table 4 shows the
best solution found by CLONALG for this case study.
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Table 2 Data of case 1 of economic dispatch problem

G a b c Pgmin (MW) Pgmax (MW) Pd (MW)

1 0.1562 7.92 561 150 600
8502 0.00194 7.85 310 100 400

3 0.00482 7.97 78 50 200

Table 3 Minimization results for the case 1

Min. Fobj Mean Fobj Std. Dev. of Fobj Max. Fobj

5.4502e-08 6.7467e-06 1.3786e-05 6.6261e-05

Min. Cost ($/h) Mean Cost ($/h) Std. Dev. Cost ($/h) Max. Cost ($/h)

8194.35610840853 8194.35612105488 2.0573e-006 8194.35612491201

Table 4 Best solution obtained for the case 1 in 50 runs

F ∗

obj Pg∗

1 (MW) Pg∗

2 (MW) Pg∗

3 (MW) Incremental cost λ∗ ($/MWh)

5.4502e-08 393.169843 334.603752 122.226405 9.148263

4.2 Case Study 2

This case study, presented in Table 5, is similar to Case 1, the difference lies
in the power loss dependent on generator 1. The power loss changes the KKT
conditions by affecting the Lagrangian derivative of the first generator and of
the incremental cost, presenting a new challenge to CLONALG’s convergence.

Table 5 Data of case 2 of economic dispatch problem

G a b c Pgmin (MW) Pgmax (MW) Pd (MW)

1 0.1562 7.92 561 150 600
850 + 0.01359·Pg12 0.00194 7.85 310 100 400

3 0.00482 7.97 78 50 200

The convergence results in Table 6 are presented for running CLONALG
with 50000 generations, for 50 runs, showing CLONALG’s capability to find
the global optimum in a different scenario, where a power loss element based
on generator 1 is introduced in the problem. Results for the objective function
value, the error to the KKT point, and for the generation cost are also pre-
sented, showing minimum, mean, standard deviation and maximum values.
Table 7 shows the best solution found by CLONALG for this case study.
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Table 6 Minimization results for the case 2

Min. Fobj Mean Fobj Std. Dev. of Fobj Max. Fobj

3.7424e-08 0.0012583 0.0085057 0.060162

Min. Cost ($/h) Mean Cost ($/h) Std. Dev. Cost ($/h) Max. Cost ($/h)

8242.24097636649 8242.24667247872 0.0401672683253928 8242.52501712881

Table 7 Best solution obtained for the case 2 in 50 runs

F ∗

obj Pg∗

1 (MW) Pg∗

2 (MW) Pg∗

3 (MW) Incremental cost λ∗ ($/MWh)

3.7424e-08 374.299972 351.685238 129.101528 9.214539

5 Conclusion

This work analyzed the usage of CLONALG on the economic dispatch prob-
lem of electrical energy. The optimization problem was formulated as the min-
imization of the KKT point error, considering the issue that most problems in
stochastic minimization have no guarantee of a global optimum. This formu-
lation may not assure a convergence to the global optimum with stochastic
optimization algorithms but, at least, provides the knowledge of how far away
the solution is from the optimum and the objective function is shown to pos-
sess an easy to find minima region, although the global minimum is hard to
find due to the valley created by the incremental cost. Minor modifications
have been made to improve CLONALG’s performance on the problem, such
as changing the perturbation vector, the mutated clones, from an uniform to
a Gaussian distribution with mean 0 and variance 1. In addition, a selection
of dimensions similar to the binary selection used in differential evolution was
used, where only 50% of the dimensions are effectivelly mutated, or matu-
rated, reducing losses of potential solutions. The approach was tested on two
case studies, where case study 1 is a simple power system with three genera-
tors and case study 2 is an extension of the first, with the addition of power
losses, to test the robustness of the method. Empirically, results demonstrate
the approach is successful, showing CLONALG is able to reach the global
optimum on both case studies.
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Séminaire à l’I.N.H, Boumerdes, Algérie (1987)

13. Granelli, G.P., Marannino, P., Montagna, M., Liew, A.C.: Fast and efficient
gradient projection algorithm for dynamic generation dispatching. IEEE Pro-
ceedings on Generation, Transmission and Distribution 136(5), 295–302 (1989)

14. Granville, S.: Optimal reactive dispatch through interior point methods. IEEE
Transactions on Power Systems 9(1), 136–146 (1994)

15. Guesmi, T., Hadj Abdallah, H., Ben Aribia, H., Toumi, A.: Optimisation mul-
tiobjectifs du dispatching economique / environnemental par l’approche npga.
In: International Congress Renewable Energies and the Environment (CERE),
Sousse, Tunisie (March 2005)

16. Hota, P.K., Dash, S.K.: Multiobjective generation dispatch through a neuro-
fuzzy technique. Electric Power Components and Systems 32(11), 1191–1206
(2004)

17. Karush, W.: Minima of functions of several variables with inequalities as
side constraints. Master’s thesis, Department of Mathematics, University of
Chicago, Chicago, Illinois, USA (2003)

18. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceedings of 2nd
Berkeley Symposium, pp. 481–492. University of California Press, Berkeley
(1951)

19. Lin, C.E., Viviani, G.L.: Hierarchical economic dispatch for piecewise quadratic
cost functions. IEEE Transactions on Power Apparatus and Systems 103(6),
1170–1175 (1984)



CLONALG Applied to Economic Dispatch 83

20. Manoharan, P.S., Kannan, P.S., Baskar, S., Willjuice Iruthayarajan, M.: Evolu-
tionary algorithm solution and kkt based optimality verification to multi-area
economic dispatch. International Journal of Electrical Power & Energy Sys-
tems 31(7-8), 365–373 (2009)

21. Miranda, V., Hang, P.S.: Economic dispatch model with fuzzy constraints and
attitudes of dispatchers. IEEE Transactions on Power Systems 20(4), 2143–2145
(2005)

22. Quintana, V.H., Torres, G.L., Medina-Palomo, J.: Interior-point methods and
their applications to power systems: A classification of publications and soft-
ware codes. IEEE Transactions on Power Systems 15(1), 170–176 (2000)

23. Immanuel Selvakumar, A., Thanushkodi, K.: Optimization using civilized
swarm: Solution to economic dispatch with multiple minima. Electric Power
Systems Research 79(1), 8–16 (2009)

24. Somuah, C.B., Khunaizi, N.: Application of linear programming re-dispatch
technique to dynamic generation allocation. IEEE Transactions on Power Sys-
tems 5(1), 20–26 (1990)

25. Travers, D.L., Kaye, R.J.: Dynamic dispatch by constructive dynamic program-
ming. IEEE Transactions on Power Systems 13(2), 72–78 (1998)

26. Victoire, T.A.A., Jeyakumar, A.E.: Reserve constraint dynamic dispatch of
units with valve-point effects. IEEE Transactions on Power Systems 20(3),
1273–1282 (2005)

27. Wang, C., Shahidehpour, S.M.: Effects of ramp-rate limits on unit commitment
and economic dispatch. IEEE Transactions on Power Systems 8(3), 1341–1349
(1993)

28. Wang, L., Singh, C.: Multi-objective stochastic power dispatch through a mod-
ified particle swarm optimization algorithm. In: Proceedings of IEEE Swarm
Intelligence Symposium Special Session on Applications of Swarm Intelligence
to Power Systems, Indianapolis, USA, pp. 127–135 (May 2006)

29. Wang, L., Singh, C.: Tradeoff between risk and cost in economic dispatch in-
cluding wind power penetration using particle swarm optimization. In: Inter-
national Conference on Power System Technology, Chongqing, China (2006)
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Several approaches for solving multi-objective optimization problems entail a
form of scalarization of the objectives. This chapter proposes a study of dif-
ferent dynamic objectives aggregation methods in the context of evolutionary
algorithms. These methods are mainly based on both weighted sum aggre-
gations and curvature variations. Since the incorporation of chaotic rules or
behaviour in population-based optimization algorithms has been shown to
possibly enhance their searching ability, this study proposes to introduce and
evaluate also some chaotic rules in the dynamic weights generation process. A
comparison analysis is presented on the basis of a campaign of computational
experiments on a set of benchmark problems from the literature.

1 Introduction

A multi-objective or vector optimization problem with m ≥ 2 objectives or
criteria can be stated as follows:

min
x✂�

f(x) = (f1(x), . . . , fm(x))′ , (1)

where fj : R
n

→ R, for j = 1, . . . , m; X ⊂ R
n is the set of the feasible

decision vectors. Generally, the feasible set is implicitly given through a set
of constraints. Z := f(X ) is the set of all values assumed by the objective
function on the feasible set; it is a subset of the objective space R

m and the
vectors belonging to Z are called feasible criteria vectors.
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While a multi-objective problem involving independent design functions
can be solved by simply minimizing m scalar objective functions separately,
when the objectives are competitive it is very difficult to obtain a single
decision vector which minimizes all criteria simultaneously.

Generally, the solution of a multi-objective optimization problem is a set of
vectors, the Pareto solutions, that provide a trade-off among criteria. The goal
of a multi-objective optimizer is to achieve a set of Pareto optimal solutions.
Since every Pareto point is of potential interest, the target is to capture the
whole Pareto front.

There are several methods for solving multi-objective optimization prob-
lems; for instance, they can be solved through Evolutionary Algorithms
(EAs), whose main advantage is that they can find multiple Pareto optimal
solutions in a single run [2, 18, 4]. Among evolutionary methods to tackle
multi-objective optimization a classical approach entails a form of scalar-
ization of the criteria vector. Repeated applications of these methods are
performed to achieve an estimation of the Pareto front. The aggregate objec-
tive function methods transform a multi-criteria optimization problem into
a scalar problem using free parameters to be set; for every set of parameter
values, the scalar optimization problem is solved to seek a Pareto solution.
Hence, the original problem (1) is transformed as follows:

min
x∈X

G(f1(x), . . . , fm(x)) , (2)

with G : Z⊂ R
m

→ R.
Konak et al. in [18] provide a tutorial on adopting genetic algorithms to

solve multi-objective problems, discussing also aggregation approaches based
on weighted sum of the objective functions. Despite such a method is a quite
common formulation for a multi-objective optimization problem, there are
several issues which deserve further investigation; a recent work of Marler
and Arora [23] proposes further insight on the weighted aggregation method,
focusing on the choice and significance of the weights according to different
criteria. Besides, [8] investigates the sensitivity of this class of methods to the
weights chosen in the scalarization.

The fundamental issue of a scalarization approach is determining whether
the transformed problem and the original one are equivalent. In order to
provide the decision maker with the chance to choose among all optimal
points, an aggregate function should be able to capture any existing Pareto
solution. It is possible to prove that any Pareto optimal point can be captured

if there is an appropriate aggregate function [24], where a point x is called
capturable if it is a local optimum of the scalarized problem. Therefore, a main
issue of this approach is the determination of an appropriate structure for the
aggregate function, able to cover the Pareto front (as much as possible) by
properly setting/varying the parameter values. A possible way to deal with
this aspect is based on the dynamic variation of the aggregation function,
through properly modifying its parameters during the optimization process.
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This allows to capture multiple Pareto solutions, reducing at the same time
the sensitivity issues related to a fixed choice of the weights [8].

In this work, an experimental comparative study of different Dynamic
Objectives Aggregation Methods (DOAMs) in the context of evolutionary
optimization algorithms is proposed; in particular, we investigate the perfor-
mance of chaotic variations of the parameters (weights), based on promising
results from recent research works [6, 28, 3, 5] on the integration of chaotic
maps in optimization algorithms. The study is conducted on a set of bench-
mark problems from the literature. Section 2 presents methods based on both
weighted sum aggregations, and curvature variations. In Sect. 3 the experi-
mental setting is described. In Sect. 4, the analysis of results is reported, and
some conclusions are drawn.

2 Dynamic Objectives Aggregation Methods

The aim of this section is the introduction of the evolutionary dynamic ob-
jectives aggregation methods to solve multi-objective optimization problems.
Since an aggregate function maps the feasible criteria region into a one-
dimensional value space, the aggregation method transforms a vector op-
timization problem into a scalar problem.

The most common and widely used aggregate function is the weighted sum
of objectives. Although it has been shown that the weighted sum aggregate
function is unable to deal with multi-objective optimization problems with
a concave Pareto front, in [14, 15] it is investigated the possibility to cap-
ture also the points on concave Pareto front by using a dynamic weighted
aggregation combined with evolution strategies.

In [16] the phenomenon of global convexity is introduced in order to explain
the potential success of dynamic weighted aggregation. However, no analyti-
cal characterization is given to identify a global convex problem, therefore the
discussion is based on an observed behaviour rather than theoretical analysis.

From an implementation point of view, classical methods that scalarize
multiple objectives perform repeated runs in order to achieve a set of non-
dominated solutions. Dynamic weighted aggregation, instead, provides an
entire front of non-dominated solutions in a single run. At this aim, these
procedures generally use an archive to store the non-dominated solutions
obtained during the search process.

Empirical results in the literature show that the evolutionary dynamic
weighted sum is able to provide a set of non-dominated solutions in one
run of the evolutionary algorithm also capturing in some cases the points
on concave parts of the Pareto frontier [14, 15, 16]. Besides that, a method
based on the increase of the aggregate function curvature, obtained varying
the exponents of the objective function in the aggregation, seems to be able
to capture the points on concave regions of the front where the plain weighted
sum fails.
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The rationale behind an integration of the two methods can be summarized
observing that by dinamically varying the curvature it may be possible to
reach the concave part of the front and by dynamically varying the weights
it may be possible to move close to the concave Pareto frontier.

The remainder of the section is devoted to introduce the algorithmic ap-
proaches investigated in our computational study: i) dynamic weighted sum
methods, and ii) dynamic curvature variations methods.

2.1 Dynamic Weighted Sum Methods

The most widely used aggregate function is the weighted sum; the corre-
sponding aggregate optimization problem can be stated as:

min
x

m∑

i=1

w ifi(x) , (3)

where wi (i = 1, . . . , m) are non-negative weights for the corresponding ob-
jective functions fi and

∑m
i=1 wi = 1.

For every choice of the weights vector w, the problem (3) yields an optimal
Pareto point. It is well-known that a weakness of this aggregate function is the
failure to capture the points on a concave Pareto fronts. In fact, it is possible
to prove that every point captured by

∑m
i=1 wifi is in a convex region of the

non-dominated frontier.
In [14] the dynamic weighted aggregation method combined with evolution

strategies has been studied and it has been shown that this method is able
to capture the entire Pareto frontier reaching the points in concave regions
as well. This procedure is based on the dynamic aggregation approach.

While conventionally the scalarization function weights are fixed during
optimization, the main idea on which the method is based is that the weights
systematically change during evolution; so the function to be minimized dy-
namically changes. In this way the optimizer moves close to the frontier,
once it achieves a non-dominated solution. During the evolution of the algo-
rithm, the population can intersect the Pareto set, and therefore an archive is
needed to record all the Pareto solutions encountered. Although it has been
extensively shown that the conventional weighted sum is unable to provide
the Pareto solutions on concave regions, the dynamic weighted sum method
succeeds in obtaining non-dominated solutions in concave regions as well,
traversing the frontier dynamically. Empirical results highlight the impor-
tant role of law of the varying weights [14, 15].

Several ways of changing weights have been proposed: randomly, switching
between 0 and 1, and periodically. In the first case, the weights are gener-
ated from a uniform random distribution changing in each generation. The
second way of varying the weights is realized by switching them from zero
to one abruptly and viceversa. Literature results suggest that the weights
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should vary gradually and periodically. In particular, a gradual and continu-
ous change is needed to keep the points on a convex front: an abrupt switch of
the search direction does not allow the optimizer to move close to the front,
storing non-dominated points.

Since the incorporation of chaos in population-based optimization algo-
rithms has been shown to possibly enhance their searching ability [5, 13, 22],
this study proposes to introduce and evaluate also the chaotic rules in the
dynamic weights generation as well.

2.2 Dynamic Curvature Variation Methods

In order to overcome the drawbacks of the weighted sum scalarization func-
tion, several aggregate functions have been introduced in the literature. In
particular, to enhance the capability of objective functions to capture also
the points on a concave Pareto front, in [24] it is suggested to increase the
curvature of the aggregate function. A way of varying the curvature can be
easily obtained applying the so called t-th power transformation to the objec-
tive function. The corresponding scalar optimization problem can be stated
as follows:

min
x

m∑

i=1

wi(fi(x))t , (4)

where t is a positive real number. It is found that varying all the free param-
eters (i.e. weights and exponents), it is possible to reach all the points on the
Pareto frontier. This aggregate function is also investigated in [19, 20], where
it has been proved that applying the t-th power to the objective functions the
convexification of non-dominated frontier can be achieved in an appropriate
equivalent objectives space. The main problem is again the choice of a func-
tion structure enabling to provide all the Pareto solutions for some values
of the parameters used in aggregate function. Assuming that the aggregate
objective function and the Pareto frontier satisfy certain differentiability re-
quirements, the necessary and sufficient condition for an admissible aggregate
objective function to capture the Pareto points has been developed by Messac
et al. [24]. Although these conditions are inapplicable if the Pareto frontier is
not known — as it is in real applications — Messac et al. suggested the use
of an aggregate function (4) whose curvature can be increased by setting free
parameters with the aim to enhance the capability of objective functions to
capture also the points on concave Pareto front. This t-th power approach is
also investigated in [19]. For sufficiently large values of t, the efficient frontier
in the [f t

1, ..., f
t
m] space is guaranteed to be convex under certain conditions.

Therefore, the weighted sum of the t-th power of the objectives is able to solve
the problem in the [f t

1, ..., f
t
m] space. In [11] the properties of the weighted

t-th power approach are summarized:



90 G. Dellino, M. Fedele, and C. Meloni

i) the optimal solutions of the t-th power problem (4) are efficient solutions
of the multi-objective problem (1);

ii) for every efficient solution of the problem (1) there exists a t̂ > 0 such
that for all t ≥ t̂ the t-th power aggregate function in (4) captures that
solution.

This result guarantees the existence of a t-th power aggregate function that
is able to capture the whole Pareto front. Therefore this is an important the-
oretical support for our work in which different rules to dynamically change
the values of t are considered in addition to those concerning the weights wi.

3 Computational Experiments

In this section the experimental setting is illustrated. The evolutionary al-
gorithms involved in the test and their configurations are described in Sub-
sect. 3.1. Subsection 3.2 reports on the different DOAMs considered in the
experiments. In order to evaluate and compare the effectiveness of the pro-
posed methods, a suite of test problems is employed as will be described in
Subsect. 3.3.

3.1 Evolutionary Algorithms and Their

Configurations

To test the methods proposed in this work, the standard genetic algorithm
included in the Matlab’s Genetic Algorithm and Direct Search Toolbox [29]
has been used. This algorithm enables to solve single-objective optimization
problems and can be easily adapted to work with dynamic objectives aggre-
gation. Some parameters values need to be specified, before the algorithm
execution [29]. In our experiments, we used default (and commonly used)
values; in particular, we adopted a stochastic uniform selection operator, a
scattered crossover function with probability 0.7 and a Gaussian mutation
function with probability 0.3; the number of best individuals that will sur-
vive to the next population has been fixed to 2 and the stopping criterion
is based on the maximum number of generations to be produced. A more
refined tuning will be needed when applying these methods to specific prac-
tical applications or for a detailed study on the sensitivity of the optimization
algorithm to these parameters [1].

In this work, several alternative settings have been considered for the ge-
netic algorithm, by varying the population size (in the set { 25, 50, 100 } ) and
the number of performed iterations (100, 500 or 1000); thus, 9 overall different
configurations of the genetic algorithm are used.

The considered DOAMs require to dynamically solve single-objective op-
timization problems, given by the dynamic weighted sum of the objectives
we are really interested in. In order to keep all the non-dominated solutions
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obtained during the optimization process, an archive is needed. At each step
a dominance analysis on the offspring population is conducted, with respect
to the functions composing the aggregate objective, thus obtaining a set of
individuals that are candidated to enter the archive.

The archive is composed of non-dominated solutions collected as the re-
sult of the optimization search, that has taken account not only of the ag-
gregate function but also of its single components. It is important to update
this archive, removing all dominated solutions. The update frequency of the
archive (denoted by fupd) is set by the user before the algorithm execution.

The archive structure A has a maximum size S, but at any iteration it
may contain a number s = |A| ≤ S of elements. The use of the archive
requires a domination analysis, a capacity control and a crowding analysis
for the elements that are proposed to be enclosed in it. At each iteration the
evolutionary optimizer proposes to the archive the non-dominated elements
contained in its current population; they enter the archive according to a
specific acceptance criterion. More specifically, the following operations are
performed: a domination analysis ensures that the candidate elements are
entitled to enter the archive. For each candidate two situations are possible:
(a) it dominates some of the elements in A, so it replaces the dominated
solutions; (b) it is non-dominated with respect to all the solutions in A, so it
could be added to the archive. However, this requires a preliminary capacity
control, in order to guarantee that the maximum size S is not exceeded. In
case the archive size reaches the maximum value S, a crowding analysis is
performed, estimating the density of solutions in the neighborhood of each
element of the archive. In particular, a crowding distance value is assigned
to the individuals belonging to the archive, calculated as follows: for each
objective function, the solutions in the archive are sorted in ascending order
of magnitude. Then an infinite distance value is assigned to solutions having
the smallest and highest objective function values; for solutions other than
the boundary ones, the distance value is given by

dk = dk +
fi(xk+1) − fi(xk−1)

fmax
i − fmin

i

, (5)

where dk is the crowding distance associated to the k-th element (k =
1, . . . , |A|), whose initial value is set to 0, fi(·) is the value of the i-th objective
function of the element specified in brackets, xk+1 and xk−1 are the succes-
sor and the predecessor of the k-th individual. According to the operated
sorting, fmax

i and fmin
i are the maximum and minimum value of the i-th

objective function. The calculation of dk is performed with all the objective
functions, finally obtaining the overall crowding distance for each individual.
Thus solutions located in lesser crowded regions are preferred.

Figure 1 outlines how the algorithm works; Figure 2 illustrates the accep-
tance rule of new elements in the archive.
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Optimization Process

Input: Parameters set by the user;

Initialization:

Generate a random initial population
begin

while the stopping criteria is not satisfied
Evaluate all individuals in the population
Rank the population, according to their fitness values
for each non-dominated individual e in the population

Archive acceptance rule(e)
if generation mod fup d = 0 then

Update the archive, removing dominated elements
Select parents, based on their fitness
Create a new population, applying elitism, crossover and mutation operators

Update the archive, removing dominated elements
end

Fig. 1 Genetic Algorithm Scheme.

Archive acceptance rule

Input: archive A, archive size S, candidate element e;

begin

if e dominates any element in A then

delete all dominated elements of A and include e in A

else if no element of A dominates e and |A|< S then

include e in A

else if no element of A dominates e and |A|= S then

if the crowding distance of e is better than that of x ∈A then

delete xand include e in A

end

Fig. 2 The acceptance criterion of new elements in the archive.

A well-known multi-objective genetic algorithm (MOGA), NSGA-II – ex-
tensively described by Deb et al. in [10] – has also been used, aiming to
compare the solutions obtained with the proposed method with those pro-
vided by a native MOGA. The algorithm configurations described before
have also been applied to NSGA-II, except for the dominance management
which is implicitly guaranteed by the algorithm itself; NSGA-II also includes
a crowding analysis similar to the one we adopt (the details of NSGA-II can
be found in [10]).
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3.2 The Set of DOAMs

Several DOAMs have been used in the campaign of experiments conducted
in this work, involving both the variation of the weights only, as in (3), and
the combined variation of the weights and the exponents in (4). For the sake
of simplicity, in order to illustrate the methods, a bi-objective problem is
considered. In this case, the aggregate function corresponding to the k -th
generation can be stated as follows:

G (x, k) = w1(k)f t
1(x) + w2(k)f t

2(x) , (6)

where the expressions of w1 and w2 and the value of t depend on the adopted
variation law; clearly, for t = 1 the simpler weighted sum aggregated function
is obtained. The weights wi can be dynamically modified according to a rule
R(k) described by a specific function of k:

w1(k) = R(k), w2(k) = 1 − w1(k) . (7)

The weighted aggregation methods can easily be extended to three-objective
problems [17]; the weights can be generated in the following way:

w1(k) = R(k) , w2(k) = (1 − w1(k))R(k) , w3(k) = 1 − w1(k) − w2(k) .

We consider different rule functions, namely: one, switch, sin, triangle, rand,
chaos.

The first refers to the case of fixed unitary weights (i.e. the aggregate
function is simply given by the sum of the objectives). In the second case w1

periodically changes from 0 to 1, with a given period T = 100 (in terms of
the number of algorithm’s generations). Similarly, a periodical changing of
the weights can be obtained also according to a sin or triangle wave in the
successive adopted rules; the sinusoidal rule is the following:

R(k) = | sin(2πk/F )| , (8)

where F is the frequency in terms of algorithm’s generations. In our com-
putational experiments, this parameter has been set to F = 200 following
[14] showing that such a value leads to algorithms with better convergence
properties. The rand rule, at each iteration k, generates a random value in
(0, 1) for w1. The last rule applies a chaotic variation law to the weights.
A logistic equation – which is extensively used to describe a chaotic system
[3, 5, 21] – is employed as follows:

w1(k + 1) = µw1(k)(1 − w1(k)), w2(k) = 1 − w1(k) ; (9)

where µ = 4 and w1(0) = 0.2027. The previous deterministic equation (choos-
ing w1(0) ✝ (0, 1)\{0, 0.25, 0.5, 0.75, 1}) shows chaotic behaviour, exhibiting a
sensitive dependence on initial conditions, which is the basic characteristic of
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chaos. A little difference in the initial value of the chaotic variable would result
in a considerable difference in its long-time behaviour. In general, this chaotic
variable has special characteristics, such as ergodicity, pseudo-randomness
and irregularity [3, 5, 21]. Clearly, some other well-known chaotic maps could
also be employed instead of the logistic one to generate the weights in the
aggregate objective functions [5].

In order to let the curvature of the aggregate function vary during the
evolution process four possible strategies are proposed for the variation of
the exponent. In all the cases considered in the following, the exponent value
ranges between t = 1 and t = 4, retaining that greater values of t would not
provide further improvements in the optimization results achieved so far.

A first scheme (one) considers only fixed unitary exponents. The second
scheme (step) establishes to increment the exponent value every N/4 itera-
tions, N being the maximum number of generations that can be produced.
An adaptive scheme (adapt) has also been tested, according to which the
exponent value is incremented when there is no improvement in the opti-
mization process for a given number of iterations, which has been fixed to
∆ = 0.05 N .

According to both these strategies, the exponent value is always a posi-
tive integer number. The last strategy (cont) considered in this work let the
exponent range among the (positive) real numbers; i.e., the interval (0, N)
has been mapped into the interval (1, 4) such that the exponent t can vary
continuously in this range.

Combining the aforementioned weights-exponents strategies, 24 different
algorithms are obtained. Hereinafter, each of them will be denoted indicating
the strategies as an ordered pair (e.g. chaos-step represents the strategy with
the chaotic rule for the weights and the step rule for exponents, respectively)
and they will be labeled as reported in Table 1.

Table 1 The considered DOAMs and the corresponding weights-exponents
strategies

Algorithm Weights-Exponents Rule

DOAM1 chaos-one
DOAM2 one-one
DOAM3 rand-one
DOAM4 switch-one
DOAM5 sin-one
DOAM6 triangle-one
DOAM7 chaos-step
DOAM8 one-step
DOAM9 rand-step
DOAM10 switch-step
DOAM11 sin-step
DOAM12 triangle-step

Algorithm Weights-Exponents Rule

DOAM13 chaos-adapt
DOAM14 one-adapt
DOAM15 rand-adapt
DOAM16 switch-adapt
DOAM17 sin-adapt
DOAM18 triangle-adapt
DOAM19 chaos-cont
DOAM20 one-cont
DOAM21 rand-cont
DOAM22 switch-cont
DOAM23 sin-cont
DOAM24 triangle-cont
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3.3 Test Problems

The computational test of the methods has been conducted on a set of bench-
mark problems, characterized by different specific features in the Pareto front,
so that the general results obtained would not depend on the particular test
problem chosen. Problems P1-P7 are discussed by Jin et al. in [14, 15, 16]:
in P2-P5 it is assumed that xi ✁ [0, 1] for all i = 1, . . . , n; while in P1, P6,
and P7 there are no restrictions on the range of the decision variables. The
problem P1 has the following objective functions:

f1 =
1

n

n∑

i=1

x2
i , f2 =

1

n

n∑

i=1

(xi − 2)2 ; (10)

and produces a uniform Pareto front. P2 is described by:

f1 = x1

g(x2, . . . , xn) = 1 +
9

n − 1

n∑

i=2

xi , (11)

f2 = g × (1 −
√

f1/g) .

having a convex Pareto front. Because of the interest in studying problems
showing non-convex or discontinuous Pareto front, some instances belonging
to this class have been considered. The following problem, P3, has a concave
Pareto front and is defined as follows:

f1 = x1 ,

g(x2, . . . , xn) = 1 +
9

n − 1

n∑

i=2

xi , (12)

f2 = g ×
(
1 − (f1/g)2

)
.

The fourth problem, P4, has been obtained through combining — in some
sense — P2 and P3:

f1 = x1 ,

g(x2, . . . , xn) = 1 +
9

n − 1

n∑

i=2

xi , (13)

f2 = g ×
(
1 − 4

√
f1/g − (f1/g)4

)
.

Its Pareto front is neither purely convex nor purely concave. The following
problem, P5, is characterized by a Pareto front consisting of a number of
separated convex parts.
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f1 = x1 ,

g(x2, . . . , xn) = 1 +
9

n − 1

n∑

i=2

xi , (14)

f2 = g ×
(
1 −

√
f1/g − (f1/g) sin(10πf1)

)
.

Problem P6 is defined through the following equations:

f1 = 1 − exp

{
−

n∑

i=1

(
xi −

1√
n

)2
}

f2 = 1 − exp

{
−

n∑

i=1

(
xi +

1√
n

)2
}

, (15)

showing a concave Pareto front. Another problem, P7, is taken from [16]
extending one of the test function proposed in the literature [25] to the two-
dimensional case:

f1 = exp(−x1) + 1.4 exp(−x2
1) + exp(−x2) + 1.4 exp(−x2

2) ,

f2 = exp(x1) + 1.4 exp(−x2
1) + exp(x2) + 1.4 exp(−x2

2) . (16)

The resulting Pareto front is continuous and non-convex. Even if the problem
is considered an easy task for evolutionary optimizers [16], the region that
defines the Pareto front in the parameter space is disconnected; so, it could be
an interesting problem to be studied. In the following, two other benchmark
problems, P8-P9, are considered, because of the particular shape of their
feasible region and/or Pareto front; these problems are described in [27].
Problem P8 is referred to as the TNK problem. The objectives are very
simple, and defined by

f1 = x1, f2 = x2 , (17)

where
x1 ✄ [0, π], x2 ✄ [0, π] .

The constraints are

g1 = −x2
1 − x2

2 + 1 + 0.1 cos(16 arctan(x2/x1)) ≤ 0 ,

g2 = (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5 . (18)

Problem P9 is the so-called Poloni’s test problem: the objective functions are
defined as

f1 = 1 + (a − b)2 + (c − d)2 , f2 = (x1 + 3)2 + (x2 + 1)2 , (19)
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where the parameters introduced in the expression of f1 are:

a = 0.5 sin(1) − 2.0 cos(1) + 1.0 sin(2) − 1.5 cos(2) ,

b = 0.5 sin(x1) − 2.0 cos(x1) + 1.0 sin(x2) − 1.5 cos(x2) ,

c = 1.5 sin(1) − 1.0 cos(1) + 2.0 sin(2) − 0.5 cos(2) ,

d = 1.5 sin(x1) − 1.0 cos(x1) + 2.0 sin(x2) − 0.5 cos(x2) .

The variables ranges are: x1 ☎ [−π, π] and x2 ☎ [−π, π].

4 Discussion of Results

Appropriate metrics must be selected in order to evaluate the behaviour of
the considered algorithms. The literature offers different metrics to measure
the performance of algorithms for multi-criteria optimization problems. Nev-
ertheless, no single metric is able to assess the total algorithmic performance.
The metrics adopted in this study are reported below. Clearly, these met-
rics should not be considered as a complete list of all possible metrics. For
instance, in our computational experiments, we do not consider particular
temporal metrics, limiting our analysis only to the computation times re-
quired by the algorithm. Although used with cases with few objectives, the
considered metrics can also be applied when a larger number of objectives is
considered.

We are interested in measuring how far the non-dominated solutions ob-
tained by the algorithm, i.e. the solution front (SF ), are from the ideal point
(IP ). An ideal point (IP ) is defined as a point characterized by the best val-
ues for each objective. We also use the concept of the nadir point (NP ) which
is defined as a point characterized by the worst values for each objective. To
this aim, the adopted measure is given by an hyperarea or hypervolume ratio.
This metric requires the knowledge (i.e. the computation) of an ideal point
(IP ) and a nadir point (NP ) for the problem. The ideal point and the nadir
point can be viewed as vertices of a regular polytope defining a hypervolume
(At), i.e. the total area, in the space of the objectives (a rectangle in the two-
objective case). The hyperarea ratio (HR) performance measure is defined as

HR = Ad/At , (20)

where Ad indicates the dominated area between the nadir point NP and
the solution front SF , as proposed by Fleischer [12]. A large value of HR
is expected from a good algorithm. The hyperarea ratio is a good perfor-
mance indicator, but it does not take into account how the efficient points
are distributed on the estimated solution front.

Therefore as secondary indicators, we report the number of non-dominated
elements (ND) and the spacing (S). The last one is a metric measuring the
spread (distribution) of vectors throughout the solution front (SF ). We refer
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to the definition reported in [31] for two objective functions: the spacing
measures the range variance of neighboring vectors in SF :

S =

√

√

√

√

1

N − 1

N∑

i=1

(d − di)2 , (21)

where di = minj(|f i
1(x) − f j

1 (x)| + |f i
2(x) − f j

2 (x)|), i, j = 1, . . . , N ; d is the
mean of all di, and N is the number of vectors in SF . A value of zero for
this metric indicates that all non-dominated solutions are equally spaced. It
is worth observing that no single metric can completely capture total multi-
objective evolutionary algorithm performance [31].

For each experiment, three different runs have been executed initializing
algorithms with random populations. Tables 2 and 3 contain the average
results on 3 runs for each of the 9 algorithms configurations described in
Subsect. 3.1, so each entry is the average over 27 experimental values.

Table 2 Average values of HR (in %), ND, and S achieved by the algorithms for
problems P1-P5

P1 P2 P3 P4 P5
Algorithms HR ND S HR ND S HR ND S HR ND S HR ND S

DOAM1 74 25.37 0.36 90 10.67 0.42 85 6.26 0.17 81 7.00 0.29 86 6.04 0.21
DOAM2 74 24.85 0.38 91 7.59 0.45 83 4.33 0.29 81 7.04 0.25 83 5.19 0.40
DOAM3 75 25.41 0.29 91 8.52 0.32 84 4.96 0.35 81 6.33 0.29 84 5.26 0.56
DOAM4 73 23.52 0.53 88 3.48 0.18 82 2.22 0.13 81 5.78 0.29 83 3.78 0.42
DOAM5 75 24.93 0.31 91 8.07 0.24 85 4.44 0.18 81 6.37 0.25 86 5.07 0.33
DOAM6 76 24.15 0.33 90 6.11 0.37 85 5.22 0.18 81 6.74 0.27 85 5.74 0.36
DOAM7 75 25.07 0.36 90 8.04 0.30 84 5.11 0.32 81 6.41 0.25 85 6.44 0.36
DOAM8 75 25.00 0.38 90 7.78 0.28 84 4.04 0.30 81 7.48 0.31 83 5.41 0.55
DOAM9 76 24.70 0.31 91 6.93 0.40 84 4.33 0.29 81 6.67 0.27 85 5.22 0.36
DOAM10 75 23.52 0.46 89 3.67 0.16 82 2.59 0.23 80 5.48 0.35 84 3.85 0.34
DOAM11 75 24.63 0.32 91 7.22 0.28 84 4.11 0.17 81 7.15 0.29 85 5.44 0.27
DOAM12 75 25.44 0.28 91 8.33 0.31 84 4.67 0.31 81 7.52 0.27 85 5.33 0.32
DOAM13 74 24.85 0.32 91 8.96 0.20 84 4.89 0.21 81 7.15 0.26 85 5.78 0.28
DOAM14 76 25.93 0.32 91 7.41 0.25 84 3.89 0.25 81 7.44 0.28 83 5.33 0.60
DOAM15 73 25.33 0.31 90 6.07 0.30 85 4.70 0.14 81 6.78 0.31 83 6.15 0.42
DOAM16 73 24.26 0.59 88 3.04 0.13 83 3.00 0.18 80 4.74 0.37 84 4.07 0.32
DOAM17 75 25.30 0.27 91 6.67 0.13 85 4.85 0.14 81 6.74 0.32 86 5.48 0.41
DOAM18 76 25.15 0.38 91 8.52 0.25 84 4.56 0.32 82 7.44 0.23 85 6.26 0.31
DOAM19 75 24.93 0.30 90 8.52 0.25 84 5.22 0.41 81 7.11 0.29 85 6.63 0.27
DOAM20 75 25.22 0.33 91 7.93 0.23 84 5.07 0.37 81 7.11 0.31 85 5.74 0.40
DOAM21 75 23.89 0.38 91 7.07 0.31 83 4.19 0.31 81 6.78 0.30 85 6.11 0.43
DOAM22 74 23.85 0.48 89 3.74 0.26 82 3.04 0.10 80 5.48 0.32 83 3.96 0.12
DOAM23 75 24.81 0.33 91 7.63 0.36 84 5.48 0.58 81 7.15 0.25 85 5.89 0.32
DOAM24 76 25.59 0.33 90 7.30 0.42 84 5.85 0.30 81 7.19 0.22 85 5.89 0.49

NSGA-II 65 26.52 0.07 90 4.19 0.17 84 2.59 0.15 81 4.96 0.21 86 4.11 0.25
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The collected results show that methods based on periodical changes of
weights often achieve relatively good performances with respect to other
DOAMs as well as to a state-of-the-art (native) multi-objective optimizer.
This behaviour seems to be reinforced by the use of exponents variation.
Nonetheless, it is noticeable the competitive performance of the DOAMs
based on a chaos rule in terms of H R , ND, and S. On the other hand,
strategies based on the switch rule (no matter what strategy is adopted for
exponents) almost always give relatively modest results.

Although each average is composed of a large number of data points, it
is necessary to carry out a statistical analysis to assess if the observed dif-
ferences in the average values are indeed statistically significant. Even if in
the optimization literature, parametric test methods are not often adopted
due to the assumptions that the data have to satisfy and nonparametric test
methods are in general preferred because they are distribution-free, the for-
mer ones result more powerful allowing for a much deeper analysis of data. In
fact, in non-parametric testing a lot of information is lost because the data

Table 3 Average values of HR (in %), ND, and S achieved by the algorithms for
problems P 6 -P9

P6 P7 P8 P9
Algorithms HR ND S HR ND S HR ND S HR ND S

DOAM1 21 16.79 0.14 100 328.19 3.41 23 4.70 0.18 91 224.79 0.21
DOAM2 21 15.29 0.14 100 152.93 1.5e56 21 4.89 0.12 89 126.25 0.63
DOAM3 21 16.13 0.18 100 310.37 3.68 22 4.63 0.14 91 212.92 0.27
DOAM4 22 14.96 0.14 100 474.59 1.7e11 21 4.48 0.18 82 36.63 1.56
DOAM5 22 19.17 0.11 100 371.56 8.98 22 4.67 0.16 91 160.58 1.18
DOAM6 23 20.46 0.10 100 327.00 4.82 21 4.48 0.16 91 166.29 1.29
DOAM7 21 17.46 0.16 100 329.52 5.31 21 4.11 0.14 91 244.50 0.23
DOAM8 21 15.08 0.18 100 141.93 3.54 22 5.00 0.13 91 158.46 0.27
DOAM9 21 17.04 0.12 100 315.37 3.78 21 4.37 0.16 91 231.00 0.26
DOAM10 21 15.92 0.12 100 475.74 1.8e10 22 4.59 0.15 83 38.71 1.60
DOAM11 23 20.83 0.15 100 373.44 9.37 21 4.30 0.18 91 176.75 0.68
DOAM12 24 20.21 0.11 100 325.22 3.70 22 4.15 0.12 91 184.75 0.60
DOAM13 22 17.96 0.11 100 339.44 3.90 22 4.48 0.14 91 243.42 0.41
DOAM14 20 16.75 0.14 100 144.70 4.08 22 4.78 0.13 91 142.42 0.27
DOAM15 21 16.79 0.12 100 319.78 3.92 21 4.15 0.12 91 218.13 0.24
DOAM16 21 15.63 0.14 100 478.63 1.3e12 21 4.11 0.16 85 39.46 0.96
DOAM17 24 21.21 0.08 100 375.22 11.70 20 4.30 0.14 91 171.42 0.89
DOAM18 23 19.13 0.14 100 332.15 4.19 22 4.59 0.19 91 196.75 0.91
DOAM19 21 17.08 0.13 100 287.00 4.55 21 4.15 0.12 91 210.83 0.26
DOAM20 21 15.54 0.20 100 93.52 3.27 22 4.48 0.15 91 148.50 0.29
DOAM21 22 17.17 0.14 100 256.85 4.45 23 4.56 0.15 91 184.96 0.27
DOAM22 22 16.38 0.13 100 482.89 2.9e10 21 4.30 0.11 80 32.25 1.17
DOAM23 23 19.25 0.10 100 290.78 5.85 22 4.48 0.17 91 162.50 1.08
DOAM24 23 20.17 0.11 100 258.74 3.49 22 4.33 0.13 91 171.58 1.20

NSGA-II 18 16.92 0.03 100 411.33 1.5e11 16 2.48 0.12 91 440.42 0.16
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Fig. 3 Means plot and Tukey’s HSD confidence intervals (α = 0.05) resulting from
the Rank-based Friedman analysis on HR

have to be ranked and the differences in the values are transformed into a
rank value; therefore, besides the non-parametric rank-based Friedman’s test,
we consider parametric ANOVA analysis [7, 9, 26].

In these analyses we assume only HR as response variable.
Figures 3 and 4 show the means plot in the Friedman and ANOVA analysis,

respectively. The analyses are conducted on the algorithm factor considering
24 different DOAMs and NSGA-II with three replicates for each experiment
which is characterized by the problem and by the algorithm configuration
(a total of 81 combinations are considered). Thus, in our Friedman analysis,
for every experiment 75 ranks are obtained, assigning a larger rank to better
results. For both tests we use a 95% confidence interval and adopt the Tukey’s
HSD intervals [30, 9, 26]. As it can be seen in Figures 3 and 4, the non-
parametric test is less powerful neglecting the differences in the response
variables and presenting much wider confidence intervals. In the reported
plots, overlapping confidence intervals indicate a non-statistically significant
difference on the average performance of the respective algorithms.

These analyses clearly confirm the negative assessment on switch strategies
and the promising behaviour of chaos-based DOAMs which are often the best
strategy (e.g. see DOAM13 in Figure 3), providing good performance based
on the three metrics considered in Tables 2 and 3 and being non-dominated
with respect to the other strategies (see Figures 3 and 4). This result seems
to support the increasing research interest in the introduction of some form
of chaotic behaviour in stochastic optimizers [3, 5, 13, 22].

These experimental results are of interest also in different contexts such
as: the development of multi-objective optimization algorithms starting from
well-established evolutionary single-objective optimizers; the design of com-
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pact (and fast) local search procedures; surrogate-based optimization; land-
scape approximation of costly functions. Moreover, the case of bi-objective
optimization could be of interest in Mean-Variance optimization problems
often used to model either the risk preferences of the decision maker or ro-
bustness requirements.

The observations based on the encouraging results from the conducted
experiments indicate that different aspects deserve further research efforts
including the extension to the experimental campaign on a wider set of prob-
lems (also from real applications); the possible use of different quality indi-
cators; the comparison of DOAMs with other state-of-the-art MOGAs; the
investigation of the effects of the interactions of weights and exponents based
rules; and the consideration of other chaotic DOAMs in order to deeply in-
vestigate their effectiveness.
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In: Interactive and Evolutionary Approaches, Springer, Heidelberg (2008)

3. Bucolo, M., Caponetto, R., Fortuna, L., Frasca, M., Rizzo, A.: Does chaos work
better than noise? IEEE Circuits and Systems Magazine 2(3), 4–19 (2002)

4. Burke, E.K., Landa Silva, J.D.: The influence of the fitness evaluation method
on the performance of multiobjective search algorithms. European Journal of
Operational Research 169, 875–897 (2006)

5. Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic Sequences to
Improve the Performance of Evolutionary Algorithms. IEEE Transactions On
Evolutionary Computation 7(3), 289–304 (2003)



102 G. Dellino, M. Fedele, and C. Meloni

6. Coelho, L.d.S., Mariani, V.C.: Use of chaotic sequences in a biologically inspired
algorithm for engineering design optimization. Expert Systems with Applica-
tions 34, 1905–1913 (2008)

7. Coffin, M., Saltzman, M.J.: Statistical Analysis of Computational Tests of Al-
gorithms and Heuristics. INFORMS Journal on Computing 12(1), 24–44 (2000)

8. Collette, Y., Siarry, P.: On the Sensitivity of Aggregative Multiobjective Opti-
mization Methods. Journal of Computing and Information Technology 16(1),
1–13 (2008)

9. Conover, W.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons,
New York (1999)

10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multi-
objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation 6(2), 182–197 (2002)

11. Ehrgott, M., Wiecek, M.: Multiobjective programming. In: Figueira, J., Greco,
S., Ehrgott, M. (eds.) Multicriteria Decision Analysis: State of the Art Surveys,
Kluwer Academic Publishers, Boston (2005)

12. Fleischer, M.: The Measure of Pareto Optima: Applications to Multi-objective
Metaheuristics. LNCS, pp. 519–533. Springer, Berlin (2003)

13. Greenwood, G.W.: Chaotic behavior in evolution strategies. Physica D 109,
343–350 (1997)

14. Jin, Y., Olhofer, M., Sendhoff, B.: Dynamic weighted aggregation for evolution-
ary multi-objective optimization: why does it work and how? In: Proceedings of
the Genetic and Evolutionary Computation Conference, San Francisco (2001)

15. Jin, Y., Okabe, T., Sendhoff, B.: Adapting weighted aggregation for multi-
objective evolution strategies. LNCS, pp. 96–110. Springer, Zurich (1993)

16. Jin, Y.: Effectiveness of weighted aggregation of objectives for evolutionary
multiobjective optimization: methods, analysis and applications (2002) (un-
published manuscript)

17. Jin, Y., Okabe, T., Sendhoff, B.: Solving Three-objective Optimization Prob-
lems Using Evolutionary Dynamic Weighted Aggregation: Results and Analy-
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Summary. Network-on-chip (NoC) are considered the next generation of commu-

nication infrastructure, which will be omnipresent in most of industry, office and

personal electronic systems. In the platform-based methodology, an application is

implemented by a set of collaborating intellectual properties (IPs) blocks. In this

paper, we use multi-objective evolutionary optimization to address the problem of

mapping topologically pre-selected sets IPs, which constitute the set of optimal so-

lutions that were found for the IP assignment problem, on the tiles of a mesh-based

NoC. The IP mapping optimization is driven by the area occupied, execution time

and power consumption.

1 Introduction

As the integration rate of semiconductors increases, more complex cores for system-

on-chip (SoC) are launched. A simple SoC is formed by homogeneous or heteroge-

neous independent components while a complex SoC is formed by interconnected

heterogeneous components. The interconnection and communication of these com-

ponents form a network-on-chip (NoC). A NoC is similar to a general network but

with limited resources, area and power. Each component of a NoC is designed as an

intellectual property (IP) block. An IP block can be of general or special purpose

such as processors, memories and DSPs [7].

Normally, a NoC is designed to run a specific application. This application, usu-

ally, consists of a limited number of tasks that are implemented by a set of IP blocks.

Different applications may have a similar, or even the same, set of tasks. An IP block

can implement more than a single task of the application. For instance, a processor

IP block can execute many tasks as a general processor does but a multiplier IP block

for floating point numbers can only multiply floating point numbers. The number of

IP blocks designers, as well as the number of available IP blocks, is growing up fast.
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In order to yield an efficient NoC-based design for a given application, it is nec-

essary to choose the adequate minimal set of IP blocks. With the increase of IP

blocks available, this task is becoming harder and harder. Besides IP blocks care-

fully assignment, it is also necessary to map the blocks onto the NoC available

infra-structure, which consists of a set of cores communicating through switches.

A bad mapping can degrade the NoC performance. Different optimization criteria

can be pursued depending on how much information details is available about the

application and IP blocks.

Usually, the application is viewed as a graph of tasks called task graph (TG). The

IP blocks features can be obtained from their companion documentation. The IP

assignment and IP mapping are key research problems for efficient NoC-based de-

signs [15]. These two problems can be solved using multi-objective optimizations

in which some of the objectives are conflicting. Because of their nature, both IP

assignment and mapping are classified as NP-hard problems [6]. Normally, deter-

ministic techniques are not viable to solve such problems, so we use multi-objective

evolutionary algorithms (MOEAs) with specific operators and objective functions

to yield an optimal IP mapping for a prescribed set of IP assignments. These consti-

tute the set of optimal solutions that were found in the IP assignment satge. For this

purpose, one needs to select the best minimal set of objectives to be optimized. The

wrong set of optimized objectives can lead to average instead of best results. Here,

we assume that the IP assignment has been performed and is available for mapping

the application TG onto the NoC infrastructure.

In this paper, we propose a multi-objective evolutionary-based decision support

system to help NoC designers. For this purpose, we propose a structured repre-

sentation of the TG and an IP repository that will feed data into the system. We

use the data available in the Embedded Systems Synthesis benchmarks Suite (E3S)

[3] as our IP repository. The E3S is a collection of TGs, representing real appli-

cations based on embedded processors from the Embedded Microprocessor Bench-

mark Consortium (EEMBC). It was developed to be used in system-level allocation,

assignment, and scheduling research. We used two MOEAs: NSGA-II [2] and mi-

croGA [1]. Both of these algorithms were modified according to some prescribed

NoC design constraints.

The rest of the paper is organized as follows: First, in Section 2, we present

briefly some related research work. Then, in Section 3, we introduce an overview

of NoC structure. Subsequently, in Section 4, we describe a structured TG and IP

repository model based on the E3S data. After that, in Section 5, we introduce the

mapping problem in NoC-based environments. Then, in Section 7, we sketch the

two MOEAs used in this work, individual representations and objective functions

for the optimization stage. Later, in Section 9, we show some experimental result.

Last but not least, in Section 10, we draw some conclusions and outline new direc-

tions for future work.
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2 Related Work

The problems of mapping IP blocks into a NoC physical structure have been ad-

dressed in some previous studies with different emphasis. Some of these works did

not take into account of the multi-objective nature of these problems and adopted a

single objective optimization approach.

Hu and Marculescu [7] proposed a branch and bound algorithm which automat-

ically maps IPs/cores into a mesh based NoC architecture that minimizes the total

amount of consumed power by minimizing the total communication among the used

cores. Specified constraints through bandwidth reservation were defined to control

communication limits.

Lei and Kumar [11] proposed a two step genetic algorithm for mapping the TG

into a mesh based NoC architecture that minimizes the execution time. In the first

step, they assumed that all communication delays are the same and selected IP

blocks based on the computation delay imposed by the IPs only. In the second step,

they used real communication delays to find an optimal binding of each task in the

TG to specific cores of the NoC.

Murali and De Micheli [13] addressed the problem under the bandwidth con-

straint with the aim of minimizing communication delay by exploiting the possibil-

ity of splitting traffic among various paths. Splitting the traffic increases the size of

the routing component at each node but the authors were not worried about size.

Zhou et al. [21] suggested a multi-objective exploration approach, treating the

mapping problem as a two conflicting objective optimization problem that attempts

to minimize the average number of hops and achieve a thermal balance. The num-

ber of hops is incremented every time a data cross a switch before reaching its

target. They used NSGA [18], multi-objective evolutionary algorithm. They also

formulated a thermal model to avoid hot spots, which are areas with high computing

activity.

Jena and Sharma [9] addressed the problem of topological mapping of IPs/cores

into a mesh-based NoC in two systematic steps using the NSGA-II [2]. The main ob-

jective was to obtain a solution that minimizes the energy consumption due to both

computational and communicational activities and also minimizes the link band-

width requirement under some prescribed performance constraints.

As a recent field of research, the available literature about NoC-based design

optimization is scarce. The aforementioned works represent the state of the art of

this field. In [7], [11] and [13], only one objective was considered and only [11]

used an evolutionary approach. In [21] and [9], two objectives were considered and

both adopted a MOEA to solve the problem.

3 NoC Internal Structure

A NoC platform consisting of architecture and design methodology, which scales

from a few dozens to several hundreds or even thousands of resources [10]. As

mentioned before, a resource may be a processor core, DSP core, an FPGA block,
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a dedicated hardware block, mixed signal block, memory block of any kind such as

RAM, ROM or CAM or even a combination of these blocks.

A NoC consists of set of resources (R) and switches (S). Resources and switches

are connected by channels. The pair (R, S) forms a tile. The simplest way to connect

the available resources and switches is arranging them as a mesh so these are able to

communicate with each other by sending messages via an available path. A switch

is able to buffer and route messages between resources. Each switch is connected to

up to four other neighboring switches through input and output channels. While a

channel is sending data another channel can buffer incoming data. Note that energy

consumption is proportional to the number of message exchanges. Therefore, the

communication between resources and distance between them must be considered

during the mapping stage. Fig. 1 shows the architecture of a mesh-based NoC where

each resource contains one or more IP blocks (RNI for resource network interface, D

for DSP, M for memory, C for cache, P for processor, FP for floating-point unit and

Re for reconfigurable block). Besides the mesh topology, there are more complex

topologies like torus, hypercube, 3-stage clos and butterfly [14]. Note that mesh-

based NoC does not always represent the best topological choice.

Fig. 1 Mesh-based NoC with 9 resources

Every resource has an unique identifier and is connected to the network via a

switch. It communicates with the switch through the available RNI. Thus, any set

of IP blocks can be plugged into the network if its footprint fits into an available

resource and if this resource is equipped with an adequate RNI. The NoC imple-

ments the lower four layers from OSI model [8]: physical, data-link, network and

transport layers. The RNI implements all four layers and it packs transport layer

messages into network layer packets; so, the switch-to-switch interface implements
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only the three lower protocol layers. The basic communication mechanism envi-

sioned among computing resources is message passing. However, it is possible to

add additional protocols on top of the transport layer.

4 Task Graph and IP Repository Models

In order to formulate the IP mapping problem, it is necessary to introduce a formal

definition of an application first. An application can be viewed as a set of tasks that

can be executed sequentially or in parallel. It can be represented by a directed graph

of tasks, called task graph.

Definition 1. A Task Graph (TG) G = G(T, D) is a directed graph where each node

represents a computational module in the application referred to as task ti ∈ T . Each

directed arc di,j ∈ D, between tasks ti and tj , characterizes either data or control

dependencies.

Each task ti is annotated with relevant information, such as a unique identifier and

type of processing element (PE) in the network. Each di,j is associated with a value

V (di,j), which represents the volume of bits exchanged during the communication

between tasks ti and tj .

Once the IP assignment has been completed, each task is associated with an IP

identifier. The result of this stage is a graph of IPs representing the PEs responsible

of executing the application.

Definition 2. An Application Characterization Graph (APG) G = G(C, A) is a

directed graph, where each vertex ci ∈ C represents a selected IP/core and each

directed arc ai,j characterizes the communication process from core ci to core cj .

Each ai,j can be tagged with IP/application specific information, such as commu-

nication rate, communication bandwidth or a weight representing communication

cost.

A TG is based on application features only while an APG is based on application

and IP features, providing us with a much more realistic representation of the an

application in runtime on a NoC. In order to be able to bind application and IP

features, at least one common feature is required in both of the IP and TG models.

The E3S (0.9) Benchmark Suite [3] contains the characteristics of 17 embedded

processors. These processors are characterized by the measured execution times of

47 different type of tasks, power consumption derived from processor datasheets,

and additional information, such as die size, price, clock frequency and power con-

sumption during idle state. In addition, E3S contains task graphs of common tasks

in auto-industry, networking, telecommunication and office automation. Each one

of the nodes of these task graphs is associated with a task type. A task type is a

processor instruction or a set of instructions, e.g., FFT, inverse FFT, floating point

operation, OSPF/Dijkstra [5], etc. If a given processor is able to execute a given
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type of instruction, so that processor is a candidate to receive a resource in the NoC

structure and would be responsible for the execution of one or more tasks.

4.1 XML Representation

The E3S Benchmark Suite contains rich data about embedded processors and some

common applications. TGFF [4], a random TG generator based on E3S processors,

generates TGs with parallel and sequential tasks, nodes with IP types and other im-

portant features. Both, E3S and TGFF, are text files. We use XML Schema [20]

to model the TG and IP repository. At this point, no standard schema for NoC de-

sign is available, so the XML structure for both representations reflects the features

available from E3S processors and applications.

XML is a general-purpose specification for creating custom markup languages

and we propose to use it as a standard in NoC design research. Its primary purpose

is to help information systems share structured data and it is designed to be relatively

human-legible. It is strongly structured and its structure can be controlled by a XSD

schema. Any XML file based on a schema can be readable for any tool designed for

that schema. To parse (process) a XML file is much easier than a TXT file. Modern

programming languages offer APIs that facilitate XML files parsing, while TXT

files must be read line by line, checking character by character. XML and XML

schema (XSD) are defined by the World Wide Web Consortium (W3C) [20].

4.2 Task Graph Representation

Here, we represent TGs using the XML [20]. A TG is divided in three major ele-

ments: taskgraph, nodes and edges. The taskgraph element is the TG itself which

contains nodes and edges. The nodes element includes a node element for each task

of the TG and the edges element includes an edge element for each arc in the TG.

Each node has two main attributes: an unique identifier (id) and a task type (type),

chosen among the 47 different types of tasks present in the E3S. Each edge has four

main attributes: an unique identifier (id), the id of its source node (src), the id of

its target node (tgt) and an attribute representing the communication cost imposed

(cost). Fig. 2 shows a simple TG and its corresponding XML representation.

4.3 IP Repository Representation

The IP repository is divided into two major elements: the repository and the ips

elements. The repository is the IP repository itself. Recall that the repository con-

tains different non general purpose embedded processors and each processor imple-

ments up to 47 different types of operations. Not all 47 different types of operations

are available in all processors. Each type of operation available in each processor

is represented by an ip element. Each ip is identified by its attribute id, which is

unique, and by other attributes such as taskType, taskName, taskPower, taskTime,
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<?xml version="1.0" encoding="UTF-8"?>

<taskgraph>

<nodes>

<node id="0" type="45" .../>

<node id="1" type="21" .../>

<node id="2" type="28" .../>

<node id="3" type="32" .../>

</nodes>

<edges>

<edge id="0" src="0" tgt="1" cost="5"/>

<edge id="1" src="1" tgt="3" cost="4"/>

<edge id="2" src="1" tgt="2" cost="3"/>

<edge id="3" src="2" tgt="3" cost="2"/>

</edges>

</taskgraph>

Fig. 2 TG XML structure

processorID, processorName, processorWidth, processorHeight, processorClock,

processorIdlePower and cost. The common element in TG and IP repository rep-

resentations is the type attribute. Therefore, this element will be used to bind an

ip to a node. Fig. 3 shows a simplified XML structure representing the IP repos-

itory. The repository contains IPs for digital signal processing, matrix operations,

text processing and image manipulation.

<?xml version="1.0" encoding="UTF-8"?>

<repository>

<ips>

<ip id="10" type="0" procID="3" .../>

<ip id="23" type="38" procID="5" .../>

<ip id="68" type="12" procID="14" .../>

<ip id="99" type="47" procID="17" .../>

</ips>

</repository>

Fig. 3 IP repository XML structure
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These simplified and well-structured representations are easily intelligible, im-

prove information processing and can be universally shared among different NoC

design tools.

5 The IP Mapping Problem

The platform-based design methodology for SoC encourages the reuse of compo-

nents to increase reusability and to reduce the time-to-market of new designs. The

designer of NoC-based systems faces two main problems: selecting the adequate

set of IPs that optimize the execution of a given application and finding the best

physical mapping of these IPs into the NoC structure.

The main objective of the IP assignment stage is to select, from the IP repository,

a set of IPs that minimize the NoC consumption of power, area occupied and execu-

tion time. At this stage, no information about physical allocation of IPs is available

so optimization must be done based on TG and IP information only. So, the result

of this step is the set of IPs that maximizes the NoC performance. The TG is then

annotated and an APG is produced, wherein each node has an IP associated with it.

Given an application, described by its APG, the problem that we are concerned

with now is to determine how to topologically map the selected IPs onto the net-

work, such that the objectives of interest are optimized. Some of these objectives

are: latency requirements, power consumption of communication, total area occu-

pied and thermal behavior. At this stage, a more accurate execution time can be

calculated taking into account of the distance between resources and the number of

switches and links crossed by a data package along a path. The result of this pro-

cess should be an optimal allocation of the one of the prescribed IP assignments,

selected in an earlier stage, to execute the application, described by the TG, on the

NoC structure.

6 The Choice of Optimization Objectives

Different objectives may be considered in the IP mapping problem. If the improve-

ment of an objective leads to the deterioration of another (e.g. maximizing clock

frequency increases power consumption), the objectives are said to be concurrent.

On the other hand, if the improvement of an objective leads to the improvement of

another, the objectives are said to be collaborative. Optimization problems with con-

current and collaborative objectives are called Multi-objective Optimization Prob-

lems (MOPs). In such problems, all collaborative objectives should be grouped and

a single objective among those should be used in the optimization process, which

achieves also the optimization of all the collaborative objectives in the group. How-

ever, concurrent objectives need all to be considered in the optimization process.

The best solution for a MOP is the solution with the adequate trade-off between

concurrent and collaborative objectives.

Table 1 helps choosing the minimal set of objectives to be considered in IP map-

ping optimization stage. A up/down arrow in entry for objectives i ×j means that
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Table 1 Concurrent and Collaborative Objectives

Area Cost Clock Time Power # PEs

Area ↓ - - - - ↓

Cost - ↓ - - - ↓

Clock - - ↑ ↓ ↑ -

Time - - ↑ ↓ ↑ -

Power - - ↓ ↑ ↓ -

# PEs ↓ ↓ - - - ↓

an increase/reduction with respect to objective i also leads to and increase/reduction

with respect to objective j.

For instance, the last column of Table 1, which characterizes objective #PE
(i.e. number of processor elements), indicates that a reduction with respect to this

objective yields a reduction with respect to both area and cost. Therefore, those

three objectives are considered collaborative. This is the same case for objective

time and clock frequency. However, the penultimate column of Table 1, that char-

acterizes objective power, indicates that a reduction in power leads to an increase

in both time and clock frequency. Note that objective power must be minimized.

Therefore, objective power is considered concurrent with both objective time and

clock frequency. As a conclusion, the adequate trade-off can be achieved using only

minimization functions of objectives area, execution time and power consumption.

7 Multi-objective Evolutionary Approach

The search space for a “good” IP mapping for a given application is defined by

the possible combinations of IP/tile available in the NoC structure. Assuming that

the mesh-based NoC structure has N × N titles and there are at most N2 IPs to

map, we have a domain size of N2!. Among the huge number of solutions, it is

possible to find many equally good solutions. In huge non-continuous search space,

deterministic approaches do not deal very well with MOPs. The domination concept

introduced by Pareto [16] is necessary to classify solutions. In order to deal with

such a big search space and trade-offs offered by different solutions in a reasonable

time, a multi-objective evolutionary approach is adopted.

The core of the proposed tool offers the utilization of two well-known and well-

tested MOEAs: NSGA-II [2] and microGA [1]. Both adopt the domination concept

with a ranking schema for classification. The ranking process separates solutions

in Pareto fronts where each front corresponds to a given rank. Solutions from rank

one, which is the Pareto-optimal front) are equally good and better than any other

solution from Pareto fronts of higher ranks.



114 N. Nedjah, M.V.C. da Silva, and L. de Macedo Mourelle

NSGA-II features a fast and elitist ranking process that minimizes computational

complexity and provides a good spread of solutions. The elitist process consists

in joining parents and offspring populations and diversity is achieved using the

crowded-comparison operator [2]. MicroGA works with a very small population

(3 to 5 individuals), which makes it very fast. A bigger population is stored on a

population memory divided in replaceable and non-replaceable areas. The elitist

process consists of storing the best solutions on a external memory and diversity is

achieved using an adaptive grid [1].

The basic workflow of both algorithms is almost the same. They start with a

random population of individuals, where each individual represents a solution. Each

individual is associated with a rank. The selection operator is applied to select the

parents. The parents pass through crossover and mutation operators to generate an

offspring. A new population is created and the process is repeated until the stop

criterion is satisfied.

7.1 Representation and Genetic Operators

The individual representation is shown in Fig. 4. The tile indicates information on

the physical location on which a gene is mapped. On a N × N regular mesh, the

tiles are numbered successively from top-left to bottom-right, row by row. The row

of the ith tile is given by ⌈i/N⌉, and the corresponding column by i mod N .

Fig. 4 Chromosome encoding of an IP mapping

The crossover and mutation operators were adapted to the fact that the set of

selected IPs can not be changed as we have to adhere to the set of prescribed IP

assignments. For this purpose, we propose a crossover operator that acts like a shift

register, shifting around a random crossover point and so generating a new solution,

but with the same set of IPs. This behavior does not contrast with the biological

inspiration of evolutionary algorithms, observing that certain species can reproduce

through parthenogenesis, a process in which only one individual is necessary to

generate an offspring [19].

The mutation operator performs an inner swap mutation, where each gene re-

ceives a random mutation probability, which is compared against the system muta-

tion probability. The genes with mutation probability higher than the system’s are
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Fig. 5 Application of the proposed shift crossover

Fig. 6 Application of the proposed inner swap mutation

swapped with another random gene of the same individual, instead of selecting a

random IP from the repository. This way, it is possible to explore the allocation

space preserving any optimization done in the IP assignment stage. The crossover

and mutation strategies adopted in the IP mapping stage are represented in Fig. 5

and Fig. 6, respectively.

8 Objective Function

During the evolutionary process, the fitness of the individuals with respect to each

one of the selected objectives (i.e. area, time, and power) must be efficiently com-

puted.

8.1 Area

In order to compute the area required by a given mapping of the application in

question, it is necessary to know the area needed for the selected processors and

that ocupied by the used links and switches. As a processor can be responsible for

more than one task, each APG node must be visited in order to check the processor

identification in the appropriate XML element. Grouping the nodes with the same

processorID attribute allows us to implement this verification. The total number of

links and switches can be obtained through the consideration of all communication

paths between exploited tiles. Note that a given IP mapping may not use all the
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available tiles, links and switches that are available in the NoC structure. Also, ob-

serve that a portion of a path may be re-used in several communication paths.

In this work, we adopted a fixed route strategy wherein data emanating from

tile i is sent first horizontally to the left or right side of the corresponding switch,

depending on the target tile position, say j, with respect to i in the NoC mesh, until

it reaches the column of tile j, then, it is sent up or down, also depending on the

position of tile j with respect to tile i until it reaches the row of the target tile. Each

communication path between tiles is stored in the routing table. The number of links

in the aforementioned route can be computed as described in Equation 1. This is also

represents the distance between tiles i and j and called the Manhattan distance [11].

nLinks(i, j) = |⌈i/N⌉ − ⌈j/N⌉| + |i mod N − j mod N | (1)

In the purpose of computing efficiently the area required by all used links and

switches, an APG can be associated with a so-called routing table whose entries

describe appropriately the links and switches necessary to reach a tile from another.

The number of hops between tiles along a given path leads to the number of links be-

tween those tiles, and incrementing that number by 1 yields the number of traversed

switches. The area is computed summing up the areas required by the implementa-

tion of all distinct processors, switches and links.

Equation 2 describes the computation involved to obtain the total area for the

implementation a given IP mapping M , wherein function Proc(.) provides the set

of distinct processors used in APGM and areap is the required area for processor p,

function Links(.) gives the number of distinct links used in APGM , Al is the area

of any given link and As is the area of any given switch.

Area(M) =
∑

p∈Proc(APGM)

areap + (Al + As) × Links(APGM ) + As (2)

8.2 Execution Time

To compute the execution time of a given mapping, we consider the execution time

of each task of the critical path, their schedule and the additional time due to data

transportation through links and switches along the communication path. The crit-

ical path can be found visiting all nodes of all possible paths in the task graph and

recording the largest execution time of the so-called critical path. The execution

time of each task is defined by the taskTime attribute in TG. Links and switches can

be counted using the routing table. We identified three situations that can degrade

the implementation performance, increasing the execution time of the application:

1. Parallel tasks mapped into the same tile: A TG can be viewed as a sequence

of horizontal levels, wherein tasks to the same level may be executed in paral-

lel (at the same time) allowing for a reduction of the overall execution time of

the application. For instance, Figure 8 shows a TG that can be viewed as a se-

quence of 7 levels: level0 = {t0}; level1 = {t1, t2}; level2 = {t3, t4};level3 =
{t5, t6, t7, t8}; level4 = {t9, t10, t11, t12}; level5 = {t13, t14}; and level6 =
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{ t15 } . When parallel tasks are assigned in the same processor, which also means

that these occupy the same tile of the NoC, they cannot be executed in parallel.

2. Parallel tasks with partially shared communication path: When a task in a tile

(source) must send data to supposedly parallel tasks in different tiles (targets)

through the same initial link, data to both tiles cannot be sent at the same time.

For instance, using the mesh-base NoC of Figure 1, if the task on the most left

upper tile have to send data to its right neighbor tile and to that on the most right

upper tile at the same time, the initial link is common to both communication

paths and so no parallelism can occur in such a case.

3. Parallel tasks with common target using the same communication path: When

several tasks need to send data to a common target task, one or more shared links

along the partially shared path would be needed simultaneously, the data from

both tasks must then be pipelined and so will not arrive at the same time to the

target task. For instance, using the mesh-base NoC if Figure 1, if the task on the

most left upper tile and that on the most right upper tile have to send data to the

center tile at the same time, they would send it to the right and left, respectively,

and the upper center switch would buffer the data and send it in a pipelined

manner to the center tile.

Equation 3 is computed using a recursive function that implements a depth-first

search, wherein function Paths(.) provides all possible paths of a given APG and

timet is the required time for task t. After finding the including the total execution

time of the tasks that are traversed by the critical path, the time of parallel tasks

executed in the same processor need to be accumulated too. This is done by func-

tion SameProcSameLevel(.). The delay due to data pipelining for tasks on the same

level is added by SameSourceCommonPath(.). Last but not least, the delay due to

pipelining data that are emanating at the same time from several distinct tasks yet

for the same target task is accounted for by function DiffSrcSameTgt(.).

T ime(M) = max
r∈Paths(APGM )

(

∑

t∈r

timet

+SameProcSameLevel(r, TG, APGM)

+SameSrcCommonPath(r, TG, APGM )

+DiffSrcSameTgt(r, TG, APGM))

(3)

Function SameProcSameLevel(.) compares tasks of a given same level that are

implemented by the same processor and returns the additional delay introduced in

the execution of those tasks. Algorithm 1 shows how function SameProcLevel(.),
that uses information from path r, application task graph T and its corresponding

characterization graph C to compute the delay in question.

Function SameSourceCommonPath(.) computes the additional time due to par-

allel tasks that have data dependencies on tasks mapped in the same source tile

and yet these share a common initial link in the communication path. Algorithm 2
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Algorithm 1. SameProcSameLevel(r, T , C)

1. time :=0
2. for all t ∈r do

3. for all n ∈T do

4. if T.level(t) = T.level(n) then

5. if C.processor(t) = C.processor(n) then

6. time := time + n.taskT ime

7. return time

shows the details of the delay computation using information from path r, applica-

tion task graph T and its corresponding characterization graph C. In that algorithm

T.targets(t) yields the list of all possible target tasks of task t, A.initPath(src, tgt)
returns the initial link of the communication path between tiles src and tgt and

penalty represents a time duration needed to data to cross safely from one switch to

one of its neighbors. This penalty is added every time the initial link is shared.

Algorithm 2. SameSrcCommonPath(r, T , C)

1. penalty := 0
2. for all t ∈r do

3. if T.targets(t) > 1 then

4. for all n ∈T.targets(t) do

5. for all n′ ∈T.targets(t) |n′ �= n do

6. if C.initPath(t, n) = C.initPath(t, n′) then

7. penalty := penalty + 1
8. return penalty

Function DiffSrcSameTgt(.) computes the additional time due to the fact that par-

allel tasks producing data for the same target task need to use simultaneously at least

a common link along the communication path. Algorithm 3 shows the details of the

delay computation using information from path r, application task graph T and its

corresponding characterization graph C. In that algorithm, C.Path(src, tgt) is an

ordered list w of all links crossed through src task to tgt task and penalty has the

same semantic as in the Algorithm 2.

8.3 Power Consumption

The total power consumption of an application NoC-based implementation consists

of the power consumption of the processors while processing the computation per-

formed by each IP and that due to the data transportation between the tiles. The for-

mer can be computed summing up attribute taskPower of all nodes of the APG and

the latter is the power consumption due to communication between the application

tasks through links and switches. The power consumption due to the computational

activity is simply obtained summing up atribute taskPower of all nodes in the APG

and is as described in Equation 4.
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Algorithm 3. DiffSrcSameTgt(r, T , C)

1. penalty := 0
2. for all t ∈ r do

3. for all t′ ∈ r | t′ �= t do

4. if T.level(t) = T.level(t′) then

5. for all n ∈ T.targets(t) do

6. for all n′ ∈ T.targets(t′) do

7. if n = n′ then

8. w := C.Path(t, n)
9. w′ := C.Path(t′, n′)

10. for i = 0 to min(w.length, w′.length) do

11. if w(i) = w′(i) then

12. penalty := penalty + 1
13. return penalty

Powerp(M) =
∑

t∈APGM

powert (4)

The power consumption due to communication is a very important factor and

must be considered in order to achieve low power consumption NoC designs. An

energy model for one bit consumption is used to compute the total energy consump-

tion for the whole communication involved during the execution of an application

on the NoC platform. The bit energy (Ebit), energy consumed when a data of one

bit is transported from one tile to any of its neighboring tiles, can be obtained as in

Equation 5:

Ebit = ESbit
+ ELbit

(5)

wherein ESbit
and ELbit

represent the energy consumed by the switch and link tying

the two neighboring tiles, respectively [7].

The total power consumption of sending one bit of data from tile i to tile j can

be calculated considering the number of switches and links the bit passes through

on its way along the path, as shown in Equation 6.

Ei,j
bit = nLinks(i, j)× ELbit

+ (nLinks(i, j) + 1) × ESbit
(6)

wherein function nLinks(.) provides the number of traversed links (and switches

too) considering the routing strategy used in this work and described earlier in this

section. The function is is defined in Equation 1.

Recall that the application TG gives the communication volume (V (t, t′)) in

terms of number of bits sent from the task t to task t′ passing through a direct

arc dt,t′ . Assuming that the tasks t and t′ have been mapped onto tiles i and j re-

spectively, the communication volume of bits between tiles i and j is then V (i, j)
= V (dt,t′ ). The communication between tiles i and j may consist of a single link

li,j or by a sequence of m > 1 links li,x0
, lx0,x1

, lx1,x2
, . . . , lxm−1,j . For instance,

to establish a communication between tiles 0 and 8 (upper most left most and lower
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most right most) in the NoC structure of Figure 1, the sequence of links is therefore

l0,1, l1,2, l2,5 and l5,8.

The total network communication power consumption for a given mapping M is

given in Equation 7, wherein Targetst provides all tasks that have a direct depen-

dency on data resulted from task t and T ilet yields the tile number into which task

t is mapped.

Powerc(M) =
∑

t ∈ APGM ,
∀t′ ∈ Targetst

V (dt,t′) × E
Tilet,T ilet′

bit , (7)

Recall that the total power consumption of the application NoC-based implemen-

tation is given by the sum of the power consumption due the computational side of

the application and that due to the communication involved between tiles, as explic-

itly shown in Equation 8.

Power(M) = Powerp(M) + Powerc(M) (8)

9 Results

First of all, to validate the implementation of both algorithms, these were submit-

ted to solve mathematical MOPs and the results were compared with their original

results. Fig. 7 shows results of both algorithms for a two objective optimization

problem called KUR, proposed by Kursawe and used by Deb and Coello to validate

NSGA-II [2] and microGA [1], respectively.

Fig. 7 Results for KUR function

Both algorithms converged to the true Pareto-front. As expected, NSGA-II found

a higher diversity of solutions while microGA was much more faster. The parame-

ters used for these tests were the same used by their original authors.
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For NoC optimization, only the individual representation and the objective func-

tions were changed, keeping the ranking, selection, crossover and mutation oper-

ators unchanged. Different TGs generated with TGFF [4] and from E3S, with se-

quential and parallel tasks, were used.

Many simulations were performed to find out the setting up of the parameters

used in NSGA-II and micro-GA. For the former, we used a population size of 600,

mutation probability of 0.01, crossover probability of 0.8 and tournament size of 50

and run the algorithm of 100 generations. For the latter, we used population mem-

ory size of 1000, replaceable fraction of 0.7, non-replaceable fraction of 0.3, micro

population of 4 individuals, mutation probability of 0.02, crossover probability of

0.09, tournament size of 2, external memory of 200, nominal convergence of 4, re-

placement cycle of 100, bisection of 5, and run the algorithm for 3000 generations.

The application, represented as a TG in Fig. 8, was generated with TGFF [4].

This TG presents five levels of parallelism, formed by the mirrored left-right side

nodes.

Analyzing the results obtained from the first simulations, we observed that in

order to achieve the best trade-off, the system allocated many tasks for the same

Fig. 8 Task graph with five levels of parallelism
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processor, which reduces area and execution time but generates hot spots [21]. A hot

spot is an area of high activity within a silicon chip. Hot spots can damage a silicon

chip and increases power consumption because of Avalanche Effect; an effect that

increases reverse current in semiconductor materials because of temperature rising

and other factors [12]. In order to avoid the formation of hot spots, a maximum tasks

per processor constraint was imposed in the evolutionary process. This parameter

is decided by the NoC designer based on some extra physical characteristics. We

adopted a maximum of 2 tasks per processor.

The IP assignment [17] of the TG represented in Fig. 8 was able to discover 97

distinct optimal IP assignments. From those 97 distinct of IP assignments, 142 op-

timal mappings were generated. The 15 most significant solutions from the Pareto-

front, with respect to each of the considered objectives, are listed in Table 2 and

Table 3. Table 2 presents the IPs assigned to each node of the TG and the respective

fitness in terms of to each of the selected objectives after running the IP assignment

step. Table 3 presents the tile where each assigned IP was mapped and Table 4 shows

the respective fitness in terms of each of the selected objective after completing the

IP mapping step. The first five solutions impose shorter execution times; the next

five require smaller hardware areas and the last five solutions present lower power

consumptions. The differences in execution time and power, observed when com-

paring the data from both tables is because of the inflicted penalty in execution time

and power due to the use of shared links and switches.

Fig. 9–(a) represents the time × area trade-off, Fig. 9–(b) depicts the power ×
time trade-off and Fig. 9–(c) plots the power × area trade-off. As we can observe,

comparing the dots against the line of interpolation, the trade-off between time and

area and between power and time is not so linear as the trade-off between power and

area. Fig. 9–(a) shows that solutions that require more area tend to spend less execu-

tion time because of the better distribution of the tasks allowing for more parallelism

to occur. Fig. 9–(b) shows that solutions that spend less time of execution tend to

consume more power because of IP’s features, such as higher clock frequency, and

physical effects like intensive inner-electrons activity. Fig. 9–(c) shows a linear re-

lation between power consumption and area. Those values and units are based on

E3S Benchmark Suite [3].

Figure 10–(a) shows the Pareto-front discrete points. Figure 10–(b) shows the

Pareto-front formed by the Pareto-optimal solutions. Note that many solutions have

very close objectives values.

For a TG of 16 tasks, a 4 × 4 mesh-based NoC is the maximal physical structure

necessary to accommodate the corresponding application. Table 4 shows that no

solution used more than ten resources to map all tasks. The unused 6 tiles may

denote a waste of hardware resources, which consequently lead to the conclusion

that either the geometry of the NoC is not suitable for this application or the mesh-

based NoC is not the ideal topology for its implementation.
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Fig. 9 Trade-offs representation of the 142 optimal IP mappings obtained for the task graph

of Fig. 8
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Table 4 Characteristics of optimal IP mappings for the task graph of Fig. 8

solution time (s) area1 power (W ) Used tiles

1 0.1225 19.9514 52.9501 10

2 0.129 6.386 21.1251 9

3 0.1362 6.506 21.1251 9

4 0.144 6.2951 23.5501 8

5 0.1503 6.566 19.6001 9

6 0.2073 3.6056 15.8401 8

7 0.2583 3.787 15.0401 8

8 0.1503 4.4066 18.7001 8

9 0.1829 4.5676 16.8701 9

10 0.1819 4.6276 17.2701 9

11 0.2073 4.267 15.0401 8

12 0.2073 3.7856 15.8401 8

13 0.1819 4.8076 16.8701 9

14 0.1819 4.6276 17.2701 9

15 0.1503 4.6466 18.7001 8

1 (x10−5m2).

Table 5 Processors of solution #8 from Table 2 and Table 3

TG Node 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Proc ID 32 32 15 13 17 0 6 17 30 6 13 0 30 15 23 23

IP ID 942 937 458 378 490 43 240 480 855 216 379 13 862 456 724 719

Tile 0 0 4 5 10 6 1 10 9 1 5 6 9 4 8 8

As a specific mapping example, we detail solution #8 in Table 3, which seems to

be a moderate solution with respect to every considered objectives. Table 5 specifies

the processors used in solution #8 and Fig. 11 shows the mapping of this solution

into the mesh-based NoC. We can observe that all parallel tasks were allocated in

the distinct processors, which reduces execution time. The number of processors

were minimized based on the optimization of the objectives of interest and this min-

imization was controlled by the maximum tasks per processor constraint to avoid

hot spots [21]. The processors were allocated in such way to avoid delay of commu-

nication due to links and switches disputed by more than one resource at the same

time.
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Fig. 11 Mapping of solution #8 from Table 2 and Table 3

10 Conclusions

The problem of mapping IPs into a NoC topology is NP-hard [6] key research prob-

lems in NoC design [15]. In this paper we propose a decision support system based

on MOEAs to help NoC designers allocate a prescribed set of IPs into a NoC phys-

ical structure. The use of two different MOEAs consolidates the obtained results.

Structured and intelligible representations of a NoC, a TG and of a repository

of IPs were used and these can be easily extended to different NoC applications.

Despite of the fact that we have adopted E3S Benchmark Suite [3] as our repository

of IPs, any other repository could be used and modeled using XML, making this

tool compatible with different repositories.

The proposed shift crossover and inner swap mutation genetic operators can be

used in any optimization problem where no lost of data from a individual is ac-

cepted.

Future work is three-fold: adopting a dynamic topology strategy to try to evolve

the most adequate topology for a given application; exploring the use of differ-

ent objectives based on different repositories and proposing an interfacing mecha-

nism with a hardware description simulator to integrate our tool to the NoC design

platform.
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1 Introduction

Inoursociety,variouscombinatorialoptimizationproblemsexistandwe
mustoftensolvethem,fore.g.scheduling,deliveryplanning,circuitdesign,
andcomputerwiring.Then,oneoftheimportantissuesinscienceandengi-
neering ishowto developeffectivealgorithmsforsolving thesecombinatorial
problems.

To developeffectivealgorithmsforsuchcombinatorialoptimizationprob-
lemsintherealworld,thestandardcombinatorialoptimizationproblemsare
intensivelystudied:forexample,traveling salesmanproblems,quadraticas-
signmentproblems,vehiclerouting problems,packetrouting problems,and
motifextractionproblems.Among them,thetraveling salesmanproblem
(TSP) isoneofthemoststandardcombinatorialoptimizationproblems.
TheTSPisdescribedasfollows:whena setofN citiesanddistancesdij

betweencitiesi andj aregiven,findanoptimalsolution,ortheshortest-
lengthtourvisiting allthecitiesonce.Namely,thegoalofTSPisto finda
permutationσ ofthecitiesthatminimizesthefollowing objectivefunction:

L(σ) =

N−1
∑

k= 1

dσ(k)σ(k+1) + dσ(N)σ(1), (1)
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where L(σ) is the tour length of the TSP with σ. If dij = dji for all i and j,
the TSP is symmetric; otherwise, it is asymmetric. In this chapter, we deal
with the symmetric TSP.

For an N -city symmetric TSP, the number of all possible tours is (N −
1)!/2. Thus, the number of tours factorially diverges if the number of cities
increases. It is widely acknowledged that the TSP belongs to a class of NP-
hard. Therefore, it is required to develop an effective approximate algorithm
for finding near-optimal solutions in a reasonable time frame.

To discover approximate solutions, various heuristic algorithms have al-
ready been proposed. In 1985, Hopfield and Tank proposed an approach for
solving TSPs by using a recurrent neural network. They applied descent
downhill dynamics of the recurrent neural network to obtain approximation
solutions of TSPs [1]. Although this approach is interesting from the view-
point of an application of neural dynamics to real engineering problems, such
as combinatorial optimization, it has two drawbacks.

The first drawback is that this approach has a local minimum problem: it
uses simple descent downhill dynamics of the neural network to obtain better
solutions of TSPs; states of the neural networks can be stuck at undesirable
local minima. To resolve the local minimum problems, two main strategies
that uses chaotic dynamics have been proposed. The first solution is to inject
chaotic noise into the dynamics of the neural network [2,3,4,5,6]. The second
solution is to replace the descend downhill dynamics with chaotic dynamics
[7, 8, 9, 10]. Recently, these strategies have been applied to combinatorial
optimization in engineering, for example, channel assignment problems [11],
frequency assignment problems [12], multicast routing problems [13], and
broadcast routing problems [13]. The performance of using chaotic dynamics
shows that the algorithm finds an optimal or near-optimal solutions of the
problems. In this chapter, we review basic theories of these strategies in
Sects. 2.1 and 2.2.

Although the first drawback can be resolved by the above-mentioned
strategies, namely chaotic noise injection and chaotic dynamics in recurrent
neural networks, there still exists the second drawback. The methods based
on the recurrent neural networks cannot be applied to large scale instances
of combinatorial optimization, because it takes a huge amount of memories
to construct the neural network. In addition, it is not so easy to obtain a
feasible solution. In the method, a solution of TSPs is encoded by a firing
pattern of the neural network. Thus, a solution is generated only in the case
that the firing pattern of the neural network completely satisfies a constraint.

To resolve the second drawback, an approach in which heuristic algorithms
are controlled by the chaotic dynamics has been proposed [14, 15, 16, 17, 18].
In this approach with chaotic dynamics, to avoid local minima, execution
of a heuristic algorithm, such as the 2-opt algorithm , the 3-opt algorithm ,
the Or-opt algorithm [19] , the Lin-Kernighan (LK) algorithm [20] , and the
stem-and-cycle (S&C) ejection chain method [21,22], is controlled by chaotic
dynamics.
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In [14, 15, 16, 17, 18], to generate the chaotic dynamics, a chaotic neural
network [23, 24] is used. In the chaotic neural network, the basic element is
a chaotic neuron proposed by Aihara et al. [23, 24]. The model introduced
two important properties which real nerve cells have, namely graded response
and refractoriness . The latter means that when a neuron has just fired, the
firing of this neuron is inhibited for a while by the refractoriness.

In [14,15,16,17,18], execution of the local search algorithm is encoded by
firing of the chaotic neuron. If the chaotic neuron fires, the corresponding
local search algorithm is executed. Because the firing of the chaotic neuron
is inhibited by the refractoriness, frequent firing of the chaotic neuron, or
frequent execution of the local search algorithm is restricted. This can be a
mechanism for the chaotic search to escape from local minima efficiently. It
is reported that the refractoriness implemented in the chaotic neuron model
leads to a higher solving ability than the tabu search which has a similar
strategy of searching solutions as the chaotic search [15].

On the basis of the above idea that the refractoriness of the chaotic neuron
can be used for an effective escape from local minima, a chaotic search method
which controls the 2-opt algorithm has already been proposed [14, 15]. Al-
though the 2-opt algorithm is the simplest local search algorithm, the chaotic
search method with the 2-opt algorithm shows good results. In [14], in the case
of solving an N -city TSP, N ×N chaotic neurons are prepared and arranged
on N × N grid. Here, N × N neurons correspond to the number of possible
ways for constructing a new tour by the 2-opt improvement. As a result, this
chaotic search method shows solving performance with less than 0.2% gaps
from the optimal solution for instances with the order of 102 cities [14].

On the other hand, the tabu search [25,26] is also a quite effective strategy
for escaping from local minima. The chaotic search method in [15] is based
on the tabu search which is implemented on a neural network, because both
the tabu search and the chaotic search have similar strategies that forbid
backward moves. In [15], by assigning one neuron to one city, only N chaotic
neurons are used to solve an N -city TSP. As a result, this chaotic search
method can be applied to large scale examples, such as the 85,900-city one,
and it has high solving performance with less than 3.0% gaps from the optimal
solutions for instances with the order of 104 cities [15]. In addition, this
strategy has been improved by introducing other local searches, such as the
Or-opt algorithm [19], the Lin-Kernighan (LK) algorithm [20], and the stem-
and-cycle (S&C) ejection chain method [21, 22]. In [27, 28, 29, 30, 31, 17, 32],
these sophisticated local searches are controlled by chaotic dynamics. The
results show that large scale TSPs could be solved by these chaotic searches.

In this chapter, the chaotic search that resolves the second drawback in the
Hopfield-Tank neural network approach is described in In 3, we also review
several applications of this chaotic search to real engineering problems: the
vehicle routing problems in 3.1, the motif extraction problems in 3.2, and the
packet routing problems in 3.3.
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2 Methods

In this section, we review the methods for solving combinatorial optimization
problems by chaotic dynamics.

2.1 Chaotic Noise

Pe rformance improvement by the chaotic noise

Effectiveness of the chaotic noise for shaking the states of the solution search
has been shown by many papers [2,3,4,5,6]. In Figs. 1 and 2, the solvable per-
formances of the Hopfield-Tank neural networks [1] with stochastic noise and
chaotic noise are compared by applying to the TSP and QAP, respectively.
For these comparisons, the logistic map chaos, z(t + 1) = az(t)(1 − z(t)), is
introduced as a most simple example of chaotic sequence, with the parame-
ters a = 3.82, a = 3.92, and a = 3.95. As the stochastic noise, the Gaussian
white noise is introduced. The horizontal axis is noise amplitude β and the
vertical axis is the percentage of the optimum solution obtained by 1,000 dif-
ferent initial conditions. From the figures, it is clear that the chaotic noise is
effective for combinatorial optimization algorithm using the recurrent neural
networks. Although the original Hopfield-Tank neural network quickly con-
verges to a stable state corresponding to a local optimal and does not offer
the optimum solution for these problems in any cases, its performance can be
much improved by adding the chaotic noise, which makes the solvable perfor-
mances almost 100% for the 20-city TSP as shown in Fig. 1 and around 20%
for the 12-node QAP as shown in Fig. 2, respectively. The white Gaussian
noise also improves the performance of the Hopfield-Tank neural network,
but its solvable performances are around 80% and 6% for the TSP and the
QAP, respectively, and much lower than the chaotic noise cases. These results
show that the chaotic noise has much better solvable performance than the
stochastic noise.

The Hopfield-Tank neural network can be applied to combinatorial opti-
mization problems, based on its minimization property of the energy function

E(t) = −1

2

n
∑

i=1

n
∑

j=1

∑

k=1

∑

l=1

wikjlxik(t)xjl(t) +

n
∑

i=1

n
∑

k=1

θikxik(t), (2)

which always decreases by asynchronous update of each neuron by the fol-
lowing simple equation:

xik(t + 1) = f

⎡

⎣

n
∑

j=1

n
∑

l=1

wikjlxjl(t) + θik

⎤

⎦ , (3)

where xik(t) is the output of the ikth neuron at time t, wikjl is the connection
weight between the ikth and jlth neurons, and θik is the threshold of the ikth
neuron.
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Fig. 1 Solvable performance of the recurrent neural networks with the chaotic noise
and the white Gaussian noise on a 20-city TSP
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Fig. 2 Solvable performance of the recurrent neural networks with the chaotic noise
and the white Gaussian noise on a QAP (Nug12)

As already been applied in many previous researches, the energy function
for solving the TSPs [1,7,8,10,2,3] can be defined by the following equation:

ET S P = A

⎡

⎣

⎧

⎨

⎩

N
∑

i=1

(

N
∑

k=1

xik(t) − 1

)2
⎫

⎬

⎭

+

⎧

⎨

⎩

N
∑

k=1

(

N
∑

i=1

xik(t) − 1

)2
⎫

⎬

⎭

⎤

⎦

+ B

N
∑

i=1

N
∑

j=1

N
∑

k=1

dijxik(t){xjk+1(t) + xjk−1(t)}, (4)

where N is the number of cities, dij is the distance between the cities i and
j, and A and B are the weight of the constraint term (formation of a closed
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tour) and that for the objective term (minimization of total tour length),
respectively. In this neural network, firing of the ikth neuron means that the
city i is visited at the k order. From (2) and (4), the connection weights wijkl

and the threshold θijkl can be obtained as follows:

wikjl = −A{δij(1 − δkl) + δkl(1 − δij)} − Bdij(δlk+ 1 + δl−k−1), (5)

θij = 2A, (6)

where δij = 1 if i = j, δij = 0 otherwise. Using these connection weights and
the thresholds for the update equation in (3), the better solution of the TSP
may be found by simple neuronal updating, that appears as a firing pattern.

For the QAPs whose objective function is

F (p) =

N
∑

i=1

N
∑

j=1

aijbp(i)p(j), (7)

which has to be minimized by finding the optimal permutation p, we use the
following energy function:

EQAP = A

⎡

⎣

⎧

⎨

⎩

N
∑

i=1

(

N
∑

k=1

xik(t) − 1
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+ B

N
∑

i=1

N
∑

j=1

N
∑

k=1

N
∑

l=1

aijbklxik(t)xjl(t), (8)

where N is the size of the problem, aij and bkl are N × N matrices given in
the problem definition in (7), and A and B are the weight of the constraint
term (making p a permutation) and that for the objective term (minimization
of the objective function), respectively. In this neural network formulation,
firing of the ikth neuron means that the element i is assigned to the kth
location of the permutation. By transforming (8) to the form of the energy
function of the recurrent neural network in (2), the connection weights and
the thresholds for solving the QAPs are obtained as follows:

wikjl = −A{δij(1 − δkl) + δkl(1 − δij)} − Baijbkl, (9)

θij = 2A. (10)

Using these connection weights and the thresholds for neuronal updates by
(3), the better solutions of the QAP may be obtained.

However, the Hopfield-Tank neural network is well known to have the lo-
cal minimum problem, because the energy function simply decreases and it
can search simply one solution in a huge number of local optimal solutions.
To improve the performance of such a neural network, the chaotic noise or
stochastic noise has been applied to this optimization neural network to im-
prove the solutions by avoiding trapping at the undesirable optimal states.
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In [3,4,6], the following update equation is used to apply the noise to the
neural network,

xik(t + 1) = f

⎡

⎣

N
∑

j=1

N
∑

l=1

wikjlxjl(t) + θik + βzik(t)

⎤

⎦ , (11)

where zik(t) is a noise sequence added to the ikth neuron, β is the amplitude
of noise, and f is the sigmoidal output function, f(y) = 1/(1 + exp(−y/ǫ)),
respectively. The noise sequence introduced as zik(t) should be normalized
to zero mean and unit variance.

The results in Figs. 1 and 2 are obtained by using the neural network with
noise described above, with changing the noise amplitude β. From the results,
the noise amplitude β for the best performance differs among the noise. By
comparing the best solvable performances in each noise, effectiveness of the
chaotic noise can be clearly shown by such simple experiments.

Analysis on the effects of the chaotic noise

In order to know why the chaotic noise is more effective than other noise,
such as the Gaussian white noise, effectiveness of the chaotic noise has been
analyzed from various aspects.

In [2], Hayakawa et al. compared the performance of the neural networks
with the chaotic noise generated by the logistic map and those with randomly
shuffled sequences of the chaotic noise, whose temporal structure, such as
auto-correlation, is broken. Their results show that the performance with
the random shuffled sequence becomes much worse than the original chaotic
sequence. From such results, they anticipated that the temporal structure of
the chaotic noise is important in the chaotic search.

In [3], Hasegawa et al. presented much clearer results showing the impor-
tance of the temporal structure of the chaotic noise, by applying the method
of surrogate data [33]. They introduced three algorithms for generating surro-
gate data. The first one is the random shuffle algorithm, which is almost the
same as the method which was introduced in [2] mentioned above. It preserves
the empirical histogram of the original data. The second one is the Fourier
transformed surrogate algorithm, which generates stochastic data preserving
the auto-correlation function and the power spectrum of the original data.
Such surrogate data can be generated by applying the discrete Fourier trans-
form to the original data for obtaining the power spectrum, randomizing the
phase with keeping the same power spectrum, and then applying the inverse
discrete Fourier transform to the phase randomized spectrum. The generated
sequence will have the same power spectrum and auto-correlation function as
the original data. The third algorithm also preserves the auto-correlation and
power spectrum of the original data, and additionally the empirical histogram
of the original data.



138 T. Ikeguchi et al.

The results in [3] show that the neural networks with the noise sequences
generated by the second and the third surrogate algorithms, which preserve
the auto-correlation function and the power spectrum of the original chaotic
sequence, have almost the same performances as those of the neural network
with the original chaotic sequence. This result clearly shows that temporal
structure, such as auto-correlation function, of each noise is an important
factor for high performance of the chaotic search.

In [4], Hasegawa and Umeno focused on the shape of the auto-correlation
function of the chaotic sequences which leads the neural network with high
performance. Such chaotic sequences have the auto-correlation that gradually
converges to zero with damped oscillation. Such chaotic sequences with sim-
ilar auto-correlation have also been utilized in the chaotic CDMA researches
[34, 35]. In CDMA, minimization of the cross-correlation among the spread-
ing sequences leads to the lower mutual interference. In the chaotic CDMA
researches such as [34, 35], the chaotic sequences, whose auto-correlation are
C(τ) ≈ c × (−r)τ , have been used, that is similar to the chaotic sequences
which leads high performance on the optimization neural network described
above, where r is the damping factor, τ is the lag, and c is a constant. It
has been shown that the auto-correlation with the r = 2 −

√
3 leads to the

minimum cross-correlation among the sequences. By using such a sequences,
performance of the bit error rate in the CDMA communication could be
improved in [35].

Hasegawa and Umeno also investigated the performance of the neural net-
work with such noise whose auto-correlation is C(τ) ≈ c×(−r)τ , and showed
that higher performance can be realized only by the noise with positive r
which is similar auto-correlation as the original chaotic sequence. Further-
more, in [6], Minami and Hasegawa showed that injection of negative auto-
correlation sequences leads to the lower cross-correlation that may be realized
by the same mechanism as the chaotic CDMA [34,35]. From these researches,
it has been shown that the neural networks with the chaotic noise have higher
solving abilities because their negative auto-correlation makes smallest cross-
correlation between the neurons that leads the high dimensional searching
dynamics of the neural network to the most complicated dynamics, and such
dynamics makes the performance much higher than other noise sequences
such as the white noise.

2.2 Recurrent Chaotic Neural Networks

Performance improvement by the chaotic neural networks

The chaotic neural network [23,24,36] has an inherent property to escape from
any fixed points except that of all the resting neurons due to accumulated
refractory effects. This property was first applied to dynamical associative
memory [23, 37], then to the optimization methods based on the Hopfield-
Tank neural networks [1], and effectiveness of chaotic dynamical searches has
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also been shown by many papers [7, 8, 9, 10]. The chaotic neural network is
a neural network model consisting of the chaotic neurons, which have the
chaotic dynamics. The chaotic neuron is an extension of the Nagumo-Sato
binary neuron model, which has an exponentially decreasing refractory effect,
to an analog version by replacing the Heaviside output function to the sig-
moidal output function. The chaotic neuron map can be described as follows:

y(t + 1) = ky(t) − αf(y(t)) + a, (12)

where y(t) is the internal state of the neuron at time t, k is the decay parame-
ter of the refractory effects, α is the scaling parameter of the refractory effects,
a is a positive bias, and f is a sigmoidal function, f(y) = 1/(1+ exp(−y/ǫ)).
The chaotic dynamics can be represented by this bimodal nonlinear map
[24, 36].

The chaotic neural network is a network composed of the chaotic neurons,
which is defined as follows [23, 36, 37]:

ηij(t + 1) = kmηij(t) +
∑

k

∑

l

Wijklxkl(t), (13)

ζij(t + 1) = krζij(t) − αxij(t) + aij , (14)

xij(t + 1) = f [ηij(t + 1) + ζij(t + 1)], (15)

where ηij(t) is the internal state for mutual connections of the ijth neuron at
time t, ζij(t) is the internal state for the refractory effects of the ijth neuron
at time t, aij is the positive bias for the ijth neuron, km and kr are the decay
parameters for the mutual connections and refractory effects, respectively.

In [7, 8, 9], the chaotic neural network with a single internal state which
corresponds to setting kr = km is used. Effectiveness of such chaotic dynam-
ics has been shown by Nozawa in [7], by comparing the performances with
those of the stochastic models on the basis of extension of the continuous-time
Hopfield neural network model to a discrete-time model with adding nega-
tive self-feedback connections for each neuron. Such a negative self-feedback
connection corresponds to the refractory effects in the above chaotic neural
network model, and this neural network has the chaotic dynamics as well. To
improve the performance of the chaotic search, Chen and Aihara proposed
chaotic simulated annealing by gradually reducing the effects of the chaotic
fluctuation in the searching dynamics [8], and showed that the performance
can be much improved.

Analysis on the effects of the chaotic neural network

In the chaotic noise approach in the previous section, the chaotic dynamics
has been introduced as additive noise to the gradient dynamics. In contrast
with such an approach, the chaotic neural network approach uses the search-
ing dynamics whose dynamics itself is chaotic. Therefore, the searching dy-
namics of the chaotic neural networks has various well-known characteristics



140 T. Ikeguchi et al.

of the chaotic dynamics, such as orbital instability , self-similarity , and so
on, and has better performance than the chaotic noise approach [38].

Such chaotic searching dynamics of the chaotic neural networks has been
analyzed by calculating the Lyapunov exponents [9, 10]. Although it is not
easy to estimate the Lyapunov exponents accurately for such high dimen-
sional chaotic dynamical systems, clear results have been obtained. Yamada
and Aihara calculated the Lyapunov exponents of the single internal state
model [9]. They analyzed the performance of the chaotic neural network with
changing its parameter values, and showed that sum of the positive Lya-
punov exponents of the high performance chaotic dynamics becomes close to
zero. They argued that such results mean that the edge of chaos , between
the periodic dynamics and the chaotic dynamics, has the best performance
for combinatorial optimization. Hasegawa et al. also analyzed the relation
between the solvable performances of the chaotic neural networks and its
Lyapunov exponents on the two-internal-state model described in (13) and
(14). They showed that it is possible to tune the dynamics of the chaotic neu-
ral network by changing the balance between two decay parameters, kr and
km, for the internal states ηij(t) and ζij(t), respectively, and obtained similar
results that the chaotic dynamics with smaller positive Lyapunov exponents
has the best performance. They also calculated the coefficient of variation,
as a complexity index of the firing interval of the neurons, and showed that
the chaotic dynamics with small Lyapunov exponents has higher complexity
that makes the chaotic neural network realize high solvable performances.

From the obtained results in various researches on the both approaches
using chaotic dynamics, the chaotic noise and the chaotic neural networks,
for the recurrent neural networks, described in the previous and present sec-
tions, it has been understood that chaos makes the searching dynamics very
complicated and the performance improved. Such chaotic dynamics is more
complex than the stochastic dynamics in a sense, and the better performance
can be realized. By further researches, it may be possible to completely clar-
ify the mechanism of the effectiveness of the chaotic search in the recurrent
neural network in the near future.

2.3 Chaotic Search That Controls Execution of

Heuristic Algorithm

Recurrent chaotic neural networks are effective for solving combinatorial opti-
mization problems as shown in the previous section 2.2, However, the method
cannot be applied to very large instances because it needs huge amounts of
memory to construct the neural network. In addition, it is not so easy to
obtain feasible solutions because a firing pattern of a chaotic neural net-
work encodes a solution. Thus, a solution is generated only in the case that
the firing pattern of the neural network satisfies the constraints. To resolve
these serious problems, the second approach, in which heuristic algorithms
are driven by the chaotic dynamics, has been proposed [14].
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In the approach, execution of a local search algorithm is controlled by the
chaotic dynamics. The basic element is a chaotic neuron proposed by Aihara
et al. [23, 24]. Execution of the local search algorithm is encoded by firing of
the chaotic neuron. If the chaotic neuron fires, the corresponding local search
algorithm is executed. After a neuron has just fired, the next firing of this neu-
ron is inhibited for a while by the refractoriness of the chaotic neuron. Thus,
frequent firing of the chaotic neuron, or frequent execution of the local search
algorithm is restricted. Therefore, the chaotic search can escape from local
minima efficiently. Then, it is reported that the refractoriness implemented
in the chaotic neuron model leads to equivalent or even higher solving ability
than tabu search which has almost the same strategy of searching solutions
as the chaotic search.

Using the above-mentioned idea, chaotic search methods have already been
proposed to find the near optimal solutions or approximate solutions for
combinatorial optimization problems such as traveling salesman problems
[14,39,40,15,16,18,27,17,32], quadratic assignment problems [41,42], vehicle
routing problems [43,44,45], motif extraction problems [46,47,48,49,18], and
packet routing problems [50, 51, 52, 53, 54, 55, 56, 57, 58]. In this section, we
describe the simplest chaotic search method for solving TSP [14, 39, 40, 15].
In the method, execution of the 2-opt algorithm is driven by the chaotic
neurodynamics . The 2-opt algorithm exchanges two paths with other two
paths until no further improvement can be obtained (Fig. 3). However, a tour
obtained by the 2-opt algorithm is not a global optimum but a local optimum.
To jump from such a local optimum, we applied the chaotic neurodynamics to
the 2-opt algorithm [14,41,15]. To realize the chaotic search and to avoid local
minima by the chaotic dynamics, a chaotic neuron is assigned to each city.
Then, if a chaotic neuron fires, the local searches related to the corresponding
city are carried out.

Dynamics of the ith chaotic neuron is defined as follows:

xi(t + 1) = f(yi(t + 1)), (16)

f(y) =
1

1 + exp(−y/ǫ))
, (17)

yi(t + 1) = ξi(t + 1) + ζi(t + 1), (18)

j

a(j)

i a(i)

j

a(j)

i a(i)

Fig. 3 An example of the 2-opt algorithm. In this example, a(i) is the next city
to i. Two paths (i-a(i) and j-a(j)) are deleted from the current tour, then new two
paths, i-j and a(j)-a(i), are added to obtain a shorter tour
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where xi(t + 1) is an output of the ith chaotic neuron at time t + 1; f(·) is
a sigmoidal function; yi(t + 1) is an internal state of the ith chaotic neuron
at time t + 1. The internal state is decomposed into two effects: a gain effect
and a refractory effect.

The gain effect is defined by

ξ i(t + 1) = max
j

{β(t)∆ij(t) + ζj(t)}, (19)

where ∆ij(t) is difference between the length of a current tour and that of a
new tour in which city j is next of city i after applying the 2-opt algorithm
to city i (Fig. 3). ζj(t) is a refractory effect of the jth city at time t which
is defined in (21). In (19), the refractory effect of the jth city is included to
avoid local minima. Let us assume that a searching state now gets stuck at
a local minimum. Then, we calculate a maximum value of ∆ij . In this case,
the maximum value is ∆ij = 0 because the current solution is a local optimal
solution or an optimal solution. Thus, to select other cities, the refractory
effect is included in (19). In this equation, β(t) is a scaling parameter, which
increases in proportion to time t as follows:

β(t + 1) = β(t) + λ. (20)

If we use (20), the searching space is gradually limited, which has a similar
characteristic as the simulated annealing [59]. If β(t) takes a small value, the
method can explore a large solution space. On the other hand, if β(t) takes
a large value, the method works like a greedy algorithm.

The refractory effect works to avoid the local minima, which has a similar
effect as a memory in the tabu search [25, 26]. In the tabu search, to avoid
a local minimum, previous states are memorized by adding them to a tabu
list and are not allowed again for a certain temporal duration called a tabu
tenure. In the case of the chaotic search, past firing is memorized as previous
states to decide the present strength of the refractory effect, which increases
just after corresponding neuron firing and recovers exponentially with time.
Thus, while the tabu search perfectly inhibits to select the same solutions
for the certain period, the chaotic search might permit to select the same
solutions if a corresponding neuron fires due to a larger gain effect or an
exponential decay of the refractory effect. The refractory effect is expressed
as follows:

ζi(t + 1) = −α

t
∑

d=0

kd
rxi(t − d) + θ (21)

= krζi(t) − αxi(t) + θ(1 − kr), (22)

where α controls the strength of the refractory effect after the firing (0 < α);
the parameter kr is the decay parameter of the refractory effect (0 < kr < 1);
and θ is the threshold value. If the neuron frequently fires in its past history,
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the first term of the right hand side of (35) becomes negative. Then the
neuron leads to a resting state. By using the chaotic neuron, we can realize
the tabu search method as a special case [25, 26, 41, 15]. The conventional
tabu effect can be described by setting the parameters α → ∞ and kr = 1 in
the refractory effect ζ′i of the chaotic neuron as follows:

ζ′i = −α

s−1
∑

d=0

kd
rxij(t − d) + θ, (23)

where s corresponds to a tabu tenure. If the neuron fired during s steps, firing
of this neuron is inhibited by the parameters α and kr. It is considered that
the computational cost is almost the same as the tabu search method. We
have already shown that the chaotic search method shows better performance
than the tabu search method in several examples [41, 15, 42, 47, 43, 44, 50, 51,
52].

When we solve the TSP, the following procedure is used:

1. An initial tour is constructed, for example by the nearest neighbor method.
2. The tour is improved by the 2-opt algorithm controlled by chaotic

dynamics.

a. A city i is selected from the neurons whose internal state has not been
updated yet.

b. A city j is selected in such a way that the gain effect is maximum.
c. If the ith neuron fires, city i and city j are connected by the 2-opt

algorithm.
d. The steps a)-c) are repeated until all neurons are updated.

3. One iteration is finished. Then, the step 2 is repeated.

To extend the above-mentioned algorithm, we have also proposed a new
chaotic search method [17]. In the method, execution of the LK algorithm [20]
is controlled by the chaotic dynamics. The LK algorithm [20] is one of the
most powerful variable depth search methods. It can explore better solutions
than the adaptive k-opt algorithm because the adaptive k-opt algorithm is
based on a simpler rule. The number of exchanged links k increases when a
gain of a (k+1)-opt improvement is larger than that of a k-opt improvement.
As a result, the chaotic search method using the LK algorithm shows solving
performance with less than 0.7% gaps from the optimal solution for instances
with the order of 104 cities and can be applied to large scale instances with
the order of 105 cities [17].

On the other hand, the S&C ejection chain method [21, 60] is also one of
the most effective variable depth search methods. It is reported that the S&C
ejection chain method leads to better solutions than the LK algorithm [60].
One of the reasons is that the S&C ejection chain method can explore more
diversified solution space, because it introduces an S&C structure, which is
not a tour. Namely, the S&C ejection chain method can explore infeasible
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Table 1 The results of the local search algorithms and the chaotic search methods.
Results are expressed by percentages of gaps between obtained solutions and the
optimal solutions (%)

Local search Chaotic search
2-opt 2opt + LK SC 2-opt 2opt+ LK SC

Instance Or-opt [19] [20] [21] [14,39,40,15] Or-opt [27] [17] [32]

pcb442 7.473 3.970 2.298 2.148 1.034 0.409 0.336 0.369
pcb1173 9.885 6.238 2.903 2.680 1.692 0.804 0.599 0.452
pr2392 9.563 5.294 4.225 3.252 1.952 1.153 0.619 0.466
rl5915 9.395 6.244 4.311 3.268 2.395 1.291 0.748 0.702

rl11849 8.752 5.567 4.066 3.248 2.223 1.139 0.708 0.652

solution space. However, the S&C ejection chain method also gets stuck at
local minima because it is also a greedy algorithm.

Table 1 shows performances of chaotic search methods for benchmark in-
stances of TSPLIB [61] (see [27,17,32] for details of the algorithms). Although
the computational cost of the chaotic search methods is larger than that of
the local search method because the refractory effect is calculated to avoid
local minima, the performance of the local search methods is much improved
by the chaotic dynamics.

3 Applications

In the previous section, we described the three basic approaches for solving
combinatorial optimization problems with chaotic dynamics. In this section,
we review the application of the chaotic search methods to three important
engineering applications: vehicle routing problems, motif extraction prob-
lems, and packet routing problems.

3.1 Vehicle Routing Problems

To plan an efficient schedule of the delivery, the vehicle routing problem
(VRP) is widely studied [62,25,26,63,64,43,44,45]. In this section, we explain
a chaotic search method for solving VRP. Then, we show the results for
the Solomon’s benchmark problems [65] and the Gehring and Homberger
benchmark problems [66].

The VRP consists of a depot, vehicles and customers. The depot is a
departure and an arrival point of the vehicles. Each vehicle has a weight
limit and visits the customers to satisfy their demands. The customers are
visited only once by one vehicle. Then, the object of the VRP is to minimize
the number of vehicles and the total travel distance. Generally speaking, a
primary object of the VRP is to minimize of the number of vehicles. Thus,
we use the following objective function:
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g(S) =

m
∑

l=1

Dl + γ × m, (24)

where S is a solution (a set of tours of all vehicles), m is the number of
vehicles, Dl is the total travel distance of the lth vehicle, and γ is the scaling
parameter. Because the first priority of the VRP is to reduce the number of
vehicles, we set γ large. We deal with a VRP with time windows (VRPTW).
In the VRPTW, each customer has its own time window, and the vehicles
have to visit the customers within the time window. If the time windows are
violated, solutions are infeasible.

In the chaotic search method, we use two simple local searches. The first
one is to exchange the customer for another one, and the second one is to
relocate the customer to another place. In the method of [44, 43, 45], 2n
neurons are needed to solve an n-customer problem. Each neuron corresponds
to each customer. If a neuron fires, a customer corresponding to the neuron
is exchanged or relocated.

To realize the chaotic search, each neuron has a gain effect and a refractory
effect. These effects of the ijth neuron are defined as follows:

ξij(t + 1) = max
s

{β∆ijs}, (25)

ζij(t + 1) = −α

t
∑

d=0

kd
rxij(t − d) + θ, (26)

where ξij(t) and ζij(t) represent the gain effect and the refractory effect,
respectively. Then, an output of the ijth neuron is defined as follows:

xij(t + 1) = f{ξij(t + 1) + ζij(t + 1)}, (27)

where f(y) = 1/(1 + e−y/ǫ). If xij(t) > 1/2, the ijth neuron fires at time t,
and the local search to which the neuron corresponds is performed.

In (25), β is the positive scaling parameter of the gain effect, and ∆ijs is the
gain value of the objective function (24) if the local searches are performed.
∆ijs = g(SB) − g(SA), where SB and SA are solutions before and after the
local searches are performed respectively. Here, s indicates a customer to be
exchanged (Fig. 4(a)) or relocated to their next order (Fig. 4(b)), and s is so
selected that ∆ijs takes the maximum gain. By the gain effect, the neurons
corresponding to good operations become easy to fire.

In (26), α is the positive scaling parameter, kr(0 < kr < 1) is the de-
cay factor, and θ is the threshold value. Then, the refractory effect inhibits
firing of the neuron which has just fired; this realizes a memory effect with
an exponential decay. The strength of the refractory effect gradually decays
depending on the value of kr.

In the method of [44, 43, 45], the neurons are asynchronously updated.
When all the neurons are updated, a single iteration is finished.
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Fig. 4 Construction of chaotic neurons and two local searches used in the chaotic
search method: (a) Exchange of one customer for another customer and (b) Re-
location of one customer for another place. If the ijth neuron fires, (a) the ith
customer is exchanged (j = 1) for another one customer s or (b) the ith customer
is relocated (j = 2) to a next order of customer s

To evaluate the performance of the proposed method, we solved the
Solomon’s benchmark problems [65] and the Gehring and Homberger bench-
mark problems [66]. We produced an initial solution using the Bräysy con-
struction heuristic method [67]. Then, we treated time windows as hard
constraints. The parameters in (25)–(27) are set as follows: β = 0.04, α =
0.5, kr = 0.9, θ = 0.9, and ǫ = 0.02.

Results are shown in Table 2. The simulations are conducted by an Intel
Core 2 Duo 2GHz computer for 1, 000 iterations. Table 2 shows the average
numbers of vehicles and the average total travel distances (italic) for each
problem type. These results show that the proposed method provides good
results. In addition, we compared the proposed method with the other con-
ventional methods (see [64, 43, 44, 45] for details). The results indicated that
the proposed method has higher performance than the other conventional
methods by changing the values of parameter effectively depending on the
constraints of each problem.

3.2 Motif Extraction Problems

To identify an important region in biological sequences, the motif extraction
problem (MEP) is solved in bioinformatics. In this section, we explain a
Chaotic Motif Sampler (CMS), that employs chaotic dynamics to solve the
MEPs [68, 46, 47, 48, 69, 49, 70].

The definition of the MEP can be mathematically described as follows [71]:
we have a biological data set S = {s1, s2, ..., sN}, where si is the ith sequence
(Fig. 5). Each sequence consists of mi (i = 1, 2, ..., N) elements. In the case
of DNA or RNA, the elements correspond to four bases; while in the case of
protein sequences, they correspond to 20 amino acids. V = {v1, v2, · · · , vN}
is a set of motifs, where the length of the motif is L (Fig. 5). Of course, the
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Table 2 Results for the 100-customer instances from the Solomon’s benchmark
problems [65] and the other customer instances from the Gehring and Homberger
benchmark problems [66]. In this table, R means a random allocation, C a clustered
allocation, and RC their mixture

type 100 200 400 600 800 1000

R1 12.6 18.4 36.7 55.4 73.0 92.9
1230.5 3865.4 9166.1 19274.1 33496.4 50210.7

R2 3.1 4.1 8.1 11.1 15.1 19.2
961.3 3180.8 6768.3 13978.5 22639.3 33250.0

C1 10.0 19.2 38.4 58.1 76.7 96.1
840.2 2755.9 7337.2 14278.7 25310.8 42376.3

C2 3.0 6.0 12.1 18.2 24.2 30.3
592.5 1878.9 4102.5 7887.0 12196.9 17563.1

RC1 12.0 18.4 36.8 55.4 73.3 90.8
1388.1 3446.5 8486.4 17453.5 30521.0 47038.2

RC2 3.4 4.7 9.4 12.6 16.8 19.4
1195.2 2719.4 5654.3 11519.1 18114.2 27952.0

alignment of the motifs and the length of the motifs are unknown. Then,
the aim of the MEP is to find a set of motifs that maximizes the following
objective function:

E =
1

L

L
∑

k=1

∑

ω∈Ω

fk(ω) log2

fk(ω)

p(ω)
, (28)

where fk(ω) is the appearance frequency of an element (a base in the case of
DNA or RNA sequences and an amino acid in the case of a protein sequences)
ω ∈ Ω at the kth position of motif candidates; Ω is a set of bases or a set
of amino acids; and p(ω) is the background probability of appearance of the
element ω (Fig. 5). In (28), 0 log2 0 is defined to be 0.

S = {s1, s2 , · · · , s5}
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V = {v1, v1, · · · , v5}

Fig. 5 Definition of the motif extraction problem

In the CMS, to extract motifs v1, v2, ..., vN , a chaotic neuron is assigned
to the head positions of all motif candidates (Fig. 6). The firing of the ijth
chaotic neuron is then defined as follows:
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xij(t) = f(yij(t)) >
1

2
, (29)

f(y) =
1

1 + exp(−y/ǫ)
, (30)

yij(t) = ξij(t) + ζij(t), (31)

where xij(t) is an output state of the ijth chaotic neuron at time t. If the
chaotic neuron fires or xij(t+1) > 1

2 , the ijth motif position becomes a motif
candidate. On the other hand, if the ijth neuron is resting or xij(t + 1) ≤ 1

2 ,
the ijth motif candidate is not selected. yij(t) is an internal state of the ijth
chaotic neuron at time t. The internal state of the chaotic neuron [23] is
decomposed into two parts. The first part ξij(t) represents the gain effect of
the ijth neuron at time t and the second part ζij(t) represents the refractory
effect of the ijth neuron at time t. They have different effects to determine
firing of a chaotic neuron in the algorithm.

The first part ξij(t) is defined as follows:

ξij(t + 1) = β
(

Eij(t) − Ê
)

, (32)

Eij(t) =
1

L

L
∑

k=1

∑

ω∈Ω

fk(ω) log2

fk(ω)

p(ω)
, (33)

where β (> 0) is the scaling parameter of the gain effect; Eij(t) is the objective
function when a motif candidate position is moved to the jth position in the
sequence si; Ê, the entropy score of the current state. If a new motif candidate
position is better than the current position, the quantity on the right-hand
side of (32) becomes positive; a positive value leads to firing of the neuron.
Thus, the gain effect encourages firing of the neuron, and such behavior is
characteristic of a greedy algorithm.

However, the greedy algorithm gets stuck at a local minimum. To escape
from the local minima, the refractory effect is assigned to each chaotic neuron.
The second part ζij(t) realizes the refractory effect. The refractory effect is
one of the important properties of real biological neurons: once a neuron fires,
a certain period of time must pass before the neuron can fire again. In the
model of a chaotic neuron, the second part is expressed as follows:

ζij(t + 1) = −α

t
∑

d=0

kd
rxij(t − d) + θ, (34)

= −αxij(t) + krζij(t) + θ(1 − kr), (35)

where α is the positive parameter; kr, the decay parameter that takes values
between 0 and 1; and θ, the threshold value. Thus, in (34), ζij(t+1) expresses
the refractory effect with the factor kr because the more the neuron has fired
in the past, the more negative is the first term on the right-hand side of (34).
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Fig. 6 Assignment of the chaotic neurons

This, in turn, reduces the value of ζ ij(t+1) and causes the neuron to become
a relatively resting state.

Figure 7 shows the results for real biological data set [72,46,47,48,49]. In
Fig. 7, we show the average probabilities (%) of finding motifs in 50 trials.
If the motifs are correctly found in 40 trials, the probability is 40/50 = 80%.
In one trial, we change each motif candidate 500 times.

From Fig. 7(a), if β takes a small value (β = 20), the CMS shows low
performance. Then, as the value of β increase (β = 40), the performances of
the CMS becomes better (Fig. 7(b)). However, we cannot find motifs for too
large values of β (Fig. 7(c)). The reason is that the CMS cannot escape from
local minima if the strength of the greedy effect is stronger than that of the
refractory effect. In other word, the searching approach is similar to steepest
descent method.
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Fig. 7 Results of the chaotic motif sampler

3.3 Packet Routing Problems

A packet routing problem is one of the dynamical combinatorial optimization
problems because the searching space dynamically changes depending on the
state of the computer networks. In this section, as one of the applications
of the chaotic neurodynamics to the dynamical combinatorial optimization
problems, we explain a packet routing algorithm with chaotic neurodynamics
for solving the packet routing problems [50, 51, 52, 53, 54, 55, 56, 57,58].
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Source Source

Destination Destination

Fig. 8 An example of ideal computer networks. In this example, a gray packet
is transmitted from a source to a destination. An arrow from the source to the
destination expresses the shortest path of the gray packet. Because there are no
packet congestion in the ideal computer network, we can easily find the shortest
path of the gray packet. However, if we simply apply the basic strategy, such as
the Dijkstra algorithm, to the real computer network, the packet congestion easily
occurs

The packet routing problem is how to transmit the packets to their desti-
nations as quickly and safely as possible depending on states of the computer
networks. If a computer network is ideal, the buffer size of each node is infi-
nite and throughputs of the nodes do not change. In such an ideal case, basic
algorithms for finding the shortest path length, for example, the Bellman-
Ford [73], the Dreyfus [74], and the Dijkstra algorithms [75], can find an
optimal solution of the packet routing problem or the shortest paths for the
packets.

However, in the real computer networks, the buffer size is finite and the
shortest path between any two nodes changes depending on the amount of
flowing packets in the computer networks or packet congestion. In other
words, the computer network is one of the dynamic and stochastic net-
works [76,77]. Because the shortest paths between nodes in the dynamic and
stochastic networks are always changing depending on the state of the net-
work, we have to consider how to avoid such congestion and how to transmit
the packets securely and effectively by more sophisticated strategies.

Now, we define an objective function of the packet routing problem as
follows;

r∗i = min
j∈Ri

rij (i = 1, . . . , Ng), (36)

where Ng denotes the number of existing packets; rij denotes the jth path
from a source to a destination of the ith packet and it depends on a network
state; Ri is the set of all possible paths rij . Equation (36) means to find r∗i
which is the shortest rij depending on the state of the computer networks.
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The computer network model has N nodes, and the ith node has Ni adja-
cent nodes (i = 1, . . . , N). Although there are several ways of how to assign
a neural network to each node, we take the same way as [78, 79, 80, 50, 55].

To realize the packet routing algorithms with chaotic neurodynamics, first,
we construct a basic neural network which functions to minimize a distance
of a transmitting packet from the ith node to its destination. To realize this
routing strategy, an internal state of the ijth neuron, ξij , in the basic neural
network is defined as

ξij(t + 1) = β

(

1 − dij + djg(pi(t))

dc

)

, (37)

where dij is the static distance of a path from the ith node to the jth adjacent
node; pi(t) is a transmitted packet from the ith node at the tth iteration;
g(pi(t)) is a destination of pi(t); djg(pi(t)) is the dynamic distance from the jth
adjacent node to the destination of pi(t), that is, djd(pi(t)) changes depending
on pi(t); dc is the diameter of the computer network; β is the normalization
parameter which takes a positive value.

If the packets are transmitted to the destinations along only with the
shortest paths, almost all the packets might be transmitted to the nodes
through which many shortest paths pass. This behavior might lead to delay
or lost packets. To avoid such an undesirable situation, one of the possible
strategies is to memorize a node to which packets have just been transmitted
for a while, and not to transmit the packets to the node. Then, we use a
refractory effect peculiar to a chaotic neuron model [24]. The refractory effect
is defined by

ζij(t + 1) = −α

t
∑

d=0

kd
rxij(t − d) + θ, (38)

where α is the positive control parameter of the refractoriness; kr is the decay
parameter of the refractoriness and takes between 0 and 1; θ is the threshold;
xij(t) is the output of the ijth neuron at time t which will be defined in (40).

Although the basic mechanism for the memory effect is realized by (37) and
(38), mutual connections among neurons are also introduced to control firing
rates of neurons, because too frequent firing often leads to a fatal situation
of the packet routing. The internal state of the mutual connection effect is
described as follows:

ηij(t + 1) = W − W

Ni
∑

j=1

xij(t), (39)

where W is a positive parameter and Ni is the number of adjacent nodes at
the ith node. Because W > 0, if the number of firing neurons increases, then
the second term of the right hand side becomes large, which again depresses
the firing of the neuron at time t + 1 and makes ηij(t + 1) small.
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Then, the output of the ijth neuron is finally defined by the sum of the
above-introduced three internal states, ξij(t + 1), ζij(t + 1), and ηij(t + 1) as
follows:

xij(t + 1) = f{ξij(t + 1) + ζij(t + 1) + ηij(t + 1)}, (40)

where f(y) = 1/(1 + e−y/ǫ), and ǫ is a positive but small parameter. In (40),
if xij(t + 1) takes the value larger than 1/2, the ijth neuron fires.

We compared the proposed chaotic routing strategy with a packet routing
strategy using a neural network which has only the descent downhill dynamics
of (37) (the descent downhill routing strategy) and a packet routing strategy
using a tabu search (the tabu search routing strategy [25, 26]).

We conducted computer simulations of the packet routing for the scale-free
networks [81]. Because real communication networks are scale-free [82], we
adopted the scale-free topology as the network topology.

To evaluate performance of the three routing strategies, we used an arrival
rate of the packets, and the number of packets arriving at their destinations.
In this simulation, 20 scale-free networks of 100 nodes are prepared, and
the quantitative measures, an arrival rate of the packets and the number of
packets arriving at their destinations, are averaged over these 20 scale-free
networks. Although we show only the results of the 100-node networks, we
obtained the similar tendency for other 50-node and 200-node networks.

Results for the scale-free networks are shown in Fig. 9. In Fig. 9, the
proposed chaotic routing strategy keeps the higher arrival rate of the pack-
ets than those of the descent downhill and the tabu search strategies for
every packet generating probability (Fig. 9(a)). In addition, the chaotic rout-
ing strategy transmits more packets to their destinations than the descent
downhill and the tabu search routing strategies for every packet generating
probability (Fig. 9(b)). These results indicate that the chaotic neurodynam-
ics is effective for avoiding the packet congestion by using the past routing
history, which is realized by the refractory effect (38). Then, the chaotic rout-
ing strategy effectively routes the packets to their destinations without loss
of the packets.

To reveal the effectiveness of the chaotic neurodynamics for the packet
routing problems, we analyzed the network behavior of the chaotic routing
strategy and the descent downhill routing strategy by spatial firing rates of
neurons. The spatial firing rates by the routing strategies are shown in Fig.
10, which demonstrates that neurons in the chaotic routing strategy (Fig.
10(a)) are firing more uniformly than in the descent downhill routing strategy
(Fig. 10(b)). Figure 10 shows that many paths for the packets are selected
by the chaotic neurodynamics because the neurons in the chaotic routing
strategy are uniformly firing during the simulations. As a result, the chaotic
routing strategy transmits many packets to their destinations by selecting
the transmission paths for the packets effectively.

The effectiveness of the chaotic neurodynamics for avoiding congestion of
packets is analyzed using the method of surrogate data [54, 57]. In addition,
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Fig. 9 Relationship between the packet generating probability and (a) the arrival
rate of the packets, and (b) the number of packets arriving at their destinations
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Fig. 10 The spatial firing rates of neurons by (a) the chaotic routing strategy and
(b) the descent downhill routing strategy. The packet generating probabilities in
these figures are set to 0.4

the above-mentioned routing strategy with chaotic neurodynamics is modi-
fied by adding the waiting times until which the packets are transmitted at
the adjacent nodes [56,58]. The results show that the modified chaotic routing
strategy exhibits higher performance as compared to the conventional rout-
ing strategy with chaotic neurodynamics [51, 52, 53, 54, 57] and Echenique’s
algorithm [83,84].

4 Conclusions

In this chapter, we have reviewed three methods for solving combinatorial
optimization problems by using chaotic dynamics.

The first algorithm uses chaotic time series as additive dynamical noise
that is injected to descent downhill dynamics of the recurrent neural network,
or the Hopfield-Tank neural network. In this case, chaotic sequences are used
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to shake internal states of the Hopfield-Tank neural network in order to avoid
undesirable traps into local minima.

The second algorithm is also based on the Hopfield-Tank neural networks,
but the chaotic neuron proposed by Aihara et al. is used as a basic element.
In this method, the refractoriness produced by the chaotic neuron model is
effectively used to avoid undesirable local minima.

The third method used chaotic dynamics to control executions of local
search algorithm, such as the 2-opt algorithm, the 3-opt algorithm, the Or-
opt algorithm [19], the Lin-Kernighan algorithm [20], and the stem-and-cycle
ejection chain method [21,22]. In this chaotic method [14,15,16,17,18], exe-
cution of the local search algorithm is encoded by firing of the chaotic neuron.
Once a chaotic neuron fires, the firing of this chaotic neuron is inhibited for
a while by the refractoriness, which restricts frequent firing of the chaotic
neuron, or frequent execution of the same local search algorithm. Thus, the
chaotic search can escape from local minima efficiently.

Generally speaking, attractors produced from chaotic dynamical systems
have fractal structure in the state space, which has the zero Lebesgue mea-
sure. Thus, effective search using chaotic dynamics can be realized on such
fractal attractors, which leads to higher performance than those using ran-
dom dynamics, because the searching space of such fractal attractors are
much smaller than that of stochastic search [8]. In addition, the algorithms
using chaotic dynamics can be easily controlled due to its deterministic
property.

As we have already shown, the third algorithm in which chaotic dynam-
ics controls execution of local searches exhibits the best solving performance
among the three methods. One of the key factors so that the third algo-
rithm shows the highest performance is that chaotic search is realized with
the refractory effect, or an exponential decay of the tabu effect. Moreover,
the algorithm with chaotic dynamics can be easily implemented by analog
circuits, which can drastically reduce the computational time to obtain good
solutions. One of the limitations of the chaotic searching methods is that
we have to tune parameters in the algorithms. However, this drawback can
be resolved by developing an automatic parameter-tuning method based on
analyses and controls of chaotic dynamics.

We have also reviewed applications of the third method to the vehicle
routing problems [44,43,45] , the motif extraction problems [68,46,47,48,69,
49, 70] , and the packet routing problems [51, 52, 53, 54, 57] . The results of
computer simulations clearly show that the chaotic dynamics is very effective
to solve these real-world application problems.

Although we have only discussed and showed the efficiency of the chaotic
methods by computer simulations in this chapter, one of the most important
research directions is to implement these algorithms by analog circuits. By
the analog-circuit implementation of the chaotic search methods described in
this chapter, we could develop a novel frontier of information processing that
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is based on a new computation principle by such nonlinear analog circuits
[85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,101,102, 103].
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