


Lecture Notes in Electrical Engineering

Volume 105

For further volumes:

http://www.springer.com/series/7818



Nikolaos Voros • Amar Mukherjee
Nicolas Sklavos • Konstantinos Masselos
Michael Huebner
Editors

VLSI 2010 Annual
Symposium

Selected papers

123



Nikolaos Voros
Department of Telecommunication
Systems and Networks

Technological Educational Institute of
Messolonghi

National Road
303 00 Nafpaktos
Nafpaktos-Antirrion (Varia)
Greece
e-mail: voros@teimes.gr

Amar Mukherjee
School of Electrical Engineering and
Computer Science

University of Central Florida
Central Florida Blvd. 4000
Orlando
FL 32816-2362
USA
e-mail: amar@eecs.ucf.edu

Nicolas Sklavos
Informatics and MM
Technological Educational Institute of
Patras

Rhga Feraiou
271 00 Pyrgos
Ileias Region
Greece
e-mail: nsklavos@ieee.org

Konstantinos Masselos
Department of Computer Science and
Technology

University of Peloponnese
221 00 Tripolis
Terma Karaiskaki
Greece
e-mail: kmas@uop.gr

Michael Huebner
Institut für Technik der Informationsver
Karlsruhe Institute of Technology
Vinzenz-Priessnitzstr. 1
76131 Karlsruhe
Germany
e-mail: michael.huebner@kit.edu

ISSN 1876-1100 e-ISSN 1876-1119
ISBN 978-94-007-1487-8 e-ISBN 978-94-007-1488-5
DOI 10.1007/978-94-007-1488-5
Springer Dordrecht Heidelberg London New York

� Springer Science+Business Media B.V. 2011
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: eStudio Calamar, Berlin/Figueres

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

During the last years, significant changes have taken place in markets that tradi-

tionally had nothing in common. For example, markets like telecommunication,

automotive, consumer electronics and medical equipment converge as far as the

underlying systems of their products are concerned. The common needs come

from the fact that modern devices contain, in most cases, complex parts relying on

advanced hardware equipment. The increasing competition and the market pres-

sure have created the need for hardware products of high reliability with short

time-to-market.

The traditional development techniques, where the system development was

relying on the experience of highly qualified engineers, are no longer adequate.

The complexity of modern hardware systems calls for methodologies and tools

supporting them to deal with the increasing market requirements.

The existence of large number of computational intensive structures with

diverse features leads also to hardware solutions that are no longer monolithic

but able to adapt according to design needs. Moreover, energy aware systems

and increased performance requirements are more and more important in an era

where the size of most devices decreases while their complexity increases

exponentially. Data intensive processing is also receiving renewed attention, due

to rapid advancements in areas like multimedia computing and high-speed

telecommunications. Many of these applications demand very high performance

circuits for computationally intensive operations, often under real-time require-

ments. Furthermore, their computation power appetite tends to soar faster than

Moore’s law.

Moreover, the next generation of systems in most markets relies on the

‘‘computing everywhere’’ paradigm, which implies computing chips dedicated by

market while at the same time development costs are exploding. This results in an

increasing need of flexibility not only at the program level (by software) but also at

the chip level (by hardware). So, combining flexibility and performance is now a

key enabler for future hardware platforms. In that respect, current solutions are

reaching their limits:

v



• Current computing solutions are out of breath: challenge of computing density

and low power.

• Current development and programming tools do not provide the required

productivity.

On one hand, the performance of most hardware architectures, in spite of the

continuous increase in processors’ speed, are, not surprisingly, lagging behind.

Processors efficiency is more and more impaired by the memory bandwidth

problem of traditional von Neumann architectures.

On the other hand, the conventional way to boost performance through

Application Specific Integrated Circuits (ASIC) suffers from sky-rocketing man-

ufacturing costs (requiring high volumes to be amortized) and long design

development cycles. In the nanometre era, increasing non recurrent engineering

costs could relegate system-on-chip to very few high volume products unless some

standardization process is undertaken.

Modern Field Programmable Gate Arrays can implement an entire system-on-

chip, but at the cost of large silicon area and high power consumption. Moreover, a

huge design productivity issue is raised by the difficulty of embedding algorithms on

complex massively parallel architectures, while defining the processing architecture,

under time to market pressure. Defining a programming paradigm for new hardware

architectures is a difficult problem, where Computer Aided Design technologies call

for new design paradigms. Current CAD tools have synthesis capabilities that don’t

reach the abstraction level required to handle complex hardware implementation.

Although the book Designing Very Large Scale Integration Systems: Emerging

Trends and Challenges does not intend to provide answers to all the aforementioned

open issues, it intends to identify and present in a comprehensive way the trends and

research challenges of designing the next generation VLSI systems and systems-

on-chip. Throughout the chapters of the book, the reader will have the chance to get

an insight to state-of-the-art technology and research results on areas like:

• Emerging devices and nanocomputing,

• Architecture level design of highly complex hardware systems and systems-

on-chip,

• Reconfigurable hardware technology, and

• Embedded systems.

All the book chapters are written by experts in the relevant domains and is

envisaged to become the starting point for young scientists and practitioners to

move science and technology one step further, in an attempt to deal with the ever

increasing challenges of modern VLSI systems and systems-on-chip.

N. Voros

A. Mukherjee

N. Sklavos

K. Masselos

M. Huebner

vi Preface



Contents

Part I Architecture: Level Design Solutions

1 Intelligent NOC Hotspot Prediction. . . . . . . . . . . . . . . . . . . . . . . 3

Elena Kakoulli, Vassos Soteriou and Theocharis Theocharides

2 Accurate Asynchronous Network-on-Chip Simulation Based

on a Delay-Aware Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Naoya Onizawa, Tomoyoshi Funazaki, Atsushi Matsumoto

and Takahiro Hanyu

3 Trust Management Through Hardware Means: Design

Concerns and Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Apostolos P. Fournaris and Daniel M. Hein

4 MULTICUBE: Multi-Objective Design Space Exploration

of Multi-Core Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Cristina Silvano, William Fornaciari, Gianluca Palermo,

Vittorio Zaccaria, Fabrizio Castro, Marcos Martinez, Sara Bocchio,

Roberto Zafalon, Prabhat Avasare, Geert Vanmeerbeeck,

Chantal Ykman-Couvreur, Maryse Wouters, Carlos Kavka,

Luka Onesti, Alessandro Turco, Umberto Bondi,

Giovanni Mariani, Hector Posadas, Eugenio Villar,

Chris Wu, Fan Dongrui, Zhang Hao and Tang Shibin

vii

http://dx.doi.org/10.1007/978-94-007-1488-5_1
http://dx.doi.org/10.1007/978-94-007-1488-5_2
http://dx.doi.org/10.1007/978-94-007-1488-5_2
http://dx.doi.org/10.1007/978-94-007-1488-5_3
http://dx.doi.org/10.1007/978-94-007-1488-5_3
http://dx.doi.org/10.1007/978-94-007-1488-5_4
http://dx.doi.org/10.1007/978-94-007-1488-5_4


5 2PARMA: Parallel Paradigms and Run-time Management

Techniques for Many-Core Architectures . . . . . . . . . . . . . . . . . . 65

C. Silvano, W. Fornaciari, S. Crespi Reghizzi, G. Agosta,

G. Palermo, V. Zaccaria, P. Bellasi, F. Castro, S. Corbetta,

A. Di Biagio, E. Speziale, M. Tartara, D. Melpignano,

J.-M. Zins, D. Siorpaes, H. Hübert, B. Stabernack,

J. Brandenburg, M. Palkovic, P. Raghavan, C. Ykman-Couvreur,

A. Bartzas, S. Xydis, D. Soudris, T. Kempf, G. Ascheid,

R. Leupers, H. Meyr, J. Ansari, P. Mähönen and B. Vanthournout

Part II Embedded System Design

6 Adaptive Task Migration Policies for Thermal Control

in MPSoCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

David Cuesta, Jose Ayala, Jose Hidalgo, David Atienza,

Andrea Acquaviva and Enrico Macii

7 A High Level Synthesis Exploration Framework

with Iterative Design Space Partitioning . . . . . . . . . . . . . . . . . . . 117

Sotirios Xydis, Kiamal Pekmestzi, Dimitrios Soudris

and George Economakos

8 A Scalable Bandwidth-Aware Architecture for Connected

Component Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Vikram Sampath Kumar, Kevin Irick, Ahmed Al Maashri

and Vijaykrishnan Narayanan

9 The SATURN Approach to SysML-Based HW/SW Codesign . . . . 151

Wolfgang Mueller, Da He, Fabian Mischkalla, Arthur Wegele,

Adrian Larkham, Paul Whiston, Pablo Peñil, Eugenio Villar,

Nikolaos Mitas, Dimitrios Kritharidis, Florent Azcarate

and Manuel Carballeda

10 Mapping Embedded Applications on MPSoCs:

The MNEMEE Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Christos Baloukas, Lazaros Papadopoulos, Dimitrios Soudris,

Sander Stuijk, Olivera Jovanovic, Florian Schmoll,

Peter Marwedel, Daniel Cordes, Robert Pyka, Arindam Mallik,

Stylianos Mamagkakis, François Capman, Séverin Collet,

Nikolaos Mitas and Dimitrios Kritharidis

viii Contents

http://dx.doi.org/10.1007/978-94-007-1488-5_5
http://dx.doi.org/10.1007/978-94-007-1488-5_5
http://dx.doi.org/10.1007/978-94-007-1488-5_6
http://dx.doi.org/10.1007/978-94-007-1488-5_6
http://dx.doi.org/10.1007/978-94-007-1488-5_7
http://dx.doi.org/10.1007/978-94-007-1488-5_7
http://dx.doi.org/10.1007/978-94-007-1488-5_8
http://dx.doi.org/10.1007/978-94-007-1488-5_8
http://dx.doi.org/10.1007/978-94-007-1488-5_9
http://dx.doi.org/10.1007/978-94-007-1488-5_10
http://dx.doi.org/10.1007/978-94-007-1488-5_10


11 The MOSART Mapping Optimization for Multi-Core

ARchiTectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Bernard Candaele, Sylvain Aguirre, Michel Sarlotte,

Iraklis Anagnostopoulos, Sotirios Xydis, Alexandros Bartzas,

Dimitris Bekiaris, Dimitrios Soudris, Zhonghai Lu,

Xiaowen Chen, Jean-Michel Chabloz, Ahmed Hemani,

Axel Jantsch, Geert Vanmeerbeeck, Jari Kreku,

Kari Tiensyrja, Fragkiskos Ieromnimon, Dimitrios Kritharidis,

Andreas Wiefrink, Bart Vanthournout and Philippe Martin

Part III Emerging Devices and Nanocomputing

12 XMSIM: Extensible Memory Simulator for Early

Memory Hierarchy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Theodoros Lioris, Grigoris Dimitroulakos and Kostas Masselos

13 Self-Freeze Linear Decompressors: Test Pattern Generators

for Low Power Scan Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Vasileios Tenentes and Xrysovalantis Kavousianos

14 SUT-RNS Forward and Reverse Converters . . . . . . . . . . . . . . . . 231

E. Vassalos, D. Bakalis and H. T. Vergos

15 Off-Chip SDRAM Access Through Spidergon STNoC . . . . . . . . . 245

Khaldon Hassan and Marcello Coppola

16 Digital Microfluidic Biochips: A Vision for Functional Diversity

and More than Moore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Krishnendu Chakrabarty and Yang Zhao

Part IV Reconfurable System

17 FPGA Startup Through Sequential Partial and Dynamic

Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Joachim Meyer, Michael Hübner, Lars Braun, Oliver Sander,

Juanjo Noguera, Rodney Stewart and Jürgen Becker

18 Two Dimensional Dynamic Multigrained Reconfigurable

Hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Lars Braun and Jürgen Becker

Contents ix

http://dx.doi.org/10.1007/978-94-007-1488-5_11
http://dx.doi.org/10.1007/978-94-007-1488-5_11
http://dx.doi.org/10.1007/978-94-007-1488-5_12
http://dx.doi.org/10.1007/978-94-007-1488-5_12
http://dx.doi.org/10.1007/978-94-007-1488-5_13
http://dx.doi.org/10.1007/978-94-007-1488-5_13
http://dx.doi.org/10.1007/978-94-007-1488-5_14
http://dx.doi.org/10.1007/978-94-007-1488-5_15
http://dx.doi.org/10.1007/978-94-007-1488-5_16
http://dx.doi.org/10.1007/978-94-007-1488-5_16
http://dx.doi.org/10.1007/978-94-007-1488-5_17
http://dx.doi.org/10.1007/978-94-007-1488-5_17
http://dx.doi.org/10.1007/978-94-007-1488-5_18
http://dx.doi.org/10.1007/978-94-007-1488-5_18


19 Design for Embedded Reconfigurable Systems Using

MORPHEUS Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

Paul Brelet, Philippe Millet, Arnaud Grasset, Philippe Bonnot,

Frank Ieromnimon, Dimitrios Kritharidis and Nikolaos S. Voros

20 New Dimensions in Design Space and Runtime Adaptivity

for Multiprocessor Systems Through Dynamic

and Partial Reconfiguration: The RAMPSoC Approach. . . . . . . . 335

Diana Göhringer and Jürgen Becker

x Contents

http://dx.doi.org/10.1007/978-94-007-1488-5_19
http://dx.doi.org/10.1007/978-94-007-1488-5_19
http://dx.doi.org/10.1007/978-94-007-1488-5_20
http://dx.doi.org/10.1007/978-94-007-1488-5_20
http://dx.doi.org/10.1007/978-94-007-1488-5_20


Part I

Architecture: Level Design Solutions



Chapter 1

Intelligent NOC Hotspot Prediction

Elena Kakoulli, Vassos Soteriou and Theocharis Theocharides

Abstract Hotspots are Network on-Chip (NoC) routers or modules which occa-

sionally receive packetized traffic at a higher rate that they can process. This

phenomenon reduces the performance of an NoC, especially in the case wormhole

flow-control. Such situations may also lead to deadlocks, raising the need of a

hotspot prevention mechanism. Such mechanism can potentially enable the system

to adjust its behavior and prevent hotspot formation, subsequently sustaining

performance and efficiency. This Chapter presents an Artificial Neural Network-

based (ANN) hotspot prediction mechanism, potentially triggering a hotspot

avoidance mechanism before the hotspot is formed. The ANN monitors buffer

utilization and reactively predicts the location of an about to-be-formed hotspot,

allowing enough time for the system to react to these potential hotspots. The neural

network is trained using synthetic traffic models, and evaluated using both syn-

thetic and real application traces. Results indicate that a relatively small neural

network can predict hotspot formation with accuracy ranges between 76 and 92%.

Keywords Network on-Chip Hotspots � Artificial Neural Networks � VLSI

Systems

E. Kakoulli � V. Soteriou
Department of Electrical Engineering and Information Technology,
Cyprus University of Technology, Lemesos, Cyprus

T. Theocharides (&)
Department of Electrical and Computer Engineering KIOS Research Center for
Intelligent Systems and Networks, University of Cyprus, Nicosia, Cyprus
e-mail: ttheocharides@ucy.ac.cy

N. Voros et al. (eds.), VLSI 2010 Annual Symposium,
Lecture Notes in Electrical Engineering 105, DOI: 10.1007/978-94-007-1488-5_1,
� Springer Science+Business Media B.V. 2011

3



1.1 Introduction

The Network on-Chip paradigm, (NoC) [7] is a distributed, router-based inter-

connect architecture that is quickly becoming the preferred communication fabric

in general purpose Chip Multi-Processors (CMPs) as well as in application-specific

Systems-on-Chips (SoCs). NoCs facilitate high communication throughput

demands among the various computational, memory and IP cores found in these

parallel systems. With technology enabling billions of transistors on a single chip,

time-and medium-shared interconnects, such as on-chip buses, are no longer

adequate; NoCs on the other hand effectively scale and allow efficient reusability

of computational resources. NoCs have already been demonstrated in the Tilera

TILE64 CMP [2] and the Intel Teraflops chip [26], among other CMP

implementations.

In wormhole flow-control (WFC) [8], commonly employed in NoCs ([3],[11]),

communication is organized in the form of packetized messages of arbitrary

length, which are broken down into further logical link-width chunks called flow-

control units (flits). WFC allows parts of a packet to be forwarded to the next

router towards a final destination or consumer node, without having to wait for the

remaining flits of the same packet, unlike in store-and-forward flow control,

allowing the efficient use of smaller intermediate buffering, that is suitable

for power-, thermal-and area-constrained NoCs. The spreading of a packet in a

pipelined fashion across several routers at a time, however, makes WFC suscep-

tible to packet blocking and possible deadlocks, as an increased delay at an

intermediate router quickly forms backpressure which can be propagated in the

reverse direction of the packet’s path traversal. Such adverse effect, as outlined

later, can further lead to the creation of NoC hotspots. Loss in NoC performance is

traditionally alleviated by utilizing several resource utilization-enhancing mech-

anisms, such as virtual channels [6], control packets that reserve resources in

advance [20], specialty architectures or schemes that guarantee communication

rates [5], or by purposely inefficiently operating high-performance NoCs at

relatively low utilizations to avoid blocking [21].

Hotspots are NoC routers or modules which occasionally receive packetized

traffic at a rate higher than their traffic consumption rate. Since interconnecting

links and ports are bandwidth-limited, and as the load traffic distribution of real

applications is inherently uneven, hotspots are common in popular NoC topologies

such as at the diagonal of meshes [19]. Even a single heavily loaded router can

cause a hotspot, and thus a hotspot can be created even with the use of infinite

bandwidth links. Some factors which can cause hotspots are non-optimal appli-

cation mapping, lack of traffic balancing with oblivious routing algorithms,

application migration and specific application NoC resource demands [4].

Hotspots have a spatial component when a subset of the routers receives the

majority of the traffic, and a temporal component as these router nodes receive

traffic often. The adverse phenomenon of hotspot formation reduces the perfor-

mance and the effective throughput of the NoC, and increases average packet

4 E. Kakoulli et al.



latency. This effect is particularly severe as backpressure can cause the buffers of

neighboring routers to quickly fill-up in a domino-style effect, leading to a spatial

spread in congestion that can cause the network to form a ‘‘saturation tree’’, and

even worse, to deadlock. Hotspot formation is unpredictable in general-purpose

parallel best-effort on-chip systems such as CMPs, as the application behavior is

not exactly known a-priori so as to react accordingly by setting exact spatial–

temporal hotspot reduction mechanisms.

This Chapter describes a first attempt towards utilizing artificial intelligence in

predicting the formation of traffic hotspots. The Chapter presents a hardware-based

artificial neural network (ANN), which is trained and used to detect the formation

of hotspots, in an effort to notify the system. The Chapter focuses only on hotspot

detection; plans to integrate avoidance and adjustment mechanisms are imminent.

The proposed ANN is designed with manageable hardware overheads, imple-

mented as a processing element in the NoC. The ANN monitors the NoC in an

effort to detect runtime occurring hotspots, and reactively predicts the location of a

potential hotspot that is about to be formed, allowing enough time for the system to

adjust and potentially avoid the hotspot.

Section 1.2 presents some approaches in hotspot prevention and Sect. 1.3

presents the Artificial Neural Network-based (ANN) mechanism. Some details on

the hotspot model considered, the data processed by the ANN, and the proposed

ANN architecture are detailed in Sect. 1.3 as well, while Sect. 1.4 presents the

experimental setup, ANN synthesis results and quantitative accuracy results

in predicting NoC hotspots in CMPs using real application traces. Section 1.5

concludes this chapter.

1.2 Background and Related work

Hotspot prevention has been explored significantly in the domain of large-scale

interconnection networks found in off-chip parallel computer systems, but only

recently, and to a much lesser extent, in the area of NoCs. In both domains, most of

the work focuses on reducing the number of routed packets destined towards a

hotspot, using various methodologies. All of these works assume that the hotspot

spatial locations are (1) either known a-priory and pro-actively reduce the possi-

bility of hotspot formation, or (2) spatially and temporarily react actively to reduce

the possibility of a hotspot.

There are various hotspot prevention works in the domain of large-scale

interconnected parallel computers. References [1, 10, 14, 15, 22] present methods

that tackle hotspots in traditional, off-chip networks and multiprocessor systems.

Most of the hotspot related work in the domain of off-chip networks however, is

unsuitable for NoCs, as the resources are restricted (buffering, virtual channels and

routing computation) and packet dropping and re-transmission is unacceptable due

to the complexity of the mechanism and the need to attain ultra-high performance.

Hotspot prevention is therefore mostly based on spatial techniques via the use of

1 Intelligent NOC Hotspot Prediction 5



adaptive routing which aims to route packets around hotspots, such as in [9].

Reference[27] uses a low-cost end-to-end credit-based allocation technique in

NoCs to throttle and regulate hotspot-destined traffic, to allow fair sharing of

the hotspot resource network and to mitigate the effects of non-hotspot traffic. All

existing works however, are based on the premise that hotspots can be predicted

due to application-specific behavior. This Chapter presents how an ANN can be

used to predict hotspot occurrences in NoCs. ANNs have been used as prediction

mechanisms successfully, in several application areas. In particular, they have

been used as branch predictors in computer architecture [18, 23], yielding high

accuracy, and as resource allocation mechanisms forecasting the computational

demands. They have also been used in various other forecasting scenarios, such as

weather and stock behavior [17].

An ANN is an information processing paradigm, consisting of computation

nodes called neurons and the interconnections between them, called synapses.

A neuron takes a set of inputs and multiplies each input by a weight value,

accumulating the result until all inputs are received. Weights are determined

during the training process. A threshold value (also determined in training) is then

subtracted from the accumulated result, and this result is then used to compute the

output of the neuron, via the so-called ‘‘activation function’’ (Fig. 1.1 (right)).

Typical activation functions include complex mathematical functions such as the

hyperbolic tangent function. The neuron output is then propagated to a number of

destination neurons in another layer, which perform the same general operation

with the newly received set of inputs and their own weight/threshold values, and

this is repeated for other layers, depending on the complexity and accuracy

required for the application. The activation function used, as well as the connec-

tivity of the neurons, depends on the application as well. Neurons are typically

used in multi-layer configurations, where they are trained to perform a desired

operation in a similar manner to the way the human brain operates [16]. The ANN

operates in two stages; the training stage and the computation stage. Each neuron

receives training data that allows it to make necessary decisions based on the input

data during execution of a desired operation. A small neural network can be

easily implemented in hardware, as neurons can be designed using a Multiplier-

Accumulator (MAC) unit, memory to hold the training weights, and a Look-Up

Table (LUT) for the activation function. Optimizations, though, are necessary in

ANN

(Wi * Xi) - ti

W
1

W2

Wn

tiX1

X2

Xn

Act.
Function

Fig. 1.1 An example placement of an ann prediction engine, as a dedicated pe (right) and the
mathematical representation of a neuron (left)

6 E. Kakoulli et al.



interconnecting the neurons, however time-division multiplexing between neuron

operations allows for resource sharing and minimal hardware needs.

1.3 Artificial Neural Network Hotspot Predictor

As already explained, hotspots are not single routing nodes, but rather a combi-

nation of increased utilization in a neighborhood of routers, usually involving two

or more routers. Thus, the ANN is designed in such a way as to integrate infor-

mation of neighboring routers, i.e. ‘‘reading’’ situations happening one and two

routers away from the potential hotspot. Furthermore, the hardware needs must be

taken into consideration when designing the ANN; this can be done by partitioning

the on-chip network into smaller sub-regions, and using a base ANN for each

region, in an effort to reduce the hardware resources necessary. Potentially the base

ANN can be designed as a Processing Element (PE), as in Fig. 1.1 (left). This

Section presents the base ANN mechanism.

1.3.1 Hotspot Modeling

For training and evaluating the ANN-based hotspot prediction mechanism, and to

test its effectiveness in forecasting hotspots, a hotspot model with well-defined

spatially–located hotspot formations centered on randomly chosen routers in an

8 9 8 mesh network, but of relatively short temporal duration so as to enable

testing of the effectiveness of the prediction mechanism, has to be devised. This

model enables synthetic generation of network traces that exhibit a range of

throughput demands upon the NoC. The synthetic traces allow both training as

well as evaluation. The idea is to compare un-even traffic flows (i.e. formed

because of a hotspot) versus a base Uniform Random NoC Traffic (URT) pattern.

Under URT, all router nodes in an NoC have an equal probability of receiving a

packet per unit time, therefore the traffic is almost perfectly balanced and the

attainable network throughput is the maximum that can be achieved both practi-

cally and theoretically [8]. The developed hotspot model uses the URT model as a

base, for most of the time, except when for short pre-specified and periodically

occurring time intervals just two arbitrarily selected nodes receive with equal

probability all the network traffic from all the remaining sender nodes, with the

remaining nodes receiving no traffic. Time Frame Windows (TFW) of 10,000

cycles are then defined, during any time which the two hotspots can occur

simultaneously for a short duration of 200 cycles. No other hotspots can occur

within a TFW, and during the rest of the duration of the TFW the traffic behaves

purely as URT. This model test-stresses the prediction mechanism as hotspots

occur both infrequently and for short durations.

1 Intelligent NOC Hotspot Prediction 7



1.3.2 ANN Training

The ANN was trained using part of the synthetic traffic traces suite, consisting

of buffer utilization data collected over half a million cycles. Three different

traffic scenarios were targeted during this phase; moderate, average, and high

hotspot temporal intensity, expressed in terms of the NoC’s normalized

saturation throughput (for hotspot traffic) at 0.22, 0.67 and 0.98 (asterisks in

Tables 1.1 and 1.2), through the duration of the simulation. Moreover, training

data includes multi-router hotspot scenarios. Using the synthetic traces, utiliza-

tion rates of all buffers in all routers were collected by measuring the average

utilization rate of each router during 50-cycle intervals. This data was fed as

training input to the ANN.

The Matlab ANN toolbox and supervised learning algorithms [12, 13] were

used for the training phase. The acceptable error rate was set to less than 10%,

given the large data size and considerations in training memory for the ANN

weights, as well as the large range variations and sparsity of the training set data.

Error rates less than 5% cannot be obtained in realistic training time, thus are

considered impractical for the purposes of the presented network; however,

Table 1.1 Synthetic hotspot traffic results: prediction accuracy as a function of simulation time
at various levels of normalized network throughput

Normalized throughput 20% 40% 60% 80% 100%

0.22* 0.96 0.97 0.97 0.98 0.98

0.33 0.84 0.87 0.88 0.88 0.88

0.44 0.81 0.84 0.86 0.86 0.87

0.56 0.85 0.88 0.89 0.89 0.91

0.67* 0.098 0.98 0.98 0.98 0.99

0.78 0.86 0.88 0.88 0.89 0.91

0.89 0.85 0.86 0.88 0.90 0.92

0.98* 0.95 0.96 0.96 0.96 0.96

Asterisks (*) indicate training data

Table 1.2 Synthetic hotspot
traffic results: percentage of
false positive hotspot
identifications

Normalized throughput False positive hotspots (%)

0.22* 4

0.33 8

0.44 5

0.56 6

0.67* 5

0.78 6

0.89 7

0.98* 4

Asterisks (*) indicate training data

8 E. Kakoulli et al.



potential optimization of the training set can probably improve the accuracy of the

network and enable training for less than 5% acceptable error rate [25]. As the

output of the hotspot prediction mechanism represents a probability that a hotspot

will be formed in location (x, y) inside a 2D NoC, the acceptable error rate

represents the probability that a hotspot is not created. If, for example, the ANN is

trained with a resulting accuracy of 85%, this essentially represents that there is an

85% probability of a hotspot happening in location (x, y).

The training data obtained consists of 8-bit weight values, biased to yield

positive integers for ease of hardware implementation. During the training

stage, the bit-width precision of the weights has to be determined. By varying

this in intervals of 4 bits, it was found that 4-bit weight values yield high error

rates ([20%), whereas for 8-bit and 12-bit precision, the error rate is *9.2

and *8.4% respectively. This indicates that 8 bits are adequate for the weight

data. The hyperbolic tangent can be used as the activation function, as its

advantage lies in its function properties; it is an odd function with mirror

symmetry:

tanhð�xÞ ¼ � tanhðxÞ and tanhðzÞ ¼ tanhðzÞ:

The function is also asymptotic, with the output of the function considered to

be 1 (or-1) for input values above or below a certain threshold. A Look-Up Table

(LUT) implementation requires only positive values ranging from zero to the

threshold value that yields 1 (or-1). The activation function can be implemented as

a multi-ported LUT, to parallelize accesses to it and enable parallel neuron

computation.

The base ANN hotspot prediction mechanism consists of two perceptron layers

which monitor 2 9 2 and 3 9 3 blocks of routers in the NoC, and fully connected

hidden and output layers that combine the two perceptron layers and return the

location of a potential hotspot router. The ANN operates by receiving buffer

utilization statistical data from each router that it monitors, in discrete time

intervals, and, using training weights, attempts to detect a pattern that can

potentially lead to a hotspot located at one of the routers that the network monitors.

The prediction time needs to be early enough for any adjustment mechanisms to

interfere and potentially prevent the hotspot from forming. Therefore, the ANN

must be accurate, and must also be fast as it needs to output a prediction early

ahead of the next timing interval that it is about to receive new monitoring data.

The ANN can be scaled to monitor larger NoCs, by hierarchically connecting

the base ANN together to an additional layer of neurons and training appropriately.

Furthermore, more layers can be added as the network size grows. The hardware

overheads necessary for larger ANNs will increase significantly, and the latency

will also increase drastically, as the top ANN needs to receive data from each of

the smaller ANNs and compute the final output; this adds significant delays in the

overall operation of the ANN. However, the ANN idea can potentially be used

in various network sizes and topologies, taking the hardware budgets into

consideration.

1 Intelligent NOC Hotspot Prediction 9



1.3.3 Neural Network Architecture

The base ANN is directed towards a 2-D Mesh architecture, and was trained and

designed to support up to 4 9 4 mesh NoC infrastructures. It consists of an input

layer which partitions the routers being monitored into 9 segments of 2 9 2

routers, and 4 segments of 3 9 3 routers. The segmentations are shown in Fig. 1.2.

The segmentation is done in such a way so as to detect hotspots not as single

routers, but as a combination of events affecting routers one and two hops next to

the probable hotspot location. The network receives the average buffer utilization

from each router in the region that is responsible for monitoring, processes the

information and returns as output a binary vector containing the location of a

potential hotspot router, including hotspots where two or more routers become

hotspots.

The first ANN (input) layer consists of 9 neurons responsible for monitoring

regions of 2 9 2 routers and 4 neurons responsible for monitoring regions of

3 9 3 routers (Fig. 1.2). Each of the input layer neurons simply acts as a MAC,

that multiplies the incoming utilization rate from each of the routers the neuron is

responsible for. When the results are accumulated, they are passed through the

activation function (hyperbolic tangent), and propagated to a hidden layer of 16

neurons, all fully connected. The hidden layer neurons similarly process the 13

inputs from each of the input layer neurons, and propagate their result to an output

neuron which returns a 16-bit vector indicating whether or not a hotspot is pre-

dicted. If the output neuron predicts a hotspot, the location of a hotspot is encoded

in the 16-bit output vector. The overall base ANN system is shown in Fig. 1.3.

The base ANN is designed with emphasis on hardware reuse and with the fact

that results should be computed prior to the next timing interval that the NoC will

re-transmit new utilization data. An overview of the base ANN architecture

is shown in Fig. 1.4. The primary hardware component of the ANN is an

8-bit 9 8-bit MAC unit; given however that the second layer of neurons could be

computed in parallel, the network is designed with 16 MAC units, to boost the

computation, reusing them on demand during the first layer of computation nodes.

(b) 3x3 regions(a) 2x2 regions

Fig. 1.2 Partitioning a 4 9 4 mesh noc—the 2 9 2 and 3 9 3 partitions and the respective input
layer neurons

10 E. Kakoulli et al.



The neuron weights are stored in a RAM, with a 128-bit bus, transmitting at most

sixteen 8-bit weight values in parallel during the multiplication stage. A FSM

control unit synchronizes the entire ANN computation, where input values from

each router arrive and are directed towards the appropriate MAC unit, depending

on the neuron that they belong to. It is assumed that buffer utilization data for each

router arrive as individual packets; using one packet per cycle as incoming data

rate, the ANN receives 4 buffer utilization rates for a single router per cycle. Given

the overlap of the 2 9 2 and 3 9 3 regions, the values are used at least twice,

therefore, they are directed to the corresponding MAC unit. The MAC units are

also interconnected to a set of accumulation registers, where each register holds

the value of each neuron necessary for the computation. There are 30 registers;

13 for the input layer neurons, 16 for the output layer neurons and 1 for the output

neuron. When the next input arrives at the ANN and is directed to a neuron already

From 2x2 regions From 3x3 regions

16-bit output

Fig. 1.3 The 3-layer ANN
structure. neuron connections
from input layer to hidden
layer are shown for only two
neurons, for readability
purposes

WEIGHT

MEMORY

ACTIVATION

FUNCTION LUT

F
S

M
C

O
N

T
R

O
L

U
N

IT

FROM NoC Routers

16-bit Output
Vector

+
=

*

+
=

+
=

**

Input Coordination Unit

MAC 1 MAC 16

Fig. 1.4 The ANN prediction engine in hardware. It consists of 16 MAC units (only 2 are shown
for readability purposes), a memory which holds the ANN weights, registers used to hold partial
neuron sums, and the activation function LUT. The entire process is controlled through an FSM
control unit and an input coordination unit

1 Intelligent NOC Hotspot Prediction 11



being computed, its partial sum is fed back into a MAC unit using the stored value

from the register. This enables data reuse, and reduces the overall hardware

requirements. When a neuron finishes its computation cycle, its final sum of

products is used as an input to the LUT, to return the activation function value,

which in turn is reused as input to the MAC units for computing the second layer

neuron values. The process is repeated for all second layer neurons. The last

neuron receives as input all the outputs of the 16 s layer neurons, and its result is

encoded as a 16-bit binary vector representing the location(s) of the routers with

potential hotspot formation.

The computation starts when the first buffer utilization values arrive from one

of the routers under monitoring. Data is collected within a 50-cycle TFW; if a

router does not transmit monitoring data until the end of the TFW, its buffer

utilization is set to maximum, as it is assumed to be part of a hotspot. By the time

the ANN receives the last router information, the ANN requires 5 additional cycles

to finalize computation of the first layer neurons (given that computation of the

first layer of neurons happens as soon as utilization data arrive at the ANN). This is

in part because each completed neuron output will have to pass through the

activation function LUT. This can be reduced by parallelizing access to the LUT.

Once the activation is complete, the second layer (16 neurons) is computed; there

are a total of 13 MAC operations, hence the results for the last neuron will be

available in 26 cycles (13 MAC operations and 13 LUT accesses). The last neuron

performs 16 parallel MAC operations and a mapping of the result to the 16-bit

output vector, needing an additional 3 cycles (1 for all MACs, 1 for the summation

and 1 for the mapping). In total, the ANN requires 34 cycles from the time the last

router utilization data is received until its output. If all routers are on time in

transmitting the utilization data, then the network needs an extra 16 cycles to fill

up the computation pipeline (1 cycle per router), bringing the total minimum

number of cycles to 50, which is the targeted time interval between outputs.

1.4 ANN Hotspot Prediction Results

1.4.1 Experimental Setup

The ANN was trained and modeled in two steps; training and evaluation. During

the training stage, synthetic traffic utilization figures were used, as explained in

Sect. 1.3.2. The evaluation stage consisted of two separate steps: (1) evaluation

using synthetic traffic models with varied hotspot rates in an 8 9 8 2D mesh

network using 4 base ANN engines, with each such ANN monitoring a non-

overlapping 4 9 4 mesh sub-network, and (2) evaluation using the Raw CMP

benchmarks [24], over the 4 9 4 Raw network (see Sect. 1.4.3). The output of the

ANN was compared to the actual trace, both for synthetic traffic and the Raw

benchmarks, and the ANN accuracy is therefore evaluated. This accuracy was

12 E. Kakoulli et al.



measured during constant simulation intervals, to observe the behavior of the

network as the amount of data increases.

A detailed cycle-accurate simulator is used to provide the buffer utilization data

for training and evaluation of the ANN. The simulator supports k-ary 2-mesh

topologies with 3 GHz 5-stage pipelined router cores, each with two virtual

channels (VCs). Packets are composed of five 32-bit flits with each flit transported

in 1 link cycle over links of 96Gbps bandwidth. Each router consists of eight

unidirectional channels (four incoming and four outgoing).

1.4.2 Synthetic Traffic Prediction Results

Various hotspot spatio-temporal intensities are used as input to the ANN. These

intensities are modeled as a function of the normalized saturation throughput, defined

as the throughput at which the latency value is three times the zero-load latency of the

network. The output of the ANN is then compared with the actual behavior of each

trace, in discrete intervals of 20% increments during the simulation process.A hotspot

prediction is considered to be successful if it canbe foreseen at least 50 cycles ahead of

its occurrence in the NoC, and that its coordinate locality is correct. Table 1.1 shows

the accuracy of theANNfor the synthetic trafficmodels.Eachmodel exhibits different

hotspot behavior; Table 1.1 also illustrates the training traces used for training

(marked with asterisks (*)); these traces were also used as evaluation benchmarks to

validate the operation of the ANN. The accuracy ranges between 88% and 92%,

values which are relatively good given the 10% acceptable error margin used during

training. Table 1.2 shows the number of false positive predictions (i.e. predicted

hotspots which never occurred in the actual trace). While false positives might

seemingly not be a problem, their effect can only be studied when the overall cost of a

hotspot correction/avoidance mechanism is implemented that utilizes the prediction

information. The accuracy can be further improved, by improving the training set, and

by potentially using more bits to represent the weights.

1.4.3 Real-System Traffic Prediction Results

The Raw CMP [24] is a system for general-purpose and embedded computing,

consisting of 16 identical tiles interconnected via a 4 9 4 mesh array. Every tile

contains its own pipelined RISC processor, computational resources, memory, and

programmable routers. The Raw architecture contains four parallel networks: two

dynamic networks to support unpredictable inter-communication requirements

among the tiles (e.g. cache misses), and two static networks to allow implemen-

tation software-directed routing among tiles with ordered and flow-controlled

transfer of operands and data streams between functional units. The switching of

the routers in the two static networks is pre-programmed by the compiler,

1 Intelligent NOC Hotspot Prediction 13



collectively configuring the entire network on a cycle-by-cycle basis to enable

predictable flow of data.

Seven traces extracted from the Raw’s static network, through binaries compiled

by the Raw compiler on the Raw cycle-accurate simulator were also used to evaluate

the base ANN. The traces accurately match the hardware timing. The same meth-

odology as with the synthetic benchmarks was followed; the ANN prediction

accuracy for each of the seven Raw benchmark traces was obtained as before.

Table 1.3 shows the accuracy rates obtained during discrete simulation intervals,

until the simulationwas completed at half amillion cycles, while Table 1.4 shows the

percentage of those identified hotspots that were detected at least 50 cycles in

advance of their future occurrence. It is evident that the ANN remains accurate

throughout the simulation, even if for the fast Fourier transform (fft) benchmark, the

prediction accuracy is relatively low. The ANN does exceptionally well with three

benchmark traces (mpeg2, streams and vpr). The streaming nature of the mpeg2 and

stream applications follows a repetitive pattern, therefore if the ANN is properly

trained, streaming applications could largely benefit from this.

1.4.4 Hardware Synthesis Results

The ANN is evaluated also in terms of CMOS area requirements and hard-

ware overheads. Hence, the ANN hardware architecture shown in Fig. 1.4 was

implemented and synthesized using Synopsys Design Vision, targeting a 65 nm

Table 1.3 Results for the raw benchmarks: prediction accuracy results as a function of simu-
lation time

Benchmark 20% 40% 60% 80% 100%

8b_encode 0.82 0.82 0.80 0.80 0.81

802.11a 0.88 0.89 0.88 0.88 0.89

adpcmRAW 0.84 0.86 0.85 0.86 0.85

Fft 0.76 0.78 0.78 0.80 0.80

Mpeg2 0.91 0.90 0.91 0.91 0.92

Streams 0.95 0.94 0.95 0.95 0.95

vpr 0.92 0.90 0.91 0.91 0.90

Table 1.4 Results for the
raw benchmarks: percentage
of the correctly identified
hotspots at least 50 system
clock cycles in advance

Benchmark Percentage of predicted hotspots
at least 50 cycles in advance (%)

8b_encode 64

802.11a 69

adpcmRAW 82

Fft 80

Mpeg2 72

Streams 84

vpr 68

14 E. Kakoulli et al.



commercial CMOS technology library. The targeted frequency was 500 MHz,

operating at 1 V power supply voltage. Synthesis results indicate that an NoC

router with 2 VCs, lookahead routing and speculative switch allocation

requires *73,240 gates, while an estimated amount of 67,600 gates is required

for the base ANN implementation that controls a 4 9 4 region, making the ANN

predictor smaller in area than the aforementioned pipelined router. Thus, the base

ANN hardware overhead is 5.8% with respect to the base 16-router region it

controls. These results indicate that the ANN predictor can be easily integrated as a

PE in a typical NoC architecture. Synopsys’ PrimePower is also used to provide an

estimate of the power consumption. Using 50% switching activity probability, the

ANN consumes an estimated 0.016 mW when computing one hotspot prediction.

The estimated power requirements of the ANN predictor are considered negligible

when compared to existing real architectures such as Teraflops [2]. Both these

results show that the overall hardware and power overheads of the ANN predictor

for hotspot management are very low, and thus allow for feasible hardware

implementations in an NoC, given the benefits of performance hotspot prediction

in on-chip interconnected systems.

1.5 Conclusions and Future Work

This Chapter presented an intelligent ANN hotspot prediction mechanism. The

ANN uses buffer utilization data to dynamically monitor the interconnect fabric,

and reactively predicts the location of an about to-be-formed hotspot. The ANN is

trained using synthetic traffic models, and evaluated using both real and synthetic

application traces. Results show that a relatively small neural network architecture

can predict hotspot formation with accuracy ranges between 76 and 92%.

The promising results encourage further research in using intelligent mecha-

nisms for managing NoCs. Further optimized ANNs can be explored in predicting

hotspots in NoCs more accurately. Furthermore, the coupling of proactive ANN

prediction mechanisms with reactive hotspot reduction mechanisms to avoid the

formation of unforeseen hotspots occurring in NoCs can be very beneficial.

Additionally, other system information such as link utilization and topology

information can be used to enhance the training of the ANN, in order to improve

the accuracy and efficiency of the predictor.

References

1. Baydal E et al (2005) A Family of mechanisms for congestion control in wormhole networks.
In IEEE TPDS 16(9):772–784 Sept 2005

2. Bell S et al (2008) TILE64 Processor: A 64-Core SoC with mesh interconnect. In: ISSCC,
pp 88–598 Feb 2008

1 Intelligent NOC Hotspot Prediction 15



3. Bertozzi D, Benini L (2004) Xpipes: A Network-on-Chip architecture for gigascale Systems-
on-Chip. In: IEEE Circ Syst 4(2):18–31, Second Quarter

4. Bjerregaard T, Mahadevan S (2006) A survey of research and practices of Network-on-Chip.
In ACM CSUR 38(1):1–51 March 2006

5. Bolotin E et al (2004) QNoC: QoS architecture and design process for Network on Chip.
In Elsevier JSA 50(2–3):105–128 Feb 2004

6. Dally WJ (1992) Virtual-channel flow control. In IEEE TPDS 3(2):94–205 March 1992
7. Dally WJ, Towles B (2001) Route packets, not wires: on-Chip interconnection networks. In:

DAC, pp 684–689 June 2001
8. Dally WJ, Towles B (2004) Principles and practices of interconnection networks. Morgan

kaufmann publishers Inc. ISBN 9780122007514
9. Daneshtalab M et al (2006) NoC hot spot minimization using antNet dynamic routing

algorithm. In: ASAP, pp 33–38 Dec 2006
10. Duato J et al (2005) A new scalable and cost-effective congestion management strategy for

lossless multistage interconnection networks. In: HPCA, pp 108–119 Feb 2005
11. Goossens K et al (2005) AEtherealn Network on chip: concepts, architectures, and

implementations. In: IEEE DTC, pp 414–421 Sept-Oct 2005
12. Hashem S et al (1999) A novel approach for training neural networks for long-term

prediction. In IJCNN 3:1594–1599 July 1999
13. Hashemi KS et al (1991) On the number of training points needed for adequate training of

feedforward neural networks. In: IFNNPS, pp 232–236 July 1991
14. Ho WS, Eager DL (1989) A novel strategy for controlling hot-spot congestion. In: IEEE

ICPP, pp 14–18
15. Gaughan PT, Yalamanchili S (1993) Adaptive routing protocols for hypercube

interconnection networks. In IEEE Computer 26(5):12–23 May 1993
16. Jain AK et al (1996) Artificial neural networks: a tutorial. In IEEE Computer 29(29):31–44

March 1996
17. Maqsood I et al (2004) An ensemble of neural networks for weather forecasting. In Neural

Computing & Applications 13(2):112–122 June 2004
18. McCoy A et al (2007) Multistep-Ahead Neural-Network Predictors for Network Traffic

Reduction in Distributed Interactive Applications. In: ACM TOMACS, 17(4):1–30
19. Nilsson E et al (2003) Load Distribution with the Proximity Congestion Awareness in a

Network on Chip. In: DATE, pp 11126–11127 March 2003
20. Peh L-S, Dally WJ (2000) Flit-Reservation Flow Control. In: HPCA, pp 73–84 Jan 2000
21. Pande PP et al (2005) Performance evaluation and design trade-offs for Network-on-Chip

interconnect architectures. In IEEE TPDS 54(8):1025–1040 Aug 2005
22. Sarbazi-Azad H et al (2001) An analytical model of fully-adaptive wormhole-routed k-ary

n-cubes in the presence of hot spot traffic. In IEEE TOC 50(7):623–634 July 2001
23. Steven G et al (2001) Dynamic branch prediction using neural networks. In: DSD,

pp 178–185 Sept 2001
24. Taylor MB et al (2004) Evaluation of the raw microprocessor: an exposed-wire-delay

architecture for ILP and streams. In: ISCA, pp 2–13
25. Teixeira A et al (2000) A multi-objective optimization approach for training artificial neural

networks. In: IEEE SBRN, pp 168–172 Jan 2000
26. Vangal S et al (2007) An 80-tile 1.28TFLOPS Network-on-Chip in 65 nm CMOS. In: ISSCC,

pp 98–99 Feb 2007
27. Walter I et al (2007) Access regulation to hot-modules in wormhole NoCs. In: NoCs,

pp 137–148 May 2007

16 E. Kakoulli et al.



Chapter 2

Accurate Asynchronous Network-on-Chip
Simulation Based on a Delay-Aware
Model

Naoya Onizawa, Tomoyoshi Funazaki, Atsushi Matsumoto

and Takahiro Hanyu

Abstract A performance-evaluation simulator, such as a cycle-accurate simula-

tor, is a key tool for exploring appropriate asynchronous Network-on-Chip (NoC)

architectures in early stages of VLSI design, but its accuracy is insufficient in

practical VLSI implementation. In this paper, a highly accurate performance-

evaluation simulator based on a delay-aware model is proposed for implementing

an appropriate asynchronous NoC system. While the unit delay between circuit

blocks at every pipeline stage is constant in the conventional cycle-accurate

simulator, which causes poor accuracy, the unit delay between circuit blocks in the

proposed approach is determined independently by its desirable logic function.

The use of this ‘‘delay-aware’’ model makes it accurate to simulate asynchronous

NoC systems. As a design example, a 16-core asynchronous Spidergon NoC

system is simulated by the conventional cycle-accurate and the proposed simulator

whose results, such as latency and throughput, are validated with a highly precise

transistor-level simulation result. As a result, the proposed simulator achieves

almost the same accuracy as one of the transistor-level simulators with the

simulation speed comparable to the cycle-accurate simulator.

N. Onizawa (&) � T. Funazaki � A. Matsumoto � T. Hanyu
Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
e-mail: onizawa@ngc.riec.tohoku.ac.jp

T. Funazaki
e-mail: funazaki@ngc.riec.tohoku.ac.jp

A. Matsumoto
e-mail: matumoto@ngc.riec.tohoku.ac.jp

T. Hanyu
e-mail: hanyu@ngc.riec.tohoku.ac.jp

N. Voros et al. (eds.), VLSI 2010 Annual Symposium,
Lecture Notes in Electrical Engineering 105, DOI: 10.1007/978-94-007-1488-5_2,
� Springer Science+Business Media B.V. 2011

17



2.1 Introduction

With circuit size reaching billions of transistors, traditional shared-bus architec-

tures become unusable for a complex System-on-Chip (SoC). Network-on-Chip

(NoC) design paradigm [1] has been recently proposed to provide scalable on-chip

global communication [2]. Especially, NoC based on Globally Asynchronous

Locally Synchronous (GALS) system [3] takes advantage of the benefits of

asynchronous circuits such as low power consumption and communication

robustness [4].

On-chip communication performance, such as latency and throughput, in NoC

is evaluated based on static performance analyses or system-level simulations for

design space exploration of NoC architectures at early stages before implemen-

tation [5, 6]. To validate the fast evaluation techniques, a cycle-accurate simulator

is useful for performance evaluation of synchronous NoC architectures because

behavior of circuits within one clock cycle is precisely simulated [7, 8]. However,

on-chip communication in the GALS-NoC is controlled by request-acknowledge

based handshaking between modules without a global clock, the asynchronous

operations are not performed at a constant period. Therefore, the GALS-NoC

performance cannot be accurately evaluated by using the cycle-accurate simulator.

For early design exploration of the GALS-NoC architectures, an accurate

simulator supporting the asynchronous operation is required to validate the fast

evaluation techniques.

This paper presents a highly accurate simulator based on a delay-aware model for

evaluation of the on-chip communication performance, such as throughput and

latency, in the asynchronous NoC architectures. In the proposed delay-aware model,

each asynchronous operation between modules is modeled by a delay module. Since

the delay information is selected dependent on conditions by a circuit-delay table,

asynchronous on-chip communication operating at different speed can be simulated.

The circuit delay is determined by transistor-level simulation results of post-layout

asynchronous NoC routers and communication links, which improves the accuracy

of the simulation. In addition, as the asynchronous operation is started when the

acknowledge information of the previous operation is returned to the module,

the delay module is scheduled to be active when inputs to the module satisfy

the specific condition. The scheduling makes it possible to simulate local

synchronization by the handshake operation between modules.

To evaluate the accuracy of simulations, the proposed and the cycle-accurate

simulators are validated using a highly precise transistor-level simulation result in

a 16-core asynchronous Spidergon [9] NoC architecture. As a result, the proposed

simulator obtains the minimum latency with about 5% error with respect to that

with about 35% error from the cycle-accurate simulator at comparable speed.

The rest of this paper is organized as follows. Section 2.2 describes related

works and our motivation. Section 2.3 describes a delay-aware model for the

asynchronous router. Section 2.4 describes the simulation accuracy of our simu-

lator. Section 2.5 concludes this paper.

18 N. Onizawa et al.



2.2 Background and Motivation

2.2.1 GALS-NoC Architecture

Figure 2.1 shows a typical NoC architecture based on a 2D-mesh topology, which

consists of switching routers, communication links between the routers and pro-

cessing cores. The processing cores transmit/receive data using the inter-core

communication network. The switching routers compute where to transmit an

incoming data and arbitration between potential concurrent data and finally

transmit the selected data on the selected link.

The GALS-NoC architecture is that NoC is implemented based on a GALS

system, where processing cores at different clock frequencies transmit/receive data

through the asynchronous switching routers [10, 11] and communication links

[12, 13]. In general, the asynchronous inter-core communication network is

realized by using quasi delay-insensitive(QDI) circuits which are robust against a

delay variation because of its timing assumption [14].

2.2.2 Related Work and Contributions

NoC performance, such as throughput and latency are varied with topology, flow

control, routing algorithm and flit size. In order to obtain an efficient NoC

architecture for specific applications, performance evaluation techniques are

extremely important at early stages before implementation. The performance

evaluation techniques includes static performance analyses [5, 15] and simula-

tions, where the simulations are done based on non-cycle accurate high-level

modeling [16, 6] and cycle-accurate modeling [7, 8]. In general, the static analyses

and the non-cycle accurate simulations are used to explore an optimum NoC

architecture at early stages because of fast evaluation. To validate the fast

Fig. 2.1 NoC architecture
based on a 2D-mesh topology

2 Accurate Asynchronous Network-on-Chip Simulation Based on a Delay-Aware Model 19



evaluation techniques, the cycle-accurate simulation is used. Since behavior of the

circuit, such as routers, is precisely modeled within a clock cycle, on-chip com-

munication performance in the synchronous NoC can be accurately evaluated.

In contrast, since on-chip communication is performed based on request-

acknowledge based handshaking without a global clock in the GALS-NoC

architecture, the asynchronous circuits are not operated at constant speed. The

asynchronous on-chip communication cannot be accurately simulated by the

cycle-accurate simulator, which causes inaccurate results of performance evalua-

tion. To validate fast evaluation techniques using the static analyses and the non-

cycle simulation techniques for the asynchronous NoC design space exploration,

an accurate simulation of the asynchronous NoC architecture is required.

In [17], a System C-based simulation technique for performance evaluation of

the GALS-NoC architecture has been proposed. The simulator supports the asyn-

chronous transfer delay which is independent of a clock cycle by using the circuit

delay in packet switching. However, this is not normally used in the NoC because of

hardware overhead, where a complete packet is stored in the router. The circuit

delay is not accurate because the asynchronous routers and communication links are

not implemented. In addition, the simulator does not support the acknowledge

operation, which cannot accurately simulate the handshake operation.

This paper presents a highly accurate simulator to evaluate the on-chip com-

munication performance, such as throughput and latency, in the GALS-NoC

architectures. Our contributions of this work are: a) to model the acknowledge

operation for the accurate simulation of the asynchronous circuit; b) to use highly

precise delay information extracted from transistor-level simulation results of post-

layout asynchronous NoC circuits for improving the accuracy; and c) to support

wormhole switching which is normally used in NoC because of small hardware.

2.3 Delay-Aware Model for an Asynchronous NoC Simulation

2.3.1 Asynchronous Router

In the GALS-NoC architecture, every core communicates with each other by

packet-based communication through asynchronous inter-core network whose

elements are asynchronous switched routers and communication links. In worm-

hole switching, a packet is divided into several flow control digits (flits) which are

transferred through the network. Figure 2.2 shows a format of wormhole-switched

packets in a deterministic routing algorithm. The packet consists of three types of

flits (FlitType): a header flit, a body flit and a tail flit. The header flit contains a

static routing path in an address field in order to perform the packet routing from

one processing core to a destination processing core. The address field contains

some sub-addresses, such as Addr1, Addr2... and AddrN. Each router uses one

sub-address (Addr1) in the address field and shifts the address field for the

following routers.

20 N. Onizawa et al.



Figure 2.3 shows a block diagram of an asynchronous router which is divided

into an input unit, a routing unit, an arbitration unit and an output unit by pip-

elatches (PLs). The input unit is first-in-first-out (FIFO) buffers for storing

incoming flits from other switched routers via communication links or a processing

core. The routing unit selects the link based on the address field of the header flit in

routing controller (RC) and then transfers the flit to the selected arbitration unit

using shifter (SH). The arbitration unit determines a flit which can be transferred to

the output unit in arbitration controller (AC). When multiple flits simultaneously

request the same output unit, a selected flit is transferred to the output unit, while

the other flits remain in the routing unit. The output unit selects a flit from the

arbitration unit in multiplexer (MX) and then transfers the flit to other switched

routers via communication links or a processing core.

In the asynchronous router, a flit in each unit is asynchronously transferred by

request-acknowledge based handshaking between PLs which are connected with

the input and the output of its unit. In general, the asynchronous router is designed

by using a QDI logic circuit based on a 4-phase protocol. A flit with the request

information is encoded as data represented by a 1-of-N signal, while spacer is

inserted into two time-consecutive data to distinguish them [14], where data and

spacer are defined by PhaseType shown in Table 2.1. PL is implemented by

C-elements [18] and an OR gate. The C-element is a standard asynchronous

storage element, whose output is low (high) when all inputs are low (high),

and which otherwise holds its value. When the 1-of-N signal (data) is stored in the

C-elements, one of inputs to the OR gate becomes high, which asserts an output of

the OR gate. In contrast, the output of the OR gate is deasserted when spacer is

stored in the C-elements. The output signal of the OR gate means acknowledge

information of the data or spacer. PhaseType of the acknowledge information is

DataPhase when the output signal of the OR gate is high, and SpacerPhase when

low shown in Table 2.1.

Figure 2.4 shows an example of an asynchronous router operation. Firstly,

a header flit with the request information (data) is stored in PL of the input unit.

Secondly, PL of the input unit asserts ACK_OUT as acknowledge information of

data whose PhaseType is DataPhase. This leads to changing DATA_IN from data

to spacer whose PhaseType is Spacer Phase. Thirdly, spacer is stored in PL of the

Fig. 2.2 Format of a
wormhole-switched packet

2 Accurate Asynchronous Network-on-Chip Simulation Based on a Delay-Aware Model 21



input unit when the acknowledge information of data is arrived to PL of the input

unit from the next unit (router unit). This means that a flit (data or spacer) is stored

in PL when the flit (DATA_IN) and the acknowledge information (IU_ ACK) have

different PhaseType. Finally, PL of the input unit deasserts ACK_OUT as

acknowledge information of spacer.

Fig. 2.3 Block diagram of
an asynchronous router

22 N. Onizawa et al.



This represents one cycle of the asynchronous operation based on the 4-phase

protocol. Namely, the asynchronous unit is operated based on a one-cycle delay

time which is varied with FlitType and PhaseType, since the operations are

different on the conditions.

2.3.2 Delay-Aware Model

To simulate accurately latency and throughput of a specific asynchronous NoC

architecture, the proposed delay-aware model captures the functionality and timing

information of each unit operating at different speed. Figure 2.5 shows the asyn-

chronous router based on the delay-aware model. Each unit between PLs is

modeled by a delay module based on the delay information of its desirable logic

function. The delay module includes computation delay time ðDTdÞ; acknowledge
delay time ðDTaÞ and pipelatch delay time ðDTpÞ:DTd is delay time that the flit is

Fig. 2.4 Example of an asynchronous router operation

Fig. 2.5 Asynchronous router based on the delay-aware model

2 Accurate Asynchronous Network-on-Chip Simulation Based on a Delay-Aware Model 23



transferred over computational blocks between PLs. DTp is delay time that the flit

is stored in the C-elements of PL. DTa is delay time that the acknowledge infor-

mation is transferred over the OR gate of PL and combinational blocks between

PLs after the flit is stored in PL. Each delay time is determined by FlitType and

PhaseType of an input in the delay module shown in Table 2.2

As the flit is transferred to the next unit while the acknowledge information is

transferred to the previous unit in each unit, two kinds of delay time is simulated.

Figure 2.6a shows a flow chart of a delay simulation for transferring the flit in the

delay module. Tx is the arrival time of signal x: Firstly, Tin data is determined when

PhaseType (in_ data) and PhaseType (in_ data’) are not the same, which means

that a new flit is arrived to the unit. Secondly, DTd is selected based on FlitType

and PhaseType of in_ data shown in Table 2.2. Then, Tin data0 is calculated by

adding the DTd to Tin data: Thirdly, Tin data0 and Tout ack are compared and then the

larger one is selected when PhaseType (in_ data) and PhaseType (out_ ack) are not

the same. Finally, Tout data is calculated by adding DTp:
Figure 2.6b shows a flow chart of a delay simulation for transferring the

acknowledge information in the delay module. Two flow charts shown in Fig. 2.6

are almost the same. Tout ack0 can be simulated as Tout data shown in Fig. 2.6a.

Then, DTa is determined by FlitType and PhaseType of out_ ack and is then added

to Tout ack0 :

2.4 Evaluation

2.4.1 Simulation Environment

Figure 2.7 shows simulation environment for performance evaluation of asynchro-

nous NoC architectures. It is assumed that a target asynchronous NoC architecture is

simulated by a testbench which calculates latency and throughput from the

Table 2.1 PhaseType of the
asynchronous signal

PhaseType

Flit Data DataPhase

Spacer SpacerPhase

Acknowledge High DataPhase

Low SpacerPhase

Table 2.2 Delay time
dependent on PhaseType

and FlitType

PhaseType

DataPhase SpacerPhase

FlitType Header flit DThd DThs
Body flit DTbd DTbs
Tail flit DTtd DTts

24 N. Onizawa et al.



simulation result. The target NoC architecture includes asynchronous routers (Rs)

modeled as Sect. 2.3.2 and interconnectwires between routers. The interconnectwire

ismodeled as a delay element based on its wire length. Packet Transceivers (PTs) and

(a)

(b)

Fig. 2.6 Flow charts of a
delay simulation for
transferring: a the flit and
b acknowledge information

2 Accurate Asynchronous Network-on-Chip Simulation Based on a Delay-Aware Model 25



Controller are included in the testbench. The target asynchronous NoC architecture

and the testbench are described using Verilog HDL.

In CT, packets are generated based on parameters, such as packet size, flit size and

offered traffic. The packets are partitioned into flits, which are in turn encoded by

1-of-N signals, where information of a static routing path between source and des-

tination PTs is embedded in the header flit. The encoded flits are transmitted to the

source and the destination PTs based on the information of the static routing path.

Figure 2.8 shows a block diagram of PT which is composed of transmitter (Tx)

and receiver (Rx). Tx includes sending list (SL) and input controller (IC).

Rx includes receiving list (RL) and output controller (OC). The encoded flits

transmitted from CT are stored in SL when the header flit indicates that PT is the

source of the routing path, or are stored in RL when the header flit indicates that

PT is the destination of the routing path.

Fig. 2.7 Simulation
environment

Fig. 2.8 Block diagram of a Packet Tranceiver (PT)

26 N. Onizawa et al.



In Tx, since the asynchronous operation based on the handshake protocol is not

operated at constant speed, the flits should be transferred to a router in the target

asynchronous NoC architecture when IC detects that the acknowledge signal from

the router is changed. Time to transfer the flit is recorded in SL for calculation of

latency and throughput. In Rx, the flits from other PTs are received. When the

received flit is the same as the previously stored flit in RL, time to receive the flit is

recorded in RL for calculation of latency and throughput. Then, OC changes the

acknowledge signal of the flit from the router.

2.4.2 Simulation Accuracy

To evaluate the accuracy of simulators, a 16-core asynchronous Spidergon [9]

NoC architecture shown in Fig. 2.9 is simulated by the conventional cycle-accu-

rate simulator and the proposed simulator whose results, such as latency, are

validated with a highly precise transistor-level simulation result. Each node

(router) has links to its clockwise and counter-clockwise neighboring nodes, and a

direct link to its diagonally opposite neighbor shown in Fig. 2.9a. In the physical

layout shown in Fig. 2.9b, the physical connections between routers only need to

cross at one point. It is assumed that each processing core with its router is

connected by three types of wires whose lengths are 2, 4 and 6 mm.

In the 16-core asynchronous Spidergon NoC architecture, asynchronous routers

and the communication links are designed by the QDI logic circuit based on a

4-phase dual-rail encoding. The packet is partitioned into 12-bit flits. BoP and EoP

are represented respectively by 1 bit, while data value or address is represented by

10 bits depicted in Fig. 2.2. The transistor-level simulation results are obtained

by NanoSim under a ROHM 0:18 lm CMOS technology. The conventional cycle-

accurate and the proposed simulators are described by Verilog HDL.

(a)

(b)

Fig. 2.9 16-core Spidergon NoC: a topology, b physical layout

2 Accurate Asynchronous Network-on-Chip Simulation Based on a Delay-Aware Model 27



Table 2.3 shows latencies of the asynchronous router versus the number of

packet collisions where one packet consists of 15 flits. The latencies are

Dt;Dc andDp from the transistor-level, the cycle-accurate and the proposed sim-

ulators, respectively, where an error is defined as a ratio of an absolute difference

jDt�Dcj or jDt�Dpj to Dt: The latencies in the cycle-accurate simulator differ from

those in the transistor-level simulator by about a 10% error because all units are

simulated at a constant period limited by the worst-case delay. In contrast, as the

proposed simulator simulate each unit operating at different speed by using the

delay-aware model, the latencies can be obtained within a 5% error in comparison

with one of the transistor-level simulators.

Figure 2.10 shows the minimum latencies through the 16-core asynchronous

Spidergon NoC architecture which is dependent on the number of flits in one

packet. Actually, the flit transmission in the asynchronous NoC is performed at

different speed determined by the routing path. However, in the cycle-accurate

simulator, the flit transmission in every unit is simulated at low speed dependent

on the longest (6 mm) wire, which causes about a 35% error. In contrast, the flit

Table 2.3 Router latency versus the number of packet collisions

# of packet collisions 0 1 2 3

Proposed [ns] 55.2 83.5 111.7 139.9

Cycle-accurate [ns] 62.8 94.3 125.8 157.2

Transistor-level [ns] 57.6 86.9 115.6 145

Fig. 2.10 Minimum latency in the 16-core asynchronous Spidergon NoC architecture

28 N. Onizawa et al.



transmission in each unit is simulated at different speed in the proposed simulator.

Therefore, the minimum latencies can be obtained within 5% error in comparison

with one of the transistor-level simulators.

The proposed and the cycle-accurate simulator run at almost the same time

which is about 4 orders of magnitude faster than the transistor-level simulator.

2.5 Conclusion

In this paper, a highly accurate asynchronous NoC simulator has been proposed for

validation of fast evaluation techniques, such as static performance analyses and

system-level simulators which are used for early design space exploration of NoC

architectures. Since the asynchronous operation is modeled by a delay module,

where the delay time is changed based on a flit type, the non-periodic operation

based on the handshake protocol can be accurately simulated. As a result, the

proposed simulator achieves almost the same accuracy as the transistor-level

simulator with the comparable speed to the cycle-accurate simulator.

The future direction includes building a fast system-level asynchronous NoC

simulator, whose accuracy is validated with the proposed simulator upon different

topologies.

Acknowledgements This research was supported by JST, CREST. This simulation is supported
by VLSI Design and Education Center (VDEC), the University of Tokyo in collaboration with
Synopsys, Inc. and Cadence Design Systems, Inc.

References

1. Benini L, De Micheli G (2002) Networks on chips: a new SoC paradigm. IEEE Comput
35(1):70–78

2. Vangal S, Howard J, Ruhl G, Dighe S, Wilson H, Tschanz J, Finan D, Iyer P, Singh A, Jacob
T, Jain S, Venkataraman S, Hoskote Y, Borkar N (2007) An 80-tile 1.28TFLOPS network-
on-chip in 65 nm CMOS. In: IEEE ISSCC Digest of technical papers, pp 98–99 Feb 2007

3. Chapiro DM (1984) Globally-asynchronous locally-synchronous sysmtes. Ph.D. Thesis,
Stanford University, Stanford, CA, Oct 1984

4. Lattard D, Beigne E, Clermidy F, Durand Y, Lemaire R, Vivet P, Berens F (2008) A
recongurable baseband platform based on an asynchronous network-on-chip. IEEE J Solid-
State Circuits 43(1):223–235

5. Bakhouya M, Suboh S, Gaber J, El-Ghazawi T (2009) Analytical modeling and evaluation of
on-chip interconnects using network calculus. In: The 2009 3rd ACM/IEEE international
symposium on networks-on-chip, NOCS ’09, pp 74–79

6. Banerjee A, Wolkotte PT, Mullins RD, Moore SW, Smit GJM (2009) An energy and
performance exploration of network-on-chip architectures. IEEE Trans Very Large Scale
Integr VLSI Syst 17:319–329

7. Loghi M, Angiolini F, Bertozzi D, Benini L, Zafalon R (2004) Analyzing on-chip
communication in a MPSoC environment. In: Design, automation and test in Europe
conference and exhibition, DATE ’ 04, vol. 2. pp 752–757

2 Accurate Asynchronous Network-on-Chip Simulation Based on a Delay-Aware Model 29



8. Wolkotte PT, Holzenspies PK, Smit GJM, (2007) Fast, accurate and detailed NoC simulations.
In: The first international symposium on networks-on-chip, NOCS ’07, pp 323–332

9. Moadeli M, Shahrabi A, Vanderbauwhede W, Ould-Khaoua M (2007) An analytical
performance model for the spidergon NoC. In: The 21st international conference on advanced
information networking and applications, AINA ’07, pp 1014–1021

10. Beigne E, Clermidy F, Vivet P, Clouard A, Renaudin M (2005) An asynchronous NOC
architecture providing low latency service and its multi-level design framework. In: The 11th
IEEE international symposium on asynchronous circuits and systems, ASYNC ’05, pp 54–63

11. Bainbridge J, Furber S (2002) Chain: a delay-insensitive chip area interconnect. IEEE Micro
22(5):16–23

12. Mizusawa K, Onizawa N, Hanyu T (2008) Power-aware asynchronous peer-to-peer duplex
communication system based on multiple-valued one-phase signaling. IEICE Trans Electron
E91-C(04)):581–588

13. Otake Y, Onizawa N, Hanyu T (2009) High-performance asynchronous intra-chip
communication link based on a multiple-valued current-mode single-track scheme. In:
IEEE international symposium on circuits and systems, ISCAS ’09, pp 1000–1003

14. Sparsø J, Furber S (2001) Principles of asynchronous circuit design. Kluwer Academic
Publisher, Dordrecht

15. Ogras UY,Marculescu R (2007) Analytical router modeling for networks-on-chip performance
analysis. In: Design, automation and test in Europe conference and exhibition, DATE ’07,
pp 1–6

16. Kahng AB, Li B, Peh L-S, Samadi K (2009) ORION 2.0: a fast and accurate NoC power and
area model for early-stage design space exploration. In: Design, automation and test in
Europe conference and exhibition, DATE ’09, pp 423–428

17. Ling X, Chiu-Sing C (2007) A network-on-chip system-level simulation environment
supporting asynchronous router. In: The 7th international conference on ASIC, ASICON ’07,
pp 1241–1244

18. Shams M, Ebergen JC, Elmasry MI (1998) Modeling and comparing CMOS implementations
of the C-element. IEEE Trans Very Large Scale Integr VLSI Syst 6(4):563–567

30 N. Onizawa et al.



Chapter 3

Trust Management Through Hardware
Means: Design Concerns
and Optimizations

Apostolos P. Fournaris and Daniel M. Hein

Abstract Trust in security demanding software platforms is a very important

feature. For this reason, Trusted computing group has specified a TPM hardware

module that can enforce and guaranty a high trust level to all the platform’s

involved entities. However, the TPM’s features can not be fully exploited in

systems under extreme physical conditions. To solve this problem, the use of a

special purpose hardware module, physically connected to a host security system’s

device acting as a local trusted third party, has been proposed in literature. In this

chapter, we describe the hardware structure of such a hardware module, called

Autonomous Attestation Token (AAT) and discuss hardware resource constrains,

security bottlenecks that can stem from improper design of its various components

integrated in the AAT’s structure. We conclude that the efficiency of the AAT

system is closely related to the efficiency of its public key encryption–decryption

unit (RSA encryption–decryption module). In this book chapter, we address these

issues by describing a design methodology toward a low hardware resources

(small chip covered area) and side channel attack resistant RSA hardware archi-

tecture. The described hardware architectures’ implementations provide very

optimistic results of very low chip covered area and high computation speed thus

verifying the efficiency of the proposed algorithms and architecture design

approach.

A. P. Fournaris (&)
Department of Electrical and Computer Engineering,
University of Patras, Rio Campus, Patras, Greece
e-mail: apofour@gmail.com

D. M. Hein
Institute for Applied Information Processing and Communications,
Graz University of Technology, Graz, Austria
e-mail: daniel.hein@iaik.tugraz.at

N. Voros et al. (eds.), VLSI 2010 Annual Symposium,
Lecture Notes in Electrical Engineering 105, DOI: 10.1007/978-94-007-1488-5_3,
� Springer Science+Business Media B.V. 2011

31



3.1 Introduction

Trust in Information Systems constitutes a fundamental security issue in most sensi-

tive data handling applications. However, achieving a high level of trust in the entities

of such systems is not an easy task. There are some computer communication systems

where the nature of the handled information is so sensitive that untrusted behaviors can

not be tolerated. In such systems, trust is ensured by hardware means [1].

Trusted Computing is an initiative concerned with establishing trust in

commodity-off-the-shelf computing platforms that is propagated by the Trusted

Computing Group (TCG). Trusted Computing provides a facility to establish the

load-time software integrity of a computing platform and attest this platform con-

figuration to interested third parties. The Trusted Computing concept relies heavily

on a specialized security chip, the Trusted Platform Module (TPM) [2]. A TPM is

physically bound to the computing platform it protects. Nowadays, many Personal

Computing platforms are already shipped with a TPM by default. The TPM provides

security functions such as 2048 bit RSA cryptographic unit and key generator, a

SHA-1 hash engine, secure non-volatile storage, and a true random number gener-

ator. The TPM supports the integrity protection of the host platform’s software with

two facilities: a shielded storage for platform software measurements, so-called

PlatformConfiguration Registers (PCRs) and away to cryptographically corroborate

that these measurements are indeed authentic and protected by a genuine TPM.

Many researchers [3, 4] have remarked that Trusted Computing can be effectively

applied to distributed software applications like mobile agent systems. Trusted

Computing can help protecting the integrity of the distributed components in a

mobile agent system. Using a transitive chain of trust model Trusted Computing and

the TPM can ensure that a malicious user cannot hide tampering with, or misusing of

a host computer in the mobile agent system. For this Trusted Computing relies on a

process called ‘‘Remote Attestation’’, where a remote trusted third party decides if

the applying computer has a trusted software configuration. The third party can then

grant access to protected services based on this decision, for example by issuing a

required cryptographic key. The remote trusted third party approach is not always

viable, especially if the availability of such a service cannot be guaranteed. This is

especially true if there is no reliable communication channel to this remote entity.

A solution to this problem is ‘‘local attestation’’ [5, 6]. The functionality of this

operation is based on an Autonomous Attestation Token (AAT) on which a number

of cryptographic credentials are stored in a secure way. The retrieval of these

credentials can only be done after a successful local attestation session.

In this book chapter, we explore the hardware structure of such a module, we

analyze its functionality, discuss the security algorithms that are required to ensure

trust and propose solutions on how the hardware units of the module can cooperate

efficiently without compromises in the provided trust level. We introduce a

local trusted third party hardware module architecture and describe how this

architecture must function in order to match the trust specification of a security

demanding system. After analyzing the AAT hardware structure, hardware

32 A. P. Fournaris and D. M. Hein



efficiency and security bottlenecks are examined. One important bottleneck of

the AAT hardware structure is the efficient design of its public key encryption–

decryption unit (RSA unit). As a result, an RSA encryption–decryption unit

design methodology is presented that takes into account the security demanding

nature of the AAT by providing resistance against Fault and Simple power side

channel attacks. The Chinese Remainder Theorem (CRT) RSA algorithm is

adopted, employing a Fault and simple power attack resistant modular expo-

nentiation (FSME) algorithm that uses values in carry-save logic. The proposed

architecture is structured around an FSME unit that is reused for finding the

two CRT RSA exponents in order to minimize the required chip covered area.

To prove this area efficiency, the proposed FSME unit is implemented in FPGA

technology and the implementation results are presented thus proving that SCA

resistance in the proposed structure can be achieved with few compromises in

performance.

The book chapter is organized as follows. In Sect. 3.2, the protocols behind the

AAT are described and in Sect. 3.3 the AAT hardware structure is proposed and

analyzed. In Sect. 3.4 an analysis is made on the problems-constrains of the AAT

and possible solutions are discussed. In Sect. 3.5, algorithms for the AAT RSA

encryption–decryption module are described. In Sect. 3.6 hardware architectures

are proposed for CRT RSA. The described units performance characteristics are

presented in Sect. 3.7.

3.2 Attestation Through Security Hardware Module

As a distributed information processing system a mobile agent system relies on the

fact that each participating party executes the agents as intended by the operator of

the agent platform. This requires a secure environment that can be trusted to

execute the distributed code unhindered. One way to achieve his goal is to use

special tamper proof hardware with support for trusted third parties [7]. The

ubiquity of powerful commodity-of-the-shelf computer hardware, makes it desir-

able to use these relatively cheap platforms for distributed computing applications.

This requires a way to determine if such a platform can be trusted to execute

distributed code. Special purpose hardware chips have been proposed to determine

the trusted state of such a platform [8].

One promising approach in this direction uses the Autonomous Attestation Token

(AAT) [5]. The AAT restricts access to cryptographic credentials depending on the

trusted software configuration of the host platform. Thus, the AAT does not need to

provide a full tamper-proof execution environment, but leverages the host platform

by ensuring its software integrity. The AAT is a hardware plug-in device for Local

Attestation and the AAT concept allows for a variety of possible interfaces and form

factors for its connection to a host platform. Possible candidates are SD cards, orUSB

tokens. The AAT contains a secure non-volatile memory to protect cryptographic

keys and credentials. This information is only released to the host platform if the host

platform has a trusted software configuration. The AAT works in conjunction with a

3 Trust Management Through Hardware Means 33



TPM to establish the host platform’s trusted software configuration. The TPM is

permanently bound to the host platform and is used to store integrity measurements

of the host platform. These measurements take the form of SHA-1 hashes stored in

theTPM’s PCRs.A special TPMoperation, the so-calledTPMQuote, is used to attest

the measured platform state. This is done by creating a SHA-1 hash of selected PCRs

and signing it with a special TPM protected key, which can only be used for this

purpose. Based on the information contained by a TPMQuote the AAT can decide to

release protected information to the host.

In this section we introduce a protocol (cf. Fig. 3.1) for local attestation between

the AAT and the host platform. The protocol is based on a local attestation protocol

variant with increased Man-in-the-Middle resistance [6]. The goal of the protocol is

to protect against an attacker who has full control on the communication channel

between the host and the AAT (Dolev Yao threat model). The three entities in the

protocol are the user who wants to employ a mobile agent system, the host platform

used to connect to this distributed service and the AAT which guards the required

service credentials in its protected storage. For the required credentials to be released

the host platformmust be in a trusted software configuration and the usermust supply

a password. To protect the communication messages between the AAT and the host

platform previously exchanged RSA key pairs are used for encryption. In this pro-

tocol knowledge of a specific public key is used to corroborate the authenticity of

both theAAT and the host. Therefore, both the private and the public communication

keysmust be kept secret. In the host this is ensured by using a TPMprotected key pair

for the communication (Hostpair) and storing the public AAT key (AATpub) in a file

encrypted with the private part of the host communication key pair (Hostpri). On the

AAT all keys for communication (AATpair;HostpubÞ are kept in a secure storage

location. For signing the TPM Quote a second TPM RSA key pair (Attestation

Identity Key AIKpair) is required. The public part of this key (AIKpub) must be

previously stored in the secure storage of the AAT as well.

Fig. 3.1 The Host-AAT local attestation protocol

34 A. P. Fournaris and D. M. Hein



The key release protocol is initiatedwhen the host requests a key from theAATby

providing the platform id and the key id: The platform id is necessary so that the

AAT can select the correct encryption key Hostpub: As a response, the AAT sends a

nonce. The host platform creates a TPM Quote containing the nonce, and a SHA-1

hash representing the platform software configuration. The TPM Quote is signed

withAIKpri by the TPM. The hosts then sends the signed TPMQuote to theAAT. The

AAT verifies the signature using AIKpub; checks that the nonce is correct and vali-

dates the given platform software configuration against the acceptable configurations

stored in the AAT’s shielded memory. The AAT then generates a Trust note that

contains the result of the TPM Quote verification and the password id: In case the

verification fails the password id is replaced with a random number. The Trust note

along with the nonce is encrypted using the host’s public key Hostpub and send to

the host. When the message is received, the host decrypts it and reads the Trust note.

If the Trust note acknowledges a trusted platform configuration the host reads the

password id and prompts the user to insert the password. The password along with

the nonce is then encrypted using the AAT’s public keyAATpub and send to the AAT.

The AAT decrypts the message and verifies the nonce and the password. If both are

correct theAATencrypts the nonce and the requested key usingHostpub and sends the

result to the host. The host retrieves the key by decrypting the AAT message with

Hostpri and by verifying the nonce.

Each message exchange in the protocol is protected from replay attacks through

the use of a random nonce generated by the AAT. This nonce is also concatenated

to every protocol message to ensure that this message is related to the current run

of the protocol. Also, after decryption, the message is expected to include the

nonce value thus the message receiver can verify that the message is a correctly

encrypted value and not some garbage data inserted into the channel. The channel

is secured by encrypting all messages including sensitive information along with

the nonce generated by the AAT. Knowledge of the host’s public key by the AAT

attests that the hardware device connected to this host is a legitimate AAT.

Likewise the hosts identity is corroborated by knowledge of AATpub and the sig-

nature on the TPM Quote, because AIKpri is bound to the host platform.

Apart from key release, the communication between a host and the AAT may

involve a series of other actions. Those actions are related to the addition or

deletion of keys and valid host software configurations. For this application

establishing a symmetrically encrypted session is highly desirable. We suggest the

use of AES with the Needham-Schroeder-Lowe [9] key agreement protocol.

3.3 AAT Hardware Structure

We envision the AAT as a synchronous System on Chip (SoC) device. The

hardware structure of the AAT can be determined by the functions that it must

fulfill. The AAT due to its potential connection with a TPM has a TPM-like

structure and includes an RSA signature unit, a control processor unit, a non

3 Trust Management Through Hardware Means 35



volatile memory unit for key storage, a true random number generator unit

(TRNG), a SHA-1 hash function unit and a symmetric key encryption/decryption

and key generation unit (AES algorithm).

The suggested hardware structure of an AAT chip is presented in Fig. 3.2. The

system is structured around a data bus where all the data values are transferred for

reading by or writing to a requesting unit of the AAT. There is also an address bus

connected to the memory unit for a successful memory data reading and writing.

An additional bus is also connected to all the units of the chip which is responsible

for passing all the control signals to those units. Signals of this bus are in general

managed by the processor.

The processor unit is responsible for controlling the whole AAT system and

realizing the AAT functionality by enabling-controlling (chip select, CS, signal)

AAT component units and performing operations that don’t require the involve-

ment of other units (i.e. comparisons or memory search). For this task, the pro-

cessor has stored in its ROM memory a firmware program implementing the

various AAT commands and a series of data required by those commands.

There are three memory modules included in the AAT hardware structure. The

first module is a RAM unit that is employed for temporary value storage during a

single AAT-Host session. The second module is a ROM–EEPROM unit that is

mainly used for storing and updating the AAT firmware that realizes the AAT

functionality. The third module is an NVRAM (flash memory) unit which con-

stitutes the main storage area for all the sensitive information involved in the AAT

transactions. The three memory units are protected by special hardware structures

that deter attackers from deciphering memory data.

The SHA-1 unit is implementing the SHA-1 hash function and the RSA

encryption–decryption unit is responsible for performing the arithmetic operation

of modular exponentiation (memodN) as defined in RSA public key scheme. The

SHA-1 unit has a data input/output and a control signal indicating the beginning

of a hash function operation. The RSA unit has as inputs the modulus N value (part

of the RSA public key), the message m to be encrypted-decrypted and the public or

private key e along with a control signal indicating the beginning of a modular

exponentiation encryption or decryption.

Fig. 3.2 The proposed AAT hardware structure

36 A. P. Fournaris and D. M. Hein



The AES encryption/decryption unit is responsible for the key generation,

encryption and decryption of an established session’s data that are transmitted to

and from the AAT. It has control signals that indicate an encryption, decryption

and key generation operation. The AES generated session key is only saved within

the AES unit and is changed when is replaced by a newly generated session key.

The TRNG unit is connected to the data path through its data output and has a 9

bit control signal that determines the bit length of the generated random number.

The NVRAM has a read/write control signal while is connected to the data and

address bus in order to read the address and use it to write or read the data values in

or out of it. The system has a clock generator unit for managing the AAT different

clocks and a a reset signal along with chip select (CS) signals to enable or disable

each AAT unit. The system works in a synchronous way.

Note, that in order to ensure a high security level, the RSA keys used in the AAT

should be of length 2048 bits. As a result, the data related to the RSA encryption and

decryption will have similar bit length. However, there is no feasible processing

system able to operate with buses of such bits. Therefore, the 2048 bit values are

broken into several blocks (to match the bus bit length) and reconstructed inside the

AAT units (in example the RSA encryption–decryption unit).

3.4 Hardware and Security AAT Issues and Possible

Solutions

Designing a state of the art security chip that matches recent and future market needs

is a challenging act. The cryptographic level that should be provided by the chip

must conform to the strictest security rules and the adopted cryptographic algorithms

should be widely accepted but also have a place in future applications. In this chapter

we address some of the possible drawbacks that the AAT can have, under the above

described needs. RSA algorithm is considerably adopted in recent application but

serious speculations arise as to how the algorithm can compete against more modern

public key schemes like Elliptic Curves. It seems that as long as the key length is

kept high (�2048 bits), RSA can be considered very secure from cryptanalytic point

of view. However, the algorithm’s life expectancy and future is determined by its

computational efficiency and hardware resources use as well as its protection against

hardware specific security attacks (Side Channel Attacks).

3.4.1 RSA Efficiency and Security Issues

The AAT architecture presented in the previous section posses several design

challenges, however, the biggest one is related to theRSA encryption–decryption unit.

Public key cryptographic algorithms due to their high computational complexity are

3 Trust Management Through Hardware Means 37



considered difficult to implement, have significant computational time and

consume considerable number of hardware resources (chip covered area, power

dissipation). So, in order to design an efficient AAT architecture that will be able

to process information quickly and fit in a relatively constrained environment,

chip area optimization of the RSA encryption–decryption unit is necessary.

Furthermore, since the AAT, being a removable smart card like device, operates

in a hostile environment where it can be stolen or manipulated by untrusted

users, security attacks on its hardware structure can not be excluded. Such

attacks called side channel attacks exploit an architecture’s hardware charac-

teristics leakage (power dissipation, computation time, electromagnetic emission

etc.,) to extract information about the processed data use them to deduce

cryptographic keys and messages [10]. While RSA is considered very secure

against traditional cryptanalysis, side channel attacks (SCA) have been suc-

cessful in determining RSA keys using information leaking from a straightfor-

ward implementation of the algorithm. For the above reasons, it can be

concluded that the RSA encryption–decryption unit can be a performance and

security bottleneck and special attention need to be given to its design in order to

avoid the above indicated problems.

Among the most effective SCA launched on RSA are Fault attacks (FA) and

simple power attacks (SPA). The fault attack (FA) goal is to disturb a hardware

device during cryptographic operation execution, analyze the faulty behavior of

the disturbed device and as a result deduce sensitive information. Combining such

attack with a simple power attack (SPA), where a hardware device’s power trace is

measured and exploited for secret information leakage [10], a crypto-system

attacker can relatively easy deduce a cryptographic key of a secure hardware

device. Many researchers have proposed solutions on protecting RSA from FA and

SPA with relative success [11–14]. However, those solutions are focused on an

FA-SPA resistance on algorithmic level without taking into account the imple-

mentation cost for one FA SPA secure RSA encryption–decryption operation. This

cost is associated with the arithmetic operations required for RSA and can be very

high-restrictive when applying the existing FA SPA resistant RSA solutions in real

security devices. SCA countermeasures can be generic, on circuit level, (more

effective against power attacks) [15, 16] or specialized, focused on specific cryp-

tographic algorithms, on an algorithmic level. The second approach can be more

effective in general, since it utilizes techniques that better negate a cryptoalgorithm’s

specialized SCA weaknesses.

In RSA, the target of the FA and SPA is the modular exponentiation unit, that

constitute the core component in message encryption–decryption. SPA resistance

is achieved by making the arithmetic operations during the exponentiation algo-

rithm execution undiscriminated from an external observer [13]. This counter-

measure can be further enhanced by blinding the modulus N using a random

number. Fault attack countermeasures are based on techniques of detecting single

fault injection and blocking further processing thus prohibiting the release of secret

information. Giraud in [11] proposed a FA-SPA resistant modular exponentiation

algorithm and later Kim and Quisquater [14] proposed an attack on the algorithm

38 A. P. Fournaris and D. M. Hein



along with a way to thwart it. Recently, Fournaris [17] proposed a modification of

Giraud’s and Kim’s RSA algorithm [14] that works using Montgomery modular

multiplication algorithm and results in very optimistic performance characteristics

but was not designed as a CRT RSA module. The RSA modified algorithms of

[11, 17] and [14] guaranty FA resistance by introducing two values, s0 and s1 and

checking if a known equation between them is always true. If this connection

between s0 and s1 is disturbed then a fault attack is detected and the cryptographic

processes is canceled.

3.5 Proposed FA-SPA CRT RSA Algorithm

In our approach about a FA-SPA resistant RSA module we adopt the methodology

described in [17] for Montgomery modular multiplication and adapt it to the

system at hand. The algorithm in [17] seems very promising in terms of security

and hardware performance. It is based on the Montgomery multiplication algo-

rithm that is adapted for Giraud’s modular exponentiation methodology resulting

in a CRT FA-SPA resistant RSA algorithm. However, the work of [17] only focus

on how FA-SPA modular exponentiation can be done and not how a fully func-

tional CRT based FA-SPA unit can operate. In our approach, the ideas of [17]

are applied in the AAT architecture in order to propose an efficient and secure

FA-SPA RSA unit.

Introducing a random number a in the computational sequence, as suggested in

[14], an FA-SPA resistant modular exponentiation algorithm (FSME) can be

presented. This algorithm employs Montgomery modular multiplication as a

structural element, chosen among other approaches due to its efficient realization

in hardware. Following the above directive, we adopt an optimized version of

the Montgomery modular multiplication algorithm (CSMMM), as described in

[17, 18], that employs carry-save logic (C-S logic) in all its inputs, outputs and

intermediate values along with precomputation. The complete FSME algorithm is

described below.

FA-SPA Montgomery Modular Exponentiation ðFSMEÞ algorithm
Input: m; a; e ¼ ð1; et�2; :::e0Þ;N

Output: ðaþ me�1ÞmodN; ðaþ meÞmodN

Initialization: T = R2modN; aR ¼ a � RmodN where R ¼ 2nþ2

1. s0 ¼ CSMMMðT ;m;NÞ
2. s1 ¼ CSMMMðs0; s0;NÞ
3. For i ¼ t � 2 to 1

a. If ei ¼ 1 then

i. s0 ¼ CSMMMðs0; s1;NÞ
ii. s1 ¼ CSMMMðs1; s1;NÞ

3 Trust Management Through Hardware Means 39



b. else

i. s1 ¼ CSMMMðs0; s1;NÞ
ii. s0 ¼ CSMMMðs0; s0;NÞ

4. s1 ¼ CSMMMðs0; s1;NÞ
5. s0 ¼ CSMMMðs0; s0;NÞ
6. s1 ¼ CSMMMðs1 þ aR; 1;NÞ
7. s0 ¼ CSMMMðs0 þ aR; 1;NÞ
8. If (Loop Counter i and exponent e are not modified) then return ðs0; s1Þ else

return error

The above algorithm can be considered only part of a CRT RSA module. Let

N ¼ p � q be the RSA modulus described as the product of two large secret prime

numbers p and q: Also, let r be the public RSA exponent and d be the private RSA

exponent satisfying the equation r � d � ð1Þmodðp� 1Þ � ðq� 1Þ: We denote as dp
the value dp ¼ dmodðp� 1Þ and as dq the value dq ¼ modðq� 1Þ: Using the

above, the CRT FA-SPA RSA algorithm will have the following form:

FA-SPA CRT RSA algorithm

Input: m; a; p; q; dp; dq; iq ¼ q�1modp;N

Output: mdmodN

1. ðsp0; s
p
1Þ ¼ FSMEðm; a; dp; pÞ

2. ðsq0; s
q
1Þ ¼ FSMEðm; a; dq; qÞ

3. �S ¼ s
q
0 þ q � ððsp0 � s

q
0Þ � iqmodpÞ

4. S ¼ s
q
1 þ q � ððsp1 � s

q
1Þ � iqmodpÞ

5. �S ¼ ðm � �Sþ aÞmodN
6. S ¼ ðSþ a � mÞmodN

7. If ðS ¼ �SÞ and p,q notmodified then return ðS� a� a � mÞmodN else return error

Observing the algorithms reveals that an RSA encryption–decryption process

consists of two execution of the FSME algorithm. That algorithm is run using

dp and dq exponents and p; q modulus respectively. We can assume without lost of

generality that p; q are of similar bit length and therefore about half the bit length of

N. Thus, usingCRT the tedious n bitmodular exponentiation operation is broken into

two parallel n=2bitmodular exponentiations that can give results faster. The price for

this action, is a final CRT operation (steps 3 and 4) for both fault secure streams of

data. Note, that the use of the random number a prohibits the discovery of the RSA

decryption result before the fault attack check is performed (step 7).

3.6 Proposed Hardware Architectures

Designing an FA-SPA resistant RSA encryption/decryption poses several

challenges in a system with constrained resources like the AAT. Our primary goal

is to minimize the chip covered area without compromises in security. For this

40 A. P. Fournaris and D. M. Hein



reason, we employ one FSME unit responsible for modular exponentiation using

either p or q. The FSME unit is structured around two Montgomery Modular

Multipliers (CSMMU) using Carry-Save logic input and output signals. The

CSMMU is a 5 parallel (n=2þ 1) bit and 2 serial (1) bit input architecture that

generates a Montgomery modular multiplication product in Carry-Save format

every n=2þ 2 clock cycles. The functionality and full architecture of the CSMMU

is described in [17, 18]. Observing FSME algorithm, reveals that there are several

algorithmic steps that can be performed in parallel. Parallelism can be applied on

steps 3ai and 3aii, steps 3bi and 3bii, steps 4 and 5 as well as steps 6 and 7.

Furthermore, one part of the step pair always performs Montgomery modular

multiplication between s0 and s1 in parallel with the other part of the step pair

performing Montgomery modular squaring either of s0 or s1. We assign each

parallel operation in one CSMMU. Therefore, only two such units are required for

all necessary calculations of the FSME algorithm. A problem can occur using this

approach and it has to do with the correct inputs in the Montgomery squaring unit.

Those inputs are taken either from the output of the same CSMMU or the output of

the multiplication CSMMU. The correct input choice of the squaring CSMMU is

not related only to the i-th bit of e in round i but it also has to do with the

operations performed in the previous algorithmic round (round i-1) and therefore it

is also related to the (i-1)th e bit. Thus, in the proposed architecture, the data path

control in squaring CSMMU is related to the value difference between the ith and

(i-1)th bit of e and is estimated through a XOR gate.

The FSME unit needs to be used twice for one CRTRSA decryption session since

it implements steps 1 and 2 of FSME in a serial fashion. In the first use of the FSME

unit the outcome of mdpmodp is calculated in carry-save format and stored in two

registers while on the second use of the FSME unit the outcome mdqmodq is calcu-

lated and stored in a similar way. Note, that following the FSME algorithm there are

two calculation streams for an exponentiation outcome, s0 and s1; and therefore each
utilization of the FSME unit requires 4 storage registers (2 for s0 and 2 for s1). Thus, a

total of 8 registers is needed. The stored values are chosen through a multiplexer as

inputs for the CRT Transformation unit that is responsible for implementing the

operations of steps 3 and 4 of the CRT FA SPA RSA algorithm. The CRT trans-

formation unit will be used twice to provide outcome for both those steps. In the first

use of CRT transformation unit, the inputs provided by the multiplexer are s
q
0 and s

p
0

in carry-save format while on the second use of the CRT transformation unit the

inputswould be s
q
1 and s

p
1:The output of theCRT transformation unit is an n-bit value

in carry-save format stored in two n-bit registers. After the two utilization of the CRT

transformation unit the 2 outcomes are inserted into the Fault detection unit that

realizes the functionality of step 7 in the CRT FASPA RSA algorithm. The outcome

of this unit is either an error code provided by an all zero value or the correct

encrypted-decrypted message of the RSA algorithm. The proposed CRT FASPA

RSA architecture is presented in Fig. 3.3.

As explained in Sect. 3.4 the data bus is constrained in specific bit lengths that

at the moment cannot exceed 32 or 64 bits. For this reason, we develop a

3 Trust Management Through Hardware Means 41



mechanism for that bus data insertion into the RSA architecture so that the arbi-

trary input RSA algorithm where the bit length of the processed values is of higher

bit length than the one provided by the data bus, can fully work. The data bus

inputs are multiplexed using the input reconstruction unit. There exist 2 digit input

Fig. 3.3 The CRT FA-SPA resistant RSA architecture

42 A. P. Fournaris and D. M. Hein



parallel output shift registers (for the message m and the p or q modulus) and one

digit input serial output shift register (for the dp or dq exponent). As the data bus is

accessed in digits analogous to the AAT control processor word length (w bits),

they are stored to the appropriate register through a multiplexer structure.

Initially, the modulus register is filled out, after n=2w clock cycles. Then, the

message register is filled out, after n=2w consecutive clock cycles. The data bus

words are inserted in those registers in each clock cycle and then right shifted w

bits until the whole register length is full. The register’s value is outputted in

parallel fashion using a parallel out control signal. When the message and mod-

ulus registers are filled with the message and p values, the storage of the exponent

may begin. Input is provided to the exponent register in w bit words and output is

performed in a serial fashion (the two least significant bits of the stored value are

outputted). Note, that the exponent register has two modes of operation, data

insertion and data output processing. In the first mode of operation the register data

are right shifted w bits in order to make space for the next data bus word to be

stored while in the second mode of operation, register data are right shifted 1 bit.

The data insertion can be completed in n=2w clock cycles however, RSA opera-

tions can begin after the first clock cycle of that time since only the 2 least

significant bits of the exponent are needed in every modular exponentiation round.

3.7 Performance

Assuming that n bit RSA encryption–decryption needs to be performed and that

the data bus clock speed is considerably higher than the proposed CRT RSA unit

clock speed, data insertion to the RSA unit’s input registers (modulus, exponent

and message registers) can be done with small speed overhead to the whole

system. Thus, ignoring the cost of data insertion the proposed CRT FA SPA RSA

architecture requires CCRT RSA ¼ CFSME þ CCRT þ CFA clock cycles for one

encryption–decryption operation where CFSME is the clock cycle number for

Modular exponentiation using the FSME algorithm, CCRT is the clock cycle

number for CRT transformation and CFA is the clock cycle number for the Fault

detection. The CCRT RSA is dominated by the FSME unit since CFSME has Oðn_tÞ
complexity where t is the Hamming weight of the FSME exponent. The

CCRT and CFA numbers are of OðnÞ complexity. Thus, we can focus our analysis

on the FSME unit. The CSMMU needs n
2
þ 2 clock cycles to come up with a result.

The FSME algorithm is concluded after t � 2 algorithmic rounds where the

CSMMM algorithm is executed in parallel two times in each round. Also, in

FSME, 2 execution of CSMMM are needed for initialization (FSME steps 1 and 2)

and 2 parallel CSMMM executions for post processing calculations (FSME

parallel steps 4–5 and 6–7). As a result, the total number of clock cycles for one

modular exponentiation using FSME is ðt þ 2Þ � ðn
2
þ 2Þ: Since through the CRT

FA SPA RSA algorithm (steps 1 and 2) there are two FSME executions, all

modular exponentiations are concluded after ðt þ 2Þ � ðnþ 4Þ clock cycles.

3 Trust Management Through Hardware Means 43



To further evaluate our proposed system we realized the FSME architecture in

FPGA technology (xilinx virtex 5) using VHDL language for n ¼ 1024 RSA

operations. Assuming that p and q are approximately n=2 bit length, a 512 bit

FSME architecture was implemented and measurements in chip covered Area

(FPGA slices) and clock frequency (MHz) were taken. Those measurements are

presented in Table 3.1 and comparison with other existing RSA works are made.

Acknowledgements The work reported in this paper is supported by the European Commission
through the SECRICOM FP7 European project under contract FP7 SEC 218123

References

1. Sklavos N, Zhang X (2007) Wireless security and cryptography: specifications and
implementations. CRC Press Inc, Boca Raton

2. GroupTC(2007) TCGTPMspecification version 1.2. URL https://www.trustedcomputinggroup.
org/specs/TPM/

3. Xiaoping Wu ZS, Zhang H (2008) Secure key management of mobile agent system using tpm-
based technology on trusted computing platform. Computer science and software engineering,
International conference on 3, pp 1020–1023. doi:http://doi.ieeecomputersociety.org/10.1109/
CSSE.2008.256

4. Tan HK, Moreau L (2001) Trust relationships in a mobile agent system. In: Mobile agents,
number 2240 in LNCS, Springer, Heidelberg, pp 15–30

5. Hein D, Toegl R (2009) An autonomous attestation token to secure mobile agents in disaster
response. In: The first international ICST conference on security and privacy in mobile
information and communication systems (MobiSec 2009), Torino

6. Fournaris AP (2010) Trust ensuring crisis management hardware module. Inf Secur J:
A Global Perspect 19(2):74–83

7. Uwe G. Wilhelm SS, Buttya’n L (1999) Introducing trusted third parties to the mobile agent
paradigm. In: Secure internet programming: security issues for mobile and distributed
objects. Springer, Heidelberg, pp 471–491

8. Jonathan M. McCune Adrian Perrig AS, van Doorn L (2007) Turtles all the way down:
research challenges in user-based attestation. In: Proceedings of the workshop on hot topics
in security (HotSec). URL http://www.truststc.org/pubs/286.html

9. Lowe G (1995) An attack on the needham-schroeder public-key authentication protocol. Inf
Process Lett 56(3):131–133

10. Kocher P, Jaffe J, Jun B (1999) Differential power analysis. In: Advances in cryptology
proceedings of crypto 99, Springer, Heidelberg, pp 388–397

11. Giraud C (2006) An rsa implementation resistant to fault attacks and to simple power
analysis. IEEE Trans Comput 55(9):1116–1120

12. Vigilant D (2008) Rsa with crt: a new cost-effective solution to thwart fault attacks.
In: Oswald E, Rohatgi P (eds.) CHES, Lecture notes in computer science, vol 5154. Springer,
Heidelberg, pp 130–145

Table 3.1 Modular Exponentiation Comparisons for n ¼ 1024

Arch. Technology Area (slices) Freq. (MHz) FA-SPA

Prop. XC5VLX50T 4340 324.4 Yes

[19] XC2V3000 12537 152.5 No

[20] XC2V6000 23208 96 No

[18] XC2V3000 7873 129 No

44 A. P. Fournaris and D. M. Hein

https://www.trustedcomputinggroup.org/specs/TPM/
https://www.trustedcomputinggroup.org/specs/TPM/
http://doi.ieeecomputersociety.org/10.1109/CSSE.2008.256
http://doi.ieeecomputersociety.org/10.1109/CSSE.2008.256
http://www.truststc.org/pubs/286.html


13. Joye M, Yen SM (2003) The montgomery powering ladder. In: CHES ’02: Revised papers
from the 4th international workshop on cryptographic hardware and embedded systems,
Springer, London, pp 291– 302

14. Kim CH, Quisquater JJ (2007) Fault attacks for crt based rsa: new attacks, new results, and
new countermeasures. In: Sauveron D, Markantonakis C, Bilas A, Quisquater JJ (eds.)
WISTP, Lecture notes in computer science, vol 4462. Springer, Heidelberg

15. Bhattacharya K, Ranganathan N (2008) A linear programming formulation for security aware
gate sizing. In: GLSVLSI ’08: Proceedings of the 18th ACM Great Lakes symposium on
VLSI. ACM, New York, pp 273–278

16. Tiri K, Verbauwhede I (2006) A digital design flow for secure integrated circuits. IEEE Trans
CAD Integr Circuits Syst 25(7):1197–1208

17. Fournaris AP (2010) Fault and simple power attack resistant rsa using montgomery modular
multiplication. In: Proceedings of the IEEE international symposium on circuits and systems
(ISCAS2010). IEEE (30 May 2002, June 2010)

18. Fournaris AP, Koufopavlou OG (2005) A new rsa encryption architecture and hardware
implementation based on optimized montgomery multiplication. In: ISCAS (5), IEEE,
pp 4645–4648

19. Shieh MD, Chen JH, Wu HH, Lin WC (2008) A new modular exponentiation architecture for
efficient design of rsa cryptosystem. IEEETransVery Large Scale Integr Syst 16(9):1151–1161

20. McIvor C, McLoone M, McCanny J (2004) Modified montgomery modular multiplication
and rsa exponentiation techniques. IEE Proc-Comput Digital Tech 151(6):402–408

3 Trust Management Through Hardware Means 45



Chapter 4

MULTICUBE: Multi-Objective Design
Space Exploration of Multi-Core
Architectures

Cristina Silvano, William Fornaciari, Gianluca Palermo, Vittorio Zaccaria,

Fabrizio Castro, Marcos Martinez, Sara Bocchio, Roberto Zafalon,

Prabhat Avasare, Geert Vanmeerbeeck, Chantal Ykman-Couvreur,

Maryse Wouters, Carlos Kavka, Luka Onesti, Alessandro Turco,

Umberto Bondi, Giovanni Mariani, Hector Posadas, Eugenio Villar,

Chris Wu, Fan Dongrui, Zhang Hao and Tang Shibin

Abstract Given the increasing complexity of Chip Multi-Processors (CMPs),

a wide range of architecture parameters must be explored at design time to find the

best trade-off in terms of multiple competing objectives (such as energy, delay,

bandwidth, area, etc.). The design space of the target architectures is huge because

it should consider all possible combinations of each hardware parameter

(e.g., number of processors, processor issue width, L1 and L2 cache sizes, etc.).

This project is supported by the EC under grant MULTICUBE FP7-216693.

C. Silvano (&) � W. Fornaciari � G. Palermo � V. Zaccaria � F. Castro
Politecnico di Milano, Milano, Italy
e-mail: silvano@elet.polimi.it

M. Martinez
Design of Systems on Silicon (DS2), Valencia, Spain

S. Bocchio � R. Zafalon
STMicroelectronics, Catania, Italy

P. Avasare � G. Vanmeerbeeck � C. Ykman-Couvreur � M. Wouters
IMEC vzw, Leuven, Belgium

C. Kavka � L. Onesti � A. Turco
ESTECO, Trieste, Italy

U. Bondi � G. Mariani
ALaRI - Universita’ della Svizzera Italiana, Lugano, Switzerland

H. Posadas � E. Villar
University of Cantabria, Cantabria, Spain

C. Wu
STMicroelectronics Beijing, Beijing, China

F. Dongrui � Z. Hao � T. Shibin
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

N. Voros et al. (eds.), VLSI 2010 Annual Symposium,
Lecture Notes in Electrical Engineering 105, DOI: 10.1007/978-94-007-1488-5_4,
� Springer Science+Business Media B.V. 2011

47



In this complex scenario, intuition and past experience of design architects is no

more a sufficient condition to converge to an optimal design of the system. Indeed,

Automatic Design Space Exploration (DSE) is needed to systematically support

the analysis and quantitative comparison of a large amount of design alternatives

in terms of multiple competing objectives (by means of Pareto analysis). The main

goal of the MULTICUBE project consists of the definition of an automatic Design

Space Exploration framework to support the design of next generation many-core

architectures.

4.1 Introduction

The main goal of MULTICUBE project is the definition of an automatic frame-

work to support multi-objective Design Space Exploration (DSE) of multi and

many core SoC architectures. The framework enables the tuning of several

architectural parameters to minimize multiple metrics (such as energy and latency)

while meeting system-level constraints (such as throughput, bandwidth and QoS).

The project focuses on the definition of an automatic modeling and optimization

methodologies for improving the conventional SoC design flow. In such a design

flow, the optimization process is still done manually, based on the past experience

of the designer to leverage existing simulation models to explore the design space

and find out power-performance trade-offs (Pareto analysis).

The project targets an efficient and automatic exploration of parallel embedded

architectures in terms of several design parameters such as available parallelism

(e.g., number of cores, processor issue width), cache-subsystem (e.g. cache size

and associativity) and Network-on-Chip (NoC) related parameters (e.g., channel

buffer size). When dealing with complex many-core architectures, the design space

exploration can easily become very huge, making a full-search simulation-based

exploration unfeasible. Automatic exploration techniques based on optimisation

heuristics should be used to figure out an approximate Pareto set in a reasonable

time. The exploration time can even be reduced by decreasing the number of

design points to be simulated. This can be done by using analytical models to

predict the system behavior corresponding to design points not yet simulated.

These analytical models are defined from a training set of simulations.

4.2 The MULTICUBE Design Methodology

The MULTICUBE design flow (shown in Fig. 4.1) consists of two frameworks:

Power/Performance Estimation Framework includes the simulation tools for

power and performance estimation of the target architectures to be explored. Each

configurable simulation model accepts an architectural configuration as input and

48 C. Silvano et al.



generates, at the end of simulation, the corresponding system-level metrics running

the reference application. The combination of architecture and reference appli-

cation is defined, from here on, as use case. The simulators used in the context of

the project are either open source (MULTICUBE SCOPE) or proprietary (such as

the IMEC TLM platform, the STMicroelectronics SP2 simulator or the Institute of

Computing Technology’s (ICT) many core simulator). The tool interface has been

standardized with the definition of the MULTICUBE XML interface so as other

simulators can be plugged in with minimal effort. Besides event-based simulation,

a set of Response Surface Models has been developed to further speedup the

evaluation of the system-level metrics through analytical expressions derived from

a training set of simulations.

Design Space Exploration Framework contains the tools for automatic DSE

and interacts with the power/performance estimation framework by iteratively

generating different instances of the design space and reading back power and

performance evaluation metrics (system metrics). This framework includes several

optimization heuristics for identifying power/performance trade-offs and gener-

ating the approximated Pareto frontier which may be more or less close to the

actual Pareto front. The DSE tools developed in the project are: the open source

(MULTICUBE Explorer tool) and the proprietary (ESTECO’s modeFRONTIER)

optimization tool (widely used tool in multi-disciplinary optimization).

The Use Case and Simulator Provider. (S)he is the system architect providing

the simulator with a set of configurable parameters and performance and power

estimation model for the target use case (model setup).

Fig. 4.1 The MULTICUBE design flow

4 MULTICUBE: Multi-Objective Design Space Exploration of Multi-Core Architectures 49



The Exploration Architect. (S)he is in charge of optimizing the configurable

architecture by exploiting the automatic DSE framework. The exploration archi-

tect can directly interact with the DSE engine to set up exploration strategies,

metrics and constraints.

The final exploration results (Pareto frontier) can be further pruned by a set of

decision-making mechanisms. The solution set can be ordered according to some

ranking criteria to derive the final candidate solution for the implementation.

Besides, the Pareto frontier can then be used to support run-time management of

the resources. This last feature has been already tested on an industrial use case

and described in [1].

4.3 Power and Performance Estimation Framework

The MULTICUBE project can easily manage a wide range of simulation tech-

nologies ranging from full-system cycle-accurate to application-level back-

annotated functional simulation by using a standardized XML-based interface.

The capability to span across several abstraction levels is fundamental to model

cross-validation between different abstraction levels (e.g., high-level vs. TLM) or

to provide mixed-level optimization strategies [2]. In the optimization literature,

the simulator is also referred to as the solver.

The power and performance estimation tools can be grouped as open-source

and proprietary:

4.3.1 Open Source Estimation Framework

The open source prototype tool is MULTICUBE SCoPE and it is based on

existing technology (SCoPE) [3] developed by University of Cantabria for

performing HW/SW co-simulation. MULTICUBE SCoPE enables the definition

of SystemC platform template models to evaluate performance and power

consumption. MULTICUBE SCoPE efficiency comes from the fact that perfor-

mance and power estimations of the software side are performed at the appli-

cation source code level by using back-annotation. The back-annotated software

components are then linked to the hardware components by using standard

SystemC interfaces. This modeling style is called Timing Approximate. Software

back-annotation avoids instruction set simulation therefore decreasing several

orders of magnitude simulation time by and at the same time maintaining a fairly

good accuracy with respect to cycle-accurate simulations. MULTICUBE SCoPE

also provides some hooks for enabling C/C++ software code to invoke operating

system primitives compliant with POSIX and MicroC/OS.

50 C. Silvano et al.



4.3.2 Proprietary Estimation Framework

These modeling and simulation tools span several abstraction levels. To simulate

IMEC multimedia architecture based on the ADRES processor [4], two simulators

are provided: a High-Level Simulator (HLSim) and a SystemC-based platform

simulator based on CoWare1 virtual prototyping environment. The target platform

is composed of a variable number of processor nodes and memory nodes. All

processor nodes contain an ADRES processor, IMEC proprietary VLIW processor

and its scratch-pad local data (L1) memory. The processing nodes are connected to

the memory nodes by a configurable communication infrastructure. It can be either

a multi-layer AHB bus, which provides a full point-to-point connectivity, or a NoC

model built with the CoWare AVF cross-connect IP.

From one side, IMEC HLSim provides fast simulation at the source code level

of parallel applications by providing support for timing annotation, thread

spawning/joining, DMA transfers, FIFO communication and loop synchronization

modeling. HLSim takes as an input the platform architecture description which

contains information on the processors, the memory hierarchy structure, the timing

figures and the power consumption of the other IP cores. For example, the timing

information of the computation-intensive loops in the threads is measured on the

Instruction Set Simulator and is used as an input in HLSim. This means that the

timing figures are instruction-accurate because they take all the compiler opti-

mizations into account. On the other side, IMEC’s CoWare simulator is based on

cycle-accurate Transaction-Level Modeling (TLM) and provides a multi-processor

platform template leveraging a NoC as interconnection model. The template links

compute ADRES nodes (processing elements) and memory nodes together using a

central communication backbone. This model has been used for creating back-

annotation timing data used in the HLSim simulator and performing cross-vali-

dation. Overall, we found [5] an acceptable relative accuracy with a significant

speed-up in simulation time (see Fig. 4.2, where the relative accuracy and speed of

MULTICUBE SCoPE technology has been added for comparison).

An instruction set simulator has been used for SP2 superscalar processor pro-

vided from STMicroelectronics and for the many-core architecture from ICT. Both

simulators expose program execution time and power consumption as system level

metrics. More in detail, the ICT many-core architecture is a tiled MIMD machine

composed of a bi-dimensional grid of homogeneous, general-purpose compute

elements, called tiles. A 2D-mesh network architecture is used for connecting the

cores to a non-shared memory sub-system.

Finally, as an example of control-oriented architecture, the DS2’s STORM

platform has been integrated in the framework. The platform is used to model a

PLC (Programmable Logic Controller) technology with several implementation

choices. For this platform, both Ethernet QoS and internal communication are

considered as metrics.

1 CoWare is now a part of Synopsys Inc.

4 MULTICUBE: Multi-Objective Design Space Exploration of Multi-Core Architectures 51



4.4 Advantages of Automatic DSE

Multi-objective optimization heuristics and high-level simulation techniques can

successfully contribute to dramatically decrease the exploration time, while

guaranteeing a certain level of ‘closeness’ to the actual Pareto frontier. Reducing

the exploration time reduces the time-to-market of the product and therefore the

risk to miss market deadlines (with the associated economic loss).

Both conventional and automatic DSE starts from a definition of design-space

(see Fig. 4.3) representing the set of feasible architectural configurations. In a

conventional DSE approach, the starting point is the definition of an initial model

(model setup phase) of the target architecture. The enabling simulation technol-

ogies used for creating such a model can range from cycle-accurate SystemC up to

Fig. 4.3 Comparison between a manual (or conventional) design space exploration approach and
an automatic approach

Fig. 4.2 Accuracy versus speed trade-off for several abstraction level simulators

52 C. Silvano et al.



annotated functional simulation, with variable ratio of accuracy with respect to

speed. The exploration is done iteratively by subjective assumptions of the

designer, who will edit manually the architectural simulator and modify a limited

number of parameters per evaluation. The model simulation corresponds to a

limited portion of the time of the overall exploration procedure. A larger amount of

time is spent by the designer editing the configuration parameters and/or the model

structure and analyzing the results. There is also an idle time (from the point of

view of the use of computational resources) that lasts from the end of the simu-

lation till the moment in which human operator is informed about it and handles

the simulation tools to get the results.

In this case, the overall quality of the DSE is based on the designer’s ability and

past experience to assess the results and to move towards the next instance of the

model to be simulated based on aggregate information resulting from the simu-

lation campaign. The outcome (solution set) is thus highly dependent on the skills

and past experience of the designer.

An automatic DSE flow uses numerical objective criteria combined with effi-

cient heuristics to drive the exploration. The basic assumption is that the model

should be a configurable template model which can be automatically manipulated

to generate any instance of the target design space. The model setup stage, thus,

may be longer than in the conventional case. Given the configurable model tem-

plate, the DSE tool will change systematically all the parameters at each step and

will evaluate the best result based on robust optimisation heuristics. The automatic

selection of the next configuration to be simulated (model selection) is typically

faster than the conventional one because it does not involve any overhead due to

human intervention. The final output of the automatic DSE flow is a set of dom-

inant configurations in the design space which are, with high probability, close to

the actual Pareto set. Besides, all data concerning previous evaluations are stored

in a structured database which can be automatically analyzed by using mathe-

matical/statistical tools to derive aggregate information about the population of

analyzed design points.

4.5 Design Tool Integration Based on

the MULTICUBE XML

In the MULTICUBE project we addressed the formalization of the interaction

between the simulator and the DSE tools, that is essentially an automatic program-

to-program interaction (see Fig. 4.1):

1. The DSE tool generates one feasible system configuration whose system

metrics should be estimated by the simulator.

2. The simulator generates a set of systemmetrics to be passed back to the DSE tool.

To automatically link the use case simulator to the DSE tool, a design space

definition file should be released by the use case and simulator provider together

4 MULTICUBE: Multi-Objective Design Space Exploration of Multi-Core Architectures 53



with the executable model of the use case (simulator). This file describes the set of

configurable parameters of the simulator, their value range and the set of evalu-

ation metrics that can be estimated by the simulator. This file describes also how to

invoke the simulator as well as an optional set of rules with respect to the gen-

erated parameter values should be compliant with. The rules are only used by the

exploration tool to avoid the generation of invalid or unfeasible solutions during

the automated exploration process. The above interaction has been addressed by

creating a specification based on an XML based grammar for writing both the

design space definition file and the simulator interface files. The grammar is

defined by using the XSD schema language.

4.5.1 Design Space Definition

The definition of the design space is done by using an XML file that is composed

of a preamble, which defines the name-space and supported version. The current

release of the MULTICUBE XML specification is R1.4.

The remaining part of the file describes the simulator invocation method

(\simulator[ tag), the set of parameters of the simulator which can be con-

figured (\parameters[ tag), the system metrics which can be estimated by the

simulator (\system_metrics[ tag) and the rules which have to be taken into

account by exploration engine in order to generate feasible configurations.

4.5.1.1 Simulator Invocation

The\simulator_executable[marker is used for specifying the complete

path name of the executable:

4.5.1.2 Parameters Definition

The \parameters[ tag is used by the use case and simulator provider to

specify the names, the types and the ranges of the parameters that can be explored

by the DSE tool. The section contains a list of\parameter[markers:

54 C. Silvano et al.



For each parameter an unique name must be provided. The parameter types can be

divided into two categories: scalar types, variable vector types. Scalar types can be

integer, boolean (a subset of integers), exp2 (progression of power of 2) and string

(a type for defining categorical variables). Vector types can be used to describe

combination of boolean values (on-off-masks or permutations). In particular, on-off-

masks can be useful for describing the space of active processors while permutations

can be used to describe the mapping of tasks on the available processors.

4.5.1.3 System Metrics Definition

The\system_metrics[section is used by the use case and simulator provider

to specify the names, the types and the units of the system metrics that can be

estimated by the simulator:

A complex expression of the system metrics can be defined as one of the

objectives of the exploration algorithm.

4.5.2 Simulator Input/Output XML Interface

The simulator input file contains a preamble and a sequence of\parameter[

sections where, for each parameter, the name and the value is specified. The

number of\parameter[sections and the name of the parameters should be the

same as defined in the XML Design Space description file. Similarly the simulator

output file contains a preamble and a sequence of\system_metric[ sections

4 MULTICUBE: Multi-Objective Design Space Exploration of Multi-Core Architectures 55



where, for each metric, the name and the value is specified. Besides, an appropriate

error reporting syntax has been described in the specification.

4.6 Design Space Exploration Framework

The structure of the exploration framework is composed of an open-source

optimization tool (MULTICUBE Explorer) and a proprietary multi-objective

optimization tool (ESTECO’s modeFRONTIER). The open-source tool has been

designed from scratch to address embedded system exploration, while the pro-

prietary tool is an existing tool for multi-disciplinary optimization which has been

re-targeted to address discrete embedded system exploration. In general, DSE is an

optimization process that takes into account a typical set of IP parameters that are

associated with the memory system structure (e.g., cache size), the inherent par-

allelism of the processor (e.g., number of simultaneous tasks and the instruction

issue width) and the on-chip interconnect configuration. The optimization problem

involves either the maximization or minimization of multiple objectives (such as

execution time, power consumption, area, etc.) making the definition of optimality

not unique [6].

In our context, the multi-objective optimization targets a set of n system con-

figuration parameters grouped by a configuration vector:

a ¼
a1
. . .

an

2

4

3

5 2 A; ð4:1Þ

where A is usually a finite, discrete domain (subset of Nn
0). The multi-objective

optimization problem is defined as a set of m objective functions to be minimized

(or maximized):

min
a2A

/ðaÞ ¼
/1ðaÞ
. . .

/mðaÞ

2

4

3

5 2 Rm; ð4:2Þ

subject to a set of k constraints which, without loss of generality, can be expressed

as:

vðaÞ ¼
v1ðaÞ
. . .

vkðaÞ

2

4

3

5�
0

. . .

0

2

4

3

5: ð4:3Þ

The set of feasible solutions of an optimization problem is defined as the feasible

region:

U ¼ fa 2 AjviðaÞ� 0; 1� i� kg

56 C. Silvano et al.



In single-objective optimization problems, the feasible set is totally ordered w.r.t.

the function /ðaÞ; thus a single exact solution a exists. When several objectives

are defined, the feasible set is partially ordered through dominance relation and,

thus, multiple exact solutions exist. The solution set is defined as the exact Pareto

set of the problem. We say that / dominates c when:

/ � c ¼
/i � ci; 8i ¼ 1; . . .;m and

/i\ci for at least one i

�

ð4:4Þ

Given a subset of feasible configurations X � A; we define the Pareto set W

associated to X as:

WðXÞ ¼ a

�

�

�

a 2 ðU \ XÞ^
:9b 2 WðXÞs.t./ðbÞ � /ðaÞ

� �� �

: ð4:5Þ

The Pareto set WðUÞ is the exact Pareto set of the problem. Based on set theory,

the projection of WðUÞ in the objective space is called the exact Pareto front.

Whenever the considered solution set X is a subset of the feasible solution

space U; the Pareto set WðXÞ is called an approximate Pareto set of the problem.

Figure 4.4 shows a feasible set of solutions X ¼ U ¼ faa; ab; acg for an

unconstrained minimization problem for ½/1;/2�: Point ac is dominated by point

ab since both /1ðacÞ and /2ðacÞ are greater than /1ðabÞ and /2ðabÞ: In this case we
thus have that WðXÞ ¼ faa; abg:

The overall goal of multi-objective optimization heuristics is to identify

approximate Pareto sets which are as near as possible to the exact Pareto set. For

evaluating the quality of the approximate Pareto sets, a measure of the distance

between the exact and the approximate Pareto sets can be introduced. In literature,

many quality functions have been proposed to tackle this problem [7]. In the

MULTICUBE project we leveraged the Average Distance from Reference Set

(ADRS). The ADRS is used to measure the distance between the exact Pareto set

P ¼ WðUÞ and the approximate Pareto set K ¼ WðXÞ [8]:

ADRSðP;KÞ ¼
1

jPj

X

aR2P

min
aA2K

fdðaR; aAÞg

� �

; ð4:6Þ

where d is a measure of the normalized distance in the objective function space of

two configurations:

Fig. 4.4 Pareto Dominance,
X ¼ faa; ab; acg: Point ac is
dominated by point ab

4 MULTICUBE: Multi-Objective Design Space Exploration of Multi-Core Architectures 57



dðaR; aAÞ ¼ max
j¼1; ...;m

0;
/jðaAÞ � /jðaRÞ

/jðaRÞ

( )

ð4:7Þ

The ADRS is usually measured in terms of percentage; the higher the ADRS, the

worst is K with respect to P:

4.6.1 Multi-Objective Optimization Heuristics

In this section we present the multi-objective optimization heuristics implemented

in MULTICUBE project and an analysis of the features carried out on an industrial

architecture. So far, the following optimisation algorithms have been implemented

and analyzed:

• Standard algorithms: In this group we can find well-known multi-objective

optimisation algorithms that have been implemented by following the original

specification. The group is composed of the NSGA-II [9] and MOGA-II [10]

algorithms.

• Enhanced algorithms: In this group we can find enhanced versions of standard

algorithms in order to deal with the specific discrete parameters addressed in

MULTICUBE. The group is composed of the MOSA [11], ES and MOPSO [12]

algorithms.

• New algorithms: In this group we can find all the algorithms that have been

specifically defined in the MULTICUBE project for multi-objective optimiza-

tion in the context of SoC design optimization. In this group we can find the

MFGA (Evolutionary) [13] and APRS (Randomized) algorithms.

4.6.1.1 Evaluation of the Algorithms

The algorithm validation shown here is based on the Low-Power Processor Use

Case (Superscalar Processor SP2) delivered by STMicroelectronics-China. The

executable model for the design space exploration consists of sp2sim simulator,

which is an instruction set simulator for the SP2 microprocessor design. The

benchmark application selected is the 164.gzip application, based on the popular

gzip compression algorithm. The design space is defined as a combination of 11

configuration parameters, among which out-of-order execution parameters (issue

width, reorder buffer length, rename register number), cache sub-system

(instruction and data cache configurations and load/store queue sizes), branch

prediction (type and table size). For improving the validation speed, the number of

input parameters was reduced to 7 by fixing the remaining ones to a constant value.

The final design space of the problem is composed of 9,216 designs while the three

objectives to be minimized are the total number of cycles, the power dissipation

and the area.

58 C. Silvano et al.



A fair evaluation of non-deterministic algorithms requires several repeated runs

without changing any parameter besides the random generator seed. Notwith-

standing the relative small search space consisting of only 9,216 designs, very

large variations can be observed in the algorithms behavior and a rigorous study is

needed to analyze also this aspect. Besides, preliminary tests were performed in

order to identify non-significant parameters that have been then fixed to a constant

value. Algorithms configuration parameters are usually problem-dependent.

Typically, they depend on the user expectations: the optimal choices for the

parameters that control the ratio between exploration and exploitation phase (e.g.,

the temperature schedule in the MOSA heuristic) are strictly related to the number

of evaluations the user can afford. It was decided to tune these parameters con-

sidering the largest target (i.e. 50% of the design space, as described below) and

accepting possible worse results in the partial samples. The evaluation process

then proceeds checking at fixed numbers of explored points the quality of the non-

dominated front found so far. The steps selected for the evaluation are: 184 designs

(corresponding to about 2% of the design space), 461 (5%), 922 (10%), 1,843

(20%), 2,765 (30%), 3,686 (40%) and 4,608 (50%). Only the requests of evalu-

ation of new designs were counted, since sometimes the algorithm could require

the evaluation of one or more already evaluated designs due to the inherent

behavior of their random engines.

Fig. 4.5 ADRS found plotted against the percentages of evaluated designs

4 MULTICUBE: Multi-Objective Design Space Exploration of Multi-Core Architectures 59



Concerning the target architecture and the considered algorithms, we found that

they easily reach an ADRS value below 2% evaluating 30% of the design space

(lower ADRS corresponds to a better solution, see Fig. 4.5). In particular,

NSGA-II presented the best ADRS over all the considered range. Besides, we can

note variations in the slope of the lines for some algorithms that are due to different

’behavioral’ phases of the specific optimization process. We point out also that a

semi-automatic support is also provided by modeFRONTIER tool to choose the

most suitable algorithm for the target design space.

Figure 4.6 shows the number of true Pareto points found by the algorithms at the

specified percentage of design space exploration. Also in this case, NSGA-II has

scored the highest numer of Pareto designs found over all the considered range.

4.6.2 Response Surface Modeling

To further increase the efficiency of the exploration process, Response Surface

Modeling (RSM) techniques have been introduced in the project. The basic idea is

to reduce the number of simulations by defining an analytical response model

of the system metrics based on a subset of simulations used as training set. Then

the analytical expressions are used to predict the unknown system response.

Fig. 4.6 Number of Pareto points found plotted against the percentages of evaluated designs

60 C. Silvano et al.



More in detail, RSMs provide an approximation qðaÞ of the given vector system-

level metrics /ðaÞ: Each response qðaÞ is trained with a set of observations derived
from an actual simulation of a configuration a: In the project, several RSM

techniques have been implemented, among them Radial Basis Functions [14],

Linear Regression [15, 16], Artificial Neural Networks [17] and Shepard’s Inter-

polation. Every RSM presented dramatic speed-up in terms of evaluations.

Besides, we found that a peculiar mathematical transformation of input training set

known as Box-Cox k transform [15] had a great impact on the prediction accuracy.

Figure 4.7 shows the average prediction accuracy of the Radial Basis Function

response surface model on the system metrics of the ICT many-core architecture

by varying the number of training samples, the model order and the k transform.

We can note that, for a logarithmic or squared Box k transform (box = log and

box = 0.5), we have less than 10% relative error with as few as 9% of the design

space used as a training set.

4.7 Conclusions

In this chapter we presented the fundamental problems addressed by the European

Project MULTICUBE and the main achievements obtained at the end of the

project. In particular, we presented the definition of the MULTICUBE design flow

Fig. 4.7 Radial Basis Function prediction accuracy versus the number of training samples
(100 samples ’ 9% of the design space)

4 MULTICUBE: Multi-Objective Design Space Exploration of Multi-Core Architectures 61



composed of an automatic design space exploration framework combined with a

power/performance estimation framework to support the design of next generation

many-core architectures.

Acknowledgements We would like to gratefully acknowledge our EC Project Officer,
Panagiotis Tsarchopoulos and our reviewers: Alain Perbost, Andrzej Pulka and Kamiar Sehat for
their valuable comments and guidance during the MULTICUBE project review process.Prabhat
Avasare, Geert Vanmeerbeeck, Chantal Ykman and Maryse Wouters are also associated with
Interdisciplinary Institute for BroadBand Technology, Belgium (IBBT), B-9050 Gent, Belgium.

References

1. Mariani G, Avasare P, Vanmeerbeeck G, Ykman-Couvreur C, Palermo G, Silvano C,
Zaccaria V (2010) An industrial design space exploration framework for supporting run-time
resource management on multi-core systems. In: Proceedings of DATE 2010: IEEE design,
automation and test conference in Europe. Dresden, Germany, pp 196–201, Mar 2010

2. Mariani G, Palermo G, Silvano C, Zaccaria V (2009) Multiprocessor system-on-chip design
space exploration based on multi-level modeling techniques. In: Proceedings of IEEE
IC-SAMOS’09—International Conference on Embedded Computer Systems: Architectures,
MOdeling, and Simulation. Samos, Greece, pp 118–124, July 2009

3. Posadas H, Castillo J, Quijano D, Fernandez V, Villar E, Martinez M (2010) SystemC
platform modeling for behavioral simulation and performance estimation of embedded
systems. Behav Model Embedded Syst Technol: App Des Implementation pp 219–243

4. Mei B, Sutter B, Aa T, Wouters M, Kanstein A, Dupont S (2008) Implementation of a coarse-
grained reconfigurable media processor for avc decoder. J Signal Process Syst 51(3):225–243

5. Avasare P, Vanmeerbeeck G, Kavka C, Mariani G (2010) Practical approach to design space
explorations using simulators at multiple abstraction levels. In: Design Automation
Conference (DAC) User Track Sessions, Anaheim, USA, June 2010

6. Hwang CL, Masud ASM (1979) Multiple objective decision making—methods and
applications: a state-of-the-art survey, vol 164. Lecture notes in economics and mathematical
systems. Springer, Heidelberg

7. Okabe T, Jin Y, off B (2003) A critical survey of performance indices for multi-objective
optimization. In: Proceedings of the IEEE congress on evolutionary computation, pp 878–885

8. Jaszkiewicz A, Czyak P (1998) Pareto simulated annealing—a metaheuristic technique for
multiple-objective combinatorial optimisation. J Multi-Criteria Decis Anal (7):34–47

9. Deb K, Agrawal S, Pratab A, Meyarivan T (2000) A fast and elitist multi-objective genetic
algorithm: NSGA-II. In: Proceedings of the parallel problem solving from nature VI
conference, pp 849–858

10. Poloni C, Pediroda V (1998) GA coupled with computationally expensive simulations: tools
to improve efficiency. In: Quagliarella D, Périaux J, Poloni C, Winter G (eds) Genetic
algorithms and evolution strategies in engineering and computer science. Recent advances
and industrial applications, Chap. 13, Wiley, Chichester, pp 267–288

11. Smith KI, Everson RM, Fieldsend JE, Murphy C, Misra R (2008) Dominance-based
multiobjective simulated annealing. Evol Comput, IEEE Trans 12(3):323–342

12. Palermo G, Silvano C, Zaccaria V (2008) Discrete particle swarm optimization for multi-
objective design space exploration. In: Proceedings of DSD 2008: IEEE Euromicro
conference on digital system design architectures, methods and tools, Parma, Italy, pp
641–644, Sep 2008

62 C. Silvano et al.



13. Turco A, Kavka C (2010) MFGA: a genetic algorithm for complex real-world optimization
problems. In: Proceedings of BIOMA 2010, the 4th international conference on bioinspired
optimization methods and their applications,.Lubiana, Slovenia, May 2010

14. Joseph PJ, Vaswani K, Thazhuthaveetil MJ (2006) A predictive performance model for
superscalar processors. In: MICRO 39: Proceedings of the 39th annual IEEE/ACM
international symposium on microarchitecture. IEEE Computer Society. Washington, DC,
pp 161–170

15. Joseph PJ, Vaswani K, Thazhuthaveetil MJ (2006) Construction and use of linear regression
models for processor performance analysis. The twelfth international symposium on
high-performance computer architecture. pp 99–108

16. Lee BC, Brooks DM (2006) Accurate and efficient regression modeling for microarchitectural
performance and power prediction. In: Proceedings of the 12th international conference on
architectural support for programming languages and operating systems 40(5):185–194

17. Bishop C (2002) Neural networks for pattern recognition. Oxford University Press, Oxford

4 MULTICUBE: Multi-Objective Design Space Exploration of Multi-Core Architectures 63



Chapter 5

2PARMA: Parallel Paradigms and
Run-time Management Techniques
for Many-Core Architectures

C. Silvano, W. Fornaciari, S. Crespi Reghizzi, G. Agosta, G. Palermo,

V. Zaccaria, P. Bellasi, F. Castro, S. Corbetta, A. Di Biagio, E. Speziale,

M. Tartara, D. Melpignano, J.-M. Zins, D. Siorpaes, H. Hübert,

B. Stabernack, J. Brandenburg, M. Palkovic, P. Raghavan,

C. Ykman-Couvreur, A. Bartzas, S. Xydis, D. Soudris, T. Kempf,

G. Ascheid, R. Leupers, H. Meyr, J. Ansari, P. Mähönen

and B. Vanthournout

Abstract The 2PARMA project focuses on the development of parallel program-

mingmodels and run-time resourcemanagement techniques to exploit the features of

many-core processor architectures. The main goals of the 2PARMA project are:

definition of a parallel programming model combining component-based and

single-instruction multiple-thread approaches, instruction set virtualisation based on

The project is supported by the EC under grant 2PARMA-FP7-248716.

C. Silvano (&) � W. Fornaciari � S. C. Reghizzi � G. Agosta � G. Palermo � V. Zaccaria �
P. Bellasi � F. Castro � S. Corbetta � A. Di Biagio � E. Speziale � M. Tartara
Dipartimento di Elettronica e Informazione – Politecnico di Milano, Milano, Italy
e-mail: silvano@elet.polimi.it

D. Melpignano � J.-M. Zins
STMicroelectronics, Grenoble, France

D. Siorpaes
STMicroelectronics, Milano, Italy

H. Hübert � B. Stabernack � J. Brandenburg
Fraunhofer HHI, Fraunhofer, Germany

M. Palkovic � P. Raghavan � C. Ykman-Couvreur
IMEC vzw Belgium and IBBT, Leuven, Belgium

A. Bartzas � S. Xydis � D. Soudris
Institute of Communication and Computer Systems – National Technical University of
Athens, Athens, Greece

T. Kempf � G. Ascheid � R. Leupers � H. Meyr � J. Ansari � P. Mähönen
RWTH–Aachen University, Aachen, Germany

B. Vanthournout
Synopsys Belgium, Leuven, Belgium

N. Voros et al. (eds.), VLSI 2010 Annual Symposium,
Lecture Notes in Electrical Engineering 105, DOI: 10.1007/978-94-007-1488-5_5,
� Springer Science+Business Media B.V. 2011

65



portable byte-code, run-time resource management policies andmechanisms as well

as design space exploration methodologies for many-core computing architectures.

5.1 Introduction

The main trend in computing architectures consists of integrating small pro-

cessing cores in a single chip where the cores are connected by an on-chip

network. Given the technology trend, we would expect in the coming years

moving from multi- to many-core architectures. Multi-core architectures are

nowadays prevalent in general purpose computing and in high performance

computing. In addition to dual- and quad-core general-purpose processors, more

scalable multi-core architectures are widely adopted for high-end graphics and

media processing, e.g., IBM Cell BE, NVIDIA Fermi, SUN Niagara and Tilera

TILE64. To deal with this increasing number of processing cores integrated in

a single chip, a global rethinking of software and hardware design approaches

is necessary.

The 2PARMA project focuses on the design of a class of parallel and scalable

computing processors, which we call Many-core Computing Fabric (MCCF)

template. This template is composed of many homogeneous processing cores

connected by an on-chip network. The class of MCCF promises to increase per-

formance, scalability and flexibility only if appropriate design and programming

techniques will be defined to exploit the high degree of parallelism exposed by the

architecture.

Benefits of MCCF architectures include finer grained possibilities for energy

efficiency paradigms, local process variations accounting, and improved silicon

yield due to voltage/frequency island isolation possibilities. To exploit these

potential benefits, effective run-time power, data and resource management tech-

niques are needed. Moreover the MCCF offers customisation capabilities to extend

and to configure at run-time the architectural template to address a variable

workload.

The 2PARMA project aims at overcoming the lack of parallel programming

models and run-time resource management techniques to exploit the features of

many-core processor architectures focusing on the definition of a parallel pro-

gramming model combining component-based and single-instruction multiple-

thread approaches, instruction set virtualisation based on portable bytecode,

run-time resource management policies and mechanisms as well as design space

exploration methodologies for MCCFs.

The research objectives of the project are intended to meet some of the main

challenges in computing systems:

• To improve performance by providing software programmability techniques in

order to exploit the hardware parallelism;

66 C. Silvano et al.



• To explore power/performance trade-offs and to provide run-time resource

management and optimisation;

• To improve system reliability in terms of lifetime and yield of hardware com-

ponents by providing transparent resource reconfiguration and instruction set

virtualisation;

• To increase the productivity of the process of developing parallel software by

using semi-automatic parallelism extraction techniques and extending the

OpenCL programming paradigm for parallel computing systems.

The rest of this paper is organised as follows. Section 5.2 provides an intro-

duction to the target architectural template. Section 5.3 describes the 2PARMA

design flow and the design methodologies employed, while Sect. 5.4 introduces

the applications targeted in the project. Finally, Sect. 5.5 draws conclusions and

outlines the future work.

5.2 MCCF Architecture Template

The 2PARMA project focuses on the MCCF template, which is composed of many

homogeneousprocessing cores connectedbyanon-chip network, as shown inFig. 5.1.

The project will demonstrate methodologies, techniques and tools by using

innovative hardware platforms provided and developed by the partners, including

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

R R

RR

NI

Resource

Fig. 5.1 2PARMA Many-core computing fabric template

5 2PARMA: Parallel Paradigms and Run-time Management Techniques 67



the ‘‘Platform 2012’’—an early implementation of MCCF provided by STMicro-

electronics—and the many-core COBRA platform provided by IMEC.

5.2.1 STMicroelectronics Platform 2012

The P2012 program is a cooperation between STMicroelectronics and Commis-

sariat a l’Energie Atomique (CEA) to design and prototype a regular computing

fabric capable to improve manufacturing yield. Platform 2012 (P2012) is a high-

performance programmable accelerator whose architecture meets requirements for

next generation SoC products at 32 nm and beyond. The goal of P2012 is twofold:

from one side, it is to provide flexibility through massive programmable and

scalable computing power; from the other side, to provide a solid way to deal with

increasing manufacturability issues and energy constraints.

Organised around an efficient Network-on-Chip communication infrastructure,

P2012 enables connecting a large number of decoupled STxP70 processors SMP

clusters, offering flexibility, scalability and high computation density. The Plat-

form 2012 computing fabric is composed of variable number of ‘tiles’ that can be

easily replicated to provide scalability. Each tile includes a computing cluster

with its memory hierarchy and a communication engine. The computing fabric

operation is coordinated by a fabric controller and is connected to the SoC host

subsystem through a dedicated bridge, with DMA capabilities. Clusters of the

fabric can be isolated to reduce power consumption (or to switch-off a particular

faulty element) and frequency/voltage scaling can be applied in active mode.

The P2012 computing fabric is connected to a host processor such as the ARM

Cortex A9, via a system bridge. In this way, the fabric is exposed to legacy

operating systems like the GNU/Linux OS.

Many P2012 platform design choices are still open to be explored, and the

2PARMA Consortium, which is one of the very early adopters of this technology,

effectively contributes to the platform architecture specification and relevant

optimisations.

5.2.2 IMEC ADRES-based COBRA Platform

The IMECs COBRA platform is an advanced platform template targeting 4G

Giga-bit per second wireless communication. This platform can be customised to

handle very high data rates as well as low throughputs in a scalable way. This

platform largely consists of four types of cores. DIFFS, an ASIP processor tuned

towards sensing and synchronisation, and optimised for very low power. It is tuned

towards average duty cycle. ADRES [1], a coarse-grained reconfigurable core

template [2] consisting of a number of functional units connected in a given

interconnect network. The core has been tuned to be capable of doing inner

modem processing of various standards efficiently. FlexFEC [3], a flexible forward

68 C. Silvano et al.



error correction ASIP that is capable of doing different outer modem processing.

It is a SIMD engine template where the instruction set, bit width of the data-path

and the number of SIMD slots can be chosen based on the set of requirements of

the standard to be run. An ARM host processor for controlling the tasks on the

platform (e.g. the run-time manager task).

The first three cores (DIFFS, ADRES and FlexFEC) can be instantiated for a

mix of targeted standards that need to be supported. Also all parts of the platform

are programmable in C (ADRES, ARM) or assembly (FlexFEC, DIFFS). The

communication is ensured by customised InterConnect Controller (ICC) cores that

are programmable at assembly level as well. In this platform, besides the type and

the size of each core, the number of each type of core can be selected based on the

different standards that need to be supported on the platform.

5.3 Design Flow and Tools

In this section, we provide an overview of the 2PARMA design flow, which aims

at supporting development, deployment and execution of applications on MCCFs,

as well as a more in-depth coverage of design decisions and early results for

critical parts of the design flow.

Fig. 5.2 2PARMA Design
Flow and Tools

5 2PARMA: Parallel Paradigms and Run-time Management Techniques 69



The tool environment anddesignflowof the 2PARMAproject is shown inFig. 5.2.

The compilation tool chain starts with the component-based application source code

(C-based) to be assembled and compiled to byte-code and further dynamically

translated tomachine code. Then themachine code execution and deploymentwill be

supported by an OS layer to provide isolated logical devices efficiently communi-

cating (device-to-device and host-to-device). The GNU/Linux operating system will

be used as the software reference common ground for the host processor.

Another main goal consists in developing methodologies and tools to support

the application/architecture co-exploration. More in detail, the project focuses on

profiling the parallel applications aimed at finding the bottleneck of the target

platform and on the robust design space co-exploration of static and dynamic

parameters by considering dynamic workloads, while identifying hints/guidelines

for dynamic resource management.

Then, the Run-Time Resource Manager (RTRM) provides adaptive task and

data allocation as well as scheduling of the different tasks and the accesses to the

data for many-core architectures. Furthermore, the adequate power management

techniques as well as the integration to the Linux OS will be provided. Based on

the set of operating points given by the DSE tool at design time and the info

collected at run-time on system workload and resource utilisation, the run-time

management techniques will optimise data allocation and data access scheduling,

task mapping and scheduling and power consumption. The rest of this section

provides more detail on the techniques employed in the design flow.

5.3.1 Programmability of MCCFs

2PARMA project tackles the issue of programmability of MCCFs at both the

programming language and OS level. At the programming language level, it is

possible to identify two different types of parallelism that can be effectively

exploited in MCCFs: task level and loop level parallelism.

Task parallelism represents the concurrent operation of several different rou-

tines, which may cooperate in a simple pipeline model, or with more complex

interaction. The key aspect, however, is that each task represents a different type of

computation, possibly with widely different degrees of complexity among the

task set—in the pipeline example, different software stages can have different

complexity, with some stages being further decomposed in parallel sub-tasks.

Representing task level parallelism requires the encapsulation of the individual

routines in task structures, and the deployment of connections to guarantee

communication and synchronization, which should be explicitly represented by the

application developer. In general, tasks are isolated from each other, communicating

only through the exchange of messages on a set of explicitly defined channels.

Loop level parallelism (or data parallelism), on the other hand, represents a

lower level of parallelism, dealing with massively replicated computations on

large shared data structures. The key aspect in this case is that each parallel work

item represents the same operation applied to one of a set of data items, as in a

70 C. Silvano et al.



typical Single Instruction Multiple Data (SIMD) computation. The case of MCCFs

differs from other architectures suited for execution of data parallel kernels (such

as GPGPUs) in that MCCFs can easily support significant amount of control flow

divergence—the possibility that the control flow of different work items diverges.

This is generally a catastrophic event for a SIMD-oriented architecture, since

different operations are now executed for each data item. However, it is well

handled by MCCFs, which can in general follow a different control flow for each

active thread without penalties.

The goal of the 2PARMA project is to allow the expression of both levels of

parallelism, in order to support a wide range of application scenarios. To this end,

the application developers employing the 2PARMA design flow will work in a

top-down way, first decomposing the application in parallel tasks connected by

communication and synchronization channels, then further parallelizing each task

through the identification of parallel loops.

A distributed memory model will be therefore implemented to handle the com-

munication between different tasks, while a shared memorymodel will be employed

within the task to allow communication among the work items. This approach allows

an easier deployment of tasks across clustered fabrics,while preserving the efficiency

of a shared memory model at the lower level of parallelism.

5.3.1.1 Task Level Parallelism

In the 2PARMA compiler tool chain, tasks are represented through the increasingly

popular Component-Based Software Engineering (CBSE), leveraging the concepts

and tools developed in the cross-disciplinary ‘‘Nucleus’’ flagship project [4] of the

UMIC Research Center at RWTH Aachen University. In this framework, each task,

encapsulating a critical algorithmic kernel, is represented by a (possibly hierar-

chically decomposed) component, called a Nucleus.

In a later stage these Nuclei are assembled to construct the complete applica-

tion, as shown in Fig. 5.3, by connecting them through FIFO channels. In contrast

to existing CBSE tool-chains, requirements such as latency and throughput are

integrated into the application description directly. Furthermore, the Nuclei are

mapped to Flavors—efficient and optimised implementations for one Nucleus on a

particular Processing Element (PE)—that are kept within the Board Support

Package of a given HW platform. This allows the mapping tools to identify

possible implementation options by performing interface and constraint checks.

Among these different options, designers can select the final implementation that

achieves the best performance.

5.3.1.2 Loop Level Parallelism

At this level, parallelism is expressed by means of parallel loops. These could be

expressed explicitly, by tagging for loops with appropriate OpenMP directives, or

5 2PARMA: Parallel Paradigms and Run-time Management Techniques 71



as parallel kernels defined by the OpenCL specification. In the 2PARMA project,

the OpenCL kernel will be the default data parallel construct, though explicit

representation of parallel loops will also be available to the programmer.

Figure 5.4 describes the data parallel tool chain.

The 2PARMA compiler tool chain will benefit from techniques that automat-

ically handle memories local to processor clusters usually available in GPGPU

architectures, as well as automated lowering of higher-level code to OpenCL [5].

This will allow the programmer to first design the application under a shared

memory paradigm, and then perform fine-tuning on a view of the application

where the shared memory abstraction is removed.

5.3.2 Run-time Management

2PARMA project aims at improving energy efficiency with respect to conventional

power management strategies, by supporting efficient and optimal task, data and

resource management able to dynamically adapt to the changing context, taking

Fig. 5.3 Support of
task-level parallelism through
nucleus-based tool chain

Extended OpenMP OpenCL

GCC CLAM

LLVM

LLVM C back-end Optimizers XP-70 back-end

stxp70cc XP-70

Fig. 5.4 Architecture of the
compiler tool chain to support
loop-level parallelism

72 C. Silvano et al.



into account the Quality-of-Service (QoS) requirements imposed by the user to

each application. Multiple configurations of application parameters, dynamic

workloads and time-dependent QoS impose strong requirements for application-

specific and run-time adaptive dynamic memory management of running

applications.

In 2PARMA, we push the boundary of this trade-off to reduce the design-time

effort and employ the run-time resource manager, at different abstraction levels.

We accomplish this task by providing a Run Time Manager (RTM) with metadata

information, covering both design-time and run-time knowledge of both hardware

and software.

The design-time knowledge of the system is generated by employing efficient

design space exploration techniques. This reveals the operating points of the

system/applications and their resource requirements. Then at run-time, the RTM

exploits this knowledge and performs operating point switching, thus adapting to

the applications’ needs. More specifically, the run-time management performs

adaptive task mapping and scheduling [6], dynamic data management [7] and

system-wide power management [8].

The first role of the RTM is to monitor the dynamic applications behaviour to

control the available and required platform resources at run-time while meeting

user requirements. To handle multiple tasks competing at run-time for limited

resources, a scenario-based mapping technique supporting inter-task scenarios will

be developed. To perform this, a run-time monitoring technique will be developed

to tune well-chosen parameters based on the input data to meet the requirements

while maximizing the output quality.

The second role of the run-time manager is to handle the dynamism in the

control flow and data usage (dynamic (de)allocation of data), by determining

suitable data allocation strategies that meet the application needs.

Finally, the run-time manager is responsible for the adaptive power manage-

ment of the MCCF architecture. This is achieved by identifying a suitable top-level

modelling of the entities composing the overall systems, in terms of exchanged

data, exposition of control settings and status information of the components/

devices. The manager is responsible to combine the adaptive run-time task and

data management schemes (component/device specific optimisations) with the

adaptive power management policies, being aware of the presence of local opti-

misation strategies exposed by the rest of the system components (e.g., device

drivers and in general any other resource manager).

The end result is a distributed run-time QoS Constrained Power Manager

(CPM) working at the OS-level [8], based on the following concepts. System-Wide

Metrics (SWMs) which are parameters describing behaviours of a running system

and represent QoS requirements. They could be either ‘‘abstract’’ metrics (ASMs)

or platform dependent (PSMs). The first ones are exposed to user-space and can be

used by application to assert QoS requirements. The second ones instead are

defined in the platform code and are used to keep track of hardware inter-

dependencies. Device Working Regions (DWRs) define the mapping between the

operating modes of a devices and the SWMs that define the QoS level supported

5 2PARMA: Parallel Paradigms and Run-time Management Techniques 73



by each operating mode. Feasible System Configurations (FSCs) are the

n-dimensional intersections of at least a DWR for each device (where n is

the number of SWMs defined). They identify the system-wide working points of

the target platform where certain QoS levels are granted. Constraints on SWMs

defined at run-time according to the QoS requirements of applications or drivers on

these parameters. All the QoS requirements on the same SWM are translated to a

constraint using an aggregation function which depends on the type of the

parameter. Multi-Objective optimization, which could consider different perfor-

mance parameters, by assigning a weight to each SWM, and energy consumptions,

by assigning a power consumption measure to each FSC.

In practice, CPM-related activities inside the OS, can be grouped in three main

phases:

• FSC Identification: at boot time all the device drivers registers to CPM by

exposing their DWRs. All FSCs can be automatically identified by performing

the intersection of DWRs.

• FSC ordering: every time the optimization goals change, the FSC are sorted

according to the global optimization policy. This happens usually when the

device usage scenarios change.

• FSC selection: at run-time applications can assert QoS requirements on a spe-

cific SWM. These requirements are aggregated to produce a new constraint for

each SWM. These constraints could invalidate some FSC. If the current FSC is

also invalidated then a new candidate is selected according to the ordering

defined in the ordering phase.

Finally all the drivers are notified about the new FSC and required to update

accordingly their operating mode. The CPM model has been preliminary imple-

mented as a Linux kernel framework (version 2.6.30) and tested under some use-

cases to evaluate its overhead, which is negligible (always less than 0.01%) [8].

5.3.3 Design Space Exploration

Design space exploration (DSE) plays a crucial role in designing many-core

computing platforms [9–11]. Design alternatives may consist of the tuning of

processor micro-architectural components, different mappings of software tasks to

resources, different scheduling policies implemented on shared resources as well

as lower level design parameters. In this context, the 2PARMA project provides to

the designer DSE methodologies to trade-off the system-level metrics (such as

energy and delay) by considering the dynamic evolution of the system. 2PARMA

goes beyond traditional design space exploration by defining a methodology to

provide synthetic information about the points of operation of each application

with respect to the subsets of resources available to it.

Focusing on the combined optimisation of parallel programming models and

architectural parameters for many-core platforms, it is expected that conventional

74 C. Silvano et al.



or state-of-the-art profiling techniques cannot be used for the task of analysing and

profiling. Profiling memory accesses on a cycle accurate basis [12] is not suffi-

ciently supported by available profiling tools due to the fact that only shared

memory architectures were modeled at the time. Moreover, many-core platforms

will be built upon completely different interconnection networks requiring new

profiling techniques taking into account connection topologies. The influence on

the overall system performance of the implemented connection topology and the

resulting fragmentation of memory accesses abroad the distributed memory will

be evaluated by a set of tools. Based on the profiling methodologies developed in

the project, it will be possible to get an in depth view of how parallel programming

models behave on many-core platforms. The results will be used to co-optimise the

programming model and the architecture of the target platform.

5.3.4 Preliminary Exploration of the OpenCL Programming Model

One of the key assumptions in the 2PARMA project is that the system perfor-

mance is significantly impacted by software-level parameters such as the OpenCL

work-group size. As we shall see, the tuning of such kind of parameters is of

paramount importance to squeeze the performance out of parallel computing

fabrics and the programmer should be helped in some way to tune his application

towards the maximum exploitation of the available resources.

A preliminary investigation has been performed by using a recent NVIDIA

GeForce GTX 260 (hardware revision of June 2008 in 65 nm technology). The

parallel architecture provides 24 multi-processor cores (which correspond to

OpenCL computing units), where each multi-processor core has eight processing

elements. As stated by NVIDIA [13], these resources can be shared by 1024

actively running threads at most. A warp is a cluster of 32 threads which are likely

to share the same execution path and thus is treated efficiently by the instruction

scheduler of the multi-processor. Technically, the multi-processor can execute 8

threads at a time which correspond to a quarter of a warp.

To understand how the target architecture can perform sub-optimally whenever

the work-group size is not specified as suggested by the manufacturer, we set up an

experimental campaign in which we sampled various values of the work-group

size and profiled the execution time of the oclMatVecMul OpenCL benchmark.

The benchmark performs a matrix-vector multiplication by making the kernels

within a work-group cooperate on a subset of the rows of the original matrix. Local

memory is exploited only in the coalesced case to allow the kernels belonging to a

work-group a faster access to shared data. Barriers are used to enable consistency

in the reduction steps associated with the row-by-column multiplication.

Figure 5.5 shows the behaviour in terms of throughput (inverse of the time

needed for elaborating the complete dataset for the specific benchmark (measured

in bursts per seconds) for the ‘‘Coalesced-1’’ implementation. The occupancy

stress highlighted two main characteristics:

5 2PARMA: Parallel Paradigms and Run-time Management Techniques 75



• For some manufacturer-suggested work-group size values (multiple of 32, indi-

cated by the label ‘-conv’ Fig. 5.5), the reduction algorithm is not applicable.

• The throughput tends to decrease after a sweet spot (around 10% of occupancy).

Again, this can be due to several factors, the most important one being that there

exists an increasing amount of synchronization between threads when work-

groups are increased in size. Unfortunately, this is not masked by having

multiple work-groups running on the multi-processor.

So far, we have thus seen that the determination of a sweet spot of the work-

group size is not trivial to identify a-priori, even with the suggested values from

the manufacturer. Thus, it is difficult to devise a work-group size which can be

robust enough to be optimal on a wide range of architecture families. To this we

may add the problem of software programmers who are relatively unaware of the

architectural features of the accelerator they are using. Although some ‘‘best

programming practices’’ do exist for some of the accelerators, we believe that the

practice software engineering of OpenCL programs should be supported more

pragmatically and efficiently by using automatic tools for tuning these parameters.

We believe that conventional design space exploration (DSE) techniques play a

crucial role in this field and we plan to apply those techniques to solve the above

problems.

5.4 Applications

The MCCF template is designed as a coprocessor for computationally intensive

applications in high-end embedded scenarios. To prove its effectiveness, and the

effectiveness of the design flow and tools produced in the 2PARMA project, it is

necessary to employ real world applications of considerable industrial impact.

These applications will be engineered, optimised and specialised using the

methodologies described in Sect. 5.3, and tested on the two target implementations

of the MCCF template. In this section, we introduce the three applications chosen

Fig. 5.5 oclMatVecMul
performance (throughput)
with mono-dimensional
iteration space and varying
occupancy

76 C. Silvano et al.



for the 2PARMA project: Scalable Video Coding (SVC), Cognitive Radio, and

Multi View Video (MVV).

5.4.1 Scalable Video Coding

SVC [14], also known as layered video coding, has already been included in

different video coding standards in the past. Scalability has always been a desirable

feature of a media bit stream for different services and especially for best-effort

networks that are not provisioned to provide suitable QoS and especially suffer

from significantly varying throughput. Thus a service needs to dynamically adapt

to the varying transmission conditions. E.g., a video encoder shall be capable of

adapting the media rate of the video stream to the transmission conditions to

provide at least acceptable quality at the clients, but shall also be able to explore

the full benefits of available higher system resources. Within a typical multimedia

session the video consumes the major part of the total available transmission rate

compared to control and audio data. Therefore, an adaptation capability for the

video bit rate is of primary interest in a multimedia session. Strong advantages of a

video bit rate adaptation method relying on a scalable representation are drastically

reduced processing requirements in network elements compared to approaches that

require video re-encoding or transcoding. Thus, H.264/AVC-based SVC is of

major practical interest and it is therefore highly important to investigate imple-

mentation aspects of SVC. SVC is an ideal application for demonstrating run-time

resource management, including power management techniques.

5.4.2 Cognitive Radio

The Cognitive Radio application considered for the project includes both physical

and MAC-layer processing. Especially, targetting low latency, high throughput and

reconfiguration requirements of state-of-the-art wireless communication standards

makes the cognitive radio application a highly appropriate use case for the 2PARMA

project and its parallel programming models. Functional commonalities among

MAC protocols are identified as fundamental building blocks so that a particular

protocol can be realised by simply combining the required set of functionalities

together. We have developed a tool (called the wiring engine) that combines the

different components of theMAC together by coordinating the control and data flow

among the blocks. The wiring engine is also able to exploit the parallelism in a

particular MAC realization to achieve execution efficiency. Our approach of com-

posing MAC protocols based on the same set of functional components using the

wiring engine, leads to the realization of a wide range of protocols and allows run-

time adaptation [15]. By implementing theMACmodules demanding high degree of

computations and communication in the silicon as kernel functionalities, our

5 2PARMA: Parallel Paradigms and Run-time Management Techniques 77



approach allows meeting the strict timing deadlines thereby giving high degree of

performance gains and flexibility. Furthermore, our methodology also facilitates

much deeper cross-layer designs betweenMACand physical layer kernels,which are

demanded by cognitive and spectrum agile MACs [16].

5.4.3 Multi-View Video

With the current development of electronic, network, and computing technology,

Multi-ViewVideo (MVV) becomes a reality and allows countering the limitations of

conventional single video. MVV refers to a set of N temporal synchronised video

streams coming from cameras that capture the same scene from different viewpoints.

In particular, within the context of the 2PARMA project, we consider a cross-

based stereo matching algorithm [17], assuming two aligned left and right cameras.

The algorithm compute stereo pixel depth by means of their disparity (difference on

the x coordinate), which can then be visualised in grayscale encoding. The cross-

based stereo matching algorithm is an area-based local method, where the disparity

computation at a given pixel only depends on intensity values within a finite

window. The challenge of this method is that the support window should be

large enough to include enough intensity variation for reliable matching, while it

should be small enough to avoid disparity variation inside the window. Therefore,

to obtain accurate disparity results at reasonable costs, an appropriate support

window should be selected adaptively.

5.5 Conclusions

The 2PARMA project tackles the issue of programming and managing a MCCF—

a novel architectural template represented within the project by STM Platform

2012 and IMEC Cobra architectures.

A design flow has been defined, starting with the high-level implementation of

the application and leading to run-time management of the application execution,

in a highly-variable context where multiple applications compete for resources.

Design space exploration and profiling techniques close the feedback loop, helping

the designer in refining the application for each target platform.

Finally, a set of high-impact applications has been selected to demonstrate and

validate the effectiveness of the proposed methodologies.

References

1. Derudder V, Bougard B, Couvreur A, Dewilde A, Dupont S, Folens L, Hollevoet L, Naessens F,
Novo D, Raghavan P, Schuster T, Stinkens K, Weijers JW, der Perre LV (2009) A 200 mbps+
2.14nj/b digital baseband multi processor system-on-chip for sdrs. In: 2009 Symposium on
VLSI Circuits, pp 292–293

78 C. Silvano et al.



2. Mei B, Vernalde S, Verkest D, Man HD, Lauwereins R (2003) Adres: an architecture with
tightly coupled vliw processor and coarse-grained reconfigurable matrix. In: Cheung PYK,
Constantinides GA, de Sousa JT (eds) FPL. Lecture Notes in Computer Science, vol 2778.
Springer, pp 61–70

3. Naessens F, Derudder V, Cappelle H, Hollevoet L, Raghavan P, Desmet M, Abdel-Hamid A,
Vos I, Folens L,O’Loughlin S, Singirikonda S,Dupont S,Weijers JW,DejongheA, der Perre LV
(2010) A 10.37 mm2 675 mw reconfigurable ldpc and turbo encoder and decoder for 802.11n,
802.16e and 3gpp-lte. In: 2010 Symposium on VLSI Circuits, pp 292–293

4. Ramakrishnan V,Witte EM, Kempf T, Kammler D, Ascheid G,Meyr H, AdratM, AntweilerM
(2009) Efficient and portable SDR waveform development: the nucleus concept. In: IEEE
military communications conference (MILCOM 2009)

5. Andrea DB, Giovanni A (2010) Improved programming of GPU architectures through
automated data allocation and loop restructuring. In: Proceedings of the 2PARMA Workshop
(ARCS2010 Workshop)

6. Ma Z, Marchal P, Scarpazza DP, Yang P, Wong C, Gmez JI, Himpe S, Ykman-Couvreur C,
Catthoor F (2007) Systematic methodology for real-time cost-effective mapping of dynamic
concurrent task-based systems on heterogenous platforms. Springer Publishing Company,
Incorporated

7. Bartzas A, Peon-Quiros M, Poucet C, Baloukas C, Mamagkakis S, Catthoor F, Soudris D,
Mendias JM (2010) Software metadata: systematic characterization of the memory behaviour
of dynamic applications. J Syst Software 83(6):1051–1075

8. Bellasi P, Fornaciari W, Siorpaes D (2010) A hierarchical distributed control for power and
performances optimization of embedded systems. In: Müller-Schloer C, Karl W, Yehia S
(eds) ARCS. Lecture Notes in Computer Science, vol 5974, Springer, pp 37–48

9. Chang H, Cooke L, Hunt M, Martin G, McNelly AJ, Todd L (1999) Surviving the SOC
revolution: a guide to platform-based design. KluwerAcademic Publishers, Norwell,MA,USA

10. ARTEMIS Strategic Research Agenda Working Group (2006) Strategic research agenda:
design methods and tools. Technical report, ARTEMIS

11. Duranton M, Yehia S, Sutter BD, Bosschere KD, Cohen A, Falsafi B, Gaydadjiev G,
Katevenis M, Maebe J, Munk H, Navarro N, Ramirez A, Temam O, Valero M (2009) The
HiPEAC 2012-2020 vision. Technical report, HiPEAC

12. HübertH, StabernackB (2009) Profiling-based hardware/software co-exploration for the design
of video coding architectures. IEEE Trans. Circuits Sys Video Technol 19(11):1680–1691

13. Corp N (2008) Nvidia geforce gtx 200 gpu. Architectural overview
14. Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of

the h.264/avc standard. IEEE Trans Circuits Syst for Video Technol 17(9):1103–1120
15. Ansari J, Zhang X, Achtzehn A, Petrova M, Mähönen P (2011) A flexible MAC development

framework for congnitive radio systems. In: Procedings of the IEEE WCNC, Cancun, Mexico
16. Claudia C, Kaushik RC (2009) A survey on MAC protocols for cognitive radio networks.

Ad Hoc Networks 7(7):1315–1329
17. Zhang K, Lu J, Lafruit G (2009) Cross-based local stereo matching using orthogonal integral

images. IEEE Trans Cir and Sys for Video Technol 19(7):1073–1079

5 2PARMA: Parallel Paradigms and Run-time Management Techniques 79



Part II

Embedded System Design



Chapter 6

Adaptive Task Migration Policies
for Thermal Control in MPSoCs

David Cuesta, Jose Ayala, Jose Hidalgo, David Atienza,

Andrea Acquaviva and Enrico Macii

Abstract In deep submicron circuits, high temperatures have created critical

issues in reliability, timing, performance, coolings costs and leakage power. Task

migration techniques have been proposed to manage efficiently the thermal dis-

tribution in multi-processor systems but at the cost of important performance

penalties. While traditional techniques have focused on reducing the average

temperature of the chip, they have not considered the effect that temperature

gradients have in system reliability. In this work, we explore the benefits of

thermal-aware task migration techniques for embedded multi-processor systems.

We show the implementation issues of task migration policies on next generation

architectural template of distributed memory multicore systems and we discuss the

programmer’s implications. Built on top of this programming model, we propose

several policies that are able to reduce the average temperature of the chip and the

thermal gradients with a negligible performance overhead. With our techniques,

D. Cuesta � J. Ayala � J. Hidalgo
Complutense University, Madrid, Spain
e-mail: dcuestag@pdi.ucm.es

J. Ayala
e-mail: jayala@fdi.ucm.es

J. Hidalgo
e-mail: hidalgo@fis.ucm.es

D. Atienza
Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
e-mail: david.atienza@epfl.ch

A. Acquaviva (&) � E. Macii
Politecnico di Torino, Turin, Italy
e-mail: andrea.acquaviva@polito.it

E. Macii
e-mail: enrico.macii@polito.it

N. Voros et al. (eds.), VLSI 2010 Annual Symposium,
Lecture Notes in Electrical Engineering 105, DOI: 10.1007/978-94-007-1488-5_6,
� Springer Science+Business Media B.V. 2011

83



hot spots and temperature gradients are decreased up to 30% with respect to state-

of-the-art thermal management approaches.

6.1 Introduction

Recent works have demonstrated that large temperature variations cause low reli-

ability and they also impact leakage current. Temperatures over a threshold in

localized areas of the chip (hot spots) can produce timing delay variations, transient

reduction in overall system performance or permanent damages in the devices [1].

The reliable and efficient functioning of MPSoCs can be satisfied by guaran-

teeing the operation below a temperature threshold and power budget. It is in this

control problem where thermal management and balancing policies come into

play. Task and thread migration policies can be proposed to manage the thermal

profile in embedded multi-processor systems [2]. While traditional dynamic

thermal management (DTM) techniques have already been applied, they have not

considered the spatial and temporal gradients that determine the mean-time-to-

failure of the devices.

Thermal simulation of MPSoCs, where the exploration of the interaction

between the hardware architecture and the software layer that performs the task

migration is crucial, can take an unaffordable time. Thus, in order to explore the

HW/SW interaction, FPGA-based thermal emulators have been developed [3, 4].

The experimental work carried out in this work is also developed for an FPGA-

based MPSoC emulation platform [5] that speeds up the simulation time and

provides high flexibility in the thermal analysis.

Thus, this chapter focuses on the design an implementation of three different

task migration policies that are able to minimize the average temperature in

MPSoCs as well as the spatial and temporal variations of the thermal profile. Our

results show that they reduce the impact on the system performance to a minimum

as compared to previous published approaches [2, 5, 6]. The specific contributions

of our work are the following:

• three novel task migration policies based on adaptable weighted functions of

three different factors: average thermal deviation between processors, maximum

temperature of the overall chip and thermal gradient between cores.

• the proposed policies minimize the peak temperature and thermal gradients by

considering a floorplan-aware task migration approach, at the same time as the

time history of thermal gradients and thermal deviation of the different processors.

• the reliability of the system is improved by a combined minimization of time-

based thermal unbalance (thermal cycles) and space-based thermal variations

(hot spots).

• the experiments has been developed on a realistic MPSoC emulation platform

[5], and the policies have been embedded in a multi-processor OS to assess its

real-life task migration overheads in performance and temperature profile.

84 D. Cuesta et al.



6.2 Background

6.2.1 Multiprocessor Architecture Organization

In this subsection we first describe two different kind of multiprocessor architec-

tures, depending on the coupling of processors and memory, then we describe

distinctive features of embedded multiprocessors systems-on-chip.

6.2.1.1 Shared Memory Multiprocessors

In a shared memory multiprocessor, all main memory is accessible to and shared

by all processors. The cost of accessing shared memory is the same for all pro-

cessors. In this case, from a memory access viewpoint they are called UMA

(Uniform Memory Access) systems. A common communication medium links

several memory modules to computing tiles consisting of a cache and one or more

processor elements. Also I/O devices are attached directly to it. In tightly coupled

shared memory Symmetric Multi-Processor (SMP) systems, which belong to this

category, all the processors run a single copy of an operating system that coor-

dinates global activities [7]. Synchronization is maintained through a cache-

coherent low-latency shared memory. A particular category of shared memory

multiprocessor is Non-Uniform Memory Access (NUMA). In a NUMA architec-

ture, all physical memory in the system is partitioned into modules, each of which

is local to and associated with a specific processor. As a result, access time to local

memory is less than that to non local memory. NUMA machines may use an

interconnection network to connect all processors to memory units, or use cache-

based algorithms and a hierarchical set of buses for connecting processors to

memory units. In both machines, I/O devices can be attached to individual pro-

cessor modules or can be shared.

6.2.1.2 Distributed Multi-Processors

The individual processing units reside as separate nodes. Each processor runs its

own operating system and synchronizes with other processors using messages or

semaphores over an interconnect. From a memory access viewpoint, each pro-

cessor has its own local memory that is not shared by other processors in the

system (NO Remote Memory Access - NORMA - Multiprocessors). Computer

clusters (CC) are examples of non-shared memory multiprocessors. Workstation

clusters usually do not offer specialized hardware for low-latency inter-machine

communication and also for implementation of selected global operations like

global synchronization or broadcast. In general, NORMA machines do not support

cache or main memory consistency on different processors memory modules. Such

consistency is guaranteed only for local memory and caches (i.e., for non-shared

6 Adaptive Task Migration Policies for Thermal Control in MPSoCs 85



memory), or it must be explicitly enforced for shared memory by user- or com-

piler-generated code.

6.2.1.3 Embedded MPSoCs

Modern Multiprocessor Systems-on-Chip are characterized by a combination of

constraints. They must satisfy high computational rates but also real-time

requirements, low power and cost [8]. Processing elements can be heteroge-

neous, homogeneous or even configurable, depending on the application

requirements. On the memory viewpoint, heterogeneous hierarchical organiza-

tions are useful to increase predictability. In fact, in presence of a shared bus,

memory access timings are difficult to estimate, leading to real-time constraint

violations. Some embedded MPSoCs follows the SMP model, implementing a

cache-coherent shared memory where the operating system and user-level code

and data reside [9]. A more scalable organization is distributed, where local and

shared memories are present, so the access is non uniform (NUMA). Commu-

nication happens through explicit message passing and each processor has its

local code and data stored in the local memory. This is the architecture we

consider in this work.

6.2.2 Communication and Synchronization

in Embedded MPSoCs

Considering a distributed memory architecture, communication and synchroniza-

tion must be explicit. Concerning communication, a hardware/software support for

message passing on this kind of architecture is presented in [10]. Communication

is based on DMA engine and support both shared memory and scratch-pad based

communication. An hardware support is also proposed in [11] through coproces-

sors attached to each processor, to link it to local and remote memories. The cost

of message passing primitives in such an architectural environment has been

analyzed in terms of power and performance in [12]. In all of the previous

approach, explicit synchronization between tasks can be performed through

message passing. However, the usage of global variables in shared memory is

also possible. However, the continuous polling of a shared variable leads to large

contention on the system interconnect. In [13] a hardware module, called

Synchronization Buffer (SB) is proposed which performs lock and unlock opera-

tions reducing contention in memory and interconnect.

In this work we will describe a message passing and synchronization support

which is not based on additional hardware modules. We only assume the presence

of hardware semaphores and interprocessor interrupt, that are commonly supported

in MPSoCs.

86 D. Cuesta et al.



6.2.3 Resource Management in Embedded MPSoCs

Due to the increasing complexity of these processing platforms, there is a large

quantity and variety of resources that the software running on top of them has

to manage. This may become a critical issue for embedded application

developers, because resource allocation may strongly affect performance, energy

efficiency and reliability. As a consequence, from one side there is need of

efficiently exploit system resources, on the other side, being in an embedded

market, fast and easy development of applications is a critical issue. For

example, since multimedia applications are often made of several tasks, their

mapping into processing elements has to be performed in a efficient way to

exploit the available computational power and reducing energy consumption of

the platform.

The problem of resource management in MPSoCs can be tackled from

different perspectives. To the purpose of this chapter, it is useful to distinguish

between static and dynamic resource management. Static resource managers are

based on the a-priori knowledge of application workload. For instance, in [14]

a static scheduling and allocation policy is presented for real-time applications,

aimed at minimizing overall chip power consumption taking also into account

interprocessor communication costs. Both worst case execution time and

communication needs of each tasks are used as input of the minimization

problem solved using Integer Linear Programming (ILP) techniques. In this

approach authors first perform allocation of tasks to processors and memory

requirement to storage devices, trying to minimize the communication cost.

Then scheduling problem is solved, using the minimization of execution time

as design objective.

Static resource allocation can have a large cost, especially when considering

that each possible set applications may lead to a different use case. The cost is due

to run-time analysis of all use cases in isolation. In [15] a composition method is

proposed to reduce the complexity of this analysis. An interesting semi-static

approach that deals with scheduling in multiprocessor SoC environments for real-

time systems is presented in [16]. The authors present a task decomposition/

clustering method to design a scalable scheduling strategy. Both static and

semistatic approaches have limitations in handling varying workload conditions

due to data dependency or to changing application scenarios. As a consequence,

dynamic resource management came into play.

Even if scheduling can be considered a dynamic resource allocation mecha-

nism, in this chapter we assume that a main feature of a dynamic resource manager

in a multiprocessor system is the capability of moving tasks from processing

elements at run-time. This is referred as to task migration. As such, dynamic

resource management resorts to mainly two techniques, as far as processing ele-

ments are concerned: task migration and voltage/frequency selection, that we

describe in the rest of this section.

6 Adaptive Task Migration Policies for Thermal Control in MPSoCs 87



6.2.4 Task Migration in Embedded MPSoCs

In the field of multiprocessor systems-on-chip, process migration can be effectively

exploited to facilitate thermal chip management by moving tasks away from hot pro-

cessing elements, to balance the workload of parallel processing elements and reduce

power consumption by coupling dynamic voltage and frequency scaling [17–19].

However, the implementation of task migration, traditionally developed for computer

clusters or symmetric multiprocessor, cache-coherent machines, poses new challenges

[20]. This is specially true for non-cache-coherent MPSoCs, where each core runs its

own local copy of the operating system in private memory. A migration paradigm

similar to the one implemented in computer clusters should be considered, with the

addition of a shared memory support for interprocessor communication.

For instance, many embedded system architectures do not even provide support

for virtual memory, therefore many task migration optimization techniques applied

to systems with remote paging support cannot be directly deployed, such as the

eager dirty [21] or the copy-on-reference [22] strategies.

In general, migrating a task in a fully distributed system involves the transfer

of processor state (registers), user level and kernel level context and address space. A

process address spaceusually accounts for a large fractionof theprocess state, therefore

processmigration performance largely depends on the transfer efficiency of the address

space. Although a number of techniques have been devised to alleviate this migration

cost (e.g., lazy state transfer, pre-copying, residual dependencies [23]), a frequent

number of migrations might seriously degrade application performance in an MPSoC

scenario. As a consequence, assessing the impact of migration overhead is critical.

In the context of MPSoCs, in [24] a selective code/data migration strategy is

proposed. Here authors use a compilation-level code profiling technique to eval-

uate the communication energy cost of transferring each function and procedure

over the on-chip network. This information is used to decide whether it is worth

migrating tasks on the same processor to reduce communication overhead or

transferring data between them.

In [20], a feasibility study for the implementation of a lightweight migration

mechanism is proposed. The user-managed migration scheme is based on code

checkpointing and user-level middleware support. To evaluate the practical via-

bility of this scheme, authors propose a characterization methodology for task

migration overhead, which is the minimum execution time following a task

migration event during which the system configuration should be frozen to make

up for the migration cost. We take a similar approach in the experimental result

section of this chapter to evaluate migration costs.

6.2.5 Voltage/Frequency Management

Run-time voltage and frequency scaling techniques have been extensively studied

for single processor systems with soft real-time requirements. See [25] for an

88 D. Cuesta et al.



overview. Some of them are application dependent or exploit application infor-

mation to make speed setting decisions [26]. Application independent policies are

mostly based on overall processor utilization [27–29]. Among them, [29] proposes

a per-task utilization based algorithm, which has been adopted into the ARM

Intelligent Energy Manager standard [30].

In multiprocessor systems, approaches for combined DVS and adaptive body

biasing in distributed time-constrained systems have been reported in [31]. A

technique for combined voltage scaling of processors and communication links is

proposed in [32]. The effect of discrete voltage/speed levels on the energy savings

for multi-processor systems is investigated in [33], and a new scheme of slack

reservation to incorporate voltage/speed adjustment overhead in the scheduling

algorithm is also proposed.

Compared to previous techniques proposed for multiprocessor environments, in

this chapter we do not focus on scheduling but just on scaling. Scheduling is

assumed to be given inside each processing element. Moreover, we consider soft

real-time systems rather than hard real-time systems, where deadlines are guar-

antee on the basis of worst case execution time (WCET) analysis. In this work we

focus on techniques that do not require the knowledge of WCET or other infor-

mation about task execution time, being application independent.

In [34] a semi-static solution of processor allocation and frequency/voltage

selection is presented. The algorithm is based on the construction of Pareto curves

for selecting the optimal speed based on throughput and utilization constraints.

Authors use a fully functional system to test their approach. Compared to this

work, we do not consider processor allocation, and we present a full on-line

frequency selection policy.

Control theoretic approaches to DVS have been also proposed. A feedback

control technique is presented in [35] focusing on average system performance. In

[36, 37] buffers are used to save power and provide quality of service (QoS)

guarantees. Feedback control on data buffers for DVS is used in [38] for a MPEG

application. Here a proportional integrator (PI) controller is proposed that adjusts

the decoder speed to keep constant the occupancy of the buffer between the

decoder and the display. In [39] a non-linear feedback technique is proposed. This

is the technique we used in this chapter. It outperforms traditional linear regulators

in terms of voltage switching rate and ease of tuning.

6.2.6 Task Migration for Thermal Optimization

Load balancing techniques have been studied for general purpose parallel com-

puters in the last decade [40, 41]. However, embedded systems and MPSoCs

impose constraints, as the low-cost packaging and the portability, that make

necessary to develop new techniques.

Nollet et al. [42] proposed a reuse technique that uses the debug registers of the

processor to get the system workload information. Therefore, the initial overhead

6 Adaptive Task Migration Policies for Thermal Control in MPSoCs 89



of a heterogeneous MPSoC task migration is diminished by considering these

hardware devices which are not always available in current architectures.

Bertozzi et al. [43] presented an approach that dealt withMPSoCs taskmigration.

They proposed a strategy where the user is responsible for setting the possible

migration points in the application code. The architecture used in this work was

composed by one master and an arbitrary number of slaves cores. Even though this

chapter shows interesting results for such specific architecture, our work deals with a

more general system where the task migration is dynamically performed.

Barcelos et al. [44] proposed a hybrid memory organization approach which

supports the task migration algorithms with low-energy consumption constraints. In

this approach, the data to be migrated can be provided either by the source node or

from the shared memory. Barcelos’ work is extended by Brião et al. [45] who takes

into account the task migration overhead in a dynamic environment and discusses its

impacts in terms of energy, performance and real-time constraints forMPSoCs based

on Network on Chips (NoCs). In the context of streaming applications, the impact of

task migration has been quantified by Pittau et al. [46] and Acquaviva et al. [47].

Following this line, our work considers the impact of task migration and minimizes

this factor to optimize both performance and energy dissipation.

In the area of temperature optimization, several approaches have been pro-

posed. Donald et al. [48] introduced several thermal management policies such as

dynamic voltage and frequency scaling (DVFS) and thread migration based on

current temperature, but their work do not consider the thermal history of the

cores. This information gives a meaningful information about the future behavior

of the system and can be exploited to improve the results of the migration.

The work by Puschini et al. [49] also manages dynamically the voltage and

frequency assignment of each core based on game theory. However, the DVFS as a

thermal optimization technique is limited by its implementation and its impact on

performance.

On the other hand, Gomaa et al. [50] described techniques that, using the

information provided by performance hardware counters, tried to balance the

temperature by thread migration. However, it is considered that performance

counters do not represent accurately the thermal profile.

In [51], Yang et al. showed an execution ordering approach that swaps hot and

cool threads in cores to control the temperature. This can only be applied once the

application has been profiled.

A recent work by Yeo et al. [52] presented a temperature-aware scheduler

based on thermal grouping of the applications using a K-means clustering. This

work provided interesting results but requires a very complex analysis phase,

which grows largely in complexity with the number of considered cores.

Finally, in [5] it is proposed a heuristic optimization for thermal balancing in

MPSoCs that adapts the current workload of the cores using DVFS and task

migration, according to the standard deviation of the hottest and coldest cores at

each moment in time during the execution. Although it shows clear benefits for

thermal balancing with respect to previous thermal runaway approaches [48], it

can still produce significant thermal unbalance in non-stable working conditions.

90 D. Cuesta et al.



(i.e., periods of small tasks being executed in the MPSoC or tasks being stop due to

I/O processes) as we show in Sect. 6.7), because it does not take into account the

recent thermal history of the system but just the instant thermal unbalance.

Our work outperforms previous approaches with the provision of three task

migration policies that optimize the thermal profile of MPSoCs by balancing

dynamically the weight of the on-chip thermal gradients, maximum temperature

and effect of underlying floorplan on heat dissipation properties of each core.

Moreover, the proposed policies are able to minimize the risk of system failure by

the minimization of temperature-driven reliability factors, as it considers thermal

unbalance in time and space, as they keep a history of the thermal profile of the

target MPSoC, which minimizes the number of task migrations.

6.3 Target Architecture Template and Programmer’s View

In this section we first describe a general architectural template targeted in this

work. Next generation high performance computing systems are going toward a

composable architectural template made of single processing forming a cluster of

computational tiles with a distributed memory organization. Typical examples are

ST P2012 [53] and Intel [54]. In this work we consider such an architectural

template where each node runs its own local operating system instance.

6.3.1 General Architectural Template

Figure 6.1 describes the target architectural template. We focus in particular on

processor-memory communication infrastructure. From this perspective, it appears

as a generic template allowing a mix of shared memory and message passing

Fig. 6.1 Target processors-memory architectural template

6 Adaptive Task Migration Policies for Thermal Control in MPSoCs 91



communication. In this way it is possible to merge concept from cluster computing

and from classical shared-memory multiprocessing. The model is based in a

hierarchical, customizable connectivity scheme, supporting different levels of

computation/memory/connectivity resources.

The model is composed of variable number of clusters connected through a

generic interconnect (level 2 interconnect). Communication between clusters can

be implemented using a shared-memory (level 2 shared memory), a memory for

semaphores (level 2 semaphores memory), and using direct writes to private or

shared memories inside the clusters.

Each cluster is composed of a variable number of tiles, connected through a

generic interconnect (level 1 interconnect). Communication between tiles can be

implemented using a shared-memory (level 1 shared memory), a memory for

semaphores (level 1 semaphores memory), or using direct writes to private or

shared memories inside the tiles. Each tile is composed of 32-bit RISC processor, a

scratch-pad memory, a cache memory, and a private memory, connected through a

generic interconnect (level 0 interconnect). The three levels of interconnect can be

implemented using one or more of the available technologies (shared bus, hier-

archical bus or NoC). A high generic target architecture allows the development of

a software abstraction layer able to support both symmetric and heterogeneous

multiprocessing.

6.3.2 Application Modeling

To exploit the potential of MPSoCs the application must be modeled and coded as

a parallel program. In a parallel program, the functionalities are partitioned in

chunks of code, and to each chunk of code a task is associated, with the

assumption that tasks will be executed in parallel.

When mapping applications to MPSoCs a parallel representation often ease the

work of the programmer, being typical MPSoC applications inherently parallel. A

common representation of a parallel application is the task graph, i.e. a graph

where each node represents a task, while each arc represents communication

between tasks.

The possible parallel programming models approaches vary in the way the

different parallels chunks of code are encapsulated and in the way synchronization

and specially communication are modeled and implemented, and in the way the

programmer cooperates with the underlying OS/middleware specializing its code.

The main feature of the proposed framework is that task migration is supported.

In this way, dynamic resource management policies can take care run time

mapping of task to processors, to improve performance, power dissipation, thermal

management, reliability and/or other metrics. The programmer can avoid to take

care of task mapping, it has only to manually insert checkpoints in the code,

because migration is enabled only corresponding to checkpoints.

92 D. Cuesta et al.



6.3.2.1 Task Modeling

In our approach, each task is represented using the process abstraction. In practice

this means that task communication has to be explicit because shared variables

between tasks are not allowed, each task has its own private address space. This is

the main difference with respect to multi-threaded programming. Data can be

shared between tasks using explicit services given by the operating system, using

one or both of the available communication models: message passing and shared

memory. Moreover dedicated services provided by the underlying middleware/OS

are needed to enable tasks synchronization.

6.3.2.2 Task Communication and Synchronization

Both shared memory and message passing programming paradigms are supported

by the proposed framework. Using message passing paradigm, when a process

requests a service from another process (which is in a different address space) it

creates a message describing its requirements, and sends it to the target address

space. A process in the target address space receives the message, interprets it and

services the request. Send and receive message functions can be either blocking or

non-blocking.

To use shared memory paradigm, two or more tasks are enabled to access the

same memory segment after they called shared malloc and were returned pointers

to the same actual memory. When one task changes a shared memory location, all

the other tasks see the modification. To use a shared memory segment, one process

must allocate the segment using the dynamic shared memory allocation function.

Then, using message passing, it communicates to the other tasks the starting

address of the segment to share. After the communication is finished, one of the

tasks has to deallocate the segment using a proper deallocation function.

Synchronization is supported providing basic primitives like mutexes and

semaphores. Both spinlock and blocking mutexes and semaphores are imple-

mented. Implementation of all these features is described in Sect. 6.4.

6.3.3 Checkpointing

The task migration support is not completely transparent to the programmer.

Indeed, task migration can occur only corresponding to special function calls

(checkpoints) manually inserted in the code by the programmer. Migration tech-

niques involve saving and restoring the context of a process so it can be safely

executed on a new core. Both in computer cluster and shared memory environ-

ments only the user context is migrated. System context is kept either on the home

node or in shared memory. In our migration framework, all the data structure

describing the task in memory is migrated. The use of suitable checkpointing

6 Adaptive Task Migration Policies for Thermal Control in MPSoCs 93



strategy avoids the implementation of a link layer (like in Mosix) that impacts

predictability and performance of the migrated process, which in our system does

not have the notion of home node.

The programmer must take care of this by carefully selecting migration points

or eventually re-opening resources left open in the previous task life. In fact, the

information concerning opened resources (such as I/O peripherals) cannot be

migrated, so the programmer should take into account this when placing check-

points. In this case, a more complex programming paradigm is traded-off with

efficiency and predictability of migration process. This approach is much more

suitable to an embedded context, where controllability and predictability are key

issues.

Checkpointing-based migration technique relies upon modifications of the user

program to explicitly define migration and restore points, the advantage being

predictability and controllability of the migration process. User level check-

pointing and restore for migration has been studied in the past for computer

clusters.

6.3.4 Homogeneous Cluster-on-a-Chip: A Case study

Given the generic Cluster-on-a-Chip architectural template and its programming

model previously described, we now focus on a case study that has been used to

implement and test the middle-ware layer presented in this chapter. Many new

generation MPSoCs are designed based on the symmetric multi-processing para-

digm [9, 55] exploiting homogeneous hardware architecture with general purpose

processing elements, with no hierarchy levels. For these kind of architecture we

can currently build realistic simulation models, that allow us to quantitatively

assess the effectiveness of middleware level solution. That is why we resort to the

implementation of our middleware on top of this architecture, that we called

‘‘homogeneous cluster’’ (shown in Fig. 6.2).

It is based on the following components:

• a configurable number of 32-bit RISC processors, without memory management

unit (MMU),

Fig. 6.2 Homogeneous Cluster-on-Chip architecture

94 D. Cuesta et al.



• their caches,

• their private memories,

• a non-cached shared memory,

• a hardware interrupt module,

• a hardware test-and-set semaphores module,

• a 32-bit bus among them all.

The processor cores store private or local data in their private memory. In order

to communicate each others, they use the non-coherent shared memory. For the

synchronization among the processors, semaphore and interrupt facilities are also

needed: (i) a core can send interrupt signals to each other using the hardware

interrupt module mapped on in the global addressing space; (ii) several cores can

synchronize themselves using the semaphore module that implements test-and-set

operations. This is a basic hardware requirement to implement synchronization in

a multiprocessor environment.

6.4 Operating System/Middleware Infrastructure

Modern Multiprocessor Systems-on-Chip are usually equipped with local and

shared memory, so the access is non-uniform (NUMA). In this work, we target

MPSoCs where each processor accesses a local private memory. Cache-coherency

is guaranteed on private memories where a local copy of uClinux operating system

[56] runs for each core (distributed operating system). This is follows the structure

envisioned for non-cache-coherent MPSoCs [57, 58]. The uClinux OS is a

derivative of Linux 2.4 kernel intended for microcontrollers without Memory

Management Units (MMUs).

On the same on-chip bus, a non-coherent shared memory can be accessed, thus

providing support for interprocessor communication. Hardware semaphores and

inter-processor interrupts are needed to enable synchronization between the dif-

ferent OSes.

Each system image (one for each processor) is loaded in the private memory of

each processor. This way each processor has its own filesystem, in the form of

ROM filesystem. Although the ROM filesystem should be installed in a nonvol-

atile shared memory, we decided to have a distributed file system for simplicity of

porting. Since uClinux is natively designed to run in a single-processor environ-

ment, we added the support for interprocessor communication at the middleware

level.

This organization is a natural choice for a loosely coupled distributed systems

with no cache coherency, to enhance efficiency of parallel application without the

need of a global synchronization, that would be required by a centralized OS.

On top of local OSes we developed a layered software infrastructure to:

• provide and efficient parallel programming model for MPSoC software

developers

6 Adaptive Task Migration Policies for Thermal Control in MPSoCs 95



• provide global synchronization

• support efficient runtime resource allocation and management

The proposed software abstraction layer, described in Fig. 6.3 is based on four

main components: (1) Stand alone OS/schedulers for each processor running in

private memory; (2) lightweight middle-ware layer providing synchronization and

communication services (3) task migration support and dynamic resource man-

agement layer.

6.4.1 Basic Services: Communication and Synchronization

Support

In our distributed system architecture, a process always remains within its address

space; communication among processes happens using two mechanisms: shared

memory and message passing.

Using message passing paradigm, when a process requests a service from

another process (which is in a different address space) it creates a message

describing its requirements, and sends it to the target address space. A process in

the target address space receives the message, interprets it and services the request.

We implemented a lightweight message passing scheme able to exploits scratch-

pad memories or physical shared memory to implement ingoing mailboxes for

each processor core. We defined a library of mixed user-level functions and system

calls that each process can use to perform blocking write and read messages of

data buffers. We defined a mailbox for each core and not for each task to avoid

allocation/deallocation of mailboxes depending on process lifetime.

To use shared memory paradigm, two or more tasks are enabled to access the

same memory segment after they called shared malloc and were returned pointers

to the same actual memory. When one task changes a shared memory location, all

Fig. 6.3 Illustration of the software abstraction layer

96 D. Cuesta et al.



the other tasks see the modification. Allocation in shared memory is implemented

using a parallel version of the Kingsley allocator, commonly used in linux kernels.

Task and OS synchronization is supported providing basic primitives like

binary or general semaphores. Both spinlock and blocking versions of semaphores

are provided. Spinlock semaphores are based on hardware test-and-set memory-

mapped peripherals, while non-blocking semaphores also exploit hardware inter-

processor interrupts.

6.4.2 Advanced Services for Dynamic Resource Management:

Task Migration Support

We explain here the general features of task migration support, outlining two

possible implementations of task respawning, one with task replication and one

based on task-recreation. The former, being based on task replicas on the various

processors, has a lower cost in terms of migration delay, but imposes a larger

memory occupation. The latter completely deallocates memory assigned to tasks

that are not running on a given processor, reducing memory requirements but

imposing a larger overhead for memory re-allocation in case of migration. One of

the two mechanisms can be selected at configuration time depending on applica-

tion and architectural constraints.

6.4.2.1 Task Respawning with Task Replication

The first method described is task replication. In this case the data structure used by

the OS to manage an application is replicated in each private OS. When an appli-

cation is launched, a fork is launched for each task of the application in each private

OS. Only one processor at a time however is enabled to run a task. In this processor

the task is managed as a standard task, while in the other processors the task is in the

suspended tasks queue. In this way tasks which can be migrated and task which are

not enabled formigration can coexist transparently for the privateOS.Not all the data

structure of a task is replicated, just the Process Control Block (PCB), which is an

array of pointers to the resources of the task, and the local resources.

The migration process is managed using two kinds of kernel daemons, a master

daemon running in a single processor, and slave daemons running in each pro-

cessor. The master daemon is directly interfaced to the decision engine providing

the selected policy for run time resource allocation. The processor where master

daemon run is supposed to be the processor where task are launched or terminated

by the user.

The master daemon performs four activities:

• The master periodically reads a data structure in shared memory where each

slave daemon writes the statistics related to the own processor, and provides it to

the module implementing the dynamic task allocation policy (decision engine).

6 Adaptive Task Migration Policies for Thermal Control in MPSoCs 97



The decision engine processes this data and run-time decides task allocation,

eventually issuing task migrations.

• When a new application is launched by the user the master daemon commu-

nicates this information to the decision engine and sends a message to each slave

communicating that the application should be initialized. The decision engine

communicates to the daemon the identifier of the processor where the task is

designed to start. The daemon forwards this communication to the slave daemon

of that processor, so the task will be started. All the communications between

master and slave daemons are implemented using dedicated, interrupt-triggered

mailboxes in shared memory.

• When the decision engine decides a task migration, it triggers the master dae-

mon, which signals to the slave daemon of the processor source of the migration

that the task X has to be migrated to the processor Y.

• When an application ends or when it is stopped by the user, the master intercepts

the information and forwards it to the slave daemons and to the decision engine. So

the former can deallocate the task while the latter can update its data structures.

The slave daemon performs four activities:

• When the communication that a new application was launched arrives from the

master daemon, it forks an instance task for each task of the application. Each

task is stopped at its initial checkpoint and it is put in the suspended tasks kernel

queue. The memory for the process is not allocated.

• Periodically it writes in the dedicated data structure in shared memory the

statistics related to its processor which will be the base for the actions of the

decision engine.

• When the master signals that a task has to be migrated from its own processor to

a destination processor:

– waits until the task to be migrated reaches a checkpoint, and puts it in the

queue of the suspended tasks.

– copy the block of data of the task to the scratch-pad memory of the destination

process (if it is available and if there is space enough) or to the shared

memory.

– communicates to the slave daemon of the processor where the task must be

moved that the data of the task is available in the scratch-pad or in the shared.

A dedicated interrupt-based mailbox is used.

– deallocates the memory dedicated to the block of the migrated task, making it

available for new tasks or for the kernel.

– put the migrated task PCB in the suspended tasks queue.

• when the salve daemon of the processor source of the migration communicates

an incoming task:

– allocates the memory for the data of incoming task and copies the data from

the scratch-pad or from the shared memory to its private memory

– puts the PCB of the incoming task in the ready queue

98 D. Cuesta et al.



6.4.2.2 Task Respawning with Task Re-creation

This method is based on the run-time destruction of a task in the source processor,

copy of task data to the destination processor, and task recreation in the destination

processor. Also in this case the migration process is managed using a master

daemon running in a single processor, and slave daemons running in each

processor.

The master daemon performs four activities:

• It periodically reads a data structure in shared memory where each slave daemon

writes the statistics related to the own processor, and provides it to the decision

engine. The decision engine processes this data and run-time decides task

allocation, eventually issuing task migrations.

• When a new application is launched by the user the master communicates this

information to the decision engine which decides the processor where to start

the application and communicates it to the master. The master sends a message

to the slave daemon issuing the fork of a new task.

• When the decision engine decides a task migration, it triggers the master which

signals to the slave daemon of the processor source of the migration that the task

X has to be migrated to the processor Y.

• When an application ends or when it is stopped by the user the master intercepts

the information and forwards it to the slave daemons and to the decision engine.

The slave daemon performs four activities:

• Periodically it writes in the dedicated data structure in main memory the statistic

related to its processor which will be the provided to the decision engine.

• When the communication that a new application has to be launched arrives form

the master daemon, it forks the new task.

• When the master daemon signals that a task has to be migrated from its own

processor to a destination processor:

– waits until the task to be migrated reaches a checkpoint, suspends it, and copy

its data to the scratch-pad of the destination processor or to the shared

memory.

– communicates to the slave daemon of the processor destination of the

migration that the data of the task is available in the scratch-pad or in the

shared. A dedicated interrupt-based mailbox is used.

– kills the task

• when the slave daemon of the processor source of the migration communicates

an incoming task:

– fork a new task

– copies the incoming task data from its scratch-pad or from the shared memory

to its private memory

– performs an exec overwriting the data of the new task with the data copied

from the scratch-pad or from the shared

6 Adaptive Task Migration Policies for Thermal Control in MPSoCs 99



6.5 Emulation Platform

The thermal analysis conducted in this work requires an efficient mechanism to

evaluate the performance and thermal statistics of the multi-processor system. The

accuracy and the fast emulation of the system are the main constraints for the

platform. Also, it is needed an MPOS that implements and manages the task

migration policies.

In this work, we have used a complete FPGA-based estimation framework,

implemented in a Virtex II pro VP30 and based on [4]. Figure 6.4 shows an

schematic view of this emulation platform detailing a single core system. Using

this framework we can retrieve the memory and processor statistics required by the

thermal model and the migration policies (power consumption, memory misses

and memory hits) by mean of hardware sniffers. This platform also includes a

Fig. 6.4 Schematic view of the emulation platform

100 D. Cuesta et al.



complete MPOS and task migration support library between the three cores of the

emulated MPSoC (see Fig. 6.8).

In this emulation platform, the collected statistical data are sent to the host PC

through the serial port. In the multiprocessor system, a dedicated PowerPc is the

one in charge of processing and sending the statistics to the host PC. The host

translates the received information into temperature values by means of a thermal

library. This thermal library splits the floorplan of the emulated system in unitary

cells, which are modeled as simple RthermalCthermal circuits. The resolution of the

linear equations created by an RC grid provides the evolution in time of the

temperature of the system [59].

The emulated architecture is an homogeneous multi-processor system with

three 32-bit RISC cores and the PowerPC. These processor do not include a

memory management unit (MMU) and the access to the cacheable private mem-

ories and to a non-cacheable shared memory is managed by the OS.

Each core runs a uClinux OS. This is based on a Linux 2.4 kernel for

microprocessors without an MMU, but upgraded to support the interprocessor

communication found in our target system. The OS implements the task

migration policies based on task-replication. Thus, there is a replica of each task

in every local OS, but only one processor at a time can execute it. This method

requires a slightly larger private memory to hold the tasks and task intermediate

states/data before migrations, but it speeds up the task migration phase because

the memory allocation required by the replication of tasks is avoided. Then, the

task migration takes place only at predefined checkpoints chosen by the pro-

grammer between phases of the streaming execution (e.g., between processing

different frames).

Several modifications have been done in the OS kernel to support the floorplan-

aware policy. First, the identifier and weight of the cores (used by the policies to

select the candidate in the task migration, as it will be presented later) are allocated

in the shared memory. Second, the OS can then access this information to apply

the task migration algorithm and achieve the thermal optimization.

In summary, the emulation platform is composed of these layers:

• Application layer: built as a set of independent tasks found in every processor of

the system. The tasks are executed under the OS demand:

• OS/Middleware layer: controls the task migration and the communication and

synchronization of the cores through the shared memory.

• HW layer: composed of three core-subsystems and a shared memory.

Finally, the emulation system has also been upgraded with a floorplan-

temperature visualization tool. This tool communicates with the thermal library

and, in real-time, provides a colored floorplan thermal map of the emulated

MPSoC (see Fig. 6.10). The developed tool enables a rapid inspection of the

hot spots, the evolution in time of the temperature and the spatial and temporal

heat spread.

6 Adaptive Task Migration Policies for Thermal Control in MPSoCs 101



6.6 Adaptive and Floorplan Aware Policies for Thermal

Balancing

As previously mentioned, the task migration policies that we present in this

chapter are devoted to reduce the thermal gradients and mean temperature in a

multi-processor system, because both facts affect negatively the reliability and the

leakage of the chip [1]. This assumption is even more critical for embedded

systems, where the power and temperature constraints must be satisfied in parallel

with requirements of high-performance execution.

The FPGA-based multi-processor platform used in our experiments has been

extended with a DVFS policy as an effective way to manage the voltage and

frequency settings of the cores depending on the working load. The DVFS tech-

nique implemented follows the vertigo policy [60]. To apply the vertigo policy a

previous characterization of the tasks is needed attending to their full-speed-

equivalent (FSE), defined as the load that a task imposes when it is run at full

speed in a core. Therefore, if one core is running a task that loads it, e.g. 45%, the

core can adapt its frequency to 45% of its maximum.

Task migration policies are proposed to balance the load in the processors and,

consequently, obtain a homogeneous distribution of temperature. Figure 6.5 pre-

sents an example. Three cores are running four tasks with different workload. This

workload in the processors is translated into temperature due to the relation with

the electric activity and dynamic energy; hence, this situation will create a thermal

gradient due to the unbalanced distribution of the load, being core 1 the hottest

one. Thermal balance will be achieved migrating one task from this core to one of

the colder processors.

If the temperature of the chip varies slower than the rate of task migration,1

thermal balance will be achieved. In this case, we can assume that the real

workload of each processor is the average of the total, in the example, around 55%.

However, task migration must be applied carefully because it affects the perfor-

mance of the system due to the overhead introduced by data transfers.

Fig. 6.5 Migration example between three cores

1 This is a common assumption because the thermal evolution is a slow diffusion process.

102 D. Cuesta et al.



The following paragraphs analyze the state-of-the-art task migration tech-

niques, and the policies that we propose to specifically adapt the workload of the

system depending on the state of the processors.

6.6.1 Compared State-of-the-Art Thermal Control Policies

• Enhanced Migration (Mgr) [6]: moves the task that is running in a hot core

when it exceeds a threshold temperature to the coolest core. This policy could be

considered as an even improved solution of the original policy of Heat & Run,

because it adds task migration at run-time, as proposed in [5], not just between

stopped or starting tasks.

• Task rotation (Rot) [2]: inspired by a Round Robin mechanism, migrates a task

between processors every time slot. This policy achieves the thermal balance in

the system at the cost of an important overhead due to the frequent migrations.

• Thermal Thresholds (Thres), presented in [5], moves the task running in the

processor that exceeds an upper or lower threshold to a destination core. This is

chosen considering the weight of the task that is going to be migrated and its

impact on the workload of the processor.

6.6.2 Atomic Policies Pre-Characterization

The definition of our new task migration policies begins with the characterization

of atomic policies in the multi-processor system. These atomic policies perform

simple migrations only according to the temperature and the workload of the cores.

The migration of the task is executed from one processor to another one with a

negligible computation cost. Figure 6.6 shows the overhead introduced by the task

replication mechanism for different sizes of the migrated task. As can be seen, the

impact of migrating a 64 KB task (the one considered in our experimental work) is

of 6E5 cycles, which translates into a delay of 6 ms for the worst case, depending

Fig. 6.6 Overhead of the
task migration mechanism

6 Adaptive Task Migration Policies for Thermal Control in MPSoCs 103



on the operating frequency (from 100 to 500 MHz) of our system. This delay could

have important issues in process’ deadlines for real-time tasks.

The results of the analysis of these policies are classified in several sets depending

on their response to pre-defined metrics. These metrics evaluate the capability of the

atomic task to reduce the thermal gradient, the maximum temperature or the mean

temperature in the chip.We also performed a statistic study to classify the policies in

these groups and assign a qualitymark that goes from 1 (very bad response) to 5 (very

good response). The granularity of the classification is enough to represent the

variability expected in the results and to reflect the variations found in the metrics.

Table 6.1 shows a reduced sub-set of the atomic policies that have been con-

sidered and their classification after the statistic analysis. In this table, the first

column is the name of the atomic policy (it designs the origin and destination cores

in the migration), being hot the reference for the hottest processor, cold for the

coldest one and warm is the name given for those cores whose temperature is in

between both hottest and coldest ones. As the goal of the analysis is the charac-

terization of the policies, these will be always activated and the migrations will

take place continuously. Finally, the initial workloads in the cores of the system

are deliberately unbalanced to force the execution of the atomic policies. Next

columns show the assigned quality mark for every metric.

The pre-characterization study also considered the thermal history of the cores

(cores that have been cold or hot during a certain period in the past), which brought

out the possibility to minimize the overhead in terms of number of migrations and

amount of data transferred due to migrations.

The time window has been selected as the largest with the minimum impact on

the temperature gradient after a detailed experimental study [5]. This selection of

300 ms for the time window is independent of the application run by the pro-

cessors and only should be revisited in case of a new package.

6.6.3 Proposed Policies

6.6.3.1 Heuristic Algorithm (Heu)

This algorithm is able to select efficiently among the atomic policies and achieve

the thermal optimization with a minimum performance impact. The implementa-

tion of this heuristic is based on the information retrieved by the characterization

Table 6.1 Characterization
of atomic policies

Atomic policy Mean
temperature

Max.
temperature

Thermal
gradient

Hot–Cold 4 5 4

Warm–Cold 2 2 1

Hot–Warm 5 4 4

Cold–Warm 1 1 1

Warm–Hot 3 3 1

Cold–Hot 1 1 2

104 D. Cuesta et al.



phase, which provides the information about the thermal profile under the exe-

cution of the different atomic policies.

The algorithm works as follows: A time window is set and the workload and

thermal information of the processors are collected at run-time during this time

slot. At the end of the time window, we evaluate the data and compare them with

the preferred working parameters (in terms of mean temperature, gradient and

peak temperature). The atomic policy to apply is selected in order to solve the

divergence of metrics between the current state and the desired one. Figure 6.7

shows the decision chart that explains the functioning of this heuristic.

In this figure the Deviation is the difference between the preferred working

value (which is 50�C for the mean temperature, 75�C for the peak temperature and

6�C difference for the thermal gradient) and the current state value. These values

have been selected to assure a proper operation of the system. Factor has been

tuned experimentally to balance the importance of the different decision sets,

namely, giving twice more weight to the mean temperature with respect to the

gradient and 1.5 more than the maximum temperature.

The proposed heuristic defines a multi-objective optimization problem. The

implementation of the heuristic applies sequentially the atomic policies in case

of identical unbalance in the three metrics. In this way, the complexity in the

decision process is minimized to simplify the heuristic. In order to alleviate

the constraint imposed by this simplified thermal controller, an adaptive policy

is introduced.

Fig. 6.7 Heuristic algorithm
decision chart

6 Adaptive Task Migration Policies for Thermal Control in MPSoCs 105



6.6.3.2 Adaptive Policy (Adapt)

This policy extends the work performed by the previous approach, collecting data

at run-time and applying the atomic policies to achieve the optimum thermal state.

This policy adapts the selection of the atomic policy by means of the statistical

information of the cores, which predicts the behavior of the processors attending to

the information about the past time.

This policy assigns a probability to every set of atomic policies (mean tem-

perature, peak temperature, thermal gradient) and updates this probability every

time period as follows:

Pt ¼ Pt�1 þW ð6:1Þ

Winit ¼ Mpref �Mavg ð6:2Þ

W ¼
aincðTmean; Tpeak; TgradientÞ �Winit Winit [ 0

adecðTmean; Tpeak; TgradientÞ �Winit Winit\0;

�

ð6:3Þ

where W is the weight assigned to the sets every time period; M represents the

different sets of atomic policies, as explained before;Mpref is the preferred working

state and Mavg is the current state. The expressions for the increase and decrease of

the probabilities are parametrized for every set of atomic policies, and the obtained

probabilities are normalized in order to maintain math consistency. Mpref is the

safe operating state already defined.

Using the previous equations, our extended OS updates the probabilities of

selecting atomic policies every time window, and decides the working state by the

execution of these policies. The design of the Adaptive Policy is supported by the

pre-characterization of atomic policies. This initial study gives us the information

of the best candidates (those atomic policies that obtain the maximum minimi-

zation of the metrics) for a task migration or task swapping in order to achieve a

desired working state.

The atomic policies implemented in this adaptive technique always migrate a

task from a source core to a destination core. As the temperature of the destination

core is the only variable considered in the decision, more than one processor can

satisfy the requirements. The last proposed policy extends the variables with the

placement of the core for a more accurate selection of the destination core.

6.6.3.3 Floorplan-Aware Policy (FloorAdapt)

This policy considers the information about the floorplan. In this way, the OS is

aware of the location of the cores and accordingly selects the destination processor

in a task migration. This is implemented in the kernel of the OS with the

assignment of different weights to each core. The smaller this weight is, the better

candidate the core is to receive tasks. This factor is calculated with the following

equation:

106 D. Cuesta et al.



G ¼ d3edge þ
1

d2core
þ dshared ð6:4Þ

where dedge is the distance to the edge of the chip, dcore is the distance to another

core (which is a heat source), and dshared is the distance to the shared memory

(which is a heat sink [61]). This expression has been created to resemble the strong

influence of the ambient as a heat sink (cubic factor), the medium influence of the

near cores as heat sources (quadratic factor) and the light influence of the shared

memory as a heat sink (linear factor). The strength of the factors considers the

proximity of the heat/sink and the thermal resistance of the joint.

Every time window, the thermal history of the processors is analyzed to solve

possible hot spots, critical thermal gradients, or values over the safe peak tem-

perature (75�C). However, if the system is still working in a safe state, the task

migrations will not occur and the overhead of the policies will be avoided.

The knowledge of the thermal characteristics of the cores depending on the

placement is a precious information for the task migration policies. The location of

the cores in the chip surface produces very different thermal behavior due to the

proximity to heat sinks or heat sources which dissipate the temperature. In our

floorplan design shown in Fig. 6.8, core 0 is close to core 2 and both processors

are prone to heat up due to the thermal diffusion from one to the other. On the

other hand, core 1 is far from the other processors but close to the edge of the chip,

which increases the possibility to cool easily. Therefore, core 1 would be selected

to receive a heavy workload in case of a task migration.

The floorplan-aware policy incorporates this information about the core

placement to adapt and select the probabilities of migrating or receiving a task.

6.7 Experimental Work

The experimental work has been conducted with the emulation platform described

in Sect. 6.5, which has been used to model a multi-processor system with three

working processors (lBlaze) and a PowerPC serving as the arbiter of the

Fig. 6.8 Floorplan design

6 Adaptive Task Migration Policies for Thermal Control in MPSoCs 107



communication. The benchmark selected for the analysis is a real-life streaming

application that loads the cores. The experiments have been run considering a

special package derived from real-life streaming SoCs [62] for mobile embedded

devices where the temperature can vary as much as 10 degrees in less than a

second. The chip package has been selected to stress the number of required task

migrations and, therefore, create a worst-case scenario for the validation of our

techniques. Finally, the cores in the system can work at different clock frequencies

under selection of the OS: 100, 200, 300, 400 and 500 MHz.

The validation of the task migration techniques has been accomplished

attending to some pre-defined metrics that cover the spectrum of thermal aware

optimization:

1. Spatial variation of the temperature of the processors: measured as the linear

distance per area unit between cores at a different temperature. This metric

quantifies the heat spread on the chip surface and the probability of thermal

gradients.

2. Mean temperature of the chip: calculated as the arithmetic mean of the pro-

cessor and memory temperatures in the chip. This metric relates the tempera-

ture of the devices to the energy consumption and cooling necessities.

3. Maximum temperature of the chip: measured as the maximum temperature

value on the chip surface. It is related with the susceptibility to temperature-

driven reliability factors.

The results obtained during the validation phase have been also compared with

the results provided by the policies described in Sect. 6.6.

6.7.1 Description of the Application

The software that is executed by the platform is a Software FM Defined Radio [5]

application, which is a typical example in multimedia streaming. This application

is composed of several tasks that can be assigned to the different processors in the

system. The input data is a digitalized PCM radio signal which has to be processed

in several steps to obtain an equalized base-band audio signal.

The first step in the processing phase is a low pass filter (LPF), and the resulting

signal is demodulated (DEMOD) and shifted to the baseband. After that, the signal

is forked in three branches to be equalized by three different band pass filters

(BPF). Finally a consumer (SUM) collects the data from every BPF. The com-

munication between tasks is done using FIFO queues that transfer the data. Each

task is allocated in a different processor during the load of the application. Then,

the policy implemented in the OS migrates the tasks depending on the tempera-

tures of the cores. Figure 6.9 shows an schematic view of this application an the

relations among the processing steps.

108 D. Cuesta et al.



6.7.2 Evaluation of the Policies

The task migration policies implemented in the OS kernel were applied to the

benchmark and the pre-defined metrics were collected to perform the evaluation.

The execution of the application in the emulation platform consists of two

phases. The first one is the initialization of the OS and the tasks. As this phase does

not exhibit a critical thermal state and it occurs just once during the system boot-

up, the task migration policies are deactivated at this time. When this initial phase

finishes, the thermal and workload state of the system is the one described in

Table 6.2. Our experimental work starts at this point setting a thermal unbalance

that motivates the activation of the migration policies. In the second phase, when

the execution of the application starts, all the policies described in this chapter are

evaluated separately.

The analysis performed for the task migration policies is two fold. Firstly, a

visual inspection of the thermal distribution in the chip surface is done using the

developed graphical tool. With this analysis, the evolution of temperature in

real-time is obtained, as shown in Fig. 6.10. This figure shows an example of the

run-time behavior for the (a) proposed adaptive and the (b) migration [5]

policies.

As shown, both policies start similarly, decreasing rapidly the presence of hot

spots. However, as time evolves, the adaptive policy obtains lower temperature

values and a more homogeneous thermal distribution due to the presence of

short-time execution tasks. In fact, for the SDR benchmark, all the cells in the

floorplan are within a range of temperature of 5 degrees when the adaptive

policy is applied, while differences of more than 15 degrees can be found in

certain periods for the migration policy. Similar results occur with the other task

migration techniques.

Fig. 6.9 Schematic view of the SDR application

Table 6.2 Initial working
state

Core (Frequency) Load (%) Temperature (K)

Core 0 (533 MHz) 44 340

Core 1 (533 MHz) 83 339.5

Core 2 (266 MHz) 29 328.5

6 Adaptive Task Migration Policies for Thermal Control in MPSoCs 109



Secondly, a statistical study of the distribution of temperatures in the chip under

the execution of the task migration policies is accomplished. This analysis eval-

uates which policies have better results when applied in the multi-processor sys-

tem. The mean and sigma values of the temperature for every policy are calculated

in the statistic analysis and fit to a normal distribution (see Fig. 6.11).

As can be derived from the values in the Figure, the best results in terms of

thermal distribution and absolute values are achieved with the three policies

specifically proposed in this chapter. In particular, the adaptive algorithm con-

centrates the temperature of the cells within a small range of temperatures centered

in the mean temperature (mean temperature 319.038 with a r of only 2.53). The

curves for the three proposed policies present: lower mean value (translated into a

Fig. 6.10 Run-time thermal
maps. a adaptive,
b migration [26]

Fig. 6.11 Normalized
statistical distributions

110 D. Cuesta et al.



decrease in the average temperature of the chip) and narrower shape of the curve

(translated in a smaller sigma and, therefore, a decrease in the thermal gradient of

up to 30% with respect to state-of-the-art techniques [2, 6, 63]).

Another interesting quality factor in the development of task migration tech-

niques is the number of migrations per unit. As has been previously discussed, task

migration policies introduce a performance overhead due to the time required for

the memory allocation, as well as an energy waste. This impact can be charac-

terized by means of the number of effective migrations per time unit. Figure 6.12

shows the number of migrations per time unit for all the policies considered in our

study. As can be seen, our proposed policies not only achieve similar results to the

threshold technique [5] in terms of mean temperature and sigma of the thermal

distribution, but they also decrease the impact on performance by a 40% because

less task migrations are required. Table 6.3 summarizes the performance overhead

imposed by every task migration technique, where the minimum impact of our

proposed policies can be observed.

Finally, two factors with a very strong impact on the reliability of the system

have been evaluated: the percentage of hot spots in the chip area, and the thermal

cycles. Both metrics have been calculated assuming that a hot spot in our set-up is

represented by a temperature value over 338 K. Figure 6.13 shows the percentage

of hot spots in the chip area, averaged along the execution of the benchmark, and

for every migration policy. As can be seen, our Adaptive policy behaves better

than the traditional approaches, only outperformed by the Rotation policy which,

on the contrary, has a strong impact on performance. The percentage of hot-spots

is reduced to 1% and, therefore, the probability of system failure is minimized.

Fig. 6.12 Number of
migrations per time unit

Table 6.3 Performance overhead

Adap FloorAdapt Heu Thres Mgr Rot

Overhead (%) 0.85 0.52 0.85 1.2 0.93 2.4

6 Adaptive Task Migration Policies for Thermal Control in MPSoCs 111



Figure 6.14 shows the thermal cycles for the same system configuration and task

migration policies. As can be seen, our proposed approaches are able to reduce the

thermal cycles to a minimum, showing better results than the traditional approaches

(25%better than [5] and up to 4� less thermal cycles than [2] and [6]); and,moreover,

with the smallest performance overhead (less than 0.9% impact on execution time).

6.8 Conclusions

In this chapter, we have investigated and proposed OS-level task migration poli-

cies for thermal management in embedded multi-processor systems. We have

showed that the proposed techniques achieve low and balanced temperatures

Fig. 6.13 Percentage of hot-
spots

Fig. 6.14 Thermal cycles

112 D. Cuesta et al.



profiles, diminishing the percentage of hot spots, thermal cycles, and thermal

gradients. As compared with traditional techniques, our policies incorporate the

floorplan information in the OS, dynamically adapt the migration to the thermal

profile of the application, and improve the thermal behavior of the chip with a

negligible performance overhead.

References

1. Semenov OeA (2006) Impact of self-heating effect on long-term reliability and performance
degradation in CMOS circuits. IEEE Trans Device Mater Reliab 6(1):17–27

2. Chaparro PeA (2007) Understanding the thermal implications of multi-core architectures.
IEEE Trans Parallel Distrib Syst 18(8):1055–1065

3. Carta S, Acquaviva A, Del Valle PG, Atienza D, De Micheli G, Rincon F, Benini L,
Mendias JM. (2007) Multi-processor operating system emulation framework with thermal
feedback for systems-on-chip. In: Proceedings of the 17th ACM GLS on VLSI, pp 311–316

4. Atienza D, Del Valle PG, Paci G, Poletti F, Benini L, Micheli GD, Mendias JM, Hermida R
(2007) HW-SW emulation framework for temperature-aware design in MPSoCs. ACM Trans
Des Autom Electron Syst 12(3):1–26

5. Mulas F, Pittau M, Buttu M, Carta S, Acquaviva A, Benini L, Atienza D (2008) Thermal
balancing policy for streaming computing on multiprocessor architectures. In: Proceedings
on DATE, pp 734–739

6. Gomaa M, Powell MD, Vijaykumar TN (2004) Heat-and-run: leveraging SMT and CMP to
manage power density through the operating system. SIGOPS Oper Syst Rev 38(5):260–270

7. DharmasanamS.Multiprocessingwith real-time operating systems. http://www.embedded.com/
story/OEG20030512S0080

8. Jerraya AA, Tenhunen H, Wolf W (2005) Guest editors introduction: multiprocessor systems-
on-chips, IEEE Computer. pp 36–40

9. ARMLtd,ARM11MPCore. http://www.arm.com/products/CPUs/ARM11MPCoreMultiprocessor.
html

10. Poletti F, Poggiali A, Marchal P (2005) Flexible hardware/software support for message
passing on a distributed shared memory architecture. In: Proceedings of DATE, pp 736–741

11. Han S-I, Baghdadi A, Bonaciu M, Chae S-I, Jerraya AA (2004) An efficient scalable and
flexible data transfer architecture for multiprocessor SoC with massive distributed memory.
DAC, pp 250–255

12. Loghi M, Benini L, Poncino M (2004) Analyzing power consumption of message passing
primitives in a single-chip multiprocessor. In: Proceedings of DATE, 2004

13. Monchiero M, PALERMO G, Silvano C, Villa O (2006) Power/Performance hardware
optimization for synchronization intensive applications in MPSoCs. In: Proceedings of
DATE, 2006

14. Ruggiero M, Acquaviva A, Bertozzi D, Benini L (2005) Application-specific power-aware
workload allocation for voltage scalable MPSoC platforms. ICCD05, pp 87–93

15. Kumar A, Mesman B, Corporaal H, van Meerbergen J, Yajun H (2006) Global analysis of
resource arbitration for MPSoC, In: Proceedings of digital system design, 9th Euromicro
conference, DSD 06

16. Ma Z, Catthoor F (2006) Scalable performance-energy trade-off exploration of embedded
real-time systems on multiprocessor platforms. In: Proceedings of DATE, 2006

17. Hung W-L, Xie Y, Vijaykrishnan N, Kandemir M, Irwin MJ (2005) Thermal-aware
allocation and scheduling for systems-on-a-chip design. In: Proceedings of DATE, 2005

18. Li F, Kandemir M (2005) Locality-conscious workload assignment for array-based
computations in MPSOC architectures, In: Proceedings of the 42nd annual conference on
design automation, pp 95–100

6 Adaptive Task Migration Policies for Thermal Control in MPSoCs 113

http://www.embedded.com/story/OEG20030512S0080
http://www.embedded.com/story/OEG20030512S0080
http://www.arm.com/products/CPUs/ARM11MPCoreMultiprocessor.html
http://www.arm.com/products/CPUs/ARM11MPCoreMultiprocessor.html


19. Kandemir MT, Chen G (2005) Locality-aware process scheduling for embedded MPSoCs, In:
Proceedings of DATE, pp 870–875

20. Bertozzi S, Acquaviva A, Poggiali A, Bertozzi D (2006) Supporting taskmigration inMPSoCs:
a feasibility study. In: Proceedings of design, automation and test in Europe (DATE)

21. Barak A, La’adan O, Shiloh A (1999) Scalable cluster computing with MOSIX for Linux. In:
Proceedings Linux expo ’99, pp 95–100

22. Zayas E (1987) Attacking the process migration bottleneck. In: Proceedings of the eleventh
ACM symposium on operating systems principles, pp 13–24

23. Milojicic D, Douglis F, Paindaveine Y, Wheeler R, Zhou S (2000) Process migration survey,
ACM computing surveys

24. Ozturk O, Kandemir M, Son SW, Karakoy M (2006) Selective code/data migration for
reducing communication energy in embedded MpSoC architectures. GLSVLSI 2006

25. Benini L, Bogliolo A, De Micheli G (2000) A survey of design techniques for system-level
dynamic power management. IEEE Trans VLSI Systems 8(3):299–316

26. Pouwelse JA, Langendoen K, Sips H (2001) Voltage scaling on a low-power microprocessor.
Mobile computing conference (MOBICOM)

27. Kwon W, Kim T (2003) Optimal voltage allocation techniques for dynamically variable
voltage processors. IEEE Trans VLSI Systems, pp 125–130, June 2003

28. Pillai P, Shin K (2001) Real-time dynamic voltage scaling for low-power embedded
operating systems. ACM SIGOPS 01, pp 89–102, October 2001

29. Flautner K, Mudge TN (2002) Vertigo: Automatic performance-setting for Linux. OSDI 2002
30. ARM Intelligent Energy Manager (2005) Dynamic power control for portable devices.

http://www.arm.com/products/CPUs/cpu-arch-IEM.html
31. Andrei A, Schmitz M, Eles P, Peng Z, Al-Hashimi BM (2004) Overhead-conscious voltage

selection for dynamic and leakage energy reduction of time-constrained systems. DATE04,
pp 518–523

32. Andrei A, Schmitz M, Eles P, Peng Z, Al-Hashimi BM (2004) Simultaneous communication
and processor voltage scaling for dynamic and leakage energy reduction in time-constrained
systems. ICCAD04, pp 362–369

33. Zhu D, Melhem R, Childers B (2003) Scheduling with dynamic voltage/speed adjustment
using slack reclamation in multi-processor real-time systems. IEEE Trans Parallel Distrib
Syst 14:686–700

34. Ruggiero M, Acquaviva A, Bertozzi D, Benini L (2005) Application-specific power-aware
workload allocation for voltage scalable MPSoC platforms. ICCD05

35. Lu Z, Hein J, Humphrey M, Stan M, Lach J, Skadron K (2002) Control theoretic dynamic
frequency and voltage scaling for multimedia workloads. CASES02, pp 156–163

36. Lu Y, Benini L, De Micheli G (2002) Dynamic Frequency scaling with buffer insertion for
mixed workloads. IEEE Trans Comput Aided Des Integr Circuits Syst 21(11):1284–1305

37. Im C, Kim H, Ha S (2001) Dynamic voltage scaling technique for low-power multimedia
applications using buffers. ISLPED01, pp 34–39

38. Lu Z, Lach J, Stan M (2003) Reducing Multimedia Decode Power using Feedback Control.
ICCD03

39. Carta S, Alimonda A, Acquaviva A, Pisano A, Benini L (2006) A control theoretic approach
to energy efficient pipelined computation in MPSoCs. To appear on transaction on embedded
computing systems (TECS), 2006

40. Suen TTY, Wong JSK (1992) Efficient task migration algorithm for distributed systems.
IEEE Trans Parallel Distrib Syst 3(4):488–499

41. Chang HWD, Oldham WJB (1995) Dynamic task allocation models for large distributed
computing systems. IEEE Trans Parallel Distrib Comput Syst 6:1301–1315

42. Nollet V, Avasare P, Mignolet JY, Verkest D (2005) Low cost task migration initiation in a
heterogeneous MP-SoC. In: Proceedings of the conference on DATE, pp 252–253

43. Bertozzi S, Acquaviva A, Bertozzi D, Poggiali A (2006) Supporting task migration in multi-
processor systems-on-chip: a feasibility study. In: Proceedings of the conference on DATE,
pp 15–20

114 D. Cuesta et al.

http://www.arm.com/products/CPUs/cpu-arch-IEM.html


44. Barcelos D, Brião EW, Wagner FR (2007) A hybrid memory organization to enhance task
migration and dynamic task allocation in NoC-based MPSoCs. In: Proceedings of the 20th
annual conference on Integrated circuits and systems design, pp 282–287

45. Brião EW, Barcelos D, Wronski F, Wagner FR (2007) Impact of task migration in NoC-
based MPSoCs for soft real-time applications. In: Proceedings of the international conference
on VLSI, pp 296–299

46. Pittau M, Alimonda A, Carta S, Acquaviva A (2007) Impact of task migration on streaming
multimedia for embedded multiprocessors: A quantitative evaluation. In: Embedded systems
for real-time multimedia, 2007. ESTIMedia 2007. IEEE/ACM/IFIP Workshop on, pp 59–64

47. Acquaviva A, Alimonda A, Carta S, Pittau M (2008) Assessing task migration impact on
embedded soft real-time streaming multimedia applications. In: EURASIP journal on
embedded systems, Vol. 2008, Article ID 518904

48. Donald J, Martonosi M (2006) Techniques for multicore thermal management: Classification
and new exploration. In: Proceedings of the 33rd international symposium on computer
architecture, pp 78–88

49. Puschini D, Clermidy F, Benoit P, Sassatelli G, Torres L (2008) Temperature-aware
distributed run-time optimization on MP-SoC using game theory. In: IEEE computer society
annual symposium on VLSI

50. Gomaa M, Powell MD, Vijaykumar TN (2004) Heat-and-run: leveraging SMT and CMP to
manage power density through the operating system. In: Proceedings of the 11th international
conference on architectural support for programming languages and operating systems,
pp 260–270

51. Yang J, Zhou X, Chrobak M, Zhang Y, Jin L (2008) Dynamic thermal management through
task scheduling. In: Proceedings of the IEEE international symposium on performance
analysis of systems and software, pp 191–201

52. Yeo I, Kim EJ (2009) Temperature-aware scheduler based on thermal behavior grouping in
multicore systems. In: Proceedings of the conference on DATE 2009

53. ST Microelectronics and CEA, Platform 2012: A Many-core programmable accelerator for
ultra-efficient embedded computing in nanometer technology, ST Whitepaper, 2009,
http://www.cmc.ca/en/NewsAndEvents//media/English/Files/Events/
STP2012_20101102_Whitepaper.pdf

54. Intel, Single-Chip Cloud Computer. http://techresearch.intel.com/ProjectDetails.aspx?Id=1
55. Pham D, et al. (2003) The design and implementation of a first generation CELL processor.

IEEE/ACM ISSCC, pp 184–186, 2005. July 2003
56. uClinux, Embedded Linux Microcontroller Project. http://www.uclinux.org/
57. Friebe L, Stolberg H-J, Berekovic M, Moch S, Kulaczewski MB, Dehnhardt A, Pirsch P

(2003) HiBRID-SoC: A system-on-chip architecture with two multimedia DSPs and a RISC
core. IEEE international SOC conference, September 2003, pp 85–88

58. van der Wolf P, de Kock E, Henriksson T, Kruijtzer W, Essink G (2004) Design and
programming of embedded multiprocessors: an interface-centric approach, CODES+ISSS,
pp 206–217

59. Paci G, Marchal P, Poletti F, Benini L (2006) Exploring temperature-aware design in low-
power MPSoCs. In: Proceedings of the DATE, vol 1. pp 1–6

60. Flautner K, Mudge T (2002) Vertigo: automatic performance-setting for Linux. SIGOPS
Oper Syst Rev 36(SI):105–116

61. Huang W, Stant MR, Sankaranarayanan K, Ribando RJ, Skadron K (2008) Many-core design
from a thermal perspective. In: Proceedings of the 45th annual DAC, pp 746–749

62. Skadron K, Stan MR, Sankaranarayanan K, Huang W, Velusamy S, Tarjan D (2004)
Temperature-aware microarchitecture: Modeling and implementation. ACM Trans Archit
Code Optim 1(1):94–125

63. Mulas F, Atienza D, Acquaviva A, Carta S, Benini L, De Micheli G (2009) Thermal
balancing policy for multiprocessor stream computing platforms. IEEE transactions on
computer-aided desing of integrated circuits and systems, Vol 28(12):1870–1882

6 Adaptive Task Migration Policies for Thermal Control in MPSoCs 115

http://www.cmc.ca/en/NewsAndEvents//media/English/Files/Events/STP2012_20101102_Whitepaper.pdf
http://www.cmc.ca/en/NewsAndEvents//media/English/Files/Events/STP2012_20101102_Whitepaper.pdf
http://techresearch.intel.com/ProjectDetails.aspx?Id=1
http://www.uclinux.org/


Chapter 7

A High Level Synthesis Exploration
Framework with Iterative Design Space
Partitioning

Sotirios Xydis, Kiamal Pekmestzi, Dimitrios Soudris

and George Economakos

Abstract This chapter introduces a methodology for fast and efficient Design

Space Exploration during High Level Synthesis. Motivated by the fact that higher

quality design solutions are delivered when a larger number of parameters are

explored, we study an augmented instance of the design space considering the

combined impact of loop-unrolling, operation chaining and resource allocation

onto the final datapath. We propose an iterative design space partitioning explo-

ration strategy based on the synergy of an exhaustive traversal together with an

introduced heuristic one. The introduced heuristic is based on a gradient-based

pruning technique which efficiently evaluates large portions of the solution space

in a quick manner. We show that the proposed exploration approach delivers high

quality results, with considerable reductions of the exploration’s runtime in respect

to the fully exhaustive approach.

This research is partially supported by the E.C funded program MOSART IST-
215244,Website: http://www.mosart-project.org/.

S. Xydis (&) � K. Pekmestzi � D. Soudris � G. Economakos
National Technical University of Athens, 9 Heroon Polytechneiou,
Zographou Campus, Greece
e-mail: sxydis@microlab.ntua.gr

K. Pekmestzi
e-mail: pekmes@microlab.ntua.gr

D. Soudris
e-mail: dsoudris@microlab.ntua.gr

G. Economakos
e-mail: geconom@microlab.ntua.gr

N. Voros et al. (eds.), VLSI 2010 Annual Symposium,
Lecture Notes in Electrical Engineering 105, DOI: 10.1007/978-94-007-1488-5_7,
� Springer Science+Business Media B.V. 2011

117

http://www.mosart-project.org


7.1 Introduction

One of the greatest challenges in modern IC design is how to manage the con-

tinuously growing circuit complexity, the so called productivity gap [1]. Figure 7.1

illustrates the productivity gap in terms of manufacturable complexity (number of

transistors that we are able to manufacture) versus designer productivity (number

of transistors that we are able to design). In order to shrink this productivity gap

designers have moved towards higher abstractions levels, i.e. gate level, register

transfer level (RTL), algorithmic level, system level etc. This work targets to the

algorithmic level of abstraction. Algorithmic level design is also known as High

Level Synthesis (HLS). HLS offers an automated and seamless path from high

level behavioral specifications down to circuit level implementations. After

extensive research, HLS is now in its mature phase [2], thus a continuously

growing community of IC designers have adopted HLS techniques to tackle design

complexity and meet tight time-to-market requirements.

The rise of the design abstraction exposed a large number of inter-dependent

design parameters that have to be explored in order to discover the optimal

solutions. Different trade-offs are associated with each solution and designers have

faced the problem of reasoning on differing trade-offs among the set of design

parameters. Thus, efficient exploration methodologies accompanied with auto-

mated tools are of great importance for a quick and concrete evaluation of the

design space [3].

Design Space Exploration (DSE) is the procedure that evaluates the solution

space in order to return a set of Pareto-optimal [4] design points according to some

design criterions (execution delay, circuit area, dissipated power). Pareto opti-

mality [4] specifies that one design solution dominates the other when it is at least

as good in all of the criteria and also strictly better in at least one of them. Thus,

designers are interested mostly on Pareto optimal configurations. Given that the

size of the design space is usually huge, DSE methodologies are focused on the

development of strategies for efficient traversal of the available design space.

In this contribution, we target the fundamental problem of exploring Perfor-

mance-Area trade-offs during algorithmic level design [5]. A Performance-Area

exploration curve can be generated by iteratively scheduling the behavioral

description with different area constraints. Although the aforementioned explora-

tion strategy produces the exploration curve for the specific set of parameters, it is

far from delivering the most efficient design solutions. That is because code-level

transformations (i.e. loop unrolling) and architectural level optimizations (i.e.

operation chaining) are treated as user-guided pre-defined parameters during

exploration, limiting the evaluation of their combined impact on the datapath. In a

common case, such exploration strategies deliver suboptimal design points since

the interaction between the structure of behavioral code and the architectural

optimizations are silently assumed to be independent. We address this inefficiency

by proposing an exploration framework which accounts for both the loop unrolling

118 S. Xydis et al.



code transformation and operation chaining architectural optimization as param-

eters of the design space.

Specifically, we propose the management of an extended design space during

HLS exploration, through the incorporation of loop unrolling and operation

chaining decisions as parameters of a unified solution space, in order to expose

higher quality designs. Towards this direction, we developed a meta-heuristic

strategy based on the iterative partitioning of the design space, integrating in a

balanced manner exhaustive together with heuristic exploration. Heuristic explo-

ration is performed through a gradient-based pruning technique which quickly

explores the extended solution space. The proposed strategy is fully automated

(supported through a CAD tool-flow) and it trades accuracy/quality of the derived

curve for overall exploration’s runtime and vice versa.

Extensive experimentation has been conducted based on real-life computa-

tionally intensive benchmarks in order to evaluate the efficiency of our approach.

In each case, a shift of the exploration’s curve towards more optimized solutions

(Pareto-points) is reported in comparison to the existing design exploration

methodologies. Additionally, the proposed exploration strategy delivers maximum

average speedup of 34.1� in exploration’s runtime and maximum average accu-

racy of 93.7% on the quality of the final curve compared with the exhaustive

exploration of the design space.

The rest of the chapter is organized as follows. Section 7.2 discusses the current

literature, while Sect. 7.3 provides the basic observations that motivated this work.

In Sects. 7.4 and 7.5 the proposed exploration methodology is presented and

analyzed. Section 7.6 reports experimental data evaluating the proposed method-

ology and finally Sect. 7.7 concludes the paper.

100,000

10,000

1,000

100

10

1

0.1

0.01

P
ro

d
u

c
ti

v
it

y
(K

) 
T

ra
n

s
./
S

ta
ff

-M
o

n
th

2
0
0
9

2
0
0
7

2
0
0
5

2
0
0
3

2
0
0
1

1
9
9
9

1
9
9
7

1
9
9
5

1
9
9
3

1
9
9
1

1
9
8
9

1
9
8
7

1
9
8
5

1
9
8
3

1
9
8
1

100

10

1

0.1

0.01

0.001

1,000

10,000

C
o

m
p

le
x
it

y
L

o
g

ic
 T

ra
n

s
is

to
r 

p
e
r 

C
h

ip
 (

M
)

Logic Tr./Chip

Tr./Staff Month

Productivity Growth Rate: 
21% per year

Complexity Growth Rate: 

58%per year

Fig. 7.1 The design productivity gap

7 A High Level Synthesis Exploration Framework 119



7.2 Related Work

Existing approaches in DSE during HLS concentrate on solving iteratively the

resource allocation and operation scheduling problems [6–8]. Exploration is

performed exhaustively traversing the entire defined solution space. Although

Pareto-optimal design points are delivered, the exploration and evaluation of

each design point imposes unaffordable execution runtime even for the case that

heuristic scheduling/allocation is performed [7, 8]. Furthermore, neither the

structure of the input code (i.e. loop unrolling) nor the architectural level opti-

mizations (i.e operation chaining) are considered as exploration parameters,

resulting in a large set of unexplored solutions which usually dominates the

derived exploration curve. The duality between timing- and resource-constrained

scheduling problems has been taken into account during exploration in [9, 10].

The exploitation of the duality between the scheduling problems reports higher

quality results than the previous mentioned approaches. However, the impact of

loop unrolling is ignored [9, 10] and operation chaining is only partially

supported [10] during exploration.

Loop unrolling during HLS has great influence on the datapath implementa-

tion [11, 12]. In [13], an HLS exploration methodology is presented considering

code transformations. However, the exploration loop is restricted only to the

code level, without encountering neither the impact of code transformations on

scheduling efficiency under various resource allocations nor the impact of

operation chaining. Operation chaining in HLS [14] schedules data-dependent

operations in a single control step by removing the intermediate storage logic

(registers). It heavily depends on circuit’s operating frequency and critical

path of datapath’s components. Traditional operation chaining targets data-

flow behavioral descriptions [14, 15] for performance improvement. However,

the relationship among operation chaining depth (OCD), loop unrolling factor

(LUF) and resource allocation has only partially evaluated in existing exploration

flows [9].

The aforementioned research works target the problem of DSE either excluding

from the automated process the effects of loop unrolling and operation chaining

during scheduling [6–10] or studying code transformations at a pre-synthesis level

without considering their effects on operation scheduling under various resource

allocation scenarios [12, 13]. We propose a differing exploration approach

encountering operation scheduling under various resource allocation scenarios and

decisions concerning (1) the LUFs and (2) the OCDs. Recent studies have shown

that by this way the design space is explored in a more global manner exhibiting

new Pareto configurations [16]. The proposed methodology is performed at a

meta-level which makes it orthogonal with a large set of existing work on

scheduling algorithms i.e. [6–10], since every core scheduling algorithm can be

used inside the exploration framework.

120 S. Xydis et al.



7.3 Motivational Observations

As mentioned, we focus on the fundamental design problem of discovering the

best trade-offs between the circuit’s performance and its area cost. Regarding these

trade-offs, each design solution can be included in 2D design space, where the

x-axis accounts for the area-cost while the y-axis accounts for the performance.

Through a high level area model (based on the number of allocated hardware

resources [9, 10]), each solution point in the design space can be represented as a

vector of ðArea;#CyclesÞ ) ðð#ALUs;#MulsÞ;#CyclesÞ:
The quality of the exploration curve is highly affected by the parameters of the

design space that are explored. Considering a larger set of design parameters, the

design space is explored more globally and solutions of higher quality are

revealed. In the remainder of this section, we show through an illustrative example

(Fig. 7.2) that the consideration of loop unrolling and operation chaining as design

parameters during exploration, delivers solution points of higher quality. Even

though loop unrolling [11] and operation chaining [14] are well known techniques

for HLS tools, their incorporation in DSE methodologies is only partially sup-

ported and in many cases guided by the designer. However, pre-configuration of

the LUFs and OCDs can lead in loosing Pareto solutions.

Fig. 7.2 illustrates exploration curves (derived through exhaustive DSE) for the

case of 1D DCT kernel (part of 2D DCT kernel found in JPEG application [17]).

Each exploration curve considers a different set for the LUF and the OCD. In case

that neither loop unrolling nor operation chaining is considered, the exploration

Fig. 7.2 Design space exploration considering different degrees of loop unrolling and operation
chaining

7 A High Level Synthesis Exploration Framework 121



curve derived by evaluating only a small portion of the design space. Taking into

account the impact of loop unrolling and operation chaining, a new unexplored

design space is revealed which delivers new Pareto optimal design solutions (thus

better performance-area trade-offs).

From Fig. 7.2, it is observed that arbitrarily increasing the LUF and/or the OCD

parameters does not guarantee convergence to the exact Pareto frontier. For

example, in the illustrated scenario the majority of points forming the final

exploration curve are found considering OCD ¼ 1; LUF ¼ 0 rather than OCD ¼
2; LUF ¼ 1: Furthermore, it is observed that operation chaining and loop unrolling

has to be explored in a combined manner rather than pre-defined prior exploration,

since the exact Pareto curve is formed by points generated with different unrolling

and chaining configurations.

Motivated by the aforementioned observations, we target to the fast and effi-

cient exploration of an augmented design space, considering the design parameters

of loop unrolling and operation chaining in a combined manner.

7.4 Iterative Design Space Partitioning Exploration

In this section, we describe the proposed exploration methodology during HLS

following a top-down approach. At first, we present the overall exploration scheme

which is based on the synergetic incorporation of both exhaustive and heuristic

techniques. Heuristic exploration is performed through a newly introduced gra-

dient-based design space pruning (Sect. 7.5).

The overall exploration framework is depicted in Fig. 7.3. It is based on the

iterative partitioning of the overall design space into smaller and disjoint sub-

spaces (considering the area cost). Both exhaustive and gradient-based pruned

heuristic exploration (Sect. 7.5) are used in a combined manner during the

Fig. 7.3 Overall exploration
flow

122 S. Xydis et al.



exploration procedure. The adopted principle is that, each design (sub)space

explored through the gradient-based heuristic is decomposed to a set of smaller

subspaces than the initial one. ‘‘Large’’ design (sub)spaces are explored further

heuristically while ‘‘small’’ design (sub)spaces are further explored in an

exhaustive manner. Each design (sub)space is characterized as ‘‘large’’ or ‘‘small’’

according to its cardinality and a designer specified threshold. Cardinality is the

number of different configuration/solutions existed in each (sub)space.

The user provides to the exploration framework (1) the behavioral description,

(2) the set of exploration parameters and (3) their ranges. At the first iteration, no

partition of the design space has been performed. Thus, without loss of gener-

ality, we handle the design space as a single partition. In case that the cardinality

of the design space is smaller than the threshold specified by the designer,

exhaustive evaluation is performed and the exploration completes. In the

common case in which the cardinality is larger than the specified threshold,

gradient-based heuristic exploration is performed to the whole design space.

Gradient-based exploration returns a first set of pseudo-Pareto points. We call

these points pseudo-Pareto since at the specific iteration they form true Pareto

solutions of the explored (sub)space which can be replaced in a next iteration if

a design solution that dominates them is found.

The initial design space is now partitioned in several subspaces. Design sub-

spaces are defined dynamically during exploration, considering the neighboring

pseudo-Pareto points as boundaries. The cardinality of each design subspace is

further evaluated in order to be explored exhaustively or heuristically with gra-

dient-based pruning. Every time a gradient-based pruned exploration is performed,

new design subspaces are generated. The exploration procedure for each design

space terminates when one of the following conditions are evaluated to true: (1)

the subspace has been explored exhaustively or (2) two subsequent gradient-based

explorations returns the same subspace boundaries. Figure 7.4 shows an illustra-

tive example of the appliance of the iterative design space partitioning.

Fig. 7.4 Illustrative example of design space partitioning

7 A High Level Synthesis Exploration Framework 123



7.5 The Gradient-Based Pruning Technique

The number of resource allocation scenarios that have to be evaluated during HLS

exploration is a critical factor of the overall exploration’s runtime. The more the

examined allocation scenarios, the larger the runtime of the exploration procedure.

Gradient-based pruning technique defines a fast heuristic way to decide whether a

resource allocation scenario has to be examined or to be excluded during explo-

ration. Gradient-based pruning is based on the following lemma:

Lemma 1 Given the operation chaining degree and the loop unrolling factors, any

resource allocation scenario C ¼ f#ALU;#Mulg with larger area cost than the

cost found in the allocation scenario that matches exactly the maximum operation

level parallelism (MOLP) of the application, CMOLP ¼ f#ALUMOLP;#MulMOLPg,
delivers either the same or worst latency results.

Proof Given the OCD and LUFs the minimum latency of a behavioral description

is delivered through As-Soon-As-Possible (ASAP) scheduling [5] which exploits

the whole operation-level parallelism. In case that a resource allocation configu-

ration, C; with f#ALU[#ALUMOLPg and f#Mul[#MulMOLPg is considered,
then the remaining resources over the allocation of CMOLP are idle since there is no

available operation parallelism to be exploited. h

Lemma 1 provides a key insight for the exploration of resource allocation

scenarios. It says that for a given OCD and LUF, the performance-area exploration

curve presents zero-gradient for resource allocation scenarios which allocate a

greater number of resources than the resources that match the maximum operation

level parallelism. In other words, when a zero-gradient at the maximum operation

level parallelism is occurred for a given set of resources, the increment of

resources has no beneficial impact on the latency of the datapath, thus no Pareto

point can be found and there is no need to evaluate these allocation scenarios.

Gradient-based pruning heuristically extends the above observations and pro-

poses the following: ‘‘Each time during the design space exploration, a zero-

gradient:

DLatency

DArea
jCiþ1

Ci
¼ 0; i #ALUs ð7:1Þ

is occurred in the performance-area exploration curve, the solution with the lowest

area cost forms: (i) a possible Pareto-solution and (ii) a ‘‘good’’ design point to

alter the examined configuration mode (i.e. by increasing either the number of

allocated Muls or the OCD or the LUF)’’. By this way, large portions of resource

allocation scenarios are excluded from the exploration procedure improving the

overall exploration runtime without degrading the finding of Pareto solutions.

However, zero-gradient segments can occurred also at resource allocations with

lower operation level parallelism than the MOLP, when the specific allocations

exhibit no performance improvement. These zero-gradient segments are local and

124 S. Xydis et al.



have to be de-characterized as ‘‘good’’ design points for altering configuration

mode. Thus, examining zero-gradient only between two successive design solu-

tions may lead to the loss of Pareto solutions. In order to avoid such situations, the

zero-gradient segments are evaluated for Depth[ 2 of successive design solu-

tions. Thus, for Depth[ k the zero-gradient segment condition is formed as:

DLatency

DArea
jCiþ1

Ci
¼ 0Þ

\

. . .
\

ð
DLatency

DArea
jCiþk

Ci
¼ 0; i #ALUs ð7:2Þ

High values of the Depth parameter guarantee high ratios of finding exact Pareto

solutions in the expense of increasing exploration runtime. On the other hand,

small Depth values improve the overall exploration runtime in the expense of

degrading the accuracy of exploration curve.

Fig. 7.5 illustrates the application of gradient-based pruning during the

exploration of various resource allocation scenarios for the 1D DCT kernel of

the JPEG application. We consider a configuration setting of OCD ¼ 3 with no

loop unrolling, ðMin:#ALUs;Min:#MulsÞ ¼ ð4; 2Þ; ðMax:#ALUs;Max:#MulsÞ ¼
ð32; 9Þ and Depth ¼ 5: The explorative procedure evaluates resource allocation

scenarios by increasing the #ALUs until a zero-gradient segment of Depth ¼ 5 is

occurred. Whenever such segments are found, the configuration mode alters by

incrementing the#Muls until theMax:#Muls: Gradient-based pruning derives that
resource allocation scenarios for #ALUs[ 17 have to be excluded from the

exploration. Thus, in a set of ðMax:#ALUs�Min:#ALUsÞ � ðMax:#Muls�
Min:#MulsÞ ¼ 196 available resource allocation scenarios only 60 design points

Fig. 7.5 Exploration of resource allocation scenarios based on gradient-based pruning

7 A High Level Synthesis Exploration Framework 125



have been evaluated delivering a speedup of 3� in exploration’s runtime (under the

coarse assumption that the evaluation time of each design point is the same).

Figure 7.6 depicts the pseudocode of the gradient-based pruning technique. The

various per parameter exploration loops are depicted in lines 6–14. The outer loops

encounter for the loop unrolling factors per loop indexes (lines 6–8). After the LUFs

are known the CDFG of the behavioral description is formed (line 10). CDFG

depends only from the LUFs’ values. The next exploration loop concerns the

operation chaining degrees, OCDs (line 12), while the two inner loops (lines 13–14)

concentrate on the exploration of resource allocation scenarios by incrementing the

#Muls and #ALUs, respectively.

The core of gradient-based pruning is placed at the innermost loop since it

targets the resource allocation level. At first, the CDFG is scheduled given the

resource constraints and the OCD value (line 16) and a solution point xi is con-

structed to handle the examined configuration vector (line 17). After scheduling

the CDFG, the information about the number of control steps (line 18) and the area

cost (line 19) of the examined solution, are extracted. We adopted the linear area

estimation model used also in [10]:

Fig. 7.6 Pseudocode for the gradient-based pruning heuristic

126 S. Xydis et al.



Area Cost ¼ ð#ALUs� AreaALUÞ þ ð#Mul� AreaMulÞ ð7:3Þ

The gradient of the exploration curve, Grad, is evaluated according to a user

specified Depth (line 20). In case that there is a negative gradient the examined

solution forms a possible Pareto point and it is inserted in the Examined Curve

(line 22). In case that Grad is either positive or zero, the current ALU based

exploration loop is broken and the last found ‘‘possible Pareto point’’ concerning

the number of ALUs is retrieved ðx½i� depthþ 1�:ALU noÞ to form the initial

point for the exploration loop of the next configuration (line 23). The points

inserted in the Examined Curve are characterized as ‘‘possible Pareto points’’,

since there is a large possibility the real Pareto point to be generated in an

exploration of a later configuration. Thus, at the end of the exploration procedure

the points stored in the Examined Curve are filtered and the final Pareto points are

extracted (line 30).

7.6 Experimental Results

In order to evaluate the effectiveness of our approach, we have developed a fully

automated HLS exploration framework implementing the proposed methodology

by properly extending SPARK-HLS tool [18]. We used a representative set of

computationally intensive DSP benchmark applications to evaluate the efficiency of

the proposed DSE approach. The benchmark suite consists of 8 real-life DSP

kernels in C including: (1) a 16th-order FIR filter (FIR16), (2) a 1D Discrete Cosine

Transformation (1D DCT), (3) a YUB to RGBA filter (YUB2RGBA) [19], (4) a

Fast Fourier Transformation (FFT) [20], (5) a Discrete Haar Wavelet Transform

(DWT) [19], (6) a MESA Matrix Multiplication kernel (MatMul) [17], (7) the 2D

DCT kernel found into the JPEG application (Jpeg DCT) [17], (8) the 2D IDCT

kernel from the MPEG (Mpeg IDCT).

The HLS exploration tool was installed and run on a Linux Xeon server at

2.33 GHz with 4 GB RAM. For each kernel, a range of ðMin:#ALUs;
Min:#MulsÞ ¼ ð4; 2Þ; ðMax:#ALUs;Max:#MulsÞ ¼ ð32; 16Þ resource allocation

scenarios were explored. The area cost was of each component extracted through

post-synthesis characterization [21] for a 0.13 um standard cell library [22]:

AreaALU ¼ 4; 000 um2;AreaMUL ¼ 12; 000 um2: The operation chaining degree

ranged between ðMin:OCD ¼ 0Þ; ðMax:OCD ¼ 3Þ: The minimum and maximum

per loop index unrolling factors (LUFs) depend on the behavioral description of each

kernel. In each case, the whole range of each LUF has been explored. Empirically,

we considered Max:Cardinality ¼ 100 for the designer specified cardinality

threshold which guides the invocation of exhaustive or gradient-based pruned

exploration.

Due to space limitations, Fig. 7.7 depicts two representative exploration

curves derived from the proposed exploration methodology. The depth parameter

for the gradient-based pruning was set to Depth ¼ 10, thus 10 solutions are

7 A High Level Synthesis Exploration Framework 127



examined to decide whether a zero-gradient segment is global or local. In the

exploration diagrams of Fig. 7.7, the exploration curve of the non-augmented

design space (exploration unawareness of loop-unrolling and operation chaining

parameters considering only the various resource allocation scenarios) has been

overlapped. The Pareto curve shifting towards higher quality performance-area

trade-offs is depicted, confirming our motivational observations. Figure 7.7

depicts also the non-discovered (‘‘lost’’) Pareto points from the proposed

methodology (solution points which did not lay onto the exploration curve). The

proposed methodology discovered the 100% of Pareto solutions in the 2D DCT

benchmark with an average speedup of 10� in exploration’s runtime. The loss of

some Pareto points in MatMul kernel is a side-effect of the heuristic nature of

gradient-based pruning.

Figure 7.8 depicts the speedup gains of the proposed methodology versus an

exhaustive DSE approach and the impact of the gradient’s Depth on the

Fig. 7.7 Exploration curves produced by the proposed methodology vs. exploration curves of the
non-augmented design space (without chaining-unrolling). Solution shifting towards higher
quality solutions. The Pareto points that did not examined by the proposed methodology, were
derived through exhaustive exploration and they are also depicted as ‘‘lost’’ Pareto points

128 S. Xydis et al.



exploration’s runtime. Speedup is defined as the ratio of the solutions explored

from the full exhaustive DSE over the solutions explored with the proposed

methodology. We considered three values of the gradient Depth parameter, namely

Depth1 ¼ 2;Depth2 ¼ 5;Depth3 ¼ 10: Average speedups of 34:1�; 12:3�; 7:1�
in exploration’s runtime are reported for each Depth value, respectively, Although,

it is expected that smaller values of gradient Depth deliver higher speedup (which

is a logical assumption for the average case), this is true only under the false

assumption that the maximum number of exhaustive explorations performed by

the proposed approach is the same for all the DSP kernels. Actually, there is a

trade-off concerning exploration’s runtime between the Depth and the Max.

Cardinality parameters. This type of trade-off is exposed in the 1D DCT case,

in which the exploration with Depth ¼ 5 requires 11 exhaustive explorations and

so it reports lower speedup than the exploration with Depth ¼ 10 which requires 6

exhaustive explorations.

We measure the accuracy of the generated exploration curves using the solution

coverage metric, which refers to the ratio of the non-dominated solutions found in

each approximate Pareto curve generated by our approach in respect to the exact

Pareto curve generated by the full exhaustive exploration of the design space.

Table 7.1 reports the size of examined design space and the values of the solution

coverage for each examined benchmark. The average accuracy is 64.6, 82.9,

92.9% for the gradient Depth 2 f2; 5; 10g: As expected, the accuracy increases for

the larger values of the Depth parameter in the expense of higher exploration

runtime (Fig. 7.8).

In summary, the proposed DSE methodology in the worst accuracy case

ðDepth ¼ 2Þ delivers a 64.6% solution coverage with exploration speedup of

Fig. 7.8 Exploration speedup over the full exhaustive DSE approach

7 A High Level Synthesis Exploration Framework 129



34:1�, while at the worst speedup case ðDepth ¼ 10Þ it delivers an solution

coverage of 93.7% with 7:1� speedup.

7.7 Conclusion

We presented an HLS exploration approach based on iterative partitioning.

We identified the need to perform exploration in a global manner and we introduced

a new heuristic algorithm for quick and efficient traversing of the design space.

Experimental results have shown quality improvements over the conservative DSE

approaches along with significant reductions in exploration runtime in comparison

to the exhaustive approach without degrading the quality delivered design solutions.

References

1. International Sematech (2005) International Technology Roadmap for Semiconductors,
http://www.sematech.org

2. Coussy P, Morawiec A (2008) High-level synthesis: from algorithm to digital circuit.
Springer, Berlin

3. Gries M (2004) Methods for evaluating and covering the design space during early design
development. Integr VLSI J 38(2):131–183

4. Pareto V (2008) Manuale di Economia Politica. Picola Biblioteca Scientifica, Milan, 1906,
Translated into English by Ann Schweir (1971). Manual of Political Economy, MacMillan
London

5. De Micheli G (1994) Synthesis and optimization of digital circuits. McGraw-Hill Higher
Education

6. Blythe SA, Walker RA (1999) Efficiently searching the optimal design space. In: GLS ’99:
Proceedings of the Ninth Great Lakes Symposium on VLSI, p 192

7. Balakrishnan M, Marwedel P (1989) Integrated scheduling and binding: a synthesis approach
for design space exploration. In: DAC ’89: Proceedings of the 26th ACM/IEEE Design
automation conference, pp 68–74

Table 7.1 Exploration’s accuracy results

Benchmark Kernels Size of design space Solution Coverage(%)

Depth = 2 Depth = 5 Depth = 10

FIR16 27841 100 100 100

1D DCT 13920 80 90 90

YUB2RGBA 13920 33.3 92 100

MatMul 7840 42 60 60

FFT 1740 100 100 100

DWT 334080 50 75 100

Jpeg 2D DCT 111360 66.6 83 100

Mpeg 2D IDCT 111360 80 80 100

Average – 68.9 85.0 93.7

130 S. Xydis et al.

http://www.sematech.org


8. Dutta R, Roy J, Vemuri R (1992) Distributed design-space exploration for high-level
synthesis systems. In: DAC ’92: Proceedings of the 29th ACM/IEEE design automation
conference. pp 644–650

9. Chaudhuri S, Blythe SA, Walker RA (1997) A solution methodology for exact design space
exploration in a three-dimensional design space. IEEE Trans Very Large Scale Integr Syst
5(1):69–81

10. Wang G, Gong W, DeRenzi B, Kastner R (2007) Exploring time/resource trade-offs by
solving dual scheduling problems with the ant colony optimization. ACM Trans. Design
Autom. Electr Syst 12(4)

11. Kurra S, Singh NK, Panda PR (2007) The impact of loop unrolling on controller delay in high
level synthesis. In: DATE ’07: Proceedings of the conference on Design, automation and test
in Europe. pp 391–396

12. Dragomir O, Panainte E, Bertels K, Wong S (2008) Optimal unroll factor for reconfigurable
architectures. In: Proceedings of ARC. pp 4–14

13. Gerlach J, Rosenstiel W (2000) A methodology and tool for automated transformational
high-level design space exploration. In: ICCD. pp 545–548

14. Marwedel P, Landwehr B, Domer R (1997) Built-in chaining: introducing complex
components into architectural synthesis. In: Proceedings of the ASP-DAC. pp 599–605

15. Corazao M, Khalaf M, Guerra L, Potkonjak M, Rabaey J (1996) Perfomance optimization
using template mapping for datapath-intensive high-level synthesis.. IEEE Trans. Computer-
Aided Design Integrated Circuits Syst 15(2):877–888

16. Xydis S, Skouroumounis C, Pekmestzi K, Soudris D, Economakos G (2010) Designing
efficient DSP datapaths through compiler-in-the-loop exploration methodology. In:
Proceedings of ISCAS

17. The ExPRESS group (2009) http://express.ece.ucsb.edu
18. Gupta S, Dutt N, Gupta R, Nicolau A (2002) Coordinated parallelizing compiler

optimizations and high-level synthesis. ACM Trans. Des. Autom. Electron. Syst 9:2004
19. C to Verilog, Circuit Design Automation, http://c-to-verilog.com/
20. point FFT source code, http://www.mit.edu/emin/source_code/fft/fft.c
21. Synopsys Inc. (2009) http://www.synopsys.com/products/
22. Artisan Components, TSMC 0.13 Library Databook

7 A High Level Synthesis Exploration Framework 131

http://express.ece.ucsb.edu
http://c-to-verilog.com/
http://www.mit.edu/emin/source_code/fft/fft.c
http://www.synopsys.com/products/


Chapter 8

A Scalable Bandwidth-Aware
Architecture for Connected Component
Labeling

Vikram Sampath Kumar, Kevin Irick, Ahmed Al Maashri

and Vijaykrishnan Narayanan

Abstract This chapter discusses the design and implementation of a streaming-

based Connected Component Labeling architecture. The architecture implements a

scalable processor, which can be tuned to match the available I/O bandwidth on

the computing platform that hosts the hardware. In addition, the chapter presents

the hardware performance measurements when implemented on an FPGA platform.

8.1 Introduction

Connected Component Labeling (CCL) [2] is the process of identifying disjoint

pixel regions in an image and assigning a unique label to each of these regions.

A disjoint pixel region is an image patch in which each foreground pixel has zero

The work presented in this chapter is an extended version of [1], with more focus on the
internal design of the Sliced Connected Component Labeling architecture, including a
discussion on how the Association FIFO and Coalescing Unit are updated and a description of
the CL RAM and Global RAM, which can be found in Sect. 8.5.

V. S. Kumar � K. Irick � A. Al Maashri � V. Narayanan (&)
Microsystems Design Laboratory (MDL), Department of Computer Science
and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
e-mail: vijay@cse.psu.edu

V. S. Kumar
e-mail: vus119@psu.edu

K. Irick
e-mail: irick@cse.psu.edu

A. Al Maashri
e-mail: maashri@cse.psu.edu

N. Voros et al. (eds.), VLSI 2010 Annual Symposium,
Lecture Notes in Electrical Engineering 105, DOI: 10.1007/978-94-007-1488-5_8,
� Springer Science+Business Media B.V. 2011

133



or more adjacent foreground pixels. CCL has a wide range of applications in image

analysis, including blob detection and tracking.

In addition, CCL can be used to obtain some additional information from the

connected regions; including:

• Coordinates of connected region’s bounding box.

• Coordinates of connected region’s geometric center (i.e. centroid).

• Area of connected region.

A number of studies have proposed a variety of CCL hardware architectures

based on single pass algorithms. However, these architectures impose some input

constraints that are unsuitable for real-time systems. This chapter, on the other

hand, presents the design and implementation of a real-time, streaming-based CCL

architecture that detects bounding boxes of each connected region in an image.

The CCL architecture, proposed in this chapter, is implemented using a Field-

Programmable Gate Array (FPGA) computing platform. FPGA’s offers a high-

performance implementation of the Connected Component Labeling algorithm.

Additionally, the ability to implement complex, single-cycle control structures

makes FPGAs the ideal choice for control-intensive CCL implementations.

The next section summarizes previous work done with regard to connected

component labeling.

8.2 Background

A number of studies have investigated Connected Component Labeling. For

instance, Bailey [3] discusses the advantage of raster scan based image segmen-

tation. Moreover, Ranganathan et al. [4] describes a parallel hardware imple-

mentation of Connected Component Labeling. The design represents a two pass

algorithm capable of processing a single 128 9 128 image in 900 microseconds;

well above real-time constraints. On the other hand, several other high speed

parallel—but resource intensive—algorithms are discussed by Alnuweiti et al. [5].

Conversely, a resource-efficient, iterative algorithm implemented on FPGA is

presented by Crookes et al. [6] but requires an indeterminate number of passes as

pointed out by Bailey et al. [7], who developed a single pass labeling algorithm

amenable to a streaming architecture. The FPGA implementation of this algorithm

is discussed in [8]. However, the architecture has the following drawbacks:

• The pipeline of the architecture is limited to process only a single pixel per

cycle. This restricts the means by which the input can be streamed into the

hardware.

• The architecture relies on the presence of video blanking periods to perform

costly merge operations at the end of each row. While video blanking periods

are common to most CCD and CMOS camera interfaces, they do not exist when

interfacing directly to a memory subsystem for which data can be accessed

back-to-back with negligible delay.

134 V. S. Kumar et al.



This chapter presents an enhanced version of the single pass algorithm moti-

vated by the drawbacks discussed above. The new architecture offers a support for

systems that require more diverse pixel input rates, interfaces and protocols.

However, before delving into the details of the proposed architecture, it is nec-

essary to briefly describe the single pass algorithm to the reader.

8.3 Single Pass Algorithm and Implementation

Rosenfeld et al. [2] describes a simple algorithm for labeling connected compo-

nents. The algorithm determines the label of the current pixel by looking at its four

neighboring pixels; namely, left (L), upper-left (UL), upper (U) and upper-right

(UR) neighbors. Table 8.1 summarizes the labeling algorithm.

Based on the algorithm described above, Bailey et al. [7] and [8] proposed an

algorithm and an implementation for CCL using a single pass technique. In the

remaining of this section, we will focus on describing the architecture of the single

pass algorithm. This will help the reader in appreciating our proposed architecture

that we will describe later in this chapter.

The architecture of the Single Pass Algorithm is illustrated in Fig. 8.1. In this

architecture, the neighboring pixel labels are stored in registers D, A, B, and C

corresponding to the ‘L’, ‘UL’, ‘U’ and ‘UR’ neighbors, respectively, as shown in

Fig. 8.1b. The input to the CCL pipeline is a binary image representing the back-

ground (binary value ‘0’) or foreground (binary value ‘1’) classification of an

image. Note that each bit in the image represents a pixel. In other words, in a byte

accessible memory, a single byte represents the state of eight pixels. This means

that if a byte is fetched per cycle, it would take eight subsequent cycles for the CCL

pipeline to process each pixel. More realistically, in a system with a 64-bit system

bus supporting 16-cycle burst transactions, 1024 (i.e. 64 9 16) status bits can be

delivered in a single transaction. We refer to this unit of transfer as a Fetch Line.

Consequently, the memory subsystem would remain idle for 1008 (i.e. 1024–16)

cycles before being requested to supply an additional Fetch Line. If no other

memory requests are pending much of the memory subsystem’s bandwidth would

be unused.

As CCL processes a row of an image, the labels from the previous row are

cached in a buffer that exhibits a single-cycle latency during a read or write

access. This behavior requires extra care when considering the merging scenario

as depicted in case (d) in Table 8.1, where all existing references to label ‘3’ in

the row buffer should reference label ‘2’ once the merge completes. Therefore,

instead of searching the entire row buffer and replacing all occurrences of label

‘3’ with label ‘2’, the architecture uses a lookup table to store and retrieve

aliases of a given label. This lookup table, known as Merge Table, is indexed by

a label referred to as ‘Lreference’, and returns the actual label referred to as

‘Lactual’, for which ‘Lreference’ has merged with since the row buffer was

initialized.

8 A Scalable Bandwidth-Aware Architecture 135



A close observation to the pipeline reveals that the lexicographic dependency of

pixels in the labeling process makes it impractical to label more than two

sequential pixels at a time. However, this inherited dependency can be overcome

by operating on pixels that are lexicographically independent. This can be

Table 8.1 A summary of how the connected component labeling algorithm determines the label
of the current pixel. In the column labeled ‘‘Example’’, white boxes represent current pixel, while
gray boxes represent neighboring pixels

Case Example

(a) IF the current pixel is a background pixel, THEN

it is assigned label ‘0’

(b) IF all neighboring pixels are background AND the
current pixel is a foreground pixel THEN a new
label is assigned

(c) IF only a single label is used among the labeled
neighbors AND the current pixel is a foreground
pixel, THEN the current pixel inherits the label

(d) IF different labels are assigned to neighbors AND
the current pixel is a foreground pixel THEN the
current pixel will merge the labeled regions and
the current pixel and all labeled pixels will be
labeled with the smallest label in the
neighborhood

A B C D

UL U UR

L CP

(a) (b)

Fig. 8.1 Streaming Single Pass Architecture; a Single Pass Pipeline, b a map showing registers
mapped to neighbors of the current pixel

136 V. S. Kumar et al.



accomplished by partitioning the image and performing CCL independently and

simultaneously on each partition. This approach allows us to extract parallelism

that is proportional to the number of independent image partitions. The following

sections present an alternative algorithm and implementation for CCL that is based

on operating on independent image partitions concurrently. We refer to this

algorithm as ‘‘Sliced Connected Component Labeling’’.

8.4 Sliced Connected Component Labeling Algorithm

This section outlines the proposed Sliced Connected Component Labeling (SCCL)

algorithm. This algorithm slices an input image into ‘s’ number of slices, each of

which is operated on independently and concurrently.

8.4.1 Slice and Merge Algorithm

The SCCL algorithm starts by slicing the input image into ‘s’ slices. Each slice

will be processed and assigned labels independent from other slices. Once all

slices are processed, the algorithm coalesces the slices and merges any connected

regions that extend across slices. Figure 8.2 illustrates an example of how SCCL

algorithm works.

As shown in Fig. 8.2a, the original image contains three connected regions;

labeled ‘A’, ‘B’ and ‘C’. The SCCL algorithm slices the image into two slices

as shown in Fig. 8.2b. We refer to these slices as top and bottom henceforth.

Depending on the location of a connected region, it is determined if further pro-

cessing is required. For example, connected region ‘1’ does not lie on either first or

last row of the slice, hence, no further processing will be required when merging the

slices. On the other hand, labels 2, 3, 4 and 5 are stored for later processing at the

A

B

C

1

3

2

5

4

1

3

2

2

2

1

3

2

(a) (b) (c) (d)

Fig. 8.2 SCCL algorithm example with number of slices is 2, a Original image contains three
connected region, b SCCL slices the image into two slice, each of which is operated on
independently, c Slices are merged by analyzing the last row of the top slice and the first row of
the bottom slice, labels are updated accordingly, d Bounding boxes (1, 2 and 3) are detected for
the three connected regions. It is to be noted that a bounding box is represented by the
coordinates: {min_x, max_x, min_y, max_y}

8 A Scalable Bandwidth-Aware Architecture 137



merge stage to determine if any of these labels would coalesce. The algorithm

establishes an association between the labels from the last row of the top slice and the

first row of the bottom slice. It is clear from Fig. 8.2b that labels 2, 4 and 5 must

coalesce since they stretch across slices. Note that the labels indicated in Fig. 8.2 are

for illustration purposes only. The actual order of assigning labels is different from

the one shown in Fig. 8.2

Coalescing is performed in two phases. In the first phase, the association

between labels lying at the last row of top slice and the first row of bottom slice are

recorded. In the second phase, the recorded associations are resolved. This is

accomplished as follows:

• If the connected region does not stretch across slices, then its bounding box

is detected and is committed to a table that is referred to as ‘Global Bounding

Box’ table.

• If the connected region stretches across slices, then the bounding box of the

coalesced region must be updated in the ‘Global Bounding Box’ table.

Although the process described above refers to the example shown in Fig. 8.2,

yet the same process is applied to SCCL algorithm with more than two slices. In

this case, the process is repeated for all slice boundaries until all bounding boxes

are committed.

The following sub section outlines the mechanisms by which a bound box is

actually detected.

8.4.2 Bounding Box Detection

The process of detecting the bounding box of a connected region is performed as

the stream of pixels is being processed. This is accomplished through two tables:

The Bounding Box Coordinate Table (BBCT) and the Bounding Box Coordinate

Cache (BBCC). Both of these tables interact with the four registers discussed

earlier and depicted in Fig. 8.1b.

The BBCT table stores the bounding box coordinates of a label in the following

format {min_x, max_x, min_y, max_y}. On the other hand, The BBCC table

stores the maximum column coordinate of a label in the current row. The BBCC is

written the address of pixel in register ‘D’ when the current pixel is a background

pixel and the previous was a foreground pixel (i.e. ‘D’ ! = 0, ‘CP’ = 0). Con-

versely, the BBCC is written the address of pixel in register ‘A’ when the fol-

lowing pattern is detected {‘CP’ = 0, ‘A’ ! = 0, ‘B’ = 0 and ‘D’ = 0}. This

pattern indicates that the pixel at location of pixel ‘A’ is the lower rightmost pixel

in the region containing pixel ‘A’. This pattern enables a state machine that reads

the BBCC location corresponding to label ‘A’ and the BBCT location corre-

sponding to label ‘A’. The current column coordinate is compared with the output

from the BBCC and the current row coordinate is compared with the maximum

row value of the label ‘A’ from the BBCT output. If the current column and row

138 V. S. Kumar et al.



are both greater than the corresponding pair of outputs from the two tables, then it

is the end of the bounding box with label ‘A’.

Figure 8.3 illustrates an example of bounding box detection process. The

example shows that when processing row 0, the BBCT records the {min_x,

max_x, min_y, max_y} coordinates of labels 3 and 1 as {0, 7, 0, 0} and {10, 18,

0, 0}, respectively. The BBCC records the column coordinates 7 and 18 for

labels 3 and 1, respectively. Similarly, the pattern {3, 0, 0, 0} is detected at

column 8 in row 1, and the coordinates corresponding to label 3 in both tables

are retrieved. The BBCC table returns 5 (i.e. the last updated column coordinate)

and the BBCT returns a maximum row coordinate of 1, which is equal to the

current row.

8.5 SCCL Architecture

This section describes the hardware architecture of the SCCL. The architecture,

shown in Fig. 8.4 , is composed of one or more of Connected Component Pro-

cessors (CCP) and Slice Processors (SP). Also, the architecture contains a

Fig. 8.3 An example that demonstrates how the bounding box detection works

8 A Scalable Bandwidth-Aware Architecture 139



coalescing logic and a bounding box FIFO. The number of CCP and SP units is

determined by number of image slices that the SCCL can support. For example,

the architecture shown in Fig. 8.4 supports four slices; hence it houses four CCP

and four SP units.

The following sub sections discuss the internal implementation of each of these

units.

8.5.1 Connected Components Processor (CCP)

EachCCPhandles a slice that is composed of a range of rows.Consider an input image

of size 240 9 320 that is split into 8 slices. In this case, rows 0 to 29 are handled by

CCP0, rows 30 to 59 are handled by CCP1, and so on up to CCP7which handles rows

210 to 239. EachCCP fetchesmemory to fetch rows of its designated slice. Following

our example,CCP0 starts by fetching row0.OnceCCP0 is done fetching andwhile it is

processing row 0, CCP1 starts fetching row 30. Similarly, other CCPs will fetch and

process the first row of their designated slice. This mechanism allows the architecture

to process a row from each slice in parallel. When CCP7 is done fetching row 210

(i.e. the first row of its designated slice), memory access is arbitrated to CCP0, which

fetches and processes row 1 (i.e. the second row of its designated slice). This process

continues until all the CCPs have fully processed all rows in their designated slice.

8.5.2 Slice Processor (SP)

When a CCP detects the end of a bounding box, it will send the box coordinates to

the corresponding SP. The SP checks if the box boundary lies on the top or bottom

of the slice by analyzing the minimum and maximum row coordinates, respec-

tively. If the bounding box does not stretch across either slice’s boundary, then the

box coordinates are enqueued in Bounding Box FIFO. This indicates that bounding

box requires no further processing. On the other hand, if the bounding box

Fig. 8.4 Sliced connected component labeling architecture

140 V. S. Kumar et al.



Fig. 8.5 Operations performed by the slice processor unit

8 A Scalable Bandwidth-Aware Architecture 141



stretches across either the top or bottom slice boundary, then the SP will place the

box coordinates and label in the Coalesce Queue. This indicates that further

processing is required in the coalescing stage.

The SP maintains a record of labels assigned in the top row of its designated

slice. This is necessary because the labels assigned in the top row may merge

amongst themselves, which may result in relabeling connected regions as

bounding box coordinates are detected. This scenario is illustrated in Fig. 8.5.

8.5.3 Coalescing Unit (CU)

The CU is responsible for coalescing regions across slices. Figure 8.6 demon-

strates the main components of the CU. The unit consists of the Association FIFO,

Common Label (CL) RAM0 (discussed later), CL RAM1 and Global Bounding

Box RAM (denoted as Global BB RAM in Fig. 8.6). Consider the scenario in

which the last row of slice N - 1 is completely labeled. This is when the CU

begins the coalescing process. As shown in Fig. 8.6, when the CU reads the last

row of slice N, it coalesces the boxes in slices N - 1 and N. At the same time, the

unit records an association between the boundary boxes in slice N and the labels in

slice N ? 1. At the end of the coalescing process, the Global Bounding Box

RAM is read along with a valid bit to determine all bounding boxes that are not

connected any further and are ready to be sent to the next stage of processing. Note

that the Association FIFO does not hold entries for those boundary labels that are

not connected to any label in the adjoining slice (top or bottom). As a result, the

Global Bounding Box RAM does not have entries for these boundary labels.

On the other hand, the Coalesce Queue has labels of all boxes in slice N - 1

that lie either on the top boundary, bottom boundary or both. The labels in this

queue are read one by one and a connectivity check is done as discussed later to

find out if the labels are connected at the top or bottom. If they are unconnected at

both ends, the labels are ready to be committed.

Fig. 8.6 The architecture of
the coalescing unit

142 V. S. Kumar et al.



8.5.3.1 Writing to the Association FIFO

The CU needs to establish an association between slices N - 1 and N. The SP that

handles slice N stores the first row labels in a buffer as discussed earlier. The labels

of the last row of slice N – 1 are already stored in the row buffer of the CCP

handling that particular slice and the Merge Table of this CCP has the updated

values of these labels. The values from the first row of slice N are read from the

first row buffer, whereas the values from the last row of slice N - 1 are read from

the Merge Table—indexed by the value from the last row buffer as discussed

earlier—in order to obtain the updated values. The two values that are read

are checked and written as {top_label, bottom_label} to an Association FIFO.

The architecture mitigates the necessity to perform redundant writes by caching

the previous write value. This cached value is compared with the current value

before writing, and only if the current value is different, a write takes place.

Figure 8.7 shows an example of a sequence of writes that occur at a hypo-

thetical boundary between slice 0 and slice 1. The ‘inverse T shaped’ rectangles in

Fig. 8.7 (leftmost) highlight the association pattern formed by the two slices. The

value {30, 1} is written into the association FIFO, where 30 is the resolved value of

label 3 obtained from the merge table of CCP0. This value is also cached to avoid

redundant writes in the following cycles.

Figure 8.8 highlights the next pattern, where an extra write to the Association

FIFO is avoided because the current write value {30, 1} is same as the cached value.

The next pattern, Fig. 8.9, exhibits a merge case where two labels from slice 1

merge with one label in slice 0. The two values that are to be written to the

association FIFO are {30, 1} and {30, 2}. These are written in two consecutive

Association FIFO

Fig. 8.7 Status of the Association FIFO with the first pattern

Association FIFO

Fig. 8.8 Status of the Association FIFO with the second pattern

8 A Scalable Bandwidth-Aware Architecture 143



cycles. In the first cycle, the value {30, 1} is compared with the cached value

(i.e. {30, 1}). As a result, no write takes place in this cycle. In the second cycle,

Fig. 8.10, since the value {30, 2} is not equal to the cached value, a write to the

Association FIFO takes place. Note that the pattern in the cycle following a merge

does not affect the value that has to be written in the Association FIFO. This is

because if the upper slice had a non-zero label, then that would be a redundant

write. On the other hand, if the upper slice had a zero label, then there would be no

new association. Other write patterns can be interpreted similarly. However, it is

worth noting that at the end of a row, the cached values are reset to {0, 0}.

Furthermore, while writing to the association FIFO at the boundary between

slices N and N ? 1, the architecture maintains a status monitor register referred to

as the bottom_monitor_current. The size of this register is M/2, where M is the

number of columns in the image. When a write occurs to a particular label in the last

row of slice N, the corresponding bit is set to 1 indicating that the label is connected

to some other label in the bottom slice. The reason for doing so is explained later.

8.5.3.2 Reading from the Association FIFO

The coalescing of slices N - 1 and N takes place when the last row of slice N is

being read from memory. Therefore, reading from the Association FIFO between

slices N - 1 and N and writing to the Association FIFO between slices N and

N ? 1 might occur simultaneously. The reading starts once the stack corre-

sponding to slice N becomes empty. A counter is needed to store the number of

previous writes based on which of the association values are read. This is because

Association FIFO

Fig. 8.9 Updating the Association FIFO; the first cycle of the merge process

Association FIFO

Fig. 8.10 Updating the Association FIFO; the second cycle of the merge process

144 V. S. Kumar et al.



a single FIFO is used to carry out the association between slices in order. The

value read from the association FIFO is of the form {A0, A1}, where A0 is an

updated label from the last row of slice N - 1, whereas A1 is a stale label from the

first row of slice N. The updated values of the first row labels of slice N are stored

in the merger table as discussed earlier. Therefore, indexing the merger table with

A1 would return the updated value of A1. Let us call the returned value A10. To

meet cycle requirements, A0 has to be registered. Let us also call the registered

version of A0 as A00. Status registers called ‘‘entry registers’’ are maintained to

track connectivity. There exists one M/2 bit register for the upper slice (N - 1)

termed upper_entry_register, and one M/2 bit register for the bottom slice (N)

termed bottom_entry_register. Note that the entry registers are updated during the

read phase of the Association FIFO and the bottom_monitor_current register is

updated during the write phase of the Association FIFO.

8.5.3.3 Common Label (CL) RAMs

The CU hosts two CL RAMs; namely, upper and lower. These CL RAMs store a

common reference label—starting from decimal 1—for the connected labels

between any two slices. The entry registers for A00 and A10 are retrieved and the

subsequent processing is determined by the following algorithm:

(1) If both are 0, then a new common label is written both in the upper CL

RAM indexed by A00 and lower CL RAM indexed by A10. Also, the new

common label value is incremented, while the entry registers corresponding

to these labels are set to 1.

(2) If entry register corresponding to A00 is 0 and entry register corresponding

to A10 is 1, then this means that the label A10 in the bottom slice is already

connected to some other label in the top slice, however, the label A00 in the

upper slice is not connected to any other label in the bottom slice. Therefore,

the corresponding entry registers are validated and the common label value

output indexed byA10 in the lower CLRAM iswritten into the upper CLRAM

indexed by A00.

(3) If entry register corresponding to A00 is 1 and entry register corresponding

to A10 is 0 then it means the label A00 in the upper slice is already connected to

some other label in the bottom slice but the label A10 in the bottom slice is not

connected to any other label in the top slice yet. Thus, the corresponding entry

registers are validated and the common label value output indexed byA00 in the

upper CL RAM is written into the lower CL RAM indexed by A10.

(4) If both entry registers are 1 then it means both the labels A00 and A10 are

already connected to some other label(s) in the bottom slice and top slice

respectively. A comparison of the output common labels from both CL

RAMS is made to ensure they are the same. If they are not the same, then the

lower common label has to replace the higher common label. If not, no

update is needed.

8 A Scalable Bandwidth-Aware Architecture 145



Note that after processing every boundary, the two CL RAMs are switched. The

entry registers of the current upper CL RAM are zeroed (current upper_entry_reg-

ister = 0) and becomes the lower CL RAM while coalescing slices N and N ? 1.

The current lower CL RAM becomes the next upper CL RAM but its entry registers

(current upper_entry_register = previous bottom_entry_register) are kept as is, to

maintain the connectivity history.

8.5.3.4 Updating Global Bounding Box RAM

The Global Bounding Box RAM stores the Bounding box values of the common

labels. While reading the CL RAMs, the Bounding Box data tables from the

connected regions are also read. A00 is used to read the bounding box of the

upper slice and A10 is used to read the bounding box of the lower slice. The 2 bit

entry is registered, and in the next cycle, the Global Bounding Box RAM is read

with the common label as index. Based on the registered 2 bit value, the update

of the Global Bounding Box RAM takes place as explained in the following

algorithm:

(1) If both values are 0, then there is no entry for the new common label.

So the two bounding box values from the connected region are compared

and the updated bounding box is found. With the new common label as

index, the value is written to the bounding box. When a new common label

is assigned, a box counter is incremented to keep track of the number of

boxes that have coalesced.

(2) If 01, then the values to be compared are the bounding box from top slice

connected region and the bounding box from global Bounding Box RAM.

The final bounding box is found and with the common label as index the

Global Bounding Box RAM is updated.

(3) If 10, the values to be compared are the bounding box from bottom slice

connected region and bounding box from Global Bounding Box RAM. The

final bounding box is found and with the common label as index the Global

Bounding Box ram is updated.

(4) If both values are 11 and the common labels are different, then both the

values are read from Global Bounding Box RAM and the smaller of the two

labels is updated with the final bounding box. A valid bit has to be set for the

higher label, which indicates it is not a valid label anymore. Also the box

counter has to be decremented.

Figures 8.11 and 8.12 illustrate the merging process using CL RAMs, Entry

Registers and the Global Bounding Box RAM for two different cases. The status of

the association FIFO is assumed to be that of the one shown in Fig. 8.10

146 V. S. Kumar et al.



8.5.3.5 Bounding Box Update

At the end of the coalescing stage, the Global Bounding Box RAM is updated with

a validity bit for each label either set or reset. Before reading the contents of the

Global Bounding Box RAM, the Coalesce Queue is read until empty. If the

ID read from the queue is unconnected both at the top and the bottom—obtained

from the corresponding entry register and bottom_monitor_current register

respectively—then it is committed immediately by fetching the value from the

corresponding bounding box table.

The following section discusses the performance measurements and results

obtained from running the hardware implementation of the SCCL architecture.

Fig. 8.11 Updates to CL
RAMs, Entry Registers and
Global Bounding Box RAM
with first value read from the
Association FIFO

Fig. 8.12 Updates to CL
RAMs, Entry Registers and
Global Bounding Box RAM
with second value read from
the Association FIFO

8 A Scalable Bandwidth-Aware Architecture 147



8.6 Results

A Verilog implementation of the Connected Component Labeling architecture was

simulated using ModelSim mixed-language simulation environment and validated

on a Xilinx Virtex-5 FPGA development platform. The ML510 development board

hosts a Virtex-5 FX130T FPGA that includes a PowerPC processor. The perfor-

mance results are shown in Fig. 8.13.

The performance of SCCL hardware implementation was measured for varying

image sizes and number of Slice Processors. As a reference, a multi-pass version

Connected Component Labeling was implemented in C#, running on a 3.18 GHz

Dual Core Xeon workstation. A similar implementation in C ++ was implemented

and ran on an embedded PowerPC in the FPGA fabric. The results have shown that

SCCL architecture—running at 100 MHz—outperforms the PowerPC reference

implementation running at 300 MHz by a factor of approximately 215 and the

workstation by a factor of 4. Note that the results presented here account for

the bandwidth and latency characteristics of a realistic embedded system accessing

a DDR2 memory device.

In addition, the results show that SCCL architecture scales favorably with the

input image size as additional slice processors can be added when desired.

Furthermore, SCCL performance was compared against other hardware

implementations summarized in Table 8.2. The table clearly shows how SCCL

0

1

2

3

4

5

6

2 4 6E
x
e

c
u

ti
o

n
 t

im
e

 i
n

 m
s

Number of slices

320x240 640x480 800x600

0

5

10

15

20

320x240 640x480 800x600

E
x
e

c
u

ti
o

n
 t

im
e

 i
n

 m
s

Image size (in pixels)

0

0.2

0.4

0.6

0.8

1

1.2

320x240 640x480 800x600E
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
s

Image size (in pixels)

(a) (b) (c)

Fig. 8.13 Execution time as a function of image size, a SCCL, b Dual Core Workstation
c Software implementation running on embedded PowerPC

Table 8.2 Comparison with other hardware implementations

Algorithm Author Clock (MHz) Image size Frame rate (frames/s)

Systolic array Ranganathan et al. [4] 66.67 128 9 128 *1000

8-adjacency Jablonski et al. [9] 60 512 9 512 *25

Run length Appiah et al. [10] 156 640 9 480 *253

Iterative 640 9 480 *81

SCCL Presented in this chapter

Slices 2, 4, 6 100 320 9 240 *1200, *2300, *3000

Slices 2, 4, 6 100 640 9 480 *318, *617, *880

Slices 2, 4, 6 100 800 9 600 *200, *400, *580

148 V. S. Kumar et al.



outperforms other hardware implementation, especially when number of slice

processors is increased.

As for the resource consumed by the SCCL hardware; it was found that the architecture
consumes around 20% of LUT slices and 7% of Block RAM of that available on the
XC5VFX130T device for a design with 2 slices (2 SP ? 2 CCP ? CU). Synthesis reports
show that with every additional slice (SP ? CCP), a 4% increase in LUTs and 3%
increase in BRAM resource utilization.

Table 8.3 lists the resource utilization of the SCCL hardware when synthesized

on a Virtex 5 FX130T device for different number of slices.

Acknowledgments This work was supported in part by NSF awards #0702617 & #0916887, and
a scholarship funding from the Government of the Sultanate of Oman.

References

1. Kumar VS, Irick K, Al Maashri A , Narayanan VK (2010) A Scalable bandwidth aware
architecture for connected component labeling, Proceeding ISVLSI

2. Rosenfeld A, Pfaltz J (1966) Sequential operations in digital picture processing. J ACM
13(4):471–494

3. Bailey DG (1991) Raster based region growing. In: Proceedings of the 6th New Zealand
image processing workshop, Lower Hutt, New Zealand, August , pp 21–26

4. Ashley R, Ranganathan N (1997) C3L: A chip for connected component labeling. In: the
Proceedings of the 10th international conference on VLSI design: VLSI in Multimedia
Applications, p 446. 4–7 Jan

5. Alnuweiti HM, Prasanna VK (1992) Parallel architectures and algorithms for image
component labeling. IEEE Trans Pattern Anal Machine Intell 14(10):1014–1034

6. Crookes D, Benkrid K (1999) An FPGA implementation of image component labeling.
In: Reconfigurable technology: FPGAs for computing and applications, SPIE 3844:17–23. Aug

7. Bailey DG, Johnston CT (2007) Single pass connected components analysis. In: Image and
vision computing, New Zealand, Hamilton, New Zealand, pp 282–287. 6, 7 Dec

8. Johnston CT, Bailey DG (2008) FPGA implementation of a single pass connected
components algorithm, In: IEEE international symposium on electronic design, test and
applications (DELTA 2008), Hong Kong, pp 228–231. 23–25 Jan

9. Jablonski M, Gorgon M (2004) Handel-C implementation of classical component labeling
algorithm. In: Euromicro Symposium on Digital System Design (DSD 2004), Rennes,
France, 387–393 (31 August-3 September 2004)

10. Appiah K, Hunter A, Dickinson P, Owens J (2008) A run-length based connected component
algorithm for FPGA implementation. In: International Conference on Field-Programmable
Technology, Taipei, Taiwan. 7–10th Dec

Table 8.3 Resource
utilization of the SCCL
hardware according to
number of slices

Number of slices BRAM usage LUT slices

2 21 (*7%) 15777 (*20%)

4 36 (*13%) 22317 (*28%)

6 51 (*17%) 28618 (*35%)

8 A Scalable Bandwidth-Aware Architecture 149



Chapter 9

The SATURN Approach to SysML-Based
HW/SW Codesign

Wolfgang Mueller, Da He, Fabian Mischkalla, Arthur Wegele,

Adrian Larkham, Paul Whiston, Pablo Peñil, Eugenio Villar,

Nikolaos Mitas, Dimitrios Kritharidis, Florent Azcarate

and Manuel Carballeda

Abstract The main obstacle for the wide acceptance of UML and SysML in the

design of electronic systems is due to a major gap in the design flow between

UML-based modeling and SystemC-based verification. To overcome this gap, we

present an approach developed in the SATURN project which introduces UML

profiles for the co-modeling of SystemC and C with code generation support in

the context of the SysML tool suite ARTiSAN Studio�. We finally discuss the

evaluation of the approach by two case studies.

W. Mueller (&) � D. He � F. Mischkalla
University of Paderborn/C-LAB, Fuerstenallee 11, 33102 Paderborn, Germany
e-mail: wolfgang@acm.org

A. Wegele
Atego, Major-Hirst-Street 11, 38442 Wolfsburg, Germany

A. Larkham � P. Whiston
Atego, 701 Eagle Tower, Montpellier Drive, GL50 1TA Gloucestershire, UK

P. Peñil � E. Villar
Avenida de los Castros s/n. Edif. ETSIIT Department of TEISA,

Universidad de Cantabria, Santander, 39005 Cantabria, Spain

N. Mitas � D. Kritharidis
Intracom Telecom, 19.7 km Markopoulo Avenida Peania,

190 02 Athens, Greece

F. Azcarate � M. Carballeda

Thales Security Solutions and Services, 20-22 rue Grange Dame Rose,

78141 Velizy Cedex, France

N. Voros et al. (eds.), VLSI 2010 Annual Symposium,

Lecture Notes in Electrical Engineering 105, DOI: 10.1007/978-94-007-1488-5_9,

� Springer Science+Business Media B.V. 2011

151



9.1 Introduction

For a wider industrial applicability of UML, it is essential to close the gap between

UML-based modeling and the execution of the models for their verification. The

SATURN project developed an efficient approach to close this gap by providing

code generation from UML/SysML to synthesizable SystemC and C/C++. For this

we defined a SATURN methodology covering the entire design flow from

co-modeling via co-simulation to co-synthesis. This chapter introduces the

SATURN UML 2.0 profiles for synthesizable SystemC and C. The profiles are

defined to customize the SysML tool suite Artisan Studio� for SystemC/C

co-modeling. Based on these profiles, we also customized the code generation

capabilities of Studio to generate synthesizable SystemC for simulation including

makefiles for C/C++program compilation and scripts for design flow automation.

A co-simulation is realized by means of the QEMU software emulator for

the execution of the native software on the target operating system. After

co-simulation, SystemC can be synthesized to VHDL as input for the ISE/EDK

framework to configure the FPGA. The OS image which includes the SW exe-

cutable is finally loaded to the target CPU for a complete system configuration.

The remainder of this chapter is structured as follows. The next section discusses

related work. Section 9.3 gives an overview of Artisan Studio� before Sect. 9.4

introduces the SATURN approach. In Sect. 9.5 we present the evaluation by two

industrial case studies. Finally, Sect. 9.6 closes with a conclusion.

9.2 Related Work

Several approaches for UML profiles for hardware modeling were presented in the

last years. As such, there were published several articles in the context of FPGA

synthesis [1]. The UML MARTE profile defines the modeling of a specific set of

HW components in [2]. Most recently, we can also find approaches for more

specific hardware profile like IP-XACT based UML profiles [3–5] and we can

identify approaches dedicated to SystemC UML profiles like [6]. The OMG UML

profile for SoC also falls into the latter category as it is very much oriented towards

SystemC [7]. However, it lacks details and does not come with a standard meta-

model implementation. Both approaches cover complete SystemC and do not

address properties for synthesizable SystemC [8].

Different methodologies cover communication and time at different abstraction

levels. Methodologies, such as SystemC-AMS [9] and the synthesizable RTL

subset [8], use specific signal channels for communication. The OSSS+R meth-

odology [10] raises the level of abstraction of communication by means of shared

objects. All these approaches have also raised the level of abstraction of time

handling from discrete event (DE) to timed-clocked. However, they still handle

time in too many details for virtual platform and system-level specification.

The growing interest in the development of virtual platforms determined the

152 W. Mueller et al.



development of the TLM-2.0 OSCI standard [11]. In terms of time, TLM-2.0 is

more abstract than time-clocked approaches, but still needs to assign a time

dimension to transactions to enable platform models with more than one master

(i.e. multiprocessor platforms) and simultaneous transactions. Although untimed

modelling is beyond the scope of TLM-2.0, other works point out that transaction

level virtual platforms can also be built as untimed functional models, what is

called pure Programmer’s View or PV level [12]. Moreover, a productive elec-

tronic system level (ESL) design methodology requires system-level specifications

at the most abstract untimed level. Several works have taken up this challenge in

SystemC, such as SysteMoC [13], SystemC-H [14], and HetSC [15]. The latter is

applied by the SATURN approach.

9.3 ARTiSAN Studio�

Artisan Studio� is an all-in-one integrated development tool suite which provides

systems and software modeling and component based development targeted for

technical systems. It is an ideal tool for complex mission-critical systems and

software engineering. Artisan Studio provides comprehensive support for the

leading industry standards, including OMG SysML, OMG UML and Architectural

Frameworks. Studio delivers an integrated collaborative development environ-

ment-allowing systems and software engineering teams together. Artisan Studio

is highly scalable and suitable for use on small and large technical projects with a

proven multi-user repository providing a stable, robust working environment to

ensure both the high availability of model information, while securing all valuable

data. Engineering teams using Studio’s powerful suite of tools can model systems

and software, document legacy systems and generate new code with complete

control. Geographical distribution of teams can create a multitude of issues for

product development. With Artisan Studio sharing a full model is simplified and

allows for control from a common repository, increasing benefits in time and

process simplification that is difficult with file based systems. However, one model

can still be split into logical packages, by means of configuration management

‘sandboxes’ to meet the needs of the project and team dynamics.

Artisan Studio� supports SysML and UML methodologies. It is also is pow-

erful and easy to use customization to meet the needs of particular industry,

company and individual preferences. Ergonomic profiling can be used to create an

industry domain specific profile for the tool, allowing custom views and tools to

meet specific needs. Using Artisan Studio� and extending and adding to the UML

and SysML profiles project specific information can be captured using an industry

standard. Explorer panes, icons and diagrams are included to display specific

elements and the user interface is modified to include new context menu items and

behavior and the APIs are used to extract model data for analysis.

Artisan Studio� comes with the Automatic Code Synchronizer (ACS) which is

an innovative and unique round-trip engineering tool that generates and

9 The SATURN Approach to SysML-Based HW/SW Codesign 153



synchronizes C, C++, C#, Ada, SPARK Ada and Java code. Driven by UML

designs within Artisan Studio, the ACS speeds development by automatically

generating software system code. It then ensures the UML design and code remain

synchronized - immediately ready to support ongoing development, maintenance,

enhancement and integration tasks. This design and development integration

allows designers, developers and testers to work together more readily. As well

as the typical UML class and relationship information, the Automatic Code

Synchronizer also uses dynamic information from UML—such as state dia-

grams—to generate code logic. The resultant code is also instrumented to animate

the appropriate diagram within.

Artisan Studio�, when the application is executed either on the host or the

target. Code instrumentation lets users interact with the live application using

model-level debug capabilities. This simulation approach builds in quality at a

very early stage, allowing low cost error correction during design, rather than more

costly fixes later in the development process. The ACS technology is user con-

figurable and using the Transformation Development Kit it is possible for users to

build their own code generators for domain specific languages such as SystemC.

9.4 SysML Based HW/SW Codesign

As given in Fig. 9.1, the SATURN design flow starts with Artisan Studio� which is

customized by SATURN UML profiles for SystemC/C co-modeling. ACS has been

configured for code generation for SystemC/C co-simulation. ACS generates

SystemC models for simulation as well as interface software for full system mode

co-simulation with the QEMUSW emulator. The C code compilation is taken by the

generated makefiles. The additionally generated scripts implement the design flow

automation like the OS image generation.We additionally support the co-simulation

with other simulators like Simulink by means of the EXITE ACE co-simulation

environment, e.g., for testbench simulation. After co-simulation we integrated

SystemC compilers, currently Agility and SystemCrafter, to generate VHDL which

is synthesized for FPGAconfiguration. The sameOS image including the application

SWwhichwas executed under QEMUcan be finally loaded to themicrocontroller of

the FPGA for a configuration of the complete system.

9.5 SysML Based HW/SW Co-modeling

For SystemC-based modeling, SATURN defined three UML profiles. i.e., for

(i) Synthesizable SystemC, (ii) Synthesis-Specific definition, and (iii) C. The first

one is based on SysML and summarized in Table 9.1. It assigns stereotypes with

SystemC specific constraints to SysML objects like blocks, parts and ports.

Graphical symbols are inherited from SystemC OSCI drawing conventions.

154 W. Mueller et al.



Artisan Studio®

SysML SATURN 
Modeling 

Frontend

SystemC

Synthesizable 

HW

QEMU

Embedded

SW

Matlab/Simulink

Matlab/Simulink

Models

SATURN Verification 
FrameworkVHDL

FPGA

CPU

Code 

Generation

Synthesis

Download

Synthesizable 

HW
Embedded 

SW

Fig. 9.1 SATURN design
flow

Table 9.1 SATURN UML profile for systemC

SystemC Stereotype Metaclass Notation

Module \\SC Module[[ Class

Interface \\SC Interface[[ Interface

Port \\SC Port[[ Port

Primitive
Port

\\SC In �/�SC Out[[ Port

Prim.
Channel

\\SC Signal �/�SC
Fifo[[

Property,
Connector

 

Process \\SC Method �/�SC
Thread[[

Action Node

Main \\SC Main[[ Operation None

Clock \\SC Clock[[ Class

9 The SATURN Approach to SysML-Based HW/SW Codesign 155



A separate tool-specific UML profile is implemented for synthesis. For the Agility

SystemC Compiler [21], we defined an Agility profile with\\ag_main[[,

\\ag_blackbox[[,\\ag_add_ram_port[[,\\ag_constrain_ram[[,\\ag_con-

strain_port[[, and\\ag_ global_reset[[ as stereotypes.

Additional C stereotypes had to be defined for SW integration with SytemC.

Here, we simply apply\\Processor[[ on SysML blocks to define the CPU target

platform by its architecture and operating system. A reference to software exec-

utables is introduced by\\Executable[[.

In application we start co-modelling with a SysML Block Definition Diagram

(BDD) as shown in Fig. 9.2. The BDD is based on UML structured classes and

describes the composition of a whole system. Each block in a BDD represents

either a SystemC module (HW) or a Processor component (SW). As the SATURN

profile is targeting at synthesizable SystemC code generation, we support the

composition of blocks with different multiplicity.

In a next step the system architecture is defined by a set of Internal Block

Diagrams (IBDs) which compare to classical SystemC block diagrams as given in

Fig. 9.3. Though the content of Figs. 9.2 and 9.3 are both hardly readable they

give an idea of principle BDD and IBD structures of a PLB bus example with

SystemC and C parts.

Fig. 9.2 Block definition diagram (BDD)

156 W. Mueller et al.



9.6 SATURN Code Generation

One goal of SATURN is automatic code generation from SysML-based models.

For this, we implemented our code generator by means of the ARTiSAN’s

Transformation Development Kit (TDK). ACS loads UML/SysML Model into the

Dynamic Data Repository (DDR), which stores it in an internal representation.

A Dynamic Link Library (DLL) generates the code files. Each time the User

Model is modified, ACS detects the changes, updates the DDR, and regenerates the

code. For reverse engineering, ACS can also be triggered by modifications in the

generated code.

9.7 Co-simulation

SATURN comes with a uniform verification framework covering a heterogeneous

set of simulators supporting different types of execution platforms:

Fig. 9.3 Internal block diagram (IBD)

9 The SATURN Approach to SysML-Based HW/SW Codesign 157



• Simulators for hardware and test environments like SystemC, Simulink,

Dymola,

• Instruction Set simulators and software emulators for full system emulation

including the operating system like QEMU,

• Hardware-in-the-Loop for real-time integration of existing hardware.

Though currently only the coupling of SystemC and QEMU is supported, the

final goal is the generic integration of several execution platforms including

Matlab/Simulink with EXITE ACE as shown in Fig. 9.4

9.8 HetSC for Architecture Exploration

Current embedded systems are composed of an increasing number of components

in order to implement a huge amount of different functionalities covering a wide

variety of behavioural semantics at different levels of abstraction. In this context,

HetSC was defined as a system specification methodology for concurrent

HETerogeneous embedded systems in SystemC [16, 17]. HetSC makes a clear

separation between the computation and the communication aspects of the system,

supporting the creation of formal executable specifications of the system since

HetSC is based on the ForSyDe formal metamodel [18]. Additionally, HetSC

provides mechanisms required by specific model of computations (MoCs) what

enables the creation of heterogeneous system specifications; each different com-

ponent that composed the system can be described under different MoCs. The

support of heterogeneity facilitates software generation and hardware synthesis

since each system components are syntactically and/or semantically closer to the

platform entities. Therefore, the application of HetSC in addition to validating the

system’s behavior provides a link to system implementation [16].

TheHetSCmethodology is covered by the SATURNmethodology in early design

stages where the designer identifies the different concurrent entities that composed

Fig. 9.4 SATURN
simulation framework

158 W. Mueller et al.



the system. Once the functional architecture has been decided, the designer can

explore different behavioral semantics in order to characterize the system. As such,

HetSC supports different approaches to build untimed concurrent models, which

significantly reduce simulation time and specification complexity. Additionally,

HetSC supports fast and automatic generation of embedded software implementa-

tions over different embedded RTOS-based platforms through SWGen [16].

For SystemC model refinement in Artisan Studio�, an additional UML profile

for HetSC has been defined. The stereotypes of this profile represent a set

of HetSC channels that implements the semantics of different Untimed MoCs.

In untimed systems, there is only a partial order and a causality relation among

events. In addition, the computation and the communication take an arbitrary and

unknown amount of time. The application of the MoCs on the creation of the

system specification guarantees specific properties that determine the system

behavior, e.g., determinism, protection against deadlocks.

In order to represent processes networks (PNs), HetSC provides two kinds of

channels.\\uc_inf_fifo[[ represents a channel with an unlimited buffering

capacity whereas the channel\\uc_fifo[[ has limited this capacity. The first one

implements the semantics of the Kahn Process Network MoC and the second one the

Bounded Kahn Process Network MoC. In order to create systems with the semantics

of the Synchronous Data Flow (SDF) MoC, HetSC provides the channel

\\uc_arc_seq[[. Finally, it covers three different rendezvous channels:

\\uc_rv_sync[[,\\uc_rv_uni[[ and\\uc_rv[[ for the Communicating

Sequential Process (CSP)MoC. They specify three different cases of communication.

The first one implements the synchronization only between asynchronous concurrent

elements. The second one implements synchronization with unidirectional data

communication and the last one synchronization with bidirectional data transfer.

9.9 Evaluation

The SATURN approach was evaluated in two case studies by two industrial partners:

• An IEEE 802.16e base station for broadband wireless communications under-

taken by INTRACOM Telecom

• Smart Camera for Automatic License Plate Recognition (ALPR) undertaken by

Thales Security Solutions and Services

9.10 IEEE 802.16e Base Station

For the evaluation of SATRURN we have selected the last part of the base station

Tx PHY chain of an IEEE 802.16e system [19]. This consists of the IFFT, the

Cyclic Prefix and the Preamble Insertion blocks. The first was mapped to HW and

the last two ones to SW.

9 The SATURN Approach to SysML-Based HW/SW Codesign 159



As a target platform, the Virtex 5 ML510 [20] development board was used,

which consists of a dual PowerPC and Xilinx FPGA Virtex-5 XC5VFX130T.

Modeling of the system was initially done in Artisan Studio�. The approach that

we followed was a top-down modeling of the system:

We started with creating the Block Defintion Diagram (BDD) of the system.

The top-level block contained the blocks PPC (software part) and FPGA (hardware

part). The FPGA block included:

1. The FFT block, which carried out the main bulk of the computations for the

transformation as well as the direct communication from/to the Block RAM

allocated for this purpose.

2. The Block RAM to transfer data from/to the hardware as well as for the twiddle

coefficients used in FFT and various other configuration parameters such as the

size of the FFT and the mode (inverse FFT/direct FFT).

3. The PLB (Processor Local Bus) with the respective components

(plb_cpu_transactor, plb_ctrl_status_trans-actor) which handles the communi-

cation from software to the BRAM through the BRAM.

In a second step, we designed the Internal Block Diagram (IBD) of the top-level

block which included HW and SW parts and their communication. Thereafter, the

FPGA’s IBD was created. The subsystem was composed of:

a) The FFT Peripheral.

b) The dual port Block RAM.

c) The PLB bus and the three transactors for the Block RAM, the FFT and the

PowerPC

d) The global clock Clk of the system.

Blocks a), b) and the CPU interface were connected on the PLB through PLB

Transactors. The fact that the FFT and the PLB were connected to the two ports of

the BRAM allowed us to have a unified memory map with the BRAM address

space visible to the CPU as well as access to the BRAM directly from our FFT

peripheral. The FFT’s two control registers ctrl and status were also mapped on

the memory map of the CPU so they are accessible from software.

In the next step, we created the FFT activity diagram using the SATURN

profile. We have used an SC_METHOD sensitive to the clock and to the ctrl

register to model the FFT peripheral.

After modeling the system and the hardware processes, we generated the

SystemC code for the FFT peripheral through ACS/TDK in Artisan Studio�.

Subsequently, VHDL for the FFT was generated from the respective SystemC

code through the Agility Compiler [21].

The code generation was used to produce SystemC simulation traces which

enabled us to have an early testing environment. We wrote self-contained test

benches in SystemC where we applied ACS/TDK to generate the remaining

environment. Thereafter, we ran extensive simulations to make sure that our FFT

peripheral worked correctly in all modes. We compared test vectors taken from the

real system with the output of the SystemC simulation. In a second step of

160 W. Mueller et al.



simulation we used the VHDL which was generated from Agility with manually

written test benches in VHDL to ensure the correctness of the SystemC to VHDL

translation. After importing the FFT we were able to synthesize and place & route

the design through XST and ISE. After tuning of the timing constraints to cater for

multi-cycle paths created by Agility, the design was downloaded to the Xilinx

Virtex-5 ML510.

On the software side we implemented the state machine in C to control the

hardware. Currently, the software application code is written outside Artisan

Studio and co-simulation was carried out through EXITE ACE. The SATURN

profile generated the drivers to access the registers and the BRAM from the

software. The drivers relied on Linux operating system and used the/dev/mem node

(which represented the whole memory of the system) and mmap in order to

transfer data from/to the memory mapped BRAM and FFT registers.

Therefore, we had to build a Linux kernel image for the PPC 440 in order to

bring-up the system and execute our user space application with the SATURN

generated drivers. In order to create a kernel image we needed:

1. A DTS file which contains the memory map for the system that we had created

through EDK BSB. In order to generate the DTS file we used the device tree

generator addon of EDK.

2. A file system containing the user space application built for the PPC440.

3. The standard Linux kernel. After the generation of the file system and the DTS

file we were ready to build the Linux kernel.

We finally downloaded the Linux image to the PowerPC and the bit file to the

FPGA. After booting Linux we could run the user space application and we could

verify that data were provided from SW to the FPGA and correctly passed through

the FFT. They were then transferred back to SW and processed through the Cycle

Prefix and the Preamble Insertion running on the PPC.

9.11 Smart Camera

In a second case study, we have applied the SATURN tool suite and methodology

to design FPGA blocks for an Automatic License Plate Recognition (ALPR)

system which is an image-processing technology for license plate identification.

This technology is used in various security and traffic applications, such as in the

access control system for car parks as given in the following (Fig. 9.5).

The system uses illumination such as Infra-red and a camera to take the image

of the front or rear of the vehicle, then image-processing software analyses the

images and extracts the plate information. This data is used for enforcement, data

collection, and can be used to open a gate if the car is authorized or keep a time

record on the entry or exit for automatic payment calculations.

The license plate detection is mainly a sequence of filters designed to detect

regions with a high density of small elements which is characteristic of text. For

9 The SATURN Approach to SysML-Based HW/SW Codesign 161



our studies in the context of SysML, we focused on the implementation of mor-

phological operators which are heavily used in the plate detection stage of the

ALPR algorithms covering the image acquisition from a video bus, automatic

image contrast correction, automatic exposure time. They are designed as a pixel

pipeline which makes computation on the fly and loops back to the camera control.

Like the previous case study, this case study also followed the lines of the

SATURN design starting with the SysML tool suite for modeling and cosimulation

after code generation. The co-simulation is used for the communication between the

main processor and FPGA. In contrast to the previous application, the smart camera

is an embedded system composed of a complete board equipped with a PowerPC or

ARM and a separate FPGA for the image processing which has some dedicated

external memory controlled by the main processor. The Virtex 5 FPGA was con-

figured by Xilinx ISE and the Linux image was separately loaded to the PowerPC.

9.12 Conclusions

In this chapter, we presented the SATURN approach to SysML-based HW/SW

co-modeling, -simulation, and -synthesis by means of Artisan Studio�. The two

case studies demonstrated the applicability for industrial designs. They also indi-

cated a few subjects for improvements which are planned to be resolved until the

end of the SATURN project. We applied Artisan Studio� with the SATURN

profiles in replacement of a traditional C++ IDE to write SystemC code. The module

composition is defined as a Block Definition Diagram. However, in the first step the

definition of members and methods was a little bit slower compared to a traditional

IDE as it requires going through a lot of windows pop-ups and tabs. Then, Internal

Block Diagrams was used to define the connections of the module’s ports. They

allow drawing the wiring visually, which is an improvement over the normal coding

of connections since it is faster and leads to less errors in connecting ports. Once the

system’s structure was defined, the behavior and logic had to be coded as usual in a

Fig. 9.5 License plate
recognition for airport
parking

162 W. Mueller et al.



textual editor. Here for efficient capturing, an adequate support of user friendliness,

refactoring abilities and code parsing is mandatory for an UML/SysML editor in

order to compete with current C++IDEs. The previous benefit of the graphical

wiring is mitigated by the time lost for the definition of the behavior without this

support as, from our experience, the complexity of behavior and signal timings is

higher than structure definition. When iterating through the verification process,

most of the changes affect the behavioral logic whereas the module’s structures are

more stable. The graphical modeling suffers as usual from its lack of compactness

and precision compared to textual languages. Although it gave a comprehensive

overview of the network-like relations, it partly lacks semantics. One has to explore

the graphical editor tabs associated to any item in order to exactly know how it is

defined. In contrast, a textual language is quite more synthetic and gives all details.

Another important point is that, when VHDL is not directly generated, the SystemC

based approach requires an additional SystemC to VHDL compiler. Thus, a mod-

eling environment with integrated SystemC and VHDL code generation would be

appreciated to support the existing SystemC-VHDL tool chain.

The major benefit of the SATURN environment is the ability to simulate both

the SystemC modules and the target operating system of the embedded platform.

This is due to the extension of QEMU to exchange data with the SystemC mod-

ules. It shortens the verification time as it allows debugging hardware software

interfaces faster than usual: it can be tested by the emulator. Additionally, it allows

to easily moving between the different hardware platform and operating system

from within the modeling environment to explore different HW/SW alternatives.

In theUML/SysMLbased approach, a real collateral benefit is having ready to use

diagrams of the modules for the documentation. It usually requires drawing them

with a generic drawing tool or an UML editor which is not adequately integrated into

the design flow. With SATURN tools this time is moved from the specification or

post-design phase to the design phase. However, the time saving compared to

classical drawing tools depends on the user friendliness and support of the individual

UML editor, on the number of times a design is changed, and on howmany diagrams

are really needed for the documentation. Regardless to this, the main gain here is

having always up-to-date and precisely defined diagrams in the documentation.

Acknowledgments The work described herein is supported by the ICT Project SATURN
(FP7-216807).

References

1. Kangas T et al (2006) UML-based multiprocessor SoC design framework. ACM Trans
Embedded Comput Syst (TECS) 5(2)

2. Object Management Group (2009) A UML profile for MARTE, www.omgmarte.org
3. André C, Mallet F, Mehmood A, de Simone R (2008) Modeling SPIRIT IP-XACT with UML

MARTE. In: Proceedings of the DATE workshop on modeling and analysis of real-time and
embedded systems with the MARTE UML profile

9 The SATURN Approach to SysML-Based HW/SW Codesign 163

http://www.omgmarte.org


4. Arpinen T, Salminen E, Hännikäinen M, Hämäläinen TD (2008) Model-driven approach for
automatic SPIRIT IP integration. In: Proceedings of 5th international UML-SoC DAC
workshop. Anaheim, USA

5. Xie T et al (2009) A UML frontend for IP-XACT-based IP management. In: Proceedings of
DATE 2009

6. Riccobene E et al (2009) SystemC/C-based model-driven design for embedded systems.
ACM Trans Embedded Comput Syst (TECS) 8(4)

7. Object Management Group (2006) UML profile for system on a chip (SoC). OMG formal/
06-08-01

8. OSCI (2009) SystemC synthesizeable subset
9. OSCI (2009) SystemC-AMS. www.systemc-ams.org
10. Gruettner K, Oppenheimer F, Nebel W, Colas-Bigey F (2008) SystemC-based modelling

seamless refinement, and synthesis of a JPEG 2000 decoder. In: Proceedings of DATE’08
11. OSCI (2008) OSCI TLM-2.0 Manual
12. Ecker W, Esen V, Hull M (2006) Execution semantics and formalisms for multi-abstraction

TLM assertions. In: Proceedings of MEMOCODES’06. Napa, CA
13. Keinert J, Streubhr M, Schlichter T, Falk J, Gladigau J, Haubelt C, Teich J, Meredith M (2009)

Systemcodesigner: an automatic ESL synthesis approach by design space exploration and
behavioral synthesis for streaming applications. In ACM TODAES 14(1):1–23

14. Patel HD, Shukla SK (2005) Towards a heterogeneous simulation kernel for system-level
models a systemc kernel for synchronous data flow models. IEEE Trans CAD Integr Circ
Syst 24:N8

15. HetSC homepage: www.teisa.unican.es/HetSC/
16. Herrera F, Villar E (2008) A framework for heterogeneous specification and design of

electronic embedded systems in systemC. ACM Trans Des Autom Electron Syst Spec Issue
Demonstrable Softw Syst Hardw Platforms 12(3):N22

17. Herrera F, Villar E (2006) A framework for embedded system specification under different
models of computation in systemC, Annual ACM IEEE design automation conference
proceedings of the 43rd annual conference on design automation

18. Jantsch A (2004) Modeling embedded systems and SoCs. Morgan kaufmann, Elsevier
19. IEEE: IEEE Standard for local and metropolitan area networks, Part 16: Air interface for

fixed and mobile broadband wireless access systems
20. Xilinx 2008ML510 Embedded development platform, user guide, UG356 (v1.1) December 11,

2008
21. Agility SC Compiler. www.msc.rl.ac.uk/euro practice/software/mentor. html

164 W. Mueller et al.

http://www.systemc-ams.org
http://www.teisa.unican.es/HetSC/
http://www.msc.rl.ac.uk/euro


Chapter 10

Mapping Embedded Applications
on MPSoCs: The MNEMEE Approach

Christos Baloukas, Lazaros Papadopoulos, Dimitrios Soudris,

Sander Stuijk, Olivera Jovanovic, Florian Schmoll, Peter Marwedel,

Daniel Cordes, Robert Pyka, Arindam Mallik, Stylianos Mamagkakis,

François Capman, Séverin Collet, Nikolaos Mitas

and Dimitrios Kritharidis

Abstract As embedded systems are becoming the center of our digital life, sys-

tem design becomes progressively harder. The integration of multiple features on

devices with limited resources requires careful and exhaustive exploration of the

design search space in order to efficiently map modern applications to an

embedded multi-processor platform. The MNEMEE project addresses this chal-

lenge by offering a unique integrated tool flow that performs source-to-source

transformations to automatically optimize the original source code and map it on

the target platform. The optimizations aim at reducing the number of memory

accesses and the required memory storage of both dynamically and statically

allocated data. Furthermore, the MNEMEE tool flow parallelizes the application’s

source code and performs optimal assignment of all data on the memory hierarchy

of the target platform. Designers can use the whole flow or a part of it and integrate

C. Baloukas (&) � L. Papadopoulos � D. Soudris
Institute of Communications and Computer Systems (ICCS),
9, Iroon Polytechniou Street, 15773 Athens, Greece
e-mail: cmpalouk@ee.duth.gr

S. Stuijk
Eindhoven University of Technology, Eindhoven, The Netherlands

O. Jovanovic � F. Schmoll � P. Marwedel
Design Automation for Embedded Systems Group, TU-Dortmund, Germany

D. Cordes � R. Pyka
Informatik Centrum Dortmund e.V, Dortmund, Germany

A. Mallik � S. Mamagkakis
IMEC vzw, Leuven, Belgium

F. Capman � S. Collet
Thales Communications France, 160 Boulevard de Valmy, 92704 Colombes, France

N. Mitas � D. Kritharidis
Intracom Telecom, Athens, Greece

N. Voros et al. (eds.), VLSI 2010 Annual Symposium,
Lecture Notes in Electrical Engineering 105, DOI: 10.1007/978-94-007-1488-5_10,
� Springer Science+Business Media B.V. 2011

165



it into their own design flow. This work gives an overview of the MNEMEE tool

flow. It also presents two industrial case studies that demonstrate how the tech-

niques and tools developed in the MNEMEE project can be integrated into

industrial design flows.

10.1 Introduction

In today’s embedded systems market there is a trend towards integrating more and

more services on mobile devices. These systems combine applications from var-

ious domains like communications and multimedia (e.g., HD-video coders,

wireless protocols, image processing and 3D games). All these examples make

heavy use of data transfers and computation, which makes multi-processor plat-

forms the perfect candidate for their implementation. However, Multiprocessor

systems-on-chip (MPSoCs) include complex memory hierarchies and synchroni-

zation systems, which in turn makes it difficult to map an application on an

MPSoC. For such complex design targets, the design choices will have a high

impact on the performance of the system and the success of the device on the

market.

There are several challenges that MPSoC designer faces. First, the application

should be parallelized to take advantage of the multiple processor system. This is

achieved by breaking the execution into several tasks that can be performed in

parallel. Second, the statically and dynamically allocated data structures must be

optimized to take advantage of the memory hierarchy of the target platform. Third,

the final optimized parallel code should be mapped and compiled onto the MPSoC.

In current embedded system design flows, the optimization of the source code is

done mainly manually. This process is becoming very tedious and error prone as

the complexity of the system and the applications are constantly increasing. This

makes it necessary to develop a systematic methodology and tooling that will deal

with the aforementioned challenges automatically.

The MNEMEE project [1] addresses the challenge of mapping an application

onto an MPSoC platform. Several state-of-the-art source-to-source optimization

methodologies and tools have been developed that automatically extract possible

parallelization from a target source code, while they also optimize statically and

dynamically allocated data structures to reduce the time needed for memory

accesses. Additionally, the code is mapped onto the various processors and

memories of the MPSoC platform. Each methodology and tool has a very clearly

defined interface that allows the whole set of tools developed under the MNEMEE

project to be integrated into a common tool flow or used as individual optimization

steps. It is this exact feature that renders the MNEMEE tools easy to use in

industrial applications, where companies already work with certain tool chains. By

integrating the MNEMEE tools into their tool chain, industrial designers can

automate their flows. As will be demonstrated in the Sect. 10.3, parts of the tool

166 C. Baloukas et al.



flow can be used to replace existing manual or less efficient steps in an industrial

design flow. Two examples are provided, one from the communications domain

and one from the multimedia domain.

10.2 MNEMEE Tool Flow

10.2.1 Overview

Figure 10.1 shows the MNEMEE tool flow. The input of the tool flow is sequential

source code written in C. The output of the flow is source code that is parallelized

and optimized for the target MPSoC and its memory hierarchy.

The first step targets the optimization of all dynamically allocated data struc-

tures by changing their implementation. These changes may affect the parallel-

ization and therefore they are performed first. Step 2 identifies any potential

parallelization in the source code and implements it by breaking the code into

several tasks. Step 3 optimizes the statically allocated data structures. Since the

(1) Optimize dynamic data

structures

(2) Parallelize source code

(3) Optimize static data structures

MACC Framework

M
N

E
M

E
E

 T
o

o
lflo

w
(Sequential application source code)

(4) Optimize dynamic memory

management strategy

(6) SPM optimization

Optimized Source Code

Platform 

DB

(5)  Scenario 

Based Mapping

(5) Memory 

Aware Mapping 

Fig. 10.1 MNEMEE tool
flow

10 Mapping Embedded Applications on MPSoCs: The MNEMEE Approach 167



parallelization of the original source code has already taken place, the tool can

map the statically allocated data structures efficiently onto the memory hierarchy,

as their size and behavior is known. The next step, maps the dynamically allocated

data structures onto the memory hierarchy. Step 5 maps the parallelized applica-

tion onto the processors and memories. The MNEMEE tool flow offers two

alternative mapping techniques. The first technique called scenario-aware

mapping, tries to exploit the dynamic behavior of an application in order to save

resources. The second technique, called memory-aware mapping, explore the

trade-off between performance and energy consumption of the processors and

memories. Finally, step 6 further optimizes the scratchpad allocation of each

processor in the target platform.

To combine the large number of required processing steps into a single tool

flow, the MACC framework for source level optimization development has been

used [21]. This framework exploits the abstract syntax tree code representation

provided by the ICD-C compiler development framework. MACC provides a

common platform model along with a well-defined interface for integration of

analysis and optimization tools. This framework was partially developed in the

MNEMEE project [1]. Furthermore, a graphical user interface is provided to

enhance the usability of the tool flow.

10.2.2 Dynamic Data Type Optimizations

The dynamic data type optimizations step (step 1) changes the implementation of

all dynamic data structures like dynamic arrays, linked lists and trees, based on the

Dynamic Data Type Refinement (DDTR) methodology [2, 3]. All dynamic data

types (DDTs) are profiled to identify their access patterns and allocation behavior.

The optimized implementation is customized to fit this particular access pattern.

The objective is to boost performance and restrain the memory consumption. This

customization of the data structures is achieved by restructuring these data

structures using components from a library of DDTs. As an example, we can

consider a list that is accessed sequentially. The use of a memory pointer to store

the last accessed element can greatly boost the performance without having to

resort to an array solution where we would have to plan for the worst case. The

linked list can be restructured adding this memory pointer component.

10.2.3 Parallelization

The parallelization tool [4] is the second one in the MNEMEE tool flow.

Its purpose is a fully automatic exploitation of parallelism for the given sequential

application’s source code, which is provided by the MACC framework. Therefore,

the application is transformed in a so called hierarchical task graph, based on the

168 C. Baloukas et al.



one presented by Girkar in [5]. Once this intermediate representation is extracted

from the source code, an ILP based parallelization approach is used to search for

parallelism on each hierarchical level of the task graph. Only by introducing

hierarchy into the task graph representation it is possible to make usage of very

complex ILP formulations. The whole graph is analyzed for possible parallelism

by a bottom-up search strategy, which extracts a balanced, parallelized version of

the application’s source code. Though, the algorithm deliberates about whether it

should extract new tasks on the current level of hierarchy or whether it should just

use the tasks, extracted earlier deeper in the hierarchy. In addition, the parallel-

ization tool also considers special requirements for embedded systems and is

e.g., able to limit the number of extracted concurrently executed tasks to the

number of available processor units.

Once the whole graph is processed by the parallelization algorithm, the taken

decisions are annotated on the application’s source code and a parallelization

specification is generated, which complies with the input specifications of the

MPMH tool [6]. This tool is then used in step 3 of the tool flow to implement the

extracted parallelism.

10.2.4 Optimize Static Data Structures

The MPSoC Parallelization and Memory Hierarchy (MPMH) tool [6] generates

parallel source code based on the directives specified by the previous step in the

tool flow. This step has annotated the source code with parsections. These par-

sections specify the sequential code segments that must be parallelized. A directive

has been added to each parsection that specifies the number of threads that will

execute this parsection in parallel. The parallelization tool (step 2) further indi-

cates whether the work that is done in the parsection must be divided over these

threads in terms of functionality (i.e., to split the parsection based on functional

parallelism), or in terms of loop iterations (i.e., to split the parsection based on data

parallelism), or a combination of both depending on what is the most appropriate

for a given parsection. Given the source code and the parallelization directives, the

MPMH tool generates a parallel version of the code and insert FIFOs and syn-

chronization mechanisms where needed. Hence, the designer does not need to

worry about dependencies between threads. This is taken care of automatically by

the tool. This ensures that the tool will always generate correct-by-construction

parallel code. MPMH provides the optional mechanism of shared variables. Shared

variables need explicit synchronization and communication between threads. The

tool will check for possible inconsistency in the synchronization for the shared

variables. However it cannot guarantee correct-by-construction parallel code for

these shared variables. This option is therefore not used in the MNEMEE tool

flow.

The MPMH tool is also capable of performing static data optimizations by

optimizing the accesses to static data arrays. The tool uses compile-time

10 Mapping Embedded Applications on MPSoCs: The MNEMEE Approach 169



application knowledge and profiling data to find out which data copies can be

made and whether these copies are beneficial. It also determines how the data and

the copies have to be mapped onto the various memory layers in a memory

hierarchy such that the energy consumption is minimized and/or the performance

is maximized. The result of the optimization is a transformed parallelized appli-

cation with data copies and block transfers explicitly expressed in the source code,

automatic handling of synchronization of data, and a mapping of the data and

copies to the various memory layers.

10.2.5 Optimize Dynamic Memory Management

The dynamic memory management methodology is responsible for deciding where

a data type or an individual dynamic variable should be placed on a certain

memory layer in the memory hierarchy of the targeted MPSoC. The decision is

based on the allocation behavior of all dynamic data in the source code. A profiling

report reveals the allocation/deallocation timeline of dynamic objects. This report

is analyzed to identify the most frequently used objects. These objects are placed

closer to the processors in the memory hierarchy, while other data structures are

placed in a higher level of the memory hierarchy.

This step does not finalize the mapping of dynamic objects to the memories.

Instead it provides the remainder of the flow with hints about the preferred

placement. These hints are used to guide the mapping decisions that are made in

step 6.

10.2.6 Task Mapping

Two alternative techniques are available in the tool flow to map the parallelized

application onto the processors and memories in the MPSoC. The first technique,

called scenario-aware mapping, tries to exploit the dynamic behavior of an

application in order to save resources. The second technique, called memory-

aware mapping, focuses on finding a mapping that minimizes the energy

consumption of the system while considering memory requirements of tasks.

10.2.6.1 Scenario-Aware Mapping

Existing mapping techniques (e.g., [7, 8]) model these applications using relatively

simple and static models, such as (homogeneous) synchronous dataflow graphs [9].

These models abstract from the dynamic behavior of an application which may

lead to a large overestimation of its resource requirements. The dynamic behavior

of an application can be taken into account in a mapping technique by using a

170 C. Baloukas et al.



scenario-based design approach [10]. In this approach, the dynamic behavior of an

application is viewed upon as a collection of different behaviors (scenarios)

occurring in some arbitrary order, but each scenario by itself is fairly static and

predictable in performance and resource usage. Therefore, resource allocation can

be performed for each scenario using existing mapping techniques. However, these

mapping techniques can only provide timing guarantees per scenario. They cannot

guarantee the timing behavior when switching between scenarios. For many

streaming applications it is however important that timing guarantees are provided

when switching between scenarios. The scenario-aware mapping technique can

provide such guarantees.

The input of the scenario-aware mapping step is a set of synchronous dataflow

graphs (i.e., one for each scenario). These graphs are automatically derived from

the parallelized application source code. The scenario-aware mapping step allo-

cates processing, memory, and communication resources for all these graphs. The

output of this mapping step is a set of mappings that provide different trade-offs

between the amounts of processing, memory, and communication resources that

are used from the MPSoC. (More details on the scenario-aware mapping step can

be found in [11]). A run-time mechanism (e.g., [12, 1]) can use this set of map-

pings to adapt the mapping of an application to the available resource in different

use-cases. The development of such a run-time mechanism is also studied in the

context of the MNEMEE project. At this moment, the run-time library does

however not support run-time configuration. Therefore, the MNEMEE tool flow

now selects one of the mappings generated by the scenario-aware mapping step

(i.e., the mapping which minimizes the memory usage). This mapping is then used

by the last step in the tool flow.

10.2.6.2 Memory-Aware Mapping

The memory-aware mapping tool provides a static assignment of tasks to proces-

sors. The focus of the tool lies in the integration of the memory subsystem in the

mapping optimization decision. The memory hierarchy and the impact on energy,

runtime and communication are often disregarded by other mapping tools. The

mapping tool considers the memory requirements of tasks and maps them to

available memories in the hierarchy. However, the mapping tool does not decide on

the final mapping of memory objects to the memories. It only provides hints to the

last step of the flow. This step finalizes the mapping of data objects to memories.

The memory-aware mapping tool is based on the DOL framework [13].

A multi-objective optimization is implemented which balances the load on the

processors and communication channels, and minimizes the overall energy of the

system. An evolutionary algorithm based on EXPO [14] and PISA [15] performs

this optimization. In a first step, several mapping solutions (genes) are generated.

In the next step, an energy and performance evaluation is accomplished. The best

solutions are stored and used for the generation of new solutions. These last steps

are repeated until a maximum number of generations are reached. At the end a set

10 Mapping Embedded Applications on MPSoCs: The MNEMEE Approach 171



of Pareto optimal solutions is provided. Since the goal of the MNEMEE project is

to minimize the energy consumption of the system, the solution with the minimal

energy consumption is selected and provided to the next step in the MNEMEE

tool flow.

10.2.7 Scratchpad Memory Allocation

The scratchpad memory allocation tool enables a system designer to implement an

efficient memory allocation for statically allocated data within a very short time.

It exploits scratchpadmemories that are known for fast memory accesses consuming

little energy. By allocating frequently accessed data objects to these memories

the runtime and energy consumption of a system can be reduced significantly.

Unfortunately, beside the favored properties scratchpad memories have a small size.

Therefore, the tool applies a knapsack-based approach [16] to calculate the set of data

objects that, once allocated to scratchpad memories, will lead to the most savings.

By using integer linear programming, the scratchpad memory allocation tool

can solve this problem optimally in a very short time. Finally, the tool implements

the resulting optimal non-overlaying allocation by applying source-to-source

transformations. The allocation at source-code level and the fact that the tool

collects all required information about the memory hierarchy from the MACC

platform model make the tool very flexible and portable to new platforms. This

facilitates an easy integration into tool flows. Another major advantage of the tool

is, that it operates fully automated, thus a system designer can reduce runtime and

energy consumption at the push of a button.

10.3 Industrial Application

The MNEMEE tool flow can be used to automate existing industrial embedded

systems design tool flows, by replacing manual steps in these flows with steps from

theMNEMEEflow. This section presents two examples from companies working on

different domains, namely the communication and multimedia domain. Both

examples demonstrate the integration of theMNEMEE tool flow into their tool flows.

10.3.1 Communication Domain

In the context of the MNEMEE project Intracom Telecom targets the PHY layer of

the IEEE 802.16e system for broadband wireless communications, for fixed,

nomadic and mobile users. IEEE 802.16e is a broadband wireless solution that

enables convergence of mobile and fixed broadband networks through a common

172 C. Baloukas et al.



wide area broadband radio access technology and flexible network architecture.

IEEE 802.16 and WiMAX are designed as a complementary technology to Wi-Fi

and Bluetooth.

The target platform is the FreescaleMSC8144 [17], a high-performancemulticore

DSP device. It includes four extended cores, each one comprising the DSP core with

dedicated instruction cache, data cache,memorymanagement unit (MMU), interrupt

controller (EPIC) and timers. The complexity of the platform demands large design

effort to map a streaming application like 802.16e. The preMNEMEE design

approach from Intracom can be seen in Fig. 10.2. The application’s source code has

to be manually partitioned to take advantage of the four DSP cores. Then the pro-

cesses should be verified so that the partitioning does not break any timing con-

straints. Finally, manual memory mapping of data objects needs to be performed.

The 802.16e PHY layer incorporates a wide spectrum of DSP algorithms.

The following blocks from the 802.16e PHY layer were implemented:

1. Randomization

2. Interleaving

3. FEC encoding

4. Constellation Mapping

5. Burst Mapping–Frame Construction

6. Space–Time Coding

7. Fourier Transformation

8. Cycle prefix insertion

9. Preamble insertion

The above DSP algorithms are inherently sequential. As such they do not

provide significant room for improvements within the design space of each pro-

cessing block. The architecture of the system though is such that parallelization

opportunities exist on a coarser level. The MNEMEE tools were able to auto-

matically identify such opportunities and give parallelization directives on this

higher level of abstraction. The MNEMEE tools were able to make use of all 4

Manual process partitioning

Process verification 

Manual memory mapping

(Sequential application source code)

Software mapping on 

MPSoC platform

Fig. 10.2 Communications:
pre-MNEMEE design flow

10 Mapping Embedded Applications on MPSoCs: The MNEMEE Approach 173



cores by spawning 3 threads (+1 master thread) for each of the 2 distinct parallel

sections. The usage of the parallelization tools did not require any user interaction

making the tools even more useful in situations where the code is provided from

3rd parties. Nevertheless if the application requires higher speed-up, the user can

assist the tools and specify more sections of the code that could be parallelized.

The MNEMEE tools were able to produce results with 1 more parallel section in

addition to the 2 identified automatically from the tools.

The mapping of data objects is also performed automatically when using the

MNEMEE tools. This further reduces the design effort. The MNEMEE based

design flow is shown in Fig. 10.3. The time taken on the traditional flow that has

been followed prior to MNEMEE can be broken down to:

1. Identifying objects that are good candidates to be moved to faster memories.

2. Moving objects from where they are originally instantiated to a separate header

file.

3. Including header files from source files where the objects are used.

4. Writing pragmas on the header files to be mapped to special segments.

5. Writing linker scripts to allocate memory for the extra segments

6. Test the application to ensure functional correctness.

7. Retry with different candidates (step 1).

For a sequential application, the procedure outlined takes around 2 days of

manual labour. With the usage of the MNEMEE tools equal or better quality

results have been obtained within 4 h.

As the quality of the results for this step depends on the optimal selection of the

objects, the above iteration has to be done several times in order to identify

the trade-offs for each object and select the appropriate ones afterwards. Thus the

majority of the time is spent in the iteration of the mentioned above sequential flow

steps. Furthermore, debugging when manually managing the memories is error-

prone and results in increased debugging effort. The MNEMEE tools avoid this

problem. When using the MNEMEE tools, the process outlined above can be

broken down into the following steps:

MNEMEE Automatic 

process partitioning

MNEMEE memory hierarchy 

optimizations  

MNEMEE automatic memory 

mapping

(Sequential application source code)

Software mapping on 

MPSoC platform

Fig. 10.3 Communications:
MNEMEE based design flow

174 C. Baloukas et al.



1. Running the tools over the code.

2. Writing pragmas for the header files.

3. Writing linker scripts to allocate memory for the extra segments.

4. Test the application to ensure functional correctness.

The MNEMEE tools automate the majority of the process required to map data

objects of the applications into the memories. The output they provide can be

directly fed back into the development tools used at Intracom. The debugging

required is also minimized as there are no bugs inserted by moving the objects to

different memories as this is now done automatically by the MNEMEE tools.

The above has been done for the sequential application and parallelized appli-

cation where the objects can also be shared between threads. This requires an even

more complicated manual object selection, which could successfully be automated

using the MNEMEE tool flow. Therefore, usage of the MNEMEE tools was con-

sidered an efficient solution as it considers both performance and design time.

10.3.2 Multimedia Domain

The multimedia application is a state of the art low bit rate speech coder based on

the enhanced Mixed Excitation Linear Predictive (MELPe) algorithm (NATO

standard STANAG 4591 [18, 19]). The target platform is the OMAP-L137 [20],

a dual core low-power application processor comprising an ARM92EJ-S and a

C674x floating point DSP core. Both processors have their own instruction and

data cache, but also share some internal and external memory.

Before integrating the MNEMEE tool flow in the design flow, the required steps

were those depicted on Fig. 10.4. The source code must be split manually between

the two cores, followed by a series of manual optimizations and code rewriting to

adapt the code to the target processors. Then code and data are mapped to

memories. To do the mapping, first the cache is activated, if then the application

doesn’t meet timing requirements, critical parts of code and data are identified by

profiling the application. Critical data that are most often used are mapped into the

internal memory. Critical functions that do not meet the necessary constraints are

rewritten in assembly code. This process iterates until timing and memory

requirements are met.

Integrating the multimedia application on the OMAP-L137 platform led us to

face two main challenges: (1) how to efficiently split the code between the two

processors and (2) how to make the most of the four available memory levels.

Manually addressing these challenges will require a lot of design and integration

efforts. The different optimization tasks depicted in Fig. 10.4 have an impact on

each other thus leading to an iterative and error prone optimization process.

Moreover the optimal solution could hardly be obtained manually. Using the

MNEMEE tool flow, every step is performed and linked to the next in an auto-

mated way. This new design flow is given in Fig. 10.5.

10 Mapping Embedded Applications on MPSoCs: The MNEMEE Approach 175



Using the MNEMEE parallelization tools, the application is split between the

two processors. Although the MELPe algorithm is mostly sequential, the Parall-

elization tools successfully found some low-grain (data-level) parallelism. In

addition, a high-grain (function-level) parallelism has been manually specified for

the MPMH tool. The latter is based on the designers’ knowledge of the application.

(This shows how the MNEMEE tool flow can effectively be used to assist

designers when developing a new system.) This first step results in a source code

containing several threads to be run in parallel as well as the mechanisms to handle

threads (creation, data exchange …) and lasted about a day—one day to specify

function-level parallelism and around 10 min to execute the parallelization tools.

On an OMAP like platform, the GPP usually manages the application and

handle I/O; while the DSP does most of the processing. This leads to an unbal-

anced load between the processors. The mapping tools from the MNEMEE tool-

flow allow going beyond this typical partitioning.

MNEMEE automatic code

splitting between processors

MNEMEE source-to-source joint 

code and mapping optimization 

(Sequential application source code)

Manual rewriting of critical 

functions in assembly if 

necessary

Fig. 10.5 Multimedia:
MNEMEE based design flow

Split code between 

processors

Optimize source code

Rewrite critical functions in

assembly

(Sequential application source code)

Optimize memory mapping

Fig. 10.4 Multimedia: pre-
MNEMEE design flow

176 C. Baloukas et al.



First, the Scenario Based Mapping tool has been used. As it required precise

information about the architecture (memories, buses width and speed …) and the

application (scenarios being used, execution time and memory use for each task

of the scenarios); about a week has been spent to gather these parameters and

generate the inputs for the tool then 5 min to execute the tool. The output map-

pings seem promising as they do share the overall load between the processors for

all scenarios.

The Memory Based Mapping tool has not been used at the moment of writing,

but we expect it to take the most of the four available memory levels to have an

optimal task mapping and a decrease in the energy consumption.

Using the Dynamic Memory related tools required some modification of the

input source code, which has yet not been realized at the moment of writing.

However, several parts of code are using some small temporary dynamic buffers

which management may be optimized. We expect the Dynamic Memory tools to

reduce the overall amount of Heap required which may then be mapped into

internal memory thus reducing the memory footprint and the execution time.

As no mapped parallel source code has yet been obtained, the Scratchpad

Memory tool has been used only on the sequential source code. Only 2 min are

required to run the tools as not previous step is required. The mapped application is

33% faster and Stack memory has been reduced by 82%. However the overall

memory footprint for data has grown by 21%. This growth in footprint is due to a

lack of dynamic management of static data, which is done by MPMH.

The main advantages of using the MNEMEE tool flow are that each step is

optimized in two ways: (1) the tools can generate and evaluate several alternative

solutions; and (2) the tools can work simultaneously on multiple optimization

targets—execution time, energy consumption or memory footprint—to find out the

best solution. Furthermore, as most of the tools provide source-to-source optimi-

zation, the output of each tool can be viewed and analysed. Of course, some parts

of the source code may still require manual optimization, but it should be far less

than with a full manual optimisation process.

It should also be noted that if the application needs to be modified or completed

with additional functionalities, the use of an automated tool flow such as the

MNEMEE tool flow will greatly facilitate the re-factoring process.

10.4 Conclusions

The complexity of novel embedded systems is increasing rapidly. These systems

combine many different streaming applications in a single system. To meet the

processing and memory requirements of these applications, multiprocessors sys-

tems-on-chip with a memory hierarchy must be used. The complexity of these

architectures and applications make the design of these systems very challenging.

A decreasing time-to-market and the need to differentiate products add to this

design challenge. Manual optimization and mapping of the application source code

10 Mapping Embedded Applications on MPSoCs: The MNEMEE Approach 177



is becoming prohibitively slow. Therefore, a structured methodology and auto-

mated tools are needed to map the application source code onto the target hardware.

The MNEMEE project provides a set of techniques that fills the need for auto-

mation in the respective industry’s design flows. In this work, the MNEMEE

techniques have been presented, along with two real-world industrial examples,

demonstrating the applicability and the gains that are possible by their exploitation.

Acknowledgments This work was supported in part by the EC through FP7 IST project 216224,
MNEMEE.

References

1. MNEMEE Project (IST-216224)–http://www.mnemee.org/
2. BaloukasC,Risco-Martin JL,AtienzaD, Poucet C, Papadopoulos L,Mamagkakis S, SoudrisD,

Ignacio Hidalgo J, Catthoor F, Lanchares J (2009) Optimization methodology of dynamic data
structures based on genetic algorithms for multimedia embedded systems. J Syst Softw
82(4):590–602

3. Young M (1989) The technical writer’s handbook. University Science, Mill Valley, CA
4. Cordes D,Marwedel P,Mallik A (2010) Automatic parallelization of embedded software using

hierarchical task graphs and integer linear programming, CODES+ISSS’2010, October 2010
5. Girkar M, Polychronopoulos CD (1994) The hierarchical task graph as a universal

intermediate representation. Int J Parallel Program 22(5):519–551
6. Iosifidis Y, Mallik A, Mamagkakis S, De Greef E, Bartzas A, Soudris D, Catthoor F (2010)

A framework for automatic parallelization, static and dynamicmemory optimization inMPSoC
platforms. In the design automation conference, DAC 10, Proceedings (June 2010), ACM

7. Moreira O,Mol J-D, Belooij M, vanMeerbergen J (2005)Multiprocessor resource allocation for
hard-real-time streaming with a dynamic job-mix. In: 11th real time and embedded technology
and applications symposium, RTAS 05, Proceedings (March 2005), IEEE, pp 332–341

8. Stuijk S, Basten T, Geilen M, Corporaal H (2007) Multiprocessor resource allocation for
throughput-constrained synchronous dataflow graphs. In: 44th design automation conference,
DAC 07, Proceedings (June 2007), ACM, p 777–782

9. Lee E, Messerschmitt D (1987) Static scheduling of synchronous data flow programs for
digital signal processing. IEEE Trans Comput 36(1):24–35

10. Gheorghita S, PalkovicM, Hamers J, van de Cappelle A,Mamagkakis S, Basten T, Eeckhout L,
Corporaal H, Catthoor F, van de Putte F, Bosschere KD (2009) Systemscenario-based design of
dynamic embedded systems. ACM Trans Des Autom Electron Syst 14(1):1–45

11. Stuijk S, Geilen MCW, Basten T (2010) A predictable multiprocessor design flow for
streaming applications with dynamic behaviour. In: digital system design, 13th euromicro
conference, DSD 10 Proceedings (September 2010), IEEE, pp 548–555

12. Shojaei H, Ghamarian A, Basten T, Geilen M, Stuijk S, Hoes R (2009) A parameterized
compositional multi-dimensional multiple-choice knapsack heuristic for CMP run-time
management. In: 46th design automation conference, DAC 09, Proceedings (June 2009),
ACM, pp 917–922

13. Thiele L, Bacivarov I, Haid W, Huang K (2007) Mapping applications to tiled multiprocessor
embedded systems. In: application of concurrency to system design, ACSD 07, Proceedings
(July 2007), IEEE, 2007

14. Thiele L, Chakraborty S, Gries M, Künzli S (2002) A framework for evaluating design
tradeoffs in packet processing architectures. In: 39th annual design automation conference,
DAC 02, Proceedings (June 2002), ACM, pp 880–885

178 C. Baloukas et al.

http://www.mnemee.org/


15. Bleuler S, Laumanns M, Thiele L, Zitzler E (2003) PISA—A platform and programming
language independent interface for search algorithms. In: Fonseca CM, Fleming PJ, Zitzler E,
Deb K, Thiele L (eds) Evolutionary multi-criterion optimization (EMO 2003), vol 2632/2003
of LNCS. Springer, Heidelberg, pp 494–508

16. Steinke S, Wehmeyer L, Lee B, Marwedel P (2002) Assigning program and data objects to
scratchpad for energy reduction. In: design, automation and test in europe, DATE 02,
Proceedings, IEEE, 2002 p 409

17. MSC8144ReferenceManual, http://www.freescale.com/files/dsp/doc/ref_manual/MSC8144RM.pdf
18. The 600 bits/s, 1200 bits/s and 2400 bits/s NATO interoperable narrow band voice coder,

NATO standard STANAG No. 4591 edition Y (amendment W) Ratification Draft 1, Jan 2006
19. Guilmin G, Capman F, Ravera B, Chartier F (2006) New NATO STANAG narrow band

voice coder at 600 bits/s. Proceedings of IEEE international conference on acoustics, speech,
and signal processing, Toulouse, May 2006

20. OMAP-L137 Low-power applications processor, sprs563c, November 2009
21. Pyka R, Klein F, Marwedel P, Mamagkakis S (2010) Versatile system-level memory-aware

platform description approach for embedded MPSoCs, LCTES 2010, April 2010

10 Mapping Embedded Applications on MPSoCs: The MNEMEE Approach 179

http://www.freescale.com/files/dsp/doc/ref_manual/MSC8144RM.pdf


Chapter 11

The MOSART Mapping Optimization
for Multi-Core ARchiTectures

Bernard Candaele, Sylvain Aguirre, Michel Sarlotte,

Iraklis Anagnostopoulos, Sotirios Xydis, Alexandros Bartzas,

Dimitris Bekiaris, Dimitrios Soudris, Zhonghai Lu,

Xiaowen Chen, Jean-Michel Chabloz, Ahmed Hemani,

Axel Jantsch, Geert Vanmeerbeeck, Jari Kreku,

Kari Tiensyrja, Fragkiskos Ieromnimon, Dimitrios Kritharidis,

Andreas Wiefrink, Bart Vanthournout and Philippe Martin

Abstract MOSART project addresses two main challenges of prevailing archi-

tectures: (1) The global interconnect and memory bottleneck due to a single,

globally shared memory with high access times and power consumption; (2)

The difficulties in programming heterogeneous, multi-core platforms MOSART

aims to overcome these through a multi-core architecture with distributed

memory organization, a Network-on-Chip (NoC) communication backbone and

B. Candaele � S. Aguirre � M. Sarlotte
THALES Communications, Colombes Cedex, France

I. Anagnostopoulos (&) � S. Xydis � A. Bartzas � D. Bekiaris � D. Soudris
Institute of Communications and Computer Systems, Athens, Greece
e-mail: iraklis@microlab.ntua.gr

Z. Lu � X. Chen � J.-M. Chabloz � A. Hemani � A. Jantsch
Royal Institute of Technology-KTH, Stockholm, Sweden

G. Vanmeerbeeck
IMEC, Interuniversity Micro-electronics Center, Leuven, Belgium

J. Kreku � K. Tiensyrja
VTT Communication Platforms, Oulu, Finland

F. Ieromnimon � D. Kritharidis
INTRACOM S.A. Telecom Solutions, Peania, Greece

A. Wiefrink � B. Vanthournout
SYNOPSYS, Leuven, Belgium

P. Martin
ARTERIS, Guyancourt Cedex, France

I. Anagnostopoulos
Microprocessors and Digital Systems Lab, School of Electrical and Computer
Engineering, National Technical University of Athens (NTUA),
9 Heroon Polytechneiou, 15780 Athens, Greece

N. Voros et al. (eds.), VLSI 2010 Annual Symposium,
Lecture Notes in Electrical Engineering 105, DOI: 10.1007/978-94-007-1488-5_11,
� Springer Science+Business Media B.V. 2011

181



configurable processing cores that are scaled, optimized and customized together

to achieve diverse energy, performance, cost and size requirements of different

classes of applications. MOSART achieves this by: (1) Providing platform support

for management of abstract data structures including middleware services and a

run-time data manager for NoC based communication infrastructure; (2) Devel-

oping tool support for parallelizing and mapping applications on the multi-core

target platform and customizing the processing cores for the application.

11.1 Introduction and Motivation

The widening gap between power and performance requirements of applications

and what is afforded by technology scaling and architectural techniques clearly

points to multi-processor architectures as the solution. As an example, even the

present day wireless standard 802.11a requires more than 5 GIPs (IST—Project

E2R) of conventional DSP processing for its physical layer. The challenge going

forward is to be able to sustain several applications that are at least an order of

magnitude more demanding than the 802.11a/n/m.

Memory dominates the cost, power and performance of heterogeneous multi-

processor architectures. The need for large amount of storage and a high band-

width access to it comes from two ends. The primary need comes from the

applications becoming more complex and data intensive (high resolution, higher

bandwidth communication etc). The secondary need comes from the requirement

to hide the latency of accessing slower off chip memory. To comprehensively

optimize both the aspects, the challenge is to treat the memory question at system

level where decisions are made about how to map complex and abstract data

structures to efficient distributed memory hierarchy and provide runtime support

for memory management and scheduling.

To address the memory and interconnect challenges, MOSART has developed a

distributed memory architecture that is tightly integrated with a Network-on-Chip

(NoC) interconnect backbone. Physically and architecturally NoC is an enabling

technology that addresses the memory and interconnect challenge. Such NoC

based distributed architecture enables arbitrary communication pattern among

applications and also significantly lowers the interconnect latency, memory

latency and energy requirement for accessing data. Developing appropriate design

methods and tools, we have explored within affordable time budgets, various NoC

interconnection topologies and multi-layer memory structures resulting into high

performance and low energy NoC architecture.

To effectively utilize the distributed architecture and make the development

cycle more modular, MOSART has developed middleware services for memory

management for runtime data allocation and access scheduling. This middleware

provides an abstract data type library offering optimized data types to the appli-

cations running on the platform. Additionally, a run-time data allocator is in

charge of the data allocation over the distributed memory of the NoC platform.

182 B. Candaele et al.



Present in the middleware are APIs that interface to the data transfer services

(e.g., block transfers over the communication infrastructure).

Key characteristics of the developed architecture and the methodology are

flexibility, scalability and modularity. The flexibility comes from a library of

system level building blocks, both functional and infra-structural. The scalability

comes from the ability to logically combine resources for increased performance,

storage and/or bandwidth. The modularity comes from the way the building blocks

are architected and harnessed at the chip level and how the design methodology

models and abstracts them.

MOSART attempts to solve some of the most vexing problems facing the SoC

architectural and design community like (a) design productivity; (b) computational

power; (c) low power; (d) domination of memory in terms of power and performance;

(e) global interconnect latency; (f) bus scalability and (g) managing arbitrary con-

currency. In MOSART, we use NoC with distributed memory architecture to provide

us with scalability so that we can tune and customize the computational power, the

interconnect bandwidth and the storage to the needs of applications at hand.MOSART

is also developing a methodology to support the deployment for real life applications.

To summarize, the technical objectives are: (a) to develop a multi-core archi-

tecture with distributed memory organization, a NoC communication backbone and

configurable processing cores that are scaled, optimized and customized together to

achieve diverse energy, performance, cost and size requirements of different classes

of applications; (b) to provide platform support for management of abstract data

structures includingmiddleware services and a run-time datamanager forNoC based

communication infrastructure; (c) to develop tool support for parallelizing and

mapping applications on the multicore target platform and customizing the pro-

cessing cores for the application, and (d) to validate and evaluate the architecture and

tool support using applications from future high data rate wireless access.

11.2 Project Description

The MOSART project has developed a flexible modular multi-core on-chip

platform architecture and associated exploration design methods and tools.

The overall system level methodology by MOSART is depicted in Fig. 11.1.

The methodology steps are (a) Applications and Performance Requirements

(Sect. 11.2.1); (b) Parallelization and System-Level exploration (Sect. 11.2.2); (c)

NoC Customization (Sect. 11.2.3) and (d) ASIP exploration (Sect. 11.2.4).

11.2.1 Applications and Performance Requirements

The credibility of the MOSART approach is demonstrated by means of illus-

trative applications that demonstrate a high degree of usability for the existing

design base. Two such applications have been chosen for the purposes of

11 The MOSART Mapping Optimization for Multi-Core ARchiTectures 183



validation/evaluation. The first one is the implementation of a part of the cognitive

radio application on the MOSART platform. Cognitive radio is a new concept,

employed in order to optimize the frequency band usage. It will be integrated into

the next generation of post-SDR wireless terminal. This test case has already been

used to demonstrate the interest of the ASIP approach in a first step, that is

followed by the implementation of porting and execution of the parallelized code

on a combination of multi-core and multi-ASIP architecture.

The second is an implementation on the MOSART platform of selected parts of

the PHY layer of an experimental prototype of an IEEE 802.16e based broadband

wireless system. The 802.16e standard has been defined to support broadbandmobile

connectivity in urban environments. The standard places heavier processing

requirements than the earlier fixed WIMAX standard of 802.16d, coupled with the

ever-present need for low-power mobile terminals. The chosen application subset

has been coded in C, and gone through the steps of parallelization. This step provides

the necessary profiling information that will guide the ASIP exploration phase.

11.2.2 Parallelization and System-Level Exploration

Extraction of parallelism from the sequential model of applications is conven-

tionally used by algorithm developers. The MPSoC Parallelization Assist (MPA)

tool [1] analyzes the application and generates parallel source code based on

directives specified by the designer. The general idea of parallelization with MPA

Fig. 11.1 MOSART
framework overview

184 B. Candaele et al.



is that the designer identifies parts of the (sequential) code as candidates for

parallelization. Then via a separate directives file, he decides how to introduce

parallelism into to code. This could be as a functional pipeline, distributed loop-

iterations or a mixture of both. Given the input code and the parallelization

directives, the tool will generate functionally correct parallelized code. This is

achieved by doing lifetime analysis of all variables and automatic insertion of

communication queues and/or synchronization points for variables that are used

over multiple parallel threads. The MPA tool also comes with a simulator that

allows not only functional verification, but also allows for time-annotation of the

software. This way a first order approximation can be obtained for the performance

gain of the parallelization vs the sequential execution.

The performancemodeling and analysis approach is achievedwithABSOLUT [2]

that is a model-based approach for system-level design. This approach takes service

orientation into focus, and the execution platforms are modeled in terms of

services provided (ASIPs, memories, interconnect, etc.). The layered hierarchical

workload models represent the computation and communication loads the

applications cause on the platform when executed. The layered hierarchical platform

models represent the computation and communication capacities the platform offers

to the applications. The workload models are mapped onto the platform models

and the resulting system model is simulated at transaction-level to obtain

performance data. The approach enables performance evaluation early, exhibits light

modeling effort, allows fast exploration iteration, reuses application and platform

models, and provides performance results that are accurate enough for system-level

exploration.

11.2.3 NoC Customization

MOSART has developed new technologies for future MPSoC based upon

Network on Chip and distributed memory and computing cores for multimedia

and wireless communications. In our McNoC, memories are distributed but

shared among network nodes. An example is shown in Fig. 11.2. The system is

composed of 16 Processor-Memory(PM) nodes interconnected via a packet-

switched mesh network. A node can also be a memory node without a pro-

cessor, pure logic or an interface node to off-chip memory. As shown in

Fig. 11.2, each PM node contains a processor, for example, a LEON3, hardware

modules connected to the local bus, and a local memory. The key module,

which we introduce as an engine for memory and data management, is the

DME, able to simultaneously serve various requests from the local core and the

remote ones via the network. A Data Management Engine (DME) [3] has been

designed and implemented to handle all on-chip memory and data management

tasks for a distributed shared memory architecture. A set of data management

methodologies for future McNoC platforms is proposed too. The first method-

ology that is developed is the abstract data type optimization (ADT). Employing

11 The MOSART Mapping Optimization for Multi-Core ARchiTectures 185



this technique, the designers will be able to change the way the dynamic data of

applications are stored and accessed (MTh-DMM). Also, the mapping of

abstract data types to a distributed memory architecture is managed by the

runtime memory management.

A novel asynchronous communication scheme (GRLS = Globally Ratiochro-

nous-Locally Synchronous) [4] has been developed. The GRLS paradigm is based

on the observation that in SoCs all on-chip clocks are normally derived from the

same master clock. The GRLS paradigm constrains all local frequencies to be

rationally related, and uses clock dividers for the generation of the local fre-

quencies. The asynchronous communication problem is inherently more complex

compared to the ratiochronous counterpart, and we used the periodic properties of

rationally-related systems to build efficient latency-insensitive communication

interfaces, allowing maximum throughput, low latency and low overhead, coupled

with low complexity and high flexibility. We have shown how GRLS communi-

cation does not require handshake and has overhead and performance figures

which are close to those of mesochronous interfaces, while keeping a flexibility

close to that of GALS. We used the GRLS paradigm as the basis for the MOSART

power management scheme, which partitions the SoC into different clock regions,

which can be optimized independently from each other by means of Dynamic

Voltage and Frequency Scaling (DVFS). Voltage Scaling is realized using a

quantized approach, in which multiple supply voltages are distributed throughout

the chip and the regions can dynamically select which voltage to use for power

supply. We have developed fully programmable Power Management Units to

manage power services in the platform. The Power management Units allow to

dynamically change the frequency and the supply voltage of any region and offers

clock gating and shutoff services. Dynamic reconfiguration of the GRLS regions is

also supported.

Fig. 11.2 A 16-node Mesh
McNoC; Processor-Memory
(PM) node and supported
services

186 B. Candaele et al.



11.2.4 ASIP Exploration

The ASIP design space can be very complex, and the performance estimations

become very late in the design process in traditional approaches. The amount of

manual work is considerable and the design cycle takes so much time that the

exploration of the ASIP architecture design space remains very weak. The pro-

posed methodology and prototype tool is according to our knowledge the first

attempt to raise the ASIP design abstraction level above a standalone ASIP.

Adding the ASIP architecture exploration to front of an existing ASIP design flow

will allow for finding a good architecture for the actual design of an ASIP.

It facilitates evaluation of the ASIP performance early in the design process which

results in a more systematic approach, increase automation and allow exploration

of larger ASIP design space. The method and tool gives estimates of number of

registers, number and types of functional units, number of pipeline stages and the

instruction set of the ASIP core that would best satisfy the computational

requirements of the types of algorithms it is targeted for. From the set of core

models in the design space, the approach finds the most optimal for the given

algorithm Fig. 11.3.

11.3 Experimental Results

In this section, examples of MOSART’s are presented. According to the afore-

mentioned methodology we show the results in the field of (a) Parallelization;

(b) System level exploration; (c) Supporting distributed shared memory services

and (d) ASIP exploration.

Fig. 11.3 Description and comparison of the different memory allocators

11 The MOSART Mapping Optimization for Multi-Core ARchiTectures 187



11.3.1 Parallelization

The aforementioned application of selected parts of the PHY layer of an experi-

mental prototype of an IEEE 802.16e based broadband wireless system

(Sect. 11.2.1) was used as input to the parallelization tool. The first step towards

code mapping was the modification of the C sources, so that the coding style is

conformant with MPA syntax and semantics requirements. Once the C source was

cleaned-up, the sequential code was executed on a conventional PC platform to

verify that the application functionality had been preserved. It was then annotated

with standard C syntax labels, to facilitate parallelism extraction from the MPA

tool and conversion of the original sequential code into a multi-threaded version.

Instrumentation code had also been added by the MPA suite, to facilitate gathering

of vital program statistics which are displayed in textual and visual form once the

modified code is compiled and run onto the targeted MPSoC platform. The par-

allelization and optimization process was thus guided towards production of multi-

threaded code, matching the capabilities of the multi-core platform.

During the learning phase of MPA use, trivial parallelization scenarios were

run, where a single thread executes all functionality of the labeled code segments.

Subsequently, more elaborate parallelization scenarios were tried, initially

extracting the ‘‘easy’’ parallelism that is suggested by the application code outline:

the iFFT/FFT blocks were assigned to individual threads, with the rest of code

functionality assigned to a couple of additional threads. During the process of code

parallelization, additional ‘‘unsafe’’ code features were identified and removed

from the original sequential code, that is always the starting point of the explo-

ration effort. Issues such as arrays of structures and inconsistent use of declared

multi-dimensional arrays, which are forbidden by MPA although allowed by C

semantics and able to go through production compilers such as gcc, were removed

from the code. All such transformations of the sequential original sources were

validated by runs on the PC platform.

11.3.2 System Level Exploration

The JPEG encoder was used to experiment and validate the GCC compiler-based

workload generation tool in the context that takes MPA-parallelized source codes,

creates respective workload models and maps them on the ABSOLUT platform

model for transaction-level performance simulation in SystemC. The parallel

versions of the JPEG encoder were created with the MPA tool. We generated four

sets of workload models from the encoder. The first one was from the unmodified

sequential application and the other three from parallelized versions of the

application: Par-1 had two threads with the second thread executing Getblock and

DCT algorithms. Par-2 consisted of three threads with the second and third one

interleaving the execution of Getblock, DCT, and Quantization. Par-3 had also

188 B. Candaele et al.



three threads with the second and third thread executing just Getblock and DCT in

an interleaved manner.

The execution platform model for the performance simulation of the JPEG

application is depicted in Fig. 11.4. It consists of 4 ARM nodes connected by

routers, which form a ring-like network. Each node has an ARM9 CPU, some local

SRAM memory, a shared bus, and an interface to the other nodes. The accuracy of

the ABSOLUT simulation approach has been evaluated with several case exam-

ples in [5, 6].

According to [6] both Par-1 and Par-3 have 100% utilization on the cpu of the

ARM node 0. Par-1 has 44% cpu utilization in the second ARM node, whereas

Par-3 has 21% utilization across nodes 1 and 2. Par-2 has 88% utilisation in the

first node: it is idling at some point of simulation while waiting data from the other

two threads. Since Par-2 has a shorter execution time and more work for nodes 1

and 2, the cpu utilisation in those nodes is considerably higher at 53%.

11.3.3 Supporting Distributed Shared Memory Services

11.3.3.1 Utilization of Base Services

We implemented two applications, matrix multiplication and 2D radix-2 DIT FFT,

on the McNoC platform (See Fig. 11.2) with a range of sizes from 1 node to 64

(8–8) nodes. The matrix multiplication, which is computation intensive and does

not involve synchronization, calculates the product of two matrices, A[64, 1] and

B[1, 64], resulting in a C[64, 64] matrix. To vary the computation time, we

consider both integer and floating point matrix multiplications. Figure 11.5 shows

the system speedup for the two applications. As the system size increases from 1 to

64 cores, the speedup rises from 1 to 36.494 for the integer matrix multiplication,

from 1 to 52.054 for the floating point matrix multiplication, and from 1 to 48.776

for the 2D FFT. The speedup for the floating point matrix multiplication is higher

than that for the integer matrix multiplication. This is as expected, because, when

Fig. 11.4 Example platform
consisting of four ARM nodes

11 The MOSART Mapping Optimization for Multi-Core ARchiTectures 189



the computation takes more time, the portion of communication time becomes less

significant, thus achieving higher speedup. That is to say, as the system size

increases, communication becomes a more limiting factor for performance due to

nonlinear increase in communication latency. In all cases, the DME overhead is

insignificant.

11.3.3.2 Utilization of Advanced Services

The application we use as a test driver is a combination of several real-life kernels

that are present in network applications [7, 8]. We triggered the system with a set

of traces from a real wireless network. The software application is fully multi-

threaded as it is increasingly common in computing systems: each kernel is exe-

cuted in its own independent thread and communicates asynchronously with the

other kernels through asynchronous FIFO queues. Through extensive application

profiling we captured the allocation behavior of the application [8]. This infor-

mation contains the block size distribution of the memory allocation requests.

Based on the allocation behavior of the application the most appropriate allocator

would be a pure-private one [9], offering the best performance in multi-processor

environments. To evaluate our approach we use five different pure-private memory

allocators, presented in Table 11.1.

The results are presented in Fig. 11.3, where a comparison is performed in

terms of number of memory accesses, maximum requested memory footprint and

DME cycles. Out of the five memory allocators Alloc1 is the one that offers the

smaller amount of memory accesses (21% less than Alloc3, which is the most

complex one) and DME cycles, as it has the simplest internal structure and thus

needing few memory accesses to service the allocation requests. Since all memory

allocators have their free-lists and mapping functions to match the application’s

requirements, they all have similar behavior regarding the requested maximum

memory footprint. However, when the static memory solution is compared against

the dynamic one it requires 100% more memory footprint (Fig. 11.3).

Fig. 11.5 Speedup of matrix
multiplication and 2d DIT
FFT

190 B. Candaele et al.



11.3.3.3 Power Management Services

The power services are accessed by the Power Management Intelligence software

(PMINT) through what we call Power Management System (PMS) (Fig. 11.6).

The PMS is made up of three separate blocks: the Power Management Unit

(PMU), the Clock Generation Unit (CGU) and the Voltage Control Unit (VCU).

The Power Management Intelligence PMINT communicates with the PMU, which

is a complex set of state machines giving access to the power services. The power

services are coordinated by the PMU and actuated by the CGU and the VCU, used

respectively to generate the local clock(s) for the region and to regulate its supply

voltage. While some of the power management services involve only CGU or

VCU, the majority involve both units under the supervision of the PMU. The

offered services are: (a) changing frequency; (b) changing voltage; (c) changing

Table 11.1 Description of the five different allocators

Allocator Description (free-lists) Code size (Bytes)

Alloc 1 Free-list 0 (blockSize = 40) 4792

Free-list 1 (blockSize = 1,460)

Free-list 2 (blockSize = 1,500)

Generic heap (holds blocks of other sizes)

Alloc 2 Free-list 0 (blockSize [ [0, 40]) 4792

Free-list 1 (blockSize [ [1, 280, 1, 460])

Free-list 2 (blockSize [ [1,460, 1,500])

Generic heap (holds blocks of other sizes)

Alloc 3 Free-list 0 (blockSize [ [0, 40]) 7728

Free-list 1 (blockSize = 1,460)

Free-list 2 (blockSize = 1,500)

Free-list 3 (blockSize [ [40, 92])

Free-list 4 (blockSize [ [92, 132])

Free-list 5 (blockSize [ [132, 256])

Free-list 6 (blockSize [ [256, 512])

Free-list 7 (blockSize [ [512, 1,024])

Free-list 8 (blockSize [ [1,024, 1, 500])

Generic heap (holds blocks of other sizes)

Alloc 4 Similar to Alloc 1 with the addition of free-list 3 (blockSize = 92) 5824

Alloc 5 Similar to Alloc 2 with the addition of free-list 3 (blockSize = 92) 5824

Fig. 11.6 Structure of the
power management system

11 The MOSART Mapping Optimization for Multi-Core ARchiTectures 191



DVFS point; (d) clock gating; (e) hybernation and (f) power off. The maximum

frequency (post layout) of the PMU is 1w25 GHz.

11.3.4 ASIP Exploration

11.3.4.1 Initial Profiling

There are three profiling level. The highest one (the least detailed) only simulate

the total cycles required to run the whole application. On the other hand, the lowest

one (the most detailed) profiles the time spent in each functions called in the C

code (emulation function included). Both this two levels are activated by default

while profiling. The third level of profiling is user-defined, and profiles the time

spent in a (or several) user-defined part (called section) of the C code; usually, the

detail level of this profiling is between the two other level. The initial profiling,

with meaningful defined sections, on the VLIW architecture template provided by

Processor Designer showed most of the cognitive radio application runtime were

required to perform the wideband filter, as shown in Fig. 11.7. The ‘‘not profiled’’

part is mainly composed of extra cycles introduced by the user-defined profiling

section, for about 10% among 15%. The 5% last percents gathered mainly memory

management (malloc, free, etc.), and the filter coefficient initialisation.

11.3.4.2 MAC Instruction

First, as the filtering required more than 85% of the total runtime, a MAC

instruction has been added in the processor instruction set to speed this up. In order

to not slow down too much the frequency, this MAC operation is implemented

within two pipeline stages, i.e. within two clock cycles. During, the first cycle,

operands are read and the multiplication is computed. Then, during the second

cycle, the multiplication result is accumulated in the destination result, i.e. added

Fig. 11.7 Initial profiling results on the VLIW architecture template

192 B. Candaele et al.



with the destination register previous value. The implementation of this operation

has been automatically mapped to a multiplication-accumulation from the C to the

assembly code tested and validated. Then, the application has been profiled again

on this optimized processor, and its results are shown on Fig. 11.8.

As a comparison, initial profiling results are shown on the left (figures are in

millions of cycles). Moreover, the total runtime is cut in four different parts. The

firstone (‘‘MAC’’, represented in yellow) is the time spent computing the multi-

plication accumulation. The second one (‘‘index’’, represented in red) is the time

spent computing the memory address of the MAC operands (input sample and

filter coefficient). The third one (‘‘misc’’, represented in orange) is the remaining

time spent in the filtering function; it is mainly composed of extra (useless) cycles

introduced by the user-defined profiling sections, and of loop branching instruction

and index computing. Eventually, the last part (represented in blue), is the time left

(transposition, decimation, etc.). Among these four parts, the MAC instruction

obviously optimized the ‘‘MAC’’ part; it speeds it up more than eight times.

11.3.4.3 Branch Prediction

The MAC instruction enhanced much the step 1 runtime. A second analyzing of

these new performances showed many cycles were wasted in computing branch

condition. As the application is based on nested loops, there are many condi-

tional branch instructions, and each of them required a pipeline stall to compute

whether the condition is true or not. The second ASIP optimization consists in

implementing a loop-optimized branch prediction. It means that the processor

would recognize a conditional branch that corresponds to a loop (defined by a

branching address before the current program address). Then, it would auto-

matically take the branch without computing the condition which is actually true

most of the time. Then, the condition is computed to check the branching was

right; if not, the processor goes back the instruction right after the branch

instruction. Performances for this new ASIP have then been profiled, and the

results are shown in Fig. 11.9.

Fig. 11.8 Profiling result
with the MAC instruction

11 The MOSART Mapping Optimization for Multi-Core ARchiTectures 193



11.3.4.4 SW/HW Performances Trade-Off

Figure 11.10 provides a summary of the achieved results about the software/

hardware trade-off. It represents the different gains from the initial VLIW archi-

tecture. The first gain (cycles) represents the software gain, i.e. how faster

(in comparison with the initial version) the application runs considering the same

chip frequency; for example, a gain of 5 means than the application required five

times less cycles to run in comparison with the initial version. Then the next two

figures (frequency and area) are related to the hardware impact. A figure greater

than one means that the design is better than the initial one; for area, it means the

chip is smaller, and for frequency, it means it run faster. Eventually, the last one

(runtime) takes into account both software and hardware gains. Runtime represents

the time (in seconds) required to run the application, and is determined from both

the amount of cycles and the chip frequency. Actually, it shows than the great

software gain afforded by the MAC instruction is partially counterbalanced by the

frequency fall it introduces.

Fig. 11.10 Software/
hardware trade-off

Fig. 11.9 Profiling result
with the branch prediction

194 B. Candaele et al.



11.4 Conclusions

The objective of the MOSART project is to develop a flexible, modular multi-core

on-chip platform architecture and associated exploration design methods and tools,

to allow the scaling of the platform and optimization of its constituent elements for

various embedded, multimedia and wireless communication applications.

In MOSART, we have deployed a cluster of ASIPs to target a suite of applications

and we enhance the efficacy of the MPSoC concept by using distributed memory

architecture and use of NoC. By adopting such an architecture, we claim that we

not only gain flexibility, scalability and modularity, we also improve the com-

putational efficiency to the extent that in the ladder of computational efficiency, the

proposed architecture would be only one notch below hardwired ASICs and yet

largely retain the flexibility of programmable solutions.

Acknowledgments This work is supported by the E.C. funded FP7-215244 MOSART Project,
www.mosartproject.org

References

1. Mignolet J-Y et al (2009) Mpa: Parallelizing an application onto a multicore platform made
easy. IEEE Micro 29(3):31–39

2. Kreku J et al (2008) Combining uml2 application and systemc platform modelling for
performance evaluation of real-time embedded systems. EURASIP J Embedded Syst
2008:1–18

3. Chen X et al (2010) Supporting distributed shared memory on multi-core network-on-chips
using a dual microcoded controller. In: Proceedings of DATE. pp 39–44

4. Chabloz JM, Hemani A (2009) A flexible communication scheme for rationally-related clock
frequencies. In: Proceedings of ICCD. pp 109–116

5. Kreku J et al (2004) Workload simulation method for evaluation of application feasibility in a
mobile multiprocessor platform. In: Proceedings of DSD. IEEE Computer Society. pp 532–539

6. Kreku J et al (2010) Automatic workload generation for system-level exploration based on
modified GCC compiler. In: Proceedings of DATE

7. Bartzas A et al (2008) Enabling run-time memory data transfer optimizations at the system
level with automated extraction of embedded software metadata information. In: Proceedings
of ASP-DAC. pp 434–439

8. Bartzas A et al (2010) Software metadata: Systematic characterization of the memory
behaviour of dynamic applications. J Syst Software 83(6):1051–1075

9. Wilson PR et al (1995) Dynamic storage allocation: A survey and critical review.
In: Proceedings Of IWMM. Springer-Verlag, Berlin, pp 1–116

11 The MOSART Mapping Optimization for Multi-Core ARchiTectures 195

http://www.mosartproject.org


Part III

Emerging Devices and Nanocomputing



Chapter 12

XMSIM: Extensible Memory Simulator
for Early Memory Hierarchy Evaluation

Theodoros Lioris, Grigoris Dimitroulakos and Kostas Masselos

Abstract This paper presents a memory hierarchy evaluation framework for

multimedia applications. It takes as input a high level C code application

description and a memory hierarchy specification and provides statistics charac-

terizing the memory operation. Essentially the tool is a specialized C++ data type

library which is used to replace the application’s data types with others that

monitor memory access activity. XMSIM’s operation is event driven which means

that every access to a specific data structure is converted to a message towards the

memory model which subsequently emulates memory hierarchy operation. The

memory model is highly parametric allowing a large number of alternatives to be

modeled. XMSIM’s main advantage is its modularity allowing the designer to alter

specific aspects of the memory operation beyond the predefined ones. The main

features are the capability to: (1) simulate any subset of the application’s data

types, (2) user defined mapping of data to memories, (3) simultaneously simulate

multiple memory hierarchy scenarios, (4) immediate feedback to code transfor-

mations effect on memory hierarchy behavior, (5) verification utilities for the

validation of code transformations.

Keywords Memory simulation � Memory hierarchy evaluation tools � Computer

aided design � Code transformations

T. Lioris � G. Dimitroulakos (&) � K. Masselos
Computer Science and Technology Department, University of Peloponnese,
Tripolis, Greece
e-mail: dhmhgre@uop.gr

N. Voros et al. (eds.), VLSI 2010 Annual Symposium,
Lecture Notes in Electrical Engineering 105, DOI: 10.1007/978-94-007-1488-5_12,
� Springer Science+Business Media B.V. 2011

199



12.1 Introduction

Microprocessor speeds have risen dramatically during the last years in discrepancy

to current memory operation speeds. This fact indicates a major bottleneck in the

processor-memory intercommunication, deteriorating system performance and

increasing time delay. Moreover, applications in the embedded system domain

require drastic reduction of power consumption for long life battery operation. The

use of cache memories has long provided a way to hide such latencies and reduce

power consumption [1]. For the above reasons, it is highly acceptable today that

memory hierarchy design is one of the major issues in modern embedded pro-

cessors’ implementation.

Nowadays system design flow is a two phase process. Initially the application is

developed in a high level language (such as C/C++) by designers bearing an

algorithmic background. More or less they provide a functional code which is by

far not optimized. In the second phase the mapping of the application to a specific

embedded processor is implemented and optimized. Today’s mainstream practice

requests collecting results of the application first and feeding the results to a

separate profiling/optimization program afterwards. Our work facilitates the

completion of the optimization process in the following ways: (1) application’s

code development and profiling are performed on the same development frame-

work and (2) instant verification of the code transformation.

Usual practice is to develop algorithms in C language which is more close to

hardware implementation. More specifically, a small subset of the C language’s

data types are used that is, arrays and scalars which are determined at compile

time. Although there has been an extensive research on the automation of the

optimization, it is still an area that human interaction is required. In most cases the

designer should have a minimum knowledge about how the application works to

perform optimizing decisions. Additional design effort can be saved if the algo-

rithm’s designer has an insight about how its decisions affect the performance of

the memory system. Our work provides the designer with the ability to evaluate his

decisions on the back-end of the hardware design flow.

In this paper, a memory hierarchy evaluation framework is proposed that unifies

the algorithmic development and memory hierarchy optimization phase. It is an

event-driven environment where the application’s arrays and scalars are substi-

tuted by objects with the same behavior, providing profiling capabilities. Profiling

is accomplished by means of event generation when memory accesses take place

that is, on access to a data structure. These messages bear information about data

structure accesses and are forwarded to a memory model that records and trans-

lates them to memory accesses. The output of the tool is a series of profiling data,

characterizing the memory hierarchy performance.

The advantages of the tool are: (1) The memory model is highly parametric and

models a large number of memory hierarchy scenarios. (2) The overall algorithmic

development, debugging and optimization take place under a single environment

which is the Microsoft Visual Studio IDE [2]. (3) Verifying the program’s integrity

200 T. Lioris et al.



after code transformation’s is made easy by verification routines developed for this

purpose. (4) Multiple memory hierarchy scenarios can be examined simulta-

neously. (5) The designer can fully control data mapping to memories and the

subset of data structures that he wants to simulate. (6) The tool is extensible that is,

the designer can built new classes inheriting the default ones providing

user defined analysis as well as configure the memory’s operation by means of

callback functions and (7) It can be extended to cooperate with existing tools

(CACTI [3, 4]) that provide power estimation.

The paper is organized as follows: Sect. 12.2 includes the related work while

Sect. 12.3 explains the simulator architecture. Section 12.4 describes the

development environment Sect. 12.5 presents the experimental results, and finally

Sect. 12.6 concludes the paper.

12.2 Related Work

Most cache simulators nowadays target more on educational purposes than cache

design. Although our work can be used on both disciplines, our main purpose is to

facilitate code optimization towards cache efficient design. Currently there are two

types of cache simulators: execution-driven and trace driven. Execution-driven

simulators [5–7] display cache operation, as well as cache-processor communi-

cation, giving a more detailed view of the computer system at the expense of

simulation time and clarity. Trace-driven simulators [8] simulate the result on

cache state and contents of a specific memory access trace which is fed as input to

the simulator. Moreover, execution-driven simulators bind on specific processor

architecture while trace-driven are architecture independent. From this point of

view, our work is categorized to the trace driven division.

One of the first attempts to build a cache simulator was the PC-Spim [9] which

was extended with the appearance of SpimCache [10]. Unfortunately, the latter

was only suitable for one cache level simulations and could not alter cache

characteristics like the line size or different policies. An extension of SpimCache

was the SpimVista tool [6] intended to represent cache hierarchy and the inter-

action between cache levels. Simplescalar [5] is another representative example of

an execution-driven cache simulator, as well as the mlcache simulator [7]. On the

other hand, trace-driven simulators are easier to understand. Dinero IV [8] is a

trace-driven simulator written in C where various cache design parameters (like

cache associativity, write-back or write-through, cache line size etc.) can be

configured.

Our work differentiates in many aspects. In both types of existing simulators it

is difficult to associate the C code statement executed and the particular action

taking place in the cache because the input to all simulators is the assembly

language. In our work the designer observes the results of every C statement in

memory state and contents. Moreover, it is extensible such that new measurements

12 XMSIM: Extensible Memory Simulator for Early Memory Hierarchy Evaluation 201



can be introduced by the designer. Finally, it is equipped with the capability to

verify correctness of the application’s transformed code.

12.3 Simulator Architecture

The simulator engine consists of twomain parts: (1) theEventGenerationEngine and

(2) the memory model. The Event Generation Engine is the core of XMSIM. It is a

library of two template classes emulating the C language’s arrays and scalars. Each

array or scalar can be fully emulated from a properly parameterized template class.

The main purpose of these classes is to record data structure access activity and

produce events to experimental objects such as a virtual memory hierarchy or CPU.

Since, these classes can fully substitute the C native types the application executes in

an identical way providing a trace of events able to trigger update in state and

contents of the experimental objects. The overall state transition can be studied either

step by step or in summary making the evaluation possible.

Figure 12.1 illustrates XMSIM architecture. The tool engagement to the

application involves two steps: (1) substitution of the application’s arrays and

scalars with the tool’s data types and (2) mapping of these data types to Memory

Model. As the application is executed, events originating from data type accesses

are directed to the Memory Model, which responds with data flowing to and from

the application. The whole simulation/analysis process is based on a well estab-

lished development IDE, the Microsoft Visual Studio which is exploited to

extended the tool’s capabilities. Each simulation context consists of the application

and XMSIM libraries. Both are compiled and linked as one C/C++ project and the

execution provides the experimental results.

The Event Generation Engine includes two classes one for arrays (called

CArrayWrapper) and one for scalars (CScalarWrapper). It uses operator over-

loading [11] to emulate all native C language’s operators by user defined ones

functionally equivalent but with the ability to profile and driving experimental

objects through the use of events. For this reason, each template class includes an

array of pointers to objects corresponding to an abstract class [11] called CContext

representing the interface of experimental objects to the Event Generation Engine.

The CContext class consists of a set of member functions each corresponding to a

Memory System

SDRAM

Cache

L1

L2

Events

Data

Event Generation 

Engine

Application

Microsoft Visual Studio IDEFig. 12.1 XMSIM
architecture

202 T. Lioris et al.



type of event. To support event capture and service each class representing an

experimental object should be derived from the class CContext.

The Memory Model is a set of classes each corresponding to different types of

memory technology. All the classes are derived from the CContext class to support

event handling and interface with the Event Generation Engine. Currently our

framework supports parametric models for SDRAM, static RAM, cache and

scratch-pad memory. Each, memory object includes pointers to other memory

objects so as to model memory hierarchies. In addition, for the event handling each

memory class provides specialized implementation of the member functions

inherited from CContext according to its operation.

To summarize, events are generated upon access to any scalar or array data

structure. That is in every operator function inside CArrayWrapper and

CScalarWrapper. Events take the form of calls to CContext member functions

inside each experimentation object. The objects handle these messages by altering

their state and contents according to the information conveyed by each message.

The carried information includes the type of data access (read or write), virtual

address, etc. Figure 12.2 depicts the event generation and handling mechanism.

The overall tool architecture gives prosperous ground to extend its function-

ality. Every class in both the Event Generation Engine and the Memory Model can

be inherited by a user defined class to widen the functionality and simulation

utilities. Hence, inheritance [11] provides event handling support necessary to

trace data type access events and gives user defined opportunities to extend

memory access analysis and behavior. Figure 12.3 summarizes the extensibility

options of XMSIM. The designer may combine one of the Event Generation

Engine components (base or extended) with one of the Memory Model’s. Totally

there are 4 combinations by which the base and extended components can be

combined. By extending the Event Generation Engine new opportunities of

analysis emerge from the application’s data types. On the other hand by extending

the Memory Model classes, memories with different characteristics and functions

can be introduced. Moreover, new analysis scenarios can be built based on the

XMSIM event driven concept.

Moreover, having one conceived the organization of the project can alter or

enhance at will the behavior of the memory models. The core of the functionality

of the Memory Model Service lies within the four main routines of each memory

class, which are the MAP, ADDRESS, WRITE and READ functions.

Application CArrayWrapper

 Object
Memory Object

CContext
inherits

calls

calls

calls

calls

Specialized 

handling routines

data data

data data

Fig. 12.2 Event generation
and handling

12 XMSIM: Extensible Memory Simulator for Early Memory Hierarchy Evaluation 203



These functions can be re-written to fit one’s needs (like time delays from data

transfer or specific sorts of misses), ornamented with enhanced functionality (like

split caches or write-around policy), or even extended by calling additional rou-

tines. Furthermore all the classes can be extended in order to implement brand new

concepts of memory layout. Thus the researcher can model any memory unit and

test any memory hierarchy, restricted merely by his/her programming aptitude and

his ambition.

The following example illustrates how one aspect of XMSIM functionality can

be configured by rewriting the callback function ADDRESS(). The default

realization of XMSIM assumes row-wise mapping of array data to memory.

The example shows how the row-wise mapping can be transformed to column-

wise. In XMSIM the Physical Address (PA) of an array data value in memory is

the sum of the array’s Base Address (BA) and the Virtual Address (VA). The latter

determines the ordering of array elements in memory. The ADDRESS() function

calculates the virtual address and provides this value to the memory model

to compute the physical address. The physical address is estimated from the

following equation

PA ¼ BAþ VA; ð12:1Þ

The VA for row-wise mapping is given by the following equation

CArrayWrapper

CScalarWrapper

CSDRAM
CStaticRam

CCache
CScratchPad

CContext

inherit

XMSIM Base configuration

CSDRAM_User

CStaticRam_User

Ccache_User

CScratchPad_User

XMSIM Extension configuration

CArrayWrapperUser

CScalarWrapperUser

Event Generation Engine Memory Model

Inheritance

Fig. 12.3 XMSIM extensibility options

204 T. Lioris et al.



VA ¼ In þ
X

n�1

i¼1

Y

n

j¼iþ1

Nj

 !

� Ii ð12:2Þ

VA ¼ I1 þ
X

n

i¼2

Y

i�1

j¼1

Nj

 !

� Ii; ð12:3Þ

where n is the number of array dimensions and Nj is the size of the j-th dimension.

On the other hand, column-wise mapping is realized by Eq. 12.3. Figure 12.4

shows one possible realization of the two versions of the ADDRESS() function

corresponding to the row and column-wise mapping respectively. There isn’t a one

to one correspondence among the indexes in the loops in Fig. 12.4 and in

Eqs. 12.2 and 12.3 but semantically are identical.

12.4 Development Environment

In the sequel the environment supporting the design, analysis and optimization

phases will be described. The overall framework is based on a popular develop-

ment environment the Microsoft Visual Studio. It is an extensible and mature

environment used extensively in many contexts. Microsoft Visual Studio provides

an extensive set of debugging capabilities step by step execution and trace of the

application’s variable values.

The experimental setup requires the memory architecture, the application and

the variables’ set to examine. Memory hierarchy scenarios are described in a flat

input file in a very simple language format. The parser instantiates and links the

memory objects to form memory hierarchies. The tool informs about the memories

made, or about erroneous input. Many memory hierarchies can be imported in a

single input file. Thus one can simultaneously challenge a code against alternative

memory hierarchies.

The language used at the input file to depict the memory model is straight-

forward and easy to understand. Every command must take up a single line and be

delimited by the semicolon (;) as in C/C++ grammar. All commands are of the

form: ‘‘parameter: value’’ and the command repertoire hardly exceeds fifteen

members. The script can include one-line comments after the hash sign (#) at the

beginning of the line. Every memory unit is uniquely named and declared sepa-

rately from the rest. The directives describe physical characteristics of every

memory unit such as the number of blocks, words of every memory block, the size

of every word in bits, number of banks in the case of SDRAM as well as operation

policies like write-back/write-through and associativity. Energy consumption can

be defined and the way different memory units are connected to form a multilevel

hierarchy. Figure 12.5 shows an example of memory hierarchy description file.

The second stage involves two steps. The first concerns the replacement of the

application’s data types with the ones provided by XMSIM. At this point the

12 XMSIM: Extensible Memory Simulator for Early Memory Hierarchy Evaluation 205



designer may decide to have two versions of the code the one engaged to XMSIM

and the other being the original. This option is essential to verify code correctness

when the designer applies code transformations. For this reason, XMSIM

provides verification routines in CArrayWrapper and CScalarWrapper classes to

ROW-WISE MAPPING

template <typename T>

void CArrayWrapperT<T>::ADDRESS(unsigned int &VirtualAddress) const{

unsigned int i,j;

int icoef ;

// MACROS

// ARRAY_DIMENSIONS    : Returns the number of array dimensions

// DIMENSION_SIZE(i)   : Size of the ith dimension

// ARRAY_SUBSCRIPT(i)  : Value of the ith array subscript

VirtualAddress =0;

for ( i = ARRAY_DIMENSIONS-1; i>= 0 ; i-- ){

icoef = 1; 

for ( j=ARRAY_DIMENSIONS-1; j>=i+1; j--){

icoef *= DIMENSION_SIZE(j); 

}

VirtualAddress += icoef*ARRAY_SUBSCRIPT(i);

}

return;

}

COLUMN-WISE MAPPING

template <typename T>

void CArrayWrapperT<T>::ADDRESS(unsigned int &VirtualAddress) const{

unsigned int i,j;

int icoef ;

// MACROS

// ARRAY_DIMENSIONS    : Returns the number of array dimensions

// DIMENSION_SIZE(i)   : Size of the ith dimension

// ARRAY_SUBSCRIPT(i)  : Value of the ith array subscript

VirtualAddress =0;

for ( i = 0; i< ARRAY_DIMENSIONS-1 ; i++ ){

icoef = 1; 

for ( j=0; j>=i-1; j++){

icoef *= DIMENSION_SIZE(j); 

}

VirtualAddress += icoef*ARRAY_SUBSCRIPT(i);

}

return;

}

Fig. 12.4 ADDRESS() function transformation example

206 T. Lioris et al.



compare equality between the XMSIM’s objects and the C language’s data types.

Figure 12.6 depicts how XMSIM transforms C language data types to XMSIM

data type declarations. The outcome of this process is the application’s statements

to remain untouched operating on XMSIM’s data types.

In the second step the designer has the ability to map the XMSIM’s arrays and

scalars to specific memory locations. If this step is overridden for any data type

then XMSIM places it automatically to main memory following a sequential

placement on empty address space. Figure 12.7 illustrates the assignment of a

specific memory address to an array while Fig. 12.8 depicts the application’s code

layout after XMSIM engagement. As it is obvious, nothing is changed in the

code except for the data type declarations.

Main memory

L2

L1

CPU

Fig. 12.5 Memory hierarchy description file example

Fig. 12.6 XMSIM engagement example

12 XMSIM: Extensible Memory Simulator for Early Memory Hierarchy Evaluation 207



Fig. 12.7 Attachment of an array to memory example

void cav_detect(){

/*C declarations */

static unsigned char gauss_x_image[N][M];

static unsigned short gauss_x_compute[N][M][(2*GB)+2];

/* C Statements */

for (x=GB; x<=N-1-GB; ++x){

for (y=GB; y<=M-1-GB; ++y) {

gauss_x_compute[x][y][0]=0;

for (k=-GB; k<=GB; ++k)

gauss_x_compute[x][y][GB+k+1] = 

gauss_x_compute[x][y][GB+k] + 

(image_in_traf[x+k][y]*Gauss[abs(k)]);

gauss_x_image[x][y]= 

gauss_x_compute[x][y][(2*GB)+1]/tot;

}

}

…

…

}

void cav_detect(){

/*C declarations */

/* Step 1 data type substitution */

//static unsigned char gauss_x_image[N][M]; // commented

//static unsigned short gauss_x_compute[N][M][(2*GB)+2]; // commented

int Dim1[2] = {N,M};

int Dim2[3] = {N,M,2*GB+2};

static CArrayWrapperT<unsigned char> gauss_x_image(2,Dim1,"gauss_x_image");

static CArrayWrapperT<unsigned short> gauss_x_image(2,Dim2,"gauss_x_compute");

/* Step 2 (optional) map arrays to specific memory segments */

unsigned int base_address = 0xFFA3;

ATTACH_ARRAY_TO_MEMORY(gauss_x_image, main_memory, base_address);

/* C Statements */

for (x=GB; x<=N-1-GB; ++x){

for (y=GB; y<=M-1-GB; ++y) {

gauss_x_compute[x][y][0]=0;

for (k=-GB; k<=GB; ++k)

gauss_x_compute[x][y][GB+k+1] = 

gauss_x_compute[x][y][GB+k] + (image_in_traf[x+k][y]*Gauss[abs(k)]);

gauss_x_image[x][y]= gauss_x_compute[x][y][(2*GB)+1]/tot;

}

}

…

…

}

Original Application Code

Application Code after XMSIM engagement

Fig. 12.8 Example of code
layout

208 T. Lioris et al.



The ultimate goal is to evaluate an application on a memory hierarchy in

respect to power, area and speed metrics. For this reason XMSIM can be used in

cooperation with existing power, time and area estimation kits developed for the

different memory technologies supported by XMSIM. The CACTI tool [3] can be

used for cache and scratch-pad [12] while for SDRAM exist power and speed

estimation models such as the ones provided by Micron [4]. Before running the

simulation, the aforementioned tools supply power, area and time metrics for each

memory. The outcome of simulation provides the operational profile of the

application in terms of power speed and area.

Finally, there are two spots in XMSIM where the designer can broaden its

utilities. The first involves the Event Generation Engine while the second the

Memory Model. XMSIM provides default functionality that refers to the analysis

of the data structure access patterns and also the memory system performance. The

designer can extended the analysis utilities following the principles described in

Sect. 12.3 to record the frequency by which array elements are accessed, data

locality etc.

12.5 XMSIM’S Graphical User Interface

In order to extend XMSIMS’s usability, the development of a more friendly

graphical interface is decided to assist the memory architecture specification

described in Sect. 12.4. Tcl/Tk is considered to be the most appropriate environ-

ment to tackle with the task in mind, because this programming language and

especially Tk has a wide variety of ready-to-use widgets. One can add events to

this widgets and dictate graphical behavior easily and quickly. The graphical user

interface (GUI) can be seamlessly glued on top of the existing application and do

away with the command line. The Tcl/Tk extension is outlaid without limiting the

core application’s capabilities. So one can easily define different scenarios with

different memory levels and architectures using the GUI, as one could do the same

through the command line, writing code. Therefore the inputed data can be col-

lected, turned into the appropriate form and be saved into an input file, ready to be

processed by the XMSIM core program. Then the core program is invoked with

the suitable input supplied and when the output is generated it is collected back to

the graphic window and in order to be made available to the user.

The graphical extension initially asks for the total number of distinct memory

units of all the scenarios to be used. Frames are made on-the-fly, one for every

memory unit, (Fig. 12.9 rectangular regions), where the user can provide details

about the architecture and functional behavior of each of them. These frames are

placed horizontally on the window panel of the application. The upper memory

frame represents a DDR or static RAM memory unit, which is served by the

memory directly below it. Thus every unit on the pile serves the upper neighboring

unit and is served by the one placed directly below it. When a cache memory unit

is directly above a DDR or simple RAM, it signifies the end of a scenario and the

12 XMSIM: Extensible Memory Simulator for Early Memory Hierarchy Evaluation 209



onset of a new one. In Fig. 12.10, the upper square signifies the first scenario of a

RAM named M1 aided by the C1 cache. In the same figure the lower square

describes a single RAM, named M2. Every scenario is discerned by a RAM/DDR

memory on the top and some caches below it. The graphical interface will auto-

matically differentiate among units of different scenarios and the input file can be

generated. The necessary information for every memory unit vary according to the

exact type of memory and thus every frame asks for different input.

Figure 12.11 depicts a case where two scenarios are about to be simultaneously

studied. The first scenario is made of a DDR called Main memory and two levels

of cache (L1 and L2). L1 serves Main memory, as it stands right below it and is

served by L2. The second scenario describes another memory named DDR with

one level of cache named LL2. The user is about to choose the cache type from

the drop-down menu, for the memory named LL2, as this is shown in the square.

Fig. 12.9 GUI’s main window

210 T. Lioris et al.



In the same way, the user can define the cache memory policy using the drop down

button labeled write-back to choose among a write-back or write-through policy.

After the input is given, the user can click on the start button. The input file is

made and printed on the text frame, then XMSIM starts on the background using

the input file. This is shown at Fig. 12.12. The input file is neatly made, since it

includes remarks about scenarios and total number of memory units used. The data

is accessible as the cursor suggests, and can be copy-pasted into another text

application. The results are saved in a flat text file for later inspection. The name of

the input file is given right before the results, as is shown in Fig. 12.13. The results

are harvested from the command prompt and displayed in the text frame. The user

can re-start the application with different scenarios.

Fig. 12.10 Logical separation of two memory architecture scenarios

Fig. 12.11 An example with two memory architecture scenarios

12 XMSIM: Extensible Memory Simulator for Early Memory Hierarchy Evaluation 211



12.6 Experiments

Our experimental setup consists of the base XMSIM configuration and an image

processing application called cavity detector [13]. Basically, cavity detector is a

medical application consisting of three loop kernels. The first performs lowpass

filtering to blur the input image, the second applies an edge detection algorithm

and the third derives the negative of the image picture. For the experiments an

optimized version of the cavity detection is also derived. A series of loop trans-

formations [1] are applied to the original code focusing on data locality

improvement. Subsequently XMSIM’s utilities verified the correctness of the loop

Fig. 12.12 Memory description in text form in the output frame

212 T. Lioris et al.



transformation, prior experimentation. The resulting code has one loop kernel

corresponding to the union of the initial three.

Since there are many memory configuration parameters any many values to

decide among them, a huge design space is created. The following experiments

intent to give an overview of the feedback provided from XMSIM during the

algorithm development or optimization phase and not how a fully optimized

memory hierarchy is produced for the testbench application. In this context, the

measurements presented concern the cache’s and SDRAM’s observed perfor-

mance challenged over different major characteristics. In respect to the cache,

these include the cache bank size, the number of blocks, the number of words per

block and the number of cache hierarchy levels. Regarding the SDRAM these

include various internal organizations concerning the cache rows and columns

size. Finally, performance is evaluated with either of the following: the memory

hits or misses, and the total memory references (read/write).

The graph in Fig. 12.14 depicts cache hits and misses for the initial and opti-

mized (traf) cavity algorithm for one level direct-mapped write-through cache

consisting in each case of 256 block of 4 words, 128 blocks of 8 words, 62 blocks

of 16 words and 32 blocks of 32 words. As words per block increase we get a

better performance for both algorithms while the optimized version of cavity has a

lower cache activity because the sum of hits and misses is reduced in the case of

the optimized version. Figure 12.15 illustrates cache performance for the initial

and optimized (traf) cavity algorithm for one write through cache consisting of 256

block of 4 words, when sets are 1 (direct-mapped), 2(2-way associative), 4 and 8.

Numbers are in thousands. We see a slightly better performance when sets are

increased. Figure 12.16 depicts SDRAM row hits and misses [14] at various

Fig. 12.13 Experimental results derived in the output frame

12 XMSIM: Extensible Memory Simulator for Early Memory Hierarchy Evaluation 213



architectures for original and optimized cavity algorithm. From a range of 262,144

rows by 8 columns up to 2,048 by 1,024 columns we see that hits constantly rise

when the number of columns increases.

Figures 12.17 and 12.18 present the explored memory hierarchy configurations

for the two different versions of cavity detector. In all cases the main memory is an

SDRAM memory chip with 4 banks each organized in 2,048 rows and 1,024

0

5000

10000

15000

20000

25000

30000

1 
direct map

2
2-way

Associativity

4
4-way

8
8-way

M
em

o
ry

 r
ef

er
en

ce
s 

*
 1

0
3

Traf cache hits

Traf cache misses

Normal cache hits

Normal cache misses

Fig. 12.15 Cache
performance versus various
cache associativities

0

5000

10000

15000

20000

25000

Traf DDR hits

Traf DDR misses

Normal DDR hits

Normal DDR misses

SDRAM 2MWords organized in

Scenario       Rows         Columns

1           524288          4

2           262144          8

3           131072        16

4           65536          32

5           32768          64

6           16384        128

7           8192          256

8           4096          512

9           2048        1024

10         1024        2048

Scenarios

1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f 
m

em
o

ry
 r

ef
er

en
ce

s

Fig. 12.16 SDRAM performance figures

0

5000

10000

15000

20000

25000

256x4 128x8 62x16 32x32

Traf  hits

Traf misses

Original hits

Original misses

#
 m

em
o

ry
 r

ef
er

en
ce

s 
*

1
0

3

cache blocks x words per block

Fig. 12.14 Cache
performance versus various
cache block configurations

214 T. Lioris et al.



columns. Totally, three different cache banks have been used in the various

scenarios with the following characteristics: (1) Bank C1 is a 128 Kb 4-way write

back cache with 128Kblocks and 1 word per block, (2) Bank C2 is a 64 Kb 4-way

write back cache with 64Kblocks and 1 word per block and (3) Bank C3 is a

256 Kb 4-way write-back cache with 256Kblocks and 1 word per block.

Figures 12.17 and 12.18 exposes the experimental results over the aforemen-

tioned memory hierarchies for the optimized and initial version of cavity detector

respectively. In detail the number of memory references among two adjacent

levels of memory hierarchy has been recorded. The results have been normalized

for clarity with the number 18,288,756 and 27,724,634 representing the 100% in

Figs. 12.17 and 12.18 respectively. Finally, it must be noticed, that the overall

experimental results have been derived in a very short amount of time which

includes the editing of the memory configuration file and the execution of the

testbench application. Hence, the proposed tool gives the opportunity to challenge

a large number of scenarios in a direct and immediate way.

12.7 Conclusions

To conclude we believe that XMSIM, in its present form, is an evaluation

framework that facilitates the software designer in the exploitation of existing

memory hierarchies or the derivation of new ones for a given application.

SDRAM SDRAM SDRAM SDRAM

C1 C1

C2

C3

C1

CPU CPU CPU CPU

Scenario1 Scenario 2 Scenario 3 Scenario 4

100%

55%

100%

28%

56%

100%

27%

56%

100%

Fig. 12.17 Memory
references for the optimized
version of cavity

SDRAM SDRAM SDRAM SDRAM

C1 C1

C2

C3

C1

CPU CPU CPU CPU

Scenario1 Scenario 2 Scenario 3 Scenario 4

100%

63%

100%

34%

63%

100%

34%

63%

100%

Fig. 12.18 Memory
references for the initial
version of cavity

12 XMSIM: Extensible Memory Simulator for Early Memory Hierarchy Evaluation 215



The framework is equipped with validation routines to guarantee correctness of

the transformations imposed on the application. The designer can amend the

XMSIM’s C++ native code, in order to extend the memory classes or enhance

the functionality of the existing ones. Additionally, the tool provides platform

independent exploration which is by far easier to understand and manipulate than

existing execution-driven simulators that delve into the details of memory pro-

cessor communication. On going work, is directed to the development of a

graphical interface to further automate input and output, producing graphics for

direct result analysis, best case finding and so on.

Acknowledgment The presented research work was co-funded by the European Union in the
frame of the ENOSYS project (FP7-ICT-248821) (www.enosys-project.eu).

References

1. Catthoor F, Danckaert K, Kulkarni KK, Brockmeyer E, Kjeldsberg PG, Achteren T, Omnes T
(2002) Data access and storage management for embedded programmable processors.
Springer

2. http://msdn.microsoft.com/en-us/vstudio/default.aspx
3. Muralimanohar N, Balasubramonian R, Jouppi NP, CACTI 6.0: A tool to model large caches,

technical Rep. HPL-2009-85 HP Laboratories
4. http://www.micron.com/support/part_info/design_analysis_kits, 2010
5. http://www.simplescalar.com/, 2010
6. Leticia P, Alejandro T, Julio S, José F (2007) Understanding cache hierarchy interactions

with a program-driven simulator. Proceedings of the 2007 workshop on computer
architecture education, pp 30–35

7. Edward ST, Jude AR, Gary ST, Edward SD (eds) (1998) Mlcache: a flexible multi-lateral
cache simulator. Proceedings of MASCOTS’98

8. Edler J, Hill M, Dinero IV (2010) Trace-driven uniprocessor cache simulator,
http://www.cs.wisc.edu/*markhill/DineroIV/

9. http://pages.cs.wisc.edu/*larus/spim.html, 2010
10. Sahuquillo J, Tomas N, Petit S, Pont A (2007) Spim-cache: a pedagogical tool for teaching

cache memories through code-based exercises. Education, IEEE Transactions on pp 244–250
Aug 2007

11. Stroustrup B (2008) The C++ programming language (special edn). Addison-Wesley
12. Rajeshwari B, Stefan S, Bo-Sik L, Balakrishnan M, Peter M (2002) Scratchpad memory : a

design alternative for cache on-chip memory in embedded systems. 10th International
Symposium on Hardware/Software Codesign pp 73–78

13. Danckaert K, Catthoor F, De Man H (1999) Platform independent data transfer and storage
exploration illustrated on a parallel cavity detection algorithm. CSREA Conference on
parallel and distributed processing techniques and applications. pp 1669–1675

14. Jacob B, Spencer N, Wang D (2007) Memory systems: cache, DRAM, disk. Morgan
Kaufmann

216 T. Lioris et al.

http://www.enosys-project.eu
http://msdn.microsoft.com/en-us/vstudio/default.aspx
http://www.micron.com/support/part_info/design_analysis_kits
http://www.simplescalar.com/
http://www.cs.wisc.edu/~markhill/DineroIV/
http://pages.cs.wisc.edu/~larus/spim.html


Chapter 13

Self-Freeze Linear Decompressors:
Test Pattern Generators for Low
Power Scan Testing

Vasileios Tenentes and Xrysovalantis Kavousianos

Abstract Even though linear decompressors constitute a very effective solution for

compressing test data, they cause increased shift power dissipation during scan

testing. Recently, new linear decompression architectures were proposed which

offer reduced shift power at the expense however of increased test data volume and

test sequence length. This chapter presents a linear encoding method which offers

both high compression and low shift power dissipation at the same time. A low-cost,

test-set-independent scheme is also described which can be combined with any

linear decompressor for reducing the shift power during testing. Extensive experi-

ments show that the newmethod offers reduced test power dissipation, test sequence

length and test data volume at the same time, with very small area requirements.

Keywords LFSR � Scan testing � Low switching activity

13.1 Introduction

Currently, the most widely adopted test strategy is Test Resource Partitioning.

According to this strategy, the test data are stored in a compressed form in the ATE

(Automatic Test Equipment) memory, and they are downloaded on chip where

they are decompressed by embedded decompressors before they are applied on the

core under test (CUT). Many efficient test data compression techniques have been

presented so far in the literature. Some of them utilize compression codes [2, 3, 6]

while others utilize various broadcasting schemes [15]. However, the most widely

V. Tenentes (&) � X. Kavousianos
Department of Computer Science, University of Ioannina, Ioannina, Greece
e-mail: tenentes@cs.uoi.gr

N. Voros et al. (eds.), VLSI 2010 Annual Symposium,
Lecture Notes in Electrical Engineering 105, DOI: 10.1007/978-94-007-1488-5_13,
� Springer Science+Business Media B.V. 2011

217



adopted test data compression strategy in industry is based on linear decompres-

sors [7, 8, 10, 12]. Linear decompressors constitute an effective means for

exploiting the large volumes of unspecified (‘X’) values existing in test data in

order to maximize the compression.

Although linear decompressors are very effective in compressing the test

data, they elevate the power dissipation during testing above the functional

power budget of the circuit. They fill the ‘X’ values pseudorandomly and they

increase thus both the shift and capture power during scan testing. In particular,

shift power dissipation is caused by successive complementary logic values

shifted into the scan chains which generate transitions at the scan cells (and

inevitably at the combinational part of the circuit) as they travel through the

scan chains. Increased switching activity during the scan in–out process is

responsible for increased average power dissipation and consequently increased

heat dissipation which elevates the temperature of the chip beyond the

acceptable limits.

Recently, various linear decompressors which reduce the switching activity of

the CUT during scan testing were presented in [4, 5, 9, 11, 13]. The state-of-the-art

low power dynamic reseeding method proposed in [5, 11] is very effective in

reducing the switching activity during scan testing, but it requires additional test

data compared to standard dynamic reseeding [12] for controlling the low power

operation of the decompressor.

The method proposed in [13] offers low shift power dissipation and high

compression efficiency at the same time. This technique exploits inherent prop-

erties of the test data to provide a fairly simple and low-cost weighted pseudo-

random scheme which controls the decompression process and enables the power

efficient encoding of test data, without the need of any additional control data.

The major advantages of this scheme are: (a) it constitutes a generic test-set-

independent architecture, and (b) it can be combined with any linear decompressor

scheme for reducing shift power. Moreover, it offers a tradeoff between area

overhead and shift power reduction. The combined use of this scheme with the test

pattern generator proposed in [11] reduces the test data volume of [11] and

achieves great power reductions with very small hardware cost.

13.2 Background

Hereafter ‘‘test cube’’ refers to a test pattern consisting of specified (‘0’ or ‘1’) and

unspecified values (‘X’), while ‘‘test vector’’ refers to a completely specified test

pattern.

Figure 13.1 presents the classical scan based architecture. The CUT consists of

c scan chains of length r (for simplicity we assume that all scan chains are of equal

length). The compressed test data are downloaded from the ATE, they are

decompressed using the embedded decompressor and they are shifted into the scan

chains. For applying a test vector to the CUT the decompressor first generates

218 V. Tenentes and X. Kavousianos



r successive test slices of size c which are shifted into the scan chains to reach their

respective scan slices (hereafter, the term test slice tj refers to the test bits of test

cube t which correspond to scan slice j with j [ [1, r]). After the last test slice of

t (i.e. tr) is shifted into the scan chains, t is applied to the CUT and the response is

shifted out concurrently with the loading of the next test vector. Linear decom-

pressors fill ‘X’ values pseudorandomly, and thus they fail to control the number of

incompatibilities between successive test slices.

In Fig. 13.1, every pair of successive test slices exhibits potential bitwise

incompatibilities, i.e. pairs of successive complementary test bits loaded into the

same scan chains. For example test slices denoted as ‘‘Slice Pair A’’ in Fig. 13.1

are incompatible in the bit positions corresponding to scan chains 1, 2, c. As the

test slices travel through the scan chains during the scan-in process, every pair of

complementary successive test bits causes transitions in the scan chains which

propagate through the combinational logic and cause switching activity to the

CUT. The number of incompatibilities between successive test slices can be

reduced by exploiting the unspecified values which exist in large volumes in test

sets. However, linear decompressors fill ‘X’ values pseudorandomly, and thus

they fail to control the number of incompatibilities between successive test

slices.

Recently, the authors of [11] proposed a linear based encoding method which

exploits the ‘X’ values, wherever they exist, to reduce incompatibilities between

successive test slices, and thus to reduce shift power. According to this method,

whenever a group of k (k[ 1) successive test slices of a test cube are compatible

(i.e., every slice in this group exhibits no bitwise incompatibilities with any other

slice in this group) one test slice Sk is computed which is compatible with all k test

slices. This slice is encoded using the ring generator and it is loaded into the scan

chains for k successive clock cycles. This is achieved by the use of a shadow

register shown in Fig. 13.2 which can hold its contents if it is properly controlled.

Specifically, instead of generating the first slice of this group, the ring generator

generates slice Sk and it transfers this slice to the shadow register. This is called

UPDATE operation. During the next k successive clock cycles, the shadow

Fig. 13.1 Switching activity
caused by successive slices

13 Self-Freeze Linear Decompressors 219



register holds its contents and loads the scan chains with slice Sk. This is called

HOLD operation. The selection between these two operations of the shadow

register requires additional control data which are either provided directly from the

ATE (Fig. 13.2a) or they are encoded as compressed stimuli (Fig. 13.2b). In both

cases the additional cost is considerable especially when the number of ATE

channels is small and the number of slices per vector is large.

The additional control data can be completely eliminated by exploiting

inherent properties of the test data. Specifically, during the generation of test slice

tj of any test cube t, the Update operation occurs with a unique probability. This

probability depends solely on the test cubes and in particular on the probability a

test slice tj to be incompatible with the test slices corresponding to its predecessor

test slices (i.e. tj-1, tj-2,…) for any test cube t. By controlling the Update

operation using predetermined weighted pseudorandom sequences generated by

these probabilities, the additional control data are eliminated. Pseudorandomly

controlled Update and Hold operations provide high power reduction and they

can be easily implemented using embedded low-cost hardware modules. Let as

see an example.

Example 1 An uncompacted test set for s9234 was encoded using the method

proposed in [11], for r = 16, c = 16. X-axis in Fig. 13.3 shows the index of each

scan slice. For each scan slice left y-axis shows the percentage of test cubes where

the respective test slice was incompatible with its predecessor groups of k C 1

successive compatible test slices (line labeled ‘‘Probability of incompatibilities’’).

The right y-axis presents the percentage of test vectors which triggered an Update

operation at scan slice i (line labeled ‘‘Update Operation’’). The number of test

vectors is smaller than the number of test cubes, as the ring generator encodes

multiple test cubes on the same test vector (this elevates a slice’s probability of

incompatibility with its predecessors). The correlation between these two cases is

clear.

To estimate the scan power dissipation we will use the metric proposed in [11],

which counts the number of invoked transitions in successive scan cells, while

taking into account their relative positions. Let tj
i, tj+1

i be two successive test bits of

test vector t loaded into scan chain i, scan slice j. The average shift power dissi-

pated is given by the formula:

Fig. 13.2 a Low power EDT
controlled by an additional
‘‘update’’ channel, b Low
power EDT controlled by
compressed stimuli

220 V. Tenentes and X. Kavousianos



Sav tð Þ ¼ 2½crðr � 1Þ��1
X

c

i¼1

X

r�1

j¼1

ðr � jÞðtij � tijþ1Þ

" #

ð13:1Þ

13.3 Power Aware Encoding

In this section we will first present the statistical analysis of test data and then we

will present the encoding method.

13.3.1 Test Data Analysis

Let TS be a test set consisting of N test cubes for testing a CUT with c scan chains

of length r (i.e., each test cube consists of r test slices of size c bits). Hereafter, we

will refer to every scan cell using its location in the scan chain structure (for

example, scan cell (j, i) is the cell located at the scan slice j, scan chain i). Let

N0(j, i), N1(j, i) be the number of test cubes of TS with logic value 0, 1 respectively

at the scan cell (j, i).

Definition 1 The Zero (One) Fill Rate of scan cell (j, i) is the probability scan cell

(j, i) to be assigned to logic value ‘0’ (‘1’) for any test cube of TS.

The Zero, One Fill Rates of scan cell (j, i) are denoted as f0(j, i), f1(j, i) and they

are computed as follows: f0(j, i) = N0(j, i)/N, f1(j, i) = N1(j, i)/N, with j [ [1, r],

i [ [1, c].

Definition 2 The Zero (One) Fill Rate of scan slice j (j [ [1, r]) is the probability

any scan cell of slice j to be assigned to logic ‘0’ (‘1’) for any test cube of TS.

The Zero, One Fill Rates for slice j are denoted as f0(j), f1(j) respectively and

they are computed using formulas:

f0ðjÞ ¼
1

c
�
X

c

i¼1

f0ðj; iÞ; f1ðjÞ ¼
1

c
�
X

c

i¼1

f1ðj; iÞ; j 2 1; r½ �

Fig. 13.3 Incompatibilities
of the test set and UPDATES
number per slices for
deterministic freeze (DF)

13 Self-Freeze Linear Decompressors 221



Theorem 1 The probability two test slices x, y of any test cube in TS to be

compatible is given by the formula:

PSCðx; yÞ ¼ ð1� f0ðxÞf1ðyÞ � f1ðxÞf0ðyÞÞ
c ð13:2Þ

Proof Let xi, yi be two bits of test slices x, y corresponding to scan chain i. If xi, yi are

both specified and complementary then test slices x, y are incompatible. The prob-

ability xi, yi to be incompatible is equal to Pinc(xi, yi) = f0(x)f1(y) ? f1(x)f0(y) and

thus the probability xi, yi to be compatible is equal to Pc(xi, yi) = 1 - Pinc(xi, yi).

Slices x, y are compatiblewhen all bit pairs (x1, y1), (x2, y2),…, (xc, yc) are compatible.

Thus, PSCðx;yÞ ¼ PCðx1 ;y1Þ � PCðx2 ;y2Þ � . . . � PCðxC ;yC Þ which gives (13.2). h

Lemma 1 The probability a group of k successive test slices j, j ? 1, j ? 2,…,

j ? k - 1 of any test cube in TS to be compatible is:

Pgc j; jþ 1; . . .; jþ k � 1ð Þ ¼
Y

jþk�2

a¼j

Y

jþk�1

b¼jþ1

Psc a; bð Þ ð13:3Þ

Proof A group of successive test slices is compatible if every two slices in

this group are compatible. Thus the probability Pgc(j, j ? 1,…, j ? k - 1) is

equal to the product of the probabilities Psc(a, b) of every possible slice pair

a, b (a, b [ [j, j ? k - 1]). So,

Pgc j; jþ 1; . . .; jþ k � 1ð Þ ¼
Y

jþk�2

a¼j

Y

jþk�1

b¼jþ1

Psc a; bð Þ

h

Let uj = 1 (uj = 0) denote the occurrence of an Update (Hold) operation during

the generation of the test data loaded into scan slice j (j [ [1, r]). Then the Update

vector U = (u1, u2,…, ur) represents the Update-Hold operations occurring at the

shadow register during the generation of a vector. Since the first scan slice of each

vector has no predecessors we set u1 = 1, that is an Update operation always

occurs during the generation of it for every vector. Let t be a test cube consisting of

r test slices i.e. t = (t1, t2,…, tr).

Lemma 2 Test cube t is encodable for Update vector U = (u1, u2,…, ur), if for

every j [ [1, r], k\ r with uj = 1 and uj+1 = uj+2 = _ = uj+k = 0 (j ? k B r) test

slices tj, tj+1,…, tj+k are compatible.

Proof Since uj = 1, during the generation of the test slice tj the shadow register

will be updated from the linear generator with a test slice sj, and since

uj+1 = _ = uj+k = 0 then the same slice sj will be loaded into scan slices j, j ? 1,

…, j ? k. If test slices tj, tj+1,…, tj+k are compatible then for every i, i [ [1,c] the

test bits of all test slices corresponding to scan chain i are either unspecified or

222 V. Tenentes and X. Kavousianos



exhibit the same logic value (‘0’ or ‘1’). Then, the test slice sj can be computed as

follows: for every i [ [1, c] if any of the test slices tj, tj+1, tj+2,…, tj+k exhibit a

logic value v = ‘0’ or v = ‘1’ the respective bit of sj is set equal to v, else it is left

unspecified. In that way sj is compatible with all test cubes tj, tj+1, tj+2,…, tj+k and

thus test cube t is encodable. h

The most power-efficient Update vector is U = [1, 0,…, 0] which can be used

for encoding only those test cubes which have all their slices compatible. On the

other hand, the most power consuming but in the same time highly efficient in

respect to its encoding ability Update vector is U = [1, 1,…, 1]. This vector can

encode any test cube which is encodable by the decompressor. In order to maxi-

mize the power efficiency of linear decompressors without compromising their

encoding efficiency, we need to maximize the volume of zeros in the Update

vector of the decompressor and minimize at the same time the probability any test

cube to become un-encodable. However, it is rather unlike that a single Update

vector will suffice to encode all test cubes. We will show that multiple Update

vectors achieving these goals can be generated in a weighted-pseudorandom

fashion.

Let Rj be the probability of an Update operation during the generation of scan

slice j (1 - Rj is the probability of a Hold operation during the generation of scan

slice j). We denote hereafter as Pseudorandom-Configuration Vector or simply as

Configuration, the probability vector R = [R1, R2, …, Rr]. Since u1 = 1, we also

set R1 = 1.

Theorem 2 The probability any test slice in TS corresponding to scan slice j to be

encodable using configuration vector R = [R1, R2, …, Rr] is given by the formula.

PE jð Þ ¼
X

j

m¼1

Rm � PGC m; . . .; jð Þ �
Y

j

k¼mþ1

1� Rkð Þ ð13:4Þ

Proof Any arbitrary test slice tj corresponding to scan slice j is encodable if either

the update operation occurs during the generation of this slice or if the update

operation occurs during the generation of a predecessor slice tk (of the same test

cube) and all test slices tk, tk+1, tk+2,…, tj are bitwise compatible. Therefore, for

slice j we have the following (also j in number) cases:

1. P1 = Rj is the probability of an update operation at slice j.

2. P2 = (1 - Rj)Rj-1Pgc(j - 1, j) is the probability the update operation to occur

at slice j - 1 (and not at slice j) and at the same time test slices j - 1, j to be

compatible.

_

j. Pj = (1 - Rj) (1 - Rj-1)…(1 - R2)R1Pgc(1,2,…, j) is the probability the

update operation to occur at slice 1 (and not at slices 2 … j) and test slices

1, 2, …, j to be compatible.

13 Self-Freeze Linear Decompressors 223



Thus PE(j) = P1 ? P2 ? _ + Pj which gives (13.4). h

Finally, since every test cube is encodable when all its test slices are encodable,

we have that the overall probability PET for any test cube in TS to be encodable

using configuration vector R = [R1, R2, …, Rr] is given by formula:

PETðRÞ ¼ PEð1Þ � PEð2Þ � � �PEðrÞ ð13:5Þ

Besides the encoding ability of the decompressor, the Configuration vector

R affects also the switching activity during the scan-in process, which is calculated

as follows.

Theorem 3 The average scan-in switching activity SCav for any test cube t in TS

under Configuration R = [R1, R2, …, Rr] is:

SCavðRÞ ¼
1

rðr � 1Þ

X

r�1

j¼1

ðr � jÞRjþ1 ð13:6Þ

Proof Let tj, tj+1 be two successive test slices, and let tij; t
i
jþ1 be the test bits of

these slices which correspond to scan chain i. Relation (13.1) gives the average

switching activity for any test cube t in TS. The term tij � tijþ1 in (13.1) is equal to

‘1’ if tij; t
i
jþ1 are different else it is equal to ‘0’. Given a Configuration vector R,

these bits can be different only if an update operation occurs during the generation

of slice tj+1. Since Rj+1 is the probability of an update operation at slice tj+1 and

1/2 is the probability tijþ1 to be generated complementary to tij (assuming

linear independent generation) the probability these test bits to be different is

Pdiff(t
i
j � tijþ1) = Rj+1/2. Then, relation (13.1) becomes:

Sav tð Þ ¼ 2½crðr � 1Þ��1
X

c

i¼1

X

r�1

j¼1

ðr � jÞPdiff ðt
i
j; t

i
jþ1Þ

" #

and provided that t is generated using configuration R we have:

SCav Rð Þ ¼ 2½crðr � 1Þ��1
X

c

i¼1

X

r�1

j¼1

ðr � jÞ
Rjþ1

2

" #

which gives (13.6). h

In the next Section we will give an algorithm to compute the configuration vector

R = [R1, R2,…, Rr] for any given set of test cubes, which maximizes the switching

activity reduction and does not violate a minimum encoding probability PET(R).

13.3.2 Encoding Algorithm

The flowchart of the proposed encoding method is shown in Fig. 13.4 (Fig. 13.4a

presents step E3 in details). The main target of the encoding method is to calculate

the configuration R which offers the minimum average switching activity without

224 V. Tenentes and X. Kavousianos



compromising the encoding efficiency of the decompressor. This is shown in

Fig. 13.4a. Specifically, R = [R1, R2, …, Rr] is initially set equal to [1, 1,…,1]

which is the configuration offering the maximum encoding probability

PET(R) = 1. Then, the values of Rj (j [ [2, r]) are iteratively decreased until

PET(R) drops below a pre-determined threshold Pmin or when all R2, R3,…,Rr reach

their minimum values and they cannot be further reduced. We remind that as the

values of Rj decrease, both the average switching activity during scan-in and the

encoding probability PET(R) decrease too.

During every iteration, r - 1 candidate configurations A2, A3,…, Ar-1 are gen-

erated based on R. Specifically, the candidate configuration Aj (j [ [2, r]) is derived

from R by decreasing the probability Rj by a predetermined value p (all the other

probabilities remain intact). Thus Aj = [R1, R2, …, Rj-p, …, Rr], with j [ [2, r]

(note that R1 is set always equal to 1). Next, candidate configurations are evaluated

using the following formula

CostðAjÞ ¼
DPETðAjÞ

DSCavðAjÞ
with

DPETðAjÞ ¼ PETðAjÞ � PETðRÞ
DSCavðAjÞ ¼ SCavðAjÞ � SCavðRÞ

ð13:7Þ

DPET(Aj) is the reduction of the encoding probability and DSCav(Aj) is the

average switching activity reduction of Aj compared to R. The candidate Abest with

the lower value of Cost(Abest) is selected and R is set equal to Abest.

Usually, one configuration does not suffice to encode all test cubes. Thus,

multiple configurations must be generated using the algorithm shown in

Fig. 13.4b. The algorithm begins with set TS of test cubes and it selects the first

configuration, let say R1 using the algorithm shown in Fig. 13.4a. Based on R1, it

generates a weighted pseudorandom bit sequence SQ1, which controls the Update

operation during the decompression process (the generation of this sequence is

based on pseudorandom properties of simple hardware modules as we will show

in the next section). Using SQ1 the encoding process attempts to encode as

many test cubes as possible and it drops the encoded test cubes from TS. This

process is repeated and configurations R2, R3,… (and thus sequences SQ2, SQ3,…)

Fig. 13.4 a Configuration
selection algorithm, b Test
set encoding

13 Self-Freeze Linear Decompressors 225



are selected, until TS becomes empty. At each iteration, the value of Pmin increases

by a step s in order to favor the encoding ability of the next configurations and

decrease thus their volume, at the expense however of an increase in the switching

activity. Relations (13.2)–(13.7) are recomputed in each iteration using the

remaining set of test cubes.

13.4 Architecture

The low power decompression architecture is shown in Fig. 13.5. It consists of the

Test Data Decompression Unit (TDU) and the proposed Freeze Control Unit

(FCU). TDU is a classical decompression architecture and it consists of the linear

decompressor, the shadow register, and the phase shifter. Even though any linear

decompressor can be used, ring generators [10] were used, as in the case of [11].

FCU generates the update signal which controls the shadow register based on the

configuration R (when update = 1 the Update operation is applied). It consists of a

set of r registers which store the configuration vector R1, R2, …, Rr, the slice

counter which selects the register for the next generated test slice, and the

Weighted Signal Generation Unit (WSG) which generates a set of weighted

pseudorandom signals with pre-determined weights. WSG unit generates a set

of n pseudorandom signals WS0, WS1,…, WSn-1 with probabilities W0\W1

\_\Wn-1 respectively. Specifically, signal WSi is assigned to logic value ‘1’

with probability Wi and to logic value ‘0’ with probability 1 - Wi. Depending on

the configuration R, register j is loaded from the ATE before the decompression

begins with a value d in the range [0, n - 1]. d selects the input of MUX-B which

corresponds to signal WSd with probability Wd equal to Rj. Slice counter counts

from 1 to j and whenever it is equal to j, register j selects signal WSd which is

driven to the update input of the shadow register. Thus the Update operation is

applied with probability Rj during the generation of the test data loaded into scan

slice j.

Many techniques have been presented in the past for designing WSG units

[1, 14]. A small LFSR which is loaded initially with a randomly selected seed is

utilized, and a few AND gates of 2, 3 and 4 inputs driven by the LFSR cells (note

that this small LFSR operates only as a pseudorandom generator and it does not

participate in the decompression process). Since each LFSR cell is set to the logic

Fig. 13.5 Self-freeze
architecture

226 V. Tenentes and X. Kavousianos



value ‘1’ with probability P1 = 1/2, every q-input AND gate produces a weighted

pseudorandom signal at its output with probability P1 equal to (1/2)q. By using

three AND gates of 2, 3 and 4 inputs driven by different LFSR cells, and by using

both the normal and the inverted outputs of the AND gates, we generate signals

with the following P1 probabilities: 0.0625, 0.125, 0.25, 0.5, 0.75, 0.875, 0.9375.

During the encoding process (Fig. 13.4a) the values Rj are selected among the P1

probabilities only for the remaining test cubes. The encoding of the test cubes is

done using the pseudorandom sequences generated at the outputs of the WSG

unit. After the calculation of a configuration Ri, the WSG unit is simulated and

it generates a pseudorandom sequence SQi using signals WS0, WS1,…, WSn-1.

The predetermined sequence SQi is used for encoding remaining test cubes.

The area overhead of this architecture (Fig. 13.5) increases as the number of

slices (and thus the number of registers) increases. To overcome this problem an

area-efficient alternative architecture will be described which reduces the number

of register at the expense of a slight performance degradation. Specifically,

k (k\ r) registers are used and every register corresponds to more than one slices.

The registers are assigned to scan slices in a modulo-k fashion. For example,

register j is used for controlling the update signal during the generation of scan

slices j, j ? k, j ? 2k,… etc. (note that scan cell 0 is excluded from this process

because an update operation occurs always during the generation of this slice.

In this case, the encoding method shown on Fig. 13.5a is modified accordingly

in order to consider the reduced set R1, R2, …, Rk. Thus, the process begins with

set R where Rj = Rjmodk and at each iteration k candidate configurations are

generated.

13.5 Experiments

The proposed method was developed using the C programming language. We

conducted experiments on test sets for complete stuck-at coverage generated using

a commercial ATPG tool for the largest ISCAS’89. All the shift power estimations

were done using formula (13.1).

Figure 13.6 presents the test data volume (TDV) increase (right y-axis) and the

switching activity reduction (SAR at the left y-axis) of the proposed technique

Fig. 13.6 Switching activity
reduction, test data volume
increase trade-off

13 Self-Freeze Linear Decompressors 227



against the power unaware dynamic encoding (PU) method. In both cases the

s13207 benchmark circuit was used assuming c = 16, r = 44 and the proposed

method was applied for 2, 4, 8, 16 and 32 registers and various values of parameter

s (s = 0.01, s = 0.05, s = 0.1 and s = 0.15). It is obvious that as the number of

registers increase, the pseudorandom sequences reflect more accurately the specific

requirements of the scan slices and thus the switching activity reduction improves.

It is worth noting however, that even a relatively small number of registers suffices

to achieve very high reduction of the switching activity. On the other hand, the

TDV increases as the number of registers increase, because more data are required

for loading the registers for every configuration. In respect with parameter s, it is

obvious that small values of s improve the power reduction compared to PU but

also increase the test data volume. The reason is that small values of s favor the

switching activity reduction at the expense however of generation of more

configurations.

Table 13.1 presents the results of (a) the proposed technique using 8 registers,

(b) the power unaware dynamic encoding (PU) and (c) the deterministic freeze

method (DF) presented in [11] and re-implemented here. We note that in the

implemented DF method we assume that the control data are sent from the ATE

to the CUT using an extra channel (Fig. 13.2a). In all cases 8 or 16 scan chains

and 1 or 2 ATE channels were used (excluding the control channel for DF). Note

that both DF and PU methods were implemented by omitting the fault simulation

step in order to provide fair comparisons with the proposed method (the fault

simulation step can be trivially included in all cases). The first column presents

the circuit’s name, while the next two columns present the average switching

activity reduction of both DF and the proposed method against the power unaware

method (PU). The next three columns in Table 13.1 present the test sequence

length of the PU, the DF and the proposed technique. The results indicate that the

proposed technique achieves a vast reduction of the average switching activity

(67–85%). Note that, the proposed method is inferior compared to DF with

respect to the switching activity. However this is attributed to the high TSL of the

DF method which is a consequence of the trend of DF to minimize the volume of

Update operations and to limit thus the ability of the decompressor to encode

multiple test cubes on the same generated vector. As a result, the number of

generated vectors (i.e. the TSL) increases considerably especially for large test

Table 13.1 Proposed method results. TDV reported in Kbits

Circuit SA reduction TSL TDV without repeat TDV with repeat

DF (%) Prop. (%) PU DF Prop. PU DF Prop. PU DF Prop.

s5378 90 78 250 463 392 7 25 10 3 6.3 5.2

s9234 80 67 309 611 419 19 38 26 7 14 10

s13207 96 78 276 432 380 24 57 33 18 28 22

s15850 94 80 293 511 347 22 60 27 17 30 20

s38417 98 85 626 2374 924 65 493 96 33 124 48

s38584 98 82 267 1088 373 49 300 68 37 150 51

228 V. Tenentes and X. Kavousianos



sets. Nevertheless, the switching activity of the proposed technique remains

significantly lower than PU and thus the probability to comply with the functional

power budget of the CUT (which is the most important target of any low power

testing technique) is still very high.

The next six columns present the test data volume (TDV) comparisons between

the DF and the proposed method. The first three of these columns report the TDV

results assuming that the repeat command is not supported by the ATE, while the

next three report the TDV results assuming that the repeat command is supported

by the ATE. As it has already been mentioned in [11] the use of the repeat

command considerably reduces the TDV. The proposed method achieves very

high TDV reduction against DF in both cases (in the range of [30–81%] whenever

the repeat command is not supported and in the range of [17–66%] whenever the

repeat command is supported).

Finally, we synthesized the proposed scheme for 8 registers. The hardware

overhead of the proposed FCU unit is less than 100 gate equivalents (one gate

equivalent corresponds to a 2-input nand gate). This overhead is less than the 25%

of the overhead of the TDU unit. Additionally, we note that the same decom-

pressor can be used for testing any number of cores, which makes its application

very attractive to modern SoCs.

13.6 Conclusions

A new linear encoding method which exploits inherent properties of test data to

reduce the scan-in switching activity during testing was presented. A low-cost

embedded scheme was also presented which can be combined with any linear-

decompressor architecture and achieves very high reduction of the switching activity

at the expense of only a small increase on the test data volume. Compared to the state-

of-the-art power aware linear encoding method, the method described in this chapter

provides comparable shift power reductionwith considerably lower test data volume.

Acknowledgments This work is co-financed by the EuropeanUnion (European Social Fund – ESF)
and Greek national funds through the Operational Program ‘‘Education and LifelongLearning’’ of the
National Strategic Reference Framework (NSRF)—Research Funding Program: Heracleitus II.
Investing inknowledge society through the European Social Fund.

References

1. Ahmed N, Tehranipoor M, Nourani M (2004) Low power pattern generation for BIST
architecture. Proceedings IEEE ISCAS 2:689–692

2. Chandra A, Chakrabarty K (2001) System-on-a-chip test data compression and decompression
architectures based on Golomb codes, IEEE Trans. Comput Aided Des Integr Circuits Syst
20:355–368

13 Self-Freeze Linear Decompressors 229



3. Chandra A, Chakrabarty K (2003) Test data compression and test resource partitioning for
system-on-chip using frequency-directed run-length (FDR) codes. IEEE Trans Comput
52(8):1076–1088

4. Czysz D, Mrugalski G, Rajski J, Tyszer J (2007) Low power embedded deterministic test.
Proceedings of the IEEE VTS, pp 75–83

5. Czysz D et al (2009) Low-power scan operation in test compression environment. IEEE
Trans CAD 28:1742–1755

6. Kavousianos X, Kalligeros E, Nikolos D (2007) Optimal selective Huffman coding for test-
data compression. IEEE Trans Comput 56(8):1146–1152

7. Koenemann B (1991) LFSR-coded test patterns for scan designs. Proceedings ETS/ETC.,
VDE Verlag, pp 237–242

8. Krishna CV, Jas A, Touba NA (2001) Test vector encoding using partial LFSR reseeding.
Proceedings of IEEE Int’l Test Conf. pp 885–893

9. Lee J, Touba NA (2007) LFSR-reseeding scheme achieving low-power dissipa-tion during
test. IEEE Trans CAD 26(2):396–401

10. Mrugalski G, Rajski J, Tyszer J (2004) Ring generator—New devices for embedded test
applications. IEEE Trans Comput Aided Des Integr Circuits Syst 23(9):1306–1320

11. Mrugalski G, Rajski J, Czysz D, Tyszer J (2007) New test data decompressor for low power
applications. Proceedings of the ACM/IEEE Design Automation Conference. pp 539–544

12. Rajski J, Tyszer J, Kassab M, Mukherjee N (2004) Embedded deterministic test. IEEE Trans
Comp Aided Design Integr Circuits Syst 23(5):776–792

13. Tenentes V, Kavousianos X (2010) Self-freeze linear decompressors for low power testing.
IEEE Computer Society Annual Symposium on VLSI (ISVLSI). pp 63–68

14. Wang S, Gupta S (1999) LT-RTPG: a new test-per-scan BIST TPG for low heat dissipation.
Proceedings in International Test Conference. pp 85–94

15. Wang LT et al (2005) UltraScan: Using time-division demultiplexing-multiplexing (TDDM/
TDM) with VirtualScan for test cost reduction. Proceedings of the IEEE Int’l test conference.
pp 946–953

230 V. Tenentes and X. Kavousianos



Chapter 14

SUT-RNS Forward and Reverse
Converters

E. Vassalos, D. Bakalis and H. T. Vergos

Abstract Stored Unibit Transfer (SUT) has recently been considered as a

redundant high-radix encoding for the channels of a Residue Number System

(RNS) that can improve the efficiency of conventional redundant RNS. In this

work we propose modulo 2n ± 1 forward and reverse converters for the SUT-RNS

encoding. The proposed converters are based on parallel-prefix binary or modulo

adders and are therefore highly efficient.

14.1 Introduction

The Residue Number System (RNS) [1, 2] is a number system commonly adopted

for speeding up computations in digital signal processing [3–6], cryptography [7]

and telecommunication applications [8, 9]. A non-positional RNS is defined by a

set of L moduli, suppose {m1, …, mL} that are pair-wise relatively prime. Assume

that |A|M denotes the modulo M residue of an integer A, that is, the least non-

negative remainder of the division of A by M. A has a unique representation in the

RNS, given by the set {a1, …, aL} of residues, where ai ¼ Aj jmi
. An operation �

E. Vassalos � D. Bakalis
Electronics Laboratory, Department of Physics, University of Patras,
Patras, Greece
e-mail: vassalos@upatras.gr

D. Bakalis
e-mail: bakalis@physics.upatras.gr

H. T. Vergos (&)
Department of Computer Engineering and Informatics, University of Patras,
Patras, Greece
e-mail: vergos@ceid.upatras.gr

N. Voros et al. (eds.), VLSI 2010 Annual Symposium,
Lecture Notes in Electrical Engineering 105, DOI: 10.1007/978-94-007-1488-5_14,
� Springer Science+Business Media B.V. 2011

231



over an RNS is defined as z1; . . .; zLð Þ ¼ a1; . . .; aLð Þ � b1; . . .; bLð Þ, where

zi ¼ ai � bij jmi
. The computation of each zi depends only on ai, bi, and mi and

therefore all zis can be computed in parallel in separate arithmetic units often

called channels. Any carry propagation in an RNS is restricted inside each channel.

Since each channel deals with narrow residues instead of the wide operands and

since all channels operate in parallel, significant speedup over the binary may

be achieved, provided that the arithmetic components required in each channel can

be designed efficiently. RNSs built on moduli of the 2n ± 1 forms have received

significant attention due to the efficient architectures that have been proposed for

the design of the respective arithmetic components.

The Binary Signed-Digit (BSD) [10] has been proposed as a redundant

encoding, in which addition can be performed in constant time. The BSD encoding

represents each number with a set of digits in {-1, 0, +1}. Each digit requires two

bits for its representation leading to a significant overhead in storage, processing

and interconnection requirements. Hybrid redundant number systems, such as

those with weighted two-valued digit set encodings [11, 12], have been proposed

as alternatives that limit the maximum length of carry propagation chains to any

desired value and can lead to a wide representation range without the added costs

of BSD. Furthermore, conventional components such as full/half adders can be

utilized for the respective circuit implementations leading to highly efficient

designs. Examples of such encodings are the Stored-Unibit Transfer (SUT)

encoding [11, 12] and the Signed-LSB encoding [13].

Several attempts have been made to combine the parallel nature of RNS

with the carry-free or carry-limited nature of redundant number systems.

References [14–16] are among the most recent works that deal with the use of

BSD inside each RNS channel for reducing the intra-channel carry propagation.

They propose efficient arithmetic circuits, such as adders and multipliers, for

the modulo 2n ± 1 cases. The authors of [13] propose modulo 2n ± 1 adders

based on the Signed-LSB encoding. In order to trade-off the area overhead of

the BSD with the delay, [17, 18] propose the use of the SUT encoding for the

modulo 2n ± 1 RNS channels and present SUT-RNS addition, subtraction and

multiplication circuits. However, no architecture has been reported so far

for converting a binary modulo 2n ± 1 number from/to its corresponding

SUT-RNS encoding, making the arithmetic circuits proposed for SUT-RNS in

[17, 18] inapplicable.

In this work we fill this gap by presenting forward and reverse converters for

modulo 2n ± 1 SUT-RNS encoding. The proposed converters are based on par-

allel-prefix binary or modulo 2n ± 1 adders and small extra logic and are very

efficient.

The rest of this work is organized as follows. The next section presents an

overview of the SUT-RNS encoding. Forward and reverse converters for

modulo 2n ± 1 SUT-RNS channels are given in Sects. 14.3 and 14.4, respectively.

Section 14.5 evaluates the proposed circuits and presents some experimental

results. Conclusions are drawn in the last section.

232 E. Vassalos et al.



14.2 Redundant High-Radix SUT-RNS

Every SUT-encoded number is composed of SUT digits. Each SUT digit consists

of two-valued digits (twits) of three types: posibits {0, +1}, negabits {-1, 0}, and

unibits {-1, +1}. A posibit has a lower value equal to 0 whereas a negabit and a

unibit have a lower value equal to -1. Furthermore, a posibit and a negabit use a

gap size equal to 1 whereas a unibit uses a gap size equal to 2 [11]. All three twits

require one bit for their representation. and use bias encoding, that is, their lower

value is encoded in binary with logical 0 whereas their upper value is encoded in

binary with logical 1. The commonly used dot notations, symbolic notations and

binary encodings of the three different twits are presented in Table 14.1.

SUT-RNS has been proposed as a redundant, high-radix, encoding for modulo

2n ± 1 numbers [17, 18]. Every SUT-RNS encoded number consists of k radix-2h

SUT digits (n = k9h), where each SUT digit consists of (h ? 1) twits, that is,

(h-1) posibits, 1 negabit and 1 unibit. The negabit along with the posibits rep-

resent the radix-2h main part [-2h-1, +2h-1
-1] whereas the unibit represents the

transfer part of the SUT digit. The symbolic and dot notation of a k-digit (Dk…D1)

SUT-RNS number Y are shown in Fig. 14.1. The maximum representable number

is equal to +2h-1�R whereas the minimum representable number is equal to

(-2h-1
-1)�R, where R = (2kh-1)/(2h-1). For example, when n = 6 (k = 2 and

h = 3), the range of representable numbers is from -45 up to +36. A modulo

2n ? 1 (2n - 1) number X;X 2 ½0; 2n� ðX 2 ½0; 2n � 1� assuming a double repre-

sentation of zero), can be encoded in SUT-RNS by utilizing the positive value

range of the SUT-RNS encoding for some values of X and the negative value range

for the remaining values. Assuming the values of n, k and h of the previous

example, 7 can be encoded as +7 in both moduli cases whereas 37 can be encoded

as -28 in modulo 26 ? 1 since |37|65 = |-28|65 and can be encoded as -26 in

modulo 26-1 since |37|63 = |-26|63.

Table 14.1 Dot notation, symbolic notation and binary encoding of twits

Twit Dot notation Symbolic notation Lower value Upper value

Negabit � Yi 0 (-1) 1 (0)

Posibit d yi 0 (0) 1 (+1)

Unibit y0i 0 (-1) 1 (+1)

D1D2Dk

Ykh-1ykh-2 … y(k-1)h .  .  .    Y2h-1y2h-2 … yh Yh-1 yh-2  …  y0

y (k-1)h y h y 0 

(a)

(b)

. . . . . . . . . . . . 

Fig. 14.1 a Dot and
b symbolic notation of a
k-digit radix-2h SUT-RNS
number Y

14 SUT-RNS Forward and Reverse Converters 233



14.3 Forward Converters

In order to utilize the adder, subtractor and multiplier circuits that were proposed

in [18] for SUT-RNS, one has to use forward converters to derive the SUT-RNS

encodings of the input operands. In [18] no such circuits have been presented.

Jaberipur and Parhami [12] reported an algorithm for converting a signed two’s

complement number to an SUT representation. However this algorithm cannot be

directly applied to the SUT-RNS encoding since in this case the input is a modulo

2n ? 1 or a modulo 2n - 1 unsigned number. We present in this section efficient

forward converters of a modulo 2n ± 1 number to its corresponding SUT-RNS

encoding. We consider the two cases of moduli separately.

14.3.1 Modulo 2n21

Consider an n-bit modulo 2n - 1 number X ¼ xn�1. . .x0 2 0; 2n � 1½ �. The algo-

rithm for forward conversion presented in [12] can correctly encode in SUT-RNS

every value of X that lies in the positive value range of the SUT-RNS encoding, as

shown in Fig. 14.2. However, for all values of X that are encoded in SUT-RNS in

the negative value range, a value decreased by one compared to the correct modulo

2n - 1 value is produced since modulo 2n arithmetic is used instead and

X � 2nj j
2n�1

¼ X � ð2n � 1Þ � 1j j
2n�1

¼ X � 1j j
2n�1

. Hence, for all the SUT-RNS

encoded values of X that lie in the negative value range, we have to increase the

corresponding value of X by one in order to get the correct modulo 2n - 1 value.

The following two-step algorithm is a modification of the forward conversion

algorithm of [12] that deals with the above-mentioned problem and performs

correct modulo 2n - 1 forward SUT-RNS conversion:

Step I: Compute z ¼ X þ Rþ s ¼ z0 þ s, where z and R = (2kh-1)/(2h-1)

denote n-bit operands, z0 ¼ X þ R, and s denotes a sign indication bit whose value

is equal to 0 when the value of X lies in the positive value range of the SUT-RNS

encoding and is equal to 1 when the value of X lies in the negative value range.

According to Fig. 14.2, s ¼
0; X þ R\2

n�1

1; X þ R� 2
n�1

�

� Hence, sign s can be derived by

0

0

0

(-2h-1-1)·R

-2n-1 +(2n-1-1)

2n

(2
n-1

-1)-R

(2
n-1

-1)-R

SUT

2's Complement 

[12]

Modulo 2
n
±1 

SUT-RNS 

− +

− −

−

+

+

+2h-1·R

Fig. 14.2 Positive and negative value range of the SUT-RNS encoding

234 E. Vassalos et al.



the logical equation s ¼ z0n�1 _ cn�1; where z0n�1 and cn-1 are the most significant

bit and carry out of the (X ? R) addition and _ denotes the logical OR operation.

A straightforward solution for deriving the bits of z uses a binary adder for

deriving z0 and a controllable incrementer for incorporating s. However, those two

operations can be efficiently merged in a parallel-prefix-based adder, as shown in

Fig. 14.3. The X and R operands are driven to a parallel-prefix structure that

derives the n carries (cn-1, …, c0) of X ? R in log2n levels. Then, s can be derived

by an XOR and an OR gate, as s ¼ ðhsn�1 � cn�2Þ _ cn�1; where hsn�1 ¼
xn�1 � Rn�1 is the half-sum bit of the most significant bit position. An extra prefix

level can then be used for adding the value of s and for producing the required set

of carries ðc0n�2; . . .c
0
0Þ.

Finally, the n-bits of z can be derived by 2-input XOR gates. We have to note

that since R is a constant that has a value equal to 1 in all bit positions with weights

2ih, 0 B i\ k, and a value equal to 0 in all other bit positions, the parallel-prefix

structure can be significantly simplified.

Step II: Use the following logic equations [12] to transform the bits of z to the

corresponding SUT-RNS encoding of X, denoted as Y, assuming that z-1 = 0

and that ^ denotes the logical AND operation, while �w denotes the complement of

bit w:

a. negabits : Yih-1 = �zih�1; for 1	 i	 k

b. posibit : yih ¼ zih � zih�1; for 0	 i	 k � 1

c. posibits : yih�j ¼ zih�j; for 1	 i	 k and 2	 j\h

d. unibits : y0ih ¼ zih ^ zih�1; for 0	 i	 k � 1

Step II implies that the unibit y00 is always equal to 0. The complete circuit

structure that realizes the above algorithm is given in Fig. 14.3 and is capable of

Parallel-Prefix Structure

. . . . .

. . . . .

s

SUT Conversion

|
n

|
n

=

=

hsi c'i-1

zi

pi pi-1

p

gi-1

gi

g

 hsn-1 cn-1 hsn-2 cn-2                          hs1  c1         hs0  c0

sc 0c n-2 c n-3

zn-1 zn-2 zn-3 z1 z0. . . . .

X R

Y

Fig. 14.3 Proposed modulo
2n - 1 SUT-RNS forward
converter

14 SUT-RNS Forward and Reverse Converters 235



dealing with both representations of zero in modulo 2n - 1 arithmetic, that is, 0

and 2n - 1.

Example 1: Suppose that n = k 9 h = 2 9 4 = 8 and X = 153. Then R = 17,

z0 ¼ 170, s = 1 and z = 153 ? 17 ? 1 = 171 = 101010112. According to Step II,

Y7 = �z7 = 0, y6 = z6 = 0, y5 = z5 = 1, y4 ¼ z4 � z3 ¼ 1, y04 ¼ z4 ^ z3 ¼ 0,

Y3 = �z
3
= 0, y2 = z2 = 0, y1 = z1 = 1, y0 ¼ z0 � z�1 ¼ 1, and y00 ¼ z0 ^ z�1 ¼ 0,

thus Y ¼
Y

7
y
6
y
5
y
4

Y
3
y
2
y
1
y
0

y0
4

y0
0

� �

¼
0011 0011

0 0

� �

= (-6) 9 24 ? (-6) 920=

|-102|255 = 153. The architecture of the forward converter for n = 8, k = 2

and h = 4, assuming a Kogge-Stone parallel-prefix structure [19], is shown in

Fig. 14.4. It is obvious that since operand R is actually a constant, several sim-

plifications are possible not only in the pre-processing level but in the prefix levels of

the parallel prefix structure as well.

14.3.2 Modulo 2n 1 1

Consider now a (n ? 1)-bit modulo 2n ? 1 number X ¼ xnxn�1 � � � x0 2 0; 2n½ �.
The forward converter of [12] could be used to encode X in SUT-RNS. However,

for all values of X that lie in the negative value range of the SUT-RNS encoding,

hs0 c0hs1 c1hs2 c2hs3 c3hs4 c4hs5 c5hs6 c6hs7 c7

c'0c' 1c' 2c' 3c' 4c' 5c' 6

z0z1z2z3z4z5z6z7

=

=

hsi c'i-1

zi

p i

p

gi-1

gi

g

pi-1

=

xi

R i

g i hs i
p i

y0y1y2Y3y4

y' 4

y5y6Y7

y'
0

= 0

x0 1x1 0x2 0x3 0x4 1x5 0x6 0x7 0

=   BUFFER

Fig. 14.4 Proposed modulo 28-1 SUT-RNS forward converter (k = 2, h = 4)

236 E. Vassalos et al.



an increased by one value compared to the correct one would be produced since

X � 2nj j
2nþ1

¼ X � ð2n þ 1Þ þ 1j j
2nþ1

¼ X þ 1j j
2nþ1

� Hence, for all these values of

X we have to decrease by one in order to get the correct modulo 2n ? 1 SUT-RNS

encoding.

The following algorithm is similar to the one previously presented for modulo

2n - 1 and performs modulo 2n ? 1 SUT-RNS forward conversion.

Step I: Compute z ¼ X þ R� s ¼ X þ ðR� 1Þ þ �s ¼ xn2
n þ z0 þ �s where

z and R = (2kh-1)/(2h-1) denote n-bit operands, z0 ¼ Xj j2n þ ðR� 1Þ, and

s denotes the sign indication bit. According to Fig. 14.2,

s ¼
0; X þ R\2

n�1

1; X þ R� 2
n�1

(

¼
0; X þ R� 1ð Þ\2

n�1

� 1

1; X þ R� 1ð Þ� 2
n�1

� 1

(

¼

0; X þ R� 1ð Þ\2
n�1

� 1

1; X þ R� 1ð Þ� 2
n�1

1; X þ R� 1ð Þ ¼ 2
n�1

� 1

8

>

<

>

:

�

The first two conditions can be identified by the logical equation s ¼
z0n�1 _ cn�1 _ xn; where z

0
n�1 and cn-1 are the most significant bit and carry out of

the Xj j2n þ ðR� 1Þ addition, respectively. Note that s also incorporates the most

significant bit of X, xn, in order to add the value xn2
n. Hence, the n least significant

bits of X and (R - 1) are driven to an n-bit parallel-prefix structure. Then �s is

derived by an XOR and a NOR gate while an extra parallel prefix level is used to

add the value of �s and produce z. Similarly to the previous modulo case, simpli-

fications inside the parallel-prefix structure are possible, due to the fact that one of

its inputs (R - 1) consists of constant bits.

Step II: Use the same logic equations as in the modulo 2n - 1 case to transform

the bits of z to the corresponding SUT-RNS encoding Y. The above algorithm

produces the correct SUT-RNS encoding for all values of X except when

X ? (R - 1) = 2n-1
- 1 (third condition of the previous equation). In this case we

still have to subtract one. This can be easily achieved by deriving a signal

m indicating the case where X ? (R - 1) = 2n-1
- 1 and correcting in this case

the SUT-RNS encoding only of the least significant SUT digit. The logic equation

for m is: m ¼ hs
n�1

^ hs
n�2

^ . . . ^ hs
0
, where hsn-1, …, hs0 denote the half-sum

bits of the parallel-prefix structure. m can be derived as fast as the carries of the

parallel-prefix structure and hence it doesn’t increase the delay of the forward

converter. The twits of the least significant SUT digit are then derived by the

following logic equations:

a. negabit : Yh�1 ¼ m� �z
h�1

b. posibit : y1 ¼ z1
c. posibits : yh�j ¼ m� zh�j; for 2	 j	 h; j 6¼ h� 1

d. unibit : y00 ¼ m

14 SUT-RNS Forward and Reverse Converters 237



Hence, unibit y00 is equal to 1 only when X ? (R - 1) = 2n-1
- 1. The

complete circuit structure that realizes the above algorithm is given in Fig. 14.5.

Example 2: Suppose that n = k9h = 294 = 8 and X = 153. Then R = 17,

�s= 0, m = 0 and z = 153 ? 16 ? 0 = 169 = 101010012. According to Step II,

Y7 ¼ �z7 ¼0; y6 ¼ z6 ¼ 0; y5 ¼ z5 ¼ 1; y4 ¼ z4 � z3 ¼ 1; y04 ¼ z4 ^ z3 ¼ 0; Y3 ¼

m� �z3 ¼ 0; y2 ¼ m� z2 ¼ 0; y1 ¼ z1 ¼ 0; y0 ¼ m� z0 ¼ 1; and y00 ¼ m ¼ 0;

thus Y ¼
Y

7
y
6
y
5
y
4

Y
3
y
2
y
1
y
0

y0
4

y0
0

� �

¼
0011 0001

0 0

� �

= (-6) 9 24 ? (-8) 9 20

= |-104|257 = 153. Figure 14.6 presents a detailed view of the modulo 28 ? 1

forward converter, assuming a Kogge-Stone parallel-prefix structure.

14.4 Reverse Converters

We present in this section efficient reverse converters of an SUT-RNS encoded

modulo 2n ± 1 number to its corresponding binary encoding.

14.4.1 Modulo 2n21

In order to get the binary encoding X of an SUT-RNS encoded modulo 2n - 1

number Y, we need to add in modulo 2n - 1 the following 4 n-bit vectors, as

shown in dot notation in Fig. 14.7:

• The P = 0ykh-2…y(k-1)h 0y(k-1)h-2…y(k-2)h… 0yh-2…y0 posibits vector.

Parallel-Prefix Structure

. . . . .

. . . . .

s

SUT Conversion 

xn

m

|
n

|
n+1

=

=

hsi c'i-1

zi

pi pi-1

p

gi-1

gi

g

 hsn-1cn-1 hsn-2 cn-2                          hs1  c1         hs0  c0

zn-1 zn-2 zn-3 z1 z0. . . . .

s

X R-1

Y

c 0c n-2 c n-3

Fig. 14.5 Proposed modulo
2n ? 1 SUT-RNS forward
converter

238 E. Vassalos et al.



• The negabits vector denoted as N. Vector N in modulo 2n - 1 arithmetic is equal

toN = Ykh-11…1 Y(k-1)h-11…1… Yh-11…1. This is justified as follows: Due to

the bias encoding, a negabit ni with a weight equal to 2
i represents a value equal

to�2
i

�n
i
. Hence, N¼

Pk
i¼1 �2ih�1�Yih�1

� �

�

�

�

�

�

�

2n�1

¼ 2n�1ð Þ�
Pk

i¼1 2
ih�1

�Y
ih�1

� 	�

�

�

�

�

�

2n�1

.

Since, for every bit w it holds that 1� �w¼w, we conclude that N = Ykh-11…1

Y(k-1)h-11…1 … Yh-11…1, that is, it consists of k h-bit patterns Yih-11…1,

1 B i B k.

• The unibits vector denoted as U. Unibits can be treated as doublebits or equiva-

lently as posibits in the next higher bit position, as long as we also consider a

correction equal to -R. Hence, U = 0…0y0(k-1)h0 0…0y0(k-2)h 0 … 0…0y000.

s

hs0 c0hs1 c1hs2 c2hs3 c3hs4 c4hs5 c5hs6 c6hs7 c7

x8

m

...

x0 0x1 0x2 0x3 0x4 1x5 0x6 0x7 0

y0y1y2Y3y4

y 4

y5y6Y7

y 0 = m

z0z1z2z3z4z5z6z7

c 0c 1c 2c 3c 4c 5c 6

=

=

hsi c'i-1

zi

p i

p

gi-1

gi

g

pi-1

=

xi

R i

g i hs i
p i

=   BUFFER

Fig. 14.6 Proposed modulo 28 ? 1 SUT-RNS forward converter (k = 2, h = 4)

0 P

N

C–

0

1 1 1 1 1 1

PNUC
–0

U

Y

1 01

0

......... . . . 

1

...

...

...

1

. . . ...

1... .... . . 

0

1... 1 01 1... 1 01...

. . . 

. . . 

......... . . . PN

1

...0... . . . 

. . . 

...

Fig. 14.7 Vector formation
for modulo 2n-1 SUT-RNS
reverse conversion

14 SUT-RNS Forward and Reverse Converters 239



• The constant correction vector C
�
¼ �Rj j

2n�1
¼ 2n � 1ð Þ � 2

kh

� 1
� 	

=
�

�

�

2
h

� 1
� 	

�

�

�

2n�1

= 1…10 … 1…10, which consists of k h-bit patterns 1…10.

Instead of using a 4-operand modulo 2n - 1 adder, we can merge the 4 vectors

in two and use only a 2-operand modulo 2n - 1 adder. The posibits of P along

with the negabits of N form an n-bit vector denoted as PN. PN is actually the main

part of Y. The remaining constant bits of P and N along with the U vector and the

constant vector C- can be replaced by an n-bit vector PNUC- defined as

PNUC-
= bn-1…b0, where b iþ1ð Þh�1. . .bih ¼ y0ihy

0
ih. . .y

0
ih0, 0 B i B k-1, that is,

PNUC- consists of repeating h-bit patterns of y0ihy
0
ih. . .y

0
ih0, with 0 B i B k-1. As

a result, only the PN and PNUC- vectors need to be added; these are driven in a

modulo 2n - 1 adder in order to derive the binary encoding X, as shown in

Fig. 14.8.

Example 3: Suppose that n = k9h = 294 = 8 and X = 104. The SUT-RNS

encodingofX is equal toY ¼
Y

7
y
6
y
5
y
4

Y
3
y
2
y
1
y
0

y0
4

y0
0

� �

¼
1110 0001

1 0

� �

= 7924-

8 9 20. According to the previous discussion PN = 11100001 and PNUC
-
=

10000110. A modulo 255 adder (which is equivalent to an end-around-carry

binary adder) with PN and PNUC- as inputs produces the value 01101000 at the

output which is equal to 104.

14.4.2 Modulo 2n 1 1

A similar approach can be used in the modulo 2n ? 1 case as well. In order to get

the binary encoding X of an SUT-RNS encoded modulo 2n ? 1 number Y, we need

to add in modulo 2n ? 1 arithmetic 4 n-bit vectors, as shown in Fig. 14.9: vectors

P, N and U for the posibits, negabits and unibits, respectively, which are equal to

those in the modulo 2n - 1 case and a constant correction vector C+ which in the

case of modulo 2n ? 1 is equal to Cþ ¼ 2� Rj j
2nþ1

. The constant term 2 is jus-

tified by the fact that the negabits vector in modulo 2n - 1 and the corresponding

negabits vector in modulo 2n ? 1 always differ by 2.

PN PNUC
-

Modulo 2
n
-1 Adder

|
n

|n

y 0 0

|
n

... 

. . . 

y (k-1)h

... 

  Ykh-1ykh-2   y(k-1)h Yh-1yh-2   y0

.... . ....

0

X

Fig. 14.8 Proposed modulo
2n-1 SUT-RNS reverse
converter

240 E. Vassalos et al.



The 4 vectors can be merged in two: the PN vector which is the main part of the

SUT-RNS encoded number Y and the PNUC+ vector which depends on the transfer

part of Y and is equal to PNUC+
= bn-1…b0, where bh�1. . .b0 ¼ y0ihy

0
ih. . .y

0
ih1 and

b iþ1ð Þh�1. . .bih ¼ y0ihy
0
ih. . .y

0
ih0; 1 B iBk-1.The two n-bit vectorsPN andPNUC+ are

then driven to an enhanced diminished-one modulo 2n ? 1 adder [20] that produces

the (n ? 1)-bit binary encoding X, as shown in Fig. 14.10. We have to note that in

PNUC+ a constant correction term equal to -1 is also taken into account since a

diminished-one adder always increases the sum of its two input operands by one.

Example 4: Let n, h, k and X have the same values as in the previous example.

The SUT-RNS encoding of X is equal to Y ¼
Y

7
y
6
y
5
y
4

Y
3
y
2
y
1
y
0

y0
4

y0
0

� �

¼

1110 0001

1 0

� �

. Then PN = 11100001 and PNUC+
= 10000111. An enhanced

diminished-one modulo 257 adder sums PN and PNUC
+ and produces the value

001101000 at its output which is equal to 104.

14.5 Evaluation and Experimental Results

In this section we evaluate the forward and reverse converters that were proposed

in Sects. 14.3 and 14.4, respectively, and we present some experimental results

based on CMOS VLSI circuit implementations.

00

1 1 1 1 1 1

1 01

0

......... . . . 

1

...

...

...

1

. . . ...

1... .... . . 

0

1... 1 11 1... 0 10...

. . . 

. . . 

......... . . . 

0

...0... . . . 1...

P

N

PNUC
+

U

Y

PN

C+

. . . 

Fig. 14.9 Vector formation
for modulo 2n ? 1 SUT-RNS
reverse conversion

PN PNUC
+

Diminished-one Modulo 2
n
+1 Adder

|
n

|n+1

|
n

... 

. . . 

... 

.... . ....

y 0 1y (k-1)h  Ykh-1ykh-2   y(k-1)h Yh-1yh-2   y0 0

X

Fig. 14.10 Proposed modulo
2n ? 1 SUT-RNS reverse
converter

14 SUT-RNS Forward and Reverse Converters 241



The SUT-RNS forward converters for both modulo 2n - 1 and 2n ? 1 are based

on an n-bit parallel-prefix structure. A few gates are used to derive the sign bit

s which is then added with an extra prefix level and a level of 2-input XOR gates.

Finally, Step II of forward conversion requires some extra gates that operate in

parallel. Since the parallel-prefix structure has a logarithmic delay and all remaining

subcircuits have small constant delays, we conclude that the forward converters are

very efficient in delay. The SUT-RNS reverse converters are also very efficient since

they are based on modulo adders whose input operands are formed at a minimum

delay of an inverter. It must be noted that the parallel-prefix structure in the forward

converters and the modulo adders in the reverse converters can be designed using

any desirable architecture, while several simplifications are possible.

Table 14.2 summarizes the area and delay requirements, in gate equivalents, of

the proposed architectures, according to the unit gate model [21]. In the forward

converters case, we assume a Kogge-Stone parallel-prefix structure, whereas in the

reverse converters case we assume the modulo 2n - 1 and diminished-one modulo

2n ? 1 adders architectures of [22] and [23], respectively.

For including in the results all possible logic simplifications, we described in

HDL forward and reverse converters for both moduli cases and for several values

of n, k and h. After validating the correct operation of the HDL descriptions via

simulation, we synthesized them in a power-characterized 90 nm CMOS tech-

nology, using a standard delay optimization script, and derived estimates for area,

delay and average power dissipation. The attained results, given in Table 14.3,

indicate that the proposed converters are very fast and require small area and

power dissipation. Since we are not aware of any other work on forward and

reverse modulo 2n ± 1 SUT-RNS converters, no comparison with other proposals

is possible.

14.6 Conclusions

Redundant number systems can be used to reduce the carry propagation inside

each channel of an RNS. SUT has been proposed as a redundant high-radix

encoding for RNS that can improve the efficiency of BSD-based RNS since it can

utilize conventional arithmetic components such as full/half adders. We have

Table 14.2 Unit-gate area and delay requirements of the proposed circuits

Architecture Delay Area

SUT-RNS Forward Converters

Modulo 2n - 1 2logn ? 8 3nlogn ? n ? (7k-3)

Modulo 2n ? 1 2logn ? 9 3nlogn ? 2n ? (7k ? 1)

SUT-RNS Reverse Converters

Modulo 2n - 1 2logn ? 3 3nlogn ? 4n

Modulo 2n ? 1 2logn ? 3 (9/2)nlog n ? (1/2)n ? 5

242 E. Vassalos et al.



presented in this work efficient forward and reverse converters for the SUT-RNS

encoding for the two most commonly used moduli cases, that is, modulo 2n ± 1.

The forward converters are based on parallel-prefix binary adders and simple logic

gates whereas the reverse converters are based on modulo 2n ± 1 adders and

simple inverters.

References

1. Ananda Mohan PV (2002) Residue number systems: algorithms and architectures. Kluwer,
Netherlands

2. Omondi A, Premkumar B (2007) Residue number systems: theory and implementation.
Imperial College Press, London

3. Chaves R, Sousa L (2003) RDSP: a RISC DSP based on residue number system. In:
Proceedings of 6th Euromicro symposium on digital system design, pp 128–135. doi:
10.1109/dsd.2003.1231911

4. Fernandez PG, Lloris A (2003) RNS-based implementation of 8x8 point 2D-DCT over field-
programmable devices. Electron Lett 39:21–23. doi:10.1049/el:20030084

5. Liu Y, Lai E (2004) Moduli set selection and cost estimation for RNS-based FIR filter and
filter bank design. Des Autom Embed Syst 9:123–139. doi:10.1007/s10617-005-1186-4

6. Cardarilli G, Nannarelli A, Re M (2007) Residue number system for low-power DSP
applications. In: Proceedings of asilomar conference on signals, systems and computers,
pp 1412–1416. doi:10.1109/acssc.2007.4487461

7. Bajard JC, Imbert L (2004) A full RNS implementation of RSA. IEEE Trans Comput
53:769–774. doi:10.1109/tc.2004.2

8. Meyer-Baese U, Garcia A, Taylor F (2001) Implementation of a communications channelizer
using FPGAs and RNS arithmetic. J VLSI Signal Process 28:115–128. doi:10.1023/a:
1008167323437

Table 14.3 CMOS experimental results

n k h SUT-RNS forward converters SUT-RNS reverse converters

Area
(um2)

Delay
(ns)

Power
(mW)

Area
(um2)

Delay
(ns)

Power
(mW)

Modulo 2n - 1

8 2 4 864 0.235 0.25 974 0.172 0.37

12 4 3 1462 0.270 0.50 1932 0.212 0.69

12 3 4 1457 0.269 0.43 1813 0.215 0.67

16 4 4 2218 0.278 0.62 2592 0.211 0.97

20 5 4 2554 0.313 0.70 3757 0.259 1.32

20 4 5 2485 0.307 0.61 3809 0.252 1.34

Modulo 2n + 1

8 2 4 1191 0.250 0.29 1533 0.170 0.62

12 4 3 1559 0.285 0.47 2601 0.209 0.99

12 3 4 1467 0.287 0.37 2842 0.209 1.14

16 4 4 2345 0.292 0.59 3426 0.217 1.36

20 5 4 2777 0.331 0.73 5129 0.252 2.04

20 4 5 2706 0.320 0.61 5386 0.251 2.17

14 SUT-RNS Forward and Reverse Converters 243

http://dx.doi.org/10.1109/dsd.2003.1231911
http://dx.doi.org/10.1049/el:20030084
http://dx.doi.org/10.1007/s10617-005-1186-4
http://dx.doi.org/10.1109/acssc.2007.4487461
http://dx.doi.org/10.1109/tc.2004.2
http://dx.doi.org/10.1023/a:1008167323437
http://dx.doi.org/10.1023/a:1008167323437


9. Madhukumar AS, Chin F (2004) Enhanced architecture for residue number system-based
CDMA for high-rate data transmission. IEEE Trans Wireless Commun 3:1363–1368. doi:
10.1109/twc.2004.833509

10. Avizienis A (1961) Signed-digit representation for fast parallel arithmetic. IRE Trans
Electron Comput EC-10:389–400. doi:10.1109/tec.1961.5219227

11. Jaberipur G, Parhami B, Ghodsi M (2005) Weighted two-valued digit-set encodings: unifying
efficient hardware representation schemes for redundant number systems. IEEE Trans
Circuits Syst I 52:1348–1357. doi:10.1109/tcsi2005.851679

12. Jaberipur G, Parhami B (2007) Stored-transfer representations with weighted digit-set
encodings for ultrahigh-speed arithmetic. IET Circuits Devices Syst 1:102–110. doi:10.1049/
iet-cds:20050228

13. Jaberipur G, Parhami B (2009) Unified approach to the design of modulo-(2n ± 1) adders
based on signed-LSB representation of residues. In: Proceedings of IEEE international
symposium on computer arithmetic, pp 57–64. doi:10.1109/arith.2009.14

14. Lindstrom A, Nordseth M, Bengtsson L, Omondi A (2003) Arithmetic circuits combining
residue and signed-digit representations. In: Proceedings of 8th Asia-Pacific computer
systems architecture conference, pp 246–257. doi:10.1007/978-3-540-39864-6_20

15. Wei S (2008) A new residue adder with redundant binary number representation. In:
Proceedings of 6th international IEEE north-east workshop on circuits and systems,
pp 157–160. doi:10.1109/newcas.2008.4606345

16. Persson A, Bengtsson L (2009) Forward and reverse converters and moduli set selection in
signed-digit residue number systems. J Signal Process Syst 56:1–15. doi:10.1007/s11265-
008-0249-8

17. Timarchi S, Navi K (2007) Efficient class of redundant residue number system. In:
Proceedings of IEEE international symposium on intelligent signal processing, pp 475–780.
doi:10.1109/wisp.2007.4447506

18. Timarchi S, Navi K (2009) Arithmetic circuits of redundant SUT-RNS. IEEE Trans Instrum
Meas 58:2959–2968. doi:10.1109/tim.2009.2016793

19. Kogge PM, Stone HS (1973) A parallel algorithm for the efficient solution of a general class
of recurrence equations. IEEE Trans Comput 22:786–792. doi:10.1109/tc.1973.5009159

20. Vergos HT, Bakalis D, Efstathiou C (2010) Fast modulo 2n ? 1 multi-operand adders and
residue generators. Integr VLSI J 43:42–48. doi:10.1016/j.vlsi.2009.04.002

21. Tyagi A (1993) A reduced-area scheme for carry-select adders. IEEE Trans Comput 42:
1163–1170. doi:10.1109/12.257703

22. Kalampoukas L, Nikolos D, Efstathiou C, Vergos HT, Kalamatianos J (2000) High-speed
parallel prefix modulo 2n–1 adders. IEEE Trans Comput 49:673–680. doi:10.1109/12.863036

23. Vergos HT, Efstathiou C, Nikolos D (2002) Diminished-one modulo 2n ? 1 adder design.
IEEE Trans Comput 51:1389–1399. doi:10.1109/tc.2002.1146705

244 E. Vassalos et al.

http://dx.doi.org/10.1109/twc.2004.833509
http://dx.doi.org/10.1109/tec.1961.5219227
http://dx.doi.org/10.1109/tcsi2005.851679
http://dx.doi.org/10.1049/iet-cds:20050228
http://dx.doi.org/10.1049/iet-cds:20050228
http://dx.doi.org/10.1109/arith.2009.14
http://dx.doi.org/10.1007/978-3-540-39864-6_20
http://dx.doi.org/10.1109/newcas.2008.4606345
http://dx.doi.org/10.1007/s11265-008-0249-8
http://dx.doi.org/10.1007/s11265-008-0249-8
http://dx.doi.org/10.1109/wisp.2007.4447506
http://dx.doi.org/10.1109/tim.2009.2016793
http://dx.doi.org/10.1109/tc.1973.5009159
http://dx.doi.org/10.1016/j.vlsi.2009.04.002
http://dx.doi.org/10.1109/12.257703
http://dx.doi.org/10.1109/12.863036
http://dx.doi.org/10.1109/tc.2002.1146705


Chapter 15

Off-Chip SDRAM Access Through
Spidergon STNoC

Khaldon Hassan and Marcello Coppola

Abstract External memory access in MPSoCs becomes more challenging with

the growing requirements for high bandwidth and low latency. We propose a novel

method for optimizing external memory access in term of latency for NoC-based

MPSoCs. Our approach considers the off-chip memory access within a system

approach: from the initiators to the memory modules through the NoC-based

interconnect. We couple QoS of both NoC and memory scheduler in order to

guarantee continued services throughout the request and the response paths,

between the masters and the SDRAM modules. We study the influence of low-

priority requests over high-priority requests. We also analyze the influence of the

number of the conflict points inside the NoC over high-priority requests latency.

We compare the use of virtual channels with the physical direct connection to map

latency-sensitive IPs requests towards the memory subsystem, and demonstrate

that both solutions are equivalent in term of memory access latency.

15.1 Introduction

Off-chip DRAM access bottleneck becomes more challenging with the grow-

ing gap of MPSoCs1 requirements for high bandwidth and low latency. The multi-

threading technique used nowadays in multimedia SoCs2 with heterogeneous cores

K. Hassan � M. Coppola (&)
STMicroelectronics, Grenoble, France
e-mail: marcello.coppola@st.com

K. Hassan
e-mail: khaldon.hassan@st.com

1 Multi Processor System on Chip.
2 System on Chip.

N. Voros et al. (eds.), VLSI 2010 Annual Symposium,
Lecture Notes in Electrical Engineering 105, DOI: 10.1007/978-94-007-1488-5_15,
� Springer Science+Business Media B.V. 2011

245



increases the contention on the main memory system and demands memory sys-

tems with more complex architecture and higher performance [1].

We first analyze the classical CPU-DDR case. The frequency gap between the

CPU and the main memory eventually offsets most performance gains from further

improvements on the CPU speed. For instance, a cache miss is equivalent to

hundreds cycles for today’s CPUs, a time long enough for the processor to execute

hundreds of instructions. While the DDR SDRAM3 IO frequency has been

improving by 37% per year since 2001, the CAS4 Latency of SDRAM has been

only improving by 5% per year [2–4]. This shows that the general trend of

SDRAMs evolution is bandwidth-oriented rather than latency-oriented. Hennessy

and Patterson showed that microprocessor performance has been improving by

55% per year since 1987, which emphasizes the growing gap between CPUs speed

and SDRAM access time [5].

Schumann reported that 30–60% of memory latency is attributable to system

overhead rather than to latency DRAM components in Alpha workstations [6].

These rather CPU oriented trends also do exist for the MPSoCs designs, in

which the performance of memory system is even more important due to the

share of the interconnect and the memory bus between different heterogeneous

cores. Figure 15.1 shows an example of a MPSoC architecture with heteroge-

neous cores.

A large number of paths has been taken by researchers to reduce the primary

memory system overhead. These paths have been divided into two main approa-

ches. The first one focuses on the memory components and their scheduler,

whereas the second one takes into consideration the interconnect architecture [7].

There are very few studies that match both approaches. Recent study shows that

memory-oriented approaches can reduce application time execution [8].

However, focusing on memory access alone is not enough. Even with zero latency

SDRAM access, the overhead of primary memory system would not be eliminated,

because the transactions through a shared on-chip communication system still

require time.

The goal of this study is to provide a system vision of the off-chip memory

access considering globally the interconnect system and the memory scheduler.

We focus on the configuration of the interconnect and the memory scheduler in

order to exploit at best their QoS. Finding a theoretical solution to this problem is

hardly feasible [9], therefore we use an experimental approach based on traffic

classes whose support has been implemented on the Spidergon STNoC. Our goal

with these experiments is to optimize the external memory accesses for high-

priority transactions in term of latency.

The rest of this article is organized as follows. Section 15.2 introduces previous

studies made on memory access optimization, these studies concern memory

controllers and complex interconnection architectures. Section 15.3 mentions the

3 Double Date Rate Synchronous Dynamic Random Access Memory
4 Column Access Strobe.

246 K. Hassan and M. Coppola



problem of shared resources in MPSoC systems, and the problem of high latency

in modern interconnect structures such as NoCs. In Sect. 15.4 we propose our

solution to minimize high-priority read requests through the NoC and the memory

controller. In Sect. 15.5 we discuss our experiments results. Finally, we present the

conclusion and the future work in Sect. 15.6.

15.2 Related Work

Recognizing the importance of high performance off-chip SDRAM communica-

tion as a key to a successful system design, several memory controllers and

on-chip interconnection systems have been proposed. As we study the QoS

extension through the interconnection and the memory controller within a system

approach, we separate the related work in three subsections:

15.2.1 Memory Schedulers

Several DRAM controllers and schedulers have been proposed to make the most

efficient use of the off-chip memory subsystem. Rixner et al. show that none of

the fixed policies studied provide the best performance for all workloads and under

all circumstances. However, the FR-FCFS (first-ready first-come-first-served)

policy exploits the locality within the 3-D memory structure (bank/row/column),

Fig. 15.1 Example of a
simplified architecture of
MPSoC with heterogeneous
Cores

15 Off-Chip SDRAM Access Through Spidergon STNoC 247



and provides a 17% performance improvement on applications [10]. Akesson et al.

proposed a memory controller that guarantees minimum bandwidth and maximum

latency bounds to the IPs using a novel approach to predictable SDRAM sharing

[11]. Heithecker et al. provided an architecture of multi-stream SDRAM controller

that covers different stream types and applies memory scheduling to achieve high-

bandwidth utilization for image processing [12].

Natarajan et al. [13] examine the effect of different memory controller policies

on the performance of multiprocessor server systems. Zhu and Zhang evaluated

contemporary multi-channel DDR DRAM and Rambus DRAM systems in SMT

systems, and searched for new thread-aware DRAM techniques [1]. Their study

proves that increasing the number of threads tends to increase the memory con-

currency and thus the pressure on DRAM system. Zheng et al. proposed the

ME-LREQ scheme which considers the utilization of both processor cores and

memory subsystem.

Carter et al. showed a new memory system architecture, Impulse, that adds two

important features to a traditional memory controller [14]. It supports application

specific optimizations through configurable physical address remapping; and does

intelligent prefetching at the memory controller. Zhu et al. provided the fine grain

memory scheduler [15]. It issues multiple DRAM requests for a single cache miss,

where each request fetches a sub-block of a cache line.

Lee et al. presented a multi-layer quality aware memory controller [16] that

contains partitioned functionality layers to achieve high SDRAM utilization

and meets requirements for bandwidth and latency. They prove through digital

set-top-box emulation that accesses delay of latency-sensitive data flows can be

reduced by 37–65%.

Another memory scheduler providing QoS to improve the system performance

is proposed by Nesbit et al. [17]. It is based on concepts developed for network fair

queuing scheduling algorithms and targets high performance Chip Multi Proces-

sors (CMPs). Mutlu and Moscibroda studied also the shared memory problem in

CMPs [18]. They analyzed the interference between threads sharing memory

system and proposed a memory access scheduler called Stall-Time Fair Memory.

The goal of the scheduler is to equalize the DRAM-related slowdown experienced

by each thread due to the interference from other threads, without hurting overall

system performance.

All of these previous studies focus only on the architecture and QoS provided

by memory schedulers and do not tackle neither the interconnect services nor the

manner in which the masters requests are brought to the memory system.

15.2.2 On-chip Interconnection

In the mid 90’s Hosseini-Khayat and Bovopoulos presented an efficient bus

management scheme which allows the bus to support both continuous media

transfer and regular random transactions. The algorithm ensures that continuous

248 K. Hassan and M. Coppola



streams can meet their real-time constraints independently of random traffic, and

random traffic is not delayed significantly by continuous traffic except when the

traffic load is very high [19]. In the early 2000 the applications needs in term of

throughput have led the interconnection systems to the NoC idea [20], in which the

support for these traffic classes is still required.

Grot et al. propose a QoS scheme (Preemptive Virtual Clock) specifically

designed for cost and performance sensitive on-chip interconnects [21]. PVC

requires neither per flow buffering in the router nor large queue in the source

nodes. Instead, it provides fairness guarantees by tracking each flow’s bandwidth

consumption over a time interval and prioritizing packets based on the consumed

bandwidth.

Lee et al. present a new scheme called GSF (Globally Synchronized Frames) to

implement QoS for multi-hop on-chip networks [22]. GSF provides guaranteed

and differentiated bandwidth as well as bounded network delay without increasing

the complexity of the on-chip routers. They quantize the time into frames and the

system only tracks a few frames into the future to reduce time management costs.

Each QoS packet from a source is tagged with a frame number indicating the

desired time of future delivery to the destination. At any point in time, packets in

the earliest extant frame are routed with highest priority but sources are prevented

from inserting new packet into this frame.

QNoC has four types of service level. Signaling for urgent short packets that

have the highest priority; Real-Time that guarantees bandwidth and latency for

streamed audio and video; Read/Write for short memory and register accesses; and

Block-Transfer for long messages such as DMA transfers. It combines multiple

service levels (SL) with multiple equal-priority virtual channels (VC) within each

level. The VCs are assigned dynamically per each link. A different number of VCs

may be assigned to each SL and per each link [23].

The DSPIN network-on-chip provides guaranteed service traffic by using VCs

technique with a buffer per virtual channel [24]. The advantage of this technique is

a full separation of the traffic classes. Two traffic classes are defined, Best Effort

(BE) and Guaranteed Service (GS) packets. Thus, when one traffic class is blocked

the other is neither suspended or blocked. Consequently, the deadlock situations

can be avoided.

MANGO stands for message passing asynchronous NoC providing Guaranteed

Service traffic over a virtual channel approach [25]. MANGO routers are the nodes

of 2D mesh. They has five ports where one is a local port. The router consists of a

BE router, a GS router and a link arbiter. The GS router is implemented as a non-

blocking switching module. Each output port has seven GS communications and

one BE communication. The GS communications are multiplexed using virtual

channels within a buffer per channel approach.

Spidergon STNoC is a customizable on-chip communication platform that

addresses heterogeneous, application specific requirements of MPSoCs. It allows

customizable pseudo-regular or hierarchical topologies. As a programmable dis-

tributed hardware/software component, Spidergon STNoC offers a set of services

to design advanced application features such as quality of service, security,

15 Off-Chip SDRAM Access Through Spidergon STNoC 249



and exception handling [26]. Two virtual channels can be used to map traffic

classes. In addition, two arbitration stages are implemented in the building com-

ponents . The first one is an intra-channel arbitration, which arbitrates the packets

going though the same channel. The second one is an inter-channel arbitration,

which arbitrates between channels going through the same physical link.

15.2.3 Combined ‘‘Interconnect-Memory Scheduler’’ Solutions

Few studies treat the off-chip memory system as a system matter.

Burchard et al. presented a design of a real-time streaming memory controller

(SMC) that supports off-chip network services [27]. The SMC has been designed

to allow external SDRAM to be accessed from a PCI Express network. They

proposed a fully parametrized credit-based arbitration algorithm. They also pro-

posed the extension of the virtual channels provided by the PCIEx inside the SMC.

As they map one stream by VC, the maximum number of parallel streams

accessing the SMC is limited by the number of PCIEx VCs (eight VCs).

Sonics has developed algorithms for memory load balancing in a multi-channel

memory system with an advanced memory scheduler to optimize SDRAM access

(Interleaved Memory Technology) [28]. The global address space, covered by an

address region of SonicsSX SMART Interconnect, may be partitioned into a set of

channels. The channels are non-overlapping and collectively cover the whole

region. The number of channels for a region is a static value derived from the

number of individual targets associated with the region. The memory load bal-

ancing unit distributes application workloads over memory channels through the

interconnect.

Jang and Pan presented a NoC router with an SDRAM-aware flow control. It

improves the SDRAM utilization and latency, and decouples the Noc design cost

from the number of SDRAMs [29]. The router arbiter schedules the packets to

access SDRAM efficiently. The packets arrive at the memory subsystem into the

order that is more friendly to SDRAM operations. In consequence, the complexity

of the memory decreases while the memory performance is more improved.

15.3 Problem Statement

Shared resources pose a significant resource management problem in designing

MPSoC systems. Different threads can interfere with each other while accessing

the shared resources. If thread interference is not controlled, some threads could be

unfairly prioritized over others while other threads, perhaps having higher priority,

could be starved for long time [18]. In addition, todays SoCs need to have efficient

interconnect structures to respond to the increasing number of on-chip IPs and

their needs in term of bandwidth and latency. Nowadays, networks-on-chip seem

250 K. Hassan and M. Coppola



to be the adequate interconnect system for complex SoCs. A NoC is scalable in the

sense that adding more routers results in more bandwidth. However, increasing the

number of routers in a NoC may statistically increase the transactions latency

through the interconnect.

The Dynamic memory controller (DMC) plays a principal role in memory

access optimization process. Unfortunately, the optimization of a DMC is hard

because its task is complicated. This complication is due to two reasons. First, the

DMC needs to obey all SDRAM timing constraints to provide correct function-

ality. Second, the controller must intelligently prioritize SDRAM commands from

different memory requests to optimize system performance [30].

The interconnect latency between a master and the memory subsystem becomes

trickier for latency-sensitive masters, e.g. a cache controller. Moreover, most of

memory controllers store requests before sending them to the SDRAM, what adds

more delay to the transactions latency. That makes sense to optimize the combi-

nation of external-memory controller and interconnect, and shows the importance

of a system approach for minimizing the overall latency when using a complex

interconnection system such as a network-on-chip.

15.4 Proposed Solution

Realizing the importance of a system approach for optimizing external memory

access in SoCs, we propose in this study a way to optimally interface the

memory controller and the network-on-chip. In Sect. 15.4.2.4 we are going to

show how to homogenize the services offered by the Spidergon STNoC and

the memory controller in order to make shorten the Load/Store operations of

latency-sensitive IPs. Within the frame of this study, we focus on the latency of

high priority requests and consider the other classes of transaction with a best-

effort approach.

We give an overview of the Spidergon STNoC and the memory subsystem we

use in our simulations.

The Spidergon STNoC contains four building blocks:

• The network interface (NI), which provides a hardware access point to external

IP or processor cores and the necessary hardware to implement a set of com-

munication primitives and low-level platform services.

• The router, responsible for implementing the network layer of Spidergon

STNoC protocol stack. It must ensure a reliable packet transfer trough the

on-chip network, according to a proper QoS policy. From a very high-level

perspective, a router is based on a crossbar switch with a given number of input

and output ports.

• The network plug switch (NPS), used to aggregate several NIs for accessing the

network. This component enables the connection of several network interfaces

to the NI port of a router.

15 Off-Chip SDRAM Access Through Spidergon STNoC 251



• The physical link implements the physical layer of the Spidergon STNoC

protocol. It is responsible for connecting routers to each other, and also router to

NIs. There are several possible ways of implementing physical links, including

combinations of synchronous / asynchronous and serial / parallel links.

The QoS in Spidergon STNoC indicates the ways to manage bandwidth and

latency to ensure the requirements for each traffic flow. Arbitration is a critical part

of the router, since it determines the level of QoS support of the network and

impacts router performance in terms of critical path delay. Two factors affect

performance, the number of request ports of the arbiter and the complexity of the

arbitration scheme. Another important issue is the capability of the router to be

flexible enough to allow a certain degree of configurability of the global network

arbitration policy.

As far as bandwidth is concerned, Spidergon STNoC supports the Fair Band-

width Allocator (FBA) QoS mechanism. It is an end-to-end service that guarantees

fair and programmable weighted bandwidth allocation on the top of a distributed

network, just by tuning the injection point [26].

The Network Plug Switch and the Router can implement two virtual channels

through one physical link with the necessary logical blocks for arbitration within a

given channel, and between two channels. The main advantages of the virtual

channels (VCs) technique is a low wire area overhead per additional virtual

channel compared to the duplication of the physical link. This stems from the fact

that the traffic classes are multiplexed over the same long wires. Figure 15.2 shows

a simplified scheme of virtual channels implementation with a buffer per channel.

We use a single-port memory controller which offers QoS in term of latency for

read transactions. Entries are arbitrated with an algorithm that optimizes the

efficiency of the memory data bus. The algorithm can be modified to meet any

programmed QoS requirement. To achieve optimum memory bus efficiency entries

might be arbitrated out of order from their arrival time. QoS is defined as a method

Fig. 15.2 Spidergon STNoC
virtual channels
implementation

252 K. Hassan and M. Coppola



of increasing the arbitration priority of a read access that requires low-latency read

data. The QoS for read access is determined when the arbiter receives it. No QoS

exists for write accesses.

In order to provide an extended QoS to high-priority transactions such as cache

controller transactions, we separate high-priority transactions from other trans-

actions by mapping them on a dedicated virtual channel (VC). In addition, we give

this VC the highest priority in NIs and Routers through the NoC. Moreover, we

program the memory controller so as to minimize the stall time of transactions

coming through the high-priority VC. The next subsection provides more details

about the transactions mapping and the platform configuration.

15.4.1 Platform Composition

Figure 15.3 shows a simplified architecture of the simulation platform. It is made

up of:

• 4 traffic generators representing: 2 cache controller ports, a DMA, and an ARM

processor.

• 4 SRAMs and 1 ROM.

• 2 SDRAM DDR subsystems, made up of memory controller and Micorn DDR

SDRAM modules [31].

• A Spidergon STNoC, composed of two separated and symmetric networks, one

for requests and one for responses. Both networks contain 6 routers. This

interconnect is the backbone part of an STMicroelectronics design. Its role is to

connect several clusters with the memory subsystems.

The next subsection shows the configuration of each block of this platform

especially the implementation of the virtual channels inside the NoC.

15.4.2 Platform Configuration

Several configuration of each component are proposed in order to be able to

evaluate the performance of the previous NoC architecture and calculate the

SDRAM access speedup when implementing virtual channels.

15.4.2.1 Traffic Generators

Each traffic generator has an AMBA AXI interface with 2 separated channels for

read and write requests. The number of outstanding transactions for each channel

is configurable. It has the capability of generating constrained-random traffic in

accordance with a statistical distribution which determines the inter-transaction

15 Off-Chip SDRAM Access Through Spidergon STNoC 253



time. We have a full control over AMBA AXI bus parameters such as address

range; transaction ID and burst length. A preview of traffic generators character-

istics is shown in Table 15.1.

The traffic balancing of all these generators is defined as 50% towards on-chip

SRAMs, and 50% towards off-chip DDRs.

15.4.2.2 Memory Subsystem

Two similar memory subsystems are connected to the NoC. Each one is made up

of the combination of a single port dynamic memory controller (DMC) and two

16-bit DDR SDRAMs. The DMC is programed after the reset signal. During this

period we configure the DMC in specifying the maximal admissible latency

value for each initiator (identified by its unique source ID). Thus the DMC will

be able to schedule the requests towards the memory according to these latency

values.

The QoS in the DMC indicates the ways to manage bandwidth and latency. The

latency guarantee of a flow is based on the flow ID, while the minimal bandwidth

of a flow is based on the flow ID and the memory bank status (page hit/miss).

15.4.2.3 Interconnect

We use in our simulation platform the Spidergon STNoC interconnect system. We

implement two separated NoCs, one for requests and one for responses. In order to

minimize the number of buffers and thus the interconnect area, we only implement

two channels on the path between cache controller ports and memory subsystems

(see Fig. 15.3). Channel splitters aim to separate cache controller transactions on

two channels. The channel splitter can be enabled or not:

• When enabled, it separates cache controller transactions towards off-chip

memory subsystems on one channel (ch2 that provides the highest QoS in the

NoC) and all other transactions on the other channel (ch1).

• When disabled, it forwards all cache controller transactions on one channel

(ch1). DMA and Streaming IP transactions are mapped on channel 1 with low

Table 15.1 Traffic generator characteristics

IP Name Data Rate Latency Jitter Burst Lengtha Issuing Capabilities

$ Ctrl port0 Low Low Low 32b 2 reads, 2 writes

$ Ctrl port1 Low Low Low 32 2 reads, 2 writes

DMA High Tolerant Tolerant 16 ! 128a;c 2 reads, 2 writes

Streaming IP High Tolerant High 16 ! 128 2 reads, 2 writes

a In Bytes
b Corresponds to the cache line width
c Allowed burst sizes are : 16, 32, 64, 96, 128 bytes

254 K. Hassan and M. Coppola



priority, whereas the cache controller transactions on this channel are given the

highest priority.

Therefore, we are able to make a fair comparison of the external memory access

latencies when we use a separated channel for cache controller transactions.

As we use a single port memory controller, we need a channel merger block

to merge both channels in one AXI bus when the channel splitter is enabled.

Fig. 15.3 Simplified architecture of the simulation platform

15 Off-Chip SDRAM Access Through Spidergon STNoC 255



Note that the source routing algorithm in the request network and the response

network are symmetrical.

15.4.2.4 Services Coupling of Both Spidergon STNoC and DMC

For the first configuration (1 channel), we prioritize the cache controller trans-

actions towards the memory subsystems by giving them the highest priority in

the router arbiters, and by choosing an arbitration algorithm based on packets

priority.

For the second configuration (2 channels), we prioritize the cache controller

transactions towards the memory subsystems by mapping them on a dedicated

channel (ch2), and by configuring the router arbiters in such a way as to prioritize

ch2 over ch1 without locking packet on ch1. In this way, the high priority requests/

responses on ch2 do not stall behind the other requests/responses on ch1 on the

same physical channel between routers (see Fig. 15.3).

For both platform configurations (one channel or two channels), we give the

highest priority to the cache controller transactions.

15.4.2.5 Ordering Aspects

There are 3 kinds of components in our platform which need to be carefully

configured in order to guarantee data consistency for the masters.

The Channel Splitter which is connected to the Cache Controller port has an

arbiter that lets multiple IDs route to the same slave, but a given ID can only router

to a single slave at any particular time.

The Master Network Interface implements a similar technique by checking the

destination of the request and its ID. For instance, if two consecutive requests have

the same ID and two different destinations, the second one will not be granted until

the reception of the response of the first one.

The dynamic memory controller is aware of the requests dependency when they

have the same type and the same ID (read after read & write after write). In case of

hazard detection, the arbiter entry is flagged as having a dependency. As the arbiter

entries are invalidated, so the dependencies are reduced until finally there are no

outstanding dependencies and the entry is free to start.

15.5 Simulation Environment and Results

We measure in this section the latency access of off-chip memory for cache

controller transactions. We change the mapping of their transactions through

the interconnect and we measure the difference of latency by means of several

transactions spies.

256 K. Hassan and M. Coppola



15.5.1 Number of Conflict Points Influence Over Cache Controller

Read Transactions Latency

A conflict point is defined as a physical link shared between low-priority master(s)

and high-priority master(s). To show how the NoC routing could influence high-

priority transactions latency, we calculate the gain of memory access latency when

we use two channels by running simulations with two different routing configu-

rations. The first one has one conflict point per path, and the second one has two

conflict points per path. For both configurations, the QoS in the dynamic memory

controller for read requests is guaranteed. Thus, we can ensure the extension of

QoS provided by the interconnect into memory subsystems. Three low-priority

traffic patterns are in use in order to evaluate the influence of each of them over

high-priority read transactions. Traffic patterns are: reads, writes, and mixed

read&write. All of them have a random burst length between 64 and 128 bytes.

The memory speedup is calculated using the Eq. 15.1 for both cases. We apply this

formula on maximum latency and average latency value.

Speedup ¼ 100 �
Lat

DMC QoSon
2chs � Lat

DMC QoSon
1ch

Lat
DMC QoSon
1ch

ð15:1Þ

Figure 15.4 provides an overview of the memory access speedup evolution with

the DMA and Streaming IP transactions. In general, the use of two channels when

there are two conflict points per path is more efficient in comparison with the case

of one conflict point per path.

We notice that the gain obtained by implementing two channels when low-

priority IPs issue write requests is more important than the gain obtained when

they issue read requests. This is expected because the DMC provides no QoS for

write requests. In addition, cache controller read requests are the only read requests

in the arbitration queue of DMC, therefore they are scheduled immediately. In

normal operation mode of low-priority IPs (read&write requests), the implemen-

tation of two channels speeds up the high-priority reads of 13% in case of two

Fig. 15.4 Off-chip memory
access speedup of cache
controller read transactions
when the number of conflict
points increases inside
the NoC

15 Off-Chip SDRAM Access Through Spidergon STNoC 257



conflict points per path, and by 9% in case of one conflict point per path. The read

accesses speed up based on maximum latency with two conflict points per path

reaches 49% in a normal operation mode for low priority IPs versus 32% for one

conflict point per path.

We do not show in this experiment the results for cache controller write

requests, because the DMC model used inside the platform can not provide QoS

for write requests.

15.5.2 Comparison Between Cache Controller Direct Connection

to Memory Subsystem and the Connection Through Virtual

Channels

We change the routing table in order to fairly compare the direct connection of cache

controller ports to memory subsystems and the connection trough virtual channels.

We delete the path between cache controller port0 andmemory subsystem0.We also

delete the path between cache controller port1 and memory subsystem1 (see

Fig. 15.3). Therefore, port0 of cache controller can only communication with

memory subsystem1, and port1 of cache controller withmemory subsystem0. We run

simulations with this mapping using one channel, and then two channels. We dis-

connect then the cache controller port0/1 from the NoC to connect them through a

direct bus to memory subsystem1/0. Figure 15.5 shows the simulations results.

Speedup ¼ 100 �
Lat

DMC QoSon
direct connection � Lat

DMC QoSon
1ch

Lat
DMC QoSon
1ch

ð15:2Þ

We use Eq. 15.1 to compute memory access speedup for cache controller read

requests when we use the virtual channels, and Eq. 15.2 to calculate memory speed

up when we use a physical direct connections.

Fig. 15.5 Off-chip memory
access speedup:comparison
between the direct connection
of cache controller ports to
memory subsystems and the
use of virtual channels

258 K. Hassan and M. Coppola



Memory speedup access obtained through two channels competes with physical

direct connections in term of maximum latency. Actually, the average gap between

speedup values based on maximum latency is 6%. However the gap between

speedup values based on average latency is still big. This is due to the way in

which we compute the memory speedup. Equations 15.1 and 15.2 hide the real

difference of latency between direct connection mode and virtual channels mode.

For this reason, we use Eq. 15.3 to calculate the difference of latency between the

two connection modes for cache controller read transactions.

DLat ¼ Lat
DMC QoSon
direct connection � Lat

DMC QoSon
2ch ð15:3Þ

Figure 15.6 shows both maximum latency difference and average latency dif-

ference for cache controller read transactions. We see that the difference of

average latency is almost invariable (11 clock cycles), which corresponds to the

delay created by the pipeline inside the Spidergon STNoC at the request and

response paths.

15.6 Conclusion and Future Work

We show the importance of the external memory access optimization in MPSoCs.

We highlight the need of coupling the services provided by the network-on-chip

with the services provided by the memory scheduler in order to improve the

overall system performance. We studied the influence of the number of conflict

points on the memory subsystems paths, and proved that the use of two virtual

channels can speedup the memory access by 13% on average (up to 49% for

maximum latency) compared to the case of one channel. We made a comparison

between the connection of latency-sensitive IPs through a reserved virtual channel

in the NoC and the direct connection of these IPs to the memory subsystems.

We find that both solutions are equivalent in term of access latency. This study

lead us to a conclusion that the best way to improve the memory subsystem in a

Fig. 15.6 Latency difference
of cache controller read
transactions when we use
direct connections instead
of virtual channels

15 Off-Chip SDRAM Access Through Spidergon STNoC 259



NoC-based MPSoC is to extend the NoC services inside the dynamic memory

controller.

The future work consists of the design of a memory scheduler integrated into

the NoC. This scheduler will ensure the continuity of QoS provided by the NoC in

order to optimize latency and bandwidth of IPs accessing the memory subsystem.

Acknowledgments We would like to express our sincere gratitude to Prof. Frédéric Pétrot of
TIMA Laboratory in Grenoble for offering his tremendous experience in the field to promote this
work.

References

1. Zhu Z, Zhang Z (2005) A performance comparison of dram memory system optimizations for
smt processors. In: Proceedings HPCA-11, pp 213–224

2. Double data rate (ddr) SDRAM specification, May 2002. URL http://www.jedec.org/
download/search/JESD79F.pdf

3. Double data rate (ddr2) SDRAM specification, January 2005. URL http://www.jedec.org/
download/search/JESD79-2E.pdf

4. Double data rate (ddr3) SDRAM specification, April 2008. URL http://www.jedec.org/
download/search/JESD79-3B.pdf

5. Hennessy JL, Patterson DA (2006) Computer architecture: a quantitative approach. 4th edn.
Morgan Kaufmann Publishers Inc., San Francisco, CA

6. Schumann RC (1997) Design of the 21174 memory controller for digital personal
workstations. Digital Tech J 9(2):57–70

7. Cuppu V, Jacob B (2001) Concurrency, latency, or system overhead: Which has the largest
impact on uniprocessor dram-system performance? In: Proceedings 28th Annual international
symposium on computer architecture, pp 62–71

8. Cuppu V, Jacob B, Davis B, Mudge T (1999) A performance comparison of contemporary
dram architectures. In: Proceedings of the 26th International symposium on computer
architecture, pp 222–233

9. Wang Z, Crowcroft J (1996) Quality-of-service routing for supporting multimedia
applications. IEEE J Sel Areas Commun 14(7):1228–1234

10. Rixner S, Dally WJ, Kapasi UJ, Mattson P, Owens JD (2000) Memory access scheduling.
In: Proceedings ISCA ’00, pp 128–138

11. Akesson B, Goossens K, Ringhofer M (2007) Predator: a predictable SDRAM memory
controller. In: Proceedings CODES+ISSS ’07, pp 251–256

12. Heithecker S, do Carmo Lucas A, Ernst R (2003) A mixed qos SDRAM controller for
fpga-based high-end image processing. In: Proceedings SIPS 2003, pp 322–327

13. Natarajan C, Christenson B, Briggs F (2004) A study of performance impact of memory
controller features inmulti-processor server environment. In: ProceedingsWMPI ’04, pp 80–87

14. Carter J, Hsieh W, Stoller L, Swanson M, Zhang L, Brunvand E, Davis A, Kuo C-C,
Kuramkote R, Parker M, Schaelicke L, Tateyama T(1999) Impulse: building a smarter
memory controller. Fifth international symposium on high-performance computer
architecture, Proceedings, pp 70–79

15. Zhu Z, Zhang Z, Zhang X (2002) Fine-grain priority scheduling on multi-channel memory
systems. In: Proceedings HPCA’02, pp 107–116

16. Lee K-B, Lin T-C, Jen C-W (2005) An efficient quality-aware memory controller for
multimedia platform soc. IEEE Trans Circ Syst Video Technol 15(5):620–633 May 2005

17. Nesbit KJ, Aggarwal N, Laudon J, Smith JE (2006) Fair queuing memory systems. In:
Proceedings MICRO-39, pp 208–222

260 K. Hassan and M. Coppola

http://www.jedec.org/download/search/JESD79F.pdf
http://www.jedec.org/download/search/JESD79F.pdf
http://www.jedec.org/download/search/JESD79-2E.pdf
http://www.jedec.org/download/search/JESD79-2E.pdf
http://www.jedec.org/download/search/JESD79-3B.pdf
http://www.jedec.org/download/search/JESD79-3B.pdf


18. Mutlu O, Moscibroda T. Stall-time fair memory access scheduling for chip multiprocessors.
In: Proceedings MICRO-40, pp 146–160

19. Hosseini-Khayat S, Bovopoulos AD (1995) A simple and efficient bus management scheme
that supports continuous streams. ACM Trans Comput Syst 13(2):122–140

20. Guerrier P, Greiner A (2000) A generic architecture for on-chip packet-switched
interconnections. In: Proceedings DATE ’00, pp 250–256

21. Grot B, Keckler SW, Mutlu O (2009) Preemptive virtual clock: a flexible, efficient, and cost-
effective qos scheme for networks-on-chip. In: Proceedings Micro-42, pp 268–279

22. Lee JW, Ng MC, Asanovic K (2008) Globally-synchronized frames for guaranteed quality-
of-service in on-chip networks. In: SIGARCH Comput. Archit. News, vol 36, pp 89–100

23. Dobkin R, Ginosar R, Cidon I (2007) Qnoc asynchronous router with dynamic virtual
channel allocation. In: Proceedings NoCS’07, pp 218–218, May 2007

24. Panades IM (2008) Design and Implementation of a Network-on-Chip with Guaranteed
Service. PhD thesis, Pierre etMarie Curie University-Paris VI, May 2008

25. Bjerregaard T, Sparso J (2006) Implementation of guaranteed services in the mango clockless
network-on-chip. In: Computer Digital Techniques, IEE Proceedings, vol 153, pp 217–229,
July 2006

26. Coppola M, Grammatikakis MD, Locatelli R, Maruccia G, Pieralisi L (2008) Design of
Cost-Efficient Interconnect Processing Units: Spidergon STNoC. CRC Press, Inc., Boca
Raton, FL, USA, 2008. ISBN 1420044710, 9781420044713

27. Burchard A, Hekstra-Nowacka E, Chauhan A (2005) A real-time streaming memory
controller. In: Proceedings DATE ’05, pp 20–25

28. Sonics. Sonics sx smart interconnect solution. Datasheet, 2010. URL http://www.sonicsinc.
com/uploads/pdfs/sonicssx_DS_021610.pdf

29. Jang W, Pan DZ (2009) An SDRAM-aware router for networks-on-chip. In: Proceedings
DAC ’09, pp 800–805

30. Ipek E, Mutlu O, Martinez JF, Caruana R. Self-optimizing memory controllers: A reinforcement
learning approach. In: Proceedings ISCA’08, pp 39–50

31. Micron. 1gb x4, x8, x16 double date rate SDRAM.Datasheet, 2003. URLhttp://download.micron.
com/pdf/datasheets/dram/ddr/1GbDDRx4x8x16.pdf

15 Off-Chip SDRAM Access Through Spidergon STNoC 261

http://www.sonicsinc.com/uploads/pdfs/sonicssx_DS_021610.pdf
http://www.sonicsinc.com/uploads/pdfs/sonicssx_DS_021610.pdf
http://download.micron.com/pdf/datasheets/dram/ddr/1GbDDRx4x8x16.pdf
http://download.micron.com/pdf/datasheets/dram/ddr/1GbDDRx4x8x16.pdf


Chapter 16

Digital Microfluidic Biochips:
A Vision for Functional Diversity
and More than Moore

Krishnendu Chakrabarty and Yang Zhao

Abstract Microfluidics-based biochips are revolutionizing high-throughput

sequencing, parallel immunoassays, blood chemistry for clinical diagnostics, and

drug discovery. These emerging devices enable the precise control of nanoliter

volumes of biochemical samples and reagents. They combine electronics with

biology, and they integrate various bioassay operations, such as sample prepara-

tion, analysis, separation, and detection. Compared to conventional laboratory

procedures, which are cumbersome and expensive, miniaturized biochips offer the

advantages of higher sensitivity, lower cost due to smaller sample and reagent

volumes, system integration, and less likelihood of human error. This chapter

provides an overview of droplet-based ‘‘digital’’ microfluidic biochips. It describes

emerging computer-aided design (CAD) tools for the automated synthesis and

optimization of biochips from bioassay protocols. Recent advances in fluidic-

operation scheduling, module placement, droplet routing, pin-constrained chip

design, and testing are presented. These CAD techniques allow biochip users to

concentrate on the development of nanoscale bioassays, leaving chip optimization

and implementation details to design-automation tools.

16.1 Introduction

Advances in digital microfluidics have led to the promise of miniaturized

biochips for applications such as immunoassays for point-of-care medical diag-

nostics, DNA sequencing, and the detection of airborne particulate matter [1–8].

K. Chakrabarty (&) � Y. Zhao
Department of Electrical and Computer Engineering, Duke University, Durham,
NC 27708, USA
e-mail: krish@ee.duke.edu

N. Voros et al. (eds.), VLSI 2010 Annual Symposium,
Lecture Notes in Electrical Engineering 105, DOI: 10.1007/978-94-007-1488-5_16,
� Springer Science+Business Media B.V. 2011

263



These devices enable the precise control of nanoliter droplets of biochemical

samples and reagents, and integrated circuit (IC) technology can be used to

transport and process ‘‘biochemical payload’’ in the form of tiny droplets.

Biochips facilitate the convergence of electronics with the life sciences, and they

integrate on-chip various bioassay operations, such as sample preparation,

analysis, separation, and detection [1]. Compared to conventional laboratory

procedures, which are cumbersome and expensive, miniaturized biochips offer

the advantages of higher sensitivity, lower cost due to smaller sample and reagent

volumes, higher levels of system integration, and less likelihood of human error.

As a result, non-traditional biomedical applications and markets are opening up

fundamentally new uses for ICs. For example, the worldwide market for in vitro

diagnostics in 2007 was estimated at $38 billion [9], and 1.5 billion diagnostic

tests/year worldwide has been predicted for malaria alone [10].

However, continued growth in this emerging field depends on advances in

chip/system integration. In particular, design methods are needed to ensure that

biochips are as versatile as the macro-labs that they are intended to replace.

The few commercial biochips available today (e.g., from Agilent, Fluidigm,

Caliper, I-Stat, BioSite, etc.) are specific to an application and they offer no

flexibility to the user.

This chapter is focused on droplet-based ‘‘digital’’ microfluidic biochips. The

digital microfluidics platform offers the flexibility of dynamic reconfigurability

and software-based control of multifunctional biochips. Next the paper describes

emerging computer-aided design (CAD) tools for the automated synthesis and

optimization of biochips from bioassay protocols. Recent advances on fluidic-

operation scheduling, module placement, droplet routing, testing, and dynamic

reconfiguration are also presented. These CAD techniques allow biochip users to

concentrate on the development of nanoscale bioassays, leaving chip optimization

and implementation details to design-automation tools.

It is expected that an automated design flow will transform biochip research and

use, in the same way as design automation revolutionized IC design in the 80 s and

90 s. This approach is therefore especially aligned with the vision of functional

diversification and ‘‘More than Moore’’, as articulated in the International Tech-

nology Roadmap for Semiconductors (ITRS) 2007, which highlights ‘‘Medical’’ as

being a ‘‘System Driver’’ for the future [11]. Biochip users will adapt more easily

to emerging technology if appropriate design methods/tools and in-system auto-

mation methods are available.

The rest of this chapter is organized as follows. Section 16.2 describes the

digital microfluidic platform. Section 16.3 presents synthesis techniques, including

solutions published in the literature for operation scheduling, module placement,

and droplet routing. Section 16.4 describes pin-constrained chip methods. Sec-

tion 16.5 presents advances in testing, diagnosis, and dynamic reconfiguration.

Finally, Sect. 16.6 concludes the chapter.

264 K. Chakrabarty and Y. Zhao



16.2 Technology Platform

The basic idea of a microfluidic biochip is to integrate all necessary functions for

biochemical analysis using microfluidics technology. These micro-total-analysis-

systems are more versatile than microarrays. Integrated functions include assay

operations, detection, and sample preparation.

A digital microfluidic biochip utilizes electrowetting on dielectric (EWOD) to

manipulate and move microliter or nanoliter droplets containing biological

samples on a two-dimensional electrode array [1–4, 12–21]. A unit cell in the

array includes a pair of electrodes that acts as two parallel plates. The bottom

plate contains a patterned array of individually controlled electrodes, and the top

plate is coated with a continuous ground electrode. A conceptual view of a

digital microfluidic biochip is shown in Fig. 16.1. A droplet is moved by

applying a control voltage to an electrode adjacent to the droplet and, at the

same time, deactivating the electrode just under the droplet. Using interfacial

tension gradients, droplets can be moved to any location on a two-dimensional

array. A film of silicone oil is used as a filler medium to prevent cross con-

tamination and evaporation [7]. Recent work has demonstrated chips with an

electrode pitch of 100 lm and the gap height is 20 lm. The insulator thickness

is 200 nm. To dispense a 300 pl droplet, an actuation voltage of 11.4 V is

required [4].

The division of a volume of fluid into discrete, independently controllable

‘‘packets’’ or droplets, provides several advantages over continuous-flow. The

reduction of microfluidics to a set of basic repeated operations (i.e., ‘‘move one

unit of fluid one distance unit’’) allows a hierarchical and cell-based design

approach to be utilized. By varying the patterns of control-voltage activation

(a clock signal with logic-high and logic-low values), many fluid-handling oper-

ations such as droplet merging, splitting, mixing, and dispensing can be easily

executed. The digital microfluidic platform offers dynamic reconfigurability, since

fluidic operations can be performed anywhere on the array. Droplet routes and

Fig. 16.1 Conceptual view
of a digital microfluidic
biochip

16 Digital Microfluidic Biochips 265



operation scheduling results are programmed into a microcontroller that drives

electrodes in the array. As a result, there is no need for dedicated on-chip reaction

chambers. Reservoirs are included on the array boundary, from which droplets can

be easily dispensed [1]. The disposable nature of these chips precludes multiple

uses over long periods of time; nevertheless, reconfigurability allows the same

chip design and fabrication method to be used for multiple applications. As in the

case of today’s integrated circuit, such multifunctional chips facilitate mass pro-

duction and lower product cost.

To address the need for low-cost, printed circuit board (PCB) technology has

been employed for inexpensive fabrication [22]. Using a copper layer for the

electrodes, solder mask as the insulator, and a Teflon AF coating for hydro-

phobicity, the microfluidic array can be fabricated using an existing PCB pro-

cess. A typical coplanar digital microfluidic chip has an electrode pitch of

1.5 mm, with a gap of 90 lm [8]. Actuation voltages of around 220 V are

applied for fluidic operation. Power supplies are therefore external to the

microfluidic chip.

Demonstrated applications of digital microfluidics include the on-chip

detection of explosives such as commercial-grade 2,4,6-trinitrotoluene (TNT)

and pure 2,4-dinitrotoluene [6], automated on-chip measurement of airborne

particulate matter [16, 17], and colorimetric assays [7]. Measured performance

metrics for such colorimetric assays have been reported in prior work,

e.g., [2, 7]. Digital microfluidic biochips are being designed for on-chip gene

sequencing through synthesis [1], and integrated hematology, pathology,

molecular diagnostics, cytology, microbiology, and serology on the same plat-

form [13]. A prototype has been developed for pyrosequencing [1], which targets

the simultaneous execution of 106 fluidic operations and the processing of a

large number of droplets. Other lab-on-chip/biochip systems are being designed

for protein crystallization, which requires the concurrent execution of hundreds

of operations [23, 24].

16.3 Synthesis Methods

In this section, we examine a progression of CAD problems related to biochip

synthesis.

16.3.1 Scheduling and Module Placement

Recent years have seen growing interest in the automated design and synthesis of

microfluidic biochips [25–44]. Optimization goals here include the minimization

of assay completion time, minimization of chip area, and higher defect tolerance.

The minimization of the assay completion time, i.e., the maximization of

266 K. Chakrabarty and Y. Zhao



throughput, is essential for environmental monitoring applications where sensors

can provide early warning. Real-time response is also necessary for surgery and

neonatal clinical diagnostics. Finally, biological samples are sensitive to the

environment and to temperature variations, and it is difficult to maintain an optimal

clinical or laboratory environment on chip. To ensure the integrity of assay results,

it is therefore desirable to minimize the time that samples spend on-chip before

assay results are obtained.

Increased throughput also improves operational reliability. Long assay dura-

tions imply that high actuation voltages need to be maintained on some electrodes,

which accelerate insulator degradation and dielectric breakdown, reducing the

number of assays that can be performed on a chip during its lifetime.

Architectural-level synthesis for microfluidic biochips can be viewed as the

problem of scheduling assay functions and binding them to a given number of

resources so as to maximize parallelism, thereby decreasing response time

[35, 42]. A behavioral model for a set of bioassays is first obtained from their

laboratory protocols. Architectural-level synthesis is then used to generate a

macroscopic structure of the biochip; this is analogous to a structural register-

transfer level (RTL) model in electronic CAD [45]. On the other hand, geometry-

level synthesis (physical design) addresses the placement of resources and the

routing of droplets to satisfy objectives such as area or throughput. It creates the

final layout of the biochip, consisting of the placement of microfluidic modules

such as mixers and storage units, the routes that droplets take between different

modules, and other geometrical details [41].

As in the case of high-level synthesis for integrated circuits, resource binding

in the biochip synthesis flow refers to the mapping from bioassay operations

to available functional resources. Note that there may be several types of

resources for any given bioassay operation. For example, a 2 9 2-array mixer, a

2 9 3-array mixer and a 2 9 4-array mixer can be used for a droplet mixing

operation, but with different mixing times. In such cases, a resource selection

procedure must be used. On the other hand, resource binding may associate one

functional resource with several assay operations; this necessitates resource

sharing. Once resource binding is carried out, the time duration for each bio-

assay operation can be easily determined. Scheduling determines the start times

and stop times of all assay operations, subject to the precedence and resource-

sharing constraints.

A key problem in the geometry-level synthesis of biochips is the placement of

microfluidic modules such as different types of mixers and storage units. Since

digital microfluidics-based biochips enable dynamic reconfiguration of the

microfluidic array during run-time, they allow the placement of different modules

on the same location during different time intervals.

A simulated annealing-based heuristic approach has been developed to solve

the NP-complete problem in a computationally efficient manner [41]. Solutions

for the placement problem can provide the designer with guidelines on the size

of the array to be manufactured. If module placement is carried out for a

16 Digital Microfluidic Biochips 267



fabricated array, area minimization frees up more unit cells for sample collection

and preparation.

Architectural synthesis is based on rough estimates for placement costs such

as the area of the microfluidic modules. These estimates provide lower bounds

on the exact biochip area, since the overheads due to spare cells and cells used

for droplet transportation are not known a priori. However, it cannot be accu-

rately predicted if the biochip design meets system specifications, e.g., maximum

allowable array area and upper limits on assay completion times, until both high-

level synthesis and physical design are carried out. [36] proposed a unified

system-level synthesis method for microfluidic biochips based on parallel rec-

ombinative simulated annealing (PRSA), which offers a link between these two

steps. This method allows users to describe bioassays at a high level of

abstraction, and it automatically maps behavioral descriptions to the underlying

microfluidic array.

Efficient reconfiguration techniques have been developed to bypass faulty unit

cells in the microfluidic array [43]. A microfluidic module containing a faulty

unit cell can easily be relocated to another part of the microfluidic array by

changing the control voltages applied to the corresponding electrodes [38].

Defect tolerance can also be achieved by including redundant elements in the

system; these elements can be used to replace faulty elements through recon-

figuration techniques [37]. Another method is based on graceful degradation, in

which all elements in the system are treated in a uniform manner, and no

element is designated as a spare [39]. In the presence of defects, a subsystem

with no faulty element is first determined from the faulty system. This subsystem

provides the desired functionality, but with a gracefully-degraded level of per-

formance (e.g., longer execution times). Due to the dynamic reconfigurability of

digital microfluidics-based biochips, microfluidic components (e.g., mixers) can

be viewed as reconfigurable virtual devices. For example, a 2 9 4 array mixer

(implemented using a rectangular array of control electrodes—two in the

X-direction and four in Y-direction) can easily be reconfigured to a 2 9 3 array

mixer or a 2 9 2 array mixer.

Figure 16.2a shows the module placement results and the microfluidic array

design for a representative protein assay [36]. The XY-plane refers to the place-

ment of modules on the chip real estate. The Z-axis refers to time. As shown in

Fig. 16.2b, we can further integrate optical detectors as well as on-chip reservoirs/

dispensing ports into the microfluidic array to form a complete digital microfluidic

biochip for the protein assay. Figure 16.2c shows the corresponding results when

some of the unit cells in the array are faulty, and reconfiguration is used in a

unified manner with synthesis. The solution obtained for the fault-free array yields

a biochip design with a 9 9 9 microfluidic array and the completion time for the

protein assay is 363 s. The design for the faulty array allows the protein assay to

operate with an increase of only 6% in the completion time, i.e., the completion

time is now 385 s.

268 K. Chakrabarty and Y. Zhao



Fig. 16.2 a A 3-D model illustrating the synthesis results. b A digital microfluidic biochip for a
protein assay. c A defective array and module placement for the protein assay on this array

16 Digital Microfluidic Biochips 269



16.3.2 Droplet Routing

A key problem in biochip physical design is droplet routing between modules, and

between modules and I/O ports (i.e., on-chip reservoirs). The dynamic reconfig-

urability inherent in digital microfluidics allows different droplet routes to share

cells on the microfluidic array during different time intervals. In this sense, the

routes in microfluidic biochips can be viewed as virtual routes, which make droplet

routing different from the classical wire VLSI routing problem. Systematic routing

method for digital microfluidic biochips have therefore been developed to mini-

mize the number of cells used for droplet routing, while satisfying constraints

imposed by performance goals and fluidic properties.

One of the first methods for droplet routing in biochips was published in [40].

The main objective in routing is to find droplet routes with minimum lengths,

where route length is measured by the number of cells in the path from the starting

point to the destination. For a microfluidic array of fixed size, minimum-length

droplet routes lead to the minimization of the total number of cells used in droplet

routing, thus freeing up more spare cells for fault tolerance. As in the case of

electronic circuits, the fluidic ports on the boundary of microfluidic modules are

referred to as pins. Similarly, we refer to the droplet routes between pins of

different modules or on-chip reservoirs as nets.

During droplet routing, a minimum spacing between droplets must be maintained

to prevent accidental mixing, except for the case when droplet merging is desired.

Fluidic constraint rules in [40] need to be satisfied in order to avoid undesirable

mixing. We view the microfluidic modules placed on the array as obstacles in

droplet routing. In order to avoid conflicts between droplet routes and assay oper-

ations, a segregation region is added to wrap around the functional region of

microfluidic modules. Another constraint in droplet routing is given by an upper

limit on droplet transportation time. The delay for each droplet route should not

exceed somemaximum, e.g., 10% of a time-slot used in scheduling, in order that the

droplet-routing time can be ignored for scheduling assay operations [40].

Since a digital microfluidic array can be reconfigured dynamically at run-time,

a series of 2-D placement configurations of modules in different time spans are

obtained in the module placement phase [37]. Therefore, the droplet routing is

decomposed into a series of sub-problems. We obtain a complete droplet-routing

solution by solving these sub-problems sequentially.

Based on this problem formulation, a two-stage routing method has been

proposed in [40]. In the first stage, M alternative routes for each net are generated.

In the second stage, a single route from the M alternatives for each net is selected

independent of the routing order of nets. This method also exploits the features of

dynamic reconfigurability and independent controllability of electrodes to modify

droplet pathways to override potential violation of fluidic constraints.

Droplet routing should be considered in the synthesis flow for digital micro-

fluidics, in order to generate a routable synthesized design for the availability of

routing paths. [33] proposed a method to incorporate droplet-routability in the

270 K. Chakrabarty and Y. Zhao



PRSA-based synthesis flow. This method estimates the droplet-routability using

two metrics. It adopts the average module distance (over all interdependent

modules) as the first design metric to guarantee the routability of modules in the

synthesized biochip. It also adopts the maximum module distance as the second

design metric to approximate the maximum length of droplet manipulation. Since

synthesis results with high routability values are more likely to lead to simple and

efficient droplet pathways, this method incorporates the above two metrics into the

fitness function by a factor that can be fine-tuned according to different design

specifications to control the PRSA-based procedure.

We ran the defect-tolerant routing-aware and defect-oblivious routing-aware

algorithms under a set of combinations of weights in the fitness function for the

protein assay example. We carried out random defect injection into each design

and obtain its failure rate. We mapped each design G to a 3D point (TG, AG, FG),

where TG, AG, FG are completion time, chip area, and failure rate of the design,

respectively. A point (TG, AG, FG) is referred to as a feasibility boundary point if

there are no other points (Tm, Am, Fm) such that Tm\ TG, Am\AG, and Fm\FG.

A feasibility frontier surface is obtained by connecting all the feasibility boundary

points, as shown in Fig. 16.3. The feasible design region corresponds to the space

above the feasible surface. Any design specification can be met whose corre-

sponding is point located in this region; otherwise, no feasible design exists for this

specification. As shown in Fig. 16.3, defect-tolerant routing-aware synthesis leads

to a lower-feasibility frontier surface and a larger feasible design space as com-

pared to the defect-oblivious method.

Cross-contamination is likely to occur when multiple droplet routes intersect or

overlap with each other. At the intersection site of two droplet routes, a droplet that

arrives at a later clock cycle can be contaminated by the residue left behind by

another droplet that passed through at an earlier clock cycle. Disjoint droplet

routes are utilized to avoid the cross-contamination. In a set of disjoint routes, a

droplet route does not share any cell in its path with each of the other droplet

routes in that set. Such routes eliminate the possibility of a droplet being

Fig. 16.3 Feasibility frontier
surface and feasible design
region for defect-tolerant and
defect-oblivious routing-
aware synthesis methods

16 Digital Microfluidic Biochips 271



transported via a cell when another droplet has already passed through it in an

earlier time interval. The problem of finding feasible disjoint routes can be directly

mapped to the problem of finding disjoint paths (vertex-disjoint or edge-disjoint)

for pairs of vertices in a graph [46].

Reference [25] proposed a droplet-routing method that avoids cross-contami-

nation in the optimization of droplet flow paths. The proposed approach targets

disjoint droplet routes and minimizes the number of cells used for droplet routing.

A net-routing ordering method is used to obtain an optimized order for the routing

of all the nets in a sub-problem. Each net in the net-routing order is routed

sequentially. The cells occupied by the routed paths are marked as obstacles for the

unrouted nets. Therefore, the latter route is vertex-disjoint with respect to all

the previous routes. Since it is often difficult to find vertex-disjoint paths to solve

the droplet-routing problem, it is more practical to relax the overlap restriction and

search for edge-disjoint routes in such cases.

16.4 Pin-Constrained Chip Design

Electrode addressing is an important problem in biochip design. It refers to the

manner in which electrodes are connected to and controlled by input pins. Early

design-automation techniques relied on the availability of a direct-addressing

scheme. For large arrays, direct-addressing schemes lead to a large number of

control pins, and the associated interconnect routing problem significantly adds to

the product cost. Thus, the design of pin-constrained digital microfluidic arrays is

of great practical importance for the emerging marketplace. In this section, we

describe a number of pin-constrained biochip design methods.

16.4.1 Droplet-Trace-Based Array Partitioning

An array-partitioning-based pin-constrained design method of digital microfluidic

biochips proposed in [44]. This method uses array partitioning and careful pin

assignment to reduce the number of control pins. The key idea is to ‘‘virtually’’

partition the array into regions. The partitioning criterion here is to ensure at most

one droplet is included in each partition. The droplet trace, defined as the set of cells

traversed by a single droplet, serves as the basis for generating the array partitions.

The droplet trace can be easily extracted from the droplet routing information and

the placement of the modules to which it is routed. If droplets traces intersect on the

array, the partitions derived by this method overlap in some regions. Sets of pins

from an ‘‘overlapping’’ partition cannot be used in the overlapped region since the

reuse of the pins may lead to droplet interference. The solution to this problem is to

make the overlapping region a new partition, referred to as the overlapping partition,

and use direct addressing (one-to-one mapping) for it.

272 K. Chakrabarty and Y. Zhao



A Connect-5 algorithm is used to address the problem of how to map control

pins to the electrodes in a partition, which can be easily implemented using a

3-layer-PCB. The Connect-5 algorithm succeeds in avoiding droplet interference

while moving a single droplet inside the partition. It can be integrated into the

droplet-trace-based array partitioning method to generate droplet-interference-free

layouts with a minimum number of pins. However, this method requires detailed

information about the scheduling of assay operations, microfluidic module

placement, and droplet routing pathways. Thus, the array design in such cases is

specific to a target biofluidic application.

16.4.2 Cross-Referencing-Based Droplet Manipulation

An alternative method based on a cross-reference driving scheme is presented in

[32]. This method allows control of an N 9 M grid array with only N ? M control

pins. The electrode rows are patterned on both the top and bottom plates, and

placed orthogonally. In order to drive a droplet along the X-direction, electrode

rows on the bottom plate serve as driving electrodes, while electrode rows on the

top serve as reference ground electrodes. The roles are reversed for movement

along the Y-direction. This cross-reference method facilitates the reduction of

control pins. However, due to electrode interference, this design cannot handle the

simultaneous movement of more than two droplets. For the concurrent manipu-

lation of multiple droplets on a cross-referencing-based biochip, multiple row and

column pins must be selected to activate the destination cells, i.e., cells to which

the droplets are supposed to move. However, the selected row and column pins

may also result in the activation of cells other than the intended droplet

destinations.

A solution based on destination-cell categorization has been proposed to tackle

the above problem. The key idea is to group the droplet movements according to

their destination cells. A group consists of droplets whose destination cells share

the same column or row. In this way, the manipulation of multiple droplets is

ordered in time; droplets in the same group can be moved simultaneously without

electrode interference, but the movements for the different groups must be

sequential. The problem of finding the minimum number of groups can be directly

mapped to the problem of determining a minimal clique partition from graph

theory [47]. A linear-time heuristic algorithm based on row-scanning and column-

scanning has been used to derive the clique partitions.

16.4.3 Broadcast-Addressing Method

One drawback of the cross-reference driving scheme is that this design requires a

special electrode structure (i.e., both top and bottom plates contain electrode

16 Digital Microfluidic Biochips 273



rows), which results in increased manufacturing cost. Thereby, a broadcast-

addressing based design technique for pin-constrained and multi-functional bio-

chips has been developed in [31].

To execute a specific bioassay, routing and scheduling information must be

stored in the form of electrode activation sequences, where each bit representing

the status of the electrode at a specific time-step. The status can be either ‘‘1’’

(activate), ‘‘0’’ (deactivate) or ‘‘x’’ (don’t-care). Each electrode activation

sequence contains several don’t-care terms, which can be replaced by ‘‘1’’ or ‘‘0’’.

If two sequences can be made identical by careful replacing these don’t-care terms

with ‘‘0’’ or ‘‘1’’, they are referred to as compatible sequences. Compatible

sequences can be generated from a single signal source.

The number of control pins can be reduced by connecting together electrodes

with mutually-compatible activation sequences, and addressing them using a

single control pin. Therefore, the resulting electrode-access method is referred to

as a broadcast addressing. The first step here is to partition the electrodes into

groups. For all the electrodes in any group, the corresponding activation sequences

must be pairwise-compatible. The problem of finding an optimal partition that

leads to the minimum number of groups can be easily mapped to the problem of

determining a minimal clique partition from graph theory [47]. The minimum

number of groups yields the minimum number of control pins.

16.5 Testing and Diagnosis

In this section, we describe recent advances in the testing of digital microfluidic

biochips and fault localization techniques.

16.5.1 Fault Modeling

As in microelectronic circuits, a defective microfluidic biochip is said to have a

failure if its operation does not match its specified behavior [48]. In order to

facilitate the detection of defects, fault models that efficiently represent the effect

of physical defects at some level of abstraction are required. These models can be

used to capture the effect of physical defects that produce incorrect behaviors in

the electrical or fluidic domain. As described in [49], faults in digital microfluidic

systems can be classified as being either catastrophic or parametric. Catastrophic

faults lead to a complete malfunction of the system, while parametric faults cause

degradation in the system performance. A parametric fault is detectable only if this

deviation exceeds the tolerance in system performance.

Catastrophic may be caused by a number of physical defects, for example:

• Dielectric breakdown: The breakdown of the dielectric at high voltage levels

creates a short between the droplet and the electrode. When this happens, the

droplet undergoes electrolysis, thereby preventing further transportation.

274 K. Chakrabarty and Y. Zhao



• Short between the adjacent electrodes: If a short occurs between two adjacent

electrodes, the two electrodes effectively form one longer electrode. When a

droplet resides on this electrode, it is no longer large enough to overlap the gap

between adjacent electrodes. As a result, the actuation of the droplet can no

longer be achieved.

• Degradation of the insulator: This degradation effect is unpredictable and may

become apparent gradually during the operation of the microfluidic system.

A consequence is that droplets often fragment and their motion is prevented

because of the unwanted variation of surface tension forces along their flow

path.

• Open in the metal connection between the electrode and the control source: This

defect results in a failure in activating the electrode for transport.

Table 16.1 lists some common failure sources, defects and the corresponding

fault models for catastrophic faults in digital microfluidic lab-on-chip. Examples

of some common parametric faults include the following:

• Geometrical parameter deviation: The deviation in insulator thickness, electrode

length and height between parallel plates may exceed their tolerance value.

• Change in viscosity of droplet and filler medium. These can occur during

operation due to an unexpected biochemical reaction, or changes in operational

environment, e.g., temperature variation.

16.5.2 Structural Test Techniques

A unified test methodology for digital microfluidic biochips has recently been

presented, whereby faults can be detected by controlling and tracking droplet

motion electrically [50]. Test stimuli droplets containing a conductive fluid (e.g.,

KCL solution) are dispensed from the droplet source. These droplets are guided

through the unit cells following the test plan towards the droplet sink, which is

connected to an integrated capacitive detection circuit. Details of the capacitive

readout circuit are presented in [51]. Most catastrophic faults result in a complete

cessation of droplet transportation. Therefore, we can determine the fault-free or

faulty status of the system by simply observing the arrival of test stimuli droplets

at selected ports. An efficient test plan ensures that testing does not conflict with

the normal bioassay, and it guides test stimuli droplets to cover all the unit cells

available for testing. The microfluidic array can be modeled as an undirected

graph, and the pathway for the test droplet can be determined by solving the

Hamiltonian path problem [52]. With negligible hardware overhead, this method

also offers an opportunity to implement self-test for microfluidic systems and

therefore eliminate the need for costly, bulky, and expensive external test equip-

ment. Furthermore, after detection, droplet flow paths for bioassays can be

16 Digital Microfluidic Biochips 275



reconfigured dynamically such that faulty unit cells are bypassed without inter-

rupting the normal operation.

Even though most catastrophic faults lead to a complete cessation of droplet

transportation, there exist differences between their corresponding erroneous

behaviors. For instance, to test for the electrode-open fault, it is sufficient to move

a test droplet from any adjacent cell to the faulty cell. The droplet will always be

stuck during its motion due to the failure in charging the control electrode. On the

Table 16.1 Examples of fault models for digital microfluidic biochip [54]

Cause of defect Defect type Number
of cells

Fault model Observable error

Excessive
actuation
voltage applied
to an electrode

Dielectric
breakdown

1 Droplet-electrode
short (a short
between the
droplet and the
electrode)

Droplet undergoes
electrolysis, which
prevents its further
transportation

Electrode
actuation for
excessive
duration

Irreversible
charge
concentration
on an
electrode

1 Electrode-stuck-on
(the electrode
remains
constantly
activated)

Unintentional droplet
operations or stuck
droplets

Excessive
mechanical
force applied to
the chip

Misalignment of
parallel plates
(electrodes
and ground
plane)

1 Pressure gradient
(net static
pressure in
some direction)

Droplet transportation
without activation
voltage

Coating failure Non-uniform
dielectric
layer

1 Dielectric islands
(islands of
Teflon coating)

Fragmentation of
droplets and their
motion is prevented

Abnormal metal
layer
deposition and
etch variation
during
fabrication

Grounding
Failure

1 Floating droplets
(droplet are not
anchored)

Failure of droplet
transportation

Broken wire to
control source

1 Electrode open
(electrode
actuation is not
possible)

Failure to activate the
electrode for droplet
transportation

Metal connection
between two
adjacent
electrodes

2 Electrode short
(short between
electrodes)

A droplet resides in the
middle of the two
shorted electrodes,
and its transport
along one or more
directions cannot be
achieved

Particle
contamination
or liquid
residue

A particle that
connect two
adjacent
electrodes

2 Electrode short

Protein adsorption
during bioassay
[12]

Sample residue
on electrode
surface

1 Resistive open at
electrode

Droplet transportation is
impeded

Contamination Assay results are outside
the range of possible
outcomes

276 K. Chakrabarty and Y. Zhao



other hand, if we move a test droplet across the faulty cells affected by an elec-

trode-short fault, the test droplet may or may not be stuck depending on its flow

direction. Therefore, to detect such faults, it is not enough to solve only the

Hamiltonian path problem. In [53], a solution based on Euler paths in graphs is

described for detecting electrode shorts.

Despite its effectiveness for detecting electrode shorts, testing based on an Euler

path suffers from long test application time. This approach uses only one droplet to

traverse the microfluidic array, irrespectively of the array size. Fault diagnosis is

carried out by using multiple test application steps and adaptive Euler paths. Such a

diagnosis method is inefficient since defect-free cells are tested multiple times.

Moreover, the test method leads to a test plan that is specific to a target biochip.

If the array dimensions are changed, the test plan must be completely altered.

In addition, to facilitate chip testing in the field, test plans need to be programmed

into a microcontroller. However, the hardware implementations of test plans

from [50] are expensive, especially for low cost, disposable biochips. More

recently, a cost-effective testing methodology referred to as ‘‘parallel scan-like

test’’ has been proposed [51]. The method is named thus because it manipulates

multiple test droplets in parallel to traverse the target microfluidic array, just as test

stimuli can be applied in parallel to the different scan chains in an integrated circuit.

A drawback of the above ‘‘structural’’ test methods is that they focus only on

physical defects, and they overlook module functionality. Therefore, these meth-

ods can only guarantee that a biochip is defect-free. However, a defect-free

microfluidic array can also malfunction in many ways. For example, a defect-free

reservoir may result in large volume variations when droplets are dispensed from

it. A splitter composed of three defect-free electrodes may split a big droplet into

two droplets with significantly unbalanced volumes. These phenomena, referred to

as malfunctions, are not the result of electrode defects. Instead, they are activated

only for certain patterns of droplet movement or fluidic operations. Such mal-

functions can have serious consequences on the integrity of bioassay results.

16.5.3 Functional Testing Techniques

Functional testing involves test procedures to check whether groups of cells can be

used to perform certain operations, e.g., droplet mixing and splitting. For the test

of a specific operation, the corresponding patterns of droplet movement are carried

out on the target cluster of cells. If a target cell cluster fails the test, e.g., the

mixing test, we label it as a malfunctioning cluster. As in the case of structural

testing, fault models must be developed for functional testing. Malfunctions in

fluidic operations are identified and included in the list of faults; see Table 16.2.

Functional test methods to detect the defects and malfunctions have recently

been developed. In particular, dispensing test, mixing test, splitting test, and

capacitive sensing test have been described in [54] to address the corresponding

malfunctions.

16 Digital Microfluidic Biochips 277



Functional test methods were applied to a PCB microfluidic platform for the

Polymerase Chain Reaction (PCR), as shown in Fig. 16.4. The platform consists of

two columns and two rows of electrodes, three reservoirs, and routing electrodes that

connect the reservoirs to the array. A dispensing malfunction is shown in Fig. 16.5.

An illustration of the mixing and splitting test is shown in Fig. 16.6. The bottom

row was first targeted and five test droplets were dispensed to the odd electrodes,

as shown in Fig. 16.6a. Next, splitting test for the even electrodes was carried out.

Droplets were split and merged on the even electrodes. In Fig. 16.6b, we see a

series of droplets of the same volume resting on the even electrodes, which means

that all the odd electrodes passed the splitting test, and merging at the even

electrodes worked well. However, when the splitting test was carried out on the

Table 16.2 Functional fault models [54]

Cause of
malfunction

Malfunction type Number
of cells

Fault model Observable
error

Electrode
actuation for
excessive
duration

Irreversible charge
concentration on
the dispensing
electrode

3 Dispensing-stuck-on
(droplet is dispensed by
not fully cut off from
the reservoir)

No droplet
can be
dispensed
from the
reservoir

Electrode shape
variation in
fabrication

Deformity of
electrodes

3 No overlap between
droplets to be mixed
and center electrode

Mixing
failure

Electrode
electrostatic
property
variation in
fabrication

Unequal actuation
voltages

3 Pressure gradient
net static pressure in
some direction)

Unbalanced
volumes
of split
droplets

Bad soldering Parasitic capacitance
in the capacitive
sensing circuit

1 Oversensitive or insensitive
capacitive sensing

False
positive/
negative
in
detection

Fig. 16.4 Fabricated lab-on-
chip used for PCR

278 K. Chakrabarty and Y. Zhao



even electrodes, a large variation in droplet volume was observed on the 3rd and

5th electrodes; see Fig. 16.6c. This variation implied a malfunction, leading to

unbalanced splitting on the 4th electrode. The malfunction was detected when the

droplets were routed to the capacitive sensing circuit. The 4th electrode on the

bottom row was marked as an unqualified splitting site.

16.5.4 Built-In Self-Test Techniques

Previous test methods for digital microfluidic platforms use capacitive sensing

circuits to read and analyze test outcomes. After reading the test-outcome droplets

Fig. 16.5 Illustration of a,
normal dispensing and b,
dispensing failure, for a
fabricated lab-on-chip

Fig. 16.6 Mixing and
splitting test for a fabricated
PCR chip

16 Digital Microfluidic Biochips 279



in a consecutive manner, the capacitive sensing circuit generates a pulse-sequence

corresponding to the detection of these droplets. This approach requires an addi-

tional step to analyze the pulse sequence to determine whether the microfluidic

array under-test is defective. The reading of test outcomes and the analysis of pulse

sequences increase test time; the latter procedure is especially prone to errors

arising from inaccuracies in sensor calibration. The complexity of the capacitive-

sensing circuit and the need for pulse-sequence analysis make previously proposed

testing methods less practical, especially for field operation.

A built-in self-test (BIST) method for digital microfluidic lab-on-chip is pro-

posed in [55]. This method utilizes microfluidic logic gates to implement the

‘‘compactor’’ in a BIST architecture. Using the principle of electrowetting-

ondielectric, microfluidic AND, OR and NOT gates are implemented through

basic droplet-handling operations such as transportation, merging, and splitting.

The definitions of logic values ‘0’ or ‘1’ are as follows: the presence of a

droplet of 1x volume at an input or output port indicates a logic value of ‘1’. The

absence of a droplet at an input or output port indicates the logic value ‘0’. The

same interpretations at inputs and outputs enable the output of one gate to be fed as

an input to another gate, thus logic gates can be easily cascaded.

The microfluidic compactor can compress the test-outcome droplets of both

structural test and functional test into one droplet in a very short amount of time,

and the droplet can be detected using a simple photodiode detector, thereby

avoiding the need for a capacitive-sensing circuit and complicated pulse-sequence

analysis. An efficient diagnosis method based on a ‘‘microfluidic encoder’’ has also

been developed to locate a single defective electrode in a microfluidic array.

16.5.5 Design for Testability

Previous pin-constrained design methods achieve a significant reduction in the

number of input pins needed for controlling the electrodes. However, as a trade-

off, droplet manipulation steps must satisfy additional constraints. These con-

straints can result in test procedures being either completely ineffective or effective

only for a small part of the chip. As a result, chip testability is significantly

reduced. Note that the reduction in testability is due to the conflicts between the

fluidic operation steps required by functional test and the constraints on droplet

manipulations introduced by the mapping of pins to electrodes. Figure 16.7 shows

a pin-constrained chip design for a representative protein-dilution assay. The

functional test procedure requires a splitting operation to be executed on the

highlighted functional unit. To do this, we first activate Pin 13 to hold a test droplet

at E2. Next, we deactivate Pin 13 and activate Pin 12 and Pin 14 to split the test

droplet into two small droplets seated on E1 and E3. However, E4 is also charged

by activating Pin 12. As a result, the split droplet that is supposed to be seated on

E2 will be moved unintentionally to the boundary of E4 and E3. Note that different

280 K. Chakrabarty and Y. Zhao



mappings for a pin-constrained chip lead to different untestable functional units,

thereby different levels of chip testability.

The authors in [56] proposed a design-for-testability (DFT) solution to facilitate

the testing in pin-constrained design. A test-aware pin-constrained design method

that incorporates test procedures into the fluidic manipulation steps in the target

bioassay protocol is proposed. First, the fluidic operations required by the test

procedure are derived from the scheduling and routing steps related to the test

droplets. Next, we merge these fluidic operations with the droplet manipulation

steps needed for the target bioassay. The merging can be carried out by attaching

the electrode-activation sequences for the test procedure to the electrode-activation

sequences for the target bioassays. For each electrode in the array, its activation

sequence during the test procedure is added to that for the target bioassay to form a

longer sequence. These merged longer electrode-activation sequences are provided

as input to the broadcast-addressing method, thereby the resulted chip design will

support not only the target bioassay but also the test operations. Figure 16.8 shows

a linear array consisting of four electrodes. A simple ‘‘routing assay’’ is mapped to

the array, where a droplet is to be routed from E4 to E1, one electrode per step. We

first list the activation sequence for each electrode (Table T1) in Fig. 16.8. Next we

add a splitting test on E3. The electrode-activation sequences for the splitting test

are shown in Table T2 of Fig. 16.8. These activation sequences are then combined

with the activation sequences in T1. The resulted longer activation sequences are

listed in table T3. The broadcast-addressing method is then applied to generate the

eventual pin assignment according to sequences in T3.

By applying pin-constrained design to the testability-aware bioassay protocol,

the proposed method ensures that the resulting chip layout supports the effective

execution of test-related droplet operations for the entire chip. Therefore, the

               

3     

6     1     24

8     4     7

11 6 12

7 3 15 18 26 14 7 25 12 13 14 8 4

16 9

7 4 18 17

13 20

9 7 26 11 13 27 24 23 21 22 19 9 5

4     23     16

2     11     10

1     3     7   

       2        

               

 

E1E2E3

12  13  14 

12

E1E2E3

12  13  14 

12 E4E4

Pin numbers for 

the electrodes 

are shown 

inside the 

squares 

High voltage

Low voltage

Fig. 16.7 An example of an
untestable functional unit on
a pin-constrained chip for
multiplexed assay

16 Digital Microfluidic Biochips 281



proposed DFT method allows design of pin-constrained biochips with a high level

of testability with negligible overhead in terms of the number of control pins.

16.6 Chapter Summary and Conclusions

We have presented a survey of research on design automation and test techniques

for digital microfluidic biochips. We first provided an overview of the digital

microfluidic platform, and then highlighted advances in synthesis and droplet

routing techniques. Practical design techniques for achieving high throughout with

a small number of control pins have been presented. Testing and design-for-

testability techniques have also been presented. Common defects have been

identified and related to logical fault models. Based on these fault models, test

techniques for emerging lab-on-chip devices and digital microfluidic modules have

been presented. The use of these test techniques for fabricated devices has been

highlighted. These design techniques are expected to pave the way for the

deployment and use of biochips in the emerging marketplace.

E1  E2  E3  E4

E1  E2  E3  E4

E1E2  E3  E4

E1  E2  E3  E4

E1  E2  E3  E4

Functional operations Test operations

Functional droplet

Test droplet

T2

T1 

T3 

Fig. 16.8 Illustration of the
influence by adding test
operations to the bioassay

282 K. Chakrabarty and Y. Zhao



References

1. Fair RB, Khlystov A, Tailor TD, Ivanov V, Evans RD, Griffin PB, Srinivasan V, Pamula VK,
Pollack MG, Zhou J (2007) Chemical and biological applications of digital-microfluidic
devices. IEEE Des Test Comput 24:10–24

2. Srinvasan V, Pamula VK, Pollack MG, Fair RB (2003) Clinical diagnostics on human whole
blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform.
In: Proceedings of MicroTAS, pp 1287–1290

3. Guiseppi-Elie A, Brahim S, Slaughter G, Ward KR (2005) Design of a subcutaneous
implantable biochip for monitoring of glucose and lactate. IEEE Sens J 5:345–355

4. Lin Y-Y, Evans RD, Welch E, Hsu B-N, Madison AC, Fair RB (2010) Low voltage
electrowetting-on-dielectric platform using multi-layer insulators. Sens Actuators B 150:
465–470

5. Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables
multigene analysis of individual environmental bacteria. Science 314:1464–1467

6. Zhao Y, Cho SK (2006) Microparticle sampling by electrowetting actuated droplet sweeping.
Lab Chip 6:137–144

7. Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip
for clinical diagnostics on human physiological fluids. Lab Chip 4:310–315

8. Luan L, Evans RD, Jokerst NM, Fair RB (2008) Integrated optical sensor in a digital
microfluidic platform. IEEE Sens J 8:628–635

9. Global In Vitro Diagnosis Market Analysis, PRLog Free Press Release, http://www.prlog.
org/10080477-global-in.vitro-diagnostic-market-analysis.html

10. World Malaria Day (2009) Key Figures, http://www.rollbackmalaria.org/worldmalariaday/
keyfigures

11. Semiconductor Industry Association, International Technology Roadmap for Semiconductors
(ITRS), (2007) [Online]. Available: http://www.itrs.net/Links/2007ITRS/Home2007.htm

12. Pollack MG, Fair RB, Shenderov AD (2000) Electrowetting-based actuation of liquid
droplets for microfluidic applications. Appl Phys Lett 77:1725–1726

13. Fair RB, Srinivasan V, Ren H, Paik P, Pamula VK, Pollack MG (2003) Electrowetting-based
on-chip sample processing for integrated microfluidics. In: Proceedings of IEEE international
electron devices meeting (IEDM), pp. 32.5.1–32.5.4

14. Cho SK, Moon HJ, Kim CJ (2003) Creating, transporting, cutting, and merging liquid droplets
by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst
12:70–80

15. Wheeler AR, Moon H, Bird CA, Loo RRO, Kim C-J, Loo JA, Garrell RL (2005) Digital
microfluidics with in-line sample purification for proteomics analyses with MALDI-MS.
Anal Chem 77:534–540

16. Gong J, Kim CJ (2005) Two-dimensional digital microfluidic system by multi-layer printed
circuit board. In: Proceedings of IEEE MEMS, 726–729

17. Chatterjee D, Hetayothin B, Wheeler AR, King DJ, Garrell RL (2006) Droplet-based
microfluidics with nonaqueous solvents and solutions. Lab Chip 6:199–206

18. Berthier J, (2007) Microdrops and Digital Microfluidics: processing, development, and
applications (micro & nano technologies), William Andrew Publishing

19. Ren H, Fair RB, Pollack MG (2004) Automated on-chip droplet dispensing with volume
control by electro-wetting actuation and capacitance metering. Sens Actuators B 98:319–327

20. Srinivasan V, Pamula VK, Fair RB (2004) Droplet-based microfluidic lab-on-a-chip for
glucose detection. Anal Chim Acta 507:145–150

21. Advanced Liquid Logic, http://www.liquid-logic.com
22. http://www.ultimatepcb.com/index.php
23. Xu T, Thwar P, Srinivasan V, Pamula VK, Chakrabarty K (2007) Digital microfluidic biochip

for protein crystallization. In: IEEE-NIH Life science systems and applications workshop,
Bethesda, MD

16 Digital Microfluidic Biochips 283

http://www.prlog.org/10080477-global-in.vitro-diagnostic-market-analysis.html
http://www.prlog.org/10080477-global-in.vitro-diagnostic-market-analysis.html
http://www.rollbackmalaria.org/worldmalariaday/keyfigures
http://www.rollbackmalaria.org/worldmalariaday/keyfigures
http://www.itrs.net/Links/2007ITRS/Home2007.htm
http://www.liquid-logic.com
http://www.ultimatepcb.com/index.php


24. Xu T, Chakrabarty K, Pamula VK (2008) Design and optimization of a digital microfluidic
biochip for protein crystallization. In: Proceedings of IEEE/ACM international conference on
computer-aided design, pp 297–301

25. Zhao Y, Chakrabarty K (2009) Cross-contamination avoidance for droplet routing in digital
microfluidic biochips. In: Proceedings of IEEE/ACM design, automation and test in europe
conference, pp 1290–1295

26. Fan SK, Hashi, C, Kim CJ (2003) Manipulation of multiple droplets on N 9 M grid by cross-
reference EWOD driving scheme and pressure-contact packaging. In: Proceedings of MEMS,
pp 694–697

27. Cho M, Pan DZ (2008) A high-performance droplet router for digital microfluidic biochips.
Proceedings of international symposium on physical design (ISPD)

28. Yuh PH, et al (2008) A progressive-ILP based routing algorithm for cross-referencing
biochips. In: Proceedings of DAC, pp 284–289

29. Yuh PH, et al (2007) BioRoute: A network flow based routing algorithm for digital
microfluidic biochips. In: Proceedings of ICCAD, pp 752–757

30. Yuh PH et al (2007) Placement of defect-tolerant digital microfluidic biochips using the
T-tree formulation. ACM J Emerg Tech Comput Sys 3:13.1–13.32

31. Xu T, Chakrabarty K (2008) Broadcast electrode-addressing for pin-constrained multi-
functional digital microfluidic biochips. In: Proceedings of IEEE/ACM design automation
conference, pp 173–178

32. Xu T, Chakrabarty K (2007) A cross-referencing-based droplet manipulation method for
high-throughput and pin-constrained digital microfluidic arrays. In: Proceedings of design,
automation and test in europe (DATE) conference, pp 552–557

33. Xu T, Chakrabarty K (2007) Integrated droplet routing in the synthesis of microfluidic
biochips. In: Proceedings of IEEE/ACM design automation conference, pp 948–953

34. Maftei E, Pop P, Madsen J, Stidsen T (2008) Placement-aware architectural synthesis of
digital microfluidic biochips using ILP. In: Proceedings of the international conference on
very large scale integration of system on chip, pp 425–430

35. Su F, Chakrabarty K (2004) Architectural-level synthesis of digital microfluidics-based
biochips. In: Proceedings of IEEE international conference on cad, pp 223–228

36. Su F, Chakrabarty K (2005) Unified high-level synthesis and module placement for defect-
tolerant microfluidic biochips. In: Proceedings of IEEE/ACM design automation conference,
pp 825–830

37. Su F, Chakrabarty K (2005) Design of fault-tolerant and dynamically-reconfigurable
microfluidic biochips. In: Proceedings of the date conference, pp 1202–1207

38. Su F, Chakrabarty K (2005) Reconfiguration techniques for digital microfluidic biochips. In:
Proceedings of IEEE design, test, integration and packaging of mems/moems symposium,
pp 143–148

39. Su F, Chakrabarty K (2005) Defect tolerance for gracefully-degradable microfluidics-based
biochips. In: Proceedings of IEEE VLSI test symposium, pp 321–326

40. Su F, Hwang W, Chakrabarty K (2006) Droplet routing in the synthesis of digital microfluidic
biochips. In: Proceedings of design, automation and test in europe (date) conference,
pp 323–328

41. Su F, Chakrabarty K (2006) Module placement for fault-tolerant microfluidics-based
biochips. ACM Trans Des Autom Electron Syst 11:682–710

42. Su F, Chakrabarty K (2008) High-level synthesis of digital microfluidic biochips. ACM J
Emerg Tech Comput Syst, 3, Article 16

43. Su F (2006) Synthesis, Testing, and Reconfiguration Techniques for Digital Microfluidic
Biochips. Ph.D. thesis, Duke University, Durham, NC, USA

44. Xu T, Chakrabarty K (2006) Droplet-trace-based array partitioning and a pin assignment
algorithm for the automated design of digital microfluidic biochips. In: Proceedings of IEEE/
ACM international conference on hardware/software codesign and system synthesis,
pp 112–117

45. De Micheli G (1994) Synthesis and optimization of digital circuits, McGraw-Hill, New york

284 K. Chakrabarty and Y. Zhao



46. Kramer ME, van Leeuwen J (1984) The complexity of wire routing and finding the minimum
area layouts for arbitrary VLSI circuits. In: Advances in computing research 2: VLSI theory,
JAI Press, London

47. Diestel R (2005) Graph Theory. Springer, Berlin
48. Kerkhoff HG (2007) Testing of microelectronic-biofluidic systems. IEEE Des Test Comput

24:72–82
49. Su F, Ozev S, Chakrabarty K (2003) Testing of droplet-based microelectrofluidic systems.

In: Proceedings of IEEE international test conference, pp 1192–1200
50. Su F, Ozev S, Chakrabarty K (2005) Ensuring the operational health of droplet-based

microelectrofluidic biosensor systems. IEEE Sens 5:763–773
51. Xu T, Chakrabarty K (2007) Parallel scan-like test and multiple-defect diagnosis for digital

microfluidic biochips. IEEE Trans Biomed Circuits Syst 1:148–158
52. Su F, Ozev S, Chakrabarty K (2006) Test planning and test resource optimization for droplet-

based microfluidic systems. J Electron Test: Theory Appl 22:199–210
53. Su F, Hwang W, Mukherjee A, Chakrabarty K (2007) Testing and diagnosis of realistic

defects in digital microfluidic biochips. J Electron Test: Theory Appl 23:219–233
54. Xu T, Chakrabarty K (2007) Functional testing of digital microfluidic biochips.

In: Proceedings of IEEE international test conference
55. Zhao Y, Xu T, Chakrabarty K (2008) Built-in self-test and fault diagnosis for lab-on-chip

using digital microfluidic logic gates. In: Proceedings of IEEE international test conference
56. Xu T, Chakrabarty K (2009) Design-for-testability for digital microfluidic biochips. In:

Proceedings of IEEE VLSI test symposium, pp 309–314

16 Digital Microfluidic Biochips 285



Part IV

Reconfigurable Systems



Chapter 17

FPGA Startup Through Sequential
Partial and Dynamic Reconfiguration

Joachim Meyer, Michael Hübner, Lars Braun, Oliver Sander,

Juanjo Noguera, Rodney Stewart and Jürgen Becker

Abstract Dynamic and partial reconfiguration of Xilinx FPGAs is a well known

technique for runtime adaptive system design. The technique enables to substitute

parts of a configuration while other regions stay operative without any disturbance.

The advantage is the fact, that the spatial and temporal partitioning can be

exploited with the goal to increase the performance and to reduce the power

consumption due to the re-use of chip area. However, the feature of dynamic and

partial reconfiguration can be further exploited. This novel kind of exploitation is

described in this chapter. FPGAs still have to compete with other solutions like

e.g., processor based designs if e.g., a restricted power budget is available for a

specific application domain. In order to reduce the power consumption to a min-

imum, many devices use different kinds of power saving modes, called sleep-or

hibernating modes. In these modes, the power supply of the device is reduced or

even fully down. Taking this idea to the extreme, many devices in systems are only

powered at run-time when it is necessary. If not, they are released from their power

supply and do not drain current at all. Due to the fact that such a power down mode

leads to a complete loss of data in SRAM based FPGAs, special techniques for

such designs needs to be developed. The configuration has to be reloaded into the

device every time when reattaching the power to the FPGA. This circumstance

leads to restrictions for the device deployment in some electronic systems since in

many cases the time a device may use to wake up is strictly limited. In several use

cases, the configuration time of a SRAM based FPGA exceeds this limitation and

forces designers to use processors instead of FPGAs. This chapter describes a way

to decrease the configuration time of a design by exploiting the method of dynamic

J. Meyer � M. Hübner (&) � L. Braun � O. Sander � J. Becker
Karlsruhe Institute of Technology (KIT), karlsruhe, Germany
e-mail: Michael.Huebner@kit.edu

J. Noguera � R. Stewart
Xilinx Inc, Dublin, Ireland

N. Voros et al. (eds.), VLSI 2010 Annual Symposium,
Lecture Notes in Electrical Engineering 105, DOI: 10.1007/978-94-007-1488-5_17,
� Springer Science+Business Media B.V. 2011

289



and partial reconfiguration in order to enable the usage of a sleep mode. With the

presented method, the configuration time of any Xilinx SRAM based FPGA from

the identical series (e.g., Spartan 3) is independent from the size of the used

device.

17.1 Introduction

Field programmable Gate Arrays found their niche in a variety of academic and

industrial applications. The usage reaches from embedded electronics in e.g.,

automotive domain to accelerators in computer systems e.g., in graphic cards.

However, the reconfigurable technology still suffers from the fact, that ASIC

solutions of the functional elements for an application including microprocessors,

have significant better performance and power specifications. The current

improvements for FPGA based technology target more and more these bench-

marks due to the usage of latest technology in transistor design and e.g., in

dynamic threshold voltage scaling for a stable point of operation. However, power

consumption can also be reduced tremendously through the deployment of a sleep

mode realized on the computing elements. This method is well established in

processor and microcontroller designs. Such a technique is also applicable in

FPGA based system. A critical drawback for this is the fact that SRAM based

FPGAs needs to be re-configured after they have been in a sleep mode. The SRAM

loses its information if the device is not powered. Therefore the wake up time for

such a device is directly proportional with its configuration memory size, which

has to be reinitialized. The reconfiguration time after the power-on can be up to

some hundreds of milliseconds depending on the size of the FPGA. This time

frame affects the decision of hardware developers for the choice which device is

used in a hardware system. Especially if the device has to process data immedi-

ately after the wake up, the choice must be to use a microprocessor which has

currently much faster wake up times than FPGAs have if they are in a certain size.

This scenario can be found e.g., in the automotive domain where electronic control

units (ECUs) are connected in a network with a number of other ECUs in a car.

Especially at standby time it is important, that only the required ECUs are active,

which are used to monitor some critical functionality like e.g., theft protection.

Certainly it is important, that these devices have a fast wakeup time in order to

receive and process the information in the messages which are currently on the

bus. It can easily be shown, that modern SRAM based FPGAs cannot overcome

this hurdle and fail in such a use case. Furthermore the current trend of FPGA

vendors is to include more and more logic on the devices which comes with an

increased amount of configuration data and therefore an increased startup time.

Many other use cases can be found e.g., for other mobile devices like PDAs or in

measurement systems with a restricted battery capacity. A novel method for a fast

sequential start up for SRAM based FPGA was developed and will be presented in

this chapter. The idea here is to start the FPGA with only the required IP blocks

290 J. Meyer et al.



through the exploitation of dynamic and partial reconfiguration. The Xilinx

Spartan and Virtex SRAM based FPGAs support this feature and are therefore

highly relevant for this approach. In the next sections the general idea and the

detailed realization will be presented. The chapter is organized as follows:

Sect. 17.2 introduces the basics of dynamic and partial reconfiguration.

In Sect. 17.3 the general method for the sequential startup of FPGAs is described.

Section 17.4 describes an appropriate tool flow for Spartan 3 devices and presents

exemplarily a test scenario with real implementation results. The chapter is closed

in Sect. 17.5 with the conclusions and the outlook.

17.2 Dynamic and Partial Reconfiguration

The SRAM-based Xilinx FPGAs consist of configurable components, such as

configurable logic blocks (CLBs), Block RAM, hardware multiplier, input–output

(I/O) elements, and switch matrixes for the connection of routing resources (see

Fig. 17.1).

In comparison to the coarse grained reconfigurable architecture described in

[2, 3], this fine grained architecture allows path width down to one bit. Changing the

content of the SRAM implies changes to the architecture, which represents the actual

configuration (function) of the hardware. A detailed overview of reconfigurable

hardware and the related methodologies is described in [4]. Design tools, such as

Xilinx Integrated System Environment, enable the generation of the actual data

needed to program such components, for example, from a Very High Speed Inte-

grated Circuit Hardware Description Language (VHDL) description after synthesis,

translation, mapping, and place and route processes. This programming data can be

downloaded as bitstream to the FPGAwhich is then configured. After configuration,

the designed architecture starts working immediately.

The idea of dynamic and partial reconfiguration describes the possibility to

change parts of hardware on the configurable device while all other parts stay

unaffected and operative. This is done by programming the respective cells of the

SRAM while other memory areas stay unaffected. The memory of Xilinx FPGAs

is organized into columns. The smallest changeable unit is a column with a width

of one bit, a so-called frame, which therefore contains configuration information of

a complete column. Accordingly, for partial reconfiguration, writing configuration

data is only possible in full configuration frames.

There exist two concepts for dynamic partial reconfiguration. Difference based

partial reconfiguration is used for changing configuration properties of the running

system. Therefore usually only few configuration data needs to be changed. The

technique to create bitstreams for this is based on a comparison of the actual and

the target design. Afterwards the differences between them are extracted into a

partial bitstream.

The second concept is the module based partial reconfiguration. It is used to

replace whole blocks of functionality of an actual design. Therefore the design is

17 FPGA Startup Through Sequential Partial and Dynamic Reconfiguration 291



divided into static areas and areas for partial reconfigurable modules. The standard

flow to create the needed bitstreams creates each of the partial modules in separate

runs, taking into account resources which are used by the static module.

Like for a standard configuration, for partial reconfiguration the corresponding

configuration data has to be transferred to FPGA as well. This transmission of

reconfiguration data can be achieved, with different interfaces. The Serial Peripheral

Interface (SPI) allows a low cost configuration over an external flash memory. Since

this single bit connection suffers from low data throughput, the next generation of the

Xilinx devices support Quad SPImodewhere 4 parallel data lines are used to transfer

the configuration to the FPGA. The Byte Peripheral Interface (BPI) is a parallel

configuration interface in which the FPGA also acts as the ‘‘Master’’ device. With

this interface, the highest data throughput for configuration data can be achieved due

to the fact, that 8 bits in parallel are transferred to the FPGA device. Novel FPGAs

like Spartan 6 provide a BPI interface with 16 bits. Furthermore, the quantity of date

to be transferred plays a major role for the startup time.

17.3 General Method of Sequential Startup

The general idea for the sequential start up is derived from the state of the art

method of dynamic and partial reconfiguration (see [5]). As described in

Sect. 17.2, parts of the active design on an FPGA are substituted by another

functionality while the other parts of the design stay operative. The first step for

the realization of a sequential start up design is the analysis of the complete design

Fig. 17.1 Schematic view on Xilinx FPGA resources [1]

292 J. Meyer et al.



in terms of two parts which can be loaded in 2 separate phases. The first one in the

first phase, in order to receive and process data very early after the power up, and

the second part in the second phase, in order to complete the design to the full

functionality.

Figure 17.2 shows a schematic view to a partitioned design. The initial design of

the complete application is positioned on the right side of the FPGA and connected

over a communication infrastructure to the second part. The two parts together are

the complete application with its full functionality. The initial design needs to be

connected to the environment via the I/O pins of the FPGA in order to process

incoming data very early after powering up the device. Certainly the configuration

data needs to be provided from an external memory. For this reason boot memory is

connected over the standard interfaces (e.g., SPI) as described in Sect. 17.2.

It is obvious, that the size of the initial design affects the start-up time of the

device due to the required data transfer of the configuration information. It is

therefore beneficial, to include only the required components for first data pro-

cessing. Such components could be e.g., a small microprocessor or simple logic for

preprocessing of the data. In the next section, a more concrete example for an

initial design as well as the tool flow to implement it on Spartan 3 (E) devices are

described.

After power on, the FPGA reads the configuration data from the external memory

after a specific and fixed delay. Due to the fact that FPGA internal processes have to

be initiated, the data transfer is delayed by a fixed time which is called power-on-

reset time. This time is device dependent and cannot be optimized by the user.

Figure 17.3 shows the first phase of the sequential startup. The initial design is

loaded and ready to process data received from an external device. The initial

Fig. 17.2 Schematic view to a partition application on a FPGA

17 FPGA Startup Through Sequential Partial and Dynamic Reconfiguration 293



width W shown in the figure includes the area utilized by the initial design and the

communication infrastructure. It can be seen that this width has to be minimized in

order to reduce the initial configuration time. The communication infrastructure

has to be kept as close as possible to the initial design due to the fact that each

utilized logic block or any resource on an additional column of the FPGA con-

figuration memory has a high impact to the size of the bitstream which has to be

transferred after power on.

In Fig. 17.4, the schematic view to the FPGA based system after the second

phase is presented. The FPGA now contains the complete design with its full

functionality. The initial design pre-processes the incoming data and forwards the

results to the second design for further operations. The communication infra-

structure connects both parts of the design through standard interfaces. As shown

in the figure, the complete configuration for width C of the FPGA would be

necessary to load the design after power on. Due to the sequential start up, the

delay time after power on is now reduced proportional to the quotient of C and W.

After describing the procedure to build such a design, the next section evaluates

exactly this result and shows that this assumption is valid also in real realizations

on a Spartan 3 FPGA.

17.4 Implementation

The following chapter describes the implementation of the sequential startup using

a Spartan 3E FPGA. It also identifies the constraints and techniques of this

configuration methodology for this specific FPGA architecture. A device of the

Fig. 17.3 Phase 1 of sequential startup

294 J. Meyer et al.



Spartan 3 family was chosen as target architecture since the low cost and low

power characteristics of this family suits the requirements for the chosen

embedded systems scenario much better than the high end Virtex series. Although

Xilinx does not support partial reconfiguration for Spartan 3 devices, research

groups successfully implemented this technique also for this device family [6].

17.4.1 Spartan 3 Configuration Memory Architecture

The use of partial reconfiguration for Spartan 3 FPGAs is possible but brings along

some drawbacks compared to the high end Virtex devices. Those drawbacks are

caused by specific characteristics of their configuration memory architecture.

Like for all Xilinx FPGAs, the configuration memory of Spartan-3 FPGAs can

be visualized as a two-dimensional matrix of bits. Those bits can be grouped into

vertical frames which are one-bit wide and span the whole device. Such a con-

figuration frame is the smallest amount of data which can be read or can be

written. One frame does not directly map to any single hardware resource of

the FPGA, it rather contains the configuration information for one part of several

logic resources as well as routing.

The next bigger configuration structure is a configuration column which is

composed of several configuration frames. Therefore a configuration column also

Fig. 17.4 Phase 2 with complete design on the FPGA

17 FPGA Startup Through Sequential Partial and Dynamic Reconfiguration 295



spans the whole device, but instead of a one bit width a configuration column has a

width of one resource element. Therefore there exist different configuration col-

umns, for example columns of CLBs, columns of BRAM blocks, or columns of IO

elements. Each of those different configuration columns are composed by a dif-

ferent number of configuration frames.

Although a configuration frame is the smallest accessible unit of the configu-

ration memory, for partial reconfiguration, the smallest accessible unit of Spartan 3

FPGAs is a configuration column. This is a result of the Spartan 3 specific

requirement to delete a whole configuration column before writing any frames of

that column. Because of this characteristic, partial reconfiguration for Spartan 3

devices is not glitchless. Even if the design stays exactly the same the corre-

sponding columns get first deleted and then rewritten. Therefore, for partial

reconfiguration, the logic as well as the routing of different configuration modules

hast to be strictly separated into different configuration columns. The only

exceptions for nets which are allowed in both areas are the global clock lines,

because they use a separated configuration memory.

Apart from Spartan 3A(N) devices, another drawback of the Spartan 3 archi-

tecture regarding partial reconfiguration is the lack of an internal configuration

access port (ICAP). The missing internal interface to the configuration memory of

the device makes it difficult to load partial bitstreams without the help of external

intelligence. A possible solution to this problem is an external loopbacks to one of

the external configuration interfaces, like presented in [7].

17.4.2 Design Flow for Fast Sequential FPGA Startup

with Spartan 3

The first step for implementing the sequential startup approach on an FPGA is to

separate the design into boot-time critical components and boot-time tolerant

components. Since the size of the initial partial bitstream depends on the amount of

utilized columns to be configured, the initial design should be strictly limited to the

boot-time critical components and also optimized for minimal area consumption

by placing all those components into a contiguous area as small as possible. This

area needs to provide enough resources for all necessary components (e.g., Input

Output resources for communication interfaces) of the initial design but should

include not more resources than needed since those cannot be used by the second

design anymore and would be wasted.

Because of the characteristics of the Spartan 3 configuration memory archi-

tecture the partitioning options of the physical resources of the device into two

areas, one for the initial and one for the second part of the application, are very

limited. The obvious partitioning would be to place one part on the left hand side

and the other part on the right hand side. To realize the initial part in a vertical

stripe located in the middle of the device and realize 2 application areas, one on the

left hand side, the other on the right hand side of this stripe is another option.

296 J. Meyer et al.



But since the majority of Spartan 3 devices do not provide special resources like

BRAM block in the middle of the device, this partitioning will rarely provide the

right set of resources for the initial design part.

The key technique for using the Fast Sequential Startup is to create appropriate

partial bitstreams. Although not officially supported by Xilinx, there are three ways

to create valid partial bitstreams for Spartan 3 FPGAs using Xilinx tools. The first

possibility is given by the BitGen option for difference based partial reconfigu-

ration [8]. But since this option is supposed to be used rather for small design

changes than for the exchange of functionality for whole modules, it is not suitable

for the Fast Sequential FPGA Startup. The second way is another option of

BitGen, called Partial Mask [9]. It allows determining exactly which configuration

column should be included in the resulting partial bitstream. Therefore it provides

a high amount of freedom by the cost of the requirement of a detailed knowledge

on the memory architecture and the design to implement. To generate appropriate

partial bitstreams for Fast Sequential Startup we used this option. The last option is

the Early Access Partial Reconfiguration flow [10] which can be used by patching

the standard tools with a special EAPR-patch. While this flow is adequate to

create the partial bitstream for the second design, it is not able to create the partial

bitstream for the initial configuration. This is because of the flow assumes a full

configuration bitstream to configure the global clock resources and thus cannot be

used to include such resources in partial bitstreams.

Nevertheless the EAPR flow is used in the proposed tool flow. The reasons

for this are the modified implementation tools which allow the user to set

advanced constraints regarding the routing. This is necessary to strictly separate

the two design parts but still be able to utilize as much resources as possible.

Fig. 17.5 Compared to the standard implementation tools (left hand side), the EAPR tool flow
(right hand side) provide improved capabilities to constraint the routing. This is useful to
minimize the initial area and thus the initial bitstream size

17 FPGA Startup Through Sequential Partial and Dynamic Reconfiguration 297



Figure 17.5 compares the implementation of the initial design part using the

standard tools from ISE 10.1 on the left and an implementation using the ISE 9.2

sp4 tools with the EAPR-patch. For the standard tools many nets leave the area

which the logic for the initial design part is constraint to. When using the EAPR

tools only global clock routes leave the constrained area. This is no problem

because of a separated configuration memory for those lines.

The overall proposed flow to implement a design using Fast Sequential Startup

for Spartan 3 is shown in Fig. 17.6. When using the Partial Mask option of BitGen

in order to include only the appropriate columns for the initial design, make sure to

also use the option for active reconfiguration. This makes sure the bitstream

includes a valid startup sequence. The resulting bitstream still will not work

immediately for an initial configuration, first the proper value for the Frame

Length Register (FLR) has to be included. The value determines the length of a

frame and is different for different Spartan3 device types. After inserting this value

either the CRC values in the bitstream has to be recalculated and replaced, or the

CRC-check feature has to be disabled during BitGen. A custom script was used to

automate these actions, compare Fig. 17.6. For the second part of the bitstream the

partial bitstream resulting from the EAPR flow can be used.

17.5 Experiments and Results

To verify the idea of Fast Startup and the proposed flow for Spartan 3, the test

design presented in Fig. 17.7 was implemented and the configuration time was

measured. The goal was to bring up a realistic initial subsystem as fast as possible

and configure the remaining part of the FPGA with additional logic afterwards.

Therefore a MicroBlaze microprocessor and a Controller Area Network (CAN)

interface from the automotive domain were combined with several minor modules

in order to form a flexible microprocessor based, initial system.

Since sequential startup is based on dynamic partial reconfiguration, all special

requirements of this technique are also given for the sequential startup. Therefore,

well-defined interfaces had to be used for nets which connect the second part of the

application with the initial parts of the design. This was done by so called

busmacros [11]. Busmacros must be placed at the border of the initial and sec-

ondary design. It is crucial that the signals of the interfaces between both design fit

exactly to another. To keep the sequential startup as flexible as possible, a data bus

like the Processor Local Bus (PLB) should be routed through such busmacros in

Fig. 17.6 Proposed flow for fast sequential startup using spartan 3 devices

298 J. Meyer et al.



order to make the logic of the second design accessible to the microprocessor of

the first design. Those busmacros provide the possibility to disable the connection

between the two design parts. On the one hand this avoids an undefined bus state

when there is no second design configured yet. On the other hand glitches resulting

from the dynamic partial reconfiguration of the second design part cannot reach

the initial part if the busmacros are disabled.

The second design part which was used for the experiments were several 32-bit

registers implemented as PLB-slave to provide read and write access to the

Microblaze. The FPGA Editor view for the whole design is shown in Fig. 17.8.

The initial design part (P1) is located at the left hand side, the second design part at

the right hand side.

The picture in Fig. 17.8 gives a hint, that the initial design has to be designed

area efficient in order to keep the area to be configured after startup of the FPGA as

small as possible. Furthermore it is obvious, that larger FPGAs will benefit

enormously from the reduced startup times due to the fact, that the quotient

between the time for the initial design and the time for a complete configuration is

higher than for smaller FPGAs.

For the partial initial configuration the SPI interface was used, the second

dynamic partial configuration was done by using iMPACT with the external JTAG

interface. Measured configuration times of the initial partial bitstream and of a full

bitstream can be seen in Table 17.1.

The size of the partial initial bitstream for the sequential startup was about 72%

of the full bitstream size which confirms the expected proportionality between the

configuration time and configuration data. The reason for the small difference in

percentage of the measured times compared to percentage of the bitstream sizes is

the Power-on-Reset time which is the same for all test scenarios and is therefore a

static bias for the calculation.

To get further values for calculations and to show the benefit of the sequential

startup, the same design was ported to an XC3S1600E device, which is the device

in the Spartan3E series with the highest number of logic gates. For this design the

Fig. 17.7 Hardware design used for the experiments

17 FPGA Startup Through Sequential Partial and Dynamic Reconfiguration 299



initial partial bitstream had only a size of 31% of a full bitstream. Tables 17.2,

17.3 show worst case calculations assuming SPI as configuration interface for both

de-signs. The FPGA Editor view of the initial design part for this device can be

seen in Fig. 17.4.

The calculation basis for the values in Tables 17.2, 17.3 is described in

Eq. 17.1. The worst case numbers for the power on reset time and the configu-

ration clock frequency generated by the FPGA can be found in the Spartan 3

datasheet [1].

Tconf ¼ TPower�On þ
Bitstream size

fconf
ð17:1Þ

Tconf : Configuration time

Table 17.1 Measured results using SPI interface

XC3S500E SPI

Configrate 6 Configrate 12 Configrate 25

ms % ms % ms %

Traditional Startup 431 100 218 100 112 100

Sequential Startup 320 74 163 75 84 75

Fig. 17.8 FPGA Editor view
of the sample design. P1:
Initial design, P2: second
design

300 J. Meyer et al.



TPower�On : Power on reset Time

fconf : Configuration Clock Speed

As the calculations show, the benefit of sequential startup is higher for large

devices. This is due to the fact that the size in terms of required logic resources on

the FPGA of the initial design stays constant. Therefore the size of data to be

transferred to the FPGA for the initial design is also constant while the complete

amount of configuration data increases if the device is larger. A startup of a large

device therefore can be accelerated dramatically as the calculations show.

17.6 Conclusions and Outlook

The work presented in this chapter introduces the general idea of sequential startup

for configuring an FPGA with an initial and followed by a second bitstream.

By exploiting the small sizes of partial bitstreams the sequential startup enables

FPGAs to provide boot time critical components independent to the remaining

components of the design or the size of the used device. Whenever it is possible to

separate the full FPGA design into at least two temporal partitions and whenever

there is only a limited time to boot, the sequential startup brings tremendous

advantages. The advantages with this approach are obvious, FPGAs with a high

startup time can now be used in a wider field of application scenarios. Especially

when pointing to the next generation FPGAs with bitstream sizes bigger than 22

Megabyte, it is obvious that the importance of this technique will even increase in

the future (as also described in [12]). However, with all its advantages, sequential

startup also brings drawbacks in terms of additional requirements and limitations

to the system design. Most of these requirements depend on the used method to

generate the partial bitstreams and thus they depend highly on the device

Table 17.2 Calculated worst case numbers for a XC3S500E device

XC3S500E SPI

CCLK: 12.8 MHz CCLK: 25.6 MHz

ms % ms %

Traditional startup 182.36 100 93.68 100

Sequential startup 131.72 72 68.36 73

Table 17.3 Calculated worst case numbers for a XC3S1600E device

XC3S1600E SPI

CCLK: 12.8 MHz CCLK: 25.6 MHz

ms % ms %

Traditional startup 473.38 100 240.19 100

Sequential startup 152.28 32 79.64 33

17 FPGA Startup Through Sequential Partial and Dynamic Reconfiguration 301



architecture. Therefore the next steps are an integration of the sequential startup

method in the standard tools for Xilinx FPGAs.

Furthermore it has to be investigated which functionality the initial design

includes for different application scenario. For example it could be a small state

machine which gets initially loaded on the FPGA for checking the status of the

environment and to decide if a full wakeup is needed, maybe even decide

dynamically between different designs. Intelligent wakeup mechanisms play a

major role if additional power needs to be saved in several applications e.g., in the

automotive domain.

References

1. Spartan-3E FPGA Family: Data Sheet DS312 (v3.8), August 26, 2009, Xilinx Inc
2. Baumgarten V, May F, Nuckel A, Vorbach M, Weinhardt M (2003) PACT XPP A

self-reconfigurable data processing architecture. In: International conference engineering of
reconfigurable systems and algorithms (ERSA 2001), Monte Carlo Resort, Las Vegas

3. Thomas A, Becker J (2004) Dynamic adaptive routing techniques in multigrain dynamic
reconfigurable hardware architectures. In: 14th International conference field programmable
logic and applications (FPL 2004), Antwerp, Belgium

4. Compton K, Hauck S (2002) Reconfigurable computing: A survey of systems and software.
ACM Comput Surv 34(2):171–210

5. Blodget B, McMillan S, lysaght P (2003) A lightweight approach for embedded
reconfiguration of FPGAs. Design, automation and test in Europe, Date 2003

6. Gonzalez I, Aguayo E, Lopez-Buedo S (2007) Self-reconfigurable embedded systems on
low-cost FPGAs. Micro, IEEE 27(4):49–57. doi:10.1109/MM.2007.72

7. Paulsson K, Hübner M, Auer G, Dreschmann M, Becker J (2007) Implementation of a virtual
internal configuration access port (jcap) for enabling partial self-reconfiguration on xilinx
spartan III FPGAs. FPL 2007, 351–356

8. Difference-based partial reconfiguration: Application note XAPP290 (v2.0), December 3, 2007,
Xilinx Inc

9. Virtex-II Pro, Virtex-II Pro X FPGA user guide: User guide ug012 (v4.2), 364–367,
5 November, 2007, Xilinx Inc

10. Early access partial reconfiguration user guide: User guide UG208 (v1.2), September 9, 2008,
Xilinx Inc

11. Huebner M, Becker T, Becker J (2004) Real-time LUTbased network topologies for dynamic
and partial FPGA selfreconfiguration. In: Proceedings of the 17th symposium on
Integratedcircuits and system design (SBCCI 04), pages 28–32, 25–29 2004

12. Nelson BE, Wirthlin MJ, Hutchings BL, Athanas PM, Bohner S (2008) Design productivity
for configurable computing. ERSA 57–66

302 J. Meyer et al.

http://dx.doi.org/10.1109/MM.2007.72


Chapter 18

Two Dimensional Dynamic Multigrained
Reconfigurable Hardware

Lars Braun and Jürgen Becker

Abstract Partial dynamic reconfigurable (PDR) systems designed with state-

of-the-art tool chains, like the Early Access Partial Reconfiguration (EAPR)

Flow from Xilinx, does not exploit the full flexibility and all features which a

state of the art FPGA chip offers. For example the utilized chip area and the

position of a region which can be reconfigured dynamically is traditionally

specified during design-time. Thereby the shape and the size of the reconfig-

urable area are set by the size of the largest module to be reconfigured. The

consequence is that if a smaller module is placed on that region, chip area stays

unused as so called black silicon. This drawback is only one example for the

limitation of development tools of reconfigurable hardware architectures. In

this book section, a new approach for exploiting the capability of reconfigu-

rable hardware architectures is presented. It allows exploiting the reconfigu-

rable architectures more efficient than other solutions introduced before. This is

achieved through a novel concept of using micro blocks for the communication

infrastructure as well as for the functional elements on the FPGA. The gran-

ularity and the online versus offline tradeoff for the usage of the micro blocks

for building up more complex structures on the FPGA will be presented in this

chapter.

L. Braun (&) � J. Becker
Karlsruher Institut für Technologie (KIT) Institut für Technik der
Informationsverarbeitung (ITIV), 76131 Karlsruhe, Germany
e-mail: lars.braun@kit.edu

J. Becker
e-mail: becker@kit.edu

N. Voros et al. (eds.), VLSI 2010 Annual Symposium,
Lecture Notes in Electrical Engineering 105, DOI: 10.1007/978-94-007-1488-5_18,
� Springer Science+Business Media B.V. 2011

303



18.1 Introduction

The goal of the presented work is to bridge the hurdle of known restrictions

of PDR systems which are well known for example from the EAPR flow from

Xilinx [1]. These restrictions are e.g., the fixed size of areas for the reconfigurable

modules during run-time, the fixed amount of regions for reconfigurable modules,

a fixed communication structure (e.g., buses) and, last but not least, the algorithms

realized within the modules. An overview of the proposed design is presented in

Fig. 18.1. Due to the rectangular placement of the FPGA resources on the die,

obviously a mesh based network is one the most suitable communication structure.

To achieve this goal, the achievements are divided in two goals. Each of them

examines a part of the addressed limitations. The first one is a scalable, flexible

and extendable Network-on-Chip (NoC). The network is the backbone of the

system. The limitations of the NoC influences the overall system in terms of

performance, due to a loss of data throughput [2]. The limitation e.g., through

the bandwidth or the used topology, has a direct effect on the performance of the

complete system and certainly the attached modules. Also the routing scheme and

strategy of the communication structure has obviously a direct effect on where

and how the modules can be placed. In Fig. 18.1, the communication modules are

named as BM and SB. The positions named BM show the communication lines

which have to be established during runtime and SB stands for the communication

nodes which represents the links to the functional units. The second part of this

book section examines the reconfigurable modules which are fixed in their size if

traditional design methodologies are used to develop the system. As already

mentioned, the consequence of this is a fixed functionality run-time. In case the

algorithm of a module has to be changed due to the requirement of the application,

a module has to be generated completely new during design-time and made

available to be configured on the chip. This leads to a large amount of reconfig-

urable modules which are normally stored on an external configuration memory.

Fig. 18.1 Overview of the
complete system

304 L. Braun and J. Becker



The required memory capacity can be enormous due to the high number of

required modules. The presented work handles these limitations with the approach

described in the following manner: Sect. 18.2 presents the novel development of a

NoC and the online routing of its communication structures. Section 18.3 describes

the online generation of functional modules. The tool for generating the necessary

bitstreams is introduced in Sect. 18.4 and the final conclusions are presented in

Sect. 18.5.

18.2 Online Adaptable Mesh Based NoC

The on-chip NoC has to fulfill different requirements. It has to be area efficient

because of the limited resources an FPGA offers. Furthermore, the NoC could

beneficially offer the possibility to be expandable during run-time in term of

bitwidth and therefore data throughput. In the following chapter, the NoC switch

and its elements are introduced. Furthermore, the novel concept and realization of

the on demand online routing for the communication structures for building up a

run-time extensible mesh structured network-on-chip [3] are presented.

18.2.1 Switch for 2D Mesh Based NoC Approach

In this approach, the term of a switch describes a module which changes the data

flow path in the system. Thereby it is possible to choose different sinks for a source

and hence to control the data path. This mechanism manages the switch (SB in

Fig. 18.1) and thereby the data stream which has to be routed via the switch. One

challenge in the development of such switches is the controlling of the switch

itself. One way to control the switch is to use a global master controller, which

handles the whole communication on the chip and controls all involved switches.

This approach has the benefit that the resource utilization of the switches is

decreased since no controlling logic has to be implemented on the switch node.

But this solution would require connecting all switches with the master. This

connection requires additional FPGA resources which are only available in a

limited amount on the device. The second approach is to deploy a packed based

routing. In this case every packet which has to be routed via the network has a

destination address included in the packet itself. The routing will be done directly

within the switches. Therefore the switch needs additional logic, which decodes

the destination address and chooses the next neighbor for the data transmission.

Hence there is no master needed and also no additional connections, but the

resource utilization of the switch are highly increased since the routing algorithm

can be very complex. In our approach the first method will be modified to meet the

requirements of an FPGA design. The goal is to minimize the resource utilization

and to increase the speed of a switching mechanism. Another fact which argues for

18 Two Dimensional Dynamic Multigrained Reconfigurable Hardware 305



the use of simple switches is, that the design is easy to implement on FPGAs. The

network switch will be controlled by the configuration mechanism of the FPGA.

To control a switch it is necessary to know the exact position of the content of the

look up tables (LUTs) within the bitstream. Only with this information it is pos-

sible to modify the bitstream and to change the content of a specific LUT. Equally

important is the ability to locate the correct frame which has to be changed and

written back. These tasks have been evaluated in prior work by [4].

The switch was designed using the LUTs as multiplexers as shown in Fig. 18.2.

These multiplexers are controlled by the content of the LUTs which is stored in the

configuration memory of the FPGA. The innovation of the presented approach lies

in the fact, that the content of these LUTs can be changed by a master without

being directly connected by using the configuration mechanisms of the FPGA

itself. To connect each node with its neighbors (as shown in Fig. 18.1), four

channels must be provided as well as the connection between the switch and the

corresponding functional unit (FU). Hence, a switch with five interfaces has to be

generated as shown in Fig. 18.3. The content of a configuration frame represents

the data which must be edited within the bitstream to control the switch. In this

system a Virtex-II Pro FPGA from Xilinx is used, but the bitstream format of the

Virtex-II and II Pro families are quite similar. Also the switch is tested and

evaluated on Virtex4 and Virtex5 FPGAs. The configuration stream is divided into

several different kind of bitstreams. Each of them configures a different hardware

block of the FPGA. For this approach only the configuration stream of the Con-

figurable Logic Blocks (CLBs) is relevant. To explain the configuration mecha-

nism more briefly, the Virtex-II FPGA is chosen as example. For Virtex 4 and

Virtex 5 FPGAs the mechanism can be derived. The configuration of a Virtex-II

FPGA is performed CLB wise, in a way that every CLB column is divided into 22

single frames with a bit width of one bit per frame. The reconfiguration time is

Fig. 18.2 Slice
implementation of the
presented switch

306 L. Braun and J. Becker



proportional to the number and the length of the frames which are reconfigured, so

for a fast reconfiguration, the number of modified frames should be minimized,

since the length of a frame is fixed for a given FPGA architecture and cannot be

modified. Within a CLB bitstream the information for the FPGA global routing

switch matrices is also included. This can be exploited by direct modification of

the routing resources of the FPGA. Because of the enormous combinatorial pos-

sibilities and the difficult and computation intensive way to handle them, this

technique will not be used in this approach. The required information for the LUTs

is coded into two frames in the bitstream of a CLB. Each frame stores the content

of the LUTs of two slices within one CLB and the other LUTs which are included

in the same CLB are stored in a second bitstream.

18.2.1.1 Switch Layout

The switches are implemented through a combination of LUTs which are available

in the CLB blocks. The on chip implementation of such a switch box is presented

in Fig. 18.4. This example shows an implementation of an 8 Bit Switch. The

calculation of the resource usage should show how less the on chip resource

utilization of this implementation is. As described before a switch with 4 inputs

has to be realized to connect each possible input to one output. So one LUT with

its four inputs can be used to do this. Hence one LUT is used to route 1 Bit from

four directions. For 8 bit 8 LUTs are needed. This means each input needs eight

LUTs to route eight bit from four directions to this eight bit input. Hence eight

LUTs are within a CLB one CLB per output is needed. In order to generate such a

five output switch, five CLBs are needed. This example shows that only five CLBs

are needed to fabricate a eight bit switch. In Fig. 18.4, these CLBs are in the

middle of the design. The utilized CLBs surrounding them are responsible for

the connection to the routing resources and the functional unit. The multiplexers of

the switch are controlled with the method described above. If additional multi-

plexers are connected in series, each stage needs a reconfigurable LUT in order to

control the multiplexers of this stage.

Fig. 18.3 Possible routing
directions of the presented
switch

18 Two Dimensional Dynamic Multigrained Reconfigurable Hardware 307



18.2.1.2 Controlling the Switch

There are several possibilities to change the content of the reconfigurable LUTs

and thereby the switch itself. If the system uses the ICAP in combination with a

microprocessor, such as MicroBlaze or the PowerPC, the LUTs can be reconfig-

ured directly over this interface. The glue logic for this is included in the package

of Xilinx’s HWICAP [5] and can be used to modify specific LUTs. With the

provided software subroutine XHwIcapSetClbBits it is possible to write a new

content into a specified LUT. This makes it simple to change the content and

thereby control the data path of the switch. A method which is independent from

special functions provided from Xilinx to control the switch will use the read-

modify and write-back method. This technique can be performed internally by a

microprocessor using the ICAP also externally using the configuration port of the

FPGA. This requires to read back the bitstream of the specific frames, which holds

the data from the switch, into the memory of the controlling system. In the system

the frames will be modified at the required positions and then written back to the

FPGA. The next approaches to modify the content of the LUTs are only

exploitable if the involved LUTs are placed in a static system, that means that

the area above and below the switch does not change during runtime. Therefore the

configuration bitstream of the frames which should be modified to control

Fig. 18.4 Switch design in
FPGA editor

308 L. Braun and J. Becker



the switch are stored in the system. When the switch shall toggle, the stored

bitstream is modified at the position where the content of the corresponding reg-

ister is stored and is written into the configuration memory on the FPGA. If the

switch is placed in the static part of the system it is also possible to generate a set

of partial bitstreams which contain the different contents of the involved LUTs.

This method has the benefit that the bitstream does not have to be modified before

the reconfiguration. But for every possible LUT content a bitstream must be

provided on an internal or external memory. Thereby a large amount on pre-stored

bitstreams must be generated and stored. The following calculation will give the

number of bitstreams that have to be stored. If the system has N switches with M

possible interconnections, the designer has to generate and store NxM bitstreams if

the Reconfigurable LUTs are not in the same column, if they are in the same

column NM bitstreams have to be generated and stored. This calculation shows that

this approach for modifying the LUTs is only reasonable for a small design. Hence

other approaches should be exploited as already mentioned in this chapter. The

approximate time the switch needs to change the dataflow depends on the speed of

the internal ICAP or the JTAG interface if an external reconfiguration is per-

formed. The following calculation is based on measurements of the XPS_ICAP

controller of a Virtex-II FPGA. The measured configuration speed of this interface

is about 5 Mbyte per s. One frame of a Virtex-II Pro V2P100 will be written into

the configuration memory within approximately 244:8 ls: This will also be the

time the switch needs to change the dataflow. This enables to change the switches

aligned in one frame with a frequency of 4 kHz. Table 18.1 shows the switching

speed for different FPGAs and ICAP controllers.

18.2.2 Physical Online Routing of Communication Structures

18.2.2.1 Motivation

Actual state-of-the-art systems require communication structures which are

determined completely at design time. For this purpose, bus macros are used which

are implemented fix in the system and cannot be moved around from their physical

location. That is why modules can be placed at run time only on predetermined

positions, thus reducing the degree of freedom of the placement area. To avoid this

problem, a methodology has been developed that takes care of the physical real-

ization of the communication lines between the individual modules and the static

Table 18.1 Comparisons of the switch configuration time of different ICAP controller

ICAP Controller Virtex 4 FX 20 Virtex II Pro 30 Virtex II Pro 100

XPS_HWICAP [5] 19ls 168:4ls 244:8ls

PLB_ICAP [6] 556 ns 9:2 ls 13:6 ls

FSL_ICAP [7] 5:8ls n.a. n.a.

18 Two Dimensional Dynamic Multigrained Reconfigurable Hardware 309



area during runtime. The extended system approach aims for a reduction of the

restrictions for communication structure in a way that the modules can be placed

independently and flexible on the chip area. Therefore a technique has been

developed to route communications structures on the FPGA during run time in

order to react on the varying positions of the modules. In addition to this, a method

has been developed to create connections on the FPGA. This extends the degree of

freedom for the 2-dimensional placement compared to the slot based systems.

18.2.2.2 Method

In order to make use of the degrees of freedom described above the read-modify-

writeback (RMW) technique was used [8]. This means that the configuration

memory of the part of the FPGA that has to be changed is read back and saved in

the local memory of the run time system. Based on former analysis of the con-

figuration bit streams, the construction and content of the data packets is well

known. Hence it is possible to apply well-directed manipulations on the config-

uration bitstream. After the insertion of the modifications, the bitstream is written

back on the FPGA (write back). We assume that the position of the modules

respectively the positions of the I/O ports are known by the run time system. Thus

the run time system has the information of the position of the start and end points

and of the communication lines that has to be established on the FPGA. Using

these parameters the routing algorithm of the run time system tries to find a

suitable path for this point-to-point connection. Here the A*-algorithm showed up

to be well suited for this problem. The advantage of this algorithm is its low

complexity compared to other algorithm like Dijkstra where it still delivers very

good results with low computation time. In addition, this algorithm can also take

care of blocked areas and bypasses them. This is extremely important for on-line

routing as other previously placed blocks can be bypassed.

Now that the path to be routed is known, the run time system calculates the

position of the routing templates to be placed in order to establish a communi-

cation link. The communication resources of the FPGA are constructed in a way,

that every end of a communication line is connected to one port of a switch box.

This is shown in Fig. 18.5. Thereby a connection point (1) describes a connection

3

2

2

11

Fig. 18.5 Switch design in
FPGA editor

310 L. Braun and J. Becker



to a communication line (2) of the FPGA. If a connection between two lines has to

be established, the connection points of the two lines have to be connected in the

switch box (3). This is shown as highlighted line in the figure. To establish a

routing or to connect two lines with each other, only the information of the

connection in the switch matrix (1) also called Programmable Interconnect Point

(PIP) has to be stored permanently. Using this methodology it is possible to

connect individual lines in order to establish a communication path based on

individual components at run time. This is done by using routing templates that are

configured to the adequate position on the FPGA. These routing templates include

the information which PIPs in a switch box have to be enabled. The information

differs depending on the direction and the length of the routed line. Here, different

routing templates for every orientation are used as well as 90 degree connections

to change the orientation.

18.2.2.3 Implementation

The method described above has been used to develop a system that enables

routing from the static area to any point on the FPGA. Therefore routing templates

for every orientation as well as 90 degree connections have been generated. The bit

width of every single macro is 8 bit which is caused by the hardware structure of

the FPGA. This limitation can be handled by cascading the templates. An over-

view of the systems is shown in Fig. 18.6.

At Fig. 18.7 the textual output of the online routing system is visualized. As

input for the system the starting point and the target point are provided. Afterwards

the system calculates the route using the presented A*-Algorithm. The output of

this is shown in Fig. 18.8. In this picture the 1’s represent blocked areas, the 8

represent the starting point and the 9 the target point. After the A*-Algorithm finds

a way the corners and the start- / endpoint is given to the placing algorithm. With

this information this algorithm decides which templates have to be placed where in

order to establish the calculated route.

Fig. 18.6 Online routing
system overview

18 Two Dimensional Dynamic Multigrained Reconfigurable Hardware 311



18.2.2.4 Innovation

By usage of this technique it is now possible, to place modules with higher degree

of freedom since the limitation to routing channels placed at design time does not

longer apply. Therefore the chip area of the FPGA can be used more efficient then

before. In addition this technique avoids the designer from the need to placed

modules in fixed slots. This results from the fact that the online routing modules

can be placed based on the actual situation and efficiently on the chip area.

Because of the usage of templates, this technique is very flexible in respect to

different bit widths based on the applications needs. Also the porting of the sys-

tems to other FPGAs is feasible. This has already been done for the Virtex-2

architecture also practically for the Virtex-4 architectures. For this purpose, the

templates have to be adapted to the physical conditions of the FPGA and the

algorithm has to be adapted to the new hardware structure.

18.3 Physical Online Routing of Modules

18.3.1 Motivation

For every functional unit, which has to be provided in state of the art FPGA

systems, the corresponding bitstream must be available. In systems in where a

Fig. 18.7 Textual output of
the online-routing system

312 L. Braun and J. Becker



larger amount of modules are used, a tremendously higher number of bitstreams

must be available in the memory. This is obviously accompanied by a larger

requirement of memory capacity. Furthermore, such a system is limited to the

modules stored in the memory and it is impossible to generate further modules

during runtime. Now a method has been developed which allows to generate

simple and complex functions out of a set of basic blocks. These blocks are

available to the run-time system in bitstream fragments called snippet and can be

newly composed according to the connecting rule provided by the system during

runtime. Thus, it is possible to create a new module out of these small snippets.

Those way modules can be assimilated very flexible to the requirements. With this

method it is possible to create a multitude of modules out of a subset of sub-

functions. Moreover, the memory requirements, which are caused by the bit-

streams that has to be stored, can be minimized. A further advantage of this

method is the possibility to adapt the size of the modules created to the available

chip surface. As a result, the geometrical form of the modules is no longer pre-

defined. This makes it possible for the system to use the available chip surface

much more efficiently as the modules can adapt to the surfaces given.

Fig. 18.8 Output of the
online A*-algorithm

18 Two Dimensional Dynamic Multigrained Reconfigurable Hardware 313



18.3.2 Method

As already mentioned modules consist of single fine-granular sub-modules and are

composed according to the connecting rule by the runtime system. Therefore these

sub-modules must have defined connection points. These connecting points must

be at the same relative position for all the different sub-modules and must be

identical whatever their function may be. This guarantees that the sub-modules are

compatible and exchangeable and can be put together like a plugging system. To

connect the single modules to each other and to realize any different types of

connections necessary, additional routing blocks are placed between the modules.

Via these modules it is possible to connect the exit of the sub-module to the

succeeding modules. The system described above is shown schematically in

Fig. 18.9. As shown in the figure, sub-blocks like adders, subtractors, dividers and

multipliers are available to the run-time system in form of bitstreams. Further-

more, a set of connecting macros is also available for the run-time system. In

Fig. 18.9 the data flow graph shown at the bottom on the right is now to be

configured onto the FPGA. Therefore the bitstream packer analyses a textual form

of this dataflow graph. After this the graph will be composed of the corresponding

sub- and connecting-blocks to create a bitstream. This bitstream generated during

run-time according to the connecting rule is now written onto the FPGA via Read-

Modify-Write back (RMW). Through the picture in the figure it becomes quite

obvious that the standardized interfaces at the sub-modules as well as at the

routing blocks are necessary to connect them to each other without any problems.

They must therefore always be in the same place to guarantee communication.

18.3.3 Implementation

The system described above has already been physically implemented onto a

Virtex-4 FX Board. In doing so, sub-modules like the ones described above were

SB

Runtime
System

+ -

x

/
+ -

x

/

BM

Fig. 18.9 Overview of the
system for online module
routing

314 L. Braun and J. Becker



generated and made available for the run-time system as bitstreams. These blocks

hold defined I/O ports, which allow to connect the modules to routing templates.

Moreover, a method has been created to generate these routing templates during

runtime. Hence the bitstreams which has to be stored could be reduced once more.

These routing templates act as connecting unit between the computation-modules.

The system is designed as co-processor for the Power-PC, which has eight reg-

isters with the width of 16 bits. Four of those registers serve as entry for the

accelerator, four as register for the results. The run-time system writes the data into

the appropriate entry registers. From here the accelerator takes the data, processes

it and writes the result into the register from where the run-time system can read in

the result afterwards.

In Fig. 18.10 the test system described above is shown schematically for a

Virtes-4 FPGA. On the bottom of the picture, the area which contains the fixed

modules can be seen which will not alter during run-time. Because of the rough

vertical partition of the FPGA into reconfigurable blocks, a two-dimensional

fragmentation of the configuration area is already given. Therefore the height of

the sub-modules and the routing shown in Fig. 18.10 will fit in this limitation

given by the Virtex 4 architecture and hold per default the height of the config-

uration area. The alteration of the blocks within such a configuration area can be

carried out during run-time without influencing modules located above or below.

The bus-macros, which connect the accelerating system to the static area, are

named as GPIO on the right and left side of the figure. Those connect the eight

registers to the static area to the inputs and the output of the accelerator. The

registers in these systems are fixed and cannot be altered as they serve as fix

docking points for the accelerator. The blocks named as routing are the routing

templates used to connect the sub-modules. They are arranged in a way that the

interfaces for the sub-modules are always in the same place. In-between the

routing templates are the computational sub-modules. In this approach an adder,

subtractor, multiplier, divider, square root and an xsum. Parallel to the activities

described above, the feasibility of the technology on Virtex-2 FPGAs has been

Fig. 18.10 Configuration of the module online routing shown on a virtex 4 FPGA

18 Two Dimensional Dynamic Multigrained Reconfigurable Hardware 315



examined. The handling of the configuration mechanism existing on the Virtex-2

is different to the ones for the Virtex 4. To achieve a similar degree of freedom in

reconfiguration, the above described readback-modify write method was used.

18.3.4 Innovation

Because of the possibility to place the functional modules flexible within the given

limits, the method described in this paper offers a higher flexibility. Furthermore,

the functional units can not only be adapted to the geometrical requirements in size

and form but also to the altering requirements from the environment (e.g., the

user). A further advantage is the description of the function blocks without

dependencies to the architecture. This means, that the abstraction of the module

representation makes it possible to alter the hardware enabled by a simply

exchanging the templates. Merely the sub-modules given in bitstream format have

to be provided for the particular platform. In contrast an alteration of the type of

block within the model range is possible without further ado, as the bitstream

fragments are identical for all blocks. Thus, a change from e.g., a Virtex-4 FX 20

FPGA to a Virtex-4 FX 100 block is possible without adapting the sub-modules.

Another benefit of this technology is the possibility to alter the granularity of the

sub-modules. In the system described above the sub-modules were simple func-

tions to test the technology. Nevertheless, it is possible to design these blocks in a

more complex way. Moreover, the bit width of the I/Os and the routing templates

can be widened to achieve a higher performance. However, with rising complexity

the flexibility of the module design and the probability between the types of blocks

gets lost. Certainly the biggest advantage of this technology is the simple way of

adapting the functional units to changing requirements during run-time.

18.4 Universal Tool for Working With Bitstreams

The methods described in Sects. 18.2 and 18.3 underline and strength the need of a

specialized tool to manipulate the bitstream. Also it is advantageous to be able to

visualize the FPGA content without having access to the hardware [4]. Because of

this a software package was designed to perform offline visualization and

manipulation of Xilinx Virtex II and 4 bitstreams. The software takes a bitstream

as its content and produces a graphical representation of the utilized logic cells

including routing resources of the FPGA. The tool offers also the possibility to cut

out areas of the FPGA configuration to be used as bit stream snippets for the

methods described before. Another advantage is to check and debug the bit

streams generated by the tools before they will be programmed on the FPGA. This

makes it easy to detect faults during the development. Figure 18.11 shows

the different windows the tool offers. The Resource View shows the utilization of

316 L. Braun and J. Becker



the available FPGA resources. The Bitstream View shows the bitstream in a more

human readable form, including description of header and packets. The CLB Data

View shows the bitstream data relating to a specific CLB including the intercon-

nections set in the according switch matrix. The Switch Matrix View shows the

interconnections set inside the switch matrix of a specific CLB.

18.5 Conclusion

The research work described in this paper offers the possibility of a two-dimen-

sional, run-time adaptable, reconfigurable system. Therefore three components and

tools have been designed. The introduced mesh based network has the possibility

to be build and extend during run-time. For that reason a switch was designed

which is cascadable during run-time. To meet the requirements, the resource

utilization of the switch is as low as possible and no additional control signals are

needed. The signal routing to connect the switches and thus the functional units

can also be established during run-time. It holds also the possibility to be casca-

dable to extend the bit width of the communication channels. Also the length and

direction of the channels are adaptable to the placement of the functional units.

The functional units described here offer the possibility to be placed and, under

certain constraints, to be generated during run-time. Moreover, the functional units

are adjustable in terms of the bit width and the functionality during run-time.

Resource View

Switch Matrix View

CLB Data View

Bitstream View

Fig. 18.11 Windows of the
universal tool for working
with bitstreams

18 Two Dimensional Dynamic Multigrained Reconfigurable Hardware 317



With all these methods it is now possible to create a system which can be adjusted

adaptively at run-time to actual needs.

References

1. Xilinx, Early access partial reconfiguration user guide, ug208. http://www.xilinx.com,
Accessed Mar 2005

2. Benini L, De Micheli G (2002) Networks on chip: a new paradigm for systems on chip design.
In: Proceedings of Design, automation and test in Europe conference and exhibition,
pp 418–419

3. Braun L, Goehringer D, Perschke T, Schatz V, Huebner M, Becker J (2008) Adaptive real-time
image processing exploiting two dimensional reconfigurable architecture. J Real-Time Image
Process. http://dx.doi.org/10.1007/s11554-008-0095-8

4. Huebner M, Braun L, Becker J, Claus C, Stechele W (2007) Physical configuration on-line
visualization of xilinx virtex-ii fpgas. In: Proceedings of IEEE computer society annual
symposium on VLSI ISVLSI, 07, pp 41–46, 9–11 Mar 2007

5. Xilinx, Logicore ip xps hwicap (v5.00a), Access, 2010
6. Claus C, Zhang B, Stechele W, Braun L, Hubner M, Becker J (2008) A multi-platform

controller allowing for maximum dynamic partial reconfiguration throughput. In: Proceedings
international conference on field programmable logic and applications FPL 2008, pp 535–538

7. Hubner M, Gohringer D, Noguera J, Becker J (2010) Fast dynamic and partial reconfiguration
data path with low hardware overhead on xilinx fpgas, 2010 IEEE international symposium on
parallel and distributed processing, workshops and PhD forum (IPDPSW), pp 1–8
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5470736

8. Huebner M, Schuck C, Kuehnle M, Becker J (2006) New 2-dimensional partial dynamic
reconfiguration techniques for real-time adaptive microelectronic circuits. In: Schuck C (ed)
Proceedings of IEEE Computer society annual symposium on emerging VLSI technologies
and architectures, p 6

318 L. Braun and J. Becker

http://www.xilinx.com
http://dx.doi.org/10.1007/s11554-008-0095-8
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5470736


Chapter 19

Design for Embedded Reconfigurable
Systems Using MORPHEUS Platform

Paul Brelet, Philippe Millet, Arnaud Grasset, Philippe Bonnot,

Frank Ieromnimon, Dimitrios Kritharidis and Nikolaos S. Voros

Abstract This chapter is related to the paper ‘‘System Level Design for Embedded

Reconfigurable Systems using MORPHEUS platform’’ (Brelet et al. (2010) System

level design for embedded reconfigurable systems using MORPHEUS platform). It

presents a novel approach for designing embedded reconfigurable systems. Re-

configurable systems bring a significant importance for their highly attractive mix

of performance density, power efficiency and flexibility. In this chapter, we present

a toolset that abstracts the heterogeneity and benefits of a dynamically reconfigu-

rable heterogeneous platform called MORPHEUS (Voros et al. (2009) Dynamic

system reconfiguration in heterogeneous platforms, the MORPHEUS approach.

This platform consists of a System-on-Chip made of a regular system infrastructure

Partners of the project: Thales Research & Technology (France), Deutsche THOMSON OHG
(Germany), INTRACOM Telecom Solutions S.A. (Greece), ALCATEL-LUCENT Deutschland
AG (Germany), Thales Optronics SA (France), STMicroelectronics SRL (Italy), PACT XPP
Technologies AG (Germany), M2000 (France), Associated Compiler Experts bv (The
Netherlands), CriticalBlue (United Kingdom), Universitaet Karlsruhe (Germany), Technische
Universiteit Delft (The Netherlands), Commissariat à l’Energie Atomique (France), Université
de Bretagne Occidentale (France), Universita di Bologna (Italy), ARTTIC SAS (France),
Technische Universitaet Braunschweig (Germany), Technische Universitaet Chemnitz
(Germany).

Start–End Date: January 2006-September 2009.

Global Budget/Funding by EU: 16.57 M€/: 8.24 M€.

P. Brelet (&) � P. Millet � A. Grasset � P. Bonnot
Thales Research and Technology, 45 Rue de Villiers, 92200 Neuilly-sur-Seine, France
e-mail: paul.brelet@thalesgroup.com

F. Ieromnimon � D. Kritharidis
INTRACOM Telecom Solutions S.A, Athens, Greece

N. S. Voros
Department of Telecommunication Systems and Networks (consultant to Intracom
Telecom Solutions S.A), Technological Educational Institute of Mesolonghi,
Athens, Greece

N. Voros et al. (eds.), VLSI 2010 Annual Symposium,
Lecture Notes in Electrical Engineering 105, DOI: 10.1007/978-94-007-1488-5_19,
� Springer Science+Business Media B.V. 2011

319



hosting different kinds of heterogeneous reconfigurable engines accelerating some

operations. Integrated mechanisms simplify the utilization of these reconfigurable

accelerators at design time and minimize the time to fetch and reconfigure a

function dynamically at run time. Implementing an application on the platform is

made easier and faster by a comprehensive design environment. Industrial use cases

from various application domains are also presented and used to evaluate the

performance of the platform and assess the MORPHEUS concept.

Keywords Reconfigurable computing � Systems-on-Chip � Heterogeneous

architectures � Dynamic reconfiguration � Toolset � Embedded systems

19.1 Introduction

Taking into account the nature of modern embedded systems and their application

domains, one can deduce that two of the most important requirements are cost

effectiveness and flexibility. This means the processing components used in such

systems must provide the high density performance requires by the embedded

market, enable inexpensive development with fast modification/validation loop

process and be flexible enough to support several application domains.

In that context, the approach presented in this chapter is described with these

requirements by defining a reference platform for dynamic reconfigurable

computing that is efficiently used in different application domains. Real-time

processing is in particular in the focus of this platform. It is obvious that flexibility,

modularity, and scalability of such a platform are key requirements in order to

allow an efficient adaptation of the platform architecture to the specific require-

ments of a given application.

Most competing state-of-the-art System-on-Chip (SoC) are based on a single

CPU mono or multi-core or on a combined CPU and enhanced with a DSP or

some dedicated hardware accelerators (Nomadik by STMicroelectronics [3],

OMAP by Texas Instruments [4], and PXA by Intel [5]). Such architectures are

very efficient but also highly linked to an application domain: movie codec,

mobile phone’s signal processing and so on. With MORPHEUS, application’s

demands can be distributed on different units at runtime. Its heterogeneous

reconfigurable engines (HREs) and I/Os remain runtime configurable. It is

therefore not linked to an application domain but still offers high performance

density. New MultiProcessor System-on-Chips (MPSoCs) is also highly pro-

grammable with very high performances but still homogeneous. Existing het-

erogeneity in multimedia and other data intensive applications cannot be

mapped as efficiently on MPSoC with uniform means of computation of a single

granularity, similar I/O bandwidths and access patterns as on the MORPHEUS

HREs.

On one hand, reconfigurable platforms come with specific languages and tools.

Application specific instruction processors and accompanying tools can be

320 P. Brelet et al.



developed with the help of Mescal [6], ArchC [7], LisaTek [8], Chess/Checkers [9].

C-based languages like CatapultC [10], Mitrion-C [11] and ImpulsC [12] are

available to target specific architectures. A more stream-oriented approach is

available with tools like Matlab/Simulink [13] or Scilab [14].

On another hand, a trend to standardise the APIs for parallel programming has

converged to a reduced set of languages like VSIPL++ [15], MPI [16] or

OpenMP [17]. Several modelling languages like UML [18] and sysML [19] are

used to hide lower system levels and improve code consistency.

In MORPHEUS, a fundamental and novel idea is the integration of Hetero-

geneous Reconfigurable computation Engines (HREs). They bring different but

complementary types of reconfigurable computing in one platform. Three states-

of-the-art dynamically reconfigurable computation engines (a fine-grain, a

mid-grain and a coarse-grain kind of reconfigurable) have been selected and

integrated into the MORPHEUS platform making it a very flexible architecture.

The associated toolset combines the benefits of the different styles of recon-

figurable computing using the high flexibility and scalability to address various

application domains. This toolset is swayed by state-of-the-art software like

OpenMP, Matlab/Simulink, Scilab and CatapultC merged in one design flow to

bring an efficient way to get the best performances from the chip.

Section 19.2 and Sect. 19.3 present respectively an overview of the

MORPHEUS architecture and toolset. The experimental results using the

MORPHEUS platform with three different case studies are shown in Sects. 19.4,

19.5 and 19.6 while Sect. 19.7 concludes this study.

19.2 Architecture

The MORPHEUS architecture (Fig. 19.1) is based on an ARM9 embedded RISC

processor which is responsible for data, control and configuration transfers

between all resources in the system, memory, IO peripherals, and a set of heter-

ogeneous reconfigurable engines (HREs) each residing in its own clock domain

with a programmable clock frequency.

As dynamic reconfiguration might imposes a significant performance demand

for the ARM processor, a dedicated reconfiguration control unit is foreseen to

serve as a respective offload-engine. All system modules are interconnected via

multilayer AMBA busses. Each HRE is composed of a reconfigurable IP seen as a

memory-mapped co-processor or peripheral.

Additionally, a NoC infrastructure has been added to extend inter-HRE

communication capabilities. It speeds up data delivery among HREs and

enables stream data processing; thus removing a bottleneck for parallel data

transmission.

MORPHEUS is built around three HREs: XPP-III [20] is a coarse-grained

reconfigurable stream processor featuring an array of 16-bit computational ele-

ments communicating through a matrix of configurable data channels. It mainly

19 Design for Embedded Reconfigurable Systems Using MORPHEUS Platform 321



targets streaming applications with huge computational densities and regular

dataflow structures; DREAM [21] is a reconfigurable processor composed of a

RISC processor coupled with a mid-grain reconfigurable. DREAM is aimed at

exploiting instruction level parallelism for a wide range of applications

(e.g. multimedia, telecom, cryptography and so on); FlexEOS [22] is an embedded

Field Programmable Gate Array (eFPGA). It is suitable for fine-grain algorithm,

arbitrary logic implementation or peripherals interface due to its 30 GPIO pins

exported to the pad frame.

HREs are chosen and they are sized to provide a good trade-off between

hardware resources and computation performance but this is not a limitation since

the basic frame is designed to support any additional HREs (e.g. ASIC accelerators

or DSP cores) or different sizing of the proposed ones. The main design challenge

resides in the definition of the top-level architecture especially the way data is

moved to feed all the computation resources in the system. The interconnect

system must be efficient and flexible to support the requested bandwidth, to avoid

resource starvation and to support application requirements.

Each HRE comes with its specific language and programming styles that

require deep knowledge of inner hardware details. The toolset abstracts the

complexity of the whole hardware architecture and unifies the HREs’ languages.

19.3 The Toolset

The toolset (Fig. 19.2) is composed of three parts: (1) HREs accelerated functions

design, (2) main ARM application programming and (3) runtime libraries and

operating system.

Main Bus ( Synchronization / Control )

On-Chip
Conf. 

Memory

On-Chip

Data 
Memory

Configuration Bus

External Configuration Bus

DNA
Network 

Manager

Processing Engine

DREAM
Processing Engine

DEBXR

CEB

External
Memory

Controller

NoC

External
SRAM

PCM
Config . 

Manager

Main

DMA

M

S

S M

S

Conf.

DMA

M

M

Peripheral Bus

AMBA
Bridge

AMBA
Bridge

Bootup

ROM
UART TIMER IC

eFPGA
Processing Engine

DEBXR

GP -I/O Loader

XPP -III
Processing Engine

DEBXR

CEB

ARM926 -EJS

ITCM DTCM

Fig. 19.1 MORPHEUS hardware architecture

322 P. Brelet et al.



It reduces the application design time and improves the code quality. Short-

ening the application design time is targeted via the utilisation of high level

programming solutions for the platform. Code quality is increased thanks to code

generation. Code quality is considered here as code readability, absence of bug

with respect to the system level implementations (address mapping, etc.), and the

possibility to easily implement upgrades and fixes as maintenance.

The MOLEN paradigm [23] targets this objective. It abstracts the tedious

management of configurations, execution calls, data communications and pro-

cess synchronisations. During application implementation, the designer splits its

application into control parts (executed on the ARM processor) and computation

intensive parts (mapped on the HREs) by following these steps: (1) the appli-

cation is written in standard C language. During this step, one validate the

application against use cases and test benches on host workstation; (2) the pro-

grammer selects the functions that must be accelerated by allocating an ID to

each of them through MOLEN pragma (Fig. 19.3); (3) these accelerated func-

tions are captured inside SPEAR [5], a graphical environment, by connecting

and assembling some building blocks called elementary sub-functions and

written in C language; (4) the programmer selects which HRE executes which

accelerated function. The targeted HRE code for each accelerated function is

then generated.

int pin[10], pout[10];

#pragma MOLEN 1
void func(int*in,int*out){

*out=*in++;

}

int main(int argc, char*argv[]){

func(pin,pout);
return 0;

}

Accelerated function

running on the targeted 

HRE

Main control function

running on the ARM

Pragma that gives this 

function the ID number 1 

in MOLEN paradigm

Fig. 19.3 Annotation of
application code

Fig. 19.2 MORPHEUS tool chain

19 Design for Embedded Reconfigurable Systems Using MORPHEUS Platform 323



SPEAR provides a common programming interface for the different reconfig-

urable units using a high level synthesis of the HREs’ configurations. This hides

the heterogeneity of the architecture and eases its utilisation.

The toolset manages the flexibility of the platform by facilitating run-time

dynamic allocation of function to the various HREs. It contributes to the perfor-

mance of the platform by quickly generating optimised executable code by

combining the implementation on reconfigurable units and the communication

aspects. Thus, optimised scheduling shall be performed at compilation. Here,

configuration, execution and communication are sources of possible performance

optimisation at system level in such a complex platform as MORPHEUS.

A Control Data Flow Graph (CDFG) format is used as an intermediate and

technology independent format inside the framework. MADEO [24] uses it with

high-level synthesis techniques to target HRE’s proprietary tools and generates the

configuration binaries. Provided the compliancy of a tool with the CDFG format,

any design capture tool, code generator or compiler can be integrated in the toolset.

It allows us to integrate the specific compilers of the three HREs and ARM.

With SPEAR, the user manipulates the C code of the sub-functions, abstracted

Models to combine these sub-functions, and Makefiles to generate the binary for

each HRE. Functions are specified at a high-level of abstraction, improving design

time and flexibility, without sacrificing performances. They are modelled with a

directed acyclic graph, in a formalism called Array-OL [25] which is well suited to

represent deterministic, data intensive and data-flow applications such as the

accelerated functions on HREs. SPEAR automatically generates a CDFG skeleton

for each accelerated function and the communication parameters to move data

from one accelerated function to another, between HREs and to/from the shared

memories. The design flow contributes in this way to seamless hardware/software

integration. The Cascade tool [26] fills the CDFG skeleton with the operational

code of each function.

Three weeks was required to implement the video surveillance application on

the MORPHEUS platform while the double was needed on a dedicated SIMD

platform and 6 month is estimated in the case of a classical hardware

implementation on FPGA [27].

19.4 Wireless Telecommunications Application

The first implemented case study comes from the wireless communication domain.

In a standard environment one finds several wireless possibilities, 802.11 (WiFi),

802.16 (WiMax)…, to access core Networks like Internet (Fig. 19.4).

With MORPHEUS we design a unique device that can adapt automatically to

the best available Wireless Network. The reconfigurable units deliver the required

services with high computation performances at low power consumption.

The DREAM is selected to implement a word-level processing block, a 128-point

Fast Fourier Transform (FFT128) of the wireless application, followed by a

324 P. Brelet et al.



Quadratic Amplitude Modulation (QAM) symbol demapper, capable of supporting

modulation schemes ranging from a 4-point Quadratic Phase Shift Keying (QPSK)

to 64-point QAM. The DREAM application dataflow is depicted in Fig. 19.5.

It is a cascade of the above two blocks (FFT and QAM demapper). Due to the

size constraints, the mapping of the accelerated functions is done in two steps:

(1) a CDFG for the FFT (2) and a separate one for the QAM demapper.

The resulting CDFGs are used by the MADEO tool downstream for the generation

of the configuration streams targeting the DREAM array, as well as the control

code running on the ARM processor, responsible for downloading the configura-

tion streams and for managing the data transfers to and from the DEBs used for

communication.

A number of discrete simulation scenarios were run on the PC hosting the tool

chain. Simulated execution time can be broken-down to DMA configuration and

transfer time, bitstream load/deload time and actual execution time. As can be seen

in Table 19.1, the ratio of actual execution time for the ARM ? DREAM complex

over the corresponding time for the application running on ARM alone is generally

favourable to MORPHEUS, indicating speedups ranging from 2.07 to 6.55

(Fig. 19.6).

Fig. 19.5 Wireless telecommunication case study

Fig. 19.4 Broadband
wireless access system
architecture

19 Design for Embedded Reconfigurable Systems Using MORPHEUS Platform 325



The speedup for the overall application is particularly impressive, the

Slicer ? QAM64 Demapper and the 128-point FFT are very well adapted to such

an implementation. The pipelined operations taking place in the chip and the huge

amount of data to be processed, due to a high locality of the computation, mask the

overhead for configuration and data-transfer. For smaller components, with less

computation locality, the results discussed above are different. To have a positive

Table 19.1 Speedup ratios for various test programs vs Morpheus configuration

FFT ? Slicer ?
Demappe r
QPSK

FFT ? Slicer ?
Demappe r
QAM16

FFT ? Slicer ?
Demappe r
QAM64

Slicer ?
Demappe r
QAM64

FFT128

ARM cycles ARM cycles ARM cycles ARM
cycles

ARM
cycles

Execution time result

ARM only results

Execution
(ARM only)

918617 927578 940197 26982 913215

Total 925487 931847 947109 28730 918379

Accelerated results

Total
conf_DMA

3745 3745 3745 1835 1910

Total load/
deload

5279 5278 5278 3126 2152

Execution
(with HRE)

6584 8408 10301 6108 4193

Total 19751 21574 23467 12754 10713

Fig. 19.6 Wireless telecommunication Execution Time

326 P. Brelet et al.



impact on the computation performance, the HW-accelerated functions that are

taken off the ARM execution environment and mapped onto the HREs must meet

the two following conditions: (a) The configuration/DMA/bitstream load/deload

time, added to the actual execution time must not exceed execution time on the

ARM alone; (b) Reconfiguration intervals must be spaced sufficiently far apart for

the configuration/DMA overhead to be absorbed by the gains in execution time.

Among the two conditions, the first is almost trivial to meet, provided that the

dataset processed by the accelerated functions is large enough. To get more

performance by saving HRE configuration, one can statically load the HW

accelerated functions so that there is no reconfiguration at each run. In this study,

we need to adapt the chip to the network availability, which does not need to be at

each run, since it does not exceed a few symbols’ worth of data.

MORPHEUS can support applications that include dynamically configurable

components, provided certain timing constraints are met. These constraints are

variable, i.e. dependable on each particular application. For wireless application,

the approach gives very good results with ability to adapt the processing elements

to the available environment.

19.5 Systems for Intelligent Cameras

An intelligent camera can be viewed as a large collection of real-time algorithms

which are activated (or not) depending on non predictable events such as the

content of the image, an external information or a request from the user.

This case presents a motion detection application embedded in a smart camera.

It computes first an absolute pixel-to-pixel difference between the current frame

and the background. The background is periodically refreshed but this will not be

considered here. This step isolates the object to be analysed, if any, but with a

greyscale it remains too complex to be analysed. A binarisation step will lower the

complexity of the frame thanks to a threshold conventionally fixed to 0.39 the

maximum value of the pixels.

The ‘‘cleaning’’ step removes isolated pixels and enhances connections between

pixels by an opening phase. It is implemented with two operators: the erosion and

the dilatation which consist in replacing the central pixel of a 3 9 3 matrix by the

minimum and the maximum values of this matrix.

The next step is the edge detection which finds the boundaries of the shape in

the monitored area. This operation is implemented with a simple convolution

applied to 3 9 3 pixel matrices using the Sobel algorithm. Here, the Sobel edge

detector uses two convolution kernels to detect vertical and horizontal edges.

This gives the result as a binarised shape, since the aim of the application is not

to detect the magnitude of the gradient but the presence of a gradient. Finally the

detected edge is merged with the original image. For that goal, inverse binarisation

is applied: the background is filled by 1 s and moving image edges by 0 s, thus

allowing to implement the merge operation with a multiplication.

19 Design for Embedded Reconfigurable Systems Using MORPHEUS Platform 327



Figure 19.7 shows the different steps of the image processing application for an

intelligent camera.

All the application is generated by the toolchain in 4 accelerated functions:

(1) the subtraction, the absolute value and the binarisation between two images

(the background and the current image); (2) the opening (erode ? dilate) and a

second dilate; (3) the convolution H/V from a SOBEL matrix; (4) the sum, the

absolute value and the multiplication between the current image and the result of

the third accelerated function.

Figure 19.8 was obtained with a manually implemented application on the

DREAM unit only. The MORPHEUS’s DREAM frequency is 250 MHz. The

measured performance shows a speedup of 93.7 with the utilisation of the DREAM.

By using different HREs available on theMORPHEUS platform, the performance

could even reach 1.27 cycles per pixel (20% performance increase). For this

implementation, the critical kernel is the Erosion/Dilatation/Edge Detection. It has

been implemented on the DREAM engine whose frequency is mentioned above.

Fig. 19.7 Simple motion detection application

Fig. 19.8 Spear graph with results

328 P. Brelet et al.



Figure 19.9 shows the repartition of the time spent by the components during

execution. The DMA communications take about the same time as the HRE

execution. The DMA transfers can be masked using pipelined communications and

computations. In a case where the DMA and the HRE work would take place in

parallel (e.g. with the pipeline), we would gain about half the total time. The DMA

time would then no longer be added to the HRE’s computation time.

Moreover, the higher level programming of the toolset gives a programming

accessibility to a larger range of programmers. Since it is not needed to get specific

skill corresponding to low level architectural considerations, even non-specialists

can program the chip.

19.6 Discrete Wavelet Transformation Application

The wavelet transform was borne out of a need for further developments from

Fourier transforms.

Discrete wavelet transforms (DWT) are applied to discrete data sets and pro-

duce discrete outputs. Transforming signals and data vectors by DWT is a process

that looks like the fast Fourier transform (FFT), the Fourier method applied to a set

of discrete measurements.

The DWT is being increasingly used for image compression today since it

supports features like progressive image transmission (by quality, by resolution),

ease of compressed image manipulation, region of interest coding, etc.

In our case, the DWT is applied for an image processing application composed

by FIR filter bank structures.

Fig. 19.9 Execution time for intelligent camera application

19 Design for Embedded Reconfigurable Systems Using MORPHEUS Platform 329



The 2D-DWT transform is repeated 3 times (for the 3 levels of compression).

Each level is made of vertical and horizontal filtering. In each direction a low pass

filter and a high pass filter are computed.

The code for the high pass filter and the low pass filter has been written in C.

These two sub-functions are used for the capture of the whole 2D-DWT transform

as shown in the SPEAR capture figure. This application is composed by four main

accelerated functions (Fig. 19.10): (1) a filter combination (High-pass Filter ?

High-pass Filter); (2) a combination of Filter (High-pass Filter ? Low-pass

Filter); (3) a Low-pass Filter and a High-pass Filter; (4) Two Low-pass Filters.

To simulate the DWT application, we have resized the initial 5200 9 5200

High Definition Image (HDI) to an 80 9 80 Low Resolution image (LR).

Each Filter function is an elementary function and has been tested separately.

Their implementations on the HREs take less than a day effort for each of them

and do not require any HREs knowledge. Unlike standard developments the only

requirement is to write the elementary C code of the functions. The design on the

SPEAR graphical interface can easily be built and requires a few minutes.

Globally, the implementation of the application including C code for ARM and

SPEAR capture takes a few days. The application can be implemented within

4 days on the MORPHEUS platform where the non-integrated approach requires

several weeks.

Fig. 19.10 Discrete wavelet
transformation decomposition

Table 19.2 Discrete wavelet transformation results

High-pass
Filter ?
High-pass Filter

High-pass
Filter ?
Low-pass Filter

Low-pass
Filter ?
High-pass Filter

Low-pass
Filter ?
Low-pass Filter

ARM cycles ARM cycles ARM cycles ARM cycles

Execution time result

ARM only results

Execution (ARM only) 57025 50725 49805 49503

Total 66687 60387 59467 50304

Accelerated results

Total conf_DMA 6025 5948 5947 5947

Total load/deload 5689 5699 5884 5880

Execution (with HRE) 6404 8749 11713 13051

Total 27738 30016 33164 35325

330 P. Brelet et al.



The high pass and low pass filters composing the 2D Discrete Wavelet

Transformations have been implemented on the DREAM and the eFPGA.

Table 19.2 shows the implementation results. In our case studies, these filters are

applied on an array of 80 9 80 integers.

For this application, the complete tool flow has been involved (compilation,

RTOS, Spatial Design). The discrete wavelet decomposition execution time results

indicate a better performance with HRE than with ARM processor only.

Figure 19.11 shows the performance given with MORPHEUS toolset for the

DWT image processing application. They are in the same order than in the

previous case (94 gain).

Regarding the development effort, the implementation time of the film grain

removal algorithm on the MORPHEUS platform was approximately the same as

with a state of the art FPGA-based platform. But modification, code reusability is

improved with the MORPHEUS toolset. Moreover, computation performance gains

have been observed (94). In this case, the DMA configuration and the LOAD/

DELOAD times are equal to the execution times on a HRE. Implementing a pipeline

stage would also increase the performances. The MORPHEUS toolset and platform

overrides a previous manually programmed SIMD implemented on a FPGA.

19.7 Conclusions

In the previous sections, we presented the concept of a novel heterogeneous

platform, called MORPHEUS, and the associated toolset for the design of

reconfigurable embedded systems.

Fig. 19.11 Discrete wavelet transformation execution time

19 Design for Embedded Reconfigurable Systems Using MORPHEUS Platform 331



The design of embedded reconfigurable systems has been introduced in this

chapter and the associated toolset. The initial system description is usually in C

code and the toolset generates accelerator target specific codes and optimises the

schedule of the application implemented.

The feasibility of the proposed design approach has been justified through three

different case studies coming from complementary domains. In all three cases, it

has been proven by implementation results that the MORPHEUS approach enables

the design of embedded reconfigurable systems in shorter development times than

compared to traditional design flows of embedded reconfigurable systems.

A question remains: what can be the next steps for this type of reconfigurable

SoC in the future? The proposed system-level principles from the MORPHEUS

approach can be extended and enhanced: larger number of accelerators, more

powerful allocation schemes, higher abstraction programming level, more efficient

memory interfaces, and so on… Many ideas can be used to increase productivity,

to improve flexibility and to make progress in this technology.

It is very easy to change the architecture components and to modify the toolset

implementation to adapt the whole hardware/software approach from MOR-

PHEUS to a novel reconfigurable engine. For example, just by changing the

ARM9 to ARM11, the gain of performance is increased without taking into

account additional improvements of the heterogeneous reconfigurable engines.

Moreover, the toolset can be used easily by both beginners and experienced

developers in the field of reconfigurable computing.

Acknowledgments The authors would like to thank all the partners of the project consortium
who were involved in studying and providing the required technologies, specifying the
requirements and assessing the results. This research was partially funded by the European
Community’s 6th Framework Program.

References

1. Brelet P, Grasset A, Bonnot P, Ieromnimon F, Kritharidis D, Voros NS (2010) System level
design for embedded reconfigurable systems using MORPHEUS platform. In: Proceedings of
the 2010 IEEE annual symposium on VLSI 5 July 2010. ISVLSI. IEEE computer society,
Washington, DC, pp 500–505. http://dx.doi.org/10.1109/ISVLSI.2010.13

2. Voros N, Rosti A, Hübner M (2009) Dynamic system reconfiguration in heterogeneous
platforms, the MORPHEUS approach. Springer, Berlin

3. Mair H, Wang A, Gammie G, Scott D, Royannez P, Gururajarao S, Chau M, Lagerquist R,
Ho L, Basude M, Culp N, Sadate A, Wilson D, Dahan F, Song J, Carlson B, Ko U. A 65-nm
mobile multimedia applications processor with an adaptive power management scheme to
compensate for variations. Digital Signal Processing, pp 8–9

4. Clark L, Hoffman E, Miller J, Biyani M, Strazdus S, Morrow M, Velarde K, Yarch M (2001)
An embedded 32-b microprocessor core for low-power and high-performance applications.
IEEE J Solid State Circ 36:1599–1608

5. Lenormand E, Edelin G (2003) An industrial perspective: pragmatic high-end signal
processing environment at Thales. In: Proceedings of the 3rd international workshop on
synthesis, architectures, modeling and simulation (SAMOS)

332 P. Brelet et al.

http://dx.doi.org/10.1109/ISVLSI.2010.13


6. Gast N, Gaujal B (2010) A mean field approach for optimization in discrete time. J Discrete
Event Dyn Syst

7. Klein F, Leao R, Araujo G, Santos L, Azevedo R (2007) A multi-model power estimation
engine for accuracy optimization. ISLPED ’07 Proceedings of the 2007 international
symposium on Low power electronics and design

8. Muhammad R, Apvrille L, Pacalet R (2008) Evaluation of ASIPs design with LISATek:
Springer Volume 5114/2008

9. Clarke P (2002) Chess/checkers tool flow brings verification into play. EETimes article
10. SystemC Modeling, Synthesis, and Verification in Catapult C, Mentor Graphics Corporation,

8005 SWBoeckman Road,Wilsonville, Oregon, USA. [online] Available: http://www.mentor.
com/products/esl/techpubs/

11. Mitrionics (2008) Low power hybrid computing for efficient software acceleration. White
paper

12. Pellerin D, Thibault EA (2005) Practical FPGA programming in C, Prentice Hall
13. University of Newcastle upon Tyne (2003) Matlab/Simulink tutorial
14. Campbell SL, Nikoukhah R (2004) Auxiliary signal design for failure detection. Princeton

University Press, Princeton
15. Bergmann J, McCoy D (2004) Sourcery VSIPL++ HPEC benchmark performance. HPCMP-

UGC ’06 Proceedings of the HPCMP Users Group Conference
16. Snir M, Otto S, Huss-Lederman S, Walker D, Dongarra J, MPI the complete reference.

[online] Available: http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
17. Chapman B, Jost G, van der Pas R, Kuck DJ (2008) Using openMP: portable shared memory

parallel programming. MIT Press, Cambridge
18. Fowler M (2008) UML distilled: a brief guide to the standard object modeling language.

Published September 25th 2003 by Addison-Wesley Professional
19. Weilkiens T (2006) Systems engineering with SysML/UML: modeling analysis, design.

Hüthing, Heidelberg
20. PACT XPP Technologies (2005) PACT software design system XPP-IIb (PSDS XPP-IIb)—

programming tutorial. Version 3.2, November 2005
21. Stitt G, Grattan B, Villarreal J, Vahid F (2002) Using on-chip configurable logic to reduce

embedded system software energy. IEEE symposium on field-programmable custom
computing machines, Napa Valley, USA

22. Baron M (2004) M2000’s spherical FPGA cores. MicroProcessor report, Dec 2004
23. Coppola M, Locatelli R, Maruccia G, Pieralisi L, Scandurra A (2004) Spidergon: a novel on-

chip communication network. Proceedings of the international symposium on system-on-
chip, pp 16–18

24. Whitty S, Ernst R (2008) A bandwidth optimized SDRAM controller for the MORPHEUS
reconfigurable architecture. In: Proceedings of the IEEE parallel and distributed processing
symposium (IPDPS)

25. Amar A, Boulet P, Dumont P, Projection of the array-OL specification language onto the
Kahn process network computation model. [online] Available: http://hal.archives-ouvertes.fr/
docs/00/07/04/91/PDF/RR-5515.pdf

26. CRITICALBLUE (2005) Boosting software processing performance with co-processor
synthesis. White paper

27. Whitty S, Sahlbach H, Hurlburt B, Putzke-Röming W, Ernst R (2010) Application-specific
memory performance of a heterogeneous reconfigurable architecture. In: Proceedings of
design, automation and test in Europe (DATE)

19 Design for Embedded Reconfigurable Systems Using MORPHEUS Platform 333



Chapter 20

New Dimensions in Design Space
and Runtime Adaptivity
for Multiprocessor Systems Through
Dynamic and Partial Reconfiguration:
The RAMPSoC Approach

Diana Göhringer and Jürgen Becker

Abstract Embedded high performance computing applications have two require-

ments which hardly can be achieved simultaneously: high performance and low

energy consumption. One solution is the exploitation of the low-level parallelism

of a field programmable gate array (FPGA). Due to the manifold parameters, such

as the adaptation of the clock frequency in relation to the application requirements,

a better energy efficiency compared to traditional processor-based platforms can be

achieved. However, the FPGA programming is time consuming until today and

requires a very good understanding of the underlying hardware. There exist

C-to-FPGA tools, which leverage the traditional FPGA programming using HDL-

languages. However, C-to-FPGA tools can only be used for submodules and

accelerators, because they do not handle the communication with the environment,

e.g., camera interfaces, PCI-interfaces, etc. Furthermore, the results of an auto-

matic code transformation are until today suboptimal in comparison to a hand

coded design. Due to this fact, the interfaces have to be either programmed by

hand, which is very time consuming, or they have to be bought from IP suppliers.

Furthermore, these C-to-FPGA tools often have some restrictions on the input

C, C++ language. In this book chapter a novel holistic approach called RAMPSoC

(Runtime Adaptive Multiprocessor System-on-Chip) is presented. RAMPSoC

provides a meet-in-the middle solution by combining the hardware flexibility and

low power consumption of FPGAs with the software flexibility and the high-level

programming paradigms of multiprocessor systems-on-chip. The RAMPSoC

approach consists of a flexible and energy efficient hardware architecture, consisting

D. Göhringer (&)
Fraunhofer IOSB, Gutleuthausstr. 1, 76275 Ettlingen, Germany
e-mail: diana.goehringer@iosb.fraunhofer.de

J. Becker
Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
e-mail: becker@kit.edu

N. Voros et al. (eds.), VLSI 2010 Annual Symposium,
Lecture Notes in Electrical Engineering 105, DOI: 10.1007/978-94-007-1488-5_20,
� Springer Science+Business Media B.V. 2011

335



of heterogeneous processing elements connected over a heterogeneous Star-

Wheels Network-on-Chip, a user-guided design methodology and a new operating

system for runtime resource management. RAMPSoC provides new dimensions

for design space and runtime adaptivity by exploiting the features of dynamic and

partial reconfiguration in FPGA-based designs. Using an object recognition

algorithm, it was shown that the RAMPSoC is more energy efficient than a

standard CPU and an NVIDIA Tesla GPU.

Keywords Field Programmable Gate Array (FPGA) � Dynamic and Partial

Reconfiguration � Multiprocessor System-on-Chip (MPSoC) � Network-on-Chip
(NoC) � Operating System � Design Methodology � High Performance Computing

20.1 Introduction and Motivation

Embedded high performance computing systems, such as used e.g., in surveillance

applications, have two contrary requirements: high computing performance and

low power consumption. Furthermore, they need to be able to adapt to the require-

ments of the environment. These requirements are, e.g., different image processing

algorithms, depending on the objects and their distance to the camera; varying

computing requirements, depending on the number of objects to be tracked.

Field programmable gate arrays (FPGAs) are one possible hardware solution

for embedded high performance computing systems, due to their low-level parallel

architecture. By exploiting the inherent parallelism of the embedded high per-

formance applications a high energy efficiency can be achieved. Furthermore, the

hardware architecture can be adapted at design-time and for some FPGAs, such as

Xilinx FPGAs, even at runtime. This runtime adaptivity is called dynamic and

partial reconfiguration. With this feature, a part of the modules configured on the

FPGA device can be exchanged at runtime, while the other modules are still

executing and are not disturbed. With this feature the FPGA cost and the power

consumption can be reduced, because only the currently required functionality

needs to be configured on the device. All unused functionality is removed.

Therefore, a smaller FPGA device can be used, which also results in lower power

consumption. An additional benefit is that components, which always need to

be present on the device, are not disturbed, while part of the functionality is

exchanged. This is beneficially, e.g., for image processing applications, where the

camera interface needs to remain fully functional, while the filter algorithm needs

to be adapted depending on the image data. This way the function is brought to the

data instead of the traditional von Neumann approach, where a program counter

points to the current instruction and directs the data to the corresponding function

(see [1]). This means, the function is configured at runtime onto the device at the

position, where it is needed. After processing the function can be removed from

336 D. Göhringer and J. Becker



the device configuration memory or it can be exchanged by a different function

on-demand without disturbing the other executing functions on the device.

Xilinx offers a special toolflow for designing partial bitstreams. For Xilinx tools

version 9.2 and older it was called Early Access Partial Reconfiguration Flow

(EAPR flow) [2] and since version 12.1 it is part of the standard tools and it is

called Partial Reconfiguration Flow [3].

However, FPGA programming is very complex and time consuming, as a hard-

ware description language (HDL) such as VHDL or Verilog has to be used.

Therefore, the applications, which mostly are designed in languages such as C or

C++, need to be translated into VHDL or Verilog. Furthermore, the debugging and

the modification of an algorithm written in an HDL are more time-consuming than

the imperative programming languages such as C, C++. There exist commercial C-

to-FPGA tools, such as CatapultC [4], ImpulseC [5] or Handel C [6], which can

transform an algorithm written in C, C++ into a HDL description for the FPGA.

However, the C, C++ Code has to be adapted to fulfill the requirements of the

corresponding tool. Also, most of these tools, except Handel C, can only generate

HDL-code for a single module, not for a full FPGA configuration. Even more

difficult in terms of development and debugging is the design of a dynamically and

partially reconfigurable FPGA system. The selection of the partially reconfigurable

modules has to be done with care and a runtime system has to be developed for

managing the reconfigurations depending on the changing application requirements.

Another solution for embedded high performance applications are Multipro-

cessor Systems-on-Chip (MPSoCs), which allow to exploit the task-level paral-

lelism of an application. Programming MPSoCs is easier than programming

FPGAs, because parallel programming models can be used, which are an extension

of imperative languages such as C, C++ and are therefore more familiar to

application developers than an HDL language. The most well known parallel

programming models are based on threads, such as PosixThreads [7], OpenMP [8],

or on message passing, such as the Message Passing Interface (MPI) [9].

Special types of multiprocessors are general purpose graphic processing

units (GPGPU), such as the NVIDIA Tesla GPU [10]. They are programmed with

C-for-CUDA [11], which is C with NVIDIA extensions and was specifically

designed to program NVIDIA GPUs.

However, the hardware architecture of MPSoCs, such as the number of pro-

cessors, the bandwidth of the communication infrastructure and the memory, is

fixed and cannot be modified at design- or runtime. This means, that the hardware

of MPSoCs cannot be adapted at runtime in relation to the performance and power

requirements of the application, like it is possible in FPGA platforms.

The work presented in this chapter combines the flexibility and low power

consumption strategies of FPGA-based design with the simpler programming

model of multiprocessor systems-on-chip (MPSoCs) within a holistic approach

called RAMPSoC (runtime adaptive MPSoC) [12]. Also, RAMPSoC supports the

possibility to combine microprocessors with application specific architectures

obtained by hardware compilation tools. Using an image processing application, it

20 New Dimensions in Design Space and Runtime Adaptivity 337



is proven, that the RAMPSoC system has a higher energy efficiency than an

NVIDIA GPU and a standard CPU.

This chapter is organized as follows: In Sect. 20.2, the holistic RAMPSoC

approach is presented. This means, the hardware architecture, the Star-Wheels

Network-on-Chip, the RAMPSoC design methodology and the configuration access

port-operating system (CAP-OS) are described. In Sect. 20.3, the implementation

of an image processing application onto the RAMPSoC is described and the results

of the RAMPSoC system in terms of performance and energy consumption are

compared against a standard CPU and an NVIDIA Tesla C1060 GPU. Finally, the

chapter is closed by presenting the conclusions and an outlook Sect. 20.4.

20.2 The Holistic RAMPSoC Approach

The holistic RAMPSoC approach consists of a heterogeneous and runtime adaptive

multiprocessor architecture, a design methodology for architecture development

and application partitioning and a special purpose operating system called CAP-OS,

which is responsible for runtime scheduling, task mapping and resource

management.

Figure 20.1 shows a RAMPSoC system at one point in time. It supports dif-

ferent types of processing elements (PEs) (e.g., processors, finite state machines

(FSMs)). Each PE can be connected to one or more accelerators.

Different types of communication infrastructure (such as bus, Network-on-Chip

(NoC), Point-to-Point) or a heterogeneous combination of those are supported.

In the example of Fig. 20.1, the PEs are connected over the novel heterogeneous

and runtime adaptive Star-Wheels NoC [13]. As this NoC is runtime adaptive, it

Fig. 20.1 A RAMPSoC system connected over an incomplete Star-Wheels Network-on-Chip
at one point in time. On the top right an example for a maximal established Star-Wheels NoC
is shown

338 D. Göhringer and J. Becker



can detect if new PEs were added, or if existing ones have been removed or

exchanged. The top right picture in Fig. 20.1 shows an example for a maximal

implemented Star-Wheels NoC. Not only the structure, but also the communication

paradigm is heterogeneous, since the routing is based on a combination of packet-

switching and circuit-switching. An additional benefit of this NoC is that it sup-

ports different clock frequencies for different PEs.

A special communication gateway is the Virtual-I/O component. It is used to

connect peripherals such as cameras, monitors, PCI-interfaces, etc. with the

communication infrastructure of the PEs. Moreover, the Virtual-I/O is used for

exploiting data parallelism, as it can split the incoming frames of a camera into

tiles for multiple PEs and it also can be used to collect the computation results and

display them on a monitor.

The most important PE is the microprocessor with the Xilkernel Real-Time

Operating System (RTOS) from Xilinx on top of which the Configuration Access

Port-OS (CAP-OS) [14] is executed. Figure 20.2 shows the different abstraction

layers of CAP-OS.

While the CAP-OS is responsible for runtime scheduling and resource man-

agement of the overall RAMPSoC, the Xilkernel is responsible for scheduling the

different CAP-OS threads on the microprocessor and for providing the hardware

drivers to the CAP-OS. The processor is connected to a special component called

Fast Simplex Link-Internal Configuration Access Port (FSL-ICAP) [15], through

which the CAP-OS can access the configuration memory on the FPGA with high

Fig. 20.2 Abstraction levels of the CAP-OS

20 New Dimensions in Design Space and Runtime Adaptivity 339



throughput and therefore can modify the hardware structure of the overall MPSoC

to achieve a high energy efficiency. This processor receives the algorithmic

dependencies of the user application in form of a task graph at runtime. In addi-

tion, it receives partial configuration bitstreams for processors and accelerators and

software executables for the different threads to be executed on the processors.

CAP-OS then schedules the different software tasks to the available PEs. If suf-

ficient processing elements are not available, it modifies the configuration memory

of the FPGA via the FSL-ICAP to add new PEs. Currently unused PEs are

substituted or shut down. To ensure that real-time constraints are met, CAP-OS

can also modify the clock frequency of some or all PEs by dynamically recon-

figuring the corresponding digital clock manager (DCM) of the Xilinx FPGA.

Fig. 20.3 Four abstraction layers used within the design methodology and the CAP-OS to hide
the complexity of the RAMPSoC architecture

340 D. Göhringer and J. Becker



To close the gap between the software applications written in C, C++ and the

physical RAMPSoC hardware architecture, four abstraction layers have been

introduced as shown in Fig. 20.3.

The top level is the User/System-level, which is seen by the user. This means

the user knows, that an MPSoC system is being programmed, but the structure of

the system e.g., types of processors, communication infrastructure is hidden from

the user. The lowest level of abstraction is the physical level of the FPGA. The

levels in between are the Communication- and the Processor-level.

All abstraction layers are used within the novel design methodology [16].

Figure 20.4 shows the different phases of the design methodology, each of which

correspond to a specific abstraction layer.

In Phase 1 the design flow analyses the user applications written in C, C++ and

generates a task graph of the application. Hierarchical Clustering is used to map

specific tasks onto the PEs. This phase corresponds to the User/System- and the

Communication-level.

In Phase 2 each task is profiled and a Hardware-Software Codesign is done to

find possible computation intensive blocks, which can be outsourced into accel-

erators. This phase corresponds to the Processor-level.

Fig. 20.4 Design Methodology of RAMPSoC

20 New Dimensions in Design Space and Runtime Adaptivity 341



Phase 3 handles the physical implementation. It generates the configuration

bitstreams and the software executables. This phase corresponds to the Physical-

level.

The resulting task graph, the configuration bitstreams and the software exec-

utables are then passed over to CAP-OS, which is responsible for the runtime

management and which also follows the abstraction layers.

20.3 Implementation and Results

All elements of the RAMPSoC approach have been exemplarily implemented on

different FPGA platforms (such as Virtex-4 and Virtex-5) and have been evaluated

using different application scenarios from image processing [13] and bioinfor-

matics [17].

An object recognition algorithm was selected for a comparison of the perfor-

mance, the power and energy consumption as well as the energy efficiency of the

RAMPSoC with a standard CPU and a modern NVIDIA GPGPU (general purpose

graphic processing unit). Figure 20.5 shows an abstract representation of the

object recognition algorithm. The algorithm is computed on a region of interest

(ROI) of 64 9 64 pixels within the frames acquired from a video source. Bright

point-like objects are detected using the hotspot detector algorithm. Bigger objects

are detected using template matching. To improve the detection rate, the ROI is

enhanced using global histogram equalization. Afterwards, squared normalized

cross correlation is used to calculate the similarity between the template and a

subregion of the ROI in the size of the template. Here a template size of 10 9 10

pixels was used.

Fig. 20.5 Task graph of the
implemented object
recognition algorithm
computed on a region of
interest (ROI) of size
64 9 64 pixels. Two kinds of
objects can be detected. On
the right side the hotspot
detector algorithm is used to
detect bright point-like
objects within the ROI. On
the left side, the ROI is
enhanced using global
histogram equalization.
Afterwards squared
normalized cross correlation
is used to do a template-based
search for objects

342 D. Göhringer and J. Becker



This object recognition algorithm was implemented in C for the CPU and with

CUDA for the NVIDIA Tesla C1060 GPU. For the RAMPSoC, a heterogeneous

system consisting of a Virtual-IO, three processors and two hardware accelerators

(one for the Histogram Equalization and one for part of the squared normalized

cross correlation) were used as shown in Fig. 20.6. Instead of increasing the per-

formance of the hotspot detector using an additional hardware accelerator, the ROI

was partitioned into two overlapping tiles and the histogram equalization processor

was reused for calculating the hotspot detector for the second partition of the input

image. This way resources and therefore power consumption can be kept low.

Fig. 20.6 Implemented
RAMPSoC system consisting
of three processors and two
hardware accelerators. For
the hotspot detector no
hardware accelerator was
implemented. Instead, the
image was partitioned to
speed up the execution by
using two processors, one for
each partition of the image

106

253

2,95
0

50

100

150

200

250

300

Power

CPU GPU RAMPSoC

[W]

17,56

3,97

31,15

0
5

10
15
20
25
30
35
40
45
50

Execution Time

CPU GPU RAMPSoC

Real-time: 25 fps

[ms]

Fig. 20.7 Execution time and power consumption for an object recognition algorithm on a
RAMPSoC system running at 125 MHz, on a CPU running at 2 GHz and on an NVIDIA Tesla
C1060 GPGPU running at 1.3 GHz

20 New Dimensions in Design Space and Runtime Adaptivity 343



Of course a hardware only solution would be the fastest one, but for all three

implementations (CPU, GPU, RAMPSoC) the goal was to optimize each imple-

mentation, only until it was fast enough to fulfill the real-time constrains.

Figure 20.7 shows the measured execution time and the measured / estimated

power consumption for the CPU, the GPU and the RAMPSoC. The GPU is the

fastest platform, followed by the CPU and the last one is the RAMPSoC, but all

platforms fulfill the real-time constraints. All performance values were measured

on the implemented platforms. For the power consumption it is vice versa. The

RAMPSoC has by far the lowest power consumption. The CPU is in the middle

and the GPU has the highest power consumption.

For the RAMPSoC the power consumption was estimated using Xilinx XPower

tool, as described in [18]. This tool allows an accurate enough estimation of the

power consumption. RAMPSoC was implemented on a large Xilinx Virtex-

4FX100 FPGA, but only uses less than 30% of the available resources. The power

consumption of the CPU and the GPU were measured by inserting a power

measuring instrument between the plug and the power outlet. Of course in the case

of the GPU, the GPU power consumption was measured together with the Host-

CPU power consumption. But as the Host-CPU also computed parts of the algo-

rithm together with the GPU, the GPU could not have calculated the algorithm

without the Host-CPU. Therefore it was decided to be fair to measure both

together.

The energy consumption and the energy efficiency were calculated using the

performance and power consumption results. Figure 20.8 shows the results for the

three systems.

The RAMPSoC execution time has been 8 times slower, than the one of the

GPU. On the other hand, the power consumption of RAMPSoC was 86 times

lower than the one of the GPU. This results into the fact, that the RAMPSoC has

the lowest energy consumption, followed by the GPU and then by the CPU. The

GPU has a lower energy consumption compared to the CPU due to its much faster

execution time.

0,54
1

10,88

0

2

4

6

8

10

12

Energy efficiency

CPU GPU RAMPSoC

[1/J]

1,86

1

0,09

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

2

Energy

CPU GPU RAMPSoC

[J]

Fig. 20.8 Energy consumption and energy efficiency for an object recognition algorithm on a
RAMPSoC system running at 125 MHz, on a CPU running at 2 GHz and on an NVIDIA Tesla
C1060 GPGPU running at 1.3 GHz

344 D. Göhringer and J. Becker



As a consequence for this object recognition algorithm the RAMPSoC is much

more energy efficient than the GPU and the CPU. This behavior will be evaluated

with more applications in the future.

20.4 Conclusions and Outlook

The holistic RAMPSoC approach consists of the novel runtime adaptive hardware

architecture, a newly developed design methodology and the special purpose opera-

ting system called CAP-OS. Several abstraction layers are used within the complete

approach to hide the complexity of the system from the user. It provides the flexi-

bility, high performance and low power consumption required by embedded high

performance computing applications. The energy efficiency of the RAMPSoC was

evaluated using an object recognition application. The results were compared

against the energy efficiency of a standard CPU and a high performance NVIDIA

Tesla C1060 GPU. All platforms fulfilled the real-time requirements of 25 frames

per second (fps), but the RAMPSoC had by far the lowest power consumption and

has therefore the best energy efficiency for the given application.

Future steps are to evaluate the advantages of the RAMPSoC approach with

further high performance embedded applications and with other multiprocessor

platforms, such as the Intel Single Chip Cloud Computer (SCC) [19]. Based on the

results of the evaluation the hardware architecture, the design methodology and

CAP-OS will be improved to further ease the programming of the RAMPSoC

architecture and to support a greater library of processing elements, communica-

tion infrastructures and hardware accelerators.

References

1. Hartenstein R (2006) Why we need reconfigurable computing education. RC-Education
workshop, Karlsruhe, Germany

2. Lysaght P, Blodget B, Mason J, Young J, Bridgford B (2006) Invited paper: Enhanced
architectures, design methodologies and CAD tools for dynamic reconfiguration of Xilinx
FPGAs. In: Proceedings of FPL 2006, August 2006

3. PlanAhead Software Tutorial (2010) Overview of the partial reconfiguration flow, UG 743
(v 12.1). Available at: http://www.xilinx.com

4. Fingeroff M (2010) High level synthesis blue book. Xlibris Corporation
5. Pellerin D, Thibault S (2005) Practical FPGA programming in C. Prentice Hall Professional

Technical Reference
6. Kamat RK, Shinde SA, Shelake VG (2009) Unleash the system on chip using FPGAs and

Handel C. Springer, Berlin
7. Butenhof DR (1997) Programming with POSIX threads. Addison-Wesley, Reading
8. OpenMP. Available at: http://openmp.org
9. MPI (2009) A message-passing interface standard, version 2.2. Message passing interface

forum, September 4. Available at: www.mpiforum.org

20 New Dimensions in Design Space and Runtime Adaptivity 345

http://www.xilinx.com
http://openmp.org
http://www.mpiforum.org


10. NVIDIA 739 � TeslaTM, GPU Computing technical brief, Version 1.0.0, May 2007
11. NVIDIA CUDATM (2009) Programming guide, Version 2.3.1, August Available at:

http://www.nvidia.com/object/cuda_home.html
12. Göhringer D, Becker J (2010) FPGA-based runtime adaptive multiprocessor approach for

embedded high performance computing applications. In: Proceedings of the IEEE Computer
Society annual symposium on VLSI (ISVLSI 2010), Lixouri, Kefalonia, Greece

13. Göhringer D, Liu B, Hübner M, Becker J (2009) Star-wheels network-on-chip featuring a
self-adaptive mixed topology and a synergy of a circuit- and a packet-switching
communication protocol. In: Proceedings of FPL 2009, September 2009, pp 320–325

14. Göhringer D, Hübner M, Nguepi Zeutebouo E, Becker J (2010) CAP-OS: Operating system
for runtime scheduling, task mapping and resource management on reconfigurable
multiprocessor architectures. In: Proceedings of RAW at the IPDPS 2010, April 2010

15. Hübner M, Göhringer D, Noguera J, Becker J (2010) Fast dynamic and partial reconfiguration
data path with low hardware overhead on Xilinx FPGAs. In: Proceedings of RAW at the
IPDPS 2010, April 2010

16. Göhringer D, Hübner M, Benz M, Becker J (2010) A design methodology for application
partitioning and architecture development of reconfigurable multiprocessor systems-on-chip.
In: Proceedings of FCCM 2010, May 2010

17. Göhringer D, Hübner M, Hugot-Derville L, Becker J (2010) Message passing interface
support for the runtime adaptive multi-processor system-on-chip RAMPSoC. In: Proceedings
of the 10th international conference on embedded computer systems: Architectures, modeling
and simulation (SAMOS X), July 2010, Samos, Greece

18. Development System Reference Guide, v9.2i, Chap. 10 XPower. Available at: http://www.
xilinx.com

19. Howard J, Dighe S, Hoskote Y et al (2010) A 48-Core IA-32 message-passing processor with
DVFS in 45 nm CMOS. In: Proceedings of IEEE international solid-state circuits conference
(ISSCC 2010), February 2010, San Francisco

346 D. Göhringer and J. Becker

http://www.nvidia.com/object/cuda_home.html
http://www.xilinx.com
http://www.xilinx.com

	VLSI 2010 Annual Symposium
	Preface
	Contents

	Part I Architecture: Level Design Solutions
	1 Intelligent NOC Hotspot Prediction
	Abstract
	1.1…Introduction
	1.2…Background and Related work
	1.3…Artificial Neural Network Hotspot Predictor
	1.3.1 Hotspot Modeling
	1.3.2 ANN Training
	1.3.3 Neural Network Architecture

	1.4…ANN Hotspot Prediction Results
	1.4.1 Experimental Setup
	1.4.2 Synthetic Traffic Prediction Results
	1.4.3 Real-System Traffic Prediction Results
	1.4.4 Hardware Synthesis Results

	1.5…Conclusions and Future Work
	References

	2 Accurate Asynchronous Network-on-Chip Simulation Based on a Delay-Aware Model
	Abstract
	2.1…Introduction
	2.2…Background and Motivation
	2.2.1 GALS-NoC Architecture
	2.2.2 Related Work and Contributions

	2.3…Delay-Aware Model for an Asynchronous NoC Simulation
	2.3.1 Asynchronous Router
	2.3.2 Delay-Aware Model

	2.4…Evaluation
	2.4.1 Simulation Environment
	2.4.2 Simulation Accuracy

	2.5…Conclusion
	Acknowledgements
	References

	3 Trust Management Through Hardware Means: Design Concerns and Optimizations
	Abstract
	3.1…Introduction
	3.2…Attestation Through Security Hardware Module
	3.3…AAT Hardware Structure
	3.4…Hardware and Security AAT Issues and Possible Solutions
	3.4.1 RSA Efficiency and Security Issues

	3.5…Proposed FA-SPA CRT RSA Algorithm
	3.6…Proposed Hardware Architectures
	3.7…Performance
	Acknowledgements
	References

	4 MULTICUBE: Multi-Objective Design Space Exploration of Multi-Core Architectures
	Abstract
	4.1…Introduction
	4.2…The MULTICUBE Design Methodology
	4.3…Power and Performance Estimation Framework
	4.3.1 Open Source Estimation Framework
	4.3.2 Proprietary Estimation Framework

	4.4…Advantages of Automatic DSE
	4.5…Design Tool Integration Based on the MULTICUBE XML
	4.5.1 Design Space Definition
	4.5.1.1 Simulator Invocation
	4.5.1.2 Parameters Definition
	4.5.1.3 System Metrics Definition

	4.5.2 Simulator Input/Output XML Interface

	4.6…Design Space Exploration Framework
	4.6.1 Multi-Objective Optimization Heuristics
	4.6.1.1 Evaluation of the Algorithms

	4.6.2 Response Surface Modeling

	4.7…Conclusions
	Acknowledgements
	References

	5 2PARMA: Parallel Paradigms and 	Run-time Management Techniques for Many-Core Architectures
	Abstract
	5.1…Introduction
	5.2…MCCF Architecture Template
	5.2.1 STMicroelectronics Platform 2012
	5.2.2 IMEC ADRES-based COBRA Platform

	5.3…Design Flow and Tools
	5.3.1 Programmability of MCCFs
	5.3.1.1 Task Level Parallelism
	5.3.1.2 Loop Level Parallelism

	5.3.2 Run-time Management
	5.3.3 Design Space Exploration
	5.3.4 Preliminary Exploration of the OpenCL Programming Model

	5.4…Applications
	5.4.1 Scalable Video Coding
	5.4.2 Cognitive Radio
	5.4.3 Multi-View Video

	5.5…Conclusions
	References

	Part II Embedded System Design
	6 Adaptive Task Migration Policies for Thermal Control in MPSoCs
	Abstract
	6.1…Introduction
	6.2…Background
	6.2.1 Multiprocessor Architecture Organization
	6.2.1.1 Shared Memory Multiprocessors
	6.2.1.2 Distributed Multi-Processors
	6.2.1.3 Embedded MPSoCs

	6.2.2 Communication and Synchronization 	in Embedded MPSoCs
	6.2.3 Resource Management in Embedded MPSoCs
	6.2.4 Task Migration in Embedded MPSoCs
	6.2.5 Voltage/Frequency Management
	6.2.6 Task Migration for Thermal Optimization

	6.3…Target Architecture Template and Programmer’s View
	6.3.1 General Architectural Template
	6.3.2 Application Modeling
	6.3.2.1 Task Modeling
	6.3.2.2 Task Communication and Synchronization

	6.3.3 Checkpointing
	6.3.4 Homogeneous Cluster-on-a-Chip: A Case study

	6.4…Operating System/Middleware Infrastructure
	6.4.1 Basic Services: Communication and Synchronization Support
	6.4.2 Advanced Services for Dynamic Resource Management: Task Migration Support
	6.4.2.1 Task Respawning with Task Replication
	6.4.2.2 Task Respawning with Task Re-creation


	6.5…Emulation Platform
	6.6…Adaptive and Floorplan Aware Policies for Thermal Balancing
	6.6.1 Compared State-of-the-Art Thermal Control Policies
	6.6.2 Atomic Policies Pre-Characterization
	6.6.3 Proposed Policies
	6.6.3.1 Heuristic Algorithm (Heu)
	6.6.3.2 Adaptive Policy (Adapt)
	6.6.3.3 Floorplan-Aware Policy (FloorAdapt)


	6.7…Experimental Work
	6.7.1 Description of the Application
	6.7.2 Evaluation of the Policies

	6.8…Conclusions
	References

	7 A High Level Synthesis Exploration Framework with Iterative Design Space Partitioning
	Abstract
	7.1…Introduction
	7.2…Related Work 
	7.3…Motivational Observations 
	7.4…Iterative Design Space Partitioning Exploration 
	7.5…The Gradient-Based Pruning Technique 
	7.6…Experimental Results
	7.7…Conclusion 
	References

	8 A Scalable Bandwidth-Aware Architecture for Connected Component Labeling
	Abstract
	8.1…Introduction
	8.2…Background
	8.3…Single Pass Algorithm and Implementation
	8.4…Sliced Connected Component Labeling Algorithm
	8.4.1 Slice and Merge Algorithm
	8.4.2 Bounding Box Detection

	8.5…SCCL Architecture
	8.5.1 Connected Components Processor (CCP)
	8.5.2 Slice Processor (SP)
	8.5.3 Coalescing Unit (CU)
	8.5.3.1 Writing to the Association FIFO
	8.5.3.2 Reading from the Association FIFO
	8.5.3.3 Common Label (CL) RAMs
	8.5.3.4 Updating Global Bounding Box RAM
	8.5.3.5 Bounding Box Update


	8.6…Results
	Acknowledgments
	References

	9 The SATURN Approach to SysML-Based HW/SW Codesign
	Abstract
	9.1…Introduction
	9.2…Related Work
	9.3…ARTiSAN Studioreg
	9.4…SysML Based HW/SW Codesign
	9.5…SysML Based HW/SW Co-modeling
	9.6…SATURN Code Generation
	9.7…Co-simulation
	9.8…HetSC for Architecture Exploration
	9.9…Evaluation
	9.10…IEEE 802.16e Base Station
	9.11…Smart Camera
	9.12…Conclusions
	Acknowledgments
	References

	10 Mapping Embedded Applications on MPSoCs: The MNEMEE Approach
	Abstract
	10.1…Introduction
	10.2…MNEMEE Tool Flow
	10.2.1 Overview
	10.2.2 Dynamic Data Type Optimizations
	10.2.3 Parallelization
	10.2.4 Optimize Static Data Structures
	10.2.5 Optimize Dynamic Memory Management
	10.2.6 Task Mapping
	10.2.6.1 Scenario-Aware Mapping
	10.2.6.2 Memory-Aware Mapping

	10.2.7 Scratchpad Memory Allocation

	10.3…Industrial Application
	10.3.1 Communication Domain
	10.3.2 Multimedia Domain

	10.4…Conclusions
	Acknowledgments
	References

	11 The MOSART Mapping Optimization for Multi-Core ARchiTectures
	Abstract
	11.1…Introduction and Motivation
	11.2…Project Description
	11.2.1 Applications and Performance Requirements
	11.2.2 Parallelization and System-Level Exploration
	11.2.3 NoC Customization
	11.2.4 ASIP Exploration

	11.3…Experimental Results
	11.3.1 Parallelization
	11.3.2 System Level Exploration
	11.3.3 Supporting Distributed Shared Memory Services
	11.3.3.1 Utilization of Base Services
	11.3.3.2 Utilization of Advanced Services
	11.3.3.3 Power Management Services

	11.3.4 ASIP Exploration
	11.3.4.1 Initial Profiling
	11.3.4.2 MAC Instruction
	11.3.4.3 Branch Prediction
	11.3.4.4 SW/HW Performances Trade-Off


	11.4…Conclusions
	Acknowledgments
	References

	Part III Emerging Devices and Nanocomputing
	12 XMSIM: Extensible Memory Simulator for Early Memory Hierarchy Evaluation
	Abstract
	12.1…Introduction
	12.2…Related Work
	12.3…Simulator Architecture
	12.4…Development Environment
	12.5…XMSIM’S Graphical User Interface
	12.6…Experiments
	12.7…Conclusions
	Acknowledgment
	References

	13 Self-Freeze Linear Decompressors: Test Pattern Generators for Low Power Scan Testing
	Abstract
	13.1…Introduction
	13.2…Background
	13.3…Power Aware Encoding
	13.3.1 Test Data Analysis
	13.3.2 Encoding Algorithm

	13.4…Architecture
	13.5…Experiments
	13.6…Conclusions
	Acknowledgments
	References

	14 SUT-RNS Forward and Reverse Converters
	Abstract
	14.1…Introduction
	14.2…Redundant High-Radix SUT-RNS
	14.3…Forward Converters
	14.3.1 Modulo 2nminus1
	14.3.2 Modulo 2n + 1

	14.4…Reverse Converters
	14.4.1 Modulo 2nminus1
	14.4.2 Modulo 2n + 1

	14.5…Evaluation and Experimental Results
	14.6…Conclusions
	References

	15 Off-Chip SDRAM Access Through Spidergon STNoC
	Abstract
	15.1…Introduction
	15.2…Related Work
	15.2.1 Memory Schedulers
	15.2.2 On-chip Interconnection
	15.2.3 Combined ‘‘Interconnect-Memory Scheduler’’ Solutions

	15.3…Problem Statement
	15.4…Proposed Solution
	15.4.1 Platform Composition
	15.4.2 Platform Configuration
	15.4.2.1 Traffic Generators
	15.4.2.2 Memory Subsystem
	15.4.2.3 Interconnect
	15.4.2.4 Services Coupling of Both Spidergon STNoC and DMC
	15.4.2.5 Ordering Aspects


	15.5…Simulation Environment and Results
	15.5.1 Number of Conflict Points Influence Over Cache Controller Read Transactions Latency
	15.5.2 Comparison Between Cache Controller Direct Connection to Memory Subsystem and the Connection Through Virtual Channels

	15.6…Conclusion and Future Work
	Acknowledgments
	References

	16 Digital Microfluidic Biochips: A Vision for Functional Diversity and More than Moore
	Abstract
	16.1…Introduction
	16.2…Technology Platform
	16.3…Synthesis Methods
	16.3.1 Scheduling and Module Placement
	16.3.2 Droplet Routing

	16.4…Pin-Constrained Chip Design
	16.4.1 Droplet-Trace-Based Array Partitioning
	16.4.2 Cross-Referencing-Based Droplet Manipulation
	16.4.3 Broadcast-Addressing Method

	16.5…Testing and Diagnosis
	16.5.1 Fault Modeling
	16.5.2 Structural Test Techniques
	16.5.3 Functional Testing Techniques
	16.5.4 Built-In Self-Test Techniques
	16.5.5 Design for Testability

	16.6…Chapter Summary and Conclusions
	References

	Part IV Reconfigurable Systems
	17 FPGA Startup Through Sequential Partial and Dynamic Reconfiguration
	Abstract
	17.1…Introduction
	17.2…Dynamic and Partial Reconfiguration
	17.3…General Method of Sequential Startup
	17.4…Implementation
	17.4.1 Spartan 3 Configuration Memory Architecture
	17.4.2 Design Flow for Fast Sequential FPGA Startup with Spartan 3

	17.5…Experiments and Results
	17.6…Conclusions and Outlook
	References

	18 Two Dimensional Dynamic Multigrained Reconfigurable Hardware
	Abstract
	18.1…Introduction
	18.2…Online Adaptable Mesh Based NoC
	18.2.1 Switch for 2D Mesh Based NoC Approach
	18.2.1.1 Switch Layout
	18.2.1.2 Controlling the Switch

	18.2.2 Physical Online Routing of Communication Structures
	18.2.2.1 Motivation
	18.2.2.2 Method
	18.2.2.3 Implementation
	18.2.2.4 Innovation


	18.3…Physical Online Routing of Modules
	18.3.1 Motivation
	18.3.2 Method
	18.3.3 Implementation
	18.3.4 Innovation

	18.4…Universal Tool for Working With Bitstreams
	18.5…Conclusion
	References

	19 Design for Embedded Reconfigurable Systems Using MORPHEUS Platform
	Abstract
	19.1…Introduction
	19.2…Architecture
	19.3…The Toolset
	19.4…Wireless Telecommunications Application
	19.5…Systems for Intelligent Cameras
	19.6…Discrete Wavelet Transformation Application
	19.7…Conclusions
	Acknowledgments
	References

	20 New Dimensions in Design Space and Runtime Adaptivity for Multiprocessor Systems Through Dynamic and Partial Reconfiguration: The RAMPSoC Approach
	Abstract
	20.1…Introduction and Motivation
	20.2…The Holistic RAMPSoC Approach
	20.3…Implementation and Results
	20.4…Conclusions and Outlook
	References

	Cover
	VLSI 2010 Annual Symposium
	Preface
	Contents

	Part I Architecture: Level Design Solutions
	1 Intelligent NOC Hotspot Prediction
	Abstract
	1.1…Introduction
	1.2…Background and Related work
	1.3…Artificial Neural Network Hotspot Predictor
	1.3.1 Hotspot Modeling
	1.3.2 ANN Training
	1.3.3 Neural Network Architecture

	1.4…ANN Hotspot Prediction Results
	1.4.1 Experimental Setup
	1.4.2 Synthetic Traffic Prediction Results
	1.4.3 Real-System Traffic Prediction Results
	1.4.4 Hardware Synthesis Results

	References
	1.5…Conclusions and Future Work

	2 Accurate Asynchronous Network-on-Chip Simulation Based on a Delay-Aware Model
	Abstract
	2.1…Introduction
	2.2…Background and Motivation
	2.2.1 GALS-NoC Architecture
	2.2.2 Related Work and Contributions

	2.3…Delay-Aware Model for an Asynchronous NoC Simulation
	2.3.1 Asynchronous Router
	2.3.2 Delay-Aware Model

	2.4…Evaluation
	2.4.1 Simulation Environment
	2.4.2 Simulation Accuracy

	References
	Acknowledgements
	2.5…Conclusion

	3 Trust Management Through Hardware Means: Design Concerns and Optimizations
	Abstract
	3.1…Introduction
	3.2…Attestation Through Security Hardware Module
	3.3…AAT Hardware Structure
	3.4…Hardware and Security AAT Issues and Possible Solutions
	3.4.1 RSA Efficiency and Security Issues

	3.5…Proposed FA-SPA CRT RSA Algorithm
	3.6…Proposed Hardware Architectures
	3.7…Performance
	References
	Acknowledgements

	4 MULTICUBE: Multi-Objective Design Space Exploration of Multi-Core Architectures
	Abstract
	4.1…Introduction
	4.2…The MULTICUBE Design Methodology
	4.3…Power and Performance Estimation Framework
	4.3.1 Open Source Estimation Framework
	4.3.2 Proprietary Estimation Framework

	4.4…Advantages of Automatic DSE
	4.5…Design Tool Integration Based on the MULTICUBE XML
	4.5.1 Design Space Definition
	4.5.1.1 Simulator Invocation
	4.5.1.2 Parameters Definition

	4.5.2 Simulator Input/Output XML Interface
	4.5.1.3 System Metrics Definition


	4.6…Design Space Exploration Framework
	4.6.1 Multi-Objective Optimization Heuristics
	4.6.1.1 Evaluation of the Algorithms

	4.6.2 Response Surface Modeling

	4.7…Conclusions
	Acknowledgements
	References

	5 2PARMA: Parallel Paradigms and 	Run-time Management Techniques for Many-Core Architectures
	Abstract
	5.1…Introduction
	5.2…MCCF Architecture Template
	5.2.1 STMicroelectronics Platform 2012
	5.2.2 IMEC ADRES-based COBRA Platform

	5.3…Design Flow and Tools
	5.3.1 Programmability of MCCFs
	5.3.1.2 Loop Level Parallelism
	5.3.1.1 Task Level Parallelism

	5.3.2 Run-time Management
	5.3.3 Design Space Exploration
	5.3.4 Preliminary Exploration of the OpenCL Programming Model

	5.4…Applications
	5.4.2 Cognitive Radio
	5.4.1 Scalable Video Coding

	References
	5.5…Conclusions
	5.4.3 Multi-View Video



	Part II Embedded System Design
	6 Adaptive Task Migration Policies for Thermal Control in MPSoCs
	Abstract
	6.1…Introduction
	6.2…Background
	6.2.1 Multiprocessor Architecture Organization
	6.2.1.2 Distributed Multi-Processors
	6.2.1.1 Shared Memory Multiprocessors

	6.2.2 Communication and Synchronization 	in Embedded MPSoCs
	6.2.1.3 Embedded MPSoCs

	6.2.3 Resource Management in Embedded MPSoCs
	6.2.4 Task Migration in Embedded MPSoCs
	6.2.5 Voltage/Frequency Management
	6.2.6 Task Migration for Thermal Optimization

	6.3…Target Architecture Template and Programmer’s View
	6.3.1 General Architectural Template
	6.3.2 Application Modeling
	6.3.3 Checkpointing
	6.3.2.1 Task Modeling
	6.3.2.2 Task Communication and Synchronization

	6.3.4 Homogeneous Cluster-on-a-Chip: A Case study

	6.4…Operating System/Middleware Infrastructure
	6.4.1 Basic Services: Communication and Synchronization Support
	6.4.2 Advanced Services for Dynamic Resource Management: Task Migration Support
	6.4.2.1 Task Respawning with Task Replication
	6.4.2.2 Task Respawning with Task Re-creation


	6.5…Emulation Platform
	6.6…Adaptive and Floorplan Aware Policies for Thermal Balancing
	6.6.1 Compared State-of-the-Art Thermal Control Policies
	6.6.2 Atomic Policies Pre-Characterization
	6.6.3 Proposed Policies
	6.6.3.1 Heuristic Algorithm (Heu)
	6.6.3.2 Adaptive Policy (Adapt)
	6.6.3.3 Floorplan-Aware Policy (FloorAdapt)


	6.7…Experimental Work
	6.7.1 Description of the Application
	6.7.2 Evaluation of the Policies

	6.8…Conclusions
	References

	7 A High Level Synthesis Exploration Framework with Iterative Design Space Partitioning
	Abstract
	7.1…Introduction
	7.2…Related Work
	7.3…Motivational Observations
	7.4…Iterative Design Space Partitioning Exploration
	7.5…The Gradient-Based Pruning Technique
	7.6…Experimental Results
	7.7…Conclusion
	References

	8 A Scalable Bandwidth-Aware Architecture for Connected Component Labeling
	8.1…Introduction
	Abstract
	8.2…Background
	8.3…Single Pass Algorithm and Implementation
	8.4…Sliced Connected Component Labeling Algorithm
	8.4.1 Slice and Merge Algorithm
	8.4.2 Bounding Box Detection

	8.5…SCCL Architecture
	8.5.1 Connected Components Processor (CCP)
	8.5.2 Slice Processor (SP)
	8.5.3 Coalescing Unit (CU)
	8.5.3.1 Writing to the Association FIFO
	8.5.3.2 Reading from the Association FIFO
	8.5.3.3 Common Label (CL) RAMs
	8.5.3.4 Updating Global Bounding Box RAM
	8.5.3.5 Bounding Box Update


	8.6…Results
	Acknowledgments
	References

	9 The SATURN Approach to SysML-Based HW/SW Codesign
	Abstract
	9.1…Introduction
	9.2…Related Work
	9.3…ARTiSAN Studioreg
	9.5…SysML Based HW/SW Co-modeling
	9.4…SysML Based HW/SW Codesign
	9.7…Co-simulation
	9.6…SATURN Code Generation
	9.8…HetSC for Architecture Exploration
	9.10…IEEE 802.16e Base Station
	9.9…Evaluation
	9.11…Smart Camera
	9.12…Conclusions
	Acknowledgments
	References

	10 Mapping Embedded Applications on MPSoCs: The MNEMEE Approach
	Abstract
	10.1…Introduction
	10.2…MNEMEE Tool Flow
	10.2.1 Overview
	10.2.3 Parallelization
	10.2.2 Dynamic Data Type Optimizations
	10.2.4 Optimize Static Data Structures
	10.2.6 Task Mapping
	10.2.5 Optimize Dynamic Memory Management
	10.2.6.1 Scenario-Aware Mapping
	10.2.6.2 Memory-Aware Mapping


	10.3…Industrial Application
	10.3.1 Communication Domain
	10.2.7 Scratchpad Memory Allocation
	10.3.2 Multimedia Domain

	10.4…Conclusions
	Acknowledgments
	References

	11 The MOSART Mapping Optimization for Multi-Core ARchiTectures
	Abstract
	11.1…Introduction and Motivation
	11.2…Project Description
	11.2.1 Applications and Performance Requirements
	11.2.2 Parallelization and System-Level Exploration
	11.2.3 NoC Customization

	11.3…Experimental Results
	11.2.4 ASIP Exploration
	11.3.1 Parallelization
	11.3.2 System Level Exploration
	11.3.3 Supporting Distributed Shared Memory Services
	11.3.3.1 Utilization of Base Services
	11.3.3.2 Utilization of Advanced Services
	11.3.3.3 Power Management Services

	11.3.4 ASIP Exploration
	11.3.4.1 Initial Profiling
	11.3.4.2 MAC Instruction
	11.3.4.3 Branch Prediction
	11.3.4.4 SW/HW Performances Trade-Off


	Acknowledgments
	References
	11.4…Conclusions


	Part III Emerging Devices and Nanocomputing
	12 XMSIM: Extensible Memory Simulator for Early Memory Hierarchy Evaluation
	Abstract
	12.1…Introduction
	12.2…Related Work
	12.3…Simulator Architecture
	12.4…Development Environment
	12.5…XMSIM’S Graphical User Interface
	12.6…Experiments
	12.7…Conclusions
	Acknowledgment
	References

	13 Self-Freeze Linear Decompressors: Test Pattern Generators for Low Power Scan Testing
	Abstract
	13.1…Introduction
	13.2…Background
	13.3…Power Aware Encoding
	13.3.1 Test Data Analysis
	13.3.2 Encoding Algorithm

	13.4…Architecture
	13.5…Experiments
	Acknowledgments
	References
	13.6…Conclusions

	14 SUT-RNS Forward and Reverse Converters
	14.1…Introduction
	Abstract
	14.2…Redundant High-Radix SUT-RNS
	14.3…Forward Converters
	14.3.1 Modulo 2nminus1
	14.3.2 Modulo 2n + 1

	14.4…Reverse Converters
	14.4.1 Modulo 2nminus1
	14.4.2 Modulo 2n + 1

	14.5…Evaluation and Experimental Results
	14.6…Conclusions
	References

	15 Off-Chip SDRAM Access Through Spidergon STNoC
	15.1…Introduction
	Abstract
	15.2…Related Work
	15.2.1 Memory Schedulers
	15.2.2 On-chip Interconnection

	15.3…Problem Statement
	15.2.3 Combined ‘‘Interconnect-Memory Scheduler’’ Solutions

	15.4…Proposed Solution
	15.4.2 Platform Configuration
	15.4.1 Platform Composition
	15.4.2.1 Traffic Generators
	15.4.2.2 Memory Subsystem
	15.4.2.3 Interconnect


	15.5…Simulation Environment and Results
	15.4.2.4 Services Coupling of Both Spidergon STNoC and DMC
	15.4.2.5 Ordering Aspects
	15.5.1 Number of Conflict Points Influence Over Cache Controller Read Transactions Latency
	15.5.2 Comparison Between Cache Controller Direct Connection to Memory Subsystem and the Connection Through Virtual Channels

	15.6…Conclusion and Future Work
	Acknowledgments
	References

	16 Digital Microfluidic Biochips: A Vision for Functional Diversity and More than Moore
	16.1…Introduction
	Abstract
	16.2…Technology Platform
	16.3…Synthesis Methods
	16.3.1 Scheduling and Module Placement
	16.3.2 Droplet Routing

	16.4…Pin-Constrained Chip Design
	16.4.1 Droplet-Trace-Based Array Partitioning
	16.4.3 Broadcast-Addressing Method
	16.4.2 Cross-Referencing-Based Droplet Manipulation

	16.5…Testing and Diagnosis
	16.5.1 Fault Modeling
	16.5.2 Structural Test Techniques
	16.5.3 Functional Testing Techniques
	16.5.4 Built-In Self-Test Techniques
	16.5.5 Design for Testability

	16.6…Chapter Summary and Conclusions
	References


	Part IV Reconfigurable Systems
	17 FPGA Startup Through Sequential Partial and Dynamic Reconfiguration
	Abstract
	17.1…Introduction
	17.2…Dynamic and Partial Reconfiguration
	17.3…General Method of Sequential Startup
	17.4…Implementation
	17.4.1 Spartan 3 Configuration Memory Architecture
	17.4.2 Design Flow for Fast Sequential FPGA Startup with Spartan 3

	17.5…Experiments and Results
	17.6…Conclusions and Outlook
	References

	18 Two Dimensional Dynamic Multigrained Reconfigurable Hardware
	Abstract
	18.1…Introduction
	18.2…Online Adaptable Mesh Based NoC
	18.2.1 Switch for 2D Mesh Based NoC Approach
	18.2.1.1 Switch Layout
	18.2.1.2 Controlling the Switch

	18.2.2 Physical Online Routing of Communication Structures
	18.2.2.1 Motivation
	18.2.2.2 Method
	18.2.2.3 Implementation


	18.3…Physical Online Routing of Modules
	18.3.1 Motivation
	18.2.2.4 Innovation

	18.3.3 Implementation
	18.3.2 Method

	18.4…Universal Tool for Working With Bitstreams
	18.3.4 Innovation

	18.5…Conclusion
	References

	19 Design for Embedded Reconfigurable Systems Using MORPHEUS Platform
	Abstract
	19.1…Introduction
	19.2…Architecture
	19.3…The Toolset
	19.4…Wireless Telecommunications Application
	19.5…Systems for Intelligent Cameras
	19.6…Discrete Wavelet Transformation Application
	19.7…Conclusions
	Acknowledgments
	References

	20 New Dimensions in Design Space and Runtime Adaptivity for Multiprocessor Systems Through Dynamic and Partial Reconfiguration: The RAMPSoC Approach
	Abstract
	20.1…Introduction and Motivation
	20.2…The Holistic RAMPSoC Approach
	20.3…Implementation and Results
	References
	20.4…Conclusions and Outlook



