

On-Chip Instrumentation

Neal Stollon

On-Chip Instrumentation

Design and Debug for Systems on Chip

Neal Stollon
HDL Dynamics, Dallas
TX, USA
neals@hdldynamics.com

ARM9, Coresight, ETM, ETM9, MMD are trademarks or registered trademarks of ARM Holdings plc.
All rights reserved.
EJTAG, HyperDebug, MIPS64, MIPS32, OCI, PDtrace, RRT are trademarks or registered trademarks of
MIPS Technologies, Inc. All rights reserved.
OSCAN, CDX, BDX are trademarks or registered trademarks of IEEE 1149.7 Working Group. All rights
reserved.
TCODE, NPC are trademarks or registered trademarks of IEEE 5001 and Nexus 5001 Forum. All rights
reserved.
ONCE, mxC are trademarks or registered trademarks of Freescale Inc. All rights reserved.
OCDS, MCDS, Cerebus, PCP2 are trademarks or registered trademarks of Infineon Technologies AG.
All rights reserved.
Any other third party trademarks remain the property of their respective owners
All copyrights on images, graphics, descriptions, products, and brands remain property of their respective
owners. No infringement of rights is intended or implied.

ISBN 978-1-4419-7562-1 e-ISBN 978-1-4419-7563-8
DOI 10.1007/978-1-4419-7563-8
Springer New York Dordrecht Heidelberg London

© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

v

When I started this book, I thought I understood the world of on-chip debug–after

all, I had been part of one of the leading startups in the area for 5 years and had

been a participant in a number of standard and industry organizations that were

leading the world of on-chip debug and instrumentation into the next wave. As I

gathered my materials, I grew more impressed by the day and by the month at the

body of work that this topic has accumulated, in industry and in academia, in every

nook and cranny of the embedded systems business, from embedded processor, to

bus architecture, to FPGA, to IP development; engineers have developed and cus-

tomized a truly impressive range of on-chip debug and instrumentation solutions to

address and support their products and to enable an increasingly capable infrastruc-

ture that does much more than the prosaic word debug implies and starts to address

the full potential of what on-chip instrumentation can truly provide for the electron-

ics industry.

This book came about, in part, because of the lack of a comprehensive discus-

sion of on-chip debug instrumentation. This seems to have been an area where the

experts come about from on-the-job experience and in ad hoc methods. On-chip

debug is an integral part of most modern processor and system on-chip (SoC)

design, but in my experience it is not a topic given in-depth discussion in engineer-

ing school (universities take note). Most engineers’ experience of on-chip debug is

limited to plugging into the JTAG port and running the software, with little under-

standing of what goes on within. This text tries to provide a general overview of the

different types of on-chip debug that goes into a design.

This book is structured into three main sections; the first, Chaps. 1–7, is an intro-

duction to the variety of concepts that make up on-chip debug, in particular looking

at some of the history and well-established infrastructure, including an overview of

JTAG from a debug, rather than test, point of view. It also looks at aspects of processor-

and bus-level instrumentation and discusses multicore on-chip debug issues The

second section, Chaps. 8–11, addresses a number of the standards and industry

efforts that are ongoing in areas ranging from instrument interfaces to JTAG

advances, some of which, like Nexus and OCP-IP, I have been involved in, and

others that have been a learning experience for me over the last year, all of which I

believe will form the core basis for the next generation of on-chip debug. The third

section, Chaps. 12–15, is a survey of some of the wide variety of commercially

Preface

vi Preface

supported solutions for on-chip debug, addressing a limited cross section of the

types of on-chip instruments that are available for different processors and SoCs.

Some areas related to on-chip debug have been intentionally kept generic and

out of the discussion to maintain the focus on the on-chip instrumentation. Notably,

I have kept any detailed discussion of probes and host-based debugger software to

a minimum, other than what is required to make the concepts of JTAG and trace

understandable. This may seem unusual, but the reasons for this are two-fold. First,

the topic of debug probe and software design is at least a book in itself. Second, the

commercial business involved in probes and debug software is a significant busi-

ness unit for most processor companies as well as the dozens of companies that

provide probe and software solutions (many run by people I know) that address the

range of debug options. To mention any one example in any detail would ignore the

rest that are equally deserving of mention.

Few are of variety of instrumentation- and debug-related areas I cover are dis-

cussed exhaustively. This is due to both limitations on space and a large amount of

supplemental detailed information available elsewhere for those who want to

explore in more depth. Similarly, I have intentionally avoided discussion of some

of the more advanced implementations, in order to keep the text accessible to a

more general reader. For virtually all topics, I highly recommend the reader to

directly contact the IP or chip vender or standards group for more detailed and

updated information on the topics. Those interested in instrumentation products can

find an amount of online resources that address specific instrumentation solutions

in minute detail. The amount of documentation avaliable on MIPS EJTAG or ARM

ETM, for example, can put page length of War and Peace to shame.

The standards-related activities are somewhat less well documented, in some

cases because they are work in progress. However, there is a lot of follow-on infor-

mation out there for those who search. So I have tried to focus on what I think are

the interesting or unique parts of different instrumentation solutions, with the

assumption that readers interested in more detail can find it.

I want to acknowledge a number of people in the industry who have helped me

along the way, especially Rick Leatherman and the on-chip instrumentation team

of the First Silicon Solutions group at MIPS, who got me started in thinking about

on-chip instrumentation and who taught me far more they realize about on-chip

debug technologies and the businesses involved. I also thank the current and past

members of the Nexus IEEE 5000 Forum and members of the OCP-IP Debug

Working Group, with special recognition to Bob Uvacek, my longtime compatriot

in the working group.

Last, but by far not least, I want to acknowledge my family, without whom I am

nothing. My wife Marcy, my daughters Courtney and Naomi, my son Eric, and my

mom Rita Bickel Stollon (of blessed memory) were patient and understanding of

the time I spent working on this book. Finally, I dedicate this book to my family but

especially to my father Arthur Stollon (of blessed memory), who proofread every-

thing I wrote while I was in school and taught me “be prepared to trudge thru the

wilderness to get a change at the limelight”.

Dallas, TX Neal Stollon

vii

Contents

1 Introduction ... 1

1.1 The Need for On-Chip Debug .. 1

1.2 Instrument- (**in-silicon) and EDA- (Presilicon) Based Verification 3

1.3 SoC Debug Requirements .. 7

1.4 Instrumentation-Based Debug Infrastructure 11

2 On-Chip Instrumentation Components .. 17

2.1 Trace and Event Triggering .. 17

2.2 External Interfaces for On-Chip Instrumentation 18

2.3 Performance Analysis Using On-Chip Instrumentation 19

2.4 On-Chip Logic and Bus Analysis .. 20

2.5 On-Chip Instrumentation Examples .. 22

2.5.1 Trace Monitoring and Interfaces ... 22

2.5.2 Bus Logic Monitoring ... 23

2.5.3 Real-Time Data Exchange ... 25

2.6 Multiprocessor Debug ... 26

3 JTAG Use in Debug ... 31

3.1 JTAG Pins .. 32

3.2 Test Access Port ... 35

3.3 JTAG Registers .. 38

3.4 JTAG Instructions .. 39

3.5 Boundary-Scan Description Language .. 40

3.6 The Road to JTAG: Historical Debug Approaches 44

3.6.1 Background Debug Mode .. 47

4 Processor System Debug ... 49

4.1 A Processor Debug Instrument Implementation 52

4.2 Processor Trace Compression .. 55

4.3 Hunting Code Errors with Self-Trace .. 59

viii Contents

5 An On-Chip Debug System .. 61

5.1 OCDS Features .. 62

5.1.1 Debug Events ... 64

5.1.2 Debug Event Actions ... 64

5.1.3 Debug Registers ... 65

5.2 Operation Modes .. 65

5.2.1 Entering Communication Mode .. 66

5.2.2 Communication Mode Instructions 66

5.2.3 Monitor-to-Debugger Host Data Transfer (Receive) 67

5.2.4 Debugger Host-to-Monitor Data Transfer (Send) 67

5.2.5 High-Level Synchronization .. 67

5.3 OCDS Registers ... 68

5.3.1 Debug Task ID Register... 68

5.3.2 Instruction Pointer Register ... 68

5.3.3 Hardware Trigger Comparison Registers 69

5.3.4 Considerations on Accessing OCDS Registers 69

5.4 OCDS JTAG Access .. 70

5.4.1 Steps to Initialize the JTAG Module 72

5.5 OCDS Module Access ... 72

5.5.1 Error Protection ... 72

5.6 OCDS JTAG I/O Instructions .. 74

5.7 OCDS JTAG Registers ... 76

5.8 Hardware Triggers ... 77

5.8.1 Structure of a Noninterruptible Monitor Routine 79

5.8.2 Structure of an Interruptible Monitor Routine....................... 79

5.8.3 Debug Event Control Registers ... 80

5.9 Additional Features .. 81

5.9.1 System Security ... 82

5.9.2 Reset from the JTAG Side ... 83

5.9.3 Reset from the Chip/Processor Side 83

6 Bus System Debug ... 85

6.1 On-Chip Buses ... 85

6.2 Socket-Based SoC Design ... 87

6.2.1 SoC Interconnect Complexities ... 87

6.3 Bus-Level Integration ... 90

6.3.1 Bus Master Monitoring.. 91

6.3.2 Peripheral Bus Monitoring .. 91

6.3.3 Slave Monitoring ... 91

6.4 Internal and External Alternatives for Bus Trace............................... 92

6.5 Programmable Bus Performance Monitoring 93

6.6 Bus Performance Monitoring ... 94

6.7 On-Chip and Off-Chip Analysis .. 98

6.8 Request Response Trace Bus Analysis .. 101

6.8.1 RRT Operations ... 103

6.8.2 RRT Implementation ... 104

ixContents

7 Multiprocessor Debugging ... 109

7.1 Cross-Triggering and Global Breakpoint Control 110

7.2 HyperDebug Distributed Cross-Triggering 110

7.2.1 HyperDebug Controller ... 112

7.2.2 Typical HyperDebug Implementation 113

7.3 Multicore Synchronization Triggering and Global Actions 115

8 IEEE 1149.7: cJTAG/aJTAG .. 117

8.1 Test and Debug Views of 1149.7 ... 118

8.2 Key T0–T5 Class Functions .. 120

8.3 MIPI Use of 1149.7 ... 129

8.3.1 MIPI System Trace Module .. 130

8.4 Nexus Use of 1149.7 ... 132

8.4.1 IEEE 1149.7/Nexus Integration ... 134

9 IEEE P1687 – IJTAG .. 137

9.1 Overlap Zones and Gateway Elements .. 139

9.2 Classes of P1687 Instruments .. 141

9.3 IEEE 1500 Instruments .. 143

10 OCP IP Debug Interfaces ... 145

10.1 OCP Multicore Debug ... 146

10.2 OCP Debug Features .. 148

10.3 Three Views of Debugging .. 150

10.3.1 Pure Software Debugging... 150

10.3.2 Pure Hardware Debugging ... 151

10.3.3 System-on-Chip Debugging ... 151

10.4 Debug Components and IP Interfaces .. 151

10.5 Debug Socket Definitions .. 152

10.5.1 Core Debug Socket Interfaces .. 154

10.5.2 Cross-Triggering Socket Interfaces 157

10.5.3 OCP Synchronized Run Control .. 163

10.5.4 OCP Traffic-Monitoring and Trace Interfaces 163

10.5.5 Performance Monitoring .. 165

10.5.6 System Timestamping .. 166

10.5.7 Power Management Monitoring ... 166

10.5.8 Security Debug Interface .. 167

11 Nexus IEEE 5001... 169

11.1 Nexus Implementation Classes .. 171

11.2 Nexus Message Architecture ... 172

11.2.1 Nexus TCODEs .. 174

11.2.2 Nexus Registers .. 178

11.3 NEXUS Interfaces .. 180

11.3.1 Nexus JTAG Access ... 180

11.3.2 NEXUS AUX Interfaces .. 181

x Contents

11.4 Multicore Nexus Debug Approaches ... 185

11.4.1 Input Tool-to-Target Messages ... 187

11.4.2 Output Target-to-Tool Messages .. 188

11.5 Nexus Product Implementations .. 189

11.6 Summary .. 193

12 MIPS EJTAG ... 195

12.1 EJTAG Instructions and Registers ... 197

12.2 PC Sampling .. 199

12.3 MIPS PDtrace™ .. 199

12.3.1 Trace Output Formats ... 200

12.3.2 Trace Control Block Registers .. 204

12.4 TCB Trigger Logic Overview .. 206

12.5 PDtrace External Interface ... 207

12.6 TCtrace IF .. 209

12.7 PDTRACE Operations ... 210

13 ARM ETM ... 213

13.1 ETM Signals .. 213

13.1.1 External Signals .. 214

13.2 ETM9 Registers ... 216

13.3 Trace Interface ... 218

14 Infineon Multicore Debug Solution .. 219

14.1 MCDS Trace Protocol Definition .. 221

14.1.1 Data Trace ... 223

14.2 Debug Transactor: RUN Control Bus Master 224

14.3 MCDS Run Control: On-Chip Debug Support 225

14.3.1 BCU Level 1 (Bus-Observer Unit on the System Bus) 227

14.3.2 Concurrent Debugging in Level 3 MCDS

(Two-Channel Tracing) .. 228

14.3.3 Debug Interface (Cerberus)

(Debug Bus-Transactor Module) ... 228

14.4 RW Mode and Communication Mode ... 228

14.5 Multicore Break Switch ... 229

15 EJTAG and Trace in Toshiba TX Cores ... 231

15.1 Processor Access Overview ... 232

15.2 Toshiba EJTAG Instructions and Registers 233

15.3 Debug Exceptions .. 235

15.4 Processor Debug Instructions and CP0 Registers 235

15.5 Break Functions ... 237

15.6 Output by PC Trace .. 238

Index ... 241

1N. Stollon, On-Chip Instrumentation: Design and Debug for Systems on Chip,

DOI 10.1007/978-1-4419-7563-8_1, © Springer Science+Business Media, LLC 2011

With each new generation of digital system-on-chip (SoC) technology, the level

of integration, functionality, and complexity provided on a single chip has increased

significantly. A problem that goes hand in hand with this increased amount of inte-

gration and functionality is that analysis tasks and difficulty associated with getting

a design working and integrated increase at least proportionally to the size and

complexity of the chip. Over a range of SoC types – ASIC, ASSP, system FPGAs,

or a dozen other variants and platforms – there is a common need for better debug

solutions. As more processing elements, features, and functions are simultaneously

being embedded in the silicon, the emerging level of embedded complexity outstrips

the capability of stand-alone logic analyzer-, debugger-, and emulator-based diag-

nostic tools for embedded designs. Although these tools allow the capture of data

off the system data bus, they work only as long as every access (read and/or write)

occurs over the external data bus. This issue points to a growing gap in terms of

effectively being able to provide the necessary controllability and, in particular, the

visibility of the internal operations of a complex system.

1.1 The Need for On-Chip Debug

The need for improved methods of observing and analyzing embedded processor and

SoC operation has increased at a pace at least proportional to the explosive growth

in electronic system designs and new intellectual property (IP) cores that populate

them. The analysis side of the SoC world is then forced into a constant process of

catching up to the designer’s ability to add cores and integrate new resources on

chips. With an ever-shortening development cycle, and often several generations of

products produced in parallel or rapid succession, standardized embedded tools and

capabilities that enable quick analysis and debug of the embedded IP are a critical

factor in keeping SoC verification a manageable part of the process.

Most engineers involved in complex design will agree that verification and valida-

tion have become a critical stumbling blocks in the development and release of new

devices. This is now equally true of the software components of those systems as well

as the hardware. Better ways to address the verification and analysis of complex SoC

Chapter 1

Introduction

2 1 Introduction

designs, and corresponding new methodologies, tools, and capabilities, are needed to

get the job done at different phases of the design and development cycle.

For brevity and convenience, we adopt some general definitions in this book.

Analysis relating to pre-silicon design stages, in particular Electronic Design

Automation (EDA) tools and methods and their use in RTL (register transfer level)

and ESL (electronic system level), are collectively referred to as verification.

Analysis relating to in-silicon analysis (sometimes referred to as post-silicon analy-

sis), and in particular, tasks related to the use of on-chip instrumentation, are col-

lectively referred to a debug (Fig. 1.1).

In-silicon debug provides complementary alternative methods to digital simula-

tion as a means of viewing and analyzing embedded signals. Simulation, although

a critical factor in verification, is not a total verification solution for embedded SoC.

Simulation alone cannot address all the facets and nuances of physical hardware. In

addition, it is not realistic to simulate large multiprocessor architectures for the

extremely large numbers of cycles required to evaluate the software-specific

aspects of system operation and real-world system performance. Although acceler-

ated simulation, co-simulation, and emulation environments provide a stop-gap

method of improving the simulation capability in observing system performance,

these often introduce costs and complexities beyond the resources of many projects.

On-chip instrumentation and debug approaches have evolved as a low-cost and

efficient alternative of increasing system visibility which focus on the actual final

hardware product rather than its model.

System-on-chip debug, like most verification philosophies, seeks to maximize

test functionality and ease of verification while reducing the overall end-user cost.

There is a constant trade-off that must be made on resources dedicated to system

analysis and debug versus the system cost of including these features. The value of

debug is mainly perceived during the development cycle (hardware or software),

where operational questions and integration issues for the key processing blocks are

unresolved. After the system is “fully debugged,” the hardware investment in debug

capabilities becomes much more application-focused. In the past, this often led to

the removal of debug features (and associated gates and pins) in order to gain a small

reduction in die size. These trade-offs have shifted in recent years by dramatic

Fig. 1.1 The costs of debug

31.2 Instrument- (**in-silicon) and EDA- (Presilicon) Based Verification

increases in complexity; gate availability and overall speed of system operation have

changed the norm in chip design from a “core and gate-limited” to a “pin and

IO-limited” focus. The debug question has migrated from how many gates can be

spent on debug to an ease-of-use and bandwidth issue: How much of the system

resources and IO is needed to debug the system successfully?

1.2 Instrument- (**in-silicon) and EDA- (Presilicon) Based

Verification

EDA (electronic design automation) flows that include the tools and methods for

modeling, simulation, and analysis of SoC receive much attention and have evolved

a variety of solutions to address verification needs for pre-silicon design, from

diverse simulation-based methodologies to emerging formal and assertion-based

methods and, increasingly, system-level abstraction. This verification flow largely

works under the assumption that the verification effort is essentially completed when

the design files are handed off to the foundry for fabrication. Anyone who has been

involved in the in-silicon debug cycle, loosely defined as everything that must be

verified and integrated from the time silicon is received back from the foundry to the

point of being ready for a production release, knows that this is far from the case.

Although improved tools and rigor in pre-silicon verification are essential and

play a important role in getting to working first-pass silicon, the use of in-silicon

debug has received much less attention. However, as we discuss, in-silicon debug

plays an essential role in addressing full-speed testing in real environments.

It allows for more exacting analysis of interactions too subtle for models in simula-

tion to address, such as unforeseen environmental variables, external constraints,

etc. Analysis, and bug-fixing, including resolving hardware/software issues that

cannot easily be addressed at speed other than by analysis of the in-silicon hard-

ware platform itself.

A design team, in addition to having to address the issues of verification and

model reuse at different stages of the design flow, typically must also develop

debug flows to address both hardware prototypes and in-silicon verification of both

the hardware and software in the system when getting chips to market.

With larger and more complex chip architectures and designs, supporting larger

and more complex software applications, the penalties of discontinuities between

pre-silicon verification and in-silicon debug are increasing. More consistent and

common environments reduces costs and trade-offs of getting silicon not just

designed but working and out the door to the end customers (Fig. 1.2).

The cost of debug in the development of complex SoC systems has not received

the level of analysis that other parts of the methodology, such as EDA tools, have,

but it is pragmatically known to be a significant portion of the overall cost of releas-

ing new systems. EDA tools and flows have focused on evolving a variety of solu-

tions to address pre-silicon verification, with diverse simulation-based methodologies

that leverage high-level verification languages and formal and assertion-based

4 1 Introduction

methods to verify at increasing levels of system-level abstraction. As we discuss,

these are complementary to instrumentation-based debug (Fig. 1.3).

Debug typically relies on a toolbox of methods, instrumentation IP, and tools to

support analysis of hardware-based systems and their software applications. Debug

includes combinations of software tool methods (which can be thought of as “print”

statements and breakpoints) and hardware methods (monitoring of events using

Instrumentation IP to capture information for display and analysis).

Successful in-silicon analysis of next-generation systems will rely as much on

system-level thinking in leveraging and reuse of verification efforts done during the

pre-silicon verification cycle as on specific debug instrumentation approaches in

providing closure to address the SoC verification and analysis problem (Fig. 1.4).

Complex architectures have spurred the requirement for new methodologies and

capabilities to address the analysis and instrumentation needs of these architectures.

We are arguably moving toward a new inflection point of requiring a sea change in

debug assumptions, based on changing design methodologies that widely embrace

Fig. 1.2 Debug duration over a project

 IN SILICON FOCUS

• Event/trigger/trace Instrumentation

• Logic Analyzer/ICE look and feel GUI

• Automated test script command-line

• More widely used for processor and

Related software analysis

PRE-SILICON FOCUS

• Tools for modeling, simulation and display

• “Do everything” GUI and databases

• Supports many views of Logic Modeling

• Less useful for processor analysis

Pre-Silicon EDA Verification tools In-Silicon Debug tools

Fig. 1.3 Pre-silicon vs. in-silicon analysis

51.2 Instrument- (**in-silicon) and EDA- (Presilicon) Based Verification

multiprocessor architectures and their associated software development and inte-

gration issues, dramatically increased gate count availability, and increased com-

plexity in all the diverse interfaces and peripherals making up a SoC device.

Looking historically at the major inflection points for EDA verification, debug

tools, and silicon complexity in Fig. 1.5, it is interesting to note the interwoven

relationship between these different but closely related technologies that are central

to the progress of many aspects of the evolution of leading-edge electronics

 technology. The emergence of new EDA tools is both a driver and a result of new

and increasingly complex levels of systems architectures. Similarly, complexities in

architectures have spurred the requirement for new debug methodologies and capa-

bilities to address the needs of these architectures. We are arguably in the middle or

moving toward a new inflection point, based on changing design methodologies

that widely embrace multiprocessor architectures, dramatically increased gate

count availability, and increased complexity in all the diverse interfaces and periph-

erals making up an emerging SoC device.

19701960 1980 20001990 2010 2020
1

1010

1012

104

106

108

102

Gates/chip: 2x every 18 months

SW/chip: 2x every 10 months

SW productivity: 2x every 5 years

+50%/year
+140%/year

Gates

Source:ITRS

Lines of code

Fig. 1.4 Growth of hardware vs. software complexity

System

Analysis

Focus
System

Initialization

Instruction Level/

Bus Functional

Hardware

Simulation

Application

Software

RTL

Diagnostics

RTOS

Integration

 ESL

Modeling

Focus on Hardware Bugs Focus on Software Bugs

Point were Hardware is

“Assumed working”

Hardware

Prototype/Emulation
Software Debugger

System platform

Multi-core

Integration issues

Fig. 1.5 Verification abstraction vs. debug tasks

6 1 Introduction

This problem can be seen on several fronts, most notably the efficiency of the

debug processes used for in-silicon validation. The need for new debug capabilities

has evolved along with the state of embedded processor design. In Circuit

Emulation (ICE) was developed to support debug of processor-based parts with

minimal additional integration, but by emulating operations, rather than executing

them normally. The adoption of IEEE 1149.1 aka JTAG (discussed in Chapter 3)

popularized the use of a debug port that allows low overhead access and provides

embedded developers with a range of potential capabilities for debugging, but with

a limited bandwidth never designed to support any real-time analysis. Instrumentation

adds to the debug port philosophy of JTAG by extending the bandwidth capabilities

to address debug of one or multiple cores, internal buses, complex internal peripher-

als, and high-speed data traffic found at SoC levels of complexity (Fig. 1.6).

Looking at on-chip instrumentation in the proper context, it is useful to

 examine more traditional embedded systems debug. The ever-increasing trend in

the embedded system development is the evolution of products that incorporate

diverse processing resources. Over the last decade the embedded systems market

has seen a proliferation of new processor architectures (8-bit MCUs, DSPs,

RISC, application-specific co-processors, etc.) provided as IP and focused on

SoC integration. Historically, development of each generation of processor IP is

accompanied by supporting debug tools. Many currently available cores provide

some form of JTAG interface for run control and debug functions. Rapidly

emerging adjuncts to JTAG are supporting trace capabilities, usually in the form

of a trace port such as the ARM’s ETM (embedded trace module) and MIPS’

EJTAG + TCB (trace control block) which allow the benefits of trace for more

productive system debug.

Embedded

Systems

Single
processor

ASICS

SoC

(RISC+IP+RAM)

Platform (Multi-Core)

SoC

Complex

FPGAs

System FPGA

(PLD+RISC IP)

System

Verification
/

Debug

Resources
/

Silicon

Complexity

ICE

tools

DBM

Background

Debug Mode

JTAG

(Scan, BIST)

Embedded Multi-

Core System

Debug
Embedded

Processor / Logic

Trace

Formal Methods,

Assertion Based Verification

Gate level

simulation

Behavioral

/RTL

Simulation

 Synthesis

 Emulation

IP Adoption

ESL/ System Level

Languages

1980s 1990s 2000s The New Frontier

Fig. 1.6 SoC verification, debug, and complexity

71.3 SoC Debug Requirements

1.3 SoC Debug Requirements

Analysis, at all levels of implementation, relies on methods of configuration,

control, and data capture. Control refers to the manipulation of a system, outside of

its normal execution, for the purpose of debug, analysis, and verification. Control

can be influenced at any time during execution of the system, so it is a “real time”

method in this respect. A simple control example might be to execute a single

instruction, but more typically it may involve execution of a range or duration of

operations tied to an initializing event and a concluding event. Configuration is

actually nothing more than a special case of control, referring to the initial setup of

a system to a known state. In some cases, this configuration may be part of the

normal execution of a system (for instance, the default settings used after reset).

Examples include setting of mode or configuration bits for cores, arbitration states

for buses, and loading of data into specific locations in the system to (re)produce a

system state for a particular operation or sequence of interest. Data capture refers to

the export and storing of some system information occurring at a user-defined time.

A simple example would be capture of a register value occurring at some triggering

event in the system. Both ESL and instrumentation tools have similar requirements

at a SoC level in how to address these tasks, and ideally would rely on standardized

mechanisms for implementing them.

Most SoC include a programmable processor and in many cases, multiple pro-

cessors as the core functionality. They also consist of infrastructure, either in terms

of dedicated coprocessors or other logic and a communications infrastructure to

allow both intercore and chip-to-outside world communications. The analysis of

processors and the rest of a complex chip follow different paths and have tradition-

ally relied on different approaches to verification and debug. Digital hardware

design, on the contrary, typically relies on a synthesizable RTL model that assumes

implicit clock-cycle timing during simulation. RTL has been the primary debug tool

for configuration, control, and data capture of dedicated logic-based portions of the

architecture, with hardware support based on either on- or off-chip logic analysis,

although with the advent of synthesizable ESL language subsets and methodolo-

gies, these functions may be absorbed into the ESL of design flow. In either case,

merging simulation and synthesis approaches have been proven in countless

designs over the last 15 years, because logic-based functions can typically be ana-

lyzed over the range of fewer than a million clocks cycles, which is manageable for

both simulation and logic analysis. Conversely, processor architectures, while

relying on synthesis for implementation, are less successful in using RTL and logic

analysis approaches due to the length of time required for execution of complex

algorithms, and complexities of hardware and software interactions that are not

amenable to RTL simulation and related approaches.

Simulation is always an important part of the development flow; just as impor-

tant is the ability to analyze hardware during prototyping and system verification

and, increasingly, on the final products themselves. Although the focus of much of

the verification world has been on simulation-based verification technologies,

8 1 Introduction

instrumentation provides a counterpoint that focuses on the physical hardware.

The problem in analyzing embedded information (on-chip processors and buses) in

hardware in many cases devolves to a visibility problem – it is difficult to fix prob-

lems that you cannot see. The test community traditionally has referred to this

problem in terms of levels of controllability and observability of a design. It is

important to note that this analysis visibility cannot be adequately addressed by

traditional on-chip test methods such as JTAG scan, and that the analysis and instru-

mentation problem, while overlapping with test issues and techniques in many

cases, is fundamentally different.

One method of working around these analysis bottlenecks in simulation is to

build hardware emulators or prototypes of (usually field-programmable) hardware

implementations of the digital and possibly analog portions of a system. These

hardware systems will run orders of magnitude faster than simulations, making

running software applications feasible, but they are still typically at least an order

of magnitude slower than the final silicon system, which results in both false posi-

tive (errors in the emulator that are not in silicon, due to differences in timing paths,

synchronization of subsystems, etc.) and negative problems (found in the silicon

that are not seen in the hardware, due to lower speed) and in many cases still not

being able to run the system application at a speed compatible with the final system

requirements.

Modern silicon system-level implementation typically proceeds through a

design life cycle of increasing detail and refinement that must include modeling,

verification, and analysis of hardware and software components. Software develop-

ment has typically relied on analysis with a hardware target using ISS (instrument

set simulation) models where timing is abstracted or nonexistent. These ISS models

can vary significantly from vendor to vendor, which inhibits general methods for

model compatibility between different core models and their integration with RTL

simulation. RTL is synthesized into gate-level implementations that map into hard-

ware and become a deliverable product, along with software that is either embed-

ded as part of the product or added at a later stage by customers. More complex

modeling is complicated in modern devices by several factors.

Preferred software development environments may vary significantly for different •฀

processors. Although hardware development tools have developed in parallel but

largely independent of different ways to implement a design (programmable logic,

ASIC, ASSPs, and their related digital IPs), a limited number of common repre-

sentations (gate-level, RTL, hardware itself) allow for straightforward integration;

software development tools and models are developed by and in conjunction with

processor and software IP vendors and have more limited commonality, for modeling

and verification of multiple processors or even different processor targets running

a common algorithm. The problem is even more acute for debug-related tasks,

where different debuggers have different features. More commonality is found in

use of GNU debuggers (GDB), versions of which have been developed by and for

many processor architectures. GDB and variants are commonly used as a user

interface for configuration, control, and data capture of software architectures during

ISS, emulation, and in-silicon debug.

91.3 SoC Debug Requirements

For multicore devices, different suppliers often provide subsystems, in terms of •฀

hardware blocks, each developed with its own assumptions and incompatibilities

in ISS modeling. Due to a lack of standardized sequential timing models in

software languages used to develop ISS models (C, C++), new modeling

approaches that include understanding of sequential and concurrent operations

are needed to model systems that include multiple processors (running under

different clocking and instruction flows) and processors and their supporting

blocks (buses, peripherals, interfaces, etc.) that are typically modeled at RTL or

other hardware methods.

These may be in simulated SystemC, an ESL developed to support concurrent •฀

modeling of systems having processor architectures and software and support-

ing hardware blocks. SystemC combines compatibility with C++ as a class

library with a set of corresponding modeling and simulation features similar to

those used in RTL.

Real device speeds are higher (typically by orders of magnitude) than that •฀

achievable by simulation. As a result, system modeling relies on abstractions

and simplifications to increase simulation performance to a point where it is

feasible to run software applications over the multimillion cycles needed to

verify operation. Complexity and performance are further impacted if different

subsystems are asynchronous or have other analysis-intensive incompatibilities.

The lowest risk and often the simplest solution to real-time analysis is to use the

actual hardware; however, even with added instrumentation, there are significant

limitations in observability and controllability of a design as discussed earlier,

so while hardware is a good verification platform, it is limited as an analysis

platform. Simulation does not have the same limitations, because all signals are

visible. One of the more important simulation efforts of SystemC is related to

trade-offs between speed and visibility with TLMs (transaction-level models)

that, by abstracting away noncritical functionality or timing, can simulate orders

of magnitude faster than cycle-timed RTL models while being integrated with

RTL models. Integration between TLM and RTL blocks in a simulation, while

providing more resolution of signal analysis (at the expense of increased simula-

tion timing), is still an area of active development.

Complicating simulation analysis further is the modeling of the complex envi-•฀

ronments in which the device must operate. These can include the need for

modeling a complex stimulus with both signal and noise characteristics, human

interfaces, and analog subsystems that have their own modeling and analysis

complexities, which are incompatible with large-system digital analysis and

have their own traditional (frequency-domain-based) analysis methods. The

effective integration of mixed analog and digital systems remains an open area

of refinement in EDA analysis methods and in hardware-based debug and analy-

sis; test features within ESL tools include the ability to model many analog and

system characteristics as part of verification blocks (test benches) as well as the

ability to integrate models from verification-level languages (Specman, Vera,

Testbuilder, etc.) that have been developed and are being incorporated into new

versions of RTL languages such as SystemVerilog.

10 1 Introduction

Choosing among many design trade-off efforts is a tiered approach of modeling

refinement and migration from ESL, to more detailed models, to hard platforms, to

final silicon. As the modeling and analysis move from simulation to hardware,

another factor to consider is an accompanying loss of visibility and access in the

internal signal operation. In simulation, all signals, variables, and modeling param-

eters are available for viewing, and in most cases, for direct modification, providing

a rich analysis environment, regardless of other limitations. Hardware, whether in

emulation system or in final silicon, has limitations for debug purposes on the

amount of visibility and control of embedded signals available at the system IO pins

(Fig. 1.7). In this hardware environment, instrumentation significantly increases the

amount of real-time visibility and control of the design at the cost of adding

 analysis blocks to a design. In many systems, instruments provide the most straight-

forward means for embedded trace or to directly configure, take direct control, or

inject stimulus into a subsystem, as needed to resolve system level bugs.

A typical debug flow consists of several diverse tasks, both independent and

interdependent, required to achieve a level of comfort in verifying an in-silicon

product. With many devices consisting of both processor and fixed IP, along with

related software and firmware, the verification concern is not only operating as

designed, but also performing as required in its natural environment. For many

products, this may include being exercised and verified in operational scenarios that

were not foreseen or feasible to include during the pre-silicon verification cycle.

In recent years, in-system debug has taken on a specialization of its own,

referred to in different contexts as on-chip instrumentation, design for debug (DfD),

and the like. A flow of debug and analysis tasks that can be provided using instru-

mentation consists of several diverse independent and interdependent activities

required to address different aspects of verifying an in-silicon product. DfD meth-

odologies are still emerging areas of investigation. DfD differs from DFT and

related approaches in the level of customization required to support specific debug

requirements of an architecture or system (Fig. 1.8).

Instruction-

accurate

system

simulation

Cycle-

accurate

system

simulation

RTL

full-Chip

emulation

Silicon

validation
FPGA

prototype

• full observability, but computation is

too slow for complex systems

analysis) • selective observability (but at

full system speed)

Hardware Emulation In Silicon DebugSystem Simulation

System

bring-up

Observability Increase using

On-chip instrumentation Simulation is provides full

visibility, but can’t achieve full

analysis coverage of real

operation either due to modeling

speed or abstraction

• extensive observability (but
typically not running at full
systems speed)

Observability just

using chip IO Emulation hardware allows

limited flexibility in observing

signal operation

Signal

Visibility

Fig. 1.7 Observability during design flow stages

11 1.4 Instrumentation-Based Debug Infrastructure

The availability of gates and on-chip resources of modern SoC allows for more

innovative approaches to systems debug and embedded logic analysis by allowing

dedicated debug subsystems to be created, with minimal or even negligible impact

on the overall chip size. Dedicated debug subsystems would effectively extract and

analyze signals and operations within and between deeply embedded processor

subsystems of a complex design.

1.4 Instrumentation-Based Debug Infrastructure

A debug reference model shows a properly designed debug environment; different

debug systems may be created in a modular fashion. Although a majority of the

layers are software implemented in the debugger host, the two key instrumentation

layers (1 and 2) in hardware address different instrument blocks that operate largely

independently. Layer 1 I defines the port interface and its logic. Layer 2 defines the

instrument function and operation. This separation allows the configuration of

instrument related registers and decode of debug instructions can be treated largely

independent of the physical layer, be it JTAG or any other interface (Table 1.1).

Different and Unique development cycle

and regression for each application

ESL Modeling and Analysis

Processor Run

Control

System Analysis

Bus Level trace

Application

Trace

Life฀Cycle

DfM฀and฀more

Device Boot

BIST, SCAN

Execution

Optimization

Fig. 1.8 Debug activities in the in-silicon verification

12 1 Introduction

The integration of deeply embedded memory and embedded buses, along with

limited IO for such embedded subsystems available for test purposes, limits the

visibility of the embedded processors in SoC operation and dataflow.

In formal testability terms, multicore embedded systems present an asym-

metrical functional test problem. Their controllability is high, because the sys-

tems are dominated by programmable processor cores. The observability is low,

however, in terms of both critical signals that are directly available and the

amount of embedded logic and internal signals as a ratio of the available IO in

which to observe them. The addition of dedicated resources and structures that

support functional analysis is needed to increase system observability. This

requires a hierarchical focus to the issue of system analysis, starting at the indi-

vidual core level of debug instrumentation and resources and increasing to a more

system-centric diagnostic capability to facilitate increased observability. Although

embedded debug instrumentation approaches are becoming increasingly common

at the core level, system-level diagnostics and analysis at the multicore level has

been a largely underaddressed and unresolved area of focus in complex embedded

systems.

These “deep encapsulations” of key system functions, along with higher internal

bus speeds, make traditional debug techniques, such as emulators, so limiting that

Table 1.1 Open debug interconnect model

Implementation layer Typical tasks Location

1. Physical port layer Debug TAP IO, chain, and debug

block wires

Target

Debug TAP FSM (schematic-level

connection)

2. Data control layer Low-level debug instructions

and registers

Target

Extended debug instructions,

optional debug block registers

3. Debug driver layer Debugger protocol, clocking

(probe-specific API)

Probe

4. Data transport layer APIs debug command sets,

run control API

Host PC

5. Session control layer

(Optional)

Device connection setup and parameters

Remote debug server

(e.g., GDBserver)

Host/PC

6. Debug GUI layer Debugger UI, GDB commands, trace viewers

(e.g., VCD)

Host/PC

Set/observe breakpoints, watchpoints,

and event triggers

Run control go/halt/single step

7. Application layer

(Optional)

Eclipse, other IDE, global (Multi-tool) data

management

Host/PC

131.4 Instrumentation-Based Debug Infrastructure

they have forced the evolution to new logic analysis and debug approaches such as

on-chip instrumentation.

Based on the shortfalls in applying current debug approaches to complex SoCs,

the debug of structured SoC and related single-chip systems containing many

embedded processor cores requires new system-level instrumentation approaches.

The integration and debug of multiple cores, combined with an increasing ratio of

overall gates versus package IO, makes an increasingly dominant portion of a sys-

tem design “deeply embedded,” so that only a minimal amount of data is needed

for analysis to be made available in real time at the chips pins. These deeply embed-

ded systems introduce new analysis problems, due to the interaction and communi-

cations of multiple cores, in addition to the more traditional debug issues associated

with single-processor systems. The multicore debug requirement implicit for SoC

requires new capabilities that exceed what can be addressed by traditional in-circuit

emulation and logic analyzer capabilities, and by JTAG and BDM resources used

in single-processor architectures. Whereas a JTAG or BDM can provide a snapshot

of a piece of the system, the dynamics and interaction of multiple processors

require a more dynamic and robust means of providing diagnostic information

necessary to the designer and integrator (Fig. 1.9).

On-chip instrumentation is implemented as an embedded block that provides

external visibility and access of the “inner workings” of processor and system

architectures. When properly implemented, it provides a real-time “peephole” into

the operations of key internal blocks that cannot otherwise be accessed in sufficient

granularity on a real-time basis. The real-time visibility and monitoring of key

interfaces and buses are increasingly crucial to understanding the dynamics of the

operation of system architectures. As a general rule, debug visibility becomes

 IO Level of Integration
•฀Serial฀฀฀-฀฀ex.฀JTAG฀

•฀Parallel฀-฀฀ex.฀Nexus฀Aux฀Port฀

Protocol฀Level฀of฀Integration฀
•฀Nexus฀5001฀

•฀Multicore฀IP฀&฀ABIs฀

•฀Other฀Proprietary฀

Instrument฀Level฀
•฀vender/IP฀solutions฀

Bus฀

Analyzers Core฀A฀ Core฀B฀
Core

Analyzers

Multicore฀

Trace฀

Formats

System฀Level฀Debug

Communications฀

(SoC฀level฀run฀control,

฀Cross-triggers,฀etc.)

Bus฀Fabric฀

TAP

Probe

฀฀Tool฀Level฀of฀Integration฀
•฀Tool฀APIs฀

•฀Data฀Export฀

Probe฀driver฀

Application฀Layer฀

Debug฀GUI฀Layer฀

Session฀Control฀Layer฀฀

Data฀Transport฀Layer฀

Debug฀Drive฀Layer฀

Physical฀Port฀Layer฀

Data฀Control฀Layer฀

Debug฀Control฀

&฀Display฀

Fig. 1.9 Open debug model and components

14 1 Introduction

increasingly problematic for highly integrated chips, which have extensive on-chip

memory and caches, peripherals, and a range of on-chip buses. The key control and

bus signals of interest in a deeply embedded system are often not externally

addressable by the physical pins of the device and therefore are inaccessible to

traditional instrumentation. This accessibility issue inhibits verifying silicon opera-

tion, introducing many hardware and software integration roadblocks, because the

design team must address how traditional debug tools can be interfaced to work

properly in SoC designs.

The value of instrumentation is, directly and indirectly, a function of several

factors, including the instrument resources inserted on chip, the cost of the instru-

mented code and logic to the overall system, the overall applicability of the instru-

mentation, and the level of software and tool support available to make use of the

instrumentation. In looking at the different types of on-chip instrumentation, they

break out into roughly four major types of functions.

Core Debug – most processor IP includes some debug blocks that simplify run •฀

control (e.g., go, halt, single step,) and optionally provide instruction and data

trace. The core-level integrated debug blocks and debugger features can differ

significantly from processor to processor.

Logic Debug – providing more generic control and trace, logic debug IP essen-•฀

tially allows the embedding of a logic analyzer interface and part of a logic

analyzer itself on the chip to provide visibility (and sometimes control) into the

IP operation by allowing data capture of deeply embedded signals.

Bus Debug – embedded bus fabrics provide data movement between cores and •฀

present additional challenges for system debug due to complex interactions of

on-chip bus fabrics and the sheer amount of data transferred over bus channels.

System Cross Triggering – for multicore systems, controlling and monitoring •฀

events from different cores is required to synchronize and manage the complex-

ity of multicore debug. Cross-triggering instrumentation provides one flexible

means of controlling and coordinating the concurrent operations of several cores

and IP, even when running in different domains.

The number of specialized and customized instrumentation blocks to address

analysis such as system or core performance analysis is even larger. As important

as the instrumentation function is its integration and communication with other

tools and user interfaces. Many instrumentation systems use JTAG as a primary

debug interface. Others use more specialized and higher-performing debug access

ports; both these types of interface are discussed in detail in subsequent chapters.

The ability to seamlessly interface different instrumentation blocks to different

debug tools requires a sophisticated hardware (probe) and instrumentation software

environment that supports the requirement to service diverse and concurrent debug

requests.

These tools, to a large extent, only address the specifics of the processor IP and

do not address or facilitate the system application in which the IP is used. Although

the processors become increasing deeply embedded, traditional development tools

for system debug applications can not provide nonintrusive visibility into the highly

151.4 Instrumentation-Based Debug Infrastructure

integrated embedded processor. Applied to processor in-circuit emulators and their

derivatives such as JTAG hardware debugging, the system must be placed in special

debug modes or halted before being it can probe processor registers or read/write

to the embedded memory. In many cases, this interruption of the steady-state

performance of the system introduces (time) intrusive elements into the system

operation that can complicate or invalidate the data or operations being observed.

This problem grows proportionally to the ever-increasing frequency and complexity

of high-performance embedded processors.

17N. Stollon, On-Chip Instrumentation: Design and Debug for Systems on Chip,

DOI 10.1007/978-1-4419-7563-8_2, © Springer Science+Business Media, LLC 2011

In this chapter we examine a typical on-chip instrumentation environment and

 discuss some of the individual instruments used for system debug, their typical fea-

tures, and their integration, both with each other and the systems being analyzed.

2.1 Trace and Event Triggering

Concepts of the tracing of data as it moves through the application or system are

central to most other instrumentation capabilities. To address different debug

requirements, instrumentation blocks must support different implementations of

trace collection. Typical requirements include the ability to trace in cycle, branch,

and timer modes. Cycle mode collects all bus cycles generated by the core(s).

Branch mode collects all execution path changes, sometimes called branch trace

messages. Timer trace mode records a frame with a timestamp each time an event

is satisfied, providing basic performance analysis measurements.

Event recognition is widely used in conjunction with trace to capture information

on events and operations in the SoC. Trace data values can be monitored and com-

pared to provide real-time triggers to control event actions such as breakpoints and

trace collection. Event recognizers can simultaneously look for bus address, data,

and control values and be programmed to trigger on specific values or sequences

such as address regions and data read or write cycle types. The event recognizers can

control enable or disable of breakpoints and trace collection (Fig. 2.1).

Data tracing based on recognizable events opens doors to new capabilities in

real-time SoC analysis. The data trace mode provides real-time information about

the status and data of a system’s internal signals, including, for example, analysis

of cache performance and internal memory and data transfer operations that cannot

otherwise effectively be extracted from a system. In-line or postprocessing trace

information allows for analysis of data flow performance or measurement of sys-

tem characteristics such as bus availability or cache hit/misses, which require long-

term steady-state (measured over many cycles) system information. Additional

detection of events in traced data allows the development environment to flag spe-

cific features in the trace data as it flows through the application.

Chapter 2

On-Chip Instrumentation Components

18 2 On-Chip Instrumentation Components

As an example of a complex instrument event recognizer feature, four event

recognizers can be combined in a 1–2 and 3–4 arrangement to produce two complex

events. In this arrangement, the complex events can be configured so that first event

of the event pair must be satisfied before the second event is enabled (Fig. 2.2).

2.2 External Interfaces for On-Chip Instrumentation

JTAG pin interfaces are the default interfaces of the most basic debug functions.

Higher pin-out trace and probe ports are used with many on-chip instrumentation

approaches. Even with these ports, however, the amount of debug information avail-

able can easily exceed the allocated debug interface of a SoC. To reduce the informa-

tion being sent over the interface, approaches such as data compression increase the

performance of the debug interface without significantly affecting system cost.

Obviously, the most useful approach to reducing the information from the debug

port to the host development tool is to limit transmissions to new information and

have inferred information derived by the development tools. For example, for

required addresses to trace the instruction flow, it can be seen that not every instruc-

tion is required to construct an instruction trace. If the target processor does not

have a change of flow, then the full address does not need to be transmitted. Only

when a change of flow, such as an interrupt or branch, occurs would the system

need to send the new beginning address. In addition, if the debugging session must

be real time, then some information may be held in reserve. For instance, not all

data values have to be visible at all times; only the data that the engineer is con-

cerned with should be sent to the debug port during run time.

One of the major limiting factors on the use of instrumentation in SoC and multicore

architectures is the ability to quickly export data as it is generated. On-chip

 instrumentation can address many of the operations associated with large amounts of

Trace

collection

Trace

concentration

Trace

aggregation

Trace Export
Traced Internal

Signals

Fig. 2.1 On-chip trace formatting and export instrumentation

instrument

Signals
Trigger

Event

Recognizer

Event

RecognizerTrace set 2

Trace set 1

Fig. 2.2 Instrumented event recognition

192.3 Performance Analysis Using On-Chip Instrumentation

on-chip debug, including triggering and performance monitoring. There is, however,

almost always a need to be able to view the debug signals such as instruction/data trace

from a processor, which means data must be exported off chip. The ability to transmit

debug signals, most notably trace, is a hard limited function of two parameters:

 1. The number of IO pins that can be dedicated to export of debug information at

any given time.

 2. The speed at which these signals can transmit the data.

This problem of exporting debug data is compounded for multiple-core SoC

architectures, with monitoring of internal address, data, and control signals for each

core, with the addition of inter-core and peripheral bus signals. One basic instrumen-

tation approach is to rely on on-chip memory to buffer between traced data and the

export bandwidth available. Trace buffer must consider the differences between

data being generated on chip and the throughput of the debug interface. If buffers

are modest in size, they can be overloaded by a large amount of trace data, as

example, from multiple IP blocks or internal buses.

Despite the increasing number of IO signals available in leading-edge packages,

system designers must limit the number of IO signals dedicated to trace and debug

to reduce system cost (with packaging becoming an increasingly dominant factor

in system cost). Most current approaches to increasing the IO bandwidth for debug

rely on increasing the effective number of IO pins available (by multiplexing debug

mode information into other system pins) and using higher-speed IO to increase the

throughput of each pin. Each of these approaches to increase debug throughput has

advantages and disadvantages. Increasing the effective pin count by statically mul-

tiplexing pins is a well-proven and low-risk approach. It does, however, involve

coordination over the entire operation of the SoC, because pins that are dedicated

to extended clock cycles to debug operations are unavailable for use in other modes

of operation. To support SoC core and internal bus speeds, bigger pin bandwidth is

increasingly required for instrumentation interfaces of a SoC.

2.3 Performance Analysis Using On-Chip Instrumentation

Customized instrumentation can integrate performance analysis of SoC architec-

tures as part of a debug solution. Performance analysis (PA) is an all-encompassing

term that refers to many types of measurements that provide information on how a

particular core is being used, both in context of other parts of the system and with

regard to specific algorithms. Integrating instruments to allow processor character-

ization, software performance, and system performance metrics provides valuable

and concise information, which is more simply gathered locally to the processor

because the lack of IO signal visibility in individual processor operations limits

tracking of embedded processor performance. Performance metrics can be distorted

or obscured by the layers of system buses, peripherals, and limited IO access

between an embedded processor and the external test environment.

20 2 On-Chip Instrumentation Components

Some common types of tests that are desirable in processor and SoC system

performance analysis are:

Find and profile hot spots in execution.•฀

Be able to measure loop times.•฀

Trace function calls, returns, and interrupts and measure the performance of this •฀

code.

Measure the duration of ISR (interrupt service routine) and other events.•฀

Track interrupts and measure the maximum interrupt latency.•฀

Track RTOS context switches, measure task duration, and measure OS events •฀

such as semaphore waits.

Measure the cache hit/miss ratio.•฀

Measure on-chip and off-chip memory access use.•฀

Count the number of processor stalls caused by (slow) bus accesses.•฀

Measure bus use and which master-slave transactions are using the bus the •฀

most.

Count the number of processor stalls in a section of code.•฀

Count the number of instructions executed between two points in a program.•฀

2.4 On-Chip Logic and Bus Analysis

Instrumentation-based logic trace allows analysis of bus architectures and

related nonprocessor IP. Logic analysis instrumentation typically consists of

debug blocks that are integrated into synthesizable logic files (typically VHLD

or Verilog).

The bus analyzer collects a history of on-chip bus activity and exports it through

the JTAG interface. Bus signal information is connected to the data inputs. A trig-

gering system user starts and stops collection of data to an on-chip trace RAM.

When collection stops, the most recent activity remains in the trace memory, from

which it is unloaded through JTAG and displayed. The bus trace configuration

includes a timestamp, which is stored with the data; to provide synchronization and

interval information, on-chip counters for performance measurements; of the fre-

quency of system events, and JTAG-controlled registers that hold parameters for

input and output triggering of control operations that allow captured bus signals to

interact on-chip with other debug components in the system.

Bus fields include address bus, data bus, and user extension field and can track •฀

a number of bus masters in the system. More than one bus layer may be sup-

ported in a single instance. For more trace capability, or trace over different

clock domains, more than one bus navigator instance can be implemented in a

single JTAG chain.

The trigger state (started, active, stopped, stalled) is recorded in the trace buffer. •฀

A multistate trigger allows triggering on sequential events. For example, a configu-

ration that recognizes bus cycle A followed by bus cycle B is:

212.4 On-Chip Logic and Bus Analysis

if (event A and state 0) then goto state 1

if (event B and state 1) then trigger

Timestamps are used to indicate the distance between recorded samples when •฀

collecting trace using qualifications such as trace-on/trace-off, or collecting filtered

trace that matches an event definition. Because bus measurements may be large

numbers of cycles, the timestamp is set up to cover a large time range.

Being able to trigger from instrument data allows for both dynamic interactions

with the target system and improved capture of the information of interest.

Analyzers nominally support multiple triggers with multiple states per trigger (Fig. 2.3).

Trigger conditions can be created as application-specific combinations of three

components:

Raw or processed data (filtered or aligned) compared to logic or edge events on –

each signal.

Counter or times values matching a preprogrammed value. –

Trigger state (what trigger-related operations have occurred previously?). –

When a trigger condition is satisfied, one or more actions can be taken, such as to

mark the trigger frame, turn trace on or off, record a single frame, turn the counter

on or off, increment or clear the counter, assert the external trigger out, or change

the trigger state. The flexibility of this system under a wide variety of conditions

and actions can improve visibility and monitor and tune system performance based

on a range of operational parameters.

Trace

Pipeline

General

Purpose

Register

Event

Monitors

and Triggers

JTAG chain

Bus

Inputs Timestamp

Trace

Control

JTAG TAP

Trace

SRAM

Triggers To /From

other Logic

Counter(s)

To other

Logic

Required

Optional

User Created

Other traced

Signals

Input /

Filter

 Select

Fig. 2.3 Bus trace instrumentation block diagram

22 2 On-Chip Instrumentation Components

2.5 On-Chip Instrumentation Examples

In this section, we present several examples that illustrate the instrument features

just discussed.

2.5.1 Trace Monitoring and Interfaces

Embedded processor instrumentation addresses embedded processor debugging

and system validation features such as run control, trace history, memory and register

visibility, and complex breakpoints.

The external trace monitor is an instrumentation block integrated into and

supporting of processor core monitoring. Trace monitoring allows capture of both

execution history and other real-time information from the core and allows either

on-chip or off-chip trace storage. Trace monitors can also be configured to collect

profiling data for performance analysis. The specific instance of the instrument

interfaces a debug unit interface for a processor architecture that provides debug

functions such as start/stop execution, single-step, breakpoints, and register/

memory access (Fig. 2.4).

The trace monitor allows trace history to be captured in several modes (instruc-

tion and/or data full or compressed, etc.), depending on the available bandwidth and

information desired. The block combines trace messages of various lengths into

trace words of fixed width suitable for writing into memory, which are then sent to

either on-chip memory or through a trace port to off-chip memory. Because the

bandwidth of an external trace port is limited, the user must be selective about what

information to collect. Typical choices include execution trace, data cycle trace, and

profiling trace. The trace collection may also be enabled and disabled by hardware

breakpoint registers set to generate trace actions (Fig. 2.5).

The trace monitor buffers trace words using a first-in-first-out (FIFO) memory,

in order to compensate for the latency for outputting a trace word. The size of the

FIFO is application dependent, and if the size is too modest, trace data can overflow

. .
Processor

Core
External

Trace

Monitor

Debug

Unit

(DEU)Trace

Memory

JTAG Port Trace Port

Fig. 2.4 Processor trace

232.5 On-Chip Instrumentation Examples

and become corrupted. The trace monitor control logic allows requests that the

processor pipeline be stalled so that no trace information is lost (Fig. 2.6).

The trace monitor allows internal or external trace memory. When data is avail-

able from the data buffer, it is written to the internal memory. For external trace, the

off-chip trace port logic multiplexes the trace words from the data buffer onto the trace

port pins. As in the previous examples, control of the instrument block is handled

by a JTAG interface and can be configured for on-chip or off-chip trace storage.

2.5.2 Bus Logic Monitoring

With increasing core density and interconnection of blocks in modern SoC design,

monitoring internal bus operations is an important capability to debug the entire

SoC. OCP and AMBA AHB are leading on-chip buses in use by many SoC design

architectures to communicate between cores. On-chip instrumentation applied to

the AHB captures bus activity and allows system diagnostics in real time.

In this case, the instrument connects to the AHB address bus, data buses,

and various control signals at the bus multiplexed outputs. In AHB, signals are

driven from each master and multiplexed onto a common address/data/control bus

Execution

Trace
Trace

Word

Formatter

Data

Buffering

Trace

Port

Interface

Internal
Memory
Control

Data

Trace

To Trace

Port IO

Control

Interface JTAG Interface

Execution

Data

Control

Trigger

Manager Trigger

Profiling

Manager

Profiling

To On-Chip

Trace IO

stall

JTAG

IO

Fig. 2.5 Trace monitor block architecture

Processor

Core
Trace/Run Control Module

Probe

Interface

JTAG Controller

Trace Memory

Instrument

Interface

Trace Port JTAG Port

Fig. 2.6 A processor-instrument interface

24 2 On-Chip Instrumentation Components

by a multiplexer controlled by the arbiter. The multiplexed output is fanned out to

all the AHB slaves. Similarly, data from each slave is multiplexed onto the common

bus and sent to the SoC masters. The instrumentation interfaces are configured

to receive address/control and data bus data from the currently granted master

and addressed slave. The instrument passively collects bus activity and transfers

the collected data through a trace port to the external probe interface (Fig. 2.7).

The bus instrument was developed to support a range of single-master and

multiple-master systems. Additional signals can be hooked up to any nodes in

the SoC, such as interrupt requests, additional AHB status, and processor control

signals. The additional signals can also be used to compare and recognize

specific on-chip activity outside the AHB bus, and then are transmitted to the

probe for triggering purposes. As an example of real-time processing for debug

that the instrument enables, the bus monitor allows probing of data in different

modes. In the AHB case, data can be probed in two modes. Bus-cycle mode

captures all address/control and data signals exactly as they occur per clock on

the bus. Bus-transfer mode reduces the delays and latencies between address

and data cycles on the bus, by aligning to the same clock cycle, operations that

occur in different cycles. This reduces the number of trace cycles that are stored

and allows for efficient combination of address-data-control event triggering for

trace and monitoring operations. Bus transfer mode is especially effective for bus

read operations in which the master transfer operation providing addresses and

control and slave response providing data back to the master may be separated

by a large number clock cycles of the bus waiting for the operation to complete.

As an additional example of trace in-line processing, the trace hardware can be

configured to filter out idle, busy, and not-ready cycles where no active data

is being transferred. This allows each trace frame to record the critical AHB

signals along with additional user-selectable signals and a timestamp to aid in

performance analysis.

The host software for AMBA monitoring provides a good example of a special-

ized debug interface to support bus operations. Bus values can be viewed either

numerically or symbolically. The symbolic representation increases the visibility

and comprehension of complex bus operation (Fig. 2.8).

AHB Master AHB Master

AMBA monitor

instrument

AHB Slave AHB Slave AHB Slave

AHB Wr

(Master) Bus

AHB Rd

(Slave) Bus

Fig. 2.7 Instrument interface into an AMBA bus

252.5 On-Chip Instrumentation Examples

2.5.3 Real-Time Data Exchange

Real-time data exchange is the ability to “exchange commands and data with the

application while it executes.” This approach to “dynamic instrumentation,” called

“dynamic variable adjustments” or “dynamic data collection,” was introduced by

Texas Instruments and is becoming widely utilized. Dynamic data collection refers

to the ability to capture specific address ranges of data from the SoC target and

present them to the user on the host machine. The data can be “pulled” periodically

by instrumentation or on-demand by the user using the JTAG and/or trace port.

Pulled data-exchange methods of implementation can include a JTAG command

that suspends the processor, reads a range of data values from the target, and passes

them to the host via the probe interface.

Debug data can also be “pushed” from the target based on instrumented code to

output variables or arrays periodically (i.e., timer interrupt) or from executing a

specific location in code – such as when a variable is updated. Pushed data exchange

can be implemented based on instructions in the target code, such that a range of

data will be copied from memory to the instrumentation trace port. The hardware

core and instrumentation block provide an instruction that can write memory to the

trace port or a DMA channel configuration that can do a range transfer from

memory to trace port. The data format can function as burst mode – first the start

and end addresses are sent out (or start address and length,) followed by the data.

If the trace port is not available, a breakpoint can be placed in the code and the run

control unit fetches the string buffer via JTAG reads.

A third technique is the use of “shadow memory” – an external RAM that is

interfaced to hold the same image of values as in the processor’s main memory

(or cache). Shadow-memory techniques include zero-overhead methods in which

the instrumentation is set up with a range of addresses to shadow. When a read or

Fig. 2.8 A bus analyzer display

26 2 On-Chip Instrumentation Components

write occurs in the address range, the instrumentation captures the address and data

value and sends it off-chip through a trace port. To a probe which includes a trace

memory that allows a real time access to the data.

2.6 Multiprocessor Debug

As more processing elements, features, and functions are simultaneously embedded

into the silicon, the emerging level of embedded complexity outstrips the capability

of a stand-alone logic analyzer, a debugger, and an emulator-based diagnostic tool.

While these tools allow the capture of data off the system data bus, they work only

as long as every access (read or write) occurs over the external data bus. For embedded

processors and buses with no direct external access, this points to a growing gap in

effectively being able to provide the necessary controllability and, in particular, the

visibility of the internal operations of a complex system.

The need for improved methods of observing and analyzing embedded proces-

sor and SoC operation has increased at a pace at least proportional to the explosive

growth in SoC designs and new IP cores. This forces the analysis side of the SoC

world into a constant process of catching-up to the designer’s ability to add cores

and integrate new resources on chip. With an ever-shortening development cycle,

and often several generations of products being produced in parallel or rapid suc-

cession, standardized embedded tools and capabilities that enable quick analysis

and debug of the embedded IP are a critical factor in keeping SoC verification a

manageable part of the process.

Before we can implement an on-chip debug system suitable for multicore systems

we have to ask the user requirements.

 1. Each core and bus must be observable. We must be able to see or reconstruct the

program flow of each single core independently as well as of the data flow on the

system buses. Also important are signals allowing conclusions to be drawn about

power modes, bus accessing modes, and others.

 2. It is crucial for system analysis to recognize events that arise from interactions

between the cores and buses. A single core on its own is no longer of interest.

Rather, events coming from several cores have to be considered. To minimize

this challenge, cross triggers must be used, which combine events from different

sources and make them available systemwide.

 3. The interactions between all SoC components during debug become more com-

plex as more components are involved. A debug system with complex cross

triggering is hard for the user to manage. The debugger as a user interface for the

complex debug hardware must support the user in its work finding the mistakes

or performance bottlenecks. It has to hide the complexity that comes with

multicore debugging. We must not forget the user’s task is to cope not with the

debug hardware itself but with the faulty system.

272.6 Multiprocessor Debug

On-chip instruments (and simulation) play an important part of SoC development

and verification flows, providing the ability to analyze what is happening on the

hardware itself, during both prototyping and system-level verification stages, and

increasingly on the final products themselves. The problem in analyzing informa-

tion like embedded buses in hardware in many cases hinges on a problem of visibility:

it is difficult to fix what you cannot see. This visibility problem for the embedded

SoC is more complex than can be addressed adequately by traditional on-chip test

methods such as traditional JTAG scan, for several reasons:

Bus operations are multicycle, with signals in a bus cycle becoming active at –

different times, requiring sequential tracing rather than as a single-cycle snap-

shot that scans typically provide.

Bus operation problems are interrelated with the operations of at least two com- –

municating blocks (a processor and memory peripheral, for example). Traditional

debug methods, such as halting part of a system for testing, can introduce

changes and new variables that interfere with the test scenario and process.

If problems are intermittent or sparse, then trace operations need to operate in a –

triggered mode, so information for a given range of bus cycles of interest is

captured in real time.

The problem is, to a large extent, a multicore extension of embedded processor

analysis, with run control, instruction execution, and data trace as integral parts of

processor support. For larger systems with multiple cores, the problem extends

beyond processor execution to understanding system operation and communica-

tions (Fig. 2.9).

In formal terms, multicore embedded systems present an asymmetric functional

test problem. Their controllability is high, because the systems are dominated by

programmable processor cores. The observability is low, however, in terms of both

the critical signals that are directly available and the amount of embedded logic and

internal signals as a ratio of the available IO in which to observe them. Adding

dedicated resources and structures that support functional analysis is necessary to

increase system observability. This requires a hierarchical focus to the issue of

system analysis, starting at the individual core level of debug instrumentation and

resources and increasing to a more system-centric diagnostic capability to facilitate

increased observability. While embedded debug instrumentation approaches are

becoming increasingly common at the core level, system-level diagnostics and

analysis at the multicore level have historically been a largely underaddressed area

in complex embedded systems.

Single-core approaches for debug and trace often fall short when used with

multiple cores and processor interfacing with complex application-specific IP.

Increasingly, SoCs integrate multiple types of cores, either for DSP or other

specialized processors or for other complex application-specific IP operations for a

myriad of functions. These cores may be running asynchronously or with variable

or indirect communications with each other, which makes debugging over multicore

difficult to correlate. Complicating multicore debug issues further, in many cases,

28 2 On-Chip Instrumentation Components

different IP blocks come from a variety of vendors and have different compile and

debug environments or levels of debug features. Tasks such as processor interfacing,

interprocessor communications, run-time execution and coordination, and data pre-

sentation place a significant overhead on the debug requirements for heterogeneous

and multicore chips. In these architectures, a range of the instrumentation block(s)

must be customized to support the specific verification and debug requirements of

both processors on a stand-alone basis and in a multiprocessing configuration.

Among the basic requirements, instrumentation blocks must be diverse enough to

effectively communicate debug data with their respective cores and have a sufficient

common interface to coordinate all their activities. For example, synchronization of

all processors in SoC is required in starting and stopping their operations.

Instrumentation solutions for on-chip buses provide a valuable resource for

observation in multiprocessor debug. For systems that have multiple processors

communicating over a standard bus such as AMBA AHB, access to information

such as which processor owns the on-chip bus can provide valuable context as to

what the relative communication and stages of processor execution are. With

increasingly complex bus architectures being introduced, it is generally agreed that

future generations of multiprocessor debug will rely on more extensive tracing and

triggering of bus operations to address interprocessor communication issues in

conjunction with more specific point solutions for processor-specific analysis.

Looking ahead to more complex systems, instrumentation must have sufficient

“embedded intelligence” to interpret information passing between cores, determine

what is needed to be extracted for debug, and perform other task-aware debug for

Processor

Core

Cross

Triggers

JTAG Port

Bus Master

Socket

 Other IP .

 Master Socket

Trace Input

Trace Port

 Slave Socket .

(Other IP)

Probe

Interface

 Trace/Run Control

JTAG TAP 1

Trace Buffer

Wr (Master)

Bus Fabrics

Rd (Slave)

Bus Fabrics

Trace

Buffer
Bus

Triggers

Agent

 Slave Socket .

(Other IP)

TAP 2 BUS

ANALYZER

PROCESSOR

TRACE

Embedded

Interconnect

Fig. 2.9 SoC processor and bus trace instrumentsssss

292.6 Multiprocessor Debug

on-chip RTOS or network protocol analysis. Equally challenging is presentation of

all the diverse debug information in a coherent, understandable way. As in many

areas of complex SoC design, new classes of instrumentation are needed to address

diverse debug and analysis requirements of emerging architecture.

Integrating instrumentation into design hardware enables on-chip debug capa-

bilities by providing not only visibility but also control features such as breakpoints

for developing and integrating SoC application code. On-chip instrumentation and

debug are critical resources to aid in both processor function and performance

assessment and effectively evaluating silicon prototypes (for example, program-

mable logic implementations) and first silicon debug and validation.

There are a wide range of approaches taken for embedded processor debug,

several of which are discussed in later chapters. There is no magic bullet instrumen-

tation approach, but rather a number of commonly required capabilities needed to

provide a robust debug solution. On-chip instrumentation enables a range of widely

used best practices in debugging and interfacing embedded information, including

data tracing, triggering run control that has proven analysis benefits. Implementing

an instrumented interface on SoC designs offers distinct advantages in efficiently

implementing run control, real-time instruction and data trace information, RTOS

support, memory subsystem, breakpoints, and watch-points, to name just a few.

An instrumentation implementation that is scalable and configurable to map to

a range of instrumentation requirements on the SoC allows support of user-definable

general-purpose or application-specific features. Instrumentation hardware should be

a synthesizable solution, both to facilitate integration into a range of target platforms

and to load instrumentation into hardware emulators to provide a synchronized

method of loading and debugging code and functionality in a pre-silicon environment.

Synthesizable instrumentation solutions also allow their integration into high-end

FPGA parts. In many cases, programmable devices incorporating instruments

through their system interfaces are ideal for pre-silicon verification.

One of the most important features of instrumentation capability is support of

collection and streaming of data off-chip to a logic analyzer or other trace postpro-

cessing environments, which integrates trace processing along with a low overhead

control interface.

Support for complex event recognition and triggering capabilities is also

required to provide a robust level of control and monitoring of operations. Complex

address and data triggers, coupled with bus trace, can be used for a range of opera-

tions from multiprocessor synchronization to debugging device drivers. Having a

source-level debug GUI coupled with the instrumentation complex triggers may

rapidly uncover execution errors and problems such as improperly defined vari-

ables. By coupling timestamps to trace data, complex triggers can be used to

provide a range of performance analysis information.

The ability to interpret debug information is essential. A documented API allows

fast, efficient porting of instrumentation to customer-specific GUIs. Scripting of

validation and manufacturing tests is a useful means for efficiently leveraging

embedded instrumentation. Host debugger environments for an instrument solution

benefit from command-line interfaces that allow effective script file usage.

30 2 On-Chip Instrumentation Components

Instrumentation solutions for processors should support complete integration

into a source-level debug interface to provide access to disassembly information

needed to understand the context of application-related problems.

Instrumentation extensions can be customized in a range of areas for the system

to debug application-specific IP. Their value in providing otherwise unavailable

visibility in a range of internal system characteristics, including code coverage,

RTOS task analysis, and protocol analysis, will only increase with larger, more

complex, and increasingly deeply embedded next-generation architectures.

31N. Stollon, On-Chip Instrumentation: Design and Debug for Systems on Chip,

DOI 10.1007/978-1-4419-7563-8_3, © Springer Science+Business Media, LLC 2011

IEEE Specification 1149.1, more generally known as JTAG (Joint Test Action

Group), was originally developed as a test architecture with a standard serial interface

to an on-chip test access port (TAP) to permit snapshot sampling of individual pin

signals. It is, however, generic and flexible enough to also be used to load registers

and drive specific output signals, which makes it capable of serving as a debug inter-

face in a variety of scenarios. JTAG is probably the most widely used debug interface,

as the JTAG TAP is found in most digital internal circuits (ICs) and JTAG debug

interfaces are defined for most processors, FPGAs, and other commercial parts.

Most currently available cores and processor-based devices provide some form

of JTAG interface for run control and debug functions. JTAG can be used to support

trace and performance analysis instruments such as the ARM’s ETM and Coresight,

and MIPS EJTAG + TCB from MIPS; which allow integrated trace of both the

processor and its system interfaces for more extensive system debug.

The biggest problem with on-chip debugging is the lack of a consistent set of

capabilities and single communications interface across processor architectures.

Using JTAG as a “debug port” has become perhaps the most widely used instrumen-

tation interface, providing the stepping stone between traditional processor emulation

and more SoC-friendly approaches to debug. JTAG was originally developed as a

means of doing full chip testing and allowing serial testing of all the pin connections

of a chip and its interconnections to other chips on the circuit board. Given that more

than 200 major electronics manufacturers have adapted the JTAG standard since its

release in 1990, JTAG is found in virtually all modern digital ICs. An 1149.1 JTAG

TAP is a four- or six-pin interface that has both serial an parallel signals. Data is

transferred between different TAG or with an external probe over serial test data input

(TDI) and output (TDO) pins, and system-wide Test Clock (TCK). Test Mode Select

(TMS) control, and (optional) JTAG test reset (TRST) are common to all TAPS. A

sixth RTCK signal is not in the current standard but is widely used for debug related

communications and is discussed later in this chapter. JTAG standard instruction

operations define board- level IO testing via a Boundary Scan Architecture (BSA)

that is based on chained scan registers that may be controlled through the JTAG

Interface. This JTAG boundary scan architecture is primarily a connectivity test con-

struction and is of less interest for debug. The JTAG specification allows alternative

logic blocks to be connected to a TAP and the creations of user defined instructions.

Chapter 3

JTAG Use in Debug

32 3 JTAG Use in Debug

Most of the operations we will discuss use alternate logic blocks, that sits along side

the BSA, and which defines instrumentation operations, Similarly, most of the debug

related instructions we focus on are non-standard user defined instructions.

3.1 JTAG Pins

IEEE 1149.1 requires a minimum of four signals to support the TAP. TRST and

RTCK are optional. Figs. 3.1 and 3.2.

Fig. 3.1 A JTAG TAP

Table 3.1 JTAG IO signals

JTAG

I/O Description of JTAG (IEEE 1149.1) Pins

TDI Test data input allows serial movement of data into the JTAG port. Used to

transfer instructions and data serially into the device. TDI is sampled on the

rising edge of TCK and has an internal pull-up resistor

TDO Test data output allows serial movement of data out of the JTAG port. Used to

transfer data out of the device serially. TDO changes on the falling edge of

TCK

TCK Test clock is an input pin that provides the clock for the JTAG port. Used to sample

the TMS signal, to strobe data and instructions into the device, and to strobe

data out of the device

TMS Test mode select input provides access to the JTAG TAP state machine. Used to

change the TAP controller state machine to the next processing state. TMS is

sampled on the rising edge of TCK and has an internal pull-up resistor.

TRST Test reset input optionally provides for asynchronous initialization of the JTAG

IEEE 1149.1 controller. Asserted low to reset the TAP circuitry to a known

initial state. TRST is asynchronous to TCK and has an internal pull-up resistor

RTCK Return clock output can be used to accelerate data access through the JTAG port.

RTCK is not part of the 1149.1 standard

333.1 JTAG Pins

Write operations pass data into the registers from TDI. Read operations pass

data out of the registers through TDO.

The JTAG port itself has evolved in some circumstances to better support debug.

One example of this is the introduction of return clock; RTCK is the return test

clock signal from the target JTAG port to the JTAG interface unit. Some targets

need to synchronize the JTAG port to internal clocks. To help meet this require-

ment, RTCK, which is a returned (and re-timed) TCK, can be used to dynamically

control the TCK rate. RTCK is a synchronized logic clock consisting of a delayed

version of TCK that is synchronized to an on-chip system clock to improve JTAG

performance in trace operations. RTCK was originally developed by ARM but is

now supported in general for many other processors’ JTAG instrumentation.

Also widely associated with JTAG is a VTRef signal intended to supply a logic-

level reference voltage to allow debug equipment to adapt to the signaling levels of

the target board. VTRef does not supply operating current to the debug equipment.

Few vendors have standardized JTAG instruments outside of the physical port

pin out and required test-related instructions for the physical connection. As a

result, JTAG capabilities vary widely because on-chip debug was never addressed

within the IEEE 1149.1 standard. The JTAG architecture defines signals and man-

datory on-chip logic (16-stateTAP controller, instruction tegister, bypass register

and boundary-scan register) that is also used by instrumentation. Chips may be

daisy-chained together, connecting all registered I/O pins and buffers into a scan

chain, where values may be read or written. For larger devices, this scan chain may

be hundreds of elements long.

The JTAG port is a dedicated interface standardized for JTAG access.

Additionally, it can be used for internal chip tests. Because neither of these

Fig. 3.2 JTAG interface using RTCK

34 3 JTAG Use in Debug

applications is used during normal operation of a device in a system, the JTAG port

is well suited to be an interface for special user modes, such as debug. The avail-

ability of JTAG pins in devices and their lack of use in nontest-related applications

has popularized their use as a debug port that allows low overhead access to all ICs

in a system and provides embedded developers with an otherwise unused interface

for debugging. The use of JTAG as it applies to tests could fill its own book, there-

fore we only focus on the debug-specific parts of JTAG here.

That being said, JTAG is not an ideal interface for debugging modern devices.

It is a low-speed serial interface, and the upper limit of transfers is typically less

than 100 MHz, and so it has limited bandwidth and was not designed to support

instruction and data transfers for any real-time analysis. Instrumentation based on

JTAG relies on a simple low-speed debug port philosophy of setting up and con-

figuring debug-related IC registers, and then capturing processor information at

normal operating speeds to the JTAG-enabled registers. Typical operations

involve triggering of breakpoints or tracepoints (trigger points for starting and

stopping trace operations) and access embedded state information of the micro-

processor for testing and run control. Some processors have extended JTAG

instructions for debug operations that allow decisions based internal JTAG-

enabled registers to change the processor state to debug intensive modes of

operation for capturing system information. While in debug mode, the processor

instrumentation can examine and modify the internal and external states of a

 system’s registers, memory, and I/O space. A rich infrastructure of tool

 environments and standardized debug schemes has been built on this foundation

to provide JTAG debug of both embedded processors and other parts of an

embedded system.

The key to using JTAG as a debug port is the standard’s provisions for user-defined

instructions and data register sizes. Virtually all of the debug instructions and capa-

bilities we discuss utilize this user-defined instruction capability. JTAG defines a

small variety of standard test instructions with a low-overhead (and low-bandwidth)

serial data access interface. Whereas JTAG defines standard test operations (scan in,

scan out, bypass, etc.) that use defined registers, the JTAG standard allows for a much

more diverse number of user-defined instructions that can be added.

Because JTAG does not define a fixed register size, the number of available

registers that can be selected using different user-defined instructions can be much

larger than the number of JTAG-defined registers for test purposes; the size of data

registers associated with different instructions is also user-defined. Consequently

use of JTAG for debug is essentially done on an ad hoc basis using the JTAG ability

to access these user-defined instructions via a standardized and simple state

machine in the TAP that serially scans instructions in and data in and out of the

registers. These debug-mode instructions and their associated instruction and data

registers must be designed into the JTAG block and must have a probe and other

software infrastructure to support operations. Several locally standardized sets of

debug mode instructions have been adopted for use with the JTAG TAP, especially

with regard to processor debug operations. These include vendor-specific ARM

ETM and MIPS EJTAG for the different processor families, as well as other

353.2 Test Access Port

standards such as IEEE 4001 (Nexus), IEEE 1149.7 (CJTAG/AJTAG), and IEEE

P1687 (IJTAG) (all of which are discussed in later chapters). Each of these which

define a JTAG-compliant protocol that supports additional debug functions, while

adhering to the 1149.1 standard. All have support from a variety of third parties that

supply probes and software tools that support these different JTAG variants. Of

course, any chip developer may define and support its own debug instruction set by

defining it in the JTAG TAP and on-chip instruments communicating with the TAP,

and providing or developing its own infrastructure.

3.2 Test Access Port

The TAP is the external interface for the internal test circuitry specified by IEEE

1149.1. It consists of the following:

4 to 6 dedicated signal pins.•฀

A 16-state TAP controller.•฀

An instruction register.•฀

At least 3 data registers:•฀

A bypass register (BR). –

A device ID register (IDR). –

A boundary-scan register (BSR) –

The three defined data registers have defined purposes for debug operations, but

there also must be at least one debug register. Using JTAG as a debug architecture

requires debug-related registers connected between the JTAG controller and the

internal device circuitry. Unlike a BSR, there is no pre-defined relation between

the different debug registers. When selected by the appropriate TAP controller

instruction, one or more debug registers becomes a serial scan path between a

TDI pin and a TDO pin. During normal operation, the registers are static or in

read mode to collect data. However, when the system enters debug mode, data

loaded into the control registers is propagated and data from the system is cap-

tured for triggering and related functions. Data registers can be read or written by

shifting in values from the JTAG TAP and applying them to an active register.

Registered on-chip data can be exported through the JTAG TAP; for observation

and analysis.

The JTAG controller state machine is the heart of the JTAG operations. It is also

referred to as the test access port controller. The TAP controller is a 16-state

machine that manages control of the JTAG environment to perform the instructions

and data transfers between the on-chip registers and an external debug host. All

state transitions occur on a positive TCK clock edge and are controlled by the TMS

pin after reset (TRST). Initially, the state machine is in the Testlogic-reset state.

With TMS low and a positive edge on the TCK, it is brought to the Run test/idle

state. All further state transitions are done in a similar manner.

36 3 JTAG Use in Debug

Figure 3.3 shows the 16-state TAP controller state machine. The state machine

performs three basic actions:

Do nothing and wait for debug operation to be initiated by an external debugger •฀

host in the Testlogic-reset or Run test/idle state.

Load a new instruction in an instruction register (IR) scan cycle.•฀

Load new data into a selected data register in a data register (DR) scan cycle.•฀

The JTAG state machine has two parallel control paths. One is for the JTAG instruc-

tion register using the IR path, and the other is for the (selected) data register

using the DR path. The instruction register directly or indirectly selects the

register(s) for the next data operation. The IR and DR paths are identical to flow;

the differences are in the registers that are being accessed. The corresponding IR

and DR states are as follows:

Select-IR-scan, select-DR-scan: initiate an instruction or DR access sequence.•฀

Capture-IR, capture-DR: load IR or DR in parallel.•฀

Shift-IR, Shift-DR: load data register by shifting data through the instruction •฀

register or the selected data register that is connected between the device’s TDI-

TDO.

Exit1-IR,exit1-DR: finish phase-1 shifting of instruction or data.•฀

Pause-IR, Pause-DR: temporarily hold the access operation (allow the master to •฀

reload data).

Exit2-IR, exit2-DR: finish phase-2 shifting of instruction or data.•฀

Fig. 3.3 A 16-state TAP controller state machine

373.2 Test Access Port

Update-IR, update-DR: parallel load of registers synchronizing the instruction •฀

or selected data register or instrument that is active under the current selected

instruction.

In operation, the TAP changes state based on the level of TMS. Transitions from one

state to another occur on the rising edge of the TCK. Instructions and data are trans-

ferred through TDI, which is sampled on the rising edge of the TCK, and data is

transferred out through TDO, which changes on the falling edge of the TCK. This

sampling technique prevents the development of a race condition in the TAP. The

main state diagram consists of six steady states: Testlogic-reset, Run test/idle,

Shift-DR, Pause-DR, Shift-IR, and Pause-IR. A unique feature of this protocol is that

only one steady state exists for the condition when TMS is set high: the Testlogic-

reset state. This means that a reset of the test logic can be achieved within five TCKs

or fewer by setting the TMS input at a high level/high enough/sufficiently high/ etc.

A JTAG implementation consists of an instruction register and one or more data

registers, one of which is selected at any given time based on the contents of the

instruction register. The JTAG port master writes an instruction into the IR that

either performs an action or selects a particular data register, or both. The action

occurs when the TAP state machine passes through the Update_IR state. Status

information is returned to the external hardware in the IR output. The IEEE stan-

dard requires that IR output bits [1:0] be 0,1 respectively. The remaining bits can

reflect status information.

At power-up or during normal operation, TRST can be asserted to initialize the

test controller. This immediately places the TAP in the Testlogic-reset state. The

TAP can also be forced into the Testlogic-reset state by driving TMS high for five

TCK cycles. Five is the maximum number of TCK cycles required to transition the

TAP to the Testlogic-reset state from any of the other states when TMS is held high.

In the Testlogic-reset state, the TAP issues an internal reset signal that places all test

logic in a condition that does not impede normal operation. The TAPS also locks

the IDCODE instruction into the instruction register and selects the device ID reg-

ister as the default data register at reset.

From the Testlogic-reset state, the TAP moves to the Run test/idle state when

TMS is pulled low. As long as TMS is held low, the TAP stays in the idle state.

From this state, driving TMS high moves the TAP to the data register scan cycle.

The TAP cannot remain in the select DR scan state for more than one TCK cycle.

Driving TMS low for one TCK cycle causes the TAP to begin the data register scan

process, moving to the capture DR state. Keeping TMS high for one more TCK

cycle moves the TAP to the beginning of the instruction register scan cycle (select

IR scan state).

After reset, one can read the device ID register (default). To perform any other

action, one must move the TAP to the instruction register scan cycle to select an

appropriate data register. For either type of scan cycle (data register or instruction

register), the first action in the scan cycle is a capture operation. The capture-DR

state enables the data register indicated by the current instruction register contents.

The capture IR state enables access to the instruction register.

38 3 JTAG Use in Debug

From the capture state, the TAP transitions to either the shift or the exit1 state.

The shift state allows test data or a new instruction to be shifted in or status infor-

mation to be shifted out for inspection. Following the shift state, the TAP either

returns to the Run test/idle state, via the exit1 and update states, or enters the pause

state, via exit1. The pause state allows data shifting through either the selected data

register or instruction register to be temporarily suspended while a required opera-

tion is performed. From the pause state, shifting can resume by re-entering the shift

state via the exit2 state, or it can be terminated by entering the Run test/idle state

via the exit2 and update states.

3.3 JTAG Registers

All registers are accessed serially through the TAP and, when selected, connect

between the TDI and TDO pins. The TAP controller, which is a state machine,

controls access to the registers. The state is changed by the TMS signal in conjunc-

tion with the TCK.

The following registers are found in most JTAG systems:

The bypass register provides a single-bit scan path between TDI and TDO. It •฀

enhances test efficiency when a device other than the core-based device becomes

the device under test. When the bypass register is selected by the current instruc-

tion, the shift register stage is set to a logic 0 on the rising edge of TCK in the

capture DR controller state. Therefore, the first bit shifted out after the bypass

register is selected is always 0.

The ID register is a 32-bit register that stores values that identify the device •฀

manufacturer, part number, and version of a device and is selected by the

IDCODE instruction. It can be used to distinguish specific IEEE 1149.1–compliant

parts in a daisy-chained system. The least significant bit (bit 0) is always set to

logic 1, as required by the standard; this bit is an identity packing bit that indi-

cates valid data.

The boundary-scan register defines test operation in the device and contains bits •฀

for all signal, clock, and control pins. All bidirectional pins have a single register

bit and an associated control bit in the BSR. In the update DR state, the register

contains valid stimuli data. In the capture DR state, the boundary-scan register

samples data. Data clocked into the device in the shift DR state can drive output

pins in the subsequent update DR state. At the same time, the clocking action

shifts out sampled pin data from the previous capture DR state.

The instruction register is a required register specified in IEEE Standard 1149.1 •฀

that must be at least 1 bit long. Different processor families implement different-

length IRs that decode the unique instructions supported for the device. For

instruction operation codes that are not defined, the standard requires that the

decoder select the bypass register by default. The IR consists of a shift register

with parallel outputs. Data transfers from the shift register to the parallel outputs

during the update IR TAP controller state. During a shift IR loading sequence,

393.4 JTAG Instructions

data can be clocked through the instruction register out of TDO to allow instructions

to be passed to any subsequent devices in the JTAG daisy chain. During the

capture IR state, the parallel inputs to the instruction shift register are loaded

with 01 in the least significant bits as required by IEEE Standard 1149.1. The

two most significant bits are loaded with the values of the core status bits [1–0]

from the debug controller.

After reset, the instruction register is loaded with the IDCODE instruction, and the

ID register is the selected data register. One can perform a data scan to read the

device information. For other operations, the TAP programming sequence must

begin with a scan into the instruction register to specify the appropriate data regis-

ter. After an instruction register scan, subsequent scans are through the specified

data register and may involve several scans of data into or through it.

Debug registers in most cases are data registers that are accessed through a com-

mand register that is configured during an IR pass by loading a debug-related

instruction.

3.4 JTAG Instructions

With the exception of BYPASS and IDCODE, which are defined and discussed in

later chapters, none of the mandatory or optional instructions referenced in the

1149.1 specification are used for debug purposes and are of no direct interest to this

discussion. It should be noted, however, that BYPASS, EXTEST, and SAMPLE/

PRELOAD instructions are mandatory and, as such, should be included in a TAP

design if it is intended to be 1149.1-compliant.

BYPASS (11…11): This instruction is required by IEEE Standard 1149.1 and is

defined to be all 1s. BYPASS allows the device to remain in its functional mode

and connects the bypass register between TDI and TDO. It allows serial data to pass

through from TDI to TDO without affecting the operations.

IDCODE: This optional instruction is specified in IEEE Standard 1149.1.

IDCODE allows the device to remain in its functional mode and connects the ID

register between TDI and TDO. It allows the user to read the manufacturer, part

number, and version of a component from the TAP. This is the default value loaded

into the IR at reset.

Debug-related instructions are discussed in the next chapters, both generically

and for various commercial and widely used debug instruments.

JTAG has therefore evolved into a robust leading mechanism for debug con-

trol even though, due to its serial architecture, JTAG it is limited in the level of

debug visibility it can support. JTAG works well for debug of a single processor in

isolation because debug may be based on observation of a limited number of internal

registers and the processor may be halted to probe and export additional infor-

mation. The increased signal complexity of emerging SoC devices, with multiple

processing operations distributed over many resources and communication with

other supporting IP and internalized buses, in some cases require data access that

40 3 JTAG Use in Debug

outstrips JTAG bandwidth. Debug interfaces have been developed to provide

complementary instrumentation interfaces that allow higher levels of data

throughput than JTAG. These are discussed in later chapters.

3.5 Boundary-Scan Description Language

Boundary-scan description language (BSDL) describes how IEEE 1149.1 is

implemented in a device and how the device operates. A BSDL description for a

device is based on VHDL model descriptions and consists of the following

elements:

An entity description.•฀

A generic parameter.•฀

A logical port description.•฀

Use statements.•฀

Pin mapping(s).•฀

A scan port identification.•฀

An instruction register description.•฀

A register access description.•฀

An ID code description.•฀

A boundary register description.•฀

BSDL does not describe how instruments are controlled by the JTAG TAP

 operations. A BSDL description of a device consists of at least an entity descrip-

tion, a generic parameter, a logical port description, pin mapping, a scan port iden-

tification, an instruction register description, an ID code description, and a boundary

register description.

For those not familiar with VHDL syntax, descriptions are provided for each

stage of the file.

BSDL code is in Courier font, comments are shown in italics.

– BDSL HEADER - This is free format and typically not parsed

– Per VHDL Syntax, lines starting with – are comments

– Showing Boundary Scan Description Language (BSDL) for

– Device DSP_NS in a 24-pin package

– Modification History

– Date Author Version

– Created –/–/–’ NSTOLLON 1.1

– Modified –/–/–,

The entity description gives the name of the device. It begins with an entity state-

ment and terminates with an end statement. For example, this entity description for

device called DSP_NS

entity DSP_NS

is a generic parameter that can come from outside the entity, In BSDL, the only

generic is a string with a name PHYSICAL_PIN_MAP. If “undefined” it can be

413.5 Boundary-Scan Description Language

defined by another file, or it can be defaulted to a fixed value such as the package

type, in this case, a 24-pin package.

generic (PHYSICAL_PIN_MAP: string:= “PQ24”);

The logical port description gives logical names to the I/O pins and specifies

whether the signals are input, output, bidirectional, or linkage (for power supply).

port (

P1:in bit;

P2:inout bit;

VSS:linkage bit;

XIN:linkage bit;

XOUT:linkage bit;

VCC_BUS:linkage bit;

P3:inout bit;

P4:inout bit;

P5:inout bit;

P6:inout bit;

P7:inout bit;

VREF:linkage bit;

P8:inout bit;

EXC_VDD:linkage bit;

P9:inout bit;

RESET:in bit;

MOD0:in bit;

MOD1:in bit;

VDDE:linkage bit;

TMS:in bit;

TCK:in bit;

TRST:in bit;

TDO:out bit;

TDI:in bit

);

STD 1149_1_1994 refers to a package of predefined functions and components that

are associated with various attribute statements referenced in the BSDL model.

A STD_1149_1 use statement is mandatory in BSDL. The “.all” suffix means to use

all components and functions of the package.

use STD_1149_1_1994.all;

attribute COMPONENT_CONFORMANCE of DSP_NS: entity is

“STD_1149_1_1994”;

For example, PIN_MAP is a predefined function in the STD 1149_1_1994 package

that maps logical signals to the physical pins of the 24-pin package.

attribute PIN_MAP of DSP_NS: entity is PHYSICAL_PIN_MAP;

constant PQ24: PIN_MAP_STRING:=

“P1:1,” &

“P2:2,” &

“VSS:3,” &

“XIN:4,” &

42 3 JTAG Use in Debug

“XOUT:5,” &

“VCC_BUS:6,” &

“P3:7,” &

“P4:8,” &

“P5:9,” &

“P6:10,” &

“P7:11,” &

“VREF:12,” &

“P8:13,” &

“EXC_VDD:14,” &

“P9:15,” &

“RESET:16,” &

“MOD0:17,” &

“MOD1:18,” &

“VDDE:19,” &

“TMS:20,” &

“TCK:21,” &

“TRST:22,” &

“TDO:23,” &

“TDI:24,”;

Attributes for scan port identification statements define the TAP, device clock, and

reset operations. The definition of the port of a device contains four mandatory pins

(TDI, TDO, TCK, TMS) and one optional TRST pin.

attribute TAP_SCAN_IN of TDI: signal is true;

attribute TAP_SCAN_MODE of TMS: signal is true;

attribute TAP_SCAN_OUT of TDO: signal is true;

attribute TAP_SCAN_CLOCK of TCK: signal is (5.0e6, BOTH);

attribute TAP_SCAN_RESET of TRST: signal is true;

The instruction register description identifies device-dependent characteristics of

the instruction register, including the device-specific instructions supported by a

given device. These include debug-related instructions. In this example, the instruc-

tion register length attribute defines the instruction register length as 6 bits and

gives the instruction opcode definitions. It also specifies that for the capture IR

state parallel inputs to the instruction shift register are loaded with value 110001.

attribute INSTRUCTION_LENGTH of DSP_NS: entity is 6;

attribute INSTRUCTION_CAPTURE of DSP_NS: entity is

“110001”;

attribute INSTRUCTION_OPCODE of DSP_NS: entity is

“BYPASS (111111),” & – defined as required instruction

by JTAG

“SAMPLE (000001),” & – defined as required instruction

by JTAG

“EXTEST (000000),” & – defined as required instruction

by JTAG

“IDCODE (000010),” & – defined as optional instruction

by JTAG

433.5 Boundary-Scan Description Language

“USERCODE (000011),” & – other are example user-defined

instructions

“DBG_SYSTEM (001000),” & – for debug control

operations

“DBG_CONTROL (001001),” &

“DBG_SETUP (001010),” &

“MON_CONTROL (001111),” & – for debug monitoring

operations

“MON_CODE (010000),” &

“MON_DATA (010001),” &

“MON_PARAM (010010),” &

“MON_ACCESS (010011),”;

The attribute INSTRUCTION_PRIVATE register description identifies user-defined

instructions. It does not include features to describe their functions.

attribute INSTRUCTION_PRIVATE of DSP_NS: entity is

“DBG_SYSTEM,” &

“DBG_CONTROL,” &

“DBG_SETUP,” &

“MON_CODE,” &

“MON_DATA,” &

“MON_PARAM,” &

“MON_ACCESS”;

The ID code register description identifies the values captured in the device identi-

fication register when the IDCODE instruction is executed.

attribute IDCODE_REGISTER of DSP_NS: entity is

“0000” & – version

“0011001000100110” & – part number

“01000100011” & – manufacturer’s identity

“1”; – required by 1149.1

Additional attributes can be defined for other registers.

attribute DBG_SYSTEM_REG of DSP_NS: entity is

“0000000000100000” & – reserved

“0000” & – trigger modes

“0001” & – ROM monitor

“0010” & – ISA debug

“0100”; – debug state

A register access description defines the name of a register placed between the TDI

and TDO for each instruction.

attribute REGISTER_ACCESS of DSP_NS: entity is

“Bypass (BYPASS),” &

“Boundary (SAMPLE, EXTEST),” &

“DEVICE_ID (IDCODE,USERCODE),” &

“DBG_SYSTEM_REG (DBG_SYSTEM),” &

“DBG_CONTROL_REG (DBG_CONTROL),” &

“DBG_SETUP_REG (DBG_SETUP),” &

“MON_CODE_REG (MON_CODE),” &

44 3 JTAG Use in Debug

“MON_DATA_REG (MON_DATA),” &

“MON_PARAM_REG (MON_PARAM),” &

“MON_ACCESS_REG (MON_ACCESS);

The boundary register description lists the boundary-scan cells and gives informa-

tion regarding the cell type and associated control.

attribute BOUNDARY_LENGTH of DSP_NS: entity is 27;

attribute BOUNDARY_REGISTER of DSP_NS: entity is

“26 (BC_4, P100, observe_only, X),” &

“25 (BC_6, P100, bidir, X, 13, 1, Z),” &

“24 (BC_1, *, control, 0),” &

“23 (BC_4, RESET, observe_only, X),” &

“22 (BC_4, MOD0, observe_only, X),” &

“21 (BC_4, MOD1, observe_only, X),” &

“20 (BC_4, P101, observe_only, X),” &

“19 (BC_6, P100, bidir, X, 13, 1, Z),” &

“18 (BC_1, *, control, 0),” &

“17 (BC_4, P102, observe_only, X),” &

“16 (BC_1, P102, output3, X, 0, 0, Z),” &

“15 (BC_1, *, control, 0)” &

“14 (BC_4, P103, observe_only, X),” &

“13 (BC_1, P103, output3, X, 291, 0, Z),” &

“12 (BC_1, *, control, 0),” &

“11 (BC_4, P104, observe_only, X),” &

“10 (BC_1, P104, output3, X, 288, 0, Z),” &

“9 (BC_1, *, control, 0),” &

“8 (BC_4, P105, observe_only, X),” &

“7 (BC_1, P105, output3, X, 285, 0, Z),” &

“6 (BC_1, *, control, 0),” &

“5 (BC_4, P106, observe_only, X),” &

“4 (BC_1, P106, output3, X, 282, 0, Z),” &

“3 (BC_1, *, control, 0),” &

“2 (BC_4, P107, observe_only, X),” &

“1 (BC_1, P107, output3, X, 279, 0, Z),” &

“0 (BC_1, *, control, 0),”;

end DSP_NS

BSDL is primarily a means to describe1149.1 operations, is not structured to be

very useful for on-chip instruments by itself, because too much instrument func-

tionality is outside of the 1149.1 standard. BSDL is discussed in Chap. 9 (IJTAG)

in the context of a litmus test for JTAG components. If it is 1149.1-compliant, it

should be describable in BSDL. Conversely, if it cannot be described in BSDL, it

is not 1149.1-compliant. There are activities to define successor languages to

BSDL to encompass features for more in-depth description of instrumentation

operations, configurations, and on-chip debug-related functionality.

453.6 The Road to JTAG: Historical Debug Approaches

3.6 The Road to JTAG: Historical Debug Approaches

The majority of on-chip debug interfaces in use today are based on JTAG. It is useful

to discuss some of the previous approaches, because many, like emulation, have

continued to evolve into related but somewhat separate disciplines, and others, like

BDM, which was in wide use a decade ago, continue to see some use today. Given

the central importance and relative complexity of processor cores in embedded sys-

tems, a majority of the focus has been on processor debug technologies rather than

on debug-related aspects of an embedded system.

Tools that to a large extent only address the specifics of the processor are obvi-

ously limited in more system-related applications. As the processors become more

deeply embedded, traditional development tools for system debug applications

cannot provide nonintrusive visibility into the highly integrated embedded processor.

Applied to processor in-circuit emulators and their derivatives, the system must be

placed in special debug modes or halted before it can probe processor registers or

read/write to the embedded memory. In many cases, this interruption of the steady-

state performance of the system introduces (time) intrusive elements into the system

operation that can complicate or invalidate the data or operations being observed.

This problem grows proportionally to the ever-increasing frequency and complex-

ity of high-performance embedded processors.

Printf-based debug: Historically, the most commonly used processor debug tool

is some variation of the printf command, which allows the processor, during its

normal course of operation, to transfer status information to either memory or an

external interface for later interpretation of the program operation and hopefully

some signposts of where and when errors are occurring. It is likely that even today,

variants of printf commands embedded in code running both in simulations and on

hardware targets are the most widely used means of system debug. The disadvan-

tage of using printf commands in embedded code is the different ways that embedded

compilers support printf commands and the fact that by adding these statements to

one’s code, one changes the program flow that one is trying to debug. There are

software-related books that address the use and variants of the printf command for

use in software debug, so we may safely leave this topic and the interested user can

find many alternate sources of information.

Debug monitors: A related approach is the use of a debug monitor (or a ROM

monitor as it was often included in the boot ROM of a device), which is code that

is included in the processor to help with debugging. It usually communicates via

a serial interface to a host computer or some form of terminal. A basic monitor

allows for the download of code, the reading and writing of memory and registers,

and, perhaps most importantly, setting breakpoints, single stepping, and real-time

execution. More complex monitors allow source code profiling and complex

breakpoints. A variant of the debug monitor uses a ROM emulator as a plug-in

replacement for the on-chip or on-board ROM containing the debug monitor code.

The ROM emulator device would typically be connected to a host computer to

46 3 JTAG Use in Debug

allow debug code download (as opposed to having dedicated debug support in

ROM) that contains a ROM monitor and communicates with the monitor via the

emulator interface, as opposed to having dedicated debug support.

In a systems analysis context, however, monitors present debug limitations.

Debug monitors are intrusive into operational flow of the processor, change the

state of the processor, and control the program’s execution by changing the memory

map of the processor to accommodate inclusion of the monitor code and forcing the

processor to always be on. Debugging of interrupts and real-time operations are

thus typically not feasible. Breakpoints are typically limited to those implemented

in software (inserting an opcode for a “trap”), further changing the system being

debugged. Single stepping is often done by inserting breakpoints in appropriate

places.

In-circuit emulation: The in-circuit emulator (ICE) has had a long and generally

successful history for stand-alone processor debug devices. In the 1990s, it was

virtually required that every new device have an ICE system to be used for debug

and systems integration. ICE typically used a special version of the processor called

a “bond-out” chip with extra debug support pins, bringing typically internal signals

to the chip periphery in order for code execution to be monitored and traced, the

processor controlled using hardware triggers and breakpoints, and external memory

to be mapped into the user space. Due to architectural differences in processors,

diverse ICE tools have been developed and continue to evolve to suit the needs of

different processors.

The ICE concept continues to be used, with an entire electronics industry subset

dedicated to emulators that replace the bond-out chip with a programmable imple-

mentation that allows the processor functions along with other system logic to be

implemented and executed. However, these emulators run on a different principal,

essentially replacing entire systems with their FPGA equivalents.

In ICE operations, the processor operational interfaces are typically modified,

via either software or hardware, to allow extended host control of the processor

run environment. When the processors are in ICE mode, they may be in a non-

standard operating state of the processor with different opcodes and interface

features. The resulting operation of a processor in emulation mode makes the

processor appear to be in a dormant state, with impact on its ability to access and

debug other parts of the embedded system. In addition, to be minimally intrusive,

many processor emulation schemes are limited to monitoring the processor bus.

Many signals and internal registers may be inaccessible during ICE mode opera-

tions, although this may not be the case for more general emulation. Other limita-

tions include the inability to debug at full speed and concerns for subtle

differences in operation between an emulated version of a processor and the

actual processor.

Most in-circuit emulators contain real-time trace circuitry, which allows them to

capture the activity on the processor’s bus and, with on-chip support, the proces-

sor’s internal states. This data is generally logged to a trace buffer for later analysis.

Such data is particularly helpful when trying to debug problems involving behavior

that can only be captured when the processor is running at full speed.

473.6 The Road to JTAG: Historical Debug Approaches

The ICE’s most powerful features include complex breakpoints (even in ROM),

real-time traces of processor activity, and no use of target resources. But this extra

functionality requires separate packaging and, in some cases, a separate die. The

speed, complexity, and integration levels of modern processors limit the availability

and feasibility of bond-out versions, making emulators difficult and expensive to

design. As a result, some debugging features unique to ICEs are not available for

modern processors.

3.6.1 Background Debug Mode

Background debug mode (BDM) is a bit-serial synchronous communication

developed by Motorola. The debug signal interface consists of a serial data in, serial

data out, serial clock/breakpoint, and a freeze status signal. At its most basic imple-

mentation, BDM allows externally controlled read or write of a range of registers

and on-chip memory. There are several BDM variants that also allow a BDM inter-

face to set a break or interrupt to debug mode under varying conditions, to halt

execution of normal machine code fetched from the memory, and to start to process

commands received from the serial debug interface.

BDM commands are similar to those in ROM monitors. Single stepping is

accomplished by hardware control of the BDM port or by placing a software break-

point instruction in the code stream. Although BDM is still in limited use, it is

primarily interesting as the first example of a debug port whereby commands can

be used to view and modify registers and to access on-chip and external memory

locations.

The basic BDM command set is generally the same across processor families,

but differences exist due to the inherent architectural differences. These differences

are handled by the particular debugger that drives the BDM.

BDM commands are 17 bits long (actually 16 command bits and 1 status/control

bit). Commands are shifted serially along the serial-data-in (DSI) signal from the

debugger to the processor; each may be followed by one or more extension words.

Responses are shifted serially out of the processor on the corresponding serial-data-

out (DSO) signal. These data transmissions are synchronized to a serial-clock

(DSCLK) signal, which is driven by the remote debugger. We can see how JTAG

was identified as a logical successor to BDM, because it shares some of the same

architectural concepts.

Table 3.2 shows a core BDM command set. Commands are similar to those of a

typical debug monitor. An external debugger host is enabled for capabilities like

reading and writing registers and individual memory locations. BDM commands

invoked while the processor is running involving memory will “steal” bus cycles

from the processor, much as a DMA (Direct Memory Access) controller would.

The debugger performs memory and register read/write and processor halt/restart

operations, without the processor involvement or impact to instruction flow when

these activities are occurring. Execution of a background mode (BGND) instruction

48 3 JTAG Use in Debug

or assertion of a breakpoint signal from the debugger will cause the processor to halt

and the on-chip debug hardware to perform operations until a command to resume

normal execution (GO) command is received.

BDM, like other on-chip debuggers, provides basic capabilities similar to a debug

monitor, but debugging does not need to use target memory. It also offers some of

the features of an ICE to view registers and memory without halting the processor.

On-chip debug instruments allow users to see address and data values just as the

processor sees them, that is, unfiltered by pre-fetch or cache operations. In a production

system, it is only possible to capture them with an on-chip debugger. For example,

Freescale ColdFire’s BDM connection contains eight additional output signals,

which can output nibble-formatted information on the processor’s state. By logging

data on the host side, the real-time execution history of the processor can be recon-

structed from this information.

Table 3.2 A basic BDM command set

Command Mnemonic Description

Read register RAREG/RDREG Read the selected address or data register

and return the result

Write register WAREG/WDREG Write the specified value to the selected

address or data register

Read memory READ Read from the specified memory location

Write memory WRITE Write to the specified memory location

Dump memory DUMP Read from a block of memory

Fill memory FILL Write to a block of memory

Resume execution GO Resume instruction execution at the current

value of the PC (after pipeline flush)

49N. Stollon, On-Chip Instrumentation: Design and Debug for Systems on Chip,

DOI 10.1007/978-1-4419-7563-8_4, © Springer Science+Business Media, LLC 2011

Debug features for embedded processors have been recognized from the earliest

days of embedded processing as an important requirement for processor verifica-

tion. Because detailed simulation of processor operations for many applications has

historically not been feasible due to the large number of cycles required for many

applications, processor analysis via emulation and trace of processor operations has

been required for verification and hardware/software integration. Most licensable

embedded processors include some instrumentation features to support debug.

Although the specifics vary with each processor type, debug for processor cores

typically provides similar debug features:

 1. Processor-specific run control (start, stop, software and hardware breakpoints,

single-step run control).

 2. Monitoring of hardware and software breakpoints for triggering.

 3. Real-time trace that can include execution (instruction) and/or data trace. Trace

operations can be triggered from conditions such as instruction execution,

memor, or IO operations, address range, or opcode value.

Among the most valuable processor debug features for analyzing operational

performance is execution trace. Trace in general is a complex debug technology

because it requires either a large buffer or high bandwidth to export trace infor-

mation. Each new generation of processors brings new performance capabilities

that make debugging more difficult. To address these new barriers, processor

manufactures have been adding parallel debug capabilities to devices, enabling a

new class of debugging techniques that promises to help developers get home on

time Tables 4.1 and 4.2.

Integrating debug instruments on processors allows JTAG-driven emulation and

pseudo-real-time debug through access to system registers. These debug instru-

ments enhance the visibility a JTAG port can provide into processor operation.

Instead of using the processor core to execute functions, debug peripherals execute

in parallel to the processor with complete access to system registers, memory, and

executive control, resulting in nonintrusive visibility, increased performance, lower

latency, and greater complexity of functions.

Chapter 4

Processor System Debug

50 4 Processor System Debug

Table 4.1 Instrumentation chip IO interfaces

Name Type Description

Initialization and clocking

CLK Input Clock source

RESET Input Hardware reset input. Clears internal OAI resources

JTAG

TCK Input Test Clock input. Asynchronous to but lower frequency than CLK

TMS Input Test mode select. Comes directly from input pad

TDI Input Test data input. Comes directly from input pad

nTRST Input Test reset. Active high

TDO Output Test data output. Goes directly to output pad

External debug mode control

BreakIn Input Input signal from cross-trigger bus (coming from other internal /

external logic)

BreakOut Output Output signal to cross trigger. Driven high on processor breakpoint

(going to other internal/external logic)

External trigger

Trig_Out Output Trigger out connects to cross-trigger logic or output pin allows cross

triggering with other logic

Table 4.2 Instrumentation processor interfaces

Name Type Description

Processor debug mode control

DebugAck Input Debug acknowledge. Connected to processor debug_ack output

DebugReq Output Debug start/stop request. Connected to processor debug request

input

DebugStep Output Debug step. Connected to processor debug_step input

Debug_Prog Output Debug operation to inhibit PC when debug instrument-driven

read/write operation is active

Processor trace/trigger

Fetch Input Program fetch

Flush Input Program branch indicator. Connected to processor flush output

Memaddr Input Program memory bus. Connected to processor memaddr bus

On-chip processor instrumentation may be added to processor cores, providing

run control, memory and register visibility, complex breakpoints, and trace history

features. Typically, analysis in many processors have common features.

Control via 4-pin IEEE-1149.1 (JTAG) port.•฀

Start/stop run control through DebugReq and DebugAck handshake signals to •฀

core.

Support for an unlimited number of software breakpoints using a software •฀

breakpoint opcode.

Single-step operation by assembly instruction.•฀

Access to registers and memory (code, external data, SFR, and internal data spaces) •฀

while user code is running with minimal impact to real-time performance.

A fixed or scalable number of hardware breakpoints consisting of an address/•฀

data value under different modes of operation, including:

51 4 Processor System Debug

Code memory execution. –

Code memory read or write. –

External data memory read or write. –

SFR read or write. –

Internal data memory read or write. –

Some processors allow combinations of two hardware breakpoints to form an

address range (lower and upper bounds) and masked data value. Hardware break-

points may be configured to enter or leave emulation or debug modes, start or stop

a trace operation, or assert signals to change bus or register values or trigger

outputs.

More advanced processor debug allows:

Cross-triggering for multiprocessor synchronization.•฀

Trace history of the most recent branch points for software reconstruction of •฀

execution flow. Branches record both branch-from and branch-to addresses.

Trace start/stop triggers allocate the trace frame

Support for multiple-memory-bank systems in breakpoint decisions and trace.•฀

Support for code memory, external data memory, and SFR trace.•฀

A key element is that they perform these functions in a way that does not impact

processor performance significantly.

To show some examples of debug instrumentation operation, we can construct

a simple generic processor with an on-chip debug instrument having a trace

capability. Off-chip interfaces for the instrumentation are JTAG, trigger, and

break signals. On-chip interfaces are to the processor core and RAM as shown

in Fig. 4.1.

On Chip

Debug

Instrument

Trace

RAM

JTAG

Signal Interface

Wrapper

Code/Data

RAM

Processor

Trigger

Break

In/Out

Debug

Mode Control

Trigger/Trace

Fig. 4.1 Processor on-chip analysis instrumentation

52 4 Processor System Debug

4.1 A Processor Debug Instrument Implementation

During initialization, the instrument samples the system RESET signal to initialize

to a known state. The instrument samples the state of TCK at the trailing edge of

RESET. If TCK is sampled high, the instrument concludes that the debugger is not

installed and does not affect normal processor operation. If TCK is low, the instru-

ment holds the processor in the reset state until the external debugger can assert a

DebugReq via the JTAG port.

Start and stop execution are both handled by a DebugReq signal. To start execu-

tion, the instrument asserts DebugReq. To stop execution, the instrument asserts

DebugReq. When the current instruction is completed, the core enters debug mode

and returns an acknowledgment by asserting DebugAck.

Single-step: From debug mode, the instrument executes one user instruction by

pulsing the Debug_Step signal active for one clock. The processor responds by

fetching and executing one instruction, then returning to debug mode. DebugAck is

negated during the step.

Software breakpoints: Processors use some variant of a TRAP signal to trigger

a software breakpoint. After execution of the processor TRAP instruction, the core

switches to debug mode and asserts DebugAck. Through the JTAG port, the debug-

ger system periodically polls DebugAck and begins breakpoint processing when it

becomes asserted.

Fielding user interrupts in debug mode: The processor signals to the instrument

that a user interrupt is pending. The instrument completes any operation in progress

and then negates DebugReq, waits for DebugAck to indicate that debug mode has

ended, and then reasserts DebugReq. When the processor completes the interrupt

service routine, it performs a return from interrupt routine and returns to debug

mode at the original PC. The sequence is identical to that for single-step except that

the process is initiated from a user signal rather than from the external hardware.

Memory/SFR access: The instrument accesses memory and registers using the

DebugStep mechanism. When in debug mode, a pulse on DebugStep advances the

processor by one instruction. A multiplexer on the processor’s program memory

input data bus (memdata) allows the instrument to feed instructions to the core to

be executed. A Debug_Prog signal indicates that the instruction is coming from the

debugger and that the PC should not be incremented after the instruction.

The instrument accesses memory and registers using the DebugStep mechanism.

When in debug mode, DebugStep advances the processor by one cycle. A multiplexer

on the processor’s program memory input data bus allows the instrument to feed

instructions to the core to be executed. To read memory or SFRs, the instrument feeds

in an instruction sequence that loads the appropriate item into the accumulator. The

sequence always saves and restores any registers used so that any interrupt handlers

invoked that depend on register values operate properly. A state machine within the

instrument handles all handshaking with the core necessary to execute a sequence of

instructions and capture results. A result register in the instrument stores state infor-

mation. The result is available to read via JTAG once the sequence is completed.

534.1 A Processor Debug Instrument Implementation

Processor trace: A scalable trace buffer memory stores branches executed by

the core. At every change of flow, the most recent PC from the old code sequence

and the first PC from the new sequence are stored together as a trace record. Change

of flow events include branches, calls, returns, interrupts, and reset. Two signals

provided by the core assist in collecting this information: fetch is active when the

core fetches program code, indicating that the current PC is present on the PROGA

bus, and flush indicates that the program fetch in progress is the first from the new

code sequence.

When trace begins, the trace memory address and a trace wrap flag are initial-

ized to zero. As each record is stored, the address increments, wrapping back to

zero when the memory is filled. A status bit is set when the trace address wraps.

The instrument maintains a shadow of the core’s PC by writing the memaddr bus

into a holding register at every assertion of fetch. Upon sampling flush active, the

instrument writes the PC holding register and the address from the current bus cycle

in successive clocks, incrementing the trace address.

When tracing stops due to a trigger or breakpoint, the trace memory is frozen and

the trace memory pointer indicates the first unused memory location. If the trace

wrap flag is set, the first frame collected is the one currently addressed and the last

collected is the one just preceding it. If the trace wrap flag is not set, the oldest frame

is frame zero and the youngest is the one just preceding the trace address. After a

breakpoint, the trace memory contents are read out through JTAG for display.

Processor triggers: The instrument provides a set of hardware breakpoint or

trigger registers that monitor bus activity and perform various actions when speci-

fied bus events occur.

Each trigger register is accessible through JTAG. There are three fields in a trigger

register: address, data, and status, each with its own enable bit and mask field. This

allows triggering based on address only, data only, and address in combination with

data with processor status bits optionally participating in trigger decisions.

A trigger mode input allows selection of different buses’ code read/write, data

read/write, instruction data read/write, or SFR read/write. These bits direct the

appropriate bus signals to the trigger comparator fields:

When all three fields of the trigger are satisfied, an action occurs. The trigger •฀

register selects which action(s) to perform for each trigger. The actions possible

are asserting DebugReq, (i.e. break emulation), asserting Trig_Out, and starting

or stopping trace collection.

Trig_Out is an optional output signal from the instrument to either a pin or •฀

another on-chip logic. The Trig_Out then connects to the external debugger and

is available for external monitoring. Similarly the Trig_In signal is input from

external logic over a pin or from another on-chip logic. Systems can have more

than one Trig_In and Trig_Out signal that are controlled independently.

Code execution breakpoints are different from other modes in that they do not •฀

perform any action directly. Instead, they override user code feeding the processor

with the TRAP instruction. If the instruction is executed, then a breakpoint

occurs. This allows breakpointing of code read from read-only memory.

54 4 Processor System Debug

In systems where two or more triggers are implemented, pairs of triggers may be •฀

combined to form a “super-trigger” by setting the combination bit in each of the

trigger registers of the pair. Trigger registers are combined in fixed pairs. Different

combination modes may be defined, either statistically or dynamically; for example,

in combinatorial event mode, a trigger pair is satisfied when, as for the following

example; the address is in a range defined by Trigger0 and Trigger1, data meets

some algebraic condition, or status is at some defined value.

Trigger0.Address <= TrigAddr <= Trigger1.Address

AND (Trigger0.Data XOR Trigger0.Mask) AND Trigger1.Data == 0

OR Status == ABCD;

The address must be between a lower and upper bound denoted by the address fields

in Trigger0 and Trigger1 respectively, and the data, masked by the data field in

Trigger1, matches the data field in Trigger0, or the status matches the defined value.

One can also create inverted breakpoints. Say one have a variable being modi-

fied in the code. By defining an inverted range – any code outside the function rather

than inside it – one will narrow the number of modifications one has to personally

evaluate, increasing overall efficiency.

A cross-trigger interface is intended to interconnect two or more processors so

that when any one processor hits a breakpoint or trigger condition, all others are

requested to break or take other action (as defined by the cross-trigger logic) within

a few clocks.

Debug instruments can also perform writes and reads without halting the proces-

sor (also called real-time data exchange (RTDX)), allowing polling of registers and

memory address ranges as the application code executes. This feature can be useful

in generating real-time errors or tracking program execution. RTDX can be a real-

time feature; the read/write can be made based on a precise trigger. What is important

is that real-time events are not affected by the read/write. This is critical for

 applications servicing real-time events. For advanced program execution tracking,

one can watch the program counter or instrument the code to adjust debug variables

that describe the current status of the application. For example, when one set a

breakpoint, the instruction opcode is replaced with a breakpoint opcode that halts or

otherwise takes action such as initiating an interrupt on the processor.

In these types of cases, the option to continue to execute interrupts even when

the application is halted can be quite useful. This is achieved with an embedded

emulation peripheral that masks time-critical interrupts. Being able to mask inter-

rupts is important because there may be certain application-based timer interrupts

one don’t want executing.

To do this, one need to make the task manager aware of the time-critical inter-

rupt mask. When determining whether to begin the next task, check if the system

is in jeopardy. If it is, execute the task. If not, then one can halt the task queue. If

the task queue is empty, the task manager must queue a task that removes the system

from jeopardy. When the processor resumes execution, the task manager returns the

system back to the condition it was in when the queue was empty.

Time-critical interrupt masking can also simplify hardware debugging. Consider

a one-second action. On a 100-MHz processor you’ll have to hunt down the small

554.2 Processor Trace Compression

amount of real-time code interspersed among approximately 100 million lines of

application code. Using time-critical interrupt masking, you could freeze the task

manager until the tasks you want to debug are queued. If you mask for time-critical

interrupts and release the task manager, the processor will be halted for the applica-

tion but will still run the real-time code. Thus, all you’ll have in the trace buffer is

the real-time code that you want to debug. Of course, if the bug is caused by an

unintended interaction between the application and interrupt, this technique will not

reveal the problem. However, you will know it is not solely the interrupt at fault but

rather an unintended interaction.

4.2 Processor Trace Compression

To perform an instruction trace, one must first set a trigger point. Unlike a simple

trigger point of a particular instruction address, a complex trigger point may involve

counters, logical operators, bit masking, and event sequencing; there are two ways

to generate a trigger point:

 1. Use the hardware debug resources contained in the processor core.

 2. Use an external trigger source to feed into the processor core.

Using hardware debug resources: Most RISC processors have registers and debug

facilities that allow users to set breakpoints at different instruction pointers, at the

address of one or more data at addresses, when a branch or exception is taken, etc. For

real-time instruction tracing, these internal processor core resources are used to deter-

mine the trace point, instead of a breakpoint, in order that the processor flow is not

halted.

This method has the advantage of being a precise trigger mechanism, which

means that the exact point when the trigger executes is known. In this method, all

code before the trigger point is guaranteed to have been executed, and all code after

the trigger point has not yet been executed.

Using only available processor resources for trigger points may sound limiting, but

it is not a problem. Because processor cores incorporate more and more debug

resources to help the embedded developer, it is not a problem. Most RISC processors

contain breakpoint/trigger points for multiple instruction address and data address

values, as well as counting and sequencing mechanisms for when branches or excep-

tions occur.

Using an external trigger source: If the internal hardware resources are not suffi-

cient, an external trigger can be fed into the processor to be used as the trigger point.

This method is an imprecise triggering mechanism, because the event has already

occurred before being fed into the processor core. It is therefore likely that processor

execution has continued past the trigger point (this is also known as “skid,”

because the pointer skids past the desired trigger point). Fortunately, the amount of

skid is usually minimal and does not hinder the usefulness of the instruction trace.

Compressing the trace data: The trick is to get the necessary instruction address

information onto seven data pins. Fortunately, the locality of reference associated

56 4 Processor System Debug

with Von Neumann architecture machines assists in this process. The following

explanation refers to the number of finite “states” needed to determine the code

flow, plus some dedicated pins for special address broadcasting.

Linear code execution: Consider the normal, linear (sequential) execution flow

of a scalar 32-bit RISC architecture. Linear code flow means that after an instruc-

tion is executed at an address pointer, the next instruction to execute is located at

pointer + 4 (assuming a 32-bit instruction width). To determine instruction address

flow, we must broadcast two states during every processor core clock period – one

state to say that an instruction has executed on a given clock cycle, and another to

say that no instruction executed on the given cycle. To illustrate, let us look at

the following example. Consider the following trace, in which State 0 means the

instruction did not finish executing on the given cycle, and State 1 indicates the

instruction finished executing on that cycle:

Some reasons an instruction may not execute on a cycle are: multicycle instruc-

tions (such as multiplies and divides), memory accesses, and pipeline stalls. As one

can see from Table 4.3, only one data pin is needed to save the two states. Assume,

for the purposes of an example, that we already know that the beginning pointer is

at 0 × 10 when the trace is started.

Because the code flow is known to be linear, the order of the addresses will

always be increasing where the next pointer = current pointer + 4. The only remain-

ing calculation is to determine how long each instruction took to execute. This is

calculated by adding the number of nonexecuted cycles plus the cycle the instruc-

tion did execute. For example, at the beginning address, 0 × 10, the instruction took

two cycles to execute, because it did not execute on Cycle 1 but did on Cycle 2. A

postprocessing tool would determine that the instruction flow was the following:

When the trace was gathered, memory or a static code listing can be read to deter-

mine the instructions at addresses 0 × 10, 0 × 14, 0 × 18.

In this six-cycle example, only one bit of information per cycle must be saved,

for a total of six bits rather than the 32 bits per cycle needed if we were storing the

pointer itself on every cycle. Note that in addition to generating a trace to catch

timing-related bugs, this provides performance analysis data Table 4.4.

Again, postprocessing tools can be used on the trace data to determine statistics

such as instructions most frequently used and instructions that took the longest time.

What we have so far is a real-time instruction trace with pointer information output

on one external data pin, clocked at the processor core clock frequency on one clock

pin. From this trace, we can determine how long each instruction takes to execute.

Normal program execution is rarely linear. Any code branching results in

nonlinear code flow. Therefore, another two states must be added to determine

whether a branch was executed, so the post-mortem tool can correctly calculate

the new pointer from the current pointer, because it may no longer be current

pointer + 4. Here’s an updated example with two new states to handle whether the

instruction was a branch that was taken:

In Table 4.5, IE state refers to whether an instruction executed on a cycle, and

BT state refers to whether an instruction was a branch that was taken on that cycle.

For the most common case of branching, the branch target address can be calculated

574.2 Processor Trace Compression

from the branch instruction encoding itself. To postprocess the address information,

instruction memory or a code listing is read to determine the target address of the

branch. Table 4.6 includes the branch target addresses (BTAs) for all branches that

Table 4.5 Nonlinear instruction trace

Cycle number IE State BT State What happened?

Cycle 1 0 0 Inst. did not execute, not a taken branch

Cycle 2 1 0 Inst. did execute, not a taken branch

Cycle 3 0 0 Inst. did not execute, not a taken branch

Cycle 4 0 0 Inst. did not execute, not a taken branch

Cycle 5 1 0 Inst. did execute, not a taken branch

Cycle 6 1 0 Inst. did execute, not a taken branch

Cycle 7 1 1 Inst. did execute, taken branch

Cycle 8 1 0 Inst. did execute, not a taken branch

Cycle 9 1 1 Inst. did execute, taken branch

Cycle 10 1 0 Inst. did execute, not a taken branch

Table 4.6 Nonlinear instruction trace with branch target addresses

Cycle IE State BT State BTA What happened?

Cycle 1 0 0 N/A Inst. did not execute, not a taken branch

Cycle 2 1 0 N/A Inst. did execute, not a taken branch

Cycle 3 0 0 N/A Inst. did not execute, not a taken branch

Cycle 4 0 0 N/A Inst. did not execute, not a taken branch

Cycle 5 1 0 N/A Inst. did execute, not a taken branch

Cycle 6 1 0 N/A Inst. did execute, not a taken branch

Cycle 7 1 1 0 × 24 Inst. did execute, taken branch

Cycle 8 1 0 N/A Inst. did execute, not a taken branch

Cycle 9 1 1 0 × 04 Inst. did execute, taken branch

Cycle 10 1 0 N/A Inst. did execute, not a taken branch

Table 4.3 Linear instruction trace

Cycle

number State Did instruction execute?

Cycle 1 0 Instruction did not execute

Cycle 2 1 Instruction did execute

Cycle 3 0 Instruction did not execute

Cycle 4 0 Instruction did not execute

Cycle 5 1 Instruction did execute

Cycle 6 1 Instruction did execute

Table 4.4 Linear instruction trace recon-

struction

Address

Cycles per

instruction

Total number

of cycles

0 × 10 2 2

0 × 14 3 5

0 × 18 1 6

58 4 Processor System Debug

have been taken. Remember, the branch target addresses (0 × 24 and 0 × 4 in this

example) are not broadcast over the trace pins, but rather are determined from the

debug tool after the trace is run by either reading instruction memory or reading a

static code listing.

Now we can show the postprocessing for this trace. Keep in mind that the

instructions that were executed at cycles 2, 5, 6, 8, and 10 may be conditional

branch instructions, but if they were, the conditions to take the branch were not met

(Table 4.7).

The code flow is no longer linear; the instruction at address 0 × 20 has not been

executed. Also note that the last instruction is at address 0 × 04, a lower address than

the start of the trace. To total up the pin count, we are using one pin for clocking and

two others to handle the four finite states (one of which, executing a branch when an

instruction has not been executed, will never occur), for a total of three pins.

Branches are one example of nonlinear code execution. But so far we have only

handled one type of branch, one whose target address can be calculated simply by

knowing the branch instruction. There are other kinds of branch instructions in

which the branch target address can only be determined by a value in a designated

register. These are handled as a special case in the same class as tracing interrupts.

Interrupts present a unique problem in that when an interrupt is taken, the next

instruction address may jump to any one of a number of possible locations depending

on the type of interrupt. These address locations are known as exception vectors. If

pin bandwidth is used to create a state for every possible interrupt, the cost benefit

of low pin count will be lost. Therefore, instead of tracing the type of interrupt, the

address of the exception vector is broadcast. For a 32-bit RISC machine, instruction

addresses are 32 bits in length. But the two least significant bits are not needed

because they must always be zero, as instruction lengths are 4 bytes (32 bits). To

broadcast the important 30 bits of address, only four pins are used – one pin to

indicate if an address is being broadcast, and three pins to broadcast the address in

a serial fashion over 10 cycles.

For example, let us assume the processor takes an exception when trying to

execute an illegal instruction. When a program exception occurs, the pointer

jumps to an address with an exception vector offset of 0 × 0700. To illustrate, we

will assume the IP after the interrupt is 0 × 12340700. To broadcast this address,

Table 4.7 Nonlinear instruction trace recon-

struction

Address

Cycles per

instruction

Total number

of cycles

0 × 10 2 2

0 × 14 3 5

0 × 18 1 6

0 × 1C 1 7

0 × 24 1 8

0 × 28 1 9

0 × 04 1 10

594.3 Hunting Code Errors with Self-Trace

the two least significant bits are ignored, because they are always zero, and the

resultant octal number is 0443200700. Assuming we broadcast the least significant

bits first, an address broadcast portion of a trace is shown in Table 4.8 (starting at

cycle n, with A0 as the most significant bit and A2 as the least significant bit).

Although not shown in Table 4.8, the IE state and BT state information would con-

tinue to be output in parallel with any address broadcast. The objection to be raised

at this point is how 10 cycles can be dedicated to broadcasting the address informa-

tion without ever slowing down the processor. In situations that require address

broadcasting fewer than 10 cycles apart, how can the trace (and the controller)

continue to run at full speed? The answer is that there is enough on-chip buffering of

address broadcast information to be confident that for any realistic code sequence,

processor execution will not be halted. This address broadcast mechanism is also

used to handle the special branch instructions not previously considered.

4.3 Hunting Code Errors with Self-Trace

Hunting code errors with self-trace is a key issue for software developers’ code

analysis. Instrument trace allows trace data to be sent to a debugger host for offline

evaluation. At high processor speeds, instructions need to be filtered, because one

can send only a limited amount of data per clock cycle. Often the information one

need was not collected or was pushed out the back of the buffer if the buffer is not

“infinite” (i.e. a storage device). To find your bug, one need a specialized trace.

Specialized trace peripherals buffer certain types of useful information. For

example, a discontinuity trace will track the most recent branches, as well as provide

an accurate measure of the number of cycles actually used, reflecting cache and

pipeline efficiency. Tracking the gross movements of the program counter enables

one to trace code execution using much less information than a full instruction trace

requires. If one find the program counter in a place it should not be, one can see

where the code veered off.

Table 4.8 Trace of address broadcasting pins

Cycle Addr BC A0 A1 A2

Cycle n - 1 0 N/A N/A N/A

Cycle n 1 0 0 0

Cycle n + 1 1 0 0 0

Cycle n + 2 1 1 1 1

Cycle n + 3 1 0 0 0

Cycle n + 4 1 0 0 0

Cycle n + 5 1 0 1 0

Cycle n + 6 1 0 1 1

Cycle n + 7 1 1 0 0

Cycle n + 8 1 1 0 0

Cycle n + 9 1 0 0 0

60 4 Processor System Debug

Another useful technique is tracking jumps to uninitialized memory. First, write

NOPs throughout uninitialized blocks of memory, and set the final instruction word

as a breakpoint. In this way, a branch to any part of uninitialized memory will fall

through to the breakpoint. One can then look back through the discontinuity buffer

to discover the errant jump. Consider leaving this capability enabled in deployed

devices. When the breakpoint is executed, write the specialized trace buffers and

any other important system variables to nonvolatile memory. One will then have a

record of invaluable debug information for hunting down intermittent bugs.

61N. Stollon, On-Chip Instrumentation: Design and Debug for Systems on Chip,

DOI 10.1007/978-1-4419-7563-8_5, © Springer Science+Business Media, LLC 2011

In this chapter we look at an on-chip debug system (OCDS) that addresses processor

instrumentation requirements through a JTAG interface. The general on-chip debug

system discussed provides a range of typical hardware monitoring and debug control

features for a design. Notably it allows several breakpoints to be set and memory

locations to be observed during run time. This example does not provide trace

capabilities; they are discussed in a separate chapter.

Figure 5.1 is an example of the modular debug interface discussed in previous

chapters. The JTAG interface is constructed as a separate module, with the debug

port and OCDS similarly modular.

The overall OCDS consists of three blocks:

The OCDS module (including debug control, access and triggering •฀

subsections).

The core debug port.•฀

The JTAG module.•฀

The purpose of OCDS is to debug processor operations in a systems environment.

In order to do this, the OCDS should provide several capabilities, in terms of con-

trol, triggering, and information capture.

Breakpoints provide the most common means of controlling debug functions.

Breakpoints operate by comparing hardware, software, or external pin signals to a

predefined value and triggering events. Breakpoints have come to be referenced as

generic terms for any triggering operation, particularly for a processor, that sup-

ports debug actions. In a more precise definition, breakpoints refer to triggers that

break the sequential operation of a processor, by putting the processor in either a

halt mode, where more exhaustive analysis can be performed while the systems are

in a steady-state condition, or a stall mode, where the instruction sequencing can be

manually controlled by controlling and monitoring the program counter (PC).

Other types of trigger operations that do not result in the processor halting are also

referred to as breakpoints, but they should more exactly be referred to as watchpoints

(whether an internal or external status or flag may be set upon triggering) or trace-

points (where a trace operation is performed (either starting or stopping a sequential

trace or taking a trace snapshot)) when a trigger occurs. Watchpoints and tracepoints

typically do not involve the processor operations stopping when they occur.

Chapter 5

An On-Chip Debug System

62 5 An On-Chip Debug System

Perhaps the most typical point to perform a trigger operation is on the instruction

pointer of a processor. By setting a trigger against the processor instruction value,

the user can determine and track the occurrence of an instruction in the processor

flow. This type of analysis is useful for tracking conditional instructions to deter-

mine if the processor has branched or jumped based on some system condition or

data value.

A processor OCDS typically has multiple instruction pointer breakpoints to

allow monitoring of several instructions concurrently. To evaluate instructions, it is

also often required to compare against hardware values. These values may be data

values that the instruction is processing or register values that are set by an

instruction.

Data values often include the ability to compare only a portion of the data using

masks. Using masks dramatically increases the flexibility of a data comparison,

allowing a range of values to be compared without having to include much more

expensive (both logic and timing) generic range logic.

Similarly, masks can be used to compare against a single bit in a status or flag

register for triggering purposes. Loading compare values may be done in a variety

of ways. When using external debugger software, trigger and control registers may

be loaded via JTAG. Alternatively, if the registers are memory mapped, as is typical

for most modern processors, trigger information may be loaded via a monitor pro-

gram by the processor itself.

5.1 OCDS Features

The OCDS, independently from the JTAG logic, may support other interfaces and

underlying protocols, which may include packet or direct parameter loading.

Packets provide a pre-defined mechanism for loading and updating information

between an off-chip controller and a target. Standards such as Nexus 5001, which

is discussed in Chap. 11, use a packet-based protocol. Other debug systems, notably

those used by processor vendors, use a direct parameter-loading method, where

Fig. 5.1 OCDS overview

635.1 OCDS Features

individual debug parameters and register values are loaded on an individual basis

to allow finer granularity and marginally better efficiency when compared to

packet-based transfers.

JTAG interfaces support both approaches because they basically involve register

loads of different lengths. An additional function supported by many OCDS is the

ability to emulate read/write functionality. On-chip memory may be accessed by

the debug port in a variety of ways, including direct access to the memory block to

load and store addresses and data, access to the memory bus via the memory con-

troller, or the OCDS taking control of the on-chip bus directly (becoming a bus

master) to generate memory access.

Each of these approaches has relative benefits. In direct access, the debugger

has the lowest granularity of control. Basically, the debugger presents the exter-

nal address and enable information to the memory block and either loads exter-

nal data into the memory or reads out memory data for an address through the

debug port. Depending on levels of hierarchy in the memory and types of access

methods, this may require several clock cycles to download the memory inputs

to the chip and then to export memory data as needed. Although this has a fair

amount of overhead, direct access to the memory allows the most flexibility,

including the ability to operate on a memory in a processor that is stalled, in

reset, or powered down.

Unless a significant amount of DMA functionality is added to the debug block,

the limitations of atomically accessing each memory and location can be limiting

to access or large or multiple memories. An alternative method is to have the debug

block access or control the DMA or memory controller logic for a memory, by

sending a command to the memory controller to prioritize and support debug inter-

face transfers The advantages of this are the ability to use the resources of the

memory controller to provide bursting or sequential access to memory data without

having to directly control every access of the memory.

A disadvantage of both direct access and DMA/memory control is that memory,

as a shared resource, is not always available for debug operations. In some systems,

the OCDS may take bus mastership of the systems to have uninterrupted control for

memory access. The advantage of this is increased access to all memories and

memory-mapped registers of a system. As a bus master, the debug interface may

also be able to trigger memory dumps through an external bus. The slip side of a

debug bus master is increased complexity of the memory interface, due to bus con-

trol logic as part of the OCDS and increased complexity in the bus fabric itself to

accommodate the debug bus master, and the possibility of intrusive impact to other

parts of the system. This impact is reduced in modern bus systems where interfaces

are point to point within a bus fabric.

Tampering through the debug interface is increasingly a concern in modern

systems. It is increasingly realized that an OCDS supporting memory and on-chip

data access is also a potential vulnerability in allowing hackers access to this

memory. An OCDS may have security mechanisms and management, separate and

independent of any security features of the JTAG interface, in order to protect it

from unauthorized access.

64 5 An On-Chip Debug System

A summary of OCDS features are:

Support for communication between monitor and external debugger.•฀

Optional error protection.•฀

A security mechanism to allow authorized access only.•฀

Low-end tracing through reads (writes) triggered by the OCDS.•฀

Fast tracing through transfer to an external bus.•฀

Analysis registers for internal bus locking situations.•฀

Several OCDS can be operated across a single JTAG interface.•฀

Control and data transfer mechanism for OCDS.•฀

A data transfer channel for programming on- and off-chip (nonvolatile) memory.•฀

An access port for on- and off-chip (across external bus controller) system •฀

analysis and configuration.

A data channel that is independent of user resources.•฀

An API that allows multicore debugging.•฀

The target application of the OCDS is use of the JTAG interface as an independent

port for OCDS. The external debug hardware can access the OCDS registers and

arbitrary memory locations. Multiple OCDS may be operated through a single

JTAG (or other) interface to provide a more effective debug solution for multicore

debugging modules operated from standard debuggers in one debug session. The

JTAG API provides a straightforward proven interface for standard debuggers and

arbitrates access of the JTAG interface in a transparent way.

In order to protect the system during normal execution, the OCDS is typically

disabled by default. Events can be generated only when the OCDS is enabled. The

OCDS module has an enable signal that is normally connected to the chip’s internal

JTAG reset. This means that the OCDS is enabled when the JTAG module is not in

the reset state. This is usually the case when the external debugger is connected.

Depending on the system architecture, the enable signal may be controlled by

another source, or the OCDS module can be optionally enabled by software. The

debug concept addresses both the generation of debug events and the definition of

event actions taken when a debug event is generated.

5.1.1 Debug Events

Hardware trigger combination.•฀

Execution of a DEBUG instruction•฀

Break pin input.•฀

5.1.2 Debug Event Actions

Halt the processor.•฀

Call a monitor.•฀

655.2 Operation Modes

Trigger a data transfer (TRIGGER DATA TRANSFER).•฀

Activate an external pin.•฀

5.1.3 Debug Registers

The key to any OCDS is a defined register set that supports different operations.

Many of these will be discussed later in the chapter. These typically include:

A debug status register that contains the status.•฀

A debug instruction pointer that contains a pointer value.•฀

A debug activity register that specifies an action if a DEBUG instruction is •฀

executed.

A debug external event register that specifies an action if an external break pin •฀

is asserted.

A debug hardware trigger register that specifies hardware triggers and action.•฀

A debug data programming register that triggers to the data programming register •฀

for debug hardware compare.

The debug select and programming register for debug hardware compare and debug

task ID register is used by advanced real-time operating systems to store the task

ID of the active task, which contains:

a 24-bit instruction pointer.•฀

R_ADR 24-bit data address of reads.•฀

W_ADR 24-bit data address of writes.•฀

DA 16-bit data value (reads or writes).•฀

Debug hardware event equals comparison register 0,

Debug hardware event equals comparison register 1.

Debug hardware event equals comparison register 2.

Debug hardware event range comparison register (greater).

Debug hardware event range comparison register (less).

The trigger sources (discussed later) are compared and combined in the hardware

trigger generation unit (see Fig. 5.8). The hardware trigger generation unit is program-

mable with the debug event control register and consists of two paths. The upper path

is for one range comparison and the lower path for three equal comparisons. The

equal path can be optionally configured for two masked equal comparisons.

5.2 Operation Modes

OCDS can be used for two different purposes. The first is to read and write memory

locations (RW mode) and the second is to exchange data with a program (monitor)

running on the processor (communication mode).

66 5 An On-Chip Debug System

RW mode is used by the external debugger host to read or write memory

 locations. In RW mode, the instructions IO_READ_WORD, IO_WRITE_WORD,

IO_READ_BLOCK, IO_WRITE_BLOCK, and IO_WRITE_BYTE are used in

their generic meaning. The data address is in IOADDR and is set with IO_SET_

ADDRESS. RW mode needs the TRIGGER DATA TRANSFER interface to

actively request data reads or writes.

The default data type is a 16-bit word, used for single-word transfers and block

transfers. If the external debugger host wants to read a single byte, it must read the

associated word (IO_READ_WORD) and extract the needed byte. Writes to bytes

are supported with the IO_WRITE_BYTE instruction. In addition, for this instruc-

tion, the external debugger host must shift in the full word, but only the selected

byte is actually written. The position is defined by the lowest address bit in

IOADDR.

The TRIGGER DATA TRANSFER interface does the actual read or write of

memory locations. It is configured with transactions requested by the JTAG shift

core. The data is transferred to/from the RWDATA register. TRIGGER DATA

TRANSFERs typically have the highest processor priority.

Communication mode allows communication between an external debugger

host and a program (monitor) running on the processor. In this mode, the external

debugger host is master of all transactions. The external debugger host requests the

monitor to write or read a value to/from COMDATA. One difference from the RW

mode operation is that in communication mode, the read or write requests are not

actively executed by OCDS, but it sets request bits in a processor-accessible regis-

ter to signal the monitor that the debugger host wants to send (IO_WRITE_WORD)

or receive (IO_READ_WORD) a value. The monitor must poll this I/O status reg-

ister (IOSR). The IOADDR register is not used. The debugger host and monitor

exchange data directly with the COMDATA register. Communication mode ensures

that all send and receive transactions are served under all conditions in the correct

sequence, even if the OCDS changes to RW mode.

5.2.1 Entering Communication Mode

Communication mode is the default mode after reset. If OCDS is in RW mode,

communication mode is entered when the external debugger host writes to the

MODE bit in the IOCONF register.

5.2.2 Communication Mode Instructions

Communication mode uses only the IO_WRITE_WORD and IO_READ_WORD

instructions. An IO_SET_ADDRESS instruction sets IOADDR just as in RW mode

(no effect for communication mode).

675.2 Operation Modes

5.2.3 Monitor-to-Debugger Host Data Transfer (Receive)

The CRSYNC bit signals the monitor (processor) that the external debugger host

wants to receive a new COMDATA value. It is set in communication mode with the

active read request signal for the IO_READ_WORD instruction. The CRSYNC bit

is automatically cleared when the monitor (processor) writes to COMDATA inde-

pendent of the mode (communication mode or RW mode). The debugger host can

request data, do something in RW mode, and then fetch the requested data with the

next receive cycle.

5.2.4 Debugger Host-to-Monitor Data Transfer (Send)

The CWSYNC bit signals the monitor (processor) that the external debugger host

has written a new value to the COMDATA register. It is set in communication mode

with the IO_WRITE_WORD instruction. The CWSYNC bit is cleared when the

monitor (in the processor) sets an acknowledge bit in IOSR independent of the

mode (communication mode or RW mode). This allows sending data in communi-

cation mode, switching to RW mode, and then performing other operations without

having to wait until the monitor has read COMDATA. The next time that commu-

nication mode is entered, busy bits are output when COMDATA was not already

read by the monitor.

Note that in the case of a send (IO_WRITE_WORD) followed by receive (IO_

READ_WORD), both bits CWSYNC and CRSYNC are set and must be served by

the monitor in this sequence. A previous receive request blocks the send. This

means that a requested value must be fetched by the debugger host before it issues

a new send command.

5.2.5 High-Level Synchronization

To improve the robustness of the communication channel, it is helpful to distin-

guish between commands from the debugger and regular data exchange. For

example, if the debugger aborts its request just when the monitor responds, the

high-level synchronization between the debugger host and the monitor would

be lost.

To prevent this, a COM_SYNC bit is provided to synchronize the communica-

tion channel between the debugger and the monitor on a higher level. It is set in the

IOCONF register and can be read in IOSR by the debugger. The debugger/monitor

can simply use this bit to reset the communication channel or, for more advanced

use, this bit can tag data from the debugger to the monitor as instructions.

68 5 An On-Chip Debug System

5.3 OCDS Registers

Debug status register contains several types of information about the current status

of the OCDS, including:

It indicates whether the debug support is enabled.•฀

It gives the source of the last debug event.•฀

It gives the system debug state.•฀

Key fields for the status register include:

DEBUG_STATE: The current debug state is user mode, software debug mode, •฀

or halt debug mode.

OCDS_P_SUSPEND: This causes sensitive peripherals to suspend operation by •฀

controlling a peripheral suspend signal. If set, all sensitive peripherals will sus-

pend. This bit is set by a debug event according to the associated PERIPHERALS_

STOP bit in the active debug event control register. This bit must be reset by the

debugger.

TRGEVT_R_CMP: This is a comparison matched for the current event.•฀

TRGEVT_E_CMP0: This is a comparison matched for the current event.•฀

TRGEVT_E_CMP1: This is a comparison matched for the current event.•฀

TRGEVT_E_CMP2: This is a comparison matched for the current event.•฀

EVENT_SOURCE: This reports the source of the last debug event, which is one •฀

of the following:

 1. External break pin (debug hardware trigger).

 2. Debug instruction executed (debug external event).

 3. Hardware trigger combination (debug data programming).

5.3.1 Debug Task ID Register

TASKID is an input to the hardware trigger event generation unit intended to be

used by advanced real-time operating systems to store the task ID of the active

task.

5.3.2 Instruction Pointer Register

This register makes the instruction pointer visible when the processor is in halt

mode.

695.3 OCDS Registers

5.3.3 Hardware Trigger Comparison Registers

The DEBUG HARDWARE COMPAREn registers are used in the hardware trigger

event generation unit as reference values for the comparisons (Fig. 5.2). They can be

programmed with special function registers, and the selected comparison register

compares information as discussed in the next section:

Select DEBUG HARDWARE COMPARE0

Select DEBUG HARDWARE COMPARE1

Select DEBUG HARDWARE COMPARE2

Select DEBUG HARDWARE COMPAREL

Select DEBUG HARDWARE COMPAREG

DEBUG INSTRUCTION POINTER is the current instruction pointer in halt mode

and is valid in halt mode only.

5.3.4 Considerations on Accessing OCDS Registers

The functions of OCDS are generally controlled by writing to the debug status

register. To be executed correctly, any debug step needs the respective bit fields

being used to have new values effective (this depends on the speed of the bus). This

becomes more important as the bus speed becomes lower compared to the core

speed, that is, compared to the speed of executing instructions. For a pipelined

machine, different read/write operations may be executed at different pipeline-

stages. A basic potential problem to be kept in mind is the new debug status register

value cannot as a rule be effective for the instruction immediately following its

Fig. 5.2 OCDS module block diagram

70 5 An On-Chip Debug System

modification. The delay in terms of core instructions executed still under the prior

debug status register value has a fixed part (in most cases, one instruction) and a

predominant variable part that depends on bus speed.

The most critical points for possible conflicts are:

Setting-up and enabling OCDS; for proper operation, the debug status register •฀

must be set after the debug data programming register already holds the new

value programmed.

Exiting the monitor, all updates to the debug status register must be effective before •฀

returning to the user program. Otherwise it is possible that a breakpoint in code will

be reached before the debug status register holds the proper settings. This can cause

a variety of problems, such as calling the monitor after executing the breakpoint or

immediately stepping over the breakpoint instead of breaking before it.

The principal solution to avoid problems accessing OCDS registers is to ensure that

after an instruction writes to a register, the instruction that uses the new value will

be executed only when the new settings are really effective.

Use noncritical instructions after writing to an OCDS control register (i.e.,

debug status register); instructions should be used in which execution does not

depend on the new settings, so it is sure that the new debug status register value is

effective before continuing with the next instruction. This is independent of the bus

speed because the processor ensures the write operation is completed, before con-

tinuing with the next read from the same location. Consequently, this is the easiest

and most reliable decision to ensure proper OCDS operation.

If the OCDS is disabled (usually when the JTAG module is in the reset state),

the OCDS module and all its registers are reset with every processor reset; other-

wise, it is never reset. This behavior allows a defined reset in the cases when no

debugger is connected or the debugger controls the OCDS indirectly with a moni-

tor. In the other case, when the debugger controls the OCDS directly, the OCDS

registers are not affected by user, program, or system environment resets. This

permits very unfriendly systems to be debugged as well.

5.4 OCDS JTAG Access

JTAG operations allow access to the JTAG module. In addition to OCDS-specific

instructions, it supports standard (required) JTAG instructions and the JTAG

BYPASS registers and two OCDS-specific CCONF and IOPATH registers that

communicate with the OCDS logic block (Fig. 5.3 shows only the OCDS specific

portions of the JTAG module).

ID register implementation is a product-specific decision. This allows mainte-

nance of one central version and part number register that can be accessed either

from the processor as an SFR or across JTAG with the IDCODE instruction.

According to the JTAG standard, the IDCODE instruction must have the structure

as discussed in Chap. 3.

715.4 OCDS JTAG Access

For the BYPASS instruction, the TDO output is equal to TDI, delayed by one

TCK cycle.

IOPATH register is a modified JTAG scan register that stores a copy of the TDO

to provide error protection. The TDI/TDO behavior is the same as for a JTAG

BYPASS instruction except that the first bit output (state capture-DR) is 1. This

difference is important if there was a bit error when the JTAG instruction was

shifted in. In the most probable case, when this faulty JTAG instruction is not

implemented, the JTAG module would set the BYPASS mode, which could not

otherwise be distinguished from the JTAG_IO_SELECT_PATH instruction.

The IOPATH register is used to select OCDS. If the JTAG instruction is in the

I/O address range, the associated select signal is active. IOPATH register is set like

a regular JTAG scan chain register with the JTAG_IO_SELECT_PATH

instruction.

Fig. 5.3 JTAG module and interfaces to the OCDS

72 5 An On-Chip Debug System

CCONF register is provided to configure special chip states. All configuration bits

have associated protection bits that allow different tools to share the JTAG interface.

Based on protection settings, alternate registers associated with different tools may be

enabled or masked. The CCONF register is set with the CCONF_SET JTAG instruc-

tion with the same behavior as IOPATH.

5.4.1 Steps to Initialize the JTAG Module

 1. JTAG reset: TRSTN pin is set active (low) and then inactive again.

 2. Set CCONF register:

IR scan: Shift in CCONF_SET instruction.

DR scan: Shift in CCONF register.

 3. Set IO_PATH register:

IR scan: Shift in JTAG_IO_SELECT_PATH instruction.

DR scan: Shift in CCONF register.

 4. Set OCDS data scan:

IR-scan: Shift in JTAG_IO_INSTRUCTION1 instruction.

OCDS is selected and ready to operate.

5.5 OCDS Module Access

OCDS is accessed and operated by the external debugger across the JTAG

 module. The OCDS core contains the JTAG shift core as a sub-block, shown in

Fig. 5.4 which communicates to control internal triggering logic for data pro-

cessor execution control (DPEC) transfers and Bus monitoring. The JTAG shift

core is controlled by the JTAG signals (Fig. 5.5) and therefore is asynchronous

to the rest of the OCDS core. OCDS is considered busy when the requested read

or write operation has not yet been finalized. The external debugger host is master

of all transactions, initiating the transfers for both directions.

5.5.1 Error Protection

The JTAG standard does not include any error protection for serial transmission

(TDI and TDO pins) and control (TMS pin). However, there are some ways to

include error protection without extending too much beyond the JTAG framework.

Error protection for input data (TDI) is achieved by making input data directly

observable on the output pin (TDO) with one clock cycle delay. Output data can be

shifted out twice (multiple) and then compared for maximum error protection.

735.5 OCDS Module Access

When OCDS is selected, it is controlled with the TDI bit stream with the JTAG

sequence: Capture_DR, multiple Shift_DRs, and Update_DR. The first four bits

shifted in are the I/O instruction. The next bits (busy bits) are ignored, until a start

bit occurs on TDO. Busy bits can occur for all I/O instructions except IO_CONFIG,

when the previous operation has not yet finished, as shown in Fig. 5.6.

If the instruction is a write-type instruction, the TDI bit, in parallel to the start

bit, is used as the first data bit, followed by the rest of the data and ending with a

“don’t care” bit. If more data bits are shifted in than required, the first (superfluous)

data bits are ignored and the last are used for the update.

If the instruction is a read-type instruction, all TDI bits after the instruction are

ignored after the start bit on TDO; the read data is shifted out. If the instruction is unde-

fined or not implemented, the client responds with an indefinite number of busy bits.

Fig. 5.4 OCDS module and JTAG interfaces

Fig. 5.5 OCDS and JTAG module connections

74 5 An On-Chip Debug System

5.6 OCDS JTAG I/O Instructions

OCDS instructions are designated and identified with an I/O_ prefix. Unlike the

JTAG instructions of the JTAG module, they are not transferred to the JTAG

instruction register with an IR scan; they are bits of a DR scan to the shift register

of OCDS.

IO_CONFIG sets the configuration register IOCONF and is used to abort RW

mode write operations and to configure OCDS with the IOCONF register. When

the IO_CONFIG instruction becomes active, the last RW mode write operation is

aborted (soft reset).

IO_SET_ADDRESS sets the address IOADDR for the next RW mode access.

IO_READ_WORD is used to read data in RW mode or to receive data in commu-

nication mode.

IO_READ_BLOCK reads the data block starting with the address in IOADDR and

is used in RW mode only. The only difference from IO_READ_WORD is that the

address for IO_READ_BLOCK is post-incremented by a word address. Read

instructions can be aborted when the external debugger host sets the Update_DR

state. For IO_READ_WORD in communication mode, at least four shift cycles

must occur after the output of the start bit to acknowledge the read. This prevents

the loss of read data words.

IO_WRITE_WORD is used to write data in RW mode or to send data in communi-

cation mode.

Fig. 5.6 Serial TDI and TDO transfers in Shift_DR state

755.6 OCDS JTAG I/O Instructions

IO_WRITE_BLOCK writes to the data block starting with the address in IOADDR

and is used in RW mode only. The only difference from IO_WRITE_WORD is that

the address for IO_WRITE_BLOCK is post-incremented by a word address. For

multiple write instructions, enough shift cycles must occur after the output of the

start bit for the write from the Update_DR state to allow the last write to be checked

before initiating a new write.

IO_WRITE_BYTE is a special case of IO_WRITE_WORD for writing bytes.

For IO_WRITE_BYTE, it is required that a complete 16-bit word must be

shifted in from which the lower byte is always written (for even and uneven

addresses).

IO_SET_TRADDR sets the TRADDR register, which is used for tracing with an

external bus address.

IO_SUPERVISOR is used to release RW mode and communication mode from the

error state. This instruction also outputs the IOINFO register after a start bit.

IO_CLIENT_ID returns a client-specific ID code from register CLIENT_ID.

IO_SET_TRADDR sets the TRADDR register.

IO_SUPERVISOR acknowledges reset and analyzes bus-locking situations.

IO_CLIENT_ID reads the Client ID.

Figure 5.7 shows the relationships among TDI, TDO, and the shift register

content after the client instruction has been shifted in. MUX1 is controlled by the

active instruction, MUX2 is controlled by the status of the client (busy or operation

finished).

In the case of I/O write-type instructions, after the TDO start bit occurs, the

delayed data is shifted into the shift register and in parallel is output on TDO. In the

case of I/O read-type instructions, the captured data is shifted out via MUX1 and

MUX2.

Fig. 5.7 Shift register behavior in the Shift_DR state

76 5 An On-Chip Debug System

5.7 OCDS JTAG Registers

These are registers internal to the OCDS. Unless otherwise noted, they are

 externally accessed using the OCDS instructions.

CLIENT_ID allows that the external debugger checks the hardware in an auto-

configuration mode and includes the following fields:

IOADDR is the address for the next RW mode access.•฀

IOCONF is the configuration register.•฀

IOINFO is the chip state analysis register.•฀

TRADDR is the external bus trace mode address.•฀

COMDATA is the communication mode data register.•฀

RWDATA is the RW mode data register.•฀

IOSR is the status register.•฀

IOADDR register holds the 24-bit address for the next OCDS access. IOADDR is

updated in the Update_DR state with the shift register contents when the IO_SET_

ADDRESS instruction is active or incremented by two (a 16-bit word) if an IO_

READ_BLOCK or IO_WRITE_BLOCK instruction has been executed.

IOCONF register is used to configure OCDS. The IOCONF register is write only

for the debugger host and is not accessible from the processor side.

The MODE bit determines whether OCDS is in RW or communication mode.•฀

TRIGGER_ENABLE enables triggered transfers in RW mode. The next transfers •฀

must be triggered by the TRIGGER DATA TRANSFER event action provided by

the OCDS module.

The EX_BUS_TRACE bit enables triggered transfers to an external bus address.•฀

The IOINFO register is provided to analyze bus locking situations or certain other

chip internal error states. It is not a physical register, but it represents certain chip

state information. After an IO_SUPERVISOR instruction, this information is

shifted out. Note that the captured signals are usually static only during these locking

and error situations. This means that IOINFO should not be used during normal

operation, and if it is used in error situations (no start bit for RW mode operation),

it should be read out several times to ensure that the sampled values are static.

The TRADDR register is used for tracing with an external bus address. It defines

the uppermost bits of the external bus address. It is set with the IO_SET_TRADDR

instruction by the external debugger host.

The COMDATA and RWDATA registers are used as the data register for both

read and write transfers in and communication and RW mode, respectively. They

also include the following status fields:

IDLE indicates that the chip is in an idle state.•฀

POWER_DOWN indicates that the chip is in the power down state.•฀

EXTBUS_HOLD indicates that the exterior bus is busy.•฀

LMBUS_HOLD indicates that the local memory bus is busy.•฀

PBUS_HOLD indicates that the peripheral bus is busy.•฀

775.8 Hardware Triggers

The IOSR register is used in communication mode to disable OCDS from the

processor side for security reasons and to perform monitor-controlled. The IOSR

register is only accessible from the processor side and includes the following fields:

RW_DISABLE is used to prevent OCDS from entering RW mode. It can only •฀

be set by the processor in communication mode. If OCDS has already entered

RW mode, all attempts by the processor to set this bit are ignored.

RW_ENABLED is provided to enable the user program to store whether RW •฀

mode is enabled already.

DBG_ON indicates whether an external debugger is present.•฀

CLNT_ON indicates whether the OCDS is currently selected by the external •฀

debugger. It is directly controlled by the OCDS select signal that is set with the

IOPATH register in the JTAG module.

MTR_CTRL is a monitor-controlled tracing field that can be used by a monitor •฀

to control the tracing of memory locations. Note that this feature may be used

only if no external debugger controls OCDS across the JTAG interface.

5.8 Hardware Triggers

A triggered event may occur due to either trigger operations occurring in the OCDS

or external debug break pins allowing the debugger to asynchronously interrupt the

processor. The action taken when this signal is asserted for debug hardware trigger

operation depends on the debug control registers.

It is possible that more than one event may be raised in a single cycle. In this case,

the priority of events to be handled is usually based on the sequence in which the events

appear in the event sources list; those listed first are handled before those listed later.

Different events will have different priorities; typically break operations have a

priority of:

 1. Pin input debug hardware trigger (highest).

 3. Execution of a debug instruction debug external event.

 3. Hardware trigger combination.

 4. Debug data programming.

Hardware trigger fields allow range comparison input on the following:

 1. Instruction pointer (IP).

 2. Data value (DA).

 3. Write address (W_ADR).

 4. Read address (R_ADR).

 5. Equal compare input MUX control (see Fig. 5.8).

 6. Instruction pointer (IP).

 7. Data value (DA).

 8. Write address (W_ADR).

 9. Task ID (TASKID).

78 5 An On-Chip Debug System

Hardware triggers can enable the following debug related operations:

 1. Execution of a DEBUG instruction. In many processors, there is a mechanism

through which software can explicitly generate a debug event. This can be used,

for instance, by a debugger to patch code held in RAM in order to implement

breakpoints. A special DEBUG instruction is defined that is in the user mode

instruction, and its operation is dependent on whether OCDS is enabled. If OCDS

is enabled, the DEBUG instruction causes a debug event to be raised and the

action specified in an external event control register is taken. If OCDS is not

enabled, the DEBUG instruction may be treated as a NOP.

 2. Trigger data transfer (TRIGGER DATA TRANSFER). Triggering the OCDS to

execute a pending transfer is one of the actions that can be specified to occur

when a debug event is raised. This can be used in critical routines in which the

Fig. 5.8 Hardware trigger generator

795.8 Hardware Triggers

system cannot be interrupted to transfer a memory location to the data register

and read it (trace) through the debug port.

 3. Call a monitor. Calling a monitor with a special debug hardware trap is one of

the possible actions to be taken when a debug event is raised. This trap has the

high priority, but the monitor routine can reduce its own priority level. This short

entry to an interruptible monitor allows a flexible debug environment to be

defined that is capable of satisfying many of the requirements for efficient debug-

ging of a real-time system. For example, safety critical code can be served while

the debugger is active. The monitor is ended with a regular RETI instruction.

The debug flag bit DEBTRAP has to be cleared on exiting the TRAP routine;

otherwise it will be called again.

5.8.1 Structure of a Noninterruptible Monitor Routine

 1. Perform processing (noninterruptible).

 2. Set DEBUG STATUS REGISTER.

 3. Clear the DEBTRAP bit.

 4. Return to THE user program with the RETI instruction.

5.8.2 Structure of an Interruptible Monitor Routine

 1. Set the DEBUG STATUS REGISTER.DEBUG_STATE (user mode).

 2. Clear the DEBTRAP bit.

 3. Reduce the interrupt level ILVL in W.

 4. Do processing.

 5. Set the DEBUG STATUS REGISTER.

 6. Return to the user program with the RETI instruction.

Reduction of the interrupt priority of the monitor can cause stack overflows. If the

task that causes the debug event has a higher priority than the monitor, the monitor

will be pushed onto the stack again and again.

Note: Care must be taken that the monitor does not cause an event itself.

Otherwise it will be started again and again and cause stack overflows.

 4. Enter halt mode. The system suspends execution by halting the instruction flow

and will not respond to any interrupts. It then relies on the external debug system

to interrogate the target entirely by reading and updating through the OCDS

debug port.

 5. Activate an external pin. An external pin can be controlled as a debug event

action. This is to be used in critical routines in which the system cannot be

interrupted to signal to the external world that a particular event has happened.

80 5 An On-Chip Debug System

This feature could also be useful to synchronize the internal and external debug

hardware or for profiling. In most cases the break out pin is active for as long as

the trigger condition is met.

 6. Enable single stepping. Single stepping can be done in halt mode or with a debug

monitor.

•฀ Single stepping in halt mode. For this behavior, the trigger condition is set as

always true. After every restart, the processor will be halted again when the next

instruction has been executed.

•฀ Single stepping with a debug monitor. Single stepping can serve high-priority

interrupt requests. The basic approach is similar to the single stepping in halt

mode with two differences:

The event action is set to call a monitor. –

The code of the interrupt service routines and of the debug monitor may not –

be part of the IP address trigger range.

5.8.3 Debug Event Control Registers

Each possible source of a debug event has an associated register that defines which

action should be taken when that debug event is raised. The debug event control

registers have the same structure for all currently defined sources.

EVENT_ACTION specifies what happens when the associated debug event is

raised:

Halt debug mode halts the processor.•฀

Software debug mode calls a monitor.•฀

Trigger a data transfer (execute TRIGGER DATA TRANSFER).•฀

Activate an external pin.•฀

Set the event in the DEBUG STATUS REGISTER.•฀

For software and halt mode, the EVENT_ACTION sets the DEBUG_STATE field

in the debug status register.

PERIPHERALS_STOP. Sensitive peripherals suspend operation if this event

occurs.

ACTIVATE_PIN activates an external pin that is normally (not during debug)

inactive.

The COM_R field enables the range comparison. For in-range comparisons,

DEBUG HARDWARE COMPAREG is used as the upper boundary and DEBUG

HARDWARE COMPAREL is the lower boundary. For out-of-range comparisons,

it is the is reversed. This allows range comparison:

In range: if debug hardware compare_greater > input > debug hardware •฀

compare_lower, otherwise 0.

Out of range: if (debug hardware compare_greater > input) or (input > debug •฀

hardware compare_low), otherwise 0.

815.9 Additional Features

The MASK_E field selects unmasked or masked equal comparison and distin-

guishes between masked and unmasked input for the equal comparison. In the

masked case, DEBUG HARDWARE COMPARE0 controls the relevant bits for the

comparison.

The SELECT_E field enables the equal comparisons to be included in the trigger

event generation and selects which is used, as follows:

If debug hardware compare0 matches, otherwise 0.•฀

If debug hardware compare0 or debug hardware compare1 match, otherwise 0.•฀

If debug hardware compare0 or debug hardware compare1 or debug hardware •฀

compare2 match, otherwise 0.

0 (always).•฀

If debug hardware compare1 matches, otherwise 0.•฀

If debug hardware compare1 or debug hardware compare2 match, otherwise 0.•฀

The COM_RE field selects equal and range comparison combination of either:

The debug trigger event signal is Trigger_range OR trigger_event.•฀

The debug trigger event signal is _range AND trigger_event.•฀

5.9 Additional Features

Triggered transfers (TRIGGER DATA TRANSFER) can be used to read or write a

certain memory location when an OCDS trigger becomes active. Triggered trans-

fers are executed when OCDS is in RW mode, the TRIGGER_ENABLE bit in

IOCONF is active, the JTAG shift core has requested a transaction, and an OCDS

TRIGGER DATA TRANSFER event occurs. Triggered transfers behave like nor-

mal transfers, except that there must also be a transfer trigger after the JTAG shift

core requests the transfer.

Tracing of memory locations is one of the main applications for triggered

transfers. Trace of certain memory locations can be performed when the OCDS

core activates the TRIGGER DATA TRANSFER event action if this memory loca-

tion is written by the user program. OCDS is configured to read the location on this

trigger. The maximum transfer rate that can be reached is defined as the number of

instruction cycles that need to be between two processor accesses to the memory

location. The instruction cycle time of the processor is the clock rate of the JTAG

interface (TCK). This requires a delay of several cycles between traces, but in many

cases this will be sufficient to trace static values, for instance, the task ID register.

A trace delay factor of 30 cycles is the number of cycles required: 10 bits for the

JTAG state machine, I/O instruction, start bit, and transfer of 16 bits for the data

and 4 bits for the synchronization between the transfer trigger and the shift out.

If the trigger rate is higher, some accesses are lost. To notify the external debugger

about these missed events, a dirty_bit read tag is set. This bit is appended to the read

data when it is shifted out.

82 5 An On-Chip Debug System

Tracing with external bus address is a special operating mode of the TRIGGER

DATA TRANSFER interface for faster tracing. In this mode, the data is not written

to RWDATA and shifted out via the JTAG port, but rather is directly written to an

external bus address. The data is then captured from the external bus by the debugger

(“trace box”). This kind of tracing can be enabled in communication mode only and

can be used in parallel to it.

Monitor-controlled tracing allows trace when the JTAG interface is not acces-

sible. A monitor uses this feature only when no external debugger is connected to

the OCDS across JTAG. Otherwise, errors will occur because this feature can share

resources with the normal modes used by the external debugger. Monitor-controlled

tracing is not a security risk. Even if it is unintentionally enabled by a user program,

a transfer occurs only when the OCDS triggers it.

Monitor-controlled tracing is equivalent to triggered transfers but is controlled

by a monitor running on the processor. It can be used to move an arbitrary memory

location on an OCDS core TRIGGER DATA TRANSFER event action. The trans-

fer is executed when OCDS is not selected, and there is a transfer trigger. Source

and target addresses are programmed with the selected address (source or target)

register.

5.9.1 System Security

After reset, OCDS is in communication mode and is brought into RW mode. If the

user program running on the processor sets the RST_HLT immediately after reset,

there is no way from the outside to get OCDS into RW mode via the JTAG

interface.

To have a protected system in the field that can be accessed by authorized users,

the following solution can be used (all bits are in the IOSR register):

The first instruction of the user program after reset disables RW mode.•฀

The user program checks if an external debugger is present. If not, it continues •฀

with the regular code.

The external debugger sends a key in communication mode.•฀

The user program starts to accept and compare the key some time after reset and •฀

after JTAG shift in of the send request.

If all keys are correct, the user program resets RST_HLT and sets RW_ENABLED.•฀

Then the user program then knows (RW_ENABLED) that OCDS has been •฀

enabled once and thus does not prevent the enabling after the next reset.

OCDS is in power-saving mode when it is not selected from the JTAG side. The

only register that is always accessible and working is IOSR. If the monitor-con-

trolled tracing mode is enabled, the required resources are functional.

835.9 Additional Features

5.9.2 Reset from the JTAG Side

If the internal JTAG reset becomes active, all RW mode and communication mode

requests are aborted. A JTAG reset always requires a following processor reset to

ensure that the JTAG shift core and the control part of OCDS are in a defined state

under all conditions.

5.9.3 Reset from the Chip/Processor Side

In this case, all I/O instructions go to an error state. The external debugger host

must acknowledge this state with the IO_SUPERVISOR instruction; this is done to

notify the external debugger host that something unexpected may have happened

and to check connectivity of the communication channels.

OCDS enters the error state on all chip internal resets (except JTAG reset). The

error state can be left with the IO_SUPERVISOR instruction. Another error state

occurs when the chip internal bus is blocked for TRIGGER DATA TRANSFER

transfers. If this condition occurs, the IO_SUPERVISOR instruction can be used to

read the IOINFO register, which provides analysis information.

85N. Stollon, On-Chip Instrumentation: Design and Debug for Systems on Chip,

DOI 10.1007/978-1-4419-7563-8_6, © Springer Science+Business Media, LLC 2011

In SoC platform architectures, more complexity is being added at the functional

interconnect level. On-chip buses and interconnect systems for integrating IP

blocks into a SoC solution have become sophisticated subsystems in themselves,

with multilayer, cross-bar, and network on-chip alternatives being developed by

both IP vendors and integrating companies themselves. The goal in most cases

is to address, within reasonable wiring and size constraints, the increasing

amount of bandwidth required for complex applications and optimized commu-

nication between different blocks of IP, both with each other and with shared

resources such as memory and peripherals. In many cases these interconnecting

architectures contain sophisticated internal complexity and have tunable param-

eters to allow trade-offs and optimization of the interconnect features for a given

architecture and application. The interfaces to these interconnect systems are

typically implemented at a socket level using one of several bus interface

 standards (OCP, ABMA AHB, and AXI being among the more prevalent) as

a modular, bidirectional socket interface between an IP block and other intercon-

nected blocks.

In this chapter we discuss several in-silicon bus-level debug environments based

on on-chip instrumentation. These include bus-level monitors and bus-level trace,

as they apply to fixed and socket-level traffic-monitoring approaches and as used

for understanding the interaction and performance of the interconnect for real-time

performance and bus-dependent processing operations and interactions.

6.1 On-Chip Buses

On-chip embedded bus management is typically more involved than for board-

level buses. Board-level buses can tri-state the interface, which simplifies isola-

tion; essentially, one only enables the chip-bus interface when it is needed. For

on-chip busing, tri-state logic is much more difficult and expensive to implement.

As a result, most on-chip buses are multiplexor based. That is, signals from bus

masters are multiplexed at the master or slave sides of the bus interconnect to cre-

ate a signal path between a bus master and slave.

Chapter 6

Bus System Debug

86 6 Bus System Debug

There are three fairly widely used standard on-chip buses; in order of widespread

adoption, they are AMBA, OCP, and CoreConnect. Wishbone, an open IP bus

interface, is also discussed for completeness. All these buses use similar inter-

connections and have a range of IP vendors supporting bus-compatible cores.

There is also a variety of less standard and vendor-proprietary buses that continue

to be used.

AMBA (advanced microcontroller bus architecture) is a family of bus archi-

tectures (which come in several varieties – AHB, APB, AXI) that is managed by

(but not licensed as such) ARM Holdings PLC. The AMBA high-speed bus

(AHB) is arguably the most widely used on-chip bus protocol, with multimaster

arbitration, multilayer support, pipelining support, bursting support, and so on.

APB is a simpler static bus architecture for peripheral systems. AXI (AMBA

extended interface), the most recent AMBA variant, allows multiple outstanding

transactions.

OCP (open-core protocol) is a bus architecture that is managed by the OCP-IP

(international partnership). OCP defines a range of complex multicore and multi-

channel interfaces that address pipelining, multiple outstanding transactions,

threads and tags, bursting support, and so on. OCP is based on a concept of

socket-based interfaces that decouple the IP interfaces from the bus fabric to a

large extent, allowing a large set of optional OCP interfaces in addition to a

smaller configurable set of required signals. OCP also allows incorporation of

user-defined interface signals to address application-specific requirements. The

OCP debug signals discussed later are one example of a recently defined set of

side band signals (which may be incorporated into future generations of the OCP

standard).

CoreConnect was developed by IBM and is most widely seen in systems

based on IBM PowerPC cores. It is also used by Xilinx as an internal bus

architecture (in part because some high-end Xilinx parts have integrated

PowerPC cores). CoreConnect defines a set of different buses – processor local

bus (PLB), on-chip peripheral (OPB), and device control register (DCR) bus –

for different applications. Each bus component of the CoreConnect architec-

ture is optimized to achieve specific on-chip bus architecture goals. The PLB

provides a high- bandwidth, low-latency connection between bus agents that are

the main producers and consumers of the bus transaction traffic. The OPB

provides a flexible connection path to peripherals and memory of various bus

widths and transaction timing requirements while providing minimal perfor-

mance impact to the PLB bus. The DCR bus is a mechanism for offloading

system initialization and configuration, and related control related transaction

traffic from the main system buses. The DMA controller and the interrupt

controller cores use the DCR bus to access normal functional registers used

during operation.

Wishbone is an open-community on-chip bus architecture. It is mostly seen in

conjunction with freeware IP blocks. I am not aware of any silicon design that

uses it, but it does come up in the literature and is popular with the IP freeware

community.

876.2 Socket-Based SoC Design

6.2 Socket-Based SoC Design

Socket-based interconnect is a standards-oriented approach that focuses on adding

value to the interface socket between the IP block and the bus fabric. Socket-based

interconnect is an underlying principle in many OCP-based architectures, but it can

also be applied to other bus architectures. Because many bus architectures allow

addition and selection of various bus options that increase the functionality of the

bus interconnect, using a socket-based interface simplifies addition, removal, or

accommodation of the bus interface to the IP blocks, as well as the development of

test suites to address verification and optimization of the design.

6.2.1 SoC Interconnect Complexities

Advanced buses allow a range of high-bandwidth implementations and define a

number of features and capabilities in addition to baseline data transfer. These fea-

tures include the extensions for special bus command modes, burst operations, and

multiple data tags and threads that increase the number of traced signals. The flip

side of working with advanced bus architectures is that they present an additional

level of complexity when configuring and coordinating operation of large

amounts of data. Analysis considerations include specifics of handshaking to a

given interface and more global issues of how the on-chip bus subsystem is per-

forming, such as understanding and optimizing bus transmission efficiency, latency,

saturation, resource conflicts, and other operational considerations that can have a

direct impact on the performance and operation of the processor components.

This visibility problem for the embedded SoC platform is more complex than

can be addressed adequately by traditional on-chip test methods such as a traditional

JTAG scan, for several reasons:

Bus operations are multicycle, with signals in a bus cycle becoming active at –

different times, requiring sequential tracing, rather than as a single-cycle snap-

shot that a scan typically provides.

Bus operation problems are interrelated with the operations of at least two com- –

municating blocks (a processor and memory peripheral, for example). Traditional

debug methods, such as halting part of a system for test, can introduce changes

and new variables that interfere with the test scenario and process.

If problems are intermittent or sparse, then trace operations must operate in –

a triggered mode, so information for a given range of bus cycles of interest

is captured in real time.

The problem is, to a large part, a multicore extension of embedded processor –

analysis, where run control and instruction execution and data trace are integral

parts of processor support. For larger systems with multiple cores, the problem

extends beyond processor execution to understanding system operation and

communication.

88 6 Bus System Debug

All of this points to better understanding at the interconnect level being a critical

layer of analysis. There are a variety of reasons why new generations of intercon-

nects and analysis tools to support them are increasingly critical and important:

 1. Heterogeneous multiprocessing ICs should efficiently handle complex data flow

architectures with intercommunicating cores, with diverse requirements and

features such as different data feeds, operating speeds, types of data endianness,

diverse and dynamic levels of security, and quality of service (QoS).

 2. Growing awareness that flexible and rapid integration of IP from multiple exter-

nal sources is needed to reduce time to market, with concurrent requirements for

integrating the test, hardware verification, and simulation environments.

 3. There is a growing sophistication of the processors’ data flow requirements,

including the ability to handle multiprocessing and multithreading in efficient

nonblocking manners. In particular, the multithreading features of leading-edge

processors, from MIPS and others, benefit from both a processor and bus-level

system analysis environment.

 4. There is a growing appreciation for platform design approaches that efficiently

address product upgrades, market segmentation, and product differentiation while

maintaining common design infrastructure to keep design efforts manageable.

 5. Supporting analysis IP provides a means of tying together pre-silicon and initial

physical product verification by providing access and visibility to embedded

operations. This analysis allows in-depth understanding of the design under dif-

ferent conditions.

Industry is addressing these issues with solutions that integrate both proces-

sor and bus trace for systems level debug (Fig. 6.1), which allow analysis of

trade-offs and performance complex interconnect structures and socket-based IP

integration.

At least three commercial companies offer interconnect and bus structure auto-

mation and IP tools, with several other SoC-centric interconnect approaches being

used as proprietary customized solutions by SoC silicon vendors. Sonics (http://

www.sonicsinc.com) offers the most mature commercially available solution, with

its third-generation SMX and related SMART interconnect architectures. Alternative

approaches include network on chip (NoC) interconnect architecture and a self

timed (clockless) interconnect. All of these approaches rely, to varying levels, on a

common concept of separation of the bus operations and core communications

using socket-based interfaces.

Figures 6.2 and 6.3 show some of the features of a socket-based system

design. Sockets communicate to initiator (master) and target (slave) interfaces,

with functionality of the socket encompassing the necessary state machines, gat-

ing and multiplexing circuitry, and wiring to support desired data flow (includ-

ing QoS, multithreaded nonblocking communication, security features, and

dynamic power gating) operation. This allows for a more streamlined and com-

pact bus fabric.

The socket consists of a set of agents that provide the signal and protocol man-

agement to address the specific interface needs of a core to the more general

http://www.sonicsinc.com
http://www.sonicsinc.com

896.2 Socket-Based SoC Design

resources of the interconnect fabric. Socket-based bridges can also define other

interconnect linkages between OCP, AMBA AHB, and AXI and bridges for other

arbitrary existing interconnect structures that can also be developed to simplify use

of legacy hardware.

As a commercial example of such a complex interconnect fabric, Sonics’ multi-

service exchange (SMXtm) can contain a distributed structure of three classes of

interconnect structures, cross-bar exchanges, shared-link exchanges, and extended

link exchanges, each with specific features and optimization requirements. Cross bars

allow the fastest unimpeded connectivity, while shared links require less overhead

Processor

Core

Cross

Triggers

Trace Port JTAG Port

Bus Master

Socket Other IP

 Master Socket

Trace Port

Slave Socket

(Other IP)

Probe

Interface

 Trace/Run Control

JTAG TAP

Trace Buffer

Wr (Master)

Bus Fabrics

Rd (Slave)

Bus Fabrics

Trace

Buffer

Bus

Agents

&

Triggers

Slave Socket

(Other IP)

JTAG Bus

Analyzer

Processor

Analyzer

Embedded

Interconnect

Trace Input

Fig. 6.1 SoC processor and bus trace

Fabric

•
Agents provide …

– Protocol conversion

•
Agent adapts to IP core

– Decoupling of IP cores from fabric

•
Provide local, isolated environment

– Data flow services

•
Agent data flow services

– QoS based arbitration

– Power management

– Access security

– Error management

– Burst, width, and command

 conversion

I

T

I

T

I

T

I

T

I

T

INITIATOR SOCKETS

TARGET SOCKETS

Target Agents (TA)

Initiator Agents (IA)

Copyright © 2006 Sonics, Inc.

Fig. 6.2 Socket-based agents

90 6 Bus System Debug

and additional gates allow data flow by QoS selection. Extended links support more

widely separated IP cores and connectivity and scheduling of slower peripherals.

These complex architectures support several types of interconnect segments

that can be optimized for performance and require analysis information from the

interconnect structure. Different types of interconnect segments have different

integration and test requirements and communication features. Such communi-

cation complexities require performance analyses to determine parameters to

optimize use of the inherent flexibility and parameterization to optimize the

design. Bus-monitoring IP and analysis tools monitor this performance transpar-

ently for high-complexity interconnect networks to provide optimized system

operation. Supporting the need to monitor bus data for events and other data

related to intercore communications and latencies is necessary for platform

debug and optimization, especially for interconnect architectures where param-

eterized sockets are providing flow control. The amount of visibility into commu-

nication operations is typically proportional to the resources provided to monitor

key information. These resources typically require some trade-off of on-chip

instrumentation resources, IO- and trace-buffering bandwidths, and the overall

gate impact; they vary with the monitoring function and the size and perfor-

mance of the interconnect structure. These trade-offs are discussed in the next

section.

6.3 Bus-Level Integration

A widely used means of debugging bus systems is using monitoring mechanisms

that are often included in creation of bus interfaces to detect incorrect addressing,

illegal accesses, and timeout. Typically, the monitors are created as an option in

automated bus-creation tools that create the bus fabrics and socket interfaces.

Exchanges

- Cross-bar (XB)

- Shared Bus (SL)

- Extender (EL)

Pipelining

options

- Register points (RP)

 at agent fabric edge

- Pipeline points (PP)

 between exchanges

Multiple Socket Support

- Initiator Agents (IA)

- Target Agents (TA)
EL

IA IA

TA

IA

OCP

socket

OCP

socket

AXI

socket

bridge

AHB

socket

bridge

OCP

socket

APB
socket

OCP

socket

AHB

socket

PP

PP

PP

XB
fabric

RP

TA

IA
PP PP

TA

bridge

PP PP

SL
fabric

TA

RP

RP RP RP RP

RP RP RP RP

bridge

Copyright © 2006 Sonics, Inc.

bridge

Fig. 6.3 A multilevel interconnect

916.3 Bus-Level Integration

6.3.1 Bus Master Monitoring

Separate address-space monitoring is implemented for each bus master. If a bus

master addresses an unused address space, the access is acknowledged with an error

response and an interrupt is triggered. The incorrect access address and the

 associated access type (HBURST, HSIZE, HWRITE) and master ID are stored in a

system control register. If more than one AHB master causes an access violation

simultaneously (within a single bus clock cycle), only the violation of the highest-

priority bus transaction is recorded.

6.3.2 Peripheral Bus Monitoring

The peripheral address space is monitored on the peripheral bus. If incorrect

addressing is detected in the peripheral address space, access to the both master and

slave sides is terminated. An interrupt is triggered and the incorrect access address

is placed in a system control register.

6.3.3 Slave Monitoring

Bus slaves have limited responses to transactions; more typical debug concerns are

with the timing of the peripheral response. There are three possible reasons for the

timeout:

 1. Actual timeout in the slave: If HREADY is still 0 after the maximum number of

clock cycles, access to the master is terminated with an error response and the

timeout interrupt is activated. The access to the slave continues. As long as the

slave does not supply READY = 1b, all other accesses to the slave must be blocked

with an error response. The interrupt is triggered only once. If the address phase

of a non-IDLE access is pending in parallel to the extended data phase, this access

is canceled and an IDLE address phase is output to the slave.

 2. Too many retries in a row for the same access: Access to the master is terminated

with an error response and the timeout interrupt is activated. Because there is no

requirement that an access that has been rejected with retry has to be repeated,

the next access of the master can be switched to the slave.

 3. The SPLIT transaction is missing after a split response: Access to the master is

terminated with an error response and the timeout interrupt is activated. The

slave must continue to wait for signal HSPLIT = 1b. As long as the signal to the

slave is missing, all other accesses to the slave must be blocked with an error

response. According to the AHB specification, once the slave outputs HSPLIT = 1b,

access must be repeated. However, because access is already terminated for

the master, the data phase can no longer be handled correctly.

92 6 Bus System Debug

6.4 Internal and External Alternatives for Bus Trace

Debug ports simplify controllability and visibility by providing low-overhead

access to internal signals. Debug interfaces can be categorized as either:

(a) Internal, in which most of the instrumentation functions are implemented on

chip and the interface uses a low pin count interface, usually JTAG.

(b) External, in which the instrumentation functionality is shared between an

on-chip component and an off-chip component, typically implemented in a

probe that are connected by a (typically parallel) trace probe port.

Most JTAG-based instrumentation relies on on-chip memory to buffer between

traced data and the available JTAG export bandwidth. The size of these buffers

versus the amount of trace required is a trade-off because the amount of bus trace

requires a large buffer. Buffers of modest size, however, are easily overloaded for

a large amount of trace data generated in cases of multiple IP blocks or internal

buses, placing limits on duration of trace that can be supported.

The underlying advantage of JTAG is that it is ubiquitous and is a default port

implemented in most digital chips for test purposes. JTAG allows user-defined

instructions to extend the JTAG instruction set for probe or trace modes, instructions

for ICE, and to access internal JTAG-enabled registers. While in probe mode, the

processor ICE can examine and modify the internal and external state of a system’s

registers, memory, and I/O space. In a trace mode, it can be used to serially export an

arbitrarily large amount of information off chip. A rich infrastructure of tools environ-

ments and standardized debug schemes have been built on this foundation to provide

JTAG debug of both embedded processors and other parts of an embedded system.

Adding an additional probe port provides IO bandwidth needed for more in-depth

on-chip instrumentation approaches and is the primary focus of this chapter. Internal

trace solutions and bus trace systems use an embedded trace solution, with an on-chip

bus analyzer that is customized for bus analysis. On-chip RAM is a limiting resource,

that can be spent on trace width of all or a portion of control, data, and address signals

or trace depth, which can range from 64 to 64K trace cycles based on available on-

chip RAM. Trace is controlled by user-defined combinatorial or sequential (state-

based and counter-based) event triggering on trace or external trigger signals. This

triggering can be used to disable trace until interesting events occur or to trigger on

sparse or other irregular events of interest. Trace may include optional time stamping

for multiinstrument synchronization or time marking for single-cycle or extended

time traces. The same triggers can be used to drive debug-related actions such as

cross-triggering between bus and processor or other IP operations.

A higher-performance alternative for bus trace is an off-chip mode that streams

the bus trace to a high-bandwidth debug port. This allows a smaller RAM footprint

by reducing or, in some cases (where trace bandwidth is less than or equal to the

port bandwidth), eliminating the need for on-chip buffering. It also adds flexibility

in what types and how much of the triggering and other supporting logic for bus

trace are placed on chip rather than being inline or postprocessed by configurable

logic in the probe. In general, off-chip trace attempts to minimize the amount of

936.5 Programmable Bus Performance Monitoring

on-chip logic essential to triggering and filtering, leaving the trace intelligence

(complex triggering, performance analysis, etc.) to be implemented in the probe

and essentially using the using the trace port to funnel raw data to the probe as

expediently as possible. The instrumentation features implemented in the probe

allow a trace interface with a smaller simple trace logic and memory footprint and

much deeper trace depth.

In many cases this trace port can be multiplexed with other bus functions.

A trace port provides several advantages over JTAG trace and imposes other limita-

tions. Although JTAG trace allows real-time trace constrained by the instrumenta-

tion and RAM speed, it requires some silicon area for the instrumentation and

RAM (the size of which is largely proportional to instrumentation trigger features

and trace depth, respectively) and has limited export bandwidth. The trace band-

width capability for off-chip trace is typically limited by the number of IO pins

dedicated to export of debug information at any given time, as well as the speed at

which these signals can transmit the data.

Because the limitation on streaming trace requires more pins (for reasonable IO

width) and may have maximum trace speed lower than operating speed (IO may

have limited frequency performance compared to internal IP), it often makes sense

to be selective on what bus data is being traced. Bus operations in particular are typi-

cally bursty in nature, and a bus may spend a significant amount of time in a quies-

cent state where no information is being transmitted. Simple filtering and buffering

can significantly improve the usable bandwidth in an external trace solution.

In a more complex (multicore) instrumentation environment, external trace is

limited by selection of critical data from different sources. The complexity of the

funnel allows a range of performance trade-offs in external trace. By selectively

choosing trace signals from different subsystems and instruments, an arbitration

scheme that funnels the various trace information for export can increase effective

trace bandwidth significantly. As shown in the following block diagram, the use of

a trace port and JTAG is not exclusive. In many cases, JTAG remains important for

control and configuration regardless of the trace mechanism.

6.5 Programmable Bus Performance Monitoring

As with most complex and heterogeneous systems, the ability to visualize and

analyze performance characteristics is important to understand (and verify) system

behavior, and subsequently fine-tune the system for optimal power and perfor-

mance. Naturally, visualization and performance analysis capabilities are necessary

during initial modeling and design verification and later, subsequent to chip tapeout

in the lab, in order to observe the device running at-speed in the target system.

Such on-chip capability requires embedded instrumentation IP that allows embedded

instruments to be used for a variety of functions, including performance monitoring,

assertions, functional analysis, and debug – and even fault insertion and transaction

stimulus. Although these functions have utility in hardware debug, they are more often

94 6 Bus System Debug

used by software and systems engineers who can begin to leverage these on-chip

resources to streamline a complex and time-consuming test and validation process.

A few additional requirements must be considered:

Configurability: Given the configurability of modern buses, the embedded on-•฀

chip instruments must also be configurable

Flexibility: The SoC will be composed of a variety of buses, interfaces, and IP •฀

blocks

Easy insertion: Such a configurable and flexible system requires automated •฀

insertion

Ultimately, the solutions must be compliant to the OCP debug specification.

However, even in the absence of IP cores or switch fabrics compliant to the OCP debug

specification, practical performance monitoring implementations can be realized today.

The solution is a combination of programmable instruments, instrument

programming, and analysis applications. The following is a description of an

embedded-instrumentation solution delivering a comprehensive set of performance

monitoring and analysis functions.

The overall objective is to provide the user with a spectrum of visualization and

analysis methods, from coarse views on many interfaces (e.g. aggregate system

throughput or worst-case latency) down through increasingly granular, targeted,

and highly specific views at the socket level (e.g. discrete read/write transactions).

This multilevel approach is consistent with many conventional analysis, diagnostic,

and debugging methods; it seamlessly marries broad views of system behavior

with “telescoping” views that are informed by the discoveries at each level of the

 visualization and analysis process.

This Socket level data can be accessed and extracted from multiple points in the

design (Fig. 6.5), either through JTAG (Fig. 6.4) or trace ports (Fig. 6.6), using

instruments applied to either buses or socket interfaces in the design (Fig. 6.7).

Command/control of the instruments requires lower bandwidth and appropriate to

a JTAG) interface. Perhaps the most important element is the programming and

analysis application, which is often customized with a particular analysis view for

different activities. In general tool views provide the user with a graphical interface

and a set of high level commands to program and operate the on-chip instrumenta-

tion infrastructure (Fig. 6.8).

The basic suite of performance-monitoring functions includes the measurement

of aggregate throughput per interface, master/slave throughput, instantaneous or

average request/response latency, instantaneous or average event latency, and

worst-case latency.

6.6 Bus Performance Monitoring

Performance monitoring functions can be realized with a distributed instrumentation

scheme as shown in Fig. 6.9. There are three forms of instruments used: signal mul-

tiplexors, pattern match engines, and transaction engines. Each is a user-configurable

956.6 Bus Performance Monitoring

instrument (e.g. bus width, states, GPIO). All instruments are in-system programmable

and run “at-speed” without disrupting the normal operation of the system. In this

configuration, each multiplexor and pattern match engine operates autonomously so

that multiple interfaces can be monitored concurrently.

Bus

Trace

Perf

Anal.

Processor

Trace

RAM

RAM

RAM

JTAG

TAP

JTAG

Probe

JTAG

Chain

Fig. 6.4 JTAG-based internal trace

System Bus Fabric

OCP/AMBA

Trace

RAM

JTAG IF

Bus Trace Instrumentation
Other IP blocks

(security, video,

imaging . . .)

Mem

Ctrl

Other

IP

Trace Port

processor

trace

JTAG

Cross

triggers

Performance

counters
Timestamp

Trigger/trace

control

Fig. 6.5 Internal trace bus monitoring

OCI 1

Bus

Trace

OCI 2

Perf

Anal.

OCI 3

PDtrace

DEBUG

FUNNEL

Streaming

Trace

Probe
1-64

 pins

Fig. 6.6 External streaming trace

96 6 Bus System Debug

The multiplexors are used to reduce the number of signals presented to the

pattern match engines and transaction engine. The advantage of multiplexing is

that at runtime the user specifies which signals will be/should be monitored.

T
E

L
E

S
C

O
P

IN
G

Fig. 6.8 Dynamic multilevel views

System Bus

Fabric

Other IP blocks

(video, imaging . . .)

PDtrace

EJTAG

MIPS32

Processor

MIPS32

Processor

JTAG &

TRACE

PORT
Trace

Funnel
Bus

Trace

 Other

Trace

Hyper-Debug (Cross Triggers)

Debug Bus

Master

JTAG

TAP

PDtrace

EJTAG

Fig. 6.7 Streaming trace from multiple on-chip instruments

976.6 Bus Performance Monitoring

The multiplexors can take on a variety of forms depending on the application,

flexibility, and area overhead requirements. The bank select multiplexor is the smallest

and least flexible (Fig. 6.10a). In this configuration, signal-bank-a or signal-bank-b is

selected through a serially programmed register. The bit select crossbar multiplexor

(Fig. 6.10b) offers additional flexibility by providing a serial programming register for

each 2:1 multiplexor and an additional signal fan-out between multiplexor stages. This

gives the user the most flexibility to select a greater combination of signals. In practice,

the bank select multiplexor can be used in most performance-monitoring configura-

tions, whereas the other configurations may be more appropriate if a variety of vali-

dation and debug functions are to be supported with the same instruments.

The basic pattern match engine is capable of detecting user-specified patterns on

each interface. Whenever a specified pattern is detected, the event signal is asserted.

The pattern values, mask values, and state machine configuration are specified at

runtime within the programming and analysis application. The event signals are

transferred through another set of multiplexors to the transaction engine.

The transaction engine provides a wide range of functions enabled through a

rich set of resources that include a programmable state machine, comparators,

counters, timers, and adders. The transaction engine can be programmed to

count events, measure intervals between events, and measure frequency of

Transaction Engine

Fig. 6.9 Performance-monitoring instrumentation

98 6 Bus System Debug

events. All such actions can be started and stopped conditionally. Conditional

actions may be based on event sequences, throughput values, counter values,

latency values, or sideband events detected on signals mapped down to the trans-

action engine through both multiplexor stages. In fact, even signals from other

parts of the SoC can be used if they are available on the multiplexor inputs. The

transaction engine may also be programmed with user-defined embedded

memory for optional signal-tracing functions. All measurement values and calcu-

lated results can be retrieved by the programming and analysis application for

display and additional analysis.

6.7 On-Chip and Off-Chip Analysis

Given the obvious bandwidth limitations of the IEEE JTAG 1149.1 interface, large

amounts of real-time data cannot be streamed off-chip. Although a high-speed trace

port such as the Nexus interface (as described in chapter 11) can be used, many

designs require a smaller interface. In the baseline configuration shown, we assume

a system without a high-speed trace port. Such a configuration highlights a primary

advantage of programmable instrumentation: the ability to perform on-chip analy-

sis and reduce (but not eliminate) the amount of serial data transfer. Nevertheless,

there are always situations that require off-chip analysis. This is especially true

when on-chip data can be transferred into a variety of visualization and analysis

Bank Select Multiplexor

a

Bit Select Crossbar Multiplexor

b

Fig. 6.10 Pattern match multiplexors (a) Bank select multiplexor; (b) Bit select crossbar

multiplexor

996.7 On-Chip and Off-Chip Analysis

tools. For example, the on-chip data can be retrieved and formatted into a trace file

and is subsequently fed into analysis tools. Even if a subset of trace file fields is

populated, transfer sequences and performance metrics such as throughput and

latency can be analyzed (Fig. 6.11).

A bus monitor and analysis toolset allows performance, statistical, and transac-

tion analysis of bus interfaces. Bus events are monitored and written to the trace

format. A transaction re-builder reconstructs transactions from the trace files and

builds up a data store. The transaction data can then be analyzed. User queries can

be created, saved, and used in the analysis engine and the reporting tools.

Performance statistics are calculated based on user queries. Reports are then auto-

matically formatted and generated.

In complex and heterogeneous SoCs, the ability to visualize and analyze perfor-

mance metrics is paramount to understanding and verifying system behavior and

subsequently fine-tuning the system for optimal performance. That may entail not

just looking at metrics over time but also having the capabilities to filter on various

fine-grained aspects of the system and enable metrics to be viewed in a natural

intuitive way. Figure 6.12 shows a 3D analysis chart of operation types versus

cycles for a bus channel. The bottlenecks in the system can be viewed very concisely

and the problem areas can be very quickly identified and understood.

In Fig. 6.12, the axes are time versus metrics versus channels. Zooming and

filtering of the data can be done and metrics can be changed easily to allow

infinite ways to view the data, depending on aspects that are trying to be under-

stood or verified.

With the enormous amounts of data that must be captured in performance

analysis, having a method for querying different types of data and metrics from the

data store is useful in providing querying options that allow quick and easy access

to the most critical areas of interest. Queries are not just limited to finding latencies,

bandwidths, and other metrics above or below a certain threshold; they also have

the capability of deep fine-grain analysis down to the transaction level. For example,

particular bus transaction types on a monitored channel can be singled out

and analyzed very quickly. Given the large timeframe of bus transactions, valid

performance measurements should only take place at certain times, guided by cer-

tain events. For example, bandwidth and latency measurements are only really

Fig. 6.11 Pattern match engine

100 6 Bus System Debug

meaningful on a particular socket when the source traffic on that socket is correctly

flowing. Event triggers are set up to enforce a valid measurement.

Events of interest vary widely and may include transactions occurring during

a window; out-of-bounds events including DMA and SoC; and interrupt events

indicating abnormal operations in timed events. A time event is simply a speci-

fied time defined by a timestamp or other counter for use as a trigger. Various

triggers for event queries may include “Start After,” “Measure From,” and

“Measure To.” Each of these triggers can be one of the specified event classes.

Here again, the programmable nature of the instruments is beneficial. When it

comes to extracting on-chip data, there is an obvious trade-off between temporal

and spatial visibility. The amount of trace data to be captured is limited by the

width and depth of the embedded trace memory. The user needs the means to

make such trade-offs to maximize the utilization of the embedded memory. For

example, if the user wants to see all activity on multiple bus interfaces, more

transfer cycles may be captured if the data field is omitted. Likewise, the user

may choose to reduce the number of transfer cycles captured by creating a cap-

ture filter based on a combination of address and command signals, or filter using

signals associated with tag or thread extensions. Each of these techniques is

accommodated by a simple expansion or reduction of the observation scope; the

designer has ultimate control over the trade-off between temporal and spatial

 visibility. The programmable nature of the instruments allows these decisions to

be made at runtime.

Although the configuration shown in Fig. 6.9 is suitable in many applications,

more advanced configurations are possible. Consider, for example, scenarios that

require multiple and specific types of transfers to be monitored simultaneously on

Fig. 6.12 A 3D bus analysis display

1016.8 Request Response Trace Bus Analysis

each bus interface. For such scenarios, two pattern match engines may be

required. This can be accomplished in a variety of ways. A second pattern match

engine can be dedicated to each interface, or adjacent pattern match engines can

be shared between ports as shown in Fig. 6.13. Through the multiplexor configu-

ration, the user has dynamic runtime control over the use of each pair of pattern

match engines.

6.8 Request Response Trace Bus Analysis

Request response trace (RRT) was developed to analyze the complex data com-

munication networks; both the data width and operating speed of the commu-

nication links can vary. Bus sockets vary from 32 to 128 bits, based on

connection to specific cores. The bus fabric allows resolving the mixing of bus

widths and speeds across different blocks, but efficiency and optimization of

performance with regard to different data rates, clock rates, and other components

of the system cores are not trivial. For the amount of trace required, core and

JTAG

TAP
CTLR

OCP SWITCH

OCP SOCKET

SPN

OCP SOCKET OCP SOCKET

SPN

2

2 1

1

SPN

8

7

32

Pattern Match

Engine

Programmable

Trigger Engine

Pattern Match

Engine

Pattern Match

Engine

ADDER CMP

4

CNTR

CNTR

CNTR

Event1

Event2

Event n

E
v
e

n
t1

a

E
v
e

n
t2

a

E
v
e

n
t

n
a

MUX

Transaction Engine
2x

Fig. 6.13 Sharing pattern match engines

102 6 Bus System Debug

system clock speed are reduced so that the trace port may sustain the required

trace bandwidth.

The RRT system analysis environment consists of two major subsystems

(Fig. 6.14):

 1. Processor trace: In this case, because a MIPS32K processor was the primary

processor(s), PDtrace (a MIPS processor execution and data trace instrumentation)

was implemented for each core. PDtrace interfaces support an aggregated proces-

sor trace port for both of the core trace outputs. Other processor selection would

result in other trace systems being used for processor trace.

 2. Bus-level request-response trace: This is a bus-level instrumentation system

that ties into the bus fabric at the socket level and allows the trace of one

single bus socket or all masters in the system simultaneously or a selection

of masters. The RRT trace buffers each request-response output and includes

a trace “funnel” to route the buffered outputs to the off-chip trace port.

RRT and PDtrace data are sent off-chip over a dedicated 16-channel trace port.

Both PDtrace and RRT trace port interfaces are supported via a single probe,

using two Mictor38 connector interfaces, each with its own independent clock

source. The probe combines the trace inputs from the two sources and records

them in a common memory buffer.

The probe includes a common JTAG connection and PDtrace trigger pins for

trigger and trigger acknowledge. This trigger may also be used to put one or more

cores in debug mode and to communicate with the processor and (in this example)

the MIPS32 trace control and visualization tool, PDtrace. On-chip trigger output

pins indicate to the probe the status of the processor core(s). The probe and on-chip

logic have a common triggering methodology to allow the probe to enable and

 disable/stall RRT operations in conjunction with PDtrace operations. The triggering

MIPS32
OCP IF

MIPS32
OCP IF

Selected
OCP1 IF

MIPS32 core trace

Synch
signals

Mictor 2

JTAG
port

Trace
Probe

RRT agent –
OCP2x capture, filter,

format

RRT OCP2x
agent -

RRT OCP1x agent
-

RRT AHB
agent -

RRT Trace
Port

Combiner/
Scheduler

“trace funnel”

DMA
AHB IF

Multicore
PDtrace

Port Mictor 1

Fig. 6.14 RRT and PDtrace subsystem. Source: MIPS Technologies, Inc. All rights reserved

1036.8 Request Response Trace Bus Analysis

scheme also communicates stalling of the trace capture based on processor status.

All applicable features of RRT and PDtrace, including the triggering, are config-

ured via the JTAG port.

6.8.1 RRT Operations

The RRT provides for capture and collection (Fig. 6.16) of the following information.

All capture is done on chip at the RRT agents and is exported via the RRT port:

 (a) Recording of specifics of master-slave socket transactions and the number of

clocks of delay between each request and response.

 (b) Captured timing and latency of read cycles. Burst reads are reported on arrival

of the first requested word or on the arrival of the last word of the burst.

 (c) Transactions between one (selected) master and all slaves it transacts with, or

several masters at the same time. These masters may include any of the follow-

ing: two 34Kf cores, one active dedicated channel (selected as output of the

crossbar), and one active channel of the DMA.

Trace collection allows overall capture for an extended (at least one video

frame) processing period using the memory buffer in the probe (Fig. 6.15).

Concatenation of multiple frames may be performed as a postprocessing stage

on exported RRT trace files.

Fig. 6.15 RRT graphical bus trace. Source: MIPS Technologies, Inc. All rights reserved

104 6 Bus System Debug

Post-trace software provides postprocessing and views of transactions and

delay times over varying periods of time for both single and multiple cores. RRT

data is correlated and used in conjunction with PDtrace data to provide a picture

of system operation.

6.8.2 RRT Implementation

The on-chip component of RRT consists of three primary on-chip instrumentation

(OCI) IP blocks:

 (a) RRT agents, specific to the processor or core-level interface to capture and

 buffer relevant trace information based on system operations and trace

configuration.

 (b) The RRT “trace funnel”, which provides the aggregation of trace information

from all RRT agents and combines and schedules the trace information for

export.

 (c) The RRT trace port, which handles communications with an off-chip probe.

Configuration of each block is performed via JTAG, over a common JTAG

chain:

A user-defined set of bus RRT fields may be captured based on the connection

to the socket. For the bus transaction analysis, signals trace included:

The master ID (only required if multiple masters are being recorded at one time).•฀

Slave ID based on unique address bits that distinguish one slave from another. •฀

Hardware in the agents can recognize the memory-mapped areas and encode

them into the slave ID field.

Fig. 6.16 Integrated bus and processor trace environments. Source: MIPS Technologies, Inc.

All rights reserved

1056.8 Request Response Trace Bus Analysis

Protocol and traced bits that determine the alignment of a read response cycle to •฀

its “parent” request cycle.

Request and/or response cycle type (or encoded in other fields).•฀

Cycle type – read versus write, single access versus burst.•฀

Buffer overflow indicator bit.•฀

Trace of upper address bits to determine code versus data memory-mapped •฀

regions. There are two defined modes: fast (partial) address field and full

 (complete address field) are user-selectable options.

Trigger signal to allow on-chip subsystems to send a trigger signal to the probe.•฀

To conserve trace bandwidth, the bus RRT records are further broken down into

two modes: fast and full. Fast mode is limited to a single-cycle frame and includes

socket-level control signals characterizing the bus transfer along with buffer over-

flow and/or trigger indicators. Full mode includes control signals as well as full

address trace, based on a memory map of necessary upper addresses; typically

transmitted over multiple trace clock cycles. The capture of this data via RRT

allows the following to be performed during chip-level operation:

 (a) Measurement of a processing loop such as frame time.

 (b) Capturing available information for aligning socket measurements with core

processor execution to correlate cause-effect of code execution to socket traffic

based on coordinated recording of trace from both sources.

 (c) Capturing available information on aligning socket measurements to correlate

each hardware thread to the data transfers that each processor generates.

 (d) Extraction of thread information extractable from socket address bits traced. Post-

trace software can display per-thread socket transaction information providing

valuable information to users on the density of transactions over time and the

delays associated with those memory accesses, generated for each hardware

thread.

(e) Postprocessing of the trace matches up requests and responses (using the socket

protocol and possibly ID bits) and calculates the delay between them based on

timestamp values stored along with trace to provide an accurate timeline of

each request-response frame.

A RRT triggering system is implemented within the probe (off-chip) and

includes event monitoring of all captured control and address signals to control

start/stop and capture of trace information in the probe. This trigger may also be

used to put one or more cores in debug mode and to communicate with the processor

and PDtrace subsystems. On-chip trigger output pins indicate to the probe status of

the processor cores.

The probe and on-chip logic have a common triggering communication to allow

the probe to enable and disable/stall RRT operations in conjunction with PDtrace

operations. The triggering scheme also communicates stalling of trace capture

based on processor status.

RRT is supported by a set of control and display views and utilities to support

analysis of RRT and PDtrace data. Additional visualization can be supported via

106 6 Bus System Debug

export of trace to third-party tools. Control setup includes the setting of master trace

priorities and selecting which masters are to be in the trace; trigger setup to analysis

views for precise post-trigger positioning and reading trace and formatting data for

additional analysis views.

Additional views include:

Raw State View for RRT: Basic acquisition is displayed as a state display that shows

one line per trace frame with columns corresponding to the trace fields: transaction type

(read/write, request or response), master name, slave name, transaction ID or outstanding

request count, buffer overflow, and probe- generated trace timestamp values.

Aligned State View for RRT: Alignment concatenates two frames – a request cycle

and its matching response cycle and a delta timestamp between the current and next

transactions.

Graphical Display: Trace solutions are supported by a multiview (Navigator) GUI,

which is customized for RRT data display as captured by the probe. The analyzer

GUI allows complex triggering of capture and display of RRT information as wave-

form and state views. The GUI includes utilities for control of bus event monitoring

and template-based triggering based on captured trace information.

Correlated View of RRT and PDtrace: Allows viewing of common PDtrace and

RRT data captured at a common timestamp with a known or defined offset. It also

allows RRT and PDtrace data to be locally correlated based on address values or

common triggers, markers, and instruction (read/write/burst) types captured in both

the PDtrace and RRT. Correlating socket traffic with instructions defines a processor

to bus-level relationship, for example, by determining which thread caused a read

or write operation on a given cycle to a peripheral socket.

Integration of the bus level and processor tools are integrated via a multicore

API layer, which allows user transparent sharing at both the JTAG and trace port

resources.

The instrumentation developed for the bus RRT system is designed to record

request and response bus events at the socket interface and measurement of one

processor (bus master socket) with expandability to allow concurrent viewing of

key parameters of all masters simultaneously. This system analysis implementation

allows capture of information about core load/store operations and their latency for

the different socket masters, and exports them over dual trace ports to the probe,

along with other trace and analysis data, in particular processor data interfaces that

are used in providing complementary run control and trace analysis views of the

processor operations.

Most bus-level analysis instrumentation and methodologies can be used across

a range of architectures and bus interfaces; both the on-chip interconnect and analysis

systems discussed can be applied to other processor cores or bus architectures

under a similar generic scheme. The RRT tool chain has general application in

several areas of SoC performance analysis and debug. RRT allows the real-time

measurement of frame processing time in a SoC video processing system that used

multiple cores and the interconnect bus IP. RRT was used to improve the utility of

1076.8 Request Response Trace Bus Analysis

processor trace by capturing information for traces performed at the bus connection

point and aligning with core processor execution, enabling correlation of the cause-

effect of code execution to bus/socket traffic based on the time-based coordination

of recorded traces from both sources.

RRT is also used in more general systems based on a multithreading processor.

By tracing the bus interconnect to memory, RRT provides real-time bus latency

information and metrics on if and when interconnect is stalled at the precise time

of a requested load/store operation. However, this does not provide information on

which hardware thread is running or on what part of the application code is running

at that time. By correlating the trace information from the RRT bus socket(s) and

the processor trace, it is possible to get a complete picture of how load/stores from

each thread of execution are impacting overall system operation.

Leveraging this information one step further, optimization of the QoS system

used to schedule threads in a multithreaded core operating within a SoC design can

be achieved. For example, RRT can be used to extract thread information from

socket address bits traced in a system. Post-trace software can then display per-thread

bus/socket transaction data, providing valuable information to users on the density

of transactions over time and the delays associated with those memory accesses,

generated for each hardware thread. This detail of information is extremely useful

for performance tuning the application of software threads of execution to the hard-

ware threaded capability of a multithreaded processor, allowing system developers

to optimize bus utilization and throughput in such a complex SoC design.

109N. Stollon, On-Chip Instrumentation: Design and Debug for Systems on Chip,

DOI 10.1007/978-1-4419-7563-8_7, © Springer Science+Business Media, LLC 2011

Debugging becomes more complex when one introduces multiple processors.

A peripheral that allows one to monitor bus activity between two processors, such as

in an MCU+DSP device, can resolve shared memory contention issues. In traditional

debug environments, one can only see what was written to a memory location, not

which processor made the write. Bus-monitoring peripherals track the source of each

memory access, providing the necessary information for the debugging environment

to identify which processor made the write. This increased visibility adds complexity,

so a debugger that can interleave the trace buffers between processors is needed.

In most designs, processors are integrated with several other subsystems that also

may be included in systems analysis, such as trace operations. Logic blocks included in

many designs include co-processors for specific applications, memory controllers,

peripherals, and a host of other functions. Debug of these types of blocks can be sup-

ported by on-chip logic analyzers that allow triggering and trace of logic operations,

which is often done in tandem with processor debug operations. One variant of logic

analysis important for many systems is bus-level debug. Bus analysis typically takes one

of two forms: signals of interest are traced at the bus interface (for example, an AMBA AHB

port or OCP socket interface) or from within the selected debug points in the bus fabric.

Just as buses operate in conjunction with processors and other IPs, bus analysis must

interface to other debug blocks. This is typically performed/accomplished/etc. using

cross-trigger interfaces to the other debug blocks for low-latency triggering of the pro-

cessor debug operations based on status in another core. Likewise, processor output

signals can be used to allow triggering of other trace operations to start and stop based

on processor operations. Cross-triggering resources, when combined with global timing

control resources, such as timestamping of trace information allow synchronization and

alignment of debug data from different sources being brought off chip. Concunrrent

trace permits a more systems-oriented focus on the debug process, by allowing simul-

taneous viewing of signals of subsystems operating in differing clock domains.

If a device supports bus monitoring, it will usually also support global break-

points. With standard breakpoints, one processor can halt another processor only

after a latency of several cycles. If the processors are out of synchronization with

regard to interprocessor communication, this potentially aggravates debugging by

requiring reset of both processors to a common resynch point. Global breakpoints

halt both processors on the same cycle.

Chapter 7

Multiprocessor Debugging

110 7 Multiprocessor Debugging

7.1 Cross-Triggering and Global Breakpoint Control

The cross-trigger block is distributed to all processor connections to a bus. If cross-

trigger wiring is in the bus fabric, then only small wrappers (condition/action

nodes) are required at each processor interface. Alternatively, a separate cross-

trigger matrix may be implemented. The cross-trigger logic may be programmed

from either a processor or a JTAG debugger. The underlying idea of the cross trig-

ger is that any processor or significant on-chip logic block can generate an (edge or

level) trigger output to other points within the chip, and receive cross trigger inputs

from other cross trigger blocks on the chip, for subsequent processing or actions.

The debugger or processor can configure specific trigger lines for each IP to send

a condition signal (changing either polarity or delay) and enable or mask the trigger

line from which it can receive a trigger/action operator (Fig. 7.1).

For example, we discuss cross-trigger subsystems that were included in the OCP-IP

debug specification that allow event recognition from a combination of system-

level and local (processor-specific) conditions and generate global or processor-

specific actions based on the triggering of an event. In the first (HyperDebug), both

conditional triggering and actions are dynamically controllable from system soft-

ware. The HyperDebug block also provides a timestamping capability for trace and

trigger synchronization of processor cores running in different clock domains.

The HyperDebug concept is simple: Accept a scalable number of status inputs from

vendor cores and I/O pins, combine them in a user-configurable way, and send control

outputs to a selectable set of vendor cores and I/O pins. HyperDebug is configured as a

set of chains that connect condition nodes, which gather information about triggering

events from different subsystems/cores of a design and about action nodes that distribute

generated trigger outputs to different subsystems/cores in a design. The event-monitoring

and triggering logic are handled in a HyperDebug control instrument (Fig. 7.2).

7.2 HyperDebug Distributed Cross-Triggering

HyperDebug connects to core signals through node agents called HyperDebug

condition nodes (HDCNs). HDCNs for all cores that have status outputs such as

run-state or trigger points connect together in a chain. Configuration bits at each

Processor Other Core
Bus

Monitor

Trigger

Logic &

wrappers

Cross-Trigger signals in bus fabric

Cross

trigger

Logic

trace IF

(bus trace)

(X trigger

Config.)
Processor

Debug IF
Debug Logic

JTAG Port

IO (chip

level TAP)

two “trigger lines”

Fig. 7.1 Cross-trigger block diagram

1117.2 HyperDebug Distributed Cross-Triggering

node optionally condition the logic of the core output and form a node output that

is either a pass through from the node input or a combination of the node input

with the node’s status signal. In this way, a positive-logic AND or negative-logic

OR combination of trigger outputs from any subset of cores in the chain is formed

and feeds into the HyperDebug controller.

HyperDebug consists of three distributed types of components:

HyperDebug OCI, which initiates the trigger condition and action operations •฀

and maintains the overall HyperDebug control and status.

HyperDebug condition nodes (CNs), which modify the trigger conditions based •฀

on local conditions in the core, OCI, and other CNs connected to the core.

Typically, a number of CN blocks are implemented related to trigger conditions

monitored in a given core.

HyperDebug action nodes (AN), which initiate logical actions such as setting •฀

registers in the core or OCI. AN operations are local to specific codes or may be

global to all cores in the SoC (halting or resetting the core is one example).

Typically, the number of the AN block is related to the number of actions that

would be required for the debug logic to control core operations.

The OCI accepts a configurable number of condition inputs and generates a

configurable number of action outputs. Condition inputs may come from a chain of

CNs or from external pins fed from a JTAG probe. Action outputs may go to a chain

of ANs or to external pins leading to the JTAG probe. The number of conditions

need not necessarily match the number of actions.

Condition inputs are synchronized and stretched to match the clock period of the

HyperDebug OCI. HyperDebug trigger conditions are an AND combination of one

or more of the following:

Condition input from a CN chain.•฀

Condition input from an external pin.•฀

An event counter matches a pre-programmed value.•฀

HyperDebug sequencer state.•฀

JTAG฀OCI

HyperDebug฀

JTAG฀Probe฀Other฀Debugger

tools

HyperDebug

Control฀฀

฀฀Core฀A Core฀B Core฀C Bus

Trace

Instrument
Embedded฀Bus฀฀

Bus

Access

point฀

HyperDebug฀Nodes
Action฀Nodes฀-฀AN฀

Condition฀Nodes฀-฀CN

HyperDebug Trigger Chain (1…32)

JTAG

CN/AN

JTAG JTAG

CN/AN CN/AN

JTAG

 CN/AN

Fig. 7.2 HyperDebug cross-trigger block diagram

112 7 Multiprocessor Debugging

In the controller, the condition input is optionally inverted and optionally

stretched, delayed, and synchronized to the local clock. Edges of condition inputs

may then be programmed for various actions.

A configurable number of trigger condition chains can be inserted into any

 particular design block.

HyperDebug action outputs are serially bused to HDANs adjacent to each core

where they are conditioned and can be used to drive core trigger inputs.

Configuration bits control whether this action feeds this core’s trigger input. HDAN

outputs are high, and an inverter may be instantiated at the vendor core action input

if that core’s input is low. Either the raw HyperDebug action output or a synchronized

and stretched version can be selected.

In this implementation, HDCNs and HDANs are always instantiated together and

the combination of an HDCN and HDAN at a particular core is called a HyperDebug

Node (HDN). An HDN connects to one condition and one action chain. The logic

for nodes can be very simple or more complex depending on the level of triggering

complexity required, including state machines for sequential triggers. A simpler

combinatorial implementation with programmable delay is often sufficient.

A configuration clock (the TCK input and configuration enable signal) is used

to initialize the configuration registers in the HDN. The configuration chain is

similar to JTAG in that at a rising TCK edge, the hd_condition_out output is

latched into the first register in the chain (like TDI), while the bits in the HDN

configuration register are shifted one bit forward. Output from each HDN changes

on the falling edge of the configuration clock (like TDO) so that routing delay

and clock skew between HDNs is not an issue. When the chain is not in configu-

ration mode, hd_condition_out supplies the logic 1 feeding into the first HDCN

as illustrated by the Figures 7.1 and 7.2.

If a core or the chip I/O has more than one potential trigger status output or

action input, more than one HDN may be instantiated at that core.

7.2.1 HyperDebug Controller

The OCI accepts a configurable number of condition inputs, and generates an action

output for each. Condition inputs can come internally from a chain of HDNs associ-

ated with cores or externally form inputs from external instruments or other logic.

The Action outputs propagate through the HDN chain to cores or external pins.

Condition inputs are synchronized and stretched to match the clock period of

the HyperDebug OCI. Any convenient clock can be used to drive HyperDebug.

HyperDebug trigger conditions are either:

Condition input from the HDN chain AND the HyperDebug sequencer state.•฀

A global event counter matches its preprogrammed compare value AND the •฀

HyperDebug sequencer state is one of a specified list.

When a condition is indicated, the HyperDebug controller may be programmed

to perform actions:

1137.2 HyperDebug Distributed Cross-Triggering

Assert, negate, or pulse the action output to the HDN chain.•฀

Start, stop, increment, or clear the global 32-bit event counter.•฀

Change to another HyperDebug sequencer state.•฀

The condition input to the HyperDebug controller is conditioned according to

three parameters set up by the user:

The user can select whether to invert the condition. The optional inversion would •฀

be used when the condition is active-low, such as when the bus is used as a logical

OR of several cores.

A synchronizer is used when the sequencer clock domain is different from that •฀

of the cores or if the routing delay of the condition bus is significant compared

to the clock period. For small systems, the synchronizer may not be needed.

An edge detector would be used after the synchronizer to change the duration of •฀

a condition to one clock. For example, this might be used if a core is set up to

assert its condition output when a certain trigger point occurs and the user would

like the instruments to break after a certain number of these trigger points have

occurred. Each trigger point asserts the condition bus for one core clock, and the

condition bus is then resynchronized to the clock. The edge detector guarantees

that the counter increments once for each trigger point even if the core’s condi-

tion output lasts longer than one clock (Fig. 7.3).

7.2.2 Typical HyperDebug Implementation

When a condition is indicated, the HyperDebug controller instrumentation may be

programmed to perform one or more actions:

Assert, negate, or pulse one or more action outputs to an AN chain.•฀

Assert, negate, or pulse one or more action outputs to an external pin.•฀

HyperDebug

Ctrl

chain 1
node 2

chain 0
node 0

chain 0
node 5

chain 1
node 5

off
 triggers

chain 0
node 1

chain 1
node 1

JTAG

chain 1
node 0

core 2 core 1 core 0

chain 1
node 3

chain 0
node 3

core 3

chain 0
node 2

chain 0
node 4

chain 1
node 4

core 4

chain 0
node 6

chain 1
node 6

Bus
Trace

hd_condition_out,

hd_action_out, setup hd_condition_in,

Fig. 7.3 A HyperDebug configuration

114 7 Multiprocessor Debugging

Start, stop, increment, or clear operations on a 32-bit event counter.•฀

Change to another HyperDebug sequencer state.•฀

The HyperDebug block also sources a reference clock signal for timestamping of

data at each OCI block. Given that cores in a system may operate over a range of

frequencies, including asynchronously to each other, a master timestamp provides

a means of synchronizing the time of a core operation in relation to other cores in

the system.

A typical implementation of HyperDebug with two HDN chains can support the

following capabilities:

Sequential, multicore triggering, such as event A followed by B or trigger 1 ms •฀

after an event.

Periodic trigger signal to insert synchronization messages in each core’s trace •฀

buffer.

Assert a logical break signal to all cores under debug when any of the cores hits •฀

a breakpoint.

Insert a trace message in each core’s trace buffer when a particular core reaches •฀

a trigger point.

With multiple chains, conditions for cores corresponding to different problem

domains (concurrent breaks or interupts, power control, trace, etc.) can be assigned

different chain connections and operate concurrently (Fig. 7.4).

Trigger-out and trigger-in routing can be handled as sideband signals by the bus

interconnect. The cross-triggering programming can be handled at subsystem level

via the Hyperdebug control block trigger event, which can also be routed to the trace

components via action/condition nodes. Trigger events can generate either a debug

request or an interrupt request. These differ for different cores.

The cross-triggering can support external triggers. The trigger pulse width must

be compatible with device IO performance. Triggers can connect to IO. Level or

HyperDebug

Ctrl
Trigger Condition ChainsTrigger Action Chains

Stall/

Break

Trigger

Intrupt

Trace

Stall

Enable

Trace

Enable

Interupt

Enable

Core C

Stall/

Break

 Trigger

Break

Trace

Break

Interupt
Break Int.

Trace

Core A Core B

Fig. 7.4 HyperDebug configuration

1157.3 Multicore Synchronization Triggering and Global Actions

pulse triggers are supported. A subsystem in power down or where debug has not

been enabled does not contribute to cross-triggering.

The cross-triggering supports independent clock domains for a trigger-out master

and a trigger-in target. The cross-triggering must be operational for any platform

subsystem’s frequency operating point, assuming a simple action/condition node

configuration.

7.3 Multicore Synchronization Triggering

and Global Actions

The amount of information in a multicore SoC is large enough that global event

recognition is often needed to identify and isolate events occurring throughout the

system. Event recognition is widely used in conjunction with trace to capture infor-

mation on events and operations in the SoC. Trace data values are monitored and

compared to event sequences to provide real-time triggers in instrument block(s).

These triggers in turn can be used to control event actions such as breakpoints and

trace collection. Multicore debug instrument event recognizers can simultaneously

look for bus address, data, and/or control values and be programmed to trigger on

specific values or sequences such as address regions and data read or write cycle

types (Fig. 7.5).

HyperDebug

Ctrl฀

Trigger Condition Chain

Trigger Action Chain

Action 1

Timestamp Clk/Ctrl

Condition 1

Action M

Condition N

Trigger Condition Chain Return

HyperDebug

Condition/Action

Node AN/CN 1

HyperDebug

Condition/Action

Node AN/CN 2

HyperDebug

Condition/Action

Node AN/CN M

HyperDebug

Condition/Action

Node AN/CN N

JTAG

 Node A

Vendor Core B Vendor Core A

Fig. 7.5 HyperDebug system integration

117N. Stollon, On-Chip Instrumentation: Design and Debug for Systems on Chip,

DOI 10.1007/978-1-4419-7563-8_8, © Springer Science+Business Media, LLC 2011

IEEE 1149.7 (Standard for Reduced-Pin and Enhanced-Functionality Test Access

Port and Boundary Scan Architecture) is a superset of the 1149.1 JTAG interface,

which, as previously discussed, has been in use since 1990. The IEEE 1149.7 stan-

dard (also known in the past as cJTAG or Compact JTAG, and later as aJTAG or

Advanced JTAG due to copyright issues with the name CJTAG) was developed to

address some of the known limitations of 1149.1 performance and extend its

 capabilities by creating a complementary standard that addresses the changes in the

integrated circuit technology and topology. Originally defined as part the MIPI Test

and Bdebug Working Group, 1149.7 defines a hierarchy of new, but JTAG compat-

ible capabilities. With increasing levels of complexity, it replaces the JTAG TAP

FSM with alternate TAP.7 architectures to implement additional functionality and

maximize debug performance. Like other JTAG extension, a key concern is to

maintain backward compatibility with IEEE 1149.1 infrastructure, semiconductor

IP, software IP, and existing debug and test tools. Additional functionality and

improved debug capabilities include

 1. Provide mechanisms for TAP power management.

 2. Provide modes that provide test and debug capability with fewer pins.

 3. Provide background instrumentation capability using the same pins.

 4. Preserve a gateway for debugging semiconductor errors/defects.

 5. Provide a framework to improve debug use performance and allow other debug

pin protocols to gain access to the pins.

The 1149.7 architecture maintains the underlying JTAG-compliant control mech-

anism while providing several extensions to JTAG. Instead of a radical departure

from the existing standard, 1149.7 represents the natural evolution of the standard.

The 1149.7 operating mode is JTAG-compliant from power-up. Conventional

JTAG control sequences are used to switch between the JTAG-compliant standard

mode and the 1149.7 advanced mode. A 1149.7 aware debug and test software

environment (DTS) must therefore be able to determine whether it is communicating

with existing JTAG components (legacy), a mix of legacy and 1149.7 components,

or a system built with only 1149.7 components. It can also determine whether the

components are configured in a star or series configuration.

Chapter 8

IEEE 1149.7: cJTAG/aJTAG

118 8 IEEE 1149.7: cJTAG/aJTAG

The 1149.7 architecture supports the following features:

2-pin operation (compared to the 4 or 5 pins of standard JTAG or the 5 or 6 pins •฀

if the JTAG return test clock [RTCK] is included). The latter interface is referred

to as modified IEEE 1149.1.

Target operating frequencies (TCK) from DC to 100 MHz.•฀

Compatible with all hardware/software that uses the JTAG standard.•฀

Provides debug access that is independent of PROCESSOR and debug •฀

technology.

Supports multidevice communications ports with up to 16 devices per port.•฀

Creates data transport channels superimposed on JTAG stable states such as •฀

idle and the two pause states. The stays in these states may be used to move

background or custom instrumentation data using 1149.7 or private protocols

(BDX/CDX).

Power domain awareness at target and board levels.•฀

Comprehends synchronized operations across multiple debug ports.•฀

Tolerates slow system response such as power save modes or component clock •฀

limitations.

Includes failsafe and robustness features.•฀

The 1149.7 architecture builds on existing technology and legacy hardware/

software. This evolutionary approach maintains the value of the vast majority of IP

created since the JTAG standard’s inception.

There is a facility within 1149.7 that allows hot connect to the target system

without system disturbance. This facility, called firewall, “disconnects” the JTAG

devices from the TS 1149.7 adapter by gating off the adapter’s TCK output to the

connected JTAG devices. Debug software can use a standard JTAG sequence to

disable this firewall.

Another capability, called super bypass, may be used in the JTAG mode of an

1149.7-enabled chip. Super bypass provides a one-bit bypass between TDI and TDO

for both instruction and data scans, thus reducing the scan path length in a system.

Another 1149.7 capability, the BDX/CDX (background data transport/custom data

transport) mode, can be used to transfer data between the DTS and target system.

BDX allows transfers during idle control periods. CDX transfers control to the TAP

on-chip logic to control and initiate transfers with off chip elements. Transfers occur

when stable TAP states are reached (e.g. idle, pause-IR/DR, or shift-DR/IR). These

transfers support, for example, user I/O, outputting instrumentation trace information,

and custom protocols such as those for non-JTAG debug technologies.

8.1 Test and Debug Views of 1149.7

Because JTAG-related TAPs have become the most common debug port, improve-

ments in providing access to chip facilities that support application debug and system

integration is a higher priority than it was when. 1149.1 was developed and on-chip

1198.1 Test and Debug Views of 1149.7

debug was a low-priority factor. With on-chip debug environments for different on-

chip processors and other logic required in complex SoC, the JTAG TAP must be

able to provide application debug support and access to multiple on-chip TAP con-

trollers and embedded TAPs for special-purpose debug logic. This increases the

complexity of applying JTAG to debug environments, compared to the relatively

simpler and more consistent test requirement of scan operations.

1149.7 defines a new controller architecture (TAP.7) that includes the 1149.1

controller for compatibility modes, but depending on more advanced modes of

operation, expands the functionality and relationships of JTAG states and modifies

the requirements of JTAG-required registers to allow new functions.

Test applications do not require visibility to the on-chip system components

that are of interest to debug, and debug does not typically require visibility to the

interconnection between the chips needed for a board manufacturing test. This

means that test and debug desire two different views of a system of interest, as

shown in Fig. 8.1. The views are complementary, because testing is generally

completed before application debug begins using different tools and design for

test software.

1149.7 addresses this need for both test and debug views in its definition of a

TAP.7.controller. The test view requires compliance with the IEEE 1149.1 standard.

The debug view provides access to multiple TAPs within a chip, as shown in

Fig. 8.2. These are very different views of the same logic.

The test view is given initial priority over the debug view. A testlogic reset TAP

control state creates the test view. This view remains until an action is initiated via

the chip-level TAP control to change the controller view. When the debug view is

used, the chip creates visible subsystems with debug components that may be

accessed. In most cases, the TAP control associated with an on-chip component

controls the component but does not have boundary scan associated with it.

The debug-related and auxiliary TAPs within a chip may be included and

excluded from the scan chain depending on their availability (some may be

 powered down or otherwise inaccessible). The inclusion and exclusion of TAP

Fig. 8.1 Test and debug view of a TAP. Source: IEEE 1149.7

120 8 IEEE 1149.7: cJTAG/aJTAG

controls from a chip scan path occur upon entry into the run test/idle TAPC state.

This allows the synchronization of actions such as running or halting processors

attached to different TAPs with a chip, similarly to how JTAG would address dif-

ferent chips within a system.

8.2 Key T0–T5 Class Functions

The key IEEE 1149.7 features are addressed in six class functions (designated

T0–T5) that are defined through 1149.7. Classes T0 through T3 extend IEEE

1149.1 and enable new operations. Classes T4 and T5 are focused on advanced

two-pin operation.

Class T0 ensures compliance with current test infrastructure by configuring

IEEE 1149.7 devices to make them act compatibly with IEEE 1149.1, as shown in

Fig. 8.3. 1149.7 defines supporting features, many of which are optional or unde-

fined in 1149.1, including the use of N-bit IR, 1-bit DR for bypass instruction,

mandatory 32-bit IDCODE, and mandatory instructions behaving as specified in

IEEE 1149.1. After a testlogic reset is initiated, all multi-TAP devices must con-

form to the mandatory IEEE 1149.1 instruction behavior and implement a 1-bit DR

scan for the bypass instruction.

Class T1 instantiates a control system for the IEEE 1149.7 standard that is

 transparent to IEEE 1149.1 devices, providing a foundation for the advanced

 functionality implemented in classes T1 through T5 without changing the IEEE

1149.1 state machine. In addition to creating a control system based on a TAP7

controller and extended protocol unit (EPU), shown in Fig. 8.7 and the commands

and registers associated with direct addressability for classes 1 to 3, this class

addresses the needs of power-sensitive devices with four power-down modes.

Fig. 8.2 Multi-TAP control and data paths. Source: IEEE 1149.7

1218.2 Key T0–T5 Class Functions

The key innovation is the combination of the IEEE 1149.1-compatible TAP

state sequences and shift state watching, which creates an IEEE 1149.7 control

system that uses the bypass or IDCODE instructions plus a series of IEEE

1149.1-compliant sequences called zero-bit DR scans (ZBS), shown in Fig. 8.4.

Beginning at zero, the ZBS count is incremented with each consecutive

 occurrence of a ZBS without encountering a shift-DR TAP controller (TAPC)

state. When a DR scan containing a shift-DR occurs and the ZBS count is greater

Fig. 8.4 The 1149.7 modified JTAG FSM with ZBS paths highlighted. Source: IEEE 1149.7

Fig. 8.3 Typical T0 class TAP.7. Source: IEEE 1149.7

122 8 IEEE 1149.7: cJTAG/aJTAG

than zero, the ZBS count is locked, activating a corresponding control level

(shown in Table 8.1).

The progression of states that are recognized as a ZBS are highlighted in the

FSM diagram. There are two different paths, labeled as “a” and “b,” that can

 implement a ZBS. In either case, the state sequence of interest is defined as follows:

Table 8.1 Summary of T0–T5 class features

Advanced – data channels

T5

Data channel 1

Data channel 0

No data channels, don’t go office

BDX/CDX transfers

Advanced – operation within star-2 topology

T4

One of four start-up options

Compatibility between different feature sets

TS or DTS clock source

Test reset equivalent escape sequence

Star-2 drive conflict prevention

2/4 pin (with or without TIDC/TDOC pins)

Programmable function TDIC/TDOC pins

Scan formats:

–Minimal number are mandatory

–Very optimized for debug

–Optimized for debug

–Optimized for test

–Optimized for non-compliant IP

Extended – operation within star-4 topology

T3

Directly addressable, TCA and CIDs

Star-4 drive conflict prevention

Series/star scan equivalence (SSDs)

Extended series performance

T2

Coupling/decoupling of STL

Start-up with STL decoupled

Extended – optional functions

T1

TAP.7 power control

Test reset generation

Functional reset request

Extended – control levels

Control level two – Cmds. And Regs.

Control level three reserved

Control level four/five scan paths

Control level six and seven DTS use

1149.1 compliance

T0

IEEE 1149.1 compliance at start-up

Multiple embedded TAPs

Coupling/decoupling of embedded

TAPs: Inclusion and exclusion of

DR scan paths

1238.2 Key T0–T5 Class Functions

from the select-DR-scan TAPC state, proceed to the update-DR TAPC state with-

out passing the shift-DR TAPC state. From the testlogic reset TAPC state, wherein the

ZBS count is set to zero, the extended control mechanism is initiated when at

least two ZBSs are detected before a subsequent nonzero-bit DR scan, which

locks the ZBS count. A locked ZBS count of two provides access to the 1149.7

commands and registers.

Commands are typically 10-bit values and consist of two consecutive DR scans

while the controller is locked at control level 2. Command part 1 (CP1) provides

a 5-bit operating code, and command part 2 (CP2) provides the immediate operand,

which is the lower 5 bits of the command. The function specified by the command

is performed when CP2 completes (Tables 8.2 and 8.3).

A three-part command can be created by appending a third DR scan (a control

register or CR scan) after CP1 and CP2 and transporting a data value. Each of the

three three-part commands has a special purpose.

T1 also provides for power management through four modes of power control

for the TAP. These four modes are:

 1. Allow power down if TCK stops at logic one for more than 1 ms.

 2. Allow power down if TCK stops at logic one for more than 1 ms in the testlogic

reset TAP control state.

 3. Allow power down if the device is in the testlogic reset TAP control state.

 4. Do not allow power down (the test logic is always powered).

When a power-down mode is supported, the TAP is directed to resume powered

operation when the run test/idle TAP control state is forced for at least 100 ms and

at least 3 TCK(C) ticks.

Class T2 offers a chip-level bypass mechanism that shortens scan chains and

another mechanism that provides hot connect capability. Because JTAG’s serial

architecture makes it complex to communicate exclusively with one specific

device in the scan chain due to interactions with other devices in the chain, particu-

larly when multiple devices or cores are combined into one chip, 1149.7 provides

Table 8.2 T1 class control levels

Control level Overloaded function DR scan path

0–1 None System

2 Commands Chip-level bypass bit

3 None (reserved) Reserved

4–5 Auxiliary scan paths User defined

6–7 DTS utilizes these levels User defined

Table 8.3 TAP7 controller address

MSB LSB

34 27 26 11 10 00

NODE_ID[7:0] DEVICE_ID[27:12] DEVICE_ID[11:0]

Part number Manufacturer

124 8 IEEE 1149.7: cJTAG/aJTAG

a method to address and access specific devices in the serial chain individually,

without having to shift bits through the entire instruction register length of the full

scan chain, as seen in Fig. 8.5.

Class T2 adds three scan formats to implement these new features:

JSCAN0: Offers IEEE 1149.1-compliant operation.•฀

JSCAN1: Provides hot connection and disconnection protection. At power-up, it •฀

can select a 1-bit bypass path (also called super bypass) that is active for IR

scans and DR scans. This protects TAPs from spurious signals and prevents core

corruption during hot connections.

JSCAN2: Implements the 1-bit super bypass according to the value of an 1149.7 •฀

register to improve series-connected device performance. The mechanism also

functions as a firewall, enabling access to chip TAPs only after a predetermined

sequence is initiated. This JScan2 provided activation/deactivation of the bypass

provides a basic security that ensures that only a debug test controller can access

the system once a running, powered target has a stable electrical connection.

A chip-level bypass mechanism reduces the overall scan chain length by putting

unused devices in a 1-bit chip bypass mode. Using this feature can make very

long scan chains dramatically shorter and improve the overall scan efficiency

throughput.

Class T3 introduces the first features that are not directly extensible from the

1149.1 JTAG. Whereas classes T0–T2 continue to be based on the JTAG serial inter-

face of data being propagated though TDI and TDO interfaces, class 3 is based on

data access using a parallel interface, where each TAP has direct access to a com-

mon TDI and TDO, in addition to the common TCK and TMS signals. The 1149.7

documentation refers to parallel configurations as a star topology. Although 1149.1

references the use of parallel configurations, it does not do so in enough detail to

be usable. 1149.7 provides an additional new scan format‚ JSCAN3, in class T3 to

support star access. Figure 8.6 shows the series scan topology and the parallel inter-

faces of the star-4 or wide star configuration.

Fig. 8.5 Class T2 JSCAN2 1-bit bypass (super bypass) mode. Source: IEEE 1149.7

1258.2 Key T0–T5 Class Functions

A key provision required in a star topology with multiple TDO drivers is the

prevention of drive conflict on the TDO pin. The JScan3 format is managed so that

when multiple TAP.7 controllers are active, drive on the TDO pin is inhibited until

an arbitrated resolution is complete.

As in a more parallel bus with multiple drivers, class T3 needs direct addressability

in each of the TAP controllers. This is addressed by a TAP.7 controller address (TCA)

for each of the TAPs that can drive the TSO pin. TCA values corresponding to

DEVICE_ID are inherited from the 1149.1 device identification register capture value

for the TAP controller. The assignment of the NODE_ID is left undefined, so that it is

more easily adopted to different types of instruments and debug blocks.

The NODE_ID serves to distinguish multiple TAP.7s on a given topology branch

even if they are of the same device type.

1149.7 maintains compatibility with the IEEE 1149.1 standard by making all

operations appear to be series scans using Capture-xR and Update-zR TAPC states

in a group of selected IEEE 1149.7-enabled TAP controllers. To operate in this

mode, devices (either cores or chips) in the star configuration must be assigned

controller identification (CID) numbers. An iterative arbitration system is used to

assign CIDs, and operations are executed using control level 2.

The controller IDs (CID) allow the system architecture to be interrogated by

external devices, such as a debug tool at connect time, and enumeration of TAPS

allows specifics of what debug resources are available on the chip. This presents a

significant advantage for systems with debug blocks from different sources, which

otherwise would need to be known a priori.

Class T4 and T5 functions add new capabilities that are implemented in an

advanced processing unit (APU), shown in Fig. 8.8.

Class T4 adds scan formats to support transactions with two pins instead of four,

resulting in fewer total pins required on chip packages. The key to two-pin opera-

tion is eliminating the original data lines and sending bidirectional serialized data

over the test mode select (TMS) line, which is renamed as TMS counter (TMSC).

To implement this capability, the star configuration from class T3 is used, this time

without TDI and TDO. This is the star-2 configuration, shown in Fig. 8.9.

Fig. 8.6 JTAG series versus star configurations

126 8 IEEE 1149.7: cJTAG/aJTAG

Fig. 8.8 An APU + EPU–based TAP.7 controller for T4–T5. Source: IEEE 1149.7

Fig. 8.7 An EPU-based TAP.7 controller for T1–T3. Source: IEEE 1149.7

1278.2 Key T0–T5 Class Functions

Fig. 8.9 Class T4 2-pin star configuration

In addition to reducing pin count, class T4 defines optimized download-specific

scan (OSCAN) modes in which only useful information is downloaded, as shown

in Figs. 8.10 and 8.11. To improve pin operation performance, the clock rate can be

doubled. These features, combined with the optimized transactions, do not cause

performance loss, instead improving performance in some cases.

A basic scan format that supports the advanced protocol is OSCAN1, which

provides serialization of the scan packet. As shown, the TDI bit information is

inverted. For each cycle in which the TDO bit appears, it is driven from the selected

device in the target system back to the chip interface.

Other OSCAN formats provide optimizations in which the scan packets omit

bits that carry no significant information. An example is the OSCAN7 format that

is optimized for downloads from the interface to the target system. For OSCAN7,

only the TDI bit information is included in the packets sent during Shift-xR TAP

control states.

Class T5 adds features that improve performance and flexibility for utilizing a

JTAG TAP for debugging, shown in Fig. 8.13. Whereas class T4 has primarily

addressed the use of serialized packets for scan, T5 offers the capability to inter-

leave transfers of nonscan data among the scan transfers. This is referred to as

transport and has two variants:

Background data transport, which uses idle bandwidth during TAP IDLE, •฀

PAUSE_DR, and PAUSE_IR for transfers.

Custom data transport, which implements a custom link protocol to “on the fly” •฀

change direction of the data transfers.

Both types of transport can use any combination of run test/idle, Pause-xR, and

Update-xR TAPC states, after which transport packets can be inserted. The dis-

tinction is that, whereas BDX has fixed allocation of I/O bandwidth available to the

chip-level data channel, CDX has a custom allocation of I/O bandwidth as deter-

mined/defined by the chip-level unit (Fig. 8.14).

Class T5 gives the TAP the ability to perform debug and instrumentation opera-

tions concurrently (data is transferred during idle time), which reduces the number of

128 8 IEEE 1149.7: cJTAG/aJTAG

pins required to address instrumentation bandwidth, and enables custom protocols to

use the pins, as shown in Fig. 8.12. This is one of the attractions of 1149.7 to IEEE

5001, as discussed later. Class T5 standardizes the process to access the pins for debug

as opposed to the diverse, ad hoc, and proprietary means to address interfaces

supporting debug features.

Several aspects of the 1149.7 system architecture make debug instrumentation

more accessible, providing for access consolidation and management of embedded

TAP controllers (T0), star topology (T3), pin reduction (T4N/T5N), and capability

for the TAP.7 to transport background data; custom protocols using BDX and CDX

(T5) were developed with debug operations in mind.

Fig. 8.10 An OSCAN1 timing diagram. Source: IEEE 1149.7

Fig. 8.11 An OSCAN7 timing diagram. Source: IEEE 1149.7

Fig. 8.12 T5 TAP.7 transitions to advanced modes. Source: IEEE 1149.7

1298.3 MIPI Use of 1149.7

8.3 MIPI Use of 1149.7

Mobile industry processor interface (MIPI) is an industry-standard organization

addressing hardware and software interfaces found in mobile terminal systems.

It maintains a test and debug working group (T&DWG) that was the original driver

for 1149.7 activities. Because 1149.7 enables 2-wire pin-out options for a JTAG

TAP, it is of interest to the mobile products industry. The T&DWG also specifies a

system trace module (STM). STM consists of a system trace protocol (STP) and the

parallel trace interface (PTI). This allows collection of debug and trace data from

Fig. 8.13 APU functions of T5 TAP.7. Source: IEEE 1149.7

Fig. 8.14 Custom debug mode burst and continuous transfers. Source: IEEE 1149.7

130 8 IEEE 1149.7: cJTAG/aJTAG

internal buses and output to an external trace capture device using a minimum set

of pins. The signals and pins required for these interfaces are given through the

“MIPI Alliance Recommendation for Test & Debug – Debug Connector,” which is

also part of the MIPI test and debug interface.

The main blocks of the MIPI debug and trace interface (DTI), seen from outside

of the system, are shown in Fig. 8.15. To summarize, these are:

The debug connector.•฀

The basic debug access mechanism: JTAG and/or 1149.7.•฀

A mechanism to select different TAP controllers in a system (multiple TAP •฀

control).

The system trace module.•฀

8.3.1 MIPI System Trace Module

The STM collects debug and trace data from internal device buses, encapsulates the

data, and sends it out to an external trace device with the following features:

SW-generated trace optimization.•฀

Automatic timestamping of messages.•฀

Supports up to 255 HW trace sources:•฀

Allows simultaneous tracing of 255 threads without interrupt disabling. –

Configurable export bus with selectable width 1/2/4-pin (+ dedicated clock •฀

+ optional return channel):

Minimal pin usage is 2 pin (1 data + 1 clock). –

Maximum pin usage is 6 pins (4 data + 1 clock + 1 return channel). –

Maximum operating frequency is 166 MHz (double data rate clocking).•฀

Fig. 8.15 MIPI system trace module. Source: MIPI Consortium

1318.3 MIPI Use of 1149.7

Provides a maximum bandwidth of slightly greater than 1 Gbit/s (theoretical •฀

maximum of 1.6 Gbit/s).

Support for 8-, 16-, 32-, and 64-bit data types.•฀

A maximum of 255 different bus masters can be connected to the STM trace port

via a bus arbiter. The bus masters can be configured for either SW or HW type to

optimize the system for different types of trace data.

SW-type master messages are used to transmit trace data from OS processes or

tasks on 256 different channels. The different channels can be used to logically

group different types of data so that one can easily filter out the data irrelevant to

the ongoing debugging task. The message structures in STM are highly optimized

to provide an efficient transport, especially for SW-type master data. An example

of trace data output is given in Fig. 8.16.

SoCs can be designed with a 1149.7 wide interface (4 pins) or a 1149.7 narrow

(2 pin) interface. As discussed previously, the 1149.7 wide devices have the normal

Fig. 8.16 STM output timing example

Fig. 8.17 A multi-TAP MIPI system. Source: MIPI Consortium

132 8 IEEE 1149.7: cJTAG/aJTAG

TCK, TMCS, TDI, and TDO pins and can be used as normal JTAG devices but can

also be switched to advanced operating mode (2-pin protocol). Devices with a

1149.7 narrow interface only have the TCK and TMSC pins and will only carry out

advanced messages (Fig. 8.17).

8.4 Nexus Use of 1149.7

Note: IEEE 5001 Nexus is discussed in depth in Chap. 11.

1149.7 also provides new capabilities for improving embedded control and visibility

of chip-level analysis and design for debug logic and interfaces using IEEE 5001

(Nexus). As discussed in other chapters, Nexus provides a standard method and

architecture for trace-oriented embedded instrument interfaces. 1149.1 JTAG, which

has been a part of the Nexus infrastructure since its initiation, has limitations when

used as an instrumentation interface. Using 1149.1 JTAG’s serial channel for instru-

mentation applications such as tracing embedded signals means bandwidth is lim-

ited, a performance limitation barrier for multicore designs at the SoC or board level.

JTAG, as a relatively simple state-controlled interface, lacks any native features for

security, power management, and other factors important to modern SoC.

Nexus was developed to address these limitations of JTAG for instrumentation.

Nexus was developed (and standardized as IEEE 5001) in 1999 as an instrumentation

and processor debug architecture that includes IO ports for improved bandwidth and

a standardized protocol that supports a variety of instrument types and both inter- and

intrachip multicore integration and communication. A basic Nexus interface includes

both a JTAG interface and parallel input and output data interfaces, referred to as

AUX ports. Nexus interfaces can be configured in three modes:

 (a) JTAG by itself for both control and data transfer.

 (b) JTAG (mainly for control and lower speed and bandwidth operations) plus AUX

interfaces (mainly for higher-bandwidth data transfer).

 (c) AUX ports by themselves for both control and data transfer.

Nexus relies on the parallel AUX ports for higher-speed and bandwidth interfaces.

The trade-off of this is that Nexus requires dedicated pins to support transfer during

normal operations, and pins are a rationed resource in complex SoC. Nexus

addresses operation with limited pins by only implementing AUX ports where they

are required. So, for example, for trace or other write-IO-intensive operations, the

output bandwidth required is addressed by an AUX output port, whereas the lower-

bandwidth setup and control inputs to the trace instruments can be supported by

JTAG. Alternately, operations such as calibration or memory substitution (a Nexus

configuration of replacing access to on-chip memory with access to external mem-

ory transferred through the Nexus interface) are typically more read-IO intensive

and may require input AUX ports to meet bandwidth requirements.

The addition of Nexus interfaces improves the instrument interface bandwidth

by using the AUX ports and a higher-performance instrumentation interface

1338.4 Nexus Use of 1149.7

 protocol. IEEE 1149.7 interfaces are backward-compatible with 1149.1 JTAG but

support parallel TAP architectures that provide a more compact and powerful

means for adding embedded instruments to digital processors and SoC devices.

IEEE 1149.7 expands on key features of 1149.1 JTAG in several important ways.

1149.7 features are provided in a progressive series of six access port classes

(T0–T5 as shown in Fig. 8.18). Support for any class of capabilities implies sup-

port for the features in the previous class. Since a Nexus packet is a message

protocol, it is operating at a different level of hierarchy compared to the physical

layer-oriented 1149.7 interfaces. As such, different Nexus implementations may

adopt 1149.7 features up to any class level, without being required to support the

entire set of features.

The costs of IEEE 1149.7 are in adding levels of control hierarchy to a test and

debug port. Whereas IEEE 1149.1 JTAG was designed for reduced logic at a time

when gates count per device were smaller and more expensive, in many current ICs

additional logic and complexity are justified for increased features and a more

 flexible and reduced pin interface.

The most basic class T0 capability provides a backward-compatible 1149.1

interface. This allows legacy compatibility with existing Nexus systems or where

more advanced features are not required.

Class T1 capability provides four user-selectable power control modes (based on

power-down states and power-down after delay). IEEE 1149.7 selectable power

mode controls may be propagated into Nexus logic to enable standardized power-

down features for low-power devices.

Class T2 capability provides coupling mechanisms for reduced bypass delay for

the case of multiple TAPS on a chip or a system. This allows shorter latency for

serial scan operations, which can be significant for Nexus systems with several

instruments.

Fig. 8.18 IEEE 1149.7 class implications for Nexus

134 8 IEEE 1149.7: cJTAG/aJTAG

Class T3 capability provides for parallel data input and output configurations

(star-4 topology). This allows simpler and more direct access to on-chip TAPs and

instruments similar to many on-chip bus interfaces and to Nexus AUX ports.

Class T4 supports multiple test/debug configuration functions, the most notable

of which is operation in a 2-wire TAP (star-2) configuration. This allows operation

with a reduced pin interface, a key requirement in Nexus use in pin-limited systems

such as mobile devices.

Class T5 support for higher performance BDX and CDX transfer modes are

not supported under Nexus.

8.4.1 IEEE 1149.7/Nexus Integration

Although IEEE 1149.7 provides new port-level features and improvements in

latency for transport of embedded instrument control and data, it does not signifi-

cantly address the issues of improving bandwidth in underlying communication

with the instrument, a key limitation in performance of applications such as

trace and calibration. Even at its most advanced (T5) level, the IEEE 1149.7 interface

only defines a single data pin for instrument use. Having a scalable and extend-

able data interface for test and debug was one of the drivers of Nexus, and one of

its most notable features is the definition of input and output AUX ports that

increase the effective number of data channels to significantly increase transport

bandwidth.

By defining parallel interfaces, 1149.7.7 star-4 configurations can be synchronized

and integrated with both AUX IN and AUX OUT ports (Fig. 8.19). Depending on

the requirements, only one (IN or OUT) of the AUX ports may be required. Number

and size of the AUX ports are configurable and typically trade off with output buf-

fer size. For a multi-TAP configuration, larger or additional buffers can be required

because the synchronized AUX port for each TAP may be stalled by activity on

other TAPs or by the 1149.7 interface itself. In addition, support for advanced

modes, CDX in particular, may require that TAPs communicate and arbitrate access

to the channel. A similar configuration can be used to implement Nexus with a

2-wire star-2 configuration. IEEE 5001 also defines, in the 2009 revision, the ability

to implement increased (order-of-magnitude) bandwidth by replacing the AUX

channels with a corresponding number of SerDes ports allowing gigabit data

transfers.

Nexus packet-based transfers include ID fields and specific transfer operations

for accessing and assigning ID information that allows sequential and multiplexed

access to multiple instruments within a single Nexus interface or across multiple

Nexus instantiations.

In a typical mode of operation, a Nexus interface may consist of a lower-

bandwidth JTAG interface providing command and configuration inputs and a

higher-bandwidth AUX OUT port outputting debug data. Because the JTAG chain

1358.4 Nexus Use of 1149.7

may have greater latency than the AUX ports, this can in some cases introduce

communication complexity and reduced performance. IEEE 1149.7, in particular

in the T3 and T4 star configurations, can reduce this latency. The AUX ports, as

parallel data channels, can be configured in a related star output interface to

synchronize operations and signaling.

In summary, Nexus has adopted IEEE 1149.7 as a successor to the 1149.1

JTAG interface port that is an interface feature in the IEEE 5001-2003 Nexus

specification release. Because 1149.7 is backward compatible to 1149.1 JTAG,

it does not impact any legacy systems that use JTAG as a debug interface. Its value

for Nexus is in new features that make debug more efficient, including:

The ability to quickly access a specific TAP in a system with multiple TAPs, •฀

either on chip or in different devices. By implementing a system-level bypass,

the scan chain is drastically shorter, which directly improves debugging

performance.

The ability to control debug logic power consumption in an industry standard •฀

manner.

The introduction of star-4 (4-wire JTAG parallel interface to multiple TAPs) •฀

connectivity to complement the 1149.1 JAG serial TAP connections. A star

 configuration allows simpler test connection and simplified physical connections

that are compatible with Nexus data interfaces.

The 2-wire TAP option (star-2) that replaces the four-wire TAP to reduce pin •฀

cost.

1149.7 + AUX Port

Star-4 Configuration

AUX OUT

AUX IN

TCK

TMS

TDI

TDO

A
U

X
 IN

A
U

X
 O

U
T

T
D

O

T
D

I

T
M

S

T
C

K

A
U

X
 IN

A
U

X
 O

U
T

T
D

O

T
D

I

T
M

S

T
C

K

TCK

TMS

TDI

TDO

AUX IN

AUX OUT

TAP 1

T
A

P
 2

TAP 3

N

T
D

O

T
D

I

T
M

S

T
C

K

TCK

TMS

TDI

TDO

M

Fig. 8.19 IEEE 1149.7 star-4 and Nexus AUX port interfaces

137N. Stollon, On-Chip Instrumentation: Design and Debug for Systems on Chip,

DOI 10.1007/978-1-4419-7563-8_9, © Springer Science+Business Media, LLC 2011

P1687 (also informally but commonly referred to as IJTAG) is a set of emerging

standard definitions that extend the JTAG functionality to include a variety of

instruments. The scope of P1687 is not limited to debug purposes and as such it

seeks to be more inclusive in the functions it defines. Whereas other

 instrumentation-related standards efforts, such as the IEEE 1149.7 standard,

define a next-generation TAP and pin interface while maintaining backward compat-

ibility with the IEEE 1149.1, P1687 is an effort to standardize connection and

communication with on-chip instruments for the control and management of

embedded instrumentation within a semiconductor device while retaining the

1149.1 TAP interface.

P1687 efforts started in 2004, and the IEEE PAR (project authorization request)

was approved in 2005. The P1687 standard addresses descriptions of how to con-

nect both JTAG and non-JTAG on-chip instruments and to define (in addition to

BDSL) languages for communicating with the instruments via 1149.1 test data

registers. The languages that potentially are being selected to support P1687 are:

ICL – Instrument Connectivity Language, which adds information above BSDL

(including operation of the instrument).

PDL – Procedural Description Language, which adds reusable vectors.

TCL – Tool Command Language, for scripting debug applications built with the

TK toolkit.

IJTAG operations use the concept of a compliant 1149.1 overlap zone to define

compatibility and to ensure that IJTAG instruments do not violate any rules associ-

ated with JTAG operations.

As an overview of P1687, the comprehensive Fig. 9.1 shows the scope of instru-

ments that P1687 seeks to address. The charter for the P1687 development effort

makes clear their intent in preserving full compatibility with 1149.1 JTAG and

that all operations that require it use an 1149.1-compliant TAP and TAP control-

ler. In particular, the guidelines are as follows:

 1. 1149.1 does not require any compliance-enable mode to use or access the 1687

portion of the architecture.

 2. A device supporting 1687 can be intermingled with other (traditional 1149.1)

devices in a multiple 1149.1 board-test system.

Chapter 9

IEEE P1687 – IJTAG

138 9 IEEE P1687 – IJTAG

 3. No special functions, logic, or filters are required in front of the 1149.1 TAP

(external to the device or between the 1149.1 TAP and the TAP controller) for

1687 purposes.

 4. P1687 does not chance any of the public 1149.1 standard features, including

the 1149.1 TAP; the 1149.1 state machine, defined registers (the boundary scan

register; the bypass register; the ID code register; the instruction register; etc.)

or the public instructions (EXTEST, INTEST, SAMPLE, PRELOAD, IDCODE,

CLAMP, HIGHZ, etc.).

 5. BSDL is used as a preliminary checker for instruments included within the 1149.1

zone that may be accessed with declared public instructions or private instruc-

tions. If it can not be described in BSDL, it should not be in the 1149.1 zone.

 6. The architecture defines an overlap zone shared by 1149.1 and 1687 elements,

which is 1149.1 compliant and can be described using BSDL. BSDL compati-

bility ensured that connection schemes will be driven by 1149.1 requirements

and compliant with 1149.1 criteria.

 7. 1687 does not replace or modify interface or port elements defined in the 1149.1

standard and references the JTAG TAP, as the port, controller, and access point

to the 1687 gateway.

 8. Adding 1687 features and functions should not impact operation or use of

1149.1 complaint portions of the architecture.

 9. The 1149.1 overlap zone, which is a logic portion of containing both 1149.1 and

1687 hardware, places 1149.1-compatible instruments and/or 1149.1-defined

test data registers and/or hierarchy-support elements within parts of the 1149.1

overlap zone that can be described by BSDL.

Fig. 9.1 The P1687 universe. Source: ASSET InterTech, Inc. All rights reserved

1399.1 Overlap Zones and Gateway Elements

 10. Gateway elements are defined as instruments that enable hierarchical access

(access to other instruments that do not require a direct IRScan).

 11. User-defined instructions to the 1149.1 instruction set provide control to

both JTAG and 1687 gateway elements contained within the 1149.1 overlap

zone.

 12. The connectivity of instruments in the 1149.1 zone should be driven by 1149.1

methods and be compatible with 1149.1 operations.

 13. 1687 instruments that are not compatible with 1149.1 (i.e. cannot be described

by BSDL) should not be directly connected to the 1149.1 IR and should not be

in the 1149.1 overlap zone (but rather should be moved to a dedicated 1687

zone).

 14. 1687 instruments in the 1149.1 overlap zone should be the only non-1149.1

logic that can react to IR-Scan operations; all other 1687 instruments should be

accessed, configured, and controlled using only DR-Scan (shift-DR and the

update-DR) operations.

9.1 Overlap Zones and Gateway Elements

Two key concepts of P1687 are those of 1149.1 overlap zone and gateway elements

(or gateway instruments). Referring to Fig. 9.2, the 1149.1 overlap zone can be seen

with the 1149.1 portions shown on the left and the 1687-only portion on the right

of the line (the 1149.1 overlap zone) bisecting Fig. 9.2. Gateway elements that

Fig. 9.2 Overlap zone with gateway elements. Source: ASSET InterTech, Inc. All rights reserved

140 9 IEEE P1687 – IJTAG

straddle this zone are the only logic overlapping the two zones. The gateway element

supports hierarchical connection to other instruments that are described in the 1687

zone but also needs to be fully compatible with the 1149.1.

All instruments in the 1149.1 portion of the architecture, including the gateway

elements need to be compliant with the 1149.1 TAP FSM, Operations are enabled

by IR-Scans that load instructions in the 1149.1-IR and are active on the falling

edge of TCK in the update-IR state. One criteria that P1867 uses to determine if an

element belongs in the 1149.1 zone is if it be described by BSDL. If it can not, it

is not 11491 compatible.

The 1687 portion of the architecture begins at the gateway element or instru-

ment and in turn enables other instruments to be accessed (by creating a select

signal) and allows access to TDI-TDO data from the 1149.1 TAP to the target

instrument in the 1687 zone. 1687-zone instruments are accessed, controlled, and

configured only by DR-Scans (Shift-DR and Update-DR assertions) through a

gateway element/instrument.

Figure 9.3 shows a simple generic example of a gateway element, where the

test data register (TDR) receiving data through the TDI and outputting data

through the TDO is connected to the 1149.1-IR and through encoding of an

instruction operation can be used to pass hierarchical connections to 1687 instru-

ments. Note that whereas the 1149.1 side of the TDR is a TJAG serial data inter-

face, on its 1687 side it communicates as a parallel register.

TDRs are constructed of registered elements called select instrument bits (SIB);

an example is a TDR bit that includes a hierarchical interface port (HIP) that

enables a hierarchical connection. The hierarchical connection allows the SIB to be

Fig. 9.3 A basic gateway element using a test data register

1419.2 Classes of P1687 Instruments

used to bypass portions of a JTAG scan chain and otherwise control the flow of the

DTI/TDO path (Fig. 9.4).

9.2 Classes of P1687 Instruments

The taxonomy of P1687 defines support for four classes of instrument types labeled

A, B, C, and D.

Type-A instruments are defined as “self-contained instruments” that are enabled

by static signals and report status by latched-output signals. Type-A instruments are

not compatible to the 1149.1 interface. Typically, they don’t have interfaces for

serial paths (and therefore, cannot be used as a gateway). An example of a type-A

instrument is a simple memory BIST controller.

Type-A interfaces require a select instrument signal and is controlled by decoded

instruction bits from an instruction register or other status signals. The type-A

instrument interface typically used on a “self-contained” instruments such as logic

BISTs, memory BISTs, and other stand-alone-instruments. Communication is with

static signals that are applied on the 1149.1 update-DR and sampled by the 1149.1

capture-DR.

Fig. 9.4 A select instrument bit logic block. Source: ASSET InterTech, Inc. All rights reserved

142 9 IEEE P1687 – IJTAG

Type-B instruments are defined as “1149.1-compatible instruments” that

 operate identically to an 1149.1-defined TDR, have a serial-scan path, and may

support hierarchy (and may be used as a gateway with the caveat that the length

of the TDI-TDO scan path must be described in the BSDL of the 1149.1 overlap

zone as the default or reset length). An example of a type-B instrument is any

instrument that is directly managed by an 1149.1 state-machine signal and associ-

ated select capture shift update protocol. This includes most JTAG-controlled

trace blocks.

The type-B interface also requires the select instrument signal; it requires the test

clock to operate the serial shift path and should support the reset signal to keep the

instrument quiescent when not in use. The shift-enable signal and either capture-

enable or update-enable need to be supported; sometimes other 1149.1-SM-generated

signals are required, such as those generated in the run test/idle or pause-DR states,

and the shift-path TDI and TDO must be supported. Type-B instruments operate

simlar an 1149.1-defined TDR, having a register that has a input shift path that is

active when in shift-DR state; and the shifted output when the 1149.1-SM is in

capture-DR.

Type-C instruments are defined as “self-instructed instruments,” having dedicated

control and data registers that are responsive to select-IR states. The instrument may

have several serial paths, has one path to a local instruction register and may support

hierarchy. Type C instruments may be used as a gateway. An example of a type-C

instrument includes most processor debug blocks (including ETM and Nexus).

The type-C interface also requires the select-instrument signal, requires the test

clock to operate the selected serial shift path, and should support the reset signal to

keep the instrument quiescent when not in use; the shift-enable and update-enable

signals and optionally the capture-enable need to be supported; sometimes other

1149.1-SM-generated signals are required such as those generated in the run test/

idle or pause-DR states; and the serial shift-path TDI and TDO must be supported.

The type-C instrument is one that operates like a 1500-defined test access mecha-

nism (TAM) – a set of registers, one of which is active as a shift path that is active

when the 1149.1-SM is in shift-DR and is based on the instructions in a register

defined as an instruction register.

Type-D instruments are defined as type-B or type-C instruments whose control

interface supports at least one of the following: a signal or sequence not produced

by a compliant 1149.1 TAP or 1149.1 controller; a clock other than TCK; or a data

port other than the TDI-TDO serial scan path (and hence cannot be used as a gate-

way because it is not easily described in BSDL but it may still be used as a hierar-

chical instrument). An example of a type-D instrument is a 1500-wrapped core with

core boundary scan cells that require the transfer signal.

The type-D interface can be identical to the type-B or type-C but must have at

least one non-1149.1-compatibility issue, such as the instrument requiring:

A clock in addition to or other than test clock (the 1149.1 TCK) to operate some •฀

portion of the interface.

1439.3 IEEE 1500 Instruments

A data path other than the defined TDI-TDO serial shift path that synchronizes •฀

to the test clock (such as a parallel port that synchronizes to a test clock or a

parallel port that synchronizes to an alternate clock or a high-speed serial port

that synchronizes to a high-speed alternate clock).

A signal not provided from a compliant 1149.1 controller such as stall, bus •฀

request, data valid, and counter done).

A sequence not provided by a compliant 1149.1 controller.•฀

Type-D instruments are expected to be instruments such as a bus controller, bus

converter, or clock controller that can be configured and controlled through the

1687 architecture.

9.3 IEEE 1500 Instruments

P1687 applications occasionally refer to 1500-wrapped instruments, so we discuss

these briefly in the interest of comprehensiveness. See IEEE Standard 1500, the

IEEE standard for embedded core, for a more complete discussion.

The IEEE 1500 standard defines a mechanism for the test of cores within a

system on chip, including a wrapper hardware architecture. It also uses a core test

language (CTL) to facilitate communication between core designers and integra-

tors. IEEE 1500 defines standard components and general wrapper architecture,

including wrapper parallel input and output ports, core functional inputs and

Fig. 9.5 An example 1500-type instrument interface. Source: ASSET InterTech, Inc. All rights

reserved

144 9 IEEE P1687 – IJTAG

outputs, wrapper serial input, and serial output for test (see IEEE Standard 1500–

2004) (Fig. 9.5).

An example of a 1500 test access mechanism is one in which the connectivity

and protocol structure used to access an instrument gateway is enabled when one

or more of the instructions in the 1500-defined wrapper instruction register (WIR)

can enable one or more hierarchical interface ports (HIPs).

145N. Stollon, On-Chip Instrumentation: Design and Debug for Systems on Chip,

DOI 10.1007/978-1-4419-7563-8_10, © Springer Science+Business Media, LLC 2011

The Open Core Protocol-International Partnership (OCP-IP) is an industry-based

standard group defining vendor-neutral socket interfaces for interconnecting cores

and other on-chip components. The OCP-IP socket-based integration strategy has

been proven in a multitude of designs from leading chip vendors. OCP-IP’s strategic

focus is deeper than other socket-based interfaces, as it address a wide range of

related topics including system-level design and debug.

One concern of particular importance in OCP-IP is the support of Multicore and

Multiprocessor SoC architectures. The complexities of Multicore SoC are far more

than the sum or the parts, since issues can appear not just in the processors, but in their

interactions. This, in turn, drove a need for instrumentation types and standardized

interfaces and debug methods that would support these complex OCP socket based

systems. The OCP-IP chartered a debug working group in 2005 with the specific goals

of developing on-chip debug solutions that address the issues of debugging multicore

systems, in which different cores may have associated debug blocks with different

features, different signaling, different analysis requirements, and so on. The evolution

of instrumentation interfaces to various core have led to widely different signal inter-

faces. The instrumentation interfaces defined by the debug working group were

focused on providing a superset of signal interfaces that covered these generally

incompatible debug interfaces, as well as by the need to have debug operations inter-

acting with instrumentation for the OCP bus architecture itself.

The value of OCP-IP and debug work designed by a neutral party is that it is

designed to be vendor-neutral. The competitive nature of different core providers

have limited their collaboration in developing common instrumentation interfaces and

methods for analysis needed for complex SoCs. Although groups such as Nexus 5001

(Chap. 11) address a vendor-neutral debug interface, this interface is primarily

focused on the top-level interface (JTAG versus trace port), the protocol, and defined

registers and other issues not directly related to implementing instrumentation systems

at the core level.

The OCP- IP, recognizing that other groups were addressing the system-level

debug interface, focused primarily on the low-level signal interfaces that are

required to create a debug socket that would work with other sockets defined by

OCP-IP. A common set of standard instrumentation signals creates a basis for more

interactive instrumentation which can be applied to cores and architectures from

Chapter 10

OCP IP Debug Interfaces

146 10 OCP IP Debug Interfaces

different vendors. The advantage of common instrument interfaces becomes more

important with complex SoCs with diverse architectures and heterogeneous cores

and IP from different sources.

The OCP-IP has defined a set of architectures based on the idea of sockets. The

OCP socket defines data and instruction signal interfaces for a processor, which

allows a vendor-neutral bus fabric to be used for routing and bus connections (bus

sockets are also discussed in Chap. 6). The OCP debug socket defined by the OCP-IP

debug working group defines a complementary baseline set of debug functions that

could be implemented on chip to include global run control signals, as well as trace,

triggering, time-stamping, and other on-chip analysis functions. Increasingly, SoCs

incorporate asynchronous domains, diverse voltage islands, various power-saving

schemes, varying levels of embedded security, and so on; as shown in Fig. 10.1, all

of which add to the complexity of the debug solution.

The OCP debug socket defines both critical and optional sets of debug signals

that allow different IP blocks to communicate and coordinate their specific debug

requirements and features. The baseline signals are typically common to all the IP

blocks and therefore are known to be supported by a common JTAG chain or debug

port. Optional signals are those supporting functions specific to particular blocks

or asynchronous/secured/powered subsystems.

10.1 OCP Multicore Debug

A multicore debug interface must provide a set of signals for basic debug capabilities.

These basic signals can be divided into four groups:

 1. Debug control: Defines independent reset and debug-enable signals.

 2. JTAG interface: Defines signals for the JTAG protocol.

 3. Debugger interface: Defines a set of debug interfaces that address system-level

debug of run control and debugger tool interfaces.

 4. Cross-trigger interface: Defines signals for distribution of debug events and for

system-level control in a multicore SoC.

Fig. 10.1 (a) OCP sockets for various cores; (b) OCP debug interface sockets

14710.1 OCP Multicore Debug

A mechanism for the systemwide debug of a heterogeneous SoC uses a standardized

OCP bus interface for all IP blocks. The standardized bus interface or socket provides

a well-defined set of vendor-neutral signals that address interfaces between a core and

the bus fabric. Specific types of debug features targeted by the debug socket(s) are:

Signal-level observation (bus and system trace) and control (triggering).•฀

Consistent (multiple) processor software debugger and bus traffic observation •฀

interfaces.

Special debug features for security islands, voltage islands, gated clock islands, •฀

and so on.

New classes of debug errors (which are different from system errors).•฀

The debug concepts addressed can be applied to single-core debugging (without cross-

triggers, trace, or timestamping) and can be extended to more cores and channels of

debug for more complex systems. For multicore chips, there is an implicit debugging

requirement to observe activity of (at least) two cores in order to enable a comparative

analysis of operations and communications. We use a dual-channel synchronous

debug socket as a baseline model. Dual-channel debug is a minimum to enable com-

parison of instruction or other cause and events or other effects that occur in different

cores. A means of synchronous is needed to allow these instructions and events to be

displayed in correct temporal relations, One such means is by use of timestamping

during collection of trace information. The idea is similar to a dual-channel logic ana-

lyzer; when cores are not in debug mode, then any two IP blocks can be observed or

traced in temporal comparison with a common and extensible set of signal interfaces.

Debug Components and IP Interfaces. The basic signals for an OCP debug

interface socket may be added to all cores and IP blocks that support or need debug-

ging access. OCP debug port sockets may be implemented independently of data

sockets, including at different points in the OCP system from where a data port may

be implemented, as shown in Fig. 10.2.

Fig. 10.2 A multicore debug socket implementation. Source: OCP IP

148 10 OCP IP Debug Interfaces

The debug signals may be implemented as a separate socket or as additional

signals to the OCP data (master and/or slave) port (debug blocks are memory

mapped and controlled through the OCP data socket) or as an independent OCP

port configuration that can be controlled via JTAG or another external interface.

In general, although debug socket functions are passive and not intrusive to

system operations or performance, some debug-related operations (such as cross-

triggering) may interact with other parts of the system.

Debug Interface Definitions. The programming of registers that contain either

configuration or status information in the debug IP blocks may be JTAG-mapped

or memory-mapped. Either mode of control and access is acceptable, based on

specific system requirements as shown by example in Fig. 10.2.

There are two preferred methods of mapping the registers of the debug

IP-blocks such that all debug registers should be memory-mapped to fit into the

usual programmer’s models and allow for standard and extended testability

 concepts in manufacturing:

 (a) memory space mapping: The on-chip processor core can operate the debug

blocks.

 (b) JTAG-mapped register access: This is controlled by external software debuggers

over JTAG and can operate all debug IP blocks.

Comparative two-channel debugging with true time display of events is similar to

the logic analyzer philosophy. The time-aligned display of system bus traces of data

events from different initiators on different buses is the main source of information.

Setting triggers on any signal or combination of events from different cores, IP

blocks, and firing assertions is also basic to this idea. That is accomplished by the

cross-trigger debug hardware block.

The OCP debug interface follows the general concept of master-slave request-

response philosophy to provide straightforward mapping of existing signaling

schemes to corresponding instrument interfaces in various cores and IP blocks. In

general, there are two signal wrappers required on the hardware side:

1. Between the core and the debug interface to the OCP instrumentation intercon-

nects and

2. Between the OCP instrumentation interconnection and any existing instrumenta-

tion infrastructure, such as JTAG TAPs, trace buses and IO ports, etc.

In general, instrumentation infrastructure is not explicitly defined in the OCP architec-

ture specifications, and must be inferred from more general customization features in

the architecture such as user defined sideband signals and auxiliary socket interfaces.

The primary objective of adopting defined OCP signal features as a debug socket

to the SoC designers is a structural regularization to minimize errors in understanding

its functionality and to allow the development of automatic checkers for a well-

defined debug interface. Basic OCP debug interface have been prototyped as instances

of the OCP sideband signaling scheme. It is partitioned into basic signals and

extended optional signal groups as found in the OCP data socket definitions. The

basic signals assure run control for debuggers, and extended signals deal with special

14910.2 OCP Debug Features

situations like voltage islands, security islands, and power-down modes. Performance

metering and assertions are also part of the optional signals in the debug socket.

10.2 OCP Debug Features

Debugging in the real target system: No mechanical or electrical constraints.•฀

Full visibility: Cycle-accurate trace of multiprocessor, multibus SoCs.•฀

No limitation for low-pin-count, high-frequency devices.•฀

Complex triggering modes; to allow for example, negative triggering on an event •฀

not occurring in a timeframe expected to minimize amounts of collection of

trace data.

Support for code profiling and performance analysis through programmable •฀

event counters.

Portability: The OCP debug interface is adaptable to any processor or bus •฀

 architecture; software developers continue to use tools they are familiar with.

Low cost: No expensive hardware needed to access OCP debug systems.•฀

Proven implementation: The OCP debug system prototype was executed •฀

successfully.

Nonintrusive debugging of embedded multiprocessor systems.•฀

Target system runs at full speed in the application environment.•฀

Access to internal buses.•฀

Real-time, cycle-accurate tracing.•฀

Trace capabilities for:•฀

Processors: Process ID, program, data, status, watch point. –

Buses: Data, status, watch point. –

Signals: Status. –

Complex trigger system including cross-target triggers.•฀

Translates raw data into meaningful messages.•฀

Compresses trace messages to save memory.•฀

Trace memory can be configured as a circular buffer to collect trace messages •฀

either continuously or before and/or after a watch point occurs.

Implementation can be partitioned for easy adaptation to new cores.•฀

Instrument interfaces are not limited to a particular physical interface between chip •฀

and debug host. JTAG is a reference interface, due to proven use in instrumentation,

however other available interfaces (I2C, UARTS, etc) may be used as appropriate.

Security: The OCP debug system can be locked by default and can only be •฀

unlocked by system hardware.

As for the OCP data socket, there is a superset for the different bus interfaces and

data structures and we seek to define an OCP debug socket that can be a superset

of the debug solutions. Most concepts discussed are based on common denomina-

tors for the past and present debug concepts. This enables OCP compliant creation

of standardized IP blocks for debug situations and purposes, including:

150 10 OCP IP Debug Interfaces

Signal-level observation (bus and system trace) and control (triggering). –

Consistent (multiple) processor software debugger and bus traffic observation –

interfaces (GUI).

Special debug features for security islands, voltage islands, gated clock islands, –

and so on.

New classes of debug errors (different from system errors) analysis. –

The debug concepts addressed can be applied to single-core debugging (without

cross-triggers, trace, or timestamping), and it can be extended to more cores and

channels of debug for more complex systems. For multicore chips, there is an

implicit debugging requirement to observe activity of (at least) two cores out of

many in order to enable comparative analysis of operations and communications.

As a default, OCP debug interfaces should support multiple cores. We use a dual-

channel synchronous debug socket as an example. The intention is similar to that

of a dual-channel logic analyzer, and when cores are not in debug mode, then any

two IP blocks can be observed or traced in temporal comparison with a common

and extensible set of signal interfaces. We avoid defining a separate debug bus to

keep a simple modular IP structure on the chip.

The purpose to debug in a chip can be very different. At least three variants need

to be satisfied by a standard:

Pure software debugging concentrates on minimum additions to proven •฀

hardware still providing a rich debug environment for development of

software.

Pure hardware debugging concentrates on the simplest additions in hardware to •฀

expose chip internal signals on the pins (JTAG) to be used to prove correct

 functionality and correct design.

System debugging concentrates on software debug and hardware observation.•฀

10.3 Three Views of Debugging

As a process, debug can differ between companies, projects, and points in the

design cycle.

10.3.1 Pure Software Debugging

Pure software debugging concentrates on minimal additions for instrumentation to

proven hardware and IP while still providing a rich debug environment for software.

The debugger connects to the processor that programs all debug hardware over the

system bus. Target system hardware is fully utilized for debugging. The assumption is

that all hardware is correct. Special instructions and signals to let the processor prevail

in locked situations are desirable and included in the basic OCP debug interface sig-

nals. This style of debugging is well documented on several chip architectures.

Systems are built by connecting several proven chips together; therefore debugging

15110.3 Three Views of Debugging

with interchip cross-trigger is a second special requirement. To simplify a dual-trace

memory, one trace buffer can be used in connection with a “synchronous run mode”

triggered from a debug event or tracepoint signal. For short trace durations (depending

on the same of the memory) this will make the ordering of events in the trace buffer in

correct temporal relation possible without timestamping.

10.3.2 Pure Hardware Debugging

Pure hardware debugging concentrates on the simplest additions in hardware to

expose chip internal signals on the pins (JTAG or other) or in registers to be used

to prove correct internal functionality or design parameters in mission-critical

applications and warranty cases. Most important for this concept is an independent

clock from outside that is reliable even if the system clock is stopped. Also, trig-

gering precise to one system-clock cycle, or local-clock cycle, is essential to let this

debug hardware react exactly like assertions in a simulation. Often, signals inside

IP blocks are observed. No software debuggers need to be involved in the display

of this information, but we believe there are analysis advantages to including the

display of such extra information.

10.3.3 System-on-Chip Debugging

System-on-chip debugging concentrates on software tracing and hardware observa-

tion requirements common in initial SoCs. Observation of the on-chip hardware

interaction is essential to complete software application and verification.

Comparative debugging of any two cores is equally important for multicore sys-

tems. The debug-system is independent of the target hardware and captures both

“pre-reset” and “post-crash” events as well as bus traffic bottlenecks. Debugging

must proceed even if the major components of the system are in power-down or a

core is in sleep mode. The debug hardware may be shut down during normal chip

operation for security or power improvement. In some systems, security can be

enforced by making debug hardware inoperable in production chips by burning

fuses or otherwise permanently disabling the instrument logic. Such a concept of

debugging is best suited to support ASIC designs. To simplify a dual-trace memory,

one physical buffer can be used that holds two compressed trace streams with origin

tags and timestamps.

Debug features need to support the system-level verification and analysis of

OCP-based systems. System level models of Instrumentation blocks should be

available for EDA analysis for JTAG and DFT, BIST, and other debug structures,

even when these are implemented as physical (post-synthesis gate-level inser-

tion) macros. From a system point of view, debug blocks should support the

same level of model abstractions used in other areas of a design, in order to sup-

port it with miscellaneous simulators and software debuggers and to simplify

hardware analysis.

152 10 OCP IP Debug Interfaces

10.4 Debug Components and IP Interfaces

Figure 10.3 shows a simple system in which debug IP blocks that are socket inter-

faces to various are integrated into a interconnect structure that is part of a bus

fabric. All debug wiring goes through the system bus and is contacted through the

OCP debug port. OCP debug ports may be implemented at points in the OCP sys-

tem where a data port may not exist.

The programming of registers that contain either configuration or status informa-

tion in the debug IP blocks may be JTAG-mapped or memory-mapped. Either or both

modes of control and access are acceptable, based on specific system requirements.

In the memory-mapped case, the master port of the main debug core provides the

programming of the debug block registers that have an address in the main memory

space. The master OCP data port is not part of the OCP debug port. This permits one

core to be accessed as the main debug agent of the system. The debugger sends instruc-

tions via JTAG to this core agent and the core then accomplishes all actions in coordi-

nating other cores through the main system bus. The core may be given special priority

access within the system to unlock stuck interfaces and locked transactions and may

initiate “Abort” and “Force” operations as part of the debug control interface.

In the more general system-independent JTAG-mapped register variant, the

JTAG is part of the OCP debug interface. The debugger sends instructions to the

cores over JTAG and the debug registers are part of a JTAG-TAP controller.

Optional “Abort” and “Force” signals are also JTAG controlled.

For simplicity, discussion of the debug ports is limited to 1149.1 JTAG interfaces.

The restriction is intended to simplify the port interfaces addressed. The intent is

not to limit implementation to 1149.1 JTAG. Other bus interfaces, including those

discussed in other chapters can provide similar access to the instrumentation.

10.5 Debug Socket Definitions

This section covers the basic signals and definitions for an OCP debug interface

socket. An optional OCP port, known as the debug interface port, is added to all

cores and IP blocks that support or need debugging access. The OCP debug port

Fig. 10.3 Multicore synchronous debug implémentation

15310.5 Debug Socket Definitions

may be implemented as an addition to the OCP data (master and/or slave) port

(in cases where debug blocks are memory-mapped, they may be controlled through

the OCP data socket) or as an independent OCP port configuration.

The four basic groups of signals for a debug interface are:

Debug control.•฀

JTAG.•฀

Debugger interface.•฀

Cross-triggering interface.•฀

There are additional (extended) groups which can be optionally added to an instru-

mentation socket based on specific debug and analysis requirements. The optional

extended debug signals in this interface are defined for optional debug features such

as timestamps and performance analysis and to simplify definition of special

“debugging-aware” functionality in designs that have security domains or power

management with voltage islands.

Basic Socket-Level Debug Interfaces. Processor run control is typically imple-

mented via the JTAG interface using debug mode signals in an IP. JTAG inter-

faces are supported in current OCP specifications with JTAG and related real

time signals (Tables 10.1 and 10.2) for trace decoded at (one or more) JTAG

TAPs (test access points).

A JTAG-only debug interface addresses many instrumentation operations that

have non-real-time requirements by accessing debug-related registers on different

cores. Even in the case of “memory-mapped” instrument blocks, the JTAG TAP and

processor can typically have joint access and control of debug memory and registers

for run control and monitoring operations. JTAG is also sufficient to configure and

synchronize an OCP system into a trigger and trace modes. As a lower-speed serial

Table 10.2 OCP debug JTAG interface socket

JTAG Interfaces Description Comment

Tck, Trst (optional) JTAG TCK, JTAG reset JTAG input

TMS JTAG TMS JTAG input

TDI TDI from previous node in JTAG loop JTAG input

TDO TDO to next node in JTAG loop JTAG output

RTCK (optional) Return clock signal for adaptive clocking JTAG output

Source: OCP IP

Table 10.1 OCP debug clock, reset interface socket

Debug interfaces Description Comment

Debug_reset_n Debug clock source for

instrumentation operation and

optional debug system reset

Defined to be separate from

system clock, reset so that

debug can occur during

system reset operations

Debug_en General enable for debug modes System input

Source: OCP IP

154 10 OCP IP Debug Interfaces

interface, however, JTAG limits data-intensive debug operations such as trace, which

is required in higher-performance test and debug interface efforts.

Higher-performance debug architectures may include independent reset and

independent clock signals for the debug system synchronized to the debugger inter-

face. An independent clock allows more flexible support of asynchronous or clock

gated systems. An independent reset allows analysis of the target during system

reset sequences. Additional reset and clock signals for timestamping counters may

be common or independent from the debug control interface.

The use of JTAG debug interfaces is supported via the OCP 2.0 and higher

specifications, and it is assumed that any JTAG signals are decoded at the core-level

JTAG TAP. A JTAG-only debug interface does limit the ability to interface debug

components on different cores and to set up and synchronize an OCP system into a

debug mode.

Ideally, debug control signals are independent of the target system and have

to duplicate many basic controls. The basic debug signals include an indepen-

dent reset and independent clock signals for the debug system synchronized to

the debugger interface. The reset and clock signals for timestamping counters

are also part of this debug control interface. Debug clock, Instrument reset, and

timestamp reset may also in many circumstances be common with external

system clock or reset signals.

Even in the case of “memory-mapped” debug blocks, the processor control

 typically goes over this JTAG port.

10.5.1 Core Debug Socket Interfaces

These are connections to a processor or other OCP core to establish a debug con-

nection. Core debug signals are generally specific to processor instrument inter-

faces and may be wrapped over existing debug signals for a core, except signals

NoSResp and ForceResp, which may be mapped as extensions of OCP SResp

signals. Because this socket is implemented for each bus master, different cores

may have different control signals depending on the underlying functions that are

supported by a debug block: for that core.

Table 10.3 defines a set of debug interfaces that address system-level debug of

run control and debugger tool interfaces. Debugger access can therefore be consis-

tently controlled via the debug interface signals. Not all signals may be required

for all cores or systems:

Special signals that support unlocking of stuck situations and forcing completion •฀

of locked actions (NoSResp, ForceResp, ForceAbort, ForceAbortAck) are here.

Debugger accesses are qualified through MReqDebug.•฀

The processor acknowledges debug state entry through MSuspend.•฀

An OCP target can be configured to be sensitive to MSuspend.•฀

15510.5 Debug Socket Definitions

A debug component is informed that the debugger is connected through the

DebugCon signal. A subsystem is informed that its TAP has been enabled by the

application security software through the TAPenable signal. Depending on Debug-

Mode[1:0], the debugger can initiate OCP transactions qualified as MReqSecure.

(operations only enabled to qualified users as shown in Table 10.10).

Gated clock domains and voltage domains are used for power management in

many ICs. A concern in system debug is to ensure that debug and trace operations

are not interrupted or distorted by clocks or power to a connected system being

removed at inappropriate times. OCP 3.0 defines a power management state

machine for controlling connection and disconnection of IP blocks in preparation

Table 10.3 OCP debug interface socket

Minimum OCP debug signals set

Signal name Signal definition Comment

MReqDebug Qualifies an OCP request

initiated by the debugger.

MReqDebug may be a

processor-native feature

If MReqDebug is derived from

processor debug acknowledge, the

OCP interface shall ensure there

are no outstanding application

transactions when the debug state

is acknowledged.

Msuspend The processor acknowledges the

OCP initiator agent that is

entering the debug state

The OCP initiator debug state

acknowledge is routed to the OCP

target. A debugger-aware peripheral

may freeze a local HW process

when the host enters the debug state

DebugSerror Out-of-band error Originated by debugger

DebugCon The debugger is connected Enables the on-chip debug hardware

to communicate with debug host or

agents

NoSResp The target is not responding If request has failed (ie. Sresp =

FAIL), an indicates that the current

transaction will not complete

ForceResp The debugger has programmed

the subsystem to force a data-

independent response

No side effect to other threads

ForceAbort The debugger has programmed the

subsystem to solve the hang

scenario

OCP interconnect handle abort without

debugger intervention even in the

case when the application SW has

not enabled a time-out. The key

requirement is to complete the

transaction to allow the processor to

enter the debug-state

ForceAbortAck Acknowledge sent to subsystem

(or debugger?)

Requires a Mabort input support in the

OCP fabric to propagate the abort

originated by the debugger to the

initiator and OCP interconnect

Source: OCP IP

156 10 OCP IP Debug Interfaces

for power management, that allows main sections (as example, data transfer

operations) and alternate sections (including debug operations) of a socket to be

managed separately so that debug control signals in in case of gated clock

domains and voltage domains are not interrupted if any IP block on the bus

switches off clocks or voltages. By proper definition of the idling operations,

such that a power down sequence does not occur when there is an active debug or

trace operation in process, a blocking of the debug system shall not occur if one

core or IP block goes into sleep mode.

Core (Master) Debug Socket Interfaces. OCP debug programming models

should allow user-defined debug configurations based on the debug scenario and

allow bidirectional debugger access to be consistently controlled via these debug

interface signals.

Signals defined in the OCP-IP debug environment include debugger-initiated

debug mode request (read/write) and core acknowledge signals to the debugger to

communicate that a core is in the debug state. Because debug operations may inter-

act with “normal” system operations, debug interfaces should also support unlock-

ing of stuck-at situations and forcing completion of locked actions (force, abort,

suspend) for a core in debug status. OCP peripheral interfaces would also need to

be “debug aware” to recognize and synchronize with processor cores or other bus

masters that enter debug mode.

Peripheral (Slave) Debug Socket interfaces. A peripheral debug interface

should ensure that, for debugger OCP transactions, any debugger-initiated

debug mode operation reads peripheral information transparently while pre-

serving the system state. Depending on debug scenarios and the relationship

between the local hardware process and the software process, peripherals

should monitor the debug state and may need to take several actions to synchro-

nize with the debug processor and to allow processing of OCP transactions

initiated by the debugger to be handled differently than those initiated by the

application software:

 1. Freeze local hardware processes when the controlling OCP master is in the

debug state. This may be accomplished by a parameter passed into a system

debug register via JTAG or under software control, or it may be implemented as

part of the debug hardware.

 2. Stop peripheral or other local hardware processes when a processor enters the

debug state. This can get complicated, because the peripheral may be shared or

accessed by several OCP masters in the architecture.

 3. Comprehend specific updating to ongoing local hardware processes when an

OCP master enters a debug state; for example, disabling application-driven

peripheral operations (such as flag clear, post-increment, and state machine

updates).

To accommodate the diverse debug scenarios, a peripheral debug programming

model may implement two or more debug control parameters in a system debug

register as:

15710.5 Debug Socket Definitions

FREE, which allows one/the program/etc. to keep the local hardware process –

running free and to make it sensitive to the debugger input.

SOFT, which allows waiting for a clean boundary before stopping the local –

hardware process when extra latency is acceptable.

10.5.2 Cross-Triggering Socket Interfaces

Cross-triggering, and the associated system-level control, are important for debug

of complex SoCs. Cross-triggering allows global and distributed event recognition

and multicore triggering to identify and isolate events occurring throughout the

system.

Information in multicore SoCs is complex and distributed such that global event

cross-triggering and system-level control for multicore debug and triggering are

often needed to identify and isolate events occurring throughout the system. Event

recognition and triggering are widely used in conjunction with trace to capture

information on events and operations in the SoC. Conditions are monitored and

compared to generate real-time triggers in a cross-trigger manager. These triggers

in turn can be used to control event actions such as configuration, breakpoints, and

trace collection. More complex implementations can be programmed to trigger on

specific values or sequences such as address regions and data read or write cycle

types.

The cross-trigger block may be distributed to all IP connections to the OCP

bus. If wiring is in the OCP fabric, then some pre-processing or wrappers (con-

dition/action nodes) at each OCP interface can be used to simplify the cross-

trigger information. Wrappers can be programmed via the JTAG debugger (or

can be configured by a processor). Any block can send a trigger (edge or level)

and receive a trigger. The debugger or processor can configure specific trigger

lines for each IP to send a condition signal and from which trigger line it can

receive a trigger/action.

Table 10.4 shows the OCP debug trigger interface socket. Each trigger line con-

sists of two unidirectional signals and one (optional) enable signal. A minimum

dual-channel concept consists of two independent trigger lines, but there is no

upper limit on the number of cross-triggers realized in a design. The trigger line in,

out or enable signals may be the result of a logic combination of several signals for

a given core. Trigger lines may be connected directly to drive a bidirectional pin on

the package and enable cross-triggering to continue between several chips. External

(off-chip) triggers will be supported with pulse-width logic to interface external IO

to the cross-trigger manager. Each debug channel needs one trigger line. The trigger

logic grows linear with the number of cores or IP blocks that are debugged. No

cross-trigger matrix is assumed necessary.

Event recognition and triggering is widely used in conjunction with trace to

capture information on on-chip events and data in the SoC. Triggering conditions

are monitored and compared to generate real-time triggers in a cross-trigger manager

158 10 OCP IP Debug Interfaces

as shown in Fig. 10.4, where a cross-trigger with two “trigger lines” are looped

back through the trigger manager.

Depending on the system configuration, signals may need to be preprocessed to

allow conditions from different parts of the system to be synchronized or to support

cross-triggering from external devices or external signals. Complex trigger imple-

mentations can be programmed to trigger on specific values or sequences, such as

sequential combinations of rgw bus address region and data read or write cycle-type

accesses.

Examples of triggering signals include debug or interrupt request conditions,

although they can include any on-chip signal. Combinations of these triggers in

Fig. 10.4 Cross-triggering in the OCP bus

Table 10.4 OCP debug trigger interface socket

Cross-trigger

interfaces Description Comment

Trigger_in_

condition[m:0]

Trigger input from other

OCP subsystems

X-trigger input shall support either

high to low edge detection or level

detection; during power-down

of subsystem, trigger_in will not

contribute to system cross-trigger

action

Trigger_out_Action

[n:0]

Trigger output to other

OCP subsystems

X-trigger output of either active

low pulse or level supports trace

control or processor debug or

interrupt request

Trigger_out_enable

[n:0]

Optional trigger output enable

to other OCP subsystems

Cross-trigger output

Ext_trig _clk Optional Ext clock used for

synchronizing trigger

External (off-chip or out-of-system)

input

Ext_condition[n:0] Optional Ext condition (e.g.

debug status, tracepoint)

External (off-chip or out-of-system)

input

Ext _action[n:0] Optional Ext action (e.g.

debug request)

External (off-chip or out-of-system)

output

Source: OCP IP

15910.5 Debug Socket Definitions

turn can be used to control on-chip actions such as core configuration changes,

setting breakpoints or interrupts, initiating trace collection, or other user-defined

requests.

The cross-trigger operation may be distributed among different IP connections to

improve performance and support clock conversion and synchronization. Trigger-in

(condition) and trigger-out (action) pre/postprocessing wrappers at each OCP inter-

face point may be made synchronously configurable using signals in Table 10.5 to

extend the cross-triggering abilities.

The triggering socket defines conditions, actions, and enables for on-chip trigger

actions. Trigger operations may include processor-specific operations such as

breakpoints and tracepoints, bus-specific operations such as trace sampling, and

system-level interactions such as cross-triggers that may be applied to multiple

cores, buses, and so on. There may be multiple instances of triggers (of varying

complexity). The size of the condition and the actions are independent. Eeither

selected trigger condition or trigged action may be either a single or a pattern of

different lengths. Optional enables allow for selective condition monitoring (such

as don’t care situations) and global output actions:

Some general guidelines for OCP cross-triggering implementation are:

Cross-triggering configuration shall be handled at the subsystem level.•฀

The subsystem can be programmed to:•฀

Drive an OCP debug trigger-out line. –

Be sensitive to an OCP debug trigger-in line. –

The OCP interconnect shall take care of the debug event triggers routing:•฀

Point to point [1 trigger-out and trigger-in]. –

Broadcast [1 x trigger-out, n trigger-in]. –

Sharing [– n trigger-out, 1 trigger-in].

The OCP debug interconnect shall mimic a “tri-state” bus behavior through •฀

distributed combinatorial logic.

An external device shall be able to contribute to cross-triggering.•฀

The OCP cross-triggering configuration assumes that:

Trigger-out (action) and Trigger-in (condition) routing for smaller implementa-•฀

tions can be handled as sideband signals by the OCP interconnect.

Trigger events may be routed to trace components (Table •฀ 10.6).

Trigger events shall generate a user-defined request. This is typically classified as •฀

either a debug request or an interrupt request. These differ for different cores.

Synchronous Description Comment

SyncRun Synchronous run Input

SyncRunAck Synchronous run acknowledge Output

Source: OCP IP

Table 10.5 OCP debug run

control synchronization

socket

160 10 OCP IP Debug Interfaces

Trace Description Comment

TraceTrigger[x] OCP system event generates a trace trigger

Source: OCP IP

Table 10.6 OCP debug trace

interface socket

The OCP cross-triggering shall be operational for any platform subsystem •฀

frequency operating point supported by the cross-triggering configuration via

level or pulse triggers.

The OCP cross-triggering supports independent clock domains for trigger-out •฀

and trigger-in pulse conversion. Level triggering is recommended for widely

varying clock domains.

The OCP cross-triggering supports external trigger inputs from the IO pins. •฀

Triggers outputs can be routing to IO. Level or pulse triggers are supported with

trigger pulse width modifiable to be compatible with device I/O performance.

A subsystem in power-down or where debug has not been enabled shall be •฀

configured not to contribute to cross-triggering.

System observation using trace buffers and triggering on simultaneous events

systemwide, including cross-triggering between chips, is a concept with limitations

in time resolution that translate into distance limitations as described in the first

approach. To overcome limitations in space we can give up precision in the feedback

of the result as described in the second approach. To mimic a logic analyzer trigger,

we need to have delay-equalized star-configuration to the trigger controller that will

behave the same as in the second approach. Designers must decide which approach

to take to create a consistent debug system Tables 10.4–10.10.

In cycle-exact trigger and feedback, it is crucial that collection of all trigger

conditions complete synchronously to the highest system clock cycle. The advan-

tage is that sequencing of trigger conditions that are one cycle apart is possible even

at the trigger sources. The difficulty is to close timing in such a design because the

trigger path becomes the biggest bottleneck on the critical timing path.

The trigger logic in the OCP debug socket is based on a distributed model of a

tri-state wire. The trigger events are collected with a chain of distributed AND-gates

and the result is sent back over a second wire in a half-loop arrangement. The trigger

controller connects to “the last OCP debug socket” at the end of the AND-gates and

loops the result back to the second wire.

Cycle-exact triggering accepts the feedback signal on the second wire to arrive

in a later cycle to help with timing closure. This means that detection of a trigger

equation has to occur over one cycle, but propagation of the trigger’s action, for

example to stop a trace buffer, can extend over several cycles. A delayed trigger

action that is used to make event decisions requires that consecutive events that are

several cycles apart to insure that the actions are fully propagated before the next

event trigger occurs.

Aligning debug information in the display to be cycle-exact uses a local time-

stamp during collection of trace information. Stopping the trace buffer a few cycles

after a trigger condition will still allow for exact time alignment in the display.

16110.5 Debug Socket Definitions

The trick is to equalize the arrival time at the trigger controller from any trigger

source by inserting delay buffers before entering the AND-gate trigger line. It is

then possible to trigger on events that occurred at the same time. Sequencing of

triggers that occurred one cycle apart is possible inside the trigger controller by

using multiple arrival-time-equalized trigger lines. As a logic-analyzercan trigger

on the acquired signals but does not supply trigger information back to the device

under test, the OCP debug system with a relaxed feedback concept does not demand

to have delay-equalized feedback connections back to the trigger sources. For trig-

gers coming from all corners of a widely distributed on- chip trigger network or for

systems where cross-triggering is required between chips, this provides a timing

tolerant solution. It scales well to a system of any size and can have extra built-in

arrival-delay of “several clock cycles” to accommodate triggers coming over external

pins. The proposed OCP debug cross-trigger concept can be used for this configuration.

The fixed built-in target trigger arrival delay is independent of the highest clock in

one chip or in multiple chips.

Exact triggering in a star configuration is similar to a logic analyzer; the

cycle-accurate trigger timing can be designed by delay-equalized trigger lines

going to the trigger controller in a star configuration. This requires a separate

trigger line from each possible trigger source. Any sequence of trigger events

can then be realized as cycle-accurate inside the trigger controller. However, the

feedback to the trigger sources, or to the assertion blocks, allowing them to

perform cycle-accurate trigger sequencing remains an issue. Stopping pf trace

may still occur a few clock cycles later. This star topology concept can be made

cycle-accurate in any system at the expense of individual trigger lines with

delay equalization. Clearly, this concept does not scale with large systems

because wires grow proportionally to sources and not proportionally to trigger

decisions. Star configuration is not part of this proposal because the arrival time

equalization with the proposed distributed AND-gate trigger line will work

equally well.

10.5.3 OCP Synchronized Run Control

Synchronized run control allows clock-synchronized program execution of two

cores that would usually run asynchronously. This makes it possible to time-align

the instruction streams to study interdependence.

When we debug several heterogeneous cores with different clock speeds, a single

step needs a new definition. Stepping is no longer a single core operation, but also a

problem of how to stop cores synchronously to events that are caused by a single core

(for instance on a breakpoint hit). The debugger reaction depends on the core interac-

tion scheme; for example, cores that are virtualized using SMP should be stopped

synchronously by hardware within a few clock cycles. This is not a problem, because

SMP cores are driven by the same clock domain. In isolated/loosely coupled multicore

environments, the core’s stop-timing is usually less critical, thus achieving the required

162 10 OCP IP Debug Interfaces

synchronization latency through separately issued TAP commands. Hardware syn-

chronization would be advantageous in case of higher latency requirements.

Hardly any multicore architecture on the market implements Single-

Stepping by means of fetching and executing exactly one instruction on every

core. Many heterogeneous architectures have cross-core Single-Stepping hard-

ware implementation:

 1. The system is halted. The debugger reads/has the full state of all cores/

memories.

 2. Run about 100 to 1,000 cycles and halt synchronously.

Trace IP and all data accesses during this timeframe. (There is no problem with

MCDS, even with a small trace memory.)

 3. With this information, the debugger can exactly reconstruct all states and data

values between the start and endpoint.

This allows the cores to virtually swap single-step operations with regards to each

other in this time window. The timing relationship between the cores is well main-

tained. There may be only a slight impact at the start and end of the period.

10.5.4 OCP Traffic-Monitoring and Trace Interfaces

Traffic monitoring and trace are often critical debug features to be able to analyze

on-chip behavior. System monitoring and trace can be performed at signals on the

data socket or in the bus fabric itself.

Trace requirements are application-dependent, requiring signals and monitoring

bus traffic events that may be extracted from the system cross-trigger information or

provided by a processor or other on-chip IP. Trace should be noninvasive (should not

affect OCP system behavior) and should be secure (should not allow unauthorized

accesses into the instrumentation system). Useful features for bus monitoring and

trace include:

 1. Continuous (or at least long-duration) system monitoring.

 2. Filtering based on OCP operations (e.g. initiator, thread, address range, DMA

logical channel).

 3. Trace capture of both OCP transactions and non-OCP qualifying events.

 4. Transaction filtering and alignment of requests and responses.

 5. Elastic trace bandwidth at OCP system traffic peaks.

 6. Support for SW instrumentation interleaving with the trace flow.

 7. Support interleaving several trace flows from different trace points or channels.

 8. Support multithreaded data observation, including system trace data reads from

the JTAG or from application SW. Because trace is data-intensive, high-

performance interfaces may be required.

16310.5 Debug Socket Definitions

Trace triggers provide trace enable and control for OCP bus and logic trace and

as a performance and analysis interface to specific internal event. In the case of

real-time tracing to outside pins, specific trigger signals are included in the trace

and/or performance monitoring (Tables 10.6 and 10.7) interfaces of the OCP

debug interface socket. The trace trigger is extracted from the information on the

cross-trigger lines.

Trace-packet interfaces are defined in several protocols, including Nexus (IEEE

5001) and MIPI. Because there are other standards bodies addressing these issues

of higher-performance debug interfaces, OCP debug leaves this level of interface

open to the user’s preference.

Traffic Monitoring and Trace – General Configuration:

The OCP system monitoring debug instrument allows monitoring of the “OCP

system” bus traffic:

Focus on specific OCP transactions. –

User-defined transaction filtering. –

Initiator, thread, address range, DMA logical channel. –

An emulator or debugger host to configures the OCP system monitoring component

from the external [JTAG] interface through the OCP debug bus.

The OCP system monitoring instrumentation allows:

Alignment of the OCP transaction requests and responses. –

Capture of the additional OCP transaction qualifiers. –

Export of the captured traffic data through the OCP debug to a trace export –

component.

Support of continuous system monitoring. –

Preservation of the OCP system bus behavior. –

Have options for securing the systems from unauthorized accesses. –

Table 10.7 OCP debug performance-monitoring interface socket

Performance

monitoring Description Comment

MConnID Identifies the initiator.

Routed to target

Determines active initiator for monitoring

MChannelID Identifies the DMA

channel initiator. Routed

to target

Determines active channel for monitoring

MReqWatch[x] Qualifies an OCP request

PMSampling Periodic performance

metric sampling

Initiates a periodic transfer of the performance

metrics computed by a system interconnect

instrument to atrace export component.

Operations assume that the Periodic sampling

strobe is generated within the OCP instrument

Source: OCP IP

164 10 OCP IP Debug Interfaces

The trace export interface may contain a variety of different features:

Implement an elastic buffer. –

Optionally build trace packets for different (MIPI/Nexus) protocols. –

Support a trace export bandwidth compatible with OCP system traffic peaks. –

Allow SW instrumentation interleaving. –

The trace buffer instrumentation may support several modes of operation:

Provide flexibility to disable capture around a trigger. –

Allow system trace data reads: –

From the JTAG-OCP component.•฀

From the application SW.•฀

Allow interleaving several trace flows. –

Allow multithreaded data observation. –

10.5.5 Performance Monitoring

Performance monitoring enables observation of selected threads, initiators, and

targets to identify data traffic and measure data bandwidth.

OCP performance monitoring requirements vary widely and are by nature

application-specific. Some genral signal examples are given in Table 10.7, for

sample based performance monitoring. Following is a general set of requirements

for a performance monitor that supports many common analysis requirements:

An OCP debug component allows monitoring of the OCP system bus •฀

bandwidth.

An emulator shall be able to configure the OCP performance monitoring •฀

component from the external [JTAG] interface through the OCP debug bus.

OCP initiator transactions monitored for different OCP targets.•฀

Monitor task windows [start and stop triggers].•฀

Monitor system event latency between two selected signals (using timestamp or •฀

other counter logic).

The OCP performance monitoring instrumentation many be used in several

ways:

Count within the [start, stop] window defined by triggers:•฀

Effective cycles at the OCP target level. –

Waiting cycles at the OCP initiator level [latency, arbitration, shared link, etc.]. –

Free cycles at the OCP target level. –

Support continuous performance monitoring [statistics].•฀

Export the computed performance statistics data through the OCP debug to the •฀

trace export component.

Preserve the OCP system bus behavior.•฀

16510.5 Debug Socket Definitions

The trace export instrumentation may include feature to:

Implement an elastic buffer.•฀

Optionally build trace packets for different (MIPI/Nexus) protocols.•฀

Allow SW instrumentation interleaving.•฀

10.5.6 System Timestamping

For distributed systems, a timestamp provides the means of temporally correlating

different events that may be occurring in different systems or domains. There are

many timestamp implementations – the simplest is a gated clock and reset that can

be used to run timestamp counters at different blocks, which is shown in Table 10.8.

This interfaces assumes that other parameters (timestamp length, mode, etc.) are

hard coded or pre-defined elsewhere.

Synchronous start of local timestamp counters is required for accurate distrib-

uted local timestamping. The synchronized start of all local timestamp counters is

important for the correct display of debug events. The frustration on debugging a

timing problems that turns out to be an artifact of trace synchronization cannot be

overstated. Two basic rules should be followed where possible:

 (a) If operations start on reset being released, use an asynchronous reset, where the

releasing edge is synchronized to the slowest clock or at times when clocks

coincide with their rising edge, so that it arrives at the same time to all registers,

regardless of the local clocks speeds. If all local clocks are time-aligned and

iso-synchronous of each other, then this will ensure that all counters and other

start logic are aligned. Obviously this requires knowledge of the local clock

frequencies and their skew at the time of reset-release.

 (b) It is always best if one balanced clock goes to all counters at the same time and

is supplied only while tracing is active. Ideally, this one clock issynchronous to

or multiple of all local clocks. Otherwise, it requires a fair amount of over-

clocking to resolve phase relationships between the asynchronous clocks.

Stamp clock and stamp reset signals are both part of the basic OCP debug interface,

but should be implemented with care to provide synchronous capture of debug data.

Table 10.8 OCP debug timestamp interface socket

Timestamp interfaces Description Comment

Ts_enable Timestamp start and stop May be driven by trigger

logic

ts_clk Timestamp clock (gated version

of clk) for global on-chip

timestamping

Timestamp clocks do not

necessarily need to be the

system clk

ts_reset Timestamp reset Should be different from

system reset

Source: OCP IP

166 10 OCP IP Debug Interfaces

10.5.7 Power Management Monitoring

Power management by reducing or turning off the clock and switching off the power

supply to certain IP blocks is increasingly required in many systems. It is important

that debug operations not get locked or interrupted while dealing with power-aware

IP blocks transitioning their power state during a debug session. Power management

Debug signals (Table 10.9) monitor the power state of each socket in the system.

Since power states may be different for primary and auxiliary logic in a given block,

the OCP Sresp signal is extended to include no power and no clock output states for

cases where the debug interface or other portions of the target are in power down or

not receiving a clock.

OCP-IP in its 3.0 bus socket architecture release has defined four state FSM-

based power-down sequences for each master. Because each master may be power-

ing down and up on its own schedule, signaling from a given core for system debug

operations can be very dynamic. The GFSM states allow auxiliary sockets (of

which debug is one) to be powered down in a quasi-independent means from the

main socket interface. Therefore it is typically possible to have a debug socket

remain active even if the core to which it is attached is powered down.

The OCP platform power management module generates a trigger when:

Switching off a domain.•฀

Waking up a domain.•฀

Switching frequency.•฀

Switching operating voltage.•฀

The OCP power management monitoring may:

Support continuous power management monitoring.•฀

Preserve the OCP system bus behavior.•฀

Not require SW instrumentation.•฀

Table 10.9 OCP debug power monitoring interface socket

Power management Description Comment

Sresp[2:0] Additional error response codes

signal a target is not powered

or not clocked

NULL, DVA, FAIL,

ERR – new codes

NOCLK, NOPWR

PWRDomainStatus Indicates to target agent if power

domain is active

PWr status signals

contribute to error

response generation

CLKDomainStatus Indicates to target agent if clock

domain is active

Clk status signals

contribute to error

response generation

Source: OCP IP

16710.5 Debug Socket Definitions

10.5.8 Security Debug Interface

Security concepts require enabling debug of sensitive locations only during autho-

rized chip access and disabling it otherwise. Debug signals, with their access to a

wide range of system data, need to be secured. OCP security signaling is here

extended to the debug socket so debug IP blocks can implement a general lock-

down unless there is qualified access. Because the specific security methods vary

widely, the interface methods are generic, with Table 10.10 providing a OCP

debug security interface socket that allows general control and status for secure

mode operations.

OCP instrumentation framework concepts are extensible to multi-channel event

synchronous debug and can be applied to a range of situations, from single-core

debug to large numbers of core and even subsystems. The general instrumentation

architecture and sockets can be extended to more debug channels by duplicating

hardware.

Table 10.10 OCP debug security interface socket

Security Description Comment

MReqSecure Qualifies an OCP request as a

secure transaction

The application security setup

[HW and SW] may allow

qualifying debugger access

as secure

DebugMode[1:0] Debug operating mode Debug can be disabled, restricted

to public OCP transactions,

or allowed for both public

and secure transactions

TraceMode[1:0] Trace operating mode Trace can be disabled, restricted

to public OCP transactions,

or allowed for both public and

secure transactions

TAPenable Subsystem test access port Enabled by application security

software

Source: OCP IP

169N. Stollon, On-Chip Instrumentation: Design and Debug for Systems on Chip,

DOI 10.1007/978-1-4419-7563-8_11, © Springer Science+Business Media, LLC 2011

Nexus 5001 is a debug standards initiative based on the IEEE ISTO 5001 debug

specification that addresses the diverse challenges for embedded-processor and

digital-system debug interfaces. To address applications (data communication, auto-

motive powertrain, computer peripherals, wireless systems, and other control appli-

cations) with constantly increasing complexities requires more comprehensive

debug features and will benefit from more standardized interfaces. As advances in

semiconductor and system design continue, these types of embedded applications

use higher-performance embedded processors. Nexus 5001 was defined in 1999, and

its development and proliferation are managed by the Nexus 5001 Forum™, which

evolved as a successor to the Global Embedded Processor Debug Interface Standard

Consortium (GEPDISC), which was formed to develop an embedded-processor

debug interface standard for embedded control applications. The latest version of the

Nexus standard was released in 2003, with ongoing work aimed at a new release in

2011. Nexus architectures have been used extensively in U.S. automotive applica-

tions, and more chips have been produced incorporating Nexus ports than any other

nonproprietary debug-specific interface. The Nexus 5001 Forum is an industry-

based standards group that manages the IEEE 5001 (Nexus) debug specification.

Efficient use of these embedded processors requires software and hardware

development tools that can easily access critical processor functionality. The lack

of a unifying standard among the various embedded processors on the market has

impeded this accessibility, preventing tool vendors from creating standard tools

with consistent functionality across a broad range of processors. Nexus 5001

addresses this issue by providing a consistent set of auxiliary pin functions,

message-based transfer protocols, and standard development features as shown in

Fig. 11.1 to facilitate debug implement. The standard itself is open and processor-

independent, but the implementations are user-specific. The full release of the

Nexus 5001 specification is freely available for download from the Nexus Web site

at http://www.nexus5001.org/.

The Nexus architecture defines high-performance data interface, protocol, and

register infrastructures that can be used to implement a variety of trace and control

instrumentation (Fig. 11.2). The Nexus infrastructure includes features that support

multicore development and multifeatured trace and configuration/control.

Chapter 11

Nexus IEEE 5001

http://www.nexus5001.org/

170 11 Nexus IEEE 5001

Nexus architecture is based on a packet-based messaging scheme, which supports

debugging complex multicore systems. Control of the multicore debug processes

based on a transaction protocol (TCODE) that allows data to be sent in packets,

using a packet header to provide information on the source and assumed destination

of the data on-chip components as well as information on the subsequent data pack-

ets containing trace or other information. This simplifies interleaving of multiple

trace sources and concurrent communication with multiple Nexus instruments. The

Nexus specification defines a standard set of TCODEs for common identification

and trace operations; the TCODE protocol is also extensible to user-defined debug

commands (see Table 11.4).

Nexus also defines a standard set of debug-related on-chip registers, which facili-

tate the identification, communications, and interfacing to different cores and sub-

systems for multicore control and debug operations. A standard register set allows

simpler integration and control of the instrumentation with embedded debuggers and

related tools.

AUX In Port

AUX Out Port

JTAG Port

AUX In

FSM

AUX Out

FSM

JTAG TAP

FSM

TCODE & Message

Control/ Formatting

Nexus

Registers

JTAG (IR/DR)

Registers

Debug Control

Debug Data Out

Debug Data In

Fig. 11.1 Nexus internal architecture

IEEE 5001 Nexus

AUX Out Port

Processor

Core(s)

Nexus Instrumentation

and controllers

• Debug Registers

• Embedded Trace

•฀Breakpoint Triggers

Run/Trace

Control
Trace

Memory

 IEEE 1149

JTAG Port

•฀Data

•฀Execution

•฀Instructions

•฀Profiling

Debug &

Analysis Tools

Other Existing Debug IP

with Nexus Wrappers

Probe

Fig. 11.2 Nexus interfaces

17111.1 Nexus Implementation Classes

The Nexus 5001 Forum is engaged in ongoing collaboration with other industry

debug-related efforts, including OCP-IP and MIPI, and is in the process of extending

the IEEE 5001 specification to support emerging debug interfaces such as SERDES

and two-wire JTAG (1149.7) ports to address diverse debug requirements.

11.1 Nexus Implementation Classes

Applications have varying debug requirements, but most debug can be grouped into

performing certain classes of tasks. Nexus defines debugger functionality and com-

patibility over four classes of operation. Device instrumentation and tools are

defined as being class 1– to 4–compliant if they support all of the features defined

for that class. Class 1 starts with basic debug functions over a JTAG port, with

higher classes involving more instrument access and system complexity using the

AUX port to progressively increase debug capabilities, such as adding more com-

plex trace and emulation analysis of processor operations.

Features in the Nexus implementation classes can be customized so that designers

can select features of importance and not be burdened with more advanced features or

those that are not applicable or efficient to their debug needs. This allows a variety of

debug features to be supported, while keeping the number and types of different Nexus

implementations that need to be tracked and supported manageable. All Nexus classes

by definition include all of the features in (i.e. are a superset of) the prior class(es). The

key features of the different implementation classes are summarized in the Table 11.1.

The most basic, class 1, provides features similar to standard JTAG implementa-

tion. Class 1 provides run-control debug features that are common with most

 processor implementations, including core identification, single stepping,

Table 11.1 Nexus 5001 implementation classes

Nexus Services Features

Class 1 Static debugging Single step

Basic run control Breakpoints Set breakpoints and watchpoints

Two breakpoints minimum

Device identification

Static memory and I/O access

Class 2 Watchpoints All class 1 features

Instruction trace Ownership trace Monitor process ownership in real

time

Watchpoints Program trace real-time program tracing

Class 3 Data trace All class 2 features

Data trace Real-time read/write Access memory and I/O in real time

Read/write access Transfers Real-time data tracing

Class 4 Memory substitution All class 3 features

Memory and port

substitution

Port replacement Start traces on watchpoint occurrence

Program execution from Nexus port

Source: Nexus 5001 Forum. All rights reserved

172 11 Nexus IEEE 5001

breakpoints and watchpoints, and static memory and I/O access. Class 1 has certain

minimum requirements, such as the need for at least two hardware breakpoints.

Debugging halts the chip while commands are executed.

Class 2 contains more complex debugging features with real-time monitoring. It also

adds instruction tracing and more sophisticated watchpoints. Class 2 enables processor

execution trace-related features including real-time monitoring of process ownership

and instruction tracing, along with complex watchpoints and branch tracking , flagging

indirect branches, and eliminating redundant addressing information. The class 2 pro-

gram trace feature allows indirect branches to be flagged, making it easier to differenti-

ate indirect branches from exception-handling operations. Additional messages are

included for improved branch tracking. The format of the trace data allows for the

elimination of redundant addressing information, which increases throughput.

Class 3 allows data-tracing services and includes the ability to read and write

memory and I/O while the processor is running. Class 3 supports data tracing

and memory and I/O read and write while the processor is running. This makes

the system design more complex, but significantly improves the debugging

capabilities.

Finally, class 4 delivers features found in many in-circuit emulators (ICEs).

Class 4 allows direct user control of a processor to execute programs from the

Nexus port (memory substitution), plus additional features for remapping memory

and I/O ports and starting trace on watchpoint occurrence. This is especially useful

when simulating peripherals. It can also be used to provide other applications run-

ning on the testing system with access to shared memory. Class 4 features include

starting memory substitution on watchpoint occurrence, monitoring data reads

while the processor is running in real time, port replacement and port sharing, and

the ability to transmit data values for acquisition.

11.2 Nexus Message Architecture

Nexus messages consist of a 6-bit TCODE that contains Nexus-specific instruc-

tions followed by a variable number of packets (the number of packets for each

TCODE is defined in the standard). Messages can be sync or nonsync. Sync mes-

sages include the full address and nonsync only include relative address changes.

Each message also contains a SRC field (source ID) to help development tools

identify the source of a particular Nexus message in a multiprocessing SoC sharing

a single debug port. Packet types supported include the following:

Variable: A variable-size packet means the message must contain the packet but

the packet’s size may vary from a minimum of 1 bit. An example is an address field

that may be full or partial for a given message. When messages are transferred via

the AUX, variable-size packets must end on a port boundary.

Vendor-fixed: These are used to allow Nexus packets in to match characteristics

of a vendor’s device. An example is a SRC field that identifies the source ID;

17311.2 Nexus Message Architecture

vendor-fixed packets may be of zero length (not implemented if not required, as in

the case of a Nexus system with only one on-chip instrument, where the message

source can be assumed).

Vendor-variable: These are used to allow Nexus packets to match characteristics

of a vendor’s device. Vendor-variable packets may be of zero length (i.e. not imple-

mented). An example of a vendor-variable field is message timestamp. When mes-

sages are transferred via the AUX, vendor-variable packets must end on a port

boundary. Variable-size packets may have different lengths in messages of the same

type, so MSE signaling protocols are used to determine the end of packet boundar-

ies. Typically vendor-variable packets are target-processor-dependent and have a

variable size determined by the processor vendor. These packets are normally

reserved for the end of a public message where the vendor may implement addi-

tional fields.

All Nexus TCODES follow a common message format. An example of a Nexus

message, program trace with indirect branch shown in Table 11.2, consists of the

TCODE = 4 followed by a message-specific number of packets of differing types.

Complete descriptions of all the message types and their options are given in the

Nexus specification.

TCODES can be either public (defined in the Nexus standard) or user-defined.

Public TCODES defined in the Nexus standard (IEEE-ISTO 5001-2003) include a

range of trace options as well as other Nexus operations. Only a subset of the total

available messages must be implemented in a given system. The minimum required

messages for an implementation are given in Table 11.3.

Table 11.2 Example packet fields in trace message

Program trace – indirect branch

message Direction: from target

Minimum

packet

size (bits)

Packet

name Packet type Description

0 TSTAMP Vendor-

variable

Number of cycles message was held in the buffer

or the full timestamp value. For targets that do

not implement timestamping (or use pins for

timestamping), this field may be omitted. Refer to

4.11.2 – Timestamping via AUX

1 U-ADDR Variable The unique portion of the branch target address for a

taken indirect branch or exception

1 I-CNT Variable Number of instruction units executed since the last

taken branch

0 B-TYPE Vendor-fixed Branch type. For targets that do not need to differentiate

branch types, this packet can be omitted

0 SRC Vendor-fixed Client that is source of message. For targets with only a

single client, this packet can be omitted

6 TCODE Fixed Value = 4

Source: Nexus 5001 Forum. All rights reserved

174 11 Nexus IEEE 5001

11.2.1 Nexus TCODEs

Nexus TCODEs can be classified into six different types, which are described in detail

in the Nexus specification. Table 11.4 provides a summary of the packet fields that are

used for different TCODES. Different TCODE classes include the following:

 1. Status indicates status information messages from the target. This group includes

register reads and core-specific or watchpoint/breakpoint status, error messages,

and so on (TCODEs 0–2, 8, 15).

 2. General register read/write is a group of commands that allow memory-mapped

reads and writes between tools and Nexus recommended registers (NRR) or

other registers in a Nexus-defined memory map. Among other general applica-

tions, these messages can be used for run control and configuring watchpoint/

breakpoint operations (TCODEs 16–19).

 3. Program trace is a range of trace options that rely on Nexus-defined branch trace

schemas, which limit instruction trace to discontinuities (branches, conditional

jumps, interrupts, etc.) and their relative distance from the last trace. By mapping

these values to an assembled program, debuggers can interpolate branch loca-

tions in the program flow and reconstruct (interbranch) instruction flow. Nexus

also defines periodic sync fields and trace messages to identify inconsistencies

and align trace, which is useful in correlating execution over multiple cores

(TCODEs 3, 4, 9–12, 27–33).

Program trace:•฀

Direct branch. –

Indirect branch. –

Indirect branch with history. –

Synchronization. –

Resource full. –

Table 11.3 Minimum required public messages

Message type

Compliance

class Minimum required public messages

Device ID 2, 3, 4 Device ID

Ownership trace 2, 3, 4 Ownership trace

Program trace 2, 3, 4 Direct branch, indirect branch, synchronization1, error

Data trace 3, 4 Data write, data write message with sync, error

Read/write access 3, 4 (1) For embedded processors that implement the

recommended registers: Target Ready, Read/Write

Register, Read/Write Response

(2) For embedded processors that implement device-

specific registers: read target, write target, read next

target data, write next target data, target response

Watchpoint 2, 3, 4 Watchpoint message

Memory substitution 4 Read tool, read next tool data, tool response

Source: Nexus 5001 Forum. All rights reserved

17511.2 Nexus Message Architecture

T
a
b

le
 1

1
.4

N

ex
u
s

m
es

sa
g
es

 a
n
d
 p

ar
am

et
er

s

N
ex

u
s

co
m

m
an

d

ty
p
e

N
ex

u
s

m
es

sa
g
e

n
am

e

T
C

O
D

E

[5
:0

]
D

ir
ec

ti
o
n

T
S

T
A

M
P

S
T

A
T

U
S

S
R

C
ID

IN
S

T
A

D
D

R
T

Y
P

E
B

T
M

D
A

T
A

S
ta

tu
s

D
eb

u
g
 s

ta
tu

s
0

F
ro

m

ta
rg

et

y
D

S
 r

eg
y

D
ev

ic
e

ID
1

F
ro

m

ta
rg

et

D
ID

O
w

n
er

sh
ip

 t
ra

ce
2

F
ro

m

ta
rg

et

y
y

T
A

S
K

 I
D

B
as

ic
 p

ro
g
ra

m

tr
ac

e

P
ro

g
ra

m
 t

ra
ce

 –

d
ir

ec
t

b
ra

n
ch

3
F

ro
m

ta
rg

et

y
y

I_
C

N
T

P
ro

g
ra

m
 t

ra
ce

 –

in
d
ir

ec
t

b
ra

n
ch

4
F

ro
m

ta
rg

et

y
y

I_
C

N
T

U
-A

R
R

R
B

-T
Y

P
E

D
at

a

ex
p
o
rt

D
at

a
tr

ac
e

–
 d

at
a

w
ri

te

5
F

ro
m

ta
rg

et

Y
D

S
Z

y
D

C
O

R
R

U
-A

D
D

R
M

A
P

D
A

T
A

D
at

a
tr

ac
e

–
 d

at
a

re
ad

6
F

ro
m

ta
rg

et

Y
D

S
Z

y
D

C
O

R
R

U
-A

D
D

R
M

A
P

D
A

T
A

D
at

a
ac

q
u
is

it
io

n
7

F
ro

m

ta
rg

et

y
ID

T
A

G
D

O
D

A
T

A

E
rr

o
r

8
F

ro
m

ta
rg

et

y
y

E
C

O
D

E

S
y
n
ch

o
n
iz

ed
P

ro
g
ra

m
 t

ra
ce

 –

sy
n
ch

ro
n
iz

e

9
F

ro
m

ta
rg

et

y
y

D
C

O
N

T
I_

C
N

T
P

C

P
ro

g
ra

m
 t

ra
ce

P
ro

g
ra

m
 t

ra
ce

 –

co
rr

ec
ti

o
n

1
0

F
ro

m

ta
rg

et

y
y

A
D

JU
S

T

P
ro

g
ra

m
 t

ra
ce

 –

d
ir

ec
t

b
ra

n
ch

w
it

h
 s

y
n
c

1
1

F
ro

m

ta
rg

et

y
y

D
C

O
N

T
I_

C
N

T
F

-A
D

D
R

C
A

N
C

E
L

P
ro

g
ra

m
 t

ra
ce

 –

in
d
ir

ec
t

b
ra

n
ch

w
it

h
 s

y
n
c

1
2

F
ro

m

ta
rg

et

y
y

D
C

O
N

T
I_

C
N

T
F

-A
D

D
R

B
-T

Y
P

E
C

A
N

C
E

L

(c
o
n
ti

n
u
ed

)

176 11 Nexus IEEE 5001

T
a
b

le
 1

1
.4

(c

o
n
ti

n
u
ed

)

N
ex

u
s

co
m

m
an

d

ty
p
e

N
ex

u
s

m
es

sa
g
e

n
am

e

T
C

O
D

E

[5
:0

]
D

ir
ec

ti
o
n

T
S

T
A

M
P

S
T

A
T

U
S

S
R

C
ID

IN
S

T
A

D
D

R
T

Y
P

E
B

T
M

D
A

T
A

D
at

a
tr

ac
e

D
at

a
tr

ac
e

–
 d

at
a

w
ri

te
 w

/s
y
n
c

1
3

F
ro

m

ta
rg

et

y
D

S
Z

y
D

C
O

R
R

F
-A

D
D

R
M

A
P

C
A

N
C

E
L

D
A

T
A

D
at

a
tr

ac
e

–
 d

at
a

re
ad

 w
/s

y
n
c

1
4

F
ro

m

ta
rg

et

y
D

S
Z

y
D

C
O

R
R

F
-A

D
D

R
M

A
P

C
A

N
C

E
L

D
A

T
A

W
at

ch
p
o
in

t

ac
ce

ss

W
at

ch
p
o
in

t
m

at
ch

1
5

F
ro

m

ta
rg

et

y
W

P
H

IT
y

R
eg

is
te

r
ac

ce
ss

N
R

R
 a

cc
es

s
–
 t

ar
g
et

re
ad

y

1
6

B
o
th

 w
ay

s
N

O
 F

IE
L

D
S

N
R

R
 a

cc
es

s
–
 r

ea
d

re
g
is

te
r

1
7

F
ro

m
 t

o
o
l

O
P

C
O

D
E

N
R

R
 a

cc
es

s
–
 w

ri
te

re
g
is

te
r

1
8

F
ro

m
 t

o
o
l

O
P

C
O

D
E

R
E

G
 V

A
L

N
R

R
 a

cc
es

s
–
 r

ea
d
/

w
ri

te
 r

es
p
o
n
se

1
9

B
o
th

 w
ay

s
R

E
G

 V
A

L

P
o
rt

 re
p
la

ce
m

en
t

P
o
rt

 r
ep

la
ce

m
en

t
–

o
u
tp

u
t

2
0

F
ro

m

ta
rg

et

D
IR

O
U

T
 D

A
T

A

P
o
rt

 r
ep

la
ce

m
en

t
–

in
p
u
t

2
1

F
ro

m
 t

o
o
l

IN
 D

A
T

A

M
em

o
ry

 a
cc

es
s

M
em

o
ry

 a
cc

es
s

–

re
ad

 t
ar

g
et

/t
o
o
l

2
2

B
o
th

 w
ay

s
D

S
Z

A
D

D
R

E
S

S
M

A
P

M
em

o
ry

 a
cc

es
s

–

w
ri

te
 t

ar
g
et

/t
o
o
l

2
3

B
o
th

 w
ay

s
D

S
Z

A
D

D
R

E
S

S
M

A
P

D
A

T
A

M
em

o
ry

 a
cc

es
s

–
 r

d

n
ex

t
ta

rg
et

/t
o
o
l

d
at

a

2
4

B
o
th

 w
ay

s
N

O
 F

IE
L

D
S

M
em

o
ry

 a
cc

es
s

–

W
R

 n
ex

t
ta

rg
et

/

to
o
l

d
at

a

2
5

B
o
th

 w
ay

s
D

A
T

A

M
em

o
rt

y
 a

cc
es

s

–
 t

ar
g
et

/t
o
o
l

re
sp

o
n
se

2
6

B
o
th

 w
ay

s
S

T
D

A
T

A

17711.2 Nexus Message Architecture
N

ex
u
s

co
m

m
an

d

ty
p
e

N
ex

u
s

m
es

sa
g
e

n
am

e

T
C

O
D

E

[5
:0

]
D

ir
ec

ti
o
n

T
S

T
A

M
P

S
T

A
T

U
S

S
R

C
ID

IN
S

T
A

D
D

R
T

Y
P

E
B

T
M

D
A

T
A

A
d
v
an

ce
d
 t

ra
ce

P
ro

g
ra

m
 t

ra
ce

 –

re
so

u
rc

e
fu

ll

2
7

F
ro

m

ta
rg

et

y
y

R
C

O
D

E
R

D
A

T
A

P
ro

g
ra

m
 t

ra
ce

 –

in
d
ir

ec
t

b
ra

n
ch

h
is

to
ry

2
8

F
ro

m

ta
rg

et

y
y

I_
C

N
T

U
-A

D
D

R
B

-T
Y

P
E

H
IS

T

P
ro

g
ra

m
 t

ra
ce

 –

in
d
ir

ec
t

b
ra

n
ch

h
is

to
ry

 w
iS

y
n
c

2
9

F
ro

m

ta
rg

et

y
y

D
C

O
N

T
I_

C
N

T
F

-A
D

D
R

B
-T

Y
P

E
C

A
N

C
E

L
H

IS
T

P
ro

g
ra

m
 t

ra
ce

 –

re
p
ea

t
b
ra

n
ch

2
0

F
ro

m

ta
rg

et

y
y

B
-C

N
T

P
ro

g
ra

m
 t

ra
ce

 –

re
p
ea

t
in

st
r

3
1

F
ro

m

ta
rg

et

y
y

I_
C

N
T

R
-C

N
T

H
IS

T

P
ro

g
ra

m
 t

ra
ce

 –

re
p
ea

t
in

st
ru

ct
io

n

w
it

h
 s

y
n
c

3
2

F
ro

m

ta
rg

et

y
y

I_
C

N
T

F
-A

D
D

R
R

-C
N

T
H

IS
T

P
ro

g
ra

m
 t

ra
ce

 –

co
rr

el
at

io
n

3
3

F
ro

m

ta
rg

et

y
E

V
C

O
D

E
Y

I_
C

N
T

C
D

A
T

A

U
n
d
fi

n
ed

 b
y
 s

p
ec

R
es

er
v
ed

3
4
–
5
5

B
o
th

 w
ay

s

V
en

d
o
r-

d
ef

in
ed

m
es

sa
g
e

5
6
–
6
2

B
o
th

 w
ay

s

V
en

d
o
r-

d
ef

in
ed

ex
te

n
si

o
n
 m

sg

6
3

B
o
th

 w
ay

s

178 11 Nexus IEEE 5001

Repeat branch. –

Repeat instruction. –

Correlation. –

 4. Data trace is a trace of data values associated with a defined address range for

efficiency. Nexus also supports data-acquisition instructions for streaming export

of larger amounts of system information; such as data from on-chip buffers or

FIFOs (TCODEs 5, 6, 7, 13, 14).

Data trace:•฀

Data write. –

Data read. –

 5. Memory access is a nonintrusive peek and poke operation of internal memory

blocks; it can also be used for directly driving from a Nexus memory or location

(TCODEs 22–6).

 6. Port replacement allows Nexus pins to emulate other I/O functions of compara-

ble speed (TCODEs 20, 21).

User-defined TCODEs can be defined by silicon or IP developers to add additional

debug features not covered by the standard, similarly to user-defined instruction

features in JTAG.

11.2.2 Nexus Registers

Nexus also defines a standard set of debug-related on-chip registers, which facilitate

the identification and interface to different cores and sub-systems and to multicore

control and debug operations. A standard register set allows simpler integration and

control of the instrumentations with embedded debuggers and related tools.

Nexus defines a number of recommended registers, which facilitate the integra-

tion of debug support to different cores. Of particular interest for multicore designs,

each core or element on a device may be assigned a different ID in a device identi-

fication (DID) register to allow discrimination and selection of control and debug

operations associated with a given block or subsystem.

Nexus defines and assigns register maps to 63 recommended registers, which are

accessed by TCODE operations. Different instances of the same register can be

associated with different cores by a source field value that can be transmitted as part

of each output message. NRRs may contain recommended fields, specifying con-

trol or status information, and may include the following:

1. Device identification registers are IDs for discrimination and selection of different

sub-systems (at the SoC level) or at the chips (for multichip debug scenarios).

This register provides device configuration information similar to what is

 provided for 1149.1 JTAG DID access, which is a required JTAG instruction.

2. Client-select register (CSC) contains information on the originating source (i.e.

processor or core) for trace and other exported messages.

17911.2 Nexus Message Architecture

 3. Control register (DC) contains debug parameter and configuration information.

 4. Status register (DS) contains debug status information.

 5. User base address register (UBA) defines the base address for relative or trun-

cated addressing modes.

 6. Watchpoint trigger registers (WT) provide watchpoint or breakpoint status.

 7. Data trace attribute registers (DTSA/DTEA/DTC) contain information on recent

trace operations and program information needed to reconstruct the trace.

 8. Breakpoint/watchpoint control registers (BWC) contain watchpoint and break-

point configuration information.

 9. Breakpoint/watchpoint address/data registers (BWA/BWD) define address and/

or data for assigning watchpoint and breakpoint locations.

 10. Read/write access registers (RWA/RWD/RWCS) contain the information used

for memory-access operations.

Optionally, the two BWC registers may be combined with the two data trace attri-

bute registers so that a total of two registers may be simultaneously active; that is,

two BWC registers, two data trace attribute registers, or one BWC register and one

data trace attribute register.

Most processor debug environments can be adapted to be Nexus-compliant by

adding a Nexus wrapper layer around the existing debug blocks. The value of

Nexus for processor debug is that it allows a consistent environment for different

processor types to be integrated using a consistent methodology.

Nexus defines a method of trace compression that takes advantage of the proper-

ties relating to execution of instructions being pre-defined during the programming;

unlike many other types of trace operation, it is largely deterministic. With the excep-

tions of branching and other instructions that are conditional on data, the sequence of

instructions through a processor is pre-defined during software development.

To make efficient use of memory resources during execution trace, Nexus uses a

processor instruction compression technique called branch trace messaging, which

reduces the trace memory required by focusing, capturing only a full trace on instruc-

tion flow discontinuities (typically branches). Because branches and conditional

operations typically constitute a small percentage of an overall instruction execution,

this can greatly expand the trace RAM utilization. There are other conditions from

which trace information can be tightly integrated with debugger software tool chains

to allow correlate analysis of the source code. Nexus also supports relative addressing

to reduce the number of required address bits transmitted for normal messages. Certain

initialization and exception cases (defined within the standard) will cause normal trace

messages to be “upgraded” to sync-type messages in which the entire address is trans-

mitted. Execution trace can be compressed and later expanded for integration with

code debugger tools. This feature allows debug blocks storing instruction trace to

leverage assumptions in instruction flow in order to conserve trace bandwidth and

increase the number of instructions that can be stored in trace buffers or exported in

real time.

For data trace operations, other than the use of relative address transmission (as

in program trace), there is typically no such determinism that can be leveraged for

the data itself to extend the use of trace resources, and as such data trace may

180 11 Nexus IEEE 5001

require either larger trace memories for a given trace size or alternative methods of

storing trace information.

Even with compression, the time needed for trace export can be significant when

relying only on JTAG TDO to transmit data. This problem increases proportionally

for multicore designs, where each processor and other block has its own debug

information. Improving trace interface throughput is a primary reason for imple-

menting a Nexus AUX port.

11.3 NEXUS Interfaces

Nexus provides a standardized interface for on-silicon instrumentation and debug

tools providing a range of expanded features for system debug. Most notable are

higher-performance auxiliary interfaces to support real-time and data-transfer-

intensive operations such as trace.

At its simplest level, Nexus is compatible with JTAG but recognizes that the

limitations in JTAG bandwidth are not realistic for the debug requirements for

complex or multicore environments, and provides options for both input and output

auxiliary parallel interfaces for high-speed data transfers. The Nexus specification

defines a vendor-neutral IO signal interface and communication protocol that sup-

ports parallel debug and instrumentation support. The Nexus interface defines a

small set of control signals and AUX data ports (shown in Table 11.5) that are

implemented in conjunction with JTAG or as a self-contained port. The additional

data pins provided by the AUX interfaces are scalable for matching the debug

requirement and allow much higher read/write throughput between the target and

debug and analysis tools compared to JTAG Figs. 11.1 and 11.2.

11.3.1 Nexus JTAG Access

Nexus messages may be read from or written via the IEEE 1149.1 JTAG port.

Message writes are generated by an external IEEE 1149.1 controller and are input

into an input public message register (IPMR). The IPMR receives its TCODEs and

packets via multiple passes through the SELECT-DR_SCAN.

The IEEE 1149.1 protocol does not permit public messages to be initiated from

an on-chip interface. Therefore, an output public message register (OPMR) is avail-

able for transmission of messages from the embedded target microcontroller to an

external IEEE 1149.1 controller.

The JTAG port is used in Nexus-specific ways to implement various classes of

services such as reading and writing Nexus registers and messages, and allowing

Nexus trace output to be embedded into JTAG messages. Output public message

reads are messages that are generated by the target processor and are read from the

OPMR. These unsolicited messages may contain variable-length packets of data.

Two methods may be used for determining when an output public message is

18111.3 NEXUS Interfaces

Table 11.5 AUX interface signals

AUX IO Description of auxiliary pins

MCKO Message Clock out (MCKO) is a free-running output clock to tools for

timing MDO and MSEO pin functions. MCKO can be independent of the

embedded processor’s system clock, or an embedded processor’s clock

pin may be used as a functional equivalent for MCKO

MDO[M:0] Message Data Out (MDO[M:0]) are output pin(s) used for sending messages

such as trace export and other read operations, memory substitution

accesses, etc. Depending upon output bandwidth requirements, one, two,

four, eight, or more pins may be implemented

MSEO[1:0] Message Start/End Out (MSEO [1:0]) are output pins that indicate when a

message on the MDO pins has started, when a variable-length packet has

ended, and when the message has ended. Only one MSEO pin is required,

but two pins provide for more efficient transfers

EVTO Event Out (EVTO) is an optional output pin to development tools indicating

exact timing for a single breakpoint status indication. Upon a breakpoint

occurrence of the programmed breakpoint source, EVTO is asserted for a

minimum of one clock period of MCKO

MCKI Message Clocking (MCKI) is a free-running input clock from development

tools for timing MDI and MSEI pin functions. MCKI can be independent

of the embedded processor’s system clock.

MDI[N:0] Message Data In (MDI[N:0]) are inputs used for downloading configuration

data, writing to on-chip registers or memory, etc Depending upon input

bandwidth requirements, multiple pins may be implemented

MSEI[1:0] Message Start/End In (MSEI [1:0]) are inputs that indicate when a message

on the MDI pins has started, when a variable-length packet has ended, and

when the message has ended. Only one MSEI pin is required, but two pin

implementations provide more efficient transfers

EVTI Event In (EVTI) is an input pin allowing off chip control such as processor

halts (breakpoints) or synchronized Program/Data Messages

RSTI Reset In (RSTI) is a pin for resetting the Nexus port resources

Source: Nexus 5001 Forum. All rights reserved

available, when to terminate retrieving a variable-length packet, and when an out-

put public message is ended.

The width of the output message register will be vendor-defined, where the

vendor may optimize the register size depending on the size of the packets transmit-

ted. Figure 11.3 shows the state flow for accessing the public message registers as

well as other NRRs.

11.3.2 NEXUS AUX Interfaces

The AUX interfaces are unidirectional (either data in or data out), with each AUX

port having its own clock. The data out pins of an AUX interface are typically used

for trace, and the data in mode is typically used for configuration or calibration of

an IC. AUX data in and out ports may be operated concurrently. Nexus also speci-

fies how a JTAG interface can be used in conjunction with the AUX ports. JTAG

182 11 Nexus IEEE 5001

interface operations in Nexus may be used for both configuration and control of the

on-silicon instrumentation and for embedding Nexus protocol and data into a JTAG

message. Both AUX and JTAG interfaces are controlled by FSM-based controllers,

allowing a variety of transfer operations. There are two FSMs for receiving and

transmitting messages via the auxiliary pins using the MSEI and MSEO pin

 functions. A minimum of one and a maximum of two MSEI pins shall provide the

protocol for the embedded processor receiving messages, and a minimum of one

and a maximum of two MSEO pins shall provide the protocol for the embedded

processor transmitting messages.

The Nexus standard defines an extensible auxiliary port that may either be used

with the IEEE 1149.1(JTAG) port or as a stand-alone development port. The Nexus

standard defines the auxiliary pin functions, transfer protocols, and standard devel-

opment features to support both 1149.1 and AUX usage. The auxiliary port pro-

vides a wider, higher-bandwidth data transfer conduit and can define both AUX

input and output ports. Auxiliary out ports are used primarily to provide additional

pins in the port for higher throughput for trace output.

For a full-duplex AUX with IEEE 1149.1 pins, a minimum of two auxiliary pins

are required for compliance [message data out and message start/end out], assum-

ing a system clock out pin can be used for MCKO. EVTI is also recommended for

tool-initiated synchronization. The performance classification, however, would also

be minimal and may meet the transfer bandwidth requirements for low-end applica-

tions or lower-compliance classifications.

Nexus implementations may have one or two messaging start/end out pins,

depending on complexity of the input and output state machines. A two-bit messag-

ing pin allows back-to-back data transfers, speeding delivery of memory data or

trace information.

Fig. 11.3 Nexus JTAG message controller state diagram. Source: Nexus 5001 forum. All rights

reserved

18311.3 NEXUS Interfaces

The MSEI/MSEO protocol comprises the following:

Two “1”s followed by one “0” indicates start of message.•฀

“0” followed by two or more “1”s indicates end of message.•฀

“0” followed by “1” followed by a “0” indicates end of variable-length packet.•฀

“0”s at all other clocks during transmission of a message.•฀

“1”s at all clocks during no message transmission (idle).•฀

The same sequence is followed when using one or two MSEI/MSEO pins, but when

using two MSEI/MSEO pins, it is possible for two sequences to occur on the same

clock. MSEI/MSEO is used to signal the end of variable-length packets and not

device-specific or fixed-length packets. MSEI/MSEO are sampled on the rising

edge of MCKI/MCKO.

Figure 11.4 shows the finite-state machine diagram for one-pin MSEI/MSEO

transfers. When using only one MSEI/MSEO pin, the end-message state does not

contain valid data on the MDI/MDO pins. Also, it is not possible to have two con-

secutive end-packet messages. This implies that the minimum packet size for a

variable-length packet is two times the number of MDI/MDO pins. This ensures

that a false end-of-message state is not entered by transmitting two consecutive 1s

on the MSEI/MSEO pin before the actual end of the message.

Systems with class 2, 3, and 4 features primarily use the AUX interfaces, Rules

of embedding a Nexus packet in an AUX port are consistent with many other paral-

lel port protocols, with key rules as follows:

Fig. 11.4 Nexus AUX FSM (single-bit MSE). Source: Nexus 5001 Forum. All rights reserved

184 11 Nexus IEEE 5001

Fig. 11.5 Nexus AUX FSM (2-bit MSE). Source: Nexus 5001 Forum. All rights reserved

A variable-sized packet within a message must end on a port boundary.•฀

A variable-sized packet may start within a port boundary only when following a •฀

fixed-length packet. (If two variable-sized packets end and start on the same

clock, it is impossible to know which bit is from the last packet and which bit is

from the next packet.)

Whenever a variable-length packet is sized such that it does not end on a port •฀

boundary, it is necessary to extend and zero-fill the remaining bits after the

highest-order bit so that it can end on a port boundary. For example, if the MDO

port is four bits wide and the unique portion of an indirect address TCODE is

five bits, then the remaining three bits of MDO must be packed with 0s.

A data packet within a data message must be 8, 16, 32, or 64 bits in length.•฀

To improve message compression, multiple device-specific or fixed-length •฀

packets may start and end on a single clock.

Each type of device-specific or fixed-length packet must be the same within all •฀

messages. For example, if a vendor implements three bits to identify the source

processor, then all public messages with a source processor packet must be three

bits in length.

When a device-specific or fixed-length packet follows a variable-sized packet, •฀

the device-specific or fixed-length packet must start on the port boundary.

The MSEI/MSEO protocol must be followed for both input and output messages.•฀

Figure 11.5 shows the FSM for two-pin MSEO transfers. The two-pin MSEI/

MSEO option is more robust than the one-pin option. Termination of the current

18511.4 Multicore Nexus Debug Approaches

message may immediately be followed by the start of the next message on the

 consecutive clocks. An extra clock to end the message is not necessary as with the

one-pin MSEI/MSEO option. The two-pin option also allows for consecutive end-

packet states. This can be an advantage when small, variable-sized packets are

transferred. Tables 11.6 and 11.7 show an examples of data transfer at the AUX

interface for the respective cases of one and two bit MSE FSMs.

11.4 Multicore Nexus Debug Approaches

Nexus implementations can support the concurrent debug of both processor and bus

operations. Although each processor or logic/bus element in a design may have a

native debug environment, debug information can be reformatted using Nexus

interface wrappers, which embed debug information into packet fields of the Nexus

messages. These Nexus messages can then be merged at a Nexus port control level

Table 11.7 AUX Interface for a indirect branch message with 2 – bit MSEO

MDO[3:0] MSEO[1:D]

Clock 3 2 1 0 1 0

0 X X X X 1 1 Idle (or end of last message)

1 T3 T2 T1 T0 0 0 Start message

2 S1 S0 T5 T4 0 0 Normal transfer

3 I3 I2 I1 I0 0 0 Normal transfer

4 I7 I6 I5 I4 0 1 End packet

5 A3 A2 A1 A0 0 0 Normal transfer

6 A7 A6 A5 A4 1 1 End packet/message

7 T3 T2 T1 T0 0 0 Start message

Source: Nexus 5001 Forum. All rights reserved

Table 11.6 AUX Interface for a indirect branch message with 1 bit MSEO

MDO[3:0] MSE0[0]

Clock 3 2 1 0 0 Idle

0 X X X X 1 Idle (or end of last message)

1 T3 T2 T1 T0 0 Start message

2 S1 S0 T5 T4 0 Normal transfer

3 I3 I2 I1 I0 0 Normal transfer

4 I7 I6 I5 I4 1 End packet

5 A3 A2 A1 A0 0 Normal transfer

6 A7 A6 A5 A4 1 End packet

7 X X X X 1 End message

8 T3 T2 T1 T0 0 Start message

Source: Nexus 5001 Forum. All rights reserved

186 11 Nexus IEEE 5001

to allow packets from many debug sources to be communicated over a common Nexus

port. Because each debug block can be assigned an independent identification

(DID) value, debug information can be redirected once off chip, at the probe

interface or as a software operation.

Figure 11.6 shows this debug data flow, supporting a multicore architecture

consisting of two processor (or other) cores and a bus port or other bus-level

debug interface. All blocks have some native debug or analyzer blocks. The

debug information is made into Nexus-compliant messages, including any addi-

tional compression, by in-line Nexus interface blocks with the different indepen-

dent message streams consolidated into a single combined Nexus stream at the

port interface.

One of the issues in debug of multiple core systems is that even when debug

information from different blocks is combined into a single Nexus stream, the

control and synchronization of debug over many different core or subsystems

remains largely independent. Having better control and synchronization of differ-

ent debug resources can significantly improve debug efficiency. In addition to the

Nexus interfaces for each of the processor on-chip debug resources, the environ-

ment includes Nexus-controlled cross-triggering and systemwide timestamping

resources to help synchronize and cross-reference debug operations occurring at

different parts of the architecture, allowing different off-chip debugger environ-

ments to better comprehend the context and operations occurring in other parts of

a design.

Nexus provides a toolbox and an approach to implementing a debug architecture,

which can be customized to properly address different architectures and unique

analysis considerations. Properly implemented, a comprehensive debug solution can

measurably improve the level of testability, maintainability, and analysis capabilities

throughout the life cycle of a chip design, but implementing the correct on-chip

debug solutions also requires an engineering investment in understanding how debug

tools will be used as well as the considerations of all the trade-offs for integrating

debug solutions into a design Fig. 11.7.

Processor

Core A

Processor
Core B

Nexus

Port

Control

External

Nexus

Probe

Uncompressed Trace

Trace packet

formatting

Nexus

Message

Stream

Combined

Nexus

stream

Processor

Nexus

Interfaces

Processor

Nexus

Interfaces

Bus Trace

Nexus

Interfaces

Bus

(Debug)

Port

Bus

Trace

Analyzer

Debug

Port

Debug

Port
Chip IO

Interface

Fig. 11.6 Basic Nexus multicore debug flow

18711.4 Multicore Nexus Debug Approaches

Nexus allows embedded processor implementations that comprise multiple

clients to use a single AUX, depending on the transfer bandwidth requirement

for the application. The AUX may be designated for a single client or shared by

 multiple clients on the embedded device during runtime. Messages transmitted

via the AUX contain information defined by the Nexus standard indicating

which client generated the message. Implementations can include clients on a

single chip (Fig. 11.8) as well as processors on multiple chips sharing a Nexus

interface.

Because the transfer of information is message-based, a variety of scheduling

and transfer methods of simply parsed and disassembled messages between the

Nexus interfaces and different cores are supported, allowing delayed and prioritized

transfer of information between several cores and the Nexus interfaces. Because

their characteristics differ, we shall consider the cases of AUX in (from tool to

target) and AUX out (from target to tool) messages separately.

11.4.1 Input Tool-to-Target Messages

Managing Nexus input messages in a multicore system is straightforward, because

there is typically a single host generating messages over the debug interface and

only one message will be queued for transfer to the on-chip target at any given time.

Core A

(Nexus

compliant)

subsystem

Core B

(Non-Nexus)

subsystem

Nexus

Port

Control

Nexus

Probe

(Off

Chip)

Inst/Data/Addr

trace
Inst/Data/Addr trace

Compression/Formatting

JTAG

Nexus

Message

streams
Combined

Nexus

Stream

Core A

 Debugger

SW
Debug Port

Bus Monitor

Gasket

Multi-core฀Debug฀Nexus฀Environment

Core B

 Debugger

SW

A

M

B

A฀

A

H

B฀

/฀

O

C

P

MED Ctrl

 & Bus

Monitor

SW

Synchronized

Run/stop/ Stall control,

breakpoints/tracepoints,

trigger in/out signals

Nexus Port

Core B

to Nexus

Translation

Embedded

Nexus Bus

 Trace

Core A

to Nexus

Interface

Synchronized

Timestamps

Cross-triggers

Fig. 11.7 Multicore debug Nexus environnent

188 11 Nexus IEEE 5001

The number of TCODE operations for input operations is limited to register and

memory access types and port replacement definitions. Each input message

 contains fields with either a register opcode defined via the Nexus register map or

a memory address for memory operations.

11.4.2 Output Target-to-Tool Messages

Output messages from the target to the tool are potentially complex to manage,

because (trace) operations, especially if occurring in bursts, may be more data-

intensive than input operations and can potentially exceed the Nexus AUX port

bandwidth.

This bandwidth problem is compounded for multicore debu, in which different

cores, each with their own trace messages to export, are competing for access to the

Nexus interface. Nexus trace messages can include synchronization and timestamp

fields that simplify the reconstruction of trace information that may be delayed in

being sent to tools for a given target.

If a trace may be delayed prior to export, one of the design factors in the Nexus

blocks should be a level of buffering sufficient to avoid dropping or loss of

 messages while waiting for access to the AUX out port. There are a variety of ways

to manage output data from multiple sources. A simple approach is to configure a

simple static output multiplexor to choose between different Nexus message

streams and disable Nexus traffic for the duration of the sub-system not chosen. If

this duration is significant or is competing with other data-intensive messages

(memory access, for example), this can result in the need for larger on-chip buffers

to avoid losing trace messages.

The nature of multicore systems analysis, however, is that for many problems,

debug requires access to concurrent information from several cores in order to

 sufficiently understand the issues involved. To avoid the need for large on-chip

 buffers, more sophisticated message control can be implemented to provide sched-

uling, prioritization, and arbitration of Nexus messages.

Nexus messages can be merged at a Nexus port control level to allow packets

from many debug sources to share a common Nexus port. Because each debug

block can be assigned an independent identification value, debug information

can be redirected once off-chip at the probe interface or as a software

operation.

The packet nature of Nexus messages allows a variety of network queuing

 techniques to interleave messages from multiple sources into a common AUX

out port. The intelligence for this may be implemented in on-chip controller

hardware with different implementations based on output multiplexing, enable

logic, and a funneling logic shown in Figs. 11.8–11.10, or in off-chip software

with priorities transferred to a simpler AUX out control block as Nexus input

messages.

18911.5 Nexus Product Implementations

11.5 Nexus Product Implementations

In 2007, the Nexus Forum and OCP-IP developed a collaborative agreement on

debug sub-systems. A reference design for attaching a Nexus port and communicating

with OCP-IP debug signals was developed (Fig. 11.11) and is included as an

appendix to the OCP-IP debug working group specification. The key element of the

interface is use of the ownership trace message and source fields defined for each

Target

Device A

Nexus

A

Tools

nex_mdo[N:0]

nex_mcko

nex_evto

nex_mseo[1:0]

nex_en

nex_mdo[N:0]

nex_mcko

nex_evto

nex_mseo[1:0]

MDO[N:0]

MCKO

EVTO

MSEO[1:0]

Target

Device B

Nexus

B

Fig. 11.8 Multicore single-chip AUX multiplexor interface

Tools

M

D

O

:

M

C

E

V
M

S

E

nex_evto

Target

Chip A
Nexus

A

nex_mdo[N:

nex_mck

nex_enabl

nex_mdo[N:

nex_mck

nex_evto

nex_mseo[1:0]

nex_enabl

Target

Chip B
Nexus

B
nex_mseo[1

:

Fig. 11.9 Multichip AUX interface

190 11 Nexus IEEE 5001

instruction that allow different on-chip OCP-IP components with different debug

sockets to be accessed concurrently.

Semiconductors from Freescale have been built and implemented for the major-

ity of Nexus-based SoCs. These SoCs have serviced many industrywide markets,

including automotive, wireless, and networking. Two example of Freescale SoCs

using Nexus are discussed in this section.

One family of SoCs, initially offered for the automotive powertrain market, uses

the multiprocessing features of Nexus to provide debug visibility to the processor

core – a PowerPC e200z6, the enhanced timer processor units (ETPU), and the sec-

ondary peripheral bus.

The MPC5500 family of SoCs support various debug facilities as shown in

Fig. 11.12. There are five major architectural blocks that provide the debug

functionality:

Debug

Tools
Aux In

Aux Out

Target

Device A
Nexus A

nexA_mdi/o[N:0]

nexA_mcko

nexA_evti/o

nexA_msei/o[1:0]

sync, timestamp

Nexus

Multi-Port

Controller

Scheduler

/Funnel/

ArbiterTarget

Device B Nexus B

nexB_mdi/o[N:0]

nexB_mcki/o

nexB_evti/o

nexB_msei/o[1:0]

nex_req, grant, busy

Nexus Pkt A1
Nexus Pkt A2

T2

Nexus Pkt B2
Nexus Pkt B1

T3

Nexus Pkt A1
Nexus Pkt A2

T1

Nexus Pkt B1
Nexus Pkt B2T4

Nexus Pkt B3

Nexus Pkt A3

Nexus Pkt B3
Nexus Pkt A2T5

T6

Fig. 11.10 Nexus multicore message AUX out processing

Fig. 11.11 Integration of OCP-IP debug sockets and Nexus

19111.5 Nexus Product Implementations

PowerPC e200z6 Nexus1 module (OnCE) – Class 1–compliant debug of the •฀

processor.

PowerPC e200z6 Nexus3 module – Class 3–compliant trace of the processor.•฀

DMA Nexus module – Data trace support for DMA data access.•฀

ETPU Nexus – Class 3–compliant trace of enhanced timer processor units.•฀

Nexus port controller – Arbitration for Nexus I/O port.•฀

The PowerPC e200z6 Nexus module supports Nexus Class 1 and Class 3 fea-

tures as well as the optional features of watchpoint trigger enable of program/data

tracing and burst capability on Nexus-initiated read/write accesses.

Class 1 features such as breakpoint generation, single stepping, and internal

resource access (processor halted) are handled within the processor’s JTAG-based

static debug OnCE (a Freescale proprietary on-chip emulation) block. Watchpoints

for Nexus3 are also generated within the OnCE module. These eight watchpoints

(for various programming events) can be used to trigger trace-enable/disable, gen-

erate watchpoint messages, and drive an optional EVTO output pin.

The DMA Nexus module supports tracing data reads and writes on the periph-

eral bus. The Nexus port controller (NPC) module arbitrates between the various

debug modules for the shared port and controls the port settings (MCKO divide

ratio, port-width option).

The second example is from a family of wireless baseband processors nick-

named mxC (Fig. 11.13). The first generation of these SoCs combines a StarCore

SC1400 DSP with an ARM11xx core and various mixes of peripherals and mem-

ory configurations.

The DSP sub-system supports a slightly more enhanced set of debug facilities.

The major architectural blocks consist of:

Nexus Port

PowerPC

e200z6

CPU Core O
n

C
E

(Program/Data Trace)

MMU
(Ownership Trace)

(Watchpoints)

B
u

s
 I

/F

eDMAC

JTAG Cntl

JTAG Port

e200z6 Core Complex

Cache
(RD/WR

Access)
DMA

Nexus

E
T

P
U

1

E
T

P
U

2

ETPU

Nexus

SoC Peripheral Bus

e
2
0
0
z
6
 N

e
x
u
s
3

Nexus

Port

Controller

(NPC)

Fig. 11.12 Freescale MPC5500 multi-core Nexus implementation

192 11 Nexus IEEE 5001

SC1400 Nexus1 module (EOnCE) – Class 1–compliant debug of the DSP.•฀

SC1400 Nexus3 module – Class 3–compliant trace of the DSP.•฀

AHB Nexus module – Data trace support for AHB data access.•฀

Nexus trace buffer – Shared internal memory for dumping Nexus trace data.•฀

Nexus port controller – Arbitration for Nexus I/O port and timestamp generator.•฀

The SC1400 Nexus modules also support Nexus Class 1 and Class 3 features as

well as the optional features of watchpoint trigger-enable of program/data tracing

and data-acquisition messaging for data logging. In addition, the Nexus3 module

supports vendor-defined triggering of program/data tracing using the process ID,

and specific messages for reporting core performance profiling information from

the SC1400 debug and profiling unit (DPU).

Class 1 features such as breakpoint generation, single stepping, and internal

resource access (processor halted) are handled within the processor’s JTAG-based

static debug block, EOnCE. Watchpoints for Nexus3 are also generated within the

EOnCE module. These seven watchpoints (for various programming events) can be

used to trigger trace enable/disable and generate watchpoint messages, and can be

connected to a cross-triggering module for triggering events in other portions of the

SoC. They also drive an optional EVTO output pin.

The AHB Nexus module supports tracing data reads and writes on the peripheral

bus and can generate additional watchpoints based on AHB address and/or data

values. These watchpoints can also be used by a cross-triggering module within the

SoC. Additional AHB Nexus modules support data trace on the application side

(ARM11) of the baseband as well.

Similar to the MPC5500 family, the Nexus port controller module arbitrates

between the various debug modules for the shared port. In addition to the arbitra-

tion and port control, the mxC NPC module provides timestamping capability for

Nexus Port

SC1400

DSP Core

E
O

n
C

E

P Xa Xb (Data Trace)

MMU

DPU

(Ownership Trace)

(Core Performance

Profiling)

(Program Trace

& Watchpoints)

N
e
x
u
s
 R

e
g
is

te
re

d
 I
n
te

rf
a
c
e
 (

N
R

I)

Q2SB
IP SkyBlue

Interface

Req/Enable3

Bus I/F

Timestamp

Nexus

Port

Controller

(NPC)
AHB

Nexus
JTAG Cntl

JTAG Port A
H

B
 B

u
s

DSP Platform

SC1400

Nexus3

(Class 3)

4K

Nexus Trace

Buffer (NTB)

A
H

B
 B

u
s

Fig. 11.13 Freescale mxC DSP sub-system and multi-core Nexus implementation

19311.6 Summary

the debug system by maintaining an “absolute” timestamp value that the individual

Nexus modules can use within their messages or to generate their own “relative”

timestamp to reduce bandwidth penalty.

The mxC SoCs also support internal storage of Nexus messages to an internal

Nexus trace buffer (NTB) for retrieval at a later time. These messages are sent to

AHB memory within the SoC, which allocates a secondary function for the storage

of trace information. This information can be read out through the JTAG port (or

other memory-access mechanism) when real-time visibility is not as critical. This

allows more trace data to be stored by reducing bandwidth restrictions associated

with sending data off-chip.

11.6 Summary

Nexus has been evolving as an IEEE standard for several years and is seeing increased

use as a debug solution in many different architectures and markets. Using Nexus

provides several advantages to designers, providing a widely supported infrastructure

and a framework for customized solutions. As an “architecture-agnostic” interface,

Nexus also provides advantages to tool vendors by reducing development costs and

time to market. Freescale has been an industry leader in developing Nexus-based solu-

tions to support a range of processor cores and configurations. The technical commit-

tee within the IEEE-ISTO 5001 consortium is continually working to add feature

enhancements to the standard and support for a wider range of SoC architectures.

195N. Stollon, On-Chip Instrumentation: Design and Debug for Systems on Chip,

DOI 10.1007/978-1-4419-7563-8_12, © Springer Science+Business Media, LLC 2011

EJTAG is a hardware/software sub-system that provides comprehensive debugging

and performance-tuning capabilities to MIPS® Technologies–developed processors

and to SoC components with MIPS processor cores. Like many other processor

debug blocks, it uses the IEEE 1149.1 JTAG TAP as an external interface. Higher-

performance debug can also use a complementary parallel port (PDtrace) for data

transfers.

EJTAG is tightly coupled to the MIPS instruction set and is typically packaged

as part of a MIPS processor license as an optional resource architecture for processor

and system debugging Fig. 12.1. The MIPS architecture has historically provided a

set of primitives for debugging software, which includes:

A breakpoint instruction, BREAK, whose execution causes a specific exception.•฀

A set of trap instructions, whose execution causes a specific exception when •฀

certain register value criteria are satisfied.

Dual optional watch registers that can be programmed to cause a specific excep-•฀

tion on a load, store, or instruction fetch access to a specific 64-bit double word

in virtual memory.

An optional TLB-based MMU that can be programmed to trap on any access or, •฀

more specifically, on any store to a page of memory.

ETJAG has evolved, and there is limited backward compatibility between the

current 5.x version and earlier versions, especially for revisions 2.5 and earlier. This

is sometimes a problem because different processors may use different versions of

EJTAG. As a prominent example, the Toshiba TX series of MIPS processors use a

circa 2.5 level of EJTAG that diverges sufficiently from current EJTAG in terms of

register usage and naming, as well as changes in debug instructions and other fea-

tures, and so must be considered semi-independently.

The EJTAG registers are generally 32 bits wide for MIP32 architectures and 64

bits wide for MIPS64 architecture, so specific bit mappings depend on implementa-

tion. Registers set up the debug resources and capture debug status information

during the debug operation. Registers are memory-mapped and accessible from the

EJTAG probe. Operation of the EJTAG circuitry is controlled through an EJTAG

probe that interfaces the host development system and the target device. There are

numerous probes available that support EJTAG.

Chapter 12

MIPS EJTAG

196 12 MIPS EJTAG

EJTAG processor core extensions are required in any EJTAG implementation;

many of the features are implementation-optional. Information on which EJTAG

features are implemented is found in the DCR register:

The single-step execution feature is optional. The presence or absence of single-step •฀

execution capability is indicated to debug software via the CP0 debug register.

The debug interrupt request from the TAP via the DINT probe signal or through •฀

an implementation-dependent internal signal is optional.

The TAP is optional.•฀

The hardware breakpoint unit (HBU) is optional.•฀

The debug control register is optional. Note that it is required if either the TAP •฀

or the HBU is implemented.

The processor access and DMA circuit blocks are used to set up and monitor the

processor’s internal buses and to execute the code from the EJTAG interface. In order

to provide debug code without integrating it into the application code, the EJTAG

processor-access circuitry shares a specific memory location that can replace system

memory in debug mode. When the processor accesses this memory space, the EJTAG

circuitry can feed it debug instructions not present in the application code.

When an access is detected, the EJTAG circuitry makes the transaction address

available in the EJTAG address register. The appropriate data is also made available

in the EJTAG data register if the operation is a write, and it is inserted into the

EJTAG data register if the operation is a read.

The EJTAG DMA circuitry enables the EJTAG to initiate transactions on the system

bus while running application code, providing access to debug and user memory areas.

This makes it possible to inspect debug resources and user memory while the system

is executing its code, providing excellent visibility into system operation with little or

no impact on real-time operation. Setup of DMA activities is handled by setting up the

EJTAG registers. Using the DMA access circuitry, it is possible to download applica-

tion code or transfer user memory off-chip while the debug session is ongoing.

Fig. 12.1 General overview of the EJTAG interface. Source: MIPS Technologies, Inc. All rights

reserved

19712.1 EJTAG Instructions and Registers

The EJTAG debug features require high integration with the processor. Different

generations of MIPS processors have differences in debug modes, registers, and

instructions to support the debug process.

12.1 EJTAG Instructions and Registers

EJTAG provides a standard debug I/O interface, enabling the use of traditional MIPS

debug facilities on SoC components. In addition, EJTAG provides the TAP instruc-

tions that allow access to corresponding EJTAG registers, for the following:

IDCODE: Device identification register with manufacturer, part number, and •฀

version ID for the specific chip (IR 00000001).

IMPCODE: Implementation register indicating implemented EJTAG features in •฀

this specific chip (IR 00000011).

ADDRESS EJTAG: Address register used to access the on-chip address bus (IR

00001000).

DATA EJTAG: Data register used to access the on-chip data bus (IR 00001001).•฀

CONTROL EJTAG: Control register used for setup and status information (IR •฀

00001010).

ALL: Access to EJTAG address, data, and control registers in one chain (IR •฀

00001011).

EJTAGBOOT: Causes processor reset followed by a debug exception (IR •฀

00001100).

NORMALBOOT: Causes processor reset followed by execution of the reset •฀

handler (IR 00001101).

FASTDATA: Provides a one-bit tag in front of the data register to capture the •฀

processor access pending bit for fast data transfer; access to the data and

FastData registers (IR 00001110).

TCBCONTROLA: Access to the control register TCBControlA in the trace •฀

control block (TCB); used by external probe (debugger) software to control trac-

ing output from the core (IR 00010000).

TCBCONTROLB: Access to the other control register TCBControlB in the •฀

TCB that controls tracing configuration options (IR 00010001).

TCBDATA: Provides access to the registers specified by the TCBCONTROLB •฀

REG field (IR 00010010).

TCBCONTROLC: Access to the control register TCBControlC in the TCB and •฀

used in the TCB; controls tracing configuration options (IR 00010011).

PCSAMPLE: Access the PC sample register (IR 00010100).•฀

BYPASS: One-bit register with no operation; JTAG required (IR 1111111).•฀

The size of the EJTAG address and data registers depends on the specific implementa-

tion, but they are usually at least 32 bits. The size of the device ID, implementation,

and EJTAG control registers is 32 bits; these registers allow the user to perform

debug setup and provide important status information during the debug session.

198 12 MIPS EJTAG

The processor’s memory-mapped EJTAG memory is located in the debug

memory segment, which is a sub-segment of the debug segment. It is accessible by

debug software when the processor is executing in debug mode. An EJTAG probe

handles all access to this segment through the TAP; the processor has access to

dedicated debug memory even if no debug memory was originally located in

the system.

To allow inspection of the processor state at any time in the execution flow, a

debug exception with priority over all other exceptions is introduced. When a debug

exception occurs, the processor goes into debug mode, where it has unrestricted

access to coprocessors, memory areas, etc.

The debug exception handler is executed in debug mode and provided by the

debug system. It can be executed from the probe through a processor access, or it

may reside in the application code if the developer chooses to include a debug task

in the application. An overall requirement is that debugging be nonintrusive to the

application so that execution of the application can be resumed after the required

debug operations are run. However, loss of real-time operation is inevitable when

the debug exception handler is executed. Even if other parts of the system are halted

during the debug operations.

The debug control register controls and provides information about debug

issues. The width of the register is 32 bits for 32-bit processors and 64 bits for

64-bit processors. The DCR provides the following key features:

Interrupt and NMI control when in nondebug mode.•฀

NMI pending indication.•฀

Availability indicator of instruction and data hardware breakpoints.•฀

Availability of the optional PC sample feature and the sample period being used.•฀

For EJTAG features, there is no difference between a reset and a soft reset occurring

to the processor; they behave identically in both debug mode and nondebug mode.

Data hardware breakpoint registers are controlled as memory-mapped registers.

Most registers have separate instances for each implemented data hardware break-

point, as indicated with an “n” in the following list.

Data Hardware Breakpoint Registers

Register name Register Mnemonic functional description

Data Breakpoint Status DBS Indicates number of data hardware break-

points and status on a previous match

Data Breakpoint Address(n) DBAn An address to compare for breakpoint n

Data Breakpoint Addr Mask(n) DBMn Address comparison mask for breakpoint n

Data Breakpoint ASID(n) DBASIDn ASID value to compare for breakpoint n

Data Breakpoint Control (n) DBCn Control of breakpoint n: match on load/

store, data bytes, access to data bytes,

comparison of ASID, and generated event

on match

Data Breakpoint Value (n) DBVn Data value to match for breakpoint n

19912.3 MIPS PDtraceTM

12.2 PC Sampling

PC sampling is one of the unique optional features of EJTAG, used for program

profiling and analysis; it samples the value of the PC periodically. This informa-

tion can be used for statistical profiling of the program, akin to gprof. This infor-

mation is also very useful for detecting hot spots in the code. In a multithreaded

environment, this information can be used to detect thread behavior and verify

thread scheduling mechanisms in the absence of the PDtrace facility.

The presence or absence of the PC sampling feature is available in the debug

control register. If PC sampling is implemented, then the PC values are constantly

sampled at the requested rate. The sampled PC values are written into a TAP register.

The old value in the TAP register is overwritten by a new value even if this register

has not been read out by the debug probe. The sample rate is specified by a field in

the debug control register called PCSR (PC sample rate). Note that the processor

samples PC even when it is asleep, that is, in a WAIT state. This permits analysis

of the amount of time spent by a processor in the WAIT state, which is important

to understand in real-time and power sensitive applications.

The sampled values include a new data bit, the PC, the ASID (address space

identifier, a MIPS-tagged TLB) of the sampled PC, as well as the thread context ID

if the processor implements the MIPS MT ASE. The new data bit is used by the

probe to determine if the PCsample register data just read out is new or has already

been read and can be discarded.

The sampled PC value is the PC of the completing instruction in the current

cycle. If the processor is stalled when the PC sample counter overflows, then the

sampled PC is the PC of the next completing instruction. The processor continues

to sample the PC value even when it is in debug mode.

12.3 MIPS PDtrace™

The tracing logic within the processor core outputs all trace information on the

PDtrace™ interface. This PDtrace interface connects to the on-chip TCB unit. The

TCB is responsible for collecting the trace data sent every cycle on the PDtrace

interface by the core’s tracing logic. The TCB captures and stores this trace data, in

different configurations, in either an on-chip trace memory or an off-chip trace

memory using the probe.

Figures 12.2–12.4 show some of the different configurations for the PDtrace. A

Probe Interface block (PIB), which communicates between the trace-related blocks, and

external interfaces is used only for dedicated trace interfaces and is not needed for trace

exported through the EJTAG port. The key blocks in the PD trace subsystems are

The TCB, which provides temporary on-chip storage of trace information.•฀

The interface between the TCB and the TAP controller.•฀

The PIB.•฀

The external probe interface.•฀

200 12 MIPS EJTAG

The TCB can be configured for three primary interfaces:

The PDtrace interface to the processor core.•฀

The TCB TAP interface, which connects the EJTAG TAP controller resident •฀

within the processor core to the TAP functionality present within the TCB.

An optional TCtrace interface to the PIB.•฀

One main function of the TCB is to capture trace information from the PDtrace

interface and store it to trace memory. This trace information is then analyzed by

the trace reconstruction software in the debugger. Because tracing the entire run of

a program can require large amounts of storage, compression of trace information

is desirable. Although the trace information undergoes one level of compression in

the core, further compression is possible before the trace information is stored to

trace memory by the TCB. The TCB achieves this compression using a number of

trace formats that eliminate the storage of unnecessary trace bits in each cycle. This

section describes these formats.

Figure 12.2 shows the TCB, the PIB, and the trace data path from the PDtrace

IF to the Probe IF. It is optional whether the TCB implements on-chip trace mem-

ory and/or the TCtrace IF with a PIB and off-chip trace memory. Figure 12.3 shows

the TCB streaming data to off-chip trace memory through the PIB. The number of

pins needed for trace data on the probe IF is configurable to 4, 8, or 16.

Figure 12.4 shows a configuration in which the TCB is streaming data to on-chip

trace memory. The size of the on-chip trace memory is configurable. After trace

capture has stopped, the trace data in the on-chip memory is accessed through the

EJTAG probe.

12.3.1 Trace Output Formats

The amounts of Trace information that is exported varies significantly based on the

types of instructions and operations being processed. As discussed previously, unless

there are conditional operations or discontinuities in the processor operation, instruc-

tion trace can be reconstructed based on minimal information base on the assumptions

of normal operational flow. If there is an instruction discontinuity, as example a

branch, a jump, or an interrupt, the amount of trace information required increases. In

a MIPS processor trace blocks, this is performed by configuring the trace into one of

six different trace packet formats based on the amount of information that is required.

Trace may be performed on either single-pipeline or multiple pipelines. For simplic-

ity, we will only discuss the formats when the core being traced is in a single-pipeline

or single-issue implementation. A processor with multiple pipelines requires data

synchronization and combining for sending trace information to trace memory. The

TCB can perform this combining and formatting to reduce the number of bits that are

sent out each cycle. If there are K pipelines within the core, 1, 2, …K, then for each

cycle, the TCB generates a trace format from each pipeline, in the respective order.

Trace format 1 (TF1): When the processor is stalled, no execution trace informa-

tion needs to be recorded except that this was a stall cycle. This is done using a

20112.3 MIPS PDtraceTM

Fig. 12.2 PDtrace interfaces. Source: MIPS Technologies, Inc. All rights reserved

Fig. 12.3 PDtrace off-chip streaming interface. Source: MIPS Technologies, Inc. All rights reserved

Fig. 12.4 PDtrace on-chip streaming interface. Source: MIPS Technologies, Inc. All rights reserved

202 12 MIPS EJTAG

single bit “1” for this format. Note that when parsing a trace format sequence, if the

first bit of the trace format is a 1, then this is TF1 and the next bit is the first bit of

the next trace format.

Trace format 2 (TF2): A study of program traces shows that with only PC

 tracing enabled, most of the time nothing of significance needs to be captured.

Trace format 3 (TF3) is used when all address or data trace information needs

to be captured. TF3 is distinguished from TF2 by having 000 on the first three bits.

TF3 may be either 27 or 43 bits wide, depending on whether 16 or 32 bits of the

address or data bus are included in the AD field. The AD field width is determined

by fields in the TCBCONTROLA register.

Trace format 4 (TF4) is the last cycle of a current data transmission. When

 capturing the cycle-by-cycle values on the PDtrace IF, the last cycle of a load data

transmission cannot be distinguished from the last cycle of a store data transmission

(without saving information from a previous cycle). This means that the TF4 format

will be used for the last cycle of both load and store data transmission

Figs. 12.5–12.11.

Trace format 5 (TF5) is used when overflow occurs, all other PDtrace IF trace

values are undefined, and all current cycle trace values can be discarded. (When an

overflow does occur, the PDtrace IF always sends a full PC value in the next cycle.

The PC value is used for re-synchronization of the execution path.)

Trace format 6 (TF6) allows the TCB to transmit information that does not directly

originate from the cycle-by-cycle trace data on the PDtrace interface. That is, TF6 can

Fig. 12.5 PDtrace TF1 packet. Source: MIPS Technologies, Inc. All rights reserved

Fig. 12.7 PDtrace TF3 packet. Source: MIPS Technologies, Inc. All rights reserved

Fig. 12.6 PDtrace TF2 packet. Source: MIPS Technologies, Inc. All rights reserved

20312.3 MIPS PDtraceTM

be used by the TCB to store any information it wants in the trace memory, within the

constraints of the specified format. This information can then be used by software for

any purpose. For example, TF6 can be used to indicate a special condition, trigger,

semaphore, breakpoint, or break in tracing that is encountered by the TCB.

After compression of data into the trace formats, the trace information must be

streamed to either on-chip or off-chip dedicated trace memory. Because each of

the major trace formats is a different size, this complicates the efficient storage of

this information in fixed-width on-chip memory and the transmission of this data

through a fixed-width interface to off-chip memory. To simplify the memory

overhead and pin bandwidth issues, the trace formats are first gathered into trace

words of regular width Table 12.1.

A TraceWord (TW) is defined to be 64 bits wide. It has a 4-bit type indicator on bits

[3:0], and regular TFs stacked up in the remaining 60 bits of the word. The trace portion

of a TW consists of one or more trace formats, TF1 through TF6. Note that trace formats

TF1, TF2, TF5, and TF6 have fixed size, whereas TF3 and TF4 can vary in size.

Fig. 12.11 Trace word with TF1 from the sequence in Table 12.2. Source: MIPS Technologies,

Inc. All rights reserved

Fig. 12.9 PDtrace TF5 packet. Source: MIPS Technologies, Inc. All rights reserved

Fig. 12.8 PDtrace TF4 packet. Source: MIPS Technologies, Inc. All rights reserved

Fig. 12.10 PDtrace TF6 packet. Source: MIPS Technologies, Inc. All rights reserved

204 12 MIPS EJTAG

Cycle-inaccurate trace: The TF1 format is needed only when a sequence of the

trace must show cycle-by-cycle behavior of the processor without missing any cycles.

When the trace regeneration software only needs to show the sequence of instructions

executed, the TF1 format that shows processor stall cycles can be omitted.

In this situation, additional optimization removes bit zero on the other TFs

before storing to trace memory. The example trace sequence in Table 12.2 will then

produce the TWs shown in Fig. 12.12. Note that to reconstruct the trace accurately,

external software must know what type of tracing was enabled at the TCB.

On-chip trace memory format: The on-chip trace memory is defined to be a

64-bit-wide memory. The TWs are stored in consecutive address locations. The trace

memory is only written when a full TW is available, hence a new TW might not be

written each cycle because a new TW might not be created each cycle Fig. 12.13.

12.3.2 Trace Control Block Registers

TCBCONTROLA is a control register in the TCB that is mainly used to control

the trace input signals to the core on the PDtrace interface. Trace output from the

processor on the PDtrace interface can be controlled by the trace input signals to

the processor from the TCB. The TCB uses a control register, TCBCONTROLA,

whose values are used to change the signal values on the PDtrace input interface.

External software (i.e. debugger) can therefore manipulate the trace output by

writing to the TCBCONTROLA register. The TCBCONTROLA register is written

by an EJTAG TAP controller instruction, TCBCONTROLA.

Table 12.1 EJTAG registers

EJTAG register Description

Device ID Identifies device and accessed processor in the device

Implementation Identifies main debug features implemented and accessible via

the TAP

Data Data register for processor access used to support the EJTAG memory

Address Address register for processor access used to support EJTAG memory

EJTAG control (ECR) Control register for most EJTAG features used through the TAP

Bypass A JTAG-required instruction that provides a one-bit shift path through

the TAP

FastData Provides a one-bit tag in front of the data register to capture the

processor access pending bit for fast data transfer

TCBControlA Used by the TCB to hold control bits for tracing

TCBControlB Used by the TCB to hold control bits for tracing

TCBData Used by the TCB to access data from on-chip trace memory if present

TCBControlC Used by the TCB to hold control bits for tracing

PCsample Used by the PC sampling logic to write out the PC sample

and associated information

Source: MIPS Technologies, Inc. All rights reserved

20512.3 MIPS PDtraceTM

TCBCONTROLB is a control register in the TCB that is mainly used to specify what

to do with the trace information. The REG field in this register specifies the number

of the TCB internal register accessed by the TCBDATA register. TCBDATA accesses

registers specified by the REG field in the TCBCONTROLB register.

Fig. 12.12 Trace word without TF1 from the sequence in Table 12.2. Source: MIPS Technologies,

Inc. All rights reserved

Fig. 12.13 TCB TAP interfaces. Source: MIPS Technologies, Inc. All rights reserved

Table 12.2 An example trace sequence

Cycle # Trace format Cycle # Trace format

 1 TF3 (16 significant AD bits) 2 TF3 (16 significant AD bits)

 3 TF2 4 TF1

 5 TF1 6 TF1

 7 TF1 8 TF2

 9 TF2 10 TF1

12 TF2 11 TF2

13 TF2 14 TF1

15 TF3 (5 significant AD bits) 16 TF1

17 TF2 18 TF2

19 TF2 20 TF2

21 TF3 (11 significant AD bits) 22 TF1

23 TF3 (6 significant AD bits) 24 TF6 (Stop indicator)

Source: MIPS Technologies, Inc. All rights reserved

206 12 MIPS EJTAG

Registers Trace registers that are selected by TCBCONTROLB include

TCBCONFIG: The TCB configuration register holds information about the hard-

ware configuration of the TCB.

TCBTW: The trace word read register holds the trace word just read from online

trace memory. The TW read is pointed to by the TCBRDP register, which then

increments to the next TW in the on-chip trace memory. If TCBRDP is at the maxi-

mum size of the on-chip trace memory, the increment wraps back.

TCBRDP: The trace word read pointer indicates the location in the online trace

memory where the next trace word will be read. And post-incrementing TW register

value to point to the next location. (A maximum value wraps the address around to

the beginning of the trace memory.) This is required only for on-chip memory trace.

TCBWRP: The trace word write pointer indicates the location in the online trace

memory where the next new trace word will be written. This is required only for

on-chip memory trace.

TCBSTP: The trace word read pointer indicates the location of the oldest TW in the

online trace memory. This register points to the on-chip trace memory address at

which the oldest TW is located. If a continuous trace to on-chip memory wraps

around the on-chip memory, TSBSTP will have the same value as TCBWRP. This

is required only for on-chip memory trace.

TCBTRIGx: The trigger control registers 0–7 are used to specify some conditions

that cause the firing of triggers, and to control the resulting action. Eight trigger

control registers are defined. Each register is named TCBTRIGx, where x is a single-

digit number from 0 to 7 (TCBTRIG0 is Reg 16). The actual number of trigger

registers implemented is defined in the TCBCONFIGTRIG field. An unimple-

mented register will read all zeros and writes are ignored. Each trigger control

register controls when an associated trigger is fired and the resulting action.

12.4 TCB Trigger Logic Overview

The TCB can be configured to include a trigger unit. Most of the actual implemen-

tation and functionality are implementation-dependent, but if implemented the

base-line structure must be as defined in this section.

Two or more triggers can fire simultaneously. The resulting behavior depends

on the trigger action set for each of them and whether they should produce a TF6

trace information output. There are two groups of trigger actions: Prioritized and

ORed.

Prioritized Trigger Actions: For prioritized simultaneous trigger actions, the trigger

control register that has the lowest number takes precedence over the higher- numbered

TCBTRIGx registers. The oldest trigger takes precedence overall.

20712.5 PDtrace External Interface

ORed Trigger Actions: The final trigger is created by ORing of local and an chip

probe trigger signals based on the TCBTRIGx register action logic outputs. The

trigger logic is functionally split in three parts:

•฀ Trigger Source Logic: may have a number of source events – chip trigger out,

probe trigger, debug mode (DM) indication from the processor core – that can

be defined, which cause a trigger to fire when the corresponding source condition

is satisfied.

•฀ Trigger Control Logic: Eight possible trigger control registers (TCBTRIGx, x = {0..7})

are defined. Each of these registers controls a trigger fire mechanism. They can have

each of the trigger sources as the trigger event and they can fire one or more of the

trigger actions. This is defined in the trigger control register TCBTRIGx.

•฀ Trigger Action Logic Actions: Data in TF6 trace format and chip trigger and

probe trigger outputs are combined and placed into trace memory.

Two sets of trigger inputs/outputs are defined on the TCB. One set is defined to be

chip-internal, and the other set is defined to be part of the probe interface.

TCB trigger input and output

ChipTrigIn – on-chip rising-edge trigger input.

ChipTrigOut – N single-cycle (relative to core clock) high strobe trigger output to

an on-chip unit.

TR_TRIGIN – rising probe trigger input.

TR_TRIGOUT – Single-cycle (relative to probe clock) high strobe trigger to be the

probe’s trigger output.

12.5 PDtrace External Interface

The TCB receives data from the PDtrace™ interface; the processor core is the

source. Several control and configuration signals exist on the PDtrace IF.

The TCB registers are accessed through the EJTAG TAP interface on the core.

Because the core already implements an EJTAG TAP controller, there is no need to

duplicate the entire state-machine in the TCB. The TCB interface uses the (E)JTAG

TAP state machine, which are identical to the TJAG TAP state machine. The Trace

Control Block TAP Interface Signals (shown below) are based on the output of the state

machine and include a serial interface that is synchronous with the EJTAG interface.

ETT_TCK from the EJTAG TAP controller clock is not an output from the core, •฀

but is the input to the TAP controller in the core and is also used by the TCB.

ETT_TDI is the TDI signal from the EJTAG probe; the TCB must use the same •฀

input as the TAP controller in the core.

ETT_TRST_N is an asynchronous TAP reset from the EJTAG probe.•฀

ETT_SoftReset in the TAP controller state machine is in the testlogic reset state.•฀

208 12 MIPS EJTAG

ETT_Capture is when the TAP controller state machine is in the data-capture •฀

state. This indicates that the ETT_Inst[4:0] input is valid.

ETT_Shift in the TAP controller state-machine is in the data-shift state.•฀

ETT_Update is when the TAP controller state-machine is in the data-update •฀

state. This indicates that the ETT_Inst[4:0] input is valid.

ETT_Inst[4:0] is the current value of the instruction register in the TAP controller. •฀

This selects which TCB register is the target in the capture and update cycles.

The options are TCBCONTROLA, TCBCONTROLB, and TCBDATA.

ETT_TCBData out is the serial output data, synchronous to ETT_TCK’s rising •฀

edge. When the ETT_Shift is asserted and ETT_Inst[4:0] selects one of the three

EJTAG TCB registers, this output must present data.

The timing diagram in Fig. 12.14 shows an access to the TCBCONTROLA register.

In the first two cycles ETT_TRST_N is released, and the selection of an instruc-

tion register is started in the TAP controller state machine using ETT_TMS (not used

by the TCB TAP). In the first multicycle block, the core TAP controller has its internal

instruction register set to 0 × 10 (= TCBCONTROLA register). This is reflected on

ETT_Inst[4:0]. After the other multicycle block, the core TAP controller is in the

capture data register state. This is reflected on ETT_Capture. When ETT_Capture is

set, the next rising edge on ETT_TCK should update the TCB TAP shift register, with

the value of the register selected by ETT_Inst[4:0] (in this case TCBCONTROLA).

In the following 32 clock cycles the shift register should receive write data on ETT_

TDI and present read data on ETT_TCBData (LSB first on both buses).

One or more cycles after ETT_Shift is de-asserted, the ETT_Update signal will

be asserted for one cycle. Assertion of ETT_Update is the signal to write the current

contents of the shift register to the register selected by ETT_Inst[4:0] (in this case

TCBCONTROLA).

The EJTAG TAP controller will be moved to access other registers, which eventually

changes the contents of the ETT_Inst[4:0] pins. Even though ETT_Inst[4:0] is asserted

long before ETT_Capture and de-asserted long after ETT_Update, the TCB TAP

should only sample the value when either ETT_Capture or ETT_Update is asserted.

Fig. 12.14 TCB TAP register access timing diagram. Source: MIPS Technologies, Inc. All rights

reserved

20912.6 TCtrace IF

12.6 TCtrace IF

When the TCB is implemented with the ability to send the trace information to a

probe, this is done through an intermediate interface called the TCtrace IF. The

TCtrace IF is used to connect a small probe interface block to the TCB. The PIB

module is the module driving the actual probe I/O pads, which creates the probe IF.

The PIB is left as a separate unit, in order to be placed physically near the pads for

improved I/O timing. Also the PIB can be more or less advanced with the internal

clock-multiplier to enable higher trace bandwidth on a limited number of TR_

DATA trace pins.

The entire TCtrace IF is required in the TCB if off-chip trace memory is imple-

mented; otherwise it is optional. The chip-level trigger input and outputs

(ChipTrigIn and ChipTrigOut) are required if one or more trigger control registers

are implemented.

The Probe IF can be implemented in a number of widths, allowing a trade-

off between the number of pins used and the available bandwidth for tracing. The

ratio of the frequency on this interface to the processor core clock frequency can

also be configured, to give the maximum possible bandwidth. The PIB module

provides the on-chip link between the TCtrace IF and the probe IF. And performed

clock multiplication/clock division operations to align the TCtrace and the external

interface.

TCtrace Signal Description

TR_CLK output: Clock to the probe containing the external trace memory. This •฀

may be a double-data-rate (DDR) clock, and therefore both of its edges may be

significant.

TR_DATA[15:0] output: Data signals to external trace memory. These may be •฀

limited to widths of 4, 8, and 16.

TR_TRIGIN In yrigger input: Rising-edge trigger input.•฀

TR_TRIGOUT out trigger output:– Single-cycle trigger output.•฀

TR_PROBE_N active low input: Indicates that a probe is attached to the device. •฀

If this signal is inactive (high), the TR_ outputs can be disabled. It can also be

used to control EJTAG signal routing if useful. This signal is optional on a

PDtrace-compatible device, but is required on all probes.

TR_DM output debug mode: When asserted, this indicates that the core has •฀

entered debug mode. In a multicore chip, this output can be an AND or an OR

or some other function of all the debug-mode indications from each core as

specified in the multicore chip documentation.

With on-chip trace memory, the TCB can work in three possible modes:

 1. Trace-From mode: In Trace-From mode, tracing begins when the processor

enters a processor mode/ASID value THAT is defined to be traced or when an

EJTAG hardware breakpoint trace trigger turns on tracing. Trace collection is

stopped when the buffer is full, setting a bit in TCBCONTROLB. External probe

software, on polling this register, can then read out the internal trace memory.

210 12 MIPS EJTAG

Saving the trace into the internal buffer will re-commence only when the

TCBCONTROLB bit is reset and if the core is sending valid trace data.

 2. Trace-To mode: In Trace-To mode, the TCB keeps writing into the internal trace

memory, wrapping over and overwriting the oldest information, until the

processor reaches an end-of-trace condition. End-of-trace is reached by leaving

the processor mode/ASID value, which is trace, or when an EJTAG hardware

breakpoint trace trigger turns tracing off. At this point, the on-chip trace buffer is

dumped out.

 3. Under trigger unit control: If one or more trigger control registers (TCBTRIGx)

are implemented and they are using start, end, or center triggers, then the trace

mode should be set to Trace-To mode.

12.7 PDTRACE Operations

PDTrace allows four levels of operation:

No PDtrace implemented.•฀

PDtrace with PC tracing only.•฀

PDtrace with PC and load and store address tracing only.•฀

PDtrace with PC, load, and store address, and load and store data tracing.•฀

Within each level, all features required to support the level must be implemented.

PC Tracing and Trace Compression techniques are used when tracing different

values. The methods used differ for each “type” of value being traced. For example,

the PC may be sent as a delta from the previous PC address. Sometimes the full PC

value needs to be sent when the trace process starts at the beginning of tracing or

after a buffer overflow, or for synchronization. In this case, the PC can be sent

uncompressed, or some method such as bit-block compression can be used. The

PDO_TMode signal allows compressed and full trace modes to be selected for

information being currently traced.

When PDO_TMode is zero, the delta of the PC value is transmitted. The PC

delta is a signed 16-bit (positive or negative) value computed from the PC value of

the instruction executed just before the branch target instruction (the instruction

executed in the branch delay slot after a branch instruction).

PC_delta = (new_PC - last_PC)

If the width of the computed delta value is bigger than the width of the PDO_

AD bus, then the lower bits are sent first, followed by the upper bits. When the

PDO_TMode value is one, this implies that the full PC value is transmitted.

Depending on the width of the bus, this may take multiple cycles.

Load or Store Address Trace and Compression: With a PDO_TMode zero value,

the load address transmitted is a delta from the last transmitted load address. Stores

are similar, where the computed delta is from the last transmitted store address.

21112.7 PDTRACE Operations

Note that the last load instruction can be a load instruction of any type. The same

is true for stores.

load_address_delta = current_load_address - last_load_address

store_address_delta = current_store_address - last_store_address

The delta transmission is effective when the load or store addresses increase or

decrease sequentially.

With a PDO_TMode value of one, the value transmitted is the full address of

either the load or the store. Depending on the width of the trace bus and the processor

data width, this may take multiple cycles to transmit.

Load or Store Data Tracing: Data values have less compression flexibility than

instruction information. Compression techniques such as delta values and bit-block

compression have been shown to be useful in achieving some compression ratio;

however PDtrace does not dictate any compression for data values, and therefore

both PDO_TMode values transmit the full data values.

213N. Stollon, On-Chip Instrumentation: Design and Debug for Systems on Chip,

DOI 10.1007/978-1-4419-7563-8_13, © Springer Science+Business Media, LLC 2011

ARM embedded trace macrocell (ETM) is a dedicated trace instrument for ARM

processors. Like the MIPS EJTAG discussed in the previous chapter, ETM allows

the program flow to be passively monitored, along with data and address buses, and

to generate a sequencal flow of executed instructions, optionally including with the

data accessed. The ETM trace hardware is tightly coupled to the microcontroller

core, keeping track of instruction that are executed, and depending on the instruction

flow, exporting either a full or compressed (using Branch Trace Messaging) version

of the trace format. ARM has a lineage of ETM solutions for its different architec-

ture families. As was discussed with EJTAG, features and interfaces tend to change

with evolving families of processors and with their changing debug requirements.

For simplicity, we limit our discussion to ETM9, which is debug instrumentation

closely associated with the ARM9 family of processors (Fig. 13.1).

An ETM9 enables instructions and data to be traced. The ARM9 core supplies

the ETM module with the signals needed to carry out the trace functions. The

ETM9 module is operated by means of the trace or JTAG interface. The trace infor-

mation is stored in an internal FIFO and forwarded to the debugger via the inter-

face. The following trace modes are supported:

Normal mode with 4- or 8-data-bit width.•฀

Transmission mode.•฀

Full-rate mode at core frequencies <100 MHz. –

Half-rate mode at core frequencies >100 MHz. –

Quarter-rate mode at higher core frequencies. –

13.1 ETM Signals

An ETM trace port interfaces to all of the signals provided by the ARM ETM

and the JTAG run control signals. The ETM trace port and TJAG signals are

shown in Fig. 13.1. The signals are summarily described in the following. Section.

Chapter 13

ARM ETM

214 13 ARM ETM

Like the other trace formats discussed, the ETM trace is transmitted in packet

format that can be configured for export into data buses of varying widths or via a

serial (i.e. JTAG) interface.

13.1.1 External Signals

TRACECLK: The trace clock signal provides the clock for the trace port.

PIPESTAT[2:0], TRACESYNC, and TRACEPKT[n-1:0] signals are referenced to

the rising edge of the trace clock.

PIPESTAT[2:0]: The pipeline status signals provide a cycle-by-cycle indication of

what is happening in the execution stage of the processor pipeline.

TRACESYNC: The trace sync signal is used to indicate the first packet of a group

of trace packets, and is asserted HIGH only for the first packet of any branch

address.

TRACEPKT[n-1:0]: The trace packet signals are used to output packaged address

and data information related to the pipeline status. All packets are eight bits in

length, irrespective of the number of trace packet signals implemented. There are

three cases to consider for how trace packets are output on the trace packet

signals:

Fig. 13.1 ETM9 module and its interfaces. Source: ARM Holdings plc. All rights reserved

21513.1 ETM Signals

4-bit TRACEPKT bus (TRACEPKT[3:0] signals). A packet is output over two •฀

cycles. In the first cycle, Packet[3:0] is output and in the second cycle,

Packet[7:4] is output to trace port analyzer or analysis probe.

8-bit TRACEPKT bus (TRACEPKT[7:0] signals). A packet is output in a single •฀

cycle.

16-bit TRACEPKT bus (TRACEPKT[15:0] signals). Up to two packets can be •฀

output per cycle. If there is only one valid packet, it is output on TRACEPKT[7:0].

If there are two packets to output, the first is output on TRACEPKT[7:0] and the

second on TRACEPKT[15:8].

EXTTRIG: EXTTRIG is an optional signal, intended to be an input to one of the

external inputs on the ETM.

DBGRQ: The DBGRQ signal is used by the JTAG interface unit as a debug request

signal to the target processor. The DBGRQ signal can be used to enter debug mode

after receiving a “BREAK-IN” signal from the logic analyzer through run control.

This allows a logic analyzer triggering capability to be used for complex

breakpoints.

DBGACK: The DBGACK signal is used to detect entry or exit from the debug

state.

Figure 13.2 shows the structure of the TAP interface and its relationship with

ETM registers.

The ETM registers are programmed via the JTAG interface into a 40-bit shift

register comprising:

Fig. 13.2 Structure of the ETM TAP. Source: ARM Holdings plc. All rights reserved

216 13 ARM ETM

a 32-bit data field•฀

a 7-bit address field•฀

a read/write bit.•฀

The ARM core will typically have its own TAP for test in addition to the ETM.

Where there are multiple ARM processors on a single chip, it is recommended that

each ARM processor have its own dedicated ETM. The TAP structure of the ARM

includes a multiplexor, as shown in Fig. 13.3, that selects TDO between the ARM

core and ETM. This enables the ARM9 and ETM9 TAP controllers to run in

 parallel, with a single TDO output.

13.2 ETM9 Registers

Because they are associated with a core with configurable parameters, specific

ETM registers are to an extent configurable and are handled differently according

to the ETM version being used. The following is a typical ETM register set:

00000000 ETM control Controls the general operation of the ETM

00000001 ETM config code Holds the number of each resource

00000010 Trigger event Holds controlling event

00000011 MMD control Configures the map decoder

00000100 ETM status Holds pending overflow status bit

00001000 TraceEnable event Holds enabling event

Fig. 13.3 TAP interface between an ARM core and ETM. Source: ARM Holdings plc. All rights

reserved

21713.2 ETM9 Registers

00001001 TraceEnable region Holds include/exclude region

00001010 FifoFull region Holds include/exclude region

00001011 FifoFull level Holds the level below which the FIFO is

considered full

00001100ViewData event Holds the enabling event

00001101ViewData control 1 Holds include/exclude region

00001110ViewData control 2 Holds include/exclude region

00001111ViewData control 3 Holds include/exclude region

0001xxxx Addr. comparator 1–16 Holds the address of comparison

0010xxxx Addr. access type 1–16 Holds the type of access

0011xxxx Data compare values Holds the data to be compared

0100xxxx Data compare masks Holds the mask for the data access

010100xx Initial counter value 1–4 Holds initial value of the counter

010101xx Counter enable 1–4 Holds counter clock enable/event

010110xx Counter reload 1–4 Holds counter reload event

0101 11xx Counter value 1–4 Holds current counter value

0110 0xxx Sequencer state/ctrl Holds the next state triggering events

0110 10xx External output 1–4 Holds controlling event for each output

0111 0xxx Implementation specific

The ETM9 is a configurable block that can be instantiated with differing amounts

of event, trigger, and supporting logic to create trace functions with different

 complexity levels; the “medium” complexity version of the ETM9 provides the

following features:

Four address comparator pairs.•฀

Two data comparators with filter function.•฀

Four direct trigger inputs.•฀

One trigger output.•฀

Eight memory-map decoders for decoding the physical address area.•฀

One sequencer.•฀

Two counters.•฀

The ETM includes a memory map decode (MMD) block which, to simplify the

access of other logic that the core is attached to, decodes address maps using

device-specific logic. This logic drives the MMDIN inputs to the ETM, for use in

triggering and analysis, in a similar manner to the address comparator and address

range comparator resources. The eight MMD regions are decoded in hardware to

correspond to different memory regions, as illustrated by the following example:

Address range affected accesses

0000 0000H – 0000 0FFFH instruction cache (I-cache)

0000 1000H – 0000 1FFFH data cache (D-TCM)

218 13 ARM ETM

0000 2000H – 0FFF FFFFH user RAM access

1000 0000H – 100F FFFFH FLASH access

1010 0000H – 101F FFFFH communication RAM access

2000 0000H – 2FFF FFFFH SDRAM access

3100 0000H – 31FF FFFFH peripheral access

8000 0000H – FFFF FFFFH PCI access

13.3 Trace Interface

In order to read out the trace information collected by the ETM9, a trace port is

used to trace internal processor states. The trace port is controlled, enabled, and

disabled using an external debug probe connected to the JTAG interface. This trace

port uses the TRACEPKT as a trace data port. These TRACEPKT signals are typi-

cally multiplexed with other pin signals to preserve pin resources; in many cases

they are shared with the GPIO port. The trace interface can be configured to output

data at a data width supported by the trace port, so for a 16-bit port, trace may be

4, 8, or 16 bits wide. Smaller trace ports are naturally more limited. For example,

if a data width of 4 bits is selected, the TRACEPKT (3:0) signals at GPIO (11:8)

are automatically switched to the trace function. If a data width of 8 bits is assigned,

the TRACEPKT (7:4) signals at GPIO (21:18) are also switched to the trace

function.

219N. Stollon, On-Chip Instrumentation: Design and Debug for Systems on Chip,

DOI 10.1007/978-1-4419-7563-8_14, © Springer Science+Business Media, LLC 2011

Infineon MCDS is a multicore debug solution developed for their own chips. Like

other debug solutions discussed, it consists of configurable IP building blocks,

which provide trace compression, trace qualification, timestamping, and complex

cross-target triggering. It also enables measurement of several performance indi-

cators in parallel with timestamped trace results.

Figure 14.1 shows the MCDS sub-system consisting of a MCDS kernel and on-

chip trace memory (TMEM). In this example, communication between the on-chip

debug environment and the debug tool is implemented based on a JTAG TAP with

optional data trace interfaces. Infineon was a long time member of Nexus Forum

and its interfaces are in areas partially compliant with Nexus ports (see Chap. 11).

Each debug target (processor core, bus) is connected to the MCDS through an

adaptation logic block. The design of such a block may be target-specific. Each

block adapts the target’s custom interface to a generic standardized interface that is

used by MCDS. It also synchronizes signals from the target side to the clock

domain of the MCDS in case they are in different clock domains.

The architecture of the MCDS kernel depends on the number and type of debug

targets and consists of so-called observation blocks (OB), a multicore cross connect

(MCX), and a debug memory controller (DMC). The MCX is connected to all OBs

and the DMC. It is responsible for distribution of cross triggers, which are program-

mable, and provides a central timestamp for all trace messages. Additionally, MCX

provides a number of counters, which can be used to count events and trigger an

action after an event has occurred n times or a certain time period has elapsed.

MCX provides the functionality to observe a system with multiple processor cores,

where interactions between the cores take place and complex conditions have to be

evaluated to recognize a certain event.

Each target signal within the SoC is connected to its dedicated OB. Within this

block, trace qualification and trace message generation take place. Each OB may

contain several custom trace units of different types.

To start or stop the trace recording, generate cross triggers, and control the

targets, trace qualification logic is implemented as shown in Fig. 14.2. The trigger

logic, based a AND/OR matrix operating on direct or negated inputs, and triggering

on edge or level logic conistions is implemented for all trace qualification blocks

contained in the OBs and in the MCX.

Chapter 14

Infineon Multicore Debug Solution

220 14 Infineon Multicore Debug Solution

Adaptation

OB 1

Target 1

Adaptation

OB 2

Target 2

Adaptation

OB n

Target n

MCX

DMC

Break In / Out

System / Peripheral Bus

TMEM

Msg Msg Msg Msg

JTAG

Fig. 14.1 MCDS sub-system. Source: Infineon Technologies AG. All rights reserved

Trigger 1

Trigger 2

Trigger 3

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

OR

Trigger n

OR OR

OR OR

OR OR OR

Action 1

Action 2

Action 3

Action n

Trigger Pool

฀ Triggers from Core

฀ Triggers from trace

units

฀ Triggers from MCX

(cross triggers)

฀ Triggers from Counter

(MCX only)

Programmable

Fig. 14.2 MCDS trace qualification. Source: Infineon Technologies AG. All rights reserved

22114.1 MCDS Trace Protocol Definition

From the perspective of the debug tool, the MCDS has to be programmed for a

certain debug or trace task by writing configuration information into a set of

memory-mapped registers. These registers control the AND/OR matrices of each

OB, the DMC, and a number of trigger sources (e.g., address/data comparators).

14.1 MCDS Trace Protocol Definition

The basic interface is a synchronous tagged data protocol without handshake. The

sender places the data in well-defined packets on the data port and indicates concur-

rently on the mode port which kind of packet is present.

Merging the mode into the data packet is avoided to simplify the implementa-

tion. The mode port must be able to express at least two different values: IDLE and

VALID. If different kinds of data are supported, VALID is replaced by other mode

port values as shown in Table 14.1.

The MODE port can be used to propagate a response to the debugger via a bus

observer block between this trace interface and the system bus (Table 14.1).

If a time-out mechanism is provided, a synthetic FORGET is used. Protocol

errors are also forwarded downstream as FORGET. As no back channel is provided,

the offending message is dropped by the receiver. Some fine points about the pro-

tocol implementation are as follows:

MCDS processor cores. The smallest common denominator is the interface •฀

described here, comprising of two ports:

Base address: After power on and after each discontinuity of the program –

flow, the trace logic needs to know the exact and complete value of the

instruction pointer.

Table 14.1 MCDS interface mode encoding

Mode Description

IDLE Do nothing, the data port holds no value. The data

previously transferred is still valid.

VALID A new value of the implicitly defined (only possible) format

of the receiver is on the data port.

BYTE A new value of the given format is on the data port.

HALFWORD

WORD

DOUBLE

READ A new transaction of the given direction is on the data port.

WRITE

FORGET The data previously transferred is no longer valid. The data

port may hold additional information during the first

clock cycle (see Program Trace below).

Source: Infineon Technologies AG. All rights reserved

222 14 Infineon Multicore Debug Solution

Instruction pointer increment: Once the base is known, only the incremental –

updates required to keep the local copy in sync with the original instruction

pointer.

Discontinuities are either:•฀

Direct: Branches are caused by jump instructions in the executed program. –

The target address is a constant (label) in the source code and can be obtained

from there by the decoder software. A branch of this kind is indicated by

FORGET (see Table 14.1) on the increment port.

Indirect: Branches are caused by jump instructions with calculated target –

address (e.g., return from subroutine) or by exceptions (e.g., interrupts, traps).

In these cases, the target address must be contained in the trace memory.

FORGET on the base port is used to indicate such a branch. Each FORGET

received on any of the two ports invalidates the current base address. The

exact protocol definition is given in Table 14.2.

There is no need for the sender to serve both ports concurrently. The only requirement

is that the base is sent prior to (or at least concurrently with) the next discontinuity.

If this is not possible, the sender may set both mode ports to FORGET, as this is

interpreted as overrun (Fig. 14.3).

After each branch, the instruction pointer is unknown to the trace logic until a

new base address is received. However, the decoder software may already know the

address (e.g., L1 in Fig. 14) from the source code.

Table 14.2 Discontinuity protocol

Base Address Protocol

Mode Port Data Port

IDLE Don’t care.

VALID Target address after a preceding discontinuity, optionally the current

instruction pointer otherwise.

FORGET Target address after a preceding discontinuity. This base must only be used

for one clock cycle and discarded thereafter. Don’t care otherwise.

Instruction Pointer Increment Protocol

Mode Port Data Port

IDLE Don’t care.

VALID Instruction pointer increment. This is the number of bytes the

instruction pointer was advanced since the last time the Mode Port was

not IDLE.

FORGET Instruction pointer increment. This is the number of bytes the instruction

pointer was advanced linearly since the last time the Mode Port

was not IDLE. In case of a taken branch this includes the branch

instruction.

Source: Infineon Technologies AG. All rights reserved

22314.1 MCDS Trace Protocol Definition

For multiscalar processors, the last increment leading to a taken branch (e.g., d4

in Fig. 14.3) may include more than the branch itself. It is therefore not guaranteed

that the branch instruction is stored at address L0+d1+d2+d3.

In the case of some exceptions (e.g., illegal target address) the target address

must be analyzed to distinguish the exception from a taken branch. That is why it

is important to treat exceptions and interrupts as indirect branches.

14.1.1 Data Trace

To trace transactions on an arbitrary bus system, consisting of address, data, and

control information, the following are needed:

The effective address (byte granularity).•฀

The current data (size depending on transaction).•฀

Auxiliary information (bus mode) such as mastership and privileges.•฀

The mode of the third item is used to signal completeness. Whenever asserted,

READ or WRITE information concurrently valid is considered to belong to the

same transaction. The mode port of transaction type is READ or WRITE for exactly

one clock cycle for each transaction (Table 14.3).

Ownership is used to refer to a task ID or process ID. The generic OTU is able

to process the ownership information of an arbitrary processor core if implemented

in hardware. As the rate of change for the process ID is rather low, it will often be

sent multiplexed over other trace interface signal lines of the core. This is legal,

provided a dedicated signal to drive the mode port is available. If the core is not

doing any useful work (e.g., if no task is active), the process ID should be invalidated

by FORGET.

Fig. 14.3 Trace for minimized messages. Source: Infineon Technologies AG. All rights reserved

224 14 Infineon Multicore Debug Solution

14.2 Debug Transactor: RUN Control Bus Master

A basic bus transactor implementation supports simple read and posted write data

operations and may require stalling between operations to ensure synchronization

of signaling more advanced operations. More advanced operations such as bursting

may require additional (dedicated) logic (Fig. 14.4).

A transactor bus master operation can be initiated from either an external reg-

ister load or from trigger output signals acting on specific bus-monitoring opera-

tions. Address and data for individual bus transactions can also be written from

the externally controlled registers, although this may be a slower manual process

or require multiple cycles. Alternately, writing of regular (i.e., incrementing or

other simple pattern) address and data can be controlled by counters or by logic

enabled by trigger signals. Data signals or performance data may also be traced

(i.e., sequentially or periodically) with the bus master operations optionally stalled

during the JTAG data-download phase, avoiding loss of continuity. Additional

trigger or state signals may be used for defining and controlling basic memory

maps or domains.

Table 14.3 Transaction protocol

Transaction Address Protocol

Mode Port Data Port

IDLE Don’t care.

VALID Address (byte accurate) sent by the master to the slave.

FORGET Don’t care.

Transaction Data Protocol

Mode Port Data Port

IDLE Don’t care.

BYTE Data byte (8 bit, right justified) written by the master or

read from the slave.

HALFWORD Data half-word (16 bit, right justified) written by the

master or read from the slave.

WORD Data word (32 bit, right justified) written by the master or

read from the slave.

MIS48 Misaligned double-word (48 bit, right justified) written by

the master or read from the slave.

DOUBLE Data double-word (64 bit, right justified) written by the

master or read from the slave.

FORGET Don’t care

Transaction Type Protocol

Mode Port Data Port

IDLE Don’t care.

WRITE Additional information (e.g. master ID, privilege level).

READ Additional information (e.g. master ID, privilege level).

FORGET Don’t care.

Source: Infineon Technologies AG. All rights reserved

22514.3 MCDS Run Control: On-Chip Debug Support

14.3 MCDS Run Control: On-Chip Debug Support

MCDS supports three levels of debug operation:

Level 1 is for use for real-time software debugging operations based on a JTAG

interface that is used by the external debug hardware to communicate with the

system. The on-chip Cerberus bus master module controls the interactions between

the JTAG interface and the on-chip modules. The external debug hardware may

become master of the internal buses and may read or write to the on-chip register/

memory resources. The Cerberus also makes it possible to define breakpoint and

trigger conditions, as well as to control user program execution (run/stop, break,

single step).

Level 2 makes it possible to implement program tracing capabilities for enhanced

debuggers by extending the level 1 debug functionality with an additional 16-bit-

wide trace output port with trace clock. With the trace extension, trace capabilities

are provided for several cores and IP-blocks with just one trace being active at a

time.

MCDS level 3 is based on a multicore debug solution using a special emulation

device that has additional features required for high-end emulation purposes. It does not

use more interface signals, but replicates the debug interface for many cores and pro-

vides two out of N simultaneous trace channels differentiated by the process ID port.

Components in Fig. 14.5 include:

Cerberus OCDS system control unit (OSCU).•฀

Cerberus multicore break switch (MCBS) (cross-trigger unit with extensions).•฀

Cerberus JTAG debug interface (JDI).•฀

Suspend functionality of the peripherals (stop block activity for debug •฀

purposes).

Several level 1 and level 2 units for the cores and IP blocks.•฀

BCU that allows cross-triggering by the system bus events.•฀

Fig. 14.4 A bus master transactor

226 14 Infineon Multicore Debug Solution

The main philosophy of the cores is that the complete architecture and the status

of a target system are visible from its memory-map address space, including on-chip

memories, processor core registers, and the register of the peripheral units.

A typical level 1 debugging configuration includes:

 1. The debugger software, supporting a standard JTAG protocol via a PC port.

 2. The debugger hardware adapter, connecting the JTAG interface.

The processor core provides Cereberus with the following two basic parts:

Debug event trigger generation.•฀

Debug event trigger processing.•฀

The first part controls the generation of debug events and the second part controls

what the actions are from the triggers.

Debug Event Generation: If debug mode is enabled, debug events can be gener-

ated by:

Debug event generation from debug triggers.•฀

Activation of the external break input pin BRKIN.•฀

Execution of a DEBUG instruction.•฀

Execution of an MTCR/MFCR instruction.•฀

Debug Actions: Four types of debug actions are available:

Fig. 14.5 Debug system block diagram. Source: Infineon Technologies AG. All rights reserved

22714.3 MCDS Run Control: On-Chip Debug Support

Assert BRKOUT signals by the MCBS unit.•฀

Halt the processor core.•฀

Cause a breakpoint trap.•฀

Generate an interrupt request.•฀

These debug actions are selected by programming the corresponding event specifier

registers which determine the action taken when the corresponding debug event

occurs (Table 14.4).

14.3.1 BCU Level 1 (Bus-Observer Unit on the System Bus)

The BCU on the system bus supports both level 1 and means for breakpoint genera-

tion. The BCU contains one comparator for the following:

The arbitration phase (look for specific bus master).•฀

The address phase (look for specific address or range).•฀

The data phase (look for read, write, supervisor mode, etc.).•฀

The results can be combined to generate a break request signal, to be sent to the

break switch (cross trigger block).

For a level 2 trace, in every trace clock cycle, 16 bits of core trace information

are sent out, representing the current state of the cores. The trace output lines are

grouped into three parts:

5 bits of pipeline status information.•฀

8-bit indirect PC bus information.•฀

3 bits of breakpoint qualification information.•฀

With this information, an external debugger can reconstruct a cycle-by-cycle image

of the instruction flow. The trace information can be captured by the external

Table 14.4 MCDS debug registers

Register Short Name Register Long Name Address

DBGSR Debug Status Register F7E1 FD00
H

EXEVT External Break Input Event

Specifier Register

F7E1 FD08
H

CREVT Core SFR Access Break Event

Specifier Register

F7E1 FD0C
H

SWEVT Software Break Event Specifier

Register

F7E1 FD10
H

TR0EVT Trigger Event 0 Register F7E1 FD20
H

TR1EVT Trigger Event 1 Register F7E1 FD24
H

CPU_SBSRC CPU Software Break Service

Request Control

F7E0 FFBC
H

a

aLocated in the CPU slave (CPS) interface register area

Source: Infineon Technologies AG. All rights reserved

228 14 Infineon Multicore Debug Solution

debugger hardware and used to rebuild later (off-line, using the source code) a

cycle-accurate disassembly of the code that has been executed. It is also possible to

follow in real time the current PC, facilitating advanced tools such as profilers and

coverage analysis tools.

The trace output port is controlled by the OSCU. The trace data can be output at

processor clock speed. The trace clock can be higher if two cores are traced or if a

better compression of trace data of all cores can keep the trace clock low.

14.3.2 Concurrent Debugging in Level 3 MCDS

(Two-Channel Tracing)

A concurrent debugging is possible when the control port is used as the second

channel and the ownership port is extended with process ID to differentiate between

two sources that are traced. The debug setup must define which two cores or IP

blocks were selected for concurrent tracing.

14.3.3 Debug Interface (Cerberus) (Debug Bus-Transactor

Module)

The Cerberus module is the on-chip unit that controls all levels’ main debug func-

tions. Generally, the Cerberus should not be used by any application software,

because this could disturb the emulation tool behavior.

The Cerberus module is built up by three parts:

OCDS system control unit debug bus master.•฀

JTAG debug interface JDI.•฀

Multicore break switch cross-trigger unit.•฀

14.4 RW Mode and Communication Mode

As the name implies, the RW mode is used by a JTAG host to read or write arbitrary

memory locations via the JTAG interface. The RW mode needs the FPI bus master

interface of the Cerberus to actively request data reads or writes.

In communication mode, the Cerberus has no access to the system bus and com-

munication is established between the external JTAG host and a software monitor

(embedded in the application program) via the Cerberus registers. The communication

mode is the default mode after reset.

22914.5 Multicore Break Switch

In communication mode, the external JTAG host is master of all transactions and

requests the monitor to write or read a value to/from the Cerberus COMDATA

register. The difference to RW mode is that the read or write request is not actively

executed by the Cerberus, but it sets request bits in the processor-accessible register

to signal the monitor that the debugger wants to send.

14.5 Multicore Break Switch

In this example, there are two main processor units, the processor core 1 and the

PCP2 (a co-processor) core 2. For debugging purposes, the OCDS run control of

one processor unit can break (interrupt) the other processor unit or vice versa. The

run control tasks are handled by the MCBS unit, which is part of the Cerberus.

Figure 14.6 shows the break signal interfaces of this MCBS unit.

The MCBS unit supports the following features (very similar to the OCP debug

standard):

Two independent break-out master units (Core 1 and Core 2).•฀

Six break-in sources (processor core, PCP, DMA, SBCU, MLI0, MLI1).•฀

Two port pins, BRKIN and BRKOUT.•฀

Two independent break buses (two out of •฀ N).

Suspend generation supports delayed suspend.•฀

Break-to-suspend converter.•฀

Create interrupt request with a break coming from a source.•฀

Synchronous restart of the system.•฀

The MCDS is designed to support complex multicore/debugging environments;

several debugger applications may have to share a common resources, which may

include registers, trace buffers, and the JTAG interface (Table 14.5).

Fig. 14.6 Break switch interfaces. Source: Infineon Technologies AG. All rights reserved

230 14 Infineon Multicore Debug Solution

Table 14.5 Cerberus bus master registers

Register short name Register long name Address

OJCONF OSCU Configuration by JTAG Register (a)

CBS_OEC Cerberus OCDS Enable Control Register F000 0478
H

CBS_OCNTRL Cerberus OSCU Configuration and Control

Register

F000 047C
H0

CBS_OSTATE Cerberus OSCU Status Register F000 0480
H

CLIENT_ID Cerberus JTAG Client Identification Register

(32-bit)

(a)

IOCONF Configuration Register (12-bit) (a)

IOINFO State Information for Error Analysis Register

(16-bit)

(a)

IOADDR Address for Data Access Register (32-bit) (a)

IODATA RW Mode Data Register (32-bit) (a)

CBS_JDPID Cerberus Module Identification Register F000 0408
H

CBS_COMDATA Cerberus Communication Mode Data Register F000 0468
H

CBS_IOSR Cerberus Status Register F000 046C
H

CBS_INTMOD Cerberus Internal Mode Status and Control

Register

F000 0484
H

CBS_ICTSA Cerberus Internal Controller Trace Source

Address Register

F000 0488
H

0

CBS_ICTTA Cerberus Internal Controlled Trace Target

Address Register

F000 048C
H

CBS_MCDBBS Cerberus Break Bus Switch Configuration

Register

F000 0470
H

CBS_MCDBBSS Cerberus Break Bus Switch Status Register F000 0490
H

CBS_MCDSSG Cerberus Suspend Signal Generation Status

and Control Register

F000 0474
H

CBS_MCDSSGC Cerberus Suspend Signal Generation

Configuration Register

F000 0494
H

CBS_SRC Cerberus Service Request Control Register F000 04FC
H

aThese registers are only accessible via the JTAG interface

Source: Infineon Technologies AG. All rights reserved

231N. Stollon, On-Chip Instrumentation: Design and Debug for Systems on Chip,

DOI 10.1007/978-1-4419-7563-8_15, © Springer Science+Business Media, LLC 2011

Toshiba supports debug using a version of EJTAG interface revision 1.5, which

was released in the late 1990s. This diverges from the current MIPS-EJTAG

interface revisions, so a MIPS EJTAG debugger to would not support Toshiba

MIPS architecture based parts (and vica versa). Likewise, debug instruction and

registers are different from current MIPS. Like other versions of EJTAG, the

Toshiba EJTAG interface is an extension to the IEEE 1149.1 JTAG interface.

Additional status pins and debug clock signals, in conjunction with JTAG pins,

provide real-time PC trace information. Because serial bus access to the memory

in the external processor probe is available through the JTAG interface, the

debug program can be placed in the external memory. Access to all resources’

connected to the processor is available by the DMA function through JTAG

interface. The debug support unit (DSU) in the Toshiba MIPS core has an

8-double-word scratch pad memory (MIB), which reduces communication time

through JTAG interface.

The following are some of the areas where the Toshiba EJTAG diverges from the

more current EJTAG specification:

Instruction address break.•฀

Data bus break.•฀

Processor bus break.•฀

Hardware debug interrupt.•฀

Reset, NMI, interrupt mask.•฀

Instructions for debug – SDBBP, DERET, CTC0, CFC0.•฀

CP0 registers for debug – Debug, DEPC, DESAVE.•฀

EJTAG interface signals are the main debug connection. Basic debug functions can

be used by connecting GTCK, GTRST, GTMS, GTDI, and GTDO to an external

processor probe. These are logic equivalent to the standard 1149.1 JTAG interface

signals. GTDOE is the output-enable signal for GTDO. GDCLK, GPCST[8:0], and

GTPC[3:1] are Toshiba-specific signals used for PC trace.

As a side note: Toshiba has a system bus for MIPS architectures called G-Bus.

They put a G prefix on any bus signal that comes close to the core.

During PC trace the GTID and GTDO signals disable their JTAG-related

 functions and are respectively used for:

Chapter 15

EJTAG and Trace in Toshiba TX Cores

232 15 EJTAG and Trace in Toshiba TX Cores

Debug interrupt of PC trace (GDINT).•฀

PC output bit 0 of PC trace (GTPC[0]).•฀

The other signals used for PC trace are:

GTDOE putput-enable signal of test data output.•฀

GDCLK output clock of PC trace (1/3 processor CLK).•฀

GPCST [8:0] output status information of PC trace.•฀

GTPC [3:1] PC output bit [3:1] of PC trace.•฀

The PC trace is driven by the GDCLK, which originates on the chip and can be

asynchronous to GTCK.

15.1 Processor Access Overview

The TX core accesses the external processor probe and reads/writes the external

monitor memory, registers, and other external resources.

By enabling the processor probe, instructions in the external memory can be

executed. Access to the monitor is allowed only when this processor is in debug

mode (DM = 1).

The address of the external monitor memory is set in the JTAG_Address_

Register by the processor. The data written to or read from an external agent is

transferred through the JTAG_Data_Register. JTAG_Control_Register is used to

control processor access.

The TX49 core can implement DMA to the internal registers connected to the

internal processor bus, host system peripheral, and system memory through the

JTAG interface. By using this function, the system memory can be read or written

by the external processor probe. The address to perform DMA is set in the JTAG_

Address_Register by using the external processor probe. The data written or read

by DMA is transferred to the internal processor bus through the JTAG_Data_

Register. JTAG_Control_Register is used to control DMA.

The MIB (monitor instruction buffer) is an optional 64-bit (8 double-words) scratch

pad memory used to transfer data between the core and external agent on MIB access.

The MIB control register is used to control MIB accesses to the processor core.

Parameters used for the monitor program during debug, and parts of the monitor

program, can be set in this memory. The monitor program reads and writes the MIB

with values from the MIB data register.

There are several types of simple hardware breakpoints defined in the EJTAG

specification. These stop the normal operation of the processor and force the system

into debug mode. The break occurs when certain activities take place on the processor

address, data, and control buses. The debug exception occurs before the bus trans-

action occurs, preserving any content in the register file or memory. Hardware

breaks, unlike software breaks, can be made based on the address on the memory

bus, so breakpoints can be set for access to any area of memory. Hardware breaks

also enable breaks on load/store operations.

23315.2 Toshiba EJTAG Instructions and Registers

Generally, breakpoints are set up in debug mode and become operational when

normal operational mode is re-entered. Using the EJTAG DMA circuitry, the devel-

oper can enable breakpoints in normal mode so that the system maintains real-time

operation up to the moment of the breakpoint encounter. There are 45 break chan-

nels defined in the specification. With the maximum amount of breakpoint hard-

ware, it is possible to have up to 45 concurrent breakpoints set, with each operating

independently with separate breakpoint values.

15.2 Toshiba EJTAG Instructions and Registers

EJTAG instructions share the 8-bit IR field between EJTAG instructions for the TX

debug support unit, with JTAG codes for standard JTAG instructions (EXTEST,

SAMPLE/PRELOAD, INTEST, IDCODE, and HI-Z). EJTAG instructions are as

shown in the following:

EJTAG_ImpCode selects the implementation register.

JTAG_ADDRESS_IR selects the JTAG_Address_Register.

JTAG_DATA_IR selects the JTAG_Data_Register.

JTAG_CONTROL_IR selects the JTAG_Control_Register.

JTAG_ALL_IR selects the JTAG_Address_Register, JTAG_Data_Register, and

JTAG_Control_Register and serially connects them together into a single value.

PCTRACE selects the PCTRACE instruction.

0xA0–0xAF MIB_WRITE_DEC selects the MIB data register.

0xB0–0xBF MIB_WRITE_INC selects the MIB data register.

0xC0–0xCF MIB_READ_DEC selects the MIB data register.

0xD0–0xDF MIB_READ_INC selects the MIB data register.

0xE0–0xEF MIB_CONTROL selects the MIB control register.

The EJTAG interface has the following registers:

•฀ Instruction register: 8-bit instruction register (required by JTAG).

•฀ Bypass register: 1-bit bypass register (required by JTAG).

234 15 EJTAG and Trace in Toshiba TX Cores

•฀ Device identification register (required by JTAG).

•฀ Implementation register: defines the parameters as listed here for usable debug

functions for a given implementation:

MIPS32/64 – 32- or 63-bit debug function register length. ○

InstBrk – instruction address break available. ○

DataBrk – data bus break available. ○

ProcBrk – processor bus break available. ○

PCSTW – width of PCST output for PC trace. ○

TPCW – width of TPC output for PC trace. ○

NoDMA – DMA available through JTAG. ○

NoPCTrace – PC trace available. ○

MIPS16 – Support for MIPS16. ○

IcacheC – instruction cache coherency available on DMA implementation. ○

DcacheC – data cache coherency available on DMA implementation. ○

PhysAW – physical address length. ○

MIB – monitor instruction buffer availability. ○

JTAG_Data_Register is used to transfer data between the core and external agent

during processor access and DMA implementation.

JTAG_Address_Register is a 36-bit register used to transfer addresses between

the core and external agent during processor access and DMA implementation.

JTAG_Control_Register is used to control a variety of EJTAG functions as listed

here and to observe the processor state:

BrkSt – Indicates whether the processor core is in debug mode.•฀

Dinc – Increments address automatically on DMA.•฀

Dlock – Locks a bus for DMA.•฀

Dsz[1:0] – Specifies the data transfer size.•฀

Drwn – Specifies either DMA read or DMA write operation.•฀

Derr – Indicates whether an error occurs in DMA.•฀

Dstrt – Starts DMA transfer and indicates that DMA is being implemented.•฀

JtagBrk – Generates a debug interrupt through JTAG.•฀

ProbEn – Informs the debug support unit that the external processor probe is •฀

connected.

PrRst – Resets the processor core.•฀

DmaAcc – Requests DMA.•฀

PrAcc – Sets when the processor core issues an access request to an external •฀

processor probe; the external processor probe accesses memory in the exter-

nal system and writes to the JTAG_Data_Register if required, then resets

PrAcc.

PRnW – Indicates whether the processor access is a read or write operation.•฀

PerRst – Resets the peripheral circuits except the processor core on SoC.•฀

Run – Indicates whether the processor core is in halt mode.•฀

Doze – Indicates whether the processor core is in doze mode.•฀

Sync – Sets whether to start PC trace synchronously to DERET.•฀

23515.4 Processor Debug Instructions and CP0 Registers

PCLen – Specifies the output length of the target PC of PC trace.•฀

MibEn – Makes MIB usable.•฀

15.3 Debug Exceptions

A useful element for software debug is a high-priority debug exception (with a

higher priority than all other exceptions). The debug exception can occur when

a software debug breakpoint instruction is encountered, a single-step instruction

occurs, a JtagBrk debug event is registered by the EJTAG circuit, or a hardware

breakpoint occurs. When the debug exception occurs, the processor switches into

debug mode, where there are no restrictions on access to coprocessors and memory

and where the usual exceptions like address error and interrupt are masked.

The debug exception handler is provided by the debug system and can be exe-

cuted through the EJTAG port using the processor access circuitry, or it can be

placed in application code space if it is required.

Exception processing in debug mode (DM bit is set) means that all interrupts

including NMI are masked. When the NMI interrupt occurs during debug mode, it

is stored internally. The NMI interrupt is taken after the debug handler is finished

(DM is cleared).

On debug exception processing, the DEPC and debug registers are updated. The

registers other than the DEPC and debug registers retain these values.

The following three types of debug exceptions are supported:

Debug single-step when the SSt bit in the debug register is set, a debug single •฀

step occurs whenever each instruction is executed.

Debug breakpoint exception occurs when the SDBBP instruction is operated.•฀

JTAG break exception occurs when the Jtagbrk bit is set in the JTAG_Control_•฀

Register.

During real-time debug operation, both the Debug single-step and Debug break-

point exceptions are disabled.

15.4 Processor Debug Instructions and CP0 Registers

The following processor instructions and CP0 registers are added for debug:

SDBBP instruction – software debug breakpoint. –

DERET instruction – debug exception return. –

CTC0 instruction – move control from co-processor 0. –

CFC0 instruction – move control from co-processor 0. –

The software debug breakpoint (SDBBP) instruction is defined for the MIPS

instruction set architecture and for the code compression application-specific

236 15 EJTAG and Trace in Toshiba TX Cores

extension MIPS16. For simple breakpoints, the debug system can replace

application code instructions with software breakpoint instructions and generate a

debug exception.

For leaving the debug mode, a debug exception return (DERET) instruction is

also defined. When it occurs, the system leaves the debug mode and normal execu-

tion of application and system code resumes.

Debug registers are the DEBUG, DEPC, and DESAVE registers, which are

added to the MIPS co-processor 0 (CP0). The DEBUG register shows the cause

of the debug exception and any other standard exceptions which may have

occurred at the same time. Also, it is used to set up single-step operations. The

DEPC or debug exception program-counter register holds the address of where

the debug exception occurred. This is used to resume program execution after the

debug operation finishes. Finally, the DESAVE or debug exception save register

is a scratch pad for one of the general-purpose 32-bit registers of the processor.

This frees the general-purpose registers from duty in handling the debug excep-

tion handler, which executes without affecting the contents of any of the general-

purpose registers.

DEBUG register – Debug configurations and status holds the information for the

debug handler. Key values in the debug register include:

DM debug mode indicates that a debug exception has taken place. This bit is set •฀

when a debug exception is taken and is cleared on return from the exception

(DERET). While this bit is set, all interrupts, including NMI, TLB exception,

BUS error exception, and debug exception, are masked and the cache line-

locking function is disabled.

OES other exception status is set to indicate that an exception other than reset, •฀

NMI, or a TLB refill has occurred at the same time as a debug exception.

SSt is set to 1 to indicate the single-step debug function is enabled.•฀

DINT (debug interrupt break exception status) is set to 1 when debug interrupts •฀

occur.

DIB (debug instruction break exception status) is set to 1 on instruction address •฀

break.

DDBS (debug data break store exception status) is set to 1 on data address break •฀

at store operation.

DDBL (debug data break load exception status) is set to 1 on data address break •฀

at load operation.

DEPC – The debug exception PC register.

DESAVE – The debug SAVE register.

The debug support unit also has ranges of registers used to set up breakpoints.

Accessing these registers is allowed only when the processor is in debug mode

(DM = 1). In other modes (DM = 0), accessing these registers will cause an

address error.

The debug control register is used to control debug functions:

23715.5 Break Functions

Select whether to stall the processor and output all bits of PC or abort output of •฀

the target PC without stalling the processor.

Indicate the core is in halt or doze mode when a debug exception occurs.•฀

The following relate to instruction, data, or processor break:

Instruction address break status register shows the instruction address break status.•฀

Instruction address break address register 0 is used to specify the instruction •฀

breakpoint in the virtual address.

Instruction address break control register 0 controls an instruction address break, •฀

allowing a debug exception by an instruction address break or output of trace

trigger by an instruction address break.

Instruction address break address mask register 0 used to specify the mask bits •฀

for comparison of the instruction address breakpoint.

Data bus break address register 0 specifies the data bus breakpoint in virtual •฀

address.

Data bus break control register 0 controls a data bus break by allowing active •฀

debug exceptions by a data bus break, an output of trace trigger by a data bus

break, and/or the byte to be masked of the data value to make a break occur.

Data bus break address mask register 0 is used to specify the mask bits for com-•฀

parison of the data bus breakpoint address.

Data bus break value register 0 is used to specify the data bus breakpoint value.•฀

Processor bus break address register 0 is used to specify the processor bus break-•฀

point in physical address.

Data bus break status register shows the data bus break status and number of data •฀

bus break channels.

Processor bus break data register 0 is used to specify the processor bus break-•฀

point value.

Processor bus break data mask register 0 is used to specify the mask bits for •฀

comparison of the processor bus breakpoint value.

Processor bus break control register 0 controls a processor bus break by allowing •฀

debug exception by a processor bus break, trace trigger by an instruction address

break, or on instruction fetch or data read or write, by making a processor bus

break occur.

Processor bus break status register stores the processor bus break status, with the •฀

number of processor bus break channels.

15.5 Break Functions

The TX49 debug support unit provides the following break functions:

Instruction address break function. –

Data bus break function. –

Processor bus break function. –

238 15 EJTAG and Trace in Toshiba TX Cores

The instruction address break function monitors the program counter of the TX49

core and makes debug interrupt or trace trigger occur on the fixed virtual address

via the following accesses:

Specify the address to make a break occur in the IBA0 register.•฀

Use the IBM0 register to specify to each bit whether to compare the address in •฀

the IBA0 register.

Use the IBC0 register to control the debug interrupt or trace trigger •฀

occurrence.

Use the IBS register to check whether an instruction address break occurs.•฀

Data bus break function monitors the interface between the execution unit of the

TX49 core and level 1 cache and causes a debug interrupt or trace trigger to occur

on the fixed virtual address or for the data via the following accesses:

Specify the address or data to make a break occur in the DBA0 register or the •฀

DB0 register.

Use the DBAM0 register to specify bits to compare against the address set in the •฀

DBA0 register.

Use the DBC0 register to specify which bytes to compare to data.•฀

Use the DBC0 register to control the debug interrupt or trace trigger •฀

occurrence.

Use the DBS register to check whether a data bus break occurs.•฀

The processor bus break function monitors the interface to the TX49 core and

makes a debug interrupt or trace trigger occur on the fixed virtual address or for

data via the following accesses:

Specify the address to make a break occur in the PBA0 register and the data to •฀

cause a breakpoint in the PBD0 register.

Use the PBM0 register to specify whether to compare each bit set in the PBD0 •฀

register.

Use the PBC0 register to specify to each bit whether to compare the address. Use •฀

the PBC0 register to control the debug interrupt or trace trigger occurrence.

Use the PBC0 register to specify whether to make a break occur depending on •฀

the type of bus access (instruction fetch, data access, or cached/uncached area).

Use the PBS register to check whether an instruction address break occurs.•฀

15.6 Output by PC Trace

For real-time PC trace output in PC trace mode, the no-sequential program counter

and trace information are output to GTPC [3:0] and GPCST [8:0] at 1/3 of the pro-

cessor clock. The pipeline status of three clocks is output in GPCST by the processor

clock. GPCST[8:6] is the first (the oldest) status, and GPCST[2:0] is the last (the

latest) status.

23915.6 Output by PC Trace

Program counter values and exception codes are output in GTPC for every 4

bits. In order to decrease the number of pins of trace signals, the program counter

values are output to GTPC only when program counter values are changed nonse-

quentially (indicating that a jump instruction is executed). The program counter to

be output is of 30-bit or 44-bit length, which is selected by the PCLen bit in the

JTAG_Control_Register. When the program counter to be output is 30-bit length, 8

cycles of DCLK (24 cycles of processor CLK) are required to output all 30 bits.

When the program counter to be output is 44-bit length, 11 cycles of DCLK (33

cycles of processor CLK) are required to output all 44 bits. Because the exception

code is 4-bit length, 1 cycle of DCLK (3 cycles of processor CLK) is required.

If the next jump instruction is generated before the program counter output by

the past jump instruction is completed, one can choose to force termination of the

past program counter output or to complete the past program counter output by

stalling the pipeline. Select either one with the TM bit in the debug control

register:

GPCST shows the pipeline status.

111 STL The pipeline is stalled.

110 JMP The jump instruction with the target PC output is executed (the target PC

is output in GTPC).

101 BRT The jump instruction without the target PC output is executed.

100 EXP An exception occurs (the exception code is output in GTPC).

011 SEQ A normal instruction that is not a jump instruction is executed (including

the case that the jump conditions are not met by the condition jump instruction).

010 TST A trace trigger occurs during pipeline stall.

001 TSQ A trace trigger occurs during execution of the normal instruction in the

pipeline.

000 DBM The core is in debug mode (DM = 1).

241

A

Action Node (AN), 110, 111, 113, 157

Advanced microcontroller bus architecture

(AMBA), 23, 24, 28, 86, 89

Advanced Processing. Unit (APU), 125, 126,

128

AHB. See AMBA high-speed bus

AJTAG, 34, 117, 135

AMBA. See Advanced microcontroller bus

architecture

AMBA high-speed bus (AHB), 23, 24, 28,

85, 86, 89, 91, 192

API, 29, 64, 106

APU, 125, 126, 128

ARM, 33, 34, 86, 213–218

AUX port, 132–135, 171, 180, 181, 183, 188

AXI, 85, 86, 89

B

Background data transport (BDX), 118, 129

Background debug mode (BDM), 13, 44,

46–48

BDM. See Background debug mode

BDX. See Background data transport

BIST, 141, 151

Boundary register, 39, 40, 43

Boundary scan, 31, 33, 38–44, 119, 142

Boundary scan architecture (BSA), 31, 117

Boundary-scan description language (BSDL),

39–44, 137–140, 142

Branch trace, 17, 174, 179

Breakpoint, 17, 33, 49, 61, 109, 157, 172,

195, 215, 225, 232

Break switch, 225, 227–229

BSA. See Boundary scan architecture

BSDL. See Boundary-scan description

language

BTM, 175

Bus master, 20, 63, 85, 91, 131, 154, 156,

224–225, 227, 228, 230

Bus-observer, 221, 227

Bypass, 33, 34, 37–39, 42, 43, 70, 71, 118,

121, 123, 124, 133, 135, 138, 141,

197, 233

C

CDX, 118, 128, 129, 134

Cerberus, 225, 228–230

CID. See Controller identification

CJTAG, 34, 117–135

Communication mode, 65–67, 74–77,

82, 83, 228–229

Comparator, 53, 97, 217, 227

Condition node (CN), 110, 111, 114, 115

Controllability, 1, 8, 9, 12, 26, 27, 92

Controller identification (CID), 125

CoreConnect, 86

Coresight, 31

Crosstrigger, 146, 147

Custom data transport, 118, 129

Cycle inaccurate trace, 204

D

Debugger, 1, 26, 36, 52, 62, 109, 146, 170,

200, 213, 221

Design for debug (DfD), 10

Device ID, 34, 37, 42, 43, 125, 178,

197, 234

DfD. See Design for debug

Disassembly, 30, 228

Discontinuity, 59, 60, 221, 222

DMA, 25, 47, 63, 86, 100, 102, 104, 163,

191, 196, 231, 232, 234

DOZE, 234, 237

DTS, 117, 118

Index

N. Stollon, On-Chip Instrumentation: Design and Debug for Systems on Chip,

DOI 10.1007/978-1-4419-7563-8, © Springer Science+Business Media, LLC 2011

242 Index

E

EJTAG, 6, 31, 34, 195–211, 213, 231–239

Electronic system level (ESL), 2, 7, 9, 10

Embedded trace module (ETM), 213–218

Emulation, 2, 8, 10, 13, 31, 44–46, 49, 51, 54,

171, 225, 228

Encoding, 57, 140, 221

EPU. See Extended protocol unit

ESL. See Electronic system level

ETM9, 213, 214, 216–218

Event_action, 80

Exception processing, 235

Extended protocol unit (EPU), 121, 126

F

Fastdata, 197

Fetch, 25, 53, 67, 195, 237

Flush, 53

G

Gateway, 117, 138, 140, 142, 144

Gateway element, 139–141

GPIO, 218

H

Halt, 46, 47, 54, 61, 64, 68–80, 109, 162,

172, 227, 234, 237

Hierarchical interface port (HIP), 140, 144

HIP. See Hierarchical interface port

Hyperdebug, 110–115

I

ICE. See In-circuit emulators

ICL. See Instrument connectivity language

IDCODE, 37–39, 42, 70, 121, 138,

197, 233

IEEE 1500, 143–144

IJTAG, 34, 44, 137–144

In-circuit emulators (ICE), 4, 6, 45–48,

92, 172

Input public message register (IPMR), 180

Instruction register (IR), 36–39, 42, 72, 74,

118, 121, 124, 129, 139, 140, 142,

197, 233

Instrument connectivity language (ICL), 137

Interrupt, 15, 18, 20, 24, 44–46, 52–55, 58,

77, 79, 80, 86, 91, 100, 114, 130, 155,

158, 159, 196–198, 223, 227, 229,

231, 232, 234–236, 238

IPMR. See Input public message register

IR. See Instruction register

J

Joint test action group (JTAG), 6, 18, 31, 49,

61, 87, 110, 117, 137, 146, 171, 195,

213, 219, 231

JSCAN, 123, 124

JTAG. See Joint test action group

L

Linear code, 56

Linear instruction trace, 57

M

MCDS, 163, 219–229

Memdata, 52

Memory-map, 63, 104, 105, 148,

152–154, 174, 195, 198,

217, 221, 226

Memory map decode (MMD), 216, 217

Memory substitution, 132, 172

Message start/end, 182

MIB. See Monitor instruction buffer

MIPI. See Mobile industry processor

interface

MIPS, 6, 31, 34, 88, 102, 195–211, 213, 231,

234–236

MMD. See Memory map decode

Mobile industry processor interface (MIPI),

129–131, 163, 165, 171

Monitor, 19, 43, 53, 62, 85, 109, 164, 196,

228, 232

Monitor instruction buffer (MIB),

231–235

MSE, 173, 183

Multicore, 9, 12–14, 18, 26–28, 64, 86, 87,

93, 106, 114, 115, 132, 145–152, 157,

161, 169–170, 178, 180, 185–192,

209, 219–230

Multicycle, 27, 56, 87, 208

Multi-TAP, 120, 121, 131, 134

N

Network on chip (NoC), 88

Nexus, 34, 62, 98, 132–135, 145, 163,

169–193, 219

NoC. See Network on chip

NODE_ID, 125

243Index

O

Observability, 8–10, 12, 27

OCDS. See On-chip debug system

OCP, 23, 86, 94, 109, 145, 171, 229

On-chip debug system (OCDS), 61–83, 225,

228, 229

Open core protocol (OCP), 86, 145–167

OPMR. See Output public message register

OSCAN, 127–129

Output public message register

(OPMR), 180

Overlap zones, 139–141

Ownership trace, 189

P

P1687, 34, 44, 137–144

PC. See Program counter

PCsample, 197, 199, 204

PDL, 137

PDtrace, 102–106, 195, 199–211

Performance analysis, 14, 17, 19–20, 22, 24,

29, 31, 56, 93, 99, 106, 149, 153

Peripherals, 5, 6, 14, 19, 27, 49, 54, 59,

68, 76, 80, 85–87, 90, 91, 106, 109,

156, 169, 172, 191, 218, 225, 226,

232, 234

PIB, 199, 209

Pin mapping, 39, 40

Port controller, 35, 191, 192

Port replacement, 172, 178, 188

Printf, 44, 45

Probe, 15, 18, 24, 25, 33, 34, 39, 44, 92, 93,

103–106, 111, 112, 186, 188, 195,

196, 199, 207, 209, 215, 218, 231,

232, 234

Probe interface block, 209

Procedural description language, 137

Program counter (PC), 52, 53, 68, 197–199,

202, 210, 226–228, 231, 232, 234,

236–239

Public message, 174, 180, 184

Q

QoS. See Quality of service

Quality of service (QoS), 88, 90, 107

R

Real-time data exchange (RTDX), 25–26, 54

Recognizer, 17, 18, 115

Register transfer level (RTL), 2, 7–9

Request-response, 103, 105

Request response trace (RRT), 101–107

ROM monitor, 43, 45, 46

RRT. See Request response trace

RTCK, 32, 33, 118

RTDX. See Real-time data exchange

RTL. See Register transfer level

RTOS, 20, 28–30

Run control, 6, 14, 22, 25, 27, 29, 31, 33, 49,

50, 87, 106, 146, 148, 153, 154, 159,

161–162, 171, 174, 213, 215,

224–227, 229

S

Scan, 8, 27, 31, 33–40, 71, 74, 87, 118–125,

128, 129, 133, 135, 139–142

Select-instrument-bit (SIB), 140, 141

Self-trace, 59–60

SFR, 50–53, 70

Shadow memory, 25

SIB. See Select-instrument-bit (SIB)

Single step, 22, 50, 52, 162, 196,

235, 236

SMX, 88, 89

Socket, 85, 87, 88, 90, 94, 100, 101, 103–107,

145–150, 153–167, 190

Star configuration, 124, 125, 127, 134, 135,

160, 161

STL, 239

STM. See System trace module

Super Bypass, 118, 124

Synchronization, 28, 29, 51, 67, 81, 92, 109,

110, 114, 115, 120, 159, 163, 174,

182, 186, 188, 210, 224

System-on-chip (SoC), 1–15, 17–20, 23–29,

39, 85, 87–89, 94, 98–100, 105–106,

111, 115, 119, 131, 132, 145, 146,

151, 157, 172, 190–193, 195, 197,

219, 234

System trace module (STM), 129–131

T

T1, 121–124, 126, 133

T2, 122–124, 126, 133

T3, 120, 122, 124–126, 129, 133, 134

T4, 120, 122, 125–129, 133, 134

T5, 120–129, 132, 134

TAM. See Test access mechanism

TAP. See Test access port

TAP.7, 119, 120, 125–129

TAPC. See TAP controller (TAPC)

244 Index

TAP controller (TAPC), 120, 122, 123,

125, 129

TCB. See Trace control block

TCK. See Test clock

TCODE, 170, 172–178, 180, 184, 188

TCtrace, 209–210

TDI. See Test data input

TDO. See Test data output

TDR, 140, 142

Test access mechanism, 142

Test access port (TAP), 31, 117, 137,

153, 195, 215

Test clock (TCK), 31, 33, 35–37, 42, 52, 70,

88, 112, 118, 124, 131, 140, 142

Test data input (TDI), 31, 32, 35–37,

39, 70–74, 112, 118, 124, 125,

128, 129, 131, 140, 142, 143, 208

Test data output (TDO), 31, 32, 35–43,

70–75, 118, 124, 128, 131, 140–142,

180, 216

Test data register, 137, 139, 140

Test mode select (TMS), 31, 35–37, 41, 42,

72, 124, 125, 131

Timestamp, 17, 20, 21, 24, 29, 100, 105,

106, 109, 110, 114, 130, 146, 147,

150–154, 160, 164–165, 173, 186,

188, 192, 219

TMS. See Test mode select

Trace, 6, 17, 31, 49, 61, 85, 109, 119,

146, 169, 197, 213, 219, 231

Trace compression, 55–59, 179,

210, 219

Trace control block (TCB), 6, 31, 120, 199,

199, 200–210

Trace funnel, 104

Tracepoint, 33, 61, 159

Trace qualification, 219, 220

Trace reconstruction, 57, 58, 200

Transaction engine, 94, 96–98

Transactor, 224–225, 228

Transfers (Triggered), 76, 81, 82

Trigger, 17, 45, 61, 92, 109, 146, 179, 203,

216, 219, 237

Trig_Out, 53

TRST, 31, 32, 35, 36, 41, 42, 208, 231

V

VTref, 33

W

Watchpoint, 61, 171–175, 179, 191, 192

WIR. See Wrapper instruction register

Wishbone, 86

Wrapper instruction register (WIR), 144

Z

ZBS. See Zero-bit DR scans

Zero-bit DR scans (ZBS), 121–123

Zero-bit scan, 121, 123

1149.1-zone, 138–140

1687-Zone, 140

	Chapter 1: Introduction
	1.1 The Need for On-Chip Debug
	1.2 Instrument- (**in-silicon) and EDA- (Presilicon) Based Verification
	1.3 SoC Debug Requirements
	1.4 Instrumentation-Based Debug Infrastructure

	Chapter 2: On-Chip Instrumentation Components
	2.1 Trace and Event Triggering
	2.2 External Interfaces for On-Chip Instrumentation
	2.3 Performance Analysis Using On-Chip Instrumentation
	2.4 On-Chip Logic and Bus Analysis
	2.5 On-Chip Instrumentation Examples
	2.5.1 Trace Monitoring and Interfaces
	2.5.2 Bus Logic Monitoring
	2.5.3 Real-Time Data Exchange

	2.6 Multiprocessor Debug

	Chapter 3: JTAG Use in Debug
	3.1 JTAG Pins
	3.2 Test Access Port
	3.3 JTAG Registers
	3.4 JTAG Instructions
	3.5 Boundary-Scan Description Language
	3.6 The Road to JTAG: Historical Debug Approaches
	3.6.1 Background Debug Mode

	Chapter 4: Processor System Debug
	4.1 A Processor Debug Instrument Implementation
	4.2 Processor Trace Compression
	4.3 Hunting Code Errors with Self-Trace

	Chapter 5: An On-Chip Debug System
	5.1 OCDS Features
	5.1.1 Debug Events
	5.1.2 Debug Event Actions
	5.1.3 Debug Registers

	5.2 Operation Modes
	5.2.1 Entering Communication Mode
	5.2.2 Communication Mode Instructions
	5.2.3 Monitor-to-Debugger Host Data Transfer (Receive)
	5.2.4 Debugger Host-to-Monitor Data Transfer (Send)
	5.2.5 High-Level Synchronization

	5.3 OCDS Registers
	5.3.1 Debug Task ID Register
	5.3.2 Instruction Pointer Register
	5.3.3 Hardware Trigger Comparison Registers
	5.3.4 Considerations on Accessing OCDS Registers

	5.4 OCDS JTAG Access
	5.4.1 Steps to Initialize the JTAG Module

	5.5 OCDS Module Access
	5.5.1 Error Protection

	5.6 OCDS JTAG I/O Instructions
	5.7 OCDS JTAG Registers
	5.8 Hardware Triggers
	5.8.1 Structure of a Noninterruptible Monitor Routine
	5.8.2 Structure of an Interruptible Monitor Routine
	5.8.3 Debug Event Control Registers

	5.9 Additional Features
	5.9.1 System Security
	5.9.2 Reset from the JTAG Side
	5.9.3 Reset from the Chip/Processor Side

	Chapter 6: Bus System Debug
	6.1 On-Chip Buses
	6.2 Socket-Based SoC Design
	6.2.1 SoC Interconnect Complexities

	6.3 Bus-Level Integration
	6.3.1 Bus Master Monitoring
	6.3.2 Peripheral Bus Monitoring
	6.3.3 Slave Monitoring

	6.4 Internal and External Alternatives for Bus Trace
	6.5 Programmable Bus Performance Monitoring
	6.6 Bus Performance Monitoring
	6.7 On-Chip and Off-Chip Analysis
	6.8 Request Response Trace Bus Analysis
	6.8.1 RRT Operations
	6.8.2 RRT Implementation

	Chapter 7: Multiprocessor Debugging
	7.1 Cross-Triggering and Global Breakpoint Control
	7.2 HyperDebug Distributed Cross-Triggering
	7.2.1 HyperDebug Controller
	7.2.2 Typical HyperDebug Implementation

	7.3 Multicore Synchronization Triggering and Global Actions

	Chapter 8: IEEE 1149.7: cJTAG/aJTAG
	8.1 Test and Debug Views of 1149.7
	8.2 Key T0–T5 Class Functions
	8.3 MIPI Use of 1149.7
	8.3.1 MIPI System Trace Module

	8.4 Nexus Use of 1149.7
	8.4.1 IEEE 1149.7/Nexus Integration

	Chapter 9: IEEE P1687 – IJTAG
	9.1 Overlap Zones and Gateway Elements
	9.2 Classes of P1687 Instruments
	9.3 IEEE 1500 Instruments

	Chapter 10: OCP IP Debug Interfaces
	10.1 OCP Multicore Debug
	10.2 OCP Debug Features
	10.3 Three Views of Debugging
	10.3.1 Pure Software Debugging
	10.3.2 Pure Hardware Debugging
	10.3.3 System-on-Chip Debugging

	10.4 Debug Components and IP Interfaces
	10.5 Debug Socket Definitions
	10.5.1 Core Debug Socket Interfaces
	10.5.2 Cross-Triggering Socket Interfaces
	10.5.3 OCP Synchronized Run Control
	10.5.4 OCP Traffic-Monitoring and Trace Interfaces
	10.5.5 Performance Monitoring
	10.5.6 System Timestamping
	10.5.7 Power Management Monitoring
	10.5.8 Security Debug Interface

	Chapter 11: Nexus IEEE 5001
	11.1 Nexus Implementation Classes
	11.2 Nexus Message Architecture
	11.2.1 Nexus TCODEs
	11.2.2 Nexus Registers

	11.3 NEXUS Interfaces
	11.3.1 Nexus JTAG Access
	11.3.2 NEXUS AUX Interfaces

	11.4 Multicore Nexus Debug Approaches
	11.4.1 Input Tool-to-Target Messages
	11.4.2 Output Target-to-Tool Messages

	11.5 Nexus Product Implementations
	11.6 Summary

	Chapter 12: MIPS EJTAG
	12.1 EJTAG Instructions and Registers
	12.2 PC Sampling
	12.3 MIPS PDtrace™
	12.3.1 Trace Output Formats
	12.3.2 Trace Control Block Registers

	12.4 TCB Trigger Logic Overview
	12.5 PDtrace External Interface
	12.6 TCtrace IF
	12.7 PDTRACE Operations

	Chapter 13: ARM ETM
	13.1 ETM Signals
	13.1.1 External Signals

	13.2 ETM9 Registers
	13.3 Trace Interface

	Chapter 14: Infineon Multicore Debug Solution
	14.1 MCDS Trace Protocol Definition
	14.1.1 Data Trace

	14.2 Debug Transactor: RUN Control Bus Master
	14.3 MCDS Run Control: On-Chip Debug Support
	14.3.1 BCU Level 1 (Bus-Observer Unit on the System Bus)
	14.3.2 Concurrent Debugging in Level 3 MCDS (Two-Channel Tracing)
	14.3.3 Debug Interface (Cerberus) (Debug Bus-Transactor Module)

	14.4 RW Mode and Communication Mode
	14.5 Multicore Break Switch

	Chapter 15: EJTAG and Trace in Toshiba TX Cores
	15.1 Processor Access Overview
	15.2 Toshiba EJTAG Instructions and Registers
	15.3 Debug Exceptions
	15.4 Processor Debug Instructions and CP0 Registers
	15.5 Break Functions
	15.6 Output by PC Trace

	b978-0-387-78701_4
	Cover
	Front Matter
	Chapter 1: Introduction
	1.1 The Need for On-Chip Debug
	1.2 Instrument- (**in-silicon) and EDA- (Presilicon) Based Verification
	1.3 SoC Debug Requirements
	1.4 Instrumentation-Based Debug Infrastructure

	Chapter 2: On-Chip Instrumentation Components
	2.1 Trace and Event Triggering
	2.2 External Interfaces for On-Chip Instrumentation
	2.3 Performance Analysis Using On-Chip Instrumentation
	2.4 On-Chip Logic and Bus Analysis
	2.5 On-Chip Instrumentation Examples
	2.5.1 Trace Monitoring and Interfaces
	2.5.2 Bus Logic Monitoring
	2.5.3 Real-Time Data Exchange

	2.6 Multiprocessor Debug

	Chapter 3: JTAG Use in Debug
	3.1 JTAG Pins
	3.2 Test Access Port
	3.3 JTAG Registers
	3.4 JTAG Instructions
	3.5 Boundary-Scan Description Language
	3.6 The Road to JTAG: Historical Debug Approaches
	3.6.1 Background Debug Mode

	Chapter 4: Processor System Debug
	4.1 A Processor Debug Instrument Implementation
	4.2 Processor Trace Compression
	4.3 Hunting Code Errors with Self-Trace

	Chapter 5: An On-Chip Debug System
	5.1 OCDS Features
	5.1.2 Debug Event Actions
	5.1.1 Debug Events

	5.2 Operation Modes
	5.1.3 Debug Registers
	5.2.1 Entering Communication Mode
	5.2.2 Communication Mode Instructions
	5.2.3 Monitor-to-Debugger Host Data Transfer (Receive)
	5.2.4 Debugger Host-to-Monitor Data Transfer (Send)
	5.2.5 High-Level Synchronization

	5.3 OCDS Registers
	5.3.1 Debug Task ID Register
	5.3.2 Instruction Pointer Register
	5.3.4 Considerations on Accessing OCDS Registers
	5.3.3 Hardware Trigger Comparison Registers

	5.4 OCDS JTAG Access
	5.5 OCDS Module Access
	5.4.1 Steps to Initialize the JTAG Module
	5.5.1 Error Protection

	5.6 OCDS JTAG I/O Instructions
	5.7 OCDS JTAG Registers
	5.8 Hardware Triggers
	5.8.2 Structure of an Interruptible Monitor Routine
	5.8.1 Structure of a Noninterruptible Monitor Routine
	5.8.3 Debug Event Control Registers

	5.9 Additional Features
	5.9.1 System Security
	5.9.3 Reset from the Chip/Processor Side
	5.9.2 Reset from the JTAG Side

	Chapter 6: Bus System Debug
	6.1 On-Chip Buses
	6.2 Socket-Based SoC Design
	6.2.1 SoC Interconnect Complexities

	6.3 Bus-Level Integration
	6.3.1 Bus Master Monitoring
	6.3.2 Peripheral Bus Monitoring
	6.3.3 Slave Monitoring

	6.4 Internal and External Alternatives for Bus Trace
	6.5 Programmable Bus Performance Monitoring
	6.6 Bus Performance Monitoring
	6.7 On-Chip and Off-Chip Analysis
	6.8 Request Response Trace Bus Analysis
	6.8.1 RRT Operations
	6.8.2 RRT Implementation

	Chapter 7: Multiprocessor Debugging
	7.1 Cross-Triggering and Global Breakpoint Control
	7.2 HyperDebug Distributed Cross-Triggering
	7.2.1 HyperDebug Controller
	7.2.2 Typical HyperDebug Implementation

	7.3 Multicore Synchronization Triggering and Global Actions

	Chapter 8: IEEE 1149.7: cJTAG/aJTAG
	8.1 Test and Debug Views of 1149.7
	8.2 Key T0–T5 Class Functions
	8.3 MIPI Use of 1149.7
	8.3.1 MIPI System Trace Module

	8.4 Nexus Use of 1149.7
	8.4.1 IEEE 1149.7/Nexus Integration

	Chapter 9: IEEE P1687 – IJTAG
	9.1 Overlap Zones and Gateway Elements
	9.2 Classes of P1687 Instruments
	9.3 IEEE 1500 Instruments

	Chapter 10: OCP IP Debug Interfaces
	10.1 OCP Multicore Debug
	10.2 OCP Debug Features
	10.3 Three Views of Debugging
	10.3.1 Pure Software Debugging
	10.3.2 Pure Hardware Debugging
	10.3.3 System-on-Chip Debugging

	10.5 Debug Socket Definitions
	10.4 Debug Components and IP Interfaces
	10.5.1 Core Debug Socket Interfaces
	10.5.2 Cross-Triggering Socket Interfaces
	10.5.3 OCP Synchronized Run Control
	10.5.4 OCP Traffic-Monitoring and Trace Interfaces
	10.5.5 Performance Monitoring
	10.5.6 System Timestamping
	10.5.7 Power Management Monitoring
	10.5.8 Security Debug Interface

	Chapter 11: Nexus IEEE 5001
	11.1 Nexus Implementation Classes
	11.2 Nexus Message Architecture
	11.2.1 Nexus TCODEs
	11.2.2 Nexus Registers

	11.3 NEXUS Interfaces
	11.3.1 Nexus JTAG Access
	11.3.2 NEXUS AUX Interfaces

	11.4 Multicore Nexus Debug Approaches
	11.4.1 Input Tool-to-Target Messages
	11.4.2 Output Target-to-Tool Messages

	11.5 Nexus Product Implementations
	11.6 Summary

	Chapter 12: MIPS EJTAG
	12.1 EJTAG Instructions and Registers
	12.3 MIPS PDtrace™
	12.2 PC Sampling
	12.3.1 Trace Output Formats
	12.3.2 Trace Control Block Registers

	12.4 TCB Trigger Logic Overview
	12.5 PDtrace External Interface
	12.6 TCtrace IF
	12.7 PDTRACE Operations

	Chapter 13: ARM ETM
	13.1 ETM Signals
	13.1.1 External Signals

	13.2 ETM9 Registers
	13.3 Trace Interface

	Chapter 14: Infineon Multicore Debug Solution
	14.1 MCDS Trace Protocol Definition
	14.1.1 Data Trace

	14.2 Debug Transactor: RUN Control Bus Master
	14.3 MCDS Run Control: On-Chip Debug Support
	14.3.1 BCU Level 1 (Bus-Observer Unit on the System Bus)

	14.4 RW Mode and Communication Mode
	14.3.3 Debug Interface (Cerberus) (Debug Bus-Transactor Module)
	14.3.2 Concurrent Debugging in Level 3 MCDS (Two-Channel Tracing)

	14.5 Multicore Break Switch

	Chapter 15: EJTAG and Trace in Toshiba TX Cores
	15.1 Processor Access Overview
	15.2 Toshiba EJTAG Instructions and Registers
	15.3 Debug Exceptions
	15.4 Processor Debug Instructions and CP0 Registers
	15.5 Break Functions
	15.6 Output by PC Trace

	b978-0-387-78701_4

