


On-Chip Instrumentation



  



Neal Stollon

On-Chip Instrumentation

Design and Debug for Systems on Chip



 

Neal Stollon
HDL Dynamics, Dallas
TX, USA
neals@hdldynamics.com

ARM9, Coresight, ETM, ETM9, MMD are trademarks or registered trademarks of ARM Holdings plc. 
All rights reserved.
EJTAG, HyperDebug, MIPS64, MIPS32, OCI, PDtrace, RRT are trademarks or registered trademarks of 
MIPS Technologies, Inc. All rights reserved.
OSCAN, CDX, BDX are trademarks or registered trademarks of IEEE 1149.7 Working Group. All rights 
reserved.
TCODE, NPC are trademarks or registered trademarks of IEEE 5001 and Nexus 5001 Forum. All rights 
reserved.
ONCE, mxC are trademarks or registered trademarks of Freescale Inc. All rights reserved.
OCDS, MCDS, Cerebus, PCP2 are trademarks or registered trademarks of Infineon Technologies AG. 
All rights reserved.
Any other third party trademarks remain the property of their respective owners
All copyrights on images, graphics, descriptions, products, and brands remain property of their respective 
owners. No infringement of rights is intended or implied.

ISBN 978-1-4419-7562-1 e-ISBN 978-1-4419-7563-8
DOI 10.1007/978-1-4419-7563-8
Springer New York Dordrecht Heidelberg London

© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written 
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, 
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in 
connection with any form of information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they 
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are 
subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



v

When I started this book, I thought I understood the world of on-chip debug–after 

all, I had been part of one of the leading startups in the area for 5 years and had 

been a participant in a number of standard and industry organizations that were 

leading the world of on-chip debug and instrumentation into the next wave. As I 

gathered my materials, I grew more impressed by the day and by the month at the 

body of work that this topic has accumulated, in industry and in academia, in every 

nook and cranny of the embedded systems business, from embedded processor, to 

bus architecture, to FPGA, to IP development; engineers have developed and cus-

tomized a truly impressive range of on-chip debug and instrumentation solutions to 

address and support their products and to enable an increasingly capable infrastruc-

ture that does much more than the prosaic word debug implies and starts to address 

the full potential of what on-chip instrumentation can truly provide for the electron-

ics industry.

This book came about, in part, because of the lack of a comprehensive discus-

sion of on-chip debug instrumentation. This seems to have been an area where the 

experts come about from on-the-job experience and in ad hoc methods. On-chip 

debug is an integral part of most modern processor and system on-chip (SoC) 

design, but in my experience it is not a topic given in-depth discussion in engineer-

ing school (universities take note). Most engineers’ experience of on-chip debug is 

limited to plugging into the JTAG port and running the software, with little under-

standing of what goes on within. This text tries to provide a general overview of the 

different types of on-chip debug that goes into a design.

This book is structured into three main sections; the first, Chaps. 1–7, is an intro-

duction to the variety of concepts that make up on-chip debug, in particular looking 

at some of the history and well-established infrastructure, including an overview of 

JTAG from a debug, rather than test, point of view. It also looks at aspects of processor- 

and bus-level instrumentation and discusses multicore on-chip debug issues The 

second section, Chaps. 8–11, addresses a number of the standards and industry 

efforts that are ongoing in areas ranging from instrument interfaces to JTAG 

advances, some of which, like Nexus and OCP-IP, I have been involved in, and 

others that have been a learning experience for me over the last year, all of which I 

believe will form the core basis for the next generation of on-chip debug. The third 

section, Chaps. 12–15, is a survey of some of the wide variety of  commercially 
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vi Preface

supported solutions for on-chip debug, addressing a limited cross section of the 

types of on-chip instruments that are available for different processors and SoCs.

Some areas related to on-chip debug have been intentionally kept generic and 

out of the discussion to maintain the focus on the on-chip instrumentation. Notably, 

I have kept any detailed discussion of probes and host-based debugger software to 

a minimum, other than what is required to make the concepts of JTAG and trace 

understandable. This may seem unusual, but the reasons for this are two-fold. First, 

the topic of debug probe and software design is at least a book in itself. Second, the 

commercial business involved in probes and debug software is a significant busi-

ness unit for most processor companies as well as the dozens of companies that 

provide probe and software solutions (many run by people I know) that address the 

range of debug options. To mention any one example in any detail would ignore the 

rest that are equally deserving of mention.

Few are of variety of instrumentation- and debug-related areas I cover are dis-

cussed exhaustively. This is due to both limitations on space and a large amount of 

supplemental detailed information available elsewhere for those who want to 

explore in more depth. Similarly, I have intentionally avoided discussion of some 

of the more advanced implementations, in order to keep the text accessible to a 

more general reader.  For  virtually all topics, I highly recommend the reader to 

directly contact the IP or chip vender or standards group for more detailed and 

updated information on the topics. Those interested in instrumentation products can 

find an amount of online resources that address specific instrumentation solutions 

in minute detail. The amount of documentation avaliable on MIPS EJTAG or ARM 

ETM, for example, can put page length of War and Peace to shame.

The standards-related activities are somewhat less well documented, in some 

cases because they are work in progress. However, there is a lot of follow-on infor-

mation out there for those who search. So I have tried to focus on what I think are 

the interesting or unique parts of different instrumentation solutions, with the 

assumption that readers interested in more detail can find it.

I want to acknowledge a number of people in the industry who have helped me 

along the way, especially Rick Leatherman and the on-chip instrumentation team 

of the First Silicon Solutions group at MIPS, who got me started in thinking about 

on-chip instrumentation and who taught me far more they realize about on-chip 

debug technologies and the businesses involved. I also thank the current and past 

members of the Nexus IEEE 5000 Forum and members of the OCP-IP Debug 

Working Group, with special recognition to Bob Uvacek, my longtime compatriot 

in the working group.

Last, but by far not least, I want to acknowledge my family, without whom I am 

nothing. My wife Marcy, my daughters Courtney and Naomi, my son Eric, and my 

mom Rita Bickel Stollon (of blessed memory) were patient and understanding of 

the time I spent working on this book. Finally, I dedicate this book to my family but 

especially to my father Arthur Stollon (of blessed memory), who proofread every-

thing I wrote while I was in school and taught me “be prepared to trudge thru the 

wilderness to get a change at the limelight”.

Dallas, TX Neal Stollon
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With each new generation of digital system-on-chip (SoC) technology, the level 

of integration, functionality, and complexity provided on a single chip has increased 

significantly. A problem that goes hand in hand with this increased amount of inte-

gration and functionality is that analysis tasks and difficulty associated with getting 

a design working and integrated increase at least proportionally to the size and 

complexity of the chip. Over a range of SoC types – ASIC, ASSP, system FPGAs, 

or a dozen other variants and platforms – there is a common need for better debug 

solutions. As more processing elements, features, and functions are simultaneously 

being embedded in the silicon, the emerging level of embedded complexity outstrips 

the capability of stand-alone logic analyzer-, debugger-, and emulator-based diag-

nostic tools for embedded designs. Although these tools allow the capture of data 

off the system data bus, they work only as long as every access (read and/or write) 

occurs over the external data bus. This issue points to a growing gap in terms of 

effectively being able to provide the necessary controllability and, in particular, the 

visibility of the internal operations of a complex system.

1.1  The Need for On-Chip Debug

The need for improved methods of observing and analyzing embedded processor and 

SoC operation has increased at a pace at least proportional to the explosive growth 

in electronic system designs and new intellectual property (IP) cores that populate 

them. The analysis side of the SoC world is then forced into a constant process of 

catching up to the designer’s ability to add cores and integrate new resources on 

chips. With an ever-shortening development cycle, and often several generations of 

products produced in parallel or rapid succession, standardized embedded tools and 

capabilities that enable quick analysis and debug of the embedded IP are a critical 

factor in keeping SoC verification a manageable part of the process.

Most engineers involved in complex design will agree that verification and valida-

tion have become a critical stumbling blocks in the development and release of new 

devices. This is now equally true of the software components of those systems as well 

as the hardware. Better ways to address the verification and analysis of  complex SoC 

Chapter 1
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2 1 Introduction

designs, and corresponding new methodologies, tools, and capabilities, are needed to 

get the job done at different phases of the design and development cycle.

For brevity and convenience, we adopt some general definitions in this book. 

Analysis relating to pre-silicon design stages, in particular Electronic Design 

Automation (EDA) tools and methods and their use in RTL (register transfer level) 

and ESL (electronic system level), are collectively referred to as verification. 

Analysis relating to in-silicon analysis (sometimes referred to as post-silicon analy-

sis), and in particular, tasks related to the use of on-chip instrumentation, are col-

lectively referred to a debug (Fig. 1.1).

In-silicon debug provides complementary alternative methods to digital simula-

tion as a means of viewing and analyzing embedded signals. Simulation, although 

a critical factor in verification, is not a total verification solution for embedded SoC. 

Simulation alone cannot address all the facets and nuances of physical hardware. In 

addition, it is not realistic to simulate large multiprocessor architectures for the 

extremely large numbers of cycles required to evaluate the software-specific 

aspects of system operation and real-world system performance. Although acceler-

ated simulation, co-simulation, and emulation environments provide a stop-gap 

method of improving the simulation capability in observing system performance, 

these often introduce costs and complexities beyond the resources of many projects. 

On-chip instrumentation and debug approaches have evolved as a low-cost and 

efficient alternative of increasing system visibility which focus on the actual final 

hardware product rather than its model.

System-on-chip debug, like most verification philosophies, seeks to maximize 

test functionality and ease of verification while reducing the overall end-user cost. 

There is a constant trade-off that must be made on resources dedicated to system 

analysis and debug versus the system cost of including these features. The value of 

debug is mainly perceived during the development cycle (hardware or software), 

where operational questions and integration issues for the key processing blocks are 

unresolved. After the system is “fully debugged,” the hardware investment in debug 

capabilities becomes much more application-focused. In the past, this often led to 

the removal of debug features (and associated gates and pins) in order to gain a small 

reduction in die size. These trade-offs have shifted in recent years by dramatic 

Fig. 1.1 The costs of debug
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increases in complexity; gate availability and overall speed of system operation have 

changed the norm in chip design from a “core and gate-limited” to a “pin and 

IO-limited” focus. The debug question has migrated from how many gates can be 

spent on debug to an ease-of-use and bandwidth issue: How much of the system 

resources and IO is needed to debug the system successfully?

1.2  Instrument- (**in-silicon) and EDA- (Presilicon) Based 

Verification

EDA (electronic design automation) flows that include the tools and methods for 

modeling, simulation, and analysis of SoC receive much attention and have evolved 

a variety of solutions to address verification needs for pre-silicon design, from 

diverse simulation-based methodologies to emerging formal and assertion-based 

methods and, increasingly, system-level abstraction. This verification flow largely 

works under the assumption that the verification effort is essentially completed when 

the design files are handed off to the foundry for fabrication. Anyone who has been 

involved in the in-silicon debug cycle, loosely defined as everything that must be 

verified and integrated from the time silicon is received back from the foundry to the 

point of being ready for a production release, knows that this is far from the case.

Although improved tools and rigor in pre-silicon verification are essential and 

play a important role in getting to working first-pass silicon, the use of in-silicon 

debug has received much less attention. However, as we discuss, in-silicon debug 

plays an essential role in addressing full-speed testing in real environments. 

It allows for more exacting analysis of interactions too subtle for models in simula-

tion to address, such as unforeseen environmental variables, external constraints, 

etc. Analysis, and bug-fixing, including resolving hardware/software issues that 

cannot easily be addressed at speed other than by analysis of the  in-silicon hard-

ware platform itself.

A design team, in addition to having to address the issues of verification and 

model reuse at different stages of the design flow, typically must also develop 

debug flows to address both hardware prototypes and in-silicon verification of both 

the hardware and software in the system when getting chips to market. 

With larger and more complex chip architectures and designs, supporting larger 

and more complex software applications, the penalties of discontinuities between 

pre-silicon verification and in-silicon debug are increasing. More consistent and 

common environments reduces costs and trade-offs of getting silicon not just 

designed but working and out the door to the end customers (Fig. 1.2).

The cost of debug in the development of complex SoC systems has not received 

the level of analysis that other parts of the methodology, such as EDA tools, have, 

but it is pragmatically known to be a significant portion of the overall cost of releas-

ing new systems. EDA tools and flows have focused on evolving a variety of solu-

tions to address pre-silicon verification, with diverse simulation-based methodologies 

that leverage high-level verification languages and formal and assertion-based 
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methods to verify at increasing levels of system-level abstraction. As we discuss, 

these are complementary to instrumentation-based debug (Fig. 1.3).

Debug typically relies on a toolbox of methods, instrumentation IP, and tools to 

support analysis of hardware-based systems and their software applications. Debug 

includes combinations of software tool methods (which can be thought of as “print” 

statements and breakpoints) and hardware methods (monitoring of events using 

Instrumentation IP to capture information for display and analysis).

Successful in-silicon analysis of next-generation systems will rely as much on 

system-level thinking in leveraging and reuse of verification efforts done during the 

pre-silicon verification cycle as on specific debug instrumentation approaches in 

providing closure to address the SoC verification and analysis problem (Fig. 1.4).

Complex architectures have spurred the requirement for new methodologies and 

capabilities to address the analysis and instrumentation needs of these architectures. 

We are arguably moving toward a new inflection point of requiring a sea change in 

debug assumptions, based on changing design methodologies that widely embrace 

Fig. 1.2 Debug duration over a project

 IN SILICON FOCUS

• Event/trigger/trace Instrumentation

• Logic Analyzer/ICE look and feel GUI 

• Automated test script command-line

• More widely used for processor and

Related software analysis 

PRE-SILICON FOCUS

• Tools for modeling, simulation and display 

• “Do everything” GUI and databases

• Supports many views of Logic Modeling

• Less useful for processor analysis

Pre-Silicon EDA Verification tools In-Silicon Debug tools

Fig. 1.3 Pre-silicon vs. in-silicon analysis
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multiprocessor architectures and their associated software development and inte-

gration issues, dramatically increased gate count availability, and increased com-

plexity in all the diverse interfaces and peripherals making up a SoC device.

Looking historically at the major inflection points for EDA verification, debug 

tools, and silicon complexity in Fig. 1.5, it is interesting to note the interwoven 

relationship between these different but closely related technologies that are central 

to the progress of many aspects of the evolution of leading-edge electronics 

 technology. The emergence of new EDA tools is both a driver and a result of new 

and increasingly complex levels of systems architectures. Similarly, complexities in 

architectures have spurred the requirement for new debug methodologies and capa-

bilities to address the needs of these architectures. We are arguably in the middle or 

moving toward a new inflection point, based on changing design methodologies 

that widely embrace multiprocessor architectures, dramatically increased gate 

count availability, and increased complexity in all the diverse interfaces and periph-

erals making up an emerging SoC device.
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This problem can be seen on several fronts, most notably the efficiency of the 

debug processes used for in-silicon validation. The need for new debug capabilities 

has evolved along with the state of embedded processor design. In Circuit 

Emulation (ICE) was developed to support debug of processor-based parts with 

minimal additional integration, but by emulating operations, rather than executing 

them normally. The adoption of IEEE 1149.1 aka JTAG (discussed in Chapter 3) 

popularized the use of a debug port that allows low overhead access and provides 

embedded developers with a range of potential capabilities for debugging, but with 

a limited bandwidth never designed to support any real-time analysis. Instrumentation 

adds to the debug port philosophy of JTAG by extending the bandwidth capabilities 

to address debug of one or multiple cores, internal buses, complex internal peripher-

als, and high-speed data traffic found at SoC levels of complexity (Fig. 1.6).

Looking at on-chip instrumentation in the proper context, it is useful to 

 examine more traditional embedded systems debug. The ever-increasing trend in 

the embedded system development is the evolution of products that incorporate 

diverse processing resources. Over the last decade the embedded systems market 

has seen a proliferation of new processor architectures (8-bit MCUs, DSPs, 

RISC, application-specific co-processors, etc.) provided as IP and focused on 

SoC integration. Historically, development of each generation of processor IP is 

accompanied by supporting debug tools. Many currently available cores provide 

some form of JTAG interface for run control and debug functions. Rapidly 

emerging adjuncts to JTAG are supporting trace capabilities, usually in the form 

of a trace port such as the ARM’s ETM (embedded trace module) and MIPS’ 

EJTAG + TCB (trace control block) which allow the benefits of trace for more 

productive system debug.
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1.3  SoC Debug Requirements

Analysis, at all levels of implementation, relies on methods of configuration, 

control, and data capture. Control refers to the manipulation of a system, outside of 

its normal execution, for the purpose of debug, analysis, and verification. Control 

can be influenced at any time during execution of the system, so it is a “real time” 

method in this respect. A simple control example might be to execute a single 

instruction, but more typically it may involve execution of a range or duration of 

operations tied to an initializing event and a concluding event. Configuration is 

actually nothing more than a special case of control, referring to the initial setup of 

a system to a known state. In some cases, this configuration may be part of the 

normal execution of a system (for instance, the default settings used after reset). 

Examples include setting of mode or configuration bits for cores, arbitration states 

for buses, and loading of data into specific locations in the system to (re)produce a 

system state for a particular operation or sequence of interest. Data capture refers to 

the export and storing of some system information occurring at a user-defined time. 

A simple example would be capture of a register value occurring at some triggering 

event in the system. Both ESL and instrumentation tools have similar requirements 

at a SoC level in how to address these tasks, and ideally would rely on standardized 

mechanisms for implementing them.

Most SoC include a programmable processor and in many cases, multiple pro-

cessors as the core functionality. They also consist of infrastructure, either in terms 

of dedicated coprocessors or other logic and a communications infrastructure to 

allow both intercore and chip-to-outside world communications. The analysis of 

processors and the rest of a complex chip follow different paths and have tradition-

ally relied on different approaches to verification and debug. Digital hardware 

design, on the contrary, typically relies on a synthesizable RTL model that assumes 

implicit clock-cycle timing during simulation. RTL has been the primary debug tool 

for configuration, control, and data capture of dedicated logic-based portions of the 

architecture, with hardware support based on either on- or off-chip logic analysis, 

although with the advent of synthesizable ESL language subsets and methodolo-

gies, these functions may be absorbed into the ESL of design flow. In either case, 

merging simulation and synthesis approaches have been proven in countless 

designs over the last 15 years, because logic-based functions can typically be ana-

lyzed over the range of fewer than a million clocks cycles, which is manageable for 

both simulation and logic analysis. Conversely, processor architectures, while 

relying on synthesis for implementation, are less successful in using RTL and logic 

analysis approaches due to the length of time required for execution of complex 

algorithms, and complexities of hardware and software interactions that are not 

amenable to RTL simulation and related approaches.

Simulation is always an important part of the development flow; just as impor-

tant is the ability to analyze hardware during prototyping and system verification 

and, increasingly, on the final products themselves. Although the focus of much of 

the verification world has been on simulation-based verification technologies, 
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instrumentation provides a counterpoint that focuses on the physical hardware.  

The problem in analyzing embedded information (on-chip processors and buses) in 

hardware in many cases devolves to a visibility problem – it is difficult to fix prob-

lems that you cannot see. The test community traditionally has referred to this 

problem in terms of levels of controllability and observability of a design. It is 

important to note that this analysis visibility cannot be adequately addressed by 

traditional on-chip test methods such as JTAG scan, and that the analysis and instru-

mentation problem, while overlapping with test issues and techniques in many 

cases, is fundamentally different.

One method of working around these analysis bottlenecks in simulation is to 

build hardware emulators or prototypes of (usually field-programmable) hardware 

implementations of the digital and possibly analog portions of a system. These 

hardware systems will run orders of magnitude faster than simulations, making 

running software applications feasible, but they are still typically at least an order 

of magnitude slower than the final silicon system, which results in both false posi-

tive (errors in the emulator that are not in silicon, due to differences in timing paths, 

synchronization of subsystems, etc.) and negative problems (found in the silicon 

that are not seen in the hardware, due to lower speed) and in many cases still not 

being able to run the system application at a speed compatible with the final system 

requirements.

Modern silicon system-level implementation typically proceeds through a 

design life cycle of increasing detail and refinement that must include modeling, 

verification, and analysis of hardware and software components. Software develop-

ment has typically relied on analysis with a hardware target using ISS (instrument 

set simulation) models where timing is abstracted or nonexistent. These ISS models 

can vary significantly from vendor to vendor, which inhibits general methods for 

model compatibility between different core models and their integration with RTL 

simulation. RTL is synthesized into gate-level implementations that map into hard-

ware and become a deliverable product, along with software that is either embed-

ded as part of the product or added at a later stage by customers. More complex 

modeling is complicated in modern devices by several factors.

Preferred software development environments may vary significantly for different •฀

processors. Although hardware development tools have developed in parallel but 

largely independent of different ways to implement a design (programmable logic, 

ASIC, ASSPs, and their related digital IPs), a limited number of common repre-

sentations (gate-level, RTL, hardware itself) allow for straightforward integration; 

software development tools and models are developed by and in conjunction with 

processor and software IP vendors and have more limited commonality, for modeling 

and verification of multiple processors or even different processor targets running 

a common algorithm. The problem is even more acute for debug-related tasks, 

where different debuggers have different features. More commonality is found in 

use of GNU debuggers (GDB), versions of which have been developed by and for 

many processor architectures. GDB and variants are commonly used as a user 

interface for configuration, control, and data capture of software architectures during 

ISS, emulation, and in-silicon debug.
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For multicore devices, different suppliers often provide subsystems, in terms of •฀

hardware blocks, each developed with its own assumptions and incompatibilities 

in ISS modeling. Due to a lack of standardized sequential timing models in 

software languages used to develop ISS models (C, C++), new modeling 

approaches that include understanding of sequential and concurrent operations 

are needed to model systems that include multiple processors (running under 

different clocking and instruction flows) and processors and their supporting 

blocks (buses, peripherals, interfaces, etc.) that are typically modeled at RTL or 

other hardware methods. 

These may be in simulated SystemC, an ESL developed to support concurrent •฀

modeling of systems having  processor architectures and software and support-

ing hardware blocks. SystemC combines compatibility with C++ as a class 

library with a set of corresponding modeling and simulation features similar to 

those used in RTL.

Real device speeds are higher (typically by orders of magnitude) than that •฀

achievable by simulation. As a result, system modeling relies on abstractions 

and simplifications to increase simulation performance to a point where it is 

feasible to run software applications over the multimillion cycles needed to 

verify operation. Complexity and performance are further impacted if different 

subsystems are asynchronous or have other analysis-intensive incompatibilities. 

The lowest risk and often the simplest solution to real-time analysis is to use the 

actual hardware; however, even with added instrumentation, there are significant 

limitations in observability and controllability of a design as discussed earlier, 

so while hardware is a good verification platform, it is limited as an analysis 

platform. Simulation does not have the same limitations, because all signals are 

visible. One of the more important simulation efforts of SystemC is related to 

trade-offs between speed and visibility with TLMs (transaction-level models) 

that, by abstracting away noncritical functionality or timing, can simulate orders 

of magnitude faster than cycle-timed RTL models while being integrated with 

RTL models. Integration between TLM and RTL blocks in a simulation, while 

providing more resolution of signal analysis (at the expense of increased simula-

tion timing), is still an area of active development.

Complicating simulation analysis further is the modeling of the complex envi-•฀

ronments in which the device must operate. These can include the need for 

modeling a complex stimulus with both signal and noise characteristics, human 

interfaces, and analog subsystems that have their own modeling and analysis 

complexities, which are incompatible with large-system digital analysis and 

have their own traditional (frequency-domain-based) analysis methods. The 

effective integration of mixed analog and digital systems remains an open area 

of refinement in EDA analysis methods and in hardware-based debug and analy-

sis; test features within ESL tools include the ability to model many analog and 

system characteristics as part of verification blocks (test benches) as well as the 

ability to integrate models from verification-level languages (Specman, Vera, 

Testbuilder, etc.) that have been developed and are being incorporated into new 

versions of RTL languages such as SystemVerilog.
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Choosing among many design trade-off efforts is a tiered approach of modeling 

refinement and migration from ESL, to more detailed models, to hard platforms, to 

final silicon. As the modeling and analysis move from simulation to hardware, 

another factor to consider is an accompanying loss of visibility and access in the 

internal signal operation. In simulation, all signals, variables, and modeling param-

eters are available for viewing, and in most cases, for direct modification, providing 

a rich analysis environment, regardless of other limitations. Hardware, whether in 

emulation system or in final silicon, has  limitations for debug purposes on the 

amount of visibility and control of embedded signals available at the system IO pins 

(Fig. 1.7). In this hardware environment, instrumentation significantly increases the 

amount of real-time visibility and control of the design at the cost of adding 

 analysis blocks to a design. In many systems, instruments provide the most straight-

forward means for embedded trace or to directly configure, take direct control, or 

inject stimulus into a subsystem, as needed to resolve system level bugs.

A typical debug flow consists of several diverse tasks, both independent and 

interdependent, required to achieve a level of comfort in verifying an in-silicon 

product. With many devices consisting of both processor and fixed IP, along with 

related software and firmware, the verification concern is not only operating as 

designed, but also performing as required in its natural environment. For many 

products, this may include being exercised and verified in operational scenarios that 

were not foreseen or feasible to include during the pre-silicon verification cycle.

In recent years, in-system debug has taken on a specialization of its own, 

referred to in different contexts as on-chip instrumentation, design for debug (DfD), 

and the like. A flow of debug and analysis tasks that can be provided using instru-

mentation consists of several diverse independent and interdependent activities 

required to address different aspects of verifying an in-silicon product. DfD meth-

odologies are still emerging areas of investigation. DfD differs from DFT and 

related approaches in the level of customization required to support specific debug 

requirements of an architecture or system (Fig. 1.8).
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The availability of gates and on-chip resources of modern SoC allows for more 

innovative approaches to systems debug and embedded logic analysis by allowing 

dedicated debug subsystems to be created, with minimal or even negligible impact 

on the overall chip size. Dedicated debug subsystems would effectively extract and 

analyze signals and operations within and between deeply embedded processor 

subsystems of a complex design.

1.4  Instrumentation-Based Debug Infrastructure

A debug reference model shows a properly designed debug environment; different 

debug systems may be created in a modular fashion. Although a majority of the 

layers are software implemented in the debugger host, the two key instrumentation 

layers (1 and 2) in hardware address different instrument blocks that operate largely 

independently. Layer 1 I defines the  port interface and its logic. Layer 2 defines the 

instrument function and operation. This  separation allows the configuration of 

instrument related registers and decode of debug instructions can be treated largely 

independent of the physical layer, be it JTAG or any other interface (Table 1.1).
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The integration of deeply embedded memory and embedded buses, along with 

limited IO for such embedded subsystems available for test purposes, limits the 

visibility of the embedded processors in SoC operation and dataflow.

In formal testability terms, multicore embedded systems present an asym-

metrical functional test problem. Their controllability is high, because the sys-

tems are dominated by programmable processor cores. The observability is low, 

however, in terms of both critical signals that are directly available and the 

amount of embedded logic and internal signals as a ratio of the available IO in 

which to observe them. The addition of dedicated resources and structures that 

support functional analysis is needed to increase system observability. This 

requires a hierarchical focus to the issue of system analysis, starting at the indi-

vidual core level of debug instrumentation and resources and increasing to a more 

system-centric diagnostic capability to facilitate increased observability. Although 

embedded debug instrumentation approaches are becoming increasingly common 

at the core level, system-level diagnostics and analysis at the multicore level has 

been a largely underaddressed and unresolved area of focus in complex  embedded 

systems.

These “deep encapsulations” of key system functions, along with higher internal 

bus speeds, make traditional debug techniques, such as emulators, so limiting that 

Table 1.1 Open debug interconnect model

Implementation layer Typical tasks Location

1. Physical port layer Debug TAP IO, chain, and debug  

block wires

Target 

Debug TAP FSM (schematic-level  

connection)

2. Data control layer Low-level debug instructions 

and registers

Target

Extended debug instructions,  

optional debug block registers

3. Debug driver layer Debugger protocol, clocking 

(probe-specific API)

Probe

4. Data transport layer APIs debug command sets, 

run control API

Host PC

5. Session control layer 

(Optional)

Device connection setup and parameters

Remote debug server  

(e.g., GDBserver)

Host/PC

6. Debug GUI layer Debugger UI, GDB commands, trace viewers  

(e.g., VCD)

Host/PC

Set/observe breakpoints, watchpoints,  

and event triggers

Run control go/halt/single step

7. Application layer 

(Optional)

Eclipse, other IDE, global (Multi-tool) data 

management

Host/PC
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they have forced the evolution to new logic analysis and debug approaches such as 

on-chip instrumentation.

Based on the shortfalls in applying current debug approaches to complex SoCs, 

the debug of structured SoC and related single-chip systems containing many 

embedded processor cores requires new system-level instrumentation approaches. 

The integration and debug of multiple cores, combined with an increasing ratio of 

overall gates versus package IO, makes an increasingly dominant portion of a sys-

tem design “deeply embedded,” so that only a minimal amount of data is needed 

for analysis to be made available in real time at the chips pins. These deeply embed-

ded systems introduce new analysis problems, due to the interaction and communi-

cations of multiple cores, in addition to the more traditional debug issues associated 

with single-processor systems. The multicore debug requirement implicit for SoC 

requires new capabilities that exceed what can be addressed by traditional in-circuit 

emulation and logic analyzer capabilities, and by JTAG and BDM resources used 

in single-processor architectures. Whereas a JTAG or BDM can provide a snapshot 

of a piece of the system, the dynamics and interaction of multiple processors 

require a more dynamic and robust means of providing diagnostic information 

necessary to the designer and integrator (Fig. 1.9).

On-chip instrumentation is implemented as an embedded block that provides 

external visibility and access of the “inner workings” of processor and system 

architectures. When properly implemented, it provides a real-time “peephole” into 

the operations of key internal blocks that cannot otherwise be accessed in sufficient 

granularity on a real-time basis. The real-time visibility and monitoring of key 

interfaces and buses are increasingly crucial to understanding the dynamics of the 

operation of system architectures. As a general rule, debug visibility becomes 
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increasingly problematic for highly integrated chips, which have extensive on-chip 

memory and caches, peripherals, and a range of on-chip buses. The key control and 

bus signals of interest in a deeply embedded system are often not externally 

addressable by the physical pins of the device and therefore are inaccessible to 

traditional instrumentation. This accessibility issue inhibits verifying silicon opera-

tion, introducing many hardware and software integration roadblocks, because the 

design team must address how traditional debug tools can be interfaced to work 

properly in SoC designs.

The value of instrumentation is, directly and indirectly, a function of several 

factors, including the instrument resources inserted on chip, the cost of the instru-

mented code and logic to the overall system, the overall applicability of the instru-

mentation, and the level of software and tool support available to make use of the 

instrumentation. In looking at the different types of on-chip instrumentation, they 

break out into roughly four major types of functions.

Core Debug – most processor IP includes some debug blocks that simplify run •฀

control (e.g., go, halt, single step,) and optionally provide instruction and data 

trace. The core-level integrated debug blocks and debugger features can differ 

significantly from processor to processor.

Logic Debug – providing more generic control and trace, logic debug IP essen-•฀

tially allows the embedding of a logic analyzer interface and part of a logic 

analyzer itself on the chip to provide visibility (and sometimes control) into the 

IP operation by allowing data capture of deeply embedded signals.

Bus Debug – embedded bus fabrics provide data movement between cores and •฀

present additional challenges for system debug due to complex interactions of 

on-chip bus fabrics and the sheer amount of data transferred over bus channels.

System Cross Triggering – for multicore systems, controlling and monitoring •฀

events from different cores is required to synchronize and manage the complex-

ity of multicore debug. Cross-triggering instrumentation provides one flexible 

means of controlling and coordinating the concurrent operations of several cores 

and IP, even when running in different domains.

The number of specialized and customized instrumentation blocks to address 

analysis such as system or core performance analysis is even larger. As important 

as the instrumentation function is its integration and communication with other 

tools and user interfaces. Many instrumentation systems use JTAG as a primary 

debug interface. Others use more specialized and higher-performing debug access 

ports; both these types of interface are discussed in detail in subsequent chapters. 

The ability to seamlessly interface different instrumentation blocks to different 

debug tools requires a sophisticated hardware (probe) and instrumentation software 

environment that supports the requirement to service diverse and concurrent debug 

requests.

These tools, to a large extent, only address the specifics of the processor IP and 

do not address or facilitate the system application in which the IP is used. Although 

the processors become increasing deeply embedded, traditional development tools 

for system debug applications can not provide nonintrusive visibility into the highly 
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integrated embedded processor. Applied to processor in-circuit emulators and their 

derivatives such as JTAG hardware debugging, the system must be placed in special 

debug modes or halted before being it can probe processor registers or read/write 

to the embedded memory. In many cases, this interruption of the steady-state 

performance of the system introduces (time) intrusive elements into the system 

operation that can complicate or invalidate the data or operations being observed. 

This problem grows proportionally to the ever-increasing frequency and complexity 

of high-performance embedded processors.
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In this chapter we examine a typical on-chip instrumentation environment and 

 discuss some of the individual instruments used for system debug, their typical fea-

tures, and their integration, both with each other and the systems being analyzed.

2.1  Trace and Event Triggering

Concepts of the tracing of data as it moves through the application or system are 

central to most other instrumentation capabilities. To address different debug 

requirements, instrumentation blocks must support different implementations of 

trace collection. Typical requirements include the ability to trace in cycle, branch, 

and timer modes. Cycle mode collects all bus cycles generated by the core(s). 

Branch mode collects all execution path changes, sometimes called branch trace 

messages. Timer trace mode records a frame with a timestamp each time an event 

is satisfied, providing basic performance analysis measurements.

Event recognition is widely used in conjunction with trace to capture information 

on events and operations in the SoC. Trace data values can be monitored and com-

pared to provide real-time triggers to control event actions such as breakpoints and 

trace collection. Event recognizers can simultaneously look for bus address, data, 

and control values and be programmed to trigger on specific values or sequences 

such as address regions and data read or write cycle types. The event recognizers can 

control enable or disable of breakpoints and trace collection (Fig. 2.1).

Data tracing based on recognizable events opens doors to new capabilities in 

real-time SoC analysis. The data trace mode provides real-time information about 

the status and data of a system’s internal signals, including, for example, analysis 

of cache performance and internal memory and data transfer operations that cannot 

otherwise effectively be extracted from a system. In-line or postprocessing trace 

information allows for analysis of data flow performance or measurement of sys-

tem characteristics such as bus availability or cache hit/misses, which require long-

term steady-state (measured over many cycles) system information. Additional 

detection of events in traced data allows the development environment to flag spe-

cific features in the trace data as it flows through the application.

Chapter 2

On-Chip Instrumentation Components
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As an example of a complex instrument event recognizer feature, four event 

recognizers can be combined in a 1–2 and 3–4 arrangement to produce two complex 

events. In this arrangement, the complex events can be configured so that first event 

of the event pair must be satisfied before the second event is enabled (Fig. 2.2).

2.2   External Interfaces for On-Chip Instrumentation

JTAG pin interfaces are the default interfaces of the most basic debug functions. 

Higher pin-out trace and probe ports are used with many on-chip instrumentation 

approaches. Even with these ports, however, the amount of debug information avail-

able can easily exceed the allocated debug interface of a SoC. To reduce the informa-

tion being sent over the interface, approaches such as data compression increase the 

performance of the debug interface without significantly affecting system cost.

Obviously, the most useful approach to reducing the information from the debug 

port to the host development tool is to limit transmissions to new information and 

have inferred information derived by the development tools. For example, for 

required addresses to trace the instruction flow, it can be seen that not every instruc-

tion is required to construct an instruction trace. If the target processor does not 

have a change of flow, then the full address does not need to be transmitted. Only 

when a change of flow, such as an interrupt or branch, occurs would the system 

need to send the new beginning address. In addition, if the debugging session must 

be real time, then some information may be held in reserve. For instance, not all 

data values have to be visible at all times; only the data that the engineer is con-

cerned with should be sent to the debug port during run time.

One of the major limiting factors on the use of instrumentation in SoC and multicore 

architectures is the ability to quickly export data as it is generated. On-chip 

 instrumentation can address many of the operations associated with large amounts of 
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on-chip debug, including triggering and performance monitoring. There is, however, 

almost always a need to be able to view the debug signals such as instruction/data trace 

from a processor, which means data must be exported off chip. The ability to transmit 

debug signals, most notably trace, is a hard limited function of two parameters:

 1. The number of IO pins that can be dedicated to export of debug information at 

any given time.

 2. The speed at which these signals can transmit the data.

This problem of exporting debug data is compounded for multiple-core SoC 

architectures, with monitoring of internal address, data, and control signals for each 

core, with the addition of inter-core and peripheral bus signals. One basic instrumen-

tation approach is to rely on on-chip memory to buffer between traced data and the 

export bandwidth available. Trace buffer must consider the differences between 

data being generated on chip  and the throughput of the debug interface. If buffers 

are modest in size, they can be overloaded by a large amount of trace data, as 

example, from multiple IP blocks or internal buses.

Despite the increasing number of IO signals available in leading-edge packages, 

system designers must limit the number of IO signals dedicated to trace and debug 

to reduce system cost (with packaging becoming an increasingly dominant factor 

in system cost). Most current approaches to increasing the IO bandwidth for debug 

rely on increasing the effective number of IO pins available (by multiplexing debug 

mode information into other system pins) and using higher-speed IO to increase the 

throughput of each pin. Each of these approaches to increase debug throughput has 

advantages and disadvantages. Increasing the effective pin count by statically mul-

tiplexing pins is a well-proven and low-risk approach. It does, however, involve 

coordination over the entire operation of the SoC, because pins that are dedicated 

to extended clock cycles to debug operations are unavailable for use in other modes 

of operation. To support SoC core and internal bus speeds, bigger pin bandwidth is 

increasingly required for instrumentation interfaces of a SoC.

2.3   Performance Analysis Using On-Chip Instrumentation

Customized instrumentation can integrate performance analysis of SoC architec-

tures as part of a debug solution. Performance analysis (PA) is an all-encompassing 

term that refers to many types of measurements that provide information on how a 

particular core is being used, both in context of other parts of the system and with 

regard to specific algorithms. Integrating instruments to allow processor character-

ization, software performance, and system performance metrics provides valuable 

and concise information, which is more simply gathered locally to the processor 

because the lack of IO signal visibility in individual processor operations limits 

tracking of embedded processor performance. Performance metrics can be distorted 

or obscured by the layers of system buses, peripherals, and limited IO access 

between an embedded processor and the external test environment.
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Some common types of tests that are desirable in processor and SoC system 

performance analysis are:

Find and profile hot spots in execution.•฀

Be able to measure loop times.•฀

Trace function calls, returns, and interrupts and measure the performance of this •฀

code.

Measure the duration of ISR (interrupt service routine) and other events.•฀

Track interrupts and measure the maximum interrupt latency.•฀

Track RTOS context switches, measure task duration, and measure OS events •฀

such as semaphore waits.

Measure the cache hit/miss ratio.•฀

Measure on-chip and off-chip memory access use.•฀

Count the number of processor stalls caused by (slow) bus accesses.•฀

Measure bus use and which master-slave transactions are using the bus the •฀

most.

Count the number of processor stalls in a section of code.•฀

Count the number of instructions executed between two points in a program.•฀

2.4   On-Chip Logic and Bus Analysis

Instrumentation-based logic trace allows analysis of bus architectures and 

related nonprocessor IP. Logic analysis instrumentation typically consists of 

debug blocks that are integrated into synthesizable logic files (typically VHLD 

or Verilog).

The bus analyzer collects a history of on-chip bus activity and exports it through 

the JTAG interface. Bus signal information is connected to the data inputs. A trig-

gering system user starts and stops collection of data to an on-chip trace RAM. 

When collection stops, the most recent activity remains in the trace memory, from 

which it is unloaded through JTAG and displayed. The bus trace configuration 

includes a timestamp, which is stored with the data; to provide synchronization and 

interval information, on-chip counters for performance measurements; of the fre-

quency of system events, and JTAG-controlled registers that hold parameters for 

input and output triggering of control operations that allow captured bus signals to 

interact on-chip with other debug components in the system.

Bus fields include address bus, data bus, and user extension field and can track •฀

a number of bus masters in the system. More than one bus layer may be sup-

ported in a single instance. For more trace capability, or trace over different 

clock domains, more than one bus navigator instance can be implemented in a 

single JTAG chain.

The trigger state (started, active, stopped, stalled) is recorded in the trace buffer. •฀

A multistate trigger allows triggering on sequential events. For example, a configu-

ration that recognizes bus cycle A followed by bus cycle B is:
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if (event A and state 0) then goto state 1

if (event B and state 1) then trigger

Timestamps are used to indicate the distance between recorded samples when •฀

collecting trace using qualifications such as trace-on/trace-off, or collecting filtered 

trace that matches an event definition. Because bus measurements may be large 

numbers of cycles, the timestamp is set up to cover a large time range.

Being able to trigger from instrument data allows for both dynamic interactions 

with the target system and improved capture of the information of interest. 

Analyzers nominally support multiple triggers with multiple states per trigger (Fig. 2.3). 

Trigger conditions can be created as application-specific combinations of three 

components:

Raw or processed data (filtered or aligned) compared to logic or edge events on  –

each signal.

Counter or times values matching a preprogrammed value. –

Trigger state (what trigger-related operations have occurred previously?). –

When a trigger condition is satisfied, one or more actions can be taken, such as to 

mark the trigger frame, turn trace on or off, record a single frame, turn the counter 

on or off, increment or clear the counter, assert the external trigger out, or change 

the trigger state. The flexibility of this system under a wide variety of conditions 

and actions can improve visibility and monitor and tune system performance based 

on a range of operational parameters.
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2.5   On-Chip Instrumentation Examples

In this section, we present several examples that illustrate the instrument features 

just discussed.

2.5.1  Trace Monitoring and Interfaces

Embedded processor instrumentation addresses embedded processor debugging 

and system validation features such as run control, trace history, memory and register 

visibility, and complex breakpoints.

The external trace monitor is an instrumentation block integrated into and 

supporting of processor core monitoring. Trace monitoring allows capture of both 

execution history and other real-time information from the core and allows either 

on-chip or off-chip trace storage. Trace monitors can also be configured to collect 

profiling data for performance analysis. The specific instance of the instrument 

interfaces a debug unit interface for a processor architecture that provides debug 

functions such as start/stop execution, single-step, breakpoints, and register/ 

memory access (Fig. 2.4).

The trace monitor allows trace history to be captured in several modes (instruc-

tion and/or data full or compressed, etc.), depending on the available bandwidth and 

information desired. The block combines trace messages of various lengths into 

trace words of fixed width suitable for writing into memory, which are then sent to 

either on-chip memory or through a trace port to off-chip memory. Because the 

bandwidth of an external trace port is limited, the user must be selective about what 

information to collect. Typical choices include execution trace, data cycle trace, and 

profiling trace. The trace collection may also be enabled and disabled by hardware 

breakpoint registers set to generate trace actions (Fig. 2.5).

The trace monitor buffers trace words using a first-in-first-out (FIFO) memory, 

in order to compensate for the latency for outputting a trace word. The size of the 

FIFO is application dependent, and if the size is too modest, trace data can overflow 
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and become corrupted. The trace monitor control logic allows requests that the 

processor pipeline be stalled so that no trace  information is lost (Fig. 2.6).

The trace monitor allows internal or external trace memory. When data is avail-

able from the data buffer, it is written to the internal memory. For external trace, the 

off-chip trace port logic multiplexes the trace words from the data buffer onto the trace 

port pins. As in the previous examples, control of the instrument block is handled 

by a JTAG interface and can be configured for on-chip or off-chip trace storage.

2.5.2  Bus Logic Monitoring

With increasing core density and interconnection of blocks in modern SoC design, 

monitoring internal bus operations is an important capability to debug the entire 

SoC. OCP and AMBA AHB are leading on-chip buses in use by many SoC design 

architectures to communicate between cores. On-chip instrumentation applied to 

the AHB captures bus activity and allows system diagnostics in real time.

In this case, the instrument connects to the AHB address bus, data buses, 

and various control signals at the bus multiplexed outputs. In AHB, signals are 

driven from each master and multiplexed onto a common address/data/control bus 
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by a multiplexer controlled by the arbiter. The multiplexed output is fanned out to 

all the AHB slaves. Similarly, data from each slave is multiplexed onto the common 

bus and sent to the SoC masters. The instrumentation interfaces are configured 

to receive address/control and data bus data from the currently granted master 

and addressed slave. The instrument passively collects bus activity and transfers 

the collected data through a trace port to the external probe interface (Fig. 2.7).

The bus instrument was developed to support a range of single-master and 

multiple-master systems. Additional signals can be hooked up to any nodes in 

the SoC, such as interrupt requests, additional AHB status, and processor control 

signals. The additional signals can also be used to compare and recognize 

specific on-chip activity outside the AHB bus, and then are transmitted to the 

probe for triggering purposes. As an example of real-time processing for debug 

that the instrument enables, the bus monitor allows probing of data in different 

modes. In the AHB case, data can be probed in two modes. Bus-cycle mode 

captures all address/control and data signals exactly as they occur per clock on 

the bus. Bus-transfer mode reduces the delays and latencies between address 

and data cycles on the bus, by aligning to  the same clock cycle, operations that 

occur in different cycles. This reduces the number of trace cycles that are stored 

and  allows for efficient combination of address-data-control event triggering for 

trace and monitoring operations. Bus transfer mode is especially effective for bus 

read operations in which the master transfer operation providing addresses and 

control and slave response providing data back to the master may be separated 

by a large number clock cycles of the bus waiting for the operation to complete. 

As an additional example of trace in-line processing, the trace hardware can be 

configured to filter out idle, busy, and not-ready cycles where no active data 

is being transferred. This allows each trace frame to record the critical AHB 

signals along with additional user-selectable signals and a timestamp to aid in 

performance analysis.

The host software for AMBA monitoring provides a good example of a special-

ized debug interface to support bus operations. Bus values can be viewed either 

numerically or symbolically. The symbolic representation increases the visibility 

and comprehension of complex bus operation (Fig. 2.8).
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Fig. 2.7 Instrument interface into an AMBA bus



252.5 On-Chip Instrumentation Examples

2.5.3  Real-Time Data Exchange

Real-time data exchange is the ability to “exchange commands and data with the 

application while it executes.” This approach to “dynamic instrumentation,” called 

“dynamic variable adjustments” or “dynamic data collection,” was introduced by 

Texas Instruments and is becoming widely utilized. Dynamic data collection refers 

to the ability to capture specific address ranges of data from the SoC target and 

present them to the user on the host machine. The data can be “pulled” periodically 

by instrumentation or on-demand by the user using the JTAG and/or trace port. 

Pulled data-exchange methods of implementation can include a JTAG command 

that suspends the processor, reads a range of data values from the target, and passes 

them to the host via the probe interface.

Debug data can also be “pushed” from the target based on instrumented code to 

output variables or arrays periodically (i.e., timer interrupt) or from executing a 

specific location in code – such as when a variable is updated. Pushed data exchange 

can be implemented based on instructions in the target code, such that a range of 

data will be copied from memory to the instrumentation trace port. The hardware 

core and instrumentation block provide an instruction that can write memory to the 

trace port or a DMA channel configuration that can do a range transfer from 

memory to trace port. The data format can function as burst mode – first the start 

and end addresses are sent out (or start address and length,) followed by the data. 

If the trace port is not available, a breakpoint can be placed in the code and the run 

control unit fetches the string buffer via JTAG reads.

A third technique is the use of “shadow memory” – an external RAM that is 

interfaced to hold the same image of values as in the processor’s main memory 

(or cache). Shadow-memory techniques include zero-overhead methods in which 

the instrumentation is set up with a range of addresses to shadow. When a read or 

Fig. 2.8 A bus analyzer display
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write occurs in the address range, the instrumentation captures the address and data 

value and sends it off-chip through a trace port. To a probe which includes a trace 

memory that allows a real time access to the data.

2.6   Multiprocessor Debug

As more processing elements, features, and functions are simultaneously embedded 

into the silicon, the emerging level of embedded complexity outstrips the capability 

of a stand-alone logic analyzer, a debugger, and an emulator-based diagnostic tool. 

While these tools allow the capture of data off the system data bus, they work only 

as long as every access (read or write) occurs over the external data bus. For embedded 

processors and buses with no direct external access, this points to a growing gap in 

effectively being able to provide the necessary controllability and, in particular, the 

visibility of the internal operations of a complex system.

The need for improved methods of observing and analyzing embedded proces-

sor and SoC operation has increased at a pace at least proportional to the explosive 

growth in SoC designs and new IP cores. This forces the analysis side of the SoC 

world into a constant process of catching-up to the designer’s ability to add cores 

and integrate new resources on chip. With an ever-shortening development cycle, 

and often several generations of products being produced in parallel or rapid suc-

cession, standardized embedded tools and capabilities that enable quick analysis 

and debug of the embedded IP are a critical factor in keeping SoC verification a 

manageable part of the process.

Before we can implement an on-chip debug system suitable for multicore systems 

we have to ask the user requirements.

 1. Each core and bus must be observable. We must be able to see or reconstruct the 

program flow of each single core independently as well as of the data flow on the 

system buses. Also important are signals allowing conclusions to be drawn about 

power modes, bus accessing modes, and others.

 2. It is crucial for system analysis to recognize events that arise from interactions 

between the cores and buses. A single core on its own is no longer of interest. 

Rather, events coming from several cores have to be considered. To minimize 

this challenge, cross triggers must be used, which combine events from different 

sources and make them available systemwide.

 3. The interactions between all SoC components during debug become more com-

plex as more components are involved. A debug system with complex cross 

triggering is hard for the user to manage. The debugger as a user interface for the 

complex debug hardware must support the user in its work finding the mistakes 

or performance bottlenecks. It has to hide the complexity that comes with 

multicore debugging. We must not forget the user’s task is to cope not with the 

debug hardware itself but with the faulty system.
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On-chip instruments (and simulation) play an important part of SoC development 

and verification flows, providing the ability to analyze what is happening on the 

hardware itself, during both prototyping and system-level verification stages, and 

increasingly on the final products themselves. The problem in analyzing informa-

tion like embedded buses in hardware in many cases hinges on a problem of visibility: 

it is difficult to fix what you cannot see. This visibility problem for the embedded 

SoC is more complex than can be addressed adequately by traditional on-chip test 

methods such as traditional JTAG scan, for several reasons:

Bus operations are multicycle, with signals in a bus cycle becoming active at  –

different times, requiring sequential tracing rather than as a single-cycle snap-

shot that scans typically provide.

Bus operation problems are interrelated with the operations of at least two com- –

municating blocks (a processor and memory peripheral, for example). Traditional 

debug methods, such as halting part of a system for testing, can introduce 

changes and new variables that interfere with the test scenario and process.

If problems are intermittent or sparse, then trace operations need to operate in a  –

triggered mode, so information for a given range of bus cycles of interest is 

captured in real time.

The problem is, to a large extent, a multicore extension of embedded processor 

analysis, with run control, instruction execution, and data trace as integral parts of 

processor support. For larger systems with multiple cores, the problem extends 

beyond processor execution to understanding system operation and communica-

tions (Fig. 2.9).

In formal terms, multicore embedded systems present an asymmetric functional 

test problem. Their controllability is high, because the systems are dominated by 

programmable processor cores. The observability is low, however, in terms of both 

the critical signals that are directly available and the amount of embedded logic and 

internal signals as a ratio of the available IO in which to observe them. Adding 

dedicated resources and structures that support functional analysis is necessary to 

increase system observability. This requires a hierarchical focus to the issue of 

system analysis, starting at the individual core level of debug instrumentation and 

resources and increasing to a more system-centric diagnostic capability to facilitate 

increased observability. While embedded debug instrumentation approaches are 

becoming increasingly common at the core level, system-level diagnostics and 

analysis at the multicore level have historically been a largely underaddressed area 

in complex embedded systems.

Single-core approaches for debug and trace often fall short when used with 

multiple cores and processor interfacing with complex application-specific IP. 

Increasingly, SoCs integrate multiple types of cores, either for DSP or other  

specialized processors or for other complex application-specific IP operations for a 

myriad of functions. These cores may be running asynchronously or with variable 

or indirect communications with each other, which makes debugging over multicore 

difficult to correlate. Complicating multicore debug issues further, in many cases, 
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different IP blocks come from a variety of vendors and have different  compile and 

debug environments or levels of debug features. Tasks such as processor interfacing, 

interprocessor communications, run-time execution and coordination, and data pre-

sentation place a significant overhead on the debug requirements for heterogeneous 

and multicore chips. In these architectures, a range of the instrumentation block(s) 

must be customized to support the specific verification and debug requirements of 

both processors on a stand-alone basis and in a multiprocessing configuration. 

Among the basic requirements, instrumentation blocks must be diverse enough to 

effectively communicate debug data with their respective cores and have a sufficient 

common interface to coordinate all their activities. For example, synchronization of 

all processors in SoC is required in starting and stopping their operations.

Instrumentation solutions for on-chip buses provide a valuable resource for 

observation in multiprocessor debug. For systems that have multiple processors 

communicating over a standard bus such as AMBA AHB, access to information 

such as which processor owns the on-chip bus can provide valuable context as to 

what the relative communication and stages of processor execution are. With 

increasingly complex bus architectures being introduced, it is generally agreed that 

future generations of multiprocessor debug will rely on more extensive tracing and 

triggering of bus operations to address interprocessor communication issues in 

conjunction with more specific point solutions for processor-specific analysis.

Looking ahead to more complex systems, instrumentation must have sufficient 

“embedded intelligence” to interpret information passing between cores, determine 

what is needed to be extracted for debug, and perform other task-aware debug for 
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on-chip RTOS or network protocol analysis. Equally challenging is presentation of 

all the diverse debug information in a coherent, understandable way. As in many 

areas of complex SoC design, new classes of instrumentation are needed to address 

diverse debug and analysis requirements of emerging architecture.

Integrating instrumentation into design hardware enables on-chip debug capa-

bilities by providing not only visibility but also control features such as breakpoints 

for developing and integrating SoC application code. On-chip instrumentation and 

debug are critical resources to aid in both processor function and performance 

assessment and effectively evaluating silicon prototypes (for example, program-

mable logic implementations) and first silicon debug and validation.

There are a wide range of approaches taken for embedded processor debug, 

several of which are discussed in later chapters. There is no magic bullet instrumen-

tation approach, but rather a number of commonly required capabilities needed to 

provide a robust debug solution. On-chip instrumentation enables a range of widely 

used best practices in debugging and interfacing embedded information, including 

data tracing, triggering run control that has proven analysis benefits. Implementing 

an instrumented interface on SoC designs offers distinct advantages in efficiently 

implementing run control, real-time instruction and data trace information, RTOS 

support, memory subsystem, breakpoints, and watch-points, to name just a few.

An instrumentation implementation that is scalable and configurable to map to 

a range of instrumentation requirements on the SoC allows support of user-definable 

general-purpose or application-specific features. Instrumentation hardware should be 

a synthesizable solution, both to facilitate integration into a range of target platforms 

and to load instrumentation into hardware emulators to provide a synchronized 

method of loading and debugging code and functionality in a pre-silicon environment. 

Synthesizable instrumentation solutions also allow their integration into high-end 

FPGA parts. In many cases, programmable devices incorporating instruments 

through their system interfaces are ideal for pre-silicon verification.

One of the most important features of instrumentation capability is support of 

collection and streaming of data off-chip to a logic analyzer or other trace postpro-

cessing environments, which integrates trace processing along with a low overhead 

control interface.

Support for complex event recognition and triggering capabilities is also 

required to provide a robust level of control and monitoring of operations. Complex 

address and data triggers, coupled with bus trace, can be used for a range of opera-

tions from multiprocessor synchronization to debugging device drivers. Having a 

source-level debug GUI coupled with the instrumentation complex triggers may 

rapidly uncover execution errors and problems such as improperly defined vari-

ables. By coupling timestamps to trace data, complex triggers can be used to 

provide a range of performance analysis information.

The ability to interpret debug information is essential. A documented API allows 

fast, efficient porting of instrumentation to customer-specific GUIs. Scripting of 

validation and manufacturing tests is a useful means for efficiently leveraging 

embedded instrumentation. Host debugger environments for an instrument solution 

benefit from command-line interfaces that allow effective script file usage.
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Instrumentation solutions for processors should support complete integration 

into a source-level debug interface to provide access to disassembly information 

needed to understand the context of application-related problems.

Instrumentation extensions can be customized in a range of areas for the system 

to debug application-specific IP. Their value in providing otherwise unavailable 

visibility in a range of internal system characteristics, including code coverage, 

RTOS task analysis, and protocol analysis, will only increase with larger, more 

complex, and increasingly deeply embedded next-generation architectures.
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IEEE Specification 1149.1, more generally known as JTAG (Joint Test Action 

Group), was originally developed as a test architecture with a standard serial interface 

to an on-chip test access port (TAP) to permit snapshot sampling of individual pin 

signals. It is, however, generic and flexible enough to also be used to load registers 

and drive specific output signals, which makes it capable of serving as a debug inter-

face in a variety of scenarios. JTAG is probably the most widely used debug interface, 

as the JTAG TAP is found in most digital internal circuits (ICs) and JTAG debug 

interfaces are defined for most processors, FPGAs, and other commercial parts.

Most currently available cores and processor-based devices provide some form 

of JTAG interface for run control and debug functions. JTAG can be used to support 

trace and performance analysis instruments such as the ARM’s ETM and Coresight, 

and MIPS EJTAG + TCB from MIPS; which allow integrated trace of both the 

processor and its system interfaces for more extensive system debug.

The biggest problem with on-chip debugging is the lack of a consistent set of 

capabilities and single communications interface across processor architectures. 

Using JTAG as a “debug port” has become perhaps the most widely used instrumen-

tation interface, providing the stepping stone between traditional processor emulation 

and more SoC-friendly approaches to debug. JTAG was originally developed as a 

means of doing full chip testing and allowing serial testing of all the pin connections 

of a chip and its interconnections to other chips on the circuit board. Given that more 

than 200 major electronics manufacturers have adapted the JTAG standard since its 

release in 1990, JTAG is found in virtually all modern digital ICs. An 1149.1  JTAG 

TAP is a  four- or six-pin interface that has both serial an parallel signals. Data is 

transferred between different TAG or with an external probe over serial test data input 

(TDI) and output (TDO) pins, and system-wide Test Clock (TCK). Test Mode Select 

(TMS) control, and (optional) JTAG test reset (TRST) are common to all TAPS. A 

sixth RTCK signal is not in the current standard but is widely used for debug related 

communications and is discussed later in this chapter.  JTAG standard instruction  

operations define board- level IO testing via a Boundary Scan Architecture (BSA) 

that is based on chained scan registers that may be controlled through the JTAG 

Interface. This JTAG boundary scan architecture is primarily a connectivity test con-

struction and is of less interest for debug. The JTAG specification allows alternative 

logic blocks to be connected to a TAP and the creations of user defined instructions. 

Chapter 3

JTAG Use in Debug
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Most of the operations we will discuss use alternate logic blocks, that sits along side 

the BSA, and which defines instrumentation operations, Similarly, most of the debug 

related instructions we focus on are non-standard user defined instructions.

3.1  JTAG Pins

IEEE 1149.1 requires a minimum of four signals to support the TAP. TRST and 

RTCK are optional. Figs. 3.1 and 3.2.

Fig. 3.1 A JTAG TAP

Table 3.1 JTAG IO signals

JTAG 

I/O Description of JTAG (IEEE 1149.1) Pins

TDI Test data input allows serial movement of data into the JTAG port. Used to 

transfer instructions and data serially into the device. TDI is sampled on the 

rising edge of TCK and has an internal pull-up resistor

TDO Test data output allows serial movement of data out of the JTAG port. Used to 

transfer data out of the device serially. TDO changes on the falling edge of 

TCK

TCK Test clock is an input pin that provides the clock for the JTAG port. Used to sample 

the TMS signal, to strobe data and instructions into the device, and to strobe 

data out of the device

TMS Test mode select input provides access to the JTAG TAP state machine. Used to 

change the TAP controller state machine to the next processing state. TMS is 

sampled on the rising edge of TCK and has an internal pull-up resistor.

TRST Test reset input optionally provides for asynchronous initialization of the JTAG 

IEEE 1149.1 controller. Asserted low to reset the TAP circuitry to a known 

initial state. TRST is asynchronous to TCK and has an internal pull-up resistor

RTCK Return clock output can be used to accelerate data access through the JTAG port. 

RTCK is not part of the 1149.1 standard
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Write operations pass data into the registers from TDI. Read operations pass 

data out of the registers through TDO.

The JTAG port itself has evolved in some circumstances to better support debug. 

One example of this is the introduction of return clock; RTCK is the return test 

clock signal from the target JTAG port to the JTAG interface unit. Some targets 

need to synchronize the JTAG port to internal clocks. To help meet this require-

ment, RTCK, which is a returned (and re-timed) TCK, can be used to dynamically 

control the TCK rate. RTCK is a synchronized logic clock consisting of a delayed 

version of TCK that is synchronized to an on-chip system clock to improve JTAG 

performance in trace operations. RTCK was originally developed by ARM but is 

now supported in general for many other processors’ JTAG instrumentation.

Also widely associated with JTAG is a VTRef signal intended to supply a logic-

level reference voltage to allow debug equipment to adapt to the signaling levels of 

the target board. VTRef does not supply operating current to the debug equipment.

Few vendors have standardized JTAG instruments outside of the physical port 

pin out and required test-related instructions for the physical connection. As a 

result, JTAG capabilities vary widely because on-chip debug was never addressed 

within the IEEE 1149.1 standard. The JTAG architecture defines signals and man-

datory on-chip logic (16-stateTAP controller, instruction tegister, bypass register 

and boundary-scan register) that is also used by instrumentation. Chips may be 

daisy-chained together, connecting all registered I/O pins and buffers into a scan 

chain, where values may be read or written. For larger devices, this scan chain may 

be hundreds of elements long.

The JTAG port is a dedicated interface standardized for JTAG access. 

Additionally, it can be used for internal chip tests. Because neither of these 

Fig. 3.2 JTAG interface using RTCK
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applications is used during normal operation of a device in a system, the JTAG port 

is well suited to be an interface for special user modes, such as debug. The avail-

ability of JTAG pins in devices and their lack of use in nontest-related applications 

has popularized their use as a debug port that allows low overhead access to all ICs 

in a system and provides embedded developers with an otherwise unused interface 

for debugging. The use of JTAG as it applies to tests could fill its own book, there-

fore we only focus on the debug-specific parts of JTAG here.

That being said, JTAG is not an ideal interface for debugging modern devices. 

It is a low-speed serial interface, and the upper limit of transfers is typically less 

than 100 MHz, and so it has limited bandwidth and was not designed to support 

instruction and data transfers for any real-time analysis. Instrumentation based on 

JTAG relies on a simple low-speed debug port philosophy of setting up and con-

figuring debug-related IC registers, and then capturing processor information at 

normal operating speeds to the JTAG-enabled registers. Typical operations 

involve triggering of breakpoints or tracepoints (trigger points for starting and 

stopping trace operations) and access embedded state information of the micro-

processor for testing and run control. Some processors have extended JTAG 

instructions for debug operations that allow decisions based internal JTAG-

enabled registers to change the processor state to debug intensive modes of 

operation for capturing system information. While in debug mode, the processor 

instrumentation can examine and modify the internal and external states of a 

 system’s registers, memory, and I/O space. A rich infrastructure of tool 

 environments and standardized debug schemes has been built on this foundation 

to provide JTAG debug of both embedded processors and other parts of an 

embedded system.

The key to using JTAG as a debug port is the standard’s provisions for user-defined 

instructions and data register sizes. Virtually all of the debug instructions and capa-

bilities we discuss utilize this user-defined instruction capability. JTAG defines a 

small variety of standard test instructions with a low-overhead (and low-bandwidth) 

serial data access interface. Whereas JTAG defines standard test operations (scan in, 

scan out, bypass, etc.) that use defined registers, the JTAG standard allows for a much 

more diverse number of user-defined instructions that can be added.

Because JTAG does not define a fixed register size, the number of available 

registers that can be selected using different user-defined instructions can be much 

larger than the number of JTAG-defined registers for test purposes; the size of data 

registers associated with different instructions is also user-defined. Consequently 

use of JTAG for debug is essentially done on an ad hoc basis using the JTAG ability 

to access these user-defined instructions via a standardized and simple state 

machine in the TAP that serially scans instructions in and data in and out of the 

registers. These debug-mode instructions and their associated instruction and data 

registers must be designed into the JTAG block and must have a probe and other 

software infrastructure to support operations. Several locally standardized sets of 

debug mode instructions have been adopted for use with the JTAG TAP, especially 

with regard to processor debug operations. These include vendor-specific ARM 

ETM and MIPS EJTAG for the different processor families, as well as other 
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standards such as IEEE 4001 (Nexus), IEEE 1149.7 (CJTAG/AJTAG), and IEEE 

P1687 (IJTAG) (all of which are discussed in later chapters). Each of these which 

define a JTAG-compliant protocol that supports additional debug functions, while 

adhering to the 1149.1 standard. All have support from a variety of third parties that 

supply probes and software tools that support these different JTAG variants. Of 

course, any chip developer may define and support its own debug instruction set by 

defining it in the JTAG TAP and on-chip instruments communicating with the TAP, 

and providing or developing its own infrastructure.

3.2  Test Access Port

The TAP is the external interface for the internal test circuitry specified by IEEE 

1149.1. It consists of the following:

4 to 6 dedicated signal pins.•฀

A 16-state TAP controller.•฀

An instruction register.•฀

At least 3 data registers:•฀

A bypass register (BR). –

A device ID register (IDR). –

A boundary-scan register (BSR) –

The three defined data registers have defined purposes for debug operations, but 

there also must be at least one debug register. Using JTAG as a debug architecture 

requires debug-related registers connected between the JTAG controller and the 

internal device circuitry. Unlike a BSR, there is no pre-defined relation between 

the different debug registers. When selected by the appropriate TAP controller 

instruction, one or more debug registers becomes a serial scan path between a 

TDI pin and a TDO pin. During normal operation, the registers are static or in 

read mode to collect data. However, when the system enters debug mode, data 

loaded into the control registers is propagated and data from the system is cap-

tured for triggering and related functions. Data registers can be read or written by 

shifting in values from the JTAG TAP and applying them to an active register. 

Registered on-chip data can be exported through the JTAG TAP; for observation 

and analysis.

The JTAG controller state machine is the heart of the JTAG operations. It is also 

referred to as the test access port controller. The TAP controller is a 16-state 

machine that manages control of the JTAG environment to perform the instructions 

and data transfers between the on-chip registers and an external debug host. All 

state transitions occur on a positive TCK clock edge and are controlled by the TMS 

pin after reset (TRST). Initially, the state machine is in the Testlogic-reset state. 

With TMS low and a positive edge on the TCK, it is brought to the Run test/idle 

state. All further state transitions are done in a similar manner.



36 3 JTAG Use in Debug

Figure 3.3 shows the 16-state TAP controller state machine. The state machine 

performs three basic actions:

Do nothing and wait for debug operation to be initiated by an external debugger •฀

host in the Testlogic-reset or Run test/idle state.

Load a new instruction in an instruction register (IR) scan cycle.•฀

Load new data into a selected data register in a data register (DR) scan cycle.•฀

The JTAG state machine has two parallel control paths. One is for the JTAG instruc-

tion register using the IR path, and the other is for the (selected) data register 

using the DR path. The instruction register directly or indirectly selects the 

register(s) for the next data operation. The IR and DR paths are identical to flow; 

the differences are in the registers that are being accessed. The corresponding IR 

and DR states are as follows:

Select-IR-scan, select-DR-scan: initiate an instruction or DR access sequence.•฀

Capture-IR, capture-DR: load IR or DR in parallel.•฀

Shift-IR, Shift-DR: load data register by shifting data through the instruction •฀

register or the selected data register that is connected between the device’s TDI-

TDO.

Exit1-IR,exit1-DR: finish phase-1 shifting of instruction or data.•฀

Pause-IR, Pause-DR: temporarily hold the access operation (allow the master to •฀

reload data).

Exit2-IR, exit2-DR: finish phase-2 shifting of instruction or data.•฀

Fig. 3.3 A 16-state TAP controller state machine
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Update-IR, update-DR: parallel load of registers synchronizing the instruction •฀

or selected data register or instrument that is active under the current selected 

instruction.

In operation, the TAP changes state based on the level of TMS. Transitions from one 

state to another occur on the rising edge of the TCK. Instructions and data are trans-

ferred through TDI, which is sampled on the rising edge of the TCK, and data is 

transferred out through TDO, which changes on the falling edge of the TCK. This 

sampling technique prevents the development of a race condition in the TAP. The 

main state diagram consists of six steady states: Testlogic-reset, Run test/idle, 

Shift-DR, Pause-DR, Shift-IR, and Pause-IR. A unique feature of this protocol is that 

only one steady state exists for the condition when TMS is set high: the Testlogic-

reset state. This means that a reset of the test logic can be achieved within five TCKs 

or fewer by setting the TMS input at a high level/high enough/sufficiently high/ etc.

A JTAG implementation consists of an instruction register and one or more data 

registers, one of which is selected at any given time based on the contents of the 

instruction register. The JTAG port master writes an instruction into the IR that 

either performs an action or selects a particular data register, or both. The action 

occurs when the TAP state machine passes through the Update_IR state. Status 

information is returned to the external hardware in the IR output. The IEEE stan-

dard requires that IR output bits [1:0] be 0,1 respectively. The remaining bits can 

reflect status information.

At power-up or during normal operation, TRST can be asserted to initialize the 

test controller. This immediately places the TAP in the Testlogic-reset state. The 

TAP can also be forced into the Testlogic-reset state by driving TMS high for five 

TCK cycles. Five is the maximum number of TCK cycles required to transition the 

TAP to the Testlogic-reset state from any of the other states when TMS is held high. 

In the Testlogic-reset state, the TAP issues an internal reset signal that places all test 

logic in a condition that does not impede normal operation. The TAPS also locks 

the IDCODE instruction into the instruction register and selects the device ID reg-

ister as the default data register at reset.

From the Testlogic-reset state, the TAP moves to the Run test/idle state when 

TMS is pulled low. As long as TMS is held low, the TAP stays in the idle state. 

From this state, driving TMS high moves the TAP to the data register scan cycle. 

The TAP cannot remain in the select DR scan state for more than one TCK cycle. 

Driving TMS low for one TCK cycle causes the TAP to begin the data register scan 

process, moving to the capture DR state. Keeping TMS high for one more TCK 

cycle moves the TAP to the beginning of the instruction register scan cycle (select 

IR scan state).

After reset, one can read the device ID register (default). To perform any other 

action, one must move the TAP to the instruction register scan cycle to select an 

appropriate data register. For either type of scan cycle (data register or instruction 

register), the first action in the scan cycle is a capture operation. The capture-DR 

state enables the data register indicated by the current instruction register contents. 

The capture IR state enables access to the instruction register.
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From the capture state, the TAP transitions to either the shift or the exit1 state. 

The shift state allows test data or a new instruction to be shifted in or status infor-

mation to be shifted out for inspection. Following the shift state, the TAP either 

returns to the Run test/idle state, via the exit1 and update states, or enters the pause 

state, via exit1. The pause state allows data shifting through either the selected data 

register or instruction register to be temporarily suspended while a required opera-

tion is performed. From the pause state, shifting can resume by re-entering the shift 

state via the exit2 state, or it can be terminated by entering the Run test/idle state 

via the exit2 and update states.

3.3  JTAG Registers

All registers are accessed serially through the TAP and, when selected, connect 

between the TDI and TDO pins. The TAP controller, which is a state machine, 

controls access to the registers. The state is changed by the TMS signal in conjunc-

tion with the TCK.

The following registers are found in most JTAG systems:

The bypass register provides a single-bit scan path between TDI and TDO. It •฀

enhances test efficiency when a device other than the core-based device becomes 

the device under test. When the bypass register is selected by the current instruc-

tion, the shift register stage is set to a logic 0 on the rising edge of TCK in the 

capture DR controller state. Therefore, the first bit shifted out after the bypass 

register is selected is always 0.

The ID register is a 32-bit register that stores values that identify the device •฀

manufacturer, part number, and version of a device and is selected by the 

IDCODE instruction. It can be used to distinguish specific IEEE 1149.1–compliant 

parts in a daisy-chained system. The least significant bit (bit 0) is always set to 

logic 1, as required by the standard; this bit is an identity packing bit that indi-

cates valid data.

The boundary-scan register defines test operation in the device and contains bits •฀

for all signal, clock, and control pins. All bidirectional pins have a single register 

bit and an associated control bit in the BSR. In the update DR state, the register 

contains valid stimuli data. In the capture DR state, the boundary-scan register 

samples data. Data clocked into the device in the shift DR state can drive output 

pins in the subsequent update DR state. At the same time, the clocking action 

shifts out sampled pin data from the previous capture DR state.

The instruction register is a required register specified in IEEE Standard 1149.1 •฀

that must be at least 1 bit long. Different processor families implement different-

length IRs that decode the unique instructions supported for the device. For 

instruction operation codes that are not defined, the standard requires that the 

decoder select the bypass register by default. The IR consists of a shift register 

with parallel outputs. Data transfers from the shift register to the parallel outputs 

during the update IR TAP controller state. During a shift IR loading sequence, 
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data can be clocked through the instruction register out of TDO to allow instructions 

to be passed to any subsequent devices in the JTAG daisy chain. During the 

capture IR state, the parallel inputs to the instruction shift register are loaded 

with 01 in the least significant bits as required by IEEE Standard 1149.1. The 

two most significant bits are loaded with the values of the core status bits [1–0] 

from the debug controller.

After reset, the instruction register is loaded with the IDCODE instruction, and the 

ID register is the selected data register. One can perform a data scan to read the 

device information. For other operations, the TAP programming sequence must 

begin with a scan into the instruction register to specify the appropriate data regis-

ter. After an instruction register scan, subsequent scans are through the specified 

data register and may involve several scans of data into or through it.

Debug registers in most cases are data registers that are accessed through a com-

mand register that is configured during an IR pass by loading a debug-related 

instruction.

3.4  JTAG Instructions

With the exception of BYPASS and IDCODE, which are defined and discussed in 

later chapters, none of the mandatory or optional instructions referenced in the 

1149.1 specification are used for debug purposes and are of no direct interest to this 

discussion. It should be noted, however, that BYPASS, EXTEST, and SAMPLE/

PRELOAD instructions are mandatory and, as such, should be included in a TAP 

design if it is intended to be 1149.1-compliant.

BYPASS (11…11): This instruction is required by IEEE Standard 1149.1 and is 

defined to be all 1s. BYPASS allows the device to remain in its functional mode 

and connects the bypass register between TDI and TDO. It allows serial data to pass 

through from TDI to TDO without affecting the operations.

IDCODE: This optional instruction is specified in IEEE Standard 1149.1. 

IDCODE allows the device to remain in its functional mode and connects the ID 

register between TDI and TDO. It allows the user to read the manufacturer, part 

number, and version of a component from the TAP. This is the default value loaded 

into the IR at reset.

Debug-related instructions are discussed in the next chapters, both generically 

and for various commercial and widely used debug instruments.

JTAG has therefore evolved into a robust leading mechanism for debug con-

trol even though, due to its serial architecture, JTAG it is limited in the level of 

debug visibility it can support. JTAG works well for debug of a single processor in 

isolation because debug may be based on observation of a limited number of internal 

registers and the processor may be halted to probe and export additional infor-

mation. The increased signal complexity of emerging SoC devices, with multiple 

processing operations distributed over many resources and communication with 

other supporting IP and internalized buses, in some cases require data access that 
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outstrips JTAG bandwidth. Debug interfaces have been developed to provide 

complementary instrumentation interfaces that allow higher levels of data 

throughput than JTAG. These are discussed in later chapters.

3.5  Boundary-Scan Description Language

Boundary-scan description language (BSDL) describes how IEEE 1149.1 is 

implemented in a device and how the device operates. A BSDL description for a 

device is based on VHDL model descriptions and consists of the following 

elements:

An entity description.•฀

A generic parameter.•฀

A logical port description.•฀

Use statements.•฀

Pin mapping(s).•฀

A scan port identification.•฀

An instruction register description.•฀

A register access description.•฀

An ID code description.•฀

A boundary register description.•฀

BSDL does not describe how instruments are controlled by the JTAG TAP 

 operations. A BSDL description of a device consists of at least an entity descrip-

tion, a generic parameter, a logical port description, pin mapping, a scan port iden-

tification, an instruction register description, an ID code description, and a boundary 

register description.

For those not familiar with VHDL syntax, descriptions are provided for each 

stage of the file.

BSDL code is in Courier font, comments are shown in italics.

– BDSL HEADER - This is free format and typically not parsed

– Per VHDL Syntax, lines starting with – are comments

– Showing Boundary Scan Description Language (BSDL) for

– Device DSP_NS in a 24-pin package

– Modification History

– Date Author Version

– Created –/–/–’ NSTOLLON 1.1

– Modified –/–/–,

The entity description gives the name of the device. It begins with an entity state-

ment and terminates with an end statement. For example, this entity description for 

device called DSP_NS

entity DSP_NS

is a generic parameter that can come from outside the entity, In BSDL, the only 

generic is a string with a name PHYSICAL_PIN_MAP. If “undefined” it can be 
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defined by another file, or it can be defaulted to a fixed value such as the package 

type, in this case, a 24-pin package.

generic (PHYSICAL_PIN_MAP: string:= “PQ24”);

The logical port description gives logical names to the I/O pins and specifies 

whether the signals are input, output, bidirectional, or linkage (for power supply).

port (

P1:in bit;

P2:inout bit;

VSS:linkage bit;

XIN:linkage bit;

XOUT:linkage bit;

VCC_BUS:linkage bit;

P3:inout bit;

P4:inout bit;

P5:inout bit;

P6:inout bit;

P7:inout bit;

VREF:linkage bit;

P8:inout bit;

EXC_VDD:linkage bit;

P9:inout bit;

RESET:in bit;

MOD0:in bit;

MOD1:in bit;

VDDE:linkage bit;

TMS:in bit;

TCK:in bit;

TRST:in bit;

TDO:out bit;

TDI:in bit

);

STD 1149_1_1994 refers to a package of predefined functions and components that 

are associated with various attribute statements referenced in the BSDL model.  

A STD_1149_1 use statement is mandatory in BSDL. The “.all” suffix means to use 

all components and functions of the package.

use STD_1149_1_1994.all;

attribute COMPONENT_CONFORMANCE of DSP_NS: entity is 

“STD_1149_1_1994”;

For example, PIN_MAP is a predefined function in the STD 1149_1_1994 package 

that maps logical signals to the physical pins of the 24-pin package.

attribute PIN_MAP of DSP_NS: entity is PHYSICAL_PIN_MAP;

constant PQ24: PIN_MAP_STRING:=

“P1:1,” &

“P2:2,” &

“VSS:3,” &

“XIN:4,” &
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“XOUT:5,” &

“VCC_BUS:6,” &

“P3:7,” &

“P4:8,” &

“P5:9,” &

“P6:10,” &

“P7:11,” &

“VREF:12,” &

“P8:13,” &

“EXC_VDD:14,” &

“P9:15,” &

“RESET:16,” &

“MOD0:17,” &

“MOD1:18,” &

“VDDE:19,” &

“TMS:20,” &

“TCK:21,” &

“TRST:22,” &

“TDO:23,” &

“TDI:24,”;

Attributes for scan port identification statements define the TAP, device clock, and 

reset operations. The definition of the port of a device contains four mandatory pins 

(TDI, TDO, TCK, TMS) and one optional TRST pin.

attribute TAP_SCAN_IN of TDI: signal is true;

attribute TAP_SCAN_MODE of TMS: signal is true;

attribute TAP_SCAN_OUT of TDO: signal is true;

attribute TAP_SCAN_CLOCK of TCK: signal is (5.0e6, BOTH);

attribute TAP_SCAN_RESET of TRST: signal is true;

The instruction register description identifies device-dependent characteristics of 

the instruction register, including the device-specific instructions supported by a 

given device. These include debug-related instructions. In this example, the instruc-

tion register length attribute defines the instruction register length as 6 bits and 

gives the instruction opcode definitions. It also specifies that for the capture IR 

state parallel inputs to the instruction shift register are loaded with value 110001.

attribute INSTRUCTION_LENGTH of DSP_NS: entity is 6;

attribute INSTRUCTION_CAPTURE of DSP_NS: entity is 

“110001”;

attribute INSTRUCTION_OPCODE of DSP_NS: entity is

“BYPASS (111111),” & – defined as required instruction 

by JTAG

“SAMPLE (000001),” & – defined as required instruction 

by JTAG

“EXTEST (000000),” & – defined as required instruction 

by JTAG

“IDCODE (000010),” & – defined as optional instruction 

by JTAG
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“USERCODE (000011),” & – other are example user-defined 

instructions

“DBG_SYSTEM (001000),” & – for debug control 

operations

“DBG_CONTROL (001001),” &

“DBG_SETUP (001010),” &

“MON_CONTROL (001111),” & – for debug monitoring 

operations

“MON_CODE (010000),” &

“MON_DATA (010001),” &

“MON_PARAM (010010),” &

“MON_ACCESS (010011),”;

The attribute INSTRUCTION_PRIVATE register description identifies user-defined 

instructions. It does not include features to describe their functions.

attribute INSTRUCTION_PRIVATE of DSP_NS: entity is

“DBG_SYSTEM,” &

“DBG_CONTROL,” &

“DBG_SETUP,” &

“MON_CODE,” &

“MON_DATA,” &

“MON_PARAM,” &

“MON_ACCESS”;

The ID code register description identifies the values captured in the device identi-

fication register when the IDCODE instruction is executed.

attribute IDCODE_REGISTER of DSP_NS: entity is

“0000” & – version

“0011001000100110” & – part number

“01000100011” & – manufacturer’s identity

“1”; – required by 1149.1

Additional attributes can be defined for other registers.

attribute DBG_SYSTEM_REG of DSP_NS: entity is

“0000000000100000” & – reserved

“0000” & – trigger modes

“0001” & – ROM monitor

“0010” & – ISA debug

“0100”; – debug state

A register access description defines the name of a register placed between the TDI 

and TDO for each instruction.

attribute REGISTER_ACCESS of DSP_NS: entity is

“Bypass (BYPASS),” &

“Boundary (SAMPLE, EXTEST),” &

“DEVICE_ID (IDCODE,USERCODE),” &

“DBG_SYSTEM_REG (DBG_SYSTEM),” &

“DBG_CONTROL_REG (DBG_CONTROL),” &

“DBG_SETUP_REG (DBG_SETUP),” &

“MON_CODE_REG (MON_CODE),” &
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“MON_DATA_REG (MON_DATA),” &

“MON_PARAM_REG (MON_PARAM),” &

“MON_ACCESS_REG (MON_ACCESS);

The boundary register description lists the boundary-scan cells and gives informa-

tion regarding the cell type and associated control.

attribute BOUNDARY_LENGTH of DSP_NS: entity is 27;

attribute BOUNDARY_REGISTER of DSP_NS: entity is

“26 (BC_4, P100, observe_only, X),” &

“25 (BC_6, P100, bidir, X, 13, 1, Z),” &

“24 (BC_1, *, control, 0),” &

“23 (BC_4, RESET, observe_only, X),” &

“22 (BC_4, MOD0, observe_only, X),” &

“21 (BC_4, MOD1, observe_only, X),” &

“20 (BC_4, P101, observe_only, X),” &

“19 (BC_6, P100, bidir, X, 13, 1, Z),” &

“18 (BC_1, *, control, 0),” &

“17 (BC_4, P102, observe_only, X),” &

“16 (BC_1, P102, output3, X, 0, 0, Z),” &

“15 (BC_1, *, control, 0)” &

“14 (BC_4, P103, observe_only, X),” &

“13 (BC_1, P103, output3, X, 291, 0, Z),” &

“12 (BC_1, *, control, 0),” &

“11 (BC_4, P104, observe_only, X),” &

“10 (BC_1, P104, output3, X, 288, 0, Z),” &

“9 (BC_1, *, control, 0),” &

“8 (BC_4, P105, observe_only, X),” &

“7 (BC_1, P105, output3, X, 285, 0, Z),” &

“6 (BC_1, *, control, 0),” &

“5 (BC_4, P106, observe_only, X),” &

“4 (BC_1, P106, output3, X, 282, 0, Z),” &

“3 (BC_1, *, control, 0),” &

“2 (BC_4, P107, observe_only, X),” &

“1 (BC_1, P107, output3, X, 279, 0, Z),” &

“0 (BC_1, *, control, 0),”;

end DSP_NS

BSDL is primarily a means to describe1149.1 operations, is not structured to be 

very useful for on-chip instruments by itself, because too much instrument func-

tionality is outside of the 1149.1 standard. BSDL is discussed in Chap. 9 (IJTAG) 

in the context of a litmus test for JTAG components. If it is 1149.1-compliant, it 

should be describable in BSDL. Conversely, if it cannot be described in BSDL, it 

is not 1149.1-compliant. There are activities to define successor languages to 

BSDL to encompass features for more in-depth description of instrumentation 

operations, configurations, and on-chip debug-related functionality.
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3.6  The Road to JTAG: Historical Debug Approaches

The majority of on-chip debug interfaces in use today are based on JTAG. It is useful 

to discuss some of the previous approaches, because many, like emulation, have 

continued to evolve into related but somewhat separate disciplines, and others, like 

BDM, which was in wide use a decade ago, continue to see some use today. Given 

the central importance and relative complexity of processor cores in embedded sys-

tems, a majority of the focus has been on processor debug technologies rather than 

on debug-related aspects of an embedded system.

Tools that to a large extent only address the specifics of the processor are obvi-

ously limited in more system-related applications. As the processors become more 

deeply embedded, traditional development tools for system debug applications 

cannot provide nonintrusive visibility into the highly integrated embedded processor. 

Applied to processor in-circuit emulators and their derivatives, the system must be 

placed in special debug modes or halted before it can probe processor registers or 

read/write to the embedded memory. In many cases, this interruption of the steady-

state performance of the system introduces (time) intrusive elements into the system 

operation that can complicate or invalidate the data or operations being observed. 

This problem grows proportionally to the ever-increasing frequency and complex-

ity of high-performance embedded processors.

Printf-based debug: Historically, the most commonly used processor debug tool 

is some variation of the printf command, which allows the processor, during its 

normal course of operation, to transfer status information to either memory or an 

external interface for later interpretation of the program operation and hopefully 

some signposts of where and when errors are occurring. It is likely that even today, 

variants of printf commands embedded in code running both in simulations and on 

hardware targets are the most widely used means of system debug. The disadvan-

tage of using printf commands in embedded code is the different ways that embedded 

compilers support printf commands and the fact that by adding these statements to 

one’s code, one changes the program flow that one is trying to debug. There are 

software-related books that address the use and variants of the printf command for 

use in software debug, so we may safely leave this topic and the interested user can 

find many alternate sources of information.

Debug monitors: A related approach is the use of a debug monitor (or a ROM 

monitor as it was often included in the boot ROM of a device), which is code that 

is included in the processor to help with debugging. It usually communicates via 

a serial interface to a host computer or some form of terminal. A basic monitor 

allows for the download of code, the reading and writing of memory and registers, 

and, perhaps most importantly, setting breakpoints, single stepping, and real-time 

execution. More complex monitors allow source code profiling and complex 

breakpoints. A variant of the debug monitor uses a ROM emulator as a plug-in 

replacement for the on-chip or on-board ROM containing the debug monitor code. 

The ROM emulator device would typically be connected to a host computer to 
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allow debug code download (as opposed to having dedicated debug support in 

ROM) that contains a ROM monitor and communicates with the monitor via the 

emulator interface, as opposed to having dedicated debug support.

In a systems analysis context, however, monitors present debug limitations. 

Debug monitors are intrusive into operational flow of the processor, change the 

state of the processor, and control the program’s execution by changing the memory 

map of the processor to accommodate inclusion of the monitor code and forcing the 

processor to always be on. Debugging of interrupts and real-time operations are 

thus typically not feasible. Breakpoints are typically limited to those implemented 

in software (inserting an opcode for a “trap”), further changing the system being 

debugged. Single stepping is often done by inserting breakpoints in appropriate 

places.

In-circuit emulation: The in-circuit emulator (ICE) has had a long and generally 

successful history for stand-alone processor debug devices. In the 1990s, it was 

virtually required that every new device have an ICE system to be used for debug 

and systems integration. ICE typically used a special version of the processor called 

a “bond-out” chip with extra debug support pins, bringing typically internal signals 

to the chip periphery in order for code execution to be monitored and traced, the 

processor controlled using hardware triggers and breakpoints, and external memory 

to be mapped into the user space. Due to architectural differences in processors, 

diverse ICE tools have been developed and continue to evolve to suit the needs of 

different processors.

The ICE concept continues to be used, with an entire electronics industry subset 

dedicated to emulators that replace the bond-out chip with a programmable imple-

mentation that allows the processor functions along with other system logic to be 

implemented and executed. However, these emulators run on a different principal, 

essentially replacing entire systems with their FPGA equivalents.

In ICE operations, the processor operational interfaces are typically modified, 

via either software or hardware, to allow extended host control of the processor 

run environment. When the processors are in ICE mode, they may be in a non-

standard operating state of the processor with different opcodes and interface 

features. The resulting operation of a processor in emulation mode makes the 

processor appear to be in a dormant state, with impact on its ability to access and 

debug other parts of the embedded system. In addition, to be minimally intrusive, 

many processor emulation schemes are limited to monitoring the processor bus. 

Many signals and internal registers may be inaccessible during ICE mode opera-

tions, although this may not be the case for more general emulation. Other limita-

tions include the inability to debug at full speed and concerns for subtle 

differences in operation between an emulated version of a processor and the 

actual processor.

Most in-circuit emulators contain real-time trace circuitry, which allows them to 

capture the activity on the processor’s bus and, with on-chip support, the proces-

sor’s internal states. This data is generally logged to a trace buffer for later analysis. 

Such data is particularly helpful when trying to debug problems involving behavior 

that can only be captured when the processor is running at full speed.
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The ICE’s most powerful features include complex breakpoints (even in ROM), 

real-time traces of processor activity, and no use of target resources. But this extra 

functionality requires separate packaging and, in some cases, a separate die. The 

speed, complexity, and integration levels of modern processors limit the availability 

and feasibility of bond-out versions, making emulators difficult and expensive to 

design. As a result, some debugging features unique to ICEs are not available for 

modern processors.

3.6.1  Background Debug Mode

Background debug mode (BDM) is a bit-serial synchronous communication 

developed by Motorola. The debug signal interface consists of a serial data in, serial 

data out, serial clock/breakpoint, and a freeze status signal. At its most basic imple-

mentation, BDM allows externally controlled read or write of a range of registers 

and on-chip memory. There are several BDM variants that also allow a BDM inter-

face to set a break or interrupt to debug mode under varying conditions, to halt 

execution of normal machine code fetched from the memory, and to start to process 

commands received from the serial debug interface.

BDM commands are similar to those in ROM monitors. Single stepping is 

accomplished by hardware control of the BDM port or by placing a software break-

point instruction in the code stream. Although BDM is still in limited use, it is 

primarily interesting as the first example of a debug port whereby commands can 

be used to view and modify registers and to access on-chip and external memory 

locations.

The basic BDM command set is generally the same across processor families, 

but differences exist due to the inherent architectural differences. These differences 

are handled by the particular debugger that drives the BDM.

BDM commands are 17 bits long (actually 16 command bits and 1 status/control 

bit). Commands are shifted serially along the serial-data-in (DSI) signal from the 

debugger to the processor; each may be followed by one or more extension words. 

Responses are shifted serially out of the processor on the corresponding serial-data-

out (DSO) signal. These data transmissions are synchronized to a serial-clock 

(DSCLK) signal, which is driven by the remote debugger. We can see how JTAG 

was identified as a logical successor to BDM, because it shares some of the same 

architectural concepts.

Table 3.2 shows a core BDM command set. Commands are similar to those of a 

typical debug monitor. An external debugger host is enabled for capabilities like 

reading and writing registers and individual memory locations. BDM commands 

invoked while the processor is running involving memory will “steal” bus cycles 

from the processor, much as a DMA (Direct Memory Access) controller would.

The debugger performs memory and register read/write and processor halt/restart 

operations, without the processor involvement or impact to instruction flow when 

these activities are occurring. Execution of a background mode (BGND) instruction 
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or assertion of a breakpoint signal from the debugger will cause the processor to halt 

and the on-chip debug hardware to perform operations until a command to resume 

normal execution (GO) command is received.

BDM, like other on-chip debuggers, provides basic capabilities similar to a debug 

monitor, but debugging does not need to use target memory. It also offers some of 

the features of an ICE to view registers and memory without halting the processor.

On-chip debug instruments allow users to see address and data values just as the 

processor sees them, that is, unfiltered by pre-fetch or cache operations. In a production 

system, it is only possible to capture them with an on-chip debugger. For example, 

Freescale ColdFire’s BDM connection contains eight additional output signals, 

which can output nibble-formatted information on the processor’s state. By logging 

data on the host side, the real-time execution history of the processor can be recon-

structed from this information.

Table 3.2 A basic BDM command set

Command Mnemonic Description

Read register RAREG/RDREG Read the selected address or data register 

and return the result

Write register WAREG/WDREG Write the specified value to the selected 

address or data register

Read memory READ Read from the specified memory location

Write memory WRITE Write to the specified memory location

Dump memory DUMP Read from a block of memory

Fill memory FILL Write to a block of memory

Resume execution GO Resume instruction execution at the current 

value of the PC (after pipeline flush)
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Debug features for embedded processors have been recognized from the earliest 

days of embedded processing as an important requirement for processor verifica-

tion. Because detailed simulation of processor operations for many applications has 

historically not been feasible due to the large number of cycles required for many 

applications, processor analysis via emulation and trace of processor operations has 

been required for verification and hardware/software integration. Most licensable 

embedded processors include some instrumentation features to support debug. 

Although the specifics vary with each processor type, debug for processor cores 

typically provides similar debug features:

 1. Processor-specific run control (start, stop, software and hardware breakpoints, 

single-step run control).

 2. Monitoring of hardware and software breakpoints for triggering.

 3. Real-time trace that can include execution (instruction) and/or data trace. Trace 

operations can be triggered from conditions such as instruction execution, 

memor, or IO operations, address range, or opcode value.

Among the most valuable processor debug features for analyzing operational 

performance is execution trace. Trace in general is a complex debug technology 

because it requires either a large buffer or high bandwidth to export trace infor-

mation. Each new generation of processors brings new performance capabilities 

that make debugging more difficult. To address these new barriers, processor 

manufactures have been adding parallel debug capabilities to devices, enabling a 

new class of debugging techniques that promises to help developers get home on 

time Tables 4.1 and 4.2.

Integrating debug instruments on processors allows JTAG-driven emulation and 

pseudo-real-time debug through access to system registers. These debug instru-

ments enhance the visibility a JTAG port can provide into processor operation. 

Instead of using the processor core to execute functions, debug peripherals execute 

in parallel to the processor with complete access to system registers, memory, and 

executive control, resulting in nonintrusive visibility, increased performance, lower 

latency, and greater complexity of functions.

Chapter 4

Processor System Debug



50 4 Processor System Debug

Table 4.1 Instrumentation chip IO interfaces

Name Type Description

Initialization and clocking

CLK Input Clock source

RESET Input Hardware reset input. Clears internal OAI resources

JTAG

TCK Input Test Clock input. Asynchronous to but lower frequency than CLK

TMS Input Test mode select. Comes directly from input pad

TDI Input Test data input. Comes directly from input pad

nTRST Input Test reset. Active high

TDO Output Test data output. Goes directly to output pad

External debug mode control

BreakIn Input Input signal from cross-trigger bus (coming from other internal /

external logic)

BreakOut Output Output signal to cross trigger. Driven high on processor breakpoint 

(going to other internal/external logic)

External trigger

Trig_Out Output Trigger out connects to cross-trigger logic or output pin allows cross 

triggering with other logic

Table 4.2 Instrumentation processor interfaces

Name Type Description

Processor debug mode control

DebugAck Input Debug acknowledge. Connected to processor debug_ack output

DebugReq Output Debug start/stop request. Connected to processor debug request 

input

DebugStep Output Debug step. Connected to processor debug_step input

Debug_Prog Output Debug operation to inhibit PC when debug instrument-driven 

read/write operation is active

Processor trace/trigger

Fetch Input Program fetch

Flush Input Program branch indicator. Connected to processor flush output

Memaddr Input Program memory bus. Connected to processor memaddr bus

On-chip processor instrumentation may be added to processor cores, providing 

run control, memory and register visibility, complex breakpoints, and trace history 

features. Typically, analysis in many processors have common features.

Control via 4-pin IEEE-1149.1 (JTAG) port.•฀

Start/stop run control through DebugReq and DebugAck handshake signals to •฀

core.

Support for an unlimited number of software breakpoints using a software •฀

breakpoint opcode.

Single-step operation by assembly instruction.•฀

Access to registers and memory (code, external data, SFR, and internal data spaces) •฀

while user code is running with minimal impact to real-time performance.

A fixed or scalable number of hardware breakpoints consisting of an address/•฀

data value under different modes of operation, including:
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Code memory execution. –

Code memory read or write. –

External data memory read or write. –

SFR read or write. –

Internal data memory read or write. –

Some processors allow combinations of two hardware breakpoints to form an 

address range (lower and upper bounds) and masked data value. Hardware break-

points may be configured to enter or leave emulation or  debug modes, start or stop 

a trace operation, or assert signals to change bus or register values or trigger 

outputs.

More advanced processor debug allows:

Cross-triggering for multiprocessor synchronization.•฀

Trace history of the most recent branch points for software reconstruction of •฀

execution flow. Branches record both branch-from and branch-to addresses. 

Trace start/stop triggers allocate the trace frame

Support for multiple-memory-bank systems in breakpoint decisions and trace.•฀

Support for code memory, external data memory, and SFR trace.•฀

A key element is that they perform these functions in a way that does not impact 

processor performance significantly.

To show some examples of debug instrumentation operation, we can construct 

a simple generic processor with an on-chip debug instrument having a trace 

capability. Off-chip interfaces for the instrumentation are JTAG, trigger, and 

break signals. On-chip interfaces are to the processor core and RAM as shown 

in Fig. 4.1.

On Chip 

Debug 

Instrument

Trace

RAM

JTAG 

Signal Interface

Wrapper 

Code/Data 

RAM 

Processor 

Trigger 

Break

In/Out

Debug  

Mode Control 

Trigger/Trace 

Fig. 4.1 Processor on-chip analysis instrumentation
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4.1  A Processor Debug Instrument Implementation

During initialization, the instrument samples the system RESET signal to initialize 

to a known state. The instrument samples the state of TCK at the trailing edge of 

RESET. If TCK is sampled high, the instrument concludes that the debugger is not 

installed and does not affect normal processor operation. If TCK is low, the instru-

ment holds the processor in the reset state until the external debugger can assert a 

DebugReq via the JTAG port.

Start and stop execution are both handled by a DebugReq signal. To start execu-

tion, the instrument asserts DebugReq. To stop execution, the instrument asserts 

DebugReq. When the current instruction is completed, the core enters debug mode 

and returns an acknowledgment by asserting DebugAck.

Single-step: From debug mode, the instrument executes one user instruction by 

pulsing the Debug_Step signal active for one clock. The processor responds by 

fetching and executing one instruction, then returning to debug mode. DebugAck is 

negated during the step.

Software breakpoints: Processors use some variant of a TRAP signal to trigger 

a software breakpoint. After execution of the processor TRAP instruction, the core 

switches to debug mode and asserts DebugAck. Through the JTAG port, the debug-

ger system periodically polls DebugAck and begins breakpoint processing when it 

becomes asserted.

Fielding user interrupts in debug mode: The processor signals to the instrument 

that a user interrupt is pending. The instrument completes any operation in progress 

and then negates DebugReq, waits for DebugAck to indicate that debug mode has 

ended, and then reasserts DebugReq. When the processor completes the interrupt 

service routine, it performs a return from interrupt routine and returns to debug 

mode at the original PC. The sequence is identical to that for single-step except that 

the process is initiated from a user signal rather than from the external hardware.

Memory/SFR access: The instrument accesses memory and registers using the 

DebugStep mechanism. When in debug mode, a pulse on DebugStep advances the 

processor by one instruction. A multiplexer on the processor’s program memory 

input data bus (memdata) allows the instrument to feed instructions to the core to 

be executed. A Debug_Prog signal indicates that the instruction is coming from the 

debugger and that the PC should not be incremented after the instruction.

The instrument accesses memory and registers using the DebugStep mechanism. 

When in debug mode, DebugStep advances the processor by one cycle. A multiplexer 

on the processor’s program memory input data bus allows the instrument to feed 

instructions to the core to be executed. To read memory or SFRs, the instrument feeds 

in an instruction sequence that loads the appropriate item into the accumulator. The 

sequence always saves and restores any registers used so that any interrupt handlers 

invoked that depend on register values operate properly. A state machine within the 

instrument handles all handshaking with the core necessary to execute a sequence of 

instructions and capture results. A result register in the instrument stores state infor-

mation. The result is available to read via JTAG once the sequence is completed.
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Processor trace: A scalable trace buffer memory stores branches executed by 

the core. At every change of flow, the most recent PC from the old code sequence 

and the first PC from the new sequence are stored together as a trace record. Change 

of flow events include branches, calls, returns, interrupts, and reset. Two signals 

provided by the core assist in collecting this information: fetch is active when the 

core fetches program code, indicating that the current PC is present on the PROGA 

bus, and flush indicates that the program fetch in progress is the first from the new 

code sequence.

When trace begins, the trace memory address and a trace wrap flag are initial-

ized to zero. As each record is stored, the address increments, wrapping back to 

zero when the memory is filled. A status bit is set when the trace address wraps.

The instrument maintains a shadow of the core’s PC by writing the memaddr bus 

into a holding register at every assertion of fetch. Upon sampling flush active, the 

instrument writes the PC holding register and the address from the current bus cycle 

in successive clocks, incrementing the trace address.

When tracing stops due to a trigger or breakpoint, the trace memory is frozen and 

the trace memory pointer indicates the first unused memory location. If the trace 

wrap flag is set, the first frame collected is the one currently addressed and the last 

collected is the one just preceding it. If the trace wrap flag is not set, the oldest frame 

is frame zero and the youngest is the one just preceding the trace address. After a 

breakpoint, the trace memory contents are read out through JTAG for display.

Processor triggers: The instrument provides a set of hardware breakpoint or 

trigger registers that monitor bus activity and perform various actions when speci-

fied bus events occur.

Each trigger register is accessible through JTAG. There are three fields in a trigger 

register: address, data, and status, each with its own enable bit and mask field. This 

allows triggering based on address only, data only, and address in combination with 

data with processor status bits optionally participating in trigger decisions.

A trigger mode input allows selection of different buses’ code read/write, data 

read/write, instruction data read/write, or SFR read/write. These bits direct the 

appropriate bus signals to the trigger comparator fields:

When all three fields of the trigger are satisfied, an action occurs. The trigger •฀

register selects which action(s) to perform for each trigger. The actions possible 

are asserting DebugReq, (i.e. break emulation), asserting Trig_Out, and starting 

or stopping trace collection.

Trig_Out is an optional output signal from the instrument to either a pin or •฀

another on-chip logic. The Trig_Out then connects to the external debugger and 

is available for external monitoring. Similarly the Trig_In signal is input from 

external logic over a pin or from another on-chip logic. Systems can have more 

than one Trig_In and Trig_Out signal that are controlled independently.

Code execution breakpoints are different from other modes in that they do not •฀

perform any action directly. Instead, they override user code feeding the processor 

with the TRAP instruction. If the instruction is executed, then a breakpoint 

occurs. This allows breakpointing of code read from read-only memory.
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In systems where two or more triggers are implemented, pairs of triggers may be •฀

combined to form a “super-trigger” by setting the combination bit in each of the 

trigger registers of the pair. Trigger registers are combined in fixed pairs. Different 

combination modes may be defined, either statistically or dynamically; for example, 

in combinatorial event mode, a trigger pair is satisfied when, as for the following 

example; the address is in a range defined by Trigger0 and Trigger1, data meets 

some algebraic condition, or status is at some defined value.

Trigger0.Address <= TrigAddr <= Trigger1.Address

AND (Trigger0.Data XOR Trigger0.Mask) AND Trigger1.Data == 0

OR Status == ABCD;

The address must be between a lower and upper bound denoted by the address fields 

in Trigger0 and Trigger1 respectively, and the data, masked by the data field in 

Trigger1, matches the data field in Trigger0, or the status matches the defined value.

One can also create inverted breakpoints. Say one have a variable being modi-

fied in the code. By defining an inverted range – any code outside the function rather 

than inside it – one will narrow the number of modifications one has to personally 

evaluate, increasing overall efficiency.

A cross-trigger interface is intended to interconnect two or more processors so 

that when any one processor hits a breakpoint or trigger condition, all others are 

requested to break or take other action (as defined by the cross-trigger logic) within 

a few clocks.

Debug instruments can also perform writes and reads without halting the proces-

sor (also called real-time data exchange (RTDX)), allowing polling of registers and 

memory address ranges as the application code executes. This feature can be useful 

in generating real-time errors or tracking program execution. RTDX can be a real-

time feature; the read/write can be made based on a precise trigger. What is  important 

is that real-time events are not affected by the read/write. This is critical for 

 applications servicing real-time events. For advanced program execution tracking, 

one can watch the program counter or instrument the code to adjust debug variables 

that describe the current status of the application. For example, when one set a 

breakpoint, the instruction opcode is replaced with a breakpoint opcode that halts or 

otherwise takes action such as initiating an interrupt on the processor.

In these types of cases, the option to continue to execute interrupts even when 

the application is halted can be quite useful. This is achieved with an embedded 

emulation peripheral that masks time-critical interrupts. Being able to mask inter-

rupts is important because there may be certain application-based timer interrupts 

one don’t want executing.

To do this, one need to make the task manager aware of the time-critical inter-

rupt mask. When determining whether to begin the next task, check if the system 

is in jeopardy. If it is, execute the task. If not, then one can halt the task queue. If 

the task queue is empty, the task manager must queue a task that removes the system 

from jeopardy. When the processor resumes execution, the task manager returns the 

system back to the condition it was in when the queue was empty.

Time-critical interrupt masking can also simplify hardware debugging. Consider 

a one-second action. On a 100-MHz processor you’ll have to hunt down the small 
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amount of real-time code interspersed among approximately 100 million lines of 

application code. Using time-critical interrupt masking, you could freeze the task 

manager until the tasks you want to debug are queued. If you mask for time-critical 

interrupts and release the task manager, the processor will be halted for the applica-

tion but will still run the real-time code. Thus, all you’ll have in the trace buffer is 

the real-time code that you want to debug. Of course, if the bug is caused by an 

unintended interaction between the application and interrupt, this technique will not 

reveal the problem. However, you will know it is not solely the interrupt at fault but 

rather an unintended interaction.

4.2  Processor Trace Compression

To perform an instruction trace, one must first set a trigger point. Unlike a simple 

trigger point of a particular instruction address, a complex trigger point may involve 

counters, logical operators, bit masking, and event sequencing; there are two ways 

to generate a trigger point:

 1. Use the hardware debug resources contained in the processor core.

 2. Use an external trigger source to feed into the processor core.

Using hardware debug resources: Most RISC processors have registers and debug 

facilities that allow users to set breakpoints at different instruction pointers, at the 

address of one or more data at addresses, when a branch or exception is taken, etc. For 

real-time instruction tracing, these internal processor core resources are used to deter-

mine the trace point, instead of a breakpoint, in order that the processor flow is not 

halted.

This method has the advantage of being a precise trigger mechanism, which 

means that the exact point when the trigger executes is known. In this method, all 

code before the trigger point is guaranteed to have been executed, and all code after 

the trigger point has not yet been executed.

Using only available processor resources for trigger points may sound limiting, but 

it is not a problem. Because processor cores incorporate more and more debug 

resources to help the embedded developer, it is not a problem. Most RISC processors 

contain breakpoint/trigger points for multiple instruction address and data address 

values, as well as counting and sequencing mechanisms for when branches or excep-

tions occur.

Using an external trigger source: If the internal hardware resources are not suffi-

cient, an external trigger can be fed into the processor to be used as the trigger point. 

This method is an imprecise triggering mechanism, because the event has already 

occurred before being fed into the processor core. It is therefore likely that processor 

execution has continued past the trigger point (this is also known as “skid,” 

because the pointer skids past the desired trigger point). Fortunately, the amount of 

skid is usually minimal and does not hinder the usefulness of the instruction trace.

Compressing the trace data: The trick is to get the necessary instruction address 

information onto seven data pins. Fortunately, the locality of reference associated 
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with Von Neumann architecture machines assists in this process. The following 

explanation refers to the number of finite “states” needed to determine the code 

flow, plus some dedicated pins for special address broadcasting.

Linear code execution: Consider the normal, linear (sequential) execution flow 

of a scalar 32-bit RISC architecture. Linear code flow means that after an instruc-

tion is executed at an address pointer, the next instruction to execute is located at 

pointer + 4 (assuming a 32-bit instruction width). To determine instruction address 

flow, we must broadcast two states during every processor core clock period – one 

state to say that an instruction has executed on a given clock cycle, and another to 

say that no instruction executed on the given cycle. To illustrate, let us look at 

the following example. Consider the following trace, in which State 0 means the 

instruction did not finish executing on the given cycle, and State 1 indicates the 

instruction finished executing on that cycle:

Some reasons an instruction may not execute on a cycle are: multicycle instruc-

tions (such as multiplies and divides), memory accesses, and pipeline stalls. As one 

can see from Table 4.3, only one data pin is needed to save the two states. Assume, 

for the purposes of an example, that we already know that the beginning pointer is 

at 0 × 10 when the trace is started.

Because the code flow is known to be linear, the order of the addresses will 

always be increasing where the next pointer = current pointer + 4. The only remain-

ing calculation is to determine how long each instruction took to execute. This is 

calculated by adding the number of nonexecuted cycles plus the cycle the instruc-

tion did execute. For example, at the beginning address, 0 × 10, the instruction took 

two cycles to execute, because it did not execute on Cycle 1 but did on Cycle 2. A 

postprocessing tool would determine that the instruction flow was the following: 

When the trace was gathered, memory or a static code listing can be read to deter-

mine the instructions at addresses 0 × 10, 0 × 14, 0 × 18.

In this six-cycle example, only one bit of information per cycle must be saved, 

for a total of six bits rather than the 32 bits per cycle needed if we were storing the 

pointer itself on every cycle. Note that in addition to generating a trace to catch 

timing-related bugs, this provides performance analysis data Table 4.4.

Again, postprocessing tools can be used on the trace data to determine statistics 

such as instructions most frequently used and instructions that took the longest time. 

What we have so far is a real-time instruction trace with pointer information output 

on one external data pin, clocked at the processor core clock frequency on one clock 

pin. From this trace, we can determine how long each instruction takes to execute.

Normal program execution is rarely linear. Any code branching results in 

nonlinear code flow. Therefore, another two states must be added to determine 

whether a branch was executed, so the post-mortem tool can correctly calculate 

the new pointer from the current pointer, because it may no longer be current 

pointer + 4. Here’s an updated example with two new states to handle whether the 

instruction was a branch that was taken:

In Table 4.5, IE state refers to whether an instruction executed on a cycle, and 

BT state refers to whether an instruction was a branch that was taken on that cycle. 

For the most common case of branching, the branch target address can be  calculated 
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from the branch instruction encoding itself. To postprocess the address information, 

instruction memory or a code listing is read to determine the target address of the 

branch. Table 4.6 includes the branch target addresses (BTAs) for all branches that 

Table 4.5 Nonlinear instruction trace

Cycle number IE State BT State What happened?

Cycle 1 0 0 Inst. did not execute, not a taken branch

Cycle 2 1 0 Inst. did execute, not a taken branch

Cycle 3 0 0 Inst. did not execute, not a taken branch

Cycle 4 0 0 Inst. did not execute, not a taken branch

Cycle 5 1 0 Inst. did execute, not a taken branch

Cycle 6 1 0 Inst. did execute, not a taken branch

Cycle 7 1 1 Inst. did execute, taken branch

Cycle 8 1 0 Inst. did execute, not a taken branch

Cycle 9 1 1 Inst. did execute, taken branch

Cycle 10 1 0 Inst. did execute, not a taken branch

Table 4.6 Nonlinear instruction trace with branch target addresses

Cycle IE State BT State BTA What happened?

Cycle 1 0 0 N/A Inst. did not execute, not a taken branch

Cycle 2 1 0 N/A Inst. did execute, not a taken branch

Cycle 3 0 0 N/A Inst. did not execute, not a taken branch

Cycle 4 0 0 N/A Inst. did not execute, not a taken branch

Cycle 5 1 0 N/A Inst. did execute, not a taken branch

Cycle 6 1 0 N/A Inst. did execute, not a taken branch

Cycle 7 1 1 0 × 24 Inst. did execute, taken branch

Cycle 8 1 0 N/A Inst. did execute, not a taken branch

Cycle 9 1 1 0 × 04 Inst. did execute, taken branch

Cycle 10 1 0 N/A Inst. did execute, not a taken branch

Table 4.3 Linear instruction trace

Cycle 

number State Did instruction execute?

Cycle 1 0 Instruction did not execute

Cycle 2 1 Instruction did execute

Cycle 3 0 Instruction did not execute

Cycle 4 0 Instruction did not execute

Cycle 5 1 Instruction did execute

Cycle 6 1 Instruction did execute

Table 4.4 Linear instruction trace recon-

struction

Address

Cycles per 

instruction

Total number 

of cycles

0 × 10 2 2

0 × 14 3 5

0 × 18 1 6
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have been taken. Remember, the branch target addresses (0 × 24 and 0 × 4 in this 

example) are not broadcast over the trace pins, but rather are determined from the 

debug tool after the trace is run by either reading instruction memory or reading a 

static code listing.

Now we can show the postprocessing for this trace. Keep in mind that the 

instructions that were executed at cycles 2, 5, 6, 8, and 10 may be conditional 

branch instructions, but if they were, the conditions to take the branch were not met 

(Table 4.7).

The code flow is no longer linear; the instruction at address 0 × 20 has not been 

executed. Also note that the last instruction is at address 0 × 04, a lower address than 

the start of the trace. To total up the pin count, we are using one pin for clocking and 

two others to handle the four finite states (one of which, executing a branch when an 

instruction has not been executed, will never occur), for a total of three pins.

Branches are one example of nonlinear code execution. But so far we have only 

handled one type of branch, one whose target address can be calculated simply by 

knowing the branch instruction. There are other kinds of branch instructions in 

which the branch target address can only be determined by a value in a designated 

register. These are handled as a special case in the same class as tracing interrupts.

Interrupts present a unique problem in that when an interrupt is taken, the next 

instruction address may jump to any one of a number of possible locations depending 

on the type of interrupt. These address locations are known as exception vectors. If 

pin bandwidth is used to create a state for every possible interrupt, the cost benefit 

of low pin count will be lost. Therefore, instead of tracing the type of interrupt, the 

address of the exception vector is broadcast. For a 32-bit RISC machine, instruction 

addresses are 32 bits in length. But the two least significant bits are not needed 

because they must always be zero, as instruction lengths are 4 bytes (32 bits). To 

broadcast the important 30 bits of address, only four pins are used – one pin to 

indicate if an address is being broadcast, and three pins to broadcast the address in 

a serial fashion over 10 cycles.

For example, let us assume the processor takes an exception when trying to 

execute an illegal instruction. When a program exception occurs, the pointer 

jumps to an address with an exception vector offset of 0 × 0700. To illustrate, we 

will assume the IP after the interrupt is 0 × 12340700. To broadcast this address, 

Table 4.7 Nonlinear instruction trace recon-

struction

Address

Cycles per 

instruction

Total number 

of cycles

0 × 10 2 2

0 × 14 3 5

0 × 18 1 6

0 × 1C 1 7

0 × 24 1 8

0 × 28 1 9

0 × 04 1 10



594.3 Hunting Code Errors with Self-Trace

the two least significant bits are ignored, because they are always zero, and the 

resultant octal number is 0443200700. Assuming we broadcast the least significant 

bits first, an address broadcast portion of a trace is shown in Table 4.8 (starting at 

cycle n, with A0 as the most significant bit and A2 as the least significant bit). 

Although not shown in Table 4.8, the IE state and BT state information would con-

tinue to be output in parallel with any address broadcast. The objection to be raised 

at this point is how 10 cycles can be dedicated to broadcasting the address informa-

tion without ever slowing down the processor. In situations that require address 

broadcasting fewer than 10 cycles apart, how can the trace (and the controller) 

continue to run at full speed? The answer is that there is enough on-chip buffering of 

address broadcast information to be confident that for any realistic code sequence, 

processor execution will not be halted. This address broadcast mechanism is also 

used to handle the special branch instructions not previously considered.

4.3  Hunting Code Errors with Self-Trace

Hunting code errors with self-trace is a key issue for software developers’ code 

analysis. Instrument trace allows trace data to be sent to a debugger host for offline 

evaluation. At high processor speeds, instructions need to be filtered, because one 

can send only a limited amount of data per clock cycle. Often the information one 

need was not collected or was pushed out the back of the buffer if the buffer is not 

“infinite” (i.e. a storage device). To find your bug, one need a specialized trace.

Specialized trace peripherals buffer certain types of useful information. For 

example, a discontinuity trace will track the most recent branches, as well as provide 

an accurate measure of the number of cycles actually used, reflecting cache and 

pipeline efficiency. Tracking the gross movements of the program counter enables 

one to trace code execution using much less information than a full instruction trace 

requires. If one find the program counter in a place it should not be, one can see 

where the code veered off.

Table 4.8 Trace of address broadcasting pins

Cycle Addr BC A0 A1 A2

Cycle n - 1 0 N/A N/A N/A

Cycle n 1 0 0 0

Cycle n + 1 1 0 0 0

Cycle n + 2 1 1 1 1

Cycle n + 3 1 0 0 0

Cycle n + 4 1 0 0 0

Cycle n + 5 1 0 1 0

Cycle n + 6 1 0 1 1

Cycle n + 7 1 1 0 0

Cycle n + 8 1 1 0 0

Cycle n + 9 1 0 0 0
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Another useful technique is tracking jumps to uninitialized memory. First, write 

NOPs throughout uninitialized blocks of memory, and set the final instruction word 

as a breakpoint. In this way, a branch to any part of uninitialized memory will fall 

through to the breakpoint. One can then look back through the discontinuity buffer 

to discover the errant jump. Consider leaving this capability enabled in deployed 

devices. When the breakpoint is executed, write the specialized trace buffers and 

any other important system variables to nonvolatile memory. One will then have a 

record of invaluable debug information for hunting down intermittent bugs.
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In this chapter we look at an on-chip debug system (OCDS) that addresses processor 

instrumentation requirements through a JTAG interface. The general on-chip debug 

system discussed provides a range of typical hardware monitoring and debug control 

features for a design. Notably it allows several breakpoints to be set and memory 

locations to be observed during run time. This example does not provide trace 

capabilities; they are discussed in a separate chapter.

Figure 5.1 is an example of the modular debug interface discussed in previous 

chapters. The JTAG interface is constructed as a separate module, with the debug 

port and OCDS similarly modular.

The overall OCDS consists of three blocks:

The OCDS module (including debug control, access and triggering •฀

subsections).

The core debug port.•฀

The JTAG module.•฀

The purpose of OCDS is to debug processor operations in a systems environment. 

In order to do this, the OCDS should provide several capabilities, in terms of con-

trol, triggering, and information capture.

Breakpoints provide the most common means of controlling debug functions. 

Breakpoints operate by comparing hardware, software, or external pin signals to a 

predefined value and triggering events. Breakpoints have come to be referenced as 

generic terms for any triggering operation, particularly for a processor, that sup-

ports debug actions. In a more precise definition, breakpoints refer to triggers that 

break the sequential operation of a processor, by putting the processor in either a 

halt mode, where more exhaustive analysis can be performed while the systems are 

in a steady-state condition, or a stall mode, where the instruction sequencing can be 

manually controlled by controlling and monitoring the program counter (PC).

Other types of trigger operations that do not result in the processor halting are also 

referred to as breakpoints, but they should more exactly be referred to as watchpoints 

(whether an internal or external status or flag may be set upon triggering) or trace-

points (where a trace operation is performed (either starting or stopping a sequential 

trace or taking a trace snapshot)) when a trigger occurs. Watchpoints and tracepoints 

typically do not involve the processor operations stopping when they occur.

Chapter 5

An On-Chip Debug System
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Perhaps the most typical point to perform a trigger operation is on the instruction 

pointer of a processor. By setting a trigger against the processor instruction value, 

the user can determine and track the occurrence of an instruction in the processor 

flow. This type of analysis is useful for tracking conditional instructions to deter-

mine if the processor has branched or jumped based on some system condition or 

data value.

A processor OCDS typically has multiple instruction pointer breakpoints to 

allow monitoring of several instructions concurrently. To evaluate instructions, it is 

also often required to compare against hardware values. These values may be data 

values that the instruction is processing or register values that are set by an 

instruction.

Data values often include the ability to compare only a portion of the data using 

masks. Using masks dramatically increases the flexibility of a data comparison, 

allowing a range of values to be compared without having to include much more 

expensive (both logic and timing) generic range logic.

Similarly, masks can be used to compare against a single bit in a status or flag 

register for triggering purposes. Loading compare values may be done in a variety 

of ways. When using external debugger software, trigger and control registers may 

be loaded via JTAG. Alternatively, if the registers are memory mapped, as is typical 

for most modern processors, trigger information may be loaded via a monitor pro-

gram by the processor itself.

5.1  OCDS Features

The OCDS, independently from the JTAG logic, may support other interfaces and 

underlying protocols, which may include packet or direct parameter loading. 

Packets provide a pre-defined mechanism for loading and updating information 

between an off-chip controller and a target. Standards such as Nexus 5001, which 

is discussed in Chap. 11, use a packet-based protocol. Other debug systems, notably 

those used by processor vendors, use a direct parameter-loading method, where 

Fig. 5.1 OCDS overview
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individual debug parameters and register values are loaded on an individual basis 

to allow finer granularity and marginally better efficiency when compared to 

packet-based transfers.

JTAG interfaces support both approaches because they basically involve register 

loads of different lengths. An additional function supported by many OCDS is the 

ability to emulate read/write functionality. On-chip memory may be accessed by 

the debug port in a variety of ways, including direct access to the memory block to 

load and store addresses and data, access to the memory bus via the memory con-

troller, or the OCDS taking control of the on-chip bus directly (becoming a bus 

master) to generate memory access.

Each of these approaches has relative benefits. In direct access, the debugger 

has the lowest granularity of control. Basically, the debugger presents the exter-

nal address and enable information to the memory block and either loads exter-

nal data into the memory or reads out memory data for an address through the 

debug port. Depending on levels of hierarchy in the memory and types of access 

methods, this may require several clock cycles to download the memory inputs 

to the chip and then to export memory data as needed. Although this has a fair 

amount of overhead, direct access to the memory allows the most flexibility, 

including the ability to operate on a memory in a processor that is stalled, in 

reset, or powered down.

Unless a significant amount of DMA functionality is added to the debug block, 

the limitations of atomically accessing each memory and location can be limiting 

to access or large or multiple memories. An alternative method is to have the debug 

block access or control the DMA or memory controller logic for a memory, by 

sending a command to the memory controller to prioritize and support debug inter-

face transfers The advantages of this are the ability to use the resources of the 

memory controller to provide bursting or sequential access to memory data without 

having to directly control every access of the memory.

A disadvantage of both direct access and DMA/memory control is that memory, 

as a shared resource, is not always available for debug operations. In some systems, 

the OCDS may take bus mastership of the systems to have uninterrupted control for 

memory access. The advantage of this is increased access to all memories and 

memory-mapped registers of a system. As a bus master, the debug interface may 

also be able to trigger memory dumps through an external bus. The slip side of a 

debug bus master is increased complexity of the memory interface, due to bus con-

trol logic as part of the OCDS and increased complexity in the bus fabric itself to 

accommodate the debug bus master, and the possibility of intrusive impact to other 

parts of the system. This impact is reduced in modern bus systems where interfaces 

are point to point within a bus fabric.

Tampering through the debug interface is increasingly a concern in modern 

systems. It is increasingly realized that an OCDS supporting memory and on-chip 

data access is also a potential vulnerability in allowing hackers access to this 

memory. An OCDS may have security mechanisms and management, separate and 

independent of any security features of the JTAG interface, in order to protect it 

from unauthorized access.
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A summary of OCDS features are:

Support for communication between monitor and external debugger.•฀

Optional error protection.•฀

A security mechanism to allow authorized access only.•฀

Low-end tracing through reads (writes) triggered by the OCDS.•฀

Fast tracing through transfer to an external bus.•฀

Analysis registers for internal bus locking situations.•฀

Several OCDS can be operated across a single JTAG interface.•฀

Control and data transfer mechanism for OCDS.•฀

A data transfer channel for programming on- and off-chip (nonvolatile) memory.•฀

An access port for on- and off-chip (across external bus controller) system •฀

analysis and configuration.

A data channel that is independent of user resources.•฀

An API that allows multicore debugging.•฀

The target application of the OCDS is use of the JTAG interface as an independent 

port for OCDS. The external debug hardware can access the OCDS registers and 

arbitrary memory locations. Multiple OCDS may be operated through a single 

JTAG (or other) interface to provide a more effective debug solution for multicore 

debugging modules operated from standard debuggers in one debug session. The 

JTAG API provides a straightforward proven interface for standard debuggers and 

arbitrates access of the JTAG interface in a transparent way.

In order to protect the system during normal execution, the OCDS is typically 

disabled by default. Events can be generated only when the OCDS is enabled. The 

OCDS module has an enable signal that is normally connected to the chip’s internal 

JTAG reset. This means that the OCDS is enabled when the JTAG module is not in 

the reset state. This is usually the case when the external debugger is connected.

Depending on the system architecture, the enable signal may be controlled by 

another source, or the OCDS module can be optionally enabled by software. The 

debug concept addresses both the generation of debug events and the definition of 

event actions taken when a debug event is generated.

5.1.1  Debug Events

Hardware trigger combination.•฀

Execution of a DEBUG instruction•฀

Break pin input.•฀

5.1.2  Debug Event Actions

Halt the processor.•฀

Call a monitor.•฀
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Trigger a data transfer (TRIGGER DATA TRANSFER).•฀

Activate an external pin.•฀

5.1.3  Debug Registers

The key to any OCDS is a defined register set that supports different operations. 

Many of these will be discussed later in the chapter. These typically include:

A debug status register that contains the status.•฀

A debug instruction pointer that contains a pointer value.•฀

A debug activity register that specifies an action if a DEBUG instruction is •฀

executed.

A debug external event register that specifies an action if an external break pin •฀

is asserted.

A debug hardware trigger register that specifies hardware triggers and action.•฀

A debug data programming register that triggers to the data programming register •฀

for debug hardware compare.

The debug select and programming register for debug hardware compare and debug 

task ID register is used by advanced real-time operating systems to store the task 

ID of the active task, which contains:

a 24-bit instruction pointer.•฀

R_ADR 24-bit data address of reads.•฀

W_ADR 24-bit data address of writes.•฀

DA 16-bit data value (reads or writes).•฀

Debug hardware event equals comparison register 0,

Debug hardware event equals comparison register 1.

Debug hardware event equals comparison register 2.

Debug hardware event range comparison register (greater).

Debug hardware event range comparison register (less).

The trigger sources (discussed later) are compared and combined in the hardware 

trigger generation unit (see Fig. 5.8). The hardware trigger generation unit is program-

mable with the debug event control register and consists of two paths. The upper path 

is for one range comparison and the lower path for three equal comparisons. The 

equal path can be optionally configured for two masked equal comparisons.

5.2  Operation Modes

OCDS can be used for two different purposes. The first is to read and write memory 

locations (RW mode) and the second is to exchange data with a program (monitor) 

running on the processor (communication mode).
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RW mode is used by the external debugger host to read or write memory 

 locations. In RW mode, the instructions IO_READ_WORD, IO_WRITE_WORD, 

IO_READ_BLOCK, IO_WRITE_BLOCK, and IO_WRITE_BYTE are used in 

their generic meaning. The data address is in IOADDR and is set with IO_SET_

ADDRESS. RW mode needs the TRIGGER DATA TRANSFER interface to 

actively request data reads or writes.

The default data type is a 16-bit word, used for single-word transfers and block 

transfers. If the external debugger host wants to read a single byte, it must read the 

associated word (IO_READ_WORD) and extract the needed byte. Writes to bytes 

are supported with the IO_WRITE_BYTE instruction. In addition, for this instruc-

tion, the external debugger host must shift in the full word, but only the selected 

byte is actually written. The position is defined by the lowest address bit in 

IOADDR.

The TRIGGER DATA TRANSFER interface does the actual read or write of 

memory locations. It is configured with transactions requested by the JTAG shift 

core. The data is transferred to/from the RWDATA register. TRIGGER DATA 

TRANSFERs typically have the highest processor priority.

Communication mode allows communication between an external debugger 

host and a program (monitor) running on the processor. In this mode, the external 

debugger host is master of all transactions. The external debugger host requests the 

monitor to write or read a value to/from COMDATA. One difference from the RW 

mode operation is that in communication mode, the read or write requests are not 

actively executed by OCDS, but it sets request bits in a processor-accessible regis-

ter to signal the monitor that the debugger host wants to send (IO_WRITE_WORD) 

or receive (IO_READ_WORD) a value. The monitor must poll this I/O status reg-

ister (IOSR). The IOADDR register is not used. The debugger host and monitor 

exchange data directly with the COMDATA register. Communication mode ensures 

that all send and receive transactions are served under all conditions in the correct 

sequence, even if the OCDS changes to RW mode.

5.2.1  Entering Communication Mode

Communication mode is the default mode after reset. If OCDS is in RW mode, 

communication mode is entered when the external debugger host writes to the 

MODE bit in the IOCONF register.

5.2.2  Communication Mode Instructions

Communication mode uses only the IO_WRITE_WORD and IO_READ_WORD 

instructions. An IO_SET_ADDRESS instruction sets IOADDR just as in RW mode 

(no effect for communication mode).
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5.2.3  Monitor-to-Debugger Host Data Transfer (Receive)

The CRSYNC bit signals the monitor (processor) that the external debugger host 

wants to receive a new COMDATA value. It is set in communication mode with the 

active read request signal for the IO_READ_WORD instruction. The CRSYNC bit 

is automatically cleared when the monitor (processor) writes to COMDATA inde-

pendent of the mode (communication mode or RW mode). The debugger host can 

request data, do something in RW mode, and then fetch the requested data with the 

next receive cycle.

5.2.4  Debugger Host-to-Monitor Data Transfer (Send)

The CWSYNC bit signals the monitor (processor) that the external debugger host 

has written a new value to the COMDATA register. It is set in communication mode 

with the IO_WRITE_WORD instruction. The CWSYNC bit is cleared when the 

monitor (in the processor) sets an acknowledge bit in IOSR independent of the 

mode (communication mode or RW mode). This allows sending data in communi-

cation mode, switching to RW mode, and then performing other operations without 

having to wait until the monitor has read COMDATA. The next time that commu-

nication mode is entered, busy bits are output when COMDATA was not already 

read by the monitor.

Note that in the case of a send (IO_WRITE_WORD) followed by receive (IO_

READ_WORD), both bits CWSYNC and CRSYNC are set and must be served by 

the monitor in this sequence. A previous receive request blocks the send. This 

means that a requested value must be fetched by the debugger host before it issues 

a new send command.

5.2.5  High-Level Synchronization

To improve the robustness of the communication channel, it is helpful to distin-

guish between commands from the debugger and regular data exchange. For 

example, if the debugger aborts its request just when the monitor responds, the 

high-level synchronization between the debugger host and the monitor would 

be lost.

To prevent this, a COM_SYNC bit is provided to synchronize the communica-

tion channel between the debugger and the monitor on a higher level. It is set in the 

IOCONF register and can be read in IOSR by the debugger. The debugger/monitor 

can simply use this bit to reset the communication channel or, for more advanced 

use, this bit can tag data from the debugger to the monitor as instructions.



68 5 An On-Chip Debug System

5.3  OCDS Registers

Debug status register contains several types of information about the current status 

of the OCDS, including:

It indicates whether the debug support is enabled.•฀

It gives the source of the last debug event.•฀

It gives the system debug state.•฀

Key fields for the status register include:

DEBUG_STATE: The current debug state is user mode, software debug mode, •฀

or halt debug mode.

OCDS_P_SUSPEND: This causes sensitive peripherals to suspend operation by •฀

controlling a peripheral suspend signal. If set, all sensitive peripherals will sus-

pend. This bit is set by a debug event according to the associated PERIPHERALS_

STOP bit in the active debug event control register. This bit must be reset by the 

debugger.

TRGEVT_R_CMP: This is a comparison matched for the current event.•฀

TRGEVT_E_CMP0: This is a comparison matched for the current event.•฀

TRGEVT_E_CMP1: This is a comparison matched for the current event.•฀

TRGEVT_E_CMP2: This is a comparison matched for the current event.•฀

EVENT_SOURCE: This reports the source of the last debug event, which is one •฀

of the following:

 1. External break pin (debug hardware trigger).

 2. Debug instruction executed (debug external event).

 3. Hardware trigger combination (debug data programming).

5.3.1  Debug Task ID Register

TASKID is an input to the hardware trigger event generation unit intended to be 

used by advanced real-time operating systems to store the task ID of the active 

task.

5.3.2  Instruction Pointer Register

This register makes the instruction pointer visible when the processor is in halt 

mode.
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5.3.3  Hardware Trigger Comparison Registers

The DEBUG HARDWARE COMPAREn registers are used in the hardware trigger 

event generation unit as reference values for the comparisons (Fig. 5.2). They can be 

programmed with special function registers, and the selected comparison register 

compares information as discussed in the next section:

Select DEBUG HARDWARE COMPARE0

Select DEBUG HARDWARE COMPARE1

Select DEBUG HARDWARE COMPARE2

Select DEBUG HARDWARE COMPAREL

Select DEBUG HARDWARE COMPAREG

DEBUG INSTRUCTION POINTER is the current instruction pointer in halt mode 

and is valid in halt mode only.

5.3.4  Considerations on Accessing OCDS Registers

The functions of OCDS are generally controlled by writing to the debug status 

register. To be executed correctly, any debug step needs the respective bit fields 

being used to have new values effective (this depends on the speed of the bus). This 

becomes more important as the bus speed becomes lower compared to the core 

speed, that is, compared to the speed of executing instructions. For a pipelined 

machine, different read/write operations may be executed at different pipeline-

stages. A basic potential problem to be kept in mind is the new debug status register 

value cannot as a rule be effective for the instruction immediately following its 

Fig. 5.2 OCDS module block diagram
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modification. The delay in terms of core instructions executed still under the prior 

debug status register value has a fixed part (in most cases, one instruction) and a 

predominant variable part that depends on bus speed.

The most critical points for possible conflicts are:

Setting-up and enabling OCDS; for proper operation, the debug status register •฀

must be set after the debug data programming register already holds the new 

value programmed.

Exiting the monitor, all updates to the debug status register must be effective before •฀

returning to the user program. Otherwise it is possible that a breakpoint in code will 

be reached before the debug status register holds the proper settings. This can cause 

a variety of problems, such as calling the monitor after executing the breakpoint or 

immediately stepping over the breakpoint instead of breaking before it.

The principal solution to avoid problems accessing OCDS registers is to ensure that 

after an instruction writes to a register, the instruction that uses the new value will 

be executed only when the new settings are really effective.

Use noncritical instructions after writing to an OCDS control register (i.e., 

debug status register); instructions should be used in which execution does not 

depend on the new settings, so it is sure that the new debug status register value is 

effective before continuing with the next instruction. This is independent of the bus 

speed because the processor ensures the write operation is completed, before con-

tinuing with the next read from the same location. Consequently, this is the easiest 

and most reliable decision to ensure proper OCDS operation.

If the OCDS is disabled (usually when the JTAG module is in the reset state), 

the OCDS module and all its registers are reset with every processor reset; other-

wise, it is never reset. This behavior allows a defined reset in the cases when no 

debugger is connected or the debugger controls the OCDS indirectly with a moni-

tor. In the other case, when the debugger controls the OCDS directly, the OCDS 

registers are not affected by user, program, or system environment resets. This 

permits very unfriendly systems to be debugged as well.

5.4  OCDS JTAG Access

JTAG operations allow access to the JTAG module. In addition to OCDS-specific 

instructions, it supports standard (required) JTAG instructions and the JTAG 

BYPASS registers and two OCDS-specific CCONF and IOPATH registers that 

communicate with the OCDS logic block (Fig. 5.3 shows only the OCDS specific 

portions of the JTAG module).

ID register implementation is a product-specific decision. This allows mainte-

nance of one central version and part number register that can be accessed either 

from the processor as an SFR or across JTAG with the IDCODE instruction. 

According to the JTAG standard, the IDCODE instruction must have the structure 

as discussed in Chap. 3.
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For the BYPASS instruction, the TDO output is equal to TDI, delayed by one 

TCK cycle.

IOPATH register is a modified JTAG scan register that stores a copy of the TDO 

to provide error protection. The TDI/TDO behavior is the same as for a JTAG 

BYPASS instruction except that the first bit output (state capture-DR) is 1. This 

difference is important if there was a bit error when the JTAG instruction was 

shifted in. In the most probable case, when this faulty JTAG instruction is not 

implemented, the JTAG module would set the BYPASS mode, which could not 

otherwise be distinguished from the JTAG_IO_SELECT_PATH instruction.

The IOPATH register is used to select OCDS. If the JTAG instruction is in the 

I/O address range, the associated select signal is active. IOPATH register is set like 

a regular JTAG scan chain register with the JTAG_IO_SELECT_PATH 

instruction.

Fig. 5.3 JTAG module and interfaces to the OCDS
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CCONF register is provided to configure special chip states. All configuration bits 

have associated protection bits that allow different tools to share the JTAG  interface. 

Based on protection settings, alternate registers associated with different tools may be 

enabled or masked. The CCONF register is set with the CCONF_SET JTAG instruc-

tion with the same behavior as IOPATH.

5.4.1  Steps to Initialize the JTAG Module

 1. JTAG reset: TRSTN pin is set active (low) and then inactive again.

 2. Set CCONF register:

IR scan: Shift in CCONF_SET instruction.

DR scan: Shift in CCONF register.

 3. Set IO_PATH register:

IR scan: Shift in JTAG_IO_SELECT_PATH instruction.

DR scan: Shift in CCONF register.

 4. Set OCDS data scan:

IR-scan: Shift in JTAG_IO_INSTRUCTION1 instruction.

OCDS is selected and ready to operate.

5.5  OCDS Module Access

OCDS is accessed and operated by the external debugger across the JTAG 

 module. The OCDS core contains the JTAG shift core as a sub-block, shown in 

Fig. 5.4 which communicates to control internal triggering logic for data pro-

cessor execution control (DPEC) transfers and Bus monitoring. The JTAG shift 

core is controlled by the JTAG signals (Fig. 5.5) and therefore is asynchronous 

to the rest of the OCDS core. OCDS is considered busy when the requested read 

or write operation has not yet been finalized. The external debugger host is master 

of all transactions, initiating the transfers for both directions.

5.5.1  Error Protection

The JTAG standard does not include any error protection for serial transmission 

(TDI and TDO pins) and control (TMS pin). However, there are some ways to 

include error protection without extending too much beyond the JTAG framework.

Error protection for input data (TDI) is achieved by making input data directly 

observable on the output pin (TDO) with one clock cycle delay. Output data can be 

shifted out twice (multiple) and then compared for maximum error protection.
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When OCDS is selected, it is controlled with the TDI bit stream with the JTAG 

sequence: Capture_DR, multiple Shift_DRs, and Update_DR. The first four bits 

shifted in are the I/O instruction. The next bits (busy bits) are ignored, until a start 

bit occurs on TDO. Busy bits can occur for all I/O instructions except IO_CONFIG, 

when the previous operation has not yet finished, as shown in Fig. 5.6.

If the instruction is a write-type instruction, the TDI bit, in parallel to the start 

bit, is used as the first data bit, followed by the rest of the data and ending with a 

“don’t care” bit. If more data bits are shifted in than required, the first (superfluous) 

data bits are ignored and the last are used for the update.

If the instruction is a read-type instruction, all TDI bits after the instruction are 

ignored after the start bit on TDO; the read data is shifted out. If the instruction is unde-

fined or not implemented, the client responds with an indefinite number of busy bits.

Fig. 5.4 OCDS module and JTAG interfaces

Fig. 5.5 OCDS and JTAG module connections
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5.6  OCDS JTAG I/O Instructions

OCDS instructions are designated and identified with an I/O_ prefix. Unlike the 

JTAG instructions of the JTAG module, they are not transferred to the JTAG 

instruction register with an IR scan; they are bits of a DR scan to the shift register 

of OCDS.

IO_CONFIG sets the configuration register IOCONF and is used to abort RW 

mode write operations and to configure OCDS with the IOCONF register. When 

the IO_CONFIG instruction becomes active, the last RW mode write operation is 

aborted (soft reset).

IO_SET_ADDRESS sets the address IOADDR for the next RW mode access.

IO_READ_WORD is used to read data in RW mode or to receive data in commu-

nication mode.

IO_READ_BLOCK reads the data block starting with the address in IOADDR and 

is used in RW mode only. The only difference from IO_READ_WORD is that the 

address for IO_READ_BLOCK is post-incremented by a word address. Read 

instructions can be aborted when the external debugger host sets the Update_DR 

state. For IO_READ_WORD in communication mode, at least four shift cycles 

must occur after the output of the start bit to acknowledge the read. This prevents 

the loss of read data words.

IO_WRITE_WORD is used to write data in RW mode or to send data in communi-

cation mode.

Fig. 5.6 Serial TDI and TDO transfers in Shift_DR state
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IO_WRITE_BLOCK writes to the data block starting with the address in IOADDR 

and is used in RW mode only. The only difference from IO_WRITE_WORD is that 

the address for IO_WRITE_BLOCK is post-incremented by a word address. For 

multiple write instructions, enough shift cycles must occur after the output of the 

start bit for the write from the Update_DR state to allow the last write to be checked 

before initiating a new write.

IO_WRITE_BYTE is a special case of IO_WRITE_WORD for writing bytes. 

For IO_WRITE_BYTE, it is required that a complete 16-bit word must be 

shifted in from which the lower byte is always written (for even and uneven 

addresses).

IO_SET_TRADDR sets the TRADDR register, which is used for tracing with an 

external bus address.

IO_SUPERVISOR is used to release RW mode and communication mode from the 

error state. This instruction also outputs the IOINFO register after a start bit.

IO_CLIENT_ID returns a client-specific ID code from register CLIENT_ID.

IO_SET_TRADDR sets the TRADDR register.

IO_SUPERVISOR acknowledges reset and analyzes bus-locking situations.

IO_CLIENT_ID reads the Client ID.

Figure 5.7 shows the relationships among TDI, TDO, and the shift register 

content after the client instruction has been shifted in. MUX1 is controlled by the 

active instruction, MUX2 is controlled by the status of the client (busy or operation 

finished).

In the case of I/O write-type instructions, after the TDO start bit occurs, the 

delayed data is shifted into the shift register and in parallel is output on TDO. In the 

case of I/O read-type instructions, the captured data is shifted out via MUX1 and 

MUX2.

Fig. 5.7 Shift register behavior in the Shift_DR state
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5.7  OCDS JTAG Registers

These are registers internal to the OCDS. Unless otherwise noted, they are 

 externally accessed using the OCDS instructions.

CLIENT_ID allows that the external debugger checks the hardware in an auto-

configuration mode and includes the following fields:

IOADDR is the address for the next RW mode access.•฀

IOCONF is the configuration register.•฀

IOINFO is the chip state analysis register.•฀

TRADDR is the external bus trace mode address.•฀

COMDATA is the communication mode data register.•฀

RWDATA is the RW mode data register.•฀

IOSR is the status register.•฀

IOADDR register holds the 24-bit address for the next OCDS access. IOADDR is 

updated in the Update_DR state with the shift register contents when the IO_SET_

ADDRESS instruction is active or incremented by two (a 16-bit word) if an IO_

READ_BLOCK or IO_WRITE_BLOCK instruction has been executed.

IOCONF register is used to configure OCDS. The IOCONF register is write only 

for the debugger host and is not accessible from the processor side.

The MODE bit determines whether OCDS is in RW or communication mode.•฀

TRIGGER_ENABLE enables triggered transfers in RW mode. The next transfers •฀

must be triggered by the TRIGGER DATA TRANSFER event action provided by 

the OCDS module.

The EX_BUS_TRACE bit enables triggered transfers to an external bus address.•฀

The IOINFO register is provided to analyze bus locking situations or certain other 

chip internal error states. It is not a physical register, but it represents certain chip 

state information. After an IO_SUPERVISOR instruction, this information is 

shifted out. Note that the captured signals are usually static only during these locking 

and error situations. This means that IOINFO should not be used during normal 

operation, and if it is used in error situations (no start bit for RW mode operation), 

it should be read out several times to ensure that the sampled values are static.

The TRADDR register is used for tracing with an external bus address. It defines 

the uppermost bits of the external bus address. It is set with the IO_SET_TRADDR 

instruction by the external debugger host.

The COMDATA and RWDATA registers are used as the data register for both 

read and write transfers in and communication and RW mode, respectively. They 

also include the following status fields:

IDLE indicates that the chip is in an idle state.•฀

POWER_DOWN indicates that the chip is in the power down state.•฀

EXTBUS_HOLD indicates that the exterior bus is busy.•฀

LMBUS_HOLD indicates that the local memory bus is busy.•฀

PBUS_HOLD indicates that the peripheral bus is busy.•฀
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The IOSR register is used in communication mode to disable OCDS from the 

processor side for security reasons and to perform monitor-controlled. The IOSR 

register is only accessible from the processor side and includes the following fields:

RW_DISABLE is used to prevent OCDS from entering RW mode. It can only •฀

be set by the processor in communication mode. If OCDS has already entered 

RW mode, all attempts by the processor to set this bit are ignored.

RW_ENABLED is provided to enable the user program to store whether RW •฀

mode is enabled already.

DBG_ON indicates whether an external debugger is present.•฀

CLNT_ON indicates whether the OCDS is currently selected by the external •฀

debugger. It is directly controlled by the OCDS select signal that is set with the 

IOPATH register in the JTAG module.

MTR_CTRL is a monitor-controlled tracing field that can be used by a monitor •฀

to control the tracing of memory locations. Note that this feature may be used 

only if no external debugger controls OCDS across the JTAG interface.

5.8  Hardware Triggers

A triggered event may occur due to either trigger operations occurring in the OCDS 

or external debug break pins allowing the debugger to asynchronously interrupt the 

processor. The action taken when this signal is asserted for debug hardware trigger 

operation depends on the debug control registers.

It is possible that more than one event may be raised in a single cycle. In this case, 

the priority of events to be handled is usually based on the sequence in which the events 

appear in the event sources list; those listed first are handled before those listed later.

Different events will have different priorities; typically break operations have a 

priority of:

 1. Pin input debug hardware trigger (highest).

 3. Execution of a debug instruction debug external event.

 3. Hardware trigger combination.

 4. Debug data programming.

Hardware trigger fields allow range comparison input on the following:

 1. Instruction pointer (IP).

 2. Data value (DA).

 3. Write address (W_ADR).

 4. Read address (R_ADR).

 5. Equal compare input MUX control (see Fig. 5.8).

 6. Instruction pointer (IP).

 7. Data value (DA).

 8. Write address (W_ADR).

 9. Task ID (TASKID).
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Hardware triggers can enable the following debug related operations:

 1. Execution of a DEBUG instruction. In many processors, there is a mechanism 

through which software can explicitly generate a debug event. This can be used, 

for instance, by a debugger to patch code held in RAM in order to implement 

breakpoints. A special DEBUG instruction is defined that is in the user mode 

instruction, and its operation is dependent on whether OCDS is enabled. If OCDS 

is enabled, the DEBUG instruction causes a debug event to be raised and the 

action specified in an external event control register is taken. If OCDS is not 

enabled, the DEBUG instruction may be treated as a NOP.

 2. Trigger data transfer (TRIGGER DATA TRANSFER). Triggering the OCDS to 

execute a pending transfer is one of the actions that can be specified to occur 

when a debug event is raised. This can be used in critical routines in which the 

Fig. 5.8 Hardware trigger generator
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system cannot be interrupted to transfer a memory location to the data register 

and read it (trace) through the debug port.

 3. Call a monitor. Calling a monitor with a special debug hardware trap is one of 

the possible actions to be taken when a debug event is raised. This trap has the 

high priority, but the monitor routine can reduce its own priority level. This short 

entry to an interruptible monitor allows a flexible debug environment to be 

defined that is capable of satisfying many of the requirements for efficient debug-

ging of a real-time system. For example, safety critical code can be served while 

the debugger is active. The monitor is ended with a regular RETI instruction. 

The debug flag bit DEBTRAP has to be cleared on exiting the TRAP routine; 

otherwise it will be called again.

5.8.1  Structure of a Noninterruptible Monitor Routine

 1. Perform processing (noninterruptible).

 2. Set DEBUG STATUS REGISTER.

 3. Clear the DEBTRAP bit.

 4. Return to THE user program with the RETI instruction.

5.8.2  Structure of an Interruptible Monitor Routine

 1. Set the DEBUG STATUS REGISTER.DEBUG_STATE (user mode).

 2. Clear the DEBTRAP bit.

 3. Reduce the interrupt level ILVL in W.

 4. Do processing.

 5. Set the DEBUG STATUS REGISTER.

 6. Return to the user program with the RETI instruction.

Reduction of the interrupt priority of the monitor can cause stack overflows. If the 

task that causes the debug event has a higher priority than the monitor, the monitor 

will be pushed onto the stack again and again.

Note: Care must be taken that the monitor does not cause an event itself. 

Otherwise it will be started again and again and cause stack overflows.

 4. Enter halt mode. The system suspends execution by halting the instruction flow 

and will not respond to any interrupts. It then relies on the external debug system 

to interrogate the target entirely by reading and updating through the OCDS 

debug port.

 5. Activate an external pin. An external pin can be controlled as a debug event 

action. This is to be used in critical routines in which the system cannot be 

interrupted to signal to the external world that a particular event has happened. 
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This feature could also be useful to synchronize the internal and external debug 

hardware or for profiling. In most cases the break out pin is active for as long as 

the trigger condition is met.

 6. Enable single stepping. Single stepping can be done in halt mode or with a debug 

monitor.

•฀ Single stepping in halt mode. For this behavior, the trigger condition is set as 

always true. After every restart, the processor will be halted again when the next 

instruction has been executed.

•฀ Single stepping with a debug monitor. Single stepping can serve high-priority 

interrupt requests. The basic approach is similar to the single stepping in halt 

mode with two differences:

The event action is set to call a monitor. –

The code of the interrupt service routines and of the debug monitor may not  –

be part of the IP address trigger range.

5.8.3  Debug Event Control Registers

Each possible source of a debug event has an associated register that defines which 

action should be taken when that debug event is raised. The debug event control 

registers have the same structure for all currently defined sources.

EVENT_ACTION specifies what happens when the associated debug event is 

raised:

Halt debug mode halts the processor.•฀

Software debug mode calls a monitor.•฀

Trigger a data transfer (execute TRIGGER DATA TRANSFER).•฀

Activate an external pin.•฀

Set the event in the DEBUG STATUS REGISTER.•฀

For software and halt mode, the EVENT_ACTION sets the DEBUG_STATE field 

in the debug status register.

PERIPHERALS_STOP. Sensitive peripherals suspend operation if this event 

occurs.

ACTIVATE_PIN activates an external pin that is normally (not during debug) 

inactive.

The COM_R field enables the range comparison. For in-range comparisons, 

DEBUG HARDWARE COMPAREG is used as the upper boundary and DEBUG 

HARDWARE COMPAREL is the lower boundary. For out-of-range comparisons, 

it is the is reversed. This allows range comparison:

In range: if debug hardware compare_greater > input > debug hardware •฀

compare_lower, otherwise 0.

Out of range: if (debug hardware compare_greater > input) or (input > debug •฀

hardware compare_low), otherwise 0.
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The MASK_E field selects unmasked or masked equal comparison and distin-

guishes between masked and unmasked input for the equal comparison. In the 

masked case, DEBUG HARDWARE COMPARE0 controls the relevant bits for the 

comparison.

The SELECT_E field enables the equal comparisons to be included in the trigger 

event generation and selects which is used, as follows:

If debug hardware compare0 matches, otherwise 0.•฀

If debug hardware compare0 or debug hardware compare1 match, otherwise 0.•฀

If debug hardware compare0 or debug hardware compare1 or debug hardware •฀

compare2 match, otherwise 0.

0 (always).•฀

If debug hardware compare1 matches, otherwise 0.•฀

If debug hardware compare1 or debug hardware compare2 match, otherwise 0.•฀

The COM_RE field selects equal and range comparison combination of either:

The debug trigger event signal is Trigger_range OR trigger_event.•฀

The debug trigger event signal is _range AND trigger_event.•฀

5.9  Additional Features

Triggered transfers (TRIGGER DATA TRANSFER) can be used to read or write a 

certain memory location when an OCDS trigger becomes active. Triggered trans-

fers are executed when OCDS is in RW mode, the TRIGGER_ENABLE bit in 

IOCONF is active, the JTAG shift core has requested a transaction, and an OCDS 

TRIGGER DATA TRANSFER event occurs. Triggered transfers behave like nor-

mal transfers, except that there must also be a transfer trigger after the JTAG shift 

core requests the transfer.

Tracing of memory locations is one of the main applications for triggered 

transfers. Trace of certain memory locations can be performed when the OCDS 

core activates the TRIGGER DATA TRANSFER event action if this memory loca-

tion is written by the user program. OCDS is configured to read the location on this 

trigger. The maximum transfer rate that can be reached is defined as the number of 

instruction cycles that need to be between two processor accesses to the memory 

location. The instruction cycle time of the processor is the clock rate of the JTAG 

interface (TCK). This requires a delay of several cycles between traces, but in many 

cases this will be sufficient to trace static values, for instance, the task ID register. 

A trace delay factor of 30 cycles is the number of cycles required: 10 bits for the 

JTAG state machine, I/O instruction, start bit, and transfer of 16 bits for the data 

and 4 bits for the synchronization between the transfer trigger and the shift out.

If the trigger rate is higher, some accesses are lost. To notify the external debugger 

about these missed events, a dirty_bit read tag is set. This bit is appended to the read 

data when it is shifted out.
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Tracing with external bus address is a special operating mode of the TRIGGER 

DATA TRANSFER interface for faster tracing. In this mode, the data is not written 

to RWDATA and shifted out via the JTAG port, but rather is directly written to an 

external bus address. The data is then captured from the external bus by the debugger 

(“trace box”). This kind of tracing can be enabled in communication mode only and 

can be used in parallel to it.

Monitor-controlled tracing allows trace when the JTAG interface is not acces-

sible. A monitor uses this feature only when no external debugger is  connected to 

the OCDS across JTAG. Otherwise, errors will occur because this feature can share 

resources with the normal modes used by the external  debugger. Monitor-controlled 

tracing is not a security risk. Even if it is unintentionally enabled by a user program, 

a transfer occurs only when the OCDS triggers it.

Monitor-controlled tracing is equivalent to triggered transfers but is controlled 

by a monitor running on the processor. It can be used to move an arbitrary memory 

location on an OCDS core TRIGGER DATA TRANSFER event action. The trans-

fer is executed when OCDS is not selected, and there is a transfer trigger. Source 

and target addresses are programmed with the selected address (source or target) 

register.

5.9.1  System Security

After reset, OCDS is in communication mode and is brought into RW mode. If the 

user program running on the processor sets the RST_HLT immediately after reset, 

there is no way from the outside to get OCDS into RW mode via the JTAG 

interface.

To have a protected system in the field that can be accessed by authorized users, 

the following solution can be used (all bits are in the IOSR register):

The first instruction of the user program after reset disables RW mode.•฀

The user program checks if an external debugger is present. If not, it continues •฀

with the regular code.

The external debugger sends a key in communication mode.•฀

The user program starts to accept and compare the key some time after reset and •฀

after JTAG shift in of the send request.

If all keys are correct, the user program resets RST_HLT and sets RW_ENABLED.•฀

Then the user program then knows (RW_ENABLED) that OCDS has been •฀

enabled once and thus does not prevent the enabling after the next reset.

OCDS is in power-saving mode when it is not selected from the JTAG side. The 

only register that is always accessible and working is IOSR. If the monitor-con-

trolled tracing mode is enabled, the required resources are functional.
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5.9.2  Reset from the JTAG Side

If the internal JTAG reset becomes active, all RW mode and communication mode 

requests are aborted. A JTAG reset always requires a following processor reset to 

ensure that the JTAG shift core and the control part of OCDS are in a defined state 

under all conditions.

5.9.3  Reset from the Chip/Processor Side

In this case, all I/O instructions go to an error state. The external debugger host 

must acknowledge this state with the IO_SUPERVISOR instruction; this is done to 

notify the external debugger host that something unexpected may have happened 

and to check connectivity of  the communication channels.

OCDS enters the error state on all chip internal resets (except JTAG reset). The 

error state can be left with the IO_SUPERVISOR instruction. Another error state 

occurs when the chip internal bus is blocked for TRIGGER DATA TRANSFER 

transfers. If this condition occurs, the IO_SUPERVISOR instruction can be used to 

read the IOINFO register, which provides analysis information.
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In SoC platform architectures, more complexity is being added at the functional 

interconnect level. On-chip buses and interconnect systems for integrating IP 

blocks into a SoC solution have become sophisticated subsystems in themselves, 

with multilayer, cross-bar, and network on-chip alternatives being developed by 

both IP vendors and integrating companies themselves. The goal in most cases 

is to address, within reasonable wiring and size constraints, the increasing 

amount of bandwidth required for complex applications and optimized commu-

nication between different blocks of IP, both with each other and with shared 

resources such as memory and peripherals. In many cases these interconnecting 

architectures contain sophisticated internal complexity and have tunable param-

eters to allow trade-offs and optimization of the interconnect features for a given 

architecture and application. The interfaces to these interconnect systems are 

typically implemented at a socket level using one of several bus interface 

 standards (OCP, ABMA AHB, and AXI being among the more prevalent) as 

a modular, bidirectional socket interface between an IP block and other intercon-

nected blocks.

In this chapter we discuss several in-silicon bus-level debug environments based 

on on-chip instrumentation. These include bus-level monitors and bus-level trace, 

as they apply to fixed and socket-level traffic-monitoring approaches and as used 

for understanding the interaction and performance of the interconnect for real-time 

performance and bus-dependent processing operations and interactions.

6.1  On-Chip Buses

On-chip embedded bus management is typically more involved than for board-

level buses. Board-level buses can tri-state the interface, which simplifies isola-

tion; essentially, one only enables the chip-bus interface when it is needed. For 

on-chip busing, tri-state logic is much more difficult and expensive to implement. 

As a result, most on-chip buses are multiplexor based. That is, signals from bus 

masters are multiplexed at the master or slave sides of the bus interconnect to cre-

ate a signal path between a bus master and slave.

Chapter 6

Bus System Debug
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There are three fairly widely used standard on-chip buses; in order of widespread 

adoption, they are AMBA, OCP, and CoreConnect. Wishbone, an open IP bus 

interface, is also discussed for completeness. All these buses use similar inter-

connections and have a range of IP vendors supporting bus-compatible cores. 

There is also a variety of less standard and vendor-proprietary buses that continue 

to be used.

AMBA (advanced microcontroller bus architecture) is a family of bus archi-

tectures (which come in several varieties – AHB, APB, AXI) that is managed by 

(but not licensed as such) ARM Holdings PLC. The AMBA high-speed bus 

(AHB) is arguably the most widely used on-chip bus protocol, with multimaster 

arbitration, multilayer support, pipelining support, bursting support, and so on. 

APB is a simpler static bus architecture for peripheral systems. AXI (AMBA 

extended interface), the most recent AMBA variant, allows multiple outstanding 

transactions.

OCP (open-core protocol) is a bus architecture that is managed by the OCP-IP 

(international partnership). OCP defines a range of complex multicore and multi-

channel interfaces that address pipelining, multiple outstanding transactions, 

threads and tags, bursting support, and so on. OCP is based on a concept of 

socket-based interfaces that decouple the IP interfaces from the bus fabric to a 

large extent, allowing a large set of optional OCP interfaces in addition to a 

smaller configurable set of required signals. OCP also allows incorporation of 

user-defined interface signals to address application-specific requirements. The 

OCP debug signals discussed later are one example of a recently defined set of 

side band signals (which may be incorporated into future generations of the OCP 

standard).

CoreConnect was developed by IBM and is most widely seen in systems 

based on IBM PowerPC cores. It is also used by Xilinx as an internal bus 

architecture (in part because some high-end Xilinx parts have integrated 

PowerPC cores). CoreConnect defines a set of different buses – processor local 

bus (PLB), on-chip peripheral (OPB), and device control register (DCR) bus – 

for different applications. Each bus component of the CoreConnect architec-

ture is optimized to achieve specific on-chip bus architecture goals. The PLB 

provides a high- bandwidth, low-latency connection between bus agents that are 

the main producers and consumers of the bus transaction traffic. The OPB 

provides a flexible connection path to peripherals and memory of various bus 

widths and transaction timing requirements while providing minimal perfor-

mance impact to the PLB bus. The DCR bus is a mechanism for offloading 

system initialization and configuration, and related control related transaction 

traffic from the main system buses. The DMA controller and the interrupt 

controller cores use the DCR bus to access normal functional registers used 

during operation.

Wishbone is an open-community on-chip bus architecture. It is mostly seen in 

conjunction with freeware IP blocks. I am not aware of any silicon design that 

uses it, but it does come up in the literature and is popular with the IP freeware 

community.
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6.2  Socket-Based SoC Design

Socket-based interconnect is a standards-oriented approach that focuses on adding 

value to the interface socket between the IP block and the bus fabric. Socket-based 

interconnect is an underlying principle in many OCP-based architectures, but it can 

also be applied to other bus architectures. Because many bus architectures allow 

addition and selection of various bus options that increase the functionality of the 

bus interconnect, using a socket-based interface simplifies addition, removal, or 

accommodation of the bus interface to the IP blocks, as well as the development of 

test suites to address verification and optimization of the design.

6.2.1  SoC Interconnect Complexities

Advanced buses allow a range of high-bandwidth implementations and define a 

number of features and capabilities in addition to baseline data transfer. These fea-

tures include the extensions for special bus command modes, burst operations, and 

multiple data tags and threads that increase the number of traced signals. The flip 

side of working with advanced bus architectures is that they present an additional 

level of complexity when configuring and coordinating operation of large 

amounts of data. Analysis considerations include specifics of handshaking to a 

given interface and more global issues of how the on-chip bus subsystem is per-

forming, such as understanding and optimizing bus transmission efficiency, latency, 

saturation, resource conflicts, and other operational considerations that can have a 

direct impact on the performance and operation of the processor components.

This visibility problem for the embedded SoC platform is more complex than 

can be addressed adequately by traditional on-chip test methods such as a traditional 

JTAG scan, for several reasons:

Bus operations are multicycle, with signals in a bus cycle becoming active at  –

different times, requiring sequential tracing, rather than as a single-cycle snap-

shot that a scan typically provides.

Bus operation problems are interrelated with the operations of at least two com- –

municating blocks (a processor and memory peripheral, for example). Traditional 

debug methods, such as halting part of a system for test, can introduce changes 

and new variables that interfere with the test scenario and process.

If problems are intermittent or sparse, then trace operations must operate in  –

a triggered mode, so information for a given range of bus cycles of interest 

is captured in real time.

The problem is, to a large part, a multicore extension of embedded processor  –

analysis, where run control and instruction execution and data trace are integral 

parts of processor support. For larger systems with multiple cores, the problem 

extends beyond processor execution to understanding system operation and 

communication.
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All of this points to better understanding at the interconnect level being a critical 

layer of analysis. There are a variety of reasons why new generations of intercon-

nects and analysis tools to support them are increasingly critical and important:

 1. Heterogeneous multiprocessing ICs should efficiently handle complex data flow 

architectures with intercommunicating cores, with diverse requirements and 

features such as different data feeds, operating speeds, types of data endianness, 

diverse and dynamic levels of security, and quality of service (QoS).

 2. Growing awareness that flexible and rapid integration of IP from multiple exter-

nal sources is needed to reduce time to market, with concurrent requirements for 

integrating the test, hardware verification, and simulation environments.

 3. There is a growing sophistication of the processors’ data flow requirements, 

including the ability to handle multiprocessing and multithreading in efficient 

nonblocking manners. In particular, the multithreading features of leading-edge 

processors, from MIPS and others, benefit from both a processor and bus-level 

system analysis environment.

 4. There is a growing appreciation for platform design approaches that efficiently 

address product upgrades, market segmentation, and product differentiation while 

maintaining common design infrastructure to keep design efforts manageable.

 5. Supporting analysis IP provides a means of tying together pre-silicon and initial 

physical product verification by providing access and visibility to embedded 

operations. This analysis allows in-depth understanding of the design under dif-

ferent conditions.

Industry is addressing these issues with solutions that integrate both proces-

sor and bus trace for systems level debug (Fig. 6.1), which allow analysis of 

trade-offs and performance complex interconnect structures and socket-based IP 

integration.

At least three commercial companies offer interconnect and bus structure auto-

mation and IP tools, with several other SoC-centric interconnect approaches being 

used as proprietary customized solutions by SoC silicon vendors. Sonics (http://

www.sonicsinc.com) offers the most mature commercially available solution, with 

its third-generation SMX and related SMART interconnect architectures. Alternative 

approaches include network on chip (NoC) interconnect architecture and a self 

timed (clockless) interconnect. All of these approaches rely, to varying levels, on a 

common concept of separation of the bus operations and core communications 

using socket-based interfaces.

Figures 6.2 and 6.3 show some of the features of a socket-based system 

design. Sockets communicate to initiator (master) and target (slave) interfaces, 

with functionality of the socket encompassing the necessary state machines, gat-

ing and multiplexing circuitry, and wiring to support desired data flow (includ-

ing QoS, multithreaded nonblocking communication, security features, and 

dynamic power gating) operation. This allows for a more streamlined and com-

pact bus fabric.

The socket consists of a set of agents that provide the signal and protocol man-

agement to address the specific interface needs of a core to the more general 

http://www.sonicsinc.com
http://www.sonicsinc.com
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resources of the interconnect fabric. Socket-based bridges can also define other 

interconnect linkages between OCP, AMBA AHB, and AXI and bridges for other 

arbitrary existing interconnect structures that can also be developed to simplify use 

of legacy hardware.

As a commercial example of such a complex interconnect fabric, Sonics’ multi-

service exchange (SMXtm) can contain a distributed structure of three classes of 

interconnect structures, cross-bar exchanges, shared-link exchanges, and extended 

link exchanges, each with specific features and optimization requirements. Cross bars 

allow the fastest unimpeded connectivity, while shared links require less overhead 
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and additional gates allow data flow by QoS selection. Extended links support more 

widely separated IP cores and connectivity and scheduling of slower peripherals.

These complex architectures support several types of interconnect segments 

that can be optimized for performance and require analysis information from the 

interconnect structure. Different types of interconnect segments have different 

integration and test requirements and communication features. Such communi-

cation complexities require performance analyses to determine parameters to 

optimize use of the inherent flexibility and parameterization to optimize the 

design. Bus-monitoring IP and analysis tools monitor this performance transpar-

ently for high-complexity interconnect networks to provide optimized system 

operation. Supporting the need to monitor bus data for events and other data 

related to intercore communications and latencies is necessary for platform 

debug and optimization, especially for interconnect architectures where param-

eterized sockets are providing flow control. The amount of visibility into commu-

nication operations is typically proportional to the resources provided to monitor 

key information. These resources typically require some trade-off of on-chip 

instrumentation resources, IO- and trace-buffering bandwidths, and the overall 

gate impact; they vary with the monitoring function and the size and perfor-

mance of the interconnect structure. These trade-offs are discussed in the next 

section.

6.3  Bus-Level Integration

A widely used means of debugging bus systems is using monitoring mechanisms 

that are often included in creation of bus interfaces to detect incorrect addressing, 

illegal accesses, and timeout. Typically, the monitors are created as an option in 

automated bus-creation tools that create the bus fabrics and socket interfaces.
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6.3.1  Bus Master Monitoring

Separate address-space monitoring is implemented for each bus master. If a bus 

master addresses an unused address space, the access is acknowledged with an error 

response and an interrupt is triggered. The incorrect access address and the 

 associated access type (HBURST, HSIZE, HWRITE) and master ID are stored in a 

system control register. If more than one AHB master causes an access violation 

simultaneously (within a single bus clock cycle), only the violation of the highest-

priority bus transaction is recorded.

6.3.2  Peripheral Bus Monitoring

The peripheral address space is monitored on the peripheral bus. If incorrect 

addressing is detected in the peripheral address space, access to the both master and 

slave sides is terminated. An interrupt is triggered and the incorrect access address 

is placed in a system control register.

6.3.3  Slave Monitoring

Bus slaves have limited responses to transactions; more typical debug concerns are 

with the timing of the peripheral response. There are three possible reasons for the 

timeout:

 1. Actual timeout in the slave: If HREADY is still 0 after the maximum number of 

clock cycles, access to the master is terminated with an error response and the 

timeout interrupt is activated. The access to the slave continues. As long as the 

slave does not supply READY = 1b, all other accesses to the slave must be blocked 

with an error response. The interrupt is triggered only once. If the address phase 

of a non-IDLE access is pending in parallel to the extended data phase, this access 

is canceled and an IDLE address phase is output to the slave.

 2. Too many retries in a row for the same access: Access to the master is terminated 

with an error response and the timeout interrupt is activated. Because there is no 

requirement that an access that has been rejected with retry has to be repeated, 

the next access of the master can be switched to the slave.

 3. The SPLIT transaction is missing after a split response: Access to the master is 

terminated with an error response and the timeout interrupt is activated. The 

slave must continue to wait for signal HSPLIT = 1b. As long as the signal to the 

slave is missing, all other accesses to the slave must be blocked with an error 

response. According to the AHB specification, once the slave outputs HSPLIT = 1b, 

access must be repeated. However, because access is already terminated for 

the master, the data phase can no longer be handled correctly.
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6.4  Internal and External Alternatives for Bus Trace

Debug ports simplify controllability and visibility by providing low-overhead 

access to internal signals. Debug interfaces can be categorized as either:

(a) Internal, in which most of the instrumentation functions are implemented on 

chip and the interface uses a low pin count interface, usually JTAG.

(b) External, in which the instrumentation functionality is shared between an 

on-chip component and an off-chip component, typically implemented in a 

probe that are connected by a (typically parallel) trace probe port.

Most JTAG-based instrumentation relies on on-chip memory to buffer between 

traced data and the available JTAG export bandwidth. The size of these buffers 

versus the amount of trace required is a trade-off because the amount of bus trace 

requires a large buffer. Buffers of modest size, however, are easily overloaded for 

a large amount of trace data generated in cases of multiple IP blocks or internal 

buses, placing limits on duration of trace that can be supported.

The underlying advantage of JTAG is that it is ubiquitous and is a default port 

implemented in most digital chips for test purposes. JTAG allows user-defined 

instructions to extend the JTAG instruction set for probe or trace modes, instructions 

for ICE, and to access internal JTAG-enabled registers. While in probe mode, the 

processor ICE can examine and modify the internal and external state of a system’s 

registers, memory, and I/O space. In a trace mode, it can be used to serially export an 

arbitrarily large amount of information off chip. A rich infrastructure of tools environ-

ments and standardized debug schemes have been built on this foundation to provide 

JTAG debug of both embedded processors and other parts of an embedded system.

Adding an additional probe port provides IO bandwidth needed for more in-depth 

on-chip instrumentation approaches and is the primary focus of this chapter. Internal 

trace solutions and bus trace systems use an embedded trace solution, with an on-chip 

bus analyzer that is customized for bus analysis. On-chip RAM is a limiting resource, 

that can be spent on trace width of all or a portion of control, data, and address signals 

or trace depth, which can range from 64 to 64K trace cycles based on available on-

chip RAM. Trace is controlled by user-defined combinatorial or sequential (state-

based and counter-based) event triggering on trace or external trigger signals. This 

triggering can be used to disable trace until interesting events occur or to trigger on 

sparse or other irregular events of interest. Trace may include optional time stamping 

for multiinstrument synchronization or time marking for single-cycle or extended 

time traces. The same triggers can be used to drive debug-related actions such as 

cross-triggering between bus and processor or other IP operations.

A higher-performance alternative for bus trace is an off-chip mode that streams 

the bus trace to a high-bandwidth debug port. This allows a smaller RAM footprint 

by reducing or, in some cases (where trace bandwidth is less than or equal to the 

port bandwidth), eliminating the need for on-chip buffering. It also adds flexibility 

in what types and how much of the triggering and other supporting logic for bus 

trace are placed on chip rather than being inline or postprocessed by configurable 

logic in the probe. In general, off-chip trace attempts to minimize the amount of 
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on-chip logic essential to triggering and filtering, leaving the trace intelligence 

(complex triggering, performance analysis, etc.) to be implemented in the probe 

and essentially using the using the trace port to funnel raw data to the probe as 

expediently as possible. The instrumentation features implemented in the probe 

allow a trace interface with a smaller simple trace logic and memory footprint and 

much deeper trace depth.

In many cases this trace port can be multiplexed with other bus functions. 

A trace port provides several advantages over JTAG trace and imposes other limita-

tions. Although JTAG trace allows real-time trace constrained by the instrumenta-

tion and RAM speed, it requires some silicon area for the instrumentation and 

RAM (the size of which is largely proportional to instrumentation trigger features 

and trace depth, respectively) and has limited export bandwidth. The trace band-

width capability for off-chip trace is typically limited by the number of IO pins 

dedicated to export of debug information at any given time, as well as the speed at 

which these signals can transmit the data.

Because the limitation on streaming trace requires more pins (for reasonable IO 

width) and may have maximum trace speed lower than operating speed (IO may 

have limited frequency performance compared to internal IP), it often makes sense 

to be selective on what bus data is being traced. Bus operations in particular are typi-

cally bursty in nature, and a bus may spend a significant amount of time in a quies-

cent state where no information is being transmitted. Simple filtering and buffering 

can significantly improve the usable bandwidth in an external trace solution.

In a more complex (multicore) instrumentation environment, external trace is 

limited by selection of critical data from different sources. The complexity of the 

funnel allows a range of performance trade-offs in external trace. By selectively 

choosing trace signals from different subsystems and instruments, an arbitration 

scheme that funnels the various trace information for export can increase effective 

trace bandwidth significantly. As shown in the following block diagram, the use of 

a trace port and JTAG is not exclusive. In many cases, JTAG remains important for 

control and configuration regardless of the trace mechanism.

6.5  Programmable Bus Performance Monitoring

As with most complex and heterogeneous systems, the ability to visualize and 

analyze performance characteristics is important to understand (and verify) system 

behavior, and subsequently fine-tune the system for optimal power and perfor-

mance. Naturally, visualization and performance analysis capabilities are necessary 

during initial modeling and design verification and later, subsequent to chip tapeout 

in the lab, in order to observe the device running at-speed in the target system.

Such on-chip capability requires embedded instrumentation IP that allows embedded 

instruments to be used for a variety of functions, including performance monitoring, 

assertions, functional analysis, and debug – and even fault insertion and transaction 

stimulus. Although these functions have utility in hardware debug, they are more often 
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used by software and systems engineers who can begin to leverage these on-chip 

resources to streamline a complex and time-consuming test and validation process.

A few additional requirements must be considered:

Configurability: Given the configurability of modern buses, the embedded on-•฀

chip instruments must also be configurable

Flexibility: The SoC will be composed of a variety of buses, interfaces, and IP •฀

blocks

Easy insertion: Such a configurable and flexible system requires automated •฀

insertion

Ultimately, the solutions must be compliant to the OCP debug specification. 

However, even in the absence of IP cores or switch fabrics compliant to the OCP debug 

specification, practical performance monitoring implementations can be realized today.

The solution is a combination of programmable instruments, instrument 

programming, and analysis applications. The following is a description of an 

embedded-instrumentation solution delivering a comprehensive set of performance 

monitoring and analysis functions.

The overall objective is to provide the user with a spectrum of visualization and 

analysis methods, from coarse views on many interfaces (e.g. aggregate system 

throughput or worst-case latency) down through increasingly granular, targeted, 

and highly specific views at the socket level (e.g. discrete read/write transactions). 

This multilevel approach is consistent with many conventional analysis, diagnostic, 

and debugging methods; it seamlessly marries broad views of system behavior 

with “telescoping” views that are informed by the discoveries at each level of the 

 visualization and analysis process.

This Socket level data can be accessed and extracted from multiple points in the 

design (Fig. 6.5),  either through JTAG (Fig. 6.4) or trace ports (Fig. 6.6), using 

instruments applied to either buses or socket interfaces in the design (Fig. 6.7). 

Command/control of the instruments requires lower bandwidth and appropriate to 

a JTAG) interface. Perhaps the most important element is the programming and 

analysis application, which is often customized with a particular analysis view for 

different activities. In general tool views provide the user with a graphical interface 

and a set of high level commands to program and operate the on-chip instrumenta-

tion infrastructure (Fig. 6.8).

The basic suite of performance-monitoring functions includes the measurement 

of aggregate throughput per interface, master/slave throughput, instantaneous or 

average request/response latency, instantaneous or average event latency, and 

worst-case latency.

6.6  Bus Performance Monitoring

Performance monitoring functions can be realized with a distributed instrumentation 

scheme as shown in Fig. 6.9. There are three forms of instruments used: signal mul-

tiplexors, pattern match engines, and transaction engines. Each is a user-configurable 
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instrument (e.g. bus width, states, GPIO). All instruments are in-system programmable 

and run “at-speed” without disrupting the normal operation of the system. In this 

configuration, each multiplexor and pattern match engine operates autonomously so 

that multiple interfaces can be monitored concurrently.
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The multiplexors are used to reduce the number of signals presented to the 

pattern match engines and transaction engine. The advantage of multiplexing is 

that at runtime the user specifies which signals will be/should be monitored. 
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The multiplexors can take on a variety of forms depending on the application, 

flexibility, and area overhead requirements. The bank select multiplexor is the smallest 

and least flexible (Fig. 6.10a). In this configuration, signal-bank-a or signal-bank-b is 

selected through a serially programmed register. The bit select crossbar multiplexor 

(Fig. 6.10b) offers additional flexibility by providing a serial programming register for 

each 2:1 multiplexor and an additional signal fan-out between multiplexor stages. This 

gives the user the most flexibility to select a greater combination of signals. In practice, 

the bank select multiplexor can be used in most performance-monitoring configura-

tions, whereas the other configurations may be more appropriate if a variety of vali-

dation and debug functions are to be supported with the same instruments.

The basic pattern match engine is capable of detecting user-specified patterns on 

each interface. Whenever a specified pattern is detected, the event signal is asserted. 

The pattern values, mask values, and state machine configuration are specified at 

runtime within the programming and analysis application. The event signals are 

transferred through another set of multiplexors to the transaction engine.

The transaction engine provides a wide range of functions enabled through a 

rich set of resources that include a programmable state machine, comparators, 

counters, timers, and adders. The transaction engine can be programmed to 

count events, measure intervals between events, and measure frequency of 

Transaction Engine

Fig. 6.9 Performance-monitoring instrumentation
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events. All such actions can be started and stopped conditionally. Conditional 

actions may be based on event sequences, throughput values, counter values, 

latency values, or sideband events detected on signals mapped down to the trans-

action engine through both multiplexor stages. In fact, even signals from other 

parts of the SoC can be used if they are available on the multiplexor inputs. The 

transaction engine may also be programmed with user-defined embedded 

memory for optional signal-tracing functions. All measurement values and calcu-

lated results can be retrieved by the programming and analysis application for 

display and additional analysis.

6.7  On-Chip and Off-Chip Analysis

Given the obvious bandwidth limitations of the IEEE JTAG 1149.1 interface, large 

amounts of real-time data cannot be streamed off-chip. Although a high-speed trace 

port such as the Nexus interface (as described in chapter 11) can be used, many 

designs require a smaller interface. In the baseline configuration shown, we assume 

a system without a high-speed trace port. Such a configuration highlights a primary 

advantage of programmable instrumentation: the ability to perform on-chip analy-

sis and reduce (but not eliminate) the amount of serial data transfer. Nevertheless, 

there are always situations that require off-chip analysis. This is especially true 

when on-chip data can be transferred into a variety of visualization and analysis 

Bank Select Multiplexor

a

Bit Select Crossbar Multiplexor 

b

Fig. 6.10 Pattern match multiplexors (a) Bank select multiplexor; (b) Bit select crossbar 

multiplexor
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tools. For example, the on-chip data can be retrieved and formatted into a trace file 

and is subsequently fed into analysis tools. Even if a subset of trace file fields is 

populated, transfer sequences and performance metrics such as throughput and 

latency can be analyzed (Fig. 6.11).

A bus monitor and analysis toolset allows performance, statistical, and transac-

tion analysis of bus interfaces. Bus events are monitored and written to the trace 

format. A transaction re-builder reconstructs transactions from the trace files and 

builds up a data store. The transaction data can then be analyzed. User queries can 

be created, saved, and used in the analysis engine and the reporting tools. 

Performance statistics are calculated based on user queries. Reports are then auto-

matically formatted and generated.

In complex and heterogeneous SoCs, the ability to visualize and analyze perfor-

mance metrics is paramount to understanding and verifying system behavior and 

subsequently fine-tuning the system for optimal performance. That may entail not 

just looking at metrics over time but also having the capabilities to filter on various 

fine-grained aspects of the system and enable metrics to be viewed in a natural 

intuitive way. Figure 6.12 shows a 3D analysis chart of operation types versus 

cycles for a bus channel. The bottlenecks in the system can be viewed very concisely 

and the problem areas can be very quickly identified and understood.

In Fig. 6.12, the axes are time versus metrics versus channels. Zooming and 

filtering of the data can be done and metrics can be changed easily to allow 

infinite ways to view the data, depending on aspects that are trying to be under-

stood or verified.

With the enormous amounts of data that must be captured in performance 

analysis, having a method for querying different types of data and metrics from the 

data store is useful in providing querying options that allow quick and easy access 

to the most critical areas of interest. Queries are not just limited to finding latencies, 

bandwidths, and other metrics above or below a certain threshold; they also have 

the capability of deep fine-grain analysis down to the transaction level. For example, 

particular bus transaction types on a monitored channel can be singled out 

and analyzed very quickly. Given the large timeframe of bus transactions, valid 

performance measurements should only take place at certain times, guided by cer-

tain events. For example, bandwidth and latency measurements are only really 

Fig. 6.11 Pattern match engine
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meaningful on a particular socket when the source traffic on that socket is correctly 

flowing. Event triggers are set up to enforce a valid measurement.

Events of interest vary widely and may include transactions occurring during 

a window; out-of-bounds events including DMA and SoC; and interrupt events 

indicating abnormal operations in timed events. A time event is simply a speci-

fied time defined by a timestamp or other counter for use as a trigger. Various 

triggers for event queries may include “Start After,” “Measure From,” and 

“Measure To.” Each of these triggers can be one of the specified event classes.

Here again, the programmable nature of the instruments is beneficial. When it 

comes to extracting on-chip data, there is an obvious trade-off between temporal 

and spatial visibility. The amount of trace data to be captured is limited by the 

width and depth of the embedded trace memory. The user needs the means to 

make such trade-offs to maximize the utilization of the embedded memory. For 

example, if the user wants to see all activity on multiple bus interfaces, more 

transfer cycles may be captured if the data field is omitted. Likewise, the user 

may choose to reduce the number of transfer cycles captured by creating a cap-

ture filter based on a combination of address and command signals, or filter using 

signals associated with tag or thread extensions. Each of these techniques is 

accommodated by a simple expansion or reduction of the observation scope; the 

designer has ultimate control over the trade-off between temporal and spatial 

 visibility. The programmable nature of the instruments allows these decisions to 

be made at runtime.

Although the configuration shown in Fig. 6.9 is suitable in many applications, 

more advanced configurations are possible. Consider, for example, scenarios that 

require multiple and specific types of transfers to be monitored simultaneously on 

Fig. 6.12 A 3D bus analysis display
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each bus interface. For such scenarios, two pattern match engines may be 

required. This can be accomplished in a variety of ways. A second pattern match 

engine can be dedicated to each interface, or adjacent pattern match engines can 

be shared between ports as shown in Fig. 6.13. Through the multiplexor configu-

ration, the user has dynamic runtime control over the use of each pair of pattern 

match engines.

6.8  Request Response Trace Bus Analysis

Request response trace (RRT) was developed to analyze the complex data com-

munication networks; both the data width and operating speed of the commu-

nication links can vary. Bus sockets vary from 32 to 128 bits, based on 

connection to specific cores. The bus fabric allows resolving the mixing of bus 

widths and speeds across different blocks, but efficiency and optimization of 

performance with regard to different data rates, clock rates, and other components 

of the system cores are not trivial. For the amount of trace required, core and 
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system clock speed are reduced so that the trace port may sustain the required 

trace bandwidth.

The RRT system analysis environment consists of two major subsystems 

(Fig. 6.14):

 1. Processor trace: In this case, because a MIPS32K processor was the primary 

processor(s), PDtrace (a MIPS processor execution and data trace instrumentation) 

was implemented for each core. PDtrace interfaces support an aggregated proces-

sor trace port for both of the core trace outputs. Other processor selection would 

result in other trace systems being used for processor trace.

 2. Bus-level request-response trace: This is a bus-level instrumentation system 

that ties into the bus fabric at the socket level and allows the trace of one 

single bus socket or all masters in the system simultaneously or a selection 

of masters. The RRT trace buffers each request-response output and includes 

a trace “funnel” to route the buffered outputs to the off-chip trace port.

RRT and PDtrace data are sent off-chip over a dedicated 16-channel trace port. 

Both PDtrace and RRT trace port interfaces are supported via a single probe, 

using two Mictor38 connector interfaces, each with its own independent clock 

source. The probe combines the trace inputs from the two sources and records 

them in a common memory buffer.

The probe includes a common JTAG connection and PDtrace trigger pins for 

trigger and trigger acknowledge. This trigger may also be used to put one or more 

cores in debug mode and to communicate with the processor and (in this example) 

the MIPS32 trace control and visualization tool, PDtrace. On-chip trigger output 

pins indicate to the probe the status of the processor core(s). The probe and on-chip 

logic have a common triggering methodology to allow the probe to enable and 

 disable/stall RRT operations in conjunction with PDtrace operations. The triggering 
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scheme also communicates stalling of the trace capture based on processor status. 

All applicable features of RRT and PDtrace, including the triggering, are config-

ured via the JTAG port.

6.8.1  RRT Operations

The RRT provides for capture and collection (Fig. 6.16) of the following information. 

All capture is done on chip at the RRT agents and is exported via the RRT port:

 (a)  Recording of specifics of master-slave socket transactions and the number of 

clocks of delay between each request and response.

 (b)  Captured timing and latency of read cycles. Burst reads are reported on arrival 

of the first requested word or on the arrival of the last word of the burst.

 (c)  Transactions between one (selected) master and all slaves it transacts with, or 

several masters at the same time. These masters may include any of the follow-

ing: two 34Kf cores, one active dedicated channel (selected as output of the 

crossbar), and one active channel of the DMA.

Trace collection allows overall capture for an extended (at least one video 

frame) processing period using the memory buffer in the probe (Fig. 6.15). 

Concatenation of multiple frames may be performed as a postprocessing stage 

on exported RRT trace files.

Fig. 6.15 RRT graphical bus trace. Source: MIPS Technologies, Inc. All rights reserved 
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Post-trace software provides postprocessing and views of transactions and 

delay times over varying periods of time for both single and multiple cores. RRT 

data is correlated and used in conjunction with PDtrace data to provide a picture 

of system operation.

6.8.2  RRT Implementation

The on-chip component of RRT consists of three primary on-chip instrumentation 

(OCI) IP blocks:

 (a)  RRT agents, specific to the processor or core-level interface to capture and 

 buffer relevant trace information based on system operations and trace 

configuration.

 (b)  The RRT “trace funnel”, which provides the aggregation of trace information 

from all RRT agents and combines and schedules the trace information for 

export.

 (c) The RRT trace port, which handles communications with an off-chip probe.

Configuration of each block is performed via JTAG, over a common JTAG 

chain:

A user-defined set of bus RRT fields may be captured based on the connection 

to the socket. For the bus transaction analysis, signals trace included:

The master ID (only required if multiple masters are being recorded at one time).•฀

Slave ID based on unique address bits that distinguish one slave from another. •฀

Hardware in the agents can recognize the memory-mapped areas and encode 

them into the slave ID field.

Fig. 6.16 Integrated bus and processor trace environments. Source: MIPS Technologies, Inc. 

All rights reserved
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Protocol and traced bits that determine the alignment of a read response cycle to •฀

its “parent” request cycle.

Request and/or response cycle type (or encoded in other fields).•฀

Cycle type – read versus write, single access versus burst.•฀

Buffer overflow indicator bit.•฀

Trace of upper address bits to determine code versus data memory-mapped •฀

regions. There are two defined modes: fast (partial) address field and full 

 (complete address field) are user-selectable options.

Trigger signal to allow on-chip subsystems to send a trigger signal to the probe.•฀

To conserve trace bandwidth, the bus RRT records are further broken down into 

two modes: fast and full. Fast mode is limited to a single-cycle frame and includes 

socket-level control signals characterizing the bus transfer along with buffer over-

flow and/or trigger indicators. Full mode includes control signals as well as full 

address trace, based on a memory map of necessary upper addresses; typically 

transmitted over multiple trace clock cycles. The capture of this data via RRT 

allows the following to be performed during chip-level operation:

 (a) Measurement of a processing loop such as frame time.

 (b)  Capturing available information for aligning socket measurements with core 

processor execution to correlate cause-effect of code execution to socket traffic 

based on coordinated recording of trace from both sources.

 (c)  Capturing available information on aligning socket measurements to correlate 

each hardware thread to the data transfers that each processor generates.

 (d)  Extraction of thread information extractable from socket address bits traced. Post-

trace software can display per-thread socket transaction information providing 

valuable information to users on the density of transactions over time and the 

delays associated with those memory accesses, generated for each hardware 

thread.

(e)  Postprocessing of the trace matches up requests and responses (using the socket 

protocol and possibly ID bits) and calculates the delay between them based on 

timestamp values stored along with trace to provide an accurate timeline of 

each request-response frame.

A RRT triggering system is implemented within the probe (off-chip) and 

includes event monitoring of all captured control and address signals to control 

start/stop and capture of trace information in the probe. This trigger may also be 

used to put one or more cores in debug mode and to communicate with the processor 

and PDtrace subsystems. On-chip trigger output pins indicate to the probe status of 

the processor cores.

The probe and on-chip logic have a common triggering communication to allow 

the probe to enable and disable/stall RRT operations in conjunction with PDtrace 

operations. The triggering scheme also communicates stalling of trace capture 

based on processor status.

RRT is supported by a set of control and display views and utilities to support 

analysis of RRT and PDtrace data. Additional visualization can be supported via 
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export of trace to third-party tools. Control setup includes the setting of master trace 

priorities and selecting which masters are to be in the trace; trigger setup to analysis 

views for precise post-trigger positioning and reading trace and formatting data for 

additional analysis views.

Additional views include:

Raw State View for RRT: Basic acquisition is displayed as a state display that shows 

one line per trace frame with columns corresponding to the trace fields: transaction type 

(read/write, request or response), master name, slave name, transaction ID or outstanding 

request count, buffer overflow, and probe- generated trace timestamp values.

Aligned State View for RRT: Alignment concatenates two frames – a request cycle 

and its matching response cycle and a delta timestamp between the current and next 

transactions.

Graphical Display: Trace solutions are supported by a multiview (Navigator) GUI, 

which is customized for RRT data display as captured by the probe. The analyzer 

GUI allows complex triggering of capture and display of RRT information as wave-

form and state views. The GUI includes utilities for control of bus event  monitoring 

and template-based triggering based on captured trace information.

Correlated View of RRT and PDtrace: Allows viewing of common PDtrace and 

RRT data captured at a common timestamp with a known or defined offset. It also 

allows RRT and PDtrace data to be locally correlated based on address values or 

common triggers, markers, and instruction (read/write/burst) types captured in both 

the PDtrace and RRT. Correlating socket traffic with instructions defines a processor 

to bus-level relationship, for example, by determining which thread caused a read 

or write operation on a given cycle to a peripheral socket.

Integration of the bus level and processor tools are integrated via a multicore 

API layer, which allows user transparent sharing at both the JTAG and trace port 

resources.

The instrumentation developed for the bus RRT system is designed to record 

request and response bus events at the socket interface and measurement of one 

processor (bus master socket) with expandability to allow concurrent viewing of 

key parameters of all masters simultaneously. This system analysis implementation 

allows capture of information about core load/store operations and their latency for 

the different socket masters, and exports them over dual trace ports to the probe, 

along with other trace and analysis data, in particular processor data interfaces that 

are used in providing complementary run control and trace analysis views of the 

processor operations.

Most bus-level analysis instrumentation and methodologies can be used across 

a range of architectures and bus interfaces; both the on-chip interconnect and analysis 

systems discussed can be applied to other processor cores or bus architectures 

under a similar generic scheme. The RRT tool chain has general application in 

several areas of SoC performance analysis and debug. RRT allows the real-time 

measurement of frame processing time in a SoC video processing system that used 

multiple cores and the interconnect bus IP. RRT was used to improve the utility of 
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processor trace by capturing information for traces performed at the bus connection 

point and aligning with core processor execution, enabling correlation of the cause-

effect of code execution to bus/socket traffic based on the time-based coordination 

of recorded traces from both sources.

RRT is also used in more general systems based on a multithreading processor. 

By tracing the bus interconnect to memory, RRT provides real-time bus latency 

information and metrics on if and when interconnect is stalled at the precise time 

of a requested load/store operation. However, this does not provide information on 

which hardware thread is running or on what part of the application code is running 

at that time. By correlating the trace information from the RRT bus socket(s) and 

the processor trace, it is possible to get a complete picture of how load/stores from 

each thread of execution are impacting overall system operation.

Leveraging this information one step further, optimization of the QoS system 

used to schedule threads in a multithreaded core operating within a SoC design can 

be achieved. For example, RRT can be used to extract thread information from 

socket address bits traced in a system. Post-trace software can then display per-thread 

bus/socket transaction data, providing valuable information to users on the density 

of transactions over time and the delays associated with those memory accesses, 

generated for each hardware thread. This detail of information is extremely useful 

for performance tuning the application of software threads of execution to the hard-

ware threaded capability of a multithreaded processor, allowing system developers 

to optimize bus utilization and throughput in such a complex SoC design.
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Debugging becomes more complex when one introduces multiple processors. 

A peripheral that allows one to monitor bus activity between two processors, such as 

in an MCU+DSP device, can resolve shared memory contention issues. In  traditional 

debug environments, one can only see what was written to a memory location, not 

which processor made the write. Bus-monitoring peripherals track the source of each 

memory access, providing the necessary information for the debugging environment 

to identify which processor made the write. This increased  visibility adds complexity, 

so a debugger that can interleave the trace buffers between processors is needed.

In most designs, processors are integrated with several other subsystems that also 

may be included in systems analysis, such as trace operations. Logic blocks included in 

many designs include co-processors for specific applications, memory controllers, 

peripherals, and a host of other functions. Debug of these types of blocks can be sup-

ported by on-chip logic analyzers that allow triggering and trace of logic operations, 

which is often done in tandem with processor debug operations. One variant of logic 

analysis important for many systems is bus-level debug. Bus analysis typically takes one 

of two forms: signals of interest are traced at the bus interface (for example, an AMBA AHB 

port or OCP socket interface) or from within the selected debug points in the bus fabric.

Just as buses operate in conjunction with processors and other IPs, bus analysis must 

interface to other debug blocks. This is typically performed/accomplished/etc. using 

cross-trigger interfaces to the other debug blocks for low-latency triggering of the pro-

cessor debug operations based on status in another core. Likewise, processor output 

signals can be used to allow triggering of other trace operations to start and stop based 

on processor operations. Cross-triggering resources, when combined with global timing 

control resources, such as timestamping of trace information allow synchronization and 

alignment of debug data from different sources being brought off chip. Concunrrent 

trace permits a more systems-oriented focus on the debug process, by allowing simul-

taneous viewing of signals of subsystems operating in differing clock domains.

If a device supports bus monitoring, it will usually also support global break-

points. With standard breakpoints, one processor can halt another processor only 

after a latency of several cycles. If the processors are out of synchronization with 

regard to interprocessor communication, this potentially aggravates debugging by 

requiring reset of both processors to a common resynch point. Global breakpoints 

halt both processors on the same cycle.

Chapter 7

Multiprocessor Debugging
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7.1  Cross-Triggering and Global Breakpoint Control

The cross-trigger block is distributed to all processor connections to a bus. If cross-

trigger wiring is in the bus fabric, then only small wrappers (condition/action 

nodes) are required at each processor interface. Alternatively, a separate cross-

trigger matrix may be implemented. The cross-trigger logic may be programmed 

from either a processor or a JTAG debugger. The underlying idea of the cross trig-

ger is that any processor or significant on-chip logic block can generate an (edge or 

level) trigger output to other points within the chip, and receive cross trigger inputs 

from other cross trigger blocks on the chip, for subsequent processing or actions. 

The debugger or processor can configure specific trigger lines for each IP to send 

a condition signal (changing either polarity or delay) and enable or mask the trigger 

line from which it can receive a trigger/action operator (Fig. 7.1).

For example, we discuss cross-trigger subsystems that were included in the OCP-IP 

debug specification that allow event recognition from a combination of system- 

level and local (processor-specific) conditions and generate global or processor-

specific actions based on the triggering of an event. In the first (HyperDebug), both 

conditional triggering and actions are dynamically controllable from system soft-

ware. The HyperDebug block also provides a timestamping capability for trace and 

trigger synchronization of processor cores running in  different clock domains.

The HyperDebug concept is simple: Accept a scalable number of status inputs from 

vendor cores and I/O pins, combine them in a user-configurable way, and send control 

outputs to a selectable set of vendor cores and I/O pins. HyperDebug is configured as a 

set of chains that connect condition nodes, which gather information about triggering 

events from different subsystems/cores of a design and about action nodes that distribute 

generated trigger outputs to different subsystems/cores in a design. The event-monitoring 

and triggering logic are handled in a HyperDebug control instrument (Fig. 7.2).

7.2  HyperDebug Distributed Cross-Triggering

HyperDebug connects to core signals through node agents called HyperDebug 

condition nodes (HDCNs). HDCNs for all cores that have status outputs such as 

run-state or trigger points connect together in a chain. Configuration bits at each 
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Fig. 7.1 Cross-trigger block diagram
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node optionally condition the logic of the core output and form a node output that 

is either a pass through from the node input or a combination of the node input 

with the node’s status signal. In this way, a positive-logic AND or negative-logic 

OR combination of trigger outputs from any subset of cores in the chain is formed 

and feeds into the HyperDebug controller.

HyperDebug consists of three distributed types of components:

HyperDebug OCI, which initiates the trigger condition and action operations •฀

and maintains the overall HyperDebug control and status.

HyperDebug condition nodes (CNs), which modify the trigger conditions based •฀

on local conditions in the core, OCI, and other CNs connected to the core. 

Typically, a number of CN blocks are implemented related to trigger conditions 

monitored in a given core.

HyperDebug action nodes (AN), which initiate logical actions such as setting •฀

registers in the core or OCI. AN operations are local to specific codes or may be 

global to all cores in the SoC (halting or resetting the core is one example). 

Typically, the number of the AN block is related to the number of actions that 

would be required for the debug logic to control core operations.

The OCI accepts a configurable number of condition inputs and generates a 

configurable number of action outputs. Condition inputs may come from a chain of 

CNs or from external pins fed from a JTAG probe. Action outputs may go to a chain 

of ANs or to external pins leading to the JTAG probe. The number of conditions 

need not necessarily match the number of actions.

Condition inputs are synchronized and stretched to match the clock period of the 

HyperDebug OCI. HyperDebug trigger conditions are an AND combination of one 

or more of the following:

Condition input from a CN chain.•฀

Condition input from an external pin.•฀

An event counter matches a pre-programmed value.•฀

HyperDebug sequencer state.•฀
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tools
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Fig. 7.2 HyperDebug cross-trigger block diagram
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In the controller, the condition input is optionally inverted and optionally 

stretched, delayed, and synchronized to the local clock. Edges of condition inputs 

may then be programmed for various actions.

A configurable number of trigger condition chains can be inserted into any 

 particular design block.

HyperDebug action outputs are serially bused to HDANs adjacent to each core 

where they are conditioned and can be used to drive core trigger inputs. 

Configuration bits control whether this action feeds this core’s trigger input. HDAN 

outputs are high, and an inverter may be instantiated at the vendor core action input 

if that core’s input is low. Either the raw HyperDebug action output or a synchronized 

and stretched version can be selected.

In this implementation, HDCNs and HDANs are always instantiated together and 

the combination of an HDCN and HDAN at a particular core is called a HyperDebug 

Node (HDN). An HDN connects to one condition and one action chain. The logic 

for nodes can be very simple or more complex depending on the level of triggering 

complexity required, including state machines for sequential triggers. A simpler 

combinatorial implementation with programmable delay is often sufficient.

A configuration clock (the TCK input and configuration enable signal) is used 

to initialize the configuration registers in the HDN. The configuration chain is 

similar to JTAG in that at a rising TCK edge, the hd_condition_out output is 

latched into the first register in the chain (like TDI), while the bits in the HDN 

configuration register are shifted one bit forward. Output from each HDN changes 

on the falling edge of the configuration clock (like TDO) so that routing delay 

and clock skew between HDNs is not an issue. When the chain is not in configu-

ration mode, hd_condition_out supplies the logic 1 feeding into the first HDCN 

as illustrated by the Figures 7.1 and 7.2.

If a core or the chip I/O has more than one potential trigger status output or 

action input, more than one HDN may be instantiated at that core.

7.2.1  HyperDebug Controller

The OCI accepts a configurable number of condition inputs, and generates an action 

output for each. Condition inputs can come internally from a chain of HDNs associ-

ated with cores or externally form inputs from external instruments or other logic. 

The Action outputs propagate through the HDN chain to cores or external pins.

Condition inputs are synchronized and stretched to match the clock period of 

the HyperDebug OCI. Any convenient clock can be used to drive HyperDebug. 

HyperDebug trigger conditions are either:

Condition input from the HDN chain AND the HyperDebug sequencer state.•฀

A global event counter matches its preprogrammed compare value AND the •฀

HyperDebug sequencer state is one of a specified list.

When a condition is indicated, the HyperDebug controller may be programmed 

to perform actions:
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Assert, negate, or pulse the action output to the HDN chain.•฀

Start, stop, increment, or clear the global 32-bit event counter.•฀

Change to another HyperDebug sequencer state.•฀

The condition input to the HyperDebug controller is conditioned according to 

three parameters set up by the user:

The user can select whether to invert the condition. The optional inversion would •฀

be used when the condition is active-low, such as when the bus is used as a logical 

OR of several cores.

A synchronizer is used when the sequencer clock domain is different from that •฀

of the cores or if the routing delay of the condition bus is significant compared 

to the clock period. For small systems, the synchronizer may not be needed.

An edge detector would be used after the synchronizer to change the duration of •฀

a condition to one clock. For example, this might be used if a core is set up to 

assert its condition output when a certain trigger point occurs and the user would 

like the instruments to break after a certain number of these trigger points have 

occurred. Each trigger point asserts the condition bus for one core clock, and the 

condition bus is then resynchronized to the clock. The edge detector guarantees 

that the counter increments once for each trigger point even if the core’s condi-

tion output lasts longer than one clock (Fig. 7.3).

7.2.2  Typical HyperDebug Implementation

When a condition is indicated, the HyperDebug controller instrumentation may be 

programmed to perform one or more actions:

Assert, negate, or pulse one or more action outputs to an AN chain.•฀

Assert, negate, or pulse one or more action outputs to an external pin.•฀
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Fig. 7.3 A HyperDebug configuration



114 7 Multiprocessor Debugging

Start, stop, increment, or clear operations on a 32-bit event counter.•฀

Change to another HyperDebug sequencer state.•฀

The HyperDebug block also sources a reference clock signal for timestamping of 

data at each OCI block. Given that cores in a system may operate over a range of 

frequencies, including asynchronously to each other, a master timestamp provides 

a means of synchronizing the time of a core operation in relation to other cores in 

the system.

A typical implementation of HyperDebug with two HDN chains can support the 

following capabilities:

Sequential, multicore triggering, such as event A followed by B or trigger 1 ms •฀

after an event.

Periodic trigger signal to insert synchronization messages in each core’s trace •฀

buffer.

Assert a logical break signal to all cores under debug when any of the cores hits •฀

a breakpoint.

Insert a trace message in each core’s trace buffer when a particular core reaches •฀

a trigger point.

With multiple chains, conditions for cores corresponding to different problem 

domains (concurrent breaks or interupts, power control, trace, etc.) can be assigned 

different chain connections and operate concurrently (Fig. 7.4).

Trigger-out and trigger-in routing can be handled as sideband signals by the bus 

interconnect. The cross-triggering programming can be handled at subsystem level 

via the Hyperdebug control block trigger event, which can also be routed to the trace 

components via action/condition nodes. Trigger events can generate either a debug 

request or an interrupt request. These differ for different cores.

The cross-triggering can support external triggers. The trigger pulse width must 

be compatible with device IO performance. Triggers can connect to IO. Level or 
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pulse triggers are supported. A subsystem in power down or where debug has not 

been enabled does not contribute to cross-triggering.

The cross-triggering supports independent clock domains for a trigger-out master 

and a trigger-in target. The cross-triggering must be operational for any platform 

subsystem’s frequency operating point, assuming a simple action/condition node 

configuration.

7.3  Multicore Synchronization Triggering  

and Global Actions

The amount of information in a multicore SoC is large enough that global event 

recognition is often needed to identify and isolate events occurring throughout the 

system. Event recognition is widely used in conjunction with trace to capture infor-

mation on events and operations in the SoC. Trace data values are monitored and 

compared to event sequences to provide real-time triggers in instrument block(s). 

These triggers in turn can be used to control event actions such as breakpoints and 

trace collection. Multicore debug instrument event recognizers can simultaneously 

look for bus address, data, and/or control values and be programmed to trigger on 

specific values or sequences such as address regions and data read or write cycle 

types (Fig. 7.5).
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IEEE 1149.7 (Standard for Reduced-Pin and Enhanced-Functionality Test Access 

Port and Boundary Scan Architecture) is a superset of the 1149.1 JTAG interface, 

which, as previously discussed, has been in use since 1990. The IEEE 1149.7 stan-

dard (also known in the past as cJTAG or Compact JTAG, and later as aJTAG or 

Advanced JTAG due to copyright issues with the name CJTAG) was developed to 

address some of the known limitations of 1149.1 performance and extend its 

 capabilities by creating a complementary standard that addresses the changes in the 

integrated circuit technology and topology. Originally defined as part the MIPI Test 

and Bdebug Working Group, 1149.7 defines a hierarchy of new, but JTAG compat-

ible capabilities. With increasing levels of complexity, it replaces the JTAG TAP 

FSM with alternate TAP.7 architectures to implement additional functionality and 

maximize debug performance. Like other JTAG extension, a key concern is to 

maintain backward compatibility with IEEE 1149.1 infrastructure, semiconductor 

IP, software IP, and existing debug and test tools. Additional functionality and 

improved debug capabilities include

 1. Provide mechanisms for TAP power management.

 2. Provide modes that provide test and debug capability with fewer pins.

 3. Provide background instrumentation capability using the same pins.

 4. Preserve a gateway for debugging semiconductor errors/defects.

 5. Provide a framework to improve debug use performance and allow other debug 

pin protocols to gain access to the pins.

The 1149.7 architecture maintains the underlying JTAG-compliant control mech-

anism while providing several extensions to JTAG. Instead of a radical  departure 

from the existing standard, 1149.7 represents the natural evolution of the standard.

The 1149.7 operating mode is JTAG-compliant from power-up. Conventional 

JTAG control sequences are used to switch between the JTAG-compliant standard 

mode and the 1149.7 advanced mode. A 1149.7 aware debug and test software 

environment (DTS) must therefore be able to determine whether it is communicating 

with existing JTAG components (legacy), a mix of legacy and 1149.7 components, 

or a system built with only 1149.7 components. It can also determine whether the 

components are configured in a star or series configuration.

Chapter 8

IEEE 1149.7: cJTAG/aJTAG
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The 1149.7 architecture supports the following features:

2-pin operation (compared to the 4 or 5 pins of standard JTAG or the 5 or 6 pins •฀

if the JTAG return test clock [RTCK] is included). The latter interface is referred 

to as modified IEEE 1149.1.

Target operating frequencies (TCK) from DC to 100 MHz.•฀

Compatible with all hardware/software that uses the JTAG standard.•฀

Provides debug access that is independent of PROCESSOR and debug •฀

technology.

Supports multidevice communications ports with up to 16 devices per port.•฀

Creates data transport channels superimposed on JTAG stable states such as •฀

idle and the two pause states. The stays in these states may be used to move 

background or custom instrumentation data using 1149.7 or private protocols 

(BDX/CDX).

Power domain awareness at target and board levels.•฀

Comprehends synchronized operations across multiple debug ports.•฀

Tolerates slow system response such as power save modes or component clock •฀

limitations.

Includes failsafe and robustness features.•฀

The 1149.7 architecture builds on existing technology and legacy hardware/

software. This evolutionary approach maintains the value of the vast majority of IP 

created since the JTAG standard’s inception.

There is a facility within 1149.7 that allows hot connect to the target system 

without system disturbance. This facility, called firewall, “disconnects” the JTAG 

devices from the TS 1149.7 adapter by gating off the adapter’s TCK output to the 

connected JTAG devices. Debug software can use a standard JTAG sequence to 

disable this firewall.

Another capability, called super bypass, may be used in the JTAG mode of an 

1149.7-enabled chip. Super bypass provides a one-bit bypass between TDI and TDO 

for both instruction and data scans, thus reducing the scan path length in a system.

Another 1149.7 capability, the BDX/CDX (background data transport/custom data 

transport) mode, can be used to transfer data between the DTS and target  system. 

BDX allows transfers during idle control periods. CDX transfers control to the TAP 

on-chip logic to control and initiate transfers with off chip elements. Transfers occur 

when stable TAP states are reached (e.g. idle, pause-IR/DR, or shift-DR/IR). These 

transfers support, for example, user I/O, outputting instrumentation trace information, 

and custom protocols such as those for non-JTAG debug technologies.

8.1  Test and Debug Views of 1149.7

Because JTAG-related TAPs have become the most common debug port, improve-

ments in providing access to chip facilities that support application debug and system 

integration is a higher priority than it was when. 1149.1 was developed and on-chip 
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debug was a low-priority factor. With on-chip debug environments for different on-

chip processors and other logic required in complex SoC, the JTAG TAP must be 

able to provide application debug support and access to multiple on-chip TAP con-

trollers and embedded TAPs for special-purpose debug logic. This increases the 

complexity of applying JTAG to debug environments, compared to the relatively 

simpler and more consistent test requirement of scan operations.

1149.7 defines a new controller architecture (TAP.7) that includes the 1149.1 

controller for compatibility modes, but depending on more advanced modes of 

operation, expands the functionality and relationships of JTAG states and modifies 

the requirements of JTAG-required registers to allow new functions.

Test applications do not require visibility to the on-chip system components 

that are of interest to debug, and debug does not typically require visibility to the 

interconnection between the chips needed for a board manufacturing test. This 

means that test and debug desire two different views of a system of interest, as 

shown in Fig. 8.1. The views are complementary, because testing is generally 

completed before application debug begins using different tools and design for 

test software.

1149.7 addresses this need for both test and debug views in its definition of a 

TAP.7.controller. The test view requires compliance with the IEEE 1149.1 standard. 

The debug view provides access to multiple TAPs within a chip, as shown in 

Fig. 8.2. These are very different views of the same logic.

The test view is given initial priority over the debug view. A testlogic reset TAP 

control state creates the test view. This view remains until an action is  initiated via 

the chip-level TAP control to change the controller view. When the debug view is 

used, the chip creates visible subsystems with debug components that may be 

accessed. In most cases, the TAP control associated with an on-chip component 

controls the component but does not have boundary scan associated with it.

The debug-related and auxiliary TAPs within a chip may be included and 

excluded from the scan chain depending on their availability (some may be 

 powered down or otherwise inaccessible). The inclusion and exclusion of TAP 

Fig. 8.1 Test and debug view of a TAP. Source: IEEE 1149.7
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controls from a chip scan path occur upon entry into the run test/idle TAPC state. 

This allows the synchronization of actions such as running or halting processors 

attached to different TAPs with a chip, similarly to how JTAG would address dif-

ferent chips within a system.

8.2  Key T0–T5 Class Functions

The key IEEE 1149.7 features are addressed in six class functions (designated 

T0–T5) that are defined through 1149.7. Classes T0 through T3 extend IEEE 

1149.1 and enable new operations. Classes T4 and T5 are focused on advanced 

two-pin operation.

Class T0 ensures compliance with current test infrastructure by configuring 

IEEE 1149.7 devices to make them act compatibly with IEEE 1149.1, as shown in 

Fig. 8.3. 1149.7 defines supporting features, many of which are optional or unde-

fined in 1149.1, including the use of N-bit IR, 1-bit DR for bypass instruction, 

mandatory 32-bit IDCODE, and mandatory instructions behaving as specified in 

IEEE 1149.1. After a testlogic reset is initiated, all multi-TAP devices must con-

form to the mandatory IEEE 1149.1 instruction behavior and implement a 1-bit DR 

scan for the bypass instruction.

Class T1 instantiates a control system for the IEEE 1149.7 standard that is 

 transparent to IEEE 1149.1 devices, providing a foundation for the advanced 

 functionality implemented in classes T1 through T5 without changing the IEEE 

1149.1 state machine. In addition to creating a control system based on a TAP7 

controller and extended protocol unit (EPU), shown in Fig. 8.7 and the commands 

and registers associated with direct addressability for classes 1 to 3, this class 

addresses the needs of power-sensitive devices with four power-down modes.

Fig. 8.2 Multi-TAP control and data paths. Source: IEEE 1149.7
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The key innovation is the combination of the IEEE 1149.1-compatible TAP 

state sequences and shift state watching, which creates an IEEE 1149.7 control 

system that uses the bypass or IDCODE instructions plus a series of IEEE 

1149.1-compliant sequences called zero-bit DR scans (ZBS), shown in Fig. 8.4. 

Beginning at zero, the ZBS count is incremented with each consecutive 

 occurrence of a ZBS without encountering a shift-DR TAP controller (TAPC) 

state. When a DR scan containing a shift-DR occurs and the ZBS count is greater 

Fig. 8.4 The 1149.7 modified JTAG FSM with ZBS paths highlighted. Source: IEEE 1149.7

Fig. 8.3 Typical T0 class TAP.7. Source: IEEE 1149.7
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than zero, the ZBS count is locked, activating a corresponding control level 

(shown in Table 8.1).

The progression of states that are recognized as a ZBS are highlighted in the 

FSM diagram. There are two different paths, labeled as “a” and “b,” that can 

 implement a ZBS. In either case, the state sequence of interest is defined as follows: 

Table 8.1 Summary of T0–T5 class features

Advanced – data channels

T5

Data channel 1

Data channel 0

No data channels, don’t go office

BDX/CDX transfers

Advanced – operation within star-2 topology

T4

One of four start-up options

Compatibility between different feature sets

TS or DTS clock source

Test reset equivalent escape sequence

Star-2 drive conflict prevention

2/4 pin (with or without TIDC/TDOC pins)

Programmable function TDIC/TDOC pins

Scan formats:

–Minimal number are mandatory

–Very optimized for debug

–Optimized for debug

–Optimized for test

–Optimized for non-compliant IP

Extended – operation within star-4 topology

T3

Directly addressable, TCA and CIDs

Star-4 drive conflict prevention

Series/star scan equivalence (SSDs)

Extended series performance

T2

Coupling/decoupling of STL

Start-up with STL decoupled

Extended – optional functions

T1

TAP.7 power control

Test reset generation

Functional reset request

Extended – control levels

Control level two – Cmds. And Regs.

Control level three reserved

Control level four/five scan paths

Control level six and seven DTS use

1149.1 compliance

T0

IEEE 1149.1 compliance at start-up

Multiple embedded TAPs

Coupling/decoupling of embedded 

TAPs: Inclusion and exclusion of 

DR scan paths
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from the select-DR-scan TAPC state, proceed to the update-DR TAPC state with-

out passing the shift-DR TAPC state. From the testlogic reset TAPC state, wherein the 

ZBS count is set to zero, the extended control mechanism is initiated when at 

least two ZBSs are detected before a subsequent nonzero-bit DR scan, which 

locks the ZBS count. A locked ZBS count of two provides access to the 1149.7 

commands and registers.

Commands are typically 10-bit values and consist of two consecutive DR scans 

while the controller is locked at control level 2. Command part 1 (CP1) provides 

a 5-bit operating code, and command part 2 (CP2) provides the immediate operand, 

which is the lower 5 bits of the command. The function specified by the command 

is performed when CP2 completes (Tables 8.2 and 8.3).

A three-part command can be created by appending a third DR scan (a control 

register or CR scan) after CP1 and CP2 and transporting a data value. Each of the 

three three-part commands has a special purpose.

T1 also provides for power management through four modes of power control 

for the TAP. These four modes are:

 1. Allow power down if TCK stops at logic one for more than 1 ms.

 2. Allow power down if TCK stops at logic one for more than 1 ms in the testlogic 

reset TAP control state.

 3. Allow power down if the device is in the testlogic reset TAP control state.

 4. Do not allow power down (the test logic is always powered).

When a power-down mode is supported, the TAP is directed to resume powered 

operation when the run test/idle TAP control state is forced for at least 100 ms and 

at least 3 TCK(C) ticks.

Class T2 offers a chip-level bypass mechanism that shortens scan chains and 

another mechanism that provides hot connect capability. Because JTAG’s serial 

architecture makes it complex to communicate exclusively with one specific 

device in the scan chain due to interactions with other devices in the chain, particu-

larly when multiple devices or cores are combined into one chip, 1149.7  provides 

Table 8.2 T1 class control levels

Control level Overloaded function DR scan path

0–1 None System

2 Commands Chip-level bypass bit

3 None (reserved) Reserved

4–5 Auxiliary scan paths User defined

6–7 DTS utilizes these levels User defined

Table 8.3 TAP7 controller address

MSB LSB

34 27 26 11 10 00

NODE_ID[7:0] DEVICE_ID[27:12] DEVICE_ID[11:0]

Part number Manufacturer
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a method to address and access specific devices in the serial chain individually, 

without having to shift bits through the entire instruction register length of the full 

scan chain, as seen in Fig. 8.5.

Class T2 adds three scan formats to implement these new features:

JSCAN0: Offers IEEE 1149.1-compliant operation.•฀

JSCAN1: Provides hot connection and disconnection protection. At power-up, it •฀

can select a 1-bit bypass path (also called super bypass) that is active for IR 

scans and DR scans. This protects TAPs from spurious signals and prevents core 

corruption during hot connections.

JSCAN2: Implements the 1-bit super bypass according to the value of an 1149.7 •฀

register to improve series-connected device performance. The mechanism also 

functions as a firewall, enabling access to chip TAPs only after a predetermined 

sequence is initiated. This JScan2 provided activation/deactivation of the bypass 

provides a basic security that ensures that only a debug test controller can access 

the system once a running, powered target has a stable electrical connection.

A chip-level bypass mechanism reduces the overall scan chain length by putting 

unused devices in a 1-bit chip bypass mode. Using this feature can make very 

long scan chains dramatically shorter and improve the overall scan efficiency 

throughput.

Class T3 introduces the first features that are not directly extensible from the 

1149.1 JTAG. Whereas classes T0–T2 continue to be based on the JTAG serial inter-

face of data being propagated though TDI and TDO interfaces, class 3 is based on 

data access using a parallel interface, where each TAP has direct access to a com-

mon TDI and TDO, in addition to the common TCK and TMS signals. The 1149.7 

documentation refers to parallel configurations as a star topology. Although 1149.1 

references the use of parallel configurations, it does not do so in enough detail to 

be usable. 1149.7 provides an additional new scan format‚ JSCAN3, in class T3 to 

support star access. Figure 8.6 shows the series scan topology and the parallel inter-

faces of the star-4 or wide star configuration.

Fig. 8.5 Class T2 JSCAN2 1-bit bypass (super bypass) mode. Source: IEEE 1149.7
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A key provision required in a star topology with multiple TDO drivers is the 

prevention of drive conflict on the TDO pin. The JScan3 format is managed so that 

when multiple TAP.7 controllers are active, drive on the TDO pin is inhibited until 

an arbitrated resolution is complete.

As in a more parallel bus with multiple drivers, class T3 needs direct addressability 

in each of the TAP controllers. This is addressed by a TAP.7 controller address (TCA) 

for each of the TAPs that can drive the TSO pin. TCA values  corresponding to 

DEVICE_ID are inherited from the 1149.1 device identification register capture value 

for the TAP controller. The assignment of the NODE_ID is left undefined, so that it is 

more easily adopted to different types of instruments and debug blocks.

The NODE_ID serves to distinguish multiple TAP.7s on a given topology branch 

even if they are of the same device type.

1149.7 maintains compatibility with the IEEE 1149.1 standard by making all 

operations appear to be series scans using Capture-xR and Update-zR TAPC states 

in a group of selected IEEE 1149.7-enabled TAP controllers. To operate in this 

mode, devices (either cores or chips) in the star configuration must be assigned 

controller identification (CID) numbers. An iterative arbitration system is used to 

assign CIDs, and operations are executed using control level 2.

The controller IDs (CID) allow the system architecture to be interrogated by 

external devices, such as a debug tool at connect time, and enumeration of TAPS 

allows specifics of what debug resources are available on the chip. This presents a 

significant advantage for systems with debug blocks from different sources, which 

otherwise would need to be known a priori.

Class T4 and T5 functions add new capabilities that are implemented in an 

advanced processing unit (APU), shown in Fig. 8.8.

Class T4 adds scan formats to support transactions with two pins instead of four, 

resulting in fewer total pins required on chip packages. The key to two-pin opera-

tion is eliminating the original data lines and sending bidirectional serialized data 

over the test mode select (TMS) line, which is renamed as TMS counter (TMSC). 

To implement this capability, the star configuration from class T3 is used, this time 

without TDI and TDO. This is the star-2 configuration, shown in Fig. 8.9.

Fig. 8.6 JTAG series versus star configurations
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Fig. 8.8 An APU + EPU–based TAP.7 controller for T4–T5. Source: IEEE 1149.7

Fig. 8.7 An EPU-based TAP.7 controller for T1–T3. Source: IEEE 1149.7
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Fig. 8.9 Class T4 2-pin star configuration

In addition to reducing pin count, class T4 defines optimized download-specific 

scan (OSCAN) modes in which only useful information is downloaded, as shown 

in Figs. 8.10 and 8.11. To improve pin operation performance, the clock rate can be 

doubled. These features, combined with the optimized transactions, do not cause 

performance loss, instead improving performance in some cases.

A basic scan format that supports the advanced protocol is OSCAN1, which 

provides serialization of the scan packet. As shown, the TDI bit information is 

inverted. For each cycle in which the TDO bit appears, it is driven from the selected 

device in the target system back to the chip interface.

Other OSCAN formats provide optimizations in which the scan packets omit 

bits that carry no significant information. An example is the OSCAN7 format that 

is optimized for downloads from the interface to the target system. For OSCAN7, 

only the TDI bit information is included in the packets sent during Shift-xR TAP 

control states.

Class T5 adds features that improve performance and flexibility for utilizing a 

JTAG TAP for debugging, shown in Fig. 8.13. Whereas class T4 has primarily 

addressed the use of serialized packets for scan, T5 offers the capability to inter-

leave transfers of nonscan data among the scan transfers. This is referred to as 

transport and has two variants:

Background data transport, which uses idle bandwidth during TAP IDLE, •฀

PAUSE_DR, and PAUSE_IR for transfers.

Custom data transport, which implements a custom link protocol to “on the fly” •฀

change direction of the data transfers.

Both types of transport can use any combination of run test/idle, Pause-xR, and 

Update-xR TAPC states, after which transport packets can be inserted. The dis-

tinction is that, whereas BDX has fixed allocation of I/O bandwidth available to the 

chip-level data channel, CDX has a custom allocation of I/O bandwidth as deter-

mined/defined by the chip-level unit (Fig. 8.14).

Class T5 gives the TAP the ability to perform debug and instrumentation opera-

tions concurrently (data is transferred during idle time), which reduces the number of 
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pins required to address instrumentation bandwidth, and enables custom protocols to 

use the pins, as shown in Fig. 8.12. This is one of the attractions of 1149.7 to IEEE 

5001, as discussed later. Class T5 standardizes the process to access the pins for debug 

as opposed to the diverse, ad hoc, and proprietary means to address interfaces 

supporting debug features.

Several aspects of the 1149.7 system architecture make debug instrumentation 

more accessible, providing for access consolidation and management of embedded 

TAP controllers (T0), star topology (T3), pin reduction (T4N/T5N), and capability 

for the TAP.7 to transport background data; custom protocols using BDX and CDX 

(T5) were developed with debug operations in mind.

Fig. 8.10 An OSCAN1 timing diagram. Source: IEEE 1149.7

Fig. 8.11 An OSCAN7 timing diagram. Source: IEEE 1149.7

Fig. 8.12 T5 TAP.7 transitions to advanced modes. Source: IEEE 1149.7
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8.3  MIPI Use of 1149.7

Mobile industry processor interface (MIPI) is an industry-standard organization 

addressing hardware and software interfaces found in mobile terminal systems.  

It maintains a test and debug working group (T&DWG) that was the original driver 

for 1149.7 activities. Because 1149.7 enables 2-wire pin-out options for a JTAG 

TAP, it is of interest to the mobile products industry. The T&DWG also specifies a 

system trace module (STM). STM consists of a system trace protocol (STP) and the 

parallel trace interface (PTI). This allows collection of debug and trace data from 

Fig. 8.13 APU functions of T5 TAP.7. Source: IEEE 1149.7

Fig. 8.14 Custom debug mode burst and continuous transfers. Source: IEEE 1149.7
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internal buses and output to an external trace capture device using a minimum set 

of pins. The signals and pins required for these interfaces are given through the 

“MIPI Alliance Recommendation for Test & Debug – Debug Connector,” which is 

also part of the MIPI test and debug interface.

The main blocks of the MIPI debug and trace interface (DTI), seen from outside 

of the system, are shown in Fig. 8.15. To summarize, these are:

The debug connector.•฀

The basic debug access mechanism: JTAG and/or 1149.7.•฀

A mechanism to select different TAP controllers in a system (multiple TAP •฀

control).

The system trace module.•฀

8.3.1  MIPI System Trace Module

The STM collects debug and trace data from internal device buses, encapsulates the 

data, and sends it out to an external trace device with the following features:

SW-generated trace optimization.•฀

Automatic timestamping of messages.•฀

Supports up to 255 HW trace sources:•฀

Allows simultaneous tracing of 255 threads without interrupt disabling. –

Configurable export bus with selectable width 1/2/4-pin (+ dedicated clock  •฀

+ optional return channel):

Minimal pin usage is 2 pin (1 data + 1 clock). –

Maximum pin usage is 6 pins (4 data + 1 clock + 1 return channel). –

Maximum operating frequency is 166 MHz (double data rate clocking).•฀

Fig. 8.15 MIPI system trace module. Source: MIPI Consortium
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Provides a maximum bandwidth of slightly greater than 1 Gbit/s (theoretical •฀

maximum of 1.6 Gbit/s).

Support for 8-, 16-, 32-, and 64-bit data types.•฀

A maximum of 255 different bus masters can be connected to the STM trace port 

via a bus arbiter. The bus masters can be configured for either SW or HW type to 

optimize the system for different types of trace data.

SW-type master messages are used to transmit trace data from OS processes or 

tasks on 256 different channels. The different channels can be used to logically 

group different types of data so that one can easily filter out the data irrelevant to 

the ongoing debugging task. The message structures in STM are highly optimized 

to provide an efficient transport, especially for SW-type master data. An example 

of trace data output is given in Fig. 8.16.

SoCs can be designed with a 1149.7 wide interface (4 pins) or a 1149.7 narrow 

(2 pin) interface. As discussed previously, the 1149.7 wide devices have the normal 

Fig. 8.16 STM output timing example

Fig. 8.17 A multi-TAP MIPI system. Source: MIPI Consortium 
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TCK, TMCS, TDI, and TDO pins and can be used as normal JTAG devices but can 

also be switched to advanced operating mode (2-pin protocol). Devices with a 

1149.7 narrow interface only have the TCK and TMSC pins and will only carry out 

advanced messages (Fig. 8.17).

8.4  Nexus Use of 1149.7

Note: IEEE 5001 Nexus is discussed in depth in Chap. 11.

1149.7 also provides new capabilities for improving embedded control and visibility 

of chip-level analysis and design for debug logic and interfaces using IEEE 5001 

(Nexus). As discussed in other chapters, Nexus provides a standard method and 

architecture for trace-oriented embedded instrument interfaces. 1149.1 JTAG, which 

has been a part of the Nexus infrastructure since its initiation, has limitations when 

used as an instrumentation interface. Using 1149.1 JTAG’s serial channel for instru-

mentation applications such as tracing embedded signals means bandwidth is lim-

ited, a performance limitation barrier for multicore designs at the SoC or board level. 

JTAG, as a relatively simple state-controlled interface, lacks any native features for 

security, power management, and other factors important to modern SoC.

Nexus was developed to address these limitations of JTAG for instrumentation. 

Nexus was developed (and standardized as IEEE 5001) in 1999 as an instrumentation 

and processor debug architecture that includes IO ports for improved bandwidth and 

a standardized protocol that supports a variety of instrument types and both inter- and 

intrachip multicore integration and communication. A basic Nexus interface includes 

both a JTAG interface and parallel input and output data interfaces, referred to as 

AUX ports. Nexus interfaces can be configured in three modes:

 (a) JTAG by itself for both control and data transfer.

 (b) JTAG (mainly for control and lower speed and bandwidth operations) plus AUX 

interfaces (mainly for higher-bandwidth data transfer).

 (c) AUX ports by themselves for both control and data transfer.

Nexus relies on the parallel AUX ports for higher-speed and bandwidth interfaces. 

The trade-off of this is that Nexus requires dedicated pins to support transfer during 

normal operations, and pins are a rationed resource in complex SoC. Nexus 

addresses operation with limited pins by only implementing AUX ports where they 

are required. So, for example, for trace or other write-IO-intensive operations, the 

output bandwidth required is addressed by an AUX output port, whereas the lower-

bandwidth setup and control inputs to the trace instruments can be supported by 

JTAG. Alternately, operations such as calibration or memory substitution (a Nexus 

configuration of replacing access to on-chip memory with access to external mem-

ory transferred through the Nexus interface) are typically more read-IO intensive 

and may require input AUX ports to meet bandwidth requirements.

The addition of Nexus interfaces improves the instrument interface bandwidth 

by using the AUX ports and a higher-performance instrumentation interface 
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 protocol. IEEE 1149.7 interfaces are backward-compatible with 1149.1 JTAG but 

support parallel TAP architectures that provide a more compact and powerful 

means for adding embedded instruments to digital processors and SoC devices. 

IEEE 1149.7 expands on key features of 1149.1 JTAG in several important ways. 

1149.7 features are provided in a progressive series of six access port classes 

(T0–T5 as shown in Fig. 8.18). Support for any class of capabilities implies sup-

port for the features in the previous class. Since a Nexus packet is a message 

protocol, it is operating at a different level of hierarchy compared to the physical 

layer-oriented 1149.7 interfaces. As such, different Nexus implementations may 

adopt 1149.7 features up to any class level, without being required to support the 

entire set of features.

The costs of IEEE 1149.7 are in adding levels of control hierarchy to a test and 

debug port. Whereas IEEE 1149.1 JTAG was designed for reduced logic at a time 

when gates count per device were smaller and more expensive, in many current ICs 

additional logic and complexity are justified for increased features and a more 

 flexible and reduced pin interface.

The most basic class T0 capability provides a backward-compatible 1149.1 

interface. This allows legacy compatibility with existing Nexus systems or where 

more advanced features are not required.

Class T1 capability provides four user-selectable power control modes (based on 

power-down states and power-down after delay). IEEE 1149.7 selectable power 

mode controls may be propagated into Nexus logic to enable standardized power-

down features for low-power devices.

Class T2 capability provides coupling mechanisms for reduced bypass delay for 

the case of multiple TAPS on a chip or a system. This allows shorter latency for 

serial scan operations, which can be significant for Nexus systems with several 

instruments.

Fig. 8.18 IEEE 1149.7 class implications for Nexus
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Class T3 capability provides for parallel data input and output configurations 

(star-4 topology). This allows simpler and more direct access to on-chip TAPs and 

instruments similar to many on-chip bus interfaces and to Nexus AUX ports.

Class T4 supports multiple test/debug configuration functions, the most notable 

of which is operation in a 2-wire TAP (star-2) configuration. This allows operation 

with a reduced pin interface, a key requirement in Nexus use in pin-limited systems 

such as mobile devices.

Class T5 support for higher performance BDX and CDX transfer modes are 

not supported under Nexus.

8.4.1  IEEE 1149.7/Nexus Integration

Although IEEE 1149.7 provides new port-level features and improvements in 

latency for transport of embedded instrument control and data, it does not signifi-

cantly address the issues of improving bandwidth in underlying communication 

with the instrument, a key limitation in performance of applications such as 

trace and calibration. Even at its most advanced (T5) level, the IEEE 1149.7 interface 

only defines a single data pin for instrument use. Having a scalable and extend-

able data interface for test and debug was one of the drivers of Nexus, and one of 

its most notable features is the definition of input and output AUX ports that 

increase the effective number of data channels to significantly increase transport 

bandwidth.

By defining parallel interfaces, 1149.7.7 star-4 configurations can be synchronized 

and integrated with both AUX IN and AUX OUT ports (Fig. 8.19). Depending on 

the requirements, only one (IN or OUT) of the AUX ports may be required. Number 

and size of the AUX ports are configurable and typically trade off with output buf-

fer size. For a multi-TAP configuration, larger or additional buffers can be required 

because the synchronized AUX port for each TAP may be stalled by activity on 

other TAPs or by the 1149.7 interface itself. In addition, support for advanced 

modes, CDX in particular, may require that TAPs communicate and  arbitrate access 

to the channel. A similar configuration can be used to implement Nexus with a 

2-wire star-2 configuration. IEEE 5001 also defines, in the 2009  revision, the ability 

to implement increased (order-of-magnitude) bandwidth by replacing the AUX 

channels with a corresponding number of SerDes ports allowing gigabit data 

transfers.

Nexus packet-based transfers include ID fields and specific transfer operations 

for accessing and assigning ID information that allows sequential and multiplexed 

access to multiple instruments within a single Nexus interface or across multiple 

Nexus instantiations.

In a typical mode of operation, a Nexus interface may consist of a lower-

bandwidth JTAG interface providing command and configuration inputs and a 

higher-bandwidth AUX OUT port outputting debug data. Because the JTAG chain 
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may have greater latency than the AUX ports, this can in some cases introduce 

communication complexity and reduced performance. IEEE 1149.7, in particular 

in the T3 and T4 star configurations, can reduce this latency. The AUX ports, as 

parallel data channels, can be configured in a related star output interface to 

synchronize operations and signaling.

In summary, Nexus has adopted IEEE 1149.7 as a successor to the 1149.1 

JTAG interface port that is an interface feature in the IEEE 5001-2003 Nexus 

specification release. Because 1149.7 is backward compatible to 1149.1 JTAG, 

it does not impact any legacy systems that use JTAG as a debug interface. Its value 

for Nexus is in new features that make debug more efficient, including:

The ability to quickly access a specific TAP in a system with multiple TAPs, •฀

either on chip or in different devices. By implementing a system-level bypass, 

the scan chain is drastically shorter, which directly improves debugging 

performance.

The ability to control debug logic power consumption in an industry standard •฀

manner.

The introduction of star-4 (4-wire JTAG parallel interface to multiple TAPs) •฀

connectivity to complement the 1149.1 JAG serial TAP connections. A star 

 configuration allows simpler test connection and simplified physical connections 

that are compatible with Nexus data interfaces.

The 2-wire TAP option (star-2) that replaces the four-wire TAP to reduce pin •฀

cost.

1149.7 + AUX Port
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P1687 (also informally but commonly referred to as IJTAG) is a set of emerging 

standard definitions that extend the JTAG functionality to include a variety of 

instruments. The scope of P1687 is not limited to debug purposes and as such it 

seeks to be more inclusive in the functions it defines. Whereas other 

 instrumentation-related standards efforts, such as the IEEE 1149.7 standard, 

define a next-generation TAP and pin interface while maintaining backward compat-

ibility with the IEEE 1149.1, P1687 is an effort to standardize connection and 

communication with on-chip instruments for the control and management of 

embedded instrumentation within a semiconductor device while retaining the 

1149.1 TAP interface.

P1687 efforts started in 2004, and the IEEE PAR (project authorization request) 

was approved in 2005. The P1687 standard addresses descriptions of how to con-

nect both JTAG and non-JTAG on-chip instruments and to define (in addition to 

BDSL) languages for communicating with the instruments via 1149.1 test data 

registers. The languages that potentially are being selected to support P1687 are:

ICL – Instrument Connectivity Language, which adds information above BSDL 

(including operation of the instrument).

PDL – Procedural Description Language, which adds reusable vectors.

TCL – Tool Command Language, for scripting debug applications built with the 

TK toolkit.

IJTAG operations use the concept of a compliant 1149.1 overlap zone to define 

compatibility and to ensure that IJTAG instruments do not violate any rules associ-

ated with JTAG operations.

As an overview of P1687, the comprehensive Fig. 9.1 shows the scope of instru-

ments that P1687 seeks to address. The charter for the P1687 development effort 

makes clear their intent in preserving full compatibility with 1149.1 JTAG and 

that all operations that require it use an 1149.1-compliant TAP and TAP control-

ler. In  particular, the guidelines are as follows:

 1. 1149.1 does not require any compliance-enable mode to use or access the 1687 

portion of the architecture.

 2. A device supporting 1687 can be intermingled with other (traditional 1149.1) 

devices in a multiple 1149.1 board-test system.

Chapter 9

IEEE P1687 – IJTAG
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 3. No special functions, logic, or filters are required in front of the 1149.1 TAP 

(external to the device or between the 1149.1 TAP and the TAP controller) for 

1687 purposes.

 4. P1687 does not chance any of the public 1149.1 standard features, including 

the 1149.1 TAP; the 1149.1 state machine, defined registers (the boundary scan 

register; the bypass register; the ID code register; the instruction register; etc.) 

or the public instructions (EXTEST, INTEST, SAMPLE, PRELOAD, IDCODE, 

CLAMP, HIGHZ, etc.).

 5. BSDL is used as a preliminary checker for instruments included within the 1149.1 

zone that may be accessed with declared public instructions or private instruc-

tions. If it can not be described in BSDL, it should not be in the 1149.1 zone.

 6. The architecture defines an overlap zone shared by 1149.1 and 1687 elements, 

which is 1149.1 compliant and can be described using BSDL. BSDL compati-

bility ensured that connection schemes will be driven by 1149.1 requirements 

and compliant with 1149.1 criteria.

 7. 1687 does not replace or modify interface or port elements defined in the 1149.1 

standard and references the JTAG TAP, as the port, controller, and access point 

to the 1687 gateway.

 8. Adding 1687 features and functions should not impact operation or use of 

1149.1 complaint portions of the architecture.

 9. The 1149.1 overlap zone, which is a logic portion of containing both 1149.1 and 

1687 hardware, places 1149.1-compatible instruments and/or 1149.1-defined 

test data registers and/or hierarchy-support elements within parts of the 1149.1 

overlap zone that can be described by BSDL.

Fig. 9.1 The P1687 universe. Source: ASSET InterTech, Inc. All rights reserved
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 10. Gateway elements are defined as instruments that enable hierarchical access 

(access to other instruments that do not require a direct IRScan).

 11. User-defined instructions to the 1149.1 instruction set provide control to 

both JTAG and 1687 gateway elements contained within the 1149.1 overlap 

zone.

 12. The connectivity of instruments in the 1149.1 zone should be driven by 1149.1 

methods and be compatible with 1149.1 operations.

 13. 1687 instruments that are not compatible with 1149.1 (i.e. cannot be described 

by BSDL) should not be directly connected to the 1149.1 IR and should not be 

in the 1149.1 overlap zone (but rather should be moved to a dedicated 1687 

zone).

 14. 1687 instruments in the 1149.1 overlap zone should be the only non-1149.1 

logic that can react to IR-Scan operations; all other 1687 instruments should be 

accessed, configured, and controlled using only DR-Scan (shift-DR and the 

update-DR) operations.

9.1  Overlap Zones and Gateway Elements

Two key concepts of P1687 are those of 1149.1 overlap zone and gateway elements 

(or gateway instruments). Referring to Fig. 9.2, the 1149.1 overlap zone can be seen 

with the 1149.1 portions shown on the left and the 1687-only portion on the right 

of the line (the 1149.1 overlap zone) bisecting Fig. 9.2. Gateway elements that 

Fig. 9.2 Overlap zone with gateway elements. Source: ASSET InterTech, Inc. All rights reserved
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straddle this zone are the only logic overlapping the two zones. The gateway element 

supports hierarchical connection to other instruments that are described in the 1687 

zone but also needs to be fully compatible with the 1149.1.

All instruments in the 1149.1 portion of the architecture, including the gateway 

elements need to be compliant with the 1149.1 TAP FSM, Operations are enabled 

by IR-Scans that load instructions in the 1149.1-IR and are active on the falling 

edge of TCK in the update-IR state. One criteria that P1867 uses to determine if an 

element belongs in the 1149.1 zone is if it be described by BSDL. If it can not, it 

is not 11491 compatible.

The 1687 portion of the architecture begins at the gateway element or instru-

ment and in turn enables other instruments to be accessed (by creating a select 

signal) and allows access to TDI-TDO data from the 1149.1 TAP to the target 

instrument in the 1687 zone. 1687-zone instruments are accessed, controlled, and 

configured only by DR-Scans (Shift-DR and Update-DR assertions) through a 

gateway element/instrument.

Figure 9.3 shows a simple generic example of a gateway element, where the 

test data register (TDR) receiving data through the TDI and outputting data 

through the TDO is connected to the 1149.1-IR and through encoding of an 

instruction operation can be used to pass hierarchical connections to 1687 instru-

ments. Note that whereas the 1149.1 side of the TDR is a TJAG serial data inter-

face, on its 1687 side it communicates as a parallel register.

TDRs are constructed of registered elements called select instrument bits (SIB); 

an example is a TDR bit that includes a hierarchical interface port (HIP) that 

enables a hierarchical connection. The hierarchical connection allows the SIB to be 

Fig. 9.3 A basic gateway element using a test data register
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used to bypass portions of a JTAG scan chain and otherwise control the flow of the 

DTI/TDO path (Fig. 9.4).

9.2  Classes of P1687 Instruments

The taxonomy of P1687 defines support for four classes of instrument types labeled 

A, B, C, and D.

Type-A instruments are defined as “self-contained instruments” that are enabled 

by static signals and report status by latched-output signals. Type-A instruments are 

not compatible to the 1149.1 interface. Typically, they don’t have interfaces for 

serial paths (and therefore, cannot be used as a gateway). An example of a type-A 

instrument is a simple memory BIST controller.

Type-A interfaces require a select instrument signal and is controlled by decoded 

instruction bits from an instruction register or other status signals. The type-A 

instrument interface typically used on a “self-contained” instruments such as logic 

BISTs, memory BISTs, and other stand-alone-instruments. Communication is with 

static signals that are applied on the 1149.1 update-DR and sampled by the 1149.1 

capture-DR.

Fig. 9.4 A select instrument bit logic block. Source: ASSET InterTech, Inc. All rights reserved
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Type-B instruments are defined as “1149.1-compatible instruments” that 

 operate identically to an 1149.1-defined TDR, have a serial-scan path, and may 

support hierarchy (and may be used as a gateway with the caveat that the length 

of the TDI-TDO scan path must be described in the BSDL of the 1149.1 overlap 

zone as the default or reset length). An example of a type-B instrument is any 

instrument that is directly managed by an 1149.1 state-machine signal and associ-

ated select capture shift update protocol. This includes most JTAG-controlled 

trace blocks.

The type-B interface also requires the select instrument signal; it requires the test 

clock to operate the serial shift path and should support the reset signal to keep the 

instrument quiescent when not in use. The shift-enable signal and either capture- 

enable or update-enable need to be supported; sometimes other 1149.1-SM-generated 

signals are required, such as those generated in the run test/idle or pause-DR states, 

and the shift-path TDI and TDO must be supported. Type-B instruments operate 

simlar an 1149.1-defined TDR, having a register that has a input shift path that is 

active when in shift-DR state; and the shifted output when the 1149.1-SM is in 

capture-DR.

Type-C instruments are defined as “self-instructed instruments,” having dedicated 

control and data registers that are responsive to select-IR states. The instrument may 

have several serial paths, has one path to a local instruction register and may support 

hierarchy. Type C instruments may be used as a gateway. An example of a type-C 

instrument includes most processor debug blocks (including ETM and Nexus).

The type-C interface also requires the select-instrument signal, requires the test 

clock to operate the selected serial shift path, and should support the reset signal to 

keep the instrument quiescent when not in use; the shift-enable and update-enable 

signals and optionally the capture-enable need to be supported; sometimes other 

1149.1-SM-generated signals are required such as those generated in the run test/

idle or pause-DR states; and the serial shift-path TDI and TDO must be supported. 

The type-C instrument is one that operates like a 1500-defined test access mecha-

nism (TAM) – a set of registers, one of which is active as a shift path that is active 

when the 1149.1-SM is in shift-DR and is based on the instructions in a register 

defined as an instruction register.

Type-D instruments are defined as type-B or type-C instruments whose control 

interface supports at least one of the following: a signal or sequence not produced 

by a compliant 1149.1 TAP or 1149.1 controller; a clock other than TCK; or a data 

port other than the TDI-TDO serial scan path (and hence cannot be used as a gate-

way because it is not easily described in BSDL but it may still be used as a hierar-

chical instrument). An example of a type-D instrument is a 1500-wrapped core with 

core boundary scan cells that require the transfer signal.

The type-D interface can be identical to the type-B or type-C but must have at 

least one non-1149.1-compatibility issue, such as the instrument requiring:

A clock in addition to or other than test clock (the 1149.1 TCK) to operate some •฀

portion of the interface.
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A data path other than the defined TDI-TDO serial shift path that synchronizes •฀

to the test clock (such as a parallel port that synchronizes to a test clock or a 

parallel port that synchronizes to an alternate clock or a high-speed serial port 

that synchronizes to a high-speed alternate clock).

A signal not provided from a compliant 1149.1 controller such as stall, bus •฀

request, data valid, and counter done).

A sequence not provided by a compliant 1149.1 controller.•฀

Type-D instruments are expected to be instruments such as a bus controller, bus 

converter, or clock controller that can be configured and controlled through the 

1687 architecture.

9.3  IEEE 1500 Instruments

P1687 applications occasionally refer to 1500-wrapped instruments, so we discuss 

these briefly in the interest of comprehensiveness. See IEEE Standard 1500, the 

IEEE standard for embedded core, for a more complete discussion.

The IEEE 1500 standard defines a mechanism for the test of cores within a 

system on chip, including a wrapper hardware architecture. It also uses a core test 

language (CTL) to facilitate communication between core designers and integra-

tors. IEEE 1500 defines standard components and general wrapper architecture, 

including wrapper parallel input and output ports, core functional inputs and 

Fig. 9.5 An example 1500-type instrument interface. Source: ASSET InterTech, Inc. All rights 

reserved
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outputs, wrapper serial input, and serial output for test (see IEEE Standard 1500–

2004) (Fig. 9.5).

An example of a 1500 test access mechanism is one in which the connectivity 

and protocol structure used to access an instrument gateway is enabled when one 

or more of the instructions in the 1500-defined wrapper instruction register (WIR) 

can enable one or more hierarchical interface ports (HIPs).
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The Open Core Protocol-International Partnership (OCP-IP) is an industry-based 

standard group defining vendor-neutral socket interfaces for interconnecting cores 

and other on-chip components. The OCP-IP socket-based integration strategy has 

been proven in a multitude of designs from leading chip vendors. OCP-IP’s strategic 

focus is deeper than other socket-based interfaces, as it address a wide range of 

related topics including system-level design and debug.

One concern of particular importance in OCP-IP is the support of Multicore and 

Multiprocessor SoC architectures. The complexities of Multicore SoC are far more 

than the sum or the parts, since issues can appear not just in the processors, but in their 

interactions. This, in turn, drove a need for instrumentation types and standardized 

interfaces and debug methods that would support these complex OCP socket based 

systems. The OCP-IP chartered a debug working group in 2005 with the specific goals 

of developing on-chip debug solutions that address the issues of debugging multicore 

systems, in which different cores may have associated debug blocks with different 

features, different signaling, different analysis requirements, and so on. The evolution 

of instrumentation interfaces to various core have led to widely different signal inter-

faces. The instrumentation interfaces defined by the debug working group were 

focused on providing a superset of signal interfaces that covered these generally 

incompatible debug interfaces, as well as by the need to have debug operations inter-

acting with instrumentation for the OCP bus architecture itself.

The value of OCP-IP and debug work designed by a neutral party is that it is 

designed to be vendor-neutral. The competitive nature of different core providers 

have limited their collaboration in developing common instrumentation interfaces and 

methods for analysis needed for complex SoCs. Although groups such as Nexus 5001 

(Chap. 11) address a vendor-neutral debug interface, this interface is primarily 

focused on the top-level interface (JTAG versus trace port), the protocol, and defined 

registers and other issues not directly related to implementing instrumentation systems 

at the core level.

The OCP- IP, recognizing that other groups were addressing the system-level 

debug interface, focused primarily on the low-level signal interfaces that are 

required to create a debug socket that would work with other sockets defined by 

OCP-IP. A common set of standard instrumentation signals creates a basis for more 

interactive instrumentation which can be applied to cores and architectures from 

Chapter 10

OCP IP Debug Interfaces
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different vendors. The advantage of common instrument interfaces becomes more 

important with complex SoCs with diverse architectures and heterogeneous cores 

and IP from different sources.

The OCP-IP has defined a set of architectures based on the idea of sockets. The 

OCP socket defines data and instruction signal interfaces for a processor, which 

allows a vendor-neutral bus fabric to be used for routing and bus connections (bus 

sockets are also discussed in Chap. 6). The OCP debug socket defined by the OCP-IP 

debug working group defines a complementary baseline set of debug  functions that 

could be implemented on chip to include global run control signals, as well as trace, 

triggering, time-stamping, and other on-chip analysis functions. Increasingly, SoCs 

incorporate asynchronous domains, diverse voltage islands, various power-saving 

schemes, varying levels of embedded security, and so on; as shown in Fig. 10.1, all 

of which add to the complexity of the debug solution.

The OCP debug socket defines both critical and optional sets of debug signals 

that allow different IP blocks to communicate and coordinate their specific debug 

requirements and features. The baseline signals are typically common to all the IP 

blocks and therefore are known to be supported by a common JTAG chain or debug 

port. Optional signals are those supporting functions specific to particular blocks 

or asynchronous/secured/powered subsystems.

10.1  OCP Multicore Debug

A multicore debug interface must provide a set of signals for basic debug capabilities. 

These basic signals can be divided into four groups:

 1. Debug control: Defines independent reset and debug-enable signals.

 2. JTAG interface: Defines signals for the JTAG protocol.

 3. Debugger interface: Defines a set of debug interfaces that address system-level 

debug of run control and debugger tool interfaces.

 4. Cross-trigger interface: Defines signals for distribution of debug events and for 

system-level control in a multicore SoC.

Fig. 10.1 (a) OCP sockets for various cores; (b) OCP debug interface sockets
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A mechanism for the systemwide debug of a heterogeneous SoC uses a standardized 

OCP bus interface for all IP blocks. The standardized bus interface or socket provides 

a well-defined set of vendor-neutral signals that address interfaces between a core and 

the bus fabric. Specific types of debug features targeted by the debug socket(s) are:

Signal-level observation (bus and system trace) and control (triggering).•฀

Consistent (multiple) processor software debugger and bus traffic observation •฀

interfaces.

Special debug features for security islands, voltage islands, gated clock islands, •฀

and so on.

New classes of debug errors (which are different from system errors).•฀

The debug concepts addressed can be applied to single-core debugging (without cross-

triggers, trace, or timestamping) and can be extended to more cores and channels of 

debug for more complex systems. For multicore chips, there is an implicit debugging 

requirement to observe activity of (at least) two cores in order to enable a comparative 

analysis of operations and communications. We use a dual-channel synchronous 

debug socket as a baseline model. Dual-channel debug is a minimum to enable com-

parison of instruction or other cause and events or other effects that occur in different 

cores. A means of synchronous is needed to allow these instructions and events to be 

displayed in correct temporal relations, One such means is by use of timestamping 

during collection of trace information. The idea is similar to a dual-channel logic ana-

lyzer; when cores are not in debug mode, then any two IP blocks can be observed or 

traced in temporal  comparison with a common and extensible set of signal interfaces.

Debug Components and IP Interfaces. The basic signals for an OCP debug 

interface socket may be added to all cores and IP blocks that support or need debug-

ging access. OCP debug port sockets may be implemented independently of data 

sockets, including at different points in the OCP system from where a data port may 

be implemented, as shown in Fig. 10.2.

Fig. 10.2 A multicore debug socket implementation. Source: OCP IP
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The debug signals may be implemented as a separate socket or as additional 

signals to the OCP data (master and/or slave) port (debug blocks are memory 

mapped and controlled through the OCP data socket) or as an independent OCP 

port configuration that can be controlled via JTAG or another external interface.

In general, although debug socket functions are passive and not intrusive to 

system operations or performance, some debug-related operations (such as cross-

triggering) may interact with other parts of the system.

Debug Interface Definitions. The programming of registers that contain either 

configuration or status information in the debug IP blocks may be JTAG-mapped 

or memory-mapped. Either mode of control and access is acceptable, based on 

specific system requirements as shown by example in Fig. 10.2.

There are two preferred methods of mapping the registers of the debug 

IP-blocks such that all debug registers should be memory-mapped to fit into the 

usual programmer’s models and allow for standard and extended testability 

 concepts in manufacturing:

 (a) memory space mapping: The on-chip processor core can operate the debug 

blocks.

 (b) JTAG-mapped register access: This is controlled by external software debuggers 

over JTAG and can operate all debug IP blocks.

Comparative two-channel debugging with true time display of events is similar to 

the logic analyzer philosophy. The time-aligned display of system bus traces of data 

events from different initiators on different buses is the main source of information. 

Setting triggers on any signal or combination of events from different cores, IP 

blocks, and firing assertions is also basic to this idea. That is  accomplished by the 

cross-trigger debug hardware block.

The OCP debug interface follows the general concept of master-slave request-

response philosophy to provide straightforward mapping of existing signaling 

schemes to corresponding instrument interfaces in various cores and IP blocks. In 

general, there are two signal wrappers required on the hardware side: 

1. Between the core and the debug interface to the OCP instrumentation intercon-

nects and 

2. Between the OCP instrumentation interconnection and any existing instrumenta-

tion infrastructure, such as JTAG TAPs, trace buses and IO ports, etc. 

In general, instrumentation infrastructure is not explicitly defined in the OCP architec-

ture specifications, and must be inferred from more general customization features in 

the architecture such as user defined sideband signals and auxiliary socket interfaces.

The primary objective of adopting defined OCP signal features as a debug socket 

to the SoC designers is a structural regularization to minimize errors in understanding 

its functionality and to allow the development of automatic checkers for a well-

defined debug interface. Basic OCP debug interface have been prototyped as instances 

of the OCP sideband signaling scheme. It is partitioned into basic signals and 

extended optional signal groups as found in the OCP data socket definitions. The 

basic signals assure run control for debuggers, and extended signals deal with special 
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situations like voltage islands, security islands, and power-down modes. Performance 

metering and assertions are also part of the optional signals in the debug socket.

10.2  OCP Debug Features

Debugging in the real target system: No mechanical or electrical constraints.•฀

Full visibility: Cycle-accurate trace of multiprocessor, multibus SoCs.•฀

No limitation for low-pin-count, high-frequency devices.•฀

Complex triggering modes; to allow for example, negative triggering on an event •฀

not occurring in a timeframe expected to minimize amounts of collection of 

trace data.

Support for code profiling and performance analysis through programmable •฀

event counters.

Portability: The OCP debug interface is adaptable to any processor or bus •฀

 architecture; software developers continue to use tools they are familiar with.

Low cost: No expensive hardware needed to access OCP debug systems.•฀

Proven implementation: The OCP debug system prototype was executed •฀

successfully.

Nonintrusive debugging of embedded multiprocessor systems.•฀

Target system runs at full speed in the application environment.•฀

Access to internal buses.•฀

Real-time, cycle-accurate tracing.•฀

Trace capabilities for:•฀

Processors: Process ID, program, data, status, watch point. –

Buses: Data, status, watch point. –

Signals: Status. –

Complex trigger system including cross-target triggers.•฀

Translates raw data into meaningful messages.•฀

Compresses trace messages to save memory.•฀

Trace memory can be configured as a circular buffer to collect trace messages •฀

either continuously or before and/or after a watch point occurs.

Implementation can be partitioned for easy adaptation to new cores.•฀

Instrument interfaces are not limited to a particular physical interface between chip •฀

and debug host. JTAG is a reference interface, due to proven use in instrumentation, 

however other available interfaces (I2C, UARTS, etc) may be used as appropriate.

Security: The OCP debug system can be locked by default and can only be •฀

unlocked by system hardware.

As for the OCP data socket, there is a superset for the different bus interfaces and 

data structures and we seek to define an OCP debug socket that can be a superset 

of the debug solutions. Most concepts discussed are based on common denomina-

tors for the past and present debug concepts. This enables OCP compliant creation 

of standardized IP blocks for debug situations and purposes, including:
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Signal-level observation (bus and system trace) and control (triggering). –

Consistent (multiple) processor software debugger and bus traffic observation  –

interfaces (GUI).

Special debug features for security islands, voltage islands, gated clock islands,  –

and so on.

New classes of debug errors (different from system errors) analysis. –

The debug concepts addressed can be applied to single-core debugging (without 

cross-triggers, trace, or timestamping), and it can be extended to more cores and 

channels of debug for more complex systems. For multicore chips, there is an 

implicit debugging requirement to observe activity of (at least) two cores out of 

many in order to enable comparative analysis of operations and communications. 

As a default, OCP debug interfaces should support multiple cores. We use a dual-

channel synchronous debug socket as an example. The intention is similar to that 

of a dual-channel logic analyzer, and when cores are not in debug mode, then any 

two IP blocks can be observed or traced in temporal comparison with a common 

and extensible set of signal interfaces. We avoid defining a separate debug bus to 

keep a simple modular IP structure on the chip.

The purpose to debug in a chip can be very different. At least three variants need 

to be satisfied by a standard:

Pure software debugging concentrates on minimum additions to proven •฀

hardware still providing a rich debug environment for development of 

software.

Pure hardware debugging concentrates on the simplest additions in hardware to •฀

expose chip internal signals on the pins (JTAG) to be used to prove correct 

 functionality and correct design.

System debugging concentrates on software debug and hardware observation.•฀

10.3  Three Views of Debugging

As a process, debug can differ between companies, projects, and points in the 

design cycle.

10.3.1  Pure Software Debugging

Pure software debugging concentrates on minimal additions for instrumentation to 

proven hardware and IP while still providing a rich debug environment for software. 

The debugger connects to the processor that programs all debug hardware over the 

system bus. Target system hardware is fully utilized for debugging. The assumption is 

that all hardware is correct. Special instructions and signals to let the processor prevail 

in locked situations are desirable and included in the basic OCP debug  interface sig-

nals. This style of debugging is well documented on several chip  architectures. 

Systems are built by connecting several proven chips together; therefore debugging 
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with interchip cross-trigger is a second special requirement. To simplify a dual-trace 

memory, one trace buffer can be used in connection with a “synchronous run mode” 

triggered from a debug event or tracepoint signal. For short trace durations (depending 

on the same of the memory) this will make the ordering of events in the trace buffer in 

correct temporal relation possible without timestamping.

10.3.2  Pure Hardware Debugging

Pure hardware debugging concentrates on the simplest additions in hardware to 

expose chip internal signals on the pins (JTAG or other) or in registers to be used 

to prove correct internal functionality or design parameters in mission-critical 

applications and warranty cases. Most important for this concept is an independent 

clock from outside that is reliable even if the system clock is stopped. Also, trig-

gering precise to one system-clock cycle, or local-clock cycle, is essential to let this 

debug hardware react exactly like assertions in a simulation. Often, signals inside 

IP blocks are observed. No software debuggers need to be involved in the display 

of this information, but we believe there are analysis advantages to including the 

display of such extra information.

10.3.3  System-on-Chip Debugging

System-on-chip debugging concentrates on software tracing and hardware observa-

tion requirements common in initial SoCs. Observation of the on-chip hardware 

interaction is essential to complete software application and verification. 

Comparative debugging of any two cores is equally important for multicore sys-

tems. The debug-system is independent of the target hardware and captures both 

“pre-reset” and “post-crash” events as well as bus traffic bottlenecks. Debugging 

must proceed even if the major components of the system are in power-down or a 

core is in sleep mode. The debug hardware may be shut down during normal chip 

operation for security or power improvement. In some systems, security can be 

enforced by making debug hardware inoperable in production chips by burning 

fuses or otherwise permanently disabling the instrument logic. Such a concept of 

debugging is best suited to support ASIC designs. To simplify a dual-trace memory, 

one physical buffer can be used that holds two compressed trace streams with origin 

tags and timestamps.

Debug features need to support the system-level verification and analysis of 

OCP-based systems. System level models of Instrumentation blocks should be 

available for EDA analysis for JTAG and DFT, BIST, and other debug structures, 

even when these are implemented as physical (post-synthesis gate-level inser-

tion) macros. From a system point of view, debug blocks should support the 

same level of model abstractions used in other areas of a design, in order to sup-

port it with miscellaneous simulators and software debuggers and to simplify 

hardware analysis.
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10.4  Debug Components and IP Interfaces

Figure 10.3 shows a simple system in which debug IP blocks that are socket inter-

faces to various are integrated into a interconnect structure that is part of a bus 

fabric. All debug wiring goes through the system bus and is contacted through the 

OCP debug port. OCP debug ports may be implemented at points in the OCP sys-

tem where a data port may not exist.

The programming of registers that contain either configuration or status informa-

tion in the debug IP blocks may be JTAG-mapped or memory-mapped. Either or both 

modes of control and access are acceptable, based on specific system requirements.

In the memory-mapped case, the master port of the main debug core provides the 

programming of the debug block registers that have an address in the main memory 

space. The master OCP data port is not part of the OCP debug port. This permits one 

core to be accessed as the main debug agent of the system. The debugger sends instruc-

tions via JTAG to this core agent and the core then accomplishes all actions in coordi-

nating other cores through the main system bus. The core may be given special priority 

access within the system to unlock stuck interfaces and locked transactions and may 

initiate “Abort” and “Force” operations as part of the debug control interface.

In the more general system-independent JTAG-mapped register variant, the 

JTAG is part of the OCP debug interface. The debugger sends instructions to the 

cores over JTAG and the debug registers are part of a JTAG-TAP controller. 

Optional “Abort” and “Force” signals are also JTAG controlled.

For simplicity, discussion of the debug ports is limited to 1149.1 JTAG interfaces. 

The restriction is intended to simplify the port interfaces addressed. The intent is 

not to limit implementation to 1149.1 JTAG. Other bus interfaces, including those 

discussed in other chapters can provide similar access to the instrumentation.

10.5  Debug Socket Definitions

This section covers the basic signals and definitions for an OCP debug interface 

socket. An optional OCP port, known as the debug interface port, is added to all 

cores and IP blocks that support or need debugging access. The OCP debug port 

Fig. 10.3 Multicore synchronous debug implémentation
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may be implemented as an addition to the OCP data (master and/or slave) port 

(in cases where debug blocks are memory-mapped, they may be controlled through 

the OCP data socket) or as an independent OCP port configuration.

The four basic groups of signals for a debug interface are:

Debug control.•฀

JTAG.•฀

Debugger interface.•฀

Cross-triggering interface.•฀

There are additional (extended) groups which can be optionally added to an instru-

mentation socket based on specific debug and analysis requirements. The optional 

extended debug signals in this interface are defined for optional debug features such 

as timestamps and performance analysis and to simplify definition of special 

“debugging-aware” functionality in designs that have security domains or power 

management with voltage islands.

Basic Socket-Level Debug Interfaces. Processor run control is typically imple-

mented via the JTAG interface using debug mode signals in an IP. JTAG inter-

faces are supported in current OCP specifications with JTAG and related real 

time signals (Tables 10.1 and 10.2) for trace decoded at (one or more) JTAG 

TAPs (test access points).

A JTAG-only debug interface addresses many instrumentation operations that 

have non-real-time requirements by accessing debug-related registers on different 

cores. Even in the case of “memory-mapped” instrument blocks, the JTAG TAP and 

processor can typically have joint access and control of debug memory and registers 

for run control and monitoring operations. JTAG is also sufficient to configure and 

synchronize an OCP system into a trigger and trace modes. As a lower-speed serial 

Table 10.2 OCP debug JTAG interface socket

JTAG Interfaces Description Comment

Tck, Trst (optional) JTAG TCK, JTAG reset JTAG input

TMS JTAG TMS JTAG input

TDI TDI from previous node in JTAG loop JTAG input

TDO TDO to next node in JTAG loop JTAG output

RTCK (optional) Return clock signal for adaptive clocking JTAG output

Source: OCP IP

Table 10.1 OCP debug clock, reset interface socket

Debug interfaces Description Comment

Debug_reset_n Debug clock source for 

instrumentation operation and 

optional debug system reset

Defined to be separate from 

system clock, reset so that 

debug can occur during 

system reset operations

Debug_en General enable for debug modes System input

Source: OCP IP
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interface, however, JTAG limits data-intensive debug operations such as trace, which 

is required in higher-performance test and debug interface efforts.

Higher-performance debug architectures may include independent reset and 

independent clock signals for the debug system synchronized to the debugger inter-

face. An independent clock allows more flexible support of asynchronous or clock 

gated systems. An independent reset allows analysis of the target during system 

reset sequences. Additional reset and clock signals for timestamping counters may 

be common or independent from the debug control interface.

The use of JTAG debug interfaces is supported via the OCP 2.0 and higher 

specifications, and it is assumed that any JTAG signals are decoded at the core-level 

JTAG TAP. A JTAG-only debug interface does limit the ability to interface debug 

components on different cores and to set up and synchronize an OCP system into a 

debug mode.

Ideally, debug control signals are independent of the target system and have 

to duplicate many basic controls. The basic debug signals include an indepen-

dent reset and independent clock signals for the debug system synchronized to 

the debugger interface. The reset and clock signals for timestamping counters 

are also part of this debug control interface. Debug clock, Instrument reset, and 

timestamp reset may also in many circumstances be common with external 

system clock or reset signals.

Even in the case of “memory-mapped” debug blocks, the processor control 

 typically goes over this JTAG port.

10.5.1  Core Debug Socket Interfaces

These are connections to a processor or other OCP core to establish a debug con-

nection. Core debug signals are generally specific to processor instrument inter-

faces and may be wrapped over existing debug signals for a core, except signals 

NoSResp and ForceResp, which may be mapped as extensions of OCP SResp 

signals. Because this socket is implemented for each bus master, different cores 

may have different control signals depending on the underlying functions that are 

supported by a debug block: for that core. 

Table 10.3 defines a set of debug interfaces that address system-level debug of 

run control and debugger tool interfaces. Debugger access can therefore be consis-

tently controlled via the debug interface signals. Not all signals may be required 

for all cores or systems:

Special signals that support unlocking of stuck situations and forcing completion •฀

of locked actions (NoSResp, ForceResp, ForceAbort, ForceAbortAck) are here.

Debugger accesses are qualified through MReqDebug.•฀

The processor acknowledges debug state entry through MSuspend.•฀

An OCP target can be configured to be sensitive to MSuspend.•฀
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A debug component is informed that the debugger is connected through the 

DebugCon signal. A subsystem is informed that its TAP has been enabled by the 

application security software through the TAPenable signal. Depending on Debug-

Mode[1:0], the debugger can initiate OCP transactions qualified as MReqSecure. 

(operations only enabled to qualified users as shown in Table 10.10).

Gated clock domains and voltage domains are used for power management in 

many ICs. A concern in system debug is to ensure that debug and trace operations 

are not interrupted or distorted by clocks or power to a connected system being 

removed at inappropriate times. OCP 3.0 defines a power management state 

machine for controlling connection and disconnection of IP blocks in preparation 

Table 10.3 OCP debug interface socket

Minimum OCP debug signals set

Signal name Signal definition Comment

MReqDebug Qualifies an OCP request 

initiated by the debugger. 

MReqDebug may be a 

processor-native feature

If MReqDebug is derived from 

processor debug acknowledge, the 

OCP interface shall ensure there 

are no outstanding application 

transactions when the debug state 

is acknowledged.

Msuspend The processor acknowledges the 

OCP initiator agent that is 

entering the debug state

The OCP initiator debug state 

acknowledge is routed to the OCP 

target. A debugger-aware peripheral 

may freeze a local HW process 

when the host enters the debug state

DebugSerror Out-of-band error Originated by debugger

DebugCon The debugger is connected Enables the on-chip debug hardware 

to communicate with debug host or 

agents

NoSResp The target is not responding If request has failed (ie. Sresp = 

FAIL), an indicates that the current 

transaction will not complete

ForceResp The debugger has programmed 

the subsystem to force a data-

independent response

No side effect to other threads

ForceAbort The debugger has programmed the 

subsystem to solve the hang 

scenario

OCP interconnect handle abort without 

debugger intervention even in the 

case when the application SW has 

not enabled a time-out. The key 

requirement is to complete the 

transaction to allow the processor to 

enter the debug-state

ForceAbortAck Acknowledge sent to subsystem 

(or debugger?)

Requires a Mabort input support in the 

OCP fabric to propagate the abort 

originated by the debugger to the 

initiator and OCP interconnect

Source: OCP IP
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for power management, that allows main sections (as example, data transfer 

operations) and alternate sections (including debug operations) of a socket to be 

managed separately so that debug control signals in in case of gated clock 

domains and voltage domains are not interrupted if any IP block on the bus 

switches off clocks or voltages. By proper definition of the idling operations, 

such that a power down sequence does not occur when there is an active debug or 

trace operation in process, a blocking of the debug system shall not occur if one 

core or IP block goes into sleep mode.

Core (Master) Debug Socket Interfaces. OCP debug programming models 

should allow user-defined debug configurations based on the debug scenario and 

allow bidirectional debugger access to be consistently controlled via these debug 

interface signals.

Signals defined in the OCP-IP debug environment include debugger-initiated 

debug mode request (read/write) and core acknowledge signals to the debugger to 

communicate that a core is in the debug state. Because debug operations may inter-

act with “normal” system operations, debug interfaces should also support unlock-

ing of stuck-at situations and forcing completion of locked actions (force, abort, 

suspend) for a core in debug status. OCP peripheral interfaces would also need to 

be “debug aware” to recognize and synchronize with processor cores or other bus 

masters that enter debug mode.

Peripheral (Slave) Debug Socket interfaces. A peripheral debug interface 

should ensure that, for debugger OCP transactions, any debugger-initiated 

debug mode operation reads peripheral information transparently while pre-

serving the system state. Depending on debug scenarios and the relationship 

between the local hardware process and the software process, peripherals 

should monitor the debug state and may need to take several actions to synchro-

nize with the debug processor and to allow processing of OCP transactions 

initiated by the debugger to be handled  differently than those initiated by the 

application software:

 1. Freeze local hardware processes when the controlling OCP master is in the 

debug state. This may be accomplished by a parameter passed into a system 

debug register via JTAG or under software control, or it may be implemented as 

part of the debug hardware.

 2. Stop peripheral or other local hardware processes when a processor enters the 

debug state. This can get complicated, because the peripheral may be shared or 

accessed by several OCP masters in the architecture.

 3. Comprehend specific updating to ongoing local hardware processes when an 

OCP master enters a debug state; for example, disabling application-driven 

peripheral operations (such as flag clear, post-increment, and state machine 

updates).

To accommodate the diverse debug scenarios, a peripheral debug programming 

model may implement two or more debug control parameters in a system debug 

register as:
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FREE, which allows one/the program/etc. to keep the local hardware process  –

running free and to make it sensitive to the debugger input.

SOFT, which allows waiting for a clean boundary before stopping the local  –

hardware process when extra latency is acceptable.

10.5.2  Cross-Triggering Socket Interfaces

Cross-triggering, and the associated system-level control, are important for debug 

of complex SoCs. Cross-triggering allows global and distributed event recognition 

and multicore triggering to identify and isolate events occurring throughout the 

system.

Information in multicore SoCs is complex and distributed such that global event 

cross-triggering and system-level control for multicore debug and triggering are 

often needed to identify and isolate events occurring throughout the system. Event 

recognition and triggering are widely used in conjunction with trace to capture 

information on events and operations in the SoC. Conditions are monitored and 

compared to generate real-time triggers in a cross-trigger manager. These triggers 

in turn can be used to control event actions such as configuration, breakpoints, and 

trace collection. More complex implementations can be programmed to trigger on 

specific values or sequences such as address regions and data read or write cycle 

types.

The cross-trigger block may be distributed to all IP connections to the OCP 

bus. If wiring is in the OCP fabric, then some pre-processing or wrappers (con-

dition/action nodes) at each OCP interface can be used to simplify the cross-

trigger  information. Wrappers can be programmed via the JTAG debugger (or 

can be configured by a processor). Any block can send a trigger (edge or level) 

and receive a trigger. The debugger or processor can configure specific trigger 

lines for each IP to send a condition signal and from which trigger line it can 

receive a trigger/action.

Table 10.4 shows the OCP debug trigger interface socket. Each trigger line con-

sists of two unidirectional signals and one (optional) enable signal. A minimum 

dual-channel concept consists of two independent trigger lines, but there is no 

upper limit on the number of cross-triggers realized in a design. The trigger line in, 

out or enable signals may be the result of a logic combination of several signals for 

a given core. Trigger lines may be connected directly to drive a bidirectional pin on 

the package and enable cross-triggering to continue between several chips. External 

(off-chip) triggers will be supported with pulse-width logic to interface external IO 

to the cross-trigger manager. Each debug channel needs one trigger line. The trigger 

logic grows linear with the number of cores or IP blocks that are debugged. No 

cross-trigger matrix is assumed necessary.

Event recognition and triggering is widely used in conjunction with trace to 

capture information on on-chip events and data in the SoC. Triggering conditions 

are monitored and compared to generate real-time triggers in a cross-trigger manager 
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as shown in Fig. 10.4, where a cross-trigger with two “trigger lines” are looped 

back through the trigger manager.

Depending on the system configuration, signals may need to be preprocessed to 

allow conditions from different parts of the system to be synchronized or to support 

cross-triggering from external devices or external signals. Complex trigger imple-

mentations can be programmed to trigger on specific values or sequences, such as 

sequential combinations of rgw bus address region and data read or write cycle-type 

accesses.

Examples of triggering signals include debug or interrupt request conditions, 

although they can include any on-chip signal. Combinations of these triggers in 

Fig. 10.4 Cross-triggering in the OCP bus

Table 10.4 OCP debug trigger interface socket

Cross-trigger 

interfaces Description Comment

Trigger_in_

condition[m:0]

Trigger input from other 

OCP subsystems

X-trigger input shall support either 

high to low edge detection or level 

detection; during power-down 

of subsystem, trigger_in will not 

contribute to system cross-trigger 

action

Trigger_out_Action 

[n:0]

Trigger output to other 

OCP subsystems

X-trigger output of either active 

low pulse or level supports trace 

control or processor debug or 

interrupt request

Trigger_out_enable 

[n:0]

Optional trigger output enable 

to other OCP subsystems

Cross-trigger output

Ext_trig _clk Optional Ext clock used for 

synchronizing trigger

External (off-chip or out-of-system) 

input

Ext_condition[n:0] Optional Ext condition (e.g. 

debug status, tracepoint)

External (off-chip or out-of-system) 

input

Ext _action[n:0] Optional Ext action (e.g. 

debug request)

External (off-chip or out-of-system) 

output

Source: OCP IP
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turn can be used to control on-chip actions such as core configuration changes, 

setting breakpoints or interrupts, initiating trace collection, or other user-defined 

requests.

The cross-trigger operation may be distributed among different IP connections to 

improve performance and support clock conversion and synchronization. Trigger-in 

(condition) and trigger-out (action) pre/postprocessing wrappers at each OCP inter-

face point may be made synchronously configurable using signals in Table 10.5 to 

extend the cross-triggering abilities.

The triggering socket defines conditions, actions, and enables for on-chip trigger 

actions. Trigger operations may include processor-specific operations such as 

breakpoints and tracepoints, bus-specific operations such as trace sampling, and 

system-level interactions such as cross-triggers that may be applied to  multiple 

cores, buses, and so on. There may be multiple instances of triggers (of varying 

complexity). The size of the condition and the actions are independent. Eeither 

selected trigger condition or trigged action may be either a single or a pattern of 

different lengths. Optional enables allow for selective condition monitoring (such 

as don’t care situations) and global output actions:

Some general guidelines for OCP cross-triggering implementation are:

Cross-triggering configuration shall be handled at the subsystem level.•฀

The subsystem can be programmed to:•฀

Drive an OCP debug trigger-out line. –

Be sensitive to an OCP debug trigger-in line. –

The OCP interconnect shall take care of the debug event triggers routing:•฀

Point to point [1 trigger-out and trigger-in]. –

Broadcast [1 x trigger-out, n trigger-in]. –

Sharing [ – n trigger-out, 1 trigger-in].

The OCP debug interconnect shall mimic a “tri-state” bus behavior through •฀

distributed combinatorial logic.

An external device shall be able to contribute to cross-triggering.•฀

The OCP cross-triggering configuration assumes that:

Trigger-out (action) and Trigger-in (condition) routing for smaller implementa-•฀

tions can be handled as sideband signals by the OCP interconnect.

Trigger events may be routed to trace components (Table •฀ 10.6).

Trigger events shall generate a user-defined request. This is typically classified as •฀

either a debug request or an interrupt request. These differ for different cores.

Synchronous Description Comment

SyncRun Synchronous run Input

SyncRunAck Synchronous run acknowledge Output

Source: OCP IP

Table 10.5 OCP debug run 

control synchronization 

socket
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Trace Description Comment

TraceTrigger[x] OCP system event generates a trace trigger

Source: OCP IP

Table 10.6 OCP debug trace 

interface socket

The OCP cross-triggering shall be operational for any platform subsystem •฀

frequency operating point supported by the cross-triggering configuration via 

level or pulse triggers.

The OCP cross-triggering supports independent clock domains for trigger-out •฀

and trigger-in pulse conversion. Level triggering is recommended for widely 

varying clock domains.

The OCP cross-triggering supports external trigger inputs from the IO pins. •฀

Triggers outputs can be routing to IO. Level or pulse triggers are supported with 

trigger pulse width modifiable to be compatible with device I/O performance.

A subsystem in power-down or where debug has not been enabled shall be •฀

configured not to contribute to cross-triggering.

System observation using trace buffers and triggering on simultaneous events 

systemwide, including cross-triggering between chips, is a concept with limitations 

in time resolution that translate into distance limitations as described in the first 

approach. To overcome limitations in space we can give up precision in the feedback 

of the result as described in the second approach. To mimic a logic analyzer trigger, 

we need to have delay-equalized star-configuration to the trigger controller that will 

behave the same as in the second approach. Designers must decide which approach 

to take to create a consistent debug system Tables 10.4–10.10.

In cycle-exact trigger and feedback, it is crucial that collection of all trigger 

conditions complete synchronously to the highest system clock cycle. The advan-

tage is that sequencing of trigger conditions that are one cycle apart is possible even 

at the trigger sources. The difficulty is to close timing in such a design because the 

trigger path becomes the biggest bottleneck on the critical timing path.

The trigger logic in the OCP debug socket is based on a distributed model of a 

tri-state wire. The trigger events are collected with a chain of distributed AND-gates 

and the result is sent back over a second wire in a half-loop arrangement. The trigger 

controller connects to “the last OCP debug socket” at the end of the AND-gates and 

loops the result back to the second wire.

Cycle-exact triggering accepts the feedback signal on the second wire to arrive 

in a later cycle to help with timing closure. This means that detection of a trigger 

equation has to occur over one cycle, but propagation of the trigger’s action, for 

example to stop a trace buffer, can extend over several cycles. A delayed trigger 

action that is used to make event decisions requires that consecutive events that are 

several cycles apart to insure that the actions are fully propagated before the next 

event trigger occurs.

Aligning debug information in the display to be cycle-exact uses a local time-

stamp during collection of trace information. Stopping the trace buffer a few cycles 

after a trigger condition will still allow for exact time alignment in the display.
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The trick is to equalize the arrival time at the trigger controller from any trigger 

source by inserting delay buffers before entering the AND-gate trigger line. It is 

then possible to trigger on events that occurred at the same time. Sequencing of 

triggers that occurred one cycle apart is possible inside the trigger controller by 

using multiple arrival-time-equalized trigger lines. As a logic-analyzercan trigger 

on the acquired signals but does not supply trigger information back to the device 

under test, the OCP debug system with a relaxed feedback concept does not demand 

to have delay-equalized feedback connections back to the trigger sources. For trig-

gers coming from all corners of a widely distributed on- chip trigger network or for 

systems where cross-triggering is required between chips, this provides a timing 

tolerant solution. It scales well to a system of any size and can have extra built-in 

arrival-delay of “several clock cycles” to accommodate triggers coming over external 

pins. The proposed OCP debug cross-trigger concept can be used for this configuration. 

The fixed built-in target trigger arrival delay is independent of the highest clock in 

one chip or in multiple chips.

Exact triggering in a star configuration is similar to a logic analyzer; the 

cycle-accurate trigger timing can be designed by delay-equalized trigger lines 

going to the trigger controller in a star configuration. This requires a separate 

trigger line from each possible trigger source. Any sequence of trigger events 

can then be realized as cycle-accurate inside the trigger controller. However, the 

feedback to the trigger sources, or to the assertion blocks, allowing them to 

perform cycle-accurate trigger sequencing remains an issue. Stopping pf trace 

may still occur a few clock cycles later. This star topology concept can be made 

cycle-accurate in any system at the expense of individual trigger lines with 

delay equalization. Clearly, this concept does not scale with large systems 

because wires grow proportionally to sources and not proportionally to trigger 

decisions. Star configuration is not part of this proposal because the arrival time 

equalization with the proposed distributed AND-gate trigger line will work 

equally well.

10.5.3  OCP Synchronized Run Control

Synchronized run control allows clock-synchronized program execution of two 

cores that would usually run asynchronously. This makes it possible to time-align 

the instruction streams to study interdependence.

When we debug several heterogeneous cores with different clock speeds, a single 

step needs a new definition. Stepping is no longer a single core operation, but also a 

problem of how to stop cores synchronously to events that are caused by a single core 

(for instance on a breakpoint hit). The debugger reaction depends on the core interac-

tion scheme; for example, cores that are virtualized using SMP should be stopped 

synchronously by hardware within a few clock cycles. This is not a problem, because 

SMP cores are driven by the same clock domain. In isolated/loosely  coupled multicore 

environments, the core’s stop-timing is usually less critical, thus achieving the required 
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synchronization latency through separately issued TAP  commands. Hardware syn-

chronization would be advantageous in case of higher latency requirements.

Hardly any multicore architecture on the market implements Single-

Stepping by means of fetching and executing exactly one instruction on every 

core. Many heterogeneous architectures have cross-core Single-Stepping hard-

ware implementation:

 1. The system is halted. The debugger reads/has the full state of all cores/

memories.

 2. Run about 100 to 1,000 cycles and halt synchronously.

Trace IP and all data accesses during this timeframe. (There is no problem with 

MCDS, even with a small trace memory.)

 3. With this information, the debugger can exactly reconstruct all states and data 

values between the start and endpoint.

This allows the cores to virtually swap single-step operations with regards to each 

other in this time window. The timing relationship between the cores is well main-

tained. There may be only a slight impact at the start and end of the period.

10.5.4  OCP Traffic-Monitoring and Trace Interfaces

Traffic monitoring and trace are often critical debug features to be able to analyze 

on-chip behavior. System monitoring and trace can be performed at signals on the 

data socket or in the bus fabric itself.

Trace requirements are application-dependent, requiring signals and monitoring 

bus traffic events that may be extracted from the system cross-trigger information or 

provided by a processor or other on-chip IP. Trace should be noninvasive (should not 

affect OCP system behavior) and should be secure (should not allow unauthorized 

accesses into the instrumentation system). Useful features for bus monitoring and 

trace include:

 1. Continuous (or at least long-duration) system monitoring.

 2. Filtering based on OCP operations (e.g. initiator, thread, address range, DMA 

logical channel).

 3. Trace capture of both OCP transactions and non-OCP qualifying events.

 4. Transaction filtering and alignment of requests and responses.

 5. Elastic trace bandwidth at OCP system traffic peaks.

 6. Support for SW instrumentation interleaving with the trace flow.

 7. Support interleaving several trace flows from different trace points or channels.

 8. Support multithreaded data observation, including system trace data reads from 

the JTAG or from application SW. Because trace is data-intensive, high- 

performance interfaces may be required.
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Trace triggers provide trace enable and control for OCP bus and logic trace and 

as a performance and analysis interface to specific internal event. In the case of 

real-time tracing to outside pins, specific trigger signals are included in the trace 

and/or performance monitoring (Tables 10.6 and 10.7) interfaces of the OCP 

debug interface socket. The trace trigger is extracted from the information on the 

cross-trigger lines.

Trace-packet interfaces are defined in several protocols, including Nexus (IEEE 

5001) and MIPI. Because there are other standards bodies addressing these issues 

of higher-performance debug interfaces, OCP debug leaves this level of interface 

open to the user’s preference.

Traffic Monitoring and Trace – General Configuration:

The OCP system monitoring debug instrument allows monitoring of the “OCP 

system” bus traffic:

Focus on specific OCP transactions. –

User-defined transaction filtering. –

Initiator, thread, address range, DMA logical channel. –

An emulator or debugger host to configures the OCP system monitoring component 

from the external [JTAG] interface through the OCP debug bus.

The OCP system monitoring instrumentation allows:

Alignment of the OCP transaction requests and responses. –

Capture of the additional OCP transaction qualifiers. –

Export of the captured traffic data through the OCP debug to a trace export  –

component.

Support of continuous system monitoring. –

Preservation of the OCP system bus behavior. –

Have options for securing the systems from unauthorized accesses. –

Table 10.7 OCP debug performance-monitoring interface socket

Performance 

monitoring Description Comment

MConnID Identifies the initiator. 

Routed to target

Determines active initiator for monitoring

MChannelID Identifies the DMA  

channel initiator. Routed 

to target

Determines active channel for monitoring

MReqWatch[x] Qualifies an OCP request

PMSampling Periodic performance 

metric sampling

Initiates a periodic transfer of the performance 

metrics computed by a system interconnect 

instrument to atrace export component. 

Operations assume that the Periodic sampling 

strobe is generated within the OCP instrument

Source: OCP IP



164 10 OCP IP Debug Interfaces

The trace export interface may contain a variety of different features:

Implement an elastic buffer. –

Optionally build trace packets for different (MIPI/Nexus) protocols. –

Support a trace export bandwidth compatible with OCP system traffic peaks. –

Allow SW instrumentation interleaving. –

The trace buffer instrumentation may support several modes of operation:

Provide flexibility to disable capture around a trigger. –

Allow system trace data reads: –

From the JTAG-OCP component.•฀

From the application SW.•฀

Allow interleaving several trace flows. –

Allow multithreaded data observation. –

10.5.5  Performance Monitoring

Performance monitoring enables observation of selected threads, initiators, and 

targets to identify data traffic and measure data bandwidth.

OCP performance monitoring requirements vary widely and are by nature 

application-specific. Some genral signal examples are given in Table 10.7, for 

sample based performance monitoring. Following is a general set of requirements 

for a performance monitor that supports many common analysis requirements:

An OCP debug component allows monitoring of the OCP system bus •฀

bandwidth.

An emulator shall be able to configure the OCP performance monitoring •฀

component from the external [JTAG] interface through the OCP debug bus.

OCP initiator transactions monitored for different OCP targets.•฀

Monitor task windows [start and stop triggers].•฀

Monitor system event latency between two selected signals (using timestamp or •฀

other counter logic).

The OCP performance monitoring instrumentation many be used in several 

ways:

Count within the [start, stop] window defined by triggers:•฀

Effective cycles at the OCP target level. –

Waiting cycles at the OCP initiator level [latency, arbitration, shared link, etc.]. –

Free cycles at the OCP target level. –

Support continuous performance monitoring [statistics].•฀

Export the computed performance statistics data through the OCP debug to the •฀

trace export component.

Preserve the OCP system bus behavior.•฀
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The trace export instrumentation may include feature to:

Implement an elastic buffer.•฀

Optionally build trace packets for different (MIPI/Nexus) protocols.•฀

Allow SW instrumentation interleaving.•฀

10.5.6  System Timestamping

For distributed systems, a timestamp provides the means of temporally correlating 

different events that may be occurring in different systems or domains. There are 

many timestamp implementations – the simplest is a gated clock and reset that can 

be used to run timestamp counters at different blocks, which is shown in Table 10.8. 

This interfaces assumes that other parameters (timestamp length, mode, etc.) are 

hard coded or pre-defined elsewhere.

Synchronous start of local timestamp counters is required for accurate distrib-

uted local timestamping. The synchronized start of all local timestamp counters is 

important for the correct display of debug events. The frustration on debugging a 

timing problems that turns out to be an artifact of trace synchronization cannot be 

overstated. Two basic rules should be followed where possible:

 (a) If operations start on reset being released, use an asynchronous reset, where the 

releasing edge is synchronized to the slowest clock or at times when clocks 

coincide with their rising edge, so that it arrives at the same time to all registers, 

regardless of the local clocks speeds. If all local clocks are time-aligned and 

iso-synchronous of each other, then this will ensure that all counters and other 

start logic are aligned. Obviously this requires knowledge of the local clock 

frequencies and their skew at the time of reset-release.

 (b) It is always best if one balanced clock goes to all counters at the same time and 

is supplied only while tracing is active. Ideally, this one clock issynchronous to 

or multiple of all local clocks. Otherwise, it requires a fair amount of over-

clocking to resolve phase relationships between the asynchronous clocks.

Stamp clock and stamp reset signals are both part of the basic OCP debug interface, 

but should be implemented with care to provide synchronous capture of debug data.

Table 10.8 OCP debug timestamp interface socket

Timestamp interfaces Description Comment

Ts_enable Timestamp start and stop May be driven by trigger 

logic

ts_clk Timestamp clock (gated version  

of clk) for global on-chip 

timestamping

Timestamp clocks do not 

necessarily need to be the 

system clk

ts_reset Timestamp reset Should be different from 

system reset

Source: OCP IP
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10.5.7  Power Management Monitoring

Power management by reducing or turning off the clock and switching off the power 

supply to certain IP blocks is increasingly required in many systems. It is important 

that debug operations not get locked or interrupted while dealing with power-aware 

IP blocks transitioning their power state during a debug session. Power management 

Debug signals (Table 10.9) monitor the power state of each socket in the system. 

Since power states may be different for primary and auxiliary logic in a given block, 

the OCP Sresp signal is extended to include no power and no clock output states for 

cases where the debug interface or other portions of the target are in power down or 

not receiving a clock.

OCP-IP in its 3.0 bus socket architecture release has defined four state FSM-

based power-down sequences for each master. Because each master may be power-

ing down and up on its own schedule, signaling from a given core for system debug 

operations can be very dynamic. The GFSM states allow auxiliary sockets (of 

which debug is one) to be powered down in a quasi-independent means from the 

main socket interface. Therefore it is typically possible to have a debug socket 

remain active even if the core to which it is attached is powered down.

The OCP platform power management module generates a trigger when:

Switching off a domain.•฀

Waking up a domain.•฀

Switching frequency.•฀

Switching operating voltage.•฀

The OCP power management monitoring may:

Support continuous power management monitoring.•฀

Preserve the OCP system bus behavior.•฀

Not require SW instrumentation.•฀

Table 10.9 OCP debug power monitoring interface socket

Power management Description Comment

Sresp[2:0] Additional error response codes  

signal a target is not powered  

or not clocked

NULL, DVA, FAIL, 

ERR – new codes 

NOCLK, NOPWR

PWRDomainStatus Indicates to target agent if power 

domain is active

PWr status signals 

contribute to error 

response generation

CLKDomainStatus Indicates to target agent if clock 

domain is active

Clk status signals 

contribute to error 

response generation

Source: OCP IP
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10.5.8  Security Debug Interface

Security concepts require enabling debug of sensitive locations only during autho-

rized chip access and disabling it otherwise. Debug signals, with their access to a 

wide range of system data, need to be secured. OCP security signaling is here 

extended to the debug socket so debug IP blocks can implement a general lock-

down unless there is qualified access. Because the specific security methods vary 

widely, the interface methods are generic, with Table 10.10 providing a OCP 

debug security interface socket that allows general control and status for secure 

mode operations.

OCP instrumentation framework concepts are extensible to multi-channel event 

synchronous debug and can be applied to a range of situations, from single-core 

debug to large numbers of core and even subsystems. The general instrumentation 

architecture and sockets can be extended to more debug channels by duplicating 

hardware.

Table 10.10 OCP debug security interface socket

Security Description Comment

MReqSecure Qualifies an OCP request as a 

secure transaction

The application security setup 

[HW and SW] may allow 

qualifying debugger access 

as secure

DebugMode[1:0] Debug operating mode Debug can be disabled, restricted  

to public OCP transactions,  

or allowed for both public  

and secure transactions

TraceMode[1:0] Trace operating mode Trace can be disabled, restricted  

to public OCP transactions,  

or allowed for both public and 

secure transactions

TAPenable Subsystem test access port Enabled by application security 

software

Source: OCP IP
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Nexus 5001 is a debug standards initiative based on the IEEE ISTO 5001 debug 

specification that addresses the diverse challenges for embedded-processor and 

digital-system debug interfaces. To address applications (data communication, auto-

motive powertrain, computer peripherals, wireless systems, and other control appli-

cations) with constantly increasing complexities requires more comprehensive 

debug features and will benefit from more standardized interfaces. As advances in 

semiconductor and system design continue, these types of embedded applications 

use higher-performance embedded processors. Nexus 5001 was defined in 1999, and 

its development and proliferation are managed by the Nexus 5001 Forum™, which 

evolved as a successor to the Global Embedded Processor Debug Interface Standard 

Consortium (GEPDISC), which was formed to develop an embedded-processor 

debug interface standard for embedded control applications. The latest version of the 

Nexus standard was released in 2003, with ongoing work aimed at a new release in 

2011. Nexus architectures have been used extensively in U.S. automotive applica-

tions, and more chips have been produced incorporating Nexus ports than any other 

nonproprietary debug-specific interface. The Nexus 5001 Forum is an industry-

based standards group that manages the IEEE 5001 (Nexus) debug specification.

Efficient use of these embedded processors requires software and hardware 

development tools that can easily access critical processor functionality. The lack 

of a unifying standard among the various embedded processors on the market has 

impeded this accessibility, preventing tool vendors from creating standard tools 

with consistent functionality across a broad range of processors. Nexus 5001 

addresses this issue by providing a consistent set of auxiliary pin functions, 

message-based transfer protocols, and standard development features as shown in 

Fig. 11.1 to facilitate debug implement. The standard itself is open and processor-

independent, but the implementations are user-specific. The full release of the 

Nexus 5001 specification is freely available for download from the Nexus Web site 

at http://www.nexus5001.org/.

The Nexus architecture defines high-performance data interface, protocol, and 

register infrastructures that can be used to implement a variety of trace and control 

instrumentation (Fig. 11.2). The Nexus infrastructure includes features that support 

multicore development and multifeatured trace and configuration/control.

Chapter 11

Nexus IEEE 5001

http://www.nexus5001.org/
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Nexus architecture is based on a packet-based messaging scheme, which supports 

debugging complex multicore systems. Control of the multicore debug processes 

based on a transaction protocol (TCODE) that allows data to be sent in packets, 

using a packet header to provide information on the source and assumed destination 

of the data on-chip components as well as information on the subsequent data pack-

ets containing trace or other information. This simplifies interleaving of multiple 

trace sources and concurrent communication with multiple Nexus instruments. The 

Nexus specification defines a standard set of TCODEs for  common identification 

and trace operations; the TCODE protocol is also extensible to user-defined debug 

commands (see Table 11.4).

Nexus also defines a standard set of debug-related on-chip registers, which facili-

tate the identification, communications, and interfacing to different cores and sub-

systems for multicore control and debug operations. A standard register set allows 

simpler integration and control of the instrumentation with embedded debuggers and 

related tools.

AUX In Port

AUX Out Port

JTAG Port

AUX In

FSM

AUX Out

FSM

JTAG TAP

FSM

TCODE & Message

Control/ Formatting

Nexus

Registers

JTAG (IR/DR)

Registers

Debug Control 

Debug Data Out 

Debug Data In 

Fig. 11.1 Nexus internal architecture

IEEE 5001 Nexus

AUX Out Port

Processor

Core(s)

Nexus Instrumentation 

and controllers

• Debug Registers

• Embedded Trace

•฀Breakpoint Triggers 

Run/Trace

Control
Trace

Memory

 IEEE 1149 

JTAG Port

•฀Data

•฀Execution

•฀Instructions

•฀Profiling

Debug &

Analysis Tools

Other Existing Debug IP

with Nexus Wrappers

Probe

Fig. 11.2 Nexus interfaces
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The Nexus 5001 Forum is engaged in ongoing collaboration with other industry 

debug-related efforts, including OCP-IP and MIPI, and is in the process of extending 

the IEEE 5001 specification to support emerging debug interfaces such as SERDES 

and two-wire JTAG (1149.7) ports to address diverse debug requirements.

11.1  Nexus Implementation Classes

Applications have varying debug requirements, but most debug can be grouped into 

performing certain classes of tasks. Nexus defines debugger functionality and com-

patibility over four classes of operation. Device instrumentation and tools are 

defined as being class 1– to 4–compliant if they support all of the features defined 

for that class. Class 1 starts with basic debug functions over a JTAG port, with 

higher classes involving more instrument access and system complexity using the 

AUX port to progressively increase debug capabilities, such as adding more com-

plex trace and emulation analysis of processor operations.

Features in the Nexus implementation classes can be customized so that designers 

can select features of importance and not be burdened with more advanced features or 

those that are not applicable or efficient to their debug needs. This allows a variety of 

debug features to be supported, while keeping the number and types of different Nexus 

implementations that need to be tracked and supported manageable. All Nexus classes 

by definition include all of the features in (i.e. are a superset of) the prior class(es). The 

key features of the different implementation classes are summarized in the Table 11.1.

The most basic, class 1, provides features similar to standard JTAG implementa-

tion. Class 1 provides run-control debug features that are common with most 

 processor implementations, including core identification, single stepping, 

Table 11.1 Nexus 5001 implementation classes 

Nexus Services Features

Class 1 Static debugging Single step

Basic run control Breakpoints Set breakpoints and watchpoints

Two breakpoints minimum

Device identification

Static memory and I/O access

Class 2 Watchpoints All class 1 features

Instruction trace Ownership trace Monitor process ownership in real 

time

Watchpoints Program trace real-time program tracing

Class 3 Data trace All class 2 features

Data trace Real-time read/write Access memory and I/O in real time

Read/write access Transfers Real-time data tracing

Class 4 Memory substitution All class 3 features

Memory and port 

substitution

Port replacement Start traces on watchpoint occurrence

Program execution from Nexus port

Source: Nexus 5001 Forum. All rights reserved
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breakpoints  and watchpoints, and static memory and I/O access. Class 1 has certain 

minimum requirements, such as the need for at least two hardware breakpoints. 

Debugging halts the chip while commands are executed.

Class 2 contains more complex debugging features with real-time monitoring. It also 

adds instruction tracing and more sophisticated watchpoints. Class 2 enables processor 

execution trace-related features including real-time monitoring of process ownership 

and instruction tracing, along with complex watchpoints and branch tracking , flagging 

indirect branches, and eliminating redundant addressing information. The class 2 pro-

gram trace feature allows indirect branches to be flagged, making it easier to differenti-

ate indirect branches from exception-handling operations. Additional messages are 

included for improved branch tracking. The format of the trace data allows for the 

elimination of redundant addressing information, which increases throughput.

Class 3 allows data-tracing services and includes the ability to read and write 

memory and I/O while the processor is running. Class 3 supports data tracing 

and memory and I/O read and write while the processor is running. This makes 

the system design more complex, but significantly improves the debugging 

capabilities.

Finally, class 4 delivers features found in many in-circuit emulators (ICEs). 

Class 4 allows direct user control of a processor to execute programs from the 

Nexus port (memory substitution), plus additional features for remapping memory 

and I/O ports and starting trace on watchpoint occurrence. This is especially useful 

when simulating peripherals. It can also be used to provide other applications run-

ning on the testing system with access to shared memory. Class 4 features include 

starting memory substitution on watchpoint occurrence, monitoring data reads 

while the processor is running in real time, port replacement and port sharing, and 

the ability to transmit data values for acquisition.

11.2  Nexus Message Architecture

Nexus messages consist of a 6-bit TCODE that contains Nexus-specific instruc-

tions followed by a variable number of packets (the number of packets for each 

TCODE is defined in the standard). Messages can be sync or nonsync. Sync mes-

sages include the full address and nonsync only include relative address changes. 

Each message also contains a SRC field (source ID) to help development tools 

identify the source of a particular Nexus message in a multiprocessing SoC sharing 

a single debug port. Packet types supported include the following:

Variable: A variable-size packet means the message must contain the packet but 

the packet’s size may vary from a minimum of 1 bit. An example is an address field 

that may be full or partial for a given message. When messages are transferred via 

the AUX, variable-size packets must end on a port boundary.

Vendor-fixed: These are used to allow Nexus packets in to match characteristics 

of a vendor’s device. An example is a SRC field that identifies the source ID; 
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vendor-fixed packets may be of zero length (not implemented if not required, as in 

the case of a Nexus system with only one on-chip instrument, where the message 

source can be assumed).

Vendor-variable: These are used to allow Nexus packets to match characteristics 

of a vendor’s device. Vendor-variable packets may be of zero length (i.e. not imple-

mented). An example of a vendor-variable field is message timestamp. When mes-

sages are transferred via the AUX, vendor-variable packets must end on a port 

boundary. Variable-size packets may have different lengths in messages of the same 

type, so MSE signaling protocols are used to determine the end of packet boundar-

ies. Typically vendor-variable packets are target-processor-dependent and have a 

variable size determined by the processor vendor. These packets are normally 

reserved for the end of a public message where the vendor may implement addi-

tional fields.

All Nexus TCODES follow a common message format. An example of a Nexus 

message, program trace with indirect branch shown in Table 11.2, consists of the 

TCODE = 4 followed by a message-specific number of packets of differing types. 

Complete descriptions of all the message types and their options are given in the 

Nexus specification.

TCODES can be either public (defined in the Nexus standard) or user-defined. 

Public TCODES defined in the Nexus standard (IEEE-ISTO 5001-2003) include a 

range of trace options as well as other Nexus operations. Only a subset of the total 

available messages must be implemented in a given system. The minimum required 

messages for an implementation are given in Table 11.3.

Table 11.2 Example packet fields in trace message

Program trace – indirect branch 

message Direction: from target

Minimum 

packet 

size (bits)

Packet 

name Packet type Description

0 TSTAMP Vendor- 

variable

Number of cycles message was held in the buffer 

or the full timestamp value. For targets that do 

not implement timestamping (or use pins for 

timestamping), this field may be omitted. Refer to 

4.11.2 – Timestamping via AUX

1 U-ADDR Variable The unique portion of the branch target address for a 

taken indirect branch or exception

1 I-CNT Variable Number of instruction units executed since the last 

taken branch

0 B-TYPE Vendor-fixed Branch type. For targets that do not need to differentiate 

branch types, this packet can be omitted

0 SRC Vendor-fixed Client that is source of message. For targets with only a 

single client, this packet can be omitted

6 TCODE Fixed Value = 4

Source: Nexus 5001 Forum. All rights reserved



174 11 Nexus IEEE 5001

11.2.1  Nexus TCODEs

Nexus TCODEs can be classified into six different types, which are described in detail 

in the Nexus specification. Table 11.4 provides a summary of the packet fields that are 

used for different TCODES. Different TCODE classes include the following:

 1. Status indicates status information messages from the target. This group includes 

register reads and core-specific or watchpoint/breakpoint status, error messages, 

and so on (TCODEs 0–2, 8, 15).

 2. General register read/write is a group of commands that allow memory-mapped 

reads and writes between tools and Nexus recommended registers (NRR) or 

other registers in a Nexus-defined memory map. Among other general applica-

tions, these messages can be used for run control and configuring watchpoint/

breakpoint operations (TCODEs 16–19).

 3. Program trace is a range of trace options that rely on Nexus-defined branch trace 

schemas, which limit instruction trace to discontinuities (branches, conditional 

jumps, interrupts, etc.) and their relative distance from the last trace. By mapping 

these values to an assembled program, debuggers can interpolate branch loca-

tions in the program flow and reconstruct (interbranch) instruction flow. Nexus 

also defines periodic sync fields and trace messages to identify inconsistencies 

and align trace, which is useful in correlating execution over multiple cores 

(TCODEs 3, 4, 9–12, 27–33).

Program trace:•฀

Direct branch. –

Indirect branch. –

Indirect branch with history. –

Synchronization. –

Resource full. –

Table 11.3 Minimum required public messages

Message type

Compliance 

class Minimum required public messages

Device ID 2, 3, 4 Device ID

Ownership trace 2, 3, 4 Ownership trace

Program trace 2, 3, 4 Direct branch, indirect branch, synchronization1, error

Data trace 3, 4 Data write, data write message with sync, error

Read/write access 3, 4 (1) For embedded processors that implement the 

recommended registers: Target Ready, Read/Write 

Register, Read/Write Response

(2) For embedded processors that implement device-

specific registers: read target, write target, read next 

target data, write next target data, target response

Watchpoint 2, 3, 4 Watchpoint message

Memory substitution 4 Read tool, read next tool data, tool response

Source: Nexus 5001 Forum. All rights reserved
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Repeat branch. –

Repeat instruction. –

Correlation. –

 4. Data trace is a trace of data values associated with a defined address range for 

efficiency. Nexus also supports data-acquisition instructions for streaming export 

of larger amounts of system information; such as data from on-chip buffers or 

FIFOs (TCODEs 5, 6, 7, 13, 14).

Data trace:•฀

Data write. –

Data read. –

 5. Memory access is a nonintrusive peek and poke operation of internal memory 

blocks; it can also be used for directly driving from a Nexus memory or location 

(TCODEs 22–6).

 6. Port replacement allows Nexus pins to emulate other I/O functions of compara-

ble speed (TCODEs 20, 21).

User-defined TCODEs can be defined by silicon or IP developers to add additional 

debug features not covered by the standard, similarly to user-defined instruction 

features in JTAG.

11.2.2  Nexus Registers

Nexus also defines a standard set of debug-related on-chip registers, which facilitate 

the identification and interface to different cores and sub-systems and to multicore 

control and debug operations. A standard register set allows simpler integration and 

control of the instrumentations with embedded debuggers and related tools.

Nexus defines a number of recommended registers, which facilitate the integra-

tion of debug support to different cores. Of particular interest for multicore designs, 

each core or element on a device may be assigned a different ID in a device identi-

fication (DID) register to allow discrimination and selection of control and debug 

operations associated with a given block or subsystem.

Nexus defines and assigns register maps to 63 recommended registers, which are 

accessed by TCODE operations. Different instances of the same register can be 

associated with different cores by a source field value that can be transmitted as part 

of each output message. NRRs may contain recommended fields, specifying con-

trol or status information, and may include the following:

1. Device identification registers are IDs for discrimination and selection of different 

sub-systems (at the SoC level) or at the chips (for multichip debug scenarios ). 

This register provides device configuration information similar to what is 

 provided for 1149.1 JTAG DID access, which is a required JTAG instruction.

2. Client-select register (CSC) contains information on the originating source (i.e. 

processor or core) for trace and other exported messages.
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 3. Control register (DC) contains debug parameter and configuration information.

 4. Status register (DS) contains debug status information.

 5. User base address register (UBA) defines the base address for relative or trun-

cated addressing modes.

 6. Watchpoint trigger registers (WT) provide watchpoint or breakpoint status.

 7. Data trace attribute registers (DTSA/DTEA/DTC) contain information on recent 

trace operations and program information needed to reconstruct the trace.

 8. Breakpoint/watchpoint control registers (BWC) contain watchpoint and break-

point configuration information.

 9. Breakpoint/watchpoint address/data registers (BWA/BWD) define address and/

or data for assigning watchpoint and breakpoint locations.

 10. Read/write access registers (RWA/RWD/RWCS) contain the information used 

for memory-access operations.

Optionally, the two BWC registers may be combined with the two data trace attri-

bute registers so that a total of two registers may be simultaneously active; that is, 

two BWC registers, two data trace attribute registers, or one BWC register and one 

data trace attribute register.

Most processor debug environments can be adapted to be Nexus-compliant by 

adding a Nexus wrapper layer around the existing debug blocks. The value of 

Nexus for processor debug is that it allows a consistent environment for different 

processor types to be integrated using a consistent methodology.

Nexus defines a method of trace compression that takes advantage of the proper-

ties relating to execution of instructions being pre-defined during the programming; 

unlike many other types of trace operation, it is largely deterministic. With the excep-

tions of branching and other instructions that are conditional on data, the sequence of 

instructions through a processor is pre-defined during software development.

To make efficient use of memory resources during execution trace, Nexus uses a 

processor instruction compression technique called branch trace messaging, which 

reduces the trace memory required by focusing, capturing only a full trace on instruc-

tion flow discontinuities (typically branches). Because branches and conditional 

operations typically constitute a small percentage of an overall instruction execution, 

this can greatly expand the trace RAM utilization. There are other conditions from 

which trace information can be tightly integrated with debugger software tool chains 

to allow correlate analysis of the source code. Nexus also supports relative addressing 

to reduce the number of required address bits transmitted for normal messages. Certain 

initialization and exception cases (defined within the standard) will cause normal trace 

messages to be “upgraded” to sync-type messages in which the entire address is trans-

mitted. Execution trace can be compressed and later expanded for integration with 

code debugger tools. This feature allows debug blocks storing instruction trace to 

leverage assumptions in instruction flow in order to conserve trace bandwidth and 

increase the number of instructions that can be stored in trace buffers or exported in 

real time.

For data trace operations, other than the use of relative address transmission (as 

in program trace), there is typically no such determinism that can be leveraged for 

the data itself to extend the use of trace resources, and as such data trace may 
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require either larger trace memories for a given trace size or alternative methods of 

storing trace information.

Even with compression, the time needed for trace export can be significant when 

relying only on JTAG TDO to transmit data. This problem increases proportionally 

for multicore designs, where each processor and other block has its own debug 

information. Improving trace interface throughput is a primary reason for imple-

menting a Nexus AUX port.

11.3  NEXUS Interfaces

Nexus provides a standardized interface for on-silicon instrumentation and debug 

tools providing a range of expanded features for system debug. Most notable are 

higher-performance auxiliary interfaces to support real-time and data-transfer-

intensive operations such as trace.

At its simplest level, Nexus is compatible with JTAG but recognizes that the 

limitations in JTAG bandwidth are not realistic for the debug requirements for 

complex or multicore environments, and provides options for both input and output 

auxiliary parallel interfaces for high-speed data transfers. The Nexus specification 

defines a vendor-neutral IO signal interface and communication protocol that sup-

ports parallel debug and instrumentation support. The Nexus interface defines a 

small set of control signals and AUX data ports (shown in Table 11.5) that are 

implemented in conjunction with JTAG or as a self-contained port. The additional 

data pins provided by the AUX interfaces are scalable for matching the debug 

requirement and allow much higher read/write throughput between the target and 

debug and analysis tools compared to JTAG Figs. 11.1 and 11.2.

11.3.1  Nexus JTAG Access

Nexus messages may be read from or written via the IEEE 1149.1 JTAG port. 

Message writes are generated by an external IEEE 1149.1 controller and are input 

into an input public message register (IPMR). The IPMR receives its TCODEs and 

packets via multiple passes through the SELECT-DR_SCAN.

The IEEE 1149.1 protocol does not permit public messages to be initiated from 

an on-chip interface. Therefore, an output public message register (OPMR) is avail-

able for transmission of messages from the embedded target microcontroller to an 

external IEEE 1149.1 controller.

The JTAG port is used in Nexus-specific ways to implement various classes of 

services such as reading and writing Nexus registers and messages, and allowing 

Nexus trace output to be embedded into JTAG messages. Output public message 

reads are messages that are generated by the target processor and are read from the 

OPMR. These unsolicited messages may contain variable-length packets of data. 

Two methods may be used for determining when an output public message is 
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Table 11.5 AUX interface signals

AUX IO Description of auxiliary pins

MCKO Message Clock out (MCKO) is a free-running output clock to tools for 

timing MDO and MSEO pin functions. MCKO can be independent of the 

embedded processor’s system clock, or an embedded processor’s clock 

pin may be used as a functional equivalent for MCKO

MDO[M:0] Message Data Out (MDO[M:0]) are output pin(s) used for sending messages 

such as trace export and other read operations, memory substitution 

accesses, etc. Depending upon output bandwidth requirements, one, two, 

four, eight, or more pins may be implemented

MSEO[1:0] Message Start/End Out (MSEO [1:0]) are output pins that indicate when a 

message on the MDO pins has started, when a variable-length packet has 

ended, and when the message has ended. Only one MSEO pin is required, 

but two pins provide for more efficient transfers

EVTO Event Out (EVTO) is an optional output pin to development tools indicating 

exact timing for a single breakpoint status indication. Upon a breakpoint 

occurrence of the programmed breakpoint source, EVTO is asserted for a 

minimum of one clock period of MCKO

MCKI Message Clocking (MCKI) is a free-running input clock from development 

tools for timing MDI and MSEI pin functions. MCKI can be independent 

of the embedded processor’s system clock.

MDI[N:0] Message Data In (MDI[N:0]) are inputs used for downloading configuration 

data, writing to on-chip registers or memory, etc Depending upon input 

bandwidth requirements, multiple pins may be implemented

MSEI[1:0] Message Start/End In (MSEI [1:0]) are inputs that indicate when a message 

on the MDI pins has started, when a variable-length packet has ended, and 

when the message has ended. Only one MSEI pin is required, but two pin 

implementations provide more efficient transfers

EVTI Event In (EVTI) is an input pin allowing off chip control such as processor 

halts (breakpoints) or synchronized Program/Data Messages

RSTI Reset In (RSTI) is a pin for resetting the Nexus port resources

Source: Nexus 5001 Forum. All rights reserved

available, when to terminate retrieving a variable-length packet, and when an out-

put public message is ended.

The width of the output message register will be vendor-defined, where the 

vendor may optimize the register size depending on the size of the packets transmit-

ted. Figure 11.3 shows the state flow for accessing the public message registers as 

well as other NRRs.

11.3.2  NEXUS AUX Interfaces

The AUX interfaces are unidirectional (either data in or data out), with each AUX 

port having its own clock. The data out pins of an AUX interface are typically used 

for trace, and the data in mode is typically used for configuration or calibration of 

an IC. AUX data in and out ports may be operated concurrently. Nexus also speci-

fies how a JTAG interface can be used in conjunction with the AUX ports. JTAG 
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interface operations in Nexus may be used for both configuration and control of the 

on-silicon instrumentation and for embedding Nexus protocol and data into a JTAG 

message. Both AUX and JTAG interfaces are controlled by FSM-based controllers, 

allowing a variety of transfer operations. There are two FSMs for receiving and 

transmitting messages via the auxiliary pins using the MSEI and MSEO pin 

 functions. A  minimum of one and a maximum of two MSEI pins shall provide the 

protocol for the embedded processor receiving messages, and a minimum of one 

and a maximum of two MSEO pins shall provide the protocol for the embedded 

processor transmitting messages.

The Nexus standard defines an extensible auxiliary port that may either be used 

with the IEEE 1149.1(JTAG) port or as a stand-alone development port. The Nexus 

standard defines the auxiliary pin functions, transfer protocols, and standard devel-

opment features to support both 1149.1 and AUX usage. The auxiliary port pro-

vides a wider, higher-bandwidth data transfer conduit and can define both AUX 

input and output ports. Auxiliary out ports are used primarily to provide additional 

pins in the port for higher throughput for trace output.

For a full-duplex AUX with IEEE 1149.1 pins, a minimum of two auxiliary pins 

are required for compliance [message data out and message start/end out], assum-

ing a system clock out pin can be used for MCKO. EVTI is also recommended for 

tool-initiated synchronization. The performance classification, however, would also 

be minimal and may meet the transfer bandwidth requirements for low-end applica-

tions or lower-compliance classifications.

Nexus implementations may have one or two messaging start/end out pins, 

depending on complexity of the input and output state machines. A two-bit messag-

ing pin allows back-to-back data transfers, speeding delivery of memory data or 

trace information.

Fig. 11.3 Nexus JTAG message controller state diagram. Source: Nexus 5001 forum. All rights 

reserved
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The MSEI/MSEO protocol comprises the following:

Two “1”s followed by one “0” indicates start of message.•฀

“0” followed by two or more “1”s indicates end of message.•฀

“0” followed by “1” followed by a “0” indicates end of variable-length packet.•฀

“0”s at all other clocks during transmission of a message.•฀

“1”s at all clocks during no message transmission (idle).•฀

The same sequence is followed when using one or two MSEI/MSEO pins, but when 

using two MSEI/MSEO pins, it is possible for two sequences to occur on the same 

clock. MSEI/MSEO is used to signal the end of variable-length packets and not 

device-specific or fixed-length packets. MSEI/MSEO are sampled on the rising 

edge of MCKI/MCKO.

Figure 11.4 shows the finite-state machine diagram for one-pin MSEI/MSEO 

transfers. When using only one MSEI/MSEO pin, the end-message state does not 

contain valid data on the MDI/MDO pins. Also, it is not possible to have two con-

secutive end-packet messages. This implies that the minimum packet size for a 

variable-length packet is two times the number of MDI/MDO pins. This ensures 

that a false end-of-message state is not entered by transmitting two consecutive 1s 

on the MSEI/MSEO pin before the actual end of the message.

Systems with class 2, 3, and 4 features primarily use the AUX interfaces, Rules 

of embedding a Nexus packet in an AUX port are consistent with many other paral-

lel port protocols, with key rules as follows:

Fig. 11.4 Nexus AUX FSM (single-bit MSE). Source: Nexus 5001 Forum. All rights reserved
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Fig. 11.5 Nexus AUX FSM (2-bit MSE). Source: Nexus 5001 Forum. All rights reserved

A variable-sized packet within a message must end on a port boundary.•฀

A variable-sized packet may start within a port boundary only when following a •฀

fixed-length packet. (If two variable-sized packets end and start on the same 

clock, it is impossible to know which bit is from the last packet and which bit is 

from the next packet.)

Whenever a variable-length packet is sized such that it does not end on a port •฀

boundary, it is necessary to extend and zero-fill the remaining bits after the 

highest-order bit so that it can end on a port boundary. For example, if the MDO 

port is four bits wide and the unique portion of an indirect address TCODE is 

five bits, then the remaining three bits of MDO must be packed with 0s.

A data packet within a data message must be 8, 16, 32, or 64 bits in length.•฀

To improve message compression, multiple device-specific or fixed-length •฀

packets may start and end on a single clock.

Each type of device-specific or fixed-length packet must be the same within all •฀

messages. For example, if a vendor implements three bits to identify the source 

processor, then all public messages with a source processor packet must be three 

bits in length.

When a device-specific or fixed-length packet follows a variable-sized packet, •฀

the device-specific or fixed-length packet must start on the port boundary.

The MSEI/MSEO protocol must be followed for both input and output messages.•฀

Figure 11.5 shows the FSM for two-pin MSEO transfers. The two-pin MSEI/

MSEO option is more robust than the one-pin option. Termination of the current 
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message may immediately be followed by the start of the next message on the 

 consecutive clocks. An extra clock to end the message is not necessary as with the 

one-pin MSEI/MSEO option. The two-pin option also allows for consecutive end-

packet states. This can be an advantage when small, variable-sized packets are 

transferred. Tables 11.6 and 11.7 show an examples of data transfer at the AUX 

interface for the respective cases of one and two bit MSE FSMs.

11.4  Multicore Nexus Debug Approaches

Nexus implementations can support the concurrent debug of both processor and bus 

operations. Although each processor or logic/bus element in a design may have a 

native debug environment, debug information can be reformatted using Nexus 

interface wrappers, which embed debug information into packet fields of the Nexus 

messages. These Nexus messages can then be merged at a Nexus port control level 

Table 11.7 AUX Interface for a indirect branch message with 2 – bit MSEO

MDO[3:0] MSEO[1:D]

Clock 3 2 1 0 1 0

0 X X X X 1 1 Idle (or end of last message)

1 T3 T2 T1 T0 0 0 Start message

2 S1 S0 T5 T4 0 0 Normal transfer

3 I3 I2 I1 I0 0 0 Normal transfer

4 I7 I6 I5 I4 0 1 End packet

5 A3 A2 A1 A0 0 0 Normal transfer

6 A7 A6 A5 A4 1 1 End packet/message

7 T3 T2 T1 T0 0 0 Start message

Source: Nexus 5001 Forum. All rights reserved

Table 11.6 AUX Interface for a indirect branch message with 1 bit MSEO

MDO[3:0] MSE0[0]

Clock 3 2 1 0 0 Idle

0 X X X X 1 Idle (or end of last message)

1 T3 T2 T1 T0 0 Start message

2 S1 S0 T5 T4 0 Normal transfer

3 I3 I2 I1 I0 0 Normal transfer

4 I7 I6 I5 I4 1 End packet

5 A3 A2 A1 A0 0 Normal transfer

6 A7 A6 A5 A4 1 End packet

7 X X X X 1 End message

8 T3 T2 T1 T0 0 Start message

Source: Nexus 5001 Forum. All rights reserved
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to allow packets from many debug sources to be communicated over a common Nexus 

port. Because each debug block can be assigned an independent identification 

(DID) value, debug information can be redirected once off chip, at the probe 

interface or as a software operation.

Figure 11.6 shows this debug data flow, supporting a multicore architecture 

consisting of two processor (or other) cores and a bus port or other bus-level 

debug interface. All blocks have some native debug or analyzer blocks. The 

debug information is made into Nexus-compliant messages, including any addi-

tional compression, by in-line Nexus interface blocks with the different indepen-

dent message streams consolidated into a single combined Nexus stream at the 

port interface.

One of the issues in debug of multiple core systems is that even when debug 

information from different blocks is combined into a single Nexus stream, the 

control and synchronization of debug over many different core or subsystems 

remains largely independent. Having better control and synchronization of differ-

ent debug resources can significantly improve debug efficiency. In addition to the 

Nexus interfaces for each of the processor on-chip debug resources, the environ-

ment includes Nexus-controlled cross-triggering and systemwide timestamping 

resources to help synchronize and cross-reference debug operations occurring at 

different parts of the architecture, allowing different off-chip debugger environ-

ments to better comprehend the context and operations occurring in other parts of 

a design.

Nexus provides a toolbox and an approach to implementing a debug architecture, 

which can be customized to properly address different architectures and unique 

analysis considerations. Properly implemented, a comprehensive debug solution can 

measurably improve the level of testability, maintainability, and analysis capabilities 

throughout the life cycle of a chip design, but implementing  the correct on-chip 

debug solutions also requires an engineering investment in understanding how debug 

tools will be used as well as the considerations of all the trade-offs for integrating 

debug solutions into a design Fig. 11.7.
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Nexus allows embedded processor implementations that comprise multiple 

clients  to use a single AUX, depending on the transfer bandwidth requirement 

for the application. The AUX may be designated for a single client or shared by 

 multiple clients on the embedded device during runtime. Messages transmitted 

via the AUX contain information defined by the Nexus standard indicating 

which client generated the message. Implementations can include clients on a 

single chip (Fig. 11.8) as well as processors on multiple chips sharing a Nexus 

interface.

Because the transfer of information is message-based, a variety of scheduling 

and transfer methods of simply parsed and disassembled messages between the 

Nexus interfaces and different cores are supported, allowing delayed and prioritized 

transfer of information between several cores and the Nexus interfaces. Because 

their characteristics differ, we shall consider the cases of AUX in (from tool to 

target) and AUX out (from target to tool) messages separately.

11.4.1  Input Tool-to-Target Messages

Managing Nexus input messages in a multicore system is straightforward, because 

there is typically a single host generating messages over the debug interface and 

only one message will be queued for transfer to the on-chip target at any given time. 
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The number of TCODE operations for input operations is limited to register and 

memory access types and port replacement definitions. Each input message 

 contains fields with either a register opcode defined via the Nexus register map or 

a memory address for memory operations.

11.4.2  Output Target-to-Tool Messages

Output messages from the target to the tool are potentially complex to manage, 

because (trace) operations, especially if occurring in bursts, may be more data-

intensive than input operations and can potentially exceed the Nexus AUX port 

bandwidth.

This bandwidth problem is compounded for multicore debu, in which different 

cores, each with their own trace messages to export, are competing for access to the 

Nexus interface. Nexus trace messages can include synchronization and timestamp 

fields that simplify the reconstruction of trace information that may be delayed in 

being sent to tools for a given target.

If a trace may be delayed prior to export, one of the design factors in the Nexus 

blocks should be a level of buffering sufficient to avoid dropping or loss of 

 messages while waiting for access to the AUX out port. There are a variety of ways 

to manage output data from multiple sources. A simple approach is to configure a 

simple static output multiplexor to choose between different Nexus message 

streams and disable Nexus traffic for the duration of the sub-system not chosen. If 

this duration is significant or is competing with other data-intensive messages 

(memory access, for example), this can result in the need for larger on-chip buffers 

to avoid losing trace messages.

The nature of multicore systems analysis, however, is that for many problems, 

debug requires access to concurrent information from several cores in order to 

 sufficiently understand the issues involved. To avoid the need for large on-chip 

 buffers, more sophisticated message control can be implemented to provide sched-

uling, prioritization, and arbitration of Nexus messages.

Nexus messages can be merged at a Nexus port control level to allow packets 

from many debug sources to share a common Nexus port. Because each debug 

block can be assigned an independent identification value, debug information 

can be redirected once off-chip at the probe interface or as a software 

operation.

The packet nature of Nexus messages allows a variety of network queuing 

 techniques to interleave messages from multiple sources into a common AUX 

out port. The intelligence for this may be implemented in on-chip controller 

hardware with different implementations based on output multiplexing, enable 

logic, and a funneling logic shown in Figs. 11.8–11.10, or in off-chip software 

with priorities transferred to a simpler AUX out control block as Nexus input 

messages.
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11.5  Nexus Product Implementations

In 2007, the Nexus Forum and OCP-IP developed a collaborative agreement on 

debug sub-systems. A reference design for attaching a Nexus port and communicating  

with OCP-IP debug signals was developed (Fig. 11.11) and is included as an 

appendix to the OCP-IP debug working group specification. The key element of the 

interface is use of the ownership trace message and source fields defined for each 
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instruction that allow different on-chip OCP-IP components with different debug 

sockets to be accessed concurrently.

Semiconductors from Freescale have been built and implemented for the major-

ity of Nexus-based SoCs. These SoCs have serviced many industrywide markets, 

including automotive, wireless, and networking. Two example of Freescale SoCs 

using Nexus are discussed in this section.

One family of SoCs, initially offered for the automotive powertrain market, uses 

the multiprocessing features of Nexus to provide debug visibility to the processor 

core – a PowerPC e200z6, the enhanced timer processor units (ETPU), and the sec-

ondary peripheral bus.

The MPC5500 family of SoCs support various debug facilities as shown in 

Fig. 11.12. There are five major architectural blocks that provide the debug 

functionality:
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PowerPC e200z6 Nexus1 module (OnCE) – Class 1–compliant debug of the •฀

processor.

PowerPC e200z6 Nexus3 module – Class 3–compliant trace of the processor.•฀

DMA Nexus module – Data trace support for DMA data access.•฀

ETPU Nexus – Class 3–compliant trace of enhanced timer processor units.•฀

Nexus port controller – Arbitration for Nexus I/O port.•฀

The PowerPC e200z6 Nexus module supports Nexus Class 1 and Class 3 fea-

tures as well as the optional features of watchpoint trigger enable of program/data 

tracing and burst capability on Nexus-initiated read/write accesses.

Class 1 features such as breakpoint generation, single stepping, and internal 

resource access (processor halted) are handled within the processor’s JTAG-based 

static debug OnCE (a Freescale proprietary on-chip emulation) block. Watchpoints 

for Nexus3 are also generated within the OnCE module. These eight watchpoints 

(for various programming events) can be used to trigger trace-enable/disable, gen-

erate watchpoint messages, and drive an optional EVTO output pin.

The DMA Nexus module supports tracing data reads and writes on the periph-

eral bus. The Nexus port controller (NPC) module arbitrates between the various 

debug modules for the shared port and controls the port settings (MCKO divide 

ratio, port-width option).

The second example is from a family of wireless baseband processors nick-

named mxC (Fig. 11.13). The first generation of these SoCs combines a StarCore 

SC1400 DSP with an ARM11xx core and various mixes of peripherals and mem-

ory configurations.

The DSP sub-system supports a slightly more enhanced set of debug facilities. 

The major architectural blocks consist of:
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SC1400 Nexus1 module (EOnCE) – Class 1–compliant debug of the DSP.•฀

SC1400 Nexus3 module – Class 3–compliant trace of the DSP.•฀

AHB Nexus module – Data trace support for AHB data access.•฀

Nexus trace buffer – Shared internal memory for dumping Nexus trace data.•฀

Nexus port controller – Arbitration for Nexus I/O port and timestamp generator.•฀

The SC1400 Nexus modules also support Nexus Class 1 and Class 3 features as 

well as the optional features of watchpoint trigger-enable of program/data tracing 

and data-acquisition messaging for data logging. In addition, the Nexus3 module 

supports vendor-defined triggering of program/data tracing using the process ID, 

and specific messages for reporting core performance profiling  information from 

the SC1400 debug and profiling unit (DPU).

Class 1 features such as breakpoint generation, single stepping, and internal 

resource access (processor halted) are handled within the processor’s JTAG-based 

static debug block, EOnCE. Watchpoints for Nexus3 are also generated within the 

EOnCE module. These seven watchpoints (for various programming events) can be 

used to trigger trace enable/disable and generate watchpoint messages, and can be 

connected to a cross-triggering module for triggering events in other portions of the 

SoC. They also drive an optional EVTO output pin.

The AHB Nexus module supports tracing data reads and writes on the peripheral 

bus and can generate additional watchpoints based on AHB address and/or data 

values. These watchpoints can also be used by a cross-triggering module within the 

SoC. Additional AHB Nexus modules support data trace on the application side 

(ARM11) of the baseband as well.

Similar to the MPC5500 family, the Nexus port controller module arbitrates 

between the various debug modules for the shared port. In addition to the arbitra-

tion and port control, the mxC NPC module provides timestamping capability for 
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the debug system by maintaining an “absolute” timestamp value that the individual 

Nexus modules can use within their messages or to generate their own “relative” 

timestamp to reduce bandwidth penalty.

The mxC SoCs also support internal storage of Nexus messages to an internal 

Nexus trace buffer (NTB) for retrieval at a later time. These messages are sent to 

AHB memory within the SoC, which allocates a secondary function for the storage 

of trace information. This information can be read out through the JTAG port (or 

other memory-access mechanism) when real-time visibility is not as critical. This 

allows more trace data to be stored by reducing bandwidth restrictions associated 

with sending data off-chip.

11.6  Summary

Nexus has been evolving as an IEEE standard for several years and is seeing increased 

use as a debug solution in many different architectures and markets. Using Nexus 

provides several advantages to designers, providing a widely supported infrastructure 

and a framework for customized solutions. As an “architecture-agnostic” interface, 

Nexus also provides advantages to tool vendors by reducing development costs and 

time to market. Freescale has been an industry leader in developing Nexus-based solu-

tions to support a range of processor cores and configurations. The technical commit-

tee within the IEEE-ISTO 5001 consortium is continually working to add feature 

enhancements to the standard and support for a wider range of SoC architectures.
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EJTAG is a hardware/software sub-system that provides comprehensive debugging 

and performance-tuning capabilities to MIPS® Technologies–developed  processors 

and to SoC components with MIPS processor cores. Like many other processor 

debug blocks, it uses the IEEE 1149.1 JTAG TAP as an external interface. Higher-

performance debug can also use a complementary parallel port (PDtrace) for data 

transfers.

EJTAG is tightly coupled to the MIPS instruction set and is typically packaged 

as part of a MIPS processor license as an optional resource architecture for processor 

and system debugging Fig. 12.1. The MIPS architecture has historically provided a 

set of primitives for debugging software, which includes:

A breakpoint instruction, BREAK, whose execution causes a specific exception.•฀

A set of trap instructions, whose execution causes a specific exception when •฀

certain register value criteria are satisfied.

Dual optional watch registers that can be programmed to cause a specific excep-•฀

tion on a load, store, or instruction fetch access to a specific 64-bit double word 

in virtual memory.

An optional TLB-based MMU that can be programmed to trap on any access or, •฀

more specifically, on any store to a page of memory.

ETJAG has evolved, and there is limited backward compatibility between the 

current 5.x version and earlier versions, especially for revisions 2.5 and earlier. This 

is sometimes a problem because different processors may use different versions of 

EJTAG. As a prominent example, the Toshiba TX series of MIPS processors use a 

circa 2.5 level of EJTAG that diverges sufficiently from current EJTAG in terms of 

register usage and naming, as well as changes in debug instructions and other fea-

tures, and so must be considered semi-independently.

The EJTAG registers are generally 32 bits wide for MIP32 architectures and 64 

bits wide for MIPS64 architecture, so specific bit mappings depend on implementa-

tion. Registers set up the debug resources and capture debug status information 

during the debug operation. Registers are memory-mapped and accessible from the 

EJTAG probe. Operation of the EJTAG circuitry is controlled through an EJTAG 

probe that interfaces the host development system and the target device. There are 

numerous probes available that support EJTAG.

Chapter 12

MIPS EJTAG
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EJTAG processor core extensions are required in any EJTAG implementation; 

many of the features are implementation-optional. Information on which EJTAG 

features are implemented is found in the DCR register:

The single-step execution feature is optional. The presence or absence of single-step •฀

execution capability is indicated to debug software via the CP0 debug register.

The debug interrupt request from the TAP via the DINT probe signal or through •฀

an implementation-dependent internal signal is optional.

The TAP is optional.•฀

The hardware breakpoint unit (HBU) is optional.•฀

The debug control register is optional. Note that it is required if either the TAP •฀

or the HBU is implemented.

The processor access and DMA circuit blocks are used to set up and monitor the 

processor’s internal buses and to execute the code from the EJTAG interface. In order 

to provide debug code without integrating it into the application code, the EJTAG 

processor-access circuitry shares a specific memory location that can replace system 

memory in debug mode. When the processor accesses this memory space, the EJTAG 

circuitry can feed it debug instructions not present in the application code.

When an access is detected, the EJTAG circuitry makes the transaction address 

available in the EJTAG address register. The appropriate data is also made available 

in the EJTAG data register if the operation is a write, and it is inserted into the 

EJTAG data register if the operation is a read.

The EJTAG DMA circuitry enables the EJTAG to initiate transactions on the system 

bus while running application code, providing access to debug and user memory areas. 

This makes it possible to inspect debug resources and user memory while the system 

is executing its code, providing excellent visibility into system operation with little or 

no impact on real-time operation. Setup of DMA activities is handled by setting up the 

EJTAG registers. Using the DMA access circuitry, it is possible to download applica-

tion code or transfer user memory off-chip while the debug session is ongoing.

Fig. 12.1 General overview of the EJTAG interface. Source: MIPS Technologies, Inc. All rights 

reserved
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The EJTAG debug features require high integration with the processor. Different 

generations of MIPS processors have differences in debug modes, registers, and 

instructions to support the debug process.

12.1  EJTAG Instructions and Registers

EJTAG provides a standard debug I/O interface, enabling the use of traditional MIPS 

debug facilities on SoC components. In addition, EJTAG provides the TAP instruc-

tions that allow access to corresponding EJTAG registers, for the following:

IDCODE: Device identification register with manufacturer, part number, and •฀

version ID for the specific chip (IR 00000001).

IMPCODE: Implementation register indicating implemented EJTAG features in •฀

this specific chip (IR 00000011).

ADDRESS EJTAG: Address register used to access the on-chip address bus (IR 

00001000).

DATA EJTAG: Data register used to access the on-chip data bus (IR 00001001).•฀

CONTROL EJTAG: Control register used for setup and status information (IR •฀

00001010).

ALL: Access to EJTAG address, data, and control registers in one chain (IR •฀

00001011).

EJTAGBOOT: Causes processor reset followed by a debug exception (IR •฀

00001100).

NORMALBOOT: Causes processor reset followed by execution of the reset •฀

handler (IR 00001101).

FASTDATA: Provides a one-bit tag in front of the data register to capture the •฀

processor access pending bit for fast data transfer; access to the data and 

FastData registers (IR 00001110).

TCBCONTROLA: Access to the control register TCBControlA in the trace •฀

control block (TCB); used by external probe (debugger) software to control trac-

ing output from the core (IR 00010000).

TCBCONTROLB: Access to the other control register TCBControlB in the •฀

TCB that controls tracing configuration options (IR 00010001).

TCBDATA: Provides access to the registers specified by the TCBCONTROLB •฀

REG field (IR 00010010).

TCBCONTROLC: Access to the control register TCBControlC in the TCB and •฀

used in the TCB; controls tracing configuration options (IR 00010011).

PCSAMPLE: Access the PC sample register (IR 00010100).•฀

BYPASS: One-bit register with no operation; JTAG required (IR 1111111).•฀

The size of the EJTAG address and data registers depends on the specific implementa-

tion, but they are usually at least 32 bits. The size of the device ID, implementation, 

and EJTAG control registers is 32 bits; these registers allow the user to perform 

debug setup and provide important status information during the debug session.
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The processor’s memory-mapped EJTAG memory is located in the debug 

memory segment, which is a sub-segment of the debug segment. It is accessible by 

debug software when the processor is executing in debug mode. An EJTAG probe 

handles all access to this segment through the TAP; the processor has access to 

dedicated debug memory even if no debug memory was originally located in 

the system.

To allow inspection of the processor state at any time in the execution flow, a 

debug exception with priority over all other exceptions is introduced. When a debug 

exception occurs, the processor goes into debug mode, where it has unrestricted 

access to coprocessors, memory areas, etc.

The debug exception handler is executed in debug mode and provided by the 

debug system. It can be executed from the probe through a processor access, or it 

may reside in the application code if the developer chooses to include a debug task 

in the application. An overall requirement is that debugging be nonintrusive to the 

application so that execution of the application can be resumed after the required 

debug operations are run. However, loss of real-time operation is inevitable when 

the debug exception handler is executed. Even if other parts of the system are halted 

during the debug operations.

The debug control register controls and provides information about debug 

issues. The width of the register is 32 bits for 32-bit processors and 64 bits for 

64-bit processors. The DCR provides the following key features:

Interrupt and NMI control when in nondebug mode.•฀

NMI pending indication.•฀

Availability indicator of instruction and data hardware breakpoints.•฀

Availability of the optional PC sample feature and the sample period being used.•฀

For EJTAG features, there is no difference between a reset and a soft reset occurring 

to the processor; they behave identically in both debug mode and nondebug mode.

Data hardware breakpoint registers are controlled as memory-mapped registers. 

Most registers have separate instances for each implemented data hardware break-

point, as indicated with an “n” in the following list.

Data Hardware Breakpoint Registers

Register name Register Mnemonic functional description

Data Breakpoint Status DBS Indicates number of data hardware break-

points and status on a previous match

Data Breakpoint Address(n) DBAn An address to compare for breakpoint n

Data Breakpoint Addr Mask(n) DBMn Address comparison mask for breakpoint n

Data Breakpoint ASID(n) DBASIDn ASID value to compare for breakpoint n

Data Breakpoint Control (n) DBCn Control of breakpoint n: match on load/

store, data bytes, access to data bytes, 

comparison of ASID, and generated event 

on match

Data Breakpoint Value (n) DBVn Data value to match for breakpoint n



19912.3 MIPS PDtraceTM

12.2  PC Sampling

PC sampling is one of the unique optional features of EJTAG, used for program 

profiling and analysis; it samples the value of the PC periodically. This informa-

tion can be used for statistical profiling of the program, akin to gprof. This infor-

mation is also very useful for detecting hot spots in the code. In a multithreaded 

environment, this information can be used to detect thread behavior and verify 

thread scheduling mechanisms in the absence of the PDtrace facility.

The presence or absence of the PC sampling feature is available in the debug 

control register. If PC sampling is implemented, then the PC values are constantly 

sampled at the requested rate. The sampled PC values are written into a TAP register. 

The old value in the TAP register is overwritten by a new value even if this register 

has not been read out by the debug probe. The sample rate is specified by a field in 

the debug control register called PCSR (PC sample rate). Note that the processor 

samples PC even when it is asleep, that is, in a WAIT state. This permits analysis 

of the amount of time spent by a processor in the WAIT state, which is important 

to understand in real-time and power sensitive applications.

The sampled values include a new data bit, the PC, the ASID (address space 

identifier, a MIPS-tagged TLB) of the sampled PC, as well as the thread context ID 

if the processor implements the MIPS MT ASE. The new data bit is used by the 

probe to determine if the PCsample register data just read out is new or has already 

been read and can be discarded.

The sampled PC value is the PC of the completing instruction in the current 

cycle. If the processor is stalled when the PC sample counter overflows, then the 

sampled PC is the PC of the next completing instruction. The processor continues 

to sample the PC value even when it is in debug mode.

12.3  MIPS PDtrace™

The tracing logic within the processor core outputs all trace information on the 

PDtrace™ interface. This PDtrace interface connects to the on-chip TCB unit. The 

TCB is responsible for collecting the trace data sent every cycle on the PDtrace 

interface by the core’s tracing logic. The TCB captures and stores this trace data, in 

different configurations, in either an on-chip trace memory or an off-chip trace 

memory using the probe.

Figures 12.2–12.4 show some of the different configurations for the PDtrace. A 

Probe Interface block (PIB), which communicates between the trace-related blocks, and 

external interfaces is used only for dedicated trace interfaces and is not needed for trace 

exported through the EJTAG port. The key blocks in the PD trace subsystems are

The TCB, which provides temporary on-chip storage of trace information.•฀

The interface between the TCB and the TAP controller.•฀

The PIB.•฀

The external probe interface.•฀



200 12 MIPS EJTAG

The TCB can be configured for three primary interfaces:

The PDtrace interface to the processor core.•฀

The TCB TAP interface, which connects the EJTAG TAP controller resident •฀

within the processor core to the TAP functionality present within the TCB.

An optional TCtrace interface to the PIB.•฀

One main function of the TCB is to capture trace information from the PDtrace 

interface and store it to trace memory. This trace information is then analyzed by 

the trace reconstruction software in the debugger. Because tracing the entire run of 

a program can require large amounts of storage, compression of trace information 

is desirable. Although the trace information undergoes one level of compression in 

the core, further compression is possible before the trace information is stored to 

trace memory by the TCB. The TCB achieves this compression using a number of 

trace formats that eliminate the storage of unnecessary trace bits in each cycle. This 

section describes these formats.

Figure 12.2 shows the TCB, the PIB, and the trace data path from the PDtrace 

IF to the Probe IF. It is optional whether the TCB implements on-chip trace mem-

ory and/or the TCtrace IF with a PIB and off-chip trace memory. Figure 12.3 shows 

the TCB streaming data to off-chip trace memory through the PIB. The number of 

pins needed for trace data on the probe IF is configurable to 4, 8, or 16.

Figure 12.4 shows a configuration in which the TCB is streaming data to on-chip 

trace memory. The size of the on-chip trace memory is configurable. After trace 

capture has stopped, the trace data in the on-chip memory is accessed through the 

EJTAG probe.

12.3.1  Trace Output Formats

The amounts of Trace information that is exported varies significantly based on the 

types of instructions and operations being processed. As discussed previously, unless 

there are conditional operations or discontinuities in the processor operation, instruc-

tion trace can be reconstructed based on minimal information base on the assumptions 

of normal operational flow. If there is an instruction discontinuity, as example a 

branch, a jump, or an interrupt, the amount of trace information required increases. In 

a MIPS processor trace blocks, this is performed by configuring the trace into one of 

six different trace packet formats based on the amount of information that is required. 

Trace may be performed on either single-pipeline or multiple pipelines. For simplic-

ity, we will only discuss the formats when the core being traced is in a single-pipeline 

or single-issue implementation. A processor with multiple pipelines requires data 

synchronization and combining for sending trace information to trace memory. The 

TCB can perform this combining and formatting to reduce the number of bits that are 

sent out each cycle. If there are K pipelines within the core, 1, 2, …K, then for each 

cycle, the TCB generates a trace format from each pipeline, in the respective order.

Trace format 1 (TF1): When the processor is stalled, no execution trace informa-

tion needs to be recorded except that this was a stall cycle. This is done using a 



20112.3 MIPS PDtraceTM

Fig. 12.2 PDtrace interfaces. Source: MIPS Technologies, Inc. All rights reserved

Fig. 12.3 PDtrace off-chip streaming interface. Source: MIPS Technologies, Inc. All rights reserved 

Fig. 12.4 PDtrace on-chip streaming interface. Source: MIPS Technologies, Inc. All rights reserved 
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single bit “1” for this format. Note that when parsing a trace format sequence, if the 

first bit of the trace format is a 1, then this is TF1 and the next bit is the first bit of 

the next trace format.

Trace format 2 (TF2): A study of program traces shows that with only PC 

 tracing enabled, most of the time nothing of significance needs to be captured.

Trace format 3 (TF3) is used when all address or data trace information needs 

to be captured. TF3 is distinguished from TF2 by having 000 on the first three bits. 

TF3 may be either 27 or 43 bits wide, depending on whether 16 or 32 bits of the 

address or data bus are included in the AD field. The AD field width is determined 

by fields in the TCBCONTROLA register.

Trace format 4 (TF4) is the last cycle of a current data transmission. When 

 capturing the cycle-by-cycle values on the PDtrace IF, the last cycle of a load data 

transmission cannot be distinguished from the last cycle of a store data transmission 

(without saving information from a previous cycle). This means that the TF4  format 

will be used for the last cycle of both load and store data transmission 

Figs. 12.5–12.11.

Trace format 5 (TF5) is used when overflow occurs, all other PDtrace IF trace 

values are undefined, and all current cycle trace values can be discarded. (When an 

overflow does occur, the PDtrace IF always sends a full PC value in the next cycle. 

The PC value is used for re-synchronization of the execution path.)

Trace format 6 (TF6) allows the TCB to transmit information that does not directly 

originate from the cycle-by-cycle trace data on the PDtrace interface. That is, TF6 can 

Fig. 12.5 PDtrace TF1 packet. Source: MIPS Technologies, Inc. All rights reserved

Fig. 12.7 PDtrace TF3 packet. Source: MIPS Technologies, Inc. All rights reserved 

Fig. 12.6 PDtrace TF2 packet. Source: MIPS Technologies, Inc. All rights reserved 
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be used by the TCB to store any information it wants in the trace memory, within the 

constraints of the specified format. This information can then be used by software for 

any purpose. For example, TF6 can be used to indicate a special condition, trigger, 

semaphore, breakpoint, or break in tracing that is encountered by the TCB.

After compression of data into the trace formats, the trace information must be 

streamed to either on-chip or off-chip dedicated trace memory. Because each of 

the major trace formats is a different size, this complicates the efficient storage of 

this information in fixed-width on-chip memory and the transmission of this data 

through a fixed-width interface to off-chip memory. To simplify the memory 

overhead and pin bandwidth issues, the trace formats are first gathered into trace 

words of regular width Table 12.1.

A TraceWord (TW) is defined to be 64 bits wide. It has a 4-bit type indicator on bits 

[3:0], and regular TFs stacked up in the remaining 60 bits of the word. The trace portion 

of a TW consists of one or more trace formats, TF1 through TF6. Note that trace formats 

TF1, TF2, TF5, and TF6 have fixed size, whereas TF3 and TF4 can vary in size.

Fig. 12.11 Trace word with TF1 from the sequence in Table 12.2. Source: MIPS Technologies, 

Inc. All rights reserved 

Fig. 12.9 PDtrace TF5 packet. Source: MIPS Technologies, Inc. All rights reserved

Fig. 12.8 PDtrace TF4 packet. Source: MIPS Technologies, Inc. All rights reserved

Fig. 12.10 PDtrace TF6 packet. Source: MIPS Technologies, Inc. All rights reserved 
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Cycle-inaccurate trace: The TF1 format is needed only when a sequence of the 

trace must show cycle-by-cycle behavior of the processor without missing any cycles. 

When the trace regeneration software only needs to show the sequence of instructions 

executed, the TF1 format that shows processor stall cycles can be omitted.

In this situation, additional optimization removes bit zero on the other TFs 

before storing to trace memory. The example trace sequence in Table 12.2 will then 

produce the TWs shown in Fig. 12.12. Note that to reconstruct the trace accurately, 

external software must know what type of tracing was enabled at the TCB.

On-chip trace memory format: The on-chip trace memory is defined to be a 

64-bit-wide memory. The TWs are stored in consecutive address locations. The trace 

memory is only written when a full TW is available, hence a new TW might not be 

written each cycle because a new TW might not be created each cycle Fig. 12.13.

12.3.2  Trace Control Block Registers

TCBCONTROLA is a control register in the TCB that is mainly used to control 

the trace input signals to the core on the PDtrace interface. Trace output from the 

processor on the PDtrace interface can be controlled by the trace input signals to 

the processor from the TCB. The TCB uses a control register, TCBCONTROLA, 

whose values are used to change the signal values on the PDtrace input interface. 

External software (i.e. debugger) can therefore manipulate the trace output by 

writing to the TCBCONTROLA register. The TCBCONTROLA register is written 

by an EJTAG TAP controller instruction, TCBCONTROLA.

Table 12.1 EJTAG registers

EJTAG register Description

Device ID Identifies device and accessed processor in the device

Implementation Identifies main debug features implemented and accessible via 

the TAP

Data Data register for processor access used to support the EJTAG memory

Address Address register for processor access used to support EJTAG memory

EJTAG control (ECR) Control register for most EJTAG features used through the TAP

Bypass A JTAG-required instruction that provides a one-bit shift path through 

the TAP

FastData Provides a one-bit tag in front of the data register to capture the 

processor access pending bit for fast data transfer

TCBControlA Used by the TCB to hold control bits for tracing

TCBControlB Used by the TCB to hold control bits for tracing

TCBData Used by the TCB to access data from on-chip trace memory if present

TCBControlC Used by the TCB to hold control bits for tracing

PCsample Used by the PC sampling logic to write out the PC sample 

and associated information

Source: MIPS Technologies, Inc. All rights reserved 



20512.3 MIPS PDtraceTM

TCBCONTROLB is a control register in the TCB that is mainly used to specify what 

to do with the trace information. The REG field in this register specifies the number 

of the TCB internal register accessed by the TCBDATA register. TCBDATA accesses 

registers specified by the REG field in the TCBCONTROLB register.

Fig. 12.12 Trace word without TF1 from the sequence in Table 12.2. Source: MIPS Technologies, 

Inc. All rights reserved 

Fig. 12.13 TCB TAP interfaces. Source: MIPS Technologies, Inc. All rights reserved 

Table 12.2 An example trace sequence

Cycle # Trace format Cycle # Trace format

 1 TF3 (16 significant AD bits)  2 TF3 (16 significant AD bits)

 3 TF2  4 TF1

 5 TF1  6 TF1

 7 TF1  8 TF2

 9 TF2 10 TF1

12 TF2 11 TF2

13 TF2 14 TF1

15 TF3 (5 significant AD bits) 16 TF1

17 TF2 18 TF2

19 TF2 20 TF2

21 TF3 (11 significant AD bits) 22 TF1

23 TF3 (6 significant AD bits) 24 TF6 (Stop indicator)

Source: MIPS Technologies, Inc. All rights reserved 
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Registers Trace registers that are selected by TCBCONTROLB include

TCBCONFIG: The TCB configuration register holds information about the hard-

ware configuration of the TCB.

TCBTW: The trace word read register holds the trace word just read from online 

trace memory. The TW read is pointed to by the TCBRDP register, which then 

increments to the next TW in the on-chip trace memory. If TCBRDP is at the maxi-

mum size of the on-chip trace memory, the increment wraps back.

TCBRDP: The trace word read pointer indicates the location in the online trace 

memory where the next trace word will be read. And post-incrementing TW register 

value to point to the next location. (A maximum value wraps the address around to 

the beginning of the trace memory.) This is required only for on-chip memory trace.

TCBWRP: The trace word write pointer indicates the location in the online trace 

memory where the next new trace word will be written. This is required only for 

on-chip memory trace.

TCBSTP: The trace word read pointer indicates the location of the oldest TW in the 

online trace memory. This register points to the on-chip trace memory address at 

which the oldest TW is located. If a continuous trace to on-chip memory wraps 

around the on-chip memory, TSBSTP will have the same value as TCBWRP. This 

is required only for on-chip memory trace.

TCBTRIGx: The trigger control registers 0–7 are used to specify some conditions 

that cause the firing of triggers, and to control the resulting action. Eight trigger 

control registers are defined. Each register is named TCBTRIGx, where x is a single-

digit number from 0 to 7 (TCBTRIG0 is Reg 16). The actual number of trigger 

registers implemented is defined in the TCBCONFIGTRIG field. An unimple-

mented register will read all zeros and writes are ignored. Each trigger control 

register controls when an associated trigger is fired and the resulting action.

12.4  TCB Trigger Logic Overview

The TCB can be configured to include a trigger unit. Most of the actual implemen-

tation and functionality are implementation-dependent, but if implemented the 

base-line structure must be as defined in this section.

Two or more triggers can fire simultaneously. The resulting behavior depends 

on the trigger action set for each of them and whether they should produce a TF6 

trace information output. There are two groups of trigger actions: Prioritized and 

ORed.

Prioritized Trigger Actions: For prioritized simultaneous trigger actions, the trigger 

control register that has the lowest number takes precedence over the higher- numbered 

TCBTRIGx registers. The oldest trigger takes precedence overall.
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ORed Trigger Actions: The final trigger is created by ORing of local and an chip 

probe trigger signals based on the TCBTRIGx register action logic outputs. The 

trigger logic is functionally split in three parts:

•฀ Trigger Source Logic: may have a number of source events – chip trigger out, 

probe trigger, debug mode (DM) indication from the processor core – that can 

be defined, which cause a trigger to fire when the corresponding source condition 

is satisfied.

•฀ Trigger Control Logic: Eight possible trigger control registers (TCBTRIGx, x = {0..7}) 

are defined. Each of these registers controls a trigger fire mechanism. They can have 

each of the trigger sources as the trigger event and they can fire one or more of the 

trigger actions. This is defined in the trigger control register TCBTRIGx.

•฀ Trigger Action Logic Actions: Data in TF6 trace format and chip trigger and 

probe trigger outputs are combined and placed into trace memory.

Two sets of trigger inputs/outputs are defined on the TCB. One set is defined to be 

chip-internal, and the other set is defined to be part of the probe interface.

TCB trigger input and output

ChipTrigIn – on-chip rising-edge trigger input.

ChipTrigOut – N single-cycle (relative to core clock) high strobe trigger output to 

an on-chip unit.

TR_TRIGIN – rising probe trigger input.

TR_TRIGOUT – Single-cycle (relative to probe clock) high strobe trigger to be the 

probe’s trigger output.

12.5  PDtrace External Interface

The TCB receives data from the PDtrace™ interface; the processor core is the 

source. Several control and configuration signals exist on the PDtrace IF.

The TCB registers are accessed through the EJTAG TAP interface on the core. 

Because the core already implements an EJTAG TAP controller, there is no need to 

duplicate the entire state-machine in the TCB. The TCB interface uses the (E)JTAG 

TAP state machine, which are identical to the TJAG TAP state machine. The Trace 

Control Block TAP Interface Signals (shown below) are based on the output of the state 

machine and include a serial interface that is synchronous with the EJTAG interface.

ETT_TCK from the EJTAG TAP controller clock is not an output from the core, •฀

but is the input to the TAP controller in the core and is also used by the TCB.

ETT_TDI is the TDI signal from the EJTAG probe; the TCB must use the same •฀

input as the TAP controller in the core.

ETT_TRST_N is an asynchronous TAP reset from the EJTAG probe.•฀

ETT_SoftReset in the TAP controller state machine is in the testlogic reset state.•฀



208 12 MIPS EJTAG

ETT_Capture is when the TAP controller state machine is in the data-capture •฀

state. This indicates that the ETT_Inst[4:0] input is valid.

ETT_Shift in the TAP controller state-machine is in the data-shift state.•฀

ETT_Update is when the TAP controller state-machine is in the data-update •฀

state. This indicates that the ETT_Inst[4:0] input is valid.

ETT_Inst[4:0] is the current value of the instruction register in the TAP controller. •฀

This selects which TCB register is the target in the capture and update cycles. 

The options are TCBCONTROLA, TCBCONTROLB, and TCBDATA.

ETT_TCBData out is the serial output data, synchronous to ETT_TCK’s rising •฀

edge. When the ETT_Shift is asserted and ETT_Inst[4:0] selects one of the three 

EJTAG TCB registers, this output must present data.

The timing diagram in Fig. 12.14 shows an access to the TCBCONTROLA register.

In the first two cycles ETT_TRST_N is released, and the selection of an instruc-

tion register is started in the TAP controller state machine using ETT_TMS (not used 

by the TCB TAP). In the first multicycle block, the core TAP controller has its internal 

instruction register set to 0 × 10 (= TCBCONTROLA register). This is reflected on 

ETT_Inst[4:0]. After the other multicycle block, the core TAP controller is in the 

capture data register state. This is reflected on ETT_Capture. When ETT_Capture is 

set, the next rising edge on ETT_TCK should update the TCB TAP shift register, with 

the value of the register selected by ETT_Inst[4:0] (in this case TCBCONTROLA). 

In the following 32 clock cycles the shift register should receive write data on ETT_

TDI and present read data on ETT_TCBData (LSB first on both buses).

One or more cycles after ETT_Shift is de-asserted, the ETT_Update signal will 

be asserted for one cycle. Assertion of ETT_Update is the signal to write the current 

contents of the shift register to the register selected by ETT_Inst[4:0] (in this case 

TCBCONTROLA).

The EJTAG TAP controller will be moved to access other registers, which eventually 

changes the contents of the ETT_Inst[4:0] pins. Even though ETT_Inst[4:0] is asserted 

long before ETT_Capture and de-asserted long after ETT_Update, the TCB TAP 

should only sample the value when either ETT_Capture or ETT_Update is asserted.

Fig. 12.14 TCB TAP register access timing diagram. Source: MIPS Technologies, Inc. All rights 

reserved 
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12.6  TCtrace IF

When the TCB is implemented with the ability to send the trace information to a 

probe, this is done through an intermediate interface called the TCtrace IF. The 

TCtrace IF is used to connect a small probe interface block to the TCB. The PIB 

module is the module driving the actual probe I/O pads, which creates the probe IF. 

The PIB is left as a separate unit, in order to be placed physically near the pads for 

improved I/O timing. Also the PIB can be more or less advanced with the internal 

clock-multiplier to enable higher trace bandwidth on a limited number of TR_

DATA trace pins.

The entire TCtrace IF is required in the TCB if off-chip trace memory is imple-

mented; otherwise it is optional. The chip-level trigger input and outputs 

(ChipTrigIn and ChipTrigOut) are required if one or more trigger control registers 

are implemented.

The Probe IF can be implemented in a number of widths, allowing a trade- 

off between the number of pins used and the available bandwidth for tracing. The 

ratio of the frequency on this interface to the processor core clock frequency can 

also be configured, to give the maximum possible bandwidth. The PIB module 

provides the on-chip link between the TCtrace IF and the probe IF. And performed 

clock multiplication/clock division operations to align the TCtrace and the external 

interface.

TCtrace Signal Description

TR_CLK output: Clock to the probe containing the external trace memory. This •฀

may be a double-data-rate (DDR) clock, and therefore both of its edges may be 

significant.

TR_DATA[15:0] output: Data signals to external trace memory. These may be •฀

limited to widths of 4, 8, and 16.

TR_TRIGIN In yrigger input: Rising-edge trigger input.•฀

TR_TRIGOUT out trigger output:– Single-cycle trigger output.•฀

TR_PROBE_N active low input: Indicates that a probe is attached to the device. •฀

If this signal is inactive (high), the TR_ outputs can be disabled. It can also be 

used to control EJTAG signal routing if useful. This signal is optional on a 

PDtrace-compatible device, but is required on all probes.

TR_DM output debug mode: When asserted, this indicates that the core has •฀

entered debug mode. In a multicore chip, this output can be an AND or an OR 

or some other function of all the debug-mode indications from each core as 

specified in the multicore chip documentation.

With on-chip trace memory, the TCB can work in three possible modes:

 1. Trace-From mode: In Trace-From mode, tracing begins when the processor 

enters a processor mode/ASID value THAT is defined to be traced or when an 

EJTAG hardware breakpoint trace trigger turns on tracing. Trace collection is 

stopped when the buffer is full, setting a bit in TCBCONTROLB. External probe 

software, on polling this register, can then read out the internal trace memory. 
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Saving the trace into the internal buffer will re-commence only when the 

TCBCONTROLB bit is reset and if the core is sending valid trace data.

 2. Trace-To mode: In Trace-To mode, the TCB keeps writing into the internal trace 

memory, wrapping over and overwriting the oldest information, until the 

processor reaches an end-of-trace condition. End-of-trace is reached by leaving 

the processor mode/ASID value, which is trace, or when an EJTAG hardware 

breakpoint trace trigger turns tracing off. At this point, the on-chip trace buffer is 

dumped out.

 3. Under trigger unit control: If one or more trigger control registers (TCBTRIGx) 

are implemented and they are using start, end, or center triggers, then the trace 

mode should be set to Trace-To mode.

12.7  PDTRACE Operations

PDTrace allows four levels of operation:

No PDtrace implemented.•฀

PDtrace with PC tracing only.•฀

PDtrace with PC and load and store address tracing only.•฀

PDtrace with PC, load, and store address, and load and store data tracing.•฀

Within each level, all features required to support the level must be implemented.

PC Tracing and Trace Compression techniques are used when tracing different 

values. The methods used differ for each “type” of value being traced. For example, 

the PC may be sent as a delta from the previous PC address. Sometimes the full PC 

value needs to be sent when the trace process starts at the beginning of tracing or 

after a buffer overflow, or for synchronization. In this case, the PC can be sent 

uncompressed, or some method such as bit-block compression can be used. The 

PDO_TMode signal allows compressed and full trace modes to be selected for 

information being currently traced.

When PDO_TMode is zero, the delta of the PC value is transmitted. The PC 

delta is a signed 16-bit (positive or negative) value computed from the PC value of 

the instruction executed just before the branch target instruction (the instruction 

executed in the branch delay slot after a branch instruction).

PC_delta = (new_PC - last_PC)

If the width of the computed delta value is bigger than the width of the PDO_

AD bus, then the lower bits are sent first, followed by the upper bits. When the 

PDO_TMode value is one, this implies that the full PC value is transmitted. 

Depending on the width of the bus, this may take multiple cycles.

Load or Store Address Trace and Compression: With a PDO_TMode zero value, 

the load address transmitted is a delta from the last transmitted load address. Stores 

are similar, where the computed delta is from the last transmitted store address. 
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Note that the last load instruction can be a load instruction of any type. The same 

is true for stores.

load_address_delta = current_load_address - last_load_address

store_address_delta = current_store_address - last_store_address

The delta transmission is effective when the load or store addresses increase or 

decrease sequentially.

With a PDO_TMode value of one, the value transmitted is the full address of 

either the load or the store. Depending on the width of the trace bus and the processor 

data width, this may take multiple cycles to transmit.

Load or Store Data Tracing: Data values have less compression flexibility than 

instruction information. Compression techniques such as delta values and bit-block 

compression have been shown to be useful in achieving some compression ratio; 

however PDtrace does not dictate any compression for data values, and therefore 

both PDO_TMode values transmit the full data values.
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ARM embedded trace macrocell (ETM) is a dedicated trace instrument for ARM 

processors. Like the MIPS EJTAG discussed in the previous chapter, ETM allows 

the program flow to be passively monitored, along with data and address buses, and 

to generate a sequencal flow of executed instructions, optionally including with the 

data accessed. The ETM trace hardware is tightly coupled to the microcontroller 

core, keeping track of instruction that are executed, and depending on the instruction 

flow, exporting either a full or compressed (using Branch Trace Messaging) version 

of the trace format. ARM has a lineage of ETM solutions for its different architec-

ture families. As was discussed with EJTAG, features and interfaces tend to change 

with evolving families of processors and with their changing debug requirements. 

For simplicity, we limit our discussion to ETM9, which is debug instrumentation 

closely associated with the ARM9 family of processors (Fig. 13.1).

An ETM9 enables instructions and data to be traced. The ARM9 core supplies 

the ETM module with the signals needed to carry out the trace functions. The 

ETM9 module is operated by means of the trace or JTAG interface. The trace infor-

mation is stored in an internal FIFO and forwarded to the debugger via the inter-

face. The following trace modes are supported:

Normal mode with 4- or 8-data-bit width.•฀

Transmission mode.•฀

Full-rate mode at core frequencies <100 MHz. –

Half-rate mode at core frequencies >100 MHz. –

Quarter-rate mode at higher core frequencies. –

13.1  ETM Signals

An ETM trace port interfaces to all of the signals provided by the ARM ETM 

and the JTAG run control signals. The ETM trace port and TJAG signals are 

shown in Fig. 13.1. The signals are summarily described in the following. Section.  

Chapter 13

ARM ETM
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Like the other trace formats discussed, the ETM trace is transmitted in packet 

format that can be configured for export into data buses of varying widths or via a 

serial (i.e. JTAG) interface.

13.1.1  External Signals

TRACECLK: The trace clock signal provides the clock for the trace port. 

PIPESTAT[2:0], TRACESYNC, and TRACEPKT[n-1:0] signals are referenced to 

the rising edge of the trace clock.

PIPESTAT[2:0]: The pipeline status signals provide a cycle-by-cycle indication of 

what is happening in the execution stage of the processor pipeline.

TRACESYNC: The trace sync signal is used to indicate the first packet of a group 

of trace packets, and is asserted HIGH only for the first packet of any branch 

address.

TRACEPKT[n-1:0]: The trace packet signals are used to output packaged address 

and data information related to the pipeline status. All packets are eight bits in 

length, irrespective of the number of trace packet signals implemented. There are 

three cases to consider for how trace packets are output on the trace packet 

signals:

Fig. 13.1 ETM9 module and its interfaces. Source: ARM Holdings plc. All rights reserved
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4-bit TRACEPKT bus (TRACEPKT[3:0] signals). A packet is output over two •฀

cycles. In the first cycle, Packet[3:0] is output and in the second cycle, 

Packet[7:4] is output to trace port analyzer or analysis probe.

8-bit TRACEPKT bus (TRACEPKT[7:0] signals). A packet is output in a single •฀

cycle.

16-bit TRACEPKT bus (TRACEPKT[15:0] signals). Up to two packets can be •฀

output per cycle. If there is only one valid packet, it is output on TRACEPKT[7:0]. 

If there are two packets to output, the first is output on TRACEPKT[7:0] and the 

second on TRACEPKT[15:8].

EXTTRIG: EXTTRIG is an optional signal, intended to be an input to one of the 

external inputs on the ETM.

DBGRQ: The DBGRQ signal is used by the JTAG interface unit as a debug request 

signal to the target processor. The DBGRQ signal can be used to enter debug mode 

after receiving a “BREAK-IN” signal from the logic analyzer through run control. 

This allows a logic analyzer triggering capability to be used for complex 

breakpoints.

DBGACK: The DBGACK signal is used to detect entry or exit from the debug 

state.

Figure 13.2 shows the structure of the TAP interface and its relationship with 

ETM registers.

The ETM registers are programmed via the JTAG interface into a 40-bit shift 

register comprising:

Fig. 13.2 Structure of the ETM TAP. Source: ARM Holdings plc. All rights reserved



216 13 ARM ETM

a 32-bit data field•฀

a 7-bit address field•฀

a read/write bit.•฀

The ARM core will typically have its own TAP for test in addition to the ETM. 

Where there are multiple ARM processors on a single chip, it is recommended that 

each ARM processor have its own dedicated ETM. The TAP structure of the ARM 

includes a multiplexor, as shown in Fig. 13.3, that selects TDO between the ARM 

core and ETM. This enables the ARM9 and ETM9 TAP controllers to run in 

 parallel, with a single TDO output.

13.2  ETM9 Registers

Because they are associated with a core with configurable parameters, specific 

ETM registers are to an extent configurable and are handled differently according 

to the ETM version being used. The following is a typical ETM register set:

00000000 ETM control Controls the general operation of the ETM

00000001 ETM config code Holds the number of each resource

00000010 Trigger event Holds controlling event

00000011 MMD control Configures the map decoder

00000100 ETM status Holds pending overflow status bit

00001000 TraceEnable event Holds enabling event

Fig. 13.3 TAP interface between an ARM core and ETM. Source: ARM Holdings plc. All rights 

reserved
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00001001 TraceEnable region Holds include/exclude region

00001010 FifoFull region Holds include/exclude region

00001011 FifoFull level Holds the level below which the FIFO is 

considered full

00001100ViewData event Holds the enabling event

00001101ViewData control 1 Holds include/exclude region

00001110ViewData control 2 Holds include/exclude region

00001111ViewData control 3 Holds include/exclude region

0001xxxx Addr. comparator 1–16 Holds the address of comparison

0010xxxx Addr. access type 1–16 Holds the type of access

0011xxxx Data compare values Holds the data to be compared

0100xxxx Data compare masks Holds the mask for the data access

010100xx Initial counter value 1–4 Holds initial value of the counter

010101xx Counter enable 1–4 Holds counter clock enable/event

010110xx Counter reload 1–4 Holds counter reload event

0101 11xx Counter value 1–4 Holds current counter value

0110 0xxx Sequencer state/ctrl Holds the next state triggering events

0110 10xx External output 1–4 Holds controlling event for each output

0111 0xxx Implementation specific

The ETM9 is a configurable block that can be instantiated with differing amounts 

of event, trigger, and supporting logic to create trace functions with different 

 complexity levels; the “medium” complexity version of the ETM9 provides the 

following features:

Four address comparator pairs.•฀

Two data comparators with filter function.•฀

Four direct trigger inputs.•฀

One trigger output.•฀

Eight memory-map decoders for decoding the physical address area.•฀

One sequencer.•฀

Two counters.•฀

The ETM includes a memory map decode (MMD) block which, to simplify the 

access of other logic that the core is attached to, decodes address maps using 

device-specific logic. This logic drives the MMDIN inputs to the ETM, for use in 

triggering and analysis, in a similar manner to the address comparator and address 

range comparator resources. The eight MMD regions are decoded in hardware to 

correspond to different memory regions, as illustrated by the following example:

Address range affected accesses

0000 0000H – 0000 0FFFH instruction cache (I-cache)

0000 1000H – 0000 1FFFH data cache (D-TCM)
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0000 2000H – 0FFF FFFFH user RAM access

1000 0000H – 100F FFFFH FLASH access

1010 0000H – 101F FFFFH communication RAM access

2000 0000H – 2FFF FFFFH SDRAM access

3100 0000H – 31FF FFFFH peripheral access

8000 0000H – FFFF FFFFH PCI access

13.3  Trace Interface

In order to read out the trace information collected by the ETM9, a trace port is 

used to trace internal processor states. The trace port is controlled, enabled, and 

disabled using an external debug probe connected to the JTAG interface. This trace 

port uses the TRACEPKT as a trace data port. These TRACEPKT signals are typi-

cally multiplexed with other pin signals to preserve pin resources; in many cases 

they are shared with the GPIO port. The trace interface can be configured to output 

data at a data width supported by the trace port, so for a 16-bit port, trace may be 

4, 8, or 16 bits wide. Smaller trace ports are naturally more limited. For example, 

if a data width of 4 bits is selected, the TRACEPKT (3:0) signals at GPIO (11:8) 

are automatically switched to the trace function. If a data width of 8 bits is assigned, 

the TRACEPKT (7:4) signals at GPIO (21:18) are also switched to the trace 

function.
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Infineon MCDS is a multicore debug solution developed for their own chips. Like 

other debug solutions discussed, it consists of configurable IP building blocks, 

which provide trace compression, trace qualification, timestamping, and complex 

cross-target triggering. It also enables measurement of several performance indi-

cators in parallel with timestamped trace results.

Figure 14.1 shows the MCDS sub-system consisting of a MCDS kernel and on-

chip trace memory (TMEM). In this example, communication between the on-chip 

debug environment and the debug tool is implemented  based on a  JTAG TAP with 

optional data trace interfaces. Infineon was a long time member of Nexus Forum 

and its interfaces are in areas partially compliant with Nexus ports (see Chap. 11). 

Each debug target (processor core, bus) is connected to the MCDS through an 

adaptation logic block. The design of such a block may be target-specific. Each 

block adapts the target’s custom interface to a generic standardized interface that is 

used by MCDS. It also synchronizes signals from the target side to the clock 

domain of the MCDS in case they are in different clock domains.

The architecture of the MCDS kernel depends on the number and type of debug 

targets and consists of so-called observation blocks (OB), a multicore cross connect 

(MCX), and a debug memory controller (DMC). The MCX is connected to all OBs 

and the DMC. It is responsible for distribution of cross triggers, which are program-

mable, and provides a central timestamp for all trace messages. Additionally, MCX 

provides a number of counters, which can be used to count events and trigger an 

action after an event has occurred n times or a certain time period has elapsed. 

MCX provides the functionality to observe a system with multiple processor cores, 

where interactions between the cores take place and complex conditions have to be 

evaluated to recognize a certain event.

Each target signal within the SoC is connected to its dedicated OB. Within this 

block, trace qualification and trace message generation take place. Each OB may 

contain several custom trace units of different types.

To start or stop the trace recording, generate cross triggers, and control the 

targets, trace qualification logic is implemented as shown in Fig. 14.2. The trigger 

logic, based a AND/OR matrix operating on direct or negated inputs, and triggering 

on edge or level logic conistions is implemented for all trace qualification blocks 

contained in the OBs and in the MCX.

Chapter 14

Infineon Multicore Debug Solution
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From the perspective of the debug tool, the MCDS has to be programmed for a 

certain debug or trace task by writing configuration information into a set of 

memory-mapped registers. These registers control the AND/OR matrices of each 

OB, the DMC, and a number of trigger sources (e.g., address/data comparators).

14.1   MCDS Trace Protocol Definition

The basic interface is a synchronous tagged data protocol without handshake. The 

sender places the data in well-defined packets on the data port and indicates concur-

rently on the mode port which kind of packet is present.

Merging the mode into the data packet is avoided to simplify the implementa-

tion. The mode port must be able to express at least two different values: IDLE and 

VALID. If different kinds of data are supported, VALID is replaced by other mode 

port values as shown in Table 14.1.

The MODE port can be used to propagate a response to the debugger via a bus 

observer block between this trace interface and the system bus (Table 14.1).

If a time-out mechanism is provided, a synthetic FORGET is used. Protocol 

errors are also forwarded downstream as FORGET. As no back channel is provided, 

the offending message is dropped by the receiver. Some fine points about the pro-

tocol implementation are as follows:

MCDS processor cores. The smallest common denominator is the interface •฀

described here, comprising of two ports:

Base address: After power on and after each discontinuity of the program  –

flow, the trace logic needs to know the exact and complete value of the 

instruction pointer.

Table 14.1 MCDS interface mode encoding

Mode Description

IDLE Do nothing, the data port holds no value. The data 

previously transferred is still valid.

VALID A new value of the implicitly defined (only possible) format 

of the receiver is on the data port.

BYTE A new value of the given format is on the data port.

HALFWORD

WORD

DOUBLE

READ A new transaction of the given direction is on the data port.

WRITE

FORGET The data previously transferred is no longer valid. The data 

port may hold additional information during the first 

clock cycle (see Program Trace below).

Source: Infineon Technologies AG. All rights reserved
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Instruction pointer increment: Once the base is known, only the incremental  –

updates required to keep the local copy in sync with the original instruction 

pointer.

Discontinuities are either:•฀

Direct: Branches are caused by jump instructions in the executed program.  –

The target address is a constant (label) in the source code and can be obtained 

from there by the decoder software. A branch of this kind is indicated by 

FORGET (see Table 14.1) on the increment port.

Indirect: Branches are caused by jump instructions with calculated target  –

address (e.g., return from subroutine) or by exceptions (e.g., interrupts, traps). 

In these cases, the target address must be contained in the trace memory. 

FORGET on the base port is used to indicate such a branch. Each FORGET 

received on any of the two ports invalidates the current base address. The 

exact protocol definition is given in Table 14.2.

There is no need for the sender to serve both ports concurrently. The only requirement 

is that the base is sent prior to (or at least concurrently with) the next discontinuity. 

If this is not possible, the sender may set both mode ports to FORGET, as this is 

interpreted as overrun (Fig. 14.3).

After each branch, the instruction pointer is unknown to the trace logic until a 

new base address is received. However, the decoder software may already know the 

address (e.g., L1 in Fig. 14) from the source code.

Table 14.2 Discontinuity protocol

Base Address Protocol

Mode Port Data Port

IDLE Don’t care.

VALID Target address after a preceding discontinuity, optionally the current 

instruction pointer otherwise.

FORGET Target address after a preceding discontinuity. This base must only be used 

for one clock cycle and discarded thereafter. Don’t care otherwise.

Instruction Pointer Increment Protocol

Mode Port Data Port

IDLE Don’t care.

VALID Instruction pointer increment. This is the number of bytes the  

instruction pointer was advanced since the last time the Mode Port was 

not IDLE.

FORGET Instruction pointer increment. This is the number of bytes the instruction 

pointer was advanced linearly since the last time the Mode Port  

was not IDLE. In case of a taken branch this includes the branch 

instruction.

Source: Infineon Technologies AG. All rights reserved
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For multiscalar processors, the last increment leading to a taken branch (e.g., d4 

in Fig. 14.3) may include more than the branch itself. It is therefore not guaranteed 

that the branch instruction is stored at address L0+d1+d2+d3.

In the case of some exceptions (e.g., illegal target address) the target address 

must be analyzed to distinguish the exception from a taken branch. That is why it 

is important to treat exceptions and interrupts as indirect branches.

14.1.1  Data Trace

To trace transactions on an arbitrary bus system, consisting of address, data, and 

control information, the following are needed:

The effective address (byte granularity).•฀

The current data (size depending on transaction).•฀

Auxiliary information (bus mode) such as mastership and privileges.•฀

The mode of the third item is used to signal completeness. Whenever asserted, 

READ or WRITE information concurrently valid is considered to belong to the 

same transaction. The mode port of transaction type is READ or WRITE for exactly 

one clock cycle for each transaction (Table 14.3).

Ownership is used to refer to a task ID or process ID. The generic OTU is able 

to process the ownership information of an arbitrary processor core if implemented 

in hardware. As the rate of change for the process ID is rather low, it will often be 

sent multiplexed over other trace interface signal lines of the core. This is legal, 

provided a dedicated signal to drive the mode port is available. If the core is not 

doing any useful work (e.g., if no task is active), the process ID should be invalidated 

by FORGET.

Fig. 14.3 Trace for minimized messages. Source: Infineon Technologies AG. All rights reserved
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14.2  Debug Transactor: RUN Control Bus Master

A basic bus transactor implementation supports simple read and posted write data 

operations and may require stalling between operations to ensure synchronization 

of signaling more advanced operations. More advanced operations such as bursting 

may require additional (dedicated) logic (Fig. 14.4).

A transactor bus master operation can be initiated from either an external reg-

ister load or from trigger output signals acting on specific bus-monitoring opera-

tions. Address and data for individual bus transactions can also be written from 

the externally controlled registers, although this may be a slower manual process 

or require multiple cycles. Alternately, writing of regular (i.e., incrementing or 

other simple pattern) address and data can be controlled by counters or by logic 

enabled by trigger signals. Data signals or performance data may also be traced 

(i.e., sequentially or periodically) with the bus master operations optionally stalled 

during the JTAG data-download phase, avoiding loss of continuity. Additional 

trigger or state signals may be used for defining and controlling basic memory 

maps or domains.

Table 14.3 Transaction protocol

Transaction Address Protocol

Mode Port Data Port

IDLE Don’t care.

VALID Address (byte accurate) sent by the master to the slave.

FORGET Don’t care.

Transaction Data Protocol

Mode Port Data Port

IDLE Don’t care.

BYTE Data byte (8 bit, right justified) written by the master or 

read from the slave.

HALFWORD Data half-word (16 bit, right justified) written by the 

master or read from the slave.

WORD Data word (32 bit, right justified) written by the master or 

read from the slave.

MIS48 Misaligned double-word (48 bit, right justified) written by 

the master or read from the slave.

DOUBLE Data double-word (64 bit, right justified) written by the 

master or read from the slave.

FORGET Don’t care

Transaction Type Protocol

Mode Port Data Port

IDLE Don’t care.

WRITE Additional information (e.g. master ID, privilege level).

READ Additional information (e.g. master ID, privilege level).

FORGET Don’t care.

Source: Infineon Technologies AG. All rights reserved
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14.3  MCDS Run Control: On-Chip Debug Support

MCDS supports three levels of debug operation:

Level 1 is for use for real-time software debugging operations based on a JTAG 

interface that is used by the external debug hardware to communicate with the 

system. The on-chip Cerberus bus master module controls the interactions between 

the JTAG interface and the on-chip modules. The external debug hardware may 

become master of the internal buses and may read or write to the on-chip register/

memory resources. The Cerberus also makes it possible to define breakpoint and 

trigger conditions, as well as to control user program execution (run/stop, break, 

single step).

Level 2 makes it possible to implement program tracing capabilities for enhanced 

debuggers by extending the level 1 debug functionality with an additional 16-bit-

wide trace output port with trace clock. With the trace extension, trace capabilities 

are provided for several cores and IP-blocks with just one trace being active at a 

time.

MCDS level 3 is based on a multicore debug solution using a special emulation 

device that has additional features required for high-end emulation purposes. It does not 

use more interface signals, but replicates the debug interface for many cores and pro-

vides two out of N simultaneous trace channels differentiated by the process ID port.

Components in Fig. 14.5 include:

Cerberus OCDS system control unit (OSCU).•฀

Cerberus multicore break switch (MCBS) (cross-trigger unit with extensions).•฀

Cerberus JTAG debug interface (JDI).•฀

Suspend functionality of the peripherals (stop block activity for debug •฀

purposes).

Several level 1 and level 2 units for the cores and IP blocks.•฀

BCU that allows cross-triggering by the system bus events.•฀

Fig. 14.4 A bus master transactor
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The main philosophy of the cores is that the complete architecture and the status 

of a target system are visible from its memory-map address space, including on-chip 

memories, processor core registers, and the register of the peripheral units.

A typical level 1 debugging configuration includes:

 1. The debugger software, supporting a standard JTAG protocol via a PC port.

 2. The debugger hardware adapter, connecting the JTAG interface.

The processor core provides Cereberus with the following two basic parts:

Debug event trigger generation.•฀

Debug event trigger processing.•฀

The first part controls the generation of debug events and the second part controls 

what the actions are from the triggers.

Debug Event Generation: If debug mode is enabled, debug events can be gener-

ated by:

Debug event generation from debug triggers.•฀

Activation of the external break input pin BRKIN.•฀

Execution of a DEBUG instruction.•฀

Execution of an MTCR/MFCR instruction.•฀

Debug Actions: Four types of debug actions are available:

Fig. 14.5 Debug system block diagram. Source: Infineon Technologies AG. All rights reserved
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Assert BRKOUT signals by the MCBS unit.•฀

Halt the processor core.•฀

Cause a breakpoint trap.•฀

Generate an interrupt request.•฀

These debug actions are selected by programming the corresponding event specifier 

registers which determine the action taken when the corresponding debug event 

occurs (Table 14.4).

14.3.1  BCU Level 1 (Bus-Observer Unit on the System Bus)

The BCU on the system bus supports both level 1 and means for breakpoint genera-

tion. The BCU contains one comparator for the following:

The arbitration phase (look for specific bus master).•฀

The address phase (look for specific address or range).•฀

The data phase (look for read, write, supervisor mode, etc.).•฀

The results can be combined to generate a break request signal, to be sent to the 

break switch (cross trigger block).

For a level 2 trace, in every trace clock cycle, 16 bits of core trace information 

are sent out, representing the current state of the cores. The trace output lines are 

grouped into three parts:

5 bits of pipeline status information.•฀

8-bit indirect PC bus information.•฀

3 bits of breakpoint qualification information.•฀

With this information, an external debugger can reconstruct a cycle-by-cycle image 

of the instruction flow. The trace information can be captured by the external 

Table 14.4 MCDS debug registers

Register Short Name Register Long Name Address

DBGSR Debug Status Register F7E1 FD00
H

EXEVT External Break Input Event 

Specifier Register

F7E1 FD08
H

CREVT Core SFR Access Break Event 

Specifier Register

F7E1 FD0C
H

SWEVT Software Break Event Specifier 

Register

F7E1 FD10
H

TR0EVT Trigger Event 0 Register F7E1 FD20
H

TR1EVT Trigger Event 1 Register F7E1 FD24
H

CPU_SBSRC CPU Software Break Service 

Request Control

F7E0 FFBC
H

a

aLocated in the CPU slave (CPS) interface register area

Source: Infineon Technologies AG. All rights reserved
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debugger hardware and used to rebuild later (off-line, using the source code) a 

cycle-accurate disassembly of the code that has been executed. It is also possible to 

follow in real time the current PC, facilitating advanced tools such as profilers and 

coverage analysis tools.

The trace output port is controlled by the OSCU. The trace data can be output at 

processor clock speed. The trace clock can be higher if two cores are traced or if a 

better compression of trace data of all cores can keep the trace clock low.

14.3.2  Concurrent Debugging in Level 3 MCDS  

(Two-Channel Tracing)

A concurrent debugging is possible when the control port is used as the second 

channel and the ownership port is extended with process ID to differentiate between 

two sources that are traced. The debug setup must define which two cores or IP 

blocks were selected for concurrent tracing.

14.3.3  Debug Interface (Cerberus) (Debug Bus-Transactor 

Module)

The Cerberus module is the on-chip unit that controls all levels’ main debug func-

tions. Generally, the Cerberus should not be used by any application software, 

because this could disturb the emulation tool behavior.

The Cerberus module is built up by three parts:

OCDS system control unit debug bus master.•฀

JTAG debug interface JDI.•฀

Multicore break switch cross-trigger unit.•฀

14.4  RW Mode and Communication Mode

As the name implies, the RW mode is used by a JTAG host to read or write arbitrary 

memory locations via the JTAG interface. The RW mode needs the FPI bus master 

interface of the Cerberus to actively request data reads or writes.

In communication mode, the Cerberus has no access to the system bus and com-

munication is established between the external JTAG host and a software monitor 

(embedded in the application program) via the Cerberus registers. The communication 

mode is the default mode after reset.
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In communication mode, the external JTAG host is master of all transactions and 

requests the monitor to write or read a value to/from the Cerberus COMDATA 

register. The difference to RW mode is that the read or write request is not actively 

executed by the Cerberus, but it sets request bits in the processor-accessible register 

to signal the monitor that the debugger wants to send.

14.5   Multicore Break Switch

In this example, there are two main processor units, the processor core 1 and the 

PCP2 (a co-processor) core 2. For debugging purposes, the OCDS run control of 

one processor unit can break (interrupt) the other processor unit or vice versa. The 

run control tasks are handled by the MCBS unit, which is part of the Cerberus. 

Figure 14.6 shows the break signal interfaces of this MCBS unit.

The MCBS unit supports the following features (very similar to the OCP debug 

standard):

Two independent break-out master units (Core 1 and Core 2).•฀

Six break-in sources (processor core, PCP, DMA, SBCU, MLI0, MLI1).•฀

Two port pins, BRKIN and BRKOUT.•฀

Two independent break buses (two out of •฀ N).

Suspend generation supports delayed suspend.•฀

Break-to-suspend converter.•฀

Create interrupt request with a break coming from a source.•฀

Synchronous restart of the system.•฀

The MCDS is designed to support complex multicore/debugging environments; 

several debugger applications may have to share a common resources, which may 

include registers, trace buffers, and the JTAG interface (Table 14.5).

Fig. 14.6 Break switch interfaces. Source: Infineon Technologies AG. All rights reserved
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Table 14.5 Cerberus bus master registers

Register short name Register long name Address

OJCONF OSCU Configuration by JTAG Register (a)

CBS_OEC Cerberus OCDS Enable Control Register F000 0478
H

CBS_OCNTRL Cerberus OSCU Configuration and Control  

Register

F000 047C
H0

CBS_OSTATE Cerberus OSCU Status Register F000 0480
H

CLIENT_ID Cerberus JTAG Client Identification Register  

(32-bit)

(a)

IOCONF Configuration Register (12-bit) (a)

IOINFO State Information for Error Analysis Register  

(16-bit)

(a)

IOADDR Address for Data Access Register (32-bit) (a)

IODATA RW Mode Data Register (32-bit) (a)

CBS_JDPID Cerberus Module Identification Register F000 0408
H

CBS_COMDATA Cerberus Communication Mode Data Register F000 0468
H

CBS_IOSR Cerberus Status Register F000 046C
H

CBS_INTMOD Cerberus Internal Mode Status and Control  

Register

F000 0484
H

CBS_ICTSA Cerberus Internal Controller Trace Source  

Address Register

F000 0488
H

0

CBS_ICTTA Cerberus Internal Controlled Trace Target  

Address Register

F000 048C
H

CBS_MCDBBS Cerberus Break Bus Switch Configuration  

Register

F000 0470
H

CBS_MCDBBSS Cerberus Break Bus Switch Status Register F000 0490
H

CBS_MCDSSG Cerberus Suspend Signal Generation Status  

and Control Register

F000 0474
H

CBS_MCDSSGC Cerberus Suspend Signal Generation  

Configuration Register

F000 0494
H

CBS_SRC Cerberus Service Request Control Register F000 04FC
H

aThese registers are only accessible via the JTAG interface

Source: Infineon Technologies AG. All rights reserved
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Toshiba supports debug using a version of EJTAG interface revision 1.5, which 

was released in the late 1990s. This diverges from the current MIPS-EJTAG 

interface revisions, so a MIPS EJTAG debugger to would not support Toshiba 

MIPS architecture based parts (and vica versa). Likewise, debug instruction and 

registers are different from current MIPS. Like other versions of EJTAG, the 

Toshiba EJTAG interface is an extension to the IEEE 1149.1 JTAG interface. 

Additional status pins and debug clock signals, in conjunction with JTAG pins, 

provide real-time PC trace information. Because serial bus access to the memory 

in the external processor probe is available through the JTAG interface, the 

debug program can be placed in the external memory. Access to all resources’ 

connected to the processor is available by the DMA function through JTAG 

interface. The debug support unit (DSU) in the Toshiba MIPS core has an 

8-double-word scratch pad memory (MIB), which reduces communication time 

through JTAG interface.

The following are some of the areas where the Toshiba EJTAG diverges from the 

more current EJTAG specification:

Instruction address break.•฀

Data bus break.•฀

Processor bus break.•฀

Hardware debug interrupt.•฀

Reset, NMI, interrupt mask.•฀

Instructions for debug – SDBBP, DERET, CTC0, CFC0.•฀

CP0 registers for debug – Debug, DEPC, DESAVE.•฀

EJTAG interface signals are the main debug connection. Basic debug functions can 

be used by connecting GTCK, GTRST, GTMS, GTDI, and GTDO to an external 

processor probe. These are logic equivalent to the standard 1149.1 JTAG interface 

signals. GTDOE is the output-enable signal for GTDO. GDCLK, GPCST[8:0], and 

GTPC[3:1] are Toshiba-specific signals used for PC trace.

As a side note: Toshiba has a system bus for MIPS architectures called G-Bus. 

They put a G prefix on any bus signal that comes close to the core.

During PC trace the GTID and GTDO signals disable their JTAG-related 

 functions and are respectively used for:

Chapter 15

EJTAG and Trace in Toshiba TX Cores
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Debug interrupt of PC trace (GDINT).•฀

PC output bit 0 of PC trace (GTPC[0]).•฀

The other signals used for PC trace are:

GTDOE putput-enable signal of test data output.•฀

GDCLK output clock of PC trace (1/3 processor CLK).•฀

GPCST [8:0] output status information of PC trace.•฀

GTPC [3:1] PC output bit [3:1] of PC trace.•฀

The PC trace is driven by the GDCLK, which originates on the chip and can be 

asynchronous to GTCK.

15.1  Processor Access Overview

The TX core accesses the external processor probe and reads/writes the external 

monitor memory, registers, and other external resources.

By enabling the processor probe, instructions in the external memory can be 

executed. Access to the monitor is allowed only when this processor is in debug 

mode (DM = 1).

The address of the external monitor memory is set in the JTAG_Address_

Register by the processor. The data written to or read from an external agent is 

transferred through the JTAG_Data_Register. JTAG_Control_Register is used to 

control processor access.

The TX49 core can implement DMA to the internal registers connected to the 

internal processor bus, host system peripheral, and system memory through the 

JTAG interface. By using this function, the system memory can be read or written 

by the external processor probe. The address to perform DMA is set in the JTAG_

Address_Register by using the external processor probe. The data written or read 

by DMA is transferred to the internal processor bus through the JTAG_Data_

Register. JTAG_Control_Register is used to control DMA.

The MIB (monitor instruction buffer) is an optional 64-bit (8 double-words) scratch 

pad memory used to transfer data between the core and external agent on MIB access. 

The MIB control register is used to control MIB accesses to the processor core.

Parameters used for the monitor program during debug, and parts of the monitor 

program, can be set in this memory. The monitor program reads and writes the MIB 

with values from the MIB data register.

There are several types of simple hardware breakpoints defined in the EJTAG 

specification. These stop the normal operation of the processor and force the system 

into debug mode. The break occurs when certain activities take place on the processor 

address, data, and control buses. The debug exception occurs before the bus trans-

action occurs, preserving any content in the register file or memory. Hardware 

breaks, unlike software breaks, can be made based on the address on the memory 

bus, so breakpoints can be set for access to any area of memory. Hardware breaks 

also enable breaks on load/store operations.
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Generally, breakpoints are set up in debug mode and become operational when 

normal operational mode is re-entered. Using the EJTAG DMA circuitry, the devel-

oper can enable breakpoints in normal mode so that the system maintains real-time 

operation up to the moment of the breakpoint encounter. There are 45 break chan-

nels defined in the specification. With the maximum amount of breakpoint hard-

ware, it is possible to have up to 45 concurrent breakpoints set, with each operating 

independently with separate breakpoint values.

15.2  Toshiba EJTAG Instructions and Registers

EJTAG instructions share the 8-bit IR field between EJTAG instructions for the TX 

debug support unit, with JTAG codes for standard JTAG instructions (EXTEST, 

SAMPLE/PRELOAD, INTEST, IDCODE, and HI-Z). EJTAG instructions are as 

shown in the following:

EJTAG_ImpCode selects the implementation register.

JTAG_ADDRESS_IR selects the JTAG_Address_Register.

JTAG_DATA_IR selects the JTAG_Data_Register.

JTAG_CONTROL_IR selects the JTAG_Control_Register.

JTAG_ALL_IR selects the JTAG_Address_Register, JTAG_Data_Register, and 

JTAG_Control_Register and serially connects them together into a single value.

PCTRACE selects the PCTRACE instruction.

0xA0–0xAF MIB_WRITE_DEC selects the MIB data register.

0xB0–0xBF MIB_WRITE_INC selects the MIB data register.

0xC0–0xCF MIB_READ_DEC selects the MIB data register.

0xD0–0xDF MIB_READ_INC selects the MIB data register.

0xE0–0xEF MIB_CONTROL selects the MIB control register.

The EJTAG interface has the following registers:

•฀ Instruction register: 8-bit instruction register (required by JTAG).

•฀ Bypass register: 1-bit bypass register (required by JTAG).
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•฀ Device identification register (required by JTAG).

•฀ Implementation register: defines the parameters as listed here for usable debug 

functions for a given implementation:

MIPS32/64 – 32- or 63-bit debug function register length. ○

InstBrk – instruction address break available. ○

DataBrk – data bus break available. ○

ProcBrk – processor bus break available. ○

PCSTW – width of PCST output for PC trace. ○

TPCW – width of TPC output for PC trace. ○

NoDMA – DMA available through JTAG. ○

NoPCTrace – PC trace available. ○

MIPS16 – Support for MIPS16. ○

IcacheC – instruction cache coherency available on DMA implementation. ○

DcacheC – data cache coherency available on DMA implementation. ○

PhysAW – physical address length. ○

MIB – monitor instruction buffer availability. ○

JTAG_Data_Register is used to transfer data between the core and external agent 

during processor access and DMA implementation.

JTAG_Address_Register is a 36-bit register used to transfer addresses between 

the core and external agent during processor access and DMA implementation.

JTAG_Control_Register is used to control a variety of EJTAG functions as listed 

here and to observe the processor state:

BrkSt – Indicates whether the processor core is in debug mode.•฀

Dinc – Increments address automatically on DMA.•฀

Dlock – Locks a bus for DMA.•฀

Dsz[1:0] – Specifies the data transfer size.•฀

Drwn – Specifies either DMA read or DMA write operation.•฀

Derr – Indicates whether an error occurs in DMA.•฀

Dstrt – Starts DMA transfer and indicates that DMA is being implemented.•฀

JtagBrk – Generates a debug interrupt through JTAG.•฀

ProbEn – Informs the debug support unit that the external processor probe is •฀

connected.

PrRst – Resets the processor core.•฀

DmaAcc – Requests DMA.•฀

PrAcc – Sets when the processor core issues an access request to an external •฀

processor probe; the external processor probe accesses memory in the exter-

nal system and writes to the JTAG_Data_Register if required, then resets 

PrAcc.

PRnW – Indicates whether the processor access is a read or write operation.•฀

PerRst – Resets the peripheral circuits except the processor core on SoC.•฀

Run – Indicates whether the processor core is in halt mode.•฀

Doze – Indicates whether the processor core is in doze mode.•฀

Sync – Sets whether to start PC trace synchronously to DERET.•฀



23515.4 Processor Debug Instructions and CP0 Registers

PCLen – Specifies the output length of the target PC of PC trace.•฀

MibEn – Makes MIB usable.•฀

15.3  Debug Exceptions

A useful element for software debug is a high-priority debug exception (with a 

higher priority than all other exceptions). The debug exception can occur when  

a software debug breakpoint instruction is encountered, a single-step instruction 

occurs, a JtagBrk debug event is registered by the EJTAG circuit, or a hardware 

breakpoint occurs. When the debug exception occurs, the processor switches into 

debug mode, where there are no restrictions on access to coprocessors and memory 

and where the usual exceptions like address error and interrupt are masked.

The debug exception handler is provided by the debug system and can be exe-

cuted through the EJTAG port using the processor access circuitry, or it can be 

placed in application code space if it is required.

Exception processing in debug mode (DM bit is set) means that all interrupts 

including NMI are masked. When the NMI interrupt occurs during debug mode, it 

is stored internally. The NMI interrupt is taken after the debug handler is finished 

(DM is cleared).

On debug exception processing, the DEPC and debug registers are updated. The 

registers other than the DEPC and debug registers retain these values.

The following three types of debug exceptions are supported:

Debug single-step when the SSt bit in the debug register is set, a debug single •฀

step occurs whenever each instruction is executed.

Debug breakpoint exception occurs when the SDBBP instruction is operated.•฀

JTAG break exception occurs when the Jtagbrk bit is set in the JTAG_Control_•฀

Register.

During real-time debug operation, both the Debug single-step and Debug break-

point exceptions are disabled.

15.4  Processor Debug Instructions and CP0 Registers

The following processor instructions and CP0 registers are added for debug:

SDBBP instruction – software debug breakpoint. –

DERET instruction – debug exception return. –

CTC0 instruction – move control from co-processor 0. –

CFC0 instruction – move control from co-processor 0. –

The software debug breakpoint (SDBBP) instruction is defined for the MIPS 

instruction set architecture and for the code compression application-specific 
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extension MIPS16. For simple breakpoints, the debug system can replace 

application code instructions with software breakpoint instructions and generate a 

debug exception.

For leaving the debug mode, a debug exception return (DERET) instruction is 

also defined. When it occurs, the system leaves the debug mode and normal execu-

tion of application and system code resumes.

Debug registers are the DEBUG, DEPC, and DESAVE registers, which are 

added to the MIPS co-processor 0 (CP0). The DEBUG register shows the cause 

of the debug exception and any other standard exceptions which may have 

occurred at the same time. Also, it is used to set up single-step operations. The 

DEPC or debug exception program-counter register holds the address of where 

the debug exception occurred. This is used to resume program execution after the 

debug operation  finishes. Finally, the DESAVE or debug exception save register 

is a scratch pad for one of the general-purpose 32-bit registers of the processor. 

This frees the general-purpose registers from duty in handling the debug excep-

tion handler, which executes without affecting the contents of any of the general-

purpose registers.

DEBUG register – Debug configurations and status holds the information for the 

debug handler. Key values in the debug register include:

DM debug mode indicates that a debug exception has taken place. This bit is set •฀

when a debug exception is taken and is cleared on return from the exception 

(DERET). While this bit is set, all interrupts, including NMI, TLB exception, 

BUS error exception, and debug exception, are masked and the cache line-

locking function is disabled.

OES other exception status is set to indicate that an exception other than reset, •฀

NMI, or a TLB refill has occurred at the same time as a debug exception.

SSt is set to 1 to indicate the single-step debug function is enabled.•฀

DINT (debug interrupt break exception status) is set to 1 when debug interrupts •฀

occur.

DIB (debug instruction break exception status) is set to 1 on instruction address •฀

break.

DDBS (debug data break store exception status) is set to 1 on data address break •฀

at store operation.

DDBL (debug data break load exception status) is set to 1 on data address break •฀

at load operation.

DEPC – The debug exception PC register.

DESAVE – The debug SAVE register.

The debug support unit also has ranges of registers used to set up breakpoints. 

Accessing these registers is allowed only when the processor is in debug mode 

(DM = 1). In other modes (DM = 0), accessing these registers will cause an 

address error.

The debug control register is used to control debug functions:
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Select whether to stall the processor and output all bits of PC or abort output of •฀

the target PC without stalling the processor.

Indicate the core is in halt or doze mode when a debug exception occurs.•฀

The following relate to instruction, data, or processor break:

Instruction address break status register shows the instruction address break status.•฀

Instruction address break address register 0 is used to specify the instruction •฀

breakpoint in the virtual address.

Instruction address break control register 0 controls an instruction address break, •฀

allowing a debug exception by an instruction address break or output of trace 

trigger by an instruction address break.

Instruction address break address mask register 0 used to specify the mask bits •฀

for comparison of the instruction address breakpoint.

Data bus break address register 0 specifies the data bus breakpoint in virtual •฀

address.

Data bus break control register 0 controls a data bus break by allowing active •฀

debug exceptions by a data bus break, an output of trace trigger by a data bus 

break, and/or the byte to be masked of the data value to make a break occur.

Data bus break address mask register 0 is used to specify the mask bits for com-•฀

parison of the data bus breakpoint address.

Data bus break value register 0 is used to specify the data bus breakpoint value.•฀

Processor bus break address register 0 is used to specify the processor bus break-•฀

point in physical address.

Data bus break status register shows the data bus break status and number of data •฀

bus break channels.

Processor bus break data register 0 is used to specify the processor bus break-•฀

point value.

Processor bus break data mask register 0 is used to specify the mask bits for •฀

comparison of the processor bus breakpoint value.

Processor bus break control register 0 controls a processor bus break by allowing •฀

debug exception by a processor bus break, trace trigger by an instruction address 

break, or on instruction fetch or data read or write, by making a processor bus 

break occur.

Processor bus break status register stores the processor bus break status, with the •฀

number of processor bus break channels.

15.5  Break Functions

The TX49 debug support unit provides the following break functions:

Instruction address break function. –

Data bus break function. –

Processor bus break function. –
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The instruction address break function monitors the program counter of the TX49 

core and makes debug interrupt or trace trigger occur on the fixed virtual address 

via the following accesses:

Specify the address to make a break occur in the IBA0 register.•฀

Use the IBM0 register to specify to each bit whether to compare the address in •฀

the IBA0 register.

Use the IBC0 register to control the debug interrupt or trace trigger •฀

occurrence.

Use the IBS register to check whether an instruction address break occurs.•฀

Data bus break function monitors the interface between the execution unit of the 

TX49 core and level 1 cache and causes a debug interrupt or trace trigger to occur 

on the fixed virtual address or for the data via the following accesses:

Specify the address or data to make a break occur in the DBA0 register or the •฀

DB0 register.

Use the DBAM0 register to specify bits to compare against the address set in the •฀

DBA0 register.

Use the DBC0 register to specify which bytes to compare to data.•฀

Use the DBC0 register to control the debug interrupt or trace trigger •฀

occurrence.

Use the DBS register to check whether a data bus break occurs.•฀

The processor bus break function monitors the interface to the TX49 core and 

makes a debug interrupt or trace trigger occur on the fixed virtual address or for 

data via the following accesses:

Specify the address to make a break occur in the PBA0 register and the data to •฀

cause a breakpoint in the PBD0 register.

Use the PBM0 register to specify whether to compare each bit set in the PBD0 •฀

register.

Use the PBC0 register to specify to each bit whether to compare the address. Use •฀

the PBC0 register to control the debug interrupt or trace trigger occurrence.

Use the PBC0 register to specify whether to make a break occur depending on •฀

the type of bus access (instruction fetch, data access, or cached/uncached area).

Use the PBS register to check whether an instruction address break occurs.•฀

15.6  Output by PC Trace

For real-time PC trace output in PC trace mode, the no-sequential program counter 

and trace information are output to GTPC [3:0] and GPCST [8:0] at 1/3 of the pro-

cessor clock. The pipeline status of three clocks is output in GPCST by the processor 

clock. GPCST[8:6] is the first (the oldest) status, and GPCST[2:0] is the last (the 

latest) status.
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Program counter values and exception codes are output in GTPC for every 4 

bits. In order to decrease the number of pins of trace signals, the program counter 

values are output to GTPC only when program counter values are changed nonse-

quentially (indicating that a jump instruction is executed). The program counter to 

be output is of 30-bit or 44-bit length, which is selected by the PCLen bit in the 

JTAG_Control_Register. When the program counter to be output is 30-bit length, 8 

cycles of DCLK (24 cycles of processor CLK) are required to output all 30 bits. 

When the program counter to be output is 44-bit length, 11 cycles of DCLK (33 

cycles of processor CLK) are required to output all 44 bits. Because the exception 

code is 4-bit length, 1 cycle of DCLK (3 cycles of processor CLK) is required.

If the next jump instruction is generated before the program counter output by 

the past jump instruction is completed, one can choose to force termination of the 

past program counter output or to complete the past program counter output by 

stalling the pipeline. Select either one with the TM bit in the debug control 

register:

GPCST shows the pipeline status.

111 STL The pipeline is stalled.

110 JMP The jump instruction with the target PC output is executed (the target PC 

is output in GTPC).

101 BRT The jump instruction without the target PC output is executed.

100 EXP An exception occurs (the exception code is output in GTPC).

011 SEQ A normal instruction that is not a jump instruction is executed (including 

the case that the jump conditions are not met by the condition jump instruction).

010 TST A trace trigger occurs during pipeline stall.

001 TSQ A trace trigger occurs during execution of the normal instruction in the 

pipeline.

000 DBM The core is in debug mode (DM = 1).
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