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Preface

This book grew out of an introduction to portfolio choice problems presented in
Chapados (2010). This problem has a long history: Markowitz’s 1952 treatment of
the subject now known as “Modern Portfolio Theory” is close to reaching the vener-
able age of sixty. In the intervening years, notions such as mean-variance efficiency
have had enormous impact in the theory and practice of finance, not only on the
“mundane” task of asset allocation but as models of the general trade-off between
risk and return in financial markets, as well as portfolio performance measurement
and attribution.

For newcomers to the field, it has been increasingly difficult to obtain a broad
yet concise coverage of the subject. On the one hand, the practitioner-oriented liter-
ature focuses, by and large, on single-period models and the techniques1 needed do
fix the deficiencies in Markowitz’s simple quadratic programming formulation. On
the other hand, more academic treatments address the elegant generalization to the
multiperiod case, but have been far less accessible. Moreover, the substantial body
of research outside the field of financial economics has largely been scattered, with
no work attempting to bring a unified treatment to the topic.

This book aims to fill this gap by offering a broad coverage of portfolio choice,
containing both application-oriented and academic results, along with abundant
pointers to the literature for further study. It tries to cut through many strands of
the subject, presenting not only the classical results from financial economics but
also approaches originating from information theory, machine learning and opera-
tions research.

As such, it should prove useful to students entering the field as well as practition-
ers looking for a broad coverage of the topic.

1 Which some would respecfully dub “hacks”.
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Chapter 1

Introduction

If economists could manage to get themselves thought

of as humble, competent people, on a level with den-

tists, that would be splendid.

— John Maynard Keynes

PORTFOLIO CHOICE is a central problem of economic agents. In plain words, it
asks how one should “best” spread one’s wealth across a number of different

assets to maximize return and control risk. Of course, each asset is unique and offers
its own outcome perspectives. These can be roughly summarized by an “expected
return” and a “risk” aspect: the first one quantifies what would be the likely price
appreciation of the asset or income arising from it over a given time period; the
second measures how uncertain these payoffs to the investor can be.

It has long been understood that there is a fundamental trade-off between these
two aspects, yielding a continuum of opportunities: at one end of the spectrum,
short-term government bonds provide very small returns with absolute certainty.1

At the other end, small-cap growth stocks, for instance, may promise staggering
returns—but only if the company succeeds, for otherwise the investor may as well
completely lose all her money.

Just as important is how individual risks combine at the portfolio level: what
is the overall portfolio risk if assets are combined in specific ways? Real-world
assets are not independent; some may zig as others zag. This is the fundamental
idea behind the concept of diversification: the overall portfolio risk may be less than
the sum of the risks of the individual assets that constitute it.

These ideas are summarized in Fig. 1.1, which illustrates two hypothetical indi-
vidual assets, ‘government bonds’ and ‘stocks’, on the risk–return plane. These two
assets are assumed to have well-defined risk and return characteristics. The figure
also illustrates the notion of “efficient frontier”, which traces out the risk and return
characteristics of portfolios mixing the individual assets in specific proportions. The

1 Assuming that the bond is denominated in the country’s national currency.
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2 1 Introduction

Fig. 1.1 Trade-off between
risk and return in “modern
portfolio theory”. Portfolios
on the efficient frontier yield
the best return for a given risk
level. Intermediate portfolios,
mixing stocks and bonds, may
exhibit lower risk than indi-
vidual assets, a consequence
of diversification.

key insight of diversification appears in plain sight: there exists portfolios whose risk
is lower than either asset, but with better returns than the single lowest-risk asset.

The first quantitative treatment of diversification in portfolios of assets is due
to the seminal paper of Markowitz (1952), who introduced, among other concepts,
the notion of the efficient frontier on the risk–return plane; the methodology intro-
duced by Markowitz, and perfected ever since by countless others, has been called
Modern Portfolio Theory (MPT). However, an intuitive understanding of the bene-
fits of diversification came much earlier. As Rubinstein (2002), in his half-century
retrospective of Markowitz’s paper, observes,

Markowitz was hardly the first to consider the desirability of diversification. Daniel Bernoulli
in his famous 1738 article about the St. Petersburg Paradox argues by example that risk-
averse investors will want to diversify: “... it is advisable to divide goods which are exposed
to some small danger into several portions rather than to risk them all together” (Bernoulli,
1738). As Markowitz (1999) himself points out in his historical review of portfolio theory,
Bernoulli is also not the first to appreciate the benefits of diversification. For example, in
The Merchant of Venice, Act I, Scene I, William Shakespeare has Antonio say:

“. . . I thank my fortune for it,
My ventures are not in one bottom trusted,
Nor to one place; nor is my whole estate
Upon the fortune of this present year . . .”

Although this turns out to be a mistaken security, Antonio rests easy at the beginning of the
play because he is diversified across ships, places, and time.

Until Markowitz (1952), portfolio choice was approached on a “bottom-up” ba-
sis: each constituent (e.g. stock, bond) of the portfolio was chosen for its own risk
and return characteristics, without regard for its interaction with the rest of the port-
folio.2 However, due to diversification effects, this simple form of analysis is in-

2 Variance had been considered as a measure of financial risk as early as 1906 by Fisher (Fisher,
1906).



1 Introduction 3

sufficient: the decision to hold a security should not only depend on a simple com-
parison of its expected risk and return profile to that of other securities, but also on
its marginal impact on the risk–return profile of the investor’s entire portfolio. Put
differently, the decision to hold a security cannot be made in isolation, but is con-
tingent upon the other securities that the investor already holds (or wants to hold).
Earlier treatments of security analysis, including such classics as Graham and Dodd
(1934) and Williams (1938), lack this perspective.

Myopia Dystopia

The original portfolio choice formulation by Markowitz has the investor make all
her forecasts, of expected asset returns and covariances between them as we shall
see in Chapter 2, at the start of an investment period, and then lets the investor rest
until the end of the period. In particular, the investor is “prohibited” from tinkering
with the allocations until the start of the next period. When that time comes, she
acts as though any previous period never existed, or any further period will never
exist: decisions are made strictly one period at a time. For this reason, Markowitz’s
formulation is called single-period.

It is also called “myopic”, referring to the inability of the investor to see beyond
the immediate future and anticipate future opportunities. Obviously, in practice, in-
vestors do not all die after one period, and a huge assortment of stratagems are
employed to “repair” the single-period formulation to varying degrees and make it
better reflect reality; Chapter 2 covers the most common ones.

However, even these fixes are insufficient since they do not reflect the fact that in-
vestment is, fundamentally, an extended process. The asset universe provides chang-
ing opportunities, some of which can be anticipated in advance. Perhaps the in-
vestor could want to consume a portion of her wealth along the way, or receives
income from non-investment sources, changing the investable capital in known (or
unknown) ways. Moreover, frictions abound in the process: there are costs to every
trade, and governments are prompt to ask for a commission on any good deed (also
known as “taxes”). Planning ahead for these contingencies, in fact for the complete
future set of contingencies weighted by their probabilities, requires a drastically dif-
ferent viewpoint than that afforded by single-period approaches. They lead to the
multiperiod formulations, first analyzed by Mossin (1968), Samuelson (1969) and
Merton (1969) (see §3/p. 37).

A special group of investors commands specific requirements: that of institu-

tional investors, in particular mutual or hedge fund managers operating in a com-
petitive environment. Their main characteristic is that they are not only interested
in maximizing the utility of their client’s final wealth, but also in optimizing the
trajectory that wealth takes to reach its final destination. Consider, for instance, a
client choosing between two competitive funds offering similar returns; assuming
that other fund characteristics are identical (including the stated investment risk pro-
file), the client could well favor the fund having the “nicer” past return character-
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istics, where “nice” may not only include the variance of returns but more global
criteria such as the drawdown.

Furthermore, on a day-to-day basis, the fund manager does not only care about
how he will perform at the end of a long horizon, but how he is performing right

now. It is a tired Wall Street cliché to state that “you are only as good as your last
market call.” Tired, perhaps, but a plea for help from practitioners that has seemed
relatively ignored by academics.

Regrettably, the traditional multiperiod formulations outlined previously turn out
to be unsatisfactory for the demands of institutional fund management. As stated,
a fund manager operating in a competitive market cares as much about the path as
about the final outcome.3 In other words, the realized performance picture must be
as rosy as possible, for as much of the time as possible, because clients can choose
to join and leave the fund on a fairly unrestricted basis.4 However, and this is a fatal
mismatch, the utility functions assumed by the classical multiperiod solutions to the
portfolio choice problem ignore these considerations and focus exclusively on the
distribution of terminal wealth (generally in conjunction with an intermediate stream
of consumption, which may be appropriate for a University endowment fund, but is
irrelevant for a hedge fund or mutual fund manager). We argue that practitioners
care about more dimensions of the picture than what has generally been assumed in
the literature so far.

1.1 Overview

This work aims to review the main classical results about optimal portfolio con-
struction, adopting a mostly-thematic rather than chronological perspective.

We start, in Chapter 2, with the classical single-period “modern portfolio the-
ory” of Markowitz (1952; 1959) and its numerous refinements (§2/p. 7), including
utility function variants, problem constraints, mean and covariance forecasting and
econometric issues.

We then proceed, in Chapter 3, to the multiperiod and continuous-time formu-
lations first studied by Mossin, Samuelson and Merton. A customary emphasis in
this context has been to understand the structure of optimal solutions (under suitably
analytically-tractable simplifications) and we shall examine the most enlightening
of them.

Finally, straying from the traditional dynamic programming setting generally as-
sumed in finance, we examine in Chapter 4 various “direct” and alternative criteria
for portfolio choice, including stochastic programming and reinforcement learning,
mainly studied in the machine learning and operations research communities.

3 Other institutional investors, such as those working for defined-benefit pension funds, insurance
companies, foundations and endowments are generally not subject to such stringent constraints.
4 Although the financial panic of the Fall of 2008 has made long fund lock-up periods fashionable
again, the trend until that point had been for lock-ups to become shorter in the competitive hedge
fund industry, several funds offering redemptions with a 30-day notice or less.
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Pt−1 Pt Pt+1

︸ ︷︷ ︸ ︸ ︷︷ ︸

Rt Rt+1

Time

︷ ︸︸ ︷ ︷ ︸︸ ︷
Period t Period t +1

Dt Dt+1

Fig. 1.2 Illustration of the time conventions followed in this document.

1.2 Basic Definitions and Notation

1.2.1 Simple Returns

In this work, we mostly consider the discrete-time scenario, in which one period

(e.g. one day or one month) elapses between times t and t + 1, where t ∈ N. We
define period t to be the one elapsed between times t −1 and t; see Figure 1.2.

Let {Pt},Pt ∈ R+ be a random asset price process. We shall adopt the convention
that any variable subscripted by a time index t can be measured given the set of
information available at time t, which we denote Ft .

Definition 1. The simple rate of return of an asset during period t is given by

Rt =
Pt

Pt−1
−1.

For a dividend-paying asset, we consider dividends at time t, Dt , to be paid im-

mediately before recording price Pt . The simple return taking dividends into account
is

Rt =
Pt +Dt

Pt−1
−1.

1.2.2 Risk-Free Asset

We denote by R f ,t the rate of return earned by the risk-free asset (for instance, short-
term government bonds).

1.2.3 Other Conventions

As much as possible, we attempt to adhere to the following notational conventions:
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• Matrices and vectors are typeset in bold face; scalar variables are set in italics.
The i-th element of vector v is vi; the i, j-th element of matrix M is Mi, j. The i-th
row of the matrix is Mi,· and the j-th column is M·, j.

• Matrix and vector transposition is indicated by a ′ (prime).
• M ≻ 0 indicates that matrix M is positive-definite; M � 0 indicates that matrix

M is semipositive-definite.
• It is sometimes useful to denote a vector of ones, whose size is appropriate given

the context. We denote such a vector by the Greek letter iota, ι .



Chapter 2

Single-Period Problems

Risk is a part of God’s game, alike for men and nations.

— Warren Buffett

IN THE SINGLE-PERIOD portfolio choice problem, the investor is assumed to
make allocation decisions once and for all at the beginning of a given period

(e.g. one quarter or one year), based on estimated prospects for the risk and return
relationships of a universe of N investable assets over the horizon. Once made, the
allocation decisions are not allowed to change until the end of the period; the impact
of decisions arising in subsequent periods is not considered in this case, and for this
reason, single-period problems lead to so-called myopic policies. Markowitz (1952)
introduced the basic formulation, including expressions for the expected portfolio
return and variance in terms of the portfolio weights and expected returns, variances
and covariances of individual assets. He also introduced the efficient frontier and its
depiction on the mean-variance plane. Since the original formulation uses the asset
variances (and covariances) as the risk measure, the methodology is often called
mean–variance allocation.

Despite their original conceptual simplicity, single-period problems are a large
topic in which the optimization step is but one aspect. Just as important are the
choice of utility function (§2.4/p. 11), risk measures (§2.5/p. 14), problem con-
straints (§2.6/p. 17) and forecasting models (§2.7/p. 23). Moreover, delicate issues
related to the stability and econometrics of the obtained solutions need to be ad-
dressed for a successful implementation of the approach (§2.8/p. 29). This entails a
rather involved methodology for single-period portfolio choice, which can be sum-
marized by Fig. 2.1.

2.1 Basic Formulation

Let Rt+1 ∈ R
N be a vector of random asset returns between times t and t + 1 (see

§1.2/p. 5 for a summary of the time index conventions). Assume that the investor

7N. Chapado , Portfolio Choice Problems: An 
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Fig. 2.1 Methodological steps surrounding the Markowitz single-period investment process;
adapted from Exhibit 2.2 (p. 21) of Fabozzi et al. (2006).

makes, given the information available at time t, a forecast of the first two moments
of the distribution of future returns,

µ t+1|t = Et [Rt+1]

Σ t+1|t = Covt [Rt+1] ,

where the Et [·] and Covt [·] denote, respectively, the expectation and covariance ma-
trix of a (vector) random variable conditioned on the information available at time t.
For simplicity in this section, since single-period modeling does not explicitly con-
sider the consequences of time, we drop the time subscripts on the above quantities,
which we write simply as R, µ and Σ . Likewise, the return on the risk-free asset
during the period is denoted by R f .

The investor allocates its capital among the N assets, forming a portfolio w ∈ R
N

where each element wi, the weight of asset i, represents the fraction of total capital
held in the asset. The expected portfolio return and variance are given respectively
by

µP = w′µ and σ2
P = w′Σ w. (2.1)

We shall make the following assumptions about the assets:

1. There are no “redundant” assets, i.e. no asset return can be obtained as a linear
combination of the returns of other assets.

2. All assets are risky (have positive return variance), which implies, in conjunction
with the above assumption, that the covariance matrix Σ is nonsingular. (The
inclusion of a risk-free asset is treated in §2.4/p. 11.)
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Definition 2 (Efficiency). A portfolio w is said to be efficient if it is the lowest-
variance portfolio for a given level of expected return.

The portfolio choice problem seeks to directly find efficient portfolios by deter-
mining an “optimal” vector of asset weights. The minimum-variance formulation
of the problem considers the expected portfolio variance as the measure of risk. It
takes the form

w∗ = argmin
w

1
2

w′Σ w (2.2)

subject to w′µ = ρ, (2.3)

w′ι = 1. (2.4)

The objective function, eq. (2.2), seeks the vector of weights which minimizes the
total expected portfolio variance, subject to constraint (2.3) which requires a port-
folio return of ρ (which can be viewed as the desired or target return), and con-
straint (2.4) which specifies that all capital must be invested. We consider other types
of constraints — and their implication on the solution methods — in §2.6/p. 17.

2.2 Solution

Since all constraints are of equality type, problem (2.2) can be solved analytically
by introducing Lagrange multipliers. The general solution is derived in §A.1/p. 71.
To borrow notation from that section, we set

A =

(
µ ′

ι ′

)

b =

(
ρ
1

)

,

and obtain the optimal weights w∗ by substitution into eq. (A.10). Some algebraic
manipulation yields the somewhat simplified but enlightening form, showing the
optimal weights w∗ as being linear in the desired return ρ , (Merton, 1972; Fabozzi
et al., 2007)

w∗ = g+hρ, (2.5)

where

g =
Σ−1(cι −bµ)

d
, h =

Σ−1(aµ −bι)

d
,

and

a = ι ′Σ−1ι , b = ι ′Σ−1µ, c = µ ′Σ−1µ, d = ac−b2.

Similarly, the globally minimum-variance portfolio (GMV) is obtained without
imposing the expected-return constraint, yielding portfolio weights and variance
respectively given by
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Fig. 2.2 Efficient frontier obtained from four assets specified in the text; the Global Minimum
Variance (GMV) portfolio has a lower risk (as measured by the standard deviation of returns) than
any individual asset, showing the benefits of diversification.

w∗
GMV =

Σ−1ι

ι ′Σ−1ι
and σ2

GMV =
1

ι ′Σ−1ι
. (2.6)

The above solutions yield two important insights. First, as will be illustrated next,
it reflects the benefits of diversification. Second, it highlights that ultimately, higher
returns can only be obtained by taking on higher leverage — thence more risk —
since the optimal weight vector is linear in the target return ρ .

To illustrate these solutions, consider a four-asset problem specified as

µ =







0.095
0.070
0.090
0.075







, Σ =







0.0380 0.0085 0.0089 0.0066
0.0085 0.0331 0.0156 0.0039
0.0089 0.0156 0.0334 0.0070
0.0066 0.0039 0.0070 0.0240







.

The efficient frontier for this example is plotted in Fig. 2.2, under the label “Efficient
Frontier (no risk-free asset)”.
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2.3 Risk-Free Asset, Tangency Portfolio, Separation

When one of the assets can be considered risk-free (i.e. a return variance of zero and
necessarily an identically zero covariance with all other assets), the above formula-
tion cannot be used directly since the covariance matrix Σ would not be invertible.
In this context, it can be shown that all efficient portfolios are formed by a linear
combination of the risk-free asset and the tangency portfolio located on the risky-
assets efficient frontier. These portfolios are located on what is known as the Capital
Market Line (CML). These concepts, for a risk-free rate of 5%, are depicted on
Fig. 2.2.

As derived in §A.2/p. 72, the risky-asset proportions of the tangency portfolio,
given a risk-free rate R f , are obtained as

wTGP =
Σ−1(µ −R f )

ι ′Σ−1(µ −R f )
.

A central consequence of the efficiency of all portfolios along the CML is that it
is optimal for all investors (who share a common view about µ and Σ ) to hold the
tangency portfolio in some proportion. Investors only differ in their exposure to it, or
alternatively, in how they allocate their holdings between the risk-free and tangency
portfolio. This result was originally established by Tobin (1958) (see also Merton
(1990, ch. 2)) and is an example of separation or mutual fund theorems.1

In the presence of a risk-free asset, portfolio optimization problems can be for-
mulated without insisting on the “sum-to-one” constraint (2.4), since the unallocated
fraction of capital, 1−w′ι , can be invested in the risk-free asset (or assumed to be
borrowable at the risk-free rate in the case of a negative fraction).

Geometrically, from Fig. 2.2, the tangency portfolio can also be seen to maximize
the Sharpe ratio (Sharpe 1966, 1994), defined as the expected portfolio excess return
(over the risk-free rate R f ) per unit of portfolio return standard deviation,

SR
△
=

µP −R f

σP

,

with µP and σP given by eq. (2.1). A formal derivation of the relationship between
the Sharpe ratio and the tangency portfolio appears in §A.2/p. 72.

2.4 Utility Maximization

Problem (2.2) does not specify what the “appropriate” level of target return ρ should
be; this question should be decided by the investor and is a direct function of the risk

1 This result also serves as a foundation for the celebrated Capital Asset Pricing Model (CAPM),
which assumes, among other things, that all investors do share common views about µ and Σ , and
examines equilibrium consequences; see §2.7.1/p. 23.
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s/he is willing and able to bear. Markowitz (1959) introduces a formulation wherein
the investor’s expected utility is directly maximized. He considered the following
quadratic form, written in terms of the portfolio return RP,

Uλ (RP) = RP −
λ

2
R2

P,

where λ is represents the investor’s risk aversion, and in this context quantifies how
the investor is willing to trade each incremental unit of expected return against a
corresponding increase in variance of return.2

A rational decision maker would seek to maximize its expected utility, which is
computed as

E [Uλ (RP)] = µP −
λ

2
σ2

P

= w′µ − λ

2
w′Σ w,

where w is, as above, the weight given on each asset within the portfolio and µP and
σ2

P are respectively the mean and variance of the portfolio return distribution, given
by eq. (2.1). The expected quadratic utility maximization problem is then written as

w∗ = argmax
w

w′µ − λ

2
w′Σ w (2.7)

subject to w′ι = 1. (2.8)

When no further constraint is imposed, an analytical solution for w∗ is easily found
by introducing Lagrange multipliers, similarly to the solution for problem (2.2).3

Proposition 1. The unconstrained minimum-variance portfolio (2.2)–(2.3) and max-

imum quadratic utility (2.7) formulations are equivalent.

Proof. The equality constraint (2.3) is incorporated in the minimum-variance objec-
tive (2.2) through an unconstrained Lagrange multiplier ν ∈R, yielding the problem

min
w

1
2

w′Σ w−ν(w′µ −ρ),

with first-order conditions for optimality given by Σ w−νµ = 0, yielding optimal
solution

w∗ = νΣ−1µ, (2.9)

where ν is found by substitution as ν = ρ

µ ′Σ−1µ
.

2 Many formulations of utility theory focus on the utility of terminal wealth, instead of the portfolio
return; Markowitz explicitly considers the latter (e.g. Markowitz 1959, p. 208), and this convention
is almost universally followed in mean-variance problems. An alternative formulation of quadratic
utility in terms of terminal wealth would slightly change the resulting equations.
3 See, e.g. Chapados (2000) for a derivation.
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Consider, on the other hand, the first-order optimality conditions of problem
(2.7), µ −λΣ w = 0, yielding optimal solution

w∗ =
1
λ

Σ−1µ. (2.10)

Comparing eq. (2.9) and (2.10), it suffices to take λ = µ ′Σ−1µ/ρ to obtain the
equivalence. ⊓⊔

This result confirms that in order to target a higher expected portfolio return ρ ,
the investor must exhibit a lower risk aversion.

Obviously, quadratic utility is but one of a number of utility functions that have
been proposed to model the behavior of economic agents. The more general problem
is easily written in terms of expected utility maximization,

w∗ = argmax
w

∫

R
U(w′R)dP(R), (2.11)

subject to the budget constraint (2.8), where U(·) is a utility function and P(R) is
the next-period return distribution. In particular, Mossin (1968) proves that constant
relative risk aversion (CRRA) functions4 are the only ones permitted if constant as-
set proportions are to be optimal, i.e. the investment in the risky asset does not
depend on the level of initial wealth. Merton (1969) establishes the same result in
a continuous-time setting. Moreover, Campbell and Viceira (2002) strongly argue
in favor of CRRA utilities on the basis of the long-run observed behavior of the
economy. However, for a large number of utility functions and “reasonable” return
distributions, several studies (Levy and Markowitz, 1979; Kallberg and Ziemba,
1983) have established that single-period optimal portfolios under quadratic utility
are very close to those obtained under alternative utilities.

A special case of some interest is the logarithmic utility, defined as U(R) =
log(1 + R). This utility function is maximized by considering a Taylor series ex-
pansion of 1+R around R = 0,

log(1+R) = R− R2

2
+O(R3).

For relatively small returns, this is seen to be equivalent to the maximization of
quadratic utility, problem (2.7), with λ = 1. The optimal weights under this utility
function are given precisely by the tangency portfolio for a risk-free rate of zero
(which also maximizes the Sharpe Ratio, see §A.2/p. 72). This property led some
authors to confer a special aura to the logarithmic utility as being somehow “better”,

4 For a utility function U(W ), the Arrow–Pratt measure of relative risk aversion (Arrow, 1965;
Pratt, 1964) is defined as

RRA(W ) = −WU ′′(W )

U ′(W )
.

A CRRA utility function is one for which RRA(W ) is a constant independent of W . Such functions
are sometimes said to exhibit iso-elastic marginal utility.
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a point discussed, and found to be fallacious in a multiperiod setting, by Merton and
Samuelson (1974). We return to the logarithmic utility in §3.4/p. 49.

Some utility functions have been proposed to incorporate parameter estimation
uncertainty, the subject of robust optimization, which is covered in §2.8.5/p. 34.

2.5 Risk Measures

The exposition so far assumes that the investor considers the variance of the port-
folio return distribution to be an adequate measure of risk. This measure has the
major shortcoming that it considers positive return surprises to be as equally un-
pleasant as negative return surprises, a property that would surely be dismissed by
most real-world investors! A number of alternative measures have been proposed
throughout the years that attempt to quantify portfolio downside risk, starting with
Markowitz’s original treatment of the semivariance. This section briefly reviews the
most significant possibilities. Nawrocki (1999) surveys the field more extensively.

2.5.1 Semivariance

Semivariance was originally considered by Markowitz (1959, Chapter 9) as a simple
measure of downside risk. Whereas the variance is a symmetrical measure, semivari-
ance only considers movements that fall below the mean; as such, its value depends
on the skewness (third moment) of the distribution. For a scalar random variable X

with mean µ , semivariance is defined as

σ2
min = E

[

min [X −µ,0]2
]

.

This measure can be used instead of portfolio variance in Problem (2.2). Although
there is no closed-form solution to the mean-semivariance problem, Jin et al. (2006)
establish the existence of the one-period mean-semivariance efficient frontier and re-
view the literature examining its applications. Furthermore, Estrada (2007) provides
an approximation to the semivariance that lends itself well to analytical solutions
and reports good results on a number of problems.

2.5.2 Roy’s Safety First

The Roy (1952) “safety-first” criterion puts portfolio risk in a more concrete setting
than Markowitz’ consideration of the second moment of returns. As Roy argued,
the investor first decides on a minimum acceptable return that would ensure the
preservation of a desired portion of his capital; he then proceeds with portfolio opti-
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mization by minimizing the probability of experiencing a return below the “disaster
level”. Let R0 be the investor’s minimum acceptable return and consider the problem

minimize P(RP ≤ R0)

subject to w′ι = 1 (budget).

Since the return distribution probability is not known precisely, this minimization
may appear unfeasible. However, by Chebyshev’s inequality, we have

P(RP ≤ R0) ≤
σ2

P

(µP −R0)2 ,

which, taking square roots, yields the approximate problem

min
w

σP

µP −R0

subject to the budget constraint. If the R0 is the risk-free rate, this problem is equiv-
alent to maximizing the Sharpe ratio (Sharpe, 1966).

2.5.3 Value-at-Risk

Value-at-Risk (VaR) was developed by JP Morgan in the early 1990’s and made
popular in a widely-circulated technical document (RiskMetrics, 1996) and asso-
ciated software product. Intuitively, the level-α VaR (e.g. α = 95%) of a portfolio
over a certain time horizon h is the portfolio return RP such that the fraction α of
returns will be better than RP over the horizon. More formally, the level-α VaR of a
portfolio is defined as the 1−α-percentile of the portfolio return distribution,

VaRα(RP) = − inf
R
{R : P(RP ≥ R) ≥ α} ,

where all returns are computed over horizon h. (The minus sign in the definition
serves to make the risk measure positive.) The location of the VaR of an hypothetical
asset return distribution, and its relationship to the CVaR (treated next) is shown in
Fig. 2.3.

Value-at-Risk is regarded as a more plausible measure of portfolio risk than the
variance since it accounts (in theory) for skewness and kurtosis in the return distri-
bution.5 In addition to its origins in risk management, it has received wide attention
in a portfolio choice context where the VaR simply substitutes for the variance as
the risk measure (Alexander and Baptista, 2002; Mittnik et al., 2003; Chow and
Kritzman, 2002; Chapados, 2000).

5 In practice, it is common to compute the VaR under a normal approximation due to its analytical
tractability, which of course disregards higher-order moments in the underlying true distribution.
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Fig. 2.3 90% Value-at-Risk
(VaR) and Conditional Value-
at-Risk (CVaR) for a Student
t(3) distribution. For fat-tailed
distributions, the CVaR point
can represent an expected loss
much more significant than
the VaR.

2.5.4 Conditional Value-at-Risk

In spite of its wide use, the VaR, as a measure of risk, suffers from a major defect: its
lack of subadditivity (Artzner et al., 1999). For a risk measure ρ applied to portfolios
P1 and P2, subadditivity is satisfied if

ρ(P1 +P2) ≤ ρ(P1)+ρ(P2),

which is a statement of the benefits of diversification—the risk of a diversified port-
folio cannot be more than the risk of any of its constituents. That the VaR does not
satisfy this property can lead to a number of counterintuitive results, particularly for
firm-wide risk management, where it can appear that a more diversified portfolio
exhibits a higher risk (Rau-Bredow, 2004).

A closely related measure that does satisfy subadditivity is the conditional value

at risk (CVaR)—also called expected shortfall or expected tail loss—defined as the
expected return conditional on observing a return lower than the VaR:

CVaRα(RP) = E[RP |RP < VaRα(RP)],

where, as for the VaR, the returns are computed over a given time horizon h. In
Fig. 2.3, this corresponds to an expectation taken within the shaded area. In a port-
folio context, the CVaR has been studied by Krokhmal et al. (2002) and Consigli
(2004).

2.5.5 Other Measures

In the past few years, there has been an explosion of alternative risk measures based
on the modeling of tail phenomena (e.g. Malevergne and Sornette 2005a). Although
it is not our focus to describe them in depth, Rachev et al. (2005) provide a good
survey of the relevant literature, especially of measures related to portfolio selection.
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Farinelli et al. (2006) provide computational portfolio allocation results comparing
eleven alternative performance measure ratios.

2.6 Additional Constraints

Portfolio optimization problems, regardless of the form of the objective function or
type of risk measure, are often solved with a number of constraints that attempt to
capture a priori knowledge that the analyst possesses on what should be “good”
solutions, embody investment objectives of the fund, or comply with regulatory re-
quirements. It should be noted that with most of these constraints, Problem (2.2) can
no longer be solved analytically but must instead be tackled with quadratic program-
ming (Luenberger and Ye, 2007; Bertsekas, 2000) or mixed-integer programming
(Wolsey and Nemhauser, 1999). Constraints also play a regularization role that can
serve to mitigate sampling variance and estimation error in the mean return and risk
forecasts; this is covered in §2.8/p. 29.

Some of the more common constraints are as follows. More comprehensive treat-
ments appear in Fabozzi et al. (2006) and Qian et al. (2007). In line with the first
reference, the rest of this section makes use of the following notation: we denote
the current holdings of an investor by w0, the target holdings to be invested over the
next period (i.e. the variables resulting from optimization) by w, and their difference
(the traded amount in each asset) by x = w−w0.6 Furthermore, let p0 be the current
price vector of the assets, and W0 the current total portfolio value. The amount to be
invested in asset i is given by W0wi and the number of shares7 held is ni =W0wi/p0i.

2.6.1 No Short-Sales Constraint

This corresponds to the requirement that all portfolio weights be non-negative,
namely

wi ≥ 0, for all i,

6 The absolute traded amount, |x|= |w−w0|, shall be of significance, especially when considering
transaction costs. The usual way of incorporating a term of this kind in a mathematical program is
to introduce two variables,

x+ = w−w0 and x− = w0 −w

along with the constraints

x+ ≥ 0 and x− ≥ 0

and use the sum x+ +x− whenever |x| appears.
7 Assuming stocks as the assets.
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thereby prohibiting selling assets short. Regulatory constraints placed on mutual
fund managers often mandate such a constraint. Markowitz’ original formulation
of the portfolio choice problem included those constraints as an integral part of his
solution method, and many introductory treatments of the theory8 include them by
default, despite the impossibility of deriving an analytical solution for the optimal
portfolio weights in their presence.9

2.6.2 Turnover and Transaction Costs Constraints

For large institutional portfolios, transaction costs can represent a sizable portion of
total operational costs, especially for funds that take an active management (Grinold
and Kahn, 2000) approach as opposed to a passive index-tracking objective. As
such, we may incorporate constraints that attempt to minimize the relative or dollar
turnover on individual assets, respectively

|xi| ≤Ui and W0|xi| ≤ Ũi,

or the complete portfolio

∑
i

|xi| ≤UP.

It is also possible to directly incorporate transaction costs into the objective function
as a term to be minimized. In its simplest form, a transaction cost model simply
imposes a proportional cost on the absolute value of traded quantities,

prop costi = W0χi|xi|,

and the total portfolio cost given by

prop costP = W0 ∑
i

χi|xi|, (2.12)

where χi is the proportional cost of trading asset i. Assuming all χi and W0 are non-
negative, prop costP is nonnegative and hence the imposition of transaction costs
penalizes portfolio performance. To understand their consequence on realized re-
turns, let p1 be the asset prices at the end of the investment period and consider the
relative return on asset i,

ri =
p1i −p0i

p0i

.

Transaction costs affect portfolio return as

8 E.g. Bodie et al. (2004).
9 Non-negativity constraints can be seen as the “great divide” in optimization between analytical
and non-analytical solutions; in the case of portfolio optimization, the latter require, as mentioned
above, solution by quadratic programming.
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r̃i =
p1i −p0i −W0χi|xi|

p0i

= ri −
W0

p0i

χi|xi| = ri −niχi|xi| = ri − χ̃i|xi|,

where it is obvious that they adjust the portfolio relative return by a term propor-
tional to the traded amount. Their effect can then directly be incorporated into the
objective function for the quadratic utility maximization formulation, yielding the
problem

w∗ = argmax
w

w′µ − χ̃ ′|w−w0|−λw′Σ w (2.13)

subject to w′ι = 1. (2.14)

The proportional costs structure is, however, only a starting point. As pointed
out by Kissell and Glantz (2003), the totality of trading costs can be broken down
according to an elaborate taxonomy that includes explicit (measurable) costs as well
as more insidious implicit ones. Without delving into an intricate description, we can
summarize them as follows:

Explicit Costs They include fixed costs, in the form of commissions (as outlined
above) and fees (custodial fees, transfer fees). They also include variable costs,
in the form of bid–ask spread (the difference between the price at which one can
buy versus sell) and taxes.10

Implicit Costs They include delay cost (time between which a decision is made—
for instance, by an allocation committee—and the actual trade is brought to the
market), price movement risk (effect of underlying trends affecting the asset to be
traded), market impact costs (deviation of the transaction price from the market
price that would have prevailed had the trade not occurred), timing risk (cost
attributable to general market volatility), opportunity cost (cost of not trading or
not completing a trade).

Some of the implicit costs may not be costs at all but the source of trading profits
depending on market conditions. A study by Wagner and Edwards (1998) shows that
the price impact of a liquidity-demanding trade11 averages −103 basis points12 on a
set of some 700,000 trades by more than 50 management firms in 1996, whereas the
price impact of a liquidity-supplying trade generated profits of +36 basis points. In a
liquidity-neutral market, the average price impact was −23 basis points. The effects
of other implicit costs can likewise be decomposed according to market conditions.

There is a vast literature on transaction costs models, including how realistic non-
linear models of costs can be incorporated in asset-allocation models. This literature
is well reviewed by Fabozzi et al. (2006, ch. 3).

10 The proportional costs structure introduced previously can be seen as an adequate model of
bid–ask spread, the most significant explicit cost for an institutional investor.
11 For example, a “buy” trade executed when there are significantly more buyers than sellers.
12 A basis point (bp) is one hundredth of one percent, i.e. 100bp = 1%.
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2.6.3 Maximum Holdings Constraint

To ensure that the portfolio is not overly concentrated in a single asset, we can
impose a constraint of the form

L ≤ w ≤ U,

where L and U are vectors specifying, respectively, the allowable lower and upper
bounds for each asset. Likewise, we can ensure a sector S = {i1, i2, . . . , in} (a set
of asset indices) is not unduly weighted in the portfolio by imposing

LS ≤ ∑
i∈S

wi ≤US ,

with LS and US denoting, respectively, the minimum and maximum exposure to
the sector.

2.6.4 Maximum Tracking Error and Factor Exposure Constraint

The performance of portfolio managers is often compared to that of a benchmark

such as the S&P 500 (Grinold and Kahn, 2000). Depending on the fund’s style,
the manager may seek to replicate the benchmark as closely as possible (using,
for instance, a smaller number of assets than the benchmark), or to provide addi-
tional performance (the so-called “alpha”) at the expense of taking on active risk,
namely, deviating from the benchmark. This risk is quantified by the tracking error,
defined next. Assume that the benchmark’s and fund’s investable universe are the
same and that the (random) asset returns are given by R. Let wb denote the bench-
mark weights, w the decision variables, and RB and RP denote, respectively, the
benchmark and portfolio returns,

RB = w′
BR and RP = w′R.

The tracking error is simply the variance of the return difference between the bench-
mark and the invested portfolio,13

TEP = Var[RP −RB]

= Var[w′
BR−w′R]

= (wB −w)′Σ(wB −w),

with Σ the asset return covariance matrix. A quadratic tracking error constraint of
the form

13 More accurately, tracking error is usually reserved for the square-root of this variance, but for
notational simplicity, we shall omit the square-roots in this overview.
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(wB −w)′Σ(wB −w) ≤ σ2
TE

can then be imposed to limit active risk. Note that this does not limit total risk,
which would require additional constraints (Jorion, 2003).

In an analogous manner, one can restrict exposure to specific risk factors. Sup-
pose that we posit the following decomposition for explaining the return of asset i

as a linear combination of factors (additional background on factor models is given
in §2.7/p. 23),

Ri = αi +
M

∑
j=1

βi, jFj + εi,

where Fj is the random “return” associated with factor j14 during the period, and
βi, j is the exposure of asset i to factor j. This is written more succinctly as

R = α +BF+ ε

with B and F respectively the matrix of factor exposures and the vector of one-period
factor returns. This yields a portfolio return, given asset weights w, of

RP = w′α +w′BF+w′ε.

The exposure of the portfolio to factor j is given by ∑i wiβi, j. Bound or equality
constraints may be placed on this exposure; for example, to ensure an ex ante neutral
exposure to factor j one may impose

∑
i

wiβi, j = 0.

Such constraints are commonly used in so-called “long-short equity” hedge funds,
which are designed to be neutral to overall market fluctuations.15

2.6.5 Transaction Size, Cardinality and Round Lot Constraints

The following class of constraints is of a combinatorial nature and necessitates so-
lution by mixed integer programming methods (Wolsey and Nemhauser, 1999). For
convenience, we define the vector δ of binary indicator variables

δi =

{

1, if wi 6= 0,

0, if wi = 0,
i = 1, . . . ,N,

14 For stocks, examples of likely factors would be the return on a broad market index, the return
difference between growth and value stocks, and the return difference between large- and small-
capitalization stocks; see §2.7/p. 23.
15 For a factor-neutral constraint to make sense, the exposures βi, j must be standardized to have a
mean of zero across assets.
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where each element specifies whether a position is being taken in the corresponding
asset.

A first class of combinatorial constraints aims at eliminating positions that are
too small; such positions are often the result of a traditional unconstrained mean–
variance optimization. The manager can require

|wi| ≥ δ iLwi
,

where Lwi
is the minimum (relative) position size allowed for asset i. Likewise a

limit can be set on portfolio trades

|xi| ≥ δ iLxi
,

with Lxi
the minimum allowed trade size for asset i.

Next, cardinality constraints can be useful in problems that seek to replicate a
benchmark using a smaller number of assets than the original universe. This may
take the form of

δ ′ι ≤ K

where K is the maximum number of allowable assets. The impact of cardinality
constraints on the shape of the efficient frontier is studied by Chang et al. (2000).

Finally, round lot constraints account for the fact that market-traded instruments
are not infinitely divisible (contrarily to idealizations of finance theory)—it is com-
mon for stocks to be traded in multiples of 100 shares or more. If the lot size for
asset i is given by the constant κi and the desired number of lots by ηi (an integer
decision variable), we can enforce

W0wi = κiηip0i, ηi ∈ Z.

In general, when imposing round lots, the budget constraint, ∑i wi = 1, may no
longer be satisfiable; in this case, one may settle for an approximate budget con-
straint, expressed as

1
W0

∑
i

κiηip0i +ξ + −ξ− = 1,

ξ +, ξ− ≥ 0,

ηi ∈ Z,

where ξ + and ξ− are “slack variables” to be minimized (by incorporating them in
the objective function). Formulations of this type are analyzed by Kellerer et al.

(2000).
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2.7 Forecasting Models

Markowitz’s method of portfolio construction is silent on how the required expected
next-period asset returns and covariances are to be obtained. This section reviews the
most commonly-used approaches in practice, starting with factor models and their
uses in covariance modeling and expected return forecasts. We then briefly cover
other expected-return forecasting approaches for equities, mostly based on dividend

discount models and accounting ratios. Finally, extensive experience with mean-
variance criteria suggest that they are extremely sensitive to parameter estimation
error—very small changes in the forecasts can yield enormous changes in “optimal”
portfolio weights, leading to doubt about the validity of the portfolios and possible
considerable rebalancing costs when the decisions are implemented. This naturally
paves the way for robust estimation methods and Bayesian approaches; we cover
some of the methods that have been suggested to counter portfolio instability.

2.7.1 Factor Models

Factor models seek to explain the cross-section16 of asset returns by a simple affine
relationship, where the return of asset i over the period t is decomposed into the
return of more elemental factor returns Fj,t ,

Ri,t = αi +
M

∑
j=1

βi, jFj,t + εi,t , (2.15)

where αi is a regression constant, βi, j are the factor exposures, and εi,t is a zero-mean
random unexplained component uncorrelated with factor returns.17

The grandfather of factor models is the Capital Asset Pricing Model (CAPM) of
Sharpe (1964), Lintner (1965) and Mossin (1966); this model is generally derived
from equilibrium considerations as a positive theory of collective investor behav-
ior,18 but we shall merely regard it as a simple one-factor model. It expresses the
expected excess return19 on asset i as a linear function of the return of the overall
market portfolio, RM ,

E[Ri −R f ] = βiE[RM −R f ],

16 As opposed to the time-series characteristics.
17 It should be noted that what this literature refers to as factors almost exclusively consist of
observable variables, what would simply be called covariates, explanatory or input variables in a
more traditional statistical context. Latent factors are always referred to as such.
18 In other words, it seeks to establish what consequences would arise if every investor behaved
according to a set of hypotheses that include Markowitz’s rules for portfolio choice among others.
19 The return earned over the risk-free rate.
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where, under the CAPM assumptions, αi is identically zero.20

It has long been understood, at least since Merton (1973), that there exists the
possibility that additional sources of priced risk, on top of the market portfolio,
could impact expected asset returns. Generalizations of the CAPM are obtained in
the context of the Arbitrage Pricing Theory (APT) of Ross (1976).21 Assume that
asset returns are distributed according to the factor structure of eq. (2.15), along
with

E[εi] = E[Fk] = 0

E[εiε j] = E[εiFj] = E[FiFj] = 0, i 6= j

E[ε2
i ] = σ2 < ∞.

In this context, in the absence of arbitrage and under some technical conditions,
Ross showed that the excess return on asset i is given by

E[Ri −R f ] =
K

∑
j=1

βi, jE[Fj −R f ].

Under the APT, each factor represents a priced systematic risk (a risk for which in-
vestors are seeking compensation), and the factor exposures βi, j quantify the market

price of those risks (how much the investor is compensated in expected return for
taking on a unit of risk).

Ross remains silent on how factors should be chosen. In addition to the CAPM

market portfolio factor, several pricing anomalies have been documented in the
1980’s and early 1990’s suggesting additional factors, including long-run price re-
versal (De Bondt and Thaler, 1985), short-run price momentum (Jegadeesh and Tit-
man, 1993), and a variety of effects due to firm size (market equity, ME, the stock
price times the number of shares), earnings to price ratio (E/P), cash-flow to price
ratio (C/P), book value to market value (BE/ME), and past sales growth (Banz,
1981; Basu, 1983; Rosenberg et al., 1985; Lakonishok et al., 1994). These results
built up to an influential series of papers by Fama and French (1992; 1993; 1995;
1996), who show that the following two additional factors summarize well a number
of empirical findings:

High-Minus-Low (HML) The difference between the return on a portfolio of
high-book-to-market stocks and the return on a portfolio of low-book-to-market
stocks.22

20 Starting from the late-1960’s, a huge literature has emerged aiming at testing the validity of the
CAPM; see Campbell et al. (1997) for an overview.
21 Technically, the CAPM is derived from equilibrium considerations whereas the APT is derived
from a more fundamental “absence of arbitrage” principle; these minutiæ make little difference
from a statistical estimation standpoint.
22 The precise definition is slightly technical and appears in Fama and French (1996).
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Small-Minus-Big (SMB) The difference between the return on a portfolio of
small-capitalization stocks and the return on a portfolio of large-capitalization
stocks.

Put together, Fama and French argue that a model of the form

E[Ri −R f ] = βiE[RM −R f ]+ siE[SMB]+hiE[HML]

can account for a large fraction of the cross-section of returns, and obtain times-
series regression R2 in the 0.90–0.95 range. The only factor significantly unac-
counted for is the short-run price momentum, which is empirically analyzed by
Carhart (1997).

Since the late 1990’s, several large commercial factor models have become avail-
able, the best known of which is perhaps Barra’s fundamental multifactor risk model
for United States equities (Barra, 1998), which includes 13 risk indices and 55 in-
dustry groups.

2.7.2 Factor Models in Covariance Matrix Estimation

The estimation of covariance matrices for portfolios of many assets is a hard prob-
lem. As an illustration, consider the Russell 1000 index, whose sample covariance
matrix

Σ̂ =
1

T −1

T

∑
t=1

(Rt − µ̂)(Rt − µ̂)′

contains 500,500 distinct entries;23 an analysis with the tools of random matrix

theory shows that for such large matrices, only a few eigenvalues of the sample
covariance matrix carry information, the rest being the result of noise (Laloux et al.,
1999; Malevergne and Sornette, 2005b). This observation gave rise to a number
of schemes to add structure to the estimator, often relying on shrinkage methods

that attempt to find an optimal compromise between a restricted and unrestricted
estimators (§2.8/p. 29).

An obvious application of factor models is to the estimation of covariance matri-
ces. This approach can be traced back to a suggestion by Sharpe (1963), and relies
on the factor decomposition of eq. (2.15). Assume that firm-specific residual returns,
εi, are uncorrelated for two different firms,

E[εiε j] =

{

0, i 6= j,

σ2
i , i = j.

The covariance between returns Ri and R j is obtained from eq. (2.15) as

23 Obtained as 1000×1001/2.
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Cov[Ri,R j] =
M

∑
k=1

Cov[βi,kFi,β j,kFj]+Cov[εi,ε j]

=
M

∑
k=1

βi,kβ j,k Cov[Fi,Fj]+δi, jσ
2
i ,

where δi, j is the Kronecker delta. This expression illustrates that under a factor
model of returns, the covariance between arbitrary assets depends only on the co-

variance matrix between the individual factors, which (for the small number of fac-
tors used in practice) is a much more tractable quantity to estimate with statistical
reliability. Current methods for covariance modeling are reviewed by Fabozzi et al.

(2006) and Qian et al. (2007).

2.7.3 Factor Models in Expected Return Estimation

Forecasting expected asset returns is recognized as notoriously difficult — so much
so that this apparent unforecastability gave rise to the Efficient Market Hypothesis
(EMH) and a famous proof that prices should fluctuate randomly (Cootner, 1964;
Samuelson, 1965; Fama, 1970). Empirically, it is often observed that the simplest
predictors, a constant based on the historical average return or even the constant
zero,24 perform the best out of sample. More recently, with advances in computing
power and improvements in the quality and quantity of available data, mounting ev-
idence has started to accumulate in favor of some very small forecastability (Lo and
MacKinlay, 1999), possibly arising from market imperfections. However, exploiting
any residual forecastability, especially when accounting for trading costs, remains
of the utmost challenge.

Factor models can provide some direction in this respect and are generally used
by relating the returns at time t with the observed factors at the same time, and
then positing a dynamical model for making forecasts of the factors themselves.
It is common to utilize a Vector Autoregressive (VAR) model for establishing the
dynamics (Hamilton, 1994), yielding an overall forecasting model specified as

Rt = α +β ′
Ft + εR,t

Ft+1 = a+BFt + εF,t+1,

where a is a vector and B is a matrix of first-order autoregression factors.
An example that has received wide attention is the forecastability of stock returns

by the dividend yield.25 Brandt (2004) estimates the following parameters for the

24 Which is surprisingly effective in the case of daily stock returns.
25 The first evidence is presented in Campbell and Shiller (1988) and Fama and French (1988);
Campbell (1991) presents an interesting decomposition of stock returns wherein he shows that
unexpected stock returns must be associated with changes in expected future dividends or expected
future returns, and attributes a third of the variance in U.S. unexpected returns over the 1927–88
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quarterly returns of the value-weighted CRSP26 index

[
re

t+1
dt+1 − pt+1

]

=







0.2049
(0.0839)

−0.1694
(0.0845)







+







0.0568
(0.0249)

0.9514
(0.0251)







(dt − pt)+

[
ε1,t+1

ε2,t+1

]

(2.16)

[
ε1,t+1

ε2,t+1

]

∼ N

([
0
0

]

,

[
0.0062 −0.0060

−0.0060 0.0063

])

,

where re
t denotes the log excess return of the index and dt − pt is the log dividend

yield, computed from the log of the trailing-twelve-month sum of monthly divi-
dends dt and the current index level pt .27 In parenthesis are the Newey and West
(1987) standard errors. These results serve to illustrate that whatever forecastability
remains, although statistically significant over a long sample, remains low.

2.7.4 Other Expected Return Forecasting Models

A different angle on forecasting models for equities is provided by the fundamental

analysis of a firm’s fair value. The starting point in this line of study is the dividend

discount model (DDM), introduced by Williams (1938), stating that the price of one
share of stock should be given by the sum of discounted future dividend payments,

Pt = Et

[
∞

∑
τ=1

Dt+τ

(1+Rt+τ)τ

]

, (2.17)

where Dt is the dividend to be paid in (future) period t and Rt are discount rates.28

It should be noted that the discount rate is generally higher than the prevailing risk-
free rate and reflects the market’s expectations on the prospects of future dividend
payments; a greater risk on the dividend stream entails a higher discount rate. In
other words, it can be viewed as the rate of return that investors require for bear-
ing the risk of holding the equity. Consider a simplification wherein we keep the
discount factor constant (i.e. not time-varying, but still unknown) with value R and
assume a constant growth rate g for dividends,29 Dt+1 = Dt(1+g) = D1(1+g)t−1,

period to the first component, a third to the second, and the final third to their covariance. For use
of the dividend yield in an asset allocation context, see e.g. Kandel and Stambaugh (1996) and
Brennan et al. (1997).
26 Center for Research in Security Prices, based at the University of Chicago; www.crsp.com.
27 The estimation period in this example is from April 1952 to December 1996, and the results are
fairly stable across different estimation periods.
28 This model can be adapted to a similar free cash flow relationship for stocks that do not pay
dividends.
29 This hypothesis is valid, for instance, under the scenario where a business grows its earnings at
a constant rate and maintains the same dividend payout ratio.

www.crsp.com
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which allows to write

Pt = Et

[
∞

∑
τ=1

Dt+τ+1(1+g)τ−1

(1+R)τ

]

= Et

[
Dt+1

R−g

]

.

This is referred to as the Gordon (1962) growth model. Now assuming that price
Pt is observed on the market and that R independent of Dt+1 (the latter is generally
a quite well ascertained quantity), the expected implied discount rate—thence the
implied expected return on the security—can be solved for as

Et [R] =
Et [Dt+1]

Pt

+g.

Unfortunately, this model is very sensitive to inaccuracies in its inputs, and for this
reason, so-called residual income valuation models (RIM) have been proposed that
exploit the fundamental accounting clean surplus relationship linking the balance
sheet and income statement

Bt = Bt−1 +Et −Dt , (2.18)

where Bt is the firm’s book value per share at time t and Et the earnings per share
generated during period t. This states that the period-to-period variation in the firm’s
value is given by increases resulting from the period activities (net earnings) minus
payments to shareholders (dividends) (Edwards and Bell, 1961; Ohlson, 1995). De-
fine the “abnormal” earnings, assuming a constant discount factor R, as

Ea
t

△
= Et −RBt−1;

in this context, R can be interpreted as the required return on equity expected at the
start of each period. This relationship, in conjunction with eq. (2.18), allows to write
the dividends for period t as

Dt = Ea
t −Bt +(1+R)Bt−1.

Substituting in eq. (2.17), we obtain

Pt = Et

[
Dt+1

1+R
+

Dt+2

(1+R)2 + · · ·
]

= Et

[
Ea

t+1 −Bt+1 +(1+R)Bt

1+R
+

Ea
t+2 −Bt+2 +(1+R)Bt+1

(1+R)2 + · · ·
]

= Bt +Et

[
∞

∑
τ=1

Ea
t+τ

(1+R)τ

]

= Bt +Et

[
∞

∑
τ=1

Et+τ −RBt+τ−1

(1+R)τ

]

.
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Under some assumptions, Philips (2003) derives the following expression for the
expected returns

Et [R] =
Et [Et+1]−gBt

Pt

+g,

where Pt and Bt are readily available and Et+1 is often estimated by analysts that
follow a stock.30 The growth rate g can conservatively be taken as the growth of
nominal GDP.31 Claus and Thomas (2001) find relationships based on residual in-
come valuations to be much less sensitive to errors than the Gordon model.

The topic of expected return forecasts is much richer than this brief overview can
provide. In particular, we must omit treatment of a sizable literature on the infor-
mation regarding the implied probability distribution of returns that option markets
provide (e.g. Pan and Poteshman 2006; Aït-Sahalia and Brandt 2007). A review of
several recently-proposed methodologies for forecasting expected returns appears
in Satchell (2007).

2.8 Forecast Stability and Econometric Issues

A longstanding critique of Markowitz’s mean-variance method of portfolio choice
stems from the often-observed erratic nature of the optimal weights: unless expected
returns are “perfectly matched” to the covariance matrix, it is frequent to arrive at
corner solutions wherein a small number of assets get allocated most of the weight,
with problem constraints strongly governing the obtained solution. It almost appears
as if the theory’s foundational goal of efficient diversification of investment32 some-
how gets lost along the way. Moreover, the obtained solutions tend to be unstable,
both cross-sectionally (small changes to the forecasts have a large impact on the
weights) and over time (optimal portfolios often change drastically from one period
to the next, leading to important costs due to turnover).

Michaud (1989) argues that extreme and unstable portfolio weights are inher-
ent to mean-variance optimizers due to forecast estimation error: by virtue of mere
statistical fluctuation, large positive (negative) weights are assigned to assets that
have large positive (negative) estimation error in expected return and/or large neg-
ative (positive) error in variance. This arises because in the classical mean-variance

30 Analyst forecasts of earnings have themselves long been subject to investigation, including
the early work of Crichfield et al. (1978) and Givoly and Lakonishok (1984), who generally find
forecasts to improve as the earnings publication date approaches. More recently, Friesen and Weller
(2006) consider a Bayesian framework in which analysts constantly revise their forecasts based on
newly-revised information; in this context, the authors report strong evidence of biases, including
overconfidence and cognitive dissonance biases.
31 For firms whose capital structure consists of a mixture of equity and debt, this is indeed a very
conservative assumption. The growth rate of nominal GDP would normally characterize the return
on the firm’s assets. In contrast, the return on equity—the quantity represented by g—would be
magnified by the firm’s financial leverage, i.e. its use of debt.
32 The subtitle in Markowitz’s 1959 treatment of the subject.
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paradigm, forecasts are totally disconnected from optimization: the former are
“plugged into” the latter (hence the name plug-in estimates), and in a sense the
optimizer “does not know” that the forecasts are but point estimates that also have
an associated standard error. This led Michaud to his bon mot that mean-variance

optimizers act as statistical error maximizers.

Michaud (1989), Jobson and Korkie (1980), Best and Grauer (1991) and Chopra
and Ziemba (1993) study the impact of estimation uncertainty, where it is often
observed to be much larger than that of asset risk itself. In particular, the plug-in
estimates are found to be extremely unreliable, their performance dropping rapidly
as the number of assets increases. This led to a variety of approaches to “robus-
tify” the optimal portfolios, including shrinkage estimators, Bayesian approaches,
resampling methods and robust optimization, summarized next. It should be noted
that the practitioner’s little-told secret of imposing optimization constraints, such as
those reviewed in §2.6/p. 17, already serves to stabilize the portfolio by truncating
extreme weights, and was confirmed by Frost and Savarino (1988) to generally im-
prove performance. In this context, constraints can be interpreted as providing a post

hoc regularization of the estimator, a point elaborated upon by Jagannathan and Ma
(2003).

A very complete review of the literature on the econometrics of portfolio choice
appears in Brandt (2004).

2.8.1 Shrinkage Estimators

It is known since Stein (1956) that biased estimators often have better finite-sample
properties (lower sample variance) than unbiased ones.33 In particular, consider esti-
mating the mean of an N-dimensional (N ≥ 3) multivariate normal distribution with
known covariance matrix Σ , subject to the quadratic loss function

L(µ̂,µ) = (µ̂ −µ)′Σ−1(µ̂ −µ),

where µ is the true mean. In this context, the usual sample mean µ̂ is not the best
estimator (James and Stein, 1961). The James-Stein shrinkage estimator

µ̂JS = (1−w)µ̂ +w µ0 ι , 0 < w < 1,

exhibits a lower quadratic loss, where µ0 is an arbitrary “common” constant and
is called the shrinkage target. The optimal trade-off between bias and variance is
achieved by

w∗ = min

(

1,
(N −2)/T

(µ̂ −µ0ι)′Σ−1(µ̂ −µ0ι)

)

.

33 This bias–variance trade-off is related to the notion of capacity control which is studied in depth
in machine learning; see, e.g. Bishop (2006) and Hastie et al. (2009) for textbook treatments.
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More generally, shrinkage methods involve the combination of an unstructured esti-
mator (with a large number of degrees of freedom and likely high sample variance)
and a highly structured one (with a small number or even zero degrees of freedom).
Jobson and Ratti (1979) and Jorion (1986) have studied them in a portfolio context,
demonstrating that their benefits carries to the estimation of expected returns and
obtain good performance of the resulting portfolios. Similarly, Frost and Savarino
(1986) and Ledoit and Wolf (2004) apply them to the estimation of covariance ma-
trices. Brandt (2004) suggests applying shrinkage estimation directly to the opti-
mal portfolio weights, where the shrinkage target can be some ex ante reasonable
weights such as 1/N or those of a benchmark portfolio.

2.8.2 Bayesian Approaches

In contrast to the “plug-in” approaches presented previously which sought to obtain
the single best estimates of the next-period return mean and variance, a Bayesian or
decision-theoretic approach would explicitly carry the estimation uncertainty to the
optimization. Consider an explicit parametrization of the next-period return distribu-
tion, P(R |θ), in terms of a parameter vector θ , allowing us to rewrite the expected
utility maximization, eq. (2.11), as

w∗(θ) = argmax
w

∫

R
U(w′R)dP(R |θ).

A Bayesian investor would not commit to a single choice of parameter vector θ ,
but would instead consider the posterior distribution of parameters, given by Bayes’
rule as

P(θ |D) =
P(D |θ)P0(θ)

P(D)
,

where D is some data (obviously only known up to before the start of the fore-
cast period) and P0(θ) is a (subjective) prior distribution on parameter values. The
investor’s subjective distribution of asset returns, given the data, is obtained by
marginalizing out the parameters,

P(R |D) =
∫

θ
P(R |θ)dP(θ |D),

yielding to reformulating the expected utility maximization problem for finding op-
timal portfolio weights as

w∗ = argmax
w

∫

θ

[∫

R
U(w′R)dP(R |θ)

]

dP(θ |D).

This approach to portfolio choice was pioneered as early as the 1960’s by Zellner
and Chetty (1965) and further studied by Klein and Bawa (1976) and Brown (1978).
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More recently, the notion of a “learning investor” was revisited in the context of the
increasing evidence on the (mild) predictability of returns in works by Kandel and
Stambaugh (1996) and Barberis (2000); see §3.5/p. 55.

2.8.3 The Black-Litterman Model

A different path to Bayesian estimation relies on the implications of an underlying
economic equilibrium model, which can serve to provide the “prior” in a portfolio
choice context. This is embodied in the Black and Litterman (1992) model, widely
used by practitioners. Our presentation of this model draws from Fabozzi et al.

(2006).
Consider the expected-return relationship for asset i given by the CAPM (§2.7.1/p. 23),

Π i = E[Ri −R f ] = βiE[RM −R f ], (2.19)

where βi is obtained as a regression coefficient,

βi =
Cov[Ri,RM]

σ2
M

,

with σ2
M the variance of the market portfolio. We shall denote by wM the weights of

the market portfolio, such that its return can be written as

RM =
N

∑
j=1

wM, jR j.

Then eq. (2.19) can be rewritten as

Π i = βiE[RM −R f ]

=
Cov[Ri,RM]

σ2
M

E[RM −R f ]

=
Cov[Ri,∑

N
j=1 wM, jR j]

σ2
M

E[RM −R f ]

=
E[RM −R f ]

σ2
M

N

∑
j=1

wM, j Cov[Ri,R j],

or in matrix form,

Π = δ Σ wM with δ =
E[RM −R f ]

σ2
M

.

Although the true expected asset returns µ are unknown, we can posit that the equi-
librium model provides a sensible approximation in the form of
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Π = µ + εΠ , εΠ ∼ N(0,τΣ), (2.20)

where τ ≪ 1 is a small constant.34 We can view εΠ as a “confidence interval” in
which the true expected returns are approximated by the equilibrium model: a small
τ implies a high confidence in the equilibrium estimates and vice versa.

Now suppose that the investor holds particular views on some assets or combi-
nations of assets; examples are “the expected return of asset i will be x percent”, or
“asset j will outperform asset k by z percent”. Each view has an attached confidence

reflecting how strongly the investor believes them. We can formally express the K

views as a vector q ∈ R
K ,

q = Pµ + εq, εq ∼ N(0,Ω), (2.21)

where P is a K ×N matrix of view combinations and Ω is a K ×K matrix of view
confidences. For example, in a universe of N = 3 assets, the investor may believe
that

• Asset 1 will have a return of 1.5%.
• Asset 3 will outperform asset 2 by 4%.

This yields the following form for the views

[
1.5%
4%

]

=

[
1 0 0
0 −1 1

]




µ1
µ2
µ3



+

[
εq,1

εq,2

]

,

for some view confidence matrix Ω , which is commonly diagonal. Both eq. (2.20)
and (2.21) are expressed in terms of the unknown expected returns µ . The Black-
Litterman model uses the mixed estimator of Theil and Goldberger (1961) to com-
bine the information from two data sources—here the equilibrium model and the
investor views—into a single posterior estimator. Start by “stacking” the two equa-
tions as follows,

y = Xµ + ε, ε ∼ N(0,V)

where

y =

[
Π
q

]

, X =

[
IN

P

]

, V =

[
τΣ

Ω

]

.

We can rely on a standard generalized least squares (GLS) estimator (Greene, 2007)
to arrive at the Black-Litterman estimator for expected returns,

34 Values in the neighborhood of 0.1–0.3 often give satisfactory results for U.S. equities.
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µ̂BL = (X′V−1X)−1X′V−1y

=

(
[
IN P′]

[
(τΣ)−1

Ω−1

][
IN

P

])−1
[
IN P′]

[
(τΣ)−1

Ω−1

][
Π
q

]

=

(
[
IN P′]

[
(τΣ)−1

Ω−1P

])−1
[
IN P′]

[
(τΣ)−1Π

Ω−1q

]

=
[
(τΣ)−1 +P′Ω−1P

]−1 [
(τΣ)−1Π +P′Ω−1q

]
.

This estimator is then used with the standard mean-variance problem formulation,
e.g. eq. (2.2) or eq. (2.7). Practical experience with this model, documenting the
much greater stability of the resulting portfolio weights than would otherwise be ob-
tained, is related in Bevan and Winkelmann (1998), Litterman (2003), and Fabozzi
et al. (2006).

2.8.4 Portfolio Resampling

The Black-Litterman estimator still operates before portfolio optimization takes
place; its benefits can be traced to a reduced “impedance mismatch” between the
expected return estimator and the associated covariance matrix. In contrast, portfo-
lio resampling techniques (Michaud, 1998; Scherer, 2002) attempt to make direct
use of the forecast distribution of returns by repeatedly drawing a large number
of (expected-return , covariance-matrix) pairs, and for each computing an efficient
frontier, namely a set of (portfolio-return , portfolio-risk ) pairs, over some reason-
able risk range. Then those efficient frontiers are averaged over all drawings, and
the resulting frontier used to make an allocation decision. Markowitz and Usmen
(2003) compare this approach to one similar to the Bayesian approach of p. 31 and
observe a good performance of the resampling approach.

A practical limitation to the approach is with respect to portfolio constraints:
in general, there is no guarantee that the averaged portfolio weights (after resam-
pling) will obey the inequality constraints set in the original optimization problem.
Also, due to the high number of optimization steps it requires, it is computationally
expensive.

2.8.5 Robust Portfolio Allocation

In recent years, several reformulations of the mean-variance problem have received
wide attention that attempt to incorporate estimation uncertainty within the op-
timization step—not “before”, as for the Black-Litterman model, or “around” as
for portfolio resampling. They are collectively known as robust optimization tech-
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niques, and are related to minimax estimators in decision theory.35 Robust methods
in mathematical programming were introduced by Ben-Tal and Nemirovski (1999)
and further studied in a portfolio choice context by Goldfarb and Iyengar (2003)
and Tütüncü and Koenig (2004) among others. Fabozzi et al. (2007) provides a
good survey of the current literature.

The starting point of these approaches is to consider the uncertainty set of the
model parameters (the next-period expected returns and their covariances for a port-
folio problem) and to ask: “what is the worst-case realization of model parameters
that can arise?”, and from there to maximize the utility of this worst-case outcome.
Consider the simplest type of uncertainty region given in the form of “box” intervals

U = {(µ,Σ) : µL < µ < µU ,Σ L < Σ < ΣU ,Σ ≻ 0},

where in this context the < operator should be interpreted elementwise for both
vectors and matrices.

The robust portfolio problem with quadratic utility is expressed as

max
w

{

min
(µ,Σ)∈U

µ ′w−λw′Σ w

}

which for the above form of the uncertainty region separates out as

max
w

{

min
µ∈U µ

µ ′w+ max
Σ∈U Σ

λw′Σ w

}

.

This can be expressed as a saddle-point problem and solved in polynomial time
(Halldórsson and Tütüncü, 2003). Simpler results can be obtained by considering
other types of uncertainty sets; for instance, when only uncertainty in expected re-
turns is considered, the box constraints reduce to a quadratic program of nearly
the same complexity as the original mean-variance problem; similarly, an ellip-
soidal constraint set yields a second-order cone program (SOCP), which is efficiently
solved by interior-point methods (Boyd and Vandenberghe, 2004). More recently,
Bertsimas and Pachamanova (2008) studied a number of robust optimization ap-
proaches to the multiperiod portfolio problem (see next section) in the presence of
transaction costs; in particular, they advocate linear formulations that yield signifi-
cant computational savings.

2.8.6 Portfolio Robustness: a Synthesis?

In light of the large variety of proposed methods for improving the performance
of mean-variance allocation, one may wonder if a particular method turns out to
be “best”. To the author’s knowledge, a systematic comparison between all of the

35 Robust optimization should not be confused with robust estimation in statistics, devoted to
establishing the properties of outlier-resistant estimators.
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approaches presented in this section has yet to be published. However, an element
of insight has recently been provided by DeMiguel et al. (2009), who compare 14
different models on a number of datasets (including U.S. and world equity markets)
on three criteria: the out-of-sample Sharpe ratio, certainty equivalent return (from
the perspective of a mean-variance investor) and portfolio turnover. On these mea-
sures, it is found that none of the “sophisticated” models consistently beat the naïve

1/N benchmark (uniform portfolio weights), out of sample. These results suggest
that, for the models considered, estimation error still largely dominates any gains
obtained from “optimal” diversification.



Chapter 3

Multiperiod Problems

Life can only be understood backwards; but it must be

lived forwards.

— Søren Kierkegaard

MULTIPERIOD PROBLEMS consider the more general case where an investor
makes a sequence of decisions, each possibly impacting the following ones.

The objective is to find, at each period, the allocation decision that take into consid-
eration a future changing opportunity set (i.e. availability of assets and their risk–
return characteristics), the remaining investment horizon, eventual transaction costs,
and other constraints such as the desire for intermediate consumption, minimization
of tax impact, or the influx of additional capital due to labor income. These deci-
sions, in general, are not identical to those obtained under the myopic (one-period)
case, although they can be under specific assumptions (see §3.3/p. 48); more often,
we shall see that the optimal solution is constructed from the myopic one as a start-
ing point which is perturbed by a hedging demands term to account for “the future”.
This term makes the obtained portfolio policies differ from iterated single-period
ones.

Although Markowitz (1959) discussed the use of dynamic programming to solve
the sequential optimal portfolio choice problem (using a time-separable log-utility
of consumption as the objective function), he disregarded its more systematic appli-
cation as computationally unfeasible:

“For the actual choice of portfolio, however, the dynamic programming techniques cannot
be used. They require too much both from man and machine: 1. From the investor they
require a utility function U(C1,C2, . . . ,Ct). [...] It is no small task to derive a reasonable
single period utility function. [...] To attempt to derive a representative utility function for
consumption over time, if feasible at all, is nothing short of a major research project. 2. Even
with the simplest of utility functions, the requirements for the dynamic programming com-
putation are far beyond economic justification.” (p. 278)

37N. Chapado , Portfolio Choice Problems: An 
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Just as the single-period problem, the multiperiod generalization has a rich history,
albeit a more academic one.1 Samuelson (1969) and Merton (1969) are generally
credited with posing the general multiperiod consumption and investment problem,
Samuelson in discrete time (§3.1/p. 38) and Merton in continuous time (§3.2/p. 45),
although Mossin (1968) had previously studied the multiperiod portfolio choice
problem (without a consumption aspect). Earlier closely related work includes To-
bin (1965) and Phelps (1962) who considers the lifetime utility associated with a
consumption history.

After introducing these foundations, we review classical results on the structure
of optimal policies (§3.3/p. 48) including a discussion of the optimality conditions
of the myopic policy. They are seen to be strongly impacted by the expected evo-
lution of the investment opportunity set, namely the risk-reward characteristics of
available assets. We give passing mention of an elegant alternative to dynamic pro-
gramming based on the martingale formulation (§3.4/p. 49) and models that ex-
plicitly incorporate consideration of investor learning behavior (§3.5/p. 55). We end
this section by giving pointers to common extensions (§3.6/p. 56) that have been
proposed.

3.1 The Discrete-Time Case

Consider the problem where at each time-step t = 0,1,2, . . . ,T − 1 the investor
makes a portfolio choice wt wherein he tries to intertemporally maximize the ex-
pected utility of wealth at the final time T , U(W (T )), given a current wealth Wt ∈R,

max
w0,w1,...,wT−1

Et

[
U(W (T ))

]
, (3.1)

subject the the budget constraint

Wt+1 = Wt(1+w′
tRt+1 +(1−w′

t ι)R f ,t), W0 given. (3.2)

This constraint describes the dynamics of wealth, specifying that the total relative
return experienced during period t + 1 arises from the allocation wt to risky assets
and the remainder (1−w′

t ι) from the risk-free asset; note that the latter quantity can
be negative, in which case the investor borrows at the risk-free rate.2 We also require
wealth to be always nonnegative, Wt ≥ 0. Given a sequence of decisions {wτ}T−1

τ=t ,
it is useful to observe that the terminal wealth WT can be written as a function of
current wealth Wt ,

1 To the author’s knowledge, multiperiod optimization has yet to be used in the day-to-day man-
agement of an institutional portfolio. This, perhaps, can be attributed to the perceived small gains
of the approach compared to its complexity and the remaining inevitable overall portfolio risk.
2 A more complex constraint can account for differing lending and borrowing rates.
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WT = Wt

T−1

∏
τ=t

(
1+w′

τ Rτ+1 +(1−w′
τ ι)R f ,τ

)
. (3.3)

Consistent with a formulation by dynamic programming (Bellman, 1957; Bert-
sekas, 2005), it is convenient to express the expected terminal wealth in terms of a
value function, varying according to the current time,3 current wealth Wt and other
state variables zt ∈ R

K ,K < ∞,

V (t,Wt ,zt) = max
{wu}T−1

u=t

Et

[

U(WT )
]

= max
wt

Et

[

max
{wu}T−1

u=t+1

Et+1

[

U(WT )
]
]

(3.4)

= max
wt

Et

[

V (t +1,Wt+1,zt+1)
]

, (3.5)

subject to the budget constraint (3.2) and the recursive base case

V (T,WT ,zT ) = U(WT ).

The expectations at time t, above, are taken with respect to the joint distribution
of asset returns and next state, conditional on the information available at time t,
P(Rt+1,zt+1 |Ft). For our purposes, it shall be sufficient to assume a first-order
Markov process for this, such that

P(Rt+1,zt+1 |Ft) = P(Rt+1,zt+1 |Rt ,zt);

this assumption is not overly restrictive in practice since zt can contain (a finite
number of) lagged values of relevant variables.

In what follows, we shall use the notation fi(·) to denote the partial derivative of
function f with respect to the i-th argument, e.g.

V2(t
′,W ′,z′)

△
=

∂V

∂W

∣
∣
∣
∣
t=t ′,W=W ′,z=z′

.

From eq. (3.5), the first-order conditions for optimality at each time t are obtained
as

0 = E

[

V2(t +1,Wt+1,zt+1)
∂Wt+1

∂wt

]

= E

[

V2

(

t +1,Wt

(
1+w′

tRt+1 +(1−w′ι)R f ,t

)
,zt+1

)

Rt+1

]

, (3.6)

3 Regarding notation, many treatments of finite-horizon discrete-time dynamic programming (e.g.
Bertsekas 2005) simply consider a set of value functions indexed by the current time-step, Vt ;
here we specifically include time as an explicit variable to preserve notational consistency with the
continuous-time treatment in §3.2/p. 45.
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These optimality conditions assume that the state variable zt+1 is not impacted by
the decision wt .4 The second-order conditions are satisfied if the utility function is
concave.

Mossin (1968) studied this problem under the assumption of independence of
returns across time-steps, no transaction costs and no intermediate consumption.
He derived conditions for which the myopic policy can be optimal (§3.3/p. 48).
Samuelson (1969) studied the related problem in which the investor derives utility
from intermediate consumption and tries to maximize both the discounted utility of
the consumption stream and the utility of terminal (“bequeathed”) wealth.5

3.1.1 Power Utility

In general, (3.6) can only be solved numerically. However, some analytic progress
can be achieved in the case of the power utility,

U(W ) =

{
W 1−α

1−α , α 6= 1

lnW, otherwise,

where α is a coefficient of relative risk aversion. This is an example of a constant
relative risk aversion (CRRA) utility function, discussed in §2.4/p. 11. In this case
(assuming, for simplicity, α 6= 1), substituting in eq. (3.4), we obtain

V (t,Wt ,zt)=max
wt

Et

[

max
{wτ}T−1

τ=t+1

Et+1

[W 1−α
T

1−α

]
]

=max
wt

Et




 max
{wτ}T−1

τ=t+1

Et+1

[
(

Wt ∏
T−1
τ=t

(
1+w′

τ Rτ+1 +(1−w′
τ ι)R f ,τ

))1−α

1−α

]





=max
wt

Et

[
(

Wt

(
1+w′

tRt+1 +(1−w′
t ι)R f ,t

))1−α

1−α
︸ ︷︷ ︸

U(Wt+1)

×

max
{wτ}T−1

τ=t+1

Et+1

[( T−1

∏
τ=t+1

(
1+w′

τ Rτ+1 +(1−w′
τ ι)R f ,τ

))1−α
]

︸ ︷︷ ︸

ψ(t +1,zt+1)

]

.

4 This would disregard, for instance, the market impact of trading for large market players. Kissell
and Glantz (2003) consider market impact at length.
5 Samuelson imposes the “greedy granny” condition, i.e. a zero-bequest requirement as a boundary
condition.
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In the next-to-last expression, the specific form of the power utility allows Wt to be
factored out of the maximizations since it is not impacted by the decision variables
{wu}T−1

u=t+1. Hence, the last expression shows that the value function factors out into
two parts: a first one, that depends on future wealth, and equal to the utility of next-
time-step wealth, U(Wt+1), and a second one that only depends on remaining time
horizon and future state variables zt+1, but not future wealth. This can further be
reduced by writing

V (t,Wt ,zt) =
(Wt)

1−α

1−α
ψ(t,zt)

where ψ(t,zt) satisfies Bellman’s equation in a smaller state space,

ψ(t,zt) = max
wt

Et

[
(
1+w′

tRt+1 +(1−w′
t ι)R f ,t

)1−α
ψ(t +1,zt+1)

]

, (3.7)

with recursive base case

ψ(T, ·) = 1. (3.8)

If the returns are Independent and Identically Distributed (IID), the above joint ex-
pectation between returns and state variables splits out as

ψ(t,zt) = max
wt

{

Et

[
(
1+w′

tRt+1 +(1−w′
t ι)R f ,t

)1−α
]}

Et [ψ(t +1,zt+1)] , (3.9)

where it is readily seen that the optimal portfolio weights at each time-step are inde-
pendent of the state variables and remaining time horizon, thence must be constant.
Put differently, for IID returns (and power utility), there is no difference between the
dynamic and myopic portfolios; this property is revisited in §3.3/p. 48.

3.1.2 Numerical Example

Given a model of the conditional return distribution, the Bellman equations (3.7)–
(3.8) can be solved numerically. For a power-utility investor, on a two-asset problem—
shifting wealth between a riskless bond and a single risky asset—and using the
generative model of eq. (2.16), conditioning excess return on dividend yield, some
instructive results appear in Fig. 3.1.6

The left panel shows the fraction of wealth invested in the risky asset as a func-
tion of the initial dividend yield—in effect at the time of making the forecast—and
various investor risk aversion levels, for the single-period problem (horizon=1). The

6 The simulations are carried out by estimating the expectation in (3.7) by Monte Carlo sampling
with 2500 trajectories. Maximization is performed by numerical optimization using Mathematica
6’s built-in NMaximize function for constrained maximization without necessitating the avail-
ability of gradients.
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plot clearly shows that lower-aversion individuals shift their allocation very rapidly
for increasing forecasted returns (as indicated by the dividend yield) in the risky
asset: this corresponds to an increased propensity for market timing as risk aversion
decreases.

The right panel illustrates the horizon effects that arise in the presence of return
forecastability (but are, as noted above, absent when returns are assumed IID). It
shows the allocation to the risky asset as a function of investment horizon, for vari-
ous initial (i.e. first-period) dividend yields and a constant risk aversion α = 5. No
matter how bleak the immediate prospects for risky returns are (i.e. low dividend
yield), a long-horizon investor allocates more to the risky asset than a short-horizon
one, since the returns will eventually revert to their unconditional mean over a long
period; however, in the model of eq. (3.7), this mean-reversion takes time due to the
high autocorrelation in the (log) dividend yield.

A more complete picture of the optimal policy, and associated value function, is
given in Fig. 3.2.

3.1.3 The Mean-Variance Multiperiod Criterion

Surprisingly, it has been only relatively recently that a multiperiod analog to the
mean-variance problem received a thorough solution in the discrete-time case.7

Li and Ng (2000) analyzed various formulations of the maximization of terminal
quadratic utility under several hypotheses, provided explicit solutions in simplifying
cases, and derived analytical expressions for the multiperiod mean-variance efficient
frontier (a concept that had, until that point, received no attention in the multiperiod
case).

More specifically, considering the N-risky-asset case as previously, the form of
the mean-variance optimization problem follows the minimum-variance formula-
tion (2.2)–(2.4) or the utility-maximization formulation (2.7)–(2.8), with the excep-
tion that the objective function is expressed in terms of terminal wealth instead of
portfolio relative return. For instance, the utility formulation takes the form

max
{wt}T−1

t=1

E[WT ]−λ Var[WT ] (3.10)

subject to Wt+1 = Wtw
′
t(1+Rt+1) (3.11)

ι ′w = 1, (3.12)

where the initial wealth W0 is given. The derivation of optimal solutions is compli-
cated by the fact that the objective is not time-separable (in the dynamic program-
ming sense), but analytical solutions exist if asset returns are assumed independent
between periods; they do not need to be identically distributed, provided that all
future return means and covariance matrices are known ahead of time. Obviously,

7 In continuous time, the problem was solved by Korn and Trautmann (1995) and Zhou (2000).
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Fig. 3.1 Top: Fraction of wealth invested in the risky asset for the two-asset problem as a function
of the initial dividend yield, for an investment horizon of one period (one quarter, in this case) and
various investor risk aversion levels (α). Bottom: Fraction of wealth invested in the risky asset as
a function of the investment horizon, for various initial dividend yields and constant risk aversion
α = 5.

the estimation methodology of §2.7/p. 23 can be put to bear for this task. Moreover,
§3.5/p. 55 connect these mildly unrealistic assumptions with the fact that in a mul-
tiperiod setting, the optimal policy depends on the fact that we expect to learn more
about the asset return distribution in the future.

Leippold et al. (2004) provided an interpretation of the solution to the multi-
period mean-variance problem in terms of an orthogonal set of basis strategies, each
with a clear economic interpretation. They use this analysis to provide analytical
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Fig. 3.2 Top: Optimal policy (fraction of capital invested in the risky asset) as a function of time-
to-maturity (years) and initial dividend yield, for an investor with a constant risk-aversion α = 5.
Bottom: Value function under the same conditions.

solutions to portfolios consisting of both assets and liabilities. More recently, Cvi-
tanić et al. (2008) connect this problem to a specific case of multiperiod Sharpe ratio
maximization.
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3.2 The Continuous-Time Case

The continuous-time analysis is due to Merton (1969; 1971) and illustrates the an-
alytical tractability of the approach; Merton’s seminal papers consider the joint op-
timization of investment and consumption decisions, including a number of varia-
tions such as the effect of wage income and alternative stochastic processes. Our
succinct exposition draws from Brandt (2004) and for simplicity, only consid-
ers the maximization of the terminal utility of wealth—disregarding intermediate
consumption—and assumes that all assets are driven by log-diffusion processes (ge-
ometric Brownian motion) and can be traded continuously without friction (transac-
tion costs, taxes) or consideration of background risk (general economic downturn,
unemployment risk).8 Despite this simplified setting, the results obtained are suffi-
ciently illuminating to convey noteworthy intuition about the structure of the optimal
multiperiod portfolio choice.

In continuous time, the problem formulation is identical to the discrete-time ob-
jective (3.1), except that instead of making a discrete set of decisions, a continu-
ous allocation trajectory must be found, subject to a continuous-time budget con-
straint. We shall assume, for 0 ≤ t < T, t ∈ R, that the N risky asset prices Pt and
K-dimensional state vector zt evolve jointly according to correlated Itô vector pro-
cesses,9

dPt

Pt

= (µP(zt , t)+ r f )dt +DP(zt , t)dBP
t (3.13)

dzt = µz(zt , t)dt +Dz(zt , t)dBz
t (3.14)

subject to the budget constraint

dWt

Wt

=
(
w′

t µ
P
t + r f

)
dt +w′

tD
P
t dBP

t (3.15)

where µP(zt , t) is the conditional mean excess return of the assets, DP(zt , t) is the
conditional N ×N price process diffusion matrix, µz(zt , t) is the conditional drift
of the state variables, and Dz(zt , t) is the conditional K ×K state process diffusion
matrix. For readability, we drop the explicit conditioning on (zt , t) in what follows,
and use a simple t subscript for the previous quantities. The diffusion matrices DP

t

and Dz
t respectively induce covariance matrices Σ P

t and Σ z
t within the price process

Pt and state process zt . Furthermore, we assume that the underlying Brownian pro-

8 See §3.6/p. 56 for references to the many extensions that have been proposed to address these
restrictions. See Merton (1990) and Duffie (2001) for more formal treatments of the material in
this section.
9 This section assumes some familiarity with stochastic differential equations; see §A.3/p. 74 for a
review of Itô’s lemma, used in the derivations to follow.
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cesses BP
t and Bz

t are related by a time-varying N ×K correlation matrix ρ t .
10 The

notation dPt/Pt should be interpreted as elementwise differentiation.
To derive the continuous-time Bellman equation, we can proceed informally as

follows (see Merton (1971) for a more complete treatment). We obtain it as the limit
as ∆ t → 0 of the discrete-time Bellman equation (3.5). First the equation is rewritten
as

0 = max
wt

Et

[
V (t +1,Wt+1,zt+1)−V (t,Wt ,zt)

]

and we replace the transition to the “next” time-step by an interval ∆ t,

0 = max
wt

Et

[
V (t +∆ t,Wt+∆ t ,zt+∆ t)−V (t,Wt ,zt)

]
,

which yields, in the limit of ∆ t → 0,

0 = max
wt

Et

[
dV (t,Wt ,zt)

]
. (3.16)

We can then mechanically apply Itô’s lemma (A.20) (see p. 76) to the value function
to derive (for notational convenience, V is used in place of V (t,Wt ,zt) when no
confusion is possible)

dV = V1dt +V2dWt +V3dzt+

1
2

V2,2 dW 2
t +V2,3 dWt dzt +

1
2

V3,3 dz2
t ,

where, as previously, the notation Vi denotes the partial derivative of V with respect
to the i-th argument (note that V1 and V2 are scalars, whereas V3 is a K-vector).
Substituting dzt and dWt respectively from eq. (3.14) and (3.15) and applying the
usual rules for the product of differentials11 we obtain

dV = V1dt +V2Wt(w
′
t µ

P
t + r f )dt +V2Wtw

′
tD

P
t dBP

t +

V ′
3µz

t dt +V ′
3Dz

t dBz
t +

1
2

V2,2W 2
t w′

tD
P
t INDP ′

t wtdt+

Ww′
tD

P
t ρ ′

tD
z ′V2,3dt +

1
2

tr
[
Dz

t IKDz ′
t V3,3

]
dt.

Taking expectations, substituting back into eq. (3.16), dividing left and right sides
by dt, and rearranging terms, we obtain the continuous-time Bellman equation,

10 Note that the elements within both dBP
t and dBz

t are uncorrelated; all the “inner” correlation
structure within the processes Pt and zt is induced though the off-diagonal terms in the diffusion
matrices DP

t and Dz
t .

11 Namely,

(dt)2 = 0, dt (dB
{P,z}
t )i = 0,

(dBP
t )i(dBP

t ) j = δi, jdt, (dBz
t )i(dBz

t ) j = δi, jdt, (dBP
t )i(dBz

t ) j = ρ i, jdt.
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0 = max
wt

[

V1 +Wt(w
′
t µ

P
t + r f )V2 + µz ′

t V3+

1
2

W 2
t w′

tΣ
P
t wtV2,2 +Wtw

′
tD

P
t ρ ′

tD
z ′
t V2,3 +

1
2

tr
[
Σ z

t V3,3
]]

(3.17)

subject to terminal conditions V (T,WT ,zT ) = U(WT ). The first-order conditions for
optimality are obtained as a stationary point of eq. (3.17) with respect to wt ,

µP
t V2 +WtV2,2Σ P

t wt +DP
t ρ ′

tD
z ′
t V2,3 = 0,

which can explicitly be solved for the optimal portfolio weights

w∗
t = − V2

WtV2,2

(
Σ P

t

)−1
µP

t

}

Myopic
Portfolio

− V2

WtV2,2

V2,3

V2

(
Σ P

t

)−1
DP

t ρ ′
tD

z ′
t

}

Hedging
Demands

(3.18)

The “myopic portfolio” term corresponds to the solution of the one-period problem
and is equivalent to eq. (2.10). The factor −V2/(WtV2,2) represents the investor’s
relative risk tolerance (reciprocal of the relative risk aversion). The “hedging de-
mands” term corresponds to an additional demand for risky assets resulting from
changes in the investment opportunity set. It depends on the following factors:

• Non-constant state variables (the Dz
t matrix must be non-zero);

• Correlation between state variables and risky-asset prices (ρ t );
• How strongly the changes in state variables zt affect the utility of wealth (V2,3

factor).

If any of those factors is zero, hedging demands disappear and only the myopic
portfolio remains. Hence, the presence of hedging demands depends on the ability
of state variables to capture (instantaneous) changes in the asset price process. The
marginal utility of wealth with respect to the state variables (V2,3/V2) chooses the
appropriate trade-off between the myopic and hedging terms. Brandt (2004) offers
the following interpretation on the relationship between state variable and asset price
processes: “The projection

(
(Σ P

t )−1DP
t ρ ′

tD
z ′
t

)
delivers the weights of K portfolios

that are maximally correlated with the state variable innovations and the derivatives
of marginal utility with respect to the state variables measure how important each
of these state variables is to the investor. Intuitively, the investor takes positions in
each of the maximally correlated portfolios to partially hedge against undesirable
innovations in the state variables.”

Merton (1973) presents a very elegant version of the CAPM wherein all investors
are assumed to be intertemporal maximizers (as opposed to single-period Markowitz
maximizers as in the original CAPM; see §2.7.1/p. 23) and considers equilibrium
relations among expected returns; as such, he derives solutions for the price of risk
that are quite different from the CAPM’s market β . In particular, it is shown that even
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though a risky asset exhibits no “systematic” (or market) risk, it can earn a return
different from the risk-free rate due to the hedging demands introduced above.

3.3 Structure of Optimal Solutions

A major concern in the classical analyses is with respect to the structure of opti-

mal solutions. In continuous time, the problem can be solved analytically only for
a handful of special cases; for instance, in the case of the power utility, one can
assume—just as for discrete-time—a separable solution of the form

V (t,Wt ,zt) =
W 1−λ

t

1−λ
ψ(t,zt), (3.19)

which can be substituted in eq. (3.18) to yield optimal portfolio weights, and then
in Bellman’s equation (3.17) to yield a partial differential equation involving only
ψ(·, ·),

ψ1 +(1−λ )(w∗′
t µP

t + r f )ψ + µz ′
t ψ2 −

λ (1−λ )

2
w∗′

t Σ P
t w∗

t ψ

+(1−λ )w∗′
t DP

t ρ ′
tD

z ′
t ψ2 +

1
2

tr
[
Σ z

t ψ2,2
]

= 0, (3.20)

with boundary condition ψ(T, ·) = 1.
Merton (1971) derived explicit solutions for the Hyperbolic Absolute Risk Aver-

sion (HARA) family of utility functions (see §3.6.2/p. 56), which encompass the
power utility case. In particular he showed that, for log-normally distributed as-
sets and solving the case of the more general optimal consumption and investment
problem,12 that optimal consumption and investment policies have a form linear in
current wealth,

C∗
t = a(t)Wt +b(t), w∗

t Wt = g(t)Wt +h(t),

with a,b,g,h at most functions of time, if and only if the investor’s utility functions
on both consumption and terminal wealth belongs to the HARA family.

In more recent work, Kim and Omberg (1996) derive closed-form solutions for
a number of specific parametrizations of the HARA utility in the case of a constant
risk-free rate and a single risky asset with a stochastic risk premium following an
Ornstein–Uhlenbeck (mean-reverting) process.13

12 See §3.6/p. 56.
13 The risk premium is the excess return (over the risk-free rate) paid by the market for enticing
investors to hold a risky asset.
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3.3.1 Logarithmic Utility

Just as for the single-period problem, the logarithmic utility brings useful simplifi-
cation in the multiperiod case. Logarithmic utility is a limiting form of the power
utility where λ = 1. Substituting in eq. (3.20) yields the simplified equation

ψ1 + µz ′
t ψ2 +

1
2

tr
[
Σ z

t ψ2,2
]

= 0,

subject to the boundary condition ψ(T, ·) = 1. It is obvious that the constant function
ψ(·, ·) ≡ 1 is a solution. Substituting in eq. (3.18), we see that the hedging demands
term disappears (since V2,3 ≡ 0), leaving as the optimal solution only the myopic
portfolio

w∗
t =

(
Σ P

t

)−1
µP

t .

A similar result also obtains in the discrete-time case. We now review the conditions
under which the optimal multiperiod choice is in fact the myopic portfolio.

3.3.2 When is the Myopic Policy Optimal?

Mossin (1968) examines the conditions for which the myopic portfolio choice is
optimal.14 From the results of eq. (3.9), eq. (3.18) and the previous section, we can
summarize the conditions for optimality of the myopic policy as follows:

• The investment opportunities are fixed (for example, in the case of IID returns).
• The investment opportunities vary with time, but are unhedgeable; in this case,

the ρ t correlation matrix between state variables and asset returns is zero in
eq. (3.18), and the induced hedging demands are also zero.

• The investor has a logarithmic utility on terminal wealth, as shown in the previous
subsection.

3.4 The Martingale Formulation

The martingale formulation for optimal portfolios was introduced by Pliska (1986),
Karatzas et al. (1987) and Cox and Huang (1989; 1991), and relies on a method-
ology established by Harrison and Kreps (1979) in the context of contingent claim
valuation. Quite remarkably, this approach admits nearly the same class of problems
as the optimal control formulation of §3.2/p. 45, yet dispenses with the arduous non-
linear Bellman partial differential equation (3.17), requiring solution only to a static

14 Recall that the myopic choice at time t depends only on the investment opportunity set and
investor wealth at that time, disregarding future opportunities completely; in discrete time, it is
equivalent to optimizing over the last period in the horizon.
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optimization problem (and auxiliary sub-problems, all much easier than eq. (3.17)).
In a sense, it transforms an optimal control problem into a far simpler constrained
optimization problem.

The approach is reviewed in some detail by Merton (1990, Chapter 6) and con-
trasted to the dynamic programming formulation. Because of its astuteness, we take
time to outline the main ideas of the method, drawing from Merton’s presentation
but focusing on maximizing the utility of terminal wealth, omitting intermediate
consumption.

3.4.1 The Growth-Optimum Portfolio

Let Wt be the value at time t of a portfolio that reinvests all earnings. Let ACCR(t,T )
be the average continuously compounded return of the portfolio between times t and
T ,

ACCR(t,T )
△
=

1
T − t

log
[WT

Wt

]

.

Consider the trading strategy that maximizes this quantity; the resulting portfolio
is called a growth-optimum portfolio. It is easy to see that it arises from having a
log-utility on terminal wealth, U(WT ) = logWT , since

Et

[
ACCR(t,T )

]
=

Et

[
logWT − logWt

]

T − t

∝ Et

[
logWT

]
− logWt

where Wt is known at time t and of no impact in the optimal strategy. From the
results of §3.3/p. 48, we have that the optimal portfolio weights in the risky assets,
w

g
t , can be written as

w
g
t = (Σ P

t )−1µP
t (3.21)

where Σ P
t is the instantaneous covariance matrix between asset returns at time t

and µP
t is the vector of instantaneous expected excess asset returns. The fraction

allocated to the risk-free asset is 1−∑
N
i=1(w

g
t )i.15 As established previously, the

growth-optimal portfolio rule is myopic.
Let Xt be the value of the growth-optimum portfolio at time t. From the posited

asset-price dynamics of eq. (3.13), the dynamics of Xt are given as

dXt =

[

w
g ′
t

[dPt

Pt

− r f dt
]

+ r f dt

]

Xt

= (µ̄2 + r f )Xt dt + µ̄Xt dz, (3.22)

15 As always, a negative fraction corresponds to borrowing at the risk-free rate.
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where µ̄2 △
= µP ′

t (Σ P
t )−1µP

t and dz
△
= µP ′

t (Σ P
t )−1DP

t dBP
t /µ̄ follow from eq. (3.21).

The increment dz is a standard Wiener process.

3.4.2 The Cox-Huang Method

In continuous-time, if there is no intervening consumption, the optimal portfolio
choice problem can be formulated as

max
{wt}T

t=0

E0
[
U(WT )

]
, (3.23)

subject to the budget constraint (3.15) and feasibility restriction Wt ≥ 0 for all t ≤ T .
The dynamic programming solution studied previously expresses the optimal solu-
tion in a “feedback control” form, wherein the action depends on the current state of
the process being controlled, w∗

t = w∗(t,Wt ,Pt) (omitting other state variables zt for
simplicity). The expectation at time 0 is taken with respect to the joint distribution
of asset prices Pt and current wealth dynamics Wt .

Now consider a different problem specified as

max
{wt}T

t=0

Ẽ0
[
U(ŴT )

]
(3.24)

subject to ŴT ≥ 0,

X0Ẽ0

[ŴT

XT

]

≤W0, (3.25)

where Xt is the value of the growth-optimum portfolio at time t, as defined previ-
ously. The expectation Ẽ is taken with respect to the joint distribution of asset prices
Pt and values of the growth-optimum portfolio Xt . In particular, it does not include
consideration of current wealth or other aspects of the controlled process. This im-
plies that the optimal terminal wealth function Ŵ ∗

T ≡ H(T, X̂T ,PT ;X0,W0,P0) will

not have a “feedback control” form, since portfolio choices {wt}T
t=0 and thence the

wealth trajectory Ŵt have no bearing on the asset price process Pt or value of the
growth-optimum portfolio Xt .16 Put differently, eq. (3.24) can be solved by using
the Karush-Kuhn-Tucker (KKT) conditions for static constrained optimization.

The connection between problems (3.23) and (3.24) is established by the follow-
ing result by Cox and Huang (1991):

Theorem 1 (Cox–Huang Equivalence). Under quite mild regularity conditions,

there exists a solution to (3.23) if and only if (a) there exists a solution to (3.24),
and (b) WT = Ŵ ∗

T .

In-depth economic intuition behind this result is provided by Merton (1990, Chap-
ter 16). In the remainder of this section, we derive the optimal portfolio rule w∗

t that

16 Assuming negligible market impact.
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arises from solution to eq. (3.24). We start by incorporating the constraints into the
objective by way of Lagrange multipliers,

max
{wt}T

t=0,λ1,λ2

Ẽ0

[

U(ŴT )+λ1

[

W0 −
X0ŴT

XT

]

+λ2ŴT

]

, (3.26)

where λ1,λ2 ≥ 0. For all Xt and Pt (having positive probability in the above expec-
tation), the first-order condition for optimality is written as

U1(ŴT ) = λ1
X0

XT

−λ2. (3.27)

The substantive analysis can proceed assuming that constraint (3.25) is binding with
equality, for otherwise the investor’s initial wealth is sufficient to ensure satiation
given his utility function, and the optimal policy is therefore to invest in the riskless
asset.17 The assumption of non-satiation ensures that for any terminal wealth WT ,
we have strictly positive marginal utility U1(WT ) > 0 and strict concavity of utility,
U1,1(WT ) < 0. Non-satiation in turn implies that the shadow price of wealth, λ1, is
strictly positive in eq. (3.26).

From the KKT condition18 λ2Ŵ ∗
T = 0 and eq. (3.27), we have

λ2 = max
[

0,λ1
X0

XT

−U1(0)
]

. (3.28)

Furthermore, since U1,1(·) < 0, U1 is invertible. Let R(y)
△
= U−1

1 (y). From eq. (3.27)
and (3.28), we determine the optimal terminal wealth to be

Ŵ ∗
T = R

[

λ1
X0

XT

−max
[

0,λ1
X0

XT

−U1(0)
]]

= R

[

max
[

λ1
X0

XT

,U1(0)
]]

= max

[

R
[

λ1
X0

XT

]

,R
(
U1(0)

)
]

= max

[

R
[

λ1
X0

XT

]

,0

]

, (3.29)

taking advantage of the monotonicity of R(·) to exchange R and max in the third
step. The solution to Ŵ ∗

T only requires the determination of λ1. As indicated above,
this is possible assuming that constraint (3.25) is binding with equality. Under this
condition, substituting eq. (3.29) in (3.25) yields the following transcendental alge-
braic equation

17 See Merton (1990, p. 174) for a detailed argument.
18 See, e.g., Luenberger and Ye (2007) for more details on the KKT conditions for constrained
optimization.
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Ẽ0

[max
[

R
[
λ1

X0
XT

]
,0

]

XT

]

− W0

X0
= 0

whose solution for λ1 depends only on the initial conditions and can be expressed
as λ1 = λ1(X0,P0,W0). For compactness, we shall express Ŵ ∗

T as

Ŵ ∗
T ≡ H(T,XT ,PT ), (3.30)

noting that the implicit functional dependence of H on X0, P0, and W0 is omitted for
simplicity. We can derive the optimal portfolio strategy w∗

t as follows. Define the
function F(t,Xt ,Pt) as

F(t,Xt ,Pt)
△
= Xt Ẽt

[
H(T,XT ,PT )

XT

∣
∣
∣
∣
Xt ,Pt

]

.

From (3.25), we have that F(0,X0,P0) = W0. At an arbitrary time t, assuming the
investor acts optimally since time 0, he faces from time t the same problem (3.24)–
(3.25) faced from time 0,

max
{wτ}T

τ=t

Ẽt

[
U(ŴT )

]
(3.31)

subject to ŴT ≥ 0,

Xt Ẽt

[W̃T

XT

]

≤Wt . (3.32)

Because eq. (3.30) is an intertemporal optimum, it must be the case that H is also the
rule the investor would follow as a solution to eq. (3.31) and assuming no satiation,
constraint (3.32) remains satisfied with equality. By the definition of F and (3.32),
we have

Wt = F(t,Xt ,Pt). (3.33)

From Itô’s lemma, asset-price dynamics (3.13) and the dynamics of the growth-
optimal portfolio Xt (3.22), we have, after some algebra, that the optimal wealth
dynamics are given by

dF = ᾱF dt +F2µ̄Xt dz+(F3 ⊙Pt)
′DP

t dBP
t (3.34)

with

ᾱF ≡ F1 +(µ̄2 + r f )XF2 +
1
2

µ̄2X2F2,2+

(F3 ⊙Pt)
′(µP

t + r f )+
1
2

Tr
[
F3,3Σ P

t

]
+X(F2,3 ⊙Pt)

′µP
t

where the ⊙ operator signifies element-wise multiplication of vector elements, i.e.

(x⊙y)i
△
= xi yi.
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Theorem 2 (Cox–Huang Optimal Weights). If there exists an optimal solution to

problem (3.24), Ŵ ∗
T , then for t ≤ T the optimal portfolio strategy {w∗

t } that achieves

this allocation is given by

w∗
t Wt = F2(t,Xt ,Pt)Xt w

g
t +F3(t,Xt ,Pt)⊙Pt (3.35)

with the balance of the investor’s wealth, 1− ι ′w∗
t , in the riskless asset, where w

g
t is

given by eq. (3.21).

Proof. Let {w∗
t } denote the optimal allocations in the risky assets. From eq. (3.15),

the dynamics of wealth under optimal allocation are given as

dW =
(
w∗′

t µP
t + r f

)
Wt dt +Wtw

∗′
t DP

t dBP
t . (3.36)

But from eq. (3.33), we must have dW − dF ≡ 0 for all t ≤ T , and comparing
eq. (3.34) and (3.36) this can be satisfied if and only if

ᾱF =
(
w∗′

t µP
t + r f

)
Wt (i)

and
F2µ̄Xt dz+(F3 ⊙Pt)

′DP
t dBP

t = Wtw
∗′
t DP

t dBP
t . (ii)

Replacing dz by its definition, we simplify the common terms DP
t dBP

t on both sides
of (ii) and obtain the result. ⊓⊔

By virtue of Theorem 1, the optimal weights found from eq. (3.35) are also those
that solve the original problem (3.23).

The only remaining hurdle in applying the method is to obtain the distribution
P(Xt ,Pt |X0,P0),0 ≤ t ≤ T , under which the expectation Ẽ can be evaluated. This
is possible by solving a backward Kolmogorov equation (Merton, 1990; Wilmott,
2006), a linear parabolic partial differential equation, itself much easier to solve than
the nonlinear Bellman equation.

Cox and Huang (1989) derive explicit solutions, in the presence of nonnegativity
constraints on consumption and final wealth, for hyperbolic absolute risk aversion
(HARA) utility functions when the asset prices follow a geometric Brownian motion.
The nonnegativity constraints cause the optimal policies to no longer be linear in the
moments of the return distribution. Wachter (2002) finds closed-form solutions for
mean-reverting returns when markets are assumed to be complete.

3.4.3 Implementation

A number of implementations of this method have been presented in the literature.
Cvitanić et al. (2003) introduce a relatively simple method based on pure Monte
Carlo simulation for approximating the expectations required for computing opti-
mal portfolios; their method assumes that asset-price and state variable dynamics
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are known. A different simulation approach, by Detemple et al. (2003), derives ex-
plicit components for the hedging demand terms of optimal portfolios using the
Malliavin calculus and generalizes earlier results by Ocone and Karatzas (1991);
the approach allows a large number of assets and state variables, assumed to fol-
low a diffusion process, to be used. The convergence and efficiency properties of
the Malliavin derivatives, in contrast to PDE and other Monte Carlo estimators, are
analyzed. In more recent work, Aït-Sahalia and Brandt (2007) use option-market
prices to directly infer state prices; they find significantly different optimal con-
sumption and investment policies than those arising from standard assumptions on
asset return dynamics.

Of a related flavor is the work by Brandt and Santa-Clara (2006) who consider
augmenting the asset space by a set of managed portfolios, both conditional portfo-

lios that are proportional to conditioning variables, and timing portfolios that invest
in one asset for one time period (at some point in the future) and do not invest
during other periods. These assets are similar in spirit to the Arrow–Debreu securi-
ties which form the theoretical foundation of the Cox–Huang method. Brandt and
Santa-Clara show that solving a static Markowitz mean-variance problem on the
augmented asset space can quite well approximate a dynamic strategy for medium-
term horizons (up to five years), despite being much simpler to implement.

3.5 Investor Learning

In the portfolio choice literature, “learning” generally refers to the investor’s gradually-
better modeling of the generating distribution of asset returns, which may be con-
ditional or not. In general, the optimal decision depends on the fact that we expect
to learn about future changes in expected returns, which induces a negative hedg-
ing demand in the risky asset.19 Kandel and Stambaugh (1996) and Barberis (2000)
examine how asset return predictability and parameter estimation uncertainty affect
the optimal allocations; both are found to induce sizable horizon effects, and bring
substantial allocation differences that are exacerbated at long horizons. Xia (2001)
discusses the effects of parameter uncertainty in a multiperiod context; it is found
that the opportunity cost of ignoring predictability or learning is quite substantial.
Brandt et al. (2005) propose a simulation approach to solve discrete-time dynamic
portfolio choice problems involving non-standard preferences, a large number of
assets and a large number of state variables, based on the well-known Longstaff
and Schwartz (2001) approximation method originally proposed in the context of
financial derivatives.

Finally, Skoulakis (2007) considers a fully Bayesian investor operating in dis-
crete time and that solves a portfolio choice problem while simultaneously updating
beliefs about the parameters of the generating distribution, considering that returns
may (partially) be predictable. He finds that in the presence of predictability, learn-

19 Put differently, this means that we desire less of the asset today, given that we expect to know
more about its distribution with more observations in the future.
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ing reduces, without completely eliminating, the positive hedging demands that are
normally induced by predictability.

3.6 Common Extensions

Beyond the basic multiperiod framework of Samuelson and Merton, a large num-
ber of extensions have been proposed to address the shortcomings of the original
formulations. In addition to the classical issues of consumption and labor income,
extensive work has been pursued in the areas of non-standard preferences and utility
functions, and characterization of the optimal policy in the presence of transaction
costs, taxes and other frictions.

3.6.1 Intermediate Consumption and Labor Income

Intermediate consumption has traditionally been part of the multiperiod optimal in-
vestment problem since Samuelson (1969) and Merton (1969). In these settings, the
problem is formulated so as to assume a single consumption good and postulates a
time-separable utility over consumption. In continuous time, the investor’s objective
is then to jointly maximize the utility of the consumption path and terminal wealth,

max
{Ct ,wt}T

t=0

E0

[∫ T

0
UC(Ct , t)dt +UT (WT )

]

,

where UC(·, ·) is the utility of the consumption rate Ct at time t, and UT is the utility
of the terminal wealth, subject to a modified budget constraint that accounts for
consumption,

dWt = Wt

(
w′

t µ
P
t + r f

)
dt −Ctdt +Wtw

′
tD

P
t dBP

t .

Non-stochastic labor income is just as easily incorporated by adding it into the bud-
get constraint, as was shown in Merton (1971). The problem of stochastic labor
income was treated by Koo (1998) and Viceira (2001) among others.

3.6.2 Non-Standard Preferences

Merton (1971) derives explicit solutions for the consumption–investment problem
when investors have a time-separable utility over a consumption C that can be ex-
pressed as

U(C, t) = exp(−ρ t)V (C),
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with ρ a discount factor and V a utility function whose absolute risk aversion is
positive and hyperbolic in its argument (i.e. belonging to the hyperbolic absolute

risk aversion, or HARA, family),

V (C) =
1− γ

γ

( βC

1− γ
+η

)γ
, (3.37)

subject to

γ 6= 1, β > 0,
βC

1− γ
+η > 0, η = 1 if γ = −∞.

With suitable choice of parameters, the HARA family encompasses both Constant
Absolute Risk Aversion (CARA) and Constant Relative Risk Aversion (CRRA) utili-
ties.

As discussed in §2.4/p. 11, CRRA preferences are the only ones for which as-
set proportions are independent of wealth, and this—along with its analytical
tractability—make it a popular choice in the literature. However, it can be shown
(e.g. Campbell and Viceira 2002) that utility functions of this class intrinsically link
the risk aversion with what is known as the elasticity of intertemporal substitution

(the propensity to substitute consumption between periods). For this reason, Ep-
stein and Zin (1989) introduced a class of recursive utility functions that generalize
the CRRA class and admit independent risk aversion and coefficient of intertemporal
substitution. Campbell and Viceira (1999) and Schroder and Skiadas (1999) analyze
portfolio and consumption choices under this more general class of utility functions.

In a different vein, there has been in recent years an explosion of studies in the
broad area of behavioral finance, where market participants are not assumed to al-
ways make rational choices.20 In an asset allocation context, Shefrin and Statman
(2000) apply the prospect theory of Kahneman and Tversky (1979) to construct a
behavioral portfolio theory (BPT) and show that, in general, the “behavioral” effi-
cient frontier does not coincide with the Markowitz one. In particular, BPT investors
are simultaneously risk averse and risk seeking, and construct portfolios that con-
sist of both bonds and lottery tickets. In recent work, Vlcek (2006) finds that in
a two-period setting, an investor governed by prospect theory is not prone to the
disposition effect,21 his behavior instead essentially being driven by loss aversion:
first-period gains cushion possible future losses and encourage increased risk-taking
in the second period. Berkelaar et al. (2004) extend the martingale formulation of
§3.4/p. 49 to analyze the optimal investment strategy of loss-averse investors. Brandt
(2004) provides a broader survey of this literature.

20 For comprehensive reviews of this vast field, see, e.g. Shefrin (2002) and Montier (2002); in an
asset pricing context, Shefrin (2005) provides an in-depth treatment.
21 The disposition effect refers to the empirical tendency of investors to prematurely sell winners
and hold onto losers (Shefrin and Statman, 1985).
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3.6.3 Transaction Costs

In continuous time, the absence of transaction costs causes the investor to contin-
uously rebalance his portfolio, inducing an unrealistic level of trading activity. The
effect of transaction costs in the continuous-time framework has long been studied,
starting with Magill and Constantinides (1976) in the context of assets following a
geometric Brownian motion with a HARA utility function in the presence of pro-

portional costs (cf. eq. 2.12). They find that the optimal policy is characterized by
an “envelope” around the time-t optimal portfolio weights (the targets). The opti-
mal policy is not to trade when the current portfolio holdings are contained within
the envelope, but to rebalance up to the envelope (but not up to the target) when
they fall outside. This induces random, rather than continuous, portfolio rebalanc-
ing. This policy is found identical in functional form to the classical Bellman et al.

(1955) ordering policy for the infinite-horizon multi-commodity inventory problem
with proportional ordering costs. The intuitive justification for the presence of this
envelope is that when existing holdings are close the the optimal (the targets at time
t), there are only second-order utility gains to be made from adjusting the portfolio,
but first-order transaction costs to bear.

Taksar et al. (1988) and Davis and Norman (1990) also studied related prob-
lems in the one-asset case, the latter relating it to the solution of a nonlinear free
boundary problem. Cvitanić and Karatzas (1996) introduced a solution based on
the martingale approach. Shreve and Soner (1994) analyzed the problem in terms
of the viscosity solutions to the Hamilton-Jacobi-Bellman (HJB) equation. Leland
(2000) generalizes the study to the multi-asset case (and also simultaneously consid-
ers capital-gain taxes), in the context of a portfolio implementation problem faced by
a practitioner in which the target weights are provided exogenously. He character-
izes an approximate no-trade region in terms of the 2N corner points of the boundary
surface. For a long time, it remained a practical problem that the runtime of the best
existing solution methods to the HJB equation would grow super-exponentially with
dimension N (the number of assets in the portfolio), making them impractical for
portfolios of more than about N = 4 assets. Recently, Muthuraman and Zha (2008)
proposed a simulation-based approach to tackle this problem which scales polyno-
mially in dimension, while providing close fits to existing solutions.

The problem of fixed transaction costs was addressed by Eastham and Hast-
ings (1988) in an optimal consumption–investment context; they derive a solution
through quasi-variational inequalities of the value function. A numerical solution
method was proposed by Atkinson et al. (1997) that scales well to moderate-sized
portfolios (30 assets). Liu (2004) considered the case of a constant absolute risk
aversion (CARA) investor dealing with both fixed and proportional transaction costs;
his analysis reveals that costs can reduce the significance of asset return predictabil-
ity on optimal portfolio rules.

Finally Morton and Pliska (1995) considered trading costs that are proportional
to a fixed fraction of portfolio value, purely as a means to discourage frequent
trading; they relate the solution to that of a stopping time problem. However, this
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“proportional-to-wealth” cost structure seems quite disconnected from that faced by
real investors.

3.6.4 Taxes and Other Frictions

Capital gain taxes add another dimension to the transaction-cost issues. In many
jurisdictions, including the United States, capital gains made when an asset is sold
are taxable, although the tax rate may depend on the holding period of the asset
(making short-term holdings more subject to penalty), and have a basis for calcu-
lating the tax amount that depends on the price at which the asset was originally
bought (the tax basis). Furthermore, assets sold at a loss may offset gains from other
assets. In contrast to simple handling of transaction costs, which depend only on
local information, capital gain taxes complicate the solution of the backward dy-
namic programming equations (3.5) in the multiperiod case, since the buying price
of an asset is unknown when “solving back in time”. This can be overcome, ap-
proximately, by increasing the state space (recording, for each asset, not only the
amount held in the portfolio, but also the original buy-date and buy-price), although
this approach is clearly limited by the curse of dimensionality; moreover, an ex-
act solution formulation grows exponentially with the number of time periods.22

For single-period problems, Elton and Gruber (1978) first considered the question
of capital gain taxes. In a multiperiod setting, Dammon et al. (2001; 2004) and
Gallmeyer et al. (2006) approximate the tax basis by the weighted average purchase
price. DeMiguel and Uppal (2005) show how to use the exact tax basis using a non-
linear programming formulation, and report that the certainty-equivalent loss from
using an approximate basis is small. More recently, Osorio et al. (2008) apply a
multistage stochastic programming approach (§4.6/p. 66) to this problem.

Cvitanić (2001) reviews the substantial literature that applies the Martingale for-
mulation (§3.4/p. 49) to problems with frictions.

22 Which requires recording the buy-date and buy-price for every transaction.



Chapter 4

Direct and Alternative Methods for Portfolio
Choice

An economist is an expert who will know tomorrow

why the things he predicted yesterday didn’t happen

today.

— Laurence J. Peter

IN THE SPIRIT of the original Markowitz methodology, all the portfolio alloca-
tion methods covered up to this point follow a functional separation that can be

summarized as

1. Estimate the (conditional) distribution (or moments thereof) of asset returns,
from historical data and conditioning variables;

2. Construct an optimal portfolio (policy) by maximizing a utility function.

However, from a complete-system viewpoint, nothing prevents a more direct link
between conditioning variables and allocation decisions to be made. This can

be motivated from several perspectives. First, we already discussed (§2.8/p. 29) the
impact of estimation error on the stability of the resulting allocations, as well as
the complex arsenal of methods that have been proposed to remedy one aspect or
another of the problem. It can be shown that estimation errors compound in a mul-
tiperiod setting, making a bad problem worse (Brandt, 2004). Second, arguments
from statistical learning theory (Vapnik, 1998) can be made to the effect that to
solve problem X , given a limited amount of data (here, historical realizations of
financial series), one should not first attempt to solve a harder problem Y . In the
context of portfolio allocation, the really hard problem is the high-dimensional esti-
mation of the conditional distribution of asset returns (which involves at least O(Nk)
quantities, where N is the number of assets, and k is the number of moments in the
distribution that we wish to represent), whereas the asset allocation itself involves
only O(N) quantities—the weight to be given to each asset.

The idea of directly obtaining portfolio weights from explanatory variables has
first been explored in the machine learning community and has more recently
been studied in the financial economics literature as well. We also review “non-
allocation” approaches—mostly based on reinforcement learning—that do not at-
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tempt to produce a genuine allocation of capital among assets but rather output
a “long–short” decision aimed at short-term trading. Finally we conclude with an
overview of approaches based on stochastic programming, studied mostly in opera-
tions research.

4.1 Machine Learning Approaches

The first applications of supervised learning algorithms to financial decision-making,
and portfolio construction, problems have mainly focused on non-linear approaches
to forecasting (e.g. Weigend and Gershenfeld 1993).1 It goes without saying that
these are simply generalizations of linear factor models (§2.7.1/p. 23) and do not
sidestep the intrinsically difficult task of estimating the conditional distribution of
asset returns.

Starting in the mid-1990’s several asset-allocation approaches based on direct
maximization of financial criteria started to appear. Choey and Weigend (1997)
used a feedforward neural network (Rumelhart et al., 1986) trained to directly max-
imize a Sharpe Ratio criterion to make an allocation decision between one risky
(the DAX index of German stocks) and one riskless asset. Bengio (1997) trains a
neural network on a profit criterion that accounts for transaction costs using a dif-
ferentiable representation in the objective function, and compares against a network
trained to optimize a forecasting criterion (the mean-squared error) on a basket of
Canadian stocks; he reports significantly better out-of-sample risk-adjusted trading
performance in favor of the financial criterion. In related work, Ghosn and Bengio
(1997) analyze the parameter-sharing ability of multi-task learning to help improve
forecasting performance across a universe of stocks, where each stock is viewed as
a single task.

Chapados (2000) (see also Chapados and Bengio 2001) applied recurrent neu-
ral networks to a mean-VaR framework (cf. §2.5.3/p. 15), showing how the net-
work can be trained to directly maximize expected return while satisfying a target
portfolio risk constraint and minimize transaction costs. He compared against stan-
dard benchmarks including mean–variance optimization (where expected returns
are forecast with a feedforward neural network and the covariance matrix is ob-
tained by a standard RiskMetrics (1996) estimator) and obtains statistically signif-
icant out-of-sample financial performance in excess of the benchmark index when
allocating to the 14 sub-sectors of the Canadian TSE-300 index.

Dunis et al. (2006a; 2006b) report good out-of-sample performance results using
recurrent neural networks applied to trading commodity spread portfolios, beating
standard feedforward neural networks and other benchmarks.

Zimmerman and colleagues have worked for a number of years on multi-tiered
recurrent neural architectures that attempt to capture specific dynamical features

1 More recent work include books by Shadbolt and Taylor (2002), Dunis et al. (2003), and McNelis
(2005).
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of financial time series. Zimmermann et al. (2001) apply a non-linear generaliza-
tion of an ARMA(1,1) model, termed an error-correcting neural network (ECNN),
to forecast a set of price series. These forecasts are then subject to a second-level
parametrized allocation function that determines an allocation wt,i from a “softmax”
transformation on asset-weighted excess returns. Let ft,i be the expected-return fore-
cast produced at time t for asset i by the ECNN; the portfolio weight is given by the
second-level allocation function as

wt,i =
expet,i

∑
N
j=1 expet, j

,

where et,i is the weighted average “excess” return of asset i against all other assets

et,i =
N

∑
j=1

βi, j(ft,i − ft, j).

The parameters βi, j are optimized to maximize the in-sample total return subject to a
deviation constraint from a benchmark. The authors claim that assets giving unreli-
able forecasts have their associated β coefficients pushed to zero, thereby implicitly
controlling portfolio risk. They report risk-adjusted excess return on a stock–bond
allocation task among the G7 countries with respect to an (unspecified) benchmark.
More recently, the same group generalized these networks to operate at multiple
time scales and applied them to the forecasting of foreign exchange (Zimmermann
et al., 2006a,b).

4.2 Parametric Portfolio Policies

Brandt et al. (2007) introduce an approach where the portfolio weight given to a
stock directly depends on the specific features that characterize a stock though a
parametrized functional form, wi,t = f (xi,t ;θ). In particular, they consider linear
policies of the form

wi,t = w̄i,t +
1
Nt

θ ′x̂i,t ,

where wi,t is the weight of asset i at time t in the portfolio, w̄i,t is a benchmark
weight (e.g. 1/N or the weight in a capitalization-weighted market portfolio), θ is a
fixed vector of coefficients (to be estimated) and x̂i,t is a vector of stock-dependent
characteristics standardized cross-sectionally (at time t) to have a zero-mean and
unit-standard deviation across all stocks. By construction (due to the standardiza-
tion), the portfolio weights sum to one if the benchmark weights sum to one: the
“correction term” 1

Nt
θ ′x̂i,t can be interpreted as a direct specification of the active

risk of the position in asset i. The coefficients are optimized to maximize the ex-
pected utility of the one-period portfolio returns
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max
θ

Et

[
U(RP,t+1)

]
= max

θ
Et

[

U
( Nt

∑
i=1

f (xi,t ;θ)Ri,t

)]

,

where the expectation is evaluated empirically on past data. Note that the param-
eters θ are fixed across both time and stocks. Note also that the approach applies
effortlessly to a variable number of stocks during each period (indicated by the up-
per summation index Nt ). Using only three conditioning variables2 and all stocks
from the CRSP–Compustat database from 1964 to 2002, this simple method gener-
ates statistically significant out-of-sample returns in excess of the benchmark, after
transaction costs.

4.3 Nonparametric Portfolio Weights

Tying in more directly with the optimal multiperiod portfolio choice formulation,
Brandt (1999) considers the sample analogues of the first-order optimality condi-
tions3 given by eq. (3.6). For single-period portfolio choice, this equation can be
written

Et

[
U ′(w′

tRt+1)Rt+1
]
= 0.

The idea is to estimate this expectation by a sample analogue (historical data), use a
nonparametric estimator (Härdle, 1990) to weigh each observation according to how
“close” it is to a given test state variable z and numerically solve for the portfolio
weights wt that satisfy the equation,

ŵt(z) =

{

w :
1
T

T

∑
t=1

khT

(
zt − z

)
U ′(w′Rt+1)Rt+1 = 0

}

,

where khT
(·) is a kernel function (which we assumed is normalized), hT is a kernel

bandwidth parameter. The approach can be generalized to the multiperiod case by
backward induction, assuming a CRRA utility function.

Unfortunately, this approach suffers from the curse of dimensionality in the num-
ber of state variables. Aït-Sahalia and Brandt (2001) propose an approach wherein
an optimal linear projection down to a single state variable is found before applying
the above kernel regression. This can be used to perform variable selection at the
level of the state variables.

2 Consisting of (i) the log market equity, (ii) the log book-to-market ratio, and (iii) the lagged
one-year return, defined as the compounded return between months t −13 and t −2. The first two
variables are used six months after their nominal validity date to ensure an adequate delay for the
diffusion of financial statement information. Some experiments also added the slope of US interest
rates yield curve as a conditioning variable for the other three.
3 Also called Euler equations.
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4.4 “Non-Allocation” Approaches

We call “non-allocation” approaches those that do not aim at solving a full portfolio
problem (including taking advantage of diversification across assets) but perhaps the
simpler problem of deciding whether the investor should be “long” (buy) or “short”
(sell) in an asset. Most of the following approaches are based on reinforcement
learning and approximate dynamic programming (Bertsekas and Tsitsiklis, 1996;
Sutton and Barto, 1998; Si et al., 2004; Powell, 2007).4

Neuneier (1996) uses a Q-learning algorithm (Watkins and Dayan, 1992) to learn
the value function of a risk-neutral investor on the foreign-exchange and the stock
market; Neuneier (1998) and Neuneier and Mihatsch (1999) generalize the approach
to a multi-task setting and can derive multiperiod portfolio policies that account for
transaction costs and risk-averse utility functions.

Ormoneit and Glynn (2001) introduce a non-parametric estimator of the value
function for reinforcement learning and apply it to an allocation task between a
risky and risk-free asset under logarithmic utility, where the decision is discretized
(the fraction invested in the risky asset can be in the set {0,0.1,0.2, . . . ,1.0}) and
the state variable is proportional to the estimated risky asset volatility.

Moody et al. (1998) and Moody and Saffell (2001) introduce a “direct reinforce-
ment” approach that sidesteps learning the value function and directly learns an
allocation policy. They suggest an approximation scheme based on a Taylor series
expansion to optimize a Sharpe Ratio criterion, which normally does not lend itself
well to a reinforcement learning objective since it is not time-separable. More re-
cently, Hens and Wöhrmann (2007) revisited the method in the context of strategic
asset allocation between stocks and bonds for the US, UK, Germany, and Japan mar-
kets, for a power utility investor. The policy function is strictly determined by the
forecasted yield spread between stocks and bonds (determined from average histor-
ical returns), which constitutes the only input variable. The learned policy suggests
that this spread has significant explanatory power for market timing.

4.5 Information-Theoretic Approaches

Approaches based on information theory (Cover and Thomas, 2006) have also
been investigated, although not traditionally by the financial economics community.
Cover (1991) introduced universal portfolios which guarantee asymptotic perfor-
mance equal to the best (in hindsight) constant portfolio weights.5 Consider a fixed
portfolio w,∑N

i=1 wi = 1, and let Sk(w) be the cumulative portfolio return over a
fixed horizon t = 1 . . .k,

4 Note that this survey must omit coverage of the vast fields of “automated trading systems”. See,
e.g. Kaufman (1998), for an introduction.
5 Note that the strategy of keeping constant portfolio weights implies continuous rebalancing of
the portfolio to keep the actual portfolio weights equal to their (constant) targets: as prices change,
so do portfolio weights, which implies the necessity of rebalancing.
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Sk(w)
△
=

k

∏
t=1

w′(1+Rt).

Let S∗T be the maximum achievable wealth over a horizon-T given price sequence,

S∗T = max
w∈W

ST (w)

where W consists of the set of nonnegative-weight portfolios whose weights sum to
one,

W =
{

w ∈ R
N : wi ≥ 0,

N

∑
i=1

wi = 1
}

.

The UNIVERSAL portfolio strategy is simply defined as the performance-weighted
constant portfolio average over a past history, namely

ŵ1 =
( 1

N
,

1
N

, · · · , 1
N

)

and ŵk+1 =

∫

W
wSk(w)dw

∫

W
Sk(w)dw

.

Denote by ŜT the wealth achieved by the UNIVERSAL portfolio strategy over the
horizon T . Cover proved that for arbitrary bounded price sequences, the wealth
achieved by the UNIVERSAL strategy grows as that of the best constant portfolio
weights,6

(1/n) ln ŜT − (1/n) lnS∗T → 0.

Remarkably, this result does not depend on any statistical assumption on the behav-
ior of the price sequences. Cover and Ordentlich (1996) considered the addition of
side information (i.e. explanatory variables, albeit discrete ones) and obtains precise
bounds on the ratio of the wealth given by the universal portfolio to the best wealth
achievable by a constant rebalanced portfolio given hindsight. Ordentlich and Cover
(1998) extended the results to an adversarial setting with bounds on achievable
wealth in a game wherein a participant must announce a causal portfolio strategy
at the outset and an opponent is allowed to choose any stock market sequence and
the best constant rebalanced portfolio for that sequence.

Blum and Kalai (1998) addressed the original lack of consideration of transaction
costs in Cover’s formulation. In subsequent work, they also presented an efficient
randomized approximation of the original algorithm that overcomes its exponential-
time complexity (Kalai and Vempala, 2002).

4.6 Stochastic Programming Approaches

Stochastic programming7(Dantzig, 1955; Birge and Louveaux, 1997) is a general-
ization of mathematical programming to optimization problems involving random

6 Which is only known in hindsight and therefore unachievable.
7 Not to be confused with dynamic programming or stochastic dynamic programming.
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variables. A basic formulation of the problem is the following two-stage stochastic

linear program with fixed recourse,

min
x

c′x+Eξ

[
Q(x,ξ )

]
(4.1)

subject to Ax = b,

x ≥ 0,

where

Q(x,ξ ) = min
y

q′y

subject to Wy = h−Tx,

y ≥ 0

and ξ ′ △
= (q′,h′,vec(T)) and the matrix W is assumed fixed. This problem is inter-

preted as follows:

• The play unfolds in two acts, separated by the disclosure of a random variable
ξ .8

• In the first stage (decision-making), the decision-maker must choose variables x

to minimize a cost function made up of two parts: an immediate linear cost c′x
and an expected future cost Q(x,ξ ) (that is only known during the second stage).

• In the second stage (recourse), the decision-maker has been revealed the ran-
dom variable ξ and must act to minimize the consequences (second-stage cost
function Q) of this state of affairs.

Hence, in the first stage, the decision-maker acts ahead of time knowing that he will

act optimally in the second stage to make do as well as possible given the scenario
that just occurred. If the space of the random variable ξ is discrete (finite number of
scenarios), then the stochastic program (4.1) can be converted to a classical (albeit
large) deterministic linear program.

Extensions of the problem (4.1) to multiple decision stages are of course possi-
ble. To illustrate the application of the approach to asset allocation, we introduce
a simple example inspired by Birge and Louveaux (1997). We assume an alloca-
tion tasks between N assets, i = 1, . . . ,N over t = 1, . . . ,T discrete periods. Dur-
ing each period t, a scenario st may occur, which is defined by the realization of
random returns for all assets. More specifically, let ξ (i, t,s1, . . . ,st) be the random
return for asset i during period t for scenario st , which may also depend on all
previous realizations s1, . . . ,st−1. This yields a (non-recombining) scenario tree il-
lustrated in Fig. 4.1 (right). Furthermore, complete scenarios are given a probability
p(s1, . . . , pT ), which is used in the objective function (see below).

We assume that the investor is governed by the piecewise linear concave utility
function shown in Fig. 4.1 (left). This function can be interpreted as follows: at

8 The realization of this random variable is traditionally called a scenario in this context.
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Fig. 4.1 Left: Terminal utility function for the stochastic programming asset allocation example;
at the end of the investment horizon, if the wealth goal is reached, subsequent investment can be
made for a return of q% (e.g. in the risk-free rate), otherwise money must be borrowed at a rate
of r%. Right: Scenario tree driving the model; at each period t, the joint stock–bond return is
given by the scenario st . There is one decision node per period (large green circles), but decisions
may depend on the entire realized history so far (i.e. the tree does not recombine). The smaller
right-hand terminal nodes represent the final scenario outcomes.

horizon T the investor seeks to meet a financial goal G (for example, paying for
Junior’s college tuition). If this goal is met, the excess money can be invested at a
yield of q%, but if not, the missing money must be borrowed at a rate of r%. Initially,
the investor is endowed with W0 dollars.

At the start of period t, the investor must make an allocation decision for each as-
set i, which is denoted x(i, t,s1, . . . ,st−1), and represents the dollar amount invested
in asset i for the duration of the period. The “identity” of the decision variables de-
pend on the scenario history until that point, and corresponds to the larger nodes in
the scenario tree of Fig. 4.1.

The objective function is the value of the utility function realized for each com-
plete scenario, weighted by the probability of that scenario; since the utility is
piecewise-linear, it is split out into two terms by means of “surplus variables” w

and y corresponding, respectively, to borrowing at a rate of r% and investing at a
yield of q% (the surplus variables are defined as function of terminal wealth through
constraints, below),

max∑
sT

· · ·∑
s1

p(s1, . . . ,sT )(−rw(s1, . . . ,sT )+qy(s1, . . . ,sT )).

The scenario probabilities p(s1, . . . ,sT ) are specified by the modeler. The constraint
for the first period is to invest the totality of initial wealth,
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∑
i

x(i,1) = W0.

The middle-period constraints, for t = 2, . . . ,T −1, are budget balance constraints:
the wealth invested during period t must be that resulting from the investment during
period t − 1 (accrued by the yields earned during that period), with no possible
intermediate reinvestment,

∑
i

−ξ (i, t −1,s1, . . . ,st−1)x(i, t −1,s1, . . . ,st−2)

+ ∑
i

x(i, t,s1, . . . ,st−1) = 0, ∀s1, . . . ,st−1. (4.2)

The last-period constraints take the terminal wealth generated in each scenario and
split it among the surplus variables y and w for each scenario, depending on whether
the accumulated wealth in that scenario is above or below the goal

∑
i

−ξ (i,T,s1, . . . ,sT )x(i,T,s1, . . . ,sT−1)

− y(s1, . . . ,sT )+w(s1, . . . ,sT ) = G, ∀s1, . . . ,sT . (4.3)

We also force wealth to be positive in each period, along with the two surplus vari-
ables y and w,

x(i, t,s1, . . . ,st−1) ≥ 0 ∀i, t,s1, . . . ,st−1,

y(s1, . . . ,sT ) ≥ 0 ∀s1, . . . ,st−1,

w(s1, . . . ,sT ) ≥ 0 ∀s1, . . . ,st−1.

This completes the formulation of the multistage stochastic program for this (admit-
tedly simplified) asset allocation example. As presented, the optimization problem
can easily be transformed into a (deterministic) linear program, yet the method also
handles path-dependent events such as transaction costs and taxes (since the sce-
nario tree of Fig. 4.1 does not recombine).

Dantzig and Infanger (1993) discusses the solution of multiperiod portfolio prob-
lems in the stochastic programming framework, and present algorithms based on a
Benders decomposition of the linear program and Monte Carlo importance sam-
pling. A survey of stochastic programming approaches in finance is presented by
Yu et al. (2003). The book edited by Zenios (1993) provides additional useful refer-
ences.

Due to its ability to model the complex real-world dependencies, stochastic pro-
gramming has been widely applied to the problem of asset–liability management

where a portfolio does not only consist of investments (future incoming cash flows)
but also liabilities (future outgoing cash flows; for instance faced by an insurer
whose written policies represent liabilities to be paid in the future, and who has
reserves to invest optimally). Dempster et al. (2003) provide an in-depth presenta-
tion of the theory of stochastic programming to this problem, and followed up with
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an application to the management of minimum guaranteed return funds (Dempster
et al., 2007). The books edited by Zenios and Ziemba (2006) and Dempster et al.

(2008) contain recent material on this topic.
It is perhaps unfortunate that stochastic programming approaches to portfolio

optimization have mostly been studied by the operations research community, and
are relatively unknown to financial economists. One can argue that this may be at-
tributable to two factors: first, it was only recently that solution algorithms and com-
putational power have become sufficient to enable solution to large-scale problems;
still, the technological hurdle to get even simple stochastic programming models
working may remain prohibitive to some. Second, a traditional emphasis of the so-
lution methods studied by financial economists has been on the characterization of
compact optimal policies, with significant concern paid to analytical tractability.
Stochastic programming solutions, on the other hand, are mostly numerical and do
not necessarily convey as much insight into optimal behavior. Yet, there appears
to be much opportunity to combine the potential of multiple approaches, for in-
stance integrating the methodological maturity of single-period modeling (e.g. the
expected-return and risk models of §2.7/p. 23) with the ability of stochastic pro-
gramming to cleanly handle a large number of real-world investment constraints
over multiple periods.



Appendix A

Mathematical Complements

Little experience is sufficient to show that the tradi-

tional machinery of statistical processes is wholly un-

suited to the needs of practical research.

— Sir Ronald A. Fisher (1925)

A.1 Minimization of a Quadratic Form Under Linear Equality

Constraints

In §2/p. 7, we are faced with the problem of minimizing a quadratic form subject to
linear equality constraints,

w∗ = argmin
w

1
2

w′Σ w (A.1)

subject to Aw = b, (A.2)

where w ∈R
N ,Σ ∈R

N×N ,A ∈R
M×N ,b ∈R

M . Let λ ∈R
M be a vector of Lagrange

multipliers. We consider the Lagrangian function

L (w,λ ) =
1
2

w′Σ w+λ ′(Aw−b). (A.3)

The first-order conditions for optimality are obtained by differentiating (A.3) with
respect to each variable and setting the resulting functions to zero,

∂L

∂w′ = Σ w+A′λ = 0, (A.4)

∂L

∂λ ′ = Aw−b = 0. (A.5)
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This implies the following system of equation, which can be written as a partitioned
matrix equation

(
Σ A′

A 0

)(
w

λ

)

=

(
0

b

)

. (A.6)

Assuming that the inverse of
(

Σ A′
A 0

)
exists, the solution is given by

(
w

λ

)

=

(
Σ A′

A 0

)−1 (
0

b

)

. (A.7)

The inverse of the partitioned matrix is obtained as (cf. Greene 2007)1

(
Σ A′

A 0

)−1

=

(
Σ−1(I+A′FAΣ−1) −Σ−1A′F

−FAΣ−1 F

)

, (A.8)

with F = −(AΣ−1A′)−1. It can be shown that this inverse exists if Σ−1 exists and
A is of full rank. Substituting in eq. (A.7), we have

w = −Σ−1A′Fb (A.9)

= Σ−1A′(AΣ−1A′)−1b. (A.10)

A.2 Deriving the Tangency Portfolio

Consider the minimum-variance formulation of the mean-variance portfolio opti-
mization problem (cf. §2.1/p. 7),

min
w

1
2

w′Σ w (A.11)

subject to w′µ = ρ, (A.12)

w′ι = 1, (A.13)

where µ and Σ are respectively the vector of expected asset returns and covariance
matrix between asset returns (assumed to be nonsingular), and ρ is a target portfolio
return that remains unspecified. Let We be the efficient frontier, the set of all port-
folios solving this problem (obtained by varying ρ). The tangency portfolio is the
portfolio belonging to We having the largest return per unit of standard deviation,

w∗ = argmax
w∈We

w′µ√
w′Σ w

. (A.14)

1 This can be verified by direct multiplication, i.e.
(

Σ A′
A 0

)−1(Σ A′
A 0

)
= I.
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This portfolio is also seen as having a maximal Sharpe Ratio (Sharpe 1966, 1994).2

The tangency portfolio is obtained in two steps: (i) characterization of the efficient
frontier, and (ii) maximization of eq. (A.14).

A.2.1 Efficient Frontier

Portfolios on the efficient frontier are those that satisfy the following first-order
conditions for optimality, obtained by incorporating constraints (A.12) and (A.13)
into the objective through Lagrange multipliers and differentiating with respect to
w,

Σ w−λ1µ −λ2ι = 0,

yielding an optimal portfolio of the form

w∗ = Σ−1(λ1µ +λ2ι). (A.15)

The Lagrange multipliers are obtained by substituting this solution back into the
constraints, and must jointly satisfy

λ1µ ′Σ−1µ +λ2µ ′Σ−1ι = ρ (A.16)

and
λ1ι ′Σ−1µ +λ2ι ′Σ−1ι = 1. (A.17)

A.2.2 Maximization of the Sharpe Ratio

The first-order conditions for the solution of eq. (A.14) are obtained by differentiat-
ing with respect to w, yielding

µ√
w′Σ w

− w′µ

(w′Σw)3/2
Σw = 0,

which simplifies to

2 It should be noted that absent the sum-to-one constraint, pure maximization of the Sharpe Ratio
is an ill-posed problem. To see this, consider scaling the positions of portfolio P by a positive
constant γ . This yields Sharpe Ratio

SRγP =
E[γRP]

√

Var[γRP]
=

γE[RP]

γ
√

Var[RP]
= SRP.

Hence in order to maximize the Sharpe Ratio, it is necessary to choose the scaling factor, which
corresponds to establishing the target portfolio risk level. Alternatively, enforcing a sum-to-one
constraint specifies a risk level as well. Sharpe Ratio maximization, despite occasional claims to
the contrary, does not absolve one from specifying risk preferences.
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(w′µ)Σw = (w′Σ w)µ

and implies

w∗ =
w∗′Σw∗

w∗′µ
Σ−1µ. (A.18)

Since the tangency portfolio belongs to the efficient frontier, it must have the general
form given by eq. (A.15). Comparing with eq. (A.18), this is only possible if λ2 = 0.
Substituting into eq. (A.17), we obtain

λ1 =
1

ι ′Σ−1µ
,

which finally yields the desired functional form for the tangency portfolio,

w∗ =
Σ−1µ

ι ′Σ−1µ
.

This can be interpreted as follows: the numerator assigns weight to “virtual assets”
(formed by decorrelated linear combinations of the original assets) proportionally
of their individual expected-return/variance ratio, and transforms them back into the
space of original assets. The denominator acts as a normalization term (sum of the
elements) to ensure that the elements of w∗ sum to one.

If there is a risk-free asset, the same result obtains if we instead consider µ to
be the vector of expected excess asset returns. This amounts to shifting down the
efficient frontier by a constant equal to the risk-free rate.

A.3 Itô’s Lemma

Itô’s celebrated lemma (Itô, 1951) is central to any study of continuous-time finan-
cial models involving stochastic differential equations. It shows how to express the
differential of a (sufficiently smooth) function of a random process. Standard text-
books on stochastic calculus cover this material, such as Shreve (2005a, 2005b). Its
use in the context of continuous-time portfolio optimization appears in §3.2/p. 45.

A.3.1 Wiener Processes

Define the stochastic process Z(t) as

Z(t +h) = Z(t)+ y(t)
√

h,

where y(t) is a process of IID standard normal variables (i.e. zero-mean and unit
variance) and h > 0. It can be observed that Z(t + h) ∼ N(z(t),h). In the limit
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as h → 0, the increment Z(t + h)−Z(t) follows a standard Wiener process and is
defined as

dZ
△
= y(t)

√
dt.

The Wiener process serves as a building block of more complex processes in
continuous-time finance. For example, a simple process modeling the evolution of
stock prices (sometimes termed a geometric Brownian motion) is

dPt

Pt

= µ(t)dt +σ(t)dZ.

The interpretation of this equation is that the relative change in the price Pt of the
stock is given by the sum of a deterministic return µ(t) and a stochastic return
proportional to σ(t). Both µ(t) and σ(t) are here deterministic functions of time.
The process Pt is continuous but nowhere differentiable.

A.3.2 One-Dimensional Case

Consider the Markov random process X(t) specified as

dX(t) = µ(X(t), t)dt +σ(X(t), t)dZ(t),

where dZ(t) is a standard Wiener process, denoted

dZ(t) = u(t)
√

dt, u(t)
iid∼ N(0,1).

The functions µ(X , t) and σ(X , t) are, respectively, deterministic functions giving
the drift rate and volatility of the process.

Lemma 1. Let f : R× [0,∞] 7→ R a square-integrable function. Then the random

process f (X(t), t) is given by the differential

d f =
∂ f (X , t)

∂X
dX +

∂ f (X , t)

∂ t
dt +

1
2

∂ 2 f (X , t)

∂X2 (dX)2 (A.19)

where the product of differentials is given by the multiplication rules

(dZ)2 = dt, dZ dt = 0, (dt)2 = 0.

A.3.3 Multi-Dimensional Case

The generalization to the multi-dimensional case obtains readily. We shall consider
the case where the dimensionality of the process X(t) is the same as the underlying
sources of uncertainty. Let X(t) ∈ R

N be specified as
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dX(t) = µ(X(t), t)dt +σ(X, t)dZ(t),

where dZ(t) is a correlated Wiener process

dZ(t) = u(t)
√

dt, u(t)
iid∼ N(0,Γ )

with (Γ )i, j ≡ ρi, j is the correlation between variables Zi and Z j; we assume them to
have unit variance. The functions µ and σ are suitably generalized to be N-vector-
valued.

Lemma 2. Let f : R
N × [0,∞] 7→ R a square-integrable function. Then the random

process f (X(t), t) is given by the differential

d f =
N

∑
i=1

∂ f (X, t)

∂Xi

dXi +
∂ f (X, t)

∂ t
dt +

1
2

N

∑
i=1

N

∑
j=1

∂ 2 f (X, t)

∂Xi ∂X j

dXi dX j (A.20)

where the product of differentials is given by the multiplication rules

(dZi dZ j) = ρi, j dt, dZi dt = 0, (dt)2 = 0.



Glossary

APT Arbitrage Pricing Theory. (Page 24)
CAPM Capital Asset Pricing Model. (Page 23)
CARA Constant Absolute Risk Aversion. (Page 57)
CML Capital Market Line. (Page 11)
CRRA Constant Relative Risk Aversion. (Page 57)
DRAWDOWN Worst decline suffered by an investment from its peak value.(Page 4)
EFFICIENCY A portfolio w is said to be efficient if it is the lowest-variance portfolio

for a given level of expected return. (Page 8)
HARA Hyperbolic Absolute Risk Aversion. (Page 48)
IID Independent and Identically Distributed. (Page 41)
LONG POSITION The buying of a security such as a stock, commodity or currency,

with the expectation that the asset will rise in value. Opposite of short po-

sition. (Page 17)
MPT Modern Portfolio Theory. (Page 2)
SHORT POSITION The sale of a borrowed security such as a stock, commodity or

currency with the expectation that the asset will fall in value. Opposite of
long position. (Page 17)

SIMPLE RETURN The simple rate of return of an asset during period t is given by
Rt = Pt

Pt−1
−1 where Pt is the price of the asset at time t. (Page 5)

VAR Vector Autoregressive. (Page 26)
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